--- /srv/rebuilderd/tmp/rebuilderdNvd49T/inputs/libdeal.ii-doc_9.6.2-4_all.deb
+++ /srv/rebuilderd/tmp/rebuilderdNvd49T/out/libdeal.ii-doc_9.6.2-4_all.deb
├── file list
│ @@ -1,3 +1,3 @@
│ -rw-r--r-- 0 0 0 4 2025-06-30 07:29:44.000000 debian-binary
│ --rw-r--r-- 0 0 0 270620 2025-06-30 07:29:44.000000 control.tar.xz
│ --rw-r--r-- 0 0 0 285964360 2025-06-30 07:29:44.000000 data.tar.xz
│ +-rw-r--r-- 0 0 0 270564 2025-06-30 07:29:44.000000 control.tar.xz
│ +-rw-r--r-- 0 0 0 285964124 2025-06-30 07:29:44.000000 data.tar.xz
├── control.tar.xz
│ ├── control.tar
│ │ ├── ./control
│ │ │ @@ -1,13 +1,13 @@
│ │ │ Package: libdeal.ii-doc
│ │ │ Source: deal.ii
│ │ │ Version: 9.6.2-4
│ │ │ Architecture: all
│ │ │ Maintainer: Debian Science Maintainers The cell will be or was refined. The children of this cell will be or were coarsened into this cell. Invalid status. Will not occur for the user. Definition at line 30 of file cell_status.h. Constructor. The supplied IndexSet defines for which indices this object will store constraints. In a calculation with a DoFHandler object based on parallel::distributed::Triangulation or parallel::shared::Triangulation, one should use the set of locally relevant DoFs (see GlossLocallyRelevantDof). The given IndexSet allows the AffineConstraints container to save memory by just not caring about degrees of freedom that are not of importance to the current processor. In contrast, in parallel computations, if you do not provide such an index set (here, or using the reinit() function that takes such an argument), the current object will allocate memory proportional to the total number of degrees of freedom (accumulated over all processes), which is clearly wasteful and not efficient – and should be considered a bug. Definition at line 2312 of file affine_constraints.h. clear() the AffineConstraints object and supply an IndexSet that describes for which degrees of freedom this object can store constraints. See the discussion in the documentation of the constructor of this class that takes a single index set as argument. This function copies the content of If, for example, the filter represents the range This function provides an easy way to create a AffineConstraints for certain vector components in a vector-valued problem from a full AffineConstraints, i.e. extracting a diagonal subblock from a larger AffineConstraints. The block is specified by the IndexSet argument. In this example, Definition at line 94 of file block_info.h. This is the base class for block versions of the sparsity pattern and dynamic sparsity pattern classes. It has not much functionality, but only administrates an array of sparsity pattern objects and delegates work to them. It has mostly the same interface as has the SparsityPattern, and DynamicSparsityPattern, and simply transforms calls to its member functions to calls to the respective member functions of the member sparsity patterns. The largest difference between the SparsityPattern and DynamicSparsityPattern classes and this class is that mostly, the matrices have different properties and you will want to work on the blocks making up the matrix rather than the whole matrix. You can access the different blocks using the Attention: this object is not automatically notified if the size of one of its subobjects' size is changed. After you initialize the sizes of the subobjects, you will therefore have to call the You will in general not want to use this class, but one of the derived classes. Definition at line 79 of file block_sparsity_pattern.h. This class generates output from faces of a triangulation. It might be used to generate output only for the surface of the triangulation (this is the default of this class), or for all faces of active cells, as specified in the constructor. The output of this class is a set of patches (as defined by the class DataOutBase::Patch()), one for each face for which output is to be generated. These patches can then be written in several graphical data formats by the functions of the underlying classes. The interface of this class is copied from the DataOut class. Furthermore, they share the common parent class DataOut_DoFData. See the reference of these two classes for a discussion of the interface. The sequence of faces to generate patches from is generated in the same way as in the DataOut class; see there for a description of the respective interface. The functions generating the sequence of faces which shall be used to generate output, are called first_face() and next_face(). Since we need to initialize objects of type FEValues with the faces generated from these functions, it is not sufficient that they only return face iterators. Rather, we need a pair of cell and the number of the face, as the values of finite element fields need not necessarily be unique on a face (think of discontinuous finite elements, where the value of the finite element field depend on the direction from which you approach a face, thus it is necessary to use a pair of cell and face, rather than only a face iterator). Therefore, this class defines an Extending this class might, for example, be useful if you only want output from certain portions of the boundary, e.g. as indicated by the boundary indicator of the respective faces. However, it is also conceivable that one generates patches not from boundary faces, but from interior faces that are selected due to other criteria; one application might be to use only those faces where one component of the solution attains a certain value, in order to display the values of other solution components on these faces. Other applications certainly exist, for which the author is not imaginative enough. Definition at line 108 of file data_out_faces.h. Same as above, except that the additional first parameter defines a mapping that is to be used in the generation of output. If Even for non-curved cells the mapping argument can be used for the Eulerian mappings (see class MappingQ1Eulerian) where a mapping is used not only to determine the position of points interior to a cell, but also of the vertices. It offers an opportunity to watch the solution on a deformed triangulation on which the computation was actually carried out, even if the mesh is internally stored in its undeformed configuration and the deformation is only tracked by an additional vector that holds the deformation of each vertex. Definition at line 345 of file data_out_faces.cc. The second approach outlined here is more general than the first, and will work equally well for both taped and tapeless auto-differentiable numbers. Definition at line 168 of file ad_helpers.h. The type in which we store the active FE index. Definition at line 536 of file dof_handler.h. For each locally owned cell, set the active finite element index to the corresponding value given in The vector Active FE indices will only be set for locally owned cells. Ghost and artificial cells will be ignored; no active FE index will be assigned to them. To exchange active FE indices on ghost cells, call distribute_dofs() afterwards. For each locally relevant cell, extract the active finite element index and fill the vector As we do not know the active FE index on artificial cells, they are set to the invalid value numbers::invalid_fe_index. For DoFHandler objects without hp-capabilities, the vector will consist of zeros, indicating that all cells use the same finite element. In hp-mode, the values may be different, though. The returned vector has as many entries as there are active cells. Invalid index of the finite element to be used on a given cell. Definition at line 528 of file dof_handler.h. Invalid active FE index which will be used as a default value to determine whether a future FE index has been set or not. Definition at line 549 of file dof_handler.h. The same as above. The same as above. The same as above. Implementation of Arnold-Boffi-Falk (ABF) elements, conforming with the space Hdiv. These elements generate vector fields with normal components continuous between mesh cells. These elements are based on an article from Arnold, Boffi and Falk: Quadrilateral H(div) finite elements, SIAM J. Numer. Anal. Vol.42, No.6, pp.2429-2451 In this article, the authors demonstrate that the usual RT elements and also BDM and other proposed finite dimensional subspaces of H(div) do not work properly on arbitrary FE grids. I.e. the convergence rates deteriorate on these meshes. As a solution the authors propose the ABF elements, which are implemented in this class. This class is not implemented for the codimension one case ( The interpolation operators associated with the RT element are constructed such that interpolation and computing the divergence are commuting operations. We require this from interpolating arbitrary functions as well as the restriction matrices. It can be achieved by two interpolation schemes, the simplified one in FE_RaviartThomasNodal and the original one here: On edges or faces, the node values are the moments of the normal component of the interpolated function with respect to the traces of the RT polynomials. Since the normal trace of the RT space of degree k on an edge/face is the space Qk, the moments are taken with respect to this space. Higher order RT spaces have interior nodes. These are moments taken with respect to the gradient of functions in Qk on the cell (this space is the matching space for RTk in a mixed formulation). Example classes are TensorProductPolynomials, PolynomialSpace or PolynomialsP. This class is not a fully implemented FiniteElement class. Instead there are several pure virtual functions declared in the FiniteElement and FiniteElement classes which cannot be implemented by this class but are left for implementation in derived classes. Definition at line 75 of file fe_poly.h. Definition at line 87 of file fe_rt_bubbles.h. Ginkgo matrix data structure. First template parameter is for storing the array of the non-zeros of the matrix. The second is for the row pointers and the column indices. Definition at line 195 of file ginkgo_solver.h. Ginkgo matrix data structure. First template parameter is for storing the array of the non-zeros of the matrix. The second is for the row pointers and the column indices. Definition at line 195 of file ginkgo_solver.h. Ginkgo matrix data structure. First template parameter is for storing the array of the non-zeros of the matrix. The second is for the row pointers and the column indices. Definition at line 195 of file ginkgo_solver.h. Ginkgo matrix data structure. First template parameter is for storing the array of the non-zeros of the matrix. The second is for the row pointers and the column indices. Definition at line 195 of file ginkgo_solver.h. Ginkgo matrix data structure. First template parameter is for storing the array of the non-zeros of the matrix. The second is for the row pointers and the column indices. Definition at line 195 of file ginkgo_solver.h. Ginkgo matrix data structure. First template parameter is for storing the array of the non-zeros of the matrix. The second is for the row pointers and the column indices. Definition at line 195 of file ginkgo_solver.h. Ginkgo matrix data structure. First template parameter is for storing the array of the non-zeros of the matrix. The second is for the row pointers and the column indices. Definition at line 195 of file ginkgo_solver.h. Definition at line 150 of file cuda_vector.h. Definition at line 345 of file trilinos_epetra_vector.h. Definition at line 312 of file read_write_vector.h. Definition at line 341 of file read_write_vector.h. Definition at line 371 of file read_write_vector.h. Definition at line 403 of file read_write_vector.h. Definition at line 435 of file read_write_vector.h. Definition at line 464 of file read_write_vector.h. Definition at line 493 of file read_write_vector.h. Definition at line 514 of file trilinos_tpetra_vector.h. Definition at line 573 of file la_parallel_block_vector.h. Definition at line 717 of file la_parallel_vector.h. Definition at line 776 of file la_parallel_vector.h. Base class used to declare the operations needed by a concrete class implementing prolongation and restriction of vectors in the multigrid context. This class is abstract and has no implementation of these operations. There are several derived classes, reflecting the fact that vector types and numbering of the fine-grid discretization and of the multi-level implementation are independent. If you use multigrid for a single PDE or for your complete system of equations, you will use MGTransferPrebuilt together with Multigrid. The vector types used on the fine grid as well as for the multilevel operations may be Vector or BlockVector. In both cases, MGTransferPrebuilt will operate on all components of the solution. For mixed systems, it may be required to do multigrid only for a single component or for some components. The classes MGTransferSelect and MGTransferBlock handle these cases. MGTransferSelect is used if you use multigrid (on Vector objects) for a single component, possibly grouped using The class MGTransferBlock handles the case where your multigrid method operates on BlockVector objects. These can contain all or a consecutive set of the blocks of the complete system. Since most smoothers cannot operate on block structures, it is not clear whether this case is really useful. Therefore, a tested implementation of this case will be supplied when needed.
│ │ │ cell_will_be_refined
│ │ │ children_will_be_coarsened
│ │ │ -cell_invalid CELL_PERSIST
│ │ │ +
│ │ │ -CELL_PERSIST
│ │ │ CELL_REFINE
│ │ │ +
│ │ │ -CELL_REFINE
│ │ │ CELL_COARSEN
│ │ │ +
│ │ │ -CELL_COARSEN
│ │ │ CELL_INVALID
│ │ │ +
│ │ │
│ │ │
│ │ │ CELL_INVALID
│ │ │
│ │ │ inlineexplicit
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ AffineConstraints() [3/5]
│ │ │ @@ -877,15 +877,15 @@
│ │ │ const IndexSet &
│ │ │ locally_stored_constraints )
│ │ │
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ reinit() [3/3]
│ │ │
│ │ │
│ │ │
│ │ │
│ │ │ constraints_in
with DoFs that are element of the IndexSet filter
. Elements that are not present in the IndexSet are ignored. All DoFs will be transformed to local index space of the filter, both the constrained DoFs and the other DoFs these entries are constrained to. The local index space of the filter is a contiguous numbering of all (global) DoFs that are elements in the filter.[10,20)
, and the constraints object constraints_in
includes the global indices {7,13,14}
, the indices {3,4}
are added to the calling constraints object (since 13 and 14 are elements in the filter and element 13 is the fourth element in the index, and 14 is the fifth).
│ │ │ +
│ │ │
│ │ │ ◆ add_constraint()
│ │ │
│ │ │ solution
obtains the block structure needed to represent a finite element function on the DoFHandler. Similarly, all levels of mg_vector
will have the block structure needed on that level.
│ │ │ +
│ │ │
│ │ │ Member Typedef Documentation
│ │ │
│ │ │ ◆ map_value_type
│ │ │
│ │ │ Detailed Description
│ │ │
│ │ │ class BlockSparsityPatternBase< SparsityPatternType >block(row,col)
function.collect_sizes()
function of this class! Note that, of course, all sub-matrices in a (block-)row have to have the same number of rows, and that all sub-matrices in a (block-)column have to have the same number of columns.
│ │ │ +
│ │ │
│ │ │
│ │ │ Member Typedef Documentation
│ │ │
│ │ │ ◆ size_type
│ │ ├── ./usr/share/doc/libdeal.ii-doc/html/doxygen/deal.II/classDataOutFaces.html
│ │ │ @@ -325,15 +325,15 @@
│ │ │ class DataOutFaces< dim, spacedim >Interface
│ │ │ Extending this class
│ │ │ alias
which creates a type FaceDescriptor
that is an abbreviation for a pair of cell iterator and face number. The functions first_face
and next_face
operate on objects of this type.
│ │ │ +
│ │ │
│ │ │ Member Typedef Documentation
│ │ │
│ │ │ ◆ cell_iterator
│ │ │
│ │ │
│ │ │ virtual
│ │ │
│ │ │
│ │ │ n_subdivisions>1
, the points interior of subdivided patches which originate from cells at the boundary of the domain can be computed using the mapping, i.e. a higher order mapping leads to a representation of a curved boundary by using more subdivisions.
│ │ │ +mapping
argument should be replaced by a hp::MappingCollection in case of a DoFHandler with hp-capabilities.
│ │ │
│ │ │ mapping
argument should be replaced by a hp::MappingCollection in case of a DoFHandler with hp-capabilities. ◆ first_face()
│ │ ├── ./usr/share/doc/libdeal.ii-doc/html/doxygen/deal.II/classDifferentiation_1_1AD_1_1HelperBase.html
│ │ │ @@ -307,15 +307,15 @@
│ │ │
│ │ │ -
│ │ │ +
│ │ │
│ │ │ Member Typedef Documentation
│ │ │
│ │ │ ◆ scalar_type
│ │ │
│ │ │
│ │ │
│ │ │
│ │ │
│ │ │ using DoFHandler< dim, spacedim >::active_fe_index_type = types::fe_index
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ offset_type
│ │ │ @@ -886,15 +886,15 @@
│ │ │
│ │ │ active_fe_indices
.active_fe_indices
needs to have as many entries as there are active cells. The FE indices must be in the order in which we iterate over active cells. Vector entries corresponding to active cells that are not locally owned are ignored.
│ │ │ +
│ │ │
│ │ │ ◆ get_active_fe_indices() [1/2]
│ │ │
│ │ │ active_fe_indices
in the order in which we iterate over active cells. This vector is resized, if necessary.
│ │ │ +
│ │ │
│ │ │ ◆ set_future_fe_indices()
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ invalid_active_fe_index
│ │ │ @@ -2704,15 +2704,15 @@
│ │ │ static
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ block_info_object
│ │ ├── ./usr/share/doc/libdeal.ii-doc/html/doxygen/deal.II/classFEFaceEvaluation.html
│ │ │ @@ -1371,15 +1371,15 @@
│ │ │
│ │ │
│ │ │
│ │ │
│ │ │ )
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ dof_indices()
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ jump_in_hessians()
│ │ │
│ │ │
│ │ │ )
│ │ │ const
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ jump_in_third_derivatives()
│ │ │
│ │ │
│ │ │ )
│ │ │ const
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_function_values()
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_values() [2/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [2/2]
│ │ │
│ │ │ Detailed Description
│ │ │
│ │ │ class FE_ABF< dim >spacedim != dim
).
│ │ │ +
│ │ │ Interpolation
│ │ │ Node values on edges/faces
│ │ │ Interior node values
│ │ │ Generalized support points
│ │ │ @@ -1962,15 +1962,15 @@
│ │ │
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [2/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_values() [2/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [2/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data() [2/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [2/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │ spacedim != dim
│ │ │ 00023750: 3c2f 636f 6465 3e29 2e3c 2f70 3e0a 3c64
)..
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [2/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data() [2/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [2/2]
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ Member Typedef Documentation
│ │ │
│ │ │ ◆ map_value_type
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [2/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_values() [2/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [2/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [2/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │
│ │ │
│ │ │
│ │ │ -Left - \(2d,\,k=3\), right - \(3d,\,k=2\).
│ │ │ +
│ │ │
│ │ │ Member Typedef Documentation
│ │ │
│ │ │ ◆ map_value_type
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values() [1/2]
│ │ │
│ │ │
│ │ │ protectedvirtualinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtual
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ get_subface_data()
│ │ │
│ │ │
│ │ │ protectedvirtual
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ fill_fe_subface_values()
│ │ │
│ │ │
│ │ │ private
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ exec_type
│ │ ├── ./usr/share/doc/libdeal.ii-doc/html/doxygen/deal.II/classGinkgoWrappers_1_1SolverBicgstab.html
│ │ │ @@ -663,15 +663,15 @@
│ │ │
│ │ │
│ │ │ privateinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ exec_type
│ │ ├── ./usr/share/doc/libdeal.ii-doc/html/doxygen/deal.II/classGinkgoWrappers_1_1SolverCG.html
│ │ │ @@ -663,15 +663,15 @@
│ │ │
│ │ │
│ │ │ privateinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ exec_type
│ │ ├── ./usr/share/doc/libdeal.ii-doc/html/doxygen/deal.II/classGinkgoWrappers_1_1SolverCGS.html
│ │ │ @@ -664,15 +664,15 @@
│ │ │
│ │ │
│ │ │ privateinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ exec_type
│ │ ├── ./usr/share/doc/libdeal.ii-doc/html/doxygen/deal.II/classGinkgoWrappers_1_1SolverFCG.html
│ │ │ @@ -666,15 +666,15 @@
│ │ │
│ │ │
│ │ │ privateinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ exec_type
│ │ ├── ./usr/share/doc/libdeal.ii-doc/html/doxygen/deal.II/classGinkgoWrappers_1_1SolverGMRES.html
│ │ │ @@ -663,15 +663,15 @@
│ │ │
│ │ │
│ │ │ privateinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ exec_type
│ │ ├── ./usr/share/doc/libdeal.ii-doc/html/doxygen/deal.II/classGinkgoWrappers_1_1SolverIR.html
│ │ │ @@ -664,15 +664,15 @@
│ │ │
│ │ │
│ │ │ privateinherited
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ exec_type
│ │ ├── ./usr/share/doc/libdeal.ii-doc/html/doxygen/deal.II/classLinearAlgebra_1_1CUDAWrappers_1_1Vector.html
│ │ │ @@ -598,15 +598,15 @@
│ │ │
│ │ │
│ │ │
│ │ │ inline
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ operator=() [3/3]
│ │ ├── ./usr/share/doc/libdeal.ii-doc/html/doxygen/deal.II/classLinearAlgebra_1_1EpetraWrappers_1_1Vector.html
│ │ │ @@ -743,15 +743,15 @@
│ │ │
│ │ │
│ │ │
│ │ │ inline
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ operator()() [1/2]
│ │ ├── ./usr/share/doc/libdeal.ii-doc/html/doxygen/deal.II/classLinearAlgebra_1_1ReadWriteVector.html
│ │ │ @@ -1041,15 +1041,15 @@
│ │ │
│ │ │
│ │ │
│ │ │ inline
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ import_elements() [2/9]
│ │ │ @@ -1129,15 +1129,15 @@
│ │ │
│ │ │
│ │ │
│ │ │ inline
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ import_elements() [3/9]
│ │ │ @@ -1213,15 +1213,15 @@
│ │ │
│ │ │
│ │ │
│ │ │ inline
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ import_elements() [4/9]
│ │ │ @@ -1298,15 +1298,15 @@
│ │ │
│ │ │
│ │ │
│ │ │ inline
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ import_elements() [5/9]
│ │ │ @@ -1386,15 +1386,15 @@
│ │ │
│ │ │
│ │ │
│ │ │ inline
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ import_elements() [6/9]
│ │ │ @@ -1470,15 +1470,15 @@
│ │ │
│ │ │
│ │ │
│ │ │ inline
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ import_elements() [7/9]
│ │ │ @@ -1554,15 +1554,15 @@
│ │ │
│ │ │
│ │ │
│ │ │ inline
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ size()
│ │ ├── ./usr/share/doc/libdeal.ii-doc/html/doxygen/deal.II/classLinearAlgebra_1_1TpetraWrappers_1_1Vector.html
│ │ │ @@ -998,15 +998,15 @@
│ │ │
│ │ │
│ │ │
│ │ │
│ │ │ )
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ import_elements() [3/3]
│ │ │
│ │ │
│ │ │ inline
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ operator()() [1/2]
│ │ ├── ./usr/share/doc/libdeal.ii-doc/html/doxygen/deal.II/classLinearAlgebra_1_1distributed_1_1BlockVector.html
│ │ │ @@ -1758,15 +1758,15 @@
│ │ │
│ │ │
│ │ │
│ │ │ inline
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ operator*() [1/2]
│ │ ├── ./usr/share/doc/libdeal.ii-doc/html/doxygen/deal.II/classLinearAlgebra_1_1distributed_1_1Vector.html
│ │ │ @@ -1558,15 +1558,15 @@
│ │ │
│ │ │
│ │ │
│ │ │ inline
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ operator*=()
│ │ │ @@ -1727,15 +1727,15 @@
│ │ │
│ │ │
│ │ │
│ │ │ inline
│ │ │
│ │ │
│ │ │
│ │ │ +
│ │ │
│ │ │ ◆ operator*()
│ │ ├── ./usr/share/doc/libdeal.ii-doc/html/doxygen/deal.II/classMGTransferBase.html
│ │ │ @@ -217,15 +217,15 @@
│ │ │
│ │ │ Detailed Description
│ │ │
│ │ │ class MGTransferBase< VectorType >
│ │ │ -
│ │ │ +
│ │ │ mg_target_component
.Member Typedef Documentation
│ │ │
│ │ ├── ./usr/share/doc/libdeal.ii-doc/html/doxygen/deal.II/classMapping.html
│ │ │ @@ -330,15 +330,15 @@
│ │ │ \sum_{q}
│ │ │ \hat u(\hat{\mathbf x}_q)
│ │ │ \underbrace{\left|\text{det}J(\hat{\mathbf x}_q)\right| w_q}_{=:
│ │ │ \text{JxW}_q}.
│ │ │ \]
│ │ │
Here, the weights \(\text{JxW}_q\) of each quadrature point (where JxW mnemonically stands for Jacobian times Quadrature Weights) take the role of the \(dx\) in the original integral. Consequently, they appear in all code that computes integrals approximated by quadrature, and are accessed by FEValues::JxW().
│ │ │ -The transformation of vector fields or differential forms (gradients of scalar functions) \(\mathbf v\), and gradients of vector fields \(\mathbf T\) follows the general form
│ │ ││ │ │ \[ │ │ │ \mathbf v(\mathbf x) = \mathbf A(\hat{\mathbf x}) │ │ │ \hat{\mathbf v}(\hat{\mathbf x}), │ │ │ \qquad │ │ │ @@ -1072,15 +1072,15 @@ │ │ │ │ │ │ │ │ │
[in] | input | An array (or part of an array) of input objects that should be mapped. |
[in] | kind | The kind of mapping to be applied. |
[in] | internal | A pointer to an object of type Mapping::InternalDataBase that contains information previously stored by the mapping. The object pointed to was created by the get_data(), get_face_data(), or get_subface_data() function, and will have been updated as part of a call to fill_fe_values(), fill_fe_face_values(), or fill_fe_subface_values() for the current cell, before calling the current function. In other words, this object also represents with respect to which cell the transformation should be applied to. |
[out] | output | An array (or part of an array) into which the transformed objects should be placed. (Note that the array view is const , but the tensors it points to are not.) |
[in] | input | An array (or part of an array) of input objects that should be mapped. |
[in] | kind | The kind of mapping to be applied. |
[in] | internal | A pointer to an object of type Mapping::InternalDataBase that contains information previously stored by the mapping. The object pointed to was created by the get_data(), get_face_data(), or get_subface_data() function, and will have been updated as part of a call to fill_fe_values(), fill_fe_face_values(), or fill_fe_subface_values() for the current cell, before calling the current function. In other words, this object also represents with respect to which cell the transformation should be applied to. |
[out] | output | An array (or part of an array) into which the transformed objects should be placed. (Note that the array view is const , but the tensors it points to are not.) |
[in] | input | An array (or part of an array) of input objects that should be mapped. |
[in] | kind | The kind of mapping to be applied. |
[in] | internal | A pointer to an object of type Mapping::InternalDataBase that contains information previously stored by the mapping. The object pointed to was created by the get_data(), get_face_data(), or get_subface_data() function, and will have been updated as part of a call to fill_fe_values(), fill_fe_face_values(), or fill_fe_subface_values() for the current cell, before calling the current function. In other words, this object also represents with respect to which cell the transformation should be applied to. |
[out] | output | An array (or part of an array) into which the transformed objects should be placed. (Note that the array view is const , but the tensors it points to are not.) |
[in] | input | An array (or part of an array) of input objects that should be mapped. |
[in] | kind | The kind of mapping to be applied. |
[in] | internal | A pointer to an object of type Mapping::InternalDataBase that contains information previously stored by the mapping. The object pointed to was created by the get_data(), get_face_data(), or get_subface_data() function, and will have been updated as part of a call to fill_fe_values(), fill_fe_face_values(), or fill_fe_subface_values() for the current cell, before calling the current function. In other words, this object also represents with respect to which cell the transformation should be applied to. |
[out] | output | An array (or part of an array) into which the transformed objects should be placed. (Note that the array view is const , but the tensors it points to are not.) |
[in] | input | An array (or part of an array) of input objects that should be mapped. |
[in] | kind | The kind of mapping to be applied. |
[in] | internal | A pointer to an object of type Mapping::InternalDataBase that contains information previously stored by the mapping. The object pointed to was created by the get_data(), get_face_data(), or get_subface_data() function, and will have been updated as part of a call to fill_fe_values(), fill_fe_face_values(), or fill_fe_subface_values() for the current cell, before calling the current function. In other words, this object also represents with respect to which cell the transformation should be applied to. |
[out] | output | An array (or part of an array) into which the transformed objects should be placed. (Note that the array view is const , but the tensors it points to are not.) |
[in] | input | An array (or part of an array) of input objects that should be mapped. |
[in] | kind | The kind of mapping to be applied. |
[in] | internal | A pointer to an object of type Mapping::InternalDataBase that contains information previously stored by the mapping. The object pointed to was created by the get_data(), get_face_data(), or get_subface_data() function, and will have been updated as part of a call to fill_fe_values(), fill_fe_face_values(), or fill_fe_subface_values() for the current cell, before calling the current function. In other words, this object also represents with respect to which cell the transformation should be applied to. |
[out] | output | An array (or part of an array) into which the transformed objects should be placed. (Note that the array view is const , but the tensors it points to are not.) |
[in] | input | An array (or part of an array) of input objects that should be mapped. |
[in] | kind | The kind of mapping to be applied. |
[in] | internal | A pointer to an object of type Mapping::InternalDataBase that contains information previously stored by the mapping. The object pointed to was created by the get_data(), get_face_data(), or get_subface_data() function, and will have been updated as part of a call to fill_fe_values(), fill_fe_face_values(), or fill_fe_subface_values() for the current cell, before calling the current function. In other words, this object also represents with respect to which cell the transformation should be applied to. |
[out] | output | An array (or part of an array) into which the transformed objects should be placed. (Note that the array view is const , but the tensors it points to are not.) |
[in] | input | An array (or part of an array) of input objects that should be mapped. |
[in] | kind | The kind of mapping to be applied. |
[in] | internal | A pointer to an object of type Mapping::InternalDataBase that contains information previously stored by the mapping. The object pointed to was created by the get_data(), get_face_data(), or get_subface_data() function, and will have been updated as part of a call to fill_fe_values(), fill_fe_face_values(), or fill_fe_subface_values() for the current cell, before calling the current function. In other words, this object also represents with respect to which cell the transformation should be applied to. |
[out] | output | An array (or part of an array) into which the transformed objects should be placed. (Note that the array view is const , but the tensors it points to are not.) |
[in] | input | An array (or part of an array) of input objects that should be mapped. |
[in] | kind | The kind of mapping to be applied. |
[in] | internal | A pointer to an object of type Mapping::InternalDataBase that contains information previously stored by the mapping. The object pointed to was created by the get_data(), get_face_data(), or get_subface_data() function, and will have been updated as part of a call to fill_fe_values(), fill_fe_face_values(), or fill_fe_subface_values() for the current cell, before calling the current function. In other words, this object also represents with respect to which cell the transformation should be applied to. |
[out] | output | An array (or part of an array) into which the transformed objects should be placed. (Note that the array view is const , but the tensors it points to are not.) |
[in] | input | An array (or part of an array) of input objects that should be mapped. |
[in] | kind | The kind of mapping to be applied. |
[in] | internal | A pointer to an object of type Mapping::InternalDataBase that contains information previously stored by the mapping. The object pointed to was created by the get_data(), get_face_data(), or get_subface_data() function, and will have been updated as part of a call to fill_fe_values(), fill_fe_face_values(), or fill_fe_subface_values() for the current cell, before calling the current function. In other words, this object also represents with respect to which cell the transformation should be applied to. |
[out] | output | An array (or part of an array) into which the transformed objects should be placed. (Note that the array view is const , but the tensors it points to are not.) |
[in] | input | An array (or part of an array) of input objects that should be mapped. |
[in] | kind | The kind of mapping to be applied. |
[in] | internal | A pointer to an object of type Mapping::InternalDataBase that contains information previously stored by the mapping. The object pointed to was created by the get_data(), get_face_data(), or get_subface_data() function, and will have been updated as part of a call to fill_fe_values(), fill_fe_face_values(), or fill_fe_subface_values() for the current cell, before calling the current function. In other words, this object also represents with respect to which cell the transformation should be applied to. |
[out] | output | An array (or part of an array) into which the transformed objects should be placed. (Note that the array view is const , but the tensors it points to are not.) |
Here, we have not gained very much, except that we do not need to set up empty blocks in the block system.
│ │ │Definition at line 110 of file matrix_block.h.
│ │ │Add all elements in a FullMatrix into sparse matrix locations given by indices
. This function assumes a quadratic sparse matrix and a quadratic full_matrix. The global locations are translated into locations in this block and ExcBlockIndexMismatch is thrown, if the global index does not point into the block referred to by row and column.
elide_zero_values
is currently ignored.elide_zero_values
is currently ignored.The optional parameter elide_zero_values
can be used to specify whether zero values should be added anyway or these should be filtered away and only non-zero data is added. The default value is true
, i.e., zero values won't be added into the matrix.
Definition at line 757 of file matrix_block.h.
│ │ │ │ │ │Add all elements in a FullMatrix into global locations given by row_indices
and col_indices
, respectively. The global locations are translated into locations in this block and ExcBlockIndexMismatch is thrown, if the global index does not point into the block referred to by row and column.
elide_zero_values
is currently ignored.elide_zero_values
is currently ignored.The optional parameter elide_zero_values
can be used to specify whether zero values should be added anyway or these should be filtered away and only non-zero data is added. The default value is true
, i.e., zero values won't be added into the matrix.
Definition at line 695 of file matrix_block.h.
│ │ │ │ │ │Set several elements in the specified row of the matrix with column indices as given by col_indices
to the respective value. This is the function doing the actual work for the ones adding full matrices. The global locations row_index
and col_indices
are translated into locations in this block and ExcBlockIndexMismatch is thrown, if the global index does not point into the block referred to by row and column.
elide_zero_values
is currently ignored.elide_zero_values
is currently ignored.The optional parameter elide_zero_values
can be used to specify whether zero values should be added anyway or these should be filtered away and only non-zero data is added. The default value is true
, i.e., zero values won't be added into the matrix.
Definition at line 780 of file matrix_block.h.
│ │ │ │ │ │Assemble local matrices into level matrices without using block structure.
│ │ │ -Assemble local residuals into global residuals.
│ │ │The global residuals are expected as an FEVectors object. The local residuals are block vectors.
│ │ │Depending on whether the BlockInfo object was initialize with BlockInfo::initialize_local(), the comprehensive or block data model is used locally.
│ │ │In the block model, each of the blocks of the local vectors corresponds to the restriction of a single block of the system to this cell (see GlossBlock). Thus, the size of this local block is the number of degrees of freedom of the corresponding base element of the FESystem.
│ │ │ -Definition at line 110 of file assembler.h.
│ │ │A local integrator object, which can be used to simplify the call of loop(). Instead of providing the three local integration functions separately, we bundle them as virtual functions in this class.
│ │ │Additionally, since we cannot have a virtual null function, we provide flags, which allow us to indicate, whether we want to integrate on boundary and interior faces. These flags are true by default, but can be modified by applications to speed up the loop.
│ │ │If a function is not overloaded in a derived class, but its usage flag is true, the function will cause an exception ExcPureFunction.
│ │ │ -Definition at line 59 of file local_integrator.h.
│ │ │The names of the input vectors. If this vector is nonempty, it can be used by application programs to automatically select and verify the input vectors used for integration.
│ │ │Definition at line 132 of file local_integrator.h.
│ │ │ │ │ │The names of the results produced. If this vector is nonempty, it can be used by application programs to automatically assign names to output values and/or verify the names of vectors.
│ │ │Definition at line 146 of file local_integrator.h.
│ │ │ │ │ │Write input for ParameterHandler without comments or changed default values.
│ │ │Keep the order of the parameters as they have been declared.
│ │ │Write human readable output suitable to be read by ParameterHandler::parse_input() again.
│ │ │Write human readable output suitable to be read by ParameterHandler::parse_input() again.
│ │ │ -PRM
instead of Text
. PRM
instead of Text
. Write parameters as a LaTeX table.
│ │ │Write out declared parameters with description and possible values.
│ │ │Write out everything as an XML file suitable to be read by ParameterHandler::parse_input_from_xml() again.
│ │ │See the general documentation of this class for an example of output.
│ │ │Write out everything as a JSON file suitable to be read by ParameterHandler::parse_input_from_json() again.
│ │ │Write the content of ParameterHandler without comments or changed default values.
│ │ │Write the content of ParameterHandler without comments or changed default values.
│ │ │ -ShortPRM
instead of ShortText
. ShortPRM
instead of ShortText
. Write the content of ParameterHandler without comments or changed default values as a XML file.
│ │ │Write the content of ParameterHandler without comments or changed default values as a JSON file.
│ │ │Write the content of ParameterHandler without comments or changed default values as a LaTeX file.
│ │ │Constructor, selecting the solver and other parameters specified in additional_data
.
Definition at line 495 of file nonlinear.h.
│ │ │ │ │ │Constructor. This constructor is deprecated and ignores the MPI communicator argument. Use the other constructor instead.
│ │ │ - │ │ │ + │ │ │ │ │ │Definition at line 368 of file petsc_solver.cc.
│ │ │ │ │ │Constructor. This constructor is deprecated and ignores the MPI communicator argument. Use the other constructor instead.
│ │ │ - │ │ │ + │ │ │ │ │ │Definition at line 439 of file petsc_solver.cc.
│ │ │ │ │ │Constructor. This constructor is deprecated and ignores the MPI communicator argument. Use the other constructor instead.
│ │ │ - │ │ │ + │ │ │ │ │ │Definition at line 341 of file petsc_solver.cc.
│ │ │ │ │ │Constructor. This constructor is deprecated and ignores the MPI communicator argument. Use the other constructor instead.
│ │ │ - │ │ │ + │ │ │ │ │ │Definition at line 466 of file petsc_solver.cc.
│ │ │ │ │ │Constructor. This constructor is deprecated and ignores the MPI communicator argument. Use the other constructor instead.
│ │ │ - │ │ │ + │ │ │ │ │ │Definition at line 547 of file petsc_solver.cc.
│ │ │ │ │ │Constructor. This constructor is deprecated and ignores the MPI communicator argument. Use the other constructor instead.
│ │ │ - │ │ │ + │ │ │ │ │ │Definition at line 314 of file petsc_solver.cc.
│ │ │ │ │ │Constructor. This constructor is deprecated and ignores the MPI communicator argument. Use the other constructor instead.
│ │ │ - │ │ │ + │ │ │ │ │ │Definition at line 404 of file petsc_solver.cc.
│ │ │ │ │ │Constructor. This constructor is deprecated and ignores the MPI communicator argument. Use the other constructor instead.
│ │ │ - │ │ │ + │ │ │ │ │ │Definition at line 575 of file petsc_solver.cc.
│ │ │ │ │ │Constructor. This constructor is deprecated and ignores the MPI communicator argument. Use the other constructor instead.
│ │ │ - │ │ │ + │ │ │ │ │ │Definition at line 610 of file petsc_solver.cc.
│ │ │ │ │ │Constructor. This constructor is deprecated and ignores the MPI communicator argument. Use the other constructor instead.
│ │ │ - │ │ │ + │ │ │ │ │ │Definition at line 264 of file petsc_solver.cc.
│ │ │ │ │ │Constructor. This constructor is deprecated and ignores the MPI communicator argument. Use the other constructor instead.
│ │ │ - │ │ │ + │ │ │ │ │ │Definition at line 520 of file petsc_solver.cc.
│ │ │ │ │ │Constructor. This constructor is deprecated and ignores the MPI communicator argument. Use the other constructor instead.
│ │ │ - │ │ │ + │ │ │ │ │ │Definition at line 493 of file petsc_solver.cc.
│ │ │ │ │ │Constructor. This constructor is deprecated and ignores the MPI communicator argument. Use the other constructor instead.
│ │ │ - │ │ │ + │ │ │ │ │ │Definition at line 650 of file petsc_solver.cc.
│ │ │ │ │ │std::function<void(const real_type t, VectorType &y)> PETScWrappers::TimeStepper< VectorType, PMatrixType, AMatrixType >::distribute | │ │ │
update_constrained_components
, but is deprecated. Use update_constrained_components
instead. update_constrained_components
, but is deprecated. Use update_constrained_components
instead. Definition at line 621 of file petsc_ts.h.
│ │ │ │ │ │std::function<void(const real_type t, const unsigned int step, const VectorType &y, bool &resize)> PETScWrappers::TimeStepper< VectorType, PMatrixType, AMatrixType >::decide_for_coarsening_and_refinement | │ │ │
decide_and_prepare_for_remeshing
except that it returns the decision whether or not to stop operations via the last reference argument of the function object instead of a plain return value. This callback is deprecated. Use decide_and_prepare_for_remeshing
instead. decide_and_prepare_for_remeshing
except that it returns the decision whether or not to stop operations via the last reference argument of the function object instead of a plain return value. This callback is deprecated. Use decide_and_prepare_for_remeshing
instead. Definition at line 656 of file petsc_ts.h.
│ │ │ │ │ │std::function<void(const std::vector<VectorType> &all_in, std::vector<VectorType> &all_out)> PETScWrappers::TimeStepper< VectorType, PMatrixType, AMatrixType >::interpolate | │ │ │
transfer_solution_vectors_to_new_mesh
, but is deprecated. Use transfer_solution_vectors_to_new_mesh
instead. transfer_solution_vectors_to_new_mesh
, but is deprecated. Use transfer_solution_vectors_to_new_mesh
instead. Definition at line 688 of file petsc_ts.h.
│ │ │ │ │ │Write input for ParameterHandler without comments or changed default values.
│ │ │Keep the order of the parameters as they have been declared.
│ │ │Write human readable output suitable to be read by ParameterHandler::parse_input() again.
│ │ │Write human readable output suitable to be read by ParameterHandler::parse_input() again.
│ │ │ -PRM
instead of Text
. PRM
instead of Text
. Write parameters as a LaTeX table.
│ │ │Write out declared parameters with description and possible values.
│ │ │Write out everything as an XML file suitable to be read by ParameterHandler::parse_input_from_xml() again.
│ │ │See the general documentation of this class for an example of output.
│ │ │Write out everything as a JSON file suitable to be read by ParameterHandler::parse_input_from_json() again.
│ │ │Write the content of ParameterHandler without comments or changed default values.
│ │ │Write the content of ParameterHandler without comments or changed default values.
│ │ │ -ShortPRM
instead of ShortText
. ShortPRM
instead of ShortText
. Write the content of ParameterHandler without comments or changed default values as a XML file.
│ │ │Write the content of ParameterHandler without comments or changed default values as a JSON file.
│ │ │Write the content of ParameterHandler without comments or changed default values as a LaTeX file.
│ │ │Tell the particle where to store its properties (even if it does not own properties). Usually this is only done once per particle, but since the particle generator does not know about the properties we want to do it not at construction time. Another use for this function is after particle transfer to a new process.
│ │ │ -Definition at line 835 of file particle_accessor.h.
│ │ │ │ │ │This piece of code will first traverse all paths in the list set up for file class MESH
. If it manages to open a file, it returns the istream
object. If not, it will try to append the first suffix of the suffix list and do the same. And so on. If no file is found in the end, an exception is thrown.
If you want to restrict your search to a certain mesh format, .inp
for instance, then either use "grid.inp"
in the code above or use the alternative find(const std::string&,const std::string&,const char*) function
Path lists are by default starting with the current directory ("./"
), followed optionally by a standard directory of deal.II. Use show() to find out the path list for a given class. Paths and suffixes can be added using the functions add_path() and add_suffix(), respectively.
"/"
, while suffixes should always start with a dot. These characters are not added automatically (allowing you to do some real file name editing).Definition at line 82 of file path_search.h.
│ │ │The elements of this enum
are used to inform functions how a specific cell is going to change. This is used in the course of transferring data from one mesh to a refined or coarsened version of the mesh, for example. Note that this may me different than the refine_flag() and coarsen_flag() set on a cell, for example in parallel calculations, because of refinement constraints that an individual machine does not see.
Definition at line 2234 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2241 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2248 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2255 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Fill a vector with all tensor elements.
│ │ │This function unrolls all tensor entries into a single, linearly numbered vector. As usual in C++, the rightmost index of the tensor marches fastest.
│ │ │ -const Point<spacedim> PolarManifold< dim, spacedim >::center | │ │ │
The center of the spherical coordinate system.
│ │ │ -Definition at line 150 of file manifold_lib.h.
│ │ │ │ │ │Static function to generate an offset object for a given face of a cell with the given face orientation, flip and rotation. This function of course is only allowed if dim>=2
, and the face orientation, flip and rotation are ignored if the space dimension equals 2.
The last argument denotes the number of quadrature points the lower-dimensional face quadrature formula (the one that has been projected onto the faces) has.
│ │ │ -Definition at line 1349 of file qprojector.cc.
│ │ │ │ │ │Compute an offset object for the given face number and orientation, taking into account the possibility of different quadrature rules being used on each face.
│ │ │ -Definition at line 1421 of file qprojector.cc.
│ │ │ │ │ │Static function to generate an offset object for a given subface of a cell with the given face orientation, flip and rotation. This function of course is only allowed if dim>=2
, and the face orientation, flip and rotation are ignored if the space dimension equals 2.
The last but one argument denotes the number of quadrature points the lower-dimensional face quadrature formula (the one that has been projected onto the faces) has.
│ │ │Through the last argument anisotropic refinement can be respected.
│ │ │ -Definition at line 1541 of file qprojector.cc.
│ │ │ │ │ │Determine the orientation of the current entity described by its vertices vertices_1
relative to an entity described by vertices_0
. The two arrays given as arguments can be arrays of global vertex indices or local vertex indices, arrays of vertex locations, or arrays of any other objects identifying the vertices and the order in which they are encountered in a cell.
The size of the arrays, i.e., the template argument N
, must be equal to or larger than the number of vertices of the current entity. If it is larger, only those elements of the input and output arrays are read from or written to that correspond to valid vertex indices.
Definition at line 3183 of file reference_cell.h.
│ │ │ │ │ │Inverse function of compute_orientation(): Given a set of vertex-associated objects (such as vertex indices, locations, etc.) and a desired orientation permutation, return the permuted vertex information.
│ │ │The size of the input and output arrays, i.e., the template argument N
, must be equal to or larger than the number of vertices of the current entity. If it is larger, only those elements of the input and output arrays are read from or written to that correspond to valid vertex indices.
Definition at line 3259 of file reference_cell.h.
│ │ │ │ │ │std::function<VectorType &()> SUNDIALS::KINSOL< VectorType >::get_solution_scaling | │ │ │
A function object that users may supply and that is intended to return a vector whose components are the weights used by KINSOL to compute the vector norm of the solution. The implementation of this function is optional, and it is used only if implemented.
│ │ │ -The intent for this scaling factor is for problems in which the different components of a solution have vastly different numerical magnitudes – typically because they have different physical units and represent different things. For example, if one were to solve a nonlinear Stokes problem, the solution vector has components that correspond to velocities and other components that correspond to pressures. These have different physical units and depending on which units one chooses, they may have roughly comparable numerical sizes or maybe they don't. To give just one example, in simulations of flow in the Earth's interior, one has velocities on the order of maybe ten centimeters per year, and pressures up to around 100 GPa. If one expresses this in SI units, this corresponds to velocities of around \(0.000,000,003=3 \times 10^{-9}\) m/s, and pressures around \(10^9 \text{kg}/\text{m}/\text{s}^2\), i.e., vastly different. In such cases, computing the \(l_2\) norm of a solution-type vector (e.g., the difference between the previous and the current solution) makes no sense because the norm will either be dominated by the velocity components or the pressure components. The scaling vector this function returns is intended to provide each component of the solution with a scaling factor that is generally chosen as the inverse of a "typical velocity" or "typical pressure" so that upon multiplication of a vector component by the corresponding scaling vector component, one obtains a number that is of order of magnitude of one (i.e., a reasonably small multiple of one times the typical velocity/pressure). The KINSOL manual states this as follows: "The user should supply values \_form#2664, │ │ │ -which are diagonal elements of the scaling matrix such that \_form#2680 has │ │ │ -all components roughly the same magnitude when \_form#304 is close to a │ │ │ +
The intent for this scaling factor is for problems in which the different components of a solution have vastly different numerical magnitudes – typically because they have different physical units and represent different things. For example, if one were to solve a nonlinear Stokes problem, the solution vector has components that correspond to velocities and other components that correspond to pressures. These have different physical units and depending on which units one chooses, they may have roughly comparable numerical sizes or maybe they don't. To give just one example, in simulations of flow in the Earth's interior, one has velocities on the order of maybe ten centimeters per year, and pressures up to around 100 GPa. If one expresses this in SI units, this corresponds to velocities of around \(0.000,000,003=3 \times 10^{-9}\) m/s, and pressures around \(10^9 \text{kg}/\text{m}/\text{s}^2\), i.e., vastly different. In such cases, computing the \(l_2\) norm of a solution-type vector (e.g., the difference between the previous and the current solution) makes no sense because the norm will either be dominated by the velocity components or the pressure components. The scaling vector this function returns is intended to provide each component of the solution with a scaling factor that is generally chosen as the inverse of a "typical velocity" or "typical pressure" so that upon multiplication of a vector component by the corresponding scaling vector component, one obtains a number that is of order of magnitude of one (i.e., a reasonably small multiple of one times the typical velocity/pressure). The KINSOL manual states this as follows: "The user should supply values \_form#2653, │ │ │ +which are diagonal elements of the scaling matrix such that \_form#2671 has │ │ │ +all components roughly the same magnitude when \_form#195 is close to a │ │ │ solution".
│ │ │If no function is provided to a KINSOL object, then this is interpreted as implicitly saying that all of these scaling factors should be considered as one.
│ │ │const Point<spacedim> SphericalManifold< dim, spacedim >::center | │ │ │
The center of the spherical coordinate system.
│ │ │ -Definition at line 356 of file manifold_lib.h.
│ │ │ │ │ │Return a pointer to the first element of the underlying storage.
│ │ │ -Return a const pointer to the first element of the underlying storage.
│ │ │ -Return a pointer to the element past the end of the underlying storage.
│ │ │ -Return a const pointer to the element past the end of the underlying storage.
│ │ │ -Fill a vector with all tensor elements.
│ │ │This function unrolls all tensor entries into a single, linearly numbered vector. As usual in C++, the rightmost index of the tensor marches fastest.
│ │ │ -using Triangulation< dim, spacedim >::CellStatus = ::CellStatus | │ │ │
The elements of this enum
are used to inform functions how a specific cell is going to change. This is used in the course of transferring data from one mesh to a refined or coarsened version of the mesh, for example. Note that this may me different than the refine_flag() and coarsen_flag() set on a cell, for example in parallel calculations, because of refinement constraints that an individual machine does not see.
Definition at line 2234 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2241 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2248 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2255 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 767 of file trilinos_vector.h.
│ │ │ │ │ │Definition at line 61 of file mpi_remote_point_evaluation.cc.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Deprecated constructor.
│ │ │ -Definition at line 9399 of file data_out_base.cc.
│ │ │ │ │ │Deprecated constructor.
│ │ │ -Definition at line 9418 of file data_out_base.cc.
│ │ │ │ │ │Deprecated constructor.
│ │ │ -Definition at line 9455 of file data_out_base.cc.
│ │ │ │ │ │Get the XDMF content associated with this entry. If the entry is not valid, this returns an empty string.
│ │ │ -Definition at line 9555 of file data_out_base.cc.
│ │ │ │ │ │Return an iterator to the next free slot for a single object. This function is only used by Triangulation::execute_refinement() in 3d.
│ │ │Return an iterator to the next free slot for a pair of objects. This function is only used by Triangulation::execute_refinement() in 3d.
│ │ │The elements of this enum
are used to inform functions how a specific cell is going to change. This is used in the course of transferring data from one mesh to a refined or coarsened version of the mesh, for example. Note that this may me different than the refine_flag() and coarsen_flag() set on a cell, for example in parallel calculations, because of refinement constraints that an individual machine does not see.
Same as the function above.
│ │ │ -Implemented in parallel::fullydistributed::Triangulation< dim, spacedim >, parallel::distributed::Triangulation< dim, spacedim >, and parallel::distributed::Triangulation< 1, spacedim >.
│ │ │ │ │ │Definition at line 2234 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2241 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2248 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2255 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │The elements of this enum
are used to inform functions how a specific cell is going to change. This is used in the course of transferring data from one mesh to a refined or coarsened version of the mesh, for example. Note that this may me different than the refine_flag() and coarsen_flag() set on a cell, for example in parallel calculations, because of refinement constraints that an individual machine does not see.
Definition at line 2234 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2241 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2248 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2255 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │The elements of this enum
are used to inform functions how a specific cell is going to change. This is used in the course of transferring data from one mesh to a refined or coarsened version of the mesh, for example. Note that this may me different than the refine_flag() and coarsen_flag() set on a cell, for example in parallel calculations, because of refinement constraints that an individual machine does not see.
Load the refinement information saved with save() back in. The mesh must contain the same coarse mesh that was used in save() before calling this function.
│ │ │You do not need to load with the same number of MPI processes that you saved with. Rather, if a mesh is loaded with a different number of MPI processes than used at the time of saving, the mesh is repartitioned so that the number of cells is balanced among all processes. Individual repartitioning with non-identical weights for each cell, e.g., based on the number of dofs or particles per cell, needs to be invoked manually by calling repartition() afterwards.
│ │ │Cell-based data that was saved with DistributedTriangulationBase::DataTransfer::register_data_attach() can be read in with DistributedTriangulationBase::DataTransfer::notify_ready_to_unpack() after calling load().
│ │ │ -Implements parallel::DistributedTriangulationBase< dim, spacedim >.
│ │ │ │ │ │ │ │ │ │ │ │Definition at line 2234 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2241 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2248 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2255 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │The elements of this enum
are used to inform functions how a specific cell is going to change. This is used in the course of transferring data from one mesh to a refined or coarsened version of the mesh, for example. Note that this may me different than the refine_flag() and coarsen_flag() set on a cell, for example in parallel calculations, because of refinement constraints that an individual machine does not see.
Definition at line 2234 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2241 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2248 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2255 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │The elements of this enum
are used to inform functions how a specific cell is going to change. This is used in the course of transferring data from one mesh to a refined or coarsened version of the mesh, for example. Note that this may me different than the refine_flag() and coarsen_flag() set on a cell, for example in parallel calculations, because of refinement constraints that an individual machine does not see.
Load the triangulation saved with save() back in. The mesh must be empty before calling this function.
│ │ │You need to load with the same number of MPI processes that you saved with, hence autopartition is disabled.
│ │ │Cell-based data that was saved with register_data_attach() can be read in with notify_ready_to_unpack() after calling load().
│ │ │ -Implements parallel::DistributedTriangulationBase< dim, spacedim >.
│ │ │ │ │ │Definition at line 741 of file fully_distributed_tria.cc.
│ │ │ │ │ │Definition at line 2234 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2241 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2248 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2255 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │The elements of this enum
are used to inform functions how a specific cell is going to change. This is used in the course of transferring data from one mesh to a refined or coarsened version of the mesh, for example. Note that this may me different than the refine_flag() and coarsen_flag() set on a cell, for example in parallel calculations, because of refinement constraints that an individual machine does not see.
Definition at line 2234 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2241 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2248 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Definition at line 2255 of file tria.h.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │std::map
instead. std::map
instead. std::map
instead. std::map
instead. std_cxx20::type_identity
instead. std_cxx20::type_identity
instead. ShortPRM
instead of ShortText
. ShortPRM
instead of ShortText
. PRM
instead of Text
. PRM
instead of Text
. decide_and_prepare_for_remeshing
except that it returns the decision whether or not to stop operations via the last reference argument of the function object instead of a plain return value. This callback is deprecated. Use decide_and_prepare_for_remeshing
instead. decide_and_prepare_for_remeshing
except that it returns the decision whether or not to stop operations via the last reference argument of the function object instead of a plain return value. This callback is deprecated. Use decide_and_prepare_for_remeshing
instead. update_constrained_components
, but is deprecated. Use update_constrained_components
instead. update_constrained_components
, but is deprecated. Use update_constrained_components
instead. transfer_solution_vectors_to_new_mesh
, but is deprecated. Use transfer_solution_vectors_to_new_mesh
instead. transfer_solution_vectors_to_new_mesh
, but is deprecated. Use transfer_solution_vectors_to_new_mesh
instead. Simplified interface for loop() if specialized for integration, using the virtual functions in LocalIntegrator.
│ │ │ -vtu
: .vtu
svg
: .svg
deal_II_intermediate
: .d2
. Definition at line 2496 of file data_out_base.cc.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │Extract the set of global DoF indices that are active on the current DoFHandler. For regular DoFHandlers, these are all DoF indices, but for DoFHandler objects built on parallel::distributed::Triangulation this set is a superset of DoFHandler::locally_owned_dofs() and contains all DoF indices that live on all locally owned cells (including on the interface to ghost cells). However, it does not contain the DoF indices that are exclusively defined on ghost or artificial cells (see the glossary).
│ │ │The degrees of freedom identified by this function equal those obtained from the dof_indices_with_subdomain_association() function when called with the locally owned subdomain id.
│ │ │ -Definition at line 1105 of file dof_tools.cc.
│ │ │ │ │ │Same function as above but for a certain (multigrid-)level. This function returns all DoF indices that live on all locally owned cells (including on the interface to ghost cells) on the given level.
│ │ │ -Definition at line 1152 of file dof_tools.cc.
│ │ │ │ │ │Extract the set of global DoF indices that are active on the current DoFHandler. For regular DoFHandlers, these are all DoF indices, but for DoFHandler objects built on parallel::distributed::Triangulation this set is the union of DoFHandler::locally_owned_dofs() and the DoF indices on all ghost cells. In essence, it is the DoF indices on all cells that are not artificial (see the glossary).
│ │ │ -Definition at line 1202 of file dof_tools.cc.
│ │ │ │ │ │Same as extract_locally_relevant_dofs() but for multigrid DoFs for the given level
.
Definition at line 1258 of file dof_tools.cc.
│ │ │ │ │ │For each active cell of a DoFHandler, extract the active finite element index and fill the vector given as second argument. This vector is assumed to have as many entries as there are active cells.
│ │ │For DoFHandler objects without hp-capabilities given as first argument, the returned vector will consist of only zeros, indicating that all cells use the same finite element. In hp-mode, the values may be different, though.
│ │ │As we do not know the active FE index on artificial cells, we set them to the invalid value numbers::invalid_fe_index.
│ │ │ -Definition at line 1499 of file dof_tools.cc.
│ │ │ │ │ │A version of the function of same name that returns the map via its third argument. This function is deprecated.
std::map
instead. A version of the function of same name that returns the map via its third argument. This function is deprecated.
std::map
instead. Definition at line 2430 of file dof_tools.cc.
│ │ │ │ │ │A version of the function of same name that returns the map via its third argument. This function is deprecated.
std::map
instead. A version of the function of same name that returns the map via its third argument. This function is deprecated.
std::map
instead. Definition at line 2451 of file dof_tools.cc.
│ │ │ │ │ │This is the opposite function to the one above. It generates a map where the keys are the support points of the degrees of freedom, while the values are the DoF indices. For a definition of support points, see this glossary entry.
│ │ │Since there is no natural order in the space of points (except for the 1d case), you have to provide a map with an explicitly specified comparator object. This function is therefore templatized on the comparator object. Previous content of the map object is deleted in this function.
│ │ │Just as with the function above, it is assumed that the finite element in use here actually supports the notion of support points of all its components.
│ │ │ -Same as above but for a specific number of sub-elements.
│ │ │ -Take a FiniteElement
object and return a boolean vector describing the restriction_is_additive_flags
(see the documentation of the FiniteElement class) for each shape function of the mixed element consisting of N1
, N2
, ... copies of the sub-elements fe1
, fe2
, ...
The "restriction is additive" flags are properties of individual shape functions that do not depend on whether the composed element uses the tensor product or combination strategy outlined in the documentation of the FETools::Composition namespace. Consequently, this function does not have a do_tensor_product
argument.
Compute the non-zero vector components of a composed finite element. This function is similar to the previous one, except that the pointers indicate the elements to be composed, and the arguments N1
, N2
, ... the multiplicities. Null pointers indicate that an argument is to be skipped.
If do_tensor_product
is true, the number of components (and thus the size of the ComponentMask objects) is the sum over the product of the number of components in each of the finite elements times the corresponding multiplicity. Otherwise the number of components is taken from the first finite element with non-zero multiplicity, and all other elements with non-zero multiplicities need to have the same number of vector components.
See the documentation of namespace FETools::Compositing for more information about the do_tensor_product
argument.
Definition at line 241 of file grid_tools.cc.
│ │ │ │ │ │Given a triangulation and a list of cells whose children have become distorted as a result of mesh refinement, try to fix these cells up by moving the center node around.
│ │ │The function returns a list of cells with distorted children that couldn't be fixed up for whatever reason. The returned list is therefore a subset of the input argument.
│ │ │For a definition of the concept of distorted cells, see the glossary entry. The first argument passed to the current function is typically the exception thrown by the Triangulation::execute_coarsening_and_refinement function.
│ │ │ -Definition at line 2759 of file grid_tools.cc.
│ │ │ │ │ │The residual of the divergence operator in weak form.
│ │ │ \[ - \int_Z │ │ │ \nabla v \cdot \mathbf u \,dx \] │ │ │
│ │ │This is the weak divergence operator and the test space should be at least H1. The trial functions may be discontinuous.
│ │ │ -Definition at line 125 of file divergence.h.
│ │ │ │ │ │The residual of the gradient operator in weak form.
│ │ │ \[ -\int_Z │ │ │ \nabla\cdot \mathbf v u \,dx \] │ │ │
│ │ │This is the weak gradient operator and the test space should be at least Hdiv. The trial functions may be discontinuous.
│ │ │ -Definition at line 229 of file divergence.h.
│ │ │ │ │ │If the library is configured to use multithreading, this function works in parallel.
│ │ │weight:
an optional weight for the computation of the mass matrix. If no weight is given, it is set to one. In case you want to specify component_mapping
and use the default argument for the coefficient you have to specify the (unused) coefficient argument as (const Function <spacedim,number> *const)nullptr
.component_mapping:
if the components in boundary_functions
and dof
do not coincide, this vector allows them to be remapped. If the vector is not empty, it has to have one entry for each component in dof
. This entry is the component number in boundary_functions
that should be used for this component in dof
. By default, no remapping is applied.[in] | axis | A unit vector that defines the axis of rotation |
[in] | angle | The rotation angle in radians |
Definition at line 164 of file mpi.cc.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │The same trick with the mixed system does not work here, because we would end up with both Dirichlet and Neumann boundary conditions for \(u\), but none for \(v\).
│ │ │The solution to this conundrum arrived with the Discontinuous Galerkin method wave in the 1990s and early 2000s: In much the same way as one can use discontinuous shape functions for the Laplace equation by penalizing the size of the discontinuity to obtain a scheme for an equation that has one derivative on each shape function, we can use a scheme that uses continuous (but not \(C^1\) continuous) shape functions and penalize the jump in the derivative to obtain a scheme for an equation that has two derivatives on each shape function. In analogy to the Interior Penalty (IP) method for the Laplace equation, this scheme for the biharmonic equation is typically called the \(C^0\) IP (or C0IP) method, since it uses \(C^0\) (continuous but not continuously differentiable) shape functions with an interior penalty formulation.
│ │ │It is worth noting that the C0IP method is not the only one that has been developed for the biharmonic equation. step-82 shows an alternative method.
│ │ │We base this program on the \(C^0\) IP method presented by Susanne Brenner and Li-Yeng Sung in the paper "C \_form#5340 Interior Penalty Method │ │ │ +
We base this program on the \(C^0\) IP method presented by Susanne Brenner and Li-Yeng Sung in the paper "C \_form#4591 Interior Penalty Method │ │ │ for Linear Fourth Order Boundary Value Problems on polygonal │ │ │ domains" [Brenner2005] where the method is derived for the biharmonic equation with "clamped" boundary conditions.
│ │ │As mentioned, this method relies on the use of \(C^0\) Lagrange finite elements where the \(C^1\) continuity requirement is relaxed and has been replaced with interior penalty techniques. To derive this method, we consider a \(C^0\) shape function \(v_h\) which vanishes on \(\partial\Omega\). We introduce notation \( \mathbb{F} \) as the set of all faces of \(\mathbb{T}\), \( \mathbb{F}^b \) as the set of boundary faces, and \( \mathbb{F}^i \) as the set of interior faces for use further down below. Since the higher order derivatives of \(v_h\) have two values on each interface \(e\in \mathbb{F}\) (shared by the two cells \(K_{+},K_{-} \in \mathbb{T}\)), we cope with this discontinuity by defining the following single-valued functions on \(e\):
│ │ │ \begin{align*} │ │ │ \jump{\frac{\partial^k v_h}{\partial \mathbf n^k}} │ │ │ &= │ │ │ \frac{\partial^k v_h|_{K_+}}{\partial \mathbf n^k} \bigg |_e │ │ │ ├── html2text {} │ │ │ │ @@ -175,15 +175,15 @@ │ │ │ │ (C^0\) IP (or C0IP) method, since it uses \(C^0\) (continuous but not │ │ │ │ continuously differentiable) shape functions with an interior penalty │ │ │ │ formulation. │ │ │ │ It is worth noting that the C0IP method is not the only one that has been │ │ │ │ developed for the biharmonic equation. _s_t_e_p_-_8_2 shows an alternative method. │ │ │ │ ******** DDeerriivvaattiioonn ooff tthhee CC00IIPP mmeetthhoodd ******** │ │ │ │ We base this program on the \(C^0\) IP method presented by Susanne Brenner and │ │ │ │ -Li-Yeng Sung in the paper "C \_form#5340 Interior Penalty Method for Linear │ │ │ │ +Li-Yeng Sung in the paper "C \_form#4591 Interior Penalty Method for Linear │ │ │ │ Fourth Order Boundary Value Problems on polygonal domains" [[BBrreennnneerr22000055]] where │ │ │ │ the method is derived for the biharmonic equation with "clamped" boundary │ │ │ │ conditions. │ │ │ │ As mentioned, this method relies on the use of \(C^0\) Lagrange finite elements │ │ │ │ where the \(C^1\) continuity requirement is relaxed and has been replaced with │ │ │ │ interior penalty techniques. To derive this method, we consider a \(C^0\) shape │ │ │ │ function \(v_h\) which vanishes on \(\partial\Omega\). We introduce notation \ │ │ ├── ./usr/share/doc/libdeal.ii-doc/html/doxygen/deal.II/step_58.html │ │ │ @@ -566,16 +566,16 @@ │ │ │ \left(\psi^{(n,2)}+\psi^{(n,1)}\right)\right] │ │ │ + │ │ │ V \left[\frac 12 \left(\psi^{(n,2)}+\psi^{(n,1)}\right)\right] = 0. │ │ │ \end{align*} │ │ │
│ │ │Here, the "previous" solution \(\psi^{(n,1)}\) (or the "initial │ │ │ condition" for this part of the time step) is the output of the first phase rotation half-step; the output of the current step will be denoted by \(\psi^{(n,2)}\). \(k_{n+1}=t_{n+1}-t_n\) is the length of the time step. (One could argue whether \(\psi^{(n,1)}\) and \(\psi^{(n,1)}\) live at time step \(n\) or \(n+1\) and what their upper indices should be. This is a philosophical discussion without practical impact, and one might think of \(\psi^{(n,1)}\) as something like \(\psi^{(n+\tfrac 13)}\), and \(\psi^{(n,2)}\) as \(\psi^{(n+\tfrac 23)}\) if that helps clarify things – though, again \(n+\frac 13\) is not to be understood as "one third time step after │ │ │ - \_form#432" but more like "we've already done one third of the work necessary │ │ │ -for time step \_form#3124".)
│ │ │ + \_form#375" but more like "we've already done one third of the work necessary │ │ │ +for time step \_form#3285".) │ │ │If we multiply the whole equation with \(k_{n+1}\) and sort terms with the unknown \(\psi^{(n+1,2)}\) to the left and those with the known \(\psi^{(n,2)}\) to the right, then we obtain the following (spatial) partial differential equation that needs to be solved in each time step:
│ │ │ \begin{align*} │ │ │ -i\psi^{(n,2)} │ │ │ - │ │ │ \frac 14 k_{n+1} \Delta \psi^{(n,2)} │ │ │ + │ │ │ \frac 12 k_{n+1} V \psi^{(n,2)} │ │ │ ├── html2text {} │ │ │ │ @@ -378,16 +378,16 @@ │ │ │ │ step; the output of the current step will be denoted by \(\psi^{(n,2)}\). \(k_ │ │ │ │ {n+1}=t_{n+1}-t_n\) is the length of the time step. (One could argue whether \ │ │ │ │ (\psi^{(n,1)}\) and \(\psi^{(n,1)}\) live at time step \(n\) or \(n+1\) and │ │ │ │ what their upper indices should be. This is a philosophical discussion without │ │ │ │ practical impact, and one might think of \(\psi^{(n,1)}\) as something like \ │ │ │ │ (\psi^{(n+\tfrac 13)}\), and \(\psi^{(n,2)}\) as \(\psi^{(n+\tfrac 23)}\) if │ │ │ │ that helps clarify things – though, again \(n+\frac 13\) is not to be │ │ │ │ -understood as "one third time step after \_form#432" but more like "we've │ │ │ │ -already done one third of the work necessary for time step \_form#3124".) │ │ │ │ +understood as "one third time step after \_form#375" but more like "we've │ │ │ │ +already done one third of the work necessary for time step \_form#3285".) │ │ │ │ If we multiply the whole equation with \(k_{n+1}\) and sort terms with the │ │ │ │ unknown \(\psi^{(n+1,2)}\) to the left and those with the known \(\psi^{ │ │ │ │ (n,2)}\) to the right, then we obtain the following (spatial) partial │ │ │ │ differential equation that needs to be solved in each time step: │ │ │ │ \begin{align*} -i\psi^{(n,2)} - \frac 14 k_{n+1} \Delta \psi^{(n,2)} + \frac 12 │ │ │ │ k_{n+1} V \psi^{(n,2)} = -i\psi^{(n,1)} + \frac 14 k_{n+1} \Delta \psi^{(n,1)} │ │ │ │ - \frac 12 k_{n+1} V \psi^{(n,1)}. \end{align*} │ │ ├── ./usr/share/doc/libdeal.ii-doc/html/doxygen/deal.II/structDataOutBase_1_1VtkFlags.html │ │ │ @@ -183,15 +183,15 @@ │ │ │
using DataOutBase::VtkFlags::ZlibCompressionLevel = DataOutBase::CompressionLevel | │ │ │
A data type providing the different possible zlib compression levels. These map directly to constants defined by zlib.
│ │ │ -Definition at line 1166 of file data_out_base.h.
│ │ │ │ │ │A data type providing the different possible zlib compression levels. These map directly to constants defined by zlib.
│ │ │ -Definition at line 1166 of file data_out_base.h.
│ │ │ │ │ │A data type providing the different possible zlib compression levels. These map directly to constants defined by zlib.
│ │ │ -Definition at line 1166 of file data_out_base.h.
│ │ │ │ │ │unsigned int SolverGMRES< VectorType >::AdditionalData::max_n_tmp_vectors | │ │ │
Maximum number of temporary vectors. Together with max_basis_size, this parameter controls the size of the Arnoldi basis, which corresponds to max_n_tmp_vectors-2 as used in previous versions of the deal.II library. SolverGMRES assumes that there are at least three temporary vectors, so this value must be greater than or equal to three. If both this variable and max_basis_size are set to a non-zero value, the choice in max_basis_size takes precedence.
│ │ │ -Definition at line 391 of file solver_gmres.h.
│ │ │ │ │ │using identity = std_cxx20::type_identity<T> | │ │ │
A using
declaration to make the std::identity_type class available under the name that deal.II has used for a long time.
std_cxx20::type_identity
instead. std_cxx20::type_identity
instead. Definition at line 322 of file template_constraints.h.
│ │ │ │ │ │mapping
argument should be replaced by a hp::MappingCollection in case of a DoFHandler with hp-capabilities. mapping
argument should be replaced by a hp::MappingCollection in case of a DoFHandler with hp-capabilities. The 3d version exhibits some numerical instabilities, in particular for higher order
│ │ │ -Restriction matrices are missing.
│ │ │ +Restriction matrices are missing.
│ │ │ +The 3d version exhibits some numerical instabilities, in particular for higher order
│ │ │elide_zero_values
is currently ignored. elide_zero_values
is currently ignored. elide_zero_values
is currently ignored. elide_zero_values
is currently ignored. elide_zero_values
is currently ignored. elide_zero_values
is currently ignored.