--- /srv/rebuilderd/tmp/rebuilderdFldIyd/inputs/macaulay2-common_1.24.11+ds-5_all.deb +++ /srv/rebuilderd/tmp/rebuilderdFldIyd/out/macaulay2-common_1.24.11+ds-5_all.deb ├── file list │ @@ -1,3 +1,3 @@ │ -rw-r--r-- 0 0 0 4 2025-02-09 22:54:37.000000 debian-binary │ --rw-r--r-- 0 0 0 504688 2025-02-09 22:54:37.000000 control.tar.xz │ --rw-r--r-- 0 0 0 29430680 2025-02-09 22:54:37.000000 data.tar.xz │ +-rw-r--r-- 0 0 0 504940 2025-02-09 22:54:37.000000 control.tar.xz │ +-rw-r--r-- 0 0 0 29427920 2025-02-09 22:54:37.000000 data.tar.xz ├── control.tar.xz │ ├── control.tar │ │ ├── ./control │ │ │ @@ -1,13 +1,13 @@ │ │ │ Package: macaulay2-common │ │ │ Source: macaulay2 │ │ │ Version: 1.24.11+ds-5 │ │ │ Architecture: all │ │ │ Maintainer: Debian Math Team │ │ │ -Installed-Size: 287461 │ │ │ +Installed-Size: 287438 │ │ │ Depends: fonts-glyphicons-halflings (>= 1.009~3.4.1+dfsg), fonts-katex (>= 0.16.10+~cs6.1.0), libjs-bootsidemenu (>= 1.0.0), libjs-bootstrap (>= 3.4.1+dfsg), libjs-d3 (>= 3.5.17), libjs-jquery (>= 3.6.1+dfsg+~3.5.14), libjs-katex (>= 0.16.10+~cs6.1.0), libjs-nouislider (>= 15.8.1+ds), libjs-three (>= 111+dfsg1), node-clipboard (>= 2.0.11+ds+~cs9.6.11) │ │ │ Section: math │ │ │ Priority: optional │ │ │ Multi-Arch: foreign │ │ │ Homepage: http://macaulay2.com │ │ │ Description: Software system for algebraic geometry research (common files) │ │ │ Macaulay 2 is a software system for algebraic geometry research, written by │ │ ├── ./md5sums │ │ │ ├── ./md5sums │ │ │ │┄ Files differ ├── data.tar.xz │ ├── data.tar │ │ ├── file list │ │ │ @@ -2795,49 +2795,49 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5118 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AInfinity/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 37707 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 138 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/___Abstract__Simplicial__Complex_sp_eq_eq_sp__Abstract__Simplicial__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 528 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/___Abstract__Simplicial__Complex_sp_us_sp__Z__Z.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1923 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/___Calculations_spwith_sprandom_spsimplicial_spcomplexes.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1958 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/___Calculations_spwith_sprandom_spsimplicial_spcomplexes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1728 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/___How_spto_spmake_spabstract_spsimplicial_spcomplexes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2993 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/___How_spto_spmake_spreduced_spand_spnon-reduced_spsimplicial_spchain_spcomplexes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1952 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/___How_spto_spmake_spsubsimplical_spcomplexes_spand_spinduced_spsimplicial_spchain_spcomplex_spmaps.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1736 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/_abstract__Simplicial__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 418 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/_abstract__Simplicial__Complex__Facets.out │ │ │ -rw-r--r-- 0 root (0) root (0) 588 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/_ambient__Abstract__Simplicial__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 344 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/_ambient__Abstract__Simplicial__Complex__Size.out │ │ │ -rw-r--r-- 0 root (0) root (0) 369 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/_dim_lp__Abstract__Simplicial__Complex_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1809 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/_induced__Reduced__Simplicial__Chain__Complex__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1455 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/_induced__Simplicial__Chain__Complex__Map.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1188 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/_random__Abstract__Simplicial__Complex.out │ │ │ --rw-r--r-- 0 root (0) root (0) 370 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/_random__Sub__Simplicial__Complex.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1001 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/_random__Abstract__Simplicial__Complex.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 688 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/_random__Sub__Simplicial__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1697 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/_reduced__Simplicial__Chain__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 806 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/_simplicial__Chain__Complex.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 29 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 9597 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/___Abstract__Simplicial__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4245 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/___Abstract__Simplicial__Complex_sp_eq_eq_sp__Abstract__Simplicial__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5112 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/___Abstract__Simplicial__Complex_sp_us_sp__Z__Z.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7514 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/___Calculations_spwith_sprandom_spsimplicial_spcomplexes.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7546 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/___Calculations_spwith_sprandom_spsimplicial_spcomplexes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7239 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/___How_spto_spmake_spabstract_spsimplicial_spcomplexes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7114 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/___How_spto_spmake_spreduced_spand_spnon-reduced_spsimplicial_spchain_spcomplexes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6285 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/___How_spto_spmake_spsubsimplical_spcomplexes_spand_spinduced_spsimplicial_spchain_spcomplex_spmaps.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6841 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/_abstract__Simplicial__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4559 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/_abstract__Simplicial__Complex__Facets.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4873 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/_ambient__Abstract__Simplicial__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4693 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/_ambient__Abstract__Simplicial__Complex__Size.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4438 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/_describe_lp__Abstract__Simplicial__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4460 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/_dim_lp__Abstract__Simplicial__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7530 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/_induced__Reduced__Simplicial__Chain__Complex__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6998 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/_induced__Simplicial__Chain__Complex__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3289 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/_new_sp__Abstract__Simplicial__Complex.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6719 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/_random__Abstract__Simplicial__Complex.html │ │ │ --rw-r--r-- 0 root (0) root (0) 4554 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/_random__Sub__Simplicial__Complex.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6532 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/_random__Abstract__Simplicial__Complex.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 4872 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/_random__Sub__Simplicial__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6182 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/_reduced__Simplicial__Chain__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5157 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/_simplicial__Chain__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15216 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13092 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8539 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractToricVarieties/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AbstractToricVarieties/dump/ │ │ │ @@ -2878,25 +2878,25 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 11537 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjointIdeal/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7717 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjointIdeal/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4457 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjointIdeal/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 37085 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 1945 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_adjoint__Matrix.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1946 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_adjoint__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1748 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_adjunction__Process.out │ │ │ -rw-r--r-- 0 root (0) root (0) 558 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_expected__Dimension.out │ │ │ -rw-r--r-- 0 root (0) root (0) 558 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_linear__System__On__Rational__Surface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1888 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_parametrization.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1272 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_rational__Surface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1596 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_slow__Adjunction__Calculation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2938 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_special__Families__Of__Sommese__Vande__Ven.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 23 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 8533 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_adjoint__Matrix.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8534 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_adjoint__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10745 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_adjunction__Process.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6260 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_expected__Dimension.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6943 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_linear__System__On__Rational__Surface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8907 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_parametrization.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9211 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_rational__Surface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8759 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_slow__Adjunction__Calculation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11597 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_special__Families__Of__Sommese__Vande__Ven.html │ │ │ @@ -3060,15 +3060,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 3464 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_beilinson.out │ │ │ -rw-r--r-- 0 root (0) root (0) 414 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_bgg.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2044 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_cohomology__Table.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1618 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_direct__Image__Complex_lp__Chain__Complex_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1502 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_direct__Image__Complex_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3485 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_direct__Image__Complex_lp__Module_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2383 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_pure__Resolution.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2384 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_pure__Resolution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 456 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_sym__Ext.out │ │ │ -rw-r--r-- 0 root (0) root (0) 683 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_tate__Resolution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1879 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/example-output/_universal__Extension.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 40 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 3468 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/html/___Exterior.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3793 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/html/___Regularity.html │ │ │ @@ -3076,15 +3076,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6255 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/html/_bgg.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11450 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/html/_cohomology__Table.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5107 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/html/_direct__Image__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8780 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/html/_direct__Image__Complex_lp__Chain__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9952 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/html/_direct__Image__Complex_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12859 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/html/_direct__Image__Complex_lp__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5529 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/html/_projective__Product.html │ │ │ --rw-r--r-- 0 root (0) root (0) 13609 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/html/_pure__Resolution.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 13610 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/html/_pure__Resolution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6527 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/html/_sym__Ext.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7374 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/html/_tate__Resolution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7726 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/html/_universal__Extension.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11894 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9702 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5818 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BGG/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BIBasis/ │ │ │ @@ -3109,18 +3109,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 72566 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BeginningMacaulay2/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4188 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BeginningMacaulay2/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 2900 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BeginningMacaulay2/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Benchmark/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Benchmark/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 2927 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Benchmark/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Benchmark/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 418 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Benchmark/example-output/_run__Benchmarks.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 421 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Benchmark/example-output/_run__Benchmarks.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Benchmark/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 29 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Benchmark/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 5370 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Benchmark/html/_run__Benchmarks.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5373 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Benchmark/html/_run__Benchmarks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4475 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Benchmark/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4211 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Benchmark/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 2939 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Benchmark/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BernsteinSato/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BernsteinSato/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 283502 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BernsteinSato/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BernsteinSato/example-output/ │ │ │ @@ -3308,15 +3308,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 3407 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BernsteinSato/html/_twist__Inv__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3375 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BernsteinSato/html/_twist__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 72605 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BernsteinSato/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 60186 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BernsteinSato/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 30193 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/BernsteinSato/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/dump/ │ │ │ --rw-r--r-- 0 root (0) root (0) 177228 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/dump/rawdocumentation.dump │ │ │ +-rw-r--r-- 0 root (0) root (0) 177232 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 333 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/example-output/___B_sq__Constants.out │ │ │ -rw-r--r-- 0 root (0) root (0) 416 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/example-output/___Bertini.out │ │ │ -rw-r--r-- 0 root (0) root (0) 659 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/example-output/___Bertini_spinput_spconfiguration.out │ │ │ -rw-r--r-- 0 root (0) root (0) 594 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/example-output/___Bertini_spinput_spfile_spdeclarations_co_sprandom_spnumbers.out │ │ │ -rw-r--r-- 0 root (0) root (0) 174 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/example-output/___Is__Projective.out │ │ │ -rw-r--r-- 0 root (0) root (0) 403 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/example-output/___Number__To__B_sq__String.out │ │ │ @@ -3354,22 +3354,22 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 3232 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/___Main__Data__Directory.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5562 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/___Number__To__B_sq__String.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3492 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/___Path__List.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4346 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/___Top__Directory.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4344 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/___Use__Regeneration.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4151 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/___Variable_spgroups.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7653 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/_bertini__Component__Member__Test.html │ │ │ --rw-r--r-- 0 root (0) root (0) 15041 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/_bertini__Parameter__Homotopy.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 15042 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/_bertini__Parameter__Homotopy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9614 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/_bertini__Pos__Dim__Solve.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9027 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/_bertini__Refine__Sols.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8553 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/_bertini__Sample.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10113 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/_bertini__Track__Homotopy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9733 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/_bertini__Track__Homotopy_lp..._cm__Verbose_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11837 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/_bertini__User__Homotopy.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12664 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/_bertini__Zero__Dim__Solve.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11838 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/_bertini__User__Homotopy.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12665 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/_bertini__Zero__Dim__Solve.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7129 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/_import__Incidence__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8305 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/_import__Main__Data__File.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5862 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/_import__Parameter__File.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8211 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/_import__Solutions__File.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12090 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/_make__B_sq__Input__File.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11361 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/_make__B_sq__Section.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11234 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Bertini/html/_make__B_sq__Slice.html │ │ │ @@ -3793,15 +3793,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1448 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_is__Quasi__Isomorphism.out │ │ │ -rw-r--r-- 0 root (0) root (0) 771 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_is__Quasi__Isomorphism_lp..._cm__Length__Limit_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 278 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_koszul__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1962 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_minimize.out │ │ │ -rw-r--r-- 0 root (0) root (0) 694 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_nonzero__Max.out │ │ │ -rw-r--r-- 0 root (0) root (0) 684 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_prepend__Zero__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 899 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_remove__Zero__Trailing__Terms.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3452 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_resolution__Of__Chain__Complex.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3451 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_resolution__Of__Chain__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 541 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_resolution_lp__Chain__Complex_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2570 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_scarf__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 537 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_substitute_lp__Chain__Complex_cm__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 672 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_taylor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1333 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_taylor__Resolution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1351 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_trivial__Homological__Truncation.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/ │ │ │ @@ -3824,15 +3824,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5254 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_koszul__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7099 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_koszul__Complex_lp..._cm__Length__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9459 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_minimize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6219 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_nonzero__Max.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6168 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_nonzero__Min.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5593 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_prepend__Zero__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6306 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_remove__Zero__Trailing__Terms.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11723 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_resolution__Of__Chain__Complex.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11722 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_resolution__Of__Chain__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7296 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_resolution__Of__Chain__Complex_lp..._cm__Length__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8774 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_resolution_lp__Chain__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9951 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_scarf__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5257 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_substitute_lp__Chain__Complex_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5434 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_taylor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6479 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_taylor__Resolution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7178 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_taylor__Resolution_lp..._cm__Length__Limit_eq_gt..._rp.html │ │ │ @@ -3868,19 +3868,19 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4375 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___C__S__M.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1503 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Check__Smooth.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3419 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Check__Toric__Variety__Valid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3411 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Chern.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2404 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Chow__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Class__In__Chow__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 775 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Class__In__Toric__Chow__Ring.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2014 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Comp__Method.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4378 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Euler.out │ │ │ --rw-r--r-- 0 root (0) root (0) 760 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Inds__Of__Smooth.out │ │ │ --rw-r--r-- 0 root (0) root (0) 665 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Input__Is__Smooth.out │ │ │ --rw-r--r-- 0 root (0) root (0) 624 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Method.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2015 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Comp__Method.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4371 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Euler.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 759 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Inds__Of__Smooth.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 664 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Input__Is__Smooth.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 622 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Method.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1049 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Multi__Proj__Coord__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6662 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Output.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3297 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Segre.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1666 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Toric__Chow__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 570 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/_is__Multi__Homogeneous.out │ │ │ -rw-r--r-- 0 root (0) root (0) 759 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/_probabilistic_spalgorithm.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/ │ │ │ @@ -3889,19 +3889,19 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 22815 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___C__S__M.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5958 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Check__Smooth.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10706 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Check__Toric__Variety__Valid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17471 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Chern.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9130 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Chow__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6126 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Class__In__Chow__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6952 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Class__In__Toric__Chow__Ring.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9704 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Comp__Method.html │ │ │ --rw-r--r-- 0 root (0) root (0) 17878 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Euler.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5477 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Inds__Of__Smooth.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5575 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Input__Is__Smooth.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6056 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Method.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9705 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Comp__Method.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 17871 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Euler.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5476 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Inds__Of__Smooth.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5574 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Input__Is__Smooth.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6054 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Method.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8040 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Multi__Proj__Coord__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15564 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Output.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16029 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Segre.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8131 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Toric__Chow__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4663 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/_bertini__Check.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4822 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/_configuring_sp__Bertini.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7170 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/_is__Multi__Homogeneous.html │ │ │ @@ -4025,21 +4025,21 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 224 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/___Generators.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3679 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/___Linear__Code.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6385 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/___Linear__Code_sp_eq_eq_sp__Linear__Code.out │ │ │ -rw-r--r-- 0 root (0) root (0) 450 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/___Parity__Check.out │ │ │ -rw-r--r-- 0 root (0) root (0) 269 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/___Parity__Check__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 376 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/___Parity__Check__Rows.out │ │ │ -rw-r--r-- 0 root (0) root (0) 287 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/___Polynomial__Set.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3227 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/___Sets.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3189 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/___Sets.out │ │ │ -rw-r--r-- 0 root (0) root (0) 132 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/___Strat.out │ │ │ -rw-r--r-- 0 root (0) root (0) 328 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/___Vanishing__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 179 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_alphabet.out │ │ │ -rw-r--r-- 0 root (0) root (0) 185 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_ambient__Space.out │ │ │ -rw-r--r-- 0 root (0) root (0) 377 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_bitflip__Decode.out │ │ │ --rw-r--r-- 0 root (0) root (0) 12327 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_cartesian__Code.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 12279 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_cartesian__Code.out │ │ │ -rw-r--r-- 0 root (0) root (0) 197 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_choose__Strat.out │ │ │ -rw-r--r-- 0 root (0) root (0) 637 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_codewords.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3134 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_cyclic__Code.out │ │ │ -rw-r--r-- 0 root (0) root (0) 382 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_cyclic__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1326 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_dim_lp__Linear__Code_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 700 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_dual__Code.out │ │ │ -rw-r--r-- 0 root (0) root (0) 442 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_enumerate__Vectors.out │ │ │ @@ -4055,15 +4055,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 186 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_hyp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 330 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_information__Rate.out │ │ │ -rw-r--r-- 0 root (0) root (0) 239 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_length_lp__Linear__Code_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 12822 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_linear__Code.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1920 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_locally__Recoverable__Code.out │ │ │ -rw-r--r-- 0 root (0) root (0) 947 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_messages.out │ │ │ -rw-r--r-- 0 root (0) root (0) 163 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_minimum__Weight.out │ │ │ --rw-r--r-- 0 root (0) root (0) 9438 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_order__Code.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 9444 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_order__Code.out │ │ │ -rw-r--r-- 0 root (0) root (0) 935 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_parity__Check__To__Generator.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2718 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_quasi__Cyclic__Code.out │ │ │ -rw-r--r-- 0 root (0) root (0) 533 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_rand__L__D__P__C.out │ │ │ -rw-r--r-- 0 root (0) root (0) 219 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_rand__No__Repeats.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2521 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_random__Code.out │ │ │ -rw-r--r-- 0 root (0) root (0) 466 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_reduced__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 254 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/example-output/_reed__Muller__Code.out │ │ │ @@ -4096,21 +4096,21 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4937 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/___Generators.html │ │ │ -rw-r--r-- 0 root (0) root (0) 22200 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/___Linear__Code.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11772 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/___Linear__Code_sp_eq_eq_sp__Linear__Code.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6952 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/___Parity__Check.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6170 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/___Parity__Check__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6405 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/___Parity__Check__Rows.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5448 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/___Polynomial__Set.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8180 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/___Sets.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8142 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/___Sets.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7430 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/___Strat.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5490 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/___Vanishing__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5132 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_alphabet.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5981 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_ambient__Space.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6487 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_bitflip__Decode.html │ │ │ --rw-r--r-- 0 root (0) root (0) 24564 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_cartesian__Code.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 24516 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_cartesian__Code.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5799 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_choose__Strat.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5485 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_codewords.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12844 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_cyclic__Code.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8615 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_cyclic__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6194 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_dim_lp__Linear__Code_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5702 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_dual__Code.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5575 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_enumerate__Vectors.html │ │ │ @@ -4126,15 +4126,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6070 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_hyp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5831 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_information__Rate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5682 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_length_lp__Linear__Code_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 39797 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_linear__Code.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8785 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_locally__Recoverable__Code.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6666 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_messages.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6906 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_minimum__Weight.html │ │ │ --rw-r--r-- 0 root (0) root (0) 22439 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_order__Code.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 22445 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_order__Code.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6744 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_parity__Check__To__Generator.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11171 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_quasi__Cyclic__Code.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6689 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_rand__L__D__P__C.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5531 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_rand__No__Repeats.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8579 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_random__Code.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5432 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_reduced__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6140 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/_reed__Muller__Code.html │ │ │ @@ -4257,15 +4257,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 231124 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 621 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___B__G__G__L.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1959 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___B__Ranks.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3103 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Complete__Intersection__Resolutions.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4608 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Eisenbud__Shamash.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4605 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Eisenbud__Shamash.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4126 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Eisenbud__Shamash__Total.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2721 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Ext__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 980 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Ext__Module__Data.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2092 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___S2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1739 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Shamash.out │ │ │ -rw-r--r-- 0 root (0) root (0) 766 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Tate__Resolution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1282 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_complexity.out │ │ │ @@ -4298,15 +4298,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 50 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5846 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___A__Ranks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4714 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Augmentation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5949 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___B__G__G__L.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8657 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___B__Ranks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5781 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Check.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14629 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Eisenbud__Shamash.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14626 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Eisenbud__Shamash.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13706 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Eisenbud__Shamash__Total.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10414 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Ext__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9696 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Ext__Module__Data.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5083 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Grading.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5364 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Hom__With__Components.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4909 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Layered.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4521 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Lift.html │ │ │ @@ -5171,136 +5171,136 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 14011 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CotangentSchubert/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10920 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CotangentSchubert/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6351 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/CotangentSchubert/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 238666 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 2313 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Chern__Schwartz__Mac__Pherson.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2307 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Chern__Schwartz__Mac__Pherson.out │ │ │ -rw-r--r-- 0 root (0) root (0) 859 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Codim__Bs__Inv.out │ │ │ --rw-r--r-- 0 root (0) root (0) 19796 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Cremona.out │ │ │ --rw-r--r-- 0 root (0) root (0) 524 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Euler__Characteristic.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 19790 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Cremona.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 526 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Euler__Characteristic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1793 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp!.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2581 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp^_st_st_sp__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2314 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp_eq_eq_sp__Rational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2465 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp_st_sp__Rational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2051 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp_st_st_sp__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5318 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp_vb_sp__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3568 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp_vb_vb_sp__Ideal.out │ │ │ --rw-r--r-- 0 root (0) root (0) 7624 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Segre__Class.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6044 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_abstract__Rational__Map.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 7617 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Segre__Class.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6047 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_abstract__Rational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 42548 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_approximate__Inverse__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1470 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_coefficients_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 33238 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_degree__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1233 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_describe_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 515 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_exceptional__Locus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1047 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_flatten_lp__Rational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 491 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_force__Image.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6560 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_graph.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 492 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_force__Image.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6561 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1347 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_graph_lp__Ring__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4858 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_ideal_lp__Rational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 11551 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse__Map.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4857 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_ideal_lp__Rational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 11550 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 303 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse__Map_lp..._cm__Verbose_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 43387 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse_lp__Rational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 43386 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1574 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Birational.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3447 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Dominant.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1302 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Isomorphism_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 927 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Morphism.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6114 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_kernel_lp__Ring__Map_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6115 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_kernel_lp__Ring__Map_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1086 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_map_lp__Rational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 18541 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_parametrize_lp__Ideal_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1461 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_point_lp__Quotient__Ring_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4714 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_projective__Degrees.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 18539 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_parametrize_lp__Ideal_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1460 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_point_lp__Quotient__Ring_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4713 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_projective__Degrees.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2351 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_quadro__Quadric__Cremona__Transformation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3884 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2826 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5782 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Polynomial__Ring_cm__List_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6396 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ring_cm__Tally_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6395 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ring_cm__Tally_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2775 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_segre.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6869 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cremona__Transformation.out │ │ │ --rw-r--r-- 0 root (0) root (0) 23420 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cubic__Transformation.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3631 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Quadratic__Transformation.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6868 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cremona__Transformation.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 23419 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cubic__Transformation.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3632 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Quadratic__Transformation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1876 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_substitute_lp__Rational__Map_cm__Polynomial__Ring_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1509 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_super_lp__Rational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1343 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_to__External__String_lp__Rational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1341 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_to__External__String_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4842 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_to__Map.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 711 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 42 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4383 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Blow__Up__Strategy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5874 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Certify.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11416 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Chern__Schwartz__Mac__Pherson.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11410 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Chern__Schwartz__Mac__Pherson.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5055 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Codim__Bs__Inv.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3781 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Dominant.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8366 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Euler__Characteristic.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8368 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Euler__Characteristic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3632 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Num__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20296 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7357 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp!.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4760 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp^_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8952 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp^_st_st_sp__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7552 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_eq_eq_sp__Rational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8199 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_st_sp__Rational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8071 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_st_st_sp__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5243 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_us_st.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11078 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_vb_sp__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9420 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_vb_vb_sp__Ideal.html │ │ │ --rw-r--r-- 0 root (0) root (0) 17160 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Segre__Class.html │ │ │ --rw-r--r-- 0 root (0) root (0) 16322 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_abstract__Rational__Map.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 17153 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Segre__Class.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 16325 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_abstract__Rational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 51609 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_approximate__Inverse__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4767 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_coefficient__Ring_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7204 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_coefficients_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 40610 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_degree__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6263 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_degree__Map_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4577 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_degree_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4775 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_degrees_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6575 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_describe_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4894 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_entries_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7799 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_exceptional__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6043 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_flatten_lp__Rational__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6331 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_force__Image.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6332 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_force__Image.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5617 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_force__Inverse__Map.html │ │ │ --rw-r--r-- 0 root (0) root (0) 13782 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_graph.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 13783 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7092 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_graph_lp__Ring__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10557 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_ideal_lp__Rational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10556 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_ideal_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5838 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_image_lp__Rational__Map_cm__String_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6014 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_image_lp__Rational__Map_cm__Z__Z_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 19795 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_inverse__Map.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 19794 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_inverse__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7844 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_inverse__Map_lp..._cm__Verbose_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 50896 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_inverse_lp__Rational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 50895 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_inverse_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8077 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Birational.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9746 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Dominant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5226 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Inverse__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6386 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Inverse__Map_lp__Rational__Map_cm__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6925 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Isomorphism_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6324 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Morphism.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12293 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_kernel_lp__Ring__Map_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12294 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_kernel_lp__Ring__Map_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7374 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_map_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5779 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_matrix_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4673 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_parametrize.html │ │ │ --rw-r--r-- 0 root (0) root (0) 24093 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_parametrize_lp__Ideal_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 24091 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_parametrize_lp__Ideal_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4331 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_point.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7329 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_point_lp__Quotient__Ring_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14496 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_projective__Degrees.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7328 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_point_lp__Quotient__Ring_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14495 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_projective__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6622 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_projective__Degrees_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10082 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_quadro__Quadric__Cremona__Transformation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14175 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10400 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12478 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Polynomial__Ring_cm__List_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 13913 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ring_cm__Tally_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 13912 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ring_cm__Tally_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8430 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_segre.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4822 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_source_lp__Rational__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 13647 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_special__Cremona__Transformation.html │ │ │ --rw-r--r-- 0 root (0) root (0) 30167 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_special__Cubic__Transformation.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10546 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_special__Quadratic__Transformation.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 13646 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_special__Cremona__Transformation.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 30166 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_special__Cubic__Transformation.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10547 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_special__Quadratic__Transformation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8529 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_substitute_lp__Rational__Map_cm__Polynomial__Ring_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7829 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_super_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4864 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_target_lp__Rational__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6640 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_to__External__String_lp__Rational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6638 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_to__External__String_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12668 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/_to__Map.html │ │ │ --rw-r--r-- 0 root (0) root (0) 67194 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/index.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 67188 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 38316 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18698 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cremona/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cyclotomic/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cyclotomic/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 6101 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cyclotomic/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cyclotomic/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 455 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cyclotomic/example-output/_cyclotomic__Field.out │ │ │ @@ -5316,21 +5316,21 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5139 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cyclotomic/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4915 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cyclotomic/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3717 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Cyclotomic/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 184214 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 8658 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___Basic_spoperations_spon_sp__D__G_sp__Algebra_sp__Maps.out │ │ │ --rw-r--r-- 0 root (0) root (0) 5939 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___Basic_spoperations_spon_sp__D__G_sp__Algebras.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 8657 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___Basic_spoperations_spon_sp__D__G_sp__Algebra_sp__Maps.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 5938 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___Basic_spoperations_spon_sp__D__G_sp__Algebras.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1723 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___D__G__Algebra_sp_st_st_sp__D__G__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1587 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___D__G__Algebra_sp_st_st_sp__Ring.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1866 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___H__H_sp__D__G__Algebra__Map.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1865 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___H__H_sp__D__G__Algebra__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 391 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___H__H_us__Z__Z_sp__D__G__Algebra.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4778 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4776 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1074 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_acyclic__Closure.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1532 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_acyclic__Closure_lp..._cm__End__Degree_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 806 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_acyclic__Closure_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1413 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_adjoin__Variables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 750 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_cycles.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2390 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_deviations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1282 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_deviations__To__Poincare.out │ │ │ @@ -5339,15 +5339,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6503 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_display__Block__Diff.out │ │ │ -rw-r--r-- 0 root (0) root (0) 968 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_expand__Geom__Series.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7854 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_find__Trivial__Massey__Operation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1921 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_free__D__G__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 516 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_get__Basis.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1319 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_get__Boundary__Preimage.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1182 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_get__Generators.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3935 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Algebra.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3933 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 813 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Class.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1993 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 387 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_is__Acyclic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 915 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_is__Golod.out │ │ │ -rw-r--r-- 0 root (0) root (0) 397 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_is__Golod__Homomorphism.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1231 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_is__Homogeneous_lp__D__G__Algebra_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1281 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_is__Homology__Algebra__Trivial.out │ │ │ @@ -5360,34 +5360,34 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 774 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_max__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 404 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_natural.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1700 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_set__Diff.out │ │ │ -rw-r--r-- 0 root (0) root (0) 836 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_to__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7069 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_to__Complex__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1003 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_to__Complex_lp__D__G__Algebra_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 555 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_tor__Algebra.out │ │ │ --rw-r--r-- 0 root (0) root (0) 863 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_tor__Algebra_lp__Ring_cm__Ring_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 860 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_tor__Algebra_lp__Ring_cm__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1894 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_tor__Map.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 25 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4214 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Assert__Well__Defined.html │ │ │ --rw-r--r-- 0 root (0) root (0) 15393 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Basic_spoperations_spon_sp__D__G_sp__Algebra_sp__Maps.html │ │ │ --rw-r--r-- 0 root (0) root (0) 15383 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Basic_spoperations_spon_sp__D__G_sp__Algebras.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 15392 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Basic_spoperations_spon_sp__D__G_sp__Algebra_sp__Maps.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 15382 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Basic_spoperations_spon_sp__D__G_sp__Algebras.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16196 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___D__G__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6291 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___D__G__Algebra__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7314 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___D__G__Algebra_sp_st_st_sp__D__G__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6997 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___D__G__Algebra_sp_st_st_sp__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5333 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___End__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5644 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Gen__Degree__Limit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4673 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___H__H_sp__D__G__Algebra.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7190 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___H__H_sp__D__G__Algebra__Map.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7189 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___H__H_sp__D__G__Algebra__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5294 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___H__H_us__Z__Z_sp__D__G__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4447 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Rel__Degree__Limit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4890 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Start__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4594 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___T__M__O__Limit.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12403 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12401 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7834 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_acyclic__Closure.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8435 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_acyclic__Closure_lp..._cm__End__Degree_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5374 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_acyclic__Closure_lp..._cm__Start__Degree_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7084 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_acyclic__Closure_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6859 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_adjoin__Variables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5017 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_block__Diff.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5039 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_cycles.html │ │ │ @@ -5408,15 +5408,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5515 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Basis_lp__Z__Z_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8161 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Boundary__Preimage.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5182 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Deg__N__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7637 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Generators.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14125 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Generators_lp..._cm__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5401 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Generators_lp..._cm__Start__Degree_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7244 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Generators_lp..._cm__Verbosity_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12587 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12585 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6213 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra_lp..._cm__Gen__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5061 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra_lp..._cm__Rel__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7212 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra_lp..._cm__Verbosity_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6926 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Class.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9520 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6000 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_is__Acyclic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5618 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_is__Acyclic_lp..._cm__End__Degree_eq_gt..._rp.html │ │ │ @@ -5445,15 +5445,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4320 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_target_lp__D__G__Algebra__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6434 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_to__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14802 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_to__Complex__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6235 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_to__Complex_lp__D__G__Algebra_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7057 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_tor__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6138 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_tor__Algebra_lp..._cm__Gen__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4964 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_tor__Algebra_lp..._cm__Rel__Degree__Limit_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7463 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_tor__Algebra_lp__Ring_cm__Ring_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7460 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_tor__Algebra_lp__Ring_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8174 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_tor__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4369 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_zeroth__Homology.html │ │ │ -rw-r--r-- 0 root (0) root (0) 34345 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 37011 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 25353 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DecomposableSparseSystems/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/DecomposableSparseSystems/dump/ │ │ │ @@ -5635,15 +5635,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 620 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_ceiling_lp__R__Weil__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 264 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_clean__Support.out │ │ │ -rw-r--r-- 0 root (0) root (0) 470 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_clear__Cache.out │ │ │ -rw-r--r-- 0 root (0) root (0) 254 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_coefficient_lp__Basic__List_cm__Basic__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 335 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_coefficient_lp__Ideal_cm__Basic__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 728 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_coefficients_lp__Basic__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2727 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_divisor.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1717 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_dualize.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1713 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_dualize.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1174 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_embed__As__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 500 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_find__Element__Of__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 532 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_gbs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 831 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_get__Linear__Diophantine__Solution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 501 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_get__Prime__Count.out │ │ │ -rw-r--r-- 0 root (0) root (0) 357 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_get__Prime__Divisors.out │ │ │ -rw-r--r-- 0 root (0) root (0) 336 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_ideal__Power.out │ │ │ @@ -5667,16 +5667,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 441 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_is__Zero__Divisor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 667 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_map__To__Projective__Space.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1342 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_non__Cartier__Locus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 780 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_positive__Part.out │ │ │ -rw-r--r-- 0 root (0) root (0) 604 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_primes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 765 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_pullback_lp__Ring__Map_cm__R__Weil__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 846 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_ramification__Divisor.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4356 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_reflexify.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1095 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_reflexive__Power.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4354 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_reflexify.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1096 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_reflexive__Power.out │ │ │ -rw-r--r-- 0 root (0) root (0) 249 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_ring_lp__Basic__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 375 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_to__Q__Weil__Divisor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 458 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_to__R__Weil__Divisor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 576 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_to__Weil__Divisor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 357 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_torsion__Submodule.out │ │ │ -rw-r--r-- 0 root (0) root (0) 364 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_trim_lp__Basic__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 174 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/example-output/_zero__Divisor.out │ │ │ @@ -5706,15 +5706,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6088 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_ceiling_lp__R__Weil__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5044 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_clean__Support.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5700 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_clear__Cache.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6167 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_coefficient_lp__Basic__List_cm__Basic__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6288 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_coefficient_lp__Ideal_cm__Basic__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7766 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_coefficients_lp__Basic__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18847 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_divisor.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11561 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_dualize.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11557 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_dualize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12606 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_embed__As__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7288 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_find__Element__Of__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6937 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_gbs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8027 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_get__Linear__Diophantine__Solution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6838 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_get__Prime__Count.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5441 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_get__Prime__Divisors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6072 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_ideal__Power.html │ │ │ @@ -5739,16 +5739,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5611 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_is__Zero__Divisor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7851 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_map__To__Projective__Space.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8042 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_non__Cartier__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6265 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_positive__Part.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6751 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_primes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8698 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_pullback_lp__Ring__Map_cm__R__Weil__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9757 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_ramification__Divisor.html │ │ │ --rw-r--r-- 0 root (0) root (0) 19080 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_reflexify.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9039 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_reflexive__Power.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 19078 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_reflexify.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9040 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_reflexive__Power.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4888 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_ring_lp__Basic__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5845 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_to__Q__Weil__Divisor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6614 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_to__R__Weil__Divisor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6866 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_to__Weil__Divisor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6584 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_torsion__Submodule.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5901 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_trim_lp__Basic__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4680 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Divisor/html/_zero__Divisor.html │ │ │ @@ -5866,15 +5866,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 488 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_isolated__Vertices.out │ │ │ -rw-r--r-- 0 root (0) root (0) 544 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_line__Graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 323 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_neighbors.out │ │ │ -rw-r--r-- 0 root (0) root (0) 903 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_num__Connected__Components.out │ │ │ -rw-r--r-- 0 root (0) root (0) 842 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_num__Connected__Graph__Components.out │ │ │ -rw-r--r-- 0 root (0) root (0) 604 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_num__Triangles.out │ │ │ -rw-r--r-- 0 root (0) root (0) 693 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_random__Graph.out │ │ │ --rw-r--r-- 0 root (0) root (0) 846 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_random__Hyper__Graph.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 560 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_random__Hyper__Graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 808 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_random__Uniform__Hyper__Graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 269 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_ring_lp__Hyper__Graph_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 414 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_simplicial__Complex__To__Hyper__Graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1666 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_smallest__Cycle__Size.out │ │ │ -rw-r--r-- 0 root (0) root (0) 899 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_spanning__Tree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 847 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_vertex__Cover__Number.out │ │ │ -rw-r--r-- 0 root (0) root (0) 735 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_vertex__Covers.out │ │ │ @@ -5946,15 +5946,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6536 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/_isolated__Vertices.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6003 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/_line__Graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7122 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/_neighbors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9832 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/_num__Connected__Components.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8707 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/_num__Connected__Graph__Components.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6396 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/_num__Triangles.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6573 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/_random__Graph.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9488 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/_random__Hyper__Graph.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9172 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/_random__Hyper__Graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6149 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/_random__Hyper__Graph_lp..._cm__Branch__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5824 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/_random__Hyper__Graph_lp..._cm__Time__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7209 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/_random__Uniform__Hyper__Graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5641 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/_ring_lp__Hyper__Graph_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6513 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/_simplicial__Complex__To__Hyper__Graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7793 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/_smallest__Cycle__Size.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6061 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/_spanning__Tree.html │ │ │ @@ -5976,21 +5976,21 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8422 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4932 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3096 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Elimination/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Elimination/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 13740 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Elimination/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 891 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_discriminant_lp__Ring__Element_cm__Ring__Element_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 893 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_discriminant_lp__Ring__Element_cm__Ring__Element_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 889 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_eliminate.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9030 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_resultant_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9079 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_sylvester__Matrix_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Elimination/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 24 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Elimination/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 6789 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Elimination/html/_discriminant_lp__Ring__Element_cm__Ring__Element_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6791 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Elimination/html/_discriminant_lp__Ring__Element_cm__Ring__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7548 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Elimination/html/_eliminate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15750 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Elimination/html/_resultant_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15149 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Elimination/html/_sylvester__Matrix_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6461 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Elimination/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5392 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Elimination/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3602 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Elimination/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EliminationMatrices/ │ │ │ @@ -6181,35 +6181,35 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8277 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EngineTests/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 10834 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 367 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_lines__Hypersurface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 193 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_multiple__Cover.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2167 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_rational__Curve.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2171 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_rational__Curve.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 48 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4985 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/_lines__Hypersurface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4993 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/_multiple__Cover.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10964 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/_rational__Curve.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10968 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/_rational__Curve.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6367 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5540 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3551 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 52732 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 235 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/___Equivariant__G__B.out │ │ │ -rw-r--r-- 0 root (0) root (0) 298 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/___Priority__Queue.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1050 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_build__E__Monomial__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 576 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_build__E__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 346 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_build__E__Ring_lp__Ring_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 222 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_delete__Min.out │ │ │ -rw-r--r-- 0 root (0) root (0) 153 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_egb.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1274 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_egb__Toric.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1277 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_egb__Toric.out │ │ │ -rw-r--r-- 0 root (0) root (0) 399 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_egb_lp..._cm__Algorithm_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 348 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_exponent__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 449 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_inc__Orbit.out │ │ │ -rw-r--r-- 0 root (0) root (0) 289 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_insert_lp__Priority__Queue_cm__Thing_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 248 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_length_lp__Priority__Queue_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 323 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_merge__P__Q.out │ │ │ -rw-r--r-- 0 root (0) root (0) 161 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_min_lp__Priority__Queue_rp.out │ │ │ @@ -6224,15 +6224,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4791 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/___Shift.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3618 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/___Symmetrize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8737 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_build__E__Monomial__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10096 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_build__E__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6396 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_build__E__Ring_lp__Ring_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5538 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_delete__Min.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6308 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_egb.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8746 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_egb__Toric.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8749 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_egb__Toric.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6518 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_egb_lp..._cm__Algorithm_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5860 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_exponent__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6955 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_inc__Orbit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5664 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_insert_lp__Priority__Queue_cm__Thing_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4996 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_length_lp__Priority__Queue_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6075 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_merge__P__Q.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4972 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_min_lp__Priority__Queue_rp.html │ │ │ @@ -6423,70 +6423,70 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9220 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FGLM/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4551 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FGLM/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3008 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FGLM/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 142955 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 29583 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Fast__Minors__Strategy__Tutorial.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 29587 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Fast__Minors__Strategy__Tutorial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1035 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Point__Options.out │ │ │ --rw-r--r-- 0 root (0) root (0) 14280 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Regular__In__Codimension__Tutorial.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1054 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Strategy__Default.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 14277 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Regular__In__Codimension__Tutorial.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1053 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Strategy__Default.out │ │ │ -rw-r--r-- 0 root (0) root (0) 337 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_choose__Good__Minors.out │ │ │ -rw-r--r-- 0 root (0) root (0) 246 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_choose__Random__Submatrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 307 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_choose__Submatrix__Largest__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 308 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_choose__Submatrix__Smallest__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 533 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_get__Submatrix__Of__Rank.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1785 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_is__Codim__At__Least.out │ │ │ -rw-r--r-- 0 root (0) root (0) 275 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_is__Rank__At__Least.out │ │ │ -rw-r--r-- 0 root (0) root (0) 437 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_proj__Dim.out │ │ │ -rw-r--r-- 0 root (0) root (0) 424 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_recursive__Minors.out │ │ │ --rw-r--r-- 0 root (0) root (0) 25027 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_regular__In__Codimension.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 25021 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_regular__In__Codimension.out │ │ │ -rw-r--r-- 0 root (0) root (0) 273 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_reorder__Polynomial__Ring.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 693 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 32 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5910 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Det__Strategy.html │ │ │ --rw-r--r-- 0 root (0) root (0) 48696 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Fast__Minors__Strategy__Tutorial.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 48700 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Fast__Minors__Strategy__Tutorial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5140 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Max__Minors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4122 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Min__Dimension.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4154 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Modulus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6499 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Point__Options.html │ │ │ --rw-r--r-- 0 root (0) root (0) 26935 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Regular__In__Codimension__Tutorial.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14553 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Strategy__Default.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 26932 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Regular__In__Codimension__Tutorial.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14552 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Strategy__Default.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9083 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_choose__Good__Minors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5457 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_choose__Random__Submatrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6073 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_choose__Submatrix__Largest__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5989 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_choose__Submatrix__Smallest__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9898 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_get__Submatrix__Of__Rank.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10905 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_is__Codim__At__Least.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6031 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_is__Dim__At__Most.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9341 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_is__Rank__At__Least.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5136 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_is__Rank__At__Least_lp..._cm__Threads_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10034 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_proj__Dim.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7719 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_recursive__Minors.html │ │ │ --rw-r--r-- 0 root (0) root (0) 42701 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_regular__In__Codimension.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 42695 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_regular__In__Codimension.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6134 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_reorder__Polynomial__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24848 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 27366 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8280 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FastMinors/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 25936 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 1849 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/___Fitting_spideals_spof_spfinite_spmodules.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1848 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/___Fitting_spideals_spof_spfinite_spmodules.out │ │ │ -rw-r--r-- 0 root (0) root (0) 334 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/_affine__Part.out │ │ │ -rw-r--r-- 0 root (0) root (0) 694 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/_co1__Fitting.out │ │ │ -rw-r--r-- 0 root (0) root (0) 848 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/_gauss__Col.out │ │ │ -rw-r--r-- 0 root (0) root (0) 365 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/_gotzmann__Test.out │ │ │ -rw-r--r-- 0 root (0) root (0) 610 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/_next__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 197 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/_quot__Scheme.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 32 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 10278 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/___Fitting_spideals_spof_spfinite_spmodules.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10277 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/___Fitting_spideals_spof_spfinite_spmodules.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5938 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/_affine__Part.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7195 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/_co1__Fitting.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7113 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/_gauss__Col.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7927 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/_gotzmann__Test.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7042 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/_next__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5649 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/_quot__Scheme.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8974 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/index.html │ │ │ @@ -6521,15 +6521,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 252 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Real__Type_sp__Number.out │ │ │ -rw-r--r-- 0 root (0) root (0) 99 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__String__Type.out │ │ │ -rw-r--r-- 0 root (0) root (0) 133 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__String__Type_sp__String.out │ │ │ -rw-r--r-- 0 root (0) root (0) 610 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Struct__Type_sp__Visible__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 331 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Type_sp__Foreign__Object.out │ │ │ -rw-r--r-- 0 root (0) root (0) 226 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Type_sp__Pointer.out │ │ │ -rw-r--r-- 0 root (0) root (0) 202 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Type_sp_st_spvoidstar.out │ │ │ --rw-r--r-- 0 root (0) root (0) 525 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Union__Type_sp__Thing.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 524 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Union__Type_sp__Thing.out │ │ │ -rw-r--r-- 0 root (0) root (0) 92 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Void__Type.out │ │ │ -rw-r--r-- 0 root (0) root (0) 321 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Pointer.out │ │ │ -rw-r--r-- 0 root (0) root (0) 181 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Shared__Library.out │ │ │ -rw-r--r-- 0 root (0) root (0) 388 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/__st_spvoidstar_sp_eq_sp__Thing.out │ │ │ -rw-r--r-- 0 root (0) root (0) 162 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_address.out │ │ │ -rw-r--r-- 0 root (0) root (0) 262 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_foreign__Array__Type.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1392 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_foreign__Function.out │ │ │ @@ -6565,15 +6565,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5923 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Struct__Type.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7099 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Struct__Type_sp__Visible__List.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12524 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Type.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5690 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Type_sp__Foreign__Object.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5091 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Type_sp__Pointer.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5319 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Type_sp_st_spvoidstar.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5248 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Union__Type.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6118 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Union__Type_sp__Thing.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6117 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Union__Type_sp__Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5256 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Void__Type.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6853 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Pointer.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6454 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Shared__Library.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6286 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/__st_spvoidstar_sp_eq_sp__Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5427 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/_address.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11686 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/_fast_sp__Fourier_sptransform_spexample.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6330 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ForeignFunctions/html/_foreign__Array__Type.html │ │ │ @@ -6708,16 +6708,16 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 105269 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 338 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/___Bounds.out │ │ │ -rw-r--r-- 0 root (0) root (0) 318 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/___Frobenius__Thresholds.out │ │ │ -rw-r--r-- 0 root (0) root (0) 793 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/___Guess__Strategy.out │ │ │ -rw-r--r-- 0 root (0) root (0) 866 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_compare__F__P__T.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4033 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_fpt.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2458 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_frobenius__Nu.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4031 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_fpt.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2456 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_frobenius__Nu.out │ │ │ -rw-r--r-- 0 root (0) root (0) 760 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_is__F__Jumping__Exponent.out │ │ │ -rw-r--r-- 0 root (0) root (0) 552 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_is__F__P__T.out │ │ │ -rw-r--r-- 0 root (0) root (0) 828 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_is__Simple__Normal__Crossing.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 717 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 12 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5150 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Bounds.html │ │ │ @@ -6728,16 +6728,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4657 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Global__Frobenius__Root.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10043 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Guess__Strategy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4336 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Return__List.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4440 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Search.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4429 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Standard__Power.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5625 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Use__Special__Algorithms.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14109 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_compare__F__P__T.html │ │ │ --rw-r--r-- 0 root (0) root (0) 25101 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_fpt.html │ │ │ --rw-r--r-- 0 root (0) root (0) 23557 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_frobenius__Nu.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 25099 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_fpt.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 23555 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_frobenius__Nu.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12804 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_is__F__Jumping__Exponent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12106 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_is__F__P__T.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9354 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_is__Simple__Normal__Crossing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18981 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20424 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7695 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/FunctionFieldDesingularization/ │ │ │ @@ -6789,15 +6789,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 614 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_make__K__Class_lp__G__K__M__Variety_cm__Flag__Matroid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1001 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_make__K__Class_lp__G__K__M__Variety_cm__Toric__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 339 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_map_lp__G__K__M__Variety_cm__G__K__M__Variety_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1060 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_moment__Graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 732 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_moment__Graph_lp__G__K__M__Variety_cm__Moment__Graph_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 170 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_moment__Graph_lp__G__K__M__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 235 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_normal__Toric__Variety_lp__G__K__M__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 8072 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_orbit__Closure.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 8067 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_orbit__Closure.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1060 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_projective__Space.out │ │ │ -rw-r--r-- 0 root (0) root (0) 612 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_pullback_lp__Equivariant__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 615 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_pushforward.out │ │ │ -rw-r--r-- 0 root (0) root (0) 220 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_set__Indicator.out │ │ │ -rw-r--r-- 0 root (0) root (0) 437 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_trivial__K__Class.out │ │ │ -rw-r--r-- 0 root (0) root (0) 401 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_underlying__Graph_lp__Moment__Graph_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/ │ │ │ @@ -6840,15 +6840,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7594 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_make__K__Class_lp__G__K__M__Variety_cm__Flag__Matroid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8106 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_make__K__Class_lp__G__K__M__Variety_cm__Toric__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8970 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_map_lp__G__K__M__Variety_cm__G__K__M__Variety_cm__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8163 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_moment__Graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7068 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_moment__Graph_lp__G__K__M__Variety_cm__Moment__Graph_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5492 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_moment__Graph_lp__G__K__M__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7446 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_normal__Toric__Variety_lp__G__K__M__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 18946 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_orbit__Closure.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 18941 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_orbit__Closure.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6805 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_projective__Space.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6864 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_pullback_lp__Equivariant__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7420 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_pushforward.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6622 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_set__Indicator.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5424 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_trivial__K__Class.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5303 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_underlying__Graph_lp__Moment__Graph_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 27535 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/index.html │ │ │ @@ -7844,42 +7844,42 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 75720 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Graphs/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 59550 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Graphs/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 32717 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Graphs/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 56327 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 33117 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/___Groebner__Strata.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 33164 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/___Groebner__Strata.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1505 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_find__Weight__Constraints.out │ │ │ -rw-r--r-- 0 root (0) root (0) 598 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_find__Weight__Vector.out │ │ │ -rw-r--r-- 0 root (0) root (0) 30368 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_groebner__Family.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2709 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_groebner__Stratum.out │ │ │ -rw-r--r-- 0 root (0) root (0) 328 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_linear__Part.out │ │ │ --rw-r--r-- 0 root (0) root (0) 13718 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_nonminimal__Maps.out │ │ │ --rw-r--r-- 0 root (0) root (0) 15160 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_random__Point__On__Rational__Variety_lp__Ideal_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 13044 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_nonminimal__Maps.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 15158 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_random__Point__On__Rational__Variety_lp__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6625 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_random__Points__On__Rational__Variety_lp__Ideal_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 675 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_smaller__Monomials.out │ │ │ -rw-r--r-- 0 root (0) root (0) 960 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_standard__Monomials.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1344 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_tail__Monomials.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 42 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5775 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/___All__Standard.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4680 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/___Minimalize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9272 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_find__Weight__Constraints.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8150 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_find__Weight__Vector.html │ │ │ -rw-r--r-- 0 root (0) root (0) 41520 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_groebner__Family.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10010 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_groebner__Stratum.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5657 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_linear__Part.html │ │ │ --rw-r--r-- 0 root (0) root (0) 23060 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_nonminimal__Maps.html │ │ │ --rw-r--r-- 0 root (0) root (0) 23351 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_random__Point__On__Rational__Variety_lp__Ideal_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 22386 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_nonminimal__Maps.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 23349 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_random__Point__On__Rational__Variety_lp__Ideal_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14386 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_random__Points__On__Rational__Variety_lp__Ideal_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7047 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_smaller__Monomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7401 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_standard__Monomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8226 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_tail__Monomials.html │ │ │ --rw-r--r-- 0 root (0) root (0) 49360 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/index.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 49407 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11472 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6158 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerWalk/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerWalk/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 18005 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerWalk/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerWalk/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 705 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/GroebnerWalk/example-output/___Groebner__Walk.out │ │ │ @@ -8024,15 +8024,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 50640 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 920 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/___Appell__F1.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2967 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/___Canonical_sp__Series_sp__Tutorial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 630 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_css__Expts.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1007 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_css__Expts__Mult.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4892 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_css__Lead__Term.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4893 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_css__Lead__Term.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5004 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_diff__Ops.out │ │ │ -rw-r--r-- 0 root (0) root (0) 802 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_distraction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 768 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_euler__Operators.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1342 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_gkz.out │ │ │ -rw-r--r-- 0 root (0) root (0) 663 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_is__Torus__Fixed.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4657 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_put__Weyl__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2252 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_solve__Frobenius__Ideal.out │ │ │ @@ -8042,15 +8042,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6444 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/___Appell__F1.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13276 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/___Canonical_sp__Series_sp__Tutorial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3193 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/___Theta__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3089 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/___Wto__T.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3523 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_create__Theta__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6608 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_css__Expts.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7394 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_css__Expts__Mult.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10799 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_css__Lead__Term.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10800 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_css__Lead__Term.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11975 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_diff__Ops.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8119 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_distraction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7349 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_euler__Operators.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8628 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_gkz.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7242 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_indicial__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6102 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_is__Torus__Fixed.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3680 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_nilsson__Support.html │ │ │ @@ -8202,16 +8202,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1444 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_ic__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 289 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_ic__P__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 570 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_idealizer.out │ │ │ -rw-r--r-- 0 root (0) root (0) 755 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Keep_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 869 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Limit_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 28084 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 370 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Variable_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2362 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3674 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2371 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3672 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2595 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp__Ring_cm__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1221 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 173 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_is__Normal_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2065 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_make__S2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 496 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_ring__From__Fractions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1935 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_test__Huneke__Question.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/ │ │ │ @@ -8237,16 +8237,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4732 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_idealizer_lp..._cm__Index_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10501 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_idealizer_lp..._cm__Variable_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5388 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6918 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Keep_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8320 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 62512 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12568 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Variable_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9830 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14131 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9839 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14129 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14275 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp__Ring_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12467 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5862 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_is__Normal_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9425 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_make__S2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10403 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_make__S2_lp..._cm__Variable_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7546 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_ring__From__Fractions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8797 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_test__Huneke__Question.html │ │ │ @@ -8271,17 +8271,17 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 677 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_generators_lp__Finite__Group__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 555 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_generators_lp__Ring__Of__Invariants_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 656 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_group.out │ │ │ -rw-r--r-- 0 root (0) root (0) 636 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_group__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1302 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hilbert__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 606 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hilbert__Series_lp__Ring__Of__Invariants_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 323 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hironaka__Decomposition.out │ │ │ --rw-r--r-- 0 root (0) root (0) 9241 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hsop_spalgorithms.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 9240 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hsop_spalgorithms.out │ │ │ -rw-r--r-- 0 root (0) root (0) 586 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariant__Ring.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1300 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Degree__Bound_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1302 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Degree__Bound_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 513 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Use__Coefficient__Ring_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1158 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1326 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp__Diagonal__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 560 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp__Finite__Group__Action_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2647 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp__Finite__Group__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 773 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp__Linearly__Reductive__Action_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 798 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp__Linearly__Reductive__Action_rp.out │ │ │ @@ -8327,18 +8327,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6293 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_generators_lp__Finite__Group__Action_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6224 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_generators_lp__Ring__Of__Invariants_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6513 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_group.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6196 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_group__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9791 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_hilbert__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6631 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_hilbert__Series_lp__Ring__Of__Invariants_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11357 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_hironaka__Decomposition.html │ │ │ --rw-r--r-- 0 root (0) root (0) 22456 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_hsop_spalgorithms.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 22455 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_hsop_spalgorithms.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8582 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariant__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11283 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8577 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Degree__Bound_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8579 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Degree__Bound_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14134 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5840 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Subring__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7933 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Use__Coefficient__Ring_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8676 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12839 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp__Diagonal__Action_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9913 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp__Finite__Group__Action_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11079 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp__Finite__Group__Action_rp.html │ │ │ @@ -8457,41 +8457,41 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7130 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/JSON/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6337 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/JSON/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3318 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/JSON/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 78217 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 2737 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___Example_sp1.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2738 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___Example_sp1.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2643 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___Example_sp2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9513 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___Example_sp3.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2465 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___Example_sp4.out │ │ │ -rw-r--r-- 0 root (0) root (0) 556 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___J__J.out │ │ │ --rw-r--r-- 0 root (0) root (0) 5997 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___Storing_sp__Computations.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 5996 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___Storing_sp__Computations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 634 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets__Projection.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1511 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets__Radical.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1210 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets_lp__Z__Z_cm__Affine__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1209 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets_lp__Z__Z_cm__Graph_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2492 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets_lp__Z__Z_cm__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1463 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets_lp__Z__Z_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 442 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets_lp__Z__Z_cm__Quotient__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1393 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets_lp__Z__Z_cm__Ring__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 203 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_lifting__Function.out │ │ │ -rw-r--r-- 0 root (0) root (0) 187 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_lifting__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4670 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_principal__Component.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 675 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 70 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 8541 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/html/___Example_sp1.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8542 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/html/___Example_sp1.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8900 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/html/___Example_sp2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17138 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/html/___Example_sp3.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9876 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/html/___Example_sp4.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5001 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/html/___J__J.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3928 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/html/___Saturate.html │ │ │ --rw-r--r-- 0 root (0) root (0) 15225 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/html/___Storing_sp__Computations.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 15224 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/html/___Storing_sp__Computations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4869 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/html/_jet.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6089 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/html/_jets.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4386 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/html/_jets__Base.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4301 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/html/_jets__Info.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4651 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/html/_jets__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4429 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/html/_jets__Max__Order.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6932 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Jets/html/_jets__Projection.html │ │ │ @@ -8515,59 +8515,59 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 102072 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1940 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_all__Gradings.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2827 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_analyze__Strand.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5879 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_canonical__Homotopies.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1003 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2263 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Table.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3425 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Tables.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1001 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Det.out │ │ │ --rw-r--r-- 0 root (0) root (0) 268 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_compute__Bound.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2261 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Table.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3427 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Tables.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1004 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Det.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 269 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_compute__Bound.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6823 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_correspondence__Scroll.out │ │ │ -rw-r--r-- 0 root (0) root (0) 804 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_cox__Matrices.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1634 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_degenerate__K3.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6876 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_degenerate__K3__Betti__Tables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2293 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_homotopy__Ranks.out │ │ │ -rw-r--r-- 0 root (0) root (0) 720 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_irrelevant__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 551 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_product__Of__Projective__Spaces.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1031 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_relative__Equations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1080 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_relative__Resolution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1638 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_relative__Resolution__Twists.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2220 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_resonance__Det.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2219 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_resonance__Det.out │ │ │ -rw-r--r-- 0 root (0) root (0) 129 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_resonance__Scroll.out │ │ │ -rw-r--r-- 0 root (0) root (0) 758 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_scheme__In__Product.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3076 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_schreyer__Name.out │ │ │ -rw-r--r-- 0 root (0) root (0) 813 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_small__Diagonal.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 30 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4628 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/___Fine__Grading.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4195 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/___Scrolls.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7601 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_all__Gradings.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9237 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_analyze__Strand.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6471 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_canonical__Carpet.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13084 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_canonical__Homotopies.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11799 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9474 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Table.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10205 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Tables.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6616 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Det.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6590 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_compute__Bound.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9472 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Table.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10207 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Tables.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6619 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Det.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6591 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_compute__Bound.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17353 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_correspondence__Scroll.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7148 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_cox__Matrices.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9146 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_degenerate__K3.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14516 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_degenerate__K3__Betti__Tables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4922 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_gorenstein__Double.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8161 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_hankel__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7918 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_homotopy__Ranks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5901 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_irrelevant__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7827 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_product__Of__Projective__Spaces.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6949 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_relative__Equations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7056 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_relative__Resolution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8055 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_relative__Resolution__Twists.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8112 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_resonance__Det.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8111 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_resonance__Det.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5703 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_resonance__Scroll.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7256 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_scheme__In__Product.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10598 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_schreyer__Name.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6161 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_small__Diagonal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 32580 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 22924 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9790 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/toc.html │ │ │ @@ -8691,27 +8691,27 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1849 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LAYOUT.gz │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 33508 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 2858 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/___L__L__L.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2411 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/___L__L__L_lp..._cm__Change__Matrix_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1437 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/___L__L__L_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1436 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/___L__L__L_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 476 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/_gcd__L__L__L.out │ │ │ -rw-r--r-- 0 root (0) root (0) 678 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/_is__L__L__L.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 28 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 3787 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___B__K__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3733 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Cohen__Engine.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3847 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Cohen__Top__Level.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3650 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Givens.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3210 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Hermite.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10658 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___L__L__L.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9716 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___L__L__L_lp..._cm__Change__Matrix_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 30774 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___L__L__L_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 30773 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___L__L__L_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3695 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___N__T__L.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3496 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Real__F__P.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3516 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Real__Q__P.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3698 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Real__Q__P1.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3532 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Real__R__R.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3565 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Real__X__D.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4195 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Threshold.html │ │ │ @@ -8727,15 +8727,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 70556 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 604 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/___Working_spwith_splattice_sppolytopes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_adjoint__Polytope.out │ │ │ -rw-r--r-- 0 root (0) root (0) 329 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_ambient__Halfspaces.out │ │ │ --rw-r--r-- 0 root (0) root (0) 596 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_are__Isomorphic.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 593 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_are__Isomorphic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 684 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_cayley.out │ │ │ -rw-r--r-- 0 root (0) root (0) 85 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_codegree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 281 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_degree__Of__Jet__Separation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 312 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_epsilon__Bounds.out │ │ │ -rw-r--r-- 0 root (0) root (0) 304 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_gauss__Fiber.out │ │ │ -rw-r--r-- 0 root (0) root (0) 373 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_gauss__Image.out │ │ │ -rw-r--r-- 0 root (0) root (0) 350 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_gaussk__Fiber.out │ │ │ @@ -8752,15 +8752,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 235 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_toric__Div.out │ │ │ -rw-r--r-- 0 root (0) root (0) 167 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_torus__Embedding.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 17 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4549 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/___Working_spwith_splattice_sppolytopes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5468 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_adjoint__Polytope.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5506 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_ambient__Halfspaces.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7428 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_are__Isomorphic.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7425 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_are__Isomorphic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9293 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_cayley.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4749 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_codegree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6623 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_degree__Of__Jet__Separation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6268 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_epsilon__Bounds.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6425 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_gauss__Fiber.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6459 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_gauss__Image.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6744 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_gaussk__Fiber.html │ │ │ @@ -9175,15 +9175,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1449 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Ext^__Z__Z_lp__Module_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5830 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Fast__Nonminimal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1543 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___File_sp_lt_lt_sp__Thing.out │ │ │ -rw-r--r-- 0 root (0) root (0) 548 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Flat__Monoid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 100 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Function__Closure.out │ │ │ -rw-r--r-- 0 root (0) root (0) 340 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Function_sp_at_at_sp__Function.out │ │ │ -rw-r--r-- 0 root (0) root (0) 836 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Function_sp_us_sp__Thing.out │ │ │ --rw-r--r-- 0 root (0) root (0) 414 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__Cstats.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 415 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__Cstats.out │ │ │ -rw-r--r-- 0 root (0) root (0) 611 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__F.out │ │ │ -rw-r--r-- 0 root (0) root (0) 194 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__Lex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 561 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__Rev__Lex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 175 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Gamma.out │ │ │ -rw-r--r-- 0 root (0) root (0) 230 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Global__Assign__Hook.out │ │ │ -rw-r--r-- 0 root (0) root (0) 371 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Global__Release__Hook.out │ │ │ -rw-r--r-- 0 root (0) root (0) 460 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Graded__Module__Map_sp_vb_sp__Graded__Module__Map.out │ │ │ @@ -9243,15 +9243,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 248 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Matrix_sp_st_st_sp__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 767 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Matrix_sp_st_st_sp__Ring__Element.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1114 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Matrix_sp_us_sp__Array.out │ │ │ -rw-r--r-- 0 root (0) root (0) 354 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Matrix_sp_us_sp__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 377 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Matrix_sp_us_sp__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 484 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Matrix_sp_vb_sp__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 565 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Matrix_sp_vb_vb_sp__Matrix.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1015 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Minimal__Generators.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1014 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Minimal__Generators.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2609 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Module_sp^_sp__Array.out │ │ │ -rw-r--r-- 0 root (0) root (0) 154 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Module_sp^_sp__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 552 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Module_sp^_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1351 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Module_sp^_st_st_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 313 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Module_sp_pl_pl_sp__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1502 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Module_sp_sl_sp__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 299 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Module_sp_st_st_sp__Ring.out │ │ │ @@ -9296,15 +9296,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 587 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Ring__Map_sp__Ring__Element.out │ │ │ -rw-r--r-- 0 root (0) root (0) 399 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Ring_sp^_sp__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 217 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Ring_sp^_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 753 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Ring_sp_sl_sp__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 322 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Ring_sp_us_sp__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 308 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Ring_sp_us_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1854 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___S__V__D.out │ │ │ --rw-r--r-- 0 root (0) root (0) 349 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___S__V__D_lp..._cm__Divide__Conquer_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 348 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___S__V__D_lp..._cm__Divide__Conquer_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5127 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Schreyer_sporders.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1024 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Schubert_lp__Z__Z_cm__Z__Z_cm__Visible__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 232 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Self__Initializing__Type.out │ │ │ -rw-r--r-- 0 root (0) root (0) 272 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 950 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 205 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Set_sp-_sp__Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 157 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Set_sp_sh_qu_sp__Thing.out │ │ │ @@ -9397,15 +9397,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 123 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/__sh.out │ │ │ -rw-r--r-- 0 root (0) root (0) 334 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/__sh_qu.out │ │ │ -rw-r--r-- 0 root (0) root (0) 368 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/__sh_sp__Basic__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 387 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/__sl.out │ │ │ -rw-r--r-- 0 root (0) root (0) 274 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/__sl_sl.out │ │ │ -rw-r--r-- 0 root (0) root (0) 276 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/__sl_sl_sl.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1059 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/__st.out │ │ │ --rw-r--r-- 0 root (0) root (0) 7213 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_a_spfirst_sp__Macaulay2_spsession.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 7212 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_a_spfirst_sp__Macaulay2_spsession.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1028 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_about.out │ │ │ -rw-r--r-- 0 root (0) root (0) 187 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_abs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1025 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_accumulate.out │ │ │ -rw-r--r-- 0 root (0) root (0) 114 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_acos.out │ │ │ -rw-r--r-- 0 root (0) root (0) 188 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_acosh.out │ │ │ -rw-r--r-- 0 root (0) root (0) 112 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_acot.out │ │ │ -rw-r--r-- 0 root (0) root (0) 207 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_acoth.out │ │ │ @@ -9439,15 +9439,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 128 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_apply_lp__Z__Z_cm__Function_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1347 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_apropos.out │ │ │ -rw-r--r-- 0 root (0) root (0) 180 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_ascii.out │ │ │ -rw-r--r-- 0 root (0) root (0) 112 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_asin.out │ │ │ -rw-r--r-- 0 root (0) root (0) 114 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_asinh.out │ │ │ -rw-r--r-- 0 root (0) root (0) 307 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_assert.out │ │ │ -rw-r--r-- 0 root (0) root (0) 436 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_assigning_spvalues.out │ │ │ --rw-r--r-- 0 root (0) root (0) 235 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_at__End__Of__File_lp__File_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 234 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_at__End__Of__File_lp__File_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 154 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_atan.out │ │ │ -rw-r--r-- 0 root (0) root (0) 245 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_atan2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 207 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_atanh.out │ │ │ -rw-r--r-- 0 root (0) root (0) 518 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_augmented_spassignment.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1258 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_autoload.out │ │ │ -rw-r--r-- 0 root (0) root (0) 137 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_base__Filename.out │ │ │ -rw-r--r-- 0 root (0) root (0) 345 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_base__Name.out │ │ │ @@ -9463,15 +9463,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 202 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_between_lp__Thing_cm__Visible__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 332 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_binomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 609 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_block__Matrix__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 223 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_borel_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 713 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_break.out │ │ │ -rw-r--r-- 0 root (0) root (0) 755 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cache.out │ │ │ -rw-r--r-- 0 root (0) root (0) 531 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cache__Value.out │ │ │ --rw-r--r-- 0 root (0) root (0) 591 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cancel__Task_lp__Task_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 592 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cancel__Task_lp__Task_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1783 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_capture.out │ │ │ -rw-r--r-- 0 root (0) root (0) 77 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_ceiling_lp__Number_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 128 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_center__String.out │ │ │ -rw-r--r-- 0 root (0) root (0) 518 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_chain__Complex_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 358 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_chain__Complex_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 832 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_chain__Complex_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 946 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_change__Base.out │ │ │ @@ -9496,24 +9496,24 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 150 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_column__Rank__Profile.out │ │ │ -rw-r--r-- 0 root (0) root (0) 288 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_column__Swap.out │ │ │ -rw-r--r-- 0 root (0) root (0) 175 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_columnate.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1095 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_combine.out │ │ │ -rw-r--r-- 0 root (0) root (0) 198 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_command__Interpreter.out │ │ │ -rw-r--r-- 0 root (0) root (0) 331 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_common__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 465 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_commonest.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1523 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_communicating_spwith_spprograms.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1545 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_communicating_spwith_spprograms.out │ │ │ -rw-r--r-- 0 root (0) root (0) 225 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_comodule.out │ │ │ -rw-r--r-- 0 root (0) root (0) 372 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_compact__Matrix__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 251 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_compare__Exchange.out │ │ │ -rw-r--r-- 0 root (0) root (0) 283 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_complete_lp__Chain__Complex_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1085 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_compose.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2477 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_compositions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 272 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_compress.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4287 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_computing_sp__Groebner_spbases.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1283 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_computing_spresolutions.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1282 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_computing_spresolutions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 640 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_computing_spsyzygies.out │ │ │ -rw-r--r-- 0 root (0) root (0) 103 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_concatenate.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1767 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_concatenating_spmatrices.out │ │ │ -rw-r--r-- 0 root (0) root (0) 392 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_conditional_spexecution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1250 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cone_lp__Chain__Complex__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 148 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_conjugate.out │ │ │ -rw-r--r-- 0 root (0) root (0) 478 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_conjugate_lp__Partition_rp.out │ │ │ @@ -9525,15 +9525,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 740 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_copy__File_lp__String_cm__String_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 112 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cos.out │ │ │ -rw-r--r-- 0 root (0) root (0) 113 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cosh.out │ │ │ -rw-r--r-- 0 root (0) root (0) 114 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cot.out │ │ │ -rw-r--r-- 0 root (0) root (0) 116 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_coth.out │ │ │ -rw-r--r-- 0 root (0) root (0) 297 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cover__Map_lp__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 521 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cover_lp__Module_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 317 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cpu__Time.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 313 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cpu__Time.out │ │ │ -rw-r--r-- 0 root (0) root (0) 243 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_create__Task.out │ │ │ -rw-r--r-- 0 root (0) root (0) 483 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_creating_span_spideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 451 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_creating_spand_spwriting_spfiles.out │ │ │ -rw-r--r-- 0 root (0) root (0) 115 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_csc.out │ │ │ -rw-r--r-- 0 root (0) root (0) 116 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_csch.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1060 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current.out │ │ │ -rw-r--r-- 0 root (0) root (0) 84 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__Column__Number.out │ │ │ @@ -9593,15 +9593,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1642 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_eagon__Northcott_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 532 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_eigenvalues.out │ │ │ -rw-r--r-- 0 root (0) root (0) 717 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_eigenvectors.out │ │ │ -rw-r--r-- 0 root (0) root (0) 111 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_eint.out │ │ │ -rw-r--r-- 0 root (0) root (0) 103 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elapsed__Time.out │ │ │ -rw-r--r-- 0 root (0) root (0) 162 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elapsed__Timing.out │ │ │ -rw-r--r-- 0 root (0) root (0) 366 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elements.out │ │ │ --rw-r--r-- 0 root (0) root (0) 21210 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elimination_spof_spvariables.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 21211 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elimination_spof_spvariables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 85 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_else.out │ │ │ -rw-r--r-- 0 root (0) root (0) 763 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_end.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3570 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_end__Package.out │ │ │ -rw-r--r-- 0 root (0) root (0) 487 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_entries.out │ │ │ -rw-r--r-- 0 root (0) root (0) 185 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_entries_lp__Vector_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 605 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_equality_spand_spcontainment.out │ │ │ -rw-r--r-- 0 root (0) root (0) 111 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_erf.out │ │ │ @@ -9744,15 +9744,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1260 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_induced__Map_lp__Module_cm__Module_cm__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 609 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_induced__Map_lp__Module_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1035 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_inheritance.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1187 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_inputting_spa_spmatrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 592 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_insert.out │ │ │ -rw-r--r-- 0 root (0) root (0) 686 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_install__Assignment__Method.out │ │ │ -rw-r--r-- 0 root (0) root (0) 936 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_installing_spaugmented_spassignment_spmethods.out │ │ │ --rw-r--r-- 0 root (0) root (0) 932 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_instances_lp__Type_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 933 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_instances_lp__Type_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 316 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_integers_spmodulo_spa_spprime.out │ │ │ -rw-r--r-- 0 root (0) root (0) 315 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_integrate.out │ │ │ -rw-r--r-- 0 root (0) root (0) 997 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_intersect_lp__Ideal_cm__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1162 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_intersection.out │ │ │ -rw-r--r-- 0 root (0) root (0) 189 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_intersection_lp__Set_cm__Set_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 190 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_intersection_spof_spideals.out │ │ │ -rw-r--r-- 0 root (0) root (0) 188 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_inverse__Erf.out │ │ │ @@ -9888,19 +9888,19 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 769 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 424 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Mutable__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 125 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Ring__Element_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 345 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Ring__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 319 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Ring_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 228 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Vector_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 560 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max.out │ │ │ --rw-r--r-- 0 root (0) root (0) 82 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max__Allowable__Threads.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 83 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max__Allowable__Threads.out │ │ │ -rw-r--r-- 0 root (0) root (0) 83 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max__Exponent.out │ │ │ -rw-r--r-- 0 root (0) root (0) 311 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max__Position.out │ │ │ -rw-r--r-- 0 root (0) root (0) 631 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max_lp__Graded__Module_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1636 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_memoize.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1638 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_memoize.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1730 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_merge.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2673 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_method.out │ │ │ -rw-r--r-- 0 root (0) root (0) 970 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_method__Options_lp__Function_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6279 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_methods.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2730 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_methods_spfor_spnormal_spforms_spand_spremainder.out │ │ │ -rw-r--r-- 0 root (0) root (0) 551 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_min.out │ │ │ -rw-r--r-- 0 root (0) root (0) 84 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_min__Exponent.out │ │ │ @@ -9988,31 +9988,31 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1091 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_options_lp__Package_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 217 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_override.out │ │ │ -rw-r--r-- 0 root (0) root (0) 681 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pack.out │ │ │ -rw-r--r-- 0 root (0) root (0) 144 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_package.out │ │ │ -rw-r--r-- 0 root (0) root (0) 498 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_packing_spmonomials_spfor_spefficiency.out │ │ │ -rw-r--r-- 0 root (0) root (0) 131 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pad.out │ │ │ -rw-r--r-- 0 root (0) root (0) 758 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pairs.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1735 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallel_spprogramming_spwith_spthreads_spand_sptasks.out │ │ │ --rw-r--r-- 0 root (0) root (0) 8672 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallelism_spin_spengine_spcomputations.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1737 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallel_spprogramming_spwith_spthreads_spand_sptasks.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 8673 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallelism_spin_spengine_spcomputations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 317 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parsing_spprecedence_cm_spin_spdetail.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3030 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_part.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1297 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_partition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1097 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_partitions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 652 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parts.out │ │ │ -rw-r--r-- 0 root (0) root (0) 277 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_path.out │ │ │ -rw-r--r-- 0 root (0) root (0) 535 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pdim_lp__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 351 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_peek.out │ │ │ -rw-r--r-- 0 root (0) root (0) 232 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_peek_sq.out │ │ │ -rw-r--r-- 0 root (0) root (0) 267 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_permanents.out │ │ │ -rw-r--r-- 0 root (0) root (0) 874 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_permutations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2202 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pfaffians.out │ │ │ -rw-r--r-- 0 root (0) root (0) 301 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pi.out │ │ │ -rw-r--r-- 0 root (0) root (0) 304 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pivots_lp__Matrix_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 11950 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_poincare.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 11949 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_poincare.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1011 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_poincare__N.out │ │ │ -rw-r--r-- 0 root (0) root (0) 580 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_poincare_lp__Chain__Complex_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2331 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_polarize.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4045 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_polynomial_springs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 624 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_position.out │ │ │ -rw-r--r-- 0 root (0) root (0) 475 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_positions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 274 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_powermod.out │ │ │ @@ -10035,27 +10035,27 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 78 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_process__I__D.out │ │ │ -rw-r--r-- 0 root (0) root (0) 84 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_product_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 209 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_product_lp__Set_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 187 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_product_lp__Virtual__Tally_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 92 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_product_lp__Visible__List_cm__Function_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 154 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_product_lp__Visible__List_cm__Visible__List_cm__Function_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 87 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_product_lp__Z__Z_cm__Function_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1542 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_profile.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1543 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_profile.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1426 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_promote.out │ │ │ -rw-r--r-- 0 root (0) root (0) 236 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_protect.out │ │ │ -rw-r--r-- 0 root (0) root (0) 838 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pseudo__Remainder.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2181 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pseudocode.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3606 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_push__Forward_lp__Ring__Map_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 796 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_quotient__Remainder.out │ │ │ -rw-r--r-- 0 root (0) root (0) 332 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_quotient__Remainder_lp__Ring__Element_cm__Ring__Element_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 825 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_quotient__Remainder_sq.out │ │ │ -rw-r--r-- 0 root (0) root (0) 732 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_quotient_lp__Matrix_cm__Groebner__Basis_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1467 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_quotient_springs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 756 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_quotient_sq.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1251 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random__K__Rational__Point.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1252 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random__K__Rational__Point.out │ │ │ -rw-r--r-- 0 root (0) root (0) 669 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random__Mutable__Matrix_lp__Z__Z_cm__Z__Z_cm__R__R_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 138 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1109 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random_lp__Module_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 308 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random_lp__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2486 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random_lp__Type_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1087 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random_lp__Z__Z_cm__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1151 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random_lp__Z__Z_cm__Ring_rp.out │ │ │ @@ -10114,15 +10114,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1627 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_run__Program.out │ │ │ -rw-r--r-- 0 root (0) root (0) 310 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_same.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1122 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_saving_sppolynomials_spand_spmatrices_spin_spfiles.out │ │ │ -rw-r--r-- 0 root (0) root (0) 369 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_scan.out │ │ │ -rw-r--r-- 0 root (0) root (0) 295 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_scan__Keys.out │ │ │ -rw-r--r-- 0 root (0) root (0) 317 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_scan__Pairs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 301 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_scan__Values.out │ │ │ --rw-r--r-- 0 root (0) root (0) 351 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_schedule.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 331 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_schedule.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1372 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_schreyer__Order_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 99 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sec.out │ │ │ -rw-r--r-- 0 root (0) root (0) 116 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sech.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1142 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_select__In__Subring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 442 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_select__Keys.out │ │ │ -rw-r--r-- 0 root (0) root (0) 481 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_select__Pairs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1331 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_select__Variables_lp__List_cm__Polynomial__Ring_rp.out │ │ │ @@ -10146,15 +10146,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6636 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_show__Structure.out │ │ │ -rw-r--r-- 0 root (0) root (0) 418 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_show__User__Structure.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2185 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_simple_sp__Groebner_spbasis_spcomputations_spover_spvarious_springs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 100 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sin.out │ │ │ -rw-r--r-- 0 root (0) root (0) 933 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_singular__Locus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 294 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_size2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3033 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_smith__Normal__Form_lp__Matrix_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4535 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_solve.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4532 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_solve.out │ │ │ -rw-r--r-- 0 root (0) root (0) 891 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_some__Terms.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1085 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sort__Columns.out │ │ │ -rw-r--r-- 0 root (0) root (0) 495 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sort_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 582 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sort_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 363 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_source_lp__Chain__Complex__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 278 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_source_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_source_lp__Ring__Map_rp.out │ │ │ @@ -10276,15 +10276,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 188 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_value_lp__Symbol_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 201 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_values.out │ │ │ -rw-r--r-- 0 root (0) root (0) 256 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_variables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 770 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_vars_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 153 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_vars_lp__Monoid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 759 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_vars_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 842 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_vector.out │ │ │ --rw-r--r-- 0 root (0) root (0) 11614 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_version.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 11625 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_version.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1121 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_viewing_spthe_spsymbols_spdefined_spso_spfar.out │ │ │ -rw-r--r-- 0 root (0) root (0) 467 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_wedge__Product_lp__Z__Z_cm__Z__Z_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 610 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_weight__Range.out │ │ │ -rw-r--r-- 0 root (0) root (0) 349 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_what_spa_spclass_spis.out │ │ │ -rw-r--r-- 0 root (0) root (0) 704 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_what_spis_spa_sp__Groebner_spbasis_qu.out │ │ │ -rw-r--r-- 0 root (0) root (0) 754 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_while.out │ │ │ -rw-r--r-- 0 root (0) root (0) 133 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_width_lp__Net_rp.out │ │ │ @@ -10346,15 +10346,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 3058 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___B__L__A__S.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4070 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Bag.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3937 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Bareiss.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4358 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Base__Function.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3683 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Base__Row.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18195 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Basic__List.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8418 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Basic__List_sp_sh_sp__Z__Z.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10186 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Basis__Element__Limit.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10200 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Basis__Element__Limit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3362 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Bayer.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4053 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Before__Print.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Bessel__J.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Bessel__Y.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5378 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Beta.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16504 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Betti__Tally.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3646 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Binary.html │ │ │ @@ -10391,16 +10391,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 3690 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Chain__Complex_sp_st_st_sp__Graded__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5372 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Chain__Complex_sp_st_st_sp__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6957 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Chain__Complex_sp_us_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5532 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Chain__Complex_sp_us_sp__Z__Z_sp_eq_sp__Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4947 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Change__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3832 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Check__Documentation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3679 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Closest__Fit.html │ │ │ --rw-r--r-- 0 root (0) root (0) 4491 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Codimension__Limit.html │ │ │ --rw-r--r-- 0 root (0) root (0) 4700 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Coefficient__Ring.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 4477 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Codimension__Limit.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 4690 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Coefficient__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3949 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Cofactor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11951 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Command.html │ │ │ -rw-r--r-- 0 root (0) root (0) 30972 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Compiled__Function.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4000 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Compiled__Function__Body.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4776 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Compiled__Function__Closure.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3684 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Complement.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3849 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Complete__Intersection.html │ │ │ @@ -10416,18 +10416,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7980 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Database.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3652 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Date.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5068 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___David_sp__Eisenbud.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4439 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Debugging__Mode.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3418 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Decompose.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3382 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Default.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6592 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Degree.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5308 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Degree__Group.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5310 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Degree__Group.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4928 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Degree__Lift.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12098 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Degree__Limit.html │ │ │ --rw-r--r-- 0 root (0) root (0) 4968 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Degree__Map.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12114 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Degree__Limit.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 4976 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Degree__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4064 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Degree__Order.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4998 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Degree__Rank.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4633 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4243 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Dense.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3958 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Density.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3359 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Descending.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3684 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Descent.html │ │ │ @@ -10475,23 +10475,23 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4377 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Function__Body.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16169 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Function__Closure.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3557 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Function_sp__Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4756 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Function_sp_at_at_sp__Function.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7152 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Function_sp_us_sp__Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3895 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__B__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6166 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__C_spgarbage_spcollector.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5138 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__Cstats.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5139 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__Cstats.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9262 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__F.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4022 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__Lex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3253 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__N__U_sp__M__P.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6138 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__Rev__Lex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5495 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Galois__Field.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6030 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Gamma.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4343 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___General__Ordered__Monoid.html │ │ │ --rw-r--r-- 0 root (0) root (0) 4662 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Generic.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 4650 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Generic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5647 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Global__Assign__Hook.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4308 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Global__Dictionary.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4667 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Global__Release__Hook.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13548 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Graded__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13343 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Graded__Module__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5212 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Graded__Module__Map_sp_vb_sp__Graded__Module__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5296 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Graded__Module__Map_sp_vb_vb_sp__Graded__Module__Map.html │ │ │ @@ -10621,15 +10621,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 3995 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Max__Reduction__Count.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3913 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Maximal__Rank.html │ │ │ -rw-r--r-- 0 root (0) root (0) 85300 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Method__Function.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5062 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Method__Function__Binary.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12811 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Method__Function__Single.html │ │ │ -rw-r--r-- 0 root (0) root (0) 32839 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Method__Function__With__Options.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3667 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Michael_sp__E._sp__Stillman.html │ │ │ --rw-r--r-- 0 root (0) root (0) 20324 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Minimal__Generators.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 20323 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Minimal__Generators.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4006 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Minimal__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3723 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Minimize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3639 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Minimum__Version.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3642 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Minus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 83657 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9854 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Module_sp^_sp__Array.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4445 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Module_sp^_sp__List.html │ │ │ @@ -10682,15 +10682,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 3663 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Other_spsources_spof_spinformation_spabout_sp__Macaulay2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5899 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Output__Dictionary.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6601 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Outputs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21038 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Package.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6640 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Package__Dictionary.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3986 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Package__Exports.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3738 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Package__Imports.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9693 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Pair__Limit.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9677 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Pair__Limit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3857 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Pairs__Remaining.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3696 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Parenthesize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4356 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Partition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5286 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Partition_sp_us_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 2895 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Pfaffians.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10252 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Polynomial__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3384 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Postfix.html │ │ │ @@ -10749,15 +10749,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5113 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Ring_sp_us_sp__List.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5841 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Ring_sp_us_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3689 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Row__Expression.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3680 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Run__Directory.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3782 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Run__Examples.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14411 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___S__P__A__C__E.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11480 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___S__V__D.html │ │ │ --rw-r--r-- 0 root (0) root (0) 4918 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___S__V__D_lp..._cm__Divide__Conquer_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 4917 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___S__V__D_lp..._cm__Divide__Conquer_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10238 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___S__Y__N__O__P__S__I__S.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14076 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Schreyer_sporders.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7683 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Schubert_lp__Z__Z_cm__Z__Z_cm__Visible__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6562 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Scripted__Functor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4985 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___See__Also.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8171 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Self__Initializing__Type.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3800 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Separate__Exec.html │ │ │ @@ -10829,15 +10829,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 3745 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Source__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4176 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Sparse__Monomial__Vector__Expression.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3817 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Sparse__Vector__Expression.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4428 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Standard.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4471 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Stop__Before__Computation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4521 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Stop__Iteration.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3806 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Stop__With__Minimal__Generators.html │ │ │ --rw-r--r-- 0 root (0) root (0) 19358 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Strategy.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 19370 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Strategy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 42741 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___String.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5651 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___String_sp.._lt_sp__String.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5495 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___String_sp.._sp__String.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5636 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___String_sp^_sp__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6199 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___String_sp_us_sp__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5256 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___String_sp_us_sp__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5485 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___String_sp_us_sp__Z__Z.html │ │ │ @@ -10865,15 +10865,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4464 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Te__Xmacs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3358 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Test.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11832 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___The_sp__Macaulay2_splanguage.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3811 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___The_spauthors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 29518 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7671 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Thing_sp_eq_eq_eq_sp__Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5860 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Thing_sp_sl_sl_sp__Function.html │ │ │ --rw-r--r-- 0 root (0) root (0) 3309 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Threads.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 3307 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Threads.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4934 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Time.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5954 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Tor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4658 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Tor_us__Z__Z_lp__Module_cm__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3378 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Torsion.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3757 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Total__Pairs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3731 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Truncate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 31154 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Tutorial_co_sp__Canonical_sp__Embeddings_spof_sp__Plane_sp__Curves_spand_sp__Gonality.html │ │ │ @@ -10896,15 +10896,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5378 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Variables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17751 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Vector.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4262 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Vector__Expression.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6220 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Vector_sp_st_st_sp__Vector.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5250 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Vector_sp_vb_vb_sp__Vector.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5590 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Verbose.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5665 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Verbosity.html │ │ │ --rw-r--r-- 0 root (0) root (0) 4351 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Verify.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 4353 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Verify.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3666 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Version.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6318 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Vertical__List.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3715 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Vertical__Space.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9615 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Virtual__Tally.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5788 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Virtual__Tally_sp^_st_st_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5437 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Virtual__Tally_sp_pl_sp__Virtual__Tally.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4832 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Virtual__Tally_sp_st_st_sp__Virtual__Tally.html │ │ │ @@ -10999,15 +10999,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4513 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/__vb-_eq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7372 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/__vb.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4898 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/__vb_eq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3637 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/__vb_us.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4593 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/__vb_us_eq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5814 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/__vb_vb.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4645 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/__vb_vb_eq.html │ │ │ --rw-r--r-- 0 root (0) root (0) 29438 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_a_spfirst_sp__Macaulay2_spsession.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 29437 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_a_spfirst_sp__Macaulay2_spsession.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9509 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_about.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5131 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_abs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10893 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_accumulate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4782 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_acos.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4438 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_acosh.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4272 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_acot.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4546 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_acoth.html │ │ │ @@ -11054,15 +11054,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 3624 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_argument.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5591 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_ascii.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4910 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_asin.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4260 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_asinh.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5660 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_assert.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7280 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_assigning_spvalues.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3008 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_associative_spalgebras.html │ │ │ --rw-r--r-- 0 root (0) root (0) 4779 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_at__End__Of__File_lp__File_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 4778 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_at__End__Of__File_lp__File_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5429 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_atan.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6152 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_atan2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4566 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_atanh.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4915 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_augmented_spassignment.html │ │ │ -rw-r--r-- 0 root (0) root (0) 40485 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_authors_spof_sp__Macaulay2_sppackages.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6471 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_autoload.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3778 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_backtrace.html │ │ │ @@ -11085,15 +11085,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6463 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_binary_spmethods.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5981 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_binomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4845 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_block__Matrix__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4307 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_borel_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7347 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_break.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4742 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cache.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6788 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cache__Value.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6487 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cancel__Task_lp__Task_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6488 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cancel__Task_lp__Task_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9684 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_capture.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3216 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cdd_pl.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3571 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_ceiling.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4452 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_ceiling_lp__Number_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4353 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_center__String.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4430 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_chain__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4310 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_chain__Complex_lp__Graded__Module_rp.html │ │ │ @@ -11171,28 +11171,28 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 3719 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_columnate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3863 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_combinatorial_spfunctions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10300 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_combine.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5347 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_command__Interpreter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3991 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_command__Line.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5069 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_common__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7341 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_commonest.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9009 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_communicating_spwith_spprograms.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9031 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_communicating_spwith_spprograms.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5592 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_comodule.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4991 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_compact__Matrix__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5756 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_compare__Exchange.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3939 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_complement_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4005 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_complete.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4880 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_complete_lp__Chain__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5039 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_components.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3636 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_components_lp__Chain__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7898 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_compose.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9268 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_compositions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4804 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_compress.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16952 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_computing_sp__Groebner_spbases.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6848 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_computing_spresolutions.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6847 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_computing_spresolutions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5570 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_computing_spsyzygies.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4661 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_concatenate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7396 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_concatenating_spmatrices.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5142 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_conditional_spexecution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4427 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cone.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6212 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cone_lp__Chain__Complex__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4684 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_conjugate.html │ │ │ @@ -11211,15 +11211,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4875 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cosh.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4747 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cot.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4825 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_coth.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4634 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cover.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4893 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cover__Map_lp__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4256 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cover_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5557 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cover_lp__Module_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 4975 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cpu__Time.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 4971 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cpu__Time.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5552 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_create__Task.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7789 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_creating_spa_sppackage.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5515 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_creating_span_spideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5258 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_creating_spand_spwriting_spfiles.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4756 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_csc.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4823 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_csch.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3043 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_csdp.html │ │ │ @@ -11315,15 +11315,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5309 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_eigenvalues_lp..._cm__Hermitian_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8560 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_eigenvectors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5414 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_eigenvectors_lp..._cm__Hermitian_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4424 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_eint.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5029 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elapsed__Time.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5059 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elapsed__Timing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5307 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elements.html │ │ │ --rw-r--r-- 0 root (0) root (0) 29252 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elimination_spof_spvariables.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 29253 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elimination_spof_spvariables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3637 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_else.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6135 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_end.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9736 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_end__Package.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5512 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_endl.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3113 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_engine.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3256 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_engine__Debug__Level.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5409 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_entries.html │ │ │ @@ -11560,15 +11560,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8640 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_install__Assignment__Method.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5737 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_install__Method.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19831 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_install__Package.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4413 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_installed__Packages.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6723 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_installing_spaugmented_spassignment_spmethods.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6276 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_installing_spmethods.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4201 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_instance.html │ │ │ --rw-r--r-- 0 root (0) root (0) 4874 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_instances_lp__Type_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 4875 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_instances_lp__Type_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4604 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_integers_spmodulo_spa_spprime.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6247 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_integrate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3438 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_interpreter__Depth.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6201 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_intersect.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9500 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_intersect_lp__Ideal_cm__Ideal_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5315 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_intersect_lp__R__Ri_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7976 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_intersection.html │ │ │ @@ -11758,19 +11758,19 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7279 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6315 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Mutable__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4863 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Ring__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5314 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Ring__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6121 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Ring_cm__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4911 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Vector_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7022 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max.html │ │ │ --rw-r--r-- 0 root (0) root (0) 4660 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max__Allowable__Threads.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 4661 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max__Allowable__Threads.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3386 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max__Exponent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6899 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max__Position.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5218 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max_lp__Graded__Module_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8139 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_memoize.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8141 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_memoize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12239 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_merge.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5728 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_merge__Pairs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18731 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_method.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5619 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_method__Options_lp__Function_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15197 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_methods.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13067 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_methods_spfor_spnormal_spforms_spand_spremainder.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4578 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_midpoint.html │ │ │ @@ -11913,16 +11913,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10449 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_packages.html │ │ │ -rw-r--r-- 0 root (0) root (0) 78589 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_packages_spprovided_spwith_sp__Macaulay2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5805 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_packing_spmonomials_spfor_spefficiency.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5144 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pad.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3856 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pager.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8589 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pairs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6430 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallel__Apply.html │ │ │ --rw-r--r-- 0 root (0) root (0) 16948 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallel_spprogramming_spwith_spthreads_spand_sptasks.html │ │ │ --rw-r--r-- 0 root (0) root (0) 19069 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallelism_spin_spengine_spcomputations.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 16950 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallel_spprogramming_spwith_spthreads_spand_sptasks.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 19070 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallelism_spin_spengine_spcomputations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5042 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18670 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parsing_spprecedence_cm_spin_spdetail.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17230 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_part.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8142 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_partition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8472 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_partitions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8095 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parts.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5033 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_path.html │ │ │ @@ -11932,15 +11932,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5097 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_peek_sq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5839 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_permanents.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5445 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_permutations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9332 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pfaffians.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3747 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pi.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5004 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pivots_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3244 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_plus.html │ │ │ --rw-r--r-- 0 root (0) root (0) 28349 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_poincare.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 28348 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_poincare.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8790 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_poincare__N.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7369 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_poincare_lp__Chain__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11021 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_polarize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18130 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_polynomial_springs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10005 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_position.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7805 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_positions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3654 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_power.html │ │ │ @@ -11972,15 +11972,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4431 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_product.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3567 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_product_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3994 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_product_lp__Set_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4070 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_product_lp__Virtual__Tally_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4139 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_product_lp__Visible__List_cm__Function_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4542 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_product_lp__Visible__List_cm__Visible__List_cm__Function_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4026 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_product_lp__Z__Z_cm__Function_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6176 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_profile.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6177 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_profile.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3310 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_profile__Summary.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4625 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_program__Paths.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3024 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_projections_cm_spinclusions_cm_spand_sppermutations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4368 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_projective__Hilbert__Polynomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10893 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_promote.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5426 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_protect.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6168 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_prune.html │ │ │ @@ -11995,15 +11995,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8534 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_quotient__Remainder.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5910 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_quotient__Remainder_lp__Ring__Element_cm__Ring__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7210 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_quotient__Remainder_sq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7933 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_quotient_lp__Matrix_cm__Groebner__Basis_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9564 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_quotient_springs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6831 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_quotient_sq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7622 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7926 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random__K__Rational__Point.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7927 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random__K__Rational__Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6868 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random__Mutable__Matrix_lp__Z__Z_cm__Z__Z_cm__R__R_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5930 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8049 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random_lp__Module_cm__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6699 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random_lp__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9082 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random_lp__Type_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9465 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random_lp__Z__Z_cm__Ideal_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7887 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random_lp__Z__Z_cm__Ring_rp.html │ │ │ @@ -12092,15 +12092,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6998 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_same.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5636 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_saving_sppolynomials_spand_spmatrices_spin_spfiles.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7851 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_scan.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6368 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_scan__Keys.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4839 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_scan__Lines.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6538 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_scan__Pairs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6298 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_scan__Values.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6918 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_schedule.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6898 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_schedule.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4192 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_schreyer__Order.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8626 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_schreyer__Order_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4835 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_schreyer__Order_lp__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4104 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_script__Command__Line.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5432 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_search__Path_lp__List_cm__String_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4918 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sec.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4960 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sech.html │ │ │ @@ -12143,15 +12143,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4932 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sin.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5651 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_singular__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4774 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sinh.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3584 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_size.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5530 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_size2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3573 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sleep.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12162 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_smith__Normal__Form_lp__Matrix_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 18137 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_solve.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 18134 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_solve.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7452 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_some__Terms.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4423 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7879 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort__Columns.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5731 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort__Columns_lp..._cm__Degree__Order_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7756 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort__Columns_lp..._cm__Monomial__Order_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5652 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort_lp..._cm__Degree__Order_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7695 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort_lp..._cm__Monomial__Order_eq_gt..._rp.html │ │ │ @@ -12328,15 +12328,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6012 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_values.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6554 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_variables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4065 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_vars.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6028 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_vars_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4439 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_vars_lp__Monoid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5768 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_vars_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8233 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_vector.html │ │ │ --rw-r--r-- 0 root (0) root (0) 16298 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_version.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 16309 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_version.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7388 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_view__Help.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5699 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_viewing_spthe_spsymbols_spdefined_spso_spfar.html │ │ │ -rw-r--r-- 0 root (0) root (0) 2972 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_w3.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4062 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_wait.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5290 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_wedge__Product_lp__Z__Z_cm__Z__Z_cm__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9307 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_weight__Range.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8476 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_what_spa_spclass_spis.html │ │ │ @@ -12491,16 +12491,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 190472 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 424 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___A__S__M__Full__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 266 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___A__S__M__Random__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 670 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___A__S__M__To__Monotone__Triangle.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1727 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Functions_spfor_spinvestigating_sppermutations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7736 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Initial_spideals_spof_sp__A__S__M_spideals.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6278 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Investigating_sp__A__S__M_spvarieties.out │ │ │ --rw-r--r-- 0 root (0) root (0) 44050 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Investigating_spmatrix_sp__Schubert_spvarieties.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6279 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Investigating_sp__A__S__M_spvarieties.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 44049 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Investigating_spmatrix_sp__Schubert_spvarieties.out │ │ │ -rw-r--r-- 0 root (0) root (0) 680 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___K__Polynomial__A__S__M.out │ │ │ -rw-r--r-- 0 root (0) root (0) 264 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Pipe__Dream.out │ │ │ -rw-r--r-- 0 root (0) root (0) 535 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_anti__Diag__Init.out │ │ │ -rw-r--r-- 0 root (0) root (0) 410 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_augmented__Essential__Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 573 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_augmented__Rothe__Diagram.out │ │ │ -rw-r--r-- 0 root (0) root (0) 257 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_avoids__All__Patterns.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1152 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_cohen__Macaulay__A__S__Ms__List.out │ │ │ @@ -12561,16 +12561,16 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 61 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4727 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___A__S__M__Full__List.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4797 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___A__S__M__Random__List.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5974 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___A__S__M__To__Monotone__Triangle.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14574 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Functions_spfor_spinvestigating_sppermutations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19639 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Initial_spideals_spof_sp__A__S__M_spideals.html │ │ │ --rw-r--r-- 0 root (0) root (0) 21953 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Investigating_sp__A__S__M_spvarieties.html │ │ │ --rw-r--r-- 0 root (0) root (0) 56318 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Investigating_spmatrix_sp__Schubert_spvarieties.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 21954 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Investigating_sp__A__S__M_spvarieties.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 56317 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Investigating_spmatrix_sp__Schubert_spvarieties.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5193 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___K__Polynomial__A__S__M.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5139 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Pipe__Dream.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7737 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_anti__Diag__Init.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6221 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_augmented__Essential__Set.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6268 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_augmented__Rothe__Diagram.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5397 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_avoids__All__Patterns.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6223 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_cohen__Macaulay__A__S__Ms__List.html │ │ │ @@ -12631,15 +12631,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 49090 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 43444 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20322 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 343553 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 1785 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/___Matroid.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1787 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/___Matroid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1035 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/___Matroid_sp_eq_eq_sp__Matroid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 766 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/___Matroid_sp_pl_pl_sp__Matroid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2370 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/___Matroid_sp_pl_sp__Matroid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 556 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/___Matroid_sp_us_sp__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1025 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/___Matroids.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2259 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/___Working_spwith_sp__Chow_springs_spof_spmatroids.out │ │ │ -rw-r--r-- 0 root (0) root (0) 933 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_affine__Geometry.out │ │ │ @@ -12664,19 +12664,19 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1128 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_extension.out │ │ │ -rw-r--r-- 0 root (0) root (0) 640 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_extension_lp..._cm__Check__Well__Defined_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 514 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_extension_lp..._cm__Entry__Mode_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 397 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_f__Vector_lp__Matroid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4033 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_flats.out │ │ │ -rw-r--r-- 0 root (0) root (0) 840 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_fundamental__Circuit.out │ │ │ -rw-r--r-- 0 root (0) root (0) 288 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_get__Cycles.out │ │ │ --rw-r--r-- 0 root (0) root (0) 703 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_get__Isos.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 702 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_get__Isos.out │ │ │ -rw-r--r-- 0 root (0) root (0) 833 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_get__Representation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 516 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_get__Separation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1225 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_ground__Set.out │ │ │ --rw-r--r-- 0 root (0) root (0) 465 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_has__Minor.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 464 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_has__Minor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 218 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_hyperplanes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5177 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_ideal__Chow__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 801 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_ideal_lp__Matroid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 276 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_independence__Complex_lp__Matroid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2477 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_independent__Sets_lp__Matroid_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 432 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_indices__Of.out │ │ │ -rw-r--r-- 0 root (0) root (0) 278 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_is3__Connected.out │ │ │ @@ -12704,15 +12704,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1562 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_minor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 862 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_modular__Cut.out │ │ │ -rw-r--r-- 0 root (0) root (0) 636 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_modular__Cut_lp..._cm__Check__Well__Defined_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 236 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_nonbases.out │ │ │ -rw-r--r-- 0 root (0) root (0) 548 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_parallel__Connection.out │ │ │ -rw-r--r-- 0 root (0) root (0) 404 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_positive__Orientation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1019 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_projective__Geometry.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1059 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_quick__Isomorphism__Test.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1058 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_quick__Isomorphism__Test.out │ │ │ -rw-r--r-- 0 root (0) root (0) 517 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_rank_lp__Matroid_cm__Set_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 174 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_rank_lp__Matroid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 502 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_relabel.out │ │ │ -rw-r--r-- 0 root (0) root (0) 289 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_relaxation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 430 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_restriction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 379 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_search__Representation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 546 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_series__Connection.out │ │ │ @@ -12730,15 +12730,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 372 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_tutte__Polynomial_lp__Matroid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 443 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_uniform__Matroid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 293 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_wheel.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 691 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 26 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4805 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/___Check__Well__Defined.html │ │ │ --rw-r--r-- 0 root (0) root (0) 36751 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/___Matroid.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 36753 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/___Matroid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7773 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/___Matroid_sp_eq_eq_sp__Matroid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6693 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/___Matroid_sp_pl_pl_sp__Matroid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12012 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/___Matroid_sp_pl_sp__Matroid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7556 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/___Matroid_sp_us_sp__List.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8447 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/___Working_spwith_sp__Chow_springs_spof_spmatroids.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6845 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_affine__Geometry.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6914 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_all__Matroids.html │ │ │ @@ -12763,19 +12763,19 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10094 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_extension.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8299 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_extension_lp..._cm__Check__Well__Defined_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7707 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_extension_lp..._cm__Entry__Mode_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6377 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_f__Vector_lp__Matroid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12099 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_flats.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8668 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_fundamental__Circuit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5090 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_get__Cycles.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8100 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_get__Isos.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8099 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_get__Isos.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6908 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_get__Representation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7242 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_get__Separation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10712 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_ground__Set.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7085 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_has__Minor.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7084 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_has__Minor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6077 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_hyperplanes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12790 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_ideal__Chow__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3671 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_ideal__Orlik__Solomon__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7958 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_ideal_lp__Matroid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6182 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_independence__Complex_lp__Matroid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9867 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_independent__Sets_lp__Matroid_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7499 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_indices__Of.html │ │ │ @@ -12804,15 +12804,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10120 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_minor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9677 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_modular__Cut.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8057 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_modular__Cut_lp..._cm__Check__Well__Defined_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5396 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_nonbases.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6445 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_parallel__Connection.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6320 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_positive__Orientation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7701 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_projective__Geometry.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8323 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_quick__Isomorphism__Test.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8322 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_quick__Isomorphism__Test.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6467 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_rank_lp__Matroid_cm__Set_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4905 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_rank_lp__Matroid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7115 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_relabel.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6679 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_relaxation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6047 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_restriction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6885 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_save__Matroid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6573 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Matroids/html/_search__Representation.html │ │ │ @@ -12843,29 +12843,29 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5996 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MergeTeX/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4912 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MergeTeX/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 2980 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MergeTeX/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 35297 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 758 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/___Hybrid.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 766 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/___Hybrid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 303 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_is__Prime_lp__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2748 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_minimal__Primes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 906 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_minimal_spprimes_spof_span_spideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 727 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical.out │ │ │ --rw-r--r-- 0 root (0) root (0) 871 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical__Containment.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 870 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical__Containment.out │ │ │ -rw-r--r-- 0 root (0) root (0) 418 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical_spof_span_spideal.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 46 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 5424 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/___Hybrid.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5432 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/___Hybrid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6336 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_is__Prime_lp__Ideal_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13613 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_minimal__Primes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5438 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_minimal_spprimes_spof_span_spideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11068 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8215 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical__Containment.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8214 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical__Containment.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4617 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical_spof_span_spideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9272 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8643 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4399 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Miura/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Miura/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 15700 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Miura/dump/rawdocumentation.dump │ │ │ @@ -12901,58 +12901,58 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 31134 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 260 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_hom__Ideal__Polytope.out │ │ │ -rw-r--r-- 0 root (0) root (0) 302 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_hom__Ideal__Polytope_lp..._cm__Coefficient__Ring_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 535 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_m__Mixed__Volume.out │ │ │ -rw-r--r-- 0 root (0) root (0) 896 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_mixed__Multiplicity.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2839 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_multi__Rees__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2837 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_multi__Rees__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 612 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_multi__Rees__Ideal_lp..._cm__Variable__Base__Name_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 229 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_sec__Milnor__Numbers.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 762 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 30 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 7458 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_hom__Ideal__Polytope.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6808 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_hom__Ideal__Polytope_lp..._cm__Coefficient__Ring_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7988 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_m__Mixed__Volume.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9676 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_mixed__Multiplicity.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12028 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_multi__Rees__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12026 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_multi__Rees__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9050 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_multi__Rees__Ideal_lp..._cm__Variable__Base__Name_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7453 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_sec__Milnor__Numbers.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12575 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8290 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4949 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 20012 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 709 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/example-output/_deform__M__C__M__Module_lp__Module_cm__Ring__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2987 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/example-output/_deform__M__C__M__Module_lp__Module_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2985 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/example-output/_deform__M__C__M__Module_lp__Module_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 722 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 53 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6113 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/_deform__M__C__M__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8014 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/_deform__M__C__M__Module_lp..._cm__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8889 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/_deform__M__C__M__Module_lp__Module_cm__Ring__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11481 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/_deform__M__C__M__Module_lp__Module_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11479 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/_deform__M__C__M__Module_lp__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3257 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/_xi.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8662 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5231 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4062 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 133486 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 418 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/___Monodromy__Solver.out │ │ │ -rw-r--r-- 0 root (0) root (0) 985 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/___Monodromy__Solver__Options.out │ │ │ -rw-r--r-- 0 root (0) root (0) 333 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_complete__Graph__Augment.out │ │ │ -rw-r--r-- 0 root (0) root (0) 243 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_complete__Graph__Init.out │ │ │ -rw-r--r-- 0 root (0) root (0) 389 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_compute__Mixed__Volume.out │ │ │ -rw-r--r-- 0 root (0) root (0) 378 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_create__Seed__Pair.out │ │ │ --rw-r--r-- 0 root (0) root (0) 938 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_dynamic__Flower__Solve.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 941 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_dynamic__Flower__Solve.out │ │ │ -rw-r--r-- 0 root (0) root (0) 331 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_flower__Graph__Augment.out │ │ │ -rw-r--r-- 0 root (0) root (0) 242 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_flower__Graph__Init.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9539 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_monodromy__Group.out │ │ │ -rw-r--r-- 0 root (0) root (0) 398 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_monodromy__Solve_lp__System_cm__Abstract__Point_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1366 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_monodromy__Solve_lp__System_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 956 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_potential__E.out │ │ │ -rw-r--r-- 0 root (0) root (0) 442 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_potential__Lower__Bound.out │ │ │ @@ -12967,15 +12967,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5593 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/___Point__Array.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4288 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_append__Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4340 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_append__Points.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4476 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_complete__Graph__Augment.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4298 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_complete__Graph__Init.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4941 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_compute__Mixed__Volume.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7542 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_create__Seed__Pair.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7425 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_dynamic__Flower__Solve.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7428 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_dynamic__Flower__Solve.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4610 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_flower__Graph__Augment.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4271 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_flower__Graph__Init.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4697 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_get__Track__Time.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6107 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_homotopy__Graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4409 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_indices_lp__Point__Array_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4667 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_is__Member_lp__Abstract__Point_cm__Point__Array_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4565 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_length_lp__Point__Array_rp.html │ │ │ @@ -13236,27 +13236,27 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 35826 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 562 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/___N__P.out │ │ │ -rw-r--r-- 0 root (0) root (0) 656 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_gr__Gr.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1249 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_hilbert__Sequence.out │ │ │ --rw-r--r-- 0 root (0) root (0) 412 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_j__Mult.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 413 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_j__Mult.out │ │ │ -rw-r--r-- 0 root (0) root (0) 261 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_mon__Analytic__Spread.out │ │ │ -rw-r--r-- 0 root (0) root (0) 559 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_mon__Reduction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 596 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_monj__Mult.out │ │ │ -rw-r--r-- 0 root (0) root (0) 805 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_multiplicity__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1239 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_print__Hilbert__Sequence.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 711 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 47 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6073 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/___N__P.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6419 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_gr__Gr.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8575 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_hilbert__Sequence.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5737 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_j__Mult.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5738 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_j__Mult.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5444 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_mon__Analytic__Spread.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6478 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_mon__Reduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6224 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_monj__Mult.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9258 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_multiplicity__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6634 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_print__Hilbert__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14806 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9748 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/master.html │ │ │ @@ -13325,16 +13325,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 728 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_bs_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 507 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_eq_eq_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 390 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_pc_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 399 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_pl_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 447 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_st_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 663 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_st_st_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 905 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_st_st_sp__Ring.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1341 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1277 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp__Multiprojective__Variety.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1340 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1275 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1200 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_lt_lt_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 693 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_st_sp__Multirational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1848 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_st_st_sp__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 772 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_vb_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 803 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_vb_sp__Multirational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 763 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_vb_vb_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 744 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_vb_vb_sp__Multirational__Map.out │ │ │ @@ -13353,42 +13353,42 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 179 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_coefficient__Ring_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3165 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_cone__Of__Lines.out │ │ │ -rw-r--r-- 0 root (0) root (0) 350 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_conormal__Variety_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 575 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_cycle__Class.out │ │ │ -rw-r--r-- 0 root (0) root (0) 671 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_decompose_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 324 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 158 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multiprojective__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1006 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_cm__Option_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 428 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1007 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_cm__Option_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 427 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 426 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degrees_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 722 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_describe_lp__Multiprojective__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2263 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_describe_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2265 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_describe_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 155 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_dim_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 482 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_dual_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 809 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_entries_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 239 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_euler_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2030 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_factor_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1459 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_fiber__Product.out │ │ │ -rw-r--r-- 0 root (0) root (0) 673 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_force__Image_lp__Multirational__Map_cm__Multiprojective__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1858 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_graph_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1856 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_graph_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 324 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_hilbert__Polynomial_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 384 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_ideal_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1018 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_image_lp__Multirational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 802 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse2.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1409 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse_lp__Multirational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 932 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Isomorphism_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 801 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse2.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1404 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 929 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Isomorphism_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 386 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Member_lp__Multirational__Map_cm__R__A__T_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 754 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Morphism_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 752 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Morphism_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 249 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Subset_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 678 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Well__Defined_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 790 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_linear__Span.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1090 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_linearly__Normal__Embedding.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1088 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_linearly__Normal__Embedding.out │ │ │ -rw-r--r-- 0 root (0) root (0) 279 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Multiprojective__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 534 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Multirational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 667 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 533 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 665 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2393 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multirational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1182 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multirational__Map_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 251 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multirational__Map_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 363 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multirational__Map_lp__Multirational__Map_cm__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2768 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_parametrize_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 490 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_permute_lp__Multiprojective__Variety_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1236 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_point_lp__Multiprojective__Variety_rp.out │ │ │ @@ -13403,15 +13403,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 2154 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_random_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 582 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_rational__Map_lp__Multiprojective__Variety_cm__Tally_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 440 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_ring_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 328 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_schubert__Cycle.out │ │ │ -rw-r--r-- 0 root (0) root (0) 151 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_sectional__Genus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 468 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_segre__Embedding.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6206 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_segre_lp__Multiprojective__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1050 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_segre_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1048 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_segre_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 288 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_shape_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 813 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_shortcuts.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3242 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_show_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 512 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_singular__Locus_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 497 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_super_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 352 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_support_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 590 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_tangent__Cone_lp__Embedded__Projective__Variety_cm__Embedded__Projective__Variety_rp.out │ │ │ @@ -13443,16 +13443,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6066 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_eq_eq_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6245 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_pc_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6913 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_pl_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6648 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_st_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6718 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_st_st_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7461 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_st_st_sp__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24197 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7938 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7959 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp__Multiprojective__Variety.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7937 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7957 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5678 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_eq_eq_sp__Multirational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5512 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_lt_eq_eq_gt_sp__Multirational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7917 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_lt_lt_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6550 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_st_sp__Multirational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8636 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_st_st_sp__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7511 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_vb_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8484 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_vb_sp__Multirational__Map.html │ │ │ @@ -13476,42 +13476,42 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5079 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_coefficient__Ring_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9361 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_cone__Of__Lines.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6647 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_conormal__Variety_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6791 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_cycle__Class.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6730 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_decompose_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5832 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5380 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multiprojective__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8039 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_cm__Option_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6251 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8040 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_cm__Option_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6250 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5204 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degrees_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5883 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_describe_lp__Multiprojective__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8016 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_describe_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8018 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_describe_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5019 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_dim_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6227 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_dual_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6365 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_entries_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6525 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_euler_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8411 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_factor_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8771 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_fiber__Product.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7032 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_force__Image_lp__Multirational__Map_cm__Multiprojective__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9284 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_graph_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9282 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_graph_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6453 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_hilbert__Polynomial_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5329 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_ideal_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7667 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_image_lp__Multirational__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7465 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse2.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9886 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse_lp__Multirational__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6757 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Isomorphism_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7464 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse2.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9881 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6754 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Isomorphism_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6318 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Member_lp__Multirational__Map_cm__R__A__T_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6514 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Morphism_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6512 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Morphism_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5641 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Subset_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6488 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Well__Defined_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6209 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_linear__Span.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6471 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_linearly__Normal__Embedding.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6469 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_linearly__Normal__Embedding.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5217 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Multiprojective__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7002 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Multirational__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7258 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7001 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7256 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13424 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multirational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7288 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multirational__Map_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5714 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multirational__Map_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6570 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multirational__Map_lp__Multirational__Map_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9786 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_parametrize_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6528 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_permute_lp__Multiprojective__Variety_cm__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7394 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_point_lp__Multiprojective__Variety_rp.html │ │ │ @@ -13528,15 +13528,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6874 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_rational__Map_lp__List_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7900 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_rational__Map_lp__Multiprojective__Variety_cm__Tally_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5573 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_ring_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6585 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_schubert__Cycle.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5144 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_sectional__Genus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5856 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_segre__Embedding.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11431 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_segre_lp__Multiprojective__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6959 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_segre_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6957 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_segre_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5614 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_shape_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8693 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_shortcuts.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8216 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_show_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5458 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_singular__Locus_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5393 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_source_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6459 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_super_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6348 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_support_lp__Multiprojective__Variety_rp.html │ │ │ @@ -13974,48 +13974,48 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9031 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Nauty/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 131317 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 375 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/___Comparison_spof_sp__Graph6_spand_sp__Sparse6_spformats.out │ │ │ -rw-r--r-- 0 root (0) root (0) 493 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/___Example_co_sp__Checking_spfor_spisomorphic_spgraphs.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1406 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/___Example_co_sp__Generating_spand_spfiltering_spgraphs.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1403 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/___Example_co_sp__Generating_spand_spfiltering_spgraphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 826 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_add__Edges.out │ │ │ -rw-r--r-- 0 root (0) root (0) 388 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_are__Isomorphic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1498 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_build__Graph__Filter.out │ │ │ -rw-r--r-- 0 root (0) root (0) 184 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_generate__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 326 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_generate__Random__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 124 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_generate__Random__Regular__Graphs.out │ │ │ --rw-r--r-- 0 root (0) root (0) 498 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_graph__Complement.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 497 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_graph__Complement.out │ │ │ -rw-r--r-- 0 root (0) root (0) 323 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_graph__To__String.out │ │ │ -rw-r--r-- 0 root (0) root (0) 217 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_is__Planar.out │ │ │ -rw-r--r-- 0 root (0) root (0) 849 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_neighborhood__Complements.out │ │ │ -rw-r--r-- 0 root (0) root (0) 241 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_new__Edges.out │ │ │ -rw-r--r-- 0 root (0) root (0) 247 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_only__Planar.out │ │ │ -rw-r--r-- 0 root (0) root (0) 322 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_relabel__Bipartite.out │ │ │ -rw-r--r-- 0 root (0) root (0) 381 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_relabel__Graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 755 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_remove__Edges.out │ │ │ -rw-r--r-- 0 root (0) root (0) 232 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_remove__Isomorphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 203 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_string__To__Graph.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 32 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5788 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/___Comparison_spof_sp__Graph6_spand_sp__Sparse6_spformats.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5277 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/___Example_co_sp__Checking_spfor_spisomorphic_spgraphs.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8037 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/___Example_co_sp__Generating_spand_spfiltering_spgraphs.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8034 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/___Example_co_sp__Generating_spand_spfiltering_spgraphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9525 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_add__Edges.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7352 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_are__Isomorphic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12743 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_build__Graph__Filter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7658 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_count__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7949 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_filter__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9170 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_generate__Bipartite__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9073 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_generate__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8296 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_generate__Random__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6559 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_generate__Random__Regular__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6287 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_graph6__To__Sparse6.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7532 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_graph__Complement.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7531 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_graph__Complement.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8752 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_graph__To__String.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5730 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_is__Planar.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7246 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_neighborhood__Complements.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6251 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_new__Edges.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6076 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_only__Planar.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6818 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_relabel__Bipartite.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9200 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_relabel__Graph.html │ │ │ @@ -14043,15 +14043,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 178746 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 431 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Dependent__Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 791 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Diff__Op.out │ │ │ -rw-r--r-- 0 root (0) root (0) 553 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Diff__Op_sp__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 416 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Strategy_sp_eq_gt_sp_dq__Hybrid_dq.out │ │ │ -rw-r--r-- 0 root (0) root (0) 498 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Strategy_sp_eq_gt_sp_dq__Macaulay__Matrix_dq.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2350 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2349 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.out │ │ │ -rw-r--r-- 0 root (0) root (0) 614 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_amult.out │ │ │ -rw-r--r-- 0 root (0) root (0) 915 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_coordinate__Change__Ops.out │ │ │ -rw-r--r-- 0 root (0) root (0) 354 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_diff__Op__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 403 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_diff__Op_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 667 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_differential__Primary__Decomposition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 349 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_eliminating__Dual.out │ │ │ -rw-r--r-- 0 root (0) root (0) 270 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_evaluate_lp__Diff__Op_cm__Abstract__Point_rp.out │ │ │ @@ -14084,15 +14084,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 75 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 8128 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Dependent__Set.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8547 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Diff__Op.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6987 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Diff__Op_sp__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4762 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Sampler.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7020 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Strategy_sp_eq_gt_sp_dq__Hybrid_dq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7460 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Strategy_sp_eq_gt_sp_dq__Macaulay__Matrix_dq.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7388 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7387 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3723 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Tolerance_sp_lp__Noetherian__Operators_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6442 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_amult.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5183 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_colon.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8074 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_coordinate__Change__Ops.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3816 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_diff__Op.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6698 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_diff__Op__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6272 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_diff__Op_lp__Matrix_rp.html │ │ │ @@ -14146,15 +14146,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7452 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NonminimalComplexes/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5484 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NonminimalComplexes/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4158 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NonminimalComplexes/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 608945 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 3510 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Chow_spring.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3508 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Chow_spring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3270 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___H__H^__Z__Z_lp__Normal__Toric__Variety_cm__Coherent__Sheaf_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1905 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Normal__Toric__Variety_sp^_sp__Array.out │ │ │ -rw-r--r-- 0 root (0) root (0) 908 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Normal__Toric__Variety_sp^_st_st_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 840 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Normal__Toric__Variety_sp_st_st_sp__Normal__Toric__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1922 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Normal__Toric__Variety_sp_us_sp__Array.out │ │ │ -rw-r--r-- 0 root (0) root (0) 708 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Normal__Toric__Variety_sp_us_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1977 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___O__O_sp__Toric__Divisor.out │ │ │ @@ -14218,15 +14218,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1271 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_lattice__Points_lp__Toric__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1229 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_make__Simplicial_lp__Normal__Toric__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1568 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_make__Smooth_lp__Normal__Toric__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 601 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_map_lp__Normal__Toric__Variety_cm__Normal__Toric__Variety_cm__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1011 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_map_lp__Normal__Toric__Variety_cm__Normal__Toric__Variety_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 937 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_matrix_lp__Toric__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 543 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_max_lp__Normal__Toric__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1561 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_monomials_lp__Toric__Divisor_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1560 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_monomials_lp__Toric__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2228 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_nef__Generators_lp__Normal__Toric__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1001 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Fan_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3171 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__List_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1693 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1963 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Polyhedron_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 700 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1599 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_orbits_lp__Normal__Toric__Variety_cm__Z__Z_rp.out │ │ │ @@ -14256,15 +14256,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 881 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_vector_lp__Toric__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1765 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_vertices_lp__Toric__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1650 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_weighted__Projective__Space_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 452 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_weil__Divisor__Group_lp__Normal__Toric__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 985 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_weil__Divisor__Group_lp__Toric__Map_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 68 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 12193 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Chow_spring.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12191 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Chow_spring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11640 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___H__H^__Z__Z_lp__Normal__Toric__Variety_cm__Coherent__Sheaf_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 28057 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13171 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety_sp^_sp__Array.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8658 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety_sp^_st_st_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8968 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety_sp_st_st_sp__Normal__Toric__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12263 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety_sp_us_sp__Array.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8320 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety_sp_us_sp__Z__Z.html │ │ │ @@ -14333,15 +14333,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10043 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_make__Simplicial_lp__Normal__Toric__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12674 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_make__Smooth_lp__Normal__Toric__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9495 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_making_spnormal_sptoric_spvarieties.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11122 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_map_lp__Normal__Toric__Variety_cm__Normal__Toric__Variety_cm__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12037 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_map_lp__Normal__Toric__Variety_cm__Normal__Toric__Variety_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10687 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_matrix_lp__Toric__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8626 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_max_lp__Normal__Toric__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9957 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_monomials_lp__Toric__Divisor_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9956 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_monomials_lp__Toric__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10393 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_nef__Generators_lp__Normal__Toric__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10124 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Fan_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18104 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__List_cm__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13133 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12903 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Polyhedron_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9355 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11308 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_orbits_lp__Normal__Toric__Variety_cm__Z__Z_rp.html │ │ │ @@ -14654,46 +14654,46 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 40015 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalCertification/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24975 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalCertification/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6785 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalCertification/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 146171 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 1170 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/___Convert__To__Cone.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1178 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/___Convert__To__Cone.out │ │ │ -rw-r--r-- 0 root (0) root (0) 578 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/___Numerical__Interpolation__Table.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1600 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/___Pseudo__Witness__Set.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1626 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_extract__Image__Equations.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1627 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_extract__Image__Equations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 443 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_is__On__Image.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1348 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Hilbert__Function.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1342 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Hilbert__Function.out │ │ │ -rw-r--r-- 0 root (0) root (0) 240 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Image__Degree.out │ │ │ --rw-r--r-- 0 root (0) root (0) 702 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Image__Dim.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 703 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Image__Dim.out │ │ │ -rw-r--r-- 0 root (0) root (0) 712 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Image__Sample.out │ │ │ -rw-r--r-- 0 root (0) root (0) 184 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Nullity.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1569 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Source__Sample.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1298 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_pseudo__Witness__Set.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1180 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_real__Point.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1181 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_real__Point.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 715 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 43 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 6865 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Convert__To__Cone.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6873 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Convert__To__Cone.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5835 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Max__Threads.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8683 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Numerical__Interpolation__Table.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11224 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Pseudo__Witness__Set.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11207 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_extract__Image__Equations.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11208 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_extract__Image__Equations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9331 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_is__On__Image.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12809 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Hilbert__Function.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12803 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Hilbert__Function.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10665 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9137 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Degree_lp..._cm__Verbose_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9135 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Dim.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9136 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Dim.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9586 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Sample.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7861 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Nullity.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11984 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Source__Sample.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18675 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_pseudo__Witness__Set.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10910 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_pseudo__Witness__Set_lp..._cm__Software_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8436 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_real__Point.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8437 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_real__Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 35448 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 35416 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6732 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalLinearAlgebra/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalLinearAlgebra/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 18725 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalLinearAlgebra/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalLinearAlgebra/example-output/ │ │ │ @@ -14769,15 +14769,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 25065 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16915 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10644 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 146302 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 2602 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/___Lab__Book__Protocol.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2610 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/___Lab__Book__Protocol.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1820 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_all__Semigroups.out │ │ │ -rw-r--r-- 0 root (0) root (0) 321 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_apery.out │ │ │ -rw-r--r-- 0 root (0) root (0) 306 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_apery__Semigroup__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 162 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_apery__Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 242 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_buchweitz.out │ │ │ -rw-r--r-- 0 root (0) root (0) 827 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_buchweitz__Criterion.out │ │ │ -rw-r--r-- 0 root (0) root (0) 617 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_buchweitz__Semigroups.out │ │ │ @@ -14803,25 +14803,25 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 207 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__Weierstrass__Semigroup.out │ │ │ -rw-r--r-- 0 root (0) root (0) 901 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_known__Example.out │ │ │ -rw-r--r-- 0 root (0) root (0) 254 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_kunz__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 967 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_kunz__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3293 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_make__Unfolding.out │ │ │ -rw-r--r-- 0 root (0) root (0) 169 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_mingens_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 262 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_mu.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1193 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_non__Weierstrass__Semigroups.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1189 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_non__Weierstrass__Semigroups.out │ │ │ -rw-r--r-- 0 root (0) root (0) 123 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_semigroup.out │ │ │ -rw-r--r-- 0 root (0) root (0) 478 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_semigroup__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1464 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_semigroup__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 336 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_socle.out │ │ │ -rw-r--r-- 0 root (0) root (0) 439 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_sums.out │ │ │ -rw-r--r-- 0 root (0) root (0) 73 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_type.out │ │ │ -rw-r--r-- 0 root (0) root (0) 329 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_weight.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 66 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 11176 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/___Lab__Book__Protocol.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11184 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/___Lab__Book__Protocol.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9678 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_all__Semigroups.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5620 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_apery.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6100 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_apery__Semigroup__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5600 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_apery__Set.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6189 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_buchweitz.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6973 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_buchweitz__Criterion.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7461 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_buchweitz__Semigroups.html │ │ │ @@ -14847,15 +14847,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7383 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__Weierstrass__Semigroup.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6943 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_known__Example.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6084 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_kunz__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6538 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_kunz__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11914 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_make__Unfolding.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5712 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_mingens_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5937 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_mu.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8365 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_non__Weierstrass__Semigroups.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8361 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_non__Weierstrass__Semigroups.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5058 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_semigroup.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6380 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_semigroup__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8598 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_semigroup__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5983 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_socle.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6374 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_sums.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5035 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_type.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6369 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_weight.html │ │ │ @@ -14871,58 +14871,58 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 317 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1610 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1610 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module__Map_sp__Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 395 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module_sp_us_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 285 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Module__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 771 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Number_sp_st_sp__Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 497 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___O__I__Resolution.out │ │ │ --rw-r--r-- 0 root (0) root (0) 705 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___O__I__Resolution_sp_us_sp__Z__Z.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 704 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___O__I__Resolution_sp_us_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 260 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Polynomial__O__I__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 242 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Polynomial__O__I__Algebra_sp_us_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1049 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Ring__Element_sp_st_sp__Vector__In__Width.out │ │ │ --rw-r--r-- 0 root (0) root (0) 473 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Top__Nonminimal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 474 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Top__Nonminimal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 446 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 998 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Vector__In__Width_sp-_sp__Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 900 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Vector__In__Width_sp_pl_sp__Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 499 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_degree_lp__Vector__In__Width_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1191 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe__Full.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1074 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__Free__O__I__Module__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 917 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__O__I__Resolution_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1193 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe__Full.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 986 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__Free__O__I__Module__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 918 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__O__I__Resolution_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 233 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Basis__Elements.out │ │ │ -rw-r--r-- 0 root (0) root (0) 716 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Free__O__I__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 167 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Rank.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1399 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Schreyer__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 533 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 890 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_image_lp__Free__O__I__Module__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1124 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_install__Generators__In__Width.out │ │ │ --rw-r--r-- 0 root (0) root (0) 506 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Complex.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 507 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 410 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Homogeneous_lp__Free__O__I__Module__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 831 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Homogeneous_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 903 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__O__I__G__B.out │ │ │ -rw-r--r-- 0 root (0) root (0) 232 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Zero.out │ │ │ -rw-r--r-- 0 root (0) root (0) 556 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Zero_lp__Free__O__I__Module__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 532 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Zero_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 548 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_lead__Coefficient_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 667 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_lead__Monomial_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 665 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_lead__Term_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 750 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_make__Free__O__I__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 445 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_make__Polynomial__O__I__Algebra.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2182 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_minimize__O__I__G__B.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2211 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_minimize__O__I__G__B.out │ │ │ -rw-r--r-- 0 root (0) root (0) 368 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Free__O__I__Module__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 312 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Free__O__I__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 462 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Module__In__Width_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 398 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__O__I__Resolution_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 397 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__O__I__Resolution_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 220 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Polynomial__O__I__Algebra_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 401 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 792 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__G__B.out │ │ │ -rw-r--r-- 0 root (0) root (0) 709 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Orbit.out │ │ │ -rw-r--r-- 0 root (0) root (0) 474 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Res.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1068 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Syz.out │ │ │ -rw-r--r-- 0 root (0) root (0) 435 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_ranks.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1812 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_reduce__O__I__G__B.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1813 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_reduce__O__I__G__B.out │ │ │ -rw-r--r-- 0 root (0) root (0) 509 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_restricted__Ranks.out │ │ │ -rw-r--r-- 0 root (0) root (0) 655 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_terms_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 184 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_to__String_lp__Free__O__I__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 145 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_to__String_lp__Polynomial__O__I__Algebra_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 687 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_use_lp__Module__In__Width_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 49 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/.Headline │ │ │ @@ -14936,63 +14936,63 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8707 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Free__O__I__Module__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7434 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Free__O__I__Module__Map_sp__Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5533 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Free__O__I__Module_sp_us_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5319 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Module__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6150 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Number_sp_st_sp__Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4884 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Monomial__Order.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7209 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Resolution.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6203 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Resolution_sp_us_sp__Z__Z.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6202 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Resolution_sp_us_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6022 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Polynomial__O__I__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5416 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Polynomial__O__I__Algebra_sp_us_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6635 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Ring__Element_sp_st_sp__Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3551 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Row__Down__Col__Down.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3498 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Row__Down__Col__Up.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3498 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Row__Up__Col__Down.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3489 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Row__Up__Col__Up.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5258 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Top__Nonminimal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5259 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Top__Nonminimal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6039 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Variable__Order.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9205 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6531 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Vector__In__Width_sp-_sp__Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6373 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Vector__In__Width_sp_pl_sp__Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5528 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_degree_lp__Vector__In__Width_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6328 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe__Full.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6366 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__Free__O__I__Module__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5942 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__O__I__Resolution_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6330 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe__Full.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6278 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__Free__O__I__Module__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5943 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__O__I__Resolution_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5061 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Basis__Elements.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5810 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Free__O__I__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4944 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Rank.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7560 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Schreyer__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5494 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6202 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_image_lp__Free__O__I__Module__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6926 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_install__Generators__In__Width.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6211 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Complex.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6212 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5848 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Homogeneous_lp__Free__O__I__Module__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6237 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Homogeneous_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7085 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__O__I__G__B.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5623 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Zero.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5946 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Zero_lp__Free__O__I__Module__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5719 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Zero_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5949 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_lead__Coefficient_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6193 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_lead__Monomial_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5935 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_lead__Term_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7972 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_make__Free__O__I__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6283 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_make__Polynomial__O__I__Algebra.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8485 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_minimize__O__I__G__B.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8514 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_minimize__O__I__G__B.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Free__O__I__Module__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5143 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Free__O__I__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5379 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Module__In__Width_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5462 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__O__I__Resolution_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5461 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__O__I__Resolution_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5110 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Polynomial__O__I__Algebra_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5467 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8059 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__G__B.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6041 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Orbit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8331 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Res.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9668 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Syz.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5467 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_ranks.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7903 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_reduce__O__I__G__B.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7904 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_reduce__O__I__G__B.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6082 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_restricted__Ranks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6028 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_terms_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5085 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_to__String_lp__Free__O__I__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5201 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_to__String_lp__Polynomial__O__I__Algebra_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5762 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_use_lp__Module__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 41423 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24930 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/master.html │ │ │ @@ -15655,15 +15655,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 192 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/_qq__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 933 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/_quadratic__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2423 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/_rand__Nice__Pencil.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2290 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/_random__Extension.out │ │ │ -rw-r--r-- 0 root (0) root (0) 394 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/_random__Isotropic__Subspace.out │ │ │ -rw-r--r-- 0 root (0) root (0) 917 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/_random__Line__Bundle.out │ │ │ -rw-r--r-- 0 root (0) root (0) 721 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/_random__Nice__Pencil.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1623 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/_search__Ulrich.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1622 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/_search__Ulrich.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2148 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/_sym__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 705 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/_symmetric__M.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1735 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/_tensor__Product.out │ │ │ -rw-r--r-- 0 root (0) root (0) 584 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/_translate__Isotropic__Subspace.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1518 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/_vector__Bundle__On__E.out │ │ │ -rw-r--r-- 0 root (0) root (0) 484 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/_y__Action.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/ │ │ │ @@ -15697,15 +15697,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5796 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/_qq__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7083 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/_quadratic__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9420 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/_rand__Nice__Pencil.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10286 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/_random__Extension.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7300 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/_random__Isotropic__Subspace.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8761 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/_random__Line__Bundle.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10217 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/_random__Nice__Pencil.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10413 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/_search__Ulrich.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10412 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/_search__Ulrich.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8219 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/_sym__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6434 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/_symmetric__M.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11193 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/_tensor__Product.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7836 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/_translate__Isotropic__Subspace.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10120 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/_vector__Bundle__On__E.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6715 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/_y__Action.html │ │ │ -rw-r--r-- 0 root (0) root (0) 29963 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/index.html │ │ │ @@ -15962,15 +15962,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 14441 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PlaneCurveLinearSeries/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12451 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PlaneCurveLinearSeries/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5274 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PlaneCurveLinearSeries/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 47379 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 1729 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Fat__Points.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1730 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Fat__Points.out │ │ │ -rw-r--r-- 0 root (0) root (0) 567 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Fat__Points__By__Intersection.out │ │ │ -rw-r--r-- 0 root (0) root (0) 619 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Make__Ring__Maps.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1456 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Points.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1010 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Points__By__Intersection.out │ │ │ -rw-r--r-- 0 root (0) root (0) 463 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Points__Mat.out │ │ │ -rw-r--r-- 0 root (0) root (0) 316 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/example-output/_expected__Betti.out │ │ │ -rw-r--r-- 0 root (0) root (0) 234 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/example-output/_min__Max__Resolution.out │ │ │ @@ -15982,15 +15982,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 307 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/example-output/_projective__Points__By__Intersection.out │ │ │ -rw-r--r-- 0 root (0) root (0) 333 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/example-output/_random__Points.out │ │ │ -rw-r--r-- 0 root (0) root (0) 651 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/example-output/_random__Points__Mat.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 14 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4229 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/html/___All__Random.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4374 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/html/___Verify__Points.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9752 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Fat__Points.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9753 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Fat__Points.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6807 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Fat__Points__By__Intersection.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6158 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Make__Ring__Maps.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7954 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Points.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6778 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Points__By__Intersection.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6757 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Points__Mat.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5904 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/html/_expected__Betti.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5049 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Points/html/_min__Max__Resolution.html │ │ │ @@ -16386,15 +16386,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 162 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_filter.out │ │ │ -rw-r--r-- 0 root (0) root (0) 465 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_filtration.out │ │ │ -rw-r--r-- 0 root (0) root (0) 525 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_flag__Chains.out │ │ │ -rw-r--r-- 0 root (0) root (0) 842 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_flag__Poset.out │ │ │ -rw-r--r-- 0 root (0) root (0) 210 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_flagf__Polynomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 244 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_flagh__Polynomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 317 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_gap__Convert__Poset.out │ │ │ --rw-r--r-- 0 root (0) root (0) 591 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_greene__Kleitman__Partition.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 590 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_greene__Kleitman__Partition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 173 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_h__Polynomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 290 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_hasse__Diagram.out │ │ │ -rw-r--r-- 0 root (0) root (0) 96 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_height_lp__Poset_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 258 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_hibi__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 907 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_hibi__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 307 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_incomparability__Graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 269 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_index__Labeling.out │ │ │ @@ -16515,15 +16515,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5936 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/html/_filter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7063 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/html/_filtration.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6744 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/html/_flag__Chains.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6947 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/html/_flag__Poset.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6655 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/html/_flagf__Polynomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6658 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/html/_flagh__Polynomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7494 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/html/_gap__Convert__Poset.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7919 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/html/_greene__Kleitman__Partition.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7918 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/html/_greene__Kleitman__Partition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6185 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/html/_h__Polynomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5977 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/html/_hasse__Diagram.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5145 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/html/_height_lp__Poset_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6608 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/html/_hibi__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9522 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/html/_hibi__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5854 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/html/_incomparability__Graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6667 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Posets/html/_index__Labeling.html │ │ │ @@ -16642,15 +16642,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 411 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_irreducible__Decomposition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 280 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_is__Primary.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2223 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_kernel__Of__Localization.out │ │ │ -rw-r--r-- 0 root (0) root (0) 627 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_localize.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1734 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_primary__Decomposition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7407 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_primary__Decomposition_lp__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 765 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_primary_spdecomposition.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1389 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_reg__Seq__In__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1390 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_reg__Seq__In__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 423 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_remove__Lowest__Dimension.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2249 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_strategies_spfor_spcomputing_spprimary_spdecomposition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 242 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_top__Components.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 52 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 17065 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_associated__Primes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4283 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_associated_spprimes.html │ │ │ @@ -16658,15 +16658,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8019 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_is__Primary.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8418 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_kernel__Of__Localization.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9798 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_localize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8175 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_primary__Component.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11507 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_primary__Decomposition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20676 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_primary__Decomposition_lp__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5348 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_primary_spdecomposition.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9615 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_reg__Seq__In__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9616 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_reg__Seq__In__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7109 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_remove__Lowest__Dimension.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9948 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_strategies_spfor_spcomputing_spprimary_spdecomposition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7287 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_top__Components.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20337 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13327 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6093 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Probability/ │ │ │ @@ -16953,15 +16953,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1962 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Example_sp__Type_sp[300b].out │ │ │ -rw-r--r-- 0 root (0) root (0) 2633 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Example_sp__Type_sp[300c].out │ │ │ -rw-r--r-- 0 root (0) root (0) 2039 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Finding_spall_sppossible_spbetti_sptables_spfor_spquadratic_spcomponent_spof_spinverse_spsystem_spfor_spquartics_spin_sp4_spvariables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9657 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Finding_spthe_sp16_spbetti_sptables_sppossible_spfor_spquartic_spforms_spin_sp4_spvariables_cm_spand_spexamples.out │ │ │ -rw-r--r-- 0 root (0) root (0) 13630 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Finding_spthe_sp__Betti_spstratum_spof_spa_spgiven_spquartic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3258 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Finding_spthe_sppossible_spbetti_sptables_spfor_sppoints_spin_sp__P^3_spwith_spgiven_spgeometry.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1713 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Half_spcanonical_spdegree_sp20.out │ │ │ --rw-r--r-- 0 root (0) root (0) 28361 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 21988 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2741 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Noether-__Lefschetz_spexamples.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7051 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Pfaffians_spon_spquadrics.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1233 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Singularities_spof_splifting_spof_sptype_sp[300b].out │ │ │ -rw-r--r-- 0 root (0) root (0) 4056 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Type_sp[000]_cm_sp__C__Y_spof_spdegree_sp20.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2380 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Type_sp[210]_cm_sp__C__Y_spof_spdegree_sp18_spvia_splinkage.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1645 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Type_sp[310]_cm_sp__C__Y_spof_spdegree_sp17_spvia_splinkage.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2176 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Type_sp[331]_cm_sp__C__Y_spof_spdegree_sp17_spvia_splinkage.out │ │ │ @@ -16995,15 +16995,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8290 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Example_sp__Type_sp[300b].html │ │ │ -rw-r--r-- 0 root (0) root (0) 9103 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Example_sp__Type_sp[300c].html │ │ │ -rw-r--r-- 0 root (0) root (0) 6474 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Finding_spall_sppossible_spbetti_sptables_spfor_spquadratic_spcomponent_spof_spinverse_spsystem_spfor_spquartics_spin_sp4_spvariables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15710 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Finding_spthe_sp16_spbetti_sptables_sppossible_spfor_spquartic_spforms_spin_sp4_spvariables_cm_spand_spexamples.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19483 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Finding_spthe_sp__Betti_spstratum_spof_spa_spgiven_spquartic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8732 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Finding_spthe_sppossible_spbetti_sptables_spfor_sppoints_spin_sp__P^3_spwith_spgiven_spgeometry.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7974 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Half_spcanonical_spdegree_sp20.html │ │ │ --rw-r--r-- 0 root (0) root (0) 51851 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 45478 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10221 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Noether-__Lefschetz_spexamples.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3812 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Normalize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11982 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Pfaffians_spon_spquadrics.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7789 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Singularities_spof_splifting_spof_sptype_sp[300b].html │ │ │ -rw-r--r-- 0 root (0) root (0) 13447 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Type_sp[000]_cm_sp__C__Y_spof_spdegree_sp20.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11236 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Type_sp[210]_cm_sp__C__Y_spof_spdegree_sp18_spvia_splinkage.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8513 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Type_sp[310]_cm_sp__C__Y_spof_spdegree_sp17_spvia_splinkage.html │ │ │ @@ -17140,27 +17140,27 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 2621 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_disturb.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1358 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_histogram.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1258 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_maximal__Entry.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1465 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_normalize.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4961 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_random__Chain__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 453 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_random__Simplicial__Complex.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1096 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_test__Time__For__L__L__Lon__Syzygies.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1072 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_test__Time__For__L__L__Lon__Syzygies.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 44 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 3641 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/___Discrete.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3987 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/___With__L__L__L.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3843 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/___Zero__Mean.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9567 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_disturb.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6887 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_histogram.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6833 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_maximal__Entry.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6587 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_normalize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13744 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_random__Chain__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6361 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_random__Simplicial__Complex.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7713 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_test__Time__For__L__L__Lon__Syzygies.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7689 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_test__Time__For__L__L__Lon__Syzygies.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10830 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9658 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5151 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomCurves/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomCurves/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1330 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomCurves/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomCurves/html/ │ │ │ @@ -17217,23 +17217,23 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 188 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_is__Shelling.out │ │ │ -rw-r--r-- 0 root (0) root (0) 250 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Addition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 894 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Binomial__Edge__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 491 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Binomial__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 564 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Edge__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 479 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Elements__From__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 461 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Ideal.out │ │ │ --rw-r--r-- 0 root (0) root (0) 247 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Monomial.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 249 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Monomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 421 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Monomial__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 359 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Pure__Binomial__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 233 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Shellable__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 733 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Shellable__Ideal__Chain.out │ │ │ -rw-r--r-- 0 root (0) root (0) 752 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Shelling.out │ │ │ -rw-r--r-- 0 root (0) root (0) 426 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Sparse__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 453 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Square__Free__Monomial__Ideal.out │ │ │ --rw-r--r-- 0 root (0) root (0) 8869 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Square__Free__Step.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 8758 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Square__Free__Step.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1615 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Toric__Edge__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 233 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_reg__Seq.out │ │ │ -rw-r--r-- 0 root (0) root (0) 350 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_square__Free.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 39 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4894 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/___Alexander__Probability.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9887 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/___Finding_sp__Extreme_sp__Examples.html │ │ │ @@ -17242,23 +17242,23 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5499 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_is__Shelling.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7605 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Addition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7140 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Binomial__Edge__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7501 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Binomial__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6408 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Edge__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7570 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Elements__From__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7433 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Ideal.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5983 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Monomial.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5985 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Monomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6844 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Monomial__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7519 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Pure__Binomial__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7191 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Shellable__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7295 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Shellable__Ideal__Chain.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9608 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Shelling.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7966 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Sparse__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7126 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Square__Free__Monomial__Ideal.html │ │ │ --rw-r--r-- 0 root (0) root (0) 17620 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Square__Free__Step.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 17509 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Square__Free__Step.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8134 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Toric__Edge__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5498 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_reg__Seq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5785 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_square__Free.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5526 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_square__Free_lp__Z__Z_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 25799 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17897 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8907 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/toc.html │ │ │ @@ -17453,15 +17453,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 117445 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1111 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/___Rational__Mapping.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1086 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/___Rational__Mapping_sp_st_sp__Rational__Mapping.out │ │ │ -rw-r--r-- 0 root (0) root (0) 608 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_base__Locus__Of__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 866 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_ideal__Of__Image__Of__Map.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4960 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_inverse__Of__Map.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4959 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_inverse__Of__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 956 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_is__Birational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1041 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_is__Birational__Onto__Image.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1413 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_is__Embedding.out │ │ │ -rw-r--r-- 0 root (0) root (0) 346 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_is__Regular__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 588 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_is__Same__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 613 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_jacobian__Dual__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 749 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_map__Onto__Image.out │ │ │ @@ -17480,15 +17480,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8014 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/___Rational__Mapping_sp_st_sp__Rational__Mapping.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5003 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/___Rees__Strategy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4351 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/___Saturate__Output.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4924 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/___Saturation__Strategy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5154 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/___Simis__Strategy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8821 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_base__Locus__Of__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8617 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_ideal__Of__Image__Of__Map.html │ │ │ --rw-r--r-- 0 root (0) root (0) 19021 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_inverse__Of__Map.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 19020 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_inverse__Of__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12076 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_is__Birational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11771 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_is__Birational__Onto__Image.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14409 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_is__Embedding.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6230 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_is__Regular__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7630 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_is__Same__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9207 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_jacobian__Dual__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7810 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_map__Onto__Image.html │ │ │ @@ -17517,26 +17517,26 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1462 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/___Rational__Points2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1247 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_base__Change.out │ │ │ -rw-r--r-- 0 root (0) root (0) 491 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_charpoly.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1084 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_ext__Field.out │ │ │ -rw-r--r-- 0 root (0) root (0) 311 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_global__Height.out │ │ │ -rw-r--r-- 0 root (0) root (0) 298 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_hermite__Normal__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 361 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_integers.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4102 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_rational__Points.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4101 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_rational__Points.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1244 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_zeros.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 37 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5366 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/___Projective__Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9909 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_base__Change.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6299 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_charpoly.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11810 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_ext__Field.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5532 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_global__Height.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5560 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_hermite__Normal__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5896 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_integers.html │ │ │ --rw-r--r-- 0 root (0) root (0) 20408 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_rational__Points.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 20407 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_rational__Points.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7426 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_zeros.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20061 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16030 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5070 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReactionNetworks/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReactionNetworks/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 93186 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReactionNetworks/dump/rawdocumentation.dump │ │ │ @@ -17675,56 +17675,56 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 36544 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RealRoots/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 31247 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RealRoots/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7673 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RealRoots/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 205225 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 8423 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/___Plane__Curve__Singularities.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 8422 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/___Plane__Curve__Singularities.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3323 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/___Rees__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 887 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_analytic__Spread.out │ │ │ -rw-r--r-- 0 root (0) root (0) 367 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_distinguished.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3239 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_expected__Rees__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3238 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_expected__Rees__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 966 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_intersect__In__P.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2853 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_is__Linear__Type.out │ │ │ -rw-r--r-- 0 root (0) root (0) 551 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_is__Reduction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3424 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_jacobian__Dual.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1022 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_minimal__Reduction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 280 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_minimal__Reduction_lp..._cm__Tries_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 255 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_multiplicity.out │ │ │ -rw-r--r-- 0 root (0) root (0) 943 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_reduction__Number.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5811 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_rees__Algebra.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3967 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_rees__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3965 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_rees__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 417 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_special__Fiber.out │ │ │ -rw-r--r-- 0 root (0) root (0) 933 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_special__Fiber__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1090 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_symmetric__Kernel.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2884 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_symmetric__Kernel_lp..._cm__Variable_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6573 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_versal__Embedding.out │ │ │ -rw-r--r-- 0 root (0) root (0) 311 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_which__Gm.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 696 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 13 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 22326 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/___Plane__Curve__Singularities.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 22325 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/___Plane__Curve__Singularities.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5725 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/___Trim.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9879 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_analytic__Spread.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8150 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_associated__Graded__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10914 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_distinguished.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11733 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_expected__Rees__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11732 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_expected__Rees__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10376 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_intersect__In__P.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11168 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_intersect__In__P_lp..._cm__Basis__Element__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11999 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_is__Linear__Type.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9989 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_is__Reduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18420 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_jacobian__Dual.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11629 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_minimal__Reduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9560 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_minimal__Reduction_lp..._cm__Basis__Element__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5700 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_minimal__Reduction_lp..._cm__Tries_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8523 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_multiplicity.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8470 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_reduction__Number.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16223 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Algebra.html │ │ │ --rw-r--r-- 0 root (0) root (0) 16929 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 16927 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12181 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal_lp..._cm__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16779 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal_lp..._cm__Minimal__Generators_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9825 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal_lp..._cm__Pair__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20958 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10303 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_special__Fiber.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11456 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_special__Fiber__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5830 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_symmetric__Algebra__Ideal.html │ │ │ @@ -17895,80 +17895,80 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 114665 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1231 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/___Grass.out │ │ │ -rw-r--r-- 0 root (0) root (0) 454 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_affine__Discriminant.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2692 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_affine__Resultant.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2423 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_cayley__Trick.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6589 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Equations.out │ │ │ --rw-r--r-- 0 root (0) root (0) 17438 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Form.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2426 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_cayley__Trick.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6588 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Equations.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 17436 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1436 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_conormal__Variety.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4381 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_discriminant_lp__Ring__Element_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1757 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_dual__Variety.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4380 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_discriminant_lp__Ring__Element_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1756 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_dual__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7159 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_dualize.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7651 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_from__Plucker__To__Stiefel.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2051 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_generic__Polynomials.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4757 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_hurwitz__Form.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2854 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_is__Coisotropic.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2852 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_is__Coisotropic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1332 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_is__In__Coisotropic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6672 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_macaulay__Formula.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1903 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_plucker.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1901 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_plucker.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7138 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp..._cm__Algorithm_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 122874 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp__Matrix_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 5792 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_tangential__Chow__Form.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 122875 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp__Matrix_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 5793 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_tangential__Chow__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1268 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_veronese.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 712 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 41 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5812 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Affine__Chart__Grass.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5062 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Affine__Chart__Proj.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5017 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Assume__Ordinary.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4798 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Duality.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8812 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Grass.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11914 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Grass_lp..._cm__Variable_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4536 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Singular__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6173 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_affine__Discriminant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8466 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_affine__Resultant.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10356 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_cayley__Trick.html │ │ │ --rw-r--r-- 0 root (0) root (0) 13908 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_chow__Equations.html │ │ │ --rw-r--r-- 0 root (0) root (0) 24838 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_chow__Form.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10359 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_cayley__Trick.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 13907 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_chow__Equations.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 24836 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_chow__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7807 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_conormal__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20680 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_conormal__Variety_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11671 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_discriminant_lp__Ring__Element_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8958 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_dual__Variety.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11670 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_discriminant_lp__Ring__Element_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8957 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_dual__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12862 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_dualize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14549 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_from__Plucker__To__Stiefel.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7929 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_generic__Polynomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11823 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_hurwitz__Form.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8640 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_is__Coisotropic.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8638 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_is__Coisotropic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8012 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_is__In__Coisotropic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12190 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_macaulay__Formula.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9636 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_plucker.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9634 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_plucker.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14053 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp..._cm__Algorithm_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 130212 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp__Matrix_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 16088 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_tangential__Chow__Form.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 130213 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp__Matrix_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 16089 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_tangential__Chow__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7561 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/_veronese.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19678 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21347 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8335 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Resultants/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 37595 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 418 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_resource_splimits.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6287 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_run__External__M2.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 416 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_resource_splimits.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6321 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_run__External__M2.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 61 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4982 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/___Keep__Statistics__Command.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5254 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/___Pre__Run__Script.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4839 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_is__External__M2__Child.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4905 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_is__External__M2__Parent.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7314 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_resource_splimits.html │ │ │ --rw-r--r-- 0 root (0) root (0) 23002 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_run__External__M2.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7312 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_resource_splimits.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 23036 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_run__External__M2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5489 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_run__External__M2__Return__Answer.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6095 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_run__External__M2_lp..._cm__Keep__Files_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7295 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_suggestions_spfor_spusing_sp__Run__External__M2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8971 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7557 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5193 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SCMAlgebras/ │ │ │ @@ -18292,28 +18292,28 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 26032 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SRdeformations/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 44792 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 2826 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 11853 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Complexes.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3436 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Homology.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3437 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Homology.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5471 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_are__Pseudo__Inverses.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2031 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_common__Entries.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6927 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_euclidean__Distance.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7251 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_laplacians.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1301 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_numeric__Rank.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9599 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_project__To__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9183 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_pseudo__Inverse.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 84 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 3432 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/___Laplacian.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3446 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/___Projection.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11394 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/___S__V__D__Complex.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12445 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/___S__V__D__Homology.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12446 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/___S__V__D__Homology.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14495 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_are__Pseudo__Inverses.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3307 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_check__S__V__D__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9606 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_common__Entries.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14034 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_euclidean__Distance.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13796 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_laplacians.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3647 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_new__Chain__Complex__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8632 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_numeric__Rank.html │ │ │ @@ -18340,27 +18340,27 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 52986 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 859 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_annihilator.out │ │ │ -rw-r--r-- 0 root (0) root (0) 846 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_ideal_spquotients_spand_spsaturation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 259 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_is__Supported__In__Zero__Locus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 807 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_module_spquotients_cm_spsaturation_cm_spand_spannihilator.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1858 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_quotient_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1856 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_quotient_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2582 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_quotient_lp__Module_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 837 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_saturate.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 69 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 8444 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/html/_annihilator.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6028 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/html/_ideal_spquotients_spand_spsaturation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6361 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/html/_is__Supported__In__Zero__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6783 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/html/_module_spquotients_cm_spsaturation_cm_spand_spannihilator.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10737 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/html/_quotient_lp..._cm__Basis__Element__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12751 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/html/_quotient_lp..._cm__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10232 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/html/_quotient_lp..._cm__Pair__Limit_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 25840 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/html/_quotient_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 25838 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/html/_quotient_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14657 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/html/_quotient_lp__Module_cm__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11378 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/html/_saturate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12109 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/html/_saturate_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13607 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11857 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5138 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Saturation/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Schubert2/ │ │ │ @@ -18793,37 +18793,37 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 48932 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 505 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_chow__Class.out │ │ │ -rw-r--r-- 0 root (0) root (0) 690 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_contained__In__Singular__Locus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 895 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_intersection__Product.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1525 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_is__Component__Contained.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1524 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_is__Component__Contained.out │ │ │ -rw-r--r-- 0 root (0) root (0) 435 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_is__Multi__Hom.out │ │ │ -rw-r--r-- 0 root (0) root (0) 277 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_make__Chow__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 345 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_make__Product__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 453 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_multiplicity.out │ │ │ -rw-r--r-- 0 root (0) root (0) 881 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_projective__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 932 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_projective__Degrees.out │ │ │ -rw-r--r-- 0 root (0) root (0) 876 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_segre.out │ │ │ --rw-r--r-- 0 root (0) root (0) 721 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_segre__Dim__X.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 720 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_segre__Dim__X.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 97 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 7409 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_chow__Class.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8087 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_contained__In__Singular__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9553 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_intersection__Product.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9207 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_is__Component__Contained.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9206 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_is__Component__Contained.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6270 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_is__Multi__Hom.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5714 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_make__Chow__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6244 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_make__Product__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7343 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_multiplicity.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9004 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_projective__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8810 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_projective__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8581 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_segre.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8441 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_segre__Dim__X.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8440 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_segre__Dim__X.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17183 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13920 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7233 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SemidefiniteProgramming/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SemidefiniteProgramming/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 44343 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SemidefiniteProgramming/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SemidefiniteProgramming/example-output/ │ │ │ @@ -18902,25 +18902,25 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 42166 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 488 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/example-output/_ar__Xiv.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1096 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/example-output/_package__Template.out │ │ │ -rw-r--r-- 0 root (0) root (0) 329 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/example-output/_simple__Doc__Frob.out │ │ │ -rw-r--r-- 0 root (0) root (0) 261 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/example-output/_stacks__Project.out │ │ │ --rw-r--r-- 0 root (0) root (0) 135 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/example-output/_test__Example.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 136 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/example-output/_test__Example.out │ │ │ -rw-r--r-- 0 root (0) root (0) 532 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/example-output/_wikipedia.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 31 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6187 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/html/_ar__Xiv.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20190 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/html/_doc.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6720 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/html/_doc__Example.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5916 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/html/_package__Template.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10506 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/html/_simple__Doc__Frob.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5686 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/html/_stacks__Project.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5298 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/html/_test__Example.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5299 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/html/_test__Example.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6193 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/html/_wikipedia.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11013 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7409 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4291 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimpleDoc/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimplicialComplexes/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimplicialComplexes/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 390036 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SimplicialComplexes/dump/rawdocumentation.dump │ │ │ @@ -19345,18 +19345,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1122 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/___Multidimensional__Matrix_sp_st_sp__Multidimensional__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 646 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/___Multidimensional__Matrix_sp_us_sp__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 597 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/___Ring__Element_sp_st_sp__Multidimensional__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 478 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/___Sparse__Discriminant_sp__Thing.out │ │ │ -rw-r--r-- 0 root (0) root (0) 930 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/___Sparse__Resultant_sp__Thing.out │ │ │ -rw-r--r-- 0 root (0) root (0) 340 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_char_lp__Sparse__Discriminant_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 399 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_char_lp__Sparse__Resultant_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 485 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_degree__Determinant.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 484 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_degree__Determinant.out │ │ │ -rw-r--r-- 0 root (0) root (0) 814 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dense__Discriminant.out │ │ │ --rw-r--r-- 0 root (0) root (0) 931 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dense__Resultant.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1363 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_determinant_lp__Multidimensional__Matrix_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 929 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dense__Resultant.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1361 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_determinant_lp__Multidimensional__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 436 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dim_lp__Multidimensional__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 494 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_entries_lp__Multidimensional__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 561 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_exponents__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 394 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_exponents_lp__Sparse__Discriminant_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 471 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_exponents_lp__Sparse__Resultant_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1329 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_flattening.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1250 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_generic__Laurent__Polynomials.out │ │ │ @@ -19370,15 +19370,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 634 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_random__Multidimensional__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2126 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_rank_lp__Multidimensional__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1772 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_reverse__Shape.out │ │ │ -rw-r--r-- 0 root (0) root (0) 537 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_ring_lp__Multidimensional__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 457 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_shape.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2104 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sort__Shape.out │ │ │ -rw-r--r-- 0 root (0) root (0) 12400 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sparse__Discriminant.out │ │ │ --rw-r--r-- 0 root (0) root (0) 55253 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sparse__Resultant.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 55245 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sparse__Resultant.out │ │ │ -rw-r--r-- 0 root (0) root (0) 911 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sylvester__Matrix_lp__Multidimensional__Matrix_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 724 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 35 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 10027 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Multidimensional__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6153 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Multidimensional__Matrix_sp-_sp__Multidimensional__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6036 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Multidimensional__Matrix_sp_eq_eq_sp__Multidimensional__Matrix.html │ │ │ @@ -19388,18 +19388,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5975 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Ring__Element_sp_st_sp__Multidimensional__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5143 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Sparse__Discriminant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5671 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Sparse__Discriminant_sp__Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5171 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Sparse__Resultant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6200 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Sparse__Resultant_sp__Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4969 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_char_lp__Sparse__Discriminant_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5035 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_char_lp__Sparse__Resultant_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6090 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_degree__Determinant.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6089 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_degree__Determinant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8038 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_dense__Discriminant.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8081 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_dense__Resultant.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8502 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_determinant_lp__Multidimensional__Matrix_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8079 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_dense__Resultant.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8500 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_determinant_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5374 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_dim_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5439 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_entries_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6741 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_exponents__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5314 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_exponents_lp__Sparse__Discriminant_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5332 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_exponents_lp__Sparse__Resultant_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7474 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_flattening.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7539 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_generic__Laurent__Polynomials.html │ │ │ @@ -19413,15 +19413,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6390 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_random__Multidimensional__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8042 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_rank_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7378 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_reverse__Shape.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5354 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_ring_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5357 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_shape.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7655 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_sort__Shape.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19922 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_sparse__Discriminant.html │ │ │ --rw-r--r-- 0 root (0) root (0) 65066 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_sparse__Resultant.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 65058 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_sparse__Resultant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6790 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_sylvester__Matrix_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 22049 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21490 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12465 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 178022 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/dump/rawdocumentation.dump │ │ │ @@ -19448,15 +19448,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 210 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_cycle__Decomposition_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 252 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_elementary__Symmetric__Polynomials_lp__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 223 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_entries_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 439 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_first__Row__Descent_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 505 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_garnir__Element.out │ │ │ -rw-r--r-- 0 root (0) root (0) 557 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_generalized__Vandermonde__Matrix_lp__List_cm__List_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 787 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_generate__Permutation__Group_lp__List_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3117 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3119 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 11027 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_higher__Specht__Polynomials.out │ │ │ -rw-r--r-- 0 root (0) root (0) 325 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_hook__Length__Formula_lp__Partition_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 538 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_index__Monomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 338 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_index__Tableau_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 272 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_inner__Product_lp__Z__Z_cm__Mutable__Matrix_cm__Mutable__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 207 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_list__To__Tableau_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 993 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_matrix__Representation.out │ │ │ @@ -19468,15 +19468,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 556 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_permute__Polynomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 297 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_power__Sum__Symmetric__Polynomials_lp__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 274 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_reading__Word_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1936 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_representation__Multiplicity.out │ │ │ -rw-r--r-- 0 root (0) root (0) 410 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_row__Permutation__Tableaux_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 335 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_row__Stabilizer_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 563 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_schur__Polynomial_lp__List_cm__Partition_cm__Polynomial__Ring_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 45653 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 45652 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1508 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_semistandard__Tableaux_lp__Partition_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 206 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_size_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 603 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_sort__Columns__Tableau_lp__Specht__Module__Element_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 328 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_sort__Columns__Tableau_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 433 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_specht__Module__Element.out │ │ │ -rw-r--r-- 0 root (0) root (0) 873 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_specht__Polynomial_lp__Young__Tableau_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2337 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_specht__Polynomials_lp__Partition_cm__Polynomial__Ring_rp.out │ │ │ @@ -19512,15 +19512,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5170 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_cycle__Decomposition_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5621 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_elementary__Symmetric__Polynomials_lp__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4842 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_entries_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6072 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_first__Row__Descent_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7902 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_garnir__Element.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6548 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_generalized__Vandermonde__Matrix_lp__List_cm__List_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6148 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_generate__Permutation__Group_lp__List_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 13335 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 13337 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20599 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_higher__Specht__Polynomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5911 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_hook__Length__Formula_lp__Partition_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6958 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_index__Monomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5754 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_index__Tableau_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6510 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_inner__Product_lp__Z__Z_cm__Mutable__Matrix_cm__Mutable__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5051 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_list__To__Tableau_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7851 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_matrix__Representation.html │ │ │ @@ -19532,15 +19532,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8497 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_permute__Polynomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5630 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_power__Sum__Symmetric__Polynomials_lp__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5348 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_reading__Word_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10787 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_representation__Multiplicity.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5827 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_row__Permutation__Tableaux_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5539 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_row__Stabilizer_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7260 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_schur__Polynomial_lp__List_cm__Partition_cm__Polynomial__Ring_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 53336 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 53335 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7035 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_semistandard__Tableaux_lp__Partition_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4965 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_size_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6181 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_sort__Columns__Tableau_lp__Specht__Module__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5339 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_sort__Columns__Tableau_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7243 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_specht__Module__Element.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7116 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_specht__Polynomial_lp__Young__Tableau_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8530 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_specht__Polynomials_lp__Partition_cm__Polynomial__Ring_rp.html │ │ │ @@ -19559,40 +19559,40 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 203652 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 395 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/___Congruence__Of__Curves_sp__Embedded__Projective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 914 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/___G__Mtables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1325 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_ambient__Fivefold.out │ │ │ --rw-r--r-- 0 root (0) root (0) 955 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__Castelnuovo__Surface.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 954 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__Castelnuovo__Surface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1005 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__K3surface_lp__Special__Cubic__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1191 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__K3surface_lp__Special__Gushel__Mukai__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 614 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_beauville__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 351 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_clean_lp__Hodge__Special__Fourfold_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1173 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1172 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1555 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 298 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_discriminant_lp__Special__Cubic__Fourfold_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 299 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_discriminant_lp__Special__Cubic__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 286 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_discriminant_lp__Special__Gushel__Mukai__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 672 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_fano__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 599 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_from__Ordinary__To__Gushel.out │ │ │ -rw-r--r-- 0 root (0) root (0) 153 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_is__Admissible.out │ │ │ -rw-r--r-- 0 root (0) root (0) 164 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_is__Admissible__G__M.out │ │ │ -rw-r--r-- 0 root (0) root (0) 716 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_map_lp__Congruence__Of__Curves_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1356 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_mirror__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 357 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_normal__Sheaf.out │ │ │ -rw-r--r-- 0 root (0) root (0) 813 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count.out │ │ │ --rw-r--r-- 0 root (0) root (0) 786 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count_lp__Special__Cubic__Fourfold_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 784 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count_lp__Special__Cubic__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 973 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count_lp__Special__Gushel__Mukai__Fourfold_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 653 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parametrize__Fano__Fourfold.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 652 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parametrize__Fano__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1972 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parametrize_lp__Hodge__Special__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6387 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Cubic__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 324 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Cubic__Fourfold_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 393 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Cubic__Fourfold_lp__String_cm__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1499 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Fourfold.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1519 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1520 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 762 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold_lp__Array_cm__Array_cm__String_cm__Thing_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 469 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 530 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold_lp__String_cm__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 413 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_surface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 663 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_surface_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2427 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_surface_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 770 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_to__External__String_lp__Hodge__Special__Fourfold_rp.out │ │ │ @@ -19608,47 +19608,47 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9733 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Hodge__Special__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5972 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Intersection__Of__Three__Quadrics__In__P7.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4384 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Singular.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9292 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Special__Cubic__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9852 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Special__Gushel__Mukai__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8467 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Verbose.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7338 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_ambient__Fivefold.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9467 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__Castelnuovo__Surface.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9466 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__Castelnuovo__Surface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4640 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10183 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface_lp__Special__Cubic__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10398 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6516 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_beauville__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5794 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_check_lp__Z__Z_cm__Congruence__Of__Curves_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5281 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_clean_lp__Hodge__Special__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5923 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8433 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8432 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9268 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6474 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_discriminant_lp__Special__Cubic__Fourfold_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6475 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_discriminant_lp__Special__Cubic__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6556 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_discriminant_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6408 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_fano__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5610 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_from__Ordinary__To__Gushel.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5384 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_is__Admissible.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5528 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_is__Admissible__G__M.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5294 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_is__Member_lp__Embedded__Projective__Variety_cm__Congruence__Of__Curves_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7594 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_map_lp__Congruence__Of__Curves_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5457 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_map_lp__Special__Cubic__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5548 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_map_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8996 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_mirror__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6073 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_normal__Sheaf.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8312 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7742 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count_lp__Special__Cubic__Fourfold_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7740 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count_lp__Special__Cubic__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7943 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7985 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parametrize__Fano__Fourfold.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7984 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parametrize__Fano__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8361 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parametrize_lp__Hodge__Special__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15276 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Cubic__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6778 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Cubic__Fourfold_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6809 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Cubic__Fourfold_lp__String_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10280 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6505 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Fourfold_lp__String_cm__Z__Z_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11896 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11897 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11226 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold_lp__Array_cm__Array_cm__String_cm__Thing_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7752 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7531 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold_lp__String_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7123 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_surface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7471 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_surface_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8807 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_surface_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5892 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_to__External__String_lp__Hodge__Special__Fourfold_rp.html │ │ │ @@ -20503,25 +20503,25 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 806 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_compatible__Ideals.out │ │ │ -rw-r--r-- 0 root (0) root (0) 378 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_decompose__Fraction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 606 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_descend__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 116 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_floor__Log.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1009 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1518 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Power.out │ │ │ -rw-r--r-- 0 root (0) root (0) 227 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Preimage.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1328 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Root.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1329 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Root.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1117 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Trace__On__Canonical__Module.out │ │ │ --rw-r--r-- 0 root (0) root (0) 488 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__Cohen__Macaulay.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1824 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Injective.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 489 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__Cohen__Macaulay.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1820 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Injective.out │ │ │ -rw-r--r-- 0 root (0) root (0) 637 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Pure.out │ │ │ -rw-r--r-- 0 root (0) root (0) 517 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Rational.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1492 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Regular.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1493 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Regular.out │ │ │ -rw-r--r-- 0 root (0) root (0) 187 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_multiplicative__Order.out │ │ │ -rw-r--r-- 0 root (0) root (0) 416 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_parameter__Test__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 216 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_test__Element.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1513 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_test__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1514 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_test__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2752 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_test__Module.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 697 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 40 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4011 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/___Ascent__Count.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4077 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/___Assume__C__M.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4850 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/___Assume__Domain.html │ │ │ @@ -20554,25 +20554,25 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8819 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_compatible__Ideals.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6888 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_decompose__Fraction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9079 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_descend__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4988 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_floor__Log.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10181 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11795 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Power.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4837 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Preimage.html │ │ │ --rw-r--r-- 0 root (0) root (0) 16359 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Root.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 16360 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Root.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8210 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Trace__On__Canonical__Module.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7828 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__Cohen__Macaulay.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14966 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Injective.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7829 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__Cohen__Macaulay.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14962 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Injective.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9851 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Pure.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9220 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Rational.html │ │ │ --rw-r--r-- 0 root (0) root (0) 15663 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Regular.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 15664 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Regular.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5561 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_multiplicative__Order.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7524 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_parameter__Test__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6079 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_test__Element.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14360 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_test__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14361 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_test__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17076 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_test__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 38028 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 35805 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14203 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Text/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Text/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 134990 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Text/dump/rawdocumentation.dump │ │ │ @@ -20764,32 +20764,32 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 38211 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThinSincereQuivers/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 26568 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThinSincereQuivers/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13386 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThinSincereQuivers/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 24627 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 1429 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/___Minimal.out │ │ │ --rw-r--r-- 0 root (0) root (0) 8263 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/___Threaded__G__B.out │ │ │ --rw-r--r-- 0 root (0) root (0) 572 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_matrix_lp__Lineage__Table_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1592 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/___Minimal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 7172 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/___Threaded__G__B.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 535 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_matrix_lp__Lineage__Table_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1147 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_minimize.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1030 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_reduce.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2666 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_tgb.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1155 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_reduce.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2076 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_tgb.out │ │ │ -rw-r--r-- 0 root (0) root (0) 328 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_tgb_lp..._cm__Verbose_eq_gt..._rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 712 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 77 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6460 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/___Lineage__Table.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6606 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/___Minimal.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6386 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_matrix_lp__Lineage__Table_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6769 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/___Minimal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6349 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_matrix_lp__Lineage__Table_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6791 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_minimize.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6701 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_reduce.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12946 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_tgb.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6826 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_reduce.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12356 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_tgb.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7787 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_tgb_lp..._cm__Verbose_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 22196 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/index.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 21105 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7093 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4834 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Topcom/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Topcom/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 66622 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Topcom/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Topcom/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 25169 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/Topcom/example-output/___An_spexample_spuse_spof_sp__Top__Com.out │ │ │ @@ -20868,25 +20868,25 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 20320 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 944 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_cm__Class.out │ │ │ -rw-r--r-- 0 root (0) root (0) 567 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_cm__Volumes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 717 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_dual__Deg__Codim.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1537 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_ed__Deg.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1536 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_ed__Deg.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1032 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_polar__Degrees.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 86 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4189 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/___Force__Amat.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4006 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/___Output.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3998 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/___Text__Output.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8467 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/_cm__Class.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7277 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/_cm__Volumes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7178 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/_dual__Deg__Codim.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8559 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/_ed__Deg.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8558 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/_ed__Deg.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8495 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/_polar__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9386 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7242 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4946 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricTopology/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricTopology/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 23591 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/ToricTopology/dump/rawdocumentation.dump │ │ │ @@ -21847,15 +21847,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 11419 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VectorGraphics/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10824 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VectorGraphics/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 142544 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1050 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/___Def__Param.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1214 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/___Smart__Lift.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1213 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/___Smart__Lift.out │ │ │ -rw-r--r-- 0 root (0) root (0) 416 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/_check__Comparison__Theorem.out │ │ │ -rw-r--r-- 0 root (0) root (0) 406 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/_check__Tangent__Space.out │ │ │ -rw-r--r-- 0 root (0) root (0) 862 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/_correct__Deformation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 433 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/_cotangent__Cohomology1.out │ │ │ -rw-r--r-- 0 root (0) root (0) 774 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/_cotangent__Cohomology2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 562 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/_ext__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2784 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/example-output/_first__Order__Deformations.out │ │ │ @@ -21872,15 +21872,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5549 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Cache__Name.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5470 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Correction__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7360 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Def__Param.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4891 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Degree__Bound.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4463 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Highest__Order.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4571 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Polynomial__Check.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5483 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Sanity__Check.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7669 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Smart__Lift.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7668 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Smart__Lift.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4152 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/___Versal__Deformation__Results.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7538 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/_check__Comparison__Theorem.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7366 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/_check__Tangent__Space.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9818 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/_correct__Deformation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5259 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/_correction__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9819 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/_cotangent__Cohomology1.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10365 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/VersalDeformations/html/_cotangent__Cohomology2.html │ │ │ @@ -22293,23 +22293,23 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 38831 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WeylGroups/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 44599 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WeylGroups/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 19666 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 658 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/_conormal.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3071 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/_map__Stratify.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3072 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/_map__Stratify.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2287 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/_whitney__Stratify.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 62 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 3573 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/___Strats__To__Find.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5660 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_conormal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3696 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_conormal__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3525 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_is__Proper.html │ │ │ --rw-r--r-- 0 root (0) root (0) 16711 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_map__Stratify.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 16712 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_map__Stratify.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3580 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_non__Proper__Set.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10732 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_whitney__Stratify.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9297 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6292 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4435 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/XML/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/Macaulay2/XML/dump/ │ │ │ @@ -22483,290 +22483,290 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc/macaulay2-common/ │ │ │ -rw-r--r-- 0 root (0) root (0) 15260 2025-02-09 22:54:37.000000 ./usr/share/doc/macaulay2-common/changelog.Debian.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 102986 2025-02-09 22:44:40.000000 ./usr/share/doc/macaulay2-common/copyright │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/doc-base/ │ │ │ -rw-r--r-- 0 root (0) root (0) 577 2025-02-09 22:44:40.000000 ./usr/share/doc-base/macaulay2-common.macaulay2 │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/info/ │ │ │ -rw-r--r-- 0 root (0) root (0) 21205 2025-02-09 22:54:37.000000 ./usr/share/info/A1BrouwerDegrees.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 13650 2025-02-09 22:54:37.000000 ./usr/share/info/AInfinity.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 7360 2025-02-09 22:54:37.000000 ./usr/share/info/AbstractSimplicialComplexes.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 13653 2025-02-09 22:54:37.000000 ./usr/share/info/AInfinity.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 7376 2025-02-09 22:54:37.000000 ./usr/share/info/AbstractSimplicialComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1221 2025-02-09 22:54:37.000000 ./usr/share/info/AbstractToricVarieties.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6461 2025-02-09 22:54:37.000000 ./usr/share/info/AdjointIdeal.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 8490 2025-02-09 22:54:37.000000 ./usr/share/info/AdjunctionForSurfaces.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 8489 2025-02-09 22:54:37.000000 ./usr/share/info/AdjunctionForSurfaces.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 22697 2025-02-09 22:54:37.000000 ./usr/share/info/AlgebraicSplines.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2769 2025-02-09 22:54:37.000000 ./usr/share/info/AnalyzeSheafOnP1.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 37421 2025-02-09 22:54:37.000000 ./usr/share/info/AssociativeAlgebras.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 13480 2025-02-09 22:54:37.000000 ./usr/share/info/BGG.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 13457 2025-02-09 22:54:37.000000 ./usr/share/info/BGG.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1477 2025-02-09 22:54:37.000000 ./usr/share/info/BIBasis.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 16361 2025-02-09 22:54:37.000000 ./usr/share/info/BeginningMacaulay2.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 1338 2025-02-09 22:54:37.000000 ./usr/share/info/Benchmark.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 1340 2025-02-09 22:54:37.000000 ./usr/share/info/Benchmark.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 51392 2025-02-09 22:54:37.000000 ./usr/share/info/BernsteinSato.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 20943 2025-02-09 22:54:37.000000 ./usr/share/info/Bertini.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 31680 2025-02-09 22:54:37.000000 ./usr/share/info/BettiCharacters.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 20950 2025-02-09 22:54:37.000000 ./usr/share/info/Bertini.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 31682 2025-02-09 22:54:37.000000 ./usr/share/info/BettiCharacters.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3077 2025-02-09 22:54:37.000000 ./usr/share/info/BinomialEdgeIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10618 2025-02-09 22:54:37.000000 ./usr/share/info/Binomials.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 19492 2025-02-09 22:54:37.000000 ./usr/share/info/BoijSoederberg.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 16173 2025-02-09 22:54:37.000000 ./usr/share/info/Book3264Examples.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1561 2025-02-09 22:54:37.000000 ./usr/share/info/BooleanGB.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 833 2025-02-09 22:54:37.000000 ./usr/share/info/Browse.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 6248 2025-02-09 22:54:37.000000 ./usr/share/info/Bruns.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 19460 2025-02-09 22:54:37.000000 ./usr/share/info/CellularResolutions.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 15261 2025-02-09 22:54:37.000000 ./usr/share/info/ChainComplexExtras.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 6249 2025-02-09 22:54:37.000000 ./usr/share/info/Bruns.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 19463 2025-02-09 22:54:37.000000 ./usr/share/info/CellularResolutions.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 15259 2025-02-09 22:54:37.000000 ./usr/share/info/ChainComplexExtras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4161 2025-02-09 22:54:37.000000 ./usr/share/info/ChainComplexOperations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 25329 2025-02-09 22:54:37.000000 ./usr/share/info/CharacteristicClasses.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 25298 2025-02-09 22:54:37.000000 ./usr/share/info/CharacteristicClasses.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 22161 2025-02-09 22:54:37.000000 ./usr/share/info/Chordal.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3449 2025-02-09 22:54:37.000000 ./usr/share/info/Classic.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 39852 2025-02-09 22:54:37.000000 ./usr/share/info/CodingTheory.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 5123 2025-02-09 22:54:37.000000 ./usr/share/info/CohomCalg.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 39862 2025-02-09 22:54:37.000000 ./usr/share/info/CodingTheory.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 5124 2025-02-09 22:54:37.000000 ./usr/share/info/CohomCalg.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 24911 2025-02-09 22:54:37.000000 ./usr/share/info/CoincidentRootLoci.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 58790 2025-02-09 22:54:37.000000 ./usr/share/info/CompleteIntersectionResolutions.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 58795 2025-02-09 22:54:37.000000 ./usr/share/info/CompleteIntersectionResolutions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 224747 2025-02-09 22:54:37.000000 ./usr/share/info/Complexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 11828 2025-02-09 22:54:37.000000 ./usr/share/info/ConformalBlocks.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6882 2025-02-09 22:54:37.000000 ./usr/share/info/ConvexInterface.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1537 2025-02-09 22:54:37.000000 ./usr/share/info/ConwayPolynomials.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8254 2025-02-09 22:54:37.000000 ./usr/share/info/CorrespondenceScrolls.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6785 2025-02-09 22:54:37.000000 ./usr/share/info/CotangentSchubert.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 94626 2025-02-09 22:54:37.000000 ./usr/share/info/Cremona.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 94638 2025-02-09 22:54:37.000000 ./usr/share/info/Cremona.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1740 2025-02-09 22:54:37.000000 ./usr/share/info/Cyclotomic.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 48728 2025-02-09 22:54:37.000000 ./usr/share/info/DGAlgebras.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 48743 2025-02-09 22:54:37.000000 ./usr/share/info/DGAlgebras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4640 2025-02-09 22:54:37.000000 ./usr/share/info/DecomposableSparseSystems.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5802 2025-02-09 22:54:37.000000 ./usr/share/info/Depth.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 17815 2025-02-09 22:54:37.000000 ./usr/share/info/DeterminantalRepresentations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 18635 2025-02-09 22:54:37.000000 ./usr/share/info/DiffAlg.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 37527 2025-02-09 22:54:37.000000 ./usr/share/info/Divisor.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 37543 2025-02-09 22:54:37.000000 ./usr/share/info/Divisor.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3262 2025-02-09 22:54:37.000000 ./usr/share/info/Dmodules.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 15499 2025-02-09 22:54:37.000000 ./usr/share/info/EagonResolution.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 44312 2025-02-09 22:54:37.000000 ./usr/share/info/EdgeIdeals.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 2476 2025-02-09 22:54:37.000000 ./usr/share/info/EigenSolver.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 4216 2025-02-09 22:54:37.000000 ./usr/share/info/Elimination.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 44261 2025-02-09 22:54:37.000000 ./usr/share/info/EdgeIdeals.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 2477 2025-02-09 22:54:37.000000 ./usr/share/info/EigenSolver.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 4338 2025-02-09 22:54:37.000000 ./usr/share/info/Elimination.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 22796 2025-02-09 22:54:37.000000 ./usr/share/info/EliminationMatrices.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6236 2025-02-09 22:54:37.000000 ./usr/share/info/EllipticCurves.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1422 2025-02-09 22:54:37.000000 ./usr/share/info/EllipticIntegrals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2169 2025-02-09 22:54:37.000000 ./usr/share/info/EngineTests.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 2645 2025-02-09 22:54:37.000000 ./usr/share/info/EnumerationCurves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 9368 2025-02-09 22:54:37.000000 ./usr/share/info/EquivariantGB.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 2644 2025-02-09 22:54:37.000000 ./usr/share/info/EnumerationCurves.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 9367 2025-02-09 22:54:37.000000 ./usr/share/info/EquivariantGB.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 19984 2025-02-09 22:54:37.000000 ./usr/share/info/ExampleSystems.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4774 2025-02-09 22:54:37.000000 ./usr/share/info/ExteriorIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9682 2025-02-09 22:54:37.000000 ./usr/share/info/ExteriorModules.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2351 2025-02-09 22:54:37.000000 ./usr/share/info/FGLM.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 31092 2025-02-09 22:54:37.000000 ./usr/share/info/FastMinors.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 4921 2025-02-09 22:54:37.000000 ./usr/share/info/FiniteFittingIdeals.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 31083 2025-02-09 22:54:37.000000 ./usr/share/info/FastMinors.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 4918 2025-02-09 22:54:37.000000 ./usr/share/info/FiniteFittingIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 792 2025-02-09 22:54:37.000000 ./usr/share/info/FirstPackage.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 21829 2025-02-09 22:54:37.000000 ./usr/share/info/ForeignFunctions.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 21828 2025-02-09 22:54:37.000000 ./usr/share/info/ForeignFunctions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6964 2025-02-09 22:54:37.000000 ./usr/share/info/FormalGroupLaws.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7065 2025-02-09 22:54:37.000000 ./usr/share/info/FourTiTwo.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7262 2025-02-09 22:54:37.000000 ./usr/share/info/FourierMotzkin.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 17114 2025-02-09 22:54:37.000000 ./usr/share/info/FrobeniusThresholds.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 17117 2025-02-09 22:54:37.000000 ./usr/share/info/FrobeniusThresholds.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1739 2025-02-09 22:54:37.000000 ./usr/share/info/FunctionFieldDesingularization.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 35429 2025-02-09 22:54:37.000000 ./usr/share/info/GKMVarieties.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 35427 2025-02-09 22:54:37.000000 ./usr/share/info/GKMVarieties.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2548 2025-02-09 22:54:37.000000 ./usr/share/info/GenericInitialIdeal.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 14724 2025-02-09 22:54:37.000000 ./usr/share/info/GeometricDecomposability.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 84650 2025-02-09 22:54:37.000000 ./usr/share/info/GradedLieAlgebras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 37740 2025-02-09 22:54:37.000000 ./usr/share/info/GraphicalModels.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 22358 2025-02-09 22:54:37.000000 ./usr/share/info/GraphicalModelsMLE.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13593 2025-02-09 22:54:37.000000 ./usr/share/info/Graphics.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 49915 2025-02-09 22:54:37.000000 ./usr/share/info/Graphs.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 21864 2025-02-09 22:54:37.000000 ./usr/share/info/GroebnerStrata.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 5161 2025-02-09 22:54:37.000000 ./usr/share/info/GroebnerWalk.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 21865 2025-02-09 22:54:37.000000 ./usr/share/info/GroebnerStrata.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 5160 2025-02-09 22:54:37.000000 ./usr/share/info/GroebnerWalk.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4070 2025-02-09 22:54:37.000000 ./usr/share/info/Hadamard.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3899 2025-02-09 22:54:37.000000 ./usr/share/info/HigherCIOperators.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 24314 2025-02-09 22:54:37.000000 ./usr/share/info/HighestWeights.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4949 2025-02-09 22:54:37.000000 ./usr/share/info/HodgeIntegrals.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 12155 2025-02-09 22:54:37.000000 ./usr/share/info/HolonomicSystems.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 6201 2025-02-09 22:54:37.000000 ./usr/share/info/HomotopyLieAlgebra.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 12149 2025-02-09 22:54:37.000000 ./usr/share/info/HolonomicSystems.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 6177 2025-02-09 22:54:37.000000 ./usr/share/info/HomotopyLieAlgebra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 41197 2025-02-09 22:54:37.000000 ./usr/share/info/HyperplaneArrangements.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 27596 2025-02-09 22:54:37.000000 ./usr/share/info/IntegralClosure.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 39006 2025-02-09 22:54:37.000000 ./usr/share/info/InvariantRing.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 27609 2025-02-09 22:54:37.000000 ./usr/share/info/IntegralClosure.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 39003 2025-02-09 22:54:37.000000 ./usr/share/info/InvariantRing.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 11535 2025-02-09 22:54:37.000000 ./usr/share/info/InverseSystems.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8960 2025-02-09 22:54:37.000000 ./usr/share/info/InvolutiveBases.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3557 2025-02-09 22:54:37.000000 ./usr/share/info/Isomorphism.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 2855 2025-02-09 22:54:37.000000 ./usr/share/info/JSON.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 20006 2025-02-09 22:54:37.000000 ./usr/share/info/Jets.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 23796 2025-02-09 22:54:37.000000 ./usr/share/info/K3Carpets.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 2854 2025-02-09 22:54:37.000000 ./usr/share/info/JSON.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 20009 2025-02-09 22:54:37.000000 ./usr/share/info/Jets.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 23789 2025-02-09 22:54:37.000000 ./usr/share/info/K3Carpets.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6381 2025-02-09 22:54:37.000000 ./usr/share/info/K3Surfaces.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4495 2025-02-09 22:54:37.000000 ./usr/share/info/Kronecker.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 19078 2025-02-09 22:54:37.000000 ./usr/share/info/KustinMiller.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10852 2025-02-09 22:54:37.000000 ./usr/share/info/LLLBases.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 9916 2025-02-09 22:54:37.000000 ./usr/share/info/LatticePolytopes.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 9915 2025-02-09 22:54:37.000000 ./usr/share/info/LatticePolytopes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 11503 2025-02-09 22:54:37.000000 ./usr/share/info/LexIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 615 2025-02-09 22:54:37.000000 ./usr/share/info/Licenses.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 15563 2025-02-09 22:54:37.000000 ./usr/share/info/LieTypes.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 10857 2025-02-09 22:54:37.000000 ./usr/share/info/LinearTruncations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 11175 2025-02-09 22:54:37.000000 ./usr/share/info/LocalRings.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 10854 2025-02-09 22:54:37.000000 ./usr/share/info/LinearTruncations.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 11176 2025-02-09 22:54:37.000000 ./usr/share/info/LocalRings.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13952 2025-02-09 22:54:37.000000 ./usr/share/info/M0nbar.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8283 2025-02-09 22:54:37.000000 ./usr/share/info/MCMApproximations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 1113844 2025-02-09 22:54:37.000000 ./usr/share/info/Macaulay2Doc.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 1113816 2025-02-09 22:54:37.000000 ./usr/share/info/Macaulay2Doc.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4083 2025-02-09 22:54:37.000000 ./usr/share/info/MapleInterface.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5700 2025-02-09 22:54:37.000000 ./usr/share/info/Markov.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 28958 2025-02-09 22:54:37.000000 ./usr/share/info/MatchingFields.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 37071 2025-02-09 22:54:37.000000 ./usr/share/info/MatrixSchubert.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 65626 2025-02-09 22:54:37.000000 ./usr/share/info/Matroids.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 37075 2025-02-09 22:54:37.000000 ./usr/share/info/MatrixSchubert.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 65624 2025-02-09 22:54:37.000000 ./usr/share/info/Matroids.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1102 2025-02-09 22:54:37.000000 ./usr/share/info/MergeTeX.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 6794 2025-02-09 22:54:37.000000 ./usr/share/info/MinimalPrimes.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 6828 2025-02-09 22:54:37.000000 ./usr/share/info/MinimalPrimes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3484 2025-02-09 22:54:37.000000 ./usr/share/info/Miura.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 7557 2025-02-09 22:54:37.000000 ./usr/share/info/MixedMultiplicity.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 6073 2025-02-09 22:54:37.000000 ./usr/share/info/ModuleDeformations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14353 2025-02-09 22:54:37.000000 ./usr/share/info/MonodromySolver.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 7559 2025-02-09 22:54:37.000000 ./usr/share/info/MixedMultiplicity.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 6072 2025-02-09 22:54:37.000000 ./usr/share/info/ModuleDeformations.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14349 2025-02-09 22:54:37.000000 ./usr/share/info/MonodromySolver.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 20144 2025-02-09 22:54:37.000000 ./usr/share/info/MonomialAlgebras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12310 2025-02-09 22:54:37.000000 ./usr/share/info/MonomialIntegerPrograms.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5455 2025-02-09 22:54:37.000000 ./usr/share/info/MonomialOrbits.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 9408 2025-02-09 22:54:37.000000 ./usr/share/info/Msolve.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 9390 2025-02-09 22:54:37.000000 ./usr/share/info/Msolve.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10830 2025-02-09 22:54:37.000000 ./usr/share/info/MultiGradedRationalMap.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8897 2025-02-09 22:54:37.000000 ./usr/share/info/MultigradedBGG.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4771 2025-02-09 22:54:37.000000 ./usr/share/info/MultigradedImplicitization.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 7061 2025-02-09 22:54:37.000000 ./usr/share/info/MultiplicitySequence.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 7060 2025-02-09 22:54:37.000000 ./usr/share/info/MultiplicitySequence.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7256 2025-02-09 22:54:37.000000 ./usr/share/info/MultiplierIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3912 2025-02-09 22:54:37.000000 ./usr/share/info/MultiplierIdealsDim2.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 71199 2025-02-09 22:54:37.000000 ./usr/share/info/MultiprojectiveVarieties.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 71194 2025-02-09 22:54:37.000000 ./usr/share/info/MultiprojectiveVarieties.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 20314 2025-02-09 22:54:37.000000 ./usr/share/info/NAGtypes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 84284 2025-02-09 22:54:37.000000 ./usr/share/info/NCAlgebra.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 15476 2025-02-09 22:54:37.000000 ./usr/share/info/Nauty.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14246 2025-02-09 22:54:37.000000 ./usr/share/info/NautyGraphs.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 15501 2025-02-09 22:54:37.000000 ./usr/share/info/Nauty.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14248 2025-02-09 22:54:37.000000 ./usr/share/info/NautyGraphs.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3580 2025-02-09 22:54:37.000000 ./usr/share/info/NoetherNormalization.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 34385 2025-02-09 22:54:37.000000 ./usr/share/info/NoetherianOperators.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 34384 2025-02-09 22:54:37.000000 ./usr/share/info/NoetherianOperators.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2267 2025-02-09 22:54:37.000000 ./usr/share/info/NonminimalComplexes.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 109755 2025-02-09 22:54:37.000000 ./usr/share/info/NormalToricVarieties.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 109753 2025-02-09 22:54:37.000000 ./usr/share/info/NormalToricVarieties.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 30351 2025-02-09 22:54:37.000000 ./usr/share/info/Normaliz.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2848 2025-02-09 22:54:37.000000 ./usr/share/info/NumericSolutions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 34315 2025-02-09 22:54:37.000000 ./usr/share/info/NumericalAlgebraicGeometry.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13328 2025-02-09 22:54:37.000000 ./usr/share/info/NumericalCertification.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 17744 2025-02-09 22:54:37.000000 ./usr/share/info/NumericalImplicitization.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2930 2025-02-09 22:54:37.000000 ./usr/share/info/NumericalLinearAlgebra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 32895 2025-02-09 22:54:37.000000 ./usr/share/info/NumericalSchubertCalculus.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 27828 2025-02-09 22:54:37.000000 ./usr/share/info/NumericalSemigroups.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 19486 2025-02-09 22:54:37.000000 ./usr/share/info/OIGroebnerBases.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 27817 2025-02-09 22:54:37.000000 ./usr/share/info/NumericalSemigroups.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 19450 2025-02-09 22:54:37.000000 ./usr/share/info/OIGroebnerBases.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 55957 2025-02-09 22:54:37.000000 ./usr/share/info/OldPolyhedra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 30009 2025-02-09 22:54:37.000000 ./usr/share/info/OldToricVectorBundles.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1912 2025-02-09 22:54:37.000000 ./usr/share/info/OnlineLookup.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1325 2025-02-09 22:54:37.000000 ./usr/share/info/OpenMath.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 26322 2025-02-09 22:54:37.000000 ./usr/share/info/PHCpack.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2386 2025-02-09 22:54:37.000000 ./usr/share/info/PackageCitations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1457 2025-02-09 22:54:37.000000 ./usr/share/info/PackageTemplate.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9040 2025-02-09 22:54:37.000000 ./usr/share/info/Parametrization.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6542 2025-02-09 22:54:37.000000 ./usr/share/info/Parsing.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 28919 2025-02-09 22:54:37.000000 ./usr/share/info/PencilsOfQuadrics.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 28920 2025-02-09 22:54:37.000000 ./usr/share/info/PencilsOfQuadrics.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4513 2025-02-09 22:54:37.000000 ./usr/share/info/Permanents.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 14035 2025-02-09 22:54:37.000000 ./usr/share/info/Permutations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 18932 2025-02-09 22:54:37.000000 ./usr/share/info/PhylogeneticTrees.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9511 2025-02-09 22:54:37.000000 ./usr/share/info/PieriMaps.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 11653 2025-02-09 22:54:37.000000 ./usr/share/info/PlaneCurveLinearSeries.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 9560 2025-02-09 22:54:37.000000 ./usr/share/info/Points.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 9558 2025-02-09 22:54:37.000000 ./usr/share/info/Points.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 69622 2025-02-09 22:54:37.000000 ./usr/share/info/Polyhedra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1546 2025-02-09 22:54:37.000000 ./usr/share/info/Polymake.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 8225 2025-02-09 22:54:37.000000 ./usr/share/info/PolyominoIdeals.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 53483 2025-02-09 22:54:37.000000 ./usr/share/info/Posets.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 8213 2025-02-09 22:54:37.000000 ./usr/share/info/PolyominoIdeals.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 53484 2025-02-09 22:54:37.000000 ./usr/share/info/Posets.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9582 2025-02-09 22:54:37.000000 ./usr/share/info/PositivityToricBundles.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 15019 2025-02-09 22:54:37.000000 ./usr/share/info/PrimaryDecomposition.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 15021 2025-02-09 22:54:37.000000 ./usr/share/info/PrimaryDecomposition.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9973 2025-02-09 22:54:37.000000 ./usr/share/info/Probability.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9446 2025-02-09 22:54:37.000000 ./usr/share/info/PruneComplex.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2625 2025-02-09 22:54:37.000000 ./usr/share/info/PseudomonomialPrimaryDecomposition.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2018 2025-02-09 22:54:37.000000 ./usr/share/info/Pullback.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5094 2025-02-09 22:54:37.000000 ./usr/share/info/PushForward.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 11285 2025-02-09 22:54:37.000000 ./usr/share/info/Python.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 11286 2025-02-09 22:54:37.000000 ./usr/share/info/Python.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9091 2025-02-09 22:54:37.000000 ./usr/share/info/QthPower.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5811 2025-02-09 22:54:37.000000 ./usr/share/info/QuadraticIdealExamplesByRoos.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6487 2025-02-09 22:54:37.000000 ./usr/share/info/Quasidegrees.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 56330 2025-02-09 22:54:37.000000 ./usr/share/info/QuaternaryQuartics.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 55654 2025-02-09 22:54:37.000000 ./usr/share/info/QuaternaryQuartics.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13134 2025-02-09 22:54:37.000000 ./usr/share/info/QuillenSuslin.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13062 2025-02-09 22:54:37.000000 ./usr/share/info/RInterface.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 1210 2025-02-09 22:54:37.000000 ./usr/share/info/RandomCanonicalCurves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 7980 2025-02-09 22:54:37.000000 ./usr/share/info/RandomComplexes.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 1209 2025-02-09 22:54:37.000000 ./usr/share/info/RandomCanonicalCurves.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 7955 2025-02-09 22:54:37.000000 ./usr/share/info/RandomComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 610 2025-02-09 22:54:37.000000 ./usr/share/info/RandomCurves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 3801 2025-02-09 22:54:37.000000 ./usr/share/info/RandomCurvesOverVerySmallFiniteFields.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 3802 2025-02-09 22:54:37.000000 ./usr/share/info/RandomCurvesOverVerySmallFiniteFields.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3420 2025-02-09 22:54:37.000000 ./usr/share/info/RandomGenus14Curves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14430 2025-02-09 22:54:37.000000 ./usr/share/info/RandomIdeals.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14435 2025-02-09 22:54:37.000000 ./usr/share/info/RandomIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 30673 2025-02-09 22:54:37.000000 ./usr/share/info/RandomMonomialIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3289 2025-02-09 22:54:37.000000 ./usr/share/info/RandomObjects.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3734 2025-02-09 22:54:37.000000 ./usr/share/info/RandomPlaneCurves.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 15424 2025-02-09 22:54:37.000000 ./usr/share/info/RandomPoints.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6891 2025-02-09 22:54:37.000000 ./usr/share/info/RandomSpaceCurves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 18130 2025-02-09 22:54:37.000000 ./usr/share/info/RationalMaps.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 18129 2025-02-09 22:54:37.000000 ./usr/share/info/RationalMaps.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1490 2025-02-09 22:54:37.000000 ./usr/share/info/RationalPoints.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10495 2025-02-09 22:54:37.000000 ./usr/share/info/RationalPoints2.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 19846 2025-02-09 22:54:37.000000 ./usr/share/info/ReactionNetworks.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8966 2025-02-09 22:54:37.000000 ./usr/share/info/RealRoots.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 37872 2025-02-09 22:54:37.000000 ./usr/share/info/ReesAlgebra.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 37860 2025-02-09 22:54:37.000000 ./usr/share/info/ReesAlgebra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12251 2025-02-09 22:54:37.000000 ./usr/share/info/ReflexivePolytopesDB.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 2504 2025-02-09 22:54:37.000000 ./usr/share/info/Regularity.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 2503 2025-02-09 22:54:37.000000 ./usr/share/info/Regularity.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6029 2025-02-09 22:54:37.000000 ./usr/share/info/RelativeCanonicalResolution.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5678 2025-02-09 22:54:37.000000 ./usr/share/info/ResLengthThree.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7149 2025-02-09 22:54:37.000000 ./usr/share/info/ResidualIntersections.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4414 2025-02-09 22:54:37.000000 ./usr/share/info/ResolutionsOfStanleyReisnerRings.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 46166 2025-02-09 22:54:37.000000 ./usr/share/info/Resultants.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 8536 2025-02-09 22:54:37.000000 ./usr/share/info/RunExternalM2.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 46163 2025-02-09 22:54:37.000000 ./usr/share/info/Resultants.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 8534 2025-02-09 22:54:37.000000 ./usr/share/info/RunExternalM2.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2653 2025-02-09 22:54:37.000000 ./usr/share/info/SCMAlgebras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3837 2025-02-09 22:54:37.000000 ./usr/share/info/SCSCP.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 13043 2025-02-09 22:54:37.000000 ./usr/share/info/SLPexpressions.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 13046 2025-02-09 22:54:37.000000 ./usr/share/info/SLPexpressions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7958 2025-02-09 22:54:37.000000 ./usr/share/info/SLnEquivariantMatrices.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 50606 2025-02-09 22:54:37.000000 ./usr/share/info/SRdeformations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 21905 2025-02-09 22:54:37.000000 ./usr/share/info/SVDComplexes.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 50609 2025-02-09 22:54:37.000000 ./usr/share/info/SRdeformations.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 21906 2025-02-09 22:54:37.000000 ./usr/share/info/SVDComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2428 2025-02-09 22:54:37.000000 ./usr/share/info/SagbiGbDetection.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 10571 2025-02-09 22:54:37.000000 ./usr/share/info/Saturation.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 63514 2025-02-09 22:54:37.000000 ./usr/share/info/Schubert2.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 10565 2025-02-09 22:54:37.000000 ./usr/share/info/Saturation.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 63510 2025-02-09 22:54:37.000000 ./usr/share/info/Schubert2.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4905 2025-02-09 22:54:37.000000 ./usr/share/info/SchurComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4592 2025-02-09 22:54:37.000000 ./usr/share/info/SchurFunctors.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 24757 2025-02-09 22:54:37.000000 ./usr/share/info/SchurRings.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7680 2025-02-09 22:54:37.000000 ./usr/share/info/SchurVeronese.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2382 2025-02-09 22:54:37.000000 ./usr/share/info/SectionRing.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 7454 2025-02-09 22:54:37.000000 ./usr/share/info/SegreClasses.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 7449 2025-02-09 22:54:37.000000 ./usr/share/info/SegreClasses.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7448 2025-02-09 22:54:37.000000 ./usr/share/info/SemidefiniteProgramming.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8617 2025-02-09 22:54:37.000000 ./usr/share/info/Seminormalization.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2397 2025-02-09 22:54:37.000000 ./usr/share/info/Serialization.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8014 2025-02-09 22:54:37.000000 ./usr/share/info/SimpleDoc.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 75503 2025-02-09 22:54:37.000000 ./usr/share/info/SimplicialComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6930 2025-02-09 22:54:37.000000 ./usr/share/info/SimplicialDecomposability.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2702 2025-02-09 22:54:37.000000 ./usr/share/info/SimplicialPosets.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 39786 2025-02-09 22:54:37.000000 ./usr/share/info/SlackIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12911 2025-02-09 22:54:37.000000 ./usr/share/info/SpaceCurves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 26382 2025-02-09 22:54:37.000000 ./usr/share/info/SparseResultants.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 36950 2025-02-09 22:54:37.000000 ./usr/share/info/SpechtModule.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 31912 2025-02-09 22:54:37.000000 ./usr/share/info/SpecialFanoFourfolds.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 26390 2025-02-09 22:54:37.000000 ./usr/share/info/SparseResultants.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 36952 2025-02-09 22:54:37.000000 ./usr/share/info/SpechtModule.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 31907 2025-02-09 22:54:37.000000 ./usr/share/info/SpecialFanoFourfolds.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 290127 2025-02-09 22:54:37.000000 ./usr/share/info/SpectralSequences.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 12259 2025-02-09 22:54:37.000000 ./usr/share/info/StatGraphs.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 12265 2025-02-09 22:54:37.000000 ./usr/share/info/StatGraphs.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2421 2025-02-09 22:54:37.000000 ./usr/share/info/StatePolytope.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7566 2025-02-09 22:54:37.000000 ./usr/share/info/StronglyStableIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 478 2025-02-09 22:54:37.000000 ./usr/share/info/Style.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 28990 2025-02-09 22:54:37.000000 ./usr/share/info/SubalgebraBases.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 15675 2025-02-09 22:54:37.000000 ./usr/share/info/SumsOfSquares.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5073 2025-02-09 22:54:37.000000 ./usr/share/info/SuperLinearAlgebra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2471 2025-02-09 22:54:37.000000 ./usr/share/info/SwitchingFields.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 13586 2025-02-09 22:54:37.000000 ./usr/share/info/SymbolicPowers.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 13587 2025-02-09 22:54:37.000000 ./usr/share/info/SymbolicPowers.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1898 2025-02-09 22:54:37.000000 ./usr/share/info/SymmetricPolynomials.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13753 2025-02-09 22:54:37.000000 ./usr/share/info/TSpreadIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1313 2025-02-09 22:54:37.000000 ./usr/share/info/TangentCone.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 46335 2025-02-09 22:54:37.000000 ./usr/share/info/TateOnProducts.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 21989 2025-02-09 22:54:37.000000 ./usr/share/info/TensorComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2065 2025-02-09 22:54:37.000000 ./usr/share/info/TerraciniLoci.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 30208 2025-02-09 22:54:37.000000 ./usr/share/info/TestIdeals.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 30222 2025-02-09 22:54:37.000000 ./usr/share/info/TestIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 14210 2025-02-09 22:54:37.000000 ./usr/share/info/Text.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 21596 2025-02-09 22:54:37.000000 ./usr/share/info/ThinSincereQuivers.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 8198 2025-02-09 22:54:37.000000 ./usr/share/info/ThreadedGB.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 8050 2025-02-09 22:54:37.000000 ./usr/share/info/ThreadedGB.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13497 2025-02-09 22:54:37.000000 ./usr/share/info/Topcom.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7287 2025-02-09 22:54:37.000000 ./usr/share/info/TorAlgebra.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 3783 2025-02-09 22:54:37.000000 ./usr/share/info/ToricInvariants.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 3778 2025-02-09 22:54:37.000000 ./usr/share/info/ToricInvariants.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3067 2025-02-09 22:54:37.000000 ./usr/share/info/ToricTopology.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 30590 2025-02-09 22:54:37.000000 ./usr/share/info/ToricVectorBundles.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 9253 2025-02-09 22:54:37.000000 ./usr/share/info/TriangularSets.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 13213 2025-02-09 22:54:37.000000 ./usr/share/info/Triangulations.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 9259 2025-02-09 22:54:37.000000 ./usr/share/info/TriangularSets.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 13221 2025-02-09 22:54:37.000000 ./usr/share/info/Triangulations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6682 2025-02-09 22:54:37.000000 ./usr/share/info/Triplets.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10548 2025-02-09 22:54:37.000000 ./usr/share/info/Tropical.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10208 2025-02-09 22:54:37.000000 ./usr/share/info/TropicalToric.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5696 2025-02-09 22:54:37.000000 ./usr/share/info/Truncations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8207 2025-02-09 22:54:37.000000 ./usr/share/info/Units.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4443 2025-02-09 22:54:37.000000 ./usr/share/info/VNumber.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8523 2025-02-09 22:54:37.000000 ./usr/share/info/Valuations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 30035 2025-02-09 22:54:37.000000 ./usr/share/info/Varieties.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 18956 2025-02-09 22:54:37.000000 ./usr/share/info/VectorFields.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 50801 2025-02-09 22:54:37.000000 ./usr/share/info/VectorGraphics.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 17996 2025-02-09 22:54:37.000000 ./usr/share/info/VersalDeformations.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 18002 2025-02-09 22:54:37.000000 ./usr/share/info/VersalDeformations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12909 2025-02-09 22:54:37.000000 ./usr/share/info/VirtualResolutions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10007 2025-02-09 22:54:37.000000 ./usr/share/info/Visualize.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8884 2025-02-09 22:54:37.000000 ./usr/share/info/WeylAlgebras.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 31762 2025-02-09 22:54:37.000000 ./usr/share/info/WeylGroups.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 5857 2025-02-09 22:54:37.000000 ./usr/share/info/WhitneyStratifications.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 31748 2025-02-09 22:54:37.000000 ./usr/share/info/WeylGroups.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 5862 2025-02-09 22:54:37.000000 ./usr/share/info/WhitneyStratifications.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8457 2025-02-09 22:54:37.000000 ./usr/share/info/XML.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 48526 2025-02-09 22:54:37.000000 ./usr/share/info/gfanInterface.info.gz │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/lintian/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/lintian/overrides/ │ │ │ -rw-r--r-- 0 root (0) root (0) 11341 2025-02-09 22:44:40.000000 ./usr/share/lintian/overrides/macaulay2-common │ │ │ lrwxrwxrwx 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/Macaulay2/Style/katex/contrib/auto-render.min.js -> ../../../../javascript/katex/contrib/auto-render.js │ │ │ lrwxrwxrwx 0 root (0) root (0) 0 2025-02-09 22:54:37.000000 ./usr/share/Macaulay2/Style/katex/contrib/copy-tex.min.js -> ../../../../javascript/katex/contrib/copy-tex.js │ │ ├── ./usr/share/doc/Macaulay2/A1BrouwerDegrees/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=16 │ │ │ bWFrZURpYWdvbmFsRm9ybQ== │ │ │ #:len=2204 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAidGhlIEdyb3RoZW5kaWVjay1XaXR0IGNs │ │ │ YXNzIG9mIGEgZGlhZ29uYWwgZm9ybSIsICJsaW5lbnVtIiA9PiAyNSwgSW5wdXRzID0+IHtTUEFO │ │ ├── ./usr/share/doc/Macaulay2/AInfinity/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=35 │ │ │ aGFzTWluaW1hbE11bHQoUmluZyxJbmZpbml0ZU51bWJlcik= │ │ │ #:len=285 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTQ4Nywgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoaGFzTWluaW1hbE11bHQsUmluZyxJbmZpbml0ZU51 │ │ ├── ./usr/share/doc/Macaulay2/AInfinity/example-output/___Check.out │ │ │ @@ -10,25 +10,25 @@ │ │ │ │ │ │ o2 = cokernel | a b c | │ │ │ │ │ │ 1 │ │ │ o2 : R-module, quotient of R │ │ │ │ │ │ i3 : elapsedTime burkeResolution(M, 7, Check => false) │ │ │ - -- 1.63212s elapsed │ │ │ + -- 2.71557s elapsed │ │ │ │ │ │ 1 3 9 27 81 243 729 2187 │ │ │ o3 = R <-- R <-- R <-- R <-- R <-- R <-- R <-- R │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ │ │ │ o3 : Complex │ │ │ │ │ │ i4 : elapsedTime burkeResolution(M, 7, Check => true) │ │ │ - -- 1.93782s elapsed │ │ │ + -- 3.38896s elapsed │ │ │ │ │ │ 1 3 9 27 81 243 729 2187 │ │ │ o4 = R <-- R <-- R <-- R <-- R <-- R <-- R <-- R │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ │ │ │ o4 : Complex │ │ ├── ./usr/share/doc/Macaulay2/AInfinity/html/___Check.html │ │ │ @@ -86,26 +86,26 @@ │ │ │ o2 = cokernel | a b c | │ │ │ │ │ │ 1 │ │ │ o2 : R-module, quotient of R │ │ │ │ │ │ │ │ │
i3 : elapsedTime burkeResolution(M, 7, Check => false)
│ │ │ - -- 1.63212s elapsed
│ │ │ + -- 2.71557s elapsed
│ │ │  
│ │ │        1      3      9      27      81      243      729      2187
│ │ │  o3 = R  <-- R  <-- R  <-- R   <-- R   <-- R    <-- R    <-- R
│ │ │                                                               
│ │ │       0      1      2      3       4       5        6        7
│ │ │  
│ │ │  o3 : Complex
│ │ │ │ │ │ │ │ │
i4 : elapsedTime burkeResolution(M, 7, Check => true)
│ │ │ - -- 1.93782s elapsed
│ │ │ + -- 3.38896s elapsed
│ │ │  
│ │ │        1      3      9      27      81      243      729      2187
│ │ │  o4 = R  <-- R  <-- R  <-- R   <-- R   <-- R    <-- R    <-- R
│ │ │                                                               
│ │ │       0      1      2      3       4       5        6        7
│ │ │  
│ │ │  o4 : Complex
│ │ │ ├── html2text {} │ │ │ │ @@ -24,24 +24,24 @@ │ │ │ │ i2 : M = coker vars R │ │ │ │ │ │ │ │ o2 = cokernel | a b c | │ │ │ │ │ │ │ │ 1 │ │ │ │ o2 : R-module, quotient of R │ │ │ │ i3 : elapsedTime burkeResolution(M, 7, Check => false) │ │ │ │ - -- 1.63212s elapsed │ │ │ │ + -- 2.71557s elapsed │ │ │ │ │ │ │ │ 1 3 9 27 81 243 729 2187 │ │ │ │ o3 = R <-- R <-- R <-- R <-- R <-- R <-- R <-- R │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ │ │ │ │ │ o3 : Complex │ │ │ │ i4 : elapsedTime burkeResolution(M, 7, Check => true) │ │ │ │ - -- 1.93782s elapsed │ │ │ │ + -- 3.38896s elapsed │ │ │ │ │ │ │ │ 1 3 9 27 81 243 729 2187 │ │ │ │ o4 = R <-- R <-- R <-- R <-- R <-- R <-- R <-- R │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ │ │ │ │ │ o4 : Complex │ │ ├── ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=92 │ │ │ aW5kdWNlZFJlZHVjZWRTaW1wbGljaWFsQ2hhaW5Db21wbGV4TWFwKEFic3RyYWN0U2ltcGxpY2lh │ │ │ bENvbXBsZXgsQWJzdHJhY3RTaW1wbGljaWFsQ29tcGxleCk= │ │ │ #:len=502 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNzMyLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ ├── ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/___Calculations_spwith_sprandom_spsimplicial_spcomplexes.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 6456613336951100320 │ │ │ │ │ │ i1 : setRandomSeed(currentTime()); │ │ │ │ │ │ i2 : K = randomAbstractSimplicialComplex(4) │ │ │ │ │ │ o2 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ - 0 => {{2}, {3}} │ │ │ - 1 => {{2, 3}} │ │ │ + 0 => {{3}, {4}} │ │ │ + 1 => {{3, 4}} │ │ │ │ │ │ o2 : AbstractSimplicialComplex │ │ │ │ │ │ i3 : prune HH simplicialChainComplex K │ │ │ │ │ │ 1 │ │ │ o3 = ZZ │ │ │ @@ -19,17 +19,18 @@ │ │ │ │ │ │ o3 : Complex │ │ │ │ │ │ i4 : setRandomSeed(currentTime()); │ │ │ │ │ │ i5 : L = randomAbstractSimplicialComplex(6,3) │ │ │ │ │ │ -o5 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ - 0 => {{3}, {6}} │ │ │ - 1 => {{3, 6}} │ │ │ +o5 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ + 0 => {{2}, {3}, {6}} │ │ │ + 1 => {{2, 3}, {2, 6}, {3, 6}} │ │ │ + 2 => {{2, 3, 6}} │ │ │ │ │ │ o5 : AbstractSimplicialComplex │ │ │ │ │ │ i6 : prune HH simplicialChainComplex L │ │ │ │ │ │ 1 │ │ │ o6 = ZZ │ │ │ @@ -38,50 +39,50 @@ │ │ │ │ │ │ o6 : Complex │ │ │ │ │ │ i7 : setRandomSeed(currentTime()); │ │ │ │ │ │ i8 : M = randomAbstractSimplicialComplex(6,3,2) │ │ │ │ │ │ -o8 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ +o8 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ 0 => {{1}, {2}, {3}, {4}, {5}, {6}} │ │ │ - 1 => {{1, 2}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {3, 6}, {5, 6}} │ │ │ - 2 => {{1, 2, 5}, {2, 3, 4}, {3, 5, 6}} │ │ │ + 1 => {{1, 3}, {1, 4}, {1, 5}, {2, 5}, {2, 6}, {3, 4}, {4, 5}, {5, 6}} │ │ │ + 2 => {{1, 3, 4}, {1, 4, 5}, {2, 5, 6}} │ │ │ │ │ │ o8 : AbstractSimplicialComplex │ │ │ │ │ │ i9 : prune HH simplicialChainComplex M │ │ │ │ │ │ - 1 1 │ │ │ -o9 = ZZ <-- ZZ │ │ │ - │ │ │ - 0 1 │ │ │ + 1 │ │ │ +o9 = ZZ │ │ │ + │ │ │ + 0 │ │ │ │ │ │ o9 : Complex │ │ │ │ │ │ i10 : setRandomSeed(currentTime()); │ │ │ │ │ │ i11 : K = randomAbstractSimplicialComplex(4) │ │ │ │ │ │ o11 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ - 0 => {{2}, {3}} │ │ │ - 1 => {{2, 3}} │ │ │ + 0 => {{3}, {4}} │ │ │ + 1 => {{3, 4}} │ │ │ │ │ │ o11 : AbstractSimplicialComplex │ │ │ │ │ │ i12 : J = randomSubSimplicialComplex(K) │ │ │ │ │ │ o12 = AbstractSimplicialComplex{-1 => {{}}} │ │ │ - 0 => {{2}} │ │ │ + 0 => {{4}} │ │ │ │ │ │ o12 : AbstractSimplicialComplex │ │ │ │ │ │ i13 : inducedSimplicialChainComplexMap(K,J) │ │ │ │ │ │ 2 1 │ │ │ o13 = 0 : ZZ <--------- ZZ : 0 │ │ │ - | 1 | │ │ │ | 0 | │ │ │ + | 1 | │ │ │ │ │ │ o13 : ComplexMap │ │ │ │ │ │ i14 : │ │ ├── ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/_random__Abstract__Simplicial__Complex.out │ │ │ @@ -1,36 +1,34 @@ │ │ │ -- -*- M2-comint -*- hash: 9222441599761629245 │ │ │ │ │ │ i1 : setRandomSeed(currentTime()); │ │ │ │ │ │ i2 : K = randomAbstractSimplicialComplex(4) │ │ │ │ │ │ -o2 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ - 0 => {{1}, {2}, {4}} │ │ │ - 1 => {{1, 2}, {1, 4}, {2, 4}} │ │ │ - 2 => {{1, 2, 4}} │ │ │ +o2 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ + 0 => {{1}, {3}} │ │ │ + 1 => {{1, 3}} │ │ │ │ │ │ o2 : AbstractSimplicialComplex │ │ │ │ │ │ i3 : setRandomSeed(currentTime()); │ │ │ │ │ │ i4 : L = randomAbstractSimplicialComplex(6,3) │ │ │ │ │ │ -o4 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ - 0 => {{1}, {4}, {6}} │ │ │ - 1 => {{1, 4}, {1, 6}, {4, 6}} │ │ │ - 2 => {{1, 4, 6}} │ │ │ +o4 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ + 0 => {{1}, {3}} │ │ │ + 1 => {{1, 3}} │ │ │ │ │ │ o4 : AbstractSimplicialComplex │ │ │ │ │ │ i5 : setRandomSeed(currentTime()); │ │ │ │ │ │ i6 : M = randomAbstractSimplicialComplex(6,3,2) │ │ │ │ │ │ -o6 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ - 0 => {{1}, {2}, {3}, {4}, {5}, {6}} │ │ │ - 1 => {{1, 3}, {1, 5}, {2, 4}, {2, 5}, {3, 5}, {4, 5}, {4, 6}, {5, 6}} │ │ │ - 2 => {{1, 3, 5}, {2, 4, 5}, {4, 5, 6}} │ │ │ +o6 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ + 0 => {{1}, {2}, {3}, {4}, {5}} │ │ │ + 1 => {{1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 5}, {3, 4}, {3, 5}} │ │ │ + 2 => {{1, 3, 4}, {1, 3, 5}, {2, 3, 5}} │ │ │ │ │ │ o6 : AbstractSimplicialComplex │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/example-output/_random__Sub__Simplicial__Complex.out │ │ │ @@ -1,18 +1,23 @@ │ │ │ -- -*- M2-comint -*- hash: 13473104809235542297 │ │ │ │ │ │ i1 : setRandomSeed(currentTime()); │ │ │ │ │ │ i2 : K = randomAbstractSimplicialComplex(4) │ │ │ │ │ │ -o2 = AbstractSimplicialComplex{-1 => {{}}} │ │ │ - 0 => {{1}} │ │ │ +o2 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ + 0 => {{2}, {3}, {4}} │ │ │ + 1 => {{2, 3}, {2, 4}, {3, 4}} │ │ │ + 2 => {{2, 3, 4}} │ │ │ │ │ │ o2 : AbstractSimplicialComplex │ │ │ │ │ │ i3 : J = randomSubSimplicialComplex(K) │ │ │ │ │ │ -o3 = AbstractSimplicialComplex{-1 => {{}}} │ │ │ +o3 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ + 0 => {{2}, {3}, {4}} │ │ │ + 1 => {{2, 3}, {2, 4}, {3, 4}} │ │ │ + 2 => {{2, 3, 4}} │ │ │ │ │ │ o3 : AbstractSimplicialComplex │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/___Calculations_spwith_sprandom_spsimplicial_spcomplexes.html │ │ │ @@ -53,16 +53,16 @@ │ │ │ │ │ │
i1 : setRandomSeed(currentTime());
│ │ │ │ │ │ │ │ │
i2 : K = randomAbstractSimplicialComplex(4)
│ │ │  
│ │ │  o2 = AbstractSimplicialComplex{-1 => {{}}     }
│ │ │ -                               0 => {{2}, {3}}
│ │ │ -                               1 => {{2, 3}}
│ │ │ +                               0 => {{3}, {4}}
│ │ │ +                               1 => {{3, 4}}
│ │ │  
│ │ │  o2 : AbstractSimplicialComplex
│ │ │ │ │ │ │ │ │
i3 : prune HH simplicialChainComplex K
│ │ │  
│ │ │         1
│ │ │ @@ -79,17 +79,18 @@
│ │ │          
│ │ │            
│ │ │  
│ │ │            
│ │ │  
│ │ │            
│ │ │  
│ │ │  
│ │ │            
│ │ │  
│ │ │            
│ │ │  
│ │ │            
│ │ │  
│ │ │          
i4 : setRandomSeed(currentTime());
│ │ │
i5 : L = randomAbstractSimplicialComplex(6,3)
│ │ │  
│ │ │ -o5 = AbstractSimplicialComplex{-1 => {{}}     }
│ │ │ -                               0 => {{3}, {6}}
│ │ │ -                               1 => {{3, 6}}
│ │ │ +o5 = AbstractSimplicialComplex{-1 => {{}}                   }
│ │ │ +                               0 => {{2}, {3}, {6}}
│ │ │ +                               1 => {{2, 3}, {2, 6}, {3, 6}}
│ │ │ +                               2 => {{2, 3, 6}}
│ │ │  
│ │ │  o5 : AbstractSimplicialComplex
│ │ │
i6 : prune HH simplicialChainComplex L
│ │ │  
│ │ │         1
│ │ │ @@ -106,28 +107,28 @@
│ │ │          
│ │ │            
│ │ │  
│ │ │            
│ │ │  
│ │ │            
│ │ │  
│ │ │          
i7 : setRandomSeed(currentTime());
│ │ │
i8 : M = randomAbstractSimplicialComplex(6,3,2)
│ │ │  
│ │ │ -o8 = AbstractSimplicialComplex{-1 => {{}}                                                                   }
│ │ │ +o8 = AbstractSimplicialComplex{-1 => {{}}                                                           }
│ │ │                                 0 => {{1}, {2}, {3}, {4}, {5}, {6}}
│ │ │ -                               1 => {{1, 2}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {3, 6}, {5, 6}}
│ │ │ -                               2 => {{1, 2, 5}, {2, 3, 4}, {3, 5, 6}}
│ │ │ +                               1 => {{1, 3}, {1, 4}, {1, 5}, {2, 5}, {2, 6}, {3, 4}, {4, 5}, {5, 6}}
│ │ │ +                               2 => {{1, 3, 4}, {1, 4, 5}, {2, 5, 6}}
│ │ │  
│ │ │  o8 : AbstractSimplicialComplex
│ │ │
i9 : prune HH simplicialChainComplex M
│ │ │  
│ │ │ -       1       1
│ │ │ -o9 = ZZ  <-- ZZ
│ │ │ -              
│ │ │ -     0       1
│ │ │ +       1
│ │ │ +o9 = ZZ
│ │ │ +      
│ │ │ +     0
│ │ │  
│ │ │  o9 : Complex
│ │ │
│ │ │
│ │ │

Creates a random sub-simplicial complex of a given simplicial complex.

│ │ │
│ │ │ @@ -135,34 +136,34 @@ │ │ │
i10 : setRandomSeed(currentTime());
│ │ │
i11 : K = randomAbstractSimplicialComplex(4)
│ │ │  
│ │ │  o11 = AbstractSimplicialComplex{-1 => {{}}     }
│ │ │ -                                0 => {{2}, {3}}
│ │ │ -                                1 => {{2, 3}}
│ │ │ +                                0 => {{3}, {4}}
│ │ │ +                                1 => {{3, 4}}
│ │ │  
│ │ │  o11 : AbstractSimplicialComplex
│ │ │
i12 : J = randomSubSimplicialComplex(K)
│ │ │  
│ │ │  o12 = AbstractSimplicialComplex{-1 => {{}}}
│ │ │ -                                0 => {{2}}
│ │ │ +                                0 => {{4}}
│ │ │  
│ │ │  o12 : AbstractSimplicialComplex
│ │ │
i13 : inducedSimplicialChainComplexMap(K,J)
│ │ │  
│ │ │              2              1
│ │ │  o13 = 0 : ZZ  <--------- ZZ  : 0
│ │ │ -                 | 1 |
│ │ │                   | 0 |
│ │ │ +                 | 1 |
│ │ │  
│ │ │  o13 : ComplexMap
│ │ │
│ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -10,33 +10,34 @@ │ │ │ │ be performed on random simplicial complexes. │ │ │ │ Create a random abstract simplicial complex with vertices supported on a subset │ │ │ │ of [n] = {1,...,n}. │ │ │ │ i1 : setRandomSeed(currentTime()); │ │ │ │ i2 : K = randomAbstractSimplicialComplex(4) │ │ │ │ │ │ │ │ o2 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ │ - 0 => {{2}, {3}} │ │ │ │ - 1 => {{2, 3}} │ │ │ │ + 0 => {{3}, {4}} │ │ │ │ + 1 => {{3, 4}} │ │ │ │ │ │ │ │ o2 : AbstractSimplicialComplex │ │ │ │ i3 : prune HH simplicialChainComplex K │ │ │ │ │ │ │ │ 1 │ │ │ │ o3 = ZZ │ │ │ │ │ │ │ │ 0 │ │ │ │ │ │ │ │ o3 : Complex │ │ │ │ Create a random simplicial complex on [n] with dimension at most equal to r. │ │ │ │ i4 : setRandomSeed(currentTime()); │ │ │ │ i5 : L = randomAbstractSimplicialComplex(6,3) │ │ │ │ │ │ │ │ -o5 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ │ - 0 => {{3}, {6}} │ │ │ │ - 1 => {{3, 6}} │ │ │ │ +o5 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ │ + 0 => {{2}, {3}, {6}} │ │ │ │ + 1 => {{2, 3}, {2, 6}, {3, 6}} │ │ │ │ + 2 => {{2, 3, 6}} │ │ │ │ │ │ │ │ o5 : AbstractSimplicialComplex │ │ │ │ i6 : prune HH simplicialChainComplex L │ │ │ │ │ │ │ │ 1 │ │ │ │ o6 = ZZ │ │ │ │ │ │ │ │ @@ -48,43 +49,43 @@ │ │ │ │ binomial(binomial(n,d+1),m) possibilities. │ │ │ │ i7 : setRandomSeed(currentTime()); │ │ │ │ i8 : M = randomAbstractSimplicialComplex(6,3,2) │ │ │ │ │ │ │ │ o8 = AbstractSimplicialComplex{-1 => {{}} │ │ │ │ } │ │ │ │ 0 => {{1}, {2}, {3}, {4}, {5}, {6}} │ │ │ │ - 1 => {{1, 2}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, │ │ │ │ -{3, 4}, {3, 5}, {3, 6}, {5, 6}} │ │ │ │ - 2 => {{1, 2, 5}, {2, 3, 4}, {3, 5, 6}} │ │ │ │ + 1 => {{1, 3}, {1, 4}, {1, 5}, {2, 5}, {2, 6}, │ │ │ │ +{3, 4}, {4, 5}, {5, 6}} │ │ │ │ + 2 => {{1, 3, 4}, {1, 4, 5}, {2, 5, 6}} │ │ │ │ │ │ │ │ o8 : AbstractSimplicialComplex │ │ │ │ i9 : prune HH simplicialChainComplex M │ │ │ │ │ │ │ │ - 1 1 │ │ │ │ -o9 = ZZ <-- ZZ │ │ │ │ + 1 │ │ │ │ +o9 = ZZ │ │ │ │ │ │ │ │ - 0 1 │ │ │ │ + 0 │ │ │ │ │ │ │ │ o9 : Complex │ │ │ │ Creates a random sub-simplicial complex of a given simplicial complex. │ │ │ │ i10 : setRandomSeed(currentTime()); │ │ │ │ i11 : K = randomAbstractSimplicialComplex(4) │ │ │ │ │ │ │ │ o11 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ │ - 0 => {{2}, {3}} │ │ │ │ - 1 => {{2, 3}} │ │ │ │ + 0 => {{3}, {4}} │ │ │ │ + 1 => {{3, 4}} │ │ │ │ │ │ │ │ o11 : AbstractSimplicialComplex │ │ │ │ i12 : J = randomSubSimplicialComplex(K) │ │ │ │ │ │ │ │ o12 = AbstractSimplicialComplex{-1 => {{}}} │ │ │ │ - 0 => {{2}} │ │ │ │ + 0 => {{4}} │ │ │ │ │ │ │ │ o12 : AbstractSimplicialComplex │ │ │ │ i13 : inducedSimplicialChainComplexMap(K,J) │ │ │ │ │ │ │ │ 2 1 │ │ │ │ o13 = 0 : ZZ <--------- ZZ : 0 │ │ │ │ - | 1 | │ │ │ │ | 0 | │ │ │ │ + | 1 | │ │ │ │ │ │ │ │ o13 : ComplexMap │ │ ├── ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/_random__Abstract__Simplicial__Complex.html │ │ │ @@ -50,54 +50,52 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i1 : setRandomSeed(currentTime());
│ │ │
i2 : K = randomAbstractSimplicialComplex(4)
│ │ │  
│ │ │ -o2 = AbstractSimplicialComplex{-1 => {{}}                   }
│ │ │ -                               0 => {{1}, {2}, {4}}
│ │ │ -                               1 => {{1, 2}, {1, 4}, {2, 4}}
│ │ │ -                               2 => {{1, 2, 4}}
│ │ │ +o2 = AbstractSimplicialComplex{-1 => {{}}     }
│ │ │ +                               0 => {{1}, {3}}
│ │ │ +                               1 => {{1, 3}}
│ │ │  
│ │ │  o2 : AbstractSimplicialComplex
│ │ │
│ │ │
│ │ │

Create a random simplicial complex on [n] with dimension at most equal to r.

│ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i3 : setRandomSeed(currentTime());
│ │ │
i4 : L = randomAbstractSimplicialComplex(6,3)
│ │ │  
│ │ │ -o4 = AbstractSimplicialComplex{-1 => {{}}                   }
│ │ │ -                               0 => {{1}, {4}, {6}}
│ │ │ -                               1 => {{1, 4}, {1, 6}, {4, 6}}
│ │ │ -                               2 => {{1, 4, 6}}
│ │ │ +o4 = AbstractSimplicialComplex{-1 => {{}}     }
│ │ │ +                               0 => {{1}, {3}}
│ │ │ +                               1 => {{1, 3}}
│ │ │  
│ │ │  o4 : AbstractSimplicialComplex
│ │ │
│ │ │
│ │ │

Create the random complex Y_d(n,m) which has vertex set [n] and complete (d − 1)-skeleton, and has exactly m d-dimensional faces, chosen at random from all binomial(binomial(n,d+1),m) possibilities.

│ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i5 : setRandomSeed(currentTime());
│ │ │
i6 : M = randomAbstractSimplicialComplex(6,3,2)
│ │ │  
│ │ │ -o6 = AbstractSimplicialComplex{-1 => {{}}                                                           }
│ │ │ -                               0 => {{1}, {2}, {3}, {4}, {5}, {6}}
│ │ │ -                               1 => {{1, 3}, {1, 5}, {2, 4}, {2, 5}, {3, 5}, {4, 5}, {4, 6}, {5, 6}}
│ │ │ -                               2 => {{1, 3, 5}, {2, 4, 5}, {4, 5, 6}}
│ │ │ +o6 = AbstractSimplicialComplex{-1 => {{}}                                                   }
│ │ │ +                               0 => {{1}, {2}, {3}, {4}, {5}}
│ │ │ +                               1 => {{1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 5}, {3, 4}, {3, 5}}
│ │ │ +                               2 => {{1, 3, 4}, {1, 3, 5}, {2, 3, 5}}
│ │ │  
│ │ │  o6 : AbstractSimplicialComplex
│ │ │
│ │ │ │ │ │
│ │ │

See also

│ │ │ ├── html2text {} │ │ │ │ @@ -6,42 +6,40 @@ │ │ │ │ ************ rraannddoommAAbbssttrraaccttSSiimmpplliicciiaallCCoommpplleexx ---- CCrreeaattee aa rraannddoomm ssiimmpplliicciiaall sseett ************ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Create a random abstract simplicial complex with vertices supported on a subset │ │ │ │ of [n] = {1,...,n}. │ │ │ │ i1 : setRandomSeed(currentTime()); │ │ │ │ i2 : K = randomAbstractSimplicialComplex(4) │ │ │ │ │ │ │ │ -o2 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ │ - 0 => {{1}, {2}, {4}} │ │ │ │ - 1 => {{1, 2}, {1, 4}, {2, 4}} │ │ │ │ - 2 => {{1, 2, 4}} │ │ │ │ +o2 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ │ + 0 => {{1}, {3}} │ │ │ │ + 1 => {{1, 3}} │ │ │ │ │ │ │ │ o2 : AbstractSimplicialComplex │ │ │ │ Create a random simplicial complex on [n] with dimension at most equal to r. │ │ │ │ i3 : setRandomSeed(currentTime()); │ │ │ │ i4 : L = randomAbstractSimplicialComplex(6,3) │ │ │ │ │ │ │ │ -o4 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ │ - 0 => {{1}, {4}, {6}} │ │ │ │ - 1 => {{1, 4}, {1, 6}, {4, 6}} │ │ │ │ - 2 => {{1, 4, 6}} │ │ │ │ +o4 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ │ + 0 => {{1}, {3}} │ │ │ │ + 1 => {{1, 3}} │ │ │ │ │ │ │ │ o4 : AbstractSimplicialComplex │ │ │ │ Create the random complex Y_d(n,m) which has vertex set [n] and complete (d − │ │ │ │ 1)-skeleton, and has exactly m d-dimensional faces, chosen at random from all │ │ │ │ binomial(binomial(n,d+1),m) possibilities. │ │ │ │ i5 : setRandomSeed(currentTime()); │ │ │ │ i6 : M = randomAbstractSimplicialComplex(6,3,2) │ │ │ │ │ │ │ │ o6 = AbstractSimplicialComplex{-1 => {{}} │ │ │ │ } │ │ │ │ - 0 => {{1}, {2}, {3}, {4}, {5}, {6}} │ │ │ │ - 1 => {{1, 3}, {1, 5}, {2, 4}, {2, 5}, {3, 5}, │ │ │ │ -{4, 5}, {4, 6}, {5, 6}} │ │ │ │ - 2 => {{1, 3, 5}, {2, 4, 5}, {4, 5, 6}} │ │ │ │ + 0 => {{1}, {2}, {3}, {4}, {5}} │ │ │ │ + 1 => {{1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 5}, │ │ │ │ +{3, 4}, {3, 5}} │ │ │ │ + 2 => {{1, 3, 4}, {1, 3, 5}, {2, 3, 5}} │ │ │ │ │ │ │ │ o6 : AbstractSimplicialComplex │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_n_d_o_m -- get a random object │ │ │ │ * randomSquareFreeMonomialIdeal (missing documentation) │ │ │ │ ********** WWaayyss ttoo uussee rraannddoommAAbbssttrraaccttSSiimmpplliicciiaallCCoommpplleexx:: ********** │ │ │ │ * randomAbstractSimplicialComplex(ZZ) │ │ ├── ./usr/share/doc/Macaulay2/AbstractSimplicialComplexes/html/_random__Sub__Simplicial__Complex.html │ │ │ @@ -50,23 +50,28 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i1 : setRandomSeed(currentTime());
│ │ │
i2 : K = randomAbstractSimplicialComplex(4)
│ │ │  
│ │ │ -o2 = AbstractSimplicialComplex{-1 => {{}}}
│ │ │ -                               0 => {{1}}
│ │ │ +o2 = AbstractSimplicialComplex{-1 => {{}}                   }
│ │ │ +                               0 => {{2}, {3}, {4}}
│ │ │ +                               1 => {{2, 3}, {2, 4}, {3, 4}}
│ │ │ +                               2 => {{2, 3, 4}}
│ │ │  
│ │ │  o2 : AbstractSimplicialComplex
│ │ │
i3 : J = randomSubSimplicialComplex(K)
│ │ │  
│ │ │ -o3 = AbstractSimplicialComplex{-1 => {{}}}
│ │ │ +o3 = AbstractSimplicialComplex{-1 => {{}}                   }
│ │ │ +                               0 => {{2}, {3}, {4}}
│ │ │ +                               1 => {{2, 3}, {2, 4}, {3, 4}}
│ │ │ +                               2 => {{2, 3, 4}}
│ │ │  
│ │ │  o3 : AbstractSimplicialComplex
│ │ │
│ │ │
│ │ │
│ │ │

Ways to use randomSubSimplicialComplex:

│ │ │ ├── html2text {} │ │ │ │ @@ -6,20 +6,25 @@ │ │ │ │ ************ rraannddoommSSuubbSSiimmpplliicciiaallCCoommpplleexx ---- CCrreeaattee aa rraannddoomm ssuubb--ssiimmpplliicciiaall ccoommpplleexx │ │ │ │ ************ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Creates a random sub-simplicial complex of a given simplicial complex. │ │ │ │ i1 : setRandomSeed(currentTime()); │ │ │ │ i2 : K = randomAbstractSimplicialComplex(4) │ │ │ │ │ │ │ │ -o2 = AbstractSimplicialComplex{-1 => {{}}} │ │ │ │ - 0 => {{1}} │ │ │ │ +o2 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ │ + 0 => {{2}, {3}, {4}} │ │ │ │ + 1 => {{2, 3}, {2, 4}, {3, 4}} │ │ │ │ + 2 => {{2, 3, 4}} │ │ │ │ │ │ │ │ o2 : AbstractSimplicialComplex │ │ │ │ i3 : J = randomSubSimplicialComplex(K) │ │ │ │ │ │ │ │ -o3 = AbstractSimplicialComplex{-1 => {{}}} │ │ │ │ +o3 = AbstractSimplicialComplex{-1 => {{}} } │ │ │ │ + 0 => {{2}, {3}, {4}} │ │ │ │ + 1 => {{2, 3}, {2, 4}, {3, 4}} │ │ │ │ + 2 => {{2, 3, 4}} │ │ │ │ │ │ │ │ o3 : AbstractSimplicialComplex │ │ │ │ ********** WWaayyss ttoo uussee rraannddoommSSuubbSSiimmpplliicciiaallCCoommpplleexx:: ********** │ │ │ │ * randomSubSimplicialComplex(AbstractSimplicialComplex) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _r_a_n_d_o_m_S_u_b_S_i_m_p_l_i_c_i_a_l_C_o_m_p_l_e_x is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n. │ │ ├── ./usr/share/doc/Macaulay2/AbstractToricVarieties/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=22 │ │ │ QWJzdHJhY3RUb3JpY1ZhcmlldGllcw== │ │ │ #:len=379 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAibGlua3MgYWJzdHJhY3Qgc2ltcGxpY2lh │ │ │ bCAobm9ybWFsKSB0b3JpYyB2YXJpZXRpZXMgdG8gU2NodWJlcnQyIiwgRGVzY3JpcHRpb24gPT4g │ │ ├── ./usr/share/doc/Macaulay2/AdjointIdeal/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=25 │ │ │ dHJhY2VNYXRyaXgoSWRlYWwsTWF0cml4KQ== │ │ │ #:len=268 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTE2MCwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsodHJhY2VNYXRyaXgsSWRlYWwsTWF0cml4KSwidHJh │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=27 │ │ │ YWRqdW5jdGlvblByb2Nlc3MoSWRlYWwsWlop │ │ │ #:len=310 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNjc3LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhhZGp1bmN0aW9uUHJvY2VzcyxJZGVhbCxaWiksImFk │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_adjoint__Matrix.out │ │ │ @@ -49,15 +49,15 @@ │ │ │ o8 : BettiTally │ │ │ │ │ │ i9 : c=codim I │ │ │ │ │ │ o9 = 4 │ │ │ │ │ │ i10 : elapsedTime fI=res I │ │ │ - -- .079856s elapsed │ │ │ + -- .0884815s elapsed │ │ │ │ │ │ 1 14 33 28 8 │ │ │ o10 = Pn <-- Pn <-- Pn <-- Pn <-- Pn <-- 0 │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ o10 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_adjunction__Process.out │ │ │ @@ -87,30 +87,30 @@ │ │ │ o13 : BettiTally │ │ │ │ │ │ i14 : phi=map(P2,Pn,H); │ │ │ │ │ │ o14 : RingMap P2 <-- Pn │ │ │ │ │ │ i15 : elapsedTime betti(I'=trim ker phi) │ │ │ - -- .699484s elapsed │ │ │ + -- .913919s elapsed │ │ │ │ │ │ 0 1 │ │ │ o15 = total: 1 11 │ │ │ 0: 1 . │ │ │ 1: . 3 │ │ │ 2: . 8 │ │ │ │ │ │ o15 : BettiTally │ │ │ │ │ │ i16 : I'== I │ │ │ │ │ │ o16 = true │ │ │ │ │ │ i17 : elapsedTime basePts=primaryDecomposition ideal H; │ │ │ - -- 7.27713s elapsed │ │ │ + -- 11.6095s elapsed │ │ │ │ │ │ i18 : tally apply(basePts,c->(dim c, degree c, betti c)) │ │ │ │ │ │ 0 1 │ │ │ o18 = Tally{(1, 1, total: 1 2) => 5} │ │ │ 0: 1 2 │ │ │ 0 1 │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_parametrization.out │ │ │ @@ -79,40 +79,40 @@ │ │ │ 1: . . │ │ │ 2: . . │ │ │ 3: . 8 │ │ │ │ │ │ o13 : BettiTally │ │ │ │ │ │ i14 : elapsedTime sub(I,H) │ │ │ - -- .0547829s elapsed │ │ │ + -- .0700664s elapsed │ │ │ │ │ │ o14 = ideal (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) │ │ │ │ │ │ o14 : Ideal of P2 │ │ │ │ │ │ i15 : phi=map(P2,Pn,H); │ │ │ │ │ │ o15 : RingMap P2 <-- Pn │ │ │ │ │ │ i16 : elapsedTime betti(I'=trim ker phi) │ │ │ - -- .192756s elapsed │ │ │ + -- .104621s elapsed │ │ │ │ │ │ 0 1 │ │ │ o16 = total: 1 12 │ │ │ 0: 1 . │ │ │ 1: . 12 │ │ │ │ │ │ o16 : BettiTally │ │ │ │ │ │ i17 : I'== I │ │ │ │ │ │ o17 = true │ │ │ │ │ │ i18 : elapsedTime basePts=primaryDecomposition ideal H; │ │ │ - -- 2.20464s elapsed │ │ │ + -- 3.40021s elapsed │ │ │ │ │ │ i19 : tally apply(basePts,c->(dim c, degree c, betti c)) │ │ │ │ │ │ 0 1 │ │ │ o19 = Tally{(0, 34, total: 1 15) => 1} │ │ │ 0: 1 . │ │ │ 1: . . │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_adjoint__Matrix.html │ │ │ @@ -130,15 +130,15 @@ │ │ │ │ │ │
i9 : c=codim I
│ │ │  
│ │ │  o9 = 4
│ │ │ │ │ │ │ │ │
i10 : elapsedTime fI=res I
│ │ │ - -- .079856s elapsed
│ │ │ + -- .0884815s elapsed
│ │ │  
│ │ │          1       14       33       28       8
│ │ │  o10 = Pn  <-- Pn   <-- Pn   <-- Pn   <-- Pn  <-- 0
│ │ │                                                    
│ │ │        0       1        2        3        4       5
│ │ │  
│ │ │  o10 : ChainComplex
│ │ │ ├── html2text {} │ │ │ │ @@ -55,15 +55,15 @@ │ │ │ │ 2: . 12 │ │ │ │ │ │ │ │ o8 : BettiTally │ │ │ │ i9 : c=codim I │ │ │ │ │ │ │ │ o9 = 4 │ │ │ │ i10 : elapsedTime fI=res I │ │ │ │ - -- .079856s elapsed │ │ │ │ + -- .0884815s elapsed │ │ │ │ │ │ │ │ 1 14 33 28 8 │ │ │ │ o10 = Pn <-- Pn <-- Pn <-- Pn <-- Pn <-- 0 │ │ │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ │ │ o10 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_adjunction__Process.html │ │ │ @@ -192,15 +192,15 @@ │ │ │ │ │ │
i14 : phi=map(P2,Pn,H);
│ │ │  
│ │ │  o14 : RingMap P2 <-- Pn
│ │ │ │ │ │ │ │ │
i15 : elapsedTime betti(I'=trim ker phi)
│ │ │ - -- .699484s elapsed
│ │ │ + -- .913919s elapsed
│ │ │  
│ │ │               0  1
│ │ │  o15 = total: 1 11
│ │ │            0: 1  .
│ │ │            1: .  3
│ │ │            2: .  8
│ │ │  
│ │ │ @@ -209,15 +209,15 @@
│ │ │            
│ │ │                
i16 : I'== I
│ │ │  
│ │ │  o16 = true
│ │ │ │ │ │ │ │ │
i17 : elapsedTime basePts=primaryDecomposition ideal H;
│ │ │ - -- 7.27713s elapsed
│ │ │ + -- 11.6095s elapsed
│ │ │ │ │ │ │ │ │
i18 : tally apply(basePts,c->(dim c, degree c, betti c))
│ │ │  
│ │ │                            0 1
│ │ │  o18 = Tally{(1, 1, total: 1 2) => 5}
│ │ │                         0: 1 2
│ │ │ ├── html2text {}
│ │ │ │ @@ -111,28 +111,28 @@
│ │ │ │            6: . 7
│ │ │ │  
│ │ │ │  o13 : BettiTally
│ │ │ │  i14 : phi=map(P2,Pn,H);
│ │ │ │  
│ │ │ │  o14 : RingMap P2 <-- Pn
│ │ │ │  i15 : elapsedTime betti(I'=trim ker phi)
│ │ │ │ - -- .699484s elapsed
│ │ │ │ + -- .913919s elapsed
│ │ │ │  
│ │ │ │               0  1
│ │ │ │  o15 = total: 1 11
│ │ │ │            0: 1  .
│ │ │ │            1: .  3
│ │ │ │            2: .  8
│ │ │ │  
│ │ │ │  o15 : BettiTally
│ │ │ │  i16 : I'== I
│ │ │ │  
│ │ │ │  o16 = true
│ │ │ │  i17 : elapsedTime basePts=primaryDecomposition ideal H;
│ │ │ │ - -- 7.27713s elapsed
│ │ │ │ + -- 11.6095s elapsed
│ │ │ │  i18 : tally apply(basePts,c->(dim c, degree c, betti c))
│ │ │ │  
│ │ │ │                            0 1
│ │ │ │  o18 = Tally{(1, 1, total: 1 2) => 5}
│ │ │ │                         0: 1 2
│ │ │ │                            0 1
│ │ │ │              (1, 3, total: 1 3) => 8
│ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_parametrization.html
│ │ │ @@ -167,28 +167,28 @@
│ │ │            2: . .
│ │ │            3: . 8
│ │ │  
│ │ │  o13 : BettiTally
│ │ │ │ │ │ │ │ │
i14 : elapsedTime sub(I,H)
│ │ │ - -- .0547829s elapsed
│ │ │ + -- .0700664s elapsed
│ │ │  
│ │ │  o14 = ideal (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
│ │ │  
│ │ │  o14 : Ideal of P2
│ │ │ │ │ │ │ │ │
i15 : phi=map(P2,Pn,H);
│ │ │  
│ │ │  o15 : RingMap P2 <-- Pn
│ │ │ │ │ │ │ │ │
i16 : elapsedTime betti(I'=trim ker phi)
│ │ │ - -- .192756s elapsed
│ │ │ + -- .104621s elapsed
│ │ │  
│ │ │               0  1
│ │ │  o16 = total: 1 12
│ │ │            0: 1  .
│ │ │            1: . 12
│ │ │  
│ │ │  o16 : BettiTally
│ │ │ @@ -196,15 +196,15 @@ │ │ │ │ │ │
i17 : I'== I
│ │ │  
│ │ │  o17 = true
│ │ │ │ │ │ │ │ │
i18 : elapsedTime basePts=primaryDecomposition ideal H;
│ │ │ - -- 2.20464s elapsed
│ │ │ + -- 3.40021s elapsed
│ │ │ │ │ │ │ │ │
i19 : tally apply(basePts,c->(dim c, degree c, betti c))
│ │ │  
│ │ │                             0  1
│ │ │  o19 = Tally{(0, 34, total: 1 15) => 1}
│ │ │                          0: 1  .
│ │ │ ├── html2text {}
│ │ │ │ @@ -83,36 +83,36 @@
│ │ │ │            0: 1 .
│ │ │ │            1: . .
│ │ │ │            2: . .
│ │ │ │            3: . 8
│ │ │ │  
│ │ │ │  o13 : BettiTally
│ │ │ │  i14 : elapsedTime sub(I,H)
│ │ │ │ - -- .0547829s elapsed
│ │ │ │ + -- .0700664s elapsed
│ │ │ │  
│ │ │ │  o14 = ideal (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
│ │ │ │  
│ │ │ │  o14 : Ideal of P2
│ │ │ │  i15 : phi=map(P2,Pn,H);
│ │ │ │  
│ │ │ │  o15 : RingMap P2 <-- Pn
│ │ │ │  i16 : elapsedTime betti(I'=trim ker phi)
│ │ │ │ - -- .192756s elapsed
│ │ │ │ + -- .104621s elapsed
│ │ │ │  
│ │ │ │               0  1
│ │ │ │  o16 = total: 1 12
│ │ │ │            0: 1  .
│ │ │ │            1: . 12
│ │ │ │  
│ │ │ │  o16 : BettiTally
│ │ │ │  i17 : I'== I
│ │ │ │  
│ │ │ │  o17 = true
│ │ │ │  i18 : elapsedTime basePts=primaryDecomposition ideal H;
│ │ │ │ - -- 2.20464s elapsed
│ │ │ │ + -- 3.40021s elapsed
│ │ │ │  i19 : tally apply(basePts,c->(dim c, degree c, betti c))
│ │ │ │  
│ │ │ │                             0  1
│ │ │ │  o19 = Tally{(0, 34, total: 1 15) => 1}
│ │ │ │                          0: 1  .
│ │ │ │                          1: .  .
│ │ │ │                          2: .  .
│ │ ├── ./usr/share/doc/Macaulay2/AlgebraicSplines/dump/rawdocumentation.dump
│ │ │ @@ -1,11 +1,11 @@
│ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
│ │ │  #:version=1.1
│ │ │  #:file=rawdocumentation-dcba-8.db
│ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
│ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
│ │ │  #:format=standard
│ │ │  # End of header
│ │ │  #:len=25
│ │ │  c3RhbmxleVJlaXNuZXIoTGlzdCxMaXN0KQ==
│ │ │  #:len=286
│ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjI0NCwgc3ltYm9sIERvY3VtZW50VGFn
│ │ │  ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoc3RhbmxleVJlaXNuZXIsTGlzdCxMaXN0KSwic3Rh
│ │ ├── ./usr/share/doc/Macaulay2/AnalyzeSheafOnP1/dump/rawdocumentation.dump
│ │ │ @@ -1,11 +1,11 @@
│ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
│ │ │  #:version=1.1
│ │ │  #:file=rawdocumentation-dcba-8.db
│ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
│ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
│ │ │  #:format=standard
│ │ │  # End of header
│ │ │  #:len=15
│ │ │  YW5hbHl6ZShNb2R1bGUp
│ │ │  #:len=251
│ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTg2LCBzeW1ib2wgRG9jdW1lbnRUYWcg
│ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhhbmFseXplLE1vZHVsZSksImFuYWx5emUoTW9kdWxl
│ │ ├── ./usr/share/doc/Macaulay2/AssociativeAlgebras/dump/rawdocumentation.dump
│ │ │ @@ -1,11 +1,11 @@
│ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
│ │ │  #:version=1.1
│ │ │  #:file=rawdocumentation-dcba-8.db
│ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
│ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
│ │ │  #:format=standard
│ │ │  # End of header
│ │ │  #:len=25
│ │ │  c2VxdWVuY2VUb1ZhcmlhYmxlU3ltYm9scw==
│ │ │  #:len=228
│ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTgsICJ1bmRvY3VtZW50ZWQiID0+IHRy
│ │ │  dWUsIHN5bWJvbCBEb2N1bWVudFRhZyA9PiBuZXcgRG9jdW1lbnRUYWcgZnJvbSB7InNlcXVlbmNl
│ │ ├── ./usr/share/doc/Macaulay2/BGG/dump/rawdocumentation.dump
│ │ │ @@ -1,11 +1,11 @@
│ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
│ │ │  #:version=1.1
│ │ │  #:file=rawdocumentation-dcba-8.db
│ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
│ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
│ │ │  #:format=standard
│ │ │  # End of header
│ │ │  #:len=14
│ │ │  dGF0ZVJlc29sdXRpb24=
│ │ │  #:len=2024
│ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiZmluaXRlIHBpZWNlIG9mIHRoZSBUYXRl
│ │ │  IHJlc29sdXRpb24iLCAibGluZW51bSIgPT4gNzY5LCBJbnB1dHMgPT4ge1NQQU57VFR7Im0ifSwi
│ │ ├── ./usr/share/doc/Macaulay2/BGG/example-output/_pure__Resolution.out
│ │ │ @@ -114,26 +114,26 @@
│ │ │        | 19a+19b  -38a-16b -18a-13b 16a+22b  |
│ │ │        | -10a-29b 39a+21b  -43a-15b 45a-34b  |
│ │ │  
│ │ │                4      4
│ │ │  o13 : Matrix A  <-- A
│ │ │  
│ │ │  i14 : time betti (F = pureResolution(M,{0,2,4}))
│ │ │ - -- used 0.691952s (cpu); 0.476372s (thread); 0s (gc)
│ │ │ + -- used 0.849482s (cpu); 0.525012s (thread); 0s (gc)
│ │ │  
│ │ │               0 1 2
│ │ │  o14 = total: 3 6 3
│ │ │            0: 3 . .
│ │ │            1: . 6 .
│ │ │            2: . . 3
│ │ │  
│ │ │  o14 : BettiTally
│ │ │  
│ │ │  i15 : time betti (F = pureResolution(11,4,{0,2,4}))
│ │ │ - -- used 0.796378s (cpu); 0.57534s (thread); 0s (gc)
│ │ │ + -- used 0.706791s (cpu); 0.545274s (thread); 0s (gc)
│ │ │  
│ │ │               0 1 2
│ │ │  o15 = total: 3 6 3
│ │ │            0: 3 . .
│ │ │            1: . 6 .
│ │ │            2: . . 3
│ │ ├── ./usr/share/doc/Macaulay2/BGG/html/_pure__Resolution.html
│ │ │ @@ -228,15 +228,15 @@
│ │ │        | -10a-29b 39a+21b  -43a-15b 45a-34b  |
│ │ │  
│ │ │                4      4
│ │ │  o13 : Matrix A  <-- A
│ │ │ │ │ │ │ │ │
i14 : time betti (F = pureResolution(M,{0,2,4}))
│ │ │ - -- used 0.691952s (cpu); 0.476372s (thread); 0s (gc)
│ │ │ + -- used 0.849482s (cpu); 0.525012s (thread); 0s (gc)
│ │ │  
│ │ │               0 1 2
│ │ │  o14 = total: 3 6 3
│ │ │            0: 3 . .
│ │ │            1: . 6 .
│ │ │            2: . . 3
│ │ │  
│ │ │ @@ -245,15 +245,15 @@
│ │ │          
│ │ │          
│ │ │

With the form pureResolution(p,q,D) we can directly create the situation of pureResolution(M,D) where M is generic product(m_i+1) x #D-1+sum(m_i) matrix of linear forms defined over a ring with product(m_i+1) * #D-1+sum(m_i) variables of characteristic p, created by the script. For a given number of variables in A this runs much faster than taking a random matrix M.

│ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -192,26 +192,26 @@ │ │ │ │ o18 : ActionOnComplex │ │ │ │ i19 : A2 = action(RI2,G,Sub=>false) │ │ │ │ │ │ │ │ o19 = ChainComplex with 6 actors │ │ │ │ │ │ │ │ o19 : ActionOnComplex │ │ │ │ i20 : elapsedTime a1 = character A1 │ │ │ │ - -- .855753s elapsed │ │ │ │ + -- 1.25961s elapsed │ │ │ │ │ │ │ │ o20 = Character over R │ │ │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 | │ │ │ │ (1, {8}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ │ (2, {11}) => | 1 1 1 1 1 1 | │ │ │ │ (2, {13}) => | 1 1 1 1 1 1 | │ │ │ │ │ │ │ │ o20 : Character │ │ │ │ i21 : elapsedTime a2 = character A2 │ │ │ │ - -- 37.8601s elapsed │ │ │ │ + -- 58.1123s elapsed │ │ │ │ │ │ │ │ o21 = Character over R │ │ │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 | │ │ │ │ (1, {16}) => | 6 2 0 0 -1 -1 | │ │ │ │ (2, {19}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ │ (2, {21}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ │ @@ -308,15 +308,15 @@ │ │ │ │ i30 : M = Is2 / I2; │ │ │ │ i31 : B = action(M,G,Sub=>false) │ │ │ │ │ │ │ │ o31 = Module with 6 actors │ │ │ │ │ │ │ │ o31 : ActionOnGradedModule │ │ │ │ i32 : elapsedTime b = character(B,21) │ │ │ │ - -- 17.2337s elapsed │ │ │ │ + -- 23.0969s elapsed │ │ │ │ │ │ │ │ o32 = Character over R │ │ │ │ │ │ │ │ (0, {21}) => | 1 1 1 1 1 1 | │ │ │ │ │ │ │ │ o32 : Character │ │ │ │ i33 : b/T │ │ ├── ./usr/share/doc/Macaulay2/BinomialEdgeIdeals/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=3 │ │ │ YmVp │ │ │ #:len=336 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiQmlub21pYWwgZWRnZSBpZGVhbCIsIERl │ │ │ c2NyaXB0aW9uID0+ICgiYmVpIGlzIGEgc3lub255bSBmb3IgIixUT3tuZXcgRG9jdW1lbnRUYWcg │ │ ├── ./usr/share/doc/Macaulay2/Binomials/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=15 │ │ │ Ymlub21pYWxJc1ByaW1l │ │ │ #:len=1312 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAidGVzdCBmb3IgcHJpbWVuZXNzIG9mIGEg │ │ │ Ymlub21pYWwgaWRlYWwiLCAibGluZW51bSIgPT4gMTU4MCwgSW5wdXRzID0+IHtTUEFOe1RUeyJJ │ │ ├── ./usr/share/doc/Macaulay2/BoijSoederberg/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=21 │ │ │ bWF0cml4KEJldHRpVGFsbHksWlop │ │ │ #:len=291 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTkyNiwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsobWF0cml4LEJldHRpVGFsbHksWlopLCJtYXRyaXgo │ │ ├── ./usr/share/doc/Macaulay2/Book3264Examples/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=31 │ │ │ SW50ZXJzZWN0aW9uIFRoZW9yeSBTZWN0aW9uIDUuMg== │ │ │ #:len=1578 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiQmFzaWNzIG9mIHZlY3RvciBidW5kbGVz │ │ │ IGFuZCBDaGVybiBjbGFzc2VzIiwgRGVzY3JpcHRpb24gPT4gKERJVntQQVJBe1RFWHsiSW4gU2No │ │ ├── ./usr/share/doc/Macaulay2/BooleanGB/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=16 │ │ │ Z2JCb29sZWFuKElkZWFsKQ== │ │ │ #:len=1781 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiQ29tcHV0ZSBHcm9lYm5lciBCYXNpcyBm │ │ │ b3IgSWRlYWxzIGluIEJvb2xlYW4gUG9seW5vbWlhbCBRdW90aWVudCBSaW5nIiwgImxpbmVudW0i │ │ ├── ./usr/share/doc/Macaulay2/Browse/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=6 │ │ │ QnJvd3Nl │ │ │ #:len=397 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiYSBtZXRob2QgZm9yIGJyb3dzaW5nIGFu │ │ │ ZCBleGFtaW5pbmcgTWFjYXVsYXkyIGRhdGEgc3RydWN0dXJlcyIsIERlc2NyaXB0aW9uID0+ICgi │ │ ├── ./usr/share/doc/Macaulay2/Bruns/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=19 │ │ │ aXNTeXp5Z3koTW9kdWxlLFpaKQ== │ │ │ #:len=228 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNDYyLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhpc1N5enlneSxNb2R1bGUsWlopLCJpc1N5enlneShN │ │ ├── ./usr/share/doc/Macaulay2/Bruns/example-output/_bruns.out │ │ │ @@ -230,15 +230,15 @@ │ │ │ 0: 1 . . . . │ │ │ 1: . 4 2 . . │ │ │ 2: . 1 6 5 1 │ │ │ │ │ │ o22 : BettiTally │ │ │ │ │ │ i23 : time j=bruns F.dd_3; │ │ │ - -- used 0.140644s (cpu); 0.139198s (thread); 0s (gc) │ │ │ + -- used 0.308002s (cpu); 0.310916s (thread); 0s (gc) │ │ │ │ │ │ o23 : Ideal of S │ │ │ │ │ │ i24 : betti res j │ │ │ │ │ │ 0 1 2 3 4 │ │ │ o24 = total: 1 3 6 5 1 │ │ ├── ./usr/share/doc/Macaulay2/Bruns/html/_bruns.html │ │ │ @@ -336,15 +336,15 @@ │ │ │ 1: . 4 2 . . │ │ │ 2: . 1 6 5 1 │ │ │ │ │ │ o22 : BettiTally │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -27,27 +27,27 @@ │ │ │ │ i3 : P2 = convexHull matrix {{2,-2,0},{1,1,0}}; │ │ │ │ i4 : P3 = convexHull matrix {{-2,-2,0},{1,-1,0}}; │ │ │ │ i5 : P4 = convexHull matrix {{-2,2,0},{-1,-1,0}}; │ │ │ │ i6 : F = polyhedralComplex {P1,P2,P3,P4}; │ │ │ │ i7 : C = cellComplex(R,F); │ │ │ │ i8 : facePoset C │ │ │ │ │ │ │ │ -o8 = Relation Matrix: | 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 | │ │ │ │ - | 0 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 | │ │ │ │ - | 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 | │ │ │ │ - | 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 | │ │ │ │ - | 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 | │ │ │ │ - | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 | │ │ │ │ - | 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 | │ │ │ │ - | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 | │ │ │ │ - | 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 | │ │ │ │ - | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 | │ │ │ │ - | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 | │ │ │ │ - | 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 | │ │ │ │ - | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 | │ │ │ │ +o8 = Relation Matrix: | 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 | │ │ │ │ + | 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 | │ │ │ │ + | 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 | │ │ │ │ + | 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1 0 0 | │ │ │ │ + | 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 | │ │ │ │ + | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 | │ │ │ │ + | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 | │ │ │ │ + | 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 | │ │ │ │ + | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | │ │ │ │ + | 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 | │ │ │ │ + | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 | │ │ │ │ + | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 | │ │ │ │ + | 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 | │ │ │ │ | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 | │ │ │ │ | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 | │ │ │ │ | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 | │ │ │ │ | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 | │ │ │ │ │ │ │ │ o8 : Poset │ │ │ │ The labels on the vertices can be controlled via the optional parameter Labels │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/html/_cell__Complex_lp__Ring_cm__Polyhedron_rp.html │ │ │ @@ -128,15 +128,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i15 : time betti (F = pureResolution(11,4,{0,2,4}))
│ │ │ - -- used 0.796378s (cpu); 0.57534s (thread); 0s (gc)
│ │ │ + -- used 0.706791s (cpu); 0.545274s (thread); 0s (gc)
│ │ │  
│ │ │               0 1 2
│ │ │  o15 = total: 3 6 3
│ │ │            0: 3 . .
│ │ │            1: . 6 .
│ │ │            2: . . 3
│ │ │ ├── html2text {}
│ │ │ │ @@ -162,30 +162,30 @@
│ │ │ │        | -30a-29b -29a-24b -47a-39b 38a+2b   |
│ │ │ │        | 19a+19b  -38a-16b -18a-13b 16a+22b  |
│ │ │ │        | -10a-29b 39a+21b  -43a-15b 45a-34b  |
│ │ │ │  
│ │ │ │                4      4
│ │ │ │  o13 : Matrix A  <-- A
│ │ │ │  i14 : time betti (F = pureResolution(M,{0,2,4}))
│ │ │ │ - -- used 0.691952s (cpu); 0.476372s (thread); 0s (gc)
│ │ │ │ + -- used 0.849482s (cpu); 0.525012s (thread); 0s (gc)
│ │ │ │  
│ │ │ │               0 1 2
│ │ │ │  o14 = total: 3 6 3
│ │ │ │            0: 3 . .
│ │ │ │            1: . 6 .
│ │ │ │            2: . . 3
│ │ │ │  
│ │ │ │  o14 : BettiTally
│ │ │ │  With the form pureResolution(p,q,D) we can directly create the situation of
│ │ │ │  pureResolution(M,D) where M is generic product(m_i+1) x #D-1+sum(m_i) matrix of
│ │ │ │  linear forms defined over a ring with product(m_i+1) * #D-1+sum(m_i) variables
│ │ │ │  of characteristic p, created by the script. For a given number of variables in
│ │ │ │  A this runs much faster than taking a random matrix M.
│ │ │ │  i15 : time betti (F = pureResolution(11,4,{0,2,4}))
│ │ │ │ - -- used 0.796378s (cpu); 0.57534s (thread); 0s (gc)
│ │ │ │ + -- used 0.706791s (cpu); 0.545274s (thread); 0s (gc)
│ │ │ │  
│ │ │ │               0 1 2
│ │ │ │  o15 = total: 3 6 3
│ │ │ │            0: 3 . .
│ │ │ │            1: . 6 .
│ │ │ │            2: . . 3
│ │ ├── ./usr/share/doc/Macaulay2/BIBasis/dump/rawdocumentation.dump
│ │ │ @@ -1,11 +1,11 @@
│ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
│ │ │  #:version=1.1
│ │ │  #:file=rawdocumentation-dcba-8.db
│ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
│ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
│ │ │  #:format=standard
│ │ │  # End of header
│ │ │  #:len=28
│ │ │  YmlCYXNpcyguLi4sdG9Hcm9lYm5lcj0+Li4uKQ==
│ │ │  #:len=240
│ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gODMsIHN5bWJvbCBEb2N1bWVudFRhZyA9
│ │ │  PiBuZXcgRG9jdW1lbnRUYWcgZnJvbSB7W2JpQmFzaXMsdG9Hcm9lYm5lcl0sImJpQmFzaXMoLi4u
│ │ ├── ./usr/share/doc/Macaulay2/BeginningMacaulay2/dump/rawdocumentation.dump
│ │ │ @@ -1,11 +1,11 @@
│ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
│ │ │  #:version=1.1
│ │ │  #:file=rawdocumentation-dcba-8.db
│ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
│ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
│ │ │  #:format=standard
│ │ │  # End of header
│ │ │  #:len=18
│ │ │  QmVnaW5uaW5nTWFjYXVsYXky
│ │ │  #:len=29455
│ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiTWF0aGVtYXRpY2lhbnMnIEludHJvZHVj
│ │ │  dGlvbiB0byAgTWFjYXVsYXkyIiwgRGVzY3JpcHRpb24gPT4gKERJVntQQVJBe1RFWHsiV2UgYXNz
│ │ ├── ./usr/share/doc/Macaulay2/Benchmark/dump/rawdocumentation.dump
│ │ │ @@ -1,11 +1,11 @@
│ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
│ │ │  #:version=1.1
│ │ │  #:file=rawdocumentation-dcba-8.db
│ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
│ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
│ │ │  #:format=standard
│ │ │  # End of header
│ │ │  #:len=9
│ │ │  QmVuY2htYXJr
│ │ │  #:len=347
│ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAic3RhbmRhcmQgTWFjYXVsYXkyIGJlbmNo
│ │ │  bWFya3MiLCBEZXNjcmlwdGlvbiA9PiAxOihESVZ7UEFSQXtURVh7IlRoaXMgcGFja2FnZSBwcm92
│ │ ├── ./usr/share/doc/Macaulay2/Benchmark/example-output/_run__Benchmarks.out
│ │ │ @@ -1,10 +1,10 @@
│ │ │  -- -*- M2-comint -*- hash: 1330545576567
│ │ │  
│ │ │  i1 : runBenchmarks "res39"
│ │ │ --- beginning computation Sun Feb  9 23:59:51 UTC 2025
│ │ │ --- Linux sbuild 6.1.0-31-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.128-1 (2025-02-07) x86_64 GNU/Linux
│ │ │ --- AMD EPYC 7702P 64-Core Processor  AuthenticAMD  cpu MHz 1996.250  
│ │ │ +-- beginning computation Sat Jul 19 03:45:16 UTC 2025
│ │ │ +-- Linux sbuild 6.12.35+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.35-1 (2025-07-03) x86_64 GNU/Linux
│ │ │ +-- AMD EPYC-Milan Processor  AuthenticAMD  cpu MHz 1996.250  
│ │ │  -- Macaulay2 1.24.11, compiled with gcc 14.2.0
│ │ │ --- res39: res of a generic 3 by 9 matrix over ZZ/101: .113587 seconds
│ │ │ +-- res39: res of a generic 3 by 9 matrix over ZZ/101: .130482 seconds
│ │ │  
│ │ │  i2 :
│ │ ├── ./usr/share/doc/Macaulay2/Benchmark/html/_run__Benchmarks.html
│ │ │ @@ -73,19 +73,19 @@
│ │ │          

Description

│ │ │
│ │ │

The tests available are:
"deg2generic" -- gb of a generic ideal of codimension 2 and degree 2
"gb4by4comm" -- gb of the ideal of generic commuting 4 by 4 matrices over ZZ/101
"gb3445" -- gb of an ideal with elements of degree 3,4,4,5 in 8 variables
"gbB148" -- gb of Bayesian graph ideal #148
"res39" -- res of a generic 3 by 9 matrix over ZZ/101
"resG25" -- res of the coordinate ring of Grassmannian(2,5)
"yang-gb1" -- an example of Yang-Hui He arising in string theory
"yang-subring" -- an example of Yang-Hui He

│ │ │
│ │ │ │ │ │ │ │ │ │ │ │
i1 : runBenchmarks "res39"
│ │ │ --- beginning computation Sun Feb  9 23:59:51 UTC 2025
│ │ │ --- Linux sbuild 6.1.0-31-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.128-1 (2025-02-07) x86_64 GNU/Linux
│ │ │ --- AMD EPYC 7702P 64-Core Processor  AuthenticAMD  cpu MHz 1996.250  
│ │ │ +-- beginning computation Sat Jul 19 03:45:16 UTC 2025
│ │ │ +-- Linux sbuild 6.12.35+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.35-1 (2025-07-03) x86_64 GNU/Linux
│ │ │ +-- AMD EPYC-Milan Processor  AuthenticAMD  cpu MHz 1996.250  
│ │ │  -- Macaulay2 1.24.11, compiled with gcc 14.2.0
│ │ │ --- res39: res of a generic 3 by 9 matrix over ZZ/101: .113587 seconds
│ │ │ +-- res39: res of a generic 3 by 9 matrix over ZZ/101: .130482 seconds │ │ │
│ │ │ │ │ │
│ │ │

For the programmer

│ │ │

The object runBenchmarks is a command.

│ │ │
│ │ │ ├── html2text {} │ │ │ │ @@ -24,15 +24,15 @@ │ │ │ │ "gb3445" -- gb of an ideal with elements of degree 3,4,4,5 in 8 variables │ │ │ │ "gbB148" -- gb of Bayesian graph ideal #148 │ │ │ │ "res39" -- res of a generic 3 by 9 matrix over ZZ/101 │ │ │ │ "resG25" -- res of the coordinate ring of Grassmannian(2,5) │ │ │ │ "yang-gb1" -- an example of Yang-Hui He arising in string theory │ │ │ │ "yang-subring" -- an example of Yang-Hui He │ │ │ │ i1 : runBenchmarks "res39" │ │ │ │ --- beginning computation Sun Feb 9 23:59:51 UTC 2025 │ │ │ │ --- Linux sbuild 6.1.0-31-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.128-1 (2025- │ │ │ │ -02-07) x86_64 GNU/Linux │ │ │ │ --- AMD EPYC 7702P 64-Core Processor AuthenticAMD cpu MHz 1996.250 │ │ │ │ +-- beginning computation Sat Jul 19 03:45:16 UTC 2025 │ │ │ │ +-- Linux sbuild 6.12.35+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian │ │ │ │ +6.12.35-1 (2025-07-03) x86_64 GNU/Linux │ │ │ │ +-- AMD EPYC-Milan Processor AuthenticAMD cpu MHz 1996.250 │ │ │ │ -- Macaulay2 1.24.11, compiled with gcc 14.2.0 │ │ │ │ --- res39: res of a generic 3 by 9 matrix over ZZ/101: .113587 seconds │ │ │ │ +-- res39: res of a generic 3 by 9 matrix over ZZ/101: .130482 seconds │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _r_u_n_B_e_n_c_h_m_a_r_k_s is a _c_o_m_m_a_n_d. │ │ ├── ./usr/share/doc/Macaulay2/BernsteinSato/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=31 │ │ │ RGxvY2FsaXplQWxsKElkZWFsLFJpbmdFbGVtZW50KQ== │ │ │ #:len=298 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTE5LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhEbG9jYWxpemVBbGwsSWRlYWwsUmluZ0VsZW1lbnQp │ │ ├── ./usr/share/doc/Macaulay2/Bertini/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=16 │ │ │ U3RlcHNGb3JJbmNyZWFzZQ== │ │ │ #:len=268 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzM3Mywgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsiU3RlcHNGb3JJbmNyZWFzZSIsIlN0ZXBzRm9ySW5j │ │ │ @@ -438,15 +438,15 @@ │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHtbYmVydGluaVBhcmFtZXRlckhvbW90b3B5LFZlcmJv │ │ │ c2VdLCJiZXJ0aW5pUGFyYW1ldGVySG9tb3RvcHkoLi4uLFZlcmJvc2U9Pi4uLikiLCJCZXJ0aW5p │ │ │ In0sIFByaW1hcnlUYWcgPT4gbmV3IERvY3VtZW50VGFnIGZyb20ge1tiZXJ0aW5pVHJhY2tIb21v │ │ │ dG9weSxWZXJib3NlXSwiYmVydGluaVRyYWNrSG9tb3RvcHkoLi4uLFZlcmJvc2U9Pi4uLikiLCJC │ │ │ ZXJ0aW5pIn0sICJmaWxlbmFtZSIgPT4gIkJlcnRpbmkubTIifQ== │ │ │ #:len=19 │ │ │ YmVydGluaVVzZXJIb21vdG9weQ== │ │ │ -#:len=5104 │ │ │ +#:len=5105 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiYSBtYWluIG1ldGhvZCB0byB0cmFjayBh │ │ │ IHVzZXItZGVmaW5lZCBob21vdG9weSIsICJsaW5lbnVtIiA9PiAyODkzLCBJbnB1dHMgPT4ge1NQ │ │ │ QU57VFR7InQifSwiLCAiLFNQQU57ImEgIixUTzJ7bmV3IERvY3VtZW50VGFnIGZyb20geyJSaW5n │ │ │ RWxlbWVudCIsIlJpbmdFbGVtZW50IiwiTWFjYXVsYXkyRG9jIn0sInJpbmcgZWxlbWVudCJ9fSwi │ │ │ LCAiLFRFWHsiYSBwYXRoIHZhcmlhYmxlIn19LFNQQU57VFR7IlAifSwiLCAiLFNQQU57ImEgIixU │ │ │ TzJ7bmV3IERvY3VtZW50VGFnIGZyb20geyJMaXN0IiwiTGlzdCIsIk1hY2F1bGF5MkRvYyJ9LCJs │ │ │ aXN0In19LCIsICIsVEVYeyJhIGxpc3Qgb2Ygb3B0aW9ucyB0aGF0IHNldCB0aGUgcGFyYW1ldGVy │ │ │ @@ -515,28 +515,28 @@ │ │ │ Pi4uLikiLCJCZXJ0aW5pIn0sIlJhbmRvbUNvbXBsZXgifSxUVHsiID0+ICJ9LFRUeyIuLi4ifSwi │ │ │ LCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwie30ifSwiLCAiLFNQQU57fX0sU1BBTntUTzJ7bmV3 │ │ │ IERvY3VtZW50VGFnIGZyb20ge1tiZXJ0aW5pVXNlckhvbW90b3B5LFJhbmRvbVJlYWxdLCJiZXJ0 │ │ │ aW5pVXNlckhvbW90b3B5KC4uLixSYW5kb21SZWFsPT4uLi4pIiwiQmVydGluaSJ9LCJSYW5kb21S │ │ │ ZWFsIn0sVFR7IiA9PiAifSxUVHsiLi4uIn0sIiwgIixTUEFOeyJkZWZhdWx0IHZhbHVlICIsInt9 │ │ │ In0sIiwgIixTUEFOe319LFNQQU57VE8ye25ldyBEb2N1bWVudFRhZyBmcm9tIHsiVG9wRGlyZWN0 │ │ │ b3J5IiwiVG9wRGlyZWN0b3J5IiwiQmVydGluaSJ9LCJUb3BEaXJlY3RvcnkifSxUVHsiID0+ICJ9 │ │ │ -LFRUeyIuLi4ifSwiLCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwiXCIvdG1wL00yLTcxNDgxLTAv │ │ │ -MFwiIn0sIiwgIixTUEFOeyJPcHRpb24gdG8gY2hhbmdlIGRpcmVjdG9yeSBmb3IgZmlsZSBzdG9y │ │ │ -YWdlLiJ9fSxTUEFOe1RPMntuZXcgRG9jdW1lbnRUYWcgZnJvbSB7W2JlcnRpbmlVc2VySG9tb3Rv │ │ │ -cHksVmVyYm9zZV0sImJlcnRpbmlVc2VySG9tb3RvcHkoLi4uLFZlcmJvc2U9Pi4uLikiLCJCZXJ0 │ │ │ -aW5pIn0sIlZlcmJvc2UifSxUVHsiID0+ICJ9LFRUeyIuLi4ifSwiLCAiLFNQQU57ImRlZmF1bHQg │ │ │ -dmFsdWUgIiwiZmFsc2UifSwiLCAiLFNQQU57Ik9wdGlvbiB0byBzaWxlbmNlIGFkZGl0aW9uYWwg │ │ │ -b3V0cHV0In19fSwgc3ltYm9sIERvY3VtZW50VGFnID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsi │ │ │ -YmVydGluaVVzZXJIb21vdG9weSIsImJlcnRpbmlVc2VySG9tb3RvcHkiLCJCZXJ0aW5pIn0sIEtl │ │ │ -eSA9PiBiZXJ0aW5pVXNlckhvbW90b3B5LCBVc2FnZSA9PiBETHsiY2xhc3MiID0+ICJlbGVtZW50 │ │ │ -IixEVHsiVXNhZ2U6ICJ9LEREe0NPREV7ImNsYXNzIiA9PiAibGFuZ3VhZ2UtbWFjYXVsYXkyIiwi │ │ │ -UzA9YmVydGluaVVzZXJIb21vdG9weSh0LCBQLCBILCBTMSkifX19LCBPdXRwdXRzID0+IHtTUEFO │ │ │ -e1RUeyJTMCJ9LCIsICIsU1BBTnsiYSAiLFRPMntuZXcgRG9jdW1lbnRUYWcgZnJvbSB7Ikxpc3Qi │ │ │ -LCJMaXN0IiwiTWFjYXVsYXkyRG9jIn0sImxpc3QifX0sIiwgIixURVh7ImEgbGlzdCBvZiBzb2x1 │ │ │ -dGlvbnMgdG8gdGhlIHRhcmdldCBzeXN0ZW0ifX19fQ== │ │ │ +LFRUeyIuLi4ifSwiLCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwiXCIvdG1wL00yLTEyNDAzNC0w │ │ │ +LzBcIiJ9LCIsICIsU1BBTnsiT3B0aW9uIHRvIGNoYW5nZSBkaXJlY3RvcnkgZm9yIGZpbGUgc3Rv │ │ │ +cmFnZS4ifX0sU1BBTntUTzJ7bmV3IERvY3VtZW50VGFnIGZyb20ge1tiZXJ0aW5pVXNlckhvbW90 │ │ │ +b3B5LFZlcmJvc2VdLCJiZXJ0aW5pVXNlckhvbW90b3B5KC4uLixWZXJib3NlPT4uLi4pIiwiQmVy │ │ │ +dGluaSJ9LCJWZXJib3NlIn0sVFR7IiA9PiAifSxUVHsiLi4uIn0sIiwgIixTUEFOeyJkZWZhdWx0 │ │ │ +IHZhbHVlICIsImZhbHNlIn0sIiwgIixTUEFOeyJPcHRpb24gdG8gc2lsZW5jZSBhZGRpdGlvbmFs │ │ │ +IG91dHB1dCJ9fX0sIHN5bWJvbCBEb2N1bWVudFRhZyA9PiBuZXcgRG9jdW1lbnRUYWcgZnJvbSB7 │ │ │ +ImJlcnRpbmlVc2VySG9tb3RvcHkiLCJiZXJ0aW5pVXNlckhvbW90b3B5IiwiQmVydGluaSJ9LCBL │ │ │ +ZXkgPT4gYmVydGluaVVzZXJIb21vdG9weSwgVXNhZ2UgPT4gREx7ImNsYXNzIiA9PiAiZWxlbWVu │ │ │ +dCIsRFR7IlVzYWdlOiAifSxERHtDT0RFeyJjbGFzcyIgPT4gImxhbmd1YWdlLW1hY2F1bGF5MiIs │ │ │ +IlMwPWJlcnRpbmlVc2VySG9tb3RvcHkodCwgUCwgSCwgUzEpIn19fSwgT3V0cHV0cyA9PiB7U1BB │ │ │ +TntUVHsiUzAifSwiLCAiLFNQQU57ImEgIixUTzJ7bmV3IERvY3VtZW50VGFnIGZyb20geyJMaXN0 │ │ │ +IiwiTGlzdCIsIk1hY2F1bGF5MkRvYyJ9LCJsaXN0In19LCIsICIsVEVYeyJhIGxpc3Qgb2Ygc29s │ │ │ +dXRpb25zIHRvIHRoZSB0YXJnZXQgc3lzdGVtIn19fX0= │ │ │ #:len=20 │ │ │ TWF4UHJlY2lzaW9uVXRpbGl6ZWQ= │ │ │ #:len=192 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzg3MywgInVuZG9jdW1lbnRlZCIgPT4g │ │ │ dHJ1ZSwgc3ltYm9sIERvY3VtZW50VGFnID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsiTWF4UHJl │ │ │ Y2lzaW9uVXRpbGl6ZWQiLCJNYXhQcmVjaXNpb25VdGlsaXplZCIsIkJlcnRpbmkifSwgImZpbGVu │ │ │ YW1lIiA9PiAiQmVydGluaS5tMiJ9 │ │ │ @@ -999,15 +999,15 @@ │ │ │ #:len=184 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzg3MywgInVuZG9jdW1lbnRlZCIgPT4g │ │ │ dHJ1ZSwgc3ltYm9sIERvY3VtZW50VGFnID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsiU3BlY2lm │ │ │ eVZhcmlhYmxlcyIsIlNwZWNpZnlWYXJpYWJsZXMiLCJCZXJ0aW5pIn0sICJmaWxlbmFtZSIgPT4g │ │ │ IkJlcnRpbmkubTIifQ== │ │ │ #:len=24 │ │ │ YmVydGluaVBhcmFtZXRlckhvbW90b3B5 │ │ │ -#:len=6482 │ │ │ +#:len=6483 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiYSBtYWluIG1ldGhvZCB0byBwZXJmb3Jt │ │ │ IGEgcGFyYW1ldGVyIGhvbW90b3B5IGluIEJlcnRpbmkiLCAibGluZW51bSIgPT4gMzAyNCwgSW5w │ │ │ dXRzID0+IHtTUEFOe1RUeyJGIn0sIiwgIixTUEFOeyJhICIsVE8ye25ldyBEb2N1bWVudFRhZyBm │ │ │ cm9tIHsiTGlzdCIsIkxpc3QiLCJNYWNhdWxheTJEb2MifSwibGlzdCJ9fSwiLCAiLFRFWHsiYSBs │ │ │ aXN0IG9mIHBvbHlub21pYWxzIn19LFNQQU57VFR7IlAifSwiLCAiLFNQQU57ImEgIixUTzJ7bmV3 │ │ │ IERvY3VtZW50VGFnIGZyb20geyJMaXN0IiwiTGlzdCIsIk1hY2F1bGF5MkRvYyJ9LCJsaXN0In19 │ │ │ LCIsICIsVEVYeyJhIGxpc3Qgb2YgcGFyYW1ldGVyIGluZGV0ZXJtaW5hbnRzIn19LFNQQU57VFR7 │ │ │ @@ -1100,28 +1100,28 @@ │ │ │ ZXJ0aW5pUGFyYW1ldGVySG9tb3RvcHkoLi4uLFJhbmRvbVJlYWw9Pi4uLikiLCJCZXJ0aW5pIn0s │ │ │ IlJhbmRvbVJlYWwifSxUVHsiID0+ICJ9LFRUeyIuLi4ifSwiLCAiLFNQQU57ImRlZmF1bHQgdmFs │ │ │ dWUgIiwie30ifSwiLCAiLFNQQU57ImFuIG9wdGlvbiB3aGljaCBkZXNpZ25hdGVzIHN5bWJvbHMv │ │ │ c3RyaW5ncy92YXJpYWJsZXMgdGhhdCB3aWxsIGJlIHNldCB0byBiZSBhIHJhbmRvbSByZWFsIG51 │ │ │ bWJlciBvciByYW5kb20gY29tcGxleCBudW1iZXIifX0sU1BBTntUTzJ7bmV3IERvY3VtZW50VGFn │ │ │ IGZyb20geyJUb3BEaXJlY3RvcnkiLCJUb3BEaXJlY3RvcnkiLCJCZXJ0aW5pIn0sIlRvcERpcmVj │ │ │ dG9yeSJ9LFRUeyIgPT4gIn0sVFR7Ii4uLiJ9LCIsICIsU1BBTnsiZGVmYXVsdCB2YWx1ZSAiLCJc │ │ │ -Ii90bXAvTTItNzE0ODEtMC8wXCIifSwiLCAiLFNQQU57Ik9wdGlvbiB0byBjaGFuZ2UgZGlyZWN0 │ │ │ -b3J5IGZvciBmaWxlIHN0b3JhZ2UuIn19LFNQQU57VE8ye25ldyBEb2N1bWVudFRhZyBmcm9tIHtb │ │ │ -YmVydGluaVBhcmFtZXRlckhvbW90b3B5LFZlcmJvc2VdLCJiZXJ0aW5pUGFyYW1ldGVySG9tb3Rv │ │ │ -cHkoLi4uLFZlcmJvc2U9Pi4uLikiLCJCZXJ0aW5pIn0sIlZlcmJvc2UifSxUVHsiID0+ICJ9LFRU │ │ │ -eyIuLi4ifSwiLCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwiZmFsc2UifSwiLCAiLFNQQU57Ik9w │ │ │ -dGlvbiB0byBzaWxlbmNlIGFkZGl0aW9uYWwgb3V0cHV0In19fSwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ -ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsiYmVydGluaVBhcmFtZXRlckhvbW90b3B5IiwiYmVy │ │ │ -dGluaVBhcmFtZXRlckhvbW90b3B5IiwiQmVydGluaSJ9LCBLZXkgPT4gYmVydGluaVBhcmFtZXRl │ │ │ -ckhvbW90b3B5LCBVc2FnZSA9PiBETHsiY2xhc3MiID0+ICJlbGVtZW50IixEVHsiVXNhZ2U6ICJ9 │ │ │ -LEREe0NPREV7ImNsYXNzIiA9PiAibGFuZ3VhZ2UtbWFjYXVsYXkyIiwiUyA9IGJlcnRpbmlQYXJh │ │ │ -bWV0ZXJIb21vdG9weShGLFAsVCkifX19LCBPdXRwdXRzID0+IHtTUEFOe1RUeyJTIn0sIiwgIixT │ │ │ -UEFOeyJhICIsVE8ye25ldyBEb2N1bWVudFRhZyBmcm9tIHsiTGlzdCIsIkxpc3QiLCJNYWNhdWxh │ │ │ -eTJEb2MifSwibGlzdCJ9fSwiLCAiLFRFWHsiYSBsaXN0IHdob3NlIGVudHJpZXMgYXJlIGxpc3Rz │ │ │ -IG9mIHNvbHV0aW9ucyBmb3IgZWFjaCB0YXJnZXQgc3lzdGVtIn19fX0= │ │ │ +Ii90bXAvTTItMTI0MDM0LTAvMFwiIn0sIiwgIixTUEFOeyJPcHRpb24gdG8gY2hhbmdlIGRpcmVj │ │ │ +dG9yeSBmb3IgZmlsZSBzdG9yYWdlLiJ9fSxTUEFOe1RPMntuZXcgRG9jdW1lbnRUYWcgZnJvbSB7 │ │ │ +W2JlcnRpbmlQYXJhbWV0ZXJIb21vdG9weSxWZXJib3NlXSwiYmVydGluaVBhcmFtZXRlckhvbW90 │ │ │ +b3B5KC4uLixWZXJib3NlPT4uLi4pIiwiQmVydGluaSJ9LCJWZXJib3NlIn0sVFR7IiA9PiAifSxU │ │ │ +VHsiLi4uIn0sIiwgIixTUEFOeyJkZWZhdWx0IHZhbHVlICIsImZhbHNlIn0sIiwgIixTUEFOeyJP │ │ │ +cHRpb24gdG8gc2lsZW5jZSBhZGRpdGlvbmFsIG91dHB1dCJ9fX0sIHN5bWJvbCBEb2N1bWVudFRh │ │ │ +ZyA9PiBuZXcgRG9jdW1lbnRUYWcgZnJvbSB7ImJlcnRpbmlQYXJhbWV0ZXJIb21vdG9weSIsImJl │ │ │ +cnRpbmlQYXJhbWV0ZXJIb21vdG9weSIsIkJlcnRpbmkifSwgS2V5ID0+IGJlcnRpbmlQYXJhbWV0 │ │ │ +ZXJIb21vdG9weSwgVXNhZ2UgPT4gREx7ImNsYXNzIiA9PiAiZWxlbWVudCIsRFR7IlVzYWdlOiAi │ │ │ +fSxERHtDT0RFeyJjbGFzcyIgPT4gImxhbmd1YWdlLW1hY2F1bGF5MiIsIlMgPSBiZXJ0aW5pUGFy │ │ │ +YW1ldGVySG9tb3RvcHkoRixQLFQpIn19fSwgT3V0cHV0cyA9PiB7U1BBTntUVHsiUyJ9LCIsICIs │ │ │ +U1BBTnsiYSAiLFRPMntuZXcgRG9jdW1lbnRUYWcgZnJvbSB7Ikxpc3QiLCJMaXN0IiwiTWFjYXVs │ │ │ +YXkyRG9jIn0sImxpc3QifX0sIiwgIixURVh7ImEgbGlzdCB3aG9zZSBlbnRyaWVzIGFyZSBsaXN0 │ │ │ +cyBvZiBzb2x1dGlvbnMgZm9yIGVhY2ggdGFyZ2V0IHN5c3RlbSJ9fX19 │ │ │ #:len=24 │ │ │ YmVydGluaVBvc0RpbVNvbHZlKExpc3Qp │ │ │ #:len=265 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjc1Niwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoYmVydGluaVBvc0RpbVNvbHZlLExpc3QpLCJiZXJ0 │ │ │ aW5pUG9zRGltU29sdmUoTGlzdCkiLCJCZXJ0aW5pIn0sIFByaW1hcnlUYWcgPT4gbmV3IERvY3Vt │ │ │ ZW50VGFnIGZyb20geyJiZXJ0aW5pUG9zRGltU29sdmUiLCJiZXJ0aW5pUG9zRGltU29sdmUiLCJC │ │ │ @@ -2358,15 +2358,15 @@ │ │ │ #:len=184 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzg3MywgInVuZG9jdW1lbnRlZCIgPT4g │ │ │ dHJ1ZSwgc3ltYm9sIERvY3VtZW50VGFnID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsiRnVuY3Rp │ │ │ b25SZXNpZHVhbCIsIkZ1bmN0aW9uUmVzaWR1YWwiLCJCZXJ0aW5pIn0sICJmaWxlbmFtZSIgPT4g │ │ │ IkJlcnRpbmkubTIifQ== │ │ │ #:len=19 │ │ │ YmVydGluaVplcm9EaW1Tb2x2ZQ== │ │ │ -#:len=6141 │ │ │ +#:len=6142 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiYSBtYWluIG1ldGhvZCB0byBzb2x2ZSBh │ │ │ IHplcm8tZGltZW5zaW9uYWwgc3lzdGVtIG9mIGVxdWF0aW9ucyIsICJsaW5lbnVtIiA9PiAyNjc0 │ │ │ LCBJbnB1dHMgPT4ge1NQQU57VFR7IkYifSwiLCAiLFNQQU57ImEgIixUTzJ7bmV3IERvY3VtZW50 │ │ │ VGFnIGZyb20geyJMaXN0IiwiTGlzdCIsIk1hY2F1bGF5MkRvYyJ9LCJsaXN0In19LCIsICIsVEVY │ │ │ eyJhIGxpc3Qgb2YgcmluZyBlbGVtZW50cyAoc3lzdGVtIG5lZWQgbm90IGJlIHNxdWFyZSkifX0s │ │ │ U1BBTntUVHsiSSJ9LCIsICIsU1BBTnsiYW4gIixUTzJ7bmV3IERvY3VtZW50VGFnIGZyb20geyJJ │ │ │ ZGVhbCIsIklkZWFsIiwiTWFjYXVsYXkyRG9jIn0sImlkZWFsIn19LCIsICIsVEVYeyJhbiBpZGVh │ │ │ @@ -2447,34 +2447,34 @@ │ │ │ YWw9Pi4uLikiLCJCZXJ0aW5pIn0sIlJhbmRvbVJlYWwifSxUVHsiID0+ICJ9LFRUeyIuLi4ifSwi │ │ │ LCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwie30ifSwiLCAiLFNQQU57ImFuIG9wdGlvbiB3aGlj │ │ │ aCBkZXNpZ25hdGVzIHN5bWJvbHMvc3RyaW5ncy92YXJpYWJsZXMgdGhhdCB3aWxsIGJlIHNldCB0 │ │ │ byBiZSBhIHJhbmRvbSByZWFsIG51bWJlciBvciByYW5kb20gY29tcGxleCBudW1iZXIifX0sU1BB │ │ │ TntUTzJ7bmV3IERvY3VtZW50VGFnIGZyb20ge1tiZXJ0aW5pWmVyb0RpbVNvbHZlLFRvcERpcmVj │ │ │ dG9yeV0sImJlcnRpbmlaZXJvRGltU29sdmUoLi4uLFRvcERpcmVjdG9yeT0+Li4uKSIsIkJlcnRp │ │ │ bmkifSwiVG9wRGlyZWN0b3J5In0sVFR7IiA9PiAifSxUVHsiLi4uIn0sIiwgIixTUEFOeyJkZWZh │ │ │ -dWx0IHZhbHVlICIsIlwiL3RtcC9NMi03MTQ4MS0wLzBcIiJ9LCIsICIsU1BBTnsiT3B0aW9uIHRv │ │ │ -IGNoYW5nZSBkaXJlY3RvcnkgZm9yIGZpbGUgc3RvcmFnZS4ifX0sU1BBTntUTzJ7bmV3IERvY3Vt │ │ │ -ZW50VGFnIGZyb20ge1tiZXJ0aW5pWmVyb0RpbVNvbHZlLFVzZVJlZ2VuZXJhdGlvbl0sImJlcnRp │ │ │ -bmlaZXJvRGltU29sdmUoLi4uLFVzZVJlZ2VuZXJhdGlvbj0+Li4uKSIsIkJlcnRpbmkifSwiVXNl │ │ │ -UmVnZW5lcmF0aW9uIn0sVFR7IiA9PiAifSxUVHsiLi4uIn0sIiwgIixTUEFOeyJkZWZhdWx0IHZh │ │ │ -bHVlICIsIi0xIn0sIiwgIixTUEFOe319LFNQQU57VE8ye25ldyBEb2N1bWVudFRhZyBmcm9tIHtb │ │ │ -YmVydGluaVplcm9EaW1Tb2x2ZSxWZXJib3NlXSwiYmVydGluaVplcm9EaW1Tb2x2ZSguLi4sVmVy │ │ │ -Ym9zZT0+Li4uKSIsIkJlcnRpbmkifSwiVmVyYm9zZSJ9LFRUeyIgPT4gIn0sVFR7Ii4uLiJ9LCIs │ │ │ -ICIsU1BBTnsiZGVmYXVsdCB2YWx1ZSAiLCJmYWxzZSJ9LCIsICIsU1BBTnsiT3B0aW9uIHRvIHNp │ │ │ -bGVuY2UgYWRkaXRpb25hbCBvdXRwdXQifX19LCBzeW1ib2wgRG9jdW1lbnRUYWcgPT4gbmV3IERv │ │ │ -Y3VtZW50VGFnIGZyb20geyJiZXJ0aW5pWmVyb0RpbVNvbHZlIiwiYmVydGluaVplcm9EaW1Tb2x2 │ │ │ -ZSIsIkJlcnRpbmkifSwgS2V5ID0+IGJlcnRpbmlaZXJvRGltU29sdmUsIFVzYWdlID0+IERMeyJj │ │ │ -bGFzcyIgPT4gImVsZW1lbnQiLERUeyJVc2FnZTogIn0sRER7Q09ERXsiY2xhc3MiID0+ICJsYW5n │ │ │ -dWFnZS1tYWNhdWxheTIiLCJTID0gYmVydGluaVplcm9EaW1Tb2x2ZSBGIn19LEREe0NPREV7ImNs │ │ │ -YXNzIiA9PiAibGFuZ3VhZ2UtbWFjYXVsYXkyIiwiUyA9IGJlcnRpbmlaZXJvRGltU29sdmUgSSJ9 │ │ │ -fSxERHtDT0RFeyJjbGFzcyIgPT4gImxhbmd1YWdlLW1hY2F1bGF5MiIsIlMgPSBiZXJ0aW5pWmVy │ │ │ -b0RpbVNvbHZlKEksIFVzZVJlZ2VuZXJhdGlvbj0+MSkifX19LCBPdXRwdXRzID0+IHtTUEFOe1RU │ │ │ -eyJTIn0sIiwgIixTUEFOeyJhICIsVE8ye25ldyBEb2N1bWVudFRhZyBmcm9tIHsiTGlzdCIsIkxp │ │ │ -c3QiLCJNYWNhdWxheTJEb2MifSwibGlzdCJ9fSwiLCAiLFRFWHsiYSBsaXN0IG9mIHBvaW50cyB0 │ │ │ -aGF0IGFyZSBjb250YWluZWQgaW4gdGhlIHZhcmlldHkgb2YgRiJ9fX19 │ │ │ +dWx0IHZhbHVlICIsIlwiL3RtcC9NMi0xMjQwMzQtMC8wXCIifSwiLCAiLFNQQU57Ik9wdGlvbiB0 │ │ │ +byBjaGFuZ2UgZGlyZWN0b3J5IGZvciBmaWxlIHN0b3JhZ2UuIn19LFNQQU57VE8ye25ldyBEb2N1 │ │ │ +bWVudFRhZyBmcm9tIHtbYmVydGluaVplcm9EaW1Tb2x2ZSxVc2VSZWdlbmVyYXRpb25dLCJiZXJ0 │ │ │ +aW5pWmVyb0RpbVNvbHZlKC4uLixVc2VSZWdlbmVyYXRpb249Pi4uLikiLCJCZXJ0aW5pIn0sIlVz │ │ │ +ZVJlZ2VuZXJhdGlvbiJ9LFRUeyIgPT4gIn0sVFR7Ii4uLiJ9LCIsICIsU1BBTnsiZGVmYXVsdCB2 │ │ │ +YWx1ZSAiLCItMSJ9LCIsICIsU1BBTnt9fSxTUEFOe1RPMntuZXcgRG9jdW1lbnRUYWcgZnJvbSB7 │ │ │ +W2JlcnRpbmlaZXJvRGltU29sdmUsVmVyYm9zZV0sImJlcnRpbmlaZXJvRGltU29sdmUoLi4uLFZl │ │ │ +cmJvc2U9Pi4uLikiLCJCZXJ0aW5pIn0sIlZlcmJvc2UifSxUVHsiID0+ICJ9LFRUeyIuLi4ifSwi │ │ │ +LCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwiZmFsc2UifSwiLCAiLFNQQU57Ik9wdGlvbiB0byBz │ │ │ +aWxlbmNlIGFkZGl0aW9uYWwgb3V0cHV0In19fSwgc3ltYm9sIERvY3VtZW50VGFnID0+IG5ldyBE │ │ │ +b2N1bWVudFRhZyBmcm9tIHsiYmVydGluaVplcm9EaW1Tb2x2ZSIsImJlcnRpbmlaZXJvRGltU29s │ │ │ +dmUiLCJCZXJ0aW5pIn0sIEtleSA9PiBiZXJ0aW5pWmVyb0RpbVNvbHZlLCBVc2FnZSA9PiBETHsi │ │ │ +Y2xhc3MiID0+ICJlbGVtZW50IixEVHsiVXNhZ2U6ICJ9LEREe0NPREV7ImNsYXNzIiA9PiAibGFu │ │ │ +Z3VhZ2UtbWFjYXVsYXkyIiwiUyA9IGJlcnRpbmlaZXJvRGltU29sdmUgRiJ9fSxERHtDT0RFeyJj │ │ │ +bGFzcyIgPT4gImxhbmd1YWdlLW1hY2F1bGF5MiIsIlMgPSBiZXJ0aW5pWmVyb0RpbVNvbHZlIEki │ │ │ +fX0sRER7Q09ERXsiY2xhc3MiID0+ICJsYW5ndWFnZS1tYWNhdWxheTIiLCJTID0gYmVydGluaVpl │ │ │ +cm9EaW1Tb2x2ZShJLCBVc2VSZWdlbmVyYXRpb249PjEpIn19fSwgT3V0cHV0cyA9PiB7U1BBTntU │ │ │ +VHsiUyJ9LCIsICIsU1BBTnsiYSAiLFRPMntuZXcgRG9jdW1lbnRUYWcgZnJvbSB7Ikxpc3QiLCJM │ │ │ +aXN0IiwiTWFjYXVsYXkyRG9jIn0sImxpc3QifX0sIiwgIixURVh7ImEgbGlzdCBvZiBwb2ludHMg │ │ │ +dGhhdCBhcmUgY29udGFpbmVkIGluIHRoZSB2YXJpZXR5IG9mIEYifX19fQ== │ │ │ #:len=29 │ │ │ aW1wb3J0SW5jaWRlbmNlTWF0cml4KFN0cmluZyk= │ │ │ #:len=281 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzIyMiwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoaW1wb3J0SW5jaWRlbmNlTWF0cml4LFN0cmluZyks │ │ │ ImltcG9ydEluY2lkZW5jZU1hdHJpeChTdHJpbmcpIiwiQmVydGluaSJ9LCBQcmltYXJ5VGFnID0+ │ │ │ IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsiaW1wb3J0SW5jaWRlbmNlTWF0cml4IiwiaW1wb3J0SW5j │ │ ├── ./usr/share/doc/Macaulay2/Bertini/html/_bertini__Parameter__Homotopy.html │ │ │ @@ -82,15 +82,15 @@ │ │ │ OutputStyle (missing documentation) │ │ │ => ..., default value "OutPoints", │ │ │
  • │ │ │ RandomComplex => ..., default value {}, an option which designates symbols/strings/variables that will be set to be a random real number or random complex number
  • │ │ │
  • │ │ │ RandomReal => ..., default value {}, an option which designates symbols/strings/variables that will be set to be a random real number or random complex number
  • │ │ │
  • │ │ │ -TopDirectory => ..., default value "/tmp/M2-71481-0/0", Option to change directory for file storage.
  • │ │ │ +TopDirectory => ..., default value "/tmp/M2-124034-0/0", Option to change directory for file storage. │ │ │
  • │ │ │ Verbose => ..., default value false, Option to silence additional output
  • │ │ │ │ │ │ │ │ │
  • │ │ │ Outputs:
      │ │ │
    • │ │ │ ├── html2text {} │ │ │ │ @@ -27,15 +27,15 @@ │ │ │ │ "OutPoints", │ │ │ │ o _R_a_n_d_o_m_C_o_m_p_l_e_x => ..., default value {}, an option which designates │ │ │ │ symbols/strings/variables that will be set to be a random real │ │ │ │ number or random complex number │ │ │ │ o _R_a_n_d_o_m_R_e_a_l => ..., default value {}, an option which designates │ │ │ │ symbols/strings/variables that will be set to be a random real │ │ │ │ number or random complex number │ │ │ │ - o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-71481-0/0", Option to │ │ │ │ + o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-124034-0/0", Option to │ │ │ │ change directory for file storage. │ │ │ │ o _V_e_r_b_o_s_e => ..., default value false, Option to silence additional │ │ │ │ output │ │ │ │ * Outputs: │ │ │ │ o S, a _l_i_s_t, a list whose entries are lists of solutions for each │ │ │ │ target system │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ ├── ./usr/share/doc/Macaulay2/Bertini/html/_bertini__User__Homotopy.html │ │ │ @@ -88,15 +88,15 @@ │ │ │
    • │ │ │ RandomComplex (missing documentation) │ │ │ => ..., default value {},
    • │ │ │
    • │ │ │ RandomReal (missing documentation) │ │ │ => ..., default value {},
    • │ │ │
    • │ │ │ -TopDirectory => ..., default value "/tmp/M2-71481-0/0", Option to change directory for file storage.
    • │ │ │ +TopDirectory => ..., default value "/tmp/M2-124034-0/0", Option to change directory for file storage. │ │ │
    • │ │ │ Verbose => ..., default value false, Option to silence additional output
    • │ │ │
    │ │ │
  • │ │ │
  • │ │ │ Outputs:
      │ │ │
    • │ │ │ ├── html2text {} │ │ │ │ @@ -22,15 +22,15 @@ │ │ │ │ value {}, │ │ │ │ o HomVariableGroup (missing documentation) => ..., default value {}, │ │ │ │ o M2Precision (missing documentation) => ..., default value 53, │ │ │ │ o OutputStyle (missing documentation) => ..., default value │ │ │ │ "OutPoints", │ │ │ │ o RandomComplex (missing documentation) => ..., default value {}, │ │ │ │ o RandomReal (missing documentation) => ..., default value {}, │ │ │ │ - o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-71481-0/0", Option to │ │ │ │ + o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-124034-0/0", Option to │ │ │ │ change directory for file storage. │ │ │ │ o _V_e_r_b_o_s_e => ..., default value false, Option to silence additional │ │ │ │ output │ │ │ │ * Outputs: │ │ │ │ o S0, a _l_i_s_t, a list of solutions to the target system │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ This method calls Bertini to track a user-defined homotopy. The user needs to │ │ ├── ./usr/share/doc/Macaulay2/Bertini/html/_bertini__Zero__Dim__Solve.html │ │ │ @@ -91,15 +91,15 @@ │ │ │ OutputStyle (missing documentation) │ │ │ => ..., default value "OutPoints",
    • │ │ │
    • │ │ │ RandomComplex => ..., default value {}, an option which designates symbols/strings/variables that will be set to be a random real number or random complex number
    • │ │ │
    • │ │ │ RandomReal => ..., default value {}, an option which designates symbols/strings/variables that will be set to be a random real number or random complex number
    • │ │ │
    • │ │ │ -TopDirectory => ..., default value "/tmp/M2-71481-0/0", Option to change directory for file storage.
    • │ │ │ +TopDirectory => ..., default value "/tmp/M2-124034-0/0", Option to change directory for file storage. │ │ │
    • │ │ │ UseRegeneration (missing documentation) │ │ │ => ..., default value -1,
    • │ │ │
    • │ │ │ Verbose => ..., default value false, Option to silence additional output
    • │ │ │
    │ │ │
  • │ │ │ ├── html2text {} │ │ │ │ @@ -33,15 +33,15 @@ │ │ │ │ "OutPoints", │ │ │ │ o _R_a_n_d_o_m_C_o_m_p_l_e_x => ..., default value {}, an option which designates │ │ │ │ symbols/strings/variables that will be set to be a random real │ │ │ │ number or random complex number │ │ │ │ o _R_a_n_d_o_m_R_e_a_l => ..., default value {}, an option which designates │ │ │ │ symbols/strings/variables that will be set to be a random real │ │ │ │ number or random complex number │ │ │ │ - o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-71481-0/0", Option to │ │ │ │ + o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-124034-0/0", Option to │ │ │ │ change directory for file storage. │ │ │ │ o UseRegeneration (missing documentation) => ..., default value -1, │ │ │ │ o _V_e_r_b_o_s_e => ..., default value false, Option to silence additional │ │ │ │ output │ │ │ │ * Outputs: │ │ │ │ o S, a _l_i_s_t, a list of points that are contained in the variety of F │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=31 │ │ │ aW52ZXJzZVJpbmdBY3RvcnMoLi4uLFN1Yj0+Li4uKQ== │ │ │ #:len=264 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjg0OCwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHtbaW52ZXJzZVJpbmdBY3RvcnMsU3ViXSwiaW52ZXJz │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Betti__Characters_sp__Example_sp1.out │ │ │ @@ -76,15 +76,15 @@ │ │ │ i8 : A = action(RI,S7) │ │ │ │ │ │ o8 = ChainComplex with 15 actors │ │ │ │ │ │ o8 : ActionOnComplex │ │ │ │ │ │ i9 : elapsedTime c = character A │ │ │ - -- .444232s elapsed │ │ │ + -- 1.07415s elapsed │ │ │ │ │ │ o9 = Character over R │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | │ │ │ (1, {2}) => | 0 -1 1 -1 0 0 0 -1 2 0 2 2 2 6 14 | │ │ │ (2, {3}) => | 0 1 0 0 -1 1 -1 -1 -1 -1 -1 1 -1 5 35 | │ │ │ (3, {4}) => | 0 -1 0 0 1 1 1 -1 -1 1 -1 -1 -1 -5 35 | │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Betti__Characters_sp__Example_sp2.out │ │ │ @@ -100,15 +100,15 @@ │ │ │ i6 : A=action(RI,S6) │ │ │ │ │ │ o6 = ChainComplex with 11 actors │ │ │ │ │ │ o6 : ActionOnComplex │ │ │ │ │ │ i7 : elapsedTime c=character A │ │ │ - -- .512547s elapsed │ │ │ + -- .874536s elapsed │ │ │ │ │ │ o7 = Character over R │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 | │ │ │ (1, {5}) => | 0 1 0 2 0 1 3 0 2 4 6 | │ │ │ (1, {7}) => | 0 0 0 0 0 1 3 0 4 16 60 | │ │ │ (1, {9}) => | 0 0 0 0 2 2 2 0 4 8 20 | │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Betti__Characters_sp__Example_sp3.out │ │ │ @@ -187,27 +187,27 @@ │ │ │ i19 : A2 = action(RI2,G,Sub=>false) │ │ │ │ │ │ o19 = ChainComplex with 6 actors │ │ │ │ │ │ o19 : ActionOnComplex │ │ │ │ │ │ i20 : elapsedTime a1 = character A1 │ │ │ - -- .855753s elapsed │ │ │ + -- 1.25961s elapsed │ │ │ │ │ │ o20 = Character over R │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 | │ │ │ (1, {8}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ (2, {11}) => | 1 1 1 1 1 1 | │ │ │ (2, {13}) => | 1 1 1 1 1 1 | │ │ │ │ │ │ o20 : Character │ │ │ │ │ │ i21 : elapsedTime a2 = character A2 │ │ │ - -- 37.8601s elapsed │ │ │ + -- 58.1123s elapsed │ │ │ │ │ │ o21 = Character over R │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 | │ │ │ (1, {16}) => | 6 2 0 0 -1 -1 | │ │ │ (2, {19}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ (2, {21}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ @@ -297,15 +297,15 @@ │ │ │ i31 : B = action(M,G,Sub=>false) │ │ │ │ │ │ o31 = Module with 6 actors │ │ │ │ │ │ o31 : ActionOnGradedModule │ │ │ │ │ │ i32 : elapsedTime b = character(B,21) │ │ │ - -- 17.2337s elapsed │ │ │ + -- 23.0969s elapsed │ │ │ │ │ │ o32 = Character over R │ │ │ │ │ │ (0, {21}) => | 1 1 1 1 1 1 | │ │ │ │ │ │ o32 : Character │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/html/___Betti__Characters_sp__Example_sp1.html │ │ │ @@ -138,15 +138,15 @@ │ │ │ │ │ │ o8 = ChainComplex with 15 actors │ │ │ │ │ │ o8 : ActionOnComplex
    │ │ │
    i9 : elapsedTime c = character A
    │ │ │ - -- .444232s elapsed
    │ │ │ + -- 1.07415s elapsed
    │ │ │  
    │ │ │  o9 = Character over R
    │ │ │        
    │ │ │       (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
    │ │ │       (1, {2}) => | 0 -1 1 -1 0 0 0 -1 2 0 2 2 2 6 14 |
    │ │ │       (2, {3}) => | 0 1 0 0 -1 1 -1 -1 -1 -1 -1 1 -1 5 35 |
    │ │ │       (3, {4}) => | 0 -1 0 0 1 1 1 -1 -1 1 -1 -1 -1 -5 35 |
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -91,15 +91,15 @@
    │ │ │ │  o7 : List
    │ │ │ │  i8 : A = action(RI,S7)
    │ │ │ │  
    │ │ │ │  o8 = ChainComplex with 15 actors
    │ │ │ │  
    │ │ │ │  o8 : ActionOnComplex
    │ │ │ │  i9 : elapsedTime c = character A
    │ │ │ │ - -- .444232s elapsed
    │ │ │ │ + -- 1.07415s elapsed
    │ │ │ │  
    │ │ │ │  o9 = Character over R
    │ │ │ │  
    │ │ │ │       (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
    │ │ │ │       (1, {2}) => | 0 -1 1 -1 0 0 0 -1 2 0 2 2 2 6 14 |
    │ │ │ │       (2, {3}) => | 0 1 0 0 -1 1 -1 -1 -1 -1 -1 1 -1 5 35 |
    │ │ │ │       (3, {4}) => | 0 -1 0 0 1 1 1 -1 -1 1 -1 -1 -1 -5 35 |
    │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/html/___Betti__Characters_sp__Example_sp2.html
    │ │ │ @@ -160,15 +160,15 @@
    │ │ │  
    │ │ │  o6 = ChainComplex with 11 actors
    │ │ │  
    │ │ │  o6 : ActionOnComplex
    │ │ │
    i7 : elapsedTime c=character A
    │ │ │ - -- .512547s elapsed
    │ │ │ + -- .874536s elapsed
    │ │ │  
    │ │ │  o7 = Character over R
    │ │ │        
    │ │ │       (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 |
    │ │ │       (1, {5}) => | 0 1 0 2 0 1 3 0 2 4 6 |
    │ │ │       (1, {7}) => | 0 0 0 0 0 1 3 0 4 16 60 |
    │ │ │       (1, {9}) => | 0 0 0 0 2 2 2 0 4 8 20 |
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -113,15 +113,15 @@
    │ │ │ │  o5 : List
    │ │ │ │  i6 : A=action(RI,S6)
    │ │ │ │  
    │ │ │ │  o6 = ChainComplex with 11 actors
    │ │ │ │  
    │ │ │ │  o6 : ActionOnComplex
    │ │ │ │  i7 : elapsedTime c=character A
    │ │ │ │ - -- .512547s elapsed
    │ │ │ │ + -- .874536s elapsed
    │ │ │ │  
    │ │ │ │  o7 = Character over R
    │ │ │ │  
    │ │ │ │       (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 |
    │ │ │ │       (1, {5}) => | 0 1 0 2 0 1 3 0 2 4 6 |
    │ │ │ │       (1, {7}) => | 0 0 0 0 0 1 3 0 4 16 60 |
    │ │ │ │       (1, {9}) => | 0 0 0 0 2 2 2 0 4 8 20 |
    │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/html/___Betti__Characters_sp__Example_sp3.html
    │ │ │ @@ -264,28 +264,28 @@
    │ │ │  
    │ │ │  o19 = ChainComplex with 6 actors
    │ │ │  
    │ │ │  o19 : ActionOnComplex
    │ │ │
    i20 : elapsedTime a1 = character A1
    │ │ │ - -- .855753s elapsed
    │ │ │ + -- 1.25961s elapsed
    │ │ │  
    │ │ │  o20 = Character over R
    │ │ │         
    │ │ │        (0, {0}) => | 1 1 1 1 1 1 |
    │ │ │        (1, {8}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 |
    │ │ │        (2, {11}) => | 1 1 1 1 1 1 |
    │ │ │        (2, {13}) => | 1 1 1 1 1 1 |
    │ │ │  
    │ │ │  o20 : Character
    │ │ │
    i21 : elapsedTime a2 = character A2
    │ │ │ - -- 37.8601s elapsed
    │ │ │ + -- 58.1123s elapsed
    │ │ │  
    │ │ │  o21 = Character over R
    │ │ │         
    │ │ │        (0, {0}) => | 1 1 1 1 1 1 |
    │ │ │        (1, {16}) => | 6 2 0 0 -1 -1 |
    │ │ │        (2, {19}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 |
    │ │ │        (2, {21}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 |
    │ │ │ @@ -397,15 +397,15 @@
    │ │ │  
    │ │ │  o31 = Module with 6 actors
    │ │ │  
    │ │ │  o31 : ActionOnGradedModule
    │ │ │
    i32 : elapsedTime b = character(B,21)
    │ │ │ - -- 17.2337s elapsed
    │ │ │ + -- 23.0969s elapsed
    │ │ │  
    │ │ │  o32 = Character over R
    │ │ │         
    │ │ │        (0, {21}) => | 1 1 1 1 1 1 |
    │ │ │  
    │ │ │  o32 : Character
    │ │ │
    i23 : time j=bruns F.dd_3;
    │ │ │ - -- used 0.140644s (cpu); 0.139198s (thread); 0s (gc)
    │ │ │ + -- used 0.308002s (cpu); 0.310916s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 : Ideal of S
    │ │ │
    i24 : betti res j
    │ │ │  
    │ │ │               0 1 2 3 4
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -231,15 +231,15 @@
    │ │ │ │  o22 = total: 1 5 8 5 1
    │ │ │ │            0: 1 . . . .
    │ │ │ │            1: . 4 2 . .
    │ │ │ │            2: . 1 6 5 1
    │ │ │ │  
    │ │ │ │  o22 : BettiTally
    │ │ │ │  i23 : time j=bruns F.dd_3;
    │ │ │ │ - -- used 0.140644s (cpu); 0.139198s (thread); 0s (gc)
    │ │ │ │ + -- used 0.308002s (cpu); 0.310916s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o23 : Ideal of S
    │ │ │ │  i24 : betti res j
    │ │ │ │  
    │ │ │ │               0 1 2 3 4
    │ │ │ │  o24 = total: 1 3 6 5 1
    │ │ │ │            0: 1 . . . .
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=28
    │ │ │  c3ViY29tcGxleChDZWxsQ29tcGxleCxMaXN0KQ==
    │ │ │  #:len=297
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTUwNCwgc3ltYm9sIERvY3VtZW50VGFn
    │ │ │  ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoc3ViY29tcGxleCxDZWxsQ29tcGxleCxMaXN0KSwi
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_cell__Complex_lp__Ring_cm__Polyhedral__Complex_rp.out
    │ │ │ @@ -12,27 +12,27 @@
    │ │ │  
    │ │ │  i6 : F = polyhedralComplex {P1,P2,P3,P4};
    │ │ │  
    │ │ │  i7 : C = cellComplex(R,F);
    │ │ │  
    │ │ │  i8 : facePoset C
    │ │ │  
    │ │ │ -o8 = Relation Matrix: | 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 |
    │ │ │ -                      | 0 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 |
    │ │ │ -                      | 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 |
    │ │ │ -                      | 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 |
    │ │ │ -                      | 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 |
    │ │ │ -                      | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 |
    │ │ │ -                      | 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 |
    │ │ │ -                      | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 |
    │ │ │ -                      | 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 |
    │ │ │ -                      | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 |
    │ │ │ -                      | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 |
    │ │ │ -                      | 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 |
    │ │ │ -                      | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 |
    │ │ │ +o8 = Relation Matrix: | 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 |
    │ │ │ +                      | 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 |
    │ │ │ +                      | 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 |
    │ │ │ +                      | 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1 0 0 |
    │ │ │ +                      | 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 |
    │ │ │ +                      | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 |
    │ │ │ +                      | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 |
    │ │ │ +                      | 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 |
    │ │ │ +                      | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
    │ │ │ +                      | 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 |
    │ │ │ +                      | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 |
    │ │ │ +                      | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 |
    │ │ │ +                      | 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 |
    │ │ │                        | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 |
    │ │ │                        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 |
    │ │ │                        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 |
    │ │ │                        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 |
    │ │ │  
    │ │ │  o8 : Poset
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_cell__Complex_lp__Ring_cm__Polyhedron_rp.out
    │ │ │ @@ -32,12 +32,12 @@
    │ │ │  
    │ │ │  i8 : H = hashTable {v_0 => x*y, v_1 => y*z, v_2 => x*w, v_3 => y*z};
    │ │ │  
    │ │ │  i9 : labeledC = cellComplex(S, P, Labels => H);
    │ │ │  
    │ │ │  i10 : for i to dim labeledC list cells(i,labeledC)/cellLabel
    │ │ │  
    │ │ │ -o10 = {{x*w, x*y, y*z, y*z}, {y*z, x*y*z, x*y*z*w, x*y*w}, {x*y*z*w}}
    │ │ │ +o10 = {{x*w, x*y, y*z, y*z}, {x*y*w, y*z, x*y*z, x*y*z*w}, {x*y*z*w}}
    │ │ │  
    │ │ │  o10 : List
    │ │ │  
    │ │ │  i11 :
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_cell__Complex_lp__Ring_cm__Simplicial__Complex_rp.out
    │ │ │ @@ -22,17 +22,17 @@
    │ │ │  
    │ │ │  o7 = C
    │ │ │  
    │ │ │  o7 : CellComplex
    │ │ │  
    │ │ │  i8 : applyValues(cells C, l -> apply(l,cellLabel))
    │ │ │  
    │ │ │ -                      3 2   2 3     4   5   5   4
    │ │ │ -o8 = HashTable{0 => {x y , x y , x*y , x , x , x y}                                       }
    │ │ │ -                      5 4   5    5 2   5 3   5 4   4 2   4 4   5    3 3   5 2   2 4   5 3
    │ │ │ -               1 => {x y , x y, x y , x y , x y , x y , x y , x y, x y , x y , x y , x y }
    │ │ │ +                      5   4    3 2   2 3     4   5
    │ │ │ +o8 = HashTable{0 => {x , x y, x y , x y , x*y , x }                                       }
    │ │ │ +                      5 2   5 3   5 4   4 2   4 4   5    3 3   5 2   2 4   5 3   5 4   5
    │ │ │ +               1 => {x y , x y , x y , x y , x y , x y, x y , x y , x y , x y , x y , x y}
    │ │ │                        5 2   5 4   5 3   5 4   5 2   5 4   5 3   5 4
    │ │ │                 2 => {x y , x y , x y , x y , x y , x y , x y , x y }
    │ │ │  
    │ │ │  o8 : HashTable
    │ │ │  
    │ │ │  i9 :
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_face__Poset_lp__Cell__Complex_rp.out
    │ │ │ @@ -20,18 +20,18 @@
    │ │ │  
    │ │ │  i10 : f = newCell({e12,e23,e34,e41});
    │ │ │  
    │ │ │  i11 : C = cellComplex(R,{f});
    │ │ │  
    │ │ │  i12 : facePoset C
    │ │ │  
    │ │ │ -o12 = Relation Matrix: | 1 0 0 0 0 1 1 0 1 |
    │ │ │ -                       | 0 1 0 0 1 0 1 0 1 |
    │ │ │ -                       | 0 0 1 0 1 0 0 1 1 |
    │ │ │ -                       | 0 0 0 1 0 1 0 1 1 |
    │ │ │ +o12 = Relation Matrix: | 1 0 0 0 1 0 1 0 1 |
    │ │ │ +                       | 0 1 0 0 0 0 1 1 1 |
    │ │ │ +                       | 0 0 1 0 0 1 0 1 1 |
    │ │ │ +                       | 0 0 0 1 1 1 0 0 1 |
    │ │ │                         | 0 0 0 0 1 0 0 0 1 |
    │ │ │                         | 0 0 0 0 0 1 0 0 1 |
    │ │ │                         | 0 0 0 0 0 0 1 0 1 |
    │ │ │                         | 0 0 0 0 0 0 0 1 1 |
    │ │ │                         | 0 0 0 0 0 0 0 0 1 |
    │ │ │  
    │ │ │  o12 : Poset
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/html/_cell__Complex_lp__Ring_cm__Polyhedral__Complex_rp.html
    │ │ │ @@ -101,27 +101,27 @@
    │ │ │  
    i7 : C = cellComplex(R,F);
    │ │ │
    i8 : facePoset C
    │ │ │  
    │ │ │ -o8 = Relation Matrix: | 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 |
    │ │ │ -                      | 0 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 |
    │ │ │ -                      | 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 |
    │ │ │ -                      | 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 |
    │ │ │ -                      | 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 |
    │ │ │ -                      | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 |
    │ │ │ -                      | 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 |
    │ │ │ -                      | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 |
    │ │ │ -                      | 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 |
    │ │ │ -                      | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 |
    │ │ │ -                      | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 |
    │ │ │ -                      | 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 |
    │ │ │ -                      | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 |
    │ │ │ +o8 = Relation Matrix: | 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 |
    │ │ │ +                      | 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 |
    │ │ │ +                      | 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 |
    │ │ │ +                      | 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1 0 0 |
    │ │ │ +                      | 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 |
    │ │ │ +                      | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 |
    │ │ │ +                      | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 |
    │ │ │ +                      | 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 |
    │ │ │ +                      | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
    │ │ │ +                      | 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 |
    │ │ │ +                      | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 |
    │ │ │ +                      | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 |
    │ │ │ +                      | 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 |
    │ │ │                        | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 |
    │ │ │                        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 |
    │ │ │                        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 |
    │ │ │                        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 |
    │ │ │  
    │ │ │  o8 : Poset
    │ │ │
    i9 : labeledC = cellComplex(S, P, Labels => H);
    │ │ │
    i10 : for i to dim labeledC list cells(i,labeledC)/cellLabel
    │ │ │  
    │ │ │ -o10 = {{x*w, x*y, y*z, y*z}, {y*z, x*y*z, x*y*z*w, x*y*w}, {x*y*z*w}}
    │ │ │ +o10 = {{x*w, x*y, y*z, y*z}, {x*y*w, y*z, x*y*z, x*y*z*w}, {x*y*z*w}}
    │ │ │  
    │ │ │  o10 : List
    │ │ │
    │ │ │ │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -48,15 +48,15 @@ │ │ │ │ │ │ │ │ 2 4 │ │ │ │ o7 : Matrix QQ <-- QQ │ │ │ │ i8 : H = hashTable {v_0 => x*y, v_1 => y*z, v_2 => x*w, v_3 => y*z}; │ │ │ │ i9 : labeledC = cellComplex(S, P, Labels => H); │ │ │ │ i10 : for i to dim labeledC list cells(i,labeledC)/cellLabel │ │ │ │ │ │ │ │ -o10 = {{x*w, x*y, y*z, y*z}, {y*z, x*y*z, x*y*z*w, x*y*w}, {x*y*z*w}} │ │ │ │ +o10 = {{x*w, x*y, y*z, y*z}, {x*y*w, y*z, x*y*z, x*y*z*w}, {x*y*z*w}} │ │ │ │ │ │ │ │ o10 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_e_l_l_C_o_m_p_l_e_x_(_R_i_n_g_,_P_o_l_y_h_e_d_r_a_l_C_o_m_p_l_e_x_) -- creates cell complex from given │ │ │ │ polyhedral complex │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _c_e_l_l_C_o_m_p_l_e_x_(_R_i_n_g_,_P_o_l_y_h_e_d_r_o_n_) -- creates cell complex from given │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/html/_cell__Complex_lp__Ring_cm__Simplicial__Complex_rp.html │ │ │ @@ -116,18 +116,18 @@ │ │ │ o7 = C │ │ │ │ │ │ o7 : CellComplex
    │ │ │ │ │ │ │ │ │
    i8 : applyValues(cells C, l -> apply(l,cellLabel))
    │ │ │  
    │ │ │ -                      3 2   2 3     4   5   5   4
    │ │ │ -o8 = HashTable{0 => {x y , x y , x*y , x , x , x y}                                       }
    │ │ │ -                      5 4   5    5 2   5 3   5 4   4 2   4 4   5    3 3   5 2   2 4   5 3
    │ │ │ -               1 => {x y , x y, x y , x y , x y , x y , x y , x y, x y , x y , x y , x y }
    │ │ │ +                      5   4    3 2   2 3     4   5
    │ │ │ +o8 = HashTable{0 => {x , x y, x y , x y , x*y , x }                                       }
    │ │ │ +                      5 2   5 3   5 4   4 2   4 4   5    3 3   5 2   2 4   5 3   5 4   5
    │ │ │ +               1 => {x y , x y , x y , x y , x y , x y, x y , x y , x y , x y , x y , x y}
    │ │ │                        5 2   5 4   5 3   5 4   5 2   5 4   5 3   5 4
    │ │ │                 2 => {x y , x y , x y , x y , x y , x y , x y , x y }
    │ │ │  
    │ │ │  o8 : HashTable
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -39,21 +39,21 @@ │ │ │ │ i7 : C = cellComplex(S,Delta,Labels=>H) │ │ │ │ │ │ │ │ o7 = C │ │ │ │ │ │ │ │ o7 : CellComplex │ │ │ │ i8 : applyValues(cells C, l -> apply(l,cellLabel)) │ │ │ │ │ │ │ │ - 3 2 2 3 4 5 5 4 │ │ │ │ -o8 = HashTable{0 => {x y , x y , x*y , x , x , x y} │ │ │ │ + 5 4 3 2 2 3 4 5 │ │ │ │ +o8 = HashTable{0 => {x , x y, x y , x y , x*y , x } │ │ │ │ } │ │ │ │ - 5 4 5 5 2 5 3 5 4 4 2 4 4 5 3 3 5 2 │ │ │ │ -2 4 5 3 │ │ │ │ - 1 => {x y , x y, x y , x y , x y , x y , x y , x y, x y , x y , │ │ │ │ -x y , x y } │ │ │ │ + 5 2 5 3 5 4 4 2 4 4 5 3 3 5 2 2 4 5 3 │ │ │ │ +5 4 5 │ │ │ │ + 1 => {x y , x y , x y , x y , x y , x y, x y , x y , x y , x y , │ │ │ │ +x y , x y} │ │ │ │ 5 2 5 4 5 3 5 4 5 2 5 4 5 3 5 4 │ │ │ │ 2 => {x y , x y , x y , x y , x y , x y , x y , x y } │ │ │ │ │ │ │ │ o8 : HashTable │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_e_l_l_C_o_m_p_l_e_x -- create a cell complex │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/html/_face__Poset_lp__Cell__Complex_rp.html │ │ │ @@ -105,18 +105,18 @@ │ │ │ │ │ │ │ │ │
    i11 : C = cellComplex(R,{f});
    │ │ │ │ │ │ │ │ │
    i12 : facePoset C
    │ │ │  
    │ │ │ -o12 = Relation Matrix: | 1 0 0 0 0 1 1 0 1 |
    │ │ │ -                       | 0 1 0 0 1 0 1 0 1 |
    │ │ │ -                       | 0 0 1 0 1 0 0 1 1 |
    │ │ │ -                       | 0 0 0 1 0 1 0 1 1 |
    │ │ │ +o12 = Relation Matrix: | 1 0 0 0 1 0 1 0 1 |
    │ │ │ +                       | 0 1 0 0 0 0 1 1 1 |
    │ │ │ +                       | 0 0 1 0 0 1 0 1 1 |
    │ │ │ +                       | 0 0 0 1 1 1 0 0 1 |
    │ │ │                         | 0 0 0 0 1 0 0 0 1 |
    │ │ │                         | 0 0 0 0 0 1 0 0 1 |
    │ │ │                         | 0 0 0 0 0 0 1 0 1 |
    │ │ │                         | 0 0 0 0 0 0 0 1 1 |
    │ │ │                         | 0 0 0 0 0 0 0 0 1 |
    │ │ │  
    │ │ │  o12 : Poset
    │ │ │ ├── html2text {} │ │ │ │ @@ -26,18 +26,18 @@ │ │ │ │ i7 : e23 = newCell({v2,v3}); │ │ │ │ i8 : e34 = newCell({v3,v4}); │ │ │ │ i9 : e41 = newCell({v4,v1}); │ │ │ │ i10 : f = newCell({e12,e23,e34,e41}); │ │ │ │ i11 : C = cellComplex(R,{f}); │ │ │ │ i12 : facePoset C │ │ │ │ │ │ │ │ -o12 = Relation Matrix: | 1 0 0 0 0 1 1 0 1 | │ │ │ │ - | 0 1 0 0 1 0 1 0 1 | │ │ │ │ - | 0 0 1 0 1 0 0 1 1 | │ │ │ │ - | 0 0 0 1 0 1 0 1 1 | │ │ │ │ +o12 = Relation Matrix: | 1 0 0 0 1 0 1 0 1 | │ │ │ │ + | 0 1 0 0 0 0 1 1 1 | │ │ │ │ + | 0 0 1 0 0 1 0 1 1 | │ │ │ │ + | 0 0 0 1 1 1 0 0 1 | │ │ │ │ | 0 0 0 0 1 0 0 0 1 | │ │ │ │ | 0 0 0 0 0 1 0 0 1 | │ │ │ │ | 0 0 0 0 0 0 1 0 1 | │ │ │ │ | 0 0 0 0 0 0 0 1 1 | │ │ │ │ | 0 0 0 0 0 0 0 0 1 | │ │ │ │ │ │ │ │ o12 : Poset │ │ ├── ./usr/share/doc/Macaulay2/ChainComplexExtras/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=30 │ │ │ SG9tKENoYWluQ29tcGxleCxDaGFpbkNvbXBsZXgp │ │ │ #:len=1256 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiQ3JlYXRlIHRoZSBob21vbW9ycGhpc20g │ │ │ Y29tcGxleCBvZiBhIHBhaXIgb2YgY2hhaW4gY29tcGxleGVzLiIsICJsaW5lbnVtIiA9PiA4MDcs │ │ ├── ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_minimize.out │ │ │ @@ -63,15 +63,15 @@ │ │ │ o11 : ChainComplex │ │ │ │ │ │ i12 : isMinimalChainComplex E │ │ │ │ │ │ o12 = false │ │ │ │ │ │ i13 : time m = minimize (E[1]); │ │ │ - -- used 0.281351s (cpu); 0.204197s (thread); 0s (gc) │ │ │ + -- used 0.330028s (cpu); 0.275004s (thread); 0s (gc) │ │ │ │ │ │ i14 : isQuasiIsomorphism m │ │ │ │ │ │ o14 = true │ │ │ │ │ │ i15 : E[1] == source m │ │ ├── ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_resolution__Of__Chain__Complex.out │ │ │ @@ -27,18 +27,18 @@ │ │ │ i5 : C = res(R^1/(ideal vars R))**(R^1/(ideal vars R)^5); │ │ │ │ │ │ i6 : mods = for i from 0 to max C list pushForward(f, C_i); │ │ │ │ │ │ i7 : C = chainComplex for i from min C+1 to max C list map(mods_(i-1),mods_i,substitute(matrix C.dd_i,S)); │ │ │ │ │ │ i8 : time m = resolutionOfChainComplex C; │ │ │ - -- used 0.096258s (cpu); 0.0958462s (thread); 0s (gc) │ │ │ + -- used 0.124058s (cpu); 0.123077s (thread); 0s (gc) │ │ │ │ │ │ i9 : time n = cartanEilenbergResolution C; │ │ │ - -- used 0.202116s (cpu); 0.149978s (thread); 0s (gc) │ │ │ + -- used 0.304619s (cpu); 0.254382s (thread); 0s (gc) │ │ │ │ │ │ i10 : betti source m │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ o10 = total: 1 19 80 181 312 484 447 156 │ │ │ 0: 1 3 3 1 . . . . │ │ │ 1: . . 1 3 3 . . . │ │ ├── ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_minimize.html │ │ │ @@ -155,15 +155,15 @@ │ │ │ │ │ │
    │ │ │

    Now we minimize the result. The free summand we added to the end maps to zero, and thus is part of the minimization.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ o11 : ChainComplex │ │ │ │ i12 : isMinimalChainComplex E │ │ │ │ │ │ │ │ o12 = false │ │ │ │ Now we minimize the result. The free summand we added to the end maps to zero, │ │ │ │ and thus is part of the minimization. │ │ │ │ i13 : time m = minimize (E[1]); │ │ │ │ - -- used 0.281351s (cpu); 0.204197s (thread); 0s (gc) │ │ │ │ + -- used 0.330028s (cpu); 0.275004s (thread); 0s (gc) │ │ │ │ i14 : isQuasiIsomorphism m │ │ │ │ │ │ │ │ o14 = true │ │ │ │ i15 : E[1] == source m │ │ │ │ │ │ │ │ o15 = true │ │ │ │ i16 : E' = target m │ │ ├── ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_resolution__Of__Chain__Complex.html │ │ │ @@ -116,19 +116,19 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -274,15 +274,15 @@ │ │ │ o21 = 9h h + 9h h + 9h h + 3h + 7h h + 3h + 3h + 2h │ │ │ 1 2 1 2 1 2 1 1 2 2 1 2 │ │ │ │ │ │ o21 : A │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -161,15 +161,15 @@ │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o14 = ideal (x x - x x x , x x ) │ │ │ │ 0 3 1 2 4 2 5 │ │ │ │ │ │ │ │ o14 : Ideal of R │ │ │ │ i15 : time csmK=CSM(A,K) │ │ │ │ - -- used 1.51962s (cpu); 0.529515s (thread); 0s (gc) │ │ │ │ + -- used 4.16843s (cpu); 0.857075s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ │ o15 = 7h h + 5h h + 4h h + h + 3h h + h │ │ │ │ 1 2 1 2 1 2 1 1 2 2 │ │ │ │ │ │ │ │ o15 : A │ │ │ │ i16 : csmKHash= CSM(A,K,Output=>HashForm) │ │ │ │ @@ -200,15 +200,15 @@ │ │ │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ │ o21 = 9h h + 9h h + 9h h + 3h + 7h h + 3h + 3h + 2h │ │ │ │ 1 2 1 2 1 2 1 1 2 2 1 2 │ │ │ │ │ │ │ │ o21 : A │ │ │ │ i22 : time CSM(A,K,m) │ │ │ │ - -- used 0.268601s (cpu); 0.100341s (thread); 0s (gc) │ │ │ │ + -- used 0.306531s (cpu); 0.123968s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ │ o22 = 7h h + 5h h + 4h h + h + 3h h + h │ │ │ │ 1 2 1 2 1 2 1 1 2 2 │ │ │ │ │ │ │ │ o22 : A │ │ │ │ In the case where the ambient space is a toric variety which is not a product │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Check__Smooth.html │ │ │ @@ -60,29 +60,29 @@ │ │ │ │ │ │ o2 = U │ │ │ │ │ │ o2 : NormalToricVariety │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -182,21 +182,21 @@ │ │ │
    i13 : time m = minimize (E[1]);
    │ │ │ - -- used 0.281351s (cpu); 0.204197s (thread); 0s (gc)
    │ │ │ + -- used 0.330028s (cpu); 0.275004s (thread); 0s (gc) │ │ │
    i14 : isQuasiIsomorphism m
    │ │ │  
    │ │ │  o14 = true
    │ │ │
    i6 : mods = for i from 0 to max C list pushForward(f, C_i);
    │ │ │
    i7 : C = chainComplex for i from min C+1 to max C list map(mods_(i-1),mods_i,substitute(matrix C.dd_i,S));
    │ │ │
    i8 : time m = resolutionOfChainComplex C;
    │ │ │ - -- used 0.096258s (cpu); 0.0958462s (thread); 0s (gc)
    │ │ │ + -- used 0.124058s (cpu); 0.123077s (thread); 0s (gc) │ │ │
    i9 : time n = cartanEilenbergResolution C;
    │ │ │ - -- used 0.202116s (cpu); 0.149978s (thread); 0s (gc)
    │ │ │ + -- used 0.304619s (cpu); 0.254382s (thread); 0s (gc) │ │ │
    i10 : betti source m
    │ │ │  
    │ │ │               0  1  2   3   4   5   6   7
    │ │ │  o10 = total: 1 19 80 181 312 484 447 156
    │ │ │            0: 1  3  3   1   .   .   .   .
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -50,17 +50,17 @@
    │ │ │ │  
    │ │ │ │  o4 : RingMap R <-- S
    │ │ │ │  i5 : C = res(R^1/(ideal vars R))**(R^1/(ideal vars R)^5);
    │ │ │ │  i6 : mods = for i from 0 to max C list pushForward(f, C_i);
    │ │ │ │  i7 : C = chainComplex for i from min C+1 to max C list map(mods_(i-
    │ │ │ │  1),mods_i,substitute(matrix C.dd_i,S));
    │ │ │ │  i8 : time m = resolutionOfChainComplex C;
    │ │ │ │ - -- used 0.096258s (cpu); 0.0958462s (thread); 0s (gc)
    │ │ │ │ + -- used 0.124058s (cpu); 0.123077s (thread); 0s (gc)
    │ │ │ │  i9 : time n = cartanEilenbergResolution C;
    │ │ │ │ - -- used 0.202116s (cpu); 0.149978s (thread); 0s (gc)
    │ │ │ │ + -- used 0.304619s (cpu); 0.254382s (thread); 0s (gc)
    │ │ │ │  i10 : betti source m
    │ │ │ │  
    │ │ │ │               0  1  2   3   4   5   6   7
    │ │ │ │  o10 = total: 1 19 80 181 312 484 447 156
    │ │ │ │            0: 1  3  3   1   .   .   .   .
    │ │ │ │            1: .  .  1   3   3   .   .   .
    │ │ │ │            2: .  1  3   3   2   .   .   .
    │ │ ├── ./usr/share/doc/Macaulay2/ChainComplexOperations/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=41
    │ │ │  cmV2ZXJzZUZhY3RvcnMoQ2hhaW5Db21wbGV4LENoYWluQ29tcGxleCk=
    │ │ │  #:len=335
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjEzLCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhyZXZlcnNlRmFjdG9ycyxDaGFpbkNvbXBsZXgsQ2hh
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=18
    │ │ │  TXVsdGlQcm9qQ29vcmRSaW5n
    │ │ │  #:len=2206
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiQSBxdWljayB3YXkgdG8gYnVpbGQgdGhl
    │ │ │  IGNvb3JkaW5hdGUgcmluZyBvZiBhIHByb2R1Y3Qgb2YgcHJvamVjdGl2ZSBzcGFjZXMiLCAibGlu
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___C__S__M.out
    │ │ │ @@ -83,15 +83,15 @@
    │ │ │                2              2
    │ │ │  o14 = ideal (x x  - x x x , x x )
    │ │ │                0 3    1 2 4   2 5
    │ │ │  
    │ │ │  o14 : Ideal of R
    │ │ │  
    │ │ │  i15 : time csmK=CSM(A,K)
    │ │ │ - -- used 1.51962s (cpu); 0.529515s (thread); 0s (gc)
    │ │ │ + -- used 4.16843s (cpu); 0.857075s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2     2         2    2            2
    │ │ │  o15 = 7h h  + 5h h  + 4h h  + h  + 3h h  + h
    │ │ │          1 2     1 2     1 2    1     1 2    2
    │ │ │  
    │ │ │  o15 : A
    │ │ │  
    │ │ │ @@ -124,15 +124,15 @@
    │ │ │          2 2     2         2     2             2
    │ │ │  o21 = 9h h  + 9h h  + 9h h  + 3h  + 7h h  + 3h  + 3h  + 2h
    │ │ │          1 2     1 2     1 2     1     1 2     2     1     2
    │ │ │  
    │ │ │  o21 : A
    │ │ │  
    │ │ │  i22 : time CSM(A,K,m)
    │ │ │ - -- used 0.268601s (cpu); 0.100341s (thread); 0s (gc)
    │ │ │ + -- used 0.306531s (cpu); 0.123968s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2     2         2    2            2
    │ │ │  o22 = 7h h  + 5h h  + 4h h  + h  + 3h h  + h
    │ │ │          1 2     1 2     1 2    1     1 2    2
    │ │ │  
    │ │ │  o22 : A
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Check__Smooth.out
    │ │ │ @@ -9,28 +9,28 @@
    │ │ │  i2 : U = toricProjectiveSpace 7
    │ │ │  
    │ │ │  o2 = U
    │ │ │  
    │ │ │  o2 : NormalToricVariety
    │ │ │  
    │ │ │  i3 : time CSM U
    │ │ │ - -- used 0.261703s (cpu); 0.119713s (thread); 0s (gc)
    │ │ │ + -- used 0.556236s (cpu); 0.138143s (thread); 0s (gc)
    │ │ │  
    │ │ │         7      6      5      4      3      2
    │ │ │  o3 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │         7      7      7      7      7      7     7
    │ │ │  
    │ │ │                                                  ZZ[x ..x ]
    │ │ │                                                      0   7
    │ │ │  o3 : -----------------------------------------------------------------------------------------------
    │ │ │       (x x x x x x x x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x )
    │ │ │         0 1 2 3 4 5 6 7     0    1     0    2     0    3     0    4     0    5     0    6     0    7
    │ │ │  
    │ │ │  i4 : time CSM(U,CheckSmooth=>false)
    │ │ │ - -- used 0.544499s (cpu); 0.265961s (thread); 0s (gc)
    │ │ │ + -- used 0.670811s (cpu); 0.408204s (thread); 0s (gc)
    │ │ │  
    │ │ │         7      6      5      4      3      2
    │ │ │  o4 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │         7      7      7      7      7      7     7
    │ │ │  
    │ │ │                                                  ZZ[x ..x ]
    │ │ │                                                      0   7
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Comp__Method.out
    │ │ │ @@ -18,29 +18,29 @@
    │ │ │  i3 : R=ZZ/32749[v_0..v_5];
    │ │ │  
    │ │ │  i4 : I=ideal(4*v_3*v_1*v_2-8*v_1*v_3^2,v_5*(v_0*v_1*v_4-v_2^3));
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │  
    │ │ │  i5 : time CSM(I,CompMethod=>ProjectiveDegree)
    │ │ │ - -- used 1.27964s (cpu); 0.355065s (thread); 0s (gc)
    │ │ │ + -- used 2.08303s (cpu); 0.674085s (thread); 0s (gc)
    │ │ │  
    │ │ │         5      4      3      2
    │ │ │  o5 = 6h  + 14h  + 14h  + 10h
    │ │ │         1      1      1      1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │  o5 : ------
    │ │ │          6
    │ │ │         h
    │ │ │          1
    │ │ │  
    │ │ │  i6 : time CSM(I,CompMethod=>PnResidual)
    │ │ │ - -- used 2.15421s (cpu); 1.73354s (thread); 0s (gc)
    │ │ │ + -- used 3.72797s (cpu); 3.18582s (thread); 0s (gc)
    │ │ │  
    │ │ │         5      4      3      2
    │ │ │  o6 = 6H  + 14H  + 14H  + 10H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o6 : -----
    │ │ │          6
    │ │ │ @@ -53,29 +53,29 @@
    │ │ │  i8 : S=QQ[s_0..s_3];
    │ │ │  
    │ │ │  i9 : K=ideal(4*s_3*s_2-s_2^2,(s_0*s_1*s_3-s_2^3));
    │ │ │  
    │ │ │  o9 : Ideal of S
    │ │ │  
    │ │ │  i10 : time CSM(K,CompMethod=>ProjectiveDegree)
    │ │ │ - -- used 0.560715s (cpu); 0.263507s (thread); 0s (gc)
    │ │ │ + -- used 0.546113s (cpu); 0.360224s (thread); 0s (gc)
    │ │ │  
    │ │ │          3     2
    │ │ │  o10 = 3h  + 5h
    │ │ │          1     1
    │ │ │  
    │ │ │        ZZ[h ]
    │ │ │            1
    │ │ │  o10 : ------
    │ │ │           4
    │ │ │          h
    │ │ │           1
    │ │ │  
    │ │ │  i11 : time CSM(K,CompMethod=>PnResidual)
    │ │ │ - -- used 0.319881s (cpu); 0.163292s (thread); 0s (gc)
    │ │ │ + -- used 0.466255s (cpu); 0.0945574s (thread); 0s (gc)
    │ │ │  
    │ │ │          3     2
    │ │ │  o11 = 3H  + 5H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o11 : -----
    │ │ │           4
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Euler.out
    │ │ │ @@ -21,20 +21,20 @@
    │ │ │               2                                                        2
    │ │ │       - 14254x  - 11226x x  + 2653x x  + 12365x x  - 10226x x  - 12696x )
    │ │ │               3         0 4        1 4         2 4         3 4         4
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │  
    │ │ │  i4 : time Euler(I,InputIsSmooth=>true)
    │ │ │ - -- used 0.134571s (cpu); 0.0605471s (thread); 0s (gc)
    │ │ │ + -- used 0.34766s (cpu); 0.151011s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 4
    │ │ │  
    │ │ │  i5 : time Euler I
    │ │ │ - -- used 0.316118s (cpu); 0.167256s (thread); 0s (gc)
    │ │ │ + -- used 0.43878s (cpu); 0.1816s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 4
    │ │ │  
    │ │ │  i6 : EulerIHash=Euler(I,Output=>HashForm);
    │ │ │  
    │ │ │  i7 : A=ring EulerIHash#"CSM"
    │ │ │  
    │ │ │ @@ -62,20 +62,20 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │       - x x )
    │ │ │          0 3
    │ │ │  
    │ │ │  o9 : Ideal of R
    │ │ │  
    │ │ │  i10 : time Euler(J,Method=>DirectCompleteInt)
    │ │ │ - -- used 0.30978s (cpu); 0.0932417s (thread); 0s (gc)
    │ │ │ + -- used 0.547485s (cpu); 0.13849s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 2
    │ │ │  
    │ │ │  i11 : time Euler(J,Method=>DirectCompleteInt,IndsOfSmooth=>{0,1})
    │ │ │ - -- used 0.203774s (cpu); 0.0900468s (thread); 0s (gc)
    │ │ │ + -- used 0.274604s (cpu); 0.115878s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = 2
    │ │ │  
    │ │ │  i12 : R=MultiProjCoordRing({2,2})
    │ │ │  
    │ │ │  o12 = R
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Inds__Of__Smooth.out
    │ │ │ @@ -7,29 +7,29 @@
    │ │ │  o1 : PolynomialRing
    │ │ │  
    │ │ │  i2 : I=ideal(R_0*R_1*R_3-R_0^2*R_3,random({0,1},R),random({1,2},R));
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : time CSM(I,Method=>DirectCompletInt)
    │ │ │ - -- used 4.50668s (cpu); 1.29022s (thread); 0s (gc)
    │ │ │ + -- used 17.1081s (cpu); 2.4191s (thread); 0s (gc)
    │ │ │  
    │ │ │         2 2     2         2
    │ │ │  o3 = 2h h  + 2h h  + 5h h
    │ │ │         1 2     1 2     1 2
    │ │ │  
    │ │ │       ZZ[h ..h ]
    │ │ │           1   2
    │ │ │  o3 : ----------
    │ │ │          3   3
    │ │ │        (h , h )
    │ │ │          1   2
    │ │ │  
    │ │ │  i4 : time CSM(I,Method=>DirectCompletInt,IndsOfSmooth=>{1,2})
    │ │ │ - -- used 4.15312s (cpu); 1.21255s (thread); 0s (gc)
    │ │ │ + -- used 17.3167s (cpu); 2.23042s (thread); 0s (gc)
    │ │ │  
    │ │ │         2 2     2         2
    │ │ │  o4 = 2h h  + 2h h  + 5h h
    │ │ │         1 2     1 2     1 2
    │ │ │  
    │ │ │       ZZ[h ..h ]
    │ │ │           1   2
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Input__Is__Smooth.out
    │ │ │ @@ -3,43 +3,43 @@
    │ │ │  i1 : R = ZZ/32749[x_0..x_4];
    │ │ │  
    │ │ │  i2 : I=ideal(random(2,R),random(2,R),random(1,R));
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : time CSM I
    │ │ │ - -- used 1.38977s (cpu); 0.505458s (thread); 0s (gc)
    │ │ │ + -- used 2.96638s (cpu); 0.791167s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o3 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │  o3 : ------
    │ │ │          5
    │ │ │         h
    │ │ │          1
    │ │ │  
    │ │ │  i4 : time CSM(I,InputIsSmooth=>true)
    │ │ │ - -- used 0.178227s (cpu); 0.0505374s (thread); 0s (gc)
    │ │ │ + -- used 0.248913s (cpu); 0.0411849s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o4 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │  o4 : ------
    │ │ │          5
    │ │ │         h
    │ │ │          1
    │ │ │  
    │ │ │  i5 : time Chern I
    │ │ │ - -- used 0.0448355s (cpu); 0.0317107s (thread); 0s (gc)
    │ │ │ + -- used 0.406346s (cpu); 0.0316756s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o5 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Method.out
    │ │ │ @@ -7,29 +7,29 @@
    │ │ │  o1 : PolynomialRing
    │ │ │  
    │ │ │  i2 : I=ideal(random(2,R),random(1,R),R_0*R_1*R_6-R_0^3);
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : time CSM I
    │ │ │ - -- used 2.95931s (cpu); 0.979177s (thread); 0s (gc)
    │ │ │ + -- used 9.82452s (cpu); 1.63685s (thread); 0s (gc)
    │ │ │  
    │ │ │          5      4     3
    │ │ │  o3 = 12h  + 10h  + 6h
    │ │ │          1      1     1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │  o3 : ------
    │ │ │          7
    │ │ │         h
    │ │ │          1
    │ │ │  
    │ │ │  i4 : time CSM(I,Method=>DirectCompleteInt)
    │ │ │ - -- used 0.989463s (cpu); 0.347815s (thread); 0s (gc)
    │ │ │ + -- used 2.64769s (cpu); 0.446117s (thread); 0s (gc)
    │ │ │  
    │ │ │          5      4     3
    │ │ │  o4 = 12h  + 10h  + 6h
    │ │ │          1      1     1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___C__S__M.html
    │ │ │ @@ -221,15 +221,15 @@
    │ │ │  o14 = ideal (x x  - x x x , x x )
    │ │ │                0 3    1 2 4   2 5
    │ │ │  
    │ │ │  o14 : Ideal of R
    │ │ │
    i15 : time csmK=CSM(A,K)
    │ │ │ - -- used 1.51962s (cpu); 0.529515s (thread); 0s (gc)
    │ │ │ + -- used 4.16843s (cpu); 0.857075s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2     2         2    2            2
    │ │ │  o15 = 7h h  + 5h h  + 4h h  + h  + 3h h  + h
    │ │ │          1 2     1 2     1 2    1     1 2    2
    │ │ │  
    │ │ │  o15 : A
    │ │ │
    i22 : time CSM(A,K,m)
    │ │ │ - -- used 0.268601s (cpu); 0.100341s (thread); 0s (gc)
    │ │ │ + -- used 0.306531s (cpu); 0.123968s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2     2         2    2            2
    │ │ │  o22 = 7h h  + 5h h  + 4h h  + h  + 3h h  + h
    │ │ │          1 2     1 2     1 2    1     1 2    2
    │ │ │  
    │ │ │  o22 : A
    │ │ │
    i3 : time CSM U
    │ │ │ - -- used 0.261703s (cpu); 0.119713s (thread); 0s (gc)
    │ │ │ + -- used 0.556236s (cpu); 0.138143s (thread); 0s (gc)
    │ │ │  
    │ │ │         7      6      5      4      3      2
    │ │ │  o3 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │         7      7      7      7      7      7     7
    │ │ │  
    │ │ │                                                  ZZ[x ..x ]
    │ │ │                                                      0   7
    │ │ │  o3 : -----------------------------------------------------------------------------------------------
    │ │ │       (x x x x x x x x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x )
    │ │ │         0 1 2 3 4 5 6 7     0    1     0    2     0    3     0    4     0    5     0    6     0    7
    │ │ │
    i4 : time CSM(U,CheckSmooth=>false)
    │ │ │ - -- used 0.544499s (cpu); 0.265961s (thread); 0s (gc)
    │ │ │ + -- used 0.670811s (cpu); 0.408204s (thread); 0s (gc)
    │ │ │  
    │ │ │         7      6      5      4      3      2
    │ │ │  o4 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │         7      7      7      7      7      7     7
    │ │ │  
    │ │ │                                                  ZZ[x ..x ]
    │ │ │                                                      0   7
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,30 +16,30 @@
    │ │ │ │  o1 : Package
    │ │ │ │  i2 : U = toricProjectiveSpace 7
    │ │ │ │  
    │ │ │ │  o2 = U
    │ │ │ │  
    │ │ │ │  o2 : NormalToricVariety
    │ │ │ │  i3 : time CSM U
    │ │ │ │ - -- used 0.261703s (cpu); 0.119713s (thread); 0s (gc)
    │ │ │ │ + -- used 0.556236s (cpu); 0.138143s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         7      6      5      4      3      2
    │ │ │ │  o3 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │ │         7      7      7      7      7      7     7
    │ │ │ │  
    │ │ │ │                                                  ZZ[x ..x ]
    │ │ │ │                                                      0   7
    │ │ │ │  o3 : --------------------------------------------------------------------------
    │ │ │ │  ---------------------
    │ │ │ │       (x x x x x x x x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x ,
    │ │ │ │  - x  + x , - x  + x )
    │ │ │ │         0 1 2 3 4 5 6 7     0    1     0    2     0    3     0    4     0    5
    │ │ │ │  0    6     0    7
    │ │ │ │  i4 : time CSM(U,CheckSmooth=>false)
    │ │ │ │ - -- used 0.544499s (cpu); 0.265961s (thread); 0s (gc)
    │ │ │ │ + -- used 0.670811s (cpu); 0.408204s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         7      6      5      4      3      2
    │ │ │ │  o4 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │ │         7      7      7      7      7      7     7
    │ │ │ │  
    │ │ │ │                                                  ZZ[x ..x ]
    │ │ │ │                                                      0   7
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Comp__Method.html
    │ │ │ @@ -76,30 +76,30 @@
    │ │ │            
    i4 : I=ideal(4*v_3*v_1*v_2-8*v_1*v_3^2,v_5*(v_0*v_1*v_4-v_2^3));
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │
    i5 : time CSM(I,CompMethod=>ProjectiveDegree)
    │ │ │ - -- used 1.27964s (cpu); 0.355065s (thread); 0s (gc)
    │ │ │ + -- used 2.08303s (cpu); 0.674085s (thread); 0s (gc)
    │ │ │  
    │ │ │         5      4      3      2
    │ │ │  o5 = 6h  + 14h  + 14h  + 10h
    │ │ │         1      1      1      1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │  o5 : ------
    │ │ │          6
    │ │ │         h
    │ │ │          1
    │ │ │
    i6 : time CSM(I,CompMethod=>PnResidual)
    │ │ │ - -- used 2.15421s (cpu); 1.73354s (thread); 0s (gc)
    │ │ │ + -- used 3.72797s (cpu); 3.18582s (thread); 0s (gc)
    │ │ │  
    │ │ │         5      4      3      2
    │ │ │  o6 = 6H  + 14H  + 14H  + 10H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o6 : -----
    │ │ │          6
    │ │ │ @@ -116,30 +116,30 @@
    │ │ │            
    i9 : K=ideal(4*s_3*s_2-s_2^2,(s_0*s_1*s_3-s_2^3));
    │ │ │  
    │ │ │  o9 : Ideal of S
    │ │ │
    i10 : time CSM(K,CompMethod=>ProjectiveDegree)
    │ │ │ - -- used 0.560715s (cpu); 0.263507s (thread); 0s (gc)
    │ │ │ + -- used 0.546113s (cpu); 0.360224s (thread); 0s (gc)
    │ │ │  
    │ │ │          3     2
    │ │ │  o10 = 3h  + 5h
    │ │ │          1     1
    │ │ │  
    │ │ │        ZZ[h ]
    │ │ │            1
    │ │ │  o10 : ------
    │ │ │           4
    │ │ │          h
    │ │ │           1
    │ │ │
    i11 : time CSM(K,CompMethod=>PnResidual)
    │ │ │ - -- used 0.319881s (cpu); 0.163292s (thread); 0s (gc)
    │ │ │ + -- used 0.466255s (cpu); 0.0945574s (thread); 0s (gc)
    │ │ │  
    │ │ │          3     2
    │ │ │  o11 = 3H  + 5H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o11 : -----
    │ │ │           4
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -32,28 +32,28 @@
    │ │ │ │  using the regenerative cascade implemented in Bertini. This is done by choosing
    │ │ │ │  the option bertini, provided Bertini is _i_n_s_t_a_l_l_e_d_ _a_n_d_ _c_o_n_f_i_g_u_r_e_d.
    │ │ │ │  i3 : R=ZZ/32749[v_0..v_5];
    │ │ │ │  i4 : I=ideal(4*v_3*v_1*v_2-8*v_1*v_3^2,v_5*(v_0*v_1*v_4-v_2^3));
    │ │ │ │  
    │ │ │ │  o4 : Ideal of R
    │ │ │ │  i5 : time CSM(I,CompMethod=>ProjectiveDegree)
    │ │ │ │ - -- used 1.27964s (cpu); 0.355065s (thread); 0s (gc)
    │ │ │ │ + -- used 2.08303s (cpu); 0.674085s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         5      4      3      2
    │ │ │ │  o5 = 6h  + 14h  + 14h  + 10h
    │ │ │ │         1      1      1      1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ │ │  o5 : ------
    │ │ │ │          6
    │ │ │ │         h
    │ │ │ │          1
    │ │ │ │  i6 : time CSM(I,CompMethod=>PnResidual)
    │ │ │ │ - -- used 2.15421s (cpu); 1.73354s (thread); 0s (gc)
    │ │ │ │ + -- used 3.72797s (cpu); 3.18582s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         5      4      3      2
    │ │ │ │  o6 = 6H  + 14H  + 14H  + 10H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o6 : -----
    │ │ │ │          6
    │ │ │ │ @@ -62,28 +62,28 @@
    │ │ │ │  
    │ │ │ │  o7 = 2
    │ │ │ │  i8 : S=QQ[s_0..s_3];
    │ │ │ │  i9 : K=ideal(4*s_3*s_2-s_2^2,(s_0*s_1*s_3-s_2^3));
    │ │ │ │  
    │ │ │ │  o9 : Ideal of S
    │ │ │ │  i10 : time CSM(K,CompMethod=>ProjectiveDegree)
    │ │ │ │ - -- used 0.560715s (cpu); 0.263507s (thread); 0s (gc)
    │ │ │ │ + -- used 0.546113s (cpu); 0.360224s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          3     2
    │ │ │ │  o10 = 3h  + 5h
    │ │ │ │          1     1
    │ │ │ │  
    │ │ │ │        ZZ[h ]
    │ │ │ │            1
    │ │ │ │  o10 : ------
    │ │ │ │           4
    │ │ │ │          h
    │ │ │ │           1
    │ │ │ │  i11 : time CSM(K,CompMethod=>PnResidual)
    │ │ │ │ - -- used 0.319881s (cpu); 0.163292s (thread); 0s (gc)
    │ │ │ │ + -- used 0.466255s (cpu); 0.0945574s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          3     2
    │ │ │ │  o11 = 3H  + 5H
    │ │ │ │  
    │ │ │ │        ZZ[H]
    │ │ │ │  o11 : -----
    │ │ │ │           4
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Euler.html
    │ │ │ @@ -130,21 +130,21 @@
    │ │ │       - 14254x  - 11226x x  + 2653x x  + 12365x x  - 10226x x  - 12696x )
    │ │ │               3         0 4        1 4         2 4         3 4         4
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │
    i4 : time Euler(I,InputIsSmooth=>true)
    │ │ │ - -- used 0.134571s (cpu); 0.0605471s (thread); 0s (gc)
    │ │ │ + -- used 0.34766s (cpu); 0.151011s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 4
    │ │ │
    i5 : time Euler I
    │ │ │ - -- used 0.316118s (cpu); 0.167256s (thread); 0s (gc)
    │ │ │ + -- used 0.43878s (cpu); 0.1816s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 4
    │ │ │
    i6 : EulerIHash=Euler(I,Output=>HashForm);
    │ │ │
    │ │ │
    │ │ │

    Note that the ideal J above is a complete intersection, thus we may change the method option which may speed computation in some cases. We may also note that the ideal generated by the first 2 generators of I defines a smooth scheme and input this information into the method. This may also improve computation speed.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : time Euler(J,Method=>DirectCompleteInt)
    │ │ │ - -- used 0.30978s (cpu); 0.0932417s (thread); 0s (gc)
    │ │ │ + -- used 0.547485s (cpu); 0.13849s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 2
    │ │ │
    i11 : time Euler(J,Method=>DirectCompleteInt,IndsOfSmooth=>{0,1})
    │ │ │ - -- used 0.203774s (cpu); 0.0900468s (thread); 0s (gc)
    │ │ │ + -- used 0.274604s (cpu); 0.115878s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = 2
    │ │ │
    │ │ │
    │ │ │

    Now consider an example in \PP^2 \times \PP^2.

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -75,19 +75,19 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 │ │ │ │ - 14254x - 11226x x + 2653x x + 12365x x - 10226x x - 12696x ) │ │ │ │ 3 0 4 1 4 2 4 3 4 4 │ │ │ │ │ │ │ │ o3 : Ideal of R │ │ │ │ i4 : time Euler(I,InputIsSmooth=>true) │ │ │ │ - -- used 0.134571s (cpu); 0.0605471s (thread); 0s (gc) │ │ │ │ + -- used 0.34766s (cpu); 0.151011s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 4 │ │ │ │ i5 : time Euler I │ │ │ │ - -- used 0.316118s (cpu); 0.167256s (thread); 0s (gc) │ │ │ │ + -- used 0.43878s (cpu); 0.1816s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 4 │ │ │ │ i6 : EulerIHash=Euler(I,Output=>HashForm); │ │ │ │ i7 : A=ring EulerIHash#"CSM" │ │ │ │ │ │ │ │ o7 = A │ │ │ │ │ │ │ │ @@ -115,19 +115,19 @@ │ │ │ │ o9 : Ideal of R │ │ │ │ Note that the ideal J above is a complete intersection, thus we may change the │ │ │ │ method option which may speed computation in some cases. We may also note that │ │ │ │ the ideal generated by the first 2 generators of I defines a smooth scheme and │ │ │ │ input this information into the method. This may also improve computation │ │ │ │ speed. │ │ │ │ i10 : time Euler(J,Method=>DirectCompleteInt) │ │ │ │ - -- used 0.30978s (cpu); 0.0932417s (thread); 0s (gc) │ │ │ │ + -- used 0.547485s (cpu); 0.13849s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = 2 │ │ │ │ i11 : time Euler(J,Method=>DirectCompleteInt,IndsOfSmooth=>{0,1}) │ │ │ │ - -- used 0.203774s (cpu); 0.0900468s (thread); 0s (gc) │ │ │ │ + -- used 0.274604s (cpu); 0.115878s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 = 2 │ │ │ │ Now consider an example in \PP^2 \times \PP^2. │ │ │ │ i12 : R=MultiProjCoordRing({2,2}) │ │ │ │ │ │ │ │ o12 = R │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Inds__Of__Smooth.html │ │ │ @@ -58,30 +58,30 @@ │ │ │ │ │ │
    i2 : I=ideal(R_0*R_1*R_3-R_0^2*R_3,random({0,1},R),random({1,2},R));
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │ │ │ │ │ │ │
    i3 : time CSM(I,Method=>DirectCompletInt)
    │ │ │ - -- used 4.50668s (cpu); 1.29022s (thread); 0s (gc)
    │ │ │ + -- used 17.1081s (cpu); 2.4191s (thread); 0s (gc)
    │ │ │  
    │ │ │         2 2     2         2
    │ │ │  o3 = 2h h  + 2h h  + 5h h
    │ │ │         1 2     1 2     1 2
    │ │ │  
    │ │ │       ZZ[h ..h ]
    │ │ │           1   2
    │ │ │  o3 : ----------
    │ │ │          3   3
    │ │ │        (h , h )
    │ │ │          1   2
    │ │ │ │ │ │ │ │ │
    i4 : time CSM(I,Method=>DirectCompletInt,IndsOfSmooth=>{1,2})
    │ │ │ - -- used 4.15312s (cpu); 1.21255s (thread); 0s (gc)
    │ │ │ + -- used 17.3167s (cpu); 2.23042s (thread); 0s (gc)
    │ │ │  
    │ │ │         2 2     2         2
    │ │ │  o4 = 2h h  + 2h h  + 5h h
    │ │ │         1 2     1 2     1 2
    │ │ │  
    │ │ │       ZZ[h ..h ]
    │ │ │           1   2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,28 +16,28 @@
    │ │ │ │  o1 = R
    │ │ │ │  
    │ │ │ │  o1 : PolynomialRing
    │ │ │ │  i2 : I=ideal(R_0*R_1*R_3-R_0^2*R_3,random({0,1},R),random({1,2},R));
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : time CSM(I,Method=>DirectCompletInt)
    │ │ │ │ - -- used 4.50668s (cpu); 1.29022s (thread); 0s (gc)
    │ │ │ │ + -- used 17.1081s (cpu); 2.4191s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         2 2     2         2
    │ │ │ │  o3 = 2h h  + 2h h  + 5h h
    │ │ │ │         1 2     1 2     1 2
    │ │ │ │  
    │ │ │ │       ZZ[h ..h ]
    │ │ │ │           1   2
    │ │ │ │  o3 : ----------
    │ │ │ │          3   3
    │ │ │ │        (h , h )
    │ │ │ │          1   2
    │ │ │ │  i4 : time CSM(I,Method=>DirectCompletInt,IndsOfSmooth=>{1,2})
    │ │ │ │ - -- used 4.15312s (cpu); 1.21255s (thread); 0s (gc)
    │ │ │ │ + -- used 17.3167s (cpu); 2.23042s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         2 2     2         2
    │ │ │ │  o4 = 2h h  + 2h h  + 5h h
    │ │ │ │         1 2     1 2     1 2
    │ │ │ │  
    │ │ │ │       ZZ[h ..h ]
    │ │ │ │           1   2
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Input__Is__Smooth.html
    │ │ │ @@ -54,30 +54,30 @@
    │ │ │            
    │ │ │                
    i2 : I=ideal(random(2,R),random(2,R),random(1,R));
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │ │ │ │ │ │ │
    i3 : time CSM I
    │ │ │ - -- used 1.38977s (cpu); 0.505458s (thread); 0s (gc)
    │ │ │ + -- used 2.96638s (cpu); 0.791167s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o3 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │  o3 : ------
    │ │ │          5
    │ │ │         h
    │ │ │          1
    │ │ │ │ │ │ │ │ │
    i4 : time CSM(I,InputIsSmooth=>true)
    │ │ │ - -- used 0.178227s (cpu); 0.0505374s (thread); 0s (gc)
    │ │ │ + -- used 0.248913s (cpu); 0.0411849s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o4 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ @@ -89,15 +89,15 @@
    │ │ │          
    │ │ │          
    │ │ │

    Note that one could, equivalently, use the command Chern instead in this case.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -23,49 +23,49 @@ │ │ │ │ o3 = EvaluationCode{cache => CacheTable{} │ │ │ │ } │ │ │ │ 9 │ │ │ │ LinearCode => LinearCode{AmbientModule => F │ │ │ │ } │ │ │ │ BaseField => F │ │ │ │ cache => CacheTable{} │ │ │ │ - Code => image | 1 a+1 | │ │ │ │ + Code => image | 1 0 | │ │ │ │ + | 0 0 | │ │ │ │ + | 0 0 | │ │ │ │ | a+1 0 | │ │ │ │ | a+1 0 | │ │ │ │ | a a | │ │ │ │ - | 1 0 | │ │ │ │ + | 1 a+1 | │ │ │ │ | a a | │ │ │ │ - | 0 0 | │ │ │ │ - | 0 0 | │ │ │ │ | 1 1 | │ │ │ │ - GeneratorMatrix => | 1 a+1 a+1 a │ │ │ │ -1 a 0 0 1 | │ │ │ │ - | a+1 0 0 a │ │ │ │ -0 a 0 0 1 | │ │ │ │ - Generators => {{1, a + 1, a + 1, │ │ │ │ -a, 1, a, 0, 0, 1}, {a + 1, 0, 0, a, 0, a, 0, 0, 1}} │ │ │ │ - ParityCheckMatrix => | 1 0 0 0 a │ │ │ │ -0 0 0 a+1 | │ │ │ │ - | 0 1 0 0 a+1 │ │ │ │ -0 0 0 0 | │ │ │ │ - | 0 0 1 0 a+1 │ │ │ │ -0 0 0 0 | │ │ │ │ - | 0 0 0 1 0 │ │ │ │ -0 0 0 a | │ │ │ │ - | 0 0 0 0 0 │ │ │ │ -1 0 0 a | │ │ │ │ - | 0 0 0 0 0 │ │ │ │ -0 1 0 0 | │ │ │ │ - | 0 0 0 0 0 │ │ │ │ -0 0 1 0 | │ │ │ │ + GeneratorMatrix => | 1 0 0 a+1 a+1 │ │ │ │ +a 1 a 1 | │ │ │ │ + | 0 0 0 0 0 │ │ │ │ +a a+1 a 1 | │ │ │ │ + Generators => {{1, 0, 0, a + 1, a │ │ │ │ ++ 1, a, 1, a, 1}, {0, 0, 0, 0, 0, a, a + 1, a, 1}} │ │ │ │ + ParityCheckMatrix => | 1 0 0 0 0 0 │ │ │ │ +a+1 0 a | │ │ │ │ + | 0 1 0 0 0 0 │ │ │ │ +0 0 0 | │ │ │ │ + | 0 0 1 0 0 0 │ │ │ │ +0 0 0 | │ │ │ │ + | 0 0 0 1 0 0 │ │ │ │ +a 0 1 | │ │ │ │ + | 0 0 0 0 1 0 │ │ │ │ +a 0 1 | │ │ │ │ + | 0 0 0 0 0 1 │ │ │ │ +0 0 a | │ │ │ │ + | 0 0 0 0 0 0 │ │ │ │ +0 1 a | │ │ │ │ ParityCheckRows => {{1, 0, 0, 0, │ │ │ │ -a, 0, 0, 0, a + 1}, {0, 1, 0, 0, a + 1, 0, 0, 0, 0}, {0, 0, 1, 0, a + 1, 0, 0, │ │ │ │ -0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, a}, {0, 0, 0, 0, 0, 1, 0, 0, a}, {0, 0, 0, 0, │ │ │ │ -0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0}} │ │ │ │ - Points => {{a, a}, {0, a}, {a, 0}, {a, 1}, {0, 0}, {1, a}, │ │ │ │ -{1, 0}, {0, 1}, {1, 1}} │ │ │ │ +0, 0, a + 1, 0, a}, {0, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0}, │ │ │ │ +{0, 0, 0, 1, 0, 0, a, 0, 1}, {0, 0, 0, 0, 1, 0, a, 0, 1}, {0, 0, 0, 0, 0, 1, 0, │ │ │ │ +0, a}, {0, 0, 0, 0, 0, 0, 0, 1, a}} │ │ │ │ + Points => {{0, 0}, {0, 1}, {1, 0}, {0, a}, {a, 0}, {a, 1}, │ │ │ │ +{a, a}, {1, a}, {1, 1}} │ │ │ │ PolynomialSet => {x + y + 1, x*y} │ │ │ │ Sets => {{0, 1, a}, {0, 1, a}} │ │ │ │ 3 2 3 │ │ │ │ 2 │ │ │ │ VanishingIdeal => ideal (x + (a + 1)x + a*x, y + (a + │ │ │ │ 1)y + a*y) │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/html/_cartesian__Code.html │ │ │ @@ -191,74 +191,74 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time Chern I
    │ │ │ - -- used 0.0448355s (cpu); 0.0317107s (thread); 0s (gc)
    │ │ │ + -- used 0.406346s (cpu); 0.0316756s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o5 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -9,42 +9,42 @@
    │ │ │ │  input ideal is known to define a smooth subscheme setting this option to true
    │ │ │ │  will speed up computations (it is set to false by default).
    │ │ │ │  i1 : R = ZZ/32749[x_0..x_4];
    │ │ │ │  i2 : I=ideal(random(2,R),random(2,R),random(1,R));
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : time CSM I
    │ │ │ │ - -- used 1.38977s (cpu); 0.505458s (thread); 0s (gc)
    │ │ │ │ + -- used 2.96638s (cpu); 0.791167s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         3
    │ │ │ │  o3 = 4h
    │ │ │ │         1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ │ │  o3 : ------
    │ │ │ │          5
    │ │ │ │         h
    │ │ │ │          1
    │ │ │ │  i4 : time CSM(I,InputIsSmooth=>true)
    │ │ │ │ - -- used 0.178227s (cpu); 0.0505374s (thread); 0s (gc)
    │ │ │ │ + -- used 0.248913s (cpu); 0.0411849s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         3
    │ │ │ │  o4 = 4h
    │ │ │ │         1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ │ │  o4 : ------
    │ │ │ │          5
    │ │ │ │         h
    │ │ │ │          1
    │ │ │ │  Note that one could, equivalently, use the command _C_h_e_r_n instead in this case.
    │ │ │ │  i5 : time Chern I
    │ │ │ │ - -- used 0.0448355s (cpu); 0.0317107s (thread); 0s (gc)
    │ │ │ │ + -- used 0.406346s (cpu); 0.0316756s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         3
    │ │ │ │  o5 = 4h
    │ │ │ │         1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Method.html
    │ │ │ @@ -58,30 +58,30 @@
    │ │ │            
    i2 : I=ideal(random(2,R),random(1,R),R_0*R_1*R_6-R_0^3);
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │
    i3 : time CSM I
    │ │ │ - -- used 2.95931s (cpu); 0.979177s (thread); 0s (gc)
    │ │ │ + -- used 9.82452s (cpu); 1.63685s (thread); 0s (gc)
    │ │ │  
    │ │ │          5      4     3
    │ │ │  o3 = 12h  + 10h  + 6h
    │ │ │          1      1     1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │  o3 : ------
    │ │ │          7
    │ │ │         h
    │ │ │          1
    │ │ │
    i4 : time CSM(I,Method=>DirectCompleteInt)
    │ │ │ - -- used 0.989463s (cpu); 0.347815s (thread); 0s (gc)
    │ │ │ + -- used 2.64769s (cpu); 0.446117s (thread); 0s (gc)
    │ │ │  
    │ │ │          5      4     3
    │ │ │  o4 = 12h  + 10h  + 6h
    │ │ │          1      1     1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -18,28 +18,28 @@
    │ │ │ │  o1 = R
    │ │ │ │  
    │ │ │ │  o1 : PolynomialRing
    │ │ │ │  i2 : I=ideal(random(2,R),random(1,R),R_0*R_1*R_6-R_0^3);
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : time CSM I
    │ │ │ │ - -- used 2.95931s (cpu); 0.979177s (thread); 0s (gc)
    │ │ │ │ + -- used 9.82452s (cpu); 1.63685s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          5      4     3
    │ │ │ │  o3 = 12h  + 10h  + 6h
    │ │ │ │          1      1     1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ │ │  o3 : ------
    │ │ │ │          7
    │ │ │ │         h
    │ │ │ │          1
    │ │ │ │  i4 : time CSM(I,Method=>DirectCompleteInt)
    │ │ │ │ - -- used 0.989463s (cpu); 0.347815s (thread); 0s (gc)
    │ │ │ │ + -- used 2.64769s (cpu); 0.446117s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          5      4     3
    │ │ │ │  o4 = 12h  + 10h  + 6h
    │ │ │ │          1      1     1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ ├── ./usr/share/doc/Macaulay2/Chordal/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=18
    │ │ │  UmluZ01hcCBDaG9yZGFsTmV0
    │ │ │  #:len=1424
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiYXBwbHkgcmluZyBtYXAgdG8gYSBjaG9y
    │ │ │  ZGFsIG5ldHdvcmsiLCAibGluZW51bSIgPT4gODg5LCBJbnB1dHMgPT4ge1NQQU57VFR7ImYifSwi
    │ │ ├── ./usr/share/doc/Macaulay2/Classic/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=21
    │ │ │  bW9ub21pYWxJZGVhbChTdHJpbmcp
    │ │ │  #:len=1149
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAibWFrZSBhIG1vbm9taWFsIGlkZWFsIHVz
    │ │ │  aW5nIGNsYXNzaWMgTWFjYXVsYXkgc3ludGF4IiwgImxpbmVudW0iID0+IDE0NCwgSW5wdXRzID0+
    │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=14
    │ │ │  VmFuaXNoaW5nSWRlYWw=
    │ │ │  #:len=1237
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAidmFuaXNoaW5nIGlkZWFsIG9mIGFuIGV2
    │ │ │  YWx1YXRpb24gY29kZSIsICJsaW5lbnVtIiA9PiA1MTU4LCBJbnB1dHMgPT4ge1NQQU57VFR7IkMi
    │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/example-output/___Sets.out
    │ │ │ @@ -2,40 +2,40 @@
    │ │ │  
    │ │ │  i1 : F=GF(4);
    │ │ │  
    │ │ │  i2 : R=F[x,y];
    │ │ │  
    │ │ │  i3 : C=cartesianCode(F,{{0,1,a},{0,1,a}},{1+x+y,x*y})
    │ │ │  
    │ │ │ -o3 = EvaluationCode{cache => CacheTable{}                                                                                                                                                                                                                                               }
    │ │ │ +o3 = EvaluationCode{cache => CacheTable{}                                                                                                                                                                                                                                       }
    │ │ │                                                                 9
    │ │ │ -                    LinearCode => LinearCode{AmbientModule => F                                                                                                                                                                                                                        }
    │ │ │ +                    LinearCode => LinearCode{AmbientModule => F                                                                                                                                                                                                                }
    │ │ │                                               BaseField => F
    │ │ │                                               cache => CacheTable{}
    │ │ │ -                                             Code => image | 1   a+1 |
    │ │ │ +                                             Code => image | 1   0   |
    │ │ │ +                                                           | 0   0   |
    │ │ │ +                                                           | 0   0   |
    │ │ │                                                             | a+1 0   |
    │ │ │                                                             | a+1 0   |
    │ │ │                                                             | a   a   |
    │ │ │ -                                                           | 1   0   |
    │ │ │ +                                                           | 1   a+1 |
    │ │ │                                                             | a   a   |
    │ │ │ -                                                           | 0   0   |
    │ │ │ -                                                           | 0   0   |
    │ │ │                                                             | 1   1   |
    │ │ │ -                                             GeneratorMatrix => | 1   a+1 a+1 a 1 a 0 0 1 |
    │ │ │ -                                                                | a+1 0   0   a 0 a 0 0 1 |
    │ │ │ -                                             Generators => {{1, a + 1, a + 1, a, 1, a, 0, 0, 1}, {a + 1, 0, 0, a, 0, a, 0, 0, 1}}
    │ │ │ -                                             ParityCheckMatrix => | 1 0 0 0 a   0 0 0 a+1 |
    │ │ │ -                                                                  | 0 1 0 0 a+1 0 0 0 0   |
    │ │ │ -                                                                  | 0 0 1 0 a+1 0 0 0 0   |
    │ │ │ -                                                                  | 0 0 0 1 0   0 0 0 a   |
    │ │ │ -                                                                  | 0 0 0 0 0   1 0 0 a   |
    │ │ │ -                                                                  | 0 0 0 0 0   0 1 0 0   |
    │ │ │ -                                                                  | 0 0 0 0 0   0 0 1 0   |
    │ │ │ -                                             ParityCheckRows => {{1, 0, 0, 0, a, 0, 0, 0, a + 1}, {0, 1, 0, 0, a + 1, 0, 0, 0, 0}, {0, 0, 1, 0, a + 1, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, a}, {0, 0, 0, 0, 0, 1, 0, 0, a}, {0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0}}
    │ │ │ -                    Points => {{a, a}, {0, a}, {a, 0}, {a, 1}, {0, 0}, {1, a}, {1, 0}, {0, 1}, {1, 1}}
    │ │ │ +                                             GeneratorMatrix => | 1 0 0 a+1 a+1 a 1   a 1 |
    │ │ │ +                                                                | 0 0 0 0   0   a a+1 a 1 |
    │ │ │ +                                             Generators => {{1, 0, 0, a + 1, a + 1, a, 1, a, 1}, {0, 0, 0, 0, 0, a, a + 1, a, 1}}
    │ │ │ +                                             ParityCheckMatrix => | 1 0 0 0 0 0 a+1 0 a |
    │ │ │ +                                                                  | 0 1 0 0 0 0 0   0 0 |
    │ │ │ +                                                                  | 0 0 1 0 0 0 0   0 0 |
    │ │ │ +                                                                  | 0 0 0 1 0 0 a   0 1 |
    │ │ │ +                                                                  | 0 0 0 0 1 0 a   0 1 |
    │ │ │ +                                                                  | 0 0 0 0 0 1 0   0 a |
    │ │ │ +                                                                  | 0 0 0 0 0 0 0   1 a |
    │ │ │ +                                             ParityCheckRows => {{1, 0, 0, 0, 0, 0, a + 1, 0, a}, {0, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, a, 0, 1}, {0, 0, 0, 0, 1, 0, a, 0, 1}, {0, 0, 0, 0, 0, 1, 0, 0, a}, {0, 0, 0, 0, 0, 0, 0, 1, a}}
    │ │ │ +                    Points => {{0, 0}, {0, 1}, {1, 0}, {0, a}, {a, 0}, {a, 1}, {a, a}, {1, a}, {1, 1}}
    │ │ │                      PolynomialSet => {x + y + 1, x*y}
    │ │ │                      Sets => {{0, 1, a}, {0, 1, a}}
    │ │ │                                                3           2         3           2
    │ │ │                      VanishingIdeal => ideal (x  + (a + 1)x  + a*x, y  + (a + 1)y  + a*y)
    │ │ │  
    │ │ │  o3 : EvaluationCode
    │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/example-output/_cartesian__Code.out
    │ │ │ @@ -45,108 +45,108 @@
    │ │ │  
    │ │ │  i2 : F=GF(4);
    │ │ │  
    │ │ │  i3 : R=F[x,y];
    │ │ │  
    │ │ │  i4 : C=cartesianCode(F,{{0,1,a},{0,1,a}},{1+x+y,x*y})
    │ │ │  
    │ │ │ -o4 = EvaluationCode{cache => CacheTable{}                                                                                                                                                                                                                                           }
    │ │ │ +o4 = EvaluationCode{cache => CacheTable{}                                                                                                                                                                                                                                       }
    │ │ │                                                                 9
    │ │ │ -                    LinearCode => LinearCode{AmbientModule => F                                                                                                                                                                                                                    }
    │ │ │ +                    LinearCode => LinearCode{AmbientModule => F                                                                                                                                                                                                                }
    │ │ │                                               BaseField => F
    │ │ │                                               cache => CacheTable{}
    │ │ │ -                                             Code => image | 1   a+1 |
    │ │ │ +                                             Code => image | a+1 0   |
    │ │ │ +                                                           | a+1 0   |
    │ │ │ +                                                           | a   a   |
    │ │ │ +                                                           | a   a   |
    │ │ │                                                             | 1   0   |
    │ │ │                                                             | 0   0   |
    │ │ │                                                             | 0   0   |
    │ │ │ +                                                           | 1   a+1 |
    │ │ │                                                             | 1   1   |
    │ │ │ -                                                           | a+1 0   |
    │ │ │ -                                                           | a+1 0   |
    │ │ │ -                                                           | a   a   |
    │ │ │ -                                                           | a   a   |
    │ │ │ -                                             GeneratorMatrix => | 1   1 0 0 1 a+1 a+1 a a |
    │ │ │ -                                                                | a+1 0 0 0 1 0   0   a a |
    │ │ │ -                                             Generators => {{1, 1, 0, 0, 1, a + 1, a + 1, a, a}, {a + 1, 0, 0, 0, 1, 0, 0, a, a}}
    │ │ │ -                                             ParityCheckMatrix => | 1 0 0 0 0 a+1 0 a   0 |
    │ │ │ -                                                                  | 0 1 0 0 0 a   0 0   0 |
    │ │ │ -                                                                  | 0 0 1 0 0 0   0 0   0 |
    │ │ │ -                                                                  | 0 0 0 1 0 0   0 0   0 |
    │ │ │ -                                                                  | 0 0 0 0 1 0   0 a+1 0 |
    │ │ │ -                                                                  | 0 0 0 0 0 1   1 0   0 |
    │ │ │ -                                                                  | 0 0 0 0 0 0   0 1   1 |
    │ │ │ -                                             ParityCheckRows => {{1, 0, 0, 0, 0, a + 1, 0, a, 0}, {0, 1, 0, 0, 0, a, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, a + 1, 0}, {0, 0, 0, 0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 1}}
    │ │ │ -                    Points => {{a, a}, {0, 0}, {1, 0}, {0, 1}, {1, 1}, {a, 0}, {0, a}, {a, 1}, {1, a}}
    │ │ │ +                                             GeneratorMatrix => | a+1 a+1 a a 1 0 0 1   1 |
    │ │ │ +                                                                | 0   0   a a 0 0 0 a+1 1 |
    │ │ │ +                                             Generators => {{a + 1, a + 1, a, a, 1, 0, 0, 1, 1}, {0, 0, a, a, 0, 0, 0, a + 1, 1}}
    │ │ │ +                                             ParityCheckMatrix => | 1 0 0 0 0 0 0 a   1 |
    │ │ │ +                                                                  | 0 1 0 0 0 0 0 a   1 |
    │ │ │ +                                                                  | 0 0 1 0 0 0 0 0   a |
    │ │ │ +                                                                  | 0 0 0 1 0 0 0 0   a |
    │ │ │ +                                                                  | 0 0 0 0 1 0 0 a+1 a |
    │ │ │ +                                                                  | 0 0 0 0 0 1 0 0   0 |
    │ │ │ +                                                                  | 0 0 0 0 0 0 1 0   0 |
    │ │ │ +                                             ParityCheckRows => {{1, 0, 0, 0, 0, 0, 0, a, 1}, {0, 1, 0, 0, 0, 0, 0, a, 1}, {0, 0, 1, 0, 0, 0, 0, 0, a}, {0, 0, 0, 1, 0, 0, 0, 0, a}, {0, 0, 0, 0, 1, 0, 0, a + 1, a}, {0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0}}
    │ │ │ +                    Points => {{a, 0}, {0, a}, {1, a}, {a, 1}, {0, 0}, {0, 1}, {1, 0}, {a, a}, {1, 1}}
    │ │ │                      PolynomialSet => {x + y + 1, x*y}
    │ │ │                      Sets => {{0, 1, a}, {0, 1, a}}
    │ │ │                                                3           2         3           2
    │ │ │                      VanishingIdeal => ideal (x  + (a + 1)x  + a*x, y  + (a + 1)y  + a*y)
    │ │ │  
    │ │ │  o4 : EvaluationCode
    │ │ │  
    │ │ │  i5 : C.LinearCode
    │ │ │  
    │ │ │                                    9
    │ │ │ -o5 = LinearCode{AmbientModule => F                                                                                                                                                                                                                    }
    │ │ │ +o5 = LinearCode{AmbientModule => F                                                                                                                                                                                                                }
    │ │ │                  BaseField => F
    │ │ │                  cache => CacheTable{}
    │ │ │ -                Code => image | 1   a+1 |
    │ │ │ +                Code => image | a+1 0   |
    │ │ │ +                              | a+1 0   |
    │ │ │ +                              | a   a   |
    │ │ │ +                              | a   a   |
    │ │ │                                | 1   0   |
    │ │ │                                | 0   0   |
    │ │ │                                | 0   0   |
    │ │ │ +                              | 1   a+1 |
    │ │ │                                | 1   1   |
    │ │ │ -                              | a+1 0   |
    │ │ │ -                              | a+1 0   |
    │ │ │ -                              | a   a   |
    │ │ │ -                              | a   a   |
    │ │ │ -                GeneratorMatrix => | 1   1 0 0 1 a+1 a+1 a a |
    │ │ │ -                                   | a+1 0 0 0 1 0   0   a a |
    │ │ │ -                Generators => {{1, 1, 0, 0, 1, a + 1, a + 1, a, a}, {a + 1, 0, 0, 0, 1, 0, 0, a, a}}
    │ │ │ -                ParityCheckMatrix => | 1 0 0 0 0 a+1 0 a   0 |
    │ │ │ -                                     | 0 1 0 0 0 a   0 0   0 |
    │ │ │ -                                     | 0 0 1 0 0 0   0 0   0 |
    │ │ │ -                                     | 0 0 0 1 0 0   0 0   0 |
    │ │ │ -                                     | 0 0 0 0 1 0   0 a+1 0 |
    │ │ │ -                                     | 0 0 0 0 0 1   1 0   0 |
    │ │ │ -                                     | 0 0 0 0 0 0   0 1   1 |
    │ │ │ -                ParityCheckRows => {{1, 0, 0, 0, 0, a + 1, 0, a, 0}, {0, 1, 0, 0, 0, a, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, a + 1, 0}, {0, 0, 0, 0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 1}}
    │ │ │ +                GeneratorMatrix => | a+1 a+1 a a 1 0 0 1   1 |
    │ │ │ +                                   | 0   0   a a 0 0 0 a+1 1 |
    │ │ │ +                Generators => {{a + 1, a + 1, a, a, 1, 0, 0, 1, 1}, {0, 0, a, a, 0, 0, 0, a + 1, 1}}
    │ │ │ +                ParityCheckMatrix => | 1 0 0 0 0 0 0 a   1 |
    │ │ │ +                                     | 0 1 0 0 0 0 0 a   1 |
    │ │ │ +                                     | 0 0 1 0 0 0 0 0   a |
    │ │ │ +                                     | 0 0 0 1 0 0 0 0   a |
    │ │ │ +                                     | 0 0 0 0 1 0 0 a+1 a |
    │ │ │ +                                     | 0 0 0 0 0 1 0 0   0 |
    │ │ │ +                                     | 0 0 0 0 0 0 1 0   0 |
    │ │ │ +                ParityCheckRows => {{1, 0, 0, 0, 0, 0, 0, a, 1}, {0, 1, 0, 0, 0, 0, 0, a, 1}, {0, 0, 1, 0, 0, 0, 0, 0, a}, {0, 0, 0, 1, 0, 0, 0, 0, a}, {0, 0, 0, 0, 1, 0, 0, a + 1, a}, {0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0}}
    │ │ │  
    │ │ │  o5 : LinearCode
    │ │ │  
    │ │ │  i6 : F=GF(4);
    │ │ │  
    │ │ │  i7 : R=F[x,y];
    │ │ │  
    │ │ │  i8 : C=cartesianCode(F,{{0,1,a},{0,1,a}},matrix{{1,2},{2,3}})
    │ │ │  
    │ │ │  o8 = EvaluationCode{cache => CacheTable{}                                                                                                                                                                                                                                       }
    │ │ │                                                                 9
    │ │ │                      LinearCode => LinearCode{AmbientModule => F                                                                                                                                                                                                                }
    │ │ │                                               BaseField => F
    │ │ │                                               cache => CacheTable{}
    │ │ │ -                                             Code => image | 0   0   |
    │ │ │ -                                                           | 0   0   |
    │ │ │ -                                                           | a+1 1   |
    │ │ │ +                                             Code => image | a+1 1   |
    │ │ │                                                             | a   a+1 |
    │ │ │                                                             | 1   a+1 |
    │ │ │                                                             | 0   0   |
    │ │ │                                                             | 0   0   |
    │ │ │                                                             | 0   0   |
    │ │ │                                                             | 1   1   |
    │ │ │ -                                             GeneratorMatrix => | 0 0 a+1 a   1   0 0 0 1 |
    │ │ │ -                                                                | 0 0 1   a+1 a+1 0 0 0 1 |
    │ │ │ -                                             Generators => {{0, 0, a + 1, a, 1, 0, 0, 0, 1}, {0, 0, 1, a + 1, a + 1, 0, 0, 0, 1}}
    │ │ │ -                                             ParityCheckMatrix => | 1 0 0 0 0   0 0 0 0 |
    │ │ │ -                                                                  | 0 1 0 0 0   0 0 0 0 |
    │ │ │ -                                                                  | 0 0 1 0 1   0 0 0 a |
    │ │ │ -                                                                  | 0 0 0 1 a+1 0 0 0 1 |
    │ │ │ -                                                                  | 0 0 0 0 0   1 0 0 0 |
    │ │ │ -                                                                  | 0 0 0 0 0   0 1 0 0 |
    │ │ │ -                                                                  | 0 0 0 0 0   0 0 1 0 |
    │ │ │ -                                             ParityCheckRows => {{1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 1, 0, 0, 0, a}, {0, 0, 0, 1, a + 1, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0}}
    │ │ │ -                    Points => {{0, a}, {a, 0}, {1, a}, {a, 1}, {a, a}, {0, 0}, {0, 1}, {1, 0}, {1, 1}}
    │ │ │ +                                                           | 0   0   |
    │ │ │ +                                                           | 0   0   |
    │ │ │ +                                             GeneratorMatrix => | a+1 a   1   0 0 0 1 0 0 |
    │ │ │ +                                                                | 1   a+1 a+1 0 0 0 1 0 0 |
    │ │ │ +                                             Generators => {{a + 1, a, 1, 0, 0, 0, 1, 0, 0}, {1, a + 1, a + 1, 0, 0, 0, 1, 0, 0}}
    │ │ │ +                                             ParityCheckMatrix => | 1 0 1   0 0 0 a 0 0 |
    │ │ │ +                                                                  | 0 1 a+1 0 0 0 1 0 0 |
    │ │ │ +                                                                  | 0 0 0   1 0 0 0 0 0 |
    │ │ │ +                                                                  | 0 0 0   0 1 0 0 0 0 |
    │ │ │ +                                                                  | 0 0 0   0 0 1 0 0 0 |
    │ │ │ +                                                                  | 0 0 0   0 0 0 0 1 0 |
    │ │ │ +                                                                  | 0 0 0   0 0 0 0 0 1 |
    │ │ │ +                                             ParityCheckRows => {{1, 0, 1, 0, 0, 0, a, 0, 0}, {0, 1, a + 1, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1}}
    │ │ │ +                    Points => {{1, a}, {a, 1}, {a, a}, {0, 0}, {0, 1}, {1, 0}, {1, 1}, {0, a}, {a, 0}}
    │ │ │                                           2   2 3
    │ │ │                      PolynomialSet => {t t , t t }
    │ │ │                                         0 1   0 1
    │ │ │                      Sets => {{0, 1, a}, {0, 1, a}}
    │ │ │                                                3           2          3           2
    │ │ │                      VanishingIdeal => ideal (t  + (a + 1)t  + a*t , t  + (a + 1)t  + a*t )
    │ │ │                                                0           0      0   1           1      1
    │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/example-output/_codewords.out
    │ │ │ @@ -2,18 +2,18 @@
    │ │ │  
    │ │ │  i1 : F=GF(4,Variable=>a);
    │ │ │  
    │ │ │  i2 : C=linearCode(matrix{{1,a,0},{0,1,a}});
    │ │ │  
    │ │ │  i3 : codewords(C)
    │ │ │  
    │ │ │ -o3 = {{a, a, a}, {a + 1, a, 1}, {1, 1, 1}, {0, 1, a}, {0, a, a + 1}, {1, a +
    │ │ │ +o3 = {{a, a, a}, {a + 1, a, 1}, {1, 1, 1}, {0, 1, a}, {a, 1, a + 1}, {0, a, a
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     1, a}, {0, a + 1, 1}, {a, 1, a + 1}, {1, a, 0}, {a + 1, a + 1, a + 1},
    │ │ │ +     + 1}, {0, a + 1, 1}, {1, a + 1, a}, {a + 1, 0, a}, {a, 0, 1}, {a + 1, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {a, 0, 1}, {a + 1, 0, a}, {a + 1, 1, 0}, {1, 0, a + 1}, {a, a + 1, 0},
    │ │ │ +     0}, {1, a, 0}, {a + 1, a + 1, a + 1}, {1, 0, a + 1}, {a, a + 1, 0}, {0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 0, 0}}
    │ │ │ +     0, 0}}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/example-output/_dim_lp__Linear__Code_rp.out
    │ │ │ @@ -8,30 +8,30 @@
    │ │ │  
    │ │ │  i3 : H = hammingCode(2,3)
    │ │ │  
    │ │ │                                         7
    │ │ │  o3 = LinearCode{AmbientModule => (GF 2)                                                                                   }
    │ │ │                  BaseField => GF 2
    │ │ │                  cache => CacheTable{}
    │ │ │ -                Code => image | 1 1 0 1 |
    │ │ │ +                Code => image | 1 1 1 0 |
    │ │ │                                | 1 0 1 1 |
    │ │ │ -                              | 1 1 1 0 |
    │ │ │ +                              | 1 1 0 1 |
    │ │ │                                | 1 0 0 0 |
    │ │ │                                | 0 1 0 0 |
    │ │ │                                | 0 0 1 0 |
    │ │ │                                | 0 0 0 1 |
    │ │ │                  GeneratorMatrix => | 1 1 1 1 0 0 0 |
    │ │ │                                     | 1 0 1 0 1 0 0 |
    │ │ │ -                                   | 0 1 1 0 0 1 0 |
    │ │ │ -                                   | 1 1 0 0 0 0 1 |
    │ │ │ -                Generators => {{1, 1, 1, 1, 0, 0, 0}, {1, 0, 1, 0, 1, 0, 0}, {0, 1, 1, 0, 0, 1, 0}, {1, 1, 0, 0, 0, 0, 1}}
    │ │ │ +                                   | 1 1 0 0 0 1 0 |
    │ │ │ +                                   | 0 1 1 0 0 0 1 |
    │ │ │ +                Generators => {{1, 1, 1, 1, 0, 0, 0}, {1, 0, 1, 0, 1, 0, 0}, {1, 1, 0, 0, 0, 1, 0}, {0, 1, 1, 0, 0, 0, 1}}
    │ │ │                  ParityCheckMatrix => | 1 1 1 1 0 0 0 |
    │ │ │ -                                     | 0 0 1 1 1 1 0 |
    │ │ │ +                                     | 0 1 1 0 1 1 0 |
    │ │ │                                       | 0 1 0 1 0 1 1 |
    │ │ │ -                ParityCheckRows => {{1, 1, 1, 1, 0, 0, 0}, {0, 0, 1, 1, 1, 1, 0}, {0, 1, 0, 1, 0, 1, 1}}
    │ │ │ +                ParityCheckRows => {{1, 1, 1, 1, 0, 0, 0}, {0, 1, 1, 0, 1, 1, 0}, {0, 1, 0, 1, 0, 1, 1}}
    │ │ │  
    │ │ │  o3 : LinearCode
    │ │ │  
    │ │ │  i4 : dim H
    │ │ │  
    │ │ │  o4 = 4
    │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/example-output/_hamming__Code.out
    │ │ │ @@ -1,14 +1,14 @@
    │ │ │  -- -*- M2-comint -*- hash: 1730891173706535352
    │ │ │  
    │ │ │  i1 : C1 = hammingCode(2,3);
    │ │ │  
    │ │ │  i2 : C1.ParityCheckMatrix
    │ │ │  
    │ │ │  o2 = | 1 1 1 1 0 0 0 |
    │ │ │ -     | 0 1 0 1 1 1 0 |
    │ │ │ -     | 1 0 0 1 1 0 1 |
    │ │ │ +     | 0 0 1 1 1 1 0 |
    │ │ │ +     | 0 1 0 1 0 1 1 |
    │ │ │  
    │ │ │                    3           7
    │ │ │  o2 : Matrix (GF 2)  <-- (GF 2)
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/example-output/_messages.out
    │ │ │ @@ -2,15 +2,15 @@
    │ │ │  
    │ │ │  i1 : F=GF(4,Variable=>a);
    │ │ │  
    │ │ │  i2 : R=linearCode(F,{{1,1,1}});
    │ │ │  
    │ │ │  i3 : messages R
    │ │ │  
    │ │ │ -o3 = {{1}, {a}, {a + 1}, {0}}
    │ │ │ +o3 = {{0}, {1}, {a}, {a + 1}}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : messages hammingCode(2,3)
    │ │ │  
    │ │ │  o4 = {{1, 0, 0, 0}, {1, 0, 0, 1}, {1, 0, 1, 0}, {1, 0, 1, 1}, {1, 1, 1, 0},
    │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/example-output/_order__Code.out
    │ │ │ @@ -10,39 +10,39 @@
    │ │ │  
    │ │ │  o4 = EvaluationCode{cache => CacheTable{}                                                                                                                                                                                                                                                                                           }
    │ │ │                      Points => {{0, 0}, {a, a}, {a + 1, a}, {1, a}, {a, a + 1}, {a + 1, a + 1}, {1, a + 1}, {0, 1}}
    │ │ │                                                                 8
    │ │ │                      LinearCode => LinearCode{AmbientModule => F                                                                                                                                                                                                                                                                    }
    │ │ │                                               BaseField => F
    │ │ │                                               cache => CacheTable{}
    │ │ │ -                                             Code => image | 1 0   0   0   0 0   0   0   |
    │ │ │ -                                                           | 1 a+1 1   a   1 a   a+1 a+1 |
    │ │ │ -                                                           | 1 a   a+1 a   1 a+1 a+1 1   |
    │ │ │ -                                                           | 1 1   a   a   1 1   a+1 a   |
    │ │ │ -                                                           | 1 a+1 a   a+1 1 a   a   1   |
    │ │ │ -                                                           | 1 a   1   a+1 1 a+1 a   a   |
    │ │ │ -                                                           | 1 1   a+1 a+1 1 1   a   a+1 |
    │ │ │ -                                                           | 1 0   0   1   0 0   1   0   |
    │ │ │ -                                             GeneratorMatrix => | 1 1   1   1   1   1   1   1 |
    │ │ │ +                                             Code => image | 0   1 0   0   0   0 0   0   |
    │ │ │ +                                                           | a+1 1 a+1 1   a   1 a   a+1 |
    │ │ │ +                                                           | 1   1 a   a+1 a   1 a+1 a+1 |
    │ │ │ +                                                           | a   1 1   a   a   1 1   a+1 |
    │ │ │ +                                                           | 1   1 a+1 a   a+1 1 a   a   |
    │ │ │ +                                                           | a   1 a   1   a+1 1 a+1 a   |
    │ │ │ +                                                           | a+1 1 1   a+1 a+1 1 1   a   |
    │ │ │ +                                                           | 0   1 0   0   1   0 0   1   |
    │ │ │ +                                             GeneratorMatrix => | 0 a+1 1   a   1   a   a+1 0 |
    │ │ │ +                                                                | 1 1   1   1   1   1   1   1 |
    │ │ │                                                                  | 0 a+1 a   1   a+1 a   1   0 |
    │ │ │                                                                  | 0 1   a+1 a   a   1   a+1 0 |
    │ │ │                                                                  | 0 a   a   a   a+1 a+1 a+1 1 |
    │ │ │                                                                  | 0 1   1   1   1   1   1   0 |
    │ │ │                                                                  | 0 a   a+1 1   a   a+1 1   0 |
    │ │ │                                                                  | 0 a+1 a+1 a+1 a   a   a   1 |
    │ │ │ -                                                                | 0 a+1 1   a   1   a   a+1 0 |
    │ │ │ -                                             Generators => {{1, 1, 1, 1, 1, 1, 1, 1}, {0, a + 1, a, 1, a + 1, a, 1, 0}, {0, 1, a + 1, a, a, 1, a + 1, 0}, {0, a, a, a, a + 1, a + 1, a + 1, 1}, {0, 1, 1, 1, 1, 1, 1, 0}, {0, a, a + 1, 1, a, a + 1, 1, 0}, {0, a + 1, a + 1, a + 1, a, a, a, 1}, {0, a + 1, 1, a, 1, a, a + 1, 0}}
    │ │ │ +                                             Generators => {{0, a + 1, 1, a, 1, a, a + 1, 0}, {1, 1, 1, 1, 1, 1, 1, 1}, {0, a + 1, a, 1, a + 1, a, 1, 0}, {0, 1, a + 1, a, a, 1, a + 1, 0}, {0, a, a, a, a + 1, a + 1, a + 1, 1}, {0, 1, 1, 1, 1, 1, 1, 0}, {0, a, a + 1, 1, a, a + 1, 1, 0}, {0, a + 1, a + 1, a + 1, a, a, a, 1}}
    │ │ │                                               ParityCheckMatrix => | 1 1 1 1 1 1 1 1 |
    │ │ │                                               ParityCheckRows => {{1, 1, 1, 1, 1, 1, 1, 1}}
    │ │ │                                                  2               3    2        4
    │ │ │                      VanishingIdeal => ideal (t t  + t t  + t , t  + t  + t , t  + t )
    │ │ │                                                0 1    0 1    0   0    1    1   1    1
    │ │ │ -                                          2   2         3       2
    │ │ │ -                    PolynomialSet => {1, t , t t , t , t , t , t , t t }
    │ │ │ -                                          0   0 1   1   0   0   1   0 1
    │ │ │ +                                                2   2         3       2
    │ │ │ +                    PolynomialSet => {t t , 1, t , t t , t , t , t , t }
    │ │ │ +                                       0 1      0   0 1   1   0   0   1
    │ │ │  
    │ │ │  i5 : F = GF(4);
    │ │ │  
    │ │ │  i6 : R = F[x,y];
    │ │ │  
    │ │ │  i7 : I = ideal(x^3+y^2+y)
    │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/example-output/_ring_lp__Linear__Code_rp.out
    │ │ │ @@ -3,29 +3,29 @@
    │ │ │  i1 : C = hammingCode(2, 3)
    │ │ │  
    │ │ │                                         7
    │ │ │  o1 = LinearCode{AmbientModule => (GF 2)                                                                                   }
    │ │ │                  BaseField => GF 2
    │ │ │                  cache => CacheTable{}
    │ │ │                  Code => image | 1 0 1 1 |
    │ │ │ -                              | 1 1 0 1 |
    │ │ │                                | 1 1 1 0 |
    │ │ │ +                              | 1 1 0 1 |
    │ │ │                                | 1 0 0 0 |
    │ │ │                                | 0 1 0 0 |
    │ │ │                                | 0 0 1 0 |
    │ │ │                                | 0 0 0 1 |
    │ │ │                  GeneratorMatrix => | 1 1 1 1 0 0 0 |
    │ │ │                                     | 0 1 1 0 1 0 0 |
    │ │ │ -                                   | 1 0 1 0 0 1 0 |
    │ │ │ -                                   | 1 1 0 0 0 0 1 |
    │ │ │ -                Generators => {{1, 1, 1, 1, 0, 0, 0}, {0, 1, 1, 0, 1, 0, 0}, {1, 0, 1, 0, 0, 1, 0}, {1, 1, 0, 0, 0, 0, 1}}
    │ │ │ +                                   | 1 1 0 0 0 1 0 |
    │ │ │ +                                   | 1 0 1 0 0 0 1 |
    │ │ │ +                Generators => {{1, 1, 1, 1, 0, 0, 0}, {0, 1, 1, 0, 1, 0, 0}, {1, 1, 0, 0, 0, 1, 0}, {1, 0, 1, 0, 0, 0, 1}}
    │ │ │                  ParityCheckMatrix => | 1 1 1 1 0 0 0 |
    │ │ │ -                                     | 0 0 1 1 1 1 0 |
    │ │ │ -                                     | 0 1 0 1 1 0 1 |
    │ │ │ -                ParityCheckRows => {{1, 1, 1, 1, 0, 0, 0}, {0, 0, 1, 1, 1, 1, 0}, {0, 1, 0, 1, 1, 0, 1}}
    │ │ │ +                                     | 0 1 0 1 1 1 0 |
    │ │ │ +                                     | 0 1 1 0 0 1 1 |
    │ │ │ +                ParityCheckRows => {{1, 1, 1, 1, 0, 0, 0}, {0, 1, 0, 1, 1, 1, 0}, {0, 1, 1, 0, 0, 1, 1}}
    │ │ │  
    │ │ │  o1 : LinearCode
    │ │ │  
    │ │ │  i2 : ring(C)
    │ │ │  
    │ │ │  o2 = GF 2
    │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/example-output/_syndrome__Decode.out
    │ │ │ @@ -55,31 +55,31 @@
    │ │ │                 | 0 |    | 0 |
    │ │ │                 | 0 |    | 0 |
    │ │ │                          | 0 |
    │ │ │                          | 0 |
    │ │ │                          | 0 |
    │ │ │                          | 0 |
    │ │ │                 | 1 | => | 0 |
    │ │ │ -               | 0 |    | 1 |
    │ │ │ -               | 1 |    | 0 |
    │ │ │ +               | 0 |    | 0 |
    │ │ │ +               | 1 |    | 1 |
    │ │ │                          | 0 |
    │ │ │                          | 0 |
    │ │ │                          | 0 |
    │ │ │                          | 0 |
    │ │ │                 | 1 | => | 0 |
    │ │ │                 | 1 |    | 0 |
    │ │ │ -               | 0 |    | 1 |
    │ │ │ -                        | 0 |
    │ │ │ +               | 0 |    | 0 |
    │ │ │ +                        | 1 |
    │ │ │                          | 0 |
    │ │ │                          | 0 |
    │ │ │                          | 0 |
    │ │ │                 | 1 | => | 0 |
    │ │ │ +               | 1 |    | 1 |
    │ │ │                 | 1 |    | 0 |
    │ │ │ -               | 1 |    | 0 |
    │ │ │ -                        | 1 |
    │ │ │ +                        | 0 |
    │ │ │                          | 0 |
    │ │ │                          | 0 |
    │ │ │                          | 0 |
    │ │ │  
    │ │ │  o7 : HashTable
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/example-output/_vector__Space.out
    │ │ │ @@ -1,15 +1,15 @@
    │ │ │  -- -*- M2-comint -*- hash: 2210985853493542567
    │ │ │  
    │ │ │  i1 : H = hammingCode(2,3);
    │ │ │  
    │ │ │  i2 : vectorSpace H
    │ │ │  
    │ │ │ -o2 = image | 1 1 0 1 |
    │ │ │ -           | 1 0 1 1 |
    │ │ │ +o2 = image | 1 0 1 1 |
    │ │ │ +           | 1 1 0 1 |
    │ │ │             | 1 1 1 0 |
    │ │ │             | 1 0 0 0 |
    │ │ │             | 0 1 0 0 |
    │ │ │             | 0 0 1 0 |
    │ │ │             | 0 0 0 1 |
    │ │ │  
    │ │ │                                       7
    │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/html/___Sets.html
    │ │ │ @@ -79,40 +79,40 @@
    │ │ │  
    i2 : R=F[x,y];
    │ │ │
    i3 : C=cartesianCode(F,{{0,1,a},{0,1,a}},{1+x+y,x*y})
    │ │ │  
    │ │ │ -o3 = EvaluationCode{cache => CacheTable{}                                                                                                                                                                                                                                               }
    │ │ │ +o3 = EvaluationCode{cache => CacheTable{}                                                                                                                                                                                                                                       }
    │ │ │                                                                 9
    │ │ │ -                    LinearCode => LinearCode{AmbientModule => F                                                                                                                                                                                                                        }
    │ │ │ +                    LinearCode => LinearCode{AmbientModule => F                                                                                                                                                                                                                }
    │ │ │                                               BaseField => F
    │ │ │                                               cache => CacheTable{}
    │ │ │ -                                             Code => image | 1   a+1 |
    │ │ │ +                                             Code => image | 1   0   |
    │ │ │ +                                                           | 0   0   |
    │ │ │ +                                                           | 0   0   |
    │ │ │                                                             | a+1 0   |
    │ │ │                                                             | a+1 0   |
    │ │ │                                                             | a   a   |
    │ │ │ -                                                           | 1   0   |
    │ │ │ +                                                           | 1   a+1 |
    │ │ │                                                             | a   a   |
    │ │ │ -                                                           | 0   0   |
    │ │ │ -                                                           | 0   0   |
    │ │ │                                                             | 1   1   |
    │ │ │ -                                             GeneratorMatrix => | 1   a+1 a+1 a 1 a 0 0 1 |
    │ │ │ -                                                                | a+1 0   0   a 0 a 0 0 1 |
    │ │ │ -                                             Generators => {{1, a + 1, a + 1, a, 1, a, 0, 0, 1}, {a + 1, 0, 0, a, 0, a, 0, 0, 1}}
    │ │ │ -                                             ParityCheckMatrix => | 1 0 0 0 a   0 0 0 a+1 |
    │ │ │ -                                                                  | 0 1 0 0 a+1 0 0 0 0   |
    │ │ │ -                                                                  | 0 0 1 0 a+1 0 0 0 0   |
    │ │ │ -                                                                  | 0 0 0 1 0   0 0 0 a   |
    │ │ │ -                                                                  | 0 0 0 0 0   1 0 0 a   |
    │ │ │ -                                                                  | 0 0 0 0 0   0 1 0 0   |
    │ │ │ -                                                                  | 0 0 0 0 0   0 0 1 0   |
    │ │ │ -                                             ParityCheckRows => {{1, 0, 0, 0, a, 0, 0, 0, a + 1}, {0, 1, 0, 0, a + 1, 0, 0, 0, 0}, {0, 0, 1, 0, a + 1, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, a}, {0, 0, 0, 0, 0, 1, 0, 0, a}, {0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0}}
    │ │ │ -                    Points => {{a, a}, {0, a}, {a, 0}, {a, 1}, {0, 0}, {1, a}, {1, 0}, {0, 1}, {1, 1}}
    │ │ │ +                                             GeneratorMatrix => | 1 0 0 a+1 a+1 a 1   a 1 |
    │ │ │ +                                                                | 0 0 0 0   0   a a+1 a 1 |
    │ │ │ +                                             Generators => {{1, 0, 0, a + 1, a + 1, a, 1, a, 1}, {0, 0, 0, 0, 0, a, a + 1, a, 1}}
    │ │ │ +                                             ParityCheckMatrix => | 1 0 0 0 0 0 a+1 0 a |
    │ │ │ +                                                                  | 0 1 0 0 0 0 0   0 0 |
    │ │ │ +                                                                  | 0 0 1 0 0 0 0   0 0 |
    │ │ │ +                                                                  | 0 0 0 1 0 0 a   0 1 |
    │ │ │ +                                                                  | 0 0 0 0 1 0 a   0 1 |
    │ │ │ +                                                                  | 0 0 0 0 0 1 0   0 a |
    │ │ │ +                                                                  | 0 0 0 0 0 0 0   1 a |
    │ │ │ +                                             ParityCheckRows => {{1, 0, 0, 0, 0, 0, a + 1, 0, a}, {0, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, a, 0, 1}, {0, 0, 0, 0, 1, 0, a, 0, 1}, {0, 0, 0, 0, 0, 1, 0, 0, a}, {0, 0, 0, 0, 0, 0, 0, 1, a}}
    │ │ │ +                    Points => {{0, 0}, {0, 1}, {1, 0}, {0, a}, {a, 0}, {a, 1}, {a, a}, {1, a}, {1, 1}}
    │ │ │                      PolynomialSet => {x + y + 1, x*y}
    │ │ │                      Sets => {{0, 1, a}, {0, 1, a}}
    │ │ │                                                3           2         3           2
    │ │ │                      VanishingIdeal => ideal (x  + (a + 1)x  + a*x, y  + (a + 1)y  + a*y)
    │ │ │  
    │ │ │  o3 : EvaluationCode
    │ │ │
    i3 : R=F[x,y];
    │ │ │
    i4 : C=cartesianCode(F,{{0,1,a},{0,1,a}},{1+x+y,x*y})
    │ │ │  
    │ │ │ -o4 = EvaluationCode{cache => CacheTable{}                                                                                                                                                                                                                                           }
    │ │ │ +o4 = EvaluationCode{cache => CacheTable{}                                                                                                                                                                                                                                       }
    │ │ │                                                                 9
    │ │ │ -                    LinearCode => LinearCode{AmbientModule => F                                                                                                                                                                                                                    }
    │ │ │ +                    LinearCode => LinearCode{AmbientModule => F                                                                                                                                                                                                                }
    │ │ │                                               BaseField => F
    │ │ │                                               cache => CacheTable{}
    │ │ │ -                                             Code => image | 1   a+1 |
    │ │ │ +                                             Code => image | a+1 0   |
    │ │ │ +                                                           | a+1 0   |
    │ │ │ +                                                           | a   a   |
    │ │ │ +                                                           | a   a   |
    │ │ │                                                             | 1   0   |
    │ │ │                                                             | 0   0   |
    │ │ │                                                             | 0   0   |
    │ │ │ +                                                           | 1   a+1 |
    │ │ │                                                             | 1   1   |
    │ │ │ -                                                           | a+1 0   |
    │ │ │ -                                                           | a+1 0   |
    │ │ │ -                                                           | a   a   |
    │ │ │ -                                                           | a   a   |
    │ │ │ -                                             GeneratorMatrix => | 1   1 0 0 1 a+1 a+1 a a |
    │ │ │ -                                                                | a+1 0 0 0 1 0   0   a a |
    │ │ │ -                                             Generators => {{1, 1, 0, 0, 1, a + 1, a + 1, a, a}, {a + 1, 0, 0, 0, 1, 0, 0, a, a}}
    │ │ │ -                                             ParityCheckMatrix => | 1 0 0 0 0 a+1 0 a   0 |
    │ │ │ -                                                                  | 0 1 0 0 0 a   0 0   0 |
    │ │ │ -                                                                  | 0 0 1 0 0 0   0 0   0 |
    │ │ │ -                                                                  | 0 0 0 1 0 0   0 0   0 |
    │ │ │ -                                                                  | 0 0 0 0 1 0   0 a+1 0 |
    │ │ │ -                                                                  | 0 0 0 0 0 1   1 0   0 |
    │ │ │ -                                                                  | 0 0 0 0 0 0   0 1   1 |
    │ │ │ -                                             ParityCheckRows => {{1, 0, 0, 0, 0, a + 1, 0, a, 0}, {0, 1, 0, 0, 0, a, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, a + 1, 0}, {0, 0, 0, 0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 1}}
    │ │ │ -                    Points => {{a, a}, {0, 0}, {1, 0}, {0, 1}, {1, 1}, {a, 0}, {0, a}, {a, 1}, {1, a}}
    │ │ │ +                                             GeneratorMatrix => | a+1 a+1 a a 1 0 0 1   1 |
    │ │ │ +                                                                | 0   0   a a 0 0 0 a+1 1 |
    │ │ │ +                                             Generators => {{a + 1, a + 1, a, a, 1, 0, 0, 1, 1}, {0, 0, a, a, 0, 0, 0, a + 1, 1}}
    │ │ │ +                                             ParityCheckMatrix => | 1 0 0 0 0 0 0 a   1 |
    │ │ │ +                                                                  | 0 1 0 0 0 0 0 a   1 |
    │ │ │ +                                                                  | 0 0 1 0 0 0 0 0   a |
    │ │ │ +                                                                  | 0 0 0 1 0 0 0 0   a |
    │ │ │ +                                                                  | 0 0 0 0 1 0 0 a+1 a |
    │ │ │ +                                                                  | 0 0 0 0 0 1 0 0   0 |
    │ │ │ +                                                                  | 0 0 0 0 0 0 1 0   0 |
    │ │ │ +                                             ParityCheckRows => {{1, 0, 0, 0, 0, 0, 0, a, 1}, {0, 1, 0, 0, 0, 0, 0, a, 1}, {0, 0, 1, 0, 0, 0, 0, 0, a}, {0, 0, 0, 1, 0, 0, 0, 0, a}, {0, 0, 0, 0, 1, 0, 0, a + 1, a}, {0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0}}
    │ │ │ +                    Points => {{a, 0}, {0, a}, {1, a}, {a, 1}, {0, 0}, {0, 1}, {1, 0}, {a, a}, {1, 1}}
    │ │ │                      PolynomialSet => {x + y + 1, x*y}
    │ │ │                      Sets => {{0, 1, a}, {0, 1, a}}
    │ │ │                                                3           2         3           2
    │ │ │                      VanishingIdeal => ideal (x  + (a + 1)x  + a*x, y  + (a + 1)y  + a*y)
    │ │ │  
    │ │ │  o4 : EvaluationCode
    │ │ │
    i5 : C.LinearCode
    │ │ │  
    │ │ │                                    9
    │ │ │ -o5 = LinearCode{AmbientModule => F                                                                                                                                                                                                                    }
    │ │ │ +o5 = LinearCode{AmbientModule => F                                                                                                                                                                                                                }
    │ │ │                  BaseField => F
    │ │ │                  cache => CacheTable{}
    │ │ │ -                Code => image | 1   a+1 |
    │ │ │ +                Code => image | a+1 0   |
    │ │ │ +                              | a+1 0   |
    │ │ │ +                              | a   a   |
    │ │ │ +                              | a   a   |
    │ │ │                                | 1   0   |
    │ │ │                                | 0   0   |
    │ │ │                                | 0   0   |
    │ │ │ +                              | 1   a+1 |
    │ │ │                                | 1   1   |
    │ │ │ -                              | a+1 0   |
    │ │ │ -                              | a+1 0   |
    │ │ │ -                              | a   a   |
    │ │ │ -                              | a   a   |
    │ │ │ -                GeneratorMatrix => | 1   1 0 0 1 a+1 a+1 a a |
    │ │ │ -                                   | a+1 0 0 0 1 0   0   a a |
    │ │ │ -                Generators => {{1, 1, 0, 0, 1, a + 1, a + 1, a, a}, {a + 1, 0, 0, 0, 1, 0, 0, a, a}}
    │ │ │ -                ParityCheckMatrix => | 1 0 0 0 0 a+1 0 a   0 |
    │ │ │ -                                     | 0 1 0 0 0 a   0 0   0 |
    │ │ │ -                                     | 0 0 1 0 0 0   0 0   0 |
    │ │ │ -                                     | 0 0 0 1 0 0   0 0   0 |
    │ │ │ -                                     | 0 0 0 0 1 0   0 a+1 0 |
    │ │ │ -                                     | 0 0 0 0 0 1   1 0   0 |
    │ │ │ -                                     | 0 0 0 0 0 0   0 1   1 |
    │ │ │ -                ParityCheckRows => {{1, 0, 0, 0, 0, a + 1, 0, a, 0}, {0, 1, 0, 0, 0, a, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, a + 1, 0}, {0, 0, 0, 0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 1}}
    │ │ │ +                GeneratorMatrix => | a+1 a+1 a a 1 0 0 1   1 |
    │ │ │ +                                   | 0   0   a a 0 0 0 a+1 1 |
    │ │ │ +                Generators => {{a + 1, a + 1, a, a, 1, 0, 0, 1, 1}, {0, 0, a, a, 0, 0, 0, a + 1, 1}}
    │ │ │ +                ParityCheckMatrix => | 1 0 0 0 0 0 0 a   1 |
    │ │ │ +                                     | 0 1 0 0 0 0 0 a   1 |
    │ │ │ +                                     | 0 0 1 0 0 0 0 0   a |
    │ │ │ +                                     | 0 0 0 1 0 0 0 0   a |
    │ │ │ +                                     | 0 0 0 0 1 0 0 a+1 a |
    │ │ │ +                                     | 0 0 0 0 0 1 0 0   0 |
    │ │ │ +                                     | 0 0 0 0 0 0 1 0   0 |
    │ │ │ +                ParityCheckRows => {{1, 0, 0, 0, 0, 0, 0, a, 1}, {0, 1, 0, 0, 0, 0, 0, a, 1}, {0, 0, 1, 0, 0, 0, 0, 0, a}, {0, 0, 0, 1, 0, 0, 0, 0, a}, {0, 0, 0, 0, 1, 0, 0, a + 1, a}, {0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0}}
    │ │ │  
    │ │ │  o5 : LinearCode
    │ │ │
    │ │ │ │ │ │
    │ │ │

    a ring, a list and a Matrix are given

    │ │ │ @@ -300,35 +300,35 @@ │ │ │
    i8 : C=cartesianCode(F,{{0,1,a},{0,1,a}},matrix{{1,2},{2,3}})
    │ │ │  
    │ │ │  o8 = EvaluationCode{cache => CacheTable{}                                                                                                                                                                                                                                       }
    │ │ │                                                                 9
    │ │ │                      LinearCode => LinearCode{AmbientModule => F                                                                                                                                                                                                                }
    │ │ │                                               BaseField => F
    │ │ │                                               cache => CacheTable{}
    │ │ │ -                                             Code => image | 0   0   |
    │ │ │ -                                                           | 0   0   |
    │ │ │ -                                                           | a+1 1   |
    │ │ │ +                                             Code => image | a+1 1   |
    │ │ │                                                             | a   a+1 |
    │ │ │                                                             | 1   a+1 |
    │ │ │                                                             | 0   0   |
    │ │ │                                                             | 0   0   |
    │ │ │                                                             | 0   0   |
    │ │ │                                                             | 1   1   |
    │ │ │ -                                             GeneratorMatrix => | 0 0 a+1 a   1   0 0 0 1 |
    │ │ │ -                                                                | 0 0 1   a+1 a+1 0 0 0 1 |
    │ │ │ -                                             Generators => {{0, 0, a + 1, a, 1, 0, 0, 0, 1}, {0, 0, 1, a + 1, a + 1, 0, 0, 0, 1}}
    │ │ │ -                                             ParityCheckMatrix => | 1 0 0 0 0   0 0 0 0 |
    │ │ │ -                                                                  | 0 1 0 0 0   0 0 0 0 |
    │ │ │ -                                                                  | 0 0 1 0 1   0 0 0 a |
    │ │ │ -                                                                  | 0 0 0 1 a+1 0 0 0 1 |
    │ │ │ -                                                                  | 0 0 0 0 0   1 0 0 0 |
    │ │ │ -                                                                  | 0 0 0 0 0   0 1 0 0 |
    │ │ │ -                                                                  | 0 0 0 0 0   0 0 1 0 |
    │ │ │ -                                             ParityCheckRows => {{1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 1, 0, 0, 0, a}, {0, 0, 0, 1, a + 1, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0}}
    │ │ │ -                    Points => {{0, a}, {a, 0}, {1, a}, {a, 1}, {a, a}, {0, 0}, {0, 1}, {1, 0}, {1, 1}}
    │ │ │ +                                                           | 0   0   |
    │ │ │ +                                                           | 0   0   |
    │ │ │ +                                             GeneratorMatrix => | a+1 a   1   0 0 0 1 0 0 |
    │ │ │ +                                                                | 1   a+1 a+1 0 0 0 1 0 0 |
    │ │ │ +                                             Generators => {{a + 1, a, 1, 0, 0, 0, 1, 0, 0}, {1, a + 1, a + 1, 0, 0, 0, 1, 0, 0}}
    │ │ │ +                                             ParityCheckMatrix => | 1 0 1   0 0 0 a 0 0 |
    │ │ │ +                                                                  | 0 1 a+1 0 0 0 1 0 0 |
    │ │ │ +                                                                  | 0 0 0   1 0 0 0 0 0 |
    │ │ │ +                                                                  | 0 0 0   0 1 0 0 0 0 |
    │ │ │ +                                                                  | 0 0 0   0 0 1 0 0 0 |
    │ │ │ +                                                                  | 0 0 0   0 0 0 0 1 0 |
    │ │ │ +                                                                  | 0 0 0   0 0 0 0 0 1 |
    │ │ │ +                                             ParityCheckRows => {{1, 0, 1, 0, 0, 0, a, 0, 0}, {0, 1, a + 1, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1}}
    │ │ │ +                    Points => {{1, a}, {a, 1}, {a, a}, {0, 0}, {0, 1}, {1, 0}, {1, 1}, {0, a}, {a, 0}}
    │ │ │                                           2   2 3
    │ │ │                      PolynomialSet => {t t , t t }
    │ │ │                                         0 1   0 1
    │ │ │                      Sets => {{0, 1, a}, {0, 1, a}}
    │ │ │                                                3           2          3           2
    │ │ │                      VanishingIdeal => ideal (t  + (a + 1)t  + a*t , t  + (a + 1)t  + a*t )
    │ │ │                                                0           0      0   1           1      1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -124,49 +124,49 @@
    │ │ │ │  o4 = EvaluationCode{cache => CacheTable{}
    │ │ │ │  }
    │ │ │ │                                                                 9
    │ │ │ │                      LinearCode => LinearCode{AmbientModule => F
    │ │ │ │  }
    │ │ │ │                                               BaseField => F
    │ │ │ │                                               cache => CacheTable{}
    │ │ │ │ -                                             Code => image | 1   a+1 |
    │ │ │ │ +                                             Code => image | a+1 0   |
    │ │ │ │ +                                                           | a+1 0   |
    │ │ │ │ +                                                           | a   a   |
    │ │ │ │ +                                                           | a   a   |
    │ │ │ │                                                             | 1   0   |
    │ │ │ │                                                             | 0   0   |
    │ │ │ │                                                             | 0   0   |
    │ │ │ │ +                                                           | 1   a+1 |
    │ │ │ │                                                             | 1   1   |
    │ │ │ │ -                                                           | a+1 0   |
    │ │ │ │ -                                                           | a+1 0   |
    │ │ │ │ -                                                           | a   a   |
    │ │ │ │ -                                                           | a   a   |
    │ │ │ │ -                                             GeneratorMatrix => | 1   1 0 0 1
    │ │ │ │ -a+1 a+1 a a |
    │ │ │ │ -                                                                | a+1 0 0 0 1 0
    │ │ │ │ -0   a a |
    │ │ │ │ -                                             Generators => {{1, 1, 0, 0, 1, a +
    │ │ │ │ -1, a + 1, a, a}, {a + 1, 0, 0, 0, 1, 0, 0, a, a}}
    │ │ │ │ -                                             ParityCheckMatrix => | 1 0 0 0 0
    │ │ │ │ -a+1 0 a   0 |
    │ │ │ │ -                                                                  | 0 1 0 0 0 a
    │ │ │ │ -0 0   0 |
    │ │ │ │ +                                             GeneratorMatrix => | a+1 a+1 a a 1
    │ │ │ │ +0 0 1   1 |
    │ │ │ │ +                                                                | 0   0   a a 0
    │ │ │ │ +0 0 a+1 1 |
    │ │ │ │ +                                             Generators => {{a + 1, a + 1, a,
    │ │ │ │ +a, 1, 0, 0, 1, 1}, {0, 0, a, a, 0, 0, 0, a + 1, 1}}
    │ │ │ │ +                                             ParityCheckMatrix => | 1 0 0 0 0 0
    │ │ │ │ +0 a   1 |
    │ │ │ │ +                                                                  | 0 1 0 0 0 0
    │ │ │ │ +0 a   1 |
    │ │ │ │                                                                    | 0 0 1 0 0 0
    │ │ │ │ -0 0   0 |
    │ │ │ │ +0 0   a |
    │ │ │ │                                                                    | 0 0 0 1 0 0
    │ │ │ │ -0 0   0 |
    │ │ │ │ +0 0   a |
    │ │ │ │                                                                    | 0 0 0 0 1 0
    │ │ │ │ -0 a+1 0 |
    │ │ │ │ +0 a+1 a |
    │ │ │ │                                                                    | 0 0 0 0 0 1
    │ │ │ │ -1 0   0 |
    │ │ │ │ +0 0   0 |
    │ │ │ │                                                                    | 0 0 0 0 0 0
    │ │ │ │ -0 1   1 |
    │ │ │ │ +1 0   0 |
    │ │ │ │                                               ParityCheckRows => {{1, 0, 0, 0,
    │ │ │ │ -0, a + 1, 0, a, 0}, {0, 1, 0, 0, 0, a, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0},
    │ │ │ │ -{0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, a + 1, 0}, {0, 0, 0, 0, 0,
    │ │ │ │ -1, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 1}}
    │ │ │ │ -                    Points => {{a, a}, {0, 0}, {1, 0}, {0, 1}, {1, 1}, {a, 0},
    │ │ │ │ -{0, a}, {a, 1}, {1, a}}
    │ │ │ │ +0, 0, 0, a, 1}, {0, 1, 0, 0, 0, 0, 0, a, 1}, {0, 0, 1, 0, 0, 0, 0, 0, a}, {0,
    │ │ │ │ +0, 0, 1, 0, 0, 0, 0, a}, {0, 0, 0, 0, 1, 0, 0, a + 1, a}, {0, 0, 0, 0, 0, 1, 0,
    │ │ │ │ +0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0}}
    │ │ │ │ +                    Points => {{a, 0}, {0, a}, {1, a}, {a, 1}, {0, 0}, {0, 1},
    │ │ │ │ +{1, 0}, {a, a}, {1, 1}}
    │ │ │ │                      PolynomialSet => {x + y + 1, x*y}
    │ │ │ │                      Sets => {{0, 1, a}, {0, 1, a}}
    │ │ │ │                                                3           2         3
    │ │ │ │  2
    │ │ │ │                      VanishingIdeal => ideal (x  + (a + 1)x  + a*x, y  + (a +
    │ │ │ │  1)y  + a*y)
    │ │ │ │  
    │ │ │ │ @@ -174,38 +174,38 @@
    │ │ │ │  i5 : C.LinearCode
    │ │ │ │  
    │ │ │ │                                    9
    │ │ │ │  o5 = LinearCode{AmbientModule => F
    │ │ │ │  }
    │ │ │ │                  BaseField => F
    │ │ │ │                  cache => CacheTable{}
    │ │ │ │ -                Code => image | 1   a+1 |
    │ │ │ │ +                Code => image | a+1 0   |
    │ │ │ │ +                              | a+1 0   |
    │ │ │ │ +                              | a   a   |
    │ │ │ │ +                              | a   a   |
    │ │ │ │                                | 1   0   |
    │ │ │ │                                | 0   0   |
    │ │ │ │                                | 0   0   |
    │ │ │ │ +                              | 1   a+1 |
    │ │ │ │                                | 1   1   |
    │ │ │ │ -                              | a+1 0   |
    │ │ │ │ -                              | a+1 0   |
    │ │ │ │ -                              | a   a   |
    │ │ │ │ -                              | a   a   |
    │ │ │ │ -                GeneratorMatrix => | 1   1 0 0 1 a+1 a+1 a a |
    │ │ │ │ -                                   | a+1 0 0 0 1 0   0   a a |
    │ │ │ │ -                Generators => {{1, 1, 0, 0, 1, a + 1, a + 1, a, a}, {a + 1, 0,
    │ │ │ │ -0, 0, 1, 0, 0, a, a}}
    │ │ │ │ -                ParityCheckMatrix => | 1 0 0 0 0 a+1 0 a   0 |
    │ │ │ │ -                                     | 0 1 0 0 0 a   0 0   0 |
    │ │ │ │ -                                     | 0 0 1 0 0 0   0 0   0 |
    │ │ │ │ -                                     | 0 0 0 1 0 0   0 0   0 |
    │ │ │ │ -                                     | 0 0 0 0 1 0   0 a+1 0 |
    │ │ │ │ -                                     | 0 0 0 0 0 1   1 0   0 |
    │ │ │ │ -                                     | 0 0 0 0 0 0   0 1   1 |
    │ │ │ │ -                ParityCheckRows => {{1, 0, 0, 0, 0, a + 1, 0, a, 0}, {0, 1, 0,
    │ │ │ │ -0, 0, a, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0},
    │ │ │ │ -{0, 0, 0, 0, 1, 0, 0, a + 1, 0}, {0, 0, 0, 0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 0,
    │ │ │ │ -0, 0, 1, 1}}
    │ │ │ │ +                GeneratorMatrix => | a+1 a+1 a a 1 0 0 1   1 |
    │ │ │ │ +                                   | 0   0   a a 0 0 0 a+1 1 |
    │ │ │ │ +                Generators => {{a + 1, a + 1, a, a, 1, 0, 0, 1, 1}, {0, 0, a,
    │ │ │ │ +a, 0, 0, 0, a + 1, 1}}
    │ │ │ │ +                ParityCheckMatrix => | 1 0 0 0 0 0 0 a   1 |
    │ │ │ │ +                                     | 0 1 0 0 0 0 0 a   1 |
    │ │ │ │ +                                     | 0 0 1 0 0 0 0 0   a |
    │ │ │ │ +                                     | 0 0 0 1 0 0 0 0   a |
    │ │ │ │ +                                     | 0 0 0 0 1 0 0 a+1 a |
    │ │ │ │ +                                     | 0 0 0 0 0 1 0 0   0 |
    │ │ │ │ +                                     | 0 0 0 0 0 0 1 0   0 |
    │ │ │ │ +                ParityCheckRows => {{1, 0, 0, 0, 0, 0, 0, a, 1}, {0, 1, 0, 0,
    │ │ │ │ +0, 0, 0, a, 1}, {0, 0, 1, 0, 0, 0, 0, 0, a}, {0, 0, 0, 1, 0, 0, 0, 0, a}, {0,
    │ │ │ │ +0, 0, 0, 1, 0, 0, a + 1, a}, {0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1,
    │ │ │ │ +0, 0}}
    │ │ │ │  
    │ │ │ │  o5 : LinearCode
    │ │ │ │  ********** aa rriinngg,, aa lliisstt aanndd aa MMaattrriixx aarree ggiivveenn **********
    │ │ │ │      *   Usage:
    │ │ │ │              cartesianCode(F, L, M)
    │ │ │ │      * Inputs:
    │ │ │ │            o F, a _r_i_n_g,
    │ │ │ │ @@ -224,49 +224,49 @@
    │ │ │ │  o8 = EvaluationCode{cache => CacheTable{}
    │ │ │ │  }
    │ │ │ │                                                                 9
    │ │ │ │                      LinearCode => LinearCode{AmbientModule => F
    │ │ │ │  }
    │ │ │ │                                               BaseField => F
    │ │ │ │                                               cache => CacheTable{}
    │ │ │ │ -                                             Code => image | 0   0   |
    │ │ │ │ -                                                           | 0   0   |
    │ │ │ │ -                                                           | a+1 1   |
    │ │ │ │ +                                             Code => image | a+1 1   |
    │ │ │ │                                                             | a   a+1 |
    │ │ │ │                                                             | 1   a+1 |
    │ │ │ │                                                             | 0   0   |
    │ │ │ │                                                             | 0   0   |
    │ │ │ │                                                             | 0   0   |
    │ │ │ │                                                             | 1   1   |
    │ │ │ │ -                                             GeneratorMatrix => | 0 0 a+1 a   1
    │ │ │ │ -0 0 0 1 |
    │ │ │ │ -                                                                | 0 0 1   a+1
    │ │ │ │ -a+1 0 0 0 1 |
    │ │ │ │ -                                             Generators => {{0, 0, a + 1, a, 1,
    │ │ │ │ -0, 0, 0, 1}, {0, 0, 1, a + 1, a + 1, 0, 0, 0, 1}}
    │ │ │ │ -                                             ParityCheckMatrix => | 1 0 0 0 0
    │ │ │ │ +                                                           | 0   0   |
    │ │ │ │ +                                                           | 0   0   |
    │ │ │ │ +                                             GeneratorMatrix => | a+1 a   1   0
    │ │ │ │ +0 0 1 0 0 |
    │ │ │ │ +                                                                | 1   a+1 a+1 0
    │ │ │ │ +0 0 1 0 0 |
    │ │ │ │ +                                             Generators => {{a + 1, a, 1, 0, 0,
    │ │ │ │ +0, 1, 0, 0}, {1, a + 1, a + 1, 0, 0, 0, 1, 0, 0}}
    │ │ │ │ +                                             ParityCheckMatrix => | 1 0 1   0 0
    │ │ │ │ +0 a 0 0 |
    │ │ │ │ +                                                                  | 0 1 a+1 0 0
    │ │ │ │ +0 1 0 0 |
    │ │ │ │ +                                                                  | 0 0 0   1 0
    │ │ │ │  0 0 0 0 |
    │ │ │ │ -                                                                  | 0 1 0 0 0
    │ │ │ │ +                                                                  | 0 0 0   0 1
    │ │ │ │  0 0 0 0 |
    │ │ │ │ -                                                                  | 0 0 1 0 1
    │ │ │ │ -0 0 0 a |
    │ │ │ │ -                                                                  | 0 0 0 1 a+1
    │ │ │ │ -0 0 0 1 |
    │ │ │ │ -                                                                  | 0 0 0 0 0
    │ │ │ │ +                                                                  | 0 0 0   0 0
    │ │ │ │  1 0 0 0 |
    │ │ │ │ -                                                                  | 0 0 0 0 0
    │ │ │ │ -0 1 0 0 |
    │ │ │ │ -                                                                  | 0 0 0 0 0
    │ │ │ │ +                                                                  | 0 0 0   0 0
    │ │ │ │  0 0 1 0 |
    │ │ │ │ -                                             ParityCheckRows => {{1, 0, 0, 0,
    │ │ │ │ -0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 1, 0, 0, 0, a}, {0,
    │ │ │ │ -0, 0, 1, a + 1, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1,
    │ │ │ │ -0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0}}
    │ │ │ │ -                    Points => {{0, a}, {a, 0}, {1, a}, {a, 1}, {a, a}, {0, 0},
    │ │ │ │ -{0, 1}, {1, 0}, {1, 1}}
    │ │ │ │ +                                                                  | 0 0 0   0 0
    │ │ │ │ +0 0 0 1 |
    │ │ │ │ +                                             ParityCheckRows => {{1, 0, 1, 0,
    │ │ │ │ +0, 0, a, 0, 0}, {0, 1, a + 1, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0},
    │ │ │ │ +{0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0,
    │ │ │ │ +1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1}}
    │ │ │ │ +                    Points => {{1, a}, {a, 1}, {a, a}, {0, 0}, {0, 1}, {1, 0},
    │ │ │ │ +{1, 1}, {0, a}, {a, 0}}
    │ │ │ │                                           2   2 3
    │ │ │ │                      PolynomialSet => {t t , t t }
    │ │ │ │                                         0 1   0 1
    │ │ │ │                      Sets => {{0, 1, a}, {0, 1, a}}
    │ │ │ │                                                3           2          3
    │ │ │ │  2
    │ │ │ │                      VanishingIdeal => ideal (t  + (a + 1)t  + a*t , t  + (a +
    │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/html/_codewords.html
    │ │ │ @@ -77,21 +77,21 @@
    │ │ │            
    │ │ │            
    │ │ │                
    i2 : C=linearCode(matrix{{1,a,0},{0,1,a}});
    │ │ │ │ │ │ │ │ │
    i3 : codewords(C)
    │ │ │  
    │ │ │ -o3 = {{a, a, a}, {a + 1, a, 1}, {1, 1, 1}, {0, 1, a}, {0, a, a + 1}, {1, a +
    │ │ │ +o3 = {{a, a, a}, {a + 1, a, 1}, {1, 1, 1}, {0, 1, a}, {a, 1, a + 1}, {0, a, a
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     1, a}, {0, a + 1, 1}, {a, 1, a + 1}, {1, a, 0}, {a + 1, a + 1, a + 1},
    │ │ │ +     + 1}, {0, a + 1, 1}, {1, a + 1, a}, {a + 1, 0, a}, {a, 0, 1}, {a + 1, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {a, 0, 1}, {a + 1, 0, a}, {a + 1, 1, 0}, {1, 0, a + 1}, {a, a + 1, 0},
    │ │ │ +     0}, {1, a, 0}, {a + 1, a + 1, a + 1}, {1, 0, a + 1}, {a, a + 1, 0}, {0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 0, 0}}
    │ │ │ +     0, 0}}
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    Ways to use codewords:

    │ │ │ ├── html2text {} │ │ │ │ @@ -15,20 +15,20 @@ │ │ │ │ Obtains all the codewords of a code C by multiplying all the elements of the │ │ │ │ ambient space (obtained with the function messages) by the generator matrix of │ │ │ │ C. │ │ │ │ i1 : F=GF(4,Variable=>a); │ │ │ │ i2 : C=linearCode(matrix{{1,a,0},{0,1,a}}); │ │ │ │ i3 : codewords(C) │ │ │ │ │ │ │ │ -o3 = {{a, a, a}, {a + 1, a, 1}, {1, 1, 1}, {0, 1, a}, {0, a, a + 1}, {1, a + │ │ │ │ +o3 = {{a, a, a}, {a + 1, a, 1}, {1, 1, 1}, {0, 1, a}, {a, 1, a + 1}, {0, a, a │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 1, a}, {0, a + 1, 1}, {a, 1, a + 1}, {1, a, 0}, {a + 1, a + 1, a + 1}, │ │ │ │ + + 1}, {0, a + 1, 1}, {1, a + 1, a}, {a + 1, 0, a}, {a, 0, 1}, {a + 1, 1, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {a, 0, 1}, {a + 1, 0, a}, {a + 1, 1, 0}, {1, 0, a + 1}, {a, a + 1, 0}, │ │ │ │ + 0}, {1, a, 0}, {a + 1, a + 1, a + 1}, {1, 0, a + 1}, {a, a + 1, 0}, {0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 0, 0}} │ │ │ │ + 0, 0}} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ ********** WWaayyss ttoo uussee ccooddeewwoorrddss:: ********** │ │ │ │ * codewords(LinearCode) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _c_o_d_e_w_o_r_d_s is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n. │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/html/_dim_lp__Linear__Code_rp.html │ │ │ @@ -84,30 +84,30 @@ │ │ │ │ │ │
    i3 : H = hammingCode(2,3)
    │ │ │  
    │ │ │                                         7
    │ │ │  o3 = LinearCode{AmbientModule => (GF 2)                                                                                   }
    │ │ │                  BaseField => GF 2
    │ │ │                  cache => CacheTable{}
    │ │ │ -                Code => image | 1 1 0 1 |
    │ │ │ +                Code => image | 1 1 1 0 |
    │ │ │                                | 1 0 1 1 |
    │ │ │ -                              | 1 1 1 0 |
    │ │ │ +                              | 1 1 0 1 |
    │ │ │                                | 1 0 0 0 |
    │ │ │                                | 0 1 0 0 |
    │ │ │                                | 0 0 1 0 |
    │ │ │                                | 0 0 0 1 |
    │ │ │                  GeneratorMatrix => | 1 1 1 1 0 0 0 |
    │ │ │                                     | 1 0 1 0 1 0 0 |
    │ │ │ -                                   | 0 1 1 0 0 1 0 |
    │ │ │ -                                   | 1 1 0 0 0 0 1 |
    │ │ │ -                Generators => {{1, 1, 1, 1, 0, 0, 0}, {1, 0, 1, 0, 1, 0, 0}, {0, 1, 1, 0, 0, 1, 0}, {1, 1, 0, 0, 0, 0, 1}}
    │ │ │ +                                   | 1 1 0 0 0 1 0 |
    │ │ │ +                                   | 0 1 1 0 0 0 1 |
    │ │ │ +                Generators => {{1, 1, 1, 1, 0, 0, 0}, {1, 0, 1, 0, 1, 0, 0}, {1, 1, 0, 0, 0, 1, 0}, {0, 1, 1, 0, 0, 0, 1}}
    │ │ │                  ParityCheckMatrix => | 1 1 1 1 0 0 0 |
    │ │ │ -                                     | 0 0 1 1 1 1 0 |
    │ │ │ +                                     | 0 1 1 0 1 1 0 |
    │ │ │                                       | 0 1 0 1 0 1 1 |
    │ │ │ -                ParityCheckRows => {{1, 1, 1, 1, 0, 0, 0}, {0, 0, 1, 1, 1, 1, 0}, {0, 1, 0, 1, 0, 1, 1}}
    │ │ │ +                ParityCheckRows => {{1, 1, 1, 1, 0, 0, 0}, {0, 1, 1, 0, 1, 1, 0}, {0, 1, 0, 1, 0, 1, 1}}
    │ │ │  
    │ │ │  o3 : LinearCode
    │ │ │ │ │ │ │ │ │
    i4 : dim H
    │ │ │  
    │ │ │  o4 = 4
    │ │ │ ├── html2text {} │ │ │ │ @@ -22,31 +22,31 @@ │ │ │ │ i3 : H = hammingCode(2,3) │ │ │ │ │ │ │ │ 7 │ │ │ │ o3 = LinearCode{AmbientModule => (GF 2) │ │ │ │ } │ │ │ │ BaseField => GF 2 │ │ │ │ cache => CacheTable{} │ │ │ │ - Code => image | 1 1 0 1 | │ │ │ │ + Code => image | 1 1 1 0 | │ │ │ │ | 1 0 1 1 | │ │ │ │ - | 1 1 1 0 | │ │ │ │ + | 1 1 0 1 | │ │ │ │ | 1 0 0 0 | │ │ │ │ | 0 1 0 0 | │ │ │ │ | 0 0 1 0 | │ │ │ │ | 0 0 0 1 | │ │ │ │ GeneratorMatrix => | 1 1 1 1 0 0 0 | │ │ │ │ | 1 0 1 0 1 0 0 | │ │ │ │ - | 0 1 1 0 0 1 0 | │ │ │ │ - | 1 1 0 0 0 0 1 | │ │ │ │ + | 1 1 0 0 0 1 0 | │ │ │ │ + | 0 1 1 0 0 0 1 | │ │ │ │ Generators => {{1, 1, 1, 1, 0, 0, 0}, {1, 0, 1, 0, 1, 0, 0}, │ │ │ │ -{0, 1, 1, 0, 0, 1, 0}, {1, 1, 0, 0, 0, 0, 1}} │ │ │ │ +{1, 1, 0, 0, 0, 1, 0}, {0, 1, 1, 0, 0, 0, 1}} │ │ │ │ ParityCheckMatrix => | 1 1 1 1 0 0 0 | │ │ │ │ - | 0 0 1 1 1 1 0 | │ │ │ │ + | 0 1 1 0 1 1 0 | │ │ │ │ | 0 1 0 1 0 1 1 | │ │ │ │ - ParityCheckRows => {{1, 1, 1, 1, 0, 0, 0}, {0, 0, 1, 1, 1, 1, │ │ │ │ + ParityCheckRows => {{1, 1, 1, 1, 0, 0, 0}, {0, 1, 1, 0, 1, 1, │ │ │ │ 0}, {0, 1, 0, 1, 0, 1, 1}} │ │ │ │ │ │ │ │ o3 : LinearCode │ │ │ │ i4 : dim H │ │ │ │ │ │ │ │ o4 = 4 │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/html/_hamming__Code.html │ │ │ @@ -76,16 +76,16 @@ │ │ │ │ │ │
    i1 : C1 = hammingCode(2,3);
    │ │ │ │ │ │ │ │ │
    i2 : C1.ParityCheckMatrix
    │ │ │  
    │ │ │  o2 = | 1 1 1 1 0 0 0 |
    │ │ │ -     | 0 1 0 1 1 1 0 |
    │ │ │ -     | 1 0 0 1 1 0 1 |
    │ │ │ +     | 0 0 1 1 1 1 0 |
    │ │ │ +     | 0 1 0 1 0 1 1 |
    │ │ │  
    │ │ │                    3           7
    │ │ │  o2 : Matrix (GF 2)  <-- (GF 2)
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -14,16 +14,16 @@ │ │ │ │ o an instance of the type _L_i_n_e_a_r_C_o_d_e, $C$ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Returns the Hamming code $C$ over GF(q) whose dual has dimension s. │ │ │ │ i1 : C1 = hammingCode(2,3); │ │ │ │ i2 : C1.ParityCheckMatrix │ │ │ │ │ │ │ │ o2 = | 1 1 1 1 0 0 0 | │ │ │ │ - | 0 1 0 1 1 1 0 | │ │ │ │ - | 1 0 0 1 1 0 1 | │ │ │ │ + | 0 0 1 1 1 1 0 | │ │ │ │ + | 0 1 0 1 0 1 1 | │ │ │ │ │ │ │ │ 3 7 │ │ │ │ o2 : Matrix (GF 2) <-- (GF 2) │ │ │ │ ********** WWaayyss ttoo uussee hhaammmmiinnggCCooddee:: ********** │ │ │ │ * hammingCode(ZZ,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _h_a_m_m_i_n_g_C_o_d_e is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n. │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/html/_messages.html │ │ │ @@ -76,15 +76,15 @@ │ │ │ │ │ │ │ │ │
    i2 : R=linearCode(F,{{1,1,1}});
    │ │ │ │ │ │ │ │ │
    i3 : messages R
    │ │ │  
    │ │ │ -o3 = {{1}, {a}, {a + 1}, {0}}
    │ │ │ +o3 = {{0}, {1}, {a}, {a + 1}}
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : messages hammingCode(2,3)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,15 +15,15 @@
    │ │ │ │  Given a code C of dimension $k$ over a finite field $F$, this function returns
    │ │ │ │  the list that contains all the elements of $F^k$. Every element of the list can
    │ │ │ │  be used to encode a message using the linear code C.
    │ │ │ │  i1 : F=GF(4,Variable=>a);
    │ │ │ │  i2 : R=linearCode(F,{{1,1,1}});
    │ │ │ │  i3 : messages R
    │ │ │ │  
    │ │ │ │ -o3 = {{1}, {a}, {a + 1}, {0}}
    │ │ │ │ +o3 = {{0}, {1}, {a}, {a + 1}}
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ │ │  i4 : messages hammingCode(2,3)
    │ │ │ │  
    │ │ │ │  o4 = {{1, 0, 0, 0}, {1, 0, 0, 1}, {1, 0, 1, 0}, {1, 0, 1, 1}, {1, 1, 1, 0},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {1, 1, 1, 1}, {0, 1, 1, 0}, {0, 1, 0, 1}, {0, 1, 0, 0}, {0, 1, 1, 1},
    │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/html/_order__Code.html
    │ │ │ @@ -126,39 +126,39 @@
    │ │ │  
    │ │ │  o4 = EvaluationCode{cache => CacheTable{}                                                                                                                                                                                                                                                                                           }
    │ │ │                      Points => {{0, 0}, {a, a}, {a + 1, a}, {1, a}, {a, a + 1}, {a + 1, a + 1}, {1, a + 1}, {0, 1}}
    │ │ │                                                                 8
    │ │ │                      LinearCode => LinearCode{AmbientModule => F                                                                                                                                                                                                                                                                    }
    │ │ │                                               BaseField => F
    │ │ │                                               cache => CacheTable{}
    │ │ │ -                                             Code => image | 1 0   0   0   0 0   0   0   |
    │ │ │ -                                                           | 1 a+1 1   a   1 a   a+1 a+1 |
    │ │ │ -                                                           | 1 a   a+1 a   1 a+1 a+1 1   |
    │ │ │ -                                                           | 1 1   a   a   1 1   a+1 a   |
    │ │ │ -                                                           | 1 a+1 a   a+1 1 a   a   1   |
    │ │ │ -                                                           | 1 a   1   a+1 1 a+1 a   a   |
    │ │ │ -                                                           | 1 1   a+1 a+1 1 1   a   a+1 |
    │ │ │ -                                                           | 1 0   0   1   0 0   1   0   |
    │ │ │ -                                             GeneratorMatrix => | 1 1   1   1   1   1   1   1 |
    │ │ │ +                                             Code => image | 0   1 0   0   0   0 0   0   |
    │ │ │ +                                                           | a+1 1 a+1 1   a   1 a   a+1 |
    │ │ │ +                                                           | 1   1 a   a+1 a   1 a+1 a+1 |
    │ │ │ +                                                           | a   1 1   a   a   1 1   a+1 |
    │ │ │ +                                                           | 1   1 a+1 a   a+1 1 a   a   |
    │ │ │ +                                                           | a   1 a   1   a+1 1 a+1 a   |
    │ │ │ +                                                           | a+1 1 1   a+1 a+1 1 1   a   |
    │ │ │ +                                                           | 0   1 0   0   1   0 0   1   |
    │ │ │ +                                             GeneratorMatrix => | 0 a+1 1   a   1   a   a+1 0 |
    │ │ │ +                                                                | 1 1   1   1   1   1   1   1 |
    │ │ │                                                                  | 0 a+1 a   1   a+1 a   1   0 |
    │ │ │                                                                  | 0 1   a+1 a   a   1   a+1 0 |
    │ │ │                                                                  | 0 a   a   a   a+1 a+1 a+1 1 |
    │ │ │                                                                  | 0 1   1   1   1   1   1   0 |
    │ │ │                                                                  | 0 a   a+1 1   a   a+1 1   0 |
    │ │ │                                                                  | 0 a+1 a+1 a+1 a   a   a   1 |
    │ │ │ -                                                                | 0 a+1 1   a   1   a   a+1 0 |
    │ │ │ -                                             Generators => {{1, 1, 1, 1, 1, 1, 1, 1}, {0, a + 1, a, 1, a + 1, a, 1, 0}, {0, 1, a + 1, a, a, 1, a + 1, 0}, {0, a, a, a, a + 1, a + 1, a + 1, 1}, {0, 1, 1, 1, 1, 1, 1, 0}, {0, a, a + 1, 1, a, a + 1, 1, 0}, {0, a + 1, a + 1, a + 1, a, a, a, 1}, {0, a + 1, 1, a, 1, a, a + 1, 0}}
    │ │ │ +                                             Generators => {{0, a + 1, 1, a, 1, a, a + 1, 0}, {1, 1, 1, 1, 1, 1, 1, 1}, {0, a + 1, a, 1, a + 1, a, 1, 0}, {0, 1, a + 1, a, a, 1, a + 1, 0}, {0, a, a, a, a + 1, a + 1, a + 1, 1}, {0, 1, 1, 1, 1, 1, 1, 0}, {0, a, a + 1, 1, a, a + 1, 1, 0}, {0, a + 1, a + 1, a + 1, a, a, a, 1}}
    │ │ │                                               ParityCheckMatrix => | 1 1 1 1 1 1 1 1 |
    │ │ │                                               ParityCheckRows => {{1, 1, 1, 1, 1, 1, 1, 1}}
    │ │ │                                                  2               3    2        4
    │ │ │                      VanishingIdeal => ideal (t t  + t t  + t , t  + t  + t , t  + t )
    │ │ │                                                0 1    0 1    0   0    1    1   1    1
    │ │ │ -                                          2   2         3       2
    │ │ │ -                    PolynomialSet => {1, t , t t , t , t , t , t , t t }
    │ │ │ -                                          0   0 1   1   0   0   1   0 1
    │ │ │ + 2 2 3 2 │ │ │ + PolynomialSet => {t t , 1, t , t t , t , t , t , t } │ │ │ + 0 1 0 0 1 1 0 0 1 │ │ │
    │ │ │
    │ │ │
    │ │ │

    given the ideal of the finite algebra associated to the order function and a list of points

    │ │ │
      │ │ │
    • │ │ │ ├── html2text {} │ │ │ │ @@ -45,63 +45,63 @@ │ │ │ │ Points => {{0, 0}, {a, a}, {a + 1, a}, {1, a}, {a, a + 1}, │ │ │ │ {a + 1, a + 1}, {1, a + 1}, {0, 1}} │ │ │ │ 8 │ │ │ │ LinearCode => LinearCode{AmbientModule => F │ │ │ │ } │ │ │ │ BaseField => F │ │ │ │ cache => CacheTable{} │ │ │ │ - Code => image | 1 0 0 0 0 0 │ │ │ │ -0 0 | │ │ │ │ - | 1 a+1 1 a 1 a │ │ │ │ -a+1 a+1 | │ │ │ │ - | 1 a a+1 a 1 │ │ │ │ -a+1 a+1 1 | │ │ │ │ - | 1 1 a a 1 1 │ │ │ │ -a+1 a | │ │ │ │ - | 1 a+1 a a+1 1 a │ │ │ │ -a 1 | │ │ │ │ - | 1 a 1 a+1 1 │ │ │ │ -a+1 a a | │ │ │ │ - | 1 1 a+1 a+1 1 1 │ │ │ │ -a a+1 | │ │ │ │ - | 1 0 0 1 0 0 │ │ │ │ -1 0 | │ │ │ │ - GeneratorMatrix => | 1 1 1 1 │ │ │ │ + Code => image | 0 1 0 0 0 │ │ │ │ +0 0 0 | │ │ │ │ + | a+1 1 a+1 1 a │ │ │ │ +1 a a+1 | │ │ │ │ + | 1 1 a a+1 a │ │ │ │ +1 a+1 a+1 | │ │ │ │ + | a 1 1 a a │ │ │ │ +1 1 a+1 | │ │ │ │ + | 1 1 a+1 a a+1 │ │ │ │ +1 a a | │ │ │ │ + | a 1 a 1 a+1 │ │ │ │ +1 a+1 a | │ │ │ │ + | a+1 1 1 a+1 a+1 │ │ │ │ +1 1 a | │ │ │ │ + | 0 1 0 0 1 │ │ │ │ +0 0 1 | │ │ │ │ + GeneratorMatrix => | 0 a+1 1 a │ │ │ │ +1 a a+1 0 | │ │ │ │ + | 1 1 1 1 │ │ │ │ 1 1 1 1 | │ │ │ │ | 0 a+1 a 1 │ │ │ │ a+1 a 1 0 | │ │ │ │ | 0 1 a+1 a │ │ │ │ a 1 a+1 0 | │ │ │ │ | 0 a a a │ │ │ │ a+1 a+1 a+1 1 | │ │ │ │ | 0 1 1 1 │ │ │ │ 1 1 1 0 | │ │ │ │ | 0 a a+1 1 │ │ │ │ a a+1 1 0 | │ │ │ │ | 0 a+1 a+1 a+1 │ │ │ │ a a a 1 | │ │ │ │ - | 0 a+1 1 a │ │ │ │ -1 a a+1 0 | │ │ │ │ - Generators => {{1, 1, 1, 1, 1, 1, │ │ │ │ -1, 1}, {0, a + 1, a, 1, a + 1, a, 1, 0}, {0, 1, a + 1, a, a, 1, a + 1, 0}, {0, │ │ │ │ -a, a, a, a + 1, a + 1, a + 1, 1}, {0, 1, 1, 1, 1, 1, 1, 0}, {0, a, a + 1, 1, a, │ │ │ │ -a + 1, 1, 0}, {0, a + 1, a + 1, a + 1, a, a, a, 1}, {0, a + 1, 1, a, 1, a, a + │ │ │ │ -1, 0}} │ │ │ │ + Generators => {{0, a + 1, 1, a, 1, │ │ │ │ +a, a + 1, 0}, {1, 1, 1, 1, 1, 1, 1, 1}, {0, a + 1, a, 1, a + 1, a, 1, 0}, {0, │ │ │ │ +1, a + 1, a, a, 1, a + 1, 0}, {0, a, a, a, a + 1, a + 1, a + 1, 1}, {0, 1, 1, │ │ │ │ +1, 1, 1, 1, 0}, {0, a, a + 1, 1, a, a + 1, 1, 0}, {0, a + 1, a + 1, a + 1, a, │ │ │ │ +a, a, 1}} │ │ │ │ ParityCheckMatrix => | 1 1 1 1 1 1 │ │ │ │ 1 1 | │ │ │ │ ParityCheckRows => {{1, 1, 1, 1, │ │ │ │ 1, 1, 1, 1}} │ │ │ │ 2 3 2 4 │ │ │ │ VanishingIdeal => ideal (t t + t t + t , t + t + t , t │ │ │ │ + t ) │ │ │ │ 0 1 0 1 0 0 1 1 1 │ │ │ │ 1 │ │ │ │ - 2 2 3 2 │ │ │ │ - PolynomialSet => {1, t , t t , t , t , t , t , t t } │ │ │ │ - 0 0 1 1 0 0 1 0 1 │ │ │ │ + 2 2 3 2 │ │ │ │ + PolynomialSet => {t t , 1, t , t t , t , t , t , t } │ │ │ │ + 0 1 0 0 1 1 0 0 1 │ │ │ │ ********** ggiivveenn tthhee iiddeeaall ooff tthhee ffiinniittee aallggeebbrraa aassssoocciiaatteedd ttoo tthhee oorrddeerr ffuunnccttiioonn │ │ │ │ aanndd aa lliisstt ooff ppooiinnttss ********** │ │ │ │ * Usage: │ │ │ │ orderCode(I,P,v,d) │ │ │ │ * Inputs: │ │ │ │ o I, an _i_d_e_a_l, │ │ │ │ o P, a _l_i_s_t, │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/html/_ring_lp__Linear__Code_rp.html │ │ │ @@ -77,29 +77,29 @@ │ │ │
      i1 : C = hammingCode(2, 3)
      │ │ │  
      │ │ │                                         7
      │ │ │  o1 = LinearCode{AmbientModule => (GF 2)                                                                                   }
      │ │ │                  BaseField => GF 2
      │ │ │                  cache => CacheTable{}
      │ │ │                  Code => image | 1 0 1 1 |
      │ │ │ -                              | 1 1 0 1 |
      │ │ │                                | 1 1 1 0 |
      │ │ │ +                              | 1 1 0 1 |
      │ │ │                                | 1 0 0 0 |
      │ │ │                                | 0 1 0 0 |
      │ │ │                                | 0 0 1 0 |
      │ │ │                                | 0 0 0 1 |
      │ │ │                  GeneratorMatrix => | 1 1 1 1 0 0 0 |
      │ │ │                                     | 0 1 1 0 1 0 0 |
      │ │ │ -                                   | 1 0 1 0 0 1 0 |
      │ │ │ -                                   | 1 1 0 0 0 0 1 |
      │ │ │ -                Generators => {{1, 1, 1, 1, 0, 0, 0}, {0, 1, 1, 0, 1, 0, 0}, {1, 0, 1, 0, 0, 1, 0}, {1, 1, 0, 0, 0, 0, 1}}
      │ │ │ +                                   | 1 1 0 0 0 1 0 |
      │ │ │ +                                   | 1 0 1 0 0 0 1 |
      │ │ │ +                Generators => {{1, 1, 1, 1, 0, 0, 0}, {0, 1, 1, 0, 1, 0, 0}, {1, 1, 0, 0, 0, 1, 0}, {1, 0, 1, 0, 0, 0, 1}}
      │ │ │                  ParityCheckMatrix => | 1 1 1 1 0 0 0 |
      │ │ │ -                                     | 0 0 1 1 1 1 0 |
      │ │ │ -                                     | 0 1 0 1 1 0 1 |
      │ │ │ -                ParityCheckRows => {{1, 1, 1, 1, 0, 0, 0}, {0, 0, 1, 1, 1, 1, 0}, {0, 1, 0, 1, 1, 0, 1}}
      │ │ │ +                                     | 0 1 0 1 1 1 0 |
      │ │ │ +                                     | 0 1 1 0 0 1 1 |
      │ │ │ +                ParityCheckRows => {{1, 1, 1, 1, 0, 0, 0}, {0, 1, 0, 1, 1, 1, 0}, {0, 1, 1, 0, 0, 1, 1}}
      │ │ │  
      │ │ │  o1 : LinearCode
      │ │ │ │ │ │ │ │ │
      i2 : ring(C)
      │ │ │  
      │ │ │  o2 = GF 2
      │ │ │ ├── html2text {}
      │ │ │ │ @@ -19,31 +19,31 @@
      │ │ │ │  
      │ │ │ │                                         7
      │ │ │ │  o1 = LinearCode{AmbientModule => (GF 2)
      │ │ │ │  }
      │ │ │ │                  BaseField => GF 2
      │ │ │ │                  cache => CacheTable{}
      │ │ │ │                  Code => image | 1 0 1 1 |
      │ │ │ │ -                              | 1 1 0 1 |
      │ │ │ │                                | 1 1 1 0 |
      │ │ │ │ +                              | 1 1 0 1 |
      │ │ │ │                                | 1 0 0 0 |
      │ │ │ │                                | 0 1 0 0 |
      │ │ │ │                                | 0 0 1 0 |
      │ │ │ │                                | 0 0 0 1 |
      │ │ │ │                  GeneratorMatrix => | 1 1 1 1 0 0 0 |
      │ │ │ │                                     | 0 1 1 0 1 0 0 |
      │ │ │ │ -                                   | 1 0 1 0 0 1 0 |
      │ │ │ │ -                                   | 1 1 0 0 0 0 1 |
      │ │ │ │ +                                   | 1 1 0 0 0 1 0 |
      │ │ │ │ +                                   | 1 0 1 0 0 0 1 |
      │ │ │ │                  Generators => {{1, 1, 1, 1, 0, 0, 0}, {0, 1, 1, 0, 1, 0, 0},
      │ │ │ │ -{1, 0, 1, 0, 0, 1, 0}, {1, 1, 0, 0, 0, 0, 1}}
      │ │ │ │ +{1, 1, 0, 0, 0, 1, 0}, {1, 0, 1, 0, 0, 0, 1}}
      │ │ │ │                  ParityCheckMatrix => | 1 1 1 1 0 0 0 |
      │ │ │ │ -                                     | 0 0 1 1 1 1 0 |
      │ │ │ │ -                                     | 0 1 0 1 1 0 1 |
      │ │ │ │ -                ParityCheckRows => {{1, 1, 1, 1, 0, 0, 0}, {0, 0, 1, 1, 1, 1,
      │ │ │ │ -0}, {0, 1, 0, 1, 1, 0, 1}}
      │ │ │ │ +                                     | 0 1 0 1 1 1 0 |
      │ │ │ │ +                                     | 0 1 1 0 0 1 1 |
      │ │ │ │ +                ParityCheckRows => {{1, 1, 1, 1, 0, 0, 0}, {0, 1, 0, 1, 1, 1,
      │ │ │ │ +0}, {0, 1, 1, 0, 0, 1, 1}}
      │ │ │ │  
      │ │ │ │  o1 : LinearCode
      │ │ │ │  i2 : ring(C)
      │ │ │ │  
      │ │ │ │  o2 = GF 2
      │ │ │ │  
      │ │ │ │  o2 : GaloisField
      │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/html/_syndrome__Decode.html
      │ │ │ @@ -137,31 +137,31 @@
      │ │ │                 | 0 |    | 0 |
      │ │ │                 | 0 |    | 0 |
      │ │ │                          | 0 |
      │ │ │                          | 0 |
      │ │ │                          | 0 |
      │ │ │                          | 0 |
      │ │ │                 | 1 | => | 0 |
      │ │ │ -               | 0 |    | 1 |
      │ │ │ -               | 1 |    | 0 |
      │ │ │ +               | 0 |    | 0 |
      │ │ │ +               | 1 |    | 1 |
      │ │ │                          | 0 |
      │ │ │                          | 0 |
      │ │ │                          | 0 |
      │ │ │                          | 0 |
      │ │ │                 | 1 | => | 0 |
      │ │ │                 | 1 |    | 0 |
      │ │ │ -               | 0 |    | 1 |
      │ │ │ -                        | 0 |
      │ │ │ +               | 0 |    | 0 |
      │ │ │ +                        | 1 |
      │ │ │                          | 0 |
      │ │ │                          | 0 |
      │ │ │                          | 0 |
      │ │ │                 | 1 | => | 0 |
      │ │ │ +               | 1 |    | 1 |
      │ │ │                 | 1 |    | 0 |
      │ │ │ -               | 1 |    | 0 |
      │ │ │ -                        | 1 |
      │ │ │ +                        | 0 |
      │ │ │                          | 0 |
      │ │ │                          | 0 |
      │ │ │                          | 0 |
      │ │ │  
      │ │ │  o7 : HashTable
      │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -70,31 +70,31 @@ │ │ │ │ | 0 | | 0 | │ │ │ │ | 0 | | 0 | │ │ │ │ | 0 | │ │ │ │ | 0 | │ │ │ │ | 0 | │ │ │ │ | 0 | │ │ │ │ | 1 | => | 0 | │ │ │ │ - | 0 | | 1 | │ │ │ │ - | 1 | | 0 | │ │ │ │ + | 0 | | 0 | │ │ │ │ + | 1 | | 1 | │ │ │ │ | 0 | │ │ │ │ | 0 | │ │ │ │ | 0 | │ │ │ │ | 0 | │ │ │ │ | 1 | => | 0 | │ │ │ │ | 1 | | 0 | │ │ │ │ - | 0 | | 1 | │ │ │ │ - | 0 | │ │ │ │ + | 0 | | 0 | │ │ │ │ + | 1 | │ │ │ │ | 0 | │ │ │ │ | 0 | │ │ │ │ | 0 | │ │ │ │ | 1 | => | 0 | │ │ │ │ + | 1 | | 1 | │ │ │ │ | 1 | | 0 | │ │ │ │ - | 1 | | 0 | │ │ │ │ - | 1 | │ │ │ │ + | 0 | │ │ │ │ | 0 | │ │ │ │ | 0 | │ │ │ │ | 0 | │ │ │ │ │ │ │ │ o7 : HashTable │ │ │ │ ********** WWaayyss ttoo uussee ssyynnddrroommeeDDeeccooddee:: ********** │ │ │ │ * syndromeDecode(LinearCode,Matrix,ZZ) │ │ ├── ./usr/share/doc/Macaulay2/CodingTheory/html/_vector__Space.html │ │ │ @@ -73,16 +73,16 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      i1 : H = hammingCode(2,3);
      │ │ │
      i2 : vectorSpace H
      │ │ │  
      │ │ │ -o2 = image | 1 1 0 1 |
      │ │ │ -           | 1 0 1 1 |
      │ │ │ +o2 = image | 1 0 1 1 |
      │ │ │ +           | 1 1 0 1 |
      │ │ │             | 1 1 1 0 |
      │ │ │             | 1 0 0 0 |
      │ │ │             | 0 1 0 0 |
      │ │ │             | 0 0 1 0 |
      │ │ │             | 0 0 0 1 |
      │ │ │  
      │ │ │                                       7
      │ │ │ ├── html2text {}
      │ │ │ │ @@ -13,16 +13,16 @@
      │ │ │ │            o a _m_o_d_u_l_e, $V$
      │ │ │ │  ********** DDeessccrriippttiioonn **********
      │ │ │ │  Given a linear code C, this function returns $V$, the vector space spanned by
      │ │ │ │  the rows of a generator matrix of C.
      │ │ │ │  i1 : H = hammingCode(2,3);
      │ │ │ │  i2 : vectorSpace H
      │ │ │ │  
      │ │ │ │ -o2 = image | 1 1 0 1 |
      │ │ │ │ -           | 1 0 1 1 |
      │ │ │ │ +o2 = image | 1 0 1 1 |
      │ │ │ │ +           | 1 1 0 1 |
      │ │ │ │             | 1 1 1 0 |
      │ │ │ │             | 1 0 0 0 |
      │ │ │ │             | 0 1 0 0 |
      │ │ │ │             | 0 0 1 0 |
      │ │ │ │             | 0 0 0 1 |
      │ │ │ │  
      │ │ │ │                                       7
      │ │ ├── ./usr/share/doc/Macaulay2/CohomCalg/dump/rawdocumentation.dump
      │ │ │ @@ -1,11 +1,11 @@
      │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
      │ │ │  #:version=1.1
      │ │ │  #:file=rawdocumentation-dcba-8.db
      │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
      │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
      │ │ │  #:format=standard
      │ │ │  # End of header
      │ │ │  #:len=29
      │ │ │  Y29ob21DYWxnKE5vcm1hbFRvcmljVmFyaWV0eSk=
      │ │ │  #:len=2221
      │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAibG9jYWxseSBzdGFzaGVkIGNvaG9tb2xv
      │ │ │  Z3kgdmVjdG9ycyBmcm9tIENvaG9tQ2FsZyIsICJsaW5lbnVtIiA9PiAyODIsIElucHV0cyA9PiB7
      │ │ ├── ./usr/share/doc/Macaulay2/CohomCalg/example-output/___Cohom__Calg.out
      │ │ │ @@ -184,15 +184,15 @@
      │ │ │        {0, -1, 0, 0, 0, -1}, {0, 0, -1, 0, 0, -1}, {0, 0, 0, -1, 0, -1}, {0,
      │ │ │        -----------------------------------------------------------------------
      │ │ │        0, 0, 0, -1, -1}}
      │ │ │  
      │ │ │  o19 : List
      │ │ │  
      │ │ │  i20 : elapsedTime hvecs = cohomCalg(X, D2)
      │ │ │ - -- 3.08307s elapsed
      │ │ │ + -- 4.14296s elapsed
      │ │ │  
      │ │ │  o20 = {{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0},
      │ │ │        -----------------------------------------------------------------------
      │ │ │        {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0}, {0,
      │ │ │        -----------------------------------------------------------------------
      │ │ │        0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0,
      │ │ │        -----------------------------------------------------------------------
      │ │ │ @@ -265,45 +265,45 @@
      │ │ │  i22 : degree(X_3 + X_7 + X_8)
      │ │ │  
      │ │ │  o22 = {0, 0, 1, 2, 0, -1}
      │ │ │  
      │ │ │  o22 : List
      │ │ │  
      │ │ │  i23 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 + X_8)
      │ │ │ - -- .383663s elapsed
      │ │ │ + -- .978784s elapsed
      │ │ │  
      │ │ │  o23 = {1, 0, 0, 0, 0}
      │ │ │  
      │ │ │  o23 : List
      │ │ │  
      │ │ │  i24 : elapsedTime cohomvec2 = for j from 0 to dim X list rank HH^j(X, OO_X(0,0,1,2,0,-1))
      │ │ │ - -- 13.5586s elapsed
      │ │ │ + -- 11.5264s elapsed
      │ │ │  
      │ │ │  o24 = {1, 0, 0, 0, 0}
      │ │ │  
      │ │ │  o24 : List
      │ │ │  
      │ │ │  i25 : assert(cohomvec1 == cohomvec2)
      │ │ │  
      │ │ │  i26 : degree(X_3 + X_7 - X_8)
      │ │ │  
      │ │ │  o26 = {0, 0, 1, 2, -2, -1}
      │ │ │  
      │ │ │  o26 : List
      │ │ │  
      │ │ │  i27 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 - X_8)
      │ │ │ - -- .404647s elapsed
      │ │ │ + -- 1.03898s elapsed
      │ │ │  
      │ │ │  o27 = {0, 0, 0, 0, 0}
      │ │ │  
      │ │ │  o27 : List
      │ │ │  
      │ │ │  i28 : elapsedTime cohomvec2 = elapsedTime for j from 0 to dim X list rank HH^j(X, OO_X(0,0,1,2,-2,-1))
      │ │ │ - -- .474485s elapsed
      │ │ │ - -- .474531s elapsed
      │ │ │ + -- .503137s elapsed
      │ │ │ + -- .503185s elapsed
      │ │ │  
      │ │ │  o28 = {0, 0, 0, 0, 0}
      │ │ │  
      │ │ │  o28 : List
      │ │ │  
      │ │ │  i29 : assert(cohomvec1 == cohomvec2)
      │ │ ├── ./usr/share/doc/Macaulay2/CohomCalg/html/index.html
      │ │ │ @@ -263,15 +263,15 @@
      │ │ │        -----------------------------------------------------------------------
      │ │ │        0, 0, 0, -1, -1}}
      │ │ │  
      │ │ │  o19 : List
      │ │ │
      i20 : elapsedTime hvecs = cohomCalg(X, D2)
      │ │ │ - -- 3.08307s elapsed
      │ │ │ + -- 4.14296s elapsed
      │ │ │  
      │ │ │  o20 = {{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0},
      │ │ │        -----------------------------------------------------------------------
      │ │ │        {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0}, {0,
      │ │ │        -----------------------------------------------------------------------
      │ │ │        0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0,
      │ │ │        -----------------------------------------------------------------------
      │ │ │ @@ -347,23 +347,23 @@
      │ │ │  
      │ │ │  o22 = {0, 0, 1, 2, 0, -1}
      │ │ │  
      │ │ │  o22 : List
      │ │ │
      i23 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 + X_8)
      │ │ │ - -- .383663s elapsed
      │ │ │ + -- .978784s elapsed
      │ │ │  
      │ │ │  o23 = {1, 0, 0, 0, 0}
      │ │ │  
      │ │ │  o23 : List
      │ │ │
      i24 : elapsedTime cohomvec2 = for j from 0 to dim X list rank HH^j(X, OO_X(0,0,1,2,0,-1))
      │ │ │ - -- 13.5586s elapsed
      │ │ │ + -- 11.5264s elapsed
      │ │ │  
      │ │ │  o24 = {1, 0, 0, 0, 0}
      │ │ │  
      │ │ │  o24 : List
      │ │ │
      i25 : assert(cohomvec1 == cohomvec2)
      │ │ │ @@ -373,24 +373,24 @@ │ │ │ │ │ │ o26 = {0, 0, 1, 2, -2, -1} │ │ │ │ │ │ o26 : List │ │ │
      i27 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 - X_8)
      │ │ │ - -- .404647s elapsed
      │ │ │ + -- 1.03898s elapsed
      │ │ │  
      │ │ │  o27 = {0, 0, 0, 0, 0}
      │ │ │  
      │ │ │  o27 : List
      │ │ │
      i28 : elapsedTime cohomvec2 = elapsedTime for j from 0 to dim X list rank HH^j(X, OO_X(0,0,1,2,-2,-1))
      │ │ │ - -- .474485s elapsed
      │ │ │ - -- .474531s elapsed
      │ │ │ + -- .503137s elapsed
      │ │ │ + -- .503185s elapsed
      │ │ │  
      │ │ │  o28 = {0, 0, 0, 0, 0}
      │ │ │  
      │ │ │  o28 : List
      │ │ │
      i29 : assert(cohomvec1 == cohomvec2)
      │ │ │ ├── html2text {} │ │ │ │ @@ -182,15 +182,15 @@ │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ {0, -1, 0, 0, 0, -1}, {0, 0, -1, 0, 0, -1}, {0, 0, 0, -1, 0, -1}, {0, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 0, 0, 0, -1, -1}} │ │ │ │ │ │ │ │ o19 : List │ │ │ │ i20 : elapsedTime hvecs = cohomCalg(X, D2) │ │ │ │ - -- 3.08307s elapsed │ │ │ │ + -- 4.14296s elapsed │ │ │ │ │ │ │ │ o20 = {{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ @@ -262,42 +262,42 @@ │ │ │ │ {2, 2, 3, 1, -4, -6} => {{0, 1, 0, 0, 0}, {{1, 1x1*x2}}} │ │ │ │ i22 : degree(X_3 + X_7 + X_8) │ │ │ │ │ │ │ │ o22 = {0, 0, 1, 2, 0, -1} │ │ │ │ │ │ │ │ o22 : List │ │ │ │ i23 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 + X_8) │ │ │ │ - -- .383663s elapsed │ │ │ │ + -- .978784s elapsed │ │ │ │ │ │ │ │ o23 = {1, 0, 0, 0, 0} │ │ │ │ │ │ │ │ o23 : List │ │ │ │ i24 : elapsedTime cohomvec2 = for j from 0 to dim X list rank HH^j(X, OO_X │ │ │ │ (0,0,1,2,0,-1)) │ │ │ │ - -- 13.5586s elapsed │ │ │ │ + -- 11.5264s elapsed │ │ │ │ │ │ │ │ o24 = {1, 0, 0, 0, 0} │ │ │ │ │ │ │ │ o24 : List │ │ │ │ i25 : assert(cohomvec1 == cohomvec2) │ │ │ │ i26 : degree(X_3 + X_7 - X_8) │ │ │ │ │ │ │ │ o26 = {0, 0, 1, 2, -2, -1} │ │ │ │ │ │ │ │ o26 : List │ │ │ │ i27 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 - X_8) │ │ │ │ - -- .404647s elapsed │ │ │ │ + -- 1.03898s elapsed │ │ │ │ │ │ │ │ o27 = {0, 0, 0, 0, 0} │ │ │ │ │ │ │ │ o27 : List │ │ │ │ i28 : elapsedTime cohomvec2 = elapsedTime for j from 0 to dim X list rank HH^j │ │ │ │ (X, OO_X(0,0,1,2,-2,-1)) │ │ │ │ - -- .474485s elapsed │ │ │ │ - -- .474531s elapsed │ │ │ │ + -- .503137s elapsed │ │ │ │ + -- .503185s elapsed │ │ │ │ │ │ │ │ o28 = {0, 0, 0, 0, 0} │ │ │ │ │ │ │ │ o28 : List │ │ │ │ i29 : assert(cohomvec1 == cohomvec2) │ │ │ │ _c_o_h_o_m_C_a_l_g computes cohomology vectors by calling CohomCalg. It also stashes │ │ │ │ it's results in the toric variety's cache table, so computations need not be │ │ ├── ./usr/share/doc/Macaulay2/CoincidentRootLoci/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=24 │ │ │ Y29tcGxleHJhbmsoUmluZ0VsZW1lbnQp │ │ │ #:len=297 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjgxLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhjb21wbGV4cmFuayxSaW5nRWxlbWVudCksImNvbXBs │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=28 │ │ │ RWlzZW5idWRTaGFtYXNoVG90YWwoTW9kdWxlKQ== │ │ │ #:len=349 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNTE2NSwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoRWlzZW5idWRTaGFtYXNoVG90YWwsTW9kdWxlKSwi │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Eisenbud__Shamash.out │ │ │ @@ -35,15 +35,15 @@ │ │ │ o5 : QuotientRing │ │ │ │ │ │ i6 : len = 10 │ │ │ │ │ │ o6 = 10 │ │ │ │ │ │ i7 : time G = EisenbudShamash(ff,F,len) │ │ │ - -- used 9.62565s (cpu); 5.0849s (thread); 0s (gc) │ │ │ + -- used 13.6272s (cpu); 7.80357s (thread); 0s (gc) │ │ │ │ │ │ / S \1 / S \5 / S \12 / S \20 / S \28 / S \36 / S \44 / S \52 / S \60 / S \68 / S \76 │ │ │ o7 = |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| │ │ │ | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | │ │ │ |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| │ │ │ \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / │ │ │ │ │ │ @@ -140,37 +140,37 @@ │ │ │ i19 : R1 = R/ideal ff │ │ │ │ │ │ o19 = R1 │ │ │ │ │ │ o19 : QuotientRing │ │ │ │ │ │ i20 : FF = time Shamash(R1,F,4) │ │ │ - -- used 0.159768s (cpu); 0.0880756s (thread); 0s (gc) │ │ │ + -- used 0.163836s (cpu); 0.113938s (thread); 0s (gc) │ │ │ │ │ │ 1 6 18 38 66 │ │ │ o20 = R1 <-- R1 <-- R1 <-- R1 <-- R1 │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ o20 : ChainComplex │ │ │ │ │ │ i21 : GG = time EisenbudShamash(ff,F,4) │ │ │ - -- used 1.59684s (cpu); 0.833997s (thread); 0s (gc) │ │ │ + -- used 2.10129s (cpu); 1.2888s (thread); 0s (gc) │ │ │ │ │ │ / R\1 / R\6 / R\18 / R\38 / R\66 │ │ │ o21 = |--| <-- |--| <-- |--| <-- |--| <-- |--| │ │ │ | 3| | 3| | 3| | 3| | 3| │ │ │ \c / \c / \c / \c / \c / │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ o21 : ChainComplex │ │ │ │ │ │ i22 : GG = time EisenbudShamash(R1,F[2],4) │ │ │ - -- used 1.56294s (cpu); 0.779923s (thread); 0s (gc) │ │ │ + -- used 1.96431s (cpu); 1.21054s (thread); 0s (gc) │ │ │ │ │ │ 1 6 18 38 66 │ │ │ o22 = R1 <-- R1 <-- R1 <-- R1 <-- R1 │ │ │ │ │ │ -2 -1 0 1 2 │ │ │ │ │ │ o22 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_sum__Two__Monomials.out │ │ │ @@ -1,17 +1,17 @@ │ │ │ -- -*- M2-comint -*- hash: 1731741365432311614 │ │ │ │ │ │ i1 : setRandomSeed 0 │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : sumTwoMonomials(2,3) │ │ │ - -- used 0.773258s (cpu); 0.449787s (thread); 0s (gc) │ │ │ - -- used 0.33458s (cpu); 0.202346s (thread); 0s (gc) │ │ │ - -- used 0.000140253s (cpu); 2.806e-06s (thread); 0s (gc) │ │ │ + -- used 1.46856s (cpu); 0.546607s (thread); 0s (gc) │ │ │ + -- used 0.531829s (cpu); 0.241852s (thread); 0s (gc) │ │ │ + -- used 0.000118833s (cpu); 1.763e-06s (thread); 0s (gc) │ │ │ 2 │ │ │ Tally{{{2, 2}, {1, 2}} => 3} │ │ │ │ │ │ 3 │ │ │ Tally{{{2, 2}, {1, 2}} => 1} │ │ │ │ │ │ 4 │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_two__Monomials.out │ │ │ @@ -1,23 +1,23 @@ │ │ │ -- -*- M2-comint -*- hash: 1731741366884359753 │ │ │ │ │ │ i1 : setRandomSeed 0 │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : twoMonomials(2,3) │ │ │ - -- used 1.25768s (cpu); 0.664277s (thread); 0s (gc) │ │ │ + -- used 2.60149s (cpu); 1.17297s (thread); 0s (gc) │ │ │ 2 │ │ │ Tally{{{1, 1}} => 2 } │ │ │ {{2, 2}, {1, 2}} => 4 │ │ │ │ │ │ - -- used 0.648202s (cpu); 0.372689s (thread); 0s (gc) │ │ │ + -- used 1.81156s (cpu); 0.519884s (thread); 0s (gc) │ │ │ 3 │ │ │ Tally{{{2, 2}, {1, 2}} => 2} │ │ │ {{3, 3}, {2, 3}} => 1 │ │ │ │ │ │ - -- used 0.26515s (cpu); 0.12613s (thread); 0s (gc) │ │ │ + -- used 0.411676s (cpu); 0.250349s (thread); 0s (gc) │ │ │ 4 │ │ │ Tally{{{2, 2}, {1, 2}} => 1} │ │ │ │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Eisenbud__Shamash.html │ │ │ @@ -121,15 +121,15 @@ │ │ │
      i6 : len = 10
      │ │ │  
      │ │ │  o6 = 10
      │ │ │
      i7 : time G = EisenbudShamash(ff,F,len)
      │ │ │ - -- used 9.62565s (cpu); 5.0849s (thread); 0s (gc)
      │ │ │ + -- used 13.6272s (cpu); 7.80357s (thread); 0s (gc)
      │ │ │  
      │ │ │       /    S   \1     /    S   \5     /    S   \12     /    S   \20     /    S   \28     /    S   \36     /    S   \44     /    S   \52     /    S   \60     /    S   \68     /    S   \76
      │ │ │  o7 = |--------|  <-- |--------|  <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|
      │ │ │       |  2   3 |      |  2   3 |      |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |
      │ │ │       |(x , x )|      |(x , x )|      |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|
      │ │ │       \  0   1 /      \  0   1 /      \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /
      │ │ │                                                                                                                                                                                
      │ │ │ @@ -259,26 +259,26 @@
      │ │ │  
      │ │ │  o19 = R1
      │ │ │  
      │ │ │  o19 : QuotientRing
      │ │ │
      i20 : FF = time Shamash(R1,F,4)
      │ │ │ - -- used 0.159768s (cpu); 0.0880756s (thread); 0s (gc)
      │ │ │ + -- used 0.163836s (cpu); 0.113938s (thread); 0s (gc)
      │ │ │  
      │ │ │          1       6       18       38       66
      │ │ │  o20 = R1  <-- R1  <-- R1   <-- R1   <-- R1
      │ │ │                                           
      │ │ │        0       1       2        3        4
      │ │ │  
      │ │ │  o20 : ChainComplex
      │ │ │
      i21 : GG = time EisenbudShamash(ff,F,4)
      │ │ │ - -- used 1.59684s (cpu); 0.833997s (thread); 0s (gc)
      │ │ │ + -- used 2.10129s (cpu); 1.2888s (thread); 0s (gc)
      │ │ │  
      │ │ │        / R\1     / R\6     / R\18     / R\38     / R\66
      │ │ │  o21 = |--|  <-- |--|  <-- |--|   <-- |--|   <-- |--|
      │ │ │        | 3|      | 3|      | 3|       | 3|       | 3|
      │ │ │        \c /      \c /      \c /       \c /       \c /
      │ │ │                                                   
      │ │ │        0         1         2          3          4
      │ │ │ @@ -288,15 +288,15 @@
      │ │ │          
      │ │ │
      │ │ │

      The function also deals correctly with complexes F where min F is not 0:

      │ │ │
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      i22 : GG = time EisenbudShamash(R1,F[2],4)
      │ │ │ - -- used 1.56294s (cpu); 0.779923s (thread); 0s (gc)
      │ │ │ + -- used 1.96431s (cpu); 1.21054s (thread); 0s (gc)
      │ │ │  
      │ │ │          1       6       18       38       66
      │ │ │  o22 = R1  <-- R1  <-- R1   <-- R1   <-- R1
      │ │ │                                           
      │ │ │        -2      -1      0        1        2
      │ │ │  
      │ │ │  o22 : ChainComplex
      │ │ │ ├── html2text {} │ │ │ │ @@ -51,15 +51,15 @@ │ │ │ │ o5 = R │ │ │ │ │ │ │ │ o5 : QuotientRing │ │ │ │ i6 : len = 10 │ │ │ │ │ │ │ │ o6 = 10 │ │ │ │ i7 : time G = EisenbudShamash(ff,F,len) │ │ │ │ - -- used 9.62565s (cpu); 5.0849s (thread); 0s (gc) │ │ │ │ + -- used 13.6272s (cpu); 7.80357s (thread); 0s (gc) │ │ │ │ │ │ │ │ / S \1 / S \5 / S \12 / S \20 / S │ │ │ │ \28 / S \36 / S \44 / S \52 / S \60 / │ │ │ │ S \68 / S \76 │ │ │ │ o7 = |--------| <-- |--------| <-- |--------| <-- |--------| <-- |------- │ │ │ │ -| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |- │ │ │ │ -------| <-- |--------| │ │ │ │ @@ -167,36 +167,36 @@ │ │ │ │ o18 : Matrix R <-- R │ │ │ │ i19 : R1 = R/ideal ff │ │ │ │ │ │ │ │ o19 = R1 │ │ │ │ │ │ │ │ o19 : QuotientRing │ │ │ │ i20 : FF = time Shamash(R1,F,4) │ │ │ │ - -- used 0.159768s (cpu); 0.0880756s (thread); 0s (gc) │ │ │ │ + -- used 0.163836s (cpu); 0.113938s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 6 18 38 66 │ │ │ │ o20 = R1 <-- R1 <-- R1 <-- R1 <-- R1 │ │ │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ │ │ o20 : ChainComplex │ │ │ │ i21 : GG = time EisenbudShamash(ff,F,4) │ │ │ │ - -- used 1.59684s (cpu); 0.833997s (thread); 0s (gc) │ │ │ │ + -- used 2.10129s (cpu); 1.2888s (thread); 0s (gc) │ │ │ │ │ │ │ │ / R\1 / R\6 / R\18 / R\38 / R\66 │ │ │ │ o21 = |--| <-- |--| <-- |--| <-- |--| <-- |--| │ │ │ │ | 3| | 3| | 3| | 3| | 3| │ │ │ │ \c / \c / \c / \c / \c / │ │ │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ │ │ o21 : ChainComplex │ │ │ │ The function also deals correctly with complexes F where min F is not 0: │ │ │ │ i22 : GG = time EisenbudShamash(R1,F[2],4) │ │ │ │ - -- used 1.56294s (cpu); 0.779923s (thread); 0s (gc) │ │ │ │ + -- used 1.96431s (cpu); 1.21054s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 6 18 38 66 │ │ │ │ o22 = R1 <-- R1 <-- R1 <-- R1 <-- R1 │ │ │ │ │ │ │ │ -2 -1 0 1 2 │ │ │ │ │ │ │ │ o22 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_sum__Two__Monomials.html │ │ │ @@ -76,17 +76,17 @@ │ │ │
      i1 : setRandomSeed 0
      │ │ │  
      │ │ │  o1 = 0
      │ │ │
      i2 : sumTwoMonomials(2,3)
      │ │ │ - -- used 0.773258s (cpu); 0.449787s (thread); 0s (gc)
      │ │ │ - -- used 0.33458s (cpu); 0.202346s (thread); 0s (gc)
      │ │ │ - -- used 0.000140253s (cpu); 2.806e-06s (thread); 0s (gc)
      │ │ │ + -- used 1.46856s (cpu); 0.546607s (thread); 0s (gc)
      │ │ │ + -- used 0.531829s (cpu); 0.241852s (thread); 0s (gc)
      │ │ │ + -- used 0.000118833s (cpu); 1.763e-06s (thread); 0s (gc)
      │ │ │  2
      │ │ │  Tally{{{2, 2}, {1, 2}} => 3}
      │ │ │  
      │ │ │  3
      │ │ │  Tally{{{2, 2}, {1, 2}} => 1}
      │ │ │  
      │ │ │  4
      │ │ │ ├── html2text {}
      │ │ │ │ @@ -18,17 +18,17 @@
      │ │ │ │  = S/(d-th powers of the variables), with full complexity (=c); that is, for an
      │ │ │ │  appropriate syzygy M of M0 = R/(m1+m2) where m1 and m2 are monomials of the
      │ │ │ │  same degree.
      │ │ │ │  i1 : setRandomSeed 0
      │ │ │ │  
      │ │ │ │  o1 = 0
      │ │ │ │  i2 : sumTwoMonomials(2,3)
      │ │ │ │ - -- used 0.773258s (cpu); 0.449787s (thread); 0s (gc)
      │ │ │ │ - -- used 0.33458s (cpu); 0.202346s (thread); 0s (gc)
      │ │ │ │ - -- used 0.000140253s (cpu); 2.806e-06s (thread); 0s (gc)
      │ │ │ │ + -- used 1.46856s (cpu); 0.546607s (thread); 0s (gc)
      │ │ │ │ + -- used 0.531829s (cpu); 0.241852s (thread); 0s (gc)
      │ │ │ │ + -- used 0.000118833s (cpu); 1.763e-06s (thread); 0s (gc)
      │ │ │ │  2
      │ │ │ │  Tally{{{2, 2}, {1, 2}} => 3}
      │ │ │ │  
      │ │ │ │  3
      │ │ │ │  Tally{{{2, 2}, {1, 2}} => 1}
      │ │ │ │  
      │ │ │ │  4
      │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_two__Monomials.html
      │ │ │ @@ -82,25 +82,25 @@
      │ │ │            
      i1 : setRandomSeed 0
      │ │ │  
      │ │ │  o1 = 0
      │ │ │
      i2 : twoMonomials(2,3)
      │ │ │ - -- used 1.25768s (cpu); 0.664277s (thread); 0s (gc)
      │ │ │ + -- used 2.60149s (cpu); 1.17297s (thread); 0s (gc)
      │ │ │  2
      │ │ │  Tally{{{1, 1}} => 2        }
      │ │ │        {{2, 2}, {1, 2}} => 4
      │ │ │  
      │ │ │ - -- used 0.648202s (cpu); 0.372689s (thread); 0s (gc)
      │ │ │ + -- used 1.81156s (cpu); 0.519884s (thread); 0s (gc)
      │ │ │  3
      │ │ │  Tally{{{2, 2}, {1, 2}} => 2}
      │ │ │        {{3, 3}, {2, 3}} => 1
      │ │ │  
      │ │ │ - -- used 0.26515s (cpu); 0.12613s (thread); 0s (gc)
      │ │ │ + -- used 0.411676s (cpu); 0.250349s (thread); 0s (gc)
      │ │ │  4
      │ │ │  Tally{{{2, 2}, {1, 2}} => 1}
      │ │ │
      │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -20,25 +20,25 @@ │ │ │ │ monomials in R = S/(d-th powers of the variables), with full complexity (=c); │ │ │ │ that is, for an appropriate syzygy M of M0 = R/(m1, m2) where m1 and m2 are │ │ │ │ monomials of the same degree. │ │ │ │ i1 : setRandomSeed 0 │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ i2 : twoMonomials(2,3) │ │ │ │ - -- used 1.25768s (cpu); 0.664277s (thread); 0s (gc) │ │ │ │ + -- used 2.60149s (cpu); 1.17297s (thread); 0s (gc) │ │ │ │ 2 │ │ │ │ Tally{{{1, 1}} => 2 } │ │ │ │ {{2, 2}, {1, 2}} => 4 │ │ │ │ │ │ │ │ - -- used 0.648202s (cpu); 0.372689s (thread); 0s (gc) │ │ │ │ + -- used 1.81156s (cpu); 0.519884s (thread); 0s (gc) │ │ │ │ 3 │ │ │ │ Tally{{{2, 2}, {1, 2}} => 2} │ │ │ │ {{3, 3}, {2, 3}} => 1 │ │ │ │ │ │ │ │ - -- used 0.26515s (cpu); 0.12613s (thread); 0s (gc) │ │ │ │ + -- used 0.411676s (cpu); 0.250349s (thread); 0s (gc) │ │ │ │ 4 │ │ │ │ Tally{{{2, 2}, {1, 2}} => 1} │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_w_o_M_o_n_o_m_i_a_l_s -- tally the sequences of BRanks for certain examples │ │ │ │ ********** WWaayyss ttoo uussee ttwwooMMoonnoommiiaallss:: ********** │ │ │ │ * twoMonomials(ZZ,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/Complexes/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=19 │ │ │ SG9tKE1hdHJpeCxDb21wbGV4KQ== │ │ │ #:len=295 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTI3MCwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoSG9tLE1hdHJpeCxDb21wbGV4KSwiSG9tKE1hdHJp │ │ ├── ./usr/share/doc/Macaulay2/ConformalBlocks/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=22 │ │ │ Y2Fub25pY2FsRGl2aXNvck0wbmJhcg== │ │ │ #:len=1172 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAicmV0dXJucyB0aGUgY2xhc3Mgb2YgdGhl │ │ │ IGNhbm9uaWNhbCBkaXZpc29yIG9uIHRoZSBtb2R1bGkgc3BhY2Ugb2Ygc3RhYmxlIG4tcG9pbnRl │ │ ├── ./usr/share/doc/Macaulay2/ConvexInterface/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=33 │ │ │ bUNvbnZleEh1bGxGYWNlcyguLi4sdG9GaWxlPT4uLi4p │ │ │ #:len=273 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNzU3LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20ge1ttQ29udmV4SHVsbEZhY2VzLHRvRmlsZV0sIm1Db252 │ │ ├── ./usr/share/doc/Macaulay2/ConwayPolynomials/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=16 │ │ │ Y29ud2F5UG9seW5vbWlhbA== │ │ │ #:len=1659 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAicHJvdmlkZSBhIENvbndheSBwb2x5bm9t │ │ │ aWFsIiwgRGVzY3JpcHRpb24gPT4gKERJVntIRUFERVIyeyJTeW5vcHNpcyJ9LFVMe0xJe0RMeyJj │ │ ├── ./usr/share/doc/Macaulay2/CorrespondenceScrolls/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=52 │ │ │ cHJvZHVjdE9mUHJvamVjdGl2ZVNwYWNlcyguLi4sQ29lZmZpY2llbnRGaWVsZD0+Li4uKQ== │ │ │ #:len=367 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzcwLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20ge1twcm9kdWN0T2ZQcm9qZWN0aXZlU3BhY2VzLENvZWZm │ │ ├── ./usr/share/doc/Macaulay2/CotangentSchubert/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=6 │ │ │ TGFiZWxz │ │ │ #:len=183 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNDA3LCAidW5kb2N1bWVudGVkIiA9PiB0 │ │ │ cnVlLCBzeW1ib2wgRG9jdW1lbnRUYWcgPT4gbmV3IERvY3VtZW50VGFnIGZyb20geyJMYWJlbHMi │ │ ├── ./usr/share/doc/Macaulay2/Cremona/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=21 │ │ │ ZGVzY3JpYmUoUmF0aW9uYWxNYXAp │ │ │ #:len=1096 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiZGVzY3JpYmUgYSByYXRpb25hbCBtYXAi │ │ │ LCAibGluZW51bSIgPT4gOTgzLCBJbnB1dHMgPT4ge1NQQU57VFR7InBoaSJ9LCIsICIsU1BBTnsi │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Chern__Schwartz__Mac__Pherson.out │ │ │ @@ -13,26 +13,26 @@ │ │ │ o2 = ideal (- x + x x , - x x + x x , - x + x x ) │ │ │ 1 0 2 1 2 0 3 2 1 3 │ │ │ │ │ │ o2 : Ideal of GF 78125[x ..x ] │ │ │ 0 4 │ │ │ │ │ │ i3 : time ChernSchwartzMacPherson C │ │ │ - -- used 1.59361s (cpu); 0.953677s (thread); 0s (gc) │ │ │ + -- used 2.33275s (cpu); 1.5143s (thread); 0s (gc) │ │ │ │ │ │ 4 3 2 │ │ │ o3 = 3H + 5H + 3H │ │ │ │ │ │ ZZ[H] │ │ │ o3 : ----- │ │ │ 5 │ │ │ H │ │ │ │ │ │ i4 : time ChernSchwartzMacPherson(C,Certify=>true) │ │ │ - -- used 1.14112s (cpu); 0.844219s (thread); 0s (gc) │ │ │ + -- used 1.7595s (cpu); 1.10389s (thread); 0s (gc) │ │ │ Certify: output certified! │ │ │ │ │ │ 4 3 2 │ │ │ o4 = 3H + 5H + 3H │ │ │ │ │ │ ZZ[H] │ │ │ o4 : ----- │ │ │ @@ -62,26 +62,26 @@ │ │ │ 0,2 1,3 0,1 2,3 │ │ │ │ │ │ ZZ │ │ │ o8 : Ideal of ------[p ..p , p , p , p , p , p , p , p , p ] │ │ │ 190181 0,1 0,2 1,2 0,3 1,3 2,3 0,4 1,4 2,4 3,4 │ │ │ │ │ │ i9 : time ChernClass G │ │ │ - -- used 0.303675s (cpu); 0.149817s (thread); 0s (gc) │ │ │ + -- used 0.265939s (cpu); 0.207493s (thread); 0s (gc) │ │ │ │ │ │ 9 8 7 6 5 4 3 │ │ │ o9 = 10H + 30H + 60H + 75H + 57H + 25H + 5H │ │ │ │ │ │ ZZ[H] │ │ │ o9 : ----- │ │ │ 10 │ │ │ H │ │ │ │ │ │ i10 : time ChernClass(G,Certify=>true) │ │ │ - -- used 0.00727497s (cpu); 0.0100965s (thread); 0s (gc) │ │ │ + -- used 0.342866s (cpu); 0.0600963s (thread); 0s (gc) │ │ │ Certify: output certified! │ │ │ │ │ │ 9 8 7 6 5 4 3 │ │ │ o10 = 10H + 30H + 60H + 75H + 57H + 25H + 5H │ │ │ │ │ │ ZZ[H] │ │ │ o10 : ----- │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Cremona.out │ │ │ @@ -1,56 +1,56 @@ │ │ │ -- -*- M2-comint -*- hash: 10433409267944421825 │ │ │ │ │ │ i1 : ZZ/300007[t_0..t_6]; │ │ │ │ │ │ i2 : time phi = toMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}}) │ │ │ - -- used 0.00399965s (cpu); 0.00392251s (thread); 0s (gc) │ │ │ + -- used 0.00400782s (cpu); 0.00322771s (thread); 0s (gc) │ │ │ │ │ │ ZZ ZZ 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 │ │ │ o2 = map (------[t ..t ], ------[x ..x ], {- t + 2t t t - t t - t t + t t t , - t t + t t + t t t - t t t - t t + t t t , - t t + t t + t t t - t t - t t t + t t t , - t + 2t t t - t t - t t + t t t , - t t + t t t + t t t - t t t - t t + t t t , - t t t + t t + t t - t t t - t t t + t t t , - t t + t t + t t t - t t t - t t + t t t , - t t + t t t + t t t - t t - t t t + t t t , - t t + t t + t t t - t t - t t t + t t t , - t + 2t t t - t t - t t + t t t }) │ │ │ 300007 0 6 300007 0 9 2 1 2 3 0 3 1 4 0 2 4 2 3 1 3 1 2 4 0 3 4 1 5 0 2 5 2 3 2 4 1 3 4 0 4 1 2 5 0 3 5 3 2 3 4 1 4 2 5 1 3 5 2 4 1 3 4 1 2 5 0 3 5 1 6 0 2 6 2 3 4 1 4 2 5 0 4 5 1 2 6 0 3 6 3 4 2 4 2 3 5 1 4 5 2 6 1 3 6 2 4 2 3 5 1 4 5 0 5 1 3 6 0 4 6 3 4 3 5 2 4 5 1 5 2 3 6 1 4 6 4 3 4 5 2 5 3 6 2 4 6 │ │ │ │ │ │ ZZ ZZ │ │ │ o2 : RingMap ------[t ..t ] <-- ------[x ..x ] │ │ │ 300007 0 6 300007 0 9 │ │ │ │ │ │ i3 : time J = kernel(phi,2) │ │ │ - -- used 0.0437451s (cpu); 0.0440403s (thread); 0s (gc) │ │ │ + -- used 0.0320008s (cpu); 0.0340255s (thread); 0s (gc) │ │ │ │ │ │ o3 = ideal (x x - x x + x x , x x - x x + x x , x x - x x + x x , x x │ │ │ 6 7 5 8 4 9 3 7 2 8 1 9 3 5 2 6 0 9 3 4 │ │ │ ------------------------------------------------------------------------ │ │ │ - x x + x x , x x - x x + x x ) │ │ │ 1 6 0 8 2 4 1 5 0 7 │ │ │ │ │ │ ZZ │ │ │ o3 : Ideal of ------[x ..x ] │ │ │ 300007 0 9 │ │ │ │ │ │ i4 : time degreeMap phi │ │ │ - -- used 0.0829531s (cpu); 0.0341009s (thread); 0s (gc) │ │ │ + -- used 0.124868s (cpu); 0.0674956s (thread); 0s (gc) │ │ │ │ │ │ o4 = 1 │ │ │ │ │ │ i5 : time projectiveDegrees phi │ │ │ - -- used 0.506956s (cpu); 0.382073s (thread); 0s (gc) │ │ │ + -- used 0.45759s (cpu); 0.397078s (thread); 0s (gc) │ │ │ │ │ │ o5 = {1, 3, 9, 17, 21, 15, 5} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : time projectiveDegrees(phi,NumDegrees=>0) │ │ │ - -- used 0.0565176s (cpu); 0.0573171s (thread); 0s (gc) │ │ │ + -- used 0.0433452s (cpu); 0.0461662s (thread); 0s (gc) │ │ │ │ │ │ o6 = {5} │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : time phi = toMap(phi,Dominant=>J) │ │ │ - -- used 0.000189065s (cpu); 0.00204299s (thread); 0s (gc) │ │ │ + -- used 0.00105715s (cpu); 0.00171203s (thread); 0s (gc) │ │ │ │ │ │ ZZ │ │ │ ------[x ..x ] │ │ │ ZZ 300007 0 9 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 │ │ │ o7 = map (------[t ..t ], ----------------------------------------------------------------------------------------------------, {- t + 2t t t - t t - t t + t t t , - t t + t t + t t t - t t t - t t + t t t , - t t + t t + t t t - t t - t t t + t t t , - t + 2t t t - t t - t t + t t t , - t t + t t t + t t t - t t t - t t + t t t , - t t t + t t + t t - t t t - t t t + t t t , - t t + t t + t t t - t t t - t t + t t t , - t t + t t t + t t t - t t - t t t + t t t , - t t + t t + t t t - t t - t t t + t t t , - t + 2t t t - t t - t t + t t t }) │ │ │ 300007 0 6 (x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x ) 2 1 2 3 0 3 1 4 0 2 4 2 3 1 3 1 2 4 0 3 4 1 5 0 2 5 2 3 2 4 1 3 4 0 4 1 2 5 0 3 5 3 2 3 4 1 4 2 5 1 3 5 2 4 1 3 4 1 2 5 0 3 5 1 6 0 2 6 2 3 4 1 4 2 5 0 4 5 1 2 6 0 3 6 3 4 2 4 2 3 5 1 4 5 2 6 1 3 6 2 4 2 3 5 1 4 5 0 5 1 3 6 0 4 6 3 4 3 5 2 4 5 1 5 2 3 6 1 4 6 4 3 4 5 2 5 3 6 2 4 6 │ │ │ 6 7 5 8 4 9 3 7 2 8 1 9 3 5 2 6 0 9 3 4 1 6 0 8 2 4 1 5 0 7 │ │ │ @@ -59,15 +59,15 @@ │ │ │ ------[x ..x ] │ │ │ ZZ 300007 0 9 │ │ │ o7 : RingMap ------[t ..t ] <-- ---------------------------------------------------------------------------------------------------- │ │ │ 300007 0 6 (x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x ) │ │ │ 6 7 5 8 4 9 3 7 2 8 1 9 3 5 2 6 0 9 3 4 1 6 0 8 2 4 1 5 0 7 │ │ │ │ │ │ i8 : time psi = inverseMap phi │ │ │ - -- used 0.566795s (cpu); 0.41755s (thread); 0s (gc) │ │ │ + -- used 0.599868s (cpu); 0.4454s (thread); 0s (gc) │ │ │ │ │ │ ZZ │ │ │ ------[x ..x ] │ │ │ 300007 0 9 ZZ 3 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 3 2 2 2 2 2 │ │ │ o8 = map (----------------------------------------------------------------------------------------------------, ------[t ..t ], {x - 2x x x + x x - x x x + x x + x x + x x x - x x x + x x - 2x x x - x x x - 2x x , x x - x x - x x x + x x x + x x x + x x - 2x x x - x x x + x x x , x x - x x x + x x - x x x + x x - x x x - x x x , x - x x x + x x x + x x x - 2x x x - x x x , x x - x x x + x x + x x - x x x - x x x - x x x , x x - x x - x x x + x x + x x x + x x x - 2x x x - x x x + x x x , x - 2x x x - x x x + x x + x x + x x + x x + x x x - 2x x x - x x x - x x x - 2x x }) │ │ │ (x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x ) 300007 0 6 2 1 2 3 0 3 1 2 5 0 5 1 6 0 2 6 0 4 6 1 7 0 2 7 0 4 7 0 9 2 3 1 3 1 2 6 0 3 6 0 5 6 1 8 0 2 8 0 4 8 0 1 9 2 3 1 3 6 0 6 0 3 8 1 9 0 2 9 0 4 9 3 1 3 8 0 6 8 1 2 9 0 3 9 0 5 9 3 6 2 3 8 0 8 2 9 1 3 9 0 6 9 0 7 9 3 6 3 8 2 6 8 1 8 2 3 9 2 5 9 1 6 9 1 7 9 0 8 9 6 3 6 8 5 6 8 2 8 4 8 3 9 5 9 2 6 9 4 6 9 2 7 9 4 7 9 0 9 │ │ │ 6 7 5 8 4 9 3 7 2 8 1 9 3 5 2 6 0 9 3 4 1 6 0 8 2 4 1 5 0 7 │ │ │ @@ -76,32 +76,32 @@ │ │ │ ------[x ..x ] │ │ │ 300007 0 9 ZZ │ │ │ o8 : RingMap ---------------------------------------------------------------------------------------------------- <-- ------[t ..t ] │ │ │ (x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x ) 300007 0 6 │ │ │ 6 7 5 8 4 9 3 7 2 8 1 9 3 5 2 6 0 9 3 4 1 6 0 8 2 4 1 5 0 7 │ │ │ │ │ │ i9 : time isInverseMap(phi,psi) │ │ │ - -- used 0.0101323s (cpu); 0.00946356s (thread); 0s (gc) │ │ │ + -- used 0.00798632s (cpu); 0.00712739s (thread); 0s (gc) │ │ │ │ │ │ o9 = true │ │ │ │ │ │ i10 : time degreeMap psi │ │ │ - -- used 0.297917s (cpu); 0.233828s (thread); 0s (gc) │ │ │ + -- used 0.255736s (cpu); 0.197823s (thread); 0s (gc) │ │ │ │ │ │ o10 = 1 │ │ │ │ │ │ i11 : time projectiveDegrees psi │ │ │ - -- used 4.99657s (cpu); 4.27726s (thread); 0s (gc) │ │ │ + -- used 5.73993s (cpu); 5.35784s (thread); 0s (gc) │ │ │ │ │ │ o11 = {5, 15, 21, 17, 9, 3, 1} │ │ │ │ │ │ o11 : List │ │ │ │ │ │ i12 : time phi = rationalMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}}) │ │ │ - -- used 0.0011253s (cpu); 0.00197141s (thread); 0s (gc) │ │ │ + -- used 0.00200211s (cpu); 0.00186545s (thread); 0s (gc) │ │ │ │ │ │ o12 = -- rational map -- │ │ │ ZZ │ │ │ source: Proj(------[t , t , t , t , t , t , t ]) │ │ │ 300007 0 1 2 3 4 5 6 │ │ │ ZZ │ │ │ target: Proj(------[x , x , x , x , x , x , x , x , x , x ]) │ │ │ @@ -147,15 +147,15 @@ │ │ │ - t + 2t t t - t t - t t + t t t │ │ │ 4 3 4 5 2 5 3 6 2 4 6 │ │ │ } │ │ │ │ │ │ o12 : RationalMap (cubic rational map from PP^6 to PP^9) │ │ │ │ │ │ i13 : time phi = rationalMap(phi,Dominant=>2) │ │ │ - -- used 0.155471s (cpu); 0.0755467s (thread); 0s (gc) │ │ │ + -- used 0.193117s (cpu); 0.0663768s (thread); 0s (gc) │ │ │ │ │ │ o13 = -- rational map -- │ │ │ ZZ │ │ │ source: Proj(------[t , t , t , t , t , t , t ]) │ │ │ 300007 0 1 2 3 4 5 6 │ │ │ ZZ │ │ │ target: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x ]) defined by │ │ │ @@ -217,15 +217,15 @@ │ │ │ - t + 2t t t - t t - t t + t t t │ │ │ 4 3 4 5 2 5 3 6 2 4 6 │ │ │ } │ │ │ │ │ │ o13 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of PP^9) │ │ │ │ │ │ i14 : time phi^(-1) │ │ │ - -- used 0.504825s (cpu); 0.425036s (thread); 0s (gc) │ │ │ + -- used 0.435332s (cpu); 0.435809s (thread); 0s (gc) │ │ │ │ │ │ o14 = -- rational map -- │ │ │ ZZ │ │ │ source: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x ]) defined by │ │ │ 300007 0 1 2 3 4 5 6 7 8 9 │ │ │ { │ │ │ x x - x x + x x , │ │ │ @@ -275,71 +275,71 @@ │ │ │ x - 2x x x - x x x + x x + x x + x x + x x + x x x - 2x x x - x x x - x x x - 2x x │ │ │ 6 3 6 8 5 6 8 2 8 4 8 3 9 5 9 2 6 9 4 6 9 2 7 9 4 7 9 0 9 │ │ │ } │ │ │ │ │ │ o14 : RationalMap (cubic birational map from 6-dimensional subvariety of PP^9 to PP^6) │ │ │ │ │ │ i15 : time degrees phi^(-1) │ │ │ - -- used 0.355466s (cpu); 0.270355s (thread); 0s (gc) │ │ │ + -- used 0.489651s (cpu); 0.36645s (thread); 0s (gc) │ │ │ │ │ │ o15 = {5, 15, 21, 17, 9, 3, 1} │ │ │ │ │ │ o15 : List │ │ │ │ │ │ i16 : time degrees phi │ │ │ - -- used 0.120907s (cpu); 0.0437002s (thread); 0s (gc) │ │ │ + -- used 0.0734552s (cpu); 0.0218007s (thread); 0s (gc) │ │ │ │ │ │ o16 = {1, 3, 9, 17, 21, 15, 5} │ │ │ │ │ │ o16 : List │ │ │ │ │ │ i17 : time describe phi │ │ │ - -- used 0.00320772s (cpu); 0.00316311s (thread); 0s (gc) │ │ │ + -- used 1.5298e-05s (cpu); 0.00351931s (thread); 0s (gc) │ │ │ │ │ │ o17 = rational map defined by forms of degree 3 │ │ │ source variety: PP^6 │ │ │ target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2 │ │ │ dominance: true │ │ │ birationality: true (the inverse map is already calculated) │ │ │ projective degrees: {1, 3, 9, 17, 21, 15, 5} │ │ │ coefficient ring: ZZ/300007 │ │ │ │ │ │ i18 : time describe phi^(-1) │ │ │ - -- used 0.00643296s (cpu); 0.00993896s (thread); 0s (gc) │ │ │ + -- used 0.00846573s (cpu); 0.0123656s (thread); 0s (gc) │ │ │ │ │ │ o18 = rational map defined by forms of degree 3 │ │ │ source variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2 │ │ │ target variety: PP^6 │ │ │ dominance: true │ │ │ birationality: true (the inverse map is already calculated) │ │ │ projective degrees: {5, 15, 21, 17, 9, 3, 1} │ │ │ number of minimal representatives: 1 │ │ │ dimension base locus: 4 │ │ │ degree base locus: 24 │ │ │ coefficient ring: ZZ/300007 │ │ │ │ │ │ i19 : time (f,g) = graph phi^-1; f; │ │ │ - -- used 0.0084534s (cpu); 0.00881838s (thread); 0s (gc) │ │ │ + -- used 0.0520925s (cpu); 0.052059s (thread); 0s (gc) │ │ │ │ │ │ o20 : MultihomogeneousRationalMap (birational map from 6-dimensional subvariety of PP^9 x PP^6 to 6-dimensional subvariety of PP^9) │ │ │ │ │ │ i21 : time degrees f │ │ │ - -- used 1.19108s (cpu); 0.901679s (thread); 0s (gc) │ │ │ + -- used 1.50652s (cpu); 1.26241s (thread); 0s (gc) │ │ │ │ │ │ o21 = {904, 508, 268, 130, 56, 20, 5} │ │ │ │ │ │ o21 : List │ │ │ │ │ │ i22 : time degree f │ │ │ - -- used 0.000190698s (cpu); 1.3635e-05s (thread); 0s (gc) │ │ │ + -- used 0.000143619s (cpu); 1.1592e-05s (thread); 0s (gc) │ │ │ │ │ │ o22 = 1 │ │ │ │ │ │ i23 : time describe f │ │ │ - -- used 0.000926578s (cpu); 0.00142987s (thread); 0s (gc) │ │ │ + -- used 0.000786354s (cpu); 0.00119327s (thread); 0s (gc) │ │ │ │ │ │ o23 = rational map defined by multiforms of degree {1, 0} │ │ │ source variety: 6-dimensional subvariety of PP^9 x PP^6 cut out by 20 hypersurfaces of degrees ({1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{2, 0},{2, 0},{2, 0},{2, 0},{2, 0}) │ │ │ target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2 │ │ │ dominance: true │ │ │ birationality: true │ │ │ projective degrees: {904, 508, 268, 130, 56, 20, 5} │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Euler__Characteristic.out │ │ │ @@ -3,18 +3,18 @@ │ │ │ i1 : I = Grassmannian(1,4,CoefficientRing=>ZZ/190181); │ │ │ │ │ │ ZZ │ │ │ o1 : Ideal of ------[p ..p , p , p , p , p , p , p , p , p ] │ │ │ 190181 0,1 0,2 1,2 0,3 1,3 2,3 0,4 1,4 2,4 3,4 │ │ │ │ │ │ i2 : time EulerCharacteristic I │ │ │ - -- used 0.303459s (cpu); 0.15511s (thread); 0s (gc) │ │ │ + -- used 0.30337s (cpu); 0.137229s (thread); 0s (gc) │ │ │ │ │ │ o2 = 10 │ │ │ │ │ │ i3 : time EulerCharacteristic(I,Certify=>true) │ │ │ - -- used 0.010188s (cpu); 0.011592s (thread); 0s (gc) │ │ │ + -- used 0.0473119s (cpu); 0.0110623s (thread); 0s (gc) │ │ │ Certify: output certified! │ │ │ │ │ │ o3 = 10 │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp!.out │ │ │ @@ -8,15 +8,15 @@ │ │ │ │ │ │ o3 = rational map defined by forms of degree 2 │ │ │ source variety: PP^5 │ │ │ target variety: PP^5 │ │ │ coefficient ring: QQ │ │ │ │ │ │ i4 : time phi! ; │ │ │ - -- used 0.135191s (cpu); 0.0762212s (thread); 0s (gc) │ │ │ + -- used 0.514492s (cpu); 0.156149s (thread); 0s (gc) │ │ │ │ │ │ o4 : RationalMap (Cremona transformation of PP^5 of type (2,2)) │ │ │ │ │ │ i5 : describe phi │ │ │ │ │ │ o5 = rational map defined by forms of degree 2 │ │ │ source variety: PP^5 │ │ │ @@ -37,15 +37,15 @@ │ │ │ │ │ │ o8 = rational map defined by forms of degree 2 │ │ │ source variety: PP^4 │ │ │ target variety: PP^5 │ │ │ coefficient ring: QQ │ │ │ │ │ │ i9 : time phi! ; │ │ │ - -- used 0.133287s (cpu); 0.0709123s (thread); 0s (gc) │ │ │ + -- used 0.0936499s (cpu); 0.0318555s (thread); 0s (gc) │ │ │ │ │ │ o9 : RationalMap (quadratic rational map from PP^4 to PP^5) │ │ │ │ │ │ i10 : describe phi │ │ │ │ │ │ o10 = rational map defined by forms of degree 2 │ │ │ source variety: PP^4 │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp^_st_st_sp__Ideal.out │ │ │ @@ -67,15 +67,15 @@ │ │ │ - a*c + e - b*c + f │ │ │ ----------*v, x + ----------*v) │ │ │ d*e - a*f d*e - a*f │ │ │ │ │ │ o5 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v] │ │ │ │ │ │ i6 : time phi^** q │ │ │ - -- used 0.152268s (cpu); 0.150588s (thread); 0s (gc) │ │ │ + -- used 0.289867s (cpu); 0.227233s (thread); 0s (gc) │ │ │ │ │ │ -e -d -c -b -a │ │ │ o6 = ideal (u + --*v, t + --*v, z + --*v, y + --*v, x + --*v) │ │ │ f f f f f │ │ │ │ │ │ o6 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v] │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Segre__Class.out │ │ │ @@ -47,49 +47,49 @@ │ │ │ P7 │ │ │ o3 : Ideal of ------------------------------------------------------------------------------------------------------------------------- │ │ │ 2 2 2 2 2 2 2 2 │ │ │ x x - 2x x x x + x x - 2x x x x - 2x x x x + 4x x x x + x x + 4x x x x - 2x x x x - 2x x x x - 2x x x x + x x │ │ │ 3 4 2 3 4 5 2 5 1 3 4 6 1 2 5 6 0 3 5 6 1 6 1 2 4 7 0 3 4 7 0 2 5 7 0 1 6 7 0 7 │ │ │ │ │ │ i4 : time SegreClass X │ │ │ - -- used 0.662143s (cpu); 0.428239s (thread); 0s (gc) │ │ │ + -- used 0.70577s (cpu); 0.544501s (thread); 0s (gc) │ │ │ │ │ │ 7 6 5 4 3 │ │ │ o4 = 3240H - 1188H + 396H - 114H + 24H │ │ │ │ │ │ ZZ[H] │ │ │ o4 : ----- │ │ │ 8 │ │ │ H │ │ │ │ │ │ i5 : time SegreClass lift(X,P7) │ │ │ - -- used 0.426867s (cpu); 0.277592s (thread); 0s (gc) │ │ │ + -- used 0.505052s (cpu); 0.447735s (thread); 0s (gc) │ │ │ │ │ │ 7 6 5 4 3 │ │ │ o5 = 2816H - 1056H + 324H - 78H + 12H │ │ │ │ │ │ ZZ[H] │ │ │ o5 : ----- │ │ │ 8 │ │ │ H │ │ │ │ │ │ i6 : time SegreClass(X,Certify=>true) │ │ │ - -- used 0.0232568s (cpu); 0.0222927s (thread); 0s (gc) │ │ │ + -- used 0.0738806s (cpu); 0.0177716s (thread); 0s (gc) │ │ │ Certify: output certified! │ │ │ │ │ │ 7 6 5 4 3 │ │ │ o6 = 3240H - 1188H + 396H - 114H + 24H │ │ │ │ │ │ ZZ[H] │ │ │ o6 : ----- │ │ │ 8 │ │ │ H │ │ │ │ │ │ i7 : time SegreClass(lift(X,P7),Certify=>true) │ │ │ - -- used 0.0972585s (cpu); 0.0986145s (thread); 0s (gc) │ │ │ + -- used 0.37345s (cpu); 0.205008s (thread); 0s (gc) │ │ │ Certify: output certified! │ │ │ │ │ │ 7 6 5 4 3 │ │ │ o7 = 2816H - 1056H + 324H - 78H + 12H │ │ │ │ │ │ ZZ[H] │ │ │ o7 : ----- │ │ │ @@ -105,15 +105,15 @@ │ │ │ ZZ │ │ │ o9 = ------[x ..x ] │ │ │ 100003 0 6 │ │ │ │ │ │ o9 : PolynomialRing │ │ │ │ │ │ i10 : time phi = inverseMap toMap(minors(2,matrix{{x_0,x_1,x_3,x_4,x_5},{x_1,x_2,x_4,x_5,x_6}}),Dominant=>2) │ │ │ - -- used 0.0519939s (cpu); 0.0537215s (thread); 0s (gc) │ │ │ + -- used 0.0961548s (cpu); 0.0958205s (thread); 0s (gc) │ │ │ │ │ │ ZZ │ │ │ ------[y ..y ] │ │ │ 100003 0 9 ZZ 2 2 │ │ │ o10 = map (----------------------------------------------------------------------------------------------------, ------[x ..x ], {y - y y - y y , y y - y y , y - y y - y y , y y + y y - y y , y y - y y , y y - y y - y y , y y - y y - y y }) │ │ │ (y y - y y + y y , y y - y y + y y , y y - y y + y y , y y - y y + y y , y y - y y + y y ) 100003 0 6 3 0 5 1 6 3 4 1 7 4 2 7 0 9 2 5 3 5 1 8 4 5 1 9 4 8 2 9 3 9 7 8 4 9 6 9 │ │ │ 5 7 4 8 2 9 5 6 3 8 1 9 4 6 3 7 0 9 2 6 1 7 0 8 2 3 1 4 0 5 │ │ │ @@ -122,15 +122,15 @@ │ │ │ ------[y ..y ] │ │ │ 100003 0 9 ZZ │ │ │ o10 : RingMap ---------------------------------------------------------------------------------------------------- <-- ------[x ..x ] │ │ │ (y y - y y + y y , y y - y y + y y , y y - y y + y y , y y - y y + y y , y y - y y + y y ) 100003 0 6 │ │ │ 5 7 4 8 2 9 5 6 3 8 1 9 4 6 3 7 0 9 2 6 1 7 0 8 2 3 1 4 0 5 │ │ │ │ │ │ i11 : time SegreClass phi │ │ │ - -- used 0.423874s (cpu); 0.279274s (thread); 0s (gc) │ │ │ + -- used 0.441667s (cpu); 0.332601s (thread); 0s (gc) │ │ │ │ │ │ 9 8 7 6 5 │ │ │ o11 = 23H - 42H + 36H - 22H + 9H │ │ │ │ │ │ ZZ[H] │ │ │ o11 : ----- │ │ │ 10 │ │ │ @@ -150,27 +150,27 @@ │ │ │ 100003 0 9 │ │ │ o12 : Ideal of ---------------------------------------------------------------------------------------------------- │ │ │ (y y - y y + y y , y y - y y + y y , y y - y y + y y , y y - y y + y y , y y - y y + y y ) │ │ │ 5 7 4 8 2 9 5 6 3 8 1 9 4 6 3 7 0 9 2 6 1 7 0 8 2 3 1 4 0 5 │ │ │ │ │ │ i13 : -- Segre class of B in G(1,4) │ │ │ time SegreClass B │ │ │ - -- used 0.423803s (cpu); 0.271486s (thread); 0s (gc) │ │ │ + -- used 0.44219s (cpu); 0.386603s (thread); 0s (gc) │ │ │ │ │ │ 9 8 7 6 5 │ │ │ o13 = 23H - 42H + 36H - 22H + 9H │ │ │ │ │ │ ZZ[H] │ │ │ o13 : ----- │ │ │ 10 │ │ │ H │ │ │ │ │ │ i14 : -- Segre class of B in P^9 │ │ │ time SegreClass lift(B,ambient ring B) │ │ │ - -- used 1.33445s (cpu); 0.978665s (thread); 0s (gc) │ │ │ + -- used 1.4686s (cpu); 1.05555s (thread); 0s (gc) │ │ │ │ │ │ 9 8 7 6 5 │ │ │ o14 = 2764H - 984H + 294H - 67H + 9H │ │ │ │ │ │ ZZ[H] │ │ │ o14 : ----- │ │ │ 10 │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_abstract__Rational__Map.out │ │ │ @@ -17,32 +17,32 @@ │ │ │ │ │ │ o3 = QQ[u ..u ] │ │ │ 0 5 │ │ │ │ │ │ o3 : PolynomialRing │ │ │ │ │ │ i4 : time psi = abstractRationalMap(P4,P5,f) │ │ │ - -- used 0.00118846s (cpu); 0.000368992s (thread); 0s (gc) │ │ │ + -- used 0.00221773s (cpu); 0.000294312s (thread); 0s (gc) │ │ │ │ │ │ o4 = -- rational map -- │ │ │ source: Proj(QQ[t , t , t , t , t ]) │ │ │ 0 1 2 3 4 │ │ │ target: Proj(QQ[u , u , u , u , u , u ]) │ │ │ 0 1 2 3 4 5 │ │ │ defining forms: given by a function │ │ │ │ │ │ o4 : AbstractRationalMap (rational map from PP^4 to PP^5) │ │ │ │ │ │ i5 : time projectiveDegrees(psi,3) │ │ │ - -- used 0.299552s (cpu); 0.15716s (thread); 0s (gc) │ │ │ + -- used 0.229326s (cpu); 0.169096s (thread); 0s (gc) │ │ │ │ │ │ o5 = 2 │ │ │ │ │ │ i6 : time rationalMap psi │ │ │ - -- used 0.40278s (cpu); 0.331735s (thread); 0s (gc) │ │ │ + -- used 0.430315s (cpu); 0.369564s (thread); 0s (gc) │ │ │ │ │ │ o6 = -- rational map -- │ │ │ source: Proj(QQ[t , t , t , t , t ]) │ │ │ 0 1 2 3 4 │ │ │ target: Proj(QQ[u , u , u , u , u , u ]) │ │ │ 0 1 2 3 4 5 │ │ │ defining forms: { │ │ │ @@ -113,48 +113,48 @@ │ │ │ 1 0 2 1 2 0 3 2 1 3 │ │ │ │ │ │ ZZ │ │ │ o13 : Ideal of -----[x ..x ] │ │ │ 65521 0 3 │ │ │ │ │ │ i14 : time T = abstractRationalMap(I,"OADP") │ │ │ - -- used 0.151815s (cpu); 0.0652653s (thread); 0s (gc) │ │ │ + -- used 0.0639987s (cpu); 0.0649795s (thread); 0s (gc) │ │ │ │ │ │ o14 = -- rational map -- │ │ │ ZZ │ │ │ source: Proj(-----[x , x , x , x ]) │ │ │ 65521 0 1 2 3 │ │ │ ZZ │ │ │ target: Proj(-----[x , x , x , x ]) │ │ │ 65521 0 1 2 3 │ │ │ defining forms: given by a function │ │ │ │ │ │ o14 : AbstractRationalMap (rational map from PP^3 to PP^3) │ │ │ │ │ │ i15 : time projectiveDegrees(T,2) │ │ │ - -- used 3.0254s (cpu); 1.69288s (thread); 0s (gc) │ │ │ + -- used 3.44941s (cpu); 1.95221s (thread); 0s (gc) │ │ │ │ │ │ o15 = 3 │ │ │ │ │ │ i16 : time T2 = T * T │ │ │ - -- used 0.000199554s (cpu); 2.7712e-05s (thread); 0s (gc) │ │ │ + -- used 0.000124975s (cpu); 2.712e-05s (thread); 0s (gc) │ │ │ │ │ │ o16 = -- rational map -- │ │ │ ZZ │ │ │ source: Proj(-----[x , x , x , x ]) │ │ │ 65521 0 1 2 3 │ │ │ ZZ │ │ │ target: Proj(-----[x , x , x , x ]) │ │ │ 65521 0 1 2 3 │ │ │ defining forms: given by a function │ │ │ │ │ │ o16 : AbstractRationalMap (rational map from PP^3 to PP^3) │ │ │ │ │ │ i17 : time projectiveDegrees(T2,2) │ │ │ - -- used 5.28753s (cpu); 2.90553s (thread); 0s (gc) │ │ │ + -- used 6.23056s (cpu); 3.31739s (thread); 0s (gc) │ │ │ │ │ │ o17 = 1 │ │ │ │ │ │ i18 : p = apply(3,i->random(ZZ/65521))|{1} │ │ │ │ │ │ o18 = {28963, 31975, -30172, 1} │ │ │ │ │ │ @@ -169,15 +169,15 @@ │ │ │ i20 : T q │ │ │ │ │ │ o20 = {28963, 31975, -30172, 1} │ │ │ │ │ │ o20 : List │ │ │ │ │ │ i21 : time f = rationalMap T │ │ │ - -- used 4.10257s (cpu); 2.25715s (thread); 0s (gc) │ │ │ + -- used 5.28201s (cpu); 3.46697s (thread); 0s (gc) │ │ │ │ │ │ o21 = -- rational map -- │ │ │ ZZ │ │ │ source: Proj(-----[x , x , x , x ]) │ │ │ 65521 0 1 2 3 │ │ │ ZZ │ │ │ target: Proj(-----[x , x , x , x ]) │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_approximate__Inverse__Map.out │ │ │ @@ -44,15 +44,15 @@ │ │ │ x x - x x │ │ │ 1 2 0 4 │ │ │ } │ │ │ │ │ │ o2 : RationalMap (quadratic rational map from hypersurface in PP^9 to PP^8) │ │ │ │ │ │ i3 : time psi = approximateInverseMap phi │ │ │ - -- used 0.218667s (cpu); 0.169055s (thread); 0s (gc) │ │ │ + -- used 0.372312s (cpu); 0.254928s (thread); 0s (gc) │ │ │ -- approximateInverseMap: step 1 of 10 │ │ │ -- approximateInverseMap: step 2 of 10 │ │ │ -- approximateInverseMap: step 3 of 10 │ │ │ -- approximateInverseMap: step 4 of 10 │ │ │ -- approximateInverseMap: step 5 of 10 │ │ │ -- approximateInverseMap: step 6 of 10 │ │ │ -- approximateInverseMap: step 7 of 10 │ │ │ @@ -106,15 +106,15 @@ │ │ │ } │ │ │ │ │ │ o3 : RationalMap (quadratic rational map from PP^8 to hypersurface in PP^9) │ │ │ │ │ │ i4 : assert(phi * psi == 1 and psi * phi == 1) │ │ │ │ │ │ i5 : time psi' = approximateInverseMap(phi,CodimBsInv=>5); │ │ │ - -- used 0.218999s (cpu); 0.146713s (thread); 0s (gc) │ │ │ + -- used 0.283764s (cpu); 0.228417s (thread); 0s (gc) │ │ │ -- approximateInverseMap: step 1 of 3 │ │ │ -- approximateInverseMap: step 2 of 3 │ │ │ -- approximateInverseMap: step 3 of 3 │ │ │ │ │ │ o5 : RationalMap (quadratic rational map from PP^8 to hypersurface in PP^9) │ │ │ │ │ │ i6 : assert(psi == psi') │ │ │ @@ -189,15 +189,15 @@ │ │ │ 0 1 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 0 8 1 8 3 8 4 8 5 8 6 8 7 8 │ │ │ } │ │ │ │ │ │ o7 : RationalMap (quadratic rational map from PP^8 to 8-dimensional subvariety of PP^11) │ │ │ │ │ │ i8 : -- without the option 'CodimBsInv=>4', it takes about triple time │ │ │ time psi=approximateInverseMap(phi,CodimBsInv=>4) │ │ │ - -- used 2.28934s (cpu); 1.6958s (thread); 0s (gc) │ │ │ + -- used 2.89445s (cpu); 2.60374s (thread); 0s (gc) │ │ │ -- approximateInverseMap: step 1 of 3 │ │ │ -- approximateInverseMap: step 2 of 3 │ │ │ -- approximateInverseMap: step 3 of 3 │ │ │ │ │ │ o8 = -- rational map -- │ │ │ ZZ │ │ │ source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x , x ]) defined by │ │ │ @@ -254,15 +254,15 @@ │ │ │ i9 : -- but... │ │ │ phi * psi == 1 │ │ │ │ │ │ o9 = false │ │ │ │ │ │ i10 : -- in this case we can remedy enabling the option Certify │ │ │ time psi = approximateInverseMap(phi,CodimBsInv=>4,Certify=>true) │ │ │ - -- used 3.34434s (cpu); 2.48164s (thread); 0s (gc) │ │ │ + -- used 3.4615s (cpu); 3.05447s (thread); 0s (gc) │ │ │ -- approximateInverseMap: step 1 of 3 │ │ │ -- approximateInverseMap: step 2 of 3 │ │ │ -- approximateInverseMap: step 3 of 3 │ │ │ Certify: output certified! │ │ │ │ │ │ o10 = -- rational map -- │ │ │ ZZ │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_degree__Map.out │ │ │ @@ -9,27 +9,27 @@ │ │ │ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 │ │ │ o4 = map (ringP8, ringP14, {- 95x + 181x x + 1028x - 1384x x - 1455x x + 559x - 502x x + 1264x x - 162x x + 1209x - 180x x - 504x x - 1168x x - 676x x + 501x + 73x x + 1263x x + 1035x x + 844x x + 1593x x + 785x + 982x x - 412x x + 1335x x + 1136x x + 826x x + 1078x x + 1158x + 335x x - 982x x - 1479x x - 15x x + 1363x x + 1397x x - 575x x - 71x + 1255x x - 1138x x - 1590x x + 604x x + 1182x x - 63x x - 1382x x - 1255x x - 613x , - 1444x + 575x x + 767x - 1495x x + 1631x x - 217x - 294x x - 1511x x - 504x x - 1284x - 1459x x + 152x x + 141x x - 10x x - 95x + 1056x x + 654x x + 1397x x - 930x x + 578x x - 696x + 759x x + 733x x + 505x x - 609x x + 526x x - 659x x + 846x + 1253x x - 1519x x + 635x x + 576x x + 54x x - 1261x x - 822x x - 257x - 986x x + 356x x - 1488x x - 1561x x - 850x x - 85x x - 1350x x - 783x x - 1335x , - 871x + 1006x x - 1399x - 1636x x - 699x x - 769x - 307x x - 1645x x - 502x x - 719x + 1405x x + 870x x - 1133x x + 425x x - 1203x - 1601x x + 117x x - 382x x + 318x x - 117x x - 560x + 1135x x + 1468x x + 869x x - 943x x - 335x x - 1218x x + 201x - 11x x + 540x x - 710x x - 489x x + 1605x x + 1663x x - 423x x + 1246x + 97x x - 644x x + 1655x x + 1219x x + 1476x x + 1355x x + 1594x x + 893x x + 1150x , - 143x + 1240x x - 1042x + 1649x x + 1024x x + 794x + 1442x x - 1263x x + 537x x - 82x - 734x x - 1569x x - 798x x - 366x x + 1289x - 569x x - 254x x + 237x x - 1234x x - 807x x + 264x - 202x x - 616x x + 44x x + 1465x x + 685x x + 1630x x - 406x - 123x x - 4x x + 1583x x + 1235x x + 162x x + 1034x x - 1035x x + 737x + 660x x + 1459x x - 359x x - 1291x x + 1638x x - 325x x - 631x x + 73x x - 1471x , - 1340x + 31x x - 994x - 880x x - 89x x + 574x + 760x x - 1054x x + 772x x - 239x - 443x x + 1240x x + 637x x - 1423x x + 320x - 1363x x - 1139x x - 158x x - 325x x - 1578x x + 32x + 695x x + 305x x + 1012x x + 1492x x + 1290x x + 1579x x - 342x - 83x x - 104x x + 998x x - 92x x + 1554x x + 201x x - 237x x + 160x - 228x x - 543x x - 1147x x - 376x x + 1313x x + 603x x + 106x x - 1361x x + 699x , - 228x - 1510x x + 277x - 4x x - 22x x - 1526x + 234x x + 969x x + 1253x x - 1426x - 1474x x + 947x x + 194x x - 316x x - 988x - 1211x x + 1087x x + 536x x - 491x x + 870x x - 659x + 1490x x - 469x x + 1190x x + 807x x + 650x x + 448x x - 1353x - 218x x + 759x x - 253x x + 830x x - 1080x x - 143x x - 1313x x - 374x - 180x x + 741x x + 742x x - 1254x x + 458x x - 345x x + 597x x + 1567x x - 31x , 1120x + 709x x - 1538x - 1048x x - 162x x - 1518x - 73x x + 380x x + 533x x - 286x + 1374x x - 74x x - 22x x + 1535x x - 1071x - 839x x - 560x x + 928x x + 335x x - 1008x x + 810x - 448x x - 357x x - 107x x + 40x x + 784x x - 1423x x + 1276x + 147x x + 443x x - 598x x - 1077x x - 1214x x + 322x x - 1408x x + 72x - 63x x - 1513x x - 791x x + 11x x + 77x x + 836x x - 1100x x + 1637x x - 788x , 1331x + 318x x - 704x + 51x x + 275x x + 1149x + 1526x x + 768x x + 414x x - 782x - 262x x + 686x x - 380x x + 1377x x + 1077x + 1650x x - 1129x x - 508x x + 846x x + 1513x x + 460x - 1626x x - 1024x x + 862x x + 1352x x - 188x x - 1382x x - 650x + 55x x - 326x x + 1037x x + 705x x - 667x x + 1483x x + 1661x x - 1652x - 1052x x - 692x x - 542x x + 162x x + 582x x - 1369x x + 934x x + 1392x x + 1227x , - 346x + 1408x x - 1225x - 1536x x - 1028x x - 985x - 210x x - 1312x x + 915x x + 1633x - 202x x - 1636x x - 1653x x - 480x x - 1260x - 813x x - 1623x x - 1429x x + 1094x x - 747x x + 955x + 898x x - 795x x - 35x x - 566x x + 1631x x - 324x x + 926x - 132x x - 9x x - 1290x x - 543x x + 902x x + 735x x - 342x x - 400x + 900x x - 463x x + 694x x - 1262x x - 1449x x - 448x x - 1402x x - 731x x - 996x , 301x + 166x x - 955x - 739x x - 1199x x - 319x + 1047x x - 532x x + 902x x + 1195x - 663x x + 1215x x - 534x x - 332x x - 973x + 772x x - 308x x + 315x x - 454x x - 483x x - 239x - 1313x x - 419x x - 1340x x - 1388x x - 1340x x - 1665x x - 333x - 465x x - 1084x x + 676x x - 1612x x - 288x x + 11x x - 1170x x - 189x + 498x x - 889x x + 693x x + 1460x x - 473x x - 414x x - 122x x - 1659x x - 1421x , 14x - 1049x x + 1506x + 1235x x + 642x x - 1034x + 460x x + 150x x + 760x x - 1246x - 1407x x + 1570x x + 1403x x - 1610x x - 431x + 574x x + 893x x - 657x x + 417x x + 1362x x + 224x + 268x x + 1097x x + 1132x x + 148x x + 1331x x - 77x x - 756x + 228x x + 136x x - 1484x x - 1478x x - 13x x + 1620x x - 701x x - 769x - 760x x - 492x x - 1077x x - 1249x x - 834x x - 395x x - 1358x x - 988x x + 113x , - 1634x - 13x x + 805x - 21x x - 1655x x + 1479x - 1510x x - 646x x + 225x x - 1411x + 1227x x - 1108x x + 1291x x - 59x x - 142x + 586x x - 676x x + 655x x - 1476x x + 453x x - 1076x - 1152x x + 1373x x - 1191x x - 416x x + 699x x + 317x x + 825x - 1560x x - 488x x - 1035x x - 1561x x - 644x x - 1178x x - 1320x x + 158x + 889x x + 1444x x - 1486x x - 1211x x + 1269x x - 1228x x + 568x x + 1591x x + 1207x , 105x - 538x x - 1222x - 277x x + 716x x - 1067x - 428x x + 154x x - 469x x + 77x + 538x x - 179x x + 921x x - 223x x + 1093x - 262x x + 1299x x + 631x x + 1486x x - 1280x x - 121x - 50x x - 978x x - 694x x - 531x x + 505x x + 1412x x - 1061x + 1202x x + 448x x - 187x x + 1276x x - 121x x + 1361x x + 697x x + 682x + 1592x x + 705x x - 227x x - 7x x - 1423x x - 1446x x - 1578x x + 1511x x + 917x , 1270x - 391x x - 1116x - 287x x + 653x x + 1643x + 1623x x + 514x x - 14x x - 90x + 1232x x - 1434x x + 1296x x + 1522x x + 136x - 623x x - 607x x + 18x x + 896x x - 29x x + 1059x - 1053x x + 1643x x + 1652x x - 1190x x - 1073x x + 1470x x - 944x - 93x x - 187x x - 994x x - 1415x x - 229x x - 796x x + 1642x x + 1600x - 344x x + 905x x + 1032x x - 538x x - 891x x + 1243x x + 1290x x + 490x x - 1148x , 1613x + 175x x - 1346x - 1000x x - 1217x x - 729x - 1296x x + 1456x x + 745x x + 539x + 525x x - 811x x + 753x x + 1362x x + 1629x - 840x x + 513x x + 429x x + 842x x + 1414x x - 308x + 1415x x - 1461x x - 1135x x + 701x x + 766x x + 785x x + 1503x + 147x x + 929x x - 1220x x - 853x x + 493x x + 226x x + 1416x x + 280x - 7x x + 1632x x + 520x x + 1259x x + 157x x + 1596x x + 655x x - 42x x - 586x }) │ │ │ 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 │ │ │ │ │ │ o4 : RingMap ringP8 <-- ringP14 │ │ │ │ │ │ i5 : time degreeMap phi │ │ │ - -- used 0.131475s (cpu); 0.0571066s (thread); 0s (gc) │ │ │ + -- used 0.228985s (cpu); 0.0687556s (thread); 0s (gc) │ │ │ │ │ │ o5 = 1 │ │ │ │ │ │ i6 : -- Compose phi:P^8--->P^14 with a linear projection P^14--->P^8 from a general subspace of P^14 │ │ │ -- of dimension 5 (so that the composition phi':P^8--->P^8 must have degree equal to deg(G(1,5))=14) │ │ │ phi'=phi*map(ringP14,ringP8,for i to 8 list random(1,ringP14)) │ │ │ │ │ │ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 │ │ │ o6 = map (ringP8, ringP8, {- 780x - 506x x + 1537x - 132x x - 928x x + 386x - 102x x + 422x x + 725x x - 1073x - 905x x - 830x x + 1500x x + 276x x + 1533x - 653x x + 1558x x + 939x x - 1432x x + 462x x - 329x - 92x x + 661x x - 1298x x - 684x x + 70x x - 715x x + 1093x + 581x x + 329x x + 454x x - 911x x - 84x x - 1452x x - 809x x + 1202x + 1353x x + 1503x x + 482x x + 893x x - 643x x + 598x x + 110x x + 1064x x - 472x , - 522x - 583x x + 1339x + 1535x x - 1317x x + 1113x - 169x x + 1440x x - 1657x x + 721x + 40x x - 1576x x - 367x x + 257x x - 1454x + 1612x x + 1529x x - 1068x x + 560x x - 1441x x + 608x - 92x x - 1006x x + 285x x + 102x x - 397x x + 66x x - 643x - 38x x + 1380x x + 1069x x - 426x x + 1147x x + 982x x + 10x x - 662x + 16x x + 1561x x + 1597x x + 512x x + 1288x x - 1253x x + 1317x x + 1481x x - 354x , - 640x - 1551x x + 469x + 1482x x - 1593x x - 986x + 471x x + 612x x + 1228x x + 1156x - 731x x + 1503x x - 628x x + 674x x - 799x + 1137x x + 844x x + 589x x - 666x x + 829x x - 1024x - 170x x + 450x x + 1497x x + 1204x x - 907x x + 1621x x - 417x + 1297x x + 1444x x + 4x x + 398x x + 996x x - 1031x x + 239x x + 303x + 1215x x - 83x x + 1571x x - 1543x x - 925x x - 694x x + 151x x - 520x x + 880x , - 1210x - 222x x + 185x + 245x x + 1059x x - 322x + 238x x + 962x x + 1260x x - 1581x + 50x x + 1352x x - 1465x x + 1555x x + 1333x + 1362x x + 1365x x + 1168x x - 1401x x + 149x x - 652x + 1378x x - 557x x - 112x x + 26x x + 315x x + 111x x + 1592x - 283x x - 1454x x + 907x x + 212x x + 400x x + 1049x x - 882x x - 1429x - 183x x + 1571x x - 1286x x - 1179x x + 1319x x + 240x x - 1100x x + 1500x x - 348x , 1051x - 1325x x + 1354x - 346x x - 1532x x - 466x + 163x x - 659x x - 291x x + 966x + 789x x + 393x x + 403x x - 1199x x - 570x - 93x x - 492x x - 418x x + 713x x - 1323x x - 1384x - 830x x - 54x x - 306x x + 709x x + 421x x - 954x x - 299x + 1053x x - 1080x x + 686x x + 170x x - 1272x x - 1661x x + 1235x x + 1553x - 1454x x - 1411x x - 1195x x - 962x x + 737x x - 390x x + 957x x + 1538x x + 1234x , - 509x + 9x x - 1563x - 710x x - 642x x + 541x + 220x x - 1214x x - 16x x + 1008x - 1088x x + 755x x - 886x x - 1433x x + 1154x + 1627x x - 1547x x - 951x x + 866x x + 163x x - 1142x - 668x x + 1361x x + 1324x x - 490x x + 282x x - 1133x x - 612x + 805x x - 126x x + 1296x x - 973x x + 1271x x - 1646x x + 844x x + 1073x - 1452x x - 1112x x - 141x x + 176x x - 1579x x - 78x x + 848x x - 1365x x + 711x , x + 1543x x - 1076x + 493x x - 526x x + 868x - 582x x - 996x x + 206x x - 419x + 1258x x - 391x x + 1002x x - 1539x x + 931x - 1504x x + 810x x + 324x x + 1356x x + 313x x + 772x + 299x x + 1186x x + 718x x + 407x x - 64x x - 828x x - 1393x + 94x x - 290x x - 766x x + 950x x - 640x x + 265x x - 1640x x - 1403x - 126x x + 891x x - 1519x x - 927x x - 1335x x - 1448x x - x x - 1103x x - 1152x , 821x + 558x x - 1174x - 168x x + 986x x + 790x + 549x x + 817x x + 1396x x + 695x + 1211x x + 878x x - 1061x x - 1244x x - 880x + 1409x x - 567x x + 1240x x + 1126x x - 1262x x + 490x + 1553x x + 1276x x + 805x x + 576x x - 1076x x + 1617x x - 495x - 750x x - 277x x + 544x x + 1479x x - 784x x - 64x x - 1203x x + 405x + 1013x x + 604x x + 1301x x + 1003x x + 235x x + 696x x + 939x x - 714x x - 879x , - 1452x + 727x x - 1159x + 449x x - 1169x x + 732x + 575x x - 600x x + 924x x - 837x + 1298x x - 860x x + 1010x x + 774x x + 319x + 1087x x - 1120x x + 1439x x + 1175x x - 1648x x + 985x - 1317x x - 878x x + 399x x - 1339x x + 70x x - 463x x + 470x - 628x x - 907x x + 748x x + 98x x + 1150x x + 1140x x + 1308x x + 621x + 369x x - 991x x - 1186x x + 61x x - 907x x - 681x x - 1528x x + 717x x + 854x }) │ │ │ 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 0 4 1 4 2 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 │ │ │ │ │ │ o6 : RingMap ringP8 <-- ringP8 │ │ │ │ │ │ i7 : time degreeMap phi' │ │ │ - -- used 0.763454s (cpu); 0.537536s (thread); 0s (gc) │ │ │ + -- used 0.716216s (cpu); 0.658864s (thread); 0s (gc) │ │ │ │ │ │ o7 = 14 │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_force__Image.out │ │ │ @@ -5,14 +5,14 @@ │ │ │ o2 : Ideal of P6 │ │ │ │ │ │ i3 : Phi = rationalMap(X,Dominant=>2); │ │ │ │ │ │ o3 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of PP^9) │ │ │ │ │ │ i4 : time forceImage(Phi,ideal 0_(target Phi)) │ │ │ - -- used 0.00296865s (cpu); 0.000930424s (thread); 0s (gc) │ │ │ + -- used 0.000591067s (cpu); 0.000562725s (thread); 0s (gc) │ │ │ │ │ │ i5 : Phi; │ │ │ │ │ │ o5 : RationalMap (cubic dominant rational map from PP^6 to 6-dimensional subvariety of PP^9) │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_graph.out │ │ │ @@ -35,15 +35,15 @@ │ │ │ - x + x x │ │ │ 3 2 4 │ │ │ } │ │ │ │ │ │ o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ │ │ i3 : time (p1,p2) = graph phi; │ │ │ - -- used 0.108255s (cpu); 0.0343845s (thread); 0s (gc) │ │ │ + -- used 0.0789011s (cpu); 0.0185917s (thread); 0s (gc) │ │ │ │ │ │ i4 : p1 │ │ │ │ │ │ o4 = -- rational map -- │ │ │ ZZ ZZ │ │ │ source: subvariety of Proj(------[x , x , x , x , x ]) x Proj(------[y , y , y , y , y , y ]) defined by │ │ │ 190181 0 1 2 3 4 190181 0 1 2 3 4 5 │ │ │ @@ -173,15 +173,15 @@ │ │ │ i8 : projectiveDegrees p2 │ │ │ │ │ │ o8 = {51, 28, 14, 6, 2} │ │ │ │ │ │ o8 : List │ │ │ │ │ │ i9 : time g = graph p2; │ │ │ - -- used 0.0283961s (cpu); 0.0275265s (thread); 0s (gc) │ │ │ + -- used 0.0862843s (cpu); 0.0269329s (thread); 0s (gc) │ │ │ │ │ │ i10 : g_0; │ │ │ │ │ │ o10 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to PP^4) │ │ │ │ │ │ i11 : g_1; │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_ideal_lp__Rational__Map_rp.out │ │ │ @@ -33,15 +33,15 @@ │ │ │ x - x x │ │ │ 1 0 3 │ │ │ } │ │ │ │ │ │ o2 : RationalMap (quadratic rational map from hypersurface in PP^5 to PP^4) │ │ │ │ │ │ i3 : time ideal phi │ │ │ - -- used 0.00399819s (cpu); 0.00324924s (thread); 0s (gc) │ │ │ + -- used 0.00174627s (cpu); 0.00298329s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o3 = ideal (x - x x , x x - x x + x x , x x - x + x x , x x - x x + │ │ │ 4 3 5 2 4 3 4 1 5 2 3 3 1 4 1 2 1 3 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 │ │ │ x x , x - x x ) │ │ │ @@ -108,15 +108,15 @@ │ │ │ y │ │ │ 4 │ │ │ } │ │ │ │ │ │ o5 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of PP^5 x PP^4 to PP^4) │ │ │ │ │ │ i6 : time ideal phi' │ │ │ - -- used 0.0900955s (cpu); 0.087187s (thread); 0s (gc) │ │ │ + -- used 0.244771s (cpu); 0.180884s (thread); 0s (gc) │ │ │ │ │ │ o6 = ideal 1 │ │ │ │ │ │ QQ[x ..x , y ..y ] │ │ │ 0 5 0 4 │ │ │ o6 : Ideal of -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- │ │ │ 2 │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse__Map.out │ │ │ @@ -72,15 +72,15 @@ │ │ │ w w - w w + w w │ │ │ 2 4 1 5 0 6 │ │ │ } │ │ │ │ │ │ o1 : RationalMap (quadratic Cremona transformation of PP^20) │ │ │ │ │ │ i2 : time psi = inverseMap phi │ │ │ - -- used 0.158746s (cpu); 0.0885499s (thread); 0s (gc) │ │ │ + -- used 0.333669s (cpu); 0.124609s (thread); 0s (gc) │ │ │ │ │ │ o2 = -- rational map -- │ │ │ source: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w , w , w , w , w , w , w , w , w , w , w ]) │ │ │ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 │ │ │ target: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w , w , w , w , w , w , w , w , w , w , w ]) │ │ │ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 │ │ │ defining forms: { │ │ │ @@ -158,15 +158,15 @@ │ │ │ o4 = map (QQ[w ..w ], QQ[w ..w ], {w w - w w - w w - w w - w w , w w - w w - w w - w w - w w , w w - w w - w w - w w - w w , w w - w w + w w - w w - w w , w w - w w + w w + w w - w w , w w - w w + w w + w w + w w , w w - w w + w w - w w - w w , w w - w w + w w + w w - w w , w w - w w + w w + w w + w w , w w - w w - w w + w w - w w , w w - w w - w w + w w + w w , w w - w w - w w + w w - w w , w w - w w - w w + w w - w w , w w - w w - w w + w w + w w , w w - w w - w w + w w + w w , w w - w w + w w - w w + w w , w w - w w - w w - w w + w w , w w - w w - w w - w w + w w , w w - w w - w w - w w + w w , w w - w w - w w - w w + w w , w w - w w - w w + w w - w w , w w - w w + w w + w w - w w , w w - w w - w w - w w + w w , w w - w w - w w - w w + w w , w w - w w - w w + w w - w w , w w - w w - w w + w w - w w , w w - w w - w w + w w - w w }) │ │ │ 0 26 0 26 21 22 20 23 15 24 10 25 0 26 19 22 18 23 16 24 11 25 1 26 19 20 18 21 17 24 12 25 2 26 15 19 16 21 17 23 13 25 3 26 10 19 11 21 12 23 13 24 4 26 0 19 1 21 2 23 3 24 4 25 15 18 16 20 17 22 14 25 5 26 10 18 11 20 12 22 14 24 6 26 0 18 1 20 2 22 5 24 6 25 12 16 11 17 13 18 14 19 7 26 2 16 1 17 3 18 5 19 7 25 12 15 10 17 13 20 14 21 8 26 11 15 10 16 13 22 14 23 9 26 2 15 0 17 3 20 5 21 8 25 1 15 0 16 3 22 5 23 9 25 5 13 3 14 7 15 8 16 9 17 5 12 2 14 6 17 8 18 7 20 3 12 2 13 4 17 8 19 7 21 5 11 1 14 6 16 9 18 7 22 3 11 1 13 4 16 9 19 7 23 2 11 1 12 4 18 6 19 7 24 7 10 8 11 9 12 6 13 4 14 5 10 0 14 6 15 9 20 8 22 3 10 0 13 4 15 9 21 8 23 2 10 0 12 4 20 6 21 8 24 1 10 0 11 4 22 6 23 9 24 4 5 3 6 0 7 1 8 2 9 │ │ │ │ │ │ o4 : RingMap QQ[w ..w ] <-- QQ[w ..w ] │ │ │ 0 26 0 26 │ │ │ │ │ │ i5 : time psi = inverseMap phi │ │ │ - -- used 0.312892s (cpu); 0.187463s (thread); 0s (gc) │ │ │ + -- used 0.465234s (cpu); 0.344834s (thread); 0s (gc) │ │ │ │ │ │ o5 = map (QQ[w ..w ], QQ[w ..w ], {- w w + w w + w w - w w - w w , - w w + w w + w w - w w - w w , - w w + w w + w w - w w - w w , - w w - w w + w w - w w - w w , - w w - w w + w w - w w - w w , - w w - w w + w w - w w - w w , - w w - w w + w w - w w - w w , w w - w w + w w - w w - w w , - w w + w w - w w + w w - w w , - w w + w w - w w + w w - w w , w w - w w + w w + w w - w w , - w w + w w + w w + w w - w w , - w w + w w + w w + w w - w w , - w w - w w + w w + w w - w w , - w w - w w + w w + w w - w w , w w - w w + w w - w w + w w , w w - w w + w w - w w + w w , w w - w w + w w - w w + w w , w w - w w + w w - w w + w w , w w - w w + w w - w w + w w , w w - w w + w w - w w + w w , w w - w w + w w - w w + w w , w w - w w + w w - w w + w w , w w - w w + w w - w w + w w , w w - w w - w w + w w - w w , - w w + w w + w w - w w + w w , w w - w w - w w + w w - w w }) │ │ │ 0 26 0 26 5 22 8 23 14 24 13 25 0 26 5 18 8 19 14 20 10 25 1 26 5 16 8 17 13 20 10 24 2 26 5 15 14 17 13 19 10 23 3 26 5 21 20 23 19 24 17 25 4 26 8 15 14 16 13 18 10 22 6 26 8 21 20 22 18 24 16 25 7 26 17 18 16 19 15 20 10 21 9 26 13 21 17 22 16 23 15 24 11 26 14 21 19 22 18 23 15 25 12 26 0 21 4 22 7 23 12 24 11 25 4 18 7 19 12 20 1 21 9 25 4 16 7 17 11 20 2 21 9 24 4 15 12 17 11 19 3 21 9 23 7 15 12 16 11 18 6 21 9 22 12 13 11 14 0 15 3 22 6 23 10 12 9 14 1 15 3 18 6 19 10 11 9 13 2 15 3 16 6 17 8 9 7 10 1 16 2 18 6 20 5 9 4 10 1 17 2 19 3 20 8 11 7 13 0 16 2 22 6 24 5 11 4 13 0 17 2 23 3 24 8 12 7 14 0 18 1 22 6 25 5 12 4 14 0 19 1 23 3 25 5 7 4 8 0 20 1 24 2 25 5 6 3 8 0 10 1 13 2 14 4 6 3 7 0 9 1 11 2 12 │ │ │ │ │ │ o5 : RingMap QQ[w ..w ] <-- QQ[w ..w ] │ │ │ 0 26 0 26 │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse_lp__Rational__Map_rp.out │ │ │ @@ -28,15 +28,15 @@ │ │ │ - -----x - ---------x x + -----------x x + -----------x x - --------x - -------x x + -----------x x x + -----------x x x + ----------x x + --------x x + --------x x x - -----------x x - -------x x - ----------x x - -------x - ------x x + ----------x x x + -----------x x x - ----------x x + ---------x x x + ----------x x x x + -----------x x x + ----------x x x + ------------x x x + ---------x x - ---------x x - -----------x x x - -----------x x - ----------x x x + ----------x x x - ---------x x + -------x x - --------x x + ----------x x + ------x - ---------x x - -----------x x x + ------------x x x + ----------x x - -----------x x x - -------------x x x x + ------------x x x - ----------x x x - -----------x x x - -------x x + -----------x x x + ------------x x x x + ------------x x x + -----------x x x x + --------------x x x x + ---------x x x - ------------x x x - ------------x x x - ------------x x x + ----------x x - ----------x x - ------------x x x + -----------x x - ----------x x x - ------------x x x - ---------x x + ------------x x x - --------x x x + ------------x x x + ----------x x - --------x x - ---------x x - ---------x x + ---------x x - -----x │ │ │ 2800 0 6350400 0 1 50803200 0 1 33868800 0 1 181440 1 196000 0 2 381024000 0 1 2 47628000 0 1 2 10160640 1 2 2268000 0 2 2126250 0 1 2 762048000 1 2 992250 0 2 31752000 1 2 529200 2 73500 0 3 28576800 0 1 3 32659200 0 1 3 6531840 1 3 15876000 0 2 3 21432600 0 1 2 3 137168640 1 2 3 158760000 0 2 3 571536000 1 2 3 95256000 2 3 15876000 0 3 228614400 0 1 3 65318400 1 3 190512000 0 2 3 95256000 1 2 3 31752000 2 3 352800 0 3 604800 1 3 31752000 2 3 15120 3 47628000 0 4 444528000 0 1 4 4267468800 0 1 4 152409600 1 4 714420000 0 2 4 16003008000 0 1 2 4 1524096000 1 2 4 95256000 0 2 4 533433600 1 2 4 211680 2 4 1000188000 0 3 4 2667168000 0 1 3 4 457228800 1 3 4 240045120 0 2 3 4 48009024000 1 2 3 4 14817600 2 3 4 4000752000 0 3 4 1524096000 1 3 4 2667168000 2 3 4 27216000 3 4 190512000 0 4 1778112000 0 1 4 304819200 1 4 47628000 0 2 4 1333584000 1 2 4 5292000 2 4 4000752000 0 3 4 71442000 1 3 4 1333584000 2 3 4 95256000 3 4 3969000 0 4 127008000 1 4 5292000 2 4 21168000 3 4 28000 4 │ │ │ } │ │ │ │ │ │ o2 : RationalMap (rational map from PP^4 to PP^4) │ │ │ │ │ │ i3 : time inverse phi │ │ │ - -- used 0.154532s (cpu); 0.0707467s (thread); 0s (gc) │ │ │ + -- used 0.166999s (cpu); 0.109695s (thread); 0s (gc) │ │ │ │ │ │ o3 = -- rational map -- │ │ │ source: Proj(QQ[x , x , x , x , x ]) │ │ │ 0 1 2 3 4 │ │ │ target: Proj(QQ[x , x , x , x , x ]) │ │ │ 0 1 2 3 4 │ │ │ defining forms: { │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Birational.out │ │ │ @@ -40,18 +40,18 @@ │ │ │ - t + t t │ │ │ 3 2 4 │ │ │ } │ │ │ │ │ │ o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ │ │ i3 : time isBirational phi │ │ │ - -- used 0.0199621s (cpu); 0.0179823s (thread); 0s (gc) │ │ │ + -- used 0.0806576s (cpu); 0.0265241s (thread); 0s (gc) │ │ │ │ │ │ o3 = true │ │ │ │ │ │ i4 : time isBirational(phi,Certify=>true) │ │ │ - -- used 0.0128589s (cpu); 0.0142427s (thread); 0s (gc) │ │ │ + -- used 0.0406175s (cpu); 0.0115317s (thread); 0s (gc) │ │ │ Certify: output certified! │ │ │ │ │ │ o4 = true │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Dominant.out │ │ │ @@ -3,15 +3,15 @@ │ │ │ i1 : P8 = ZZ/101[x_0..x_8]; │ │ │ │ │ │ i2 : phi = rationalMap ideal jacobian ideal det matrix{{x_0..x_4},{x_1..x_5},{x_2..x_6},{x_3..x_7},{x_4..x_8}}; │ │ │ │ │ │ o2 : RationalMap (rational map from PP^8 to PP^8) │ │ │ │ │ │ i3 : time isDominant(phi,Certify=>true) │ │ │ - -- used 2.25139s (cpu); 1.87155s (thread); 0s (gc) │ │ │ + -- used 3.58107s (cpu); 3.34407s (thread); 0s (gc) │ │ │ Certify: output certified! │ │ │ │ │ │ o3 = true │ │ │ │ │ │ i4 : P7 = ZZ/101[x_0..x_7]; │ │ │ │ │ │ i5 : -- hyperelliptic curve of genus 3 │ │ │ @@ -20,13 +20,13 @@ │ │ │ o5 : Ideal of P7 │ │ │ │ │ │ i6 : phi = rationalMap(C,3,2); │ │ │ │ │ │ o6 : RationalMap (cubic rational map from PP^7 to PP^7) │ │ │ │ │ │ i7 : time isDominant(phi,Certify=>true) │ │ │ - -- used 4.07363s (cpu); 2.75303s (thread); 0s (gc) │ │ │ + -- used 2.76432s (cpu); 2.14498s (thread); 0s (gc) │ │ │ Certify: output certified! │ │ │ │ │ │ o7 = false │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_kernel_lp__Ring__Map_cm__Z__Z_rp.out │ │ │ @@ -6,23 +6,23 @@ │ │ │ o1 = map (QQ[x ..x ], QQ[y ..y ], {- 5x x + x x + x x + 35x x - 7x x + x x - x x - 49x - 5x x + 2x x - x x + 27x x - 4x + x x - 7x x + 2x x - 2x x + 14x x - 4x x , - x x - 6x x - 5x x + 2x x + x x + x x - 5x x - x x + 2x x + 7x x - 2x x + 2x x - 3x x , - 25x + 9x x + 10x x - 2x x - x + 29x x - x x - 7x x - 13x x + 3x x + x x - x x + 2x x - x x + 7x x - 2x x - 8x x + 2x x - 3x x , x x + x x + x + 7x x - 9x x + 12x x - 4x + 2x x + 2x x - 14x x + 4x x + x x - x x - 14x x + x x , - 5x x + x x - 7x x + 8x x - 5x x + 2x x - x x + x x - x x + 7x x - 2x x - x x + 7x x - 2x x , x x + x - 7x x - 8x x + x x + x x + 2x x - x x + x x - 7x x + 2x x + x x - 7x x + 2x x , x x + x - 8x x + x x + 6x x - 2x + x x + x x - 7x x + 2x x + x x - 7x x + 2x x , x x - 7x x + x x + x x - 7x x + 2x - x x , - 4x x + x x - x - 7x x + 8x x + x x - x x - 6x x + 2x - x x - x x + 7x x - 2x x - x x + 7x x - 2x x , - 5x x + 2x + x x - x - x x + 8x x - 10x x + 2x x + 2x x - 2x x + 14x x - 4x x + 5x x - 3x x - 2x x + 7x x - 2x x - 3x x , - 5x x + x x + x x - 4x x - x x + x x + x x , x x - x x + 5x x + x x - 14x x - x x - 8x x - 8x x + 2x x + 4x x + 2x x + 4x x + 3x x - 7x x + 2x x - 3x x }) │ │ │ 0 8 0 11 0 3 2 4 3 4 0 5 2 5 3 5 4 5 5 0 6 2 6 4 6 5 6 6 4 7 5 7 6 7 4 8 5 8 6 8 1 2 1 5 0 6 1 6 4 6 5 6 0 7 1 7 2 7 5 7 6 7 1 8 7 8 0 0 2 0 4 2 4 4 0 5 2 5 4 5 0 6 4 6 5 6 0 7 2 7 4 7 5 7 6 7 0 8 4 8 7 8 2 4 3 4 4 2 5 4 5 5 6 6 3 7 4 7 5 7 6 7 3 8 4 8 5 8 6 8 0 4 2 4 2 5 4 5 0 6 2 6 4 6 5 6 4 7 5 7 6 7 4 8 5 8 6 8 0 4 4 1 5 4 5 0 6 1 6 4 6 5 6 4 7 5 7 6 7 4 8 5 8 6 8 2 3 4 4 5 4 6 5 6 6 3 7 4 7 5 7 6 7 4 8 5 8 6 8 1 3 1 5 1 6 4 6 5 6 6 3 7 0 3 3 4 4 0 5 4 5 0 6 4 6 5 6 6 3 7 4 7 5 7 6 7 4 8 5 8 6 8 0 2 2 2 4 4 2 5 4 5 0 6 5 6 2 7 4 7 5 7 6 7 0 8 2 8 4 8 5 8 6 8 7 8 0 1 1 2 1 4 0 6 1 6 4 6 0 7 0 2 1 2 0 4 1 4 1 5 2 5 4 5 0 6 1 6 4 6 2 7 0 8 1 8 5 8 6 8 7 8 │ │ │ │ │ │ o1 : RingMap QQ[x ..x ] <-- QQ[y ..y ] │ │ │ 0 8 0 11 │ │ │ │ │ │ i2 : time kernel(phi,1) │ │ │ - -- used 0.115348s (cpu); 0.0365182s (thread); 0s (gc) │ │ │ + -- used 0.0119988s (cpu); 0.0142586s (thread); 0s (gc) │ │ │ │ │ │ o2 = ideal () │ │ │ │ │ │ o2 : Ideal of QQ[y ..y ] │ │ │ 0 11 │ │ │ │ │ │ i3 : time kernel(phi,2) │ │ │ - -- used 0.474169s (cpu); 0.310819s (thread); 0s (gc) │ │ │ + -- used 0.498382s (cpu); 0.439796s (thread); 0s (gc) │ │ │ │ │ │ 2 │ │ │ o3 = ideal (y y + y y + y + 5y y + y y + 5y y - y y - 4y y - 5y y - │ │ │ 2 4 3 4 4 2 5 3 5 4 5 1 6 2 6 5 6 │ │ │ ------------------------------------------------------------------------ │ │ │ │ │ │ 4y y - 2y y - y y + 4y y - 5y y - 4y y + 3y y - 4y y - y y - │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_parametrize_lp__Ideal_rp.out │ │ │ @@ -26,15 +26,15 @@ │ │ │ 8 9 │ │ │ │ │ │ ZZ │ │ │ o2 : Ideal of --------[x ..x ] │ │ │ 10000019 0 9 │ │ │ │ │ │ i3 : time parametrize L │ │ │ - -- used 0.00400026s (cpu); 0.00430712s (thread); 0s (gc) │ │ │ + -- used 0.00400077s (cpu); 0.004189s (thread); 0s (gc) │ │ │ │ │ │ o3 = -- rational map -- │ │ │ ZZ │ │ │ source: Proj(--------[t , t , t , t , t , t ]) │ │ │ 10000019 0 1 2 3 4 5 │ │ │ ZZ │ │ │ target: Proj(--------[x , x , x , x , x , x , x , x , x , x ]) │ │ │ @@ -116,15 +116,15 @@ │ │ │ 5 9 6 9 7 9 8 9 9 │ │ │ │ │ │ ZZ │ │ │ o4 : Ideal of --------[x ..x ] │ │ │ 10000019 0 9 │ │ │ │ │ │ i5 : time parametrize Q │ │ │ - -- used 0.567237s (cpu); 0.347295s (thread); 0s (gc) │ │ │ + -- used 0.730993s (cpu); 0.517449s (thread); 0s (gc) │ │ │ │ │ │ o5 = -- rational map -- │ │ │ ZZ │ │ │ source: Proj(--------[t , t , t , t , t , t , t ]) │ │ │ 10000019 0 1 2 3 4 5 6 │ │ │ ZZ │ │ │ target: Proj(--------[x , x , x , x , x , x , x , x , x , x ]) │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_point_lp__Quotient__Ring_rp.out │ │ │ @@ -1,15 +1,15 @@ │ │ │ -- -*- M2-comint -*- hash: 3560583829489988690 │ │ │ │ │ │ i1 : f = inverseMap specialQuadraticTransformation(9,ZZ/33331); │ │ │ │ │ │ o1 : RationalMap (cubic rational map from 8-dimensional subvariety of PP^11 to PP^8) │ │ │ │ │ │ i2 : time p = point source f │ │ │ - -- used 0.201188s (cpu); 0.137863s (thread); 0s (gc) │ │ │ + -- used 0.218876s (cpu); 0.170155s (thread); 0s (gc) │ │ │ │ │ │ o2 = ideal (y - 9235y , y + 11075y , y - 5847y , y + 7396y , y + │ │ │ 10 11 9 11 8 11 7 11 6 │ │ │ ------------------------------------------------------------------------ │ │ │ 13530y , y + 4359y , y - 2924y , y + 13040y , y + 6904y , y - │ │ │ 11 5 11 4 11 3 11 2 11 1 │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -20,12 +20,12 @@ │ │ │ -----[y ..y ] │ │ │ 33331 0 11 │ │ │ o2 : Ideal of ------------------------------------------------------------------------------------------------------- │ │ │ (y y - y y + y y , y y - y y + y y , y y - y y + y y , y y - y y + y y , y y - y y + y y ) │ │ │ 6 7 5 8 4 11 3 7 2 8 1 11 3 5 2 6 0 11 3 4 1 6 0 8 2 4 1 5 0 7 │ │ │ │ │ │ i3 : time p == f^* f p │ │ │ - -- used 0.186193s (cpu); 0.119467s (thread); 0s (gc) │ │ │ + -- used 0.22745s (cpu); 0.173947s (thread); 0s (gc) │ │ │ │ │ │ o3 = true │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_projective__Degrees.out │ │ │ @@ -7,15 +7,15 @@ │ │ │ o2 = map (GF 109561[t ..t ], GF 109561[x ..x ], {- t + t t , - t t + t t , - t + t t , - t t + t t , - t t + t t , - t + t t , a}) │ │ │ 0 4 0 5 1 0 2 1 2 0 3 2 1 3 1 3 0 4 2 3 1 4 3 2 4 │ │ │ │ │ │ o2 : RingMap GF 109561[t ..t ] <-- GF 109561[x ..x ] │ │ │ 0 4 0 5 │ │ │ │ │ │ i3 : time projectiveDegrees(phi,Certify=>true) │ │ │ - -- used 0.0182582s (cpu); 0.0155028s (thread); 0s (gc) │ │ │ + -- used 0.0517608s (cpu); 0.0124244s (thread); 0s (gc) │ │ │ Certify: output certified! │ │ │ │ │ │ o3 = {1, 2, 4, 4, 2} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : psi=inverseMap(toMap(phi,Dominant=>infinity)) │ │ │ @@ -29,15 +29,15 @@ │ │ │ GF 109561[x ..x ] │ │ │ 0 5 │ │ │ o4 : RingMap ------------------ <-- GF 109561[t ..t ] │ │ │ x x - x x + x x 0 4 │ │ │ 2 3 1 4 0 5 │ │ │ │ │ │ i5 : time projectiveDegrees(psi,Certify=>true) │ │ │ - -- used 0.00823188s (cpu); 0.0103648s (thread); 0s (gc) │ │ │ + -- used 0.0593251s (cpu); 0.0112806s (thread); 0s (gc) │ │ │ Certify: output certified! │ │ │ │ │ │ o5 = {2, 4, 4, 2, 1} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : -- Cremona transformation of P^6 defined by the quadrics through a rational octic surface │ │ │ @@ -48,21 +48,21 @@ │ │ │ 300007 0 6 300007 0 6 2 4 1 5 0 4 1 4 4 0 5 1 5 2 5 4 5 5 3 6 4 6 5 6 2 3 0 5 1 3 1 4 4 0 5 1 5 2 5 4 5 5 3 6 4 6 5 6 0 3 1 4 3 4 4 0 5 1 5 2 5 3 5 4 5 5 3 6 4 6 5 6 0 1 1 0 2 1 2 2 1 4 1 5 2 5 0 6 1 6 2 6 0 1 0 2 1 2 2 1 4 4 0 5 1 5 2 5 4 5 5 0 6 1 6 2 6 3 6 4 6 5 6 │ │ │ │ │ │ ZZ ZZ │ │ │ o6 : RingMap ------[x ..x ] <-- ------[x ..x ] │ │ │ 300007 0 6 300007 0 6 │ │ │ │ │ │ i7 : time projectiveDegrees phi │ │ │ - -- used 0.00337059s (cpu); 4.1208e-05s (thread); 0s (gc) │ │ │ + -- used 0.00268412s (cpu); 2.9916e-05s (thread); 0s (gc) │ │ │ │ │ │ o7 = {1, 2, 4, 8, 8, 4, 1} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : time projectiveDegrees(phi,NumDegrees=>1) │ │ │ - -- used 9.9857e-05s (cpu); 2.2512e-05s (thread); 0s (gc) │ │ │ + -- used 7.5101e-05s (cpu); 2.0058e-05s (thread); 0s (gc) │ │ │ │ │ │ o8 = {4, 1} │ │ │ │ │ │ o8 : List │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.out │ │ │ @@ -3,15 +3,15 @@ │ │ │ i1 : ZZ/33331[x_0..x_6]; V = ideal(x_4^2-x_3*x_5,x_2*x_4-x_1*x_5,x_2*x_3-x_1*x_4,x_2^2-x_0*x_5,x_1*x_2-x_0*x_4,x_1^2-x_0*x_3,x_6); │ │ │ │ │ │ ZZ │ │ │ o2 : Ideal of -----[x ..x ] │ │ │ 33331 0 6 │ │ │ │ │ │ i3 : time phi = rationalMap(V,3,2) │ │ │ - -- used 0.184482s (cpu); 0.107539s (thread); 0s (gc) │ │ │ + -- used 0.115708s (cpu); 0.116323s (thread); 0s (gc) │ │ │ │ │ │ o3 = -- rational map -- │ │ │ ZZ │ │ │ source: Proj(-----[x , x , x , x , x , x , x ]) │ │ │ 33331 0 1 2 3 4 5 6 │ │ │ ZZ │ │ │ target: Proj(-----[y , y , y , y , y , y , y , y , y , y , y , y , y , y ]) │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ring_cm__Tally_rp.out │ │ │ @@ -18,15 +18,15 @@ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ o4 : Ideal of X │ │ │ │ │ │ i5 : D = new Tally from {H => 2,C => 1}; │ │ │ │ │ │ i6 : time phi = rationalMap D │ │ │ - -- used 0.0267469s (cpu); 0.0261443s (thread); 0s (gc) │ │ │ + -- used 0.0238955s (cpu); 0.02544s (thread); 0s (gc) │ │ │ │ │ │ o6 = -- rational map -- │ │ │ ZZ │ │ │ source: subvariety of Proj(-----[x , x , x , x , x , x ]) defined by │ │ │ 65521 0 1 2 3 4 5 │ │ │ { │ │ │ 2 2 │ │ │ @@ -123,13 +123,13 @@ │ │ │ x x x + x x x + x x x + x x + x x x - 2x x x + x x │ │ │ 0 1 5 0 2 5 1 2 5 2 5 1 4 5 2 4 5 4 5 │ │ │ } │ │ │ │ │ │ o6 : RationalMap (cubic rational map from surface in PP^5 to PP^20) │ │ │ │ │ │ i7 : time ? image(phi,"F4") │ │ │ - -- used 1.26146s (cpu); 0.63888s (thread); 0s (gc) │ │ │ + -- used 2.58621s (cpu); 0.717812s (thread); 0s (gc) │ │ │ │ │ │ o7 = surface of degree 38 and sectional genus 20 in PP^20 cut out by 153 │ │ │ hypersurfaces of degree 2 │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cremona__Transformation.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 1330846641081 │ │ │ │ │ │ i1 : time apply(1..12,i -> describe specialCremonaTransformation(i,ZZ/3331)) │ │ │ - -- used 1.18389s (cpu); 0.973906s (thread); 0s (gc) │ │ │ + -- used 1.44067s (cpu); 1.20823s (thread); 0s (gc) │ │ │ │ │ │ o1 = (rational map defined by forms of degree 3, │ │ │ source variety: PP^3 │ │ │ target variety: PP^3 │ │ │ dominance: true │ │ │ birationality: true │ │ │ projective degrees: {1, 3, 3, 1} │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cubic__Transformation.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 1730018912715498288 │ │ │ │ │ │ i1 : time specialCubicTransformation 9 │ │ │ - -- used 0.0895158s (cpu); 0.0880504s (thread); 0s (gc) │ │ │ + -- used 0.119999s (cpu); 0.120048s (thread); 0s (gc) │ │ │ │ │ │ o1 = -- rational map -- │ │ │ source: Proj(QQ[x , x , x , x , x , x , x ]) │ │ │ 0 1 2 3 4 5 6 │ │ │ target: subvariety of Proj(QQ[t , t , t , t , t , t , t , t , t , t ]) defined by │ │ │ 0 1 2 3 4 5 6 7 8 9 │ │ │ { │ │ │ @@ -62,15 +62,15 @@ │ │ │ 8x x - 12x x + 24x - 11x x + 17x x x - 24x x - 10x x + 11x x - 3x - 6x x + 28x x x - 70x x - 21x x x + 47x x x - 13x x - 14x x + 66x x - 22x x - 20x + 2x x - 2x x x - 10x x - 11x x x + 8x x x - 5x x + 3x x x + 23x x x - 11x x x - 12x x + 3x x - 3x x - 2x x + 3x x + x - 11x x + 14x x x + 34x x - 6x x x - 16x x x + 3x x - 15x x x - 66x x x + 12x x x + 30x x - 19x x x + 2x x x - 5x x x - 2x x x - 7x x + 6x x + 21x x - 3x x - 21x x + x x + 5x - 8x x + 7x x x - 32x x - 13x x x + 28x x x - 9x x + 70x x x - 27x x x - 36x x + x x x + 4x x x - 7x x x - 2x x x + 3x x - 25x x x - 23x x x + 4x x x + 27x x x - 14x x x - 9x x - 2x x + 10x x - 6x x - 10x x + 3x x - 2x x │ │ │ 0 1 0 1 1 0 2 0 1 2 1 2 0 2 1 2 2 0 3 0 1 3 1 3 0 2 3 1 2 3 2 3 0 3 1 3 2 3 3 0 4 0 1 4 1 4 0 2 4 1 2 4 2 4 0 3 4 1 3 4 2 3 4 3 4 0 4 1 4 2 4 3 4 4 0 5 0 1 5 1 5 0 2 5 1 2 5 2 5 0 3 5 1 3 5 2 3 5 3 5 0 4 5 1 4 5 2 4 5 3 4 5 4 5 0 5 1 5 2 5 3 5 4 5 5 0 6 0 1 6 1 6 0 2 6 1 2 6 2 6 1 3 6 2 3 6 3 6 0 4 6 1 4 6 2 4 6 3 4 6 4 6 0 5 6 1 5 6 2 5 6 3 5 6 4 5 6 5 6 0 6 1 6 2 6 3 6 4 6 5 6 │ │ │ } │ │ │ │ │ │ o1 : RationalMap (cubic birational map from PP^6 to 6-dimensional subvariety of PP^9) │ │ │ │ │ │ i2 : time describe oo │ │ │ - -- used 0.0199392s (cpu); 0.018788s (thread); 0s (gc) │ │ │ + -- used 0.0561777s (cpu); 0.0553741s (thread); 0s (gc) │ │ │ │ │ │ o2 = rational map defined by forms of degree 3 │ │ │ source variety: PP^6 │ │ │ target variety: complete intersection of type (2,2,2) in PP^9 │ │ │ dominance: true │ │ │ birationality: true │ │ │ projective degrees: {1, 3, 9, 17, 21, 16, 8} │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Quadratic__Transformation.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 1729200582376678705 │ │ │ │ │ │ i1 : time specialQuadraticTransformation 4 │ │ │ - -- used 0.067479s (cpu); 0.065041s (thread); 0s (gc) │ │ │ + -- used 0.0519894s (cpu); 0.051045s (thread); 0s (gc) │ │ │ │ │ │ o1 = -- rational map -- │ │ │ source: Proj(QQ[x , x , x , x , x , x , x , x , x ]) │ │ │ 0 1 2 3 4 5 6 7 8 │ │ │ target: subvariety of Proj(QQ[y , y , y , y , y , y , y , y , y , y ]) defined by │ │ │ 0 1 2 3 4 5 6 7 8 9 │ │ │ { │ │ │ @@ -50,15 +50,15 @@ │ │ │ x x - x x + x x - x x - x - x x │ │ │ 0 1 0 4 3 6 4 6 6 5 7 │ │ │ } │ │ │ │ │ │ o1 : RationalMap (quadratic birational map from PP^8 to hypersurface in PP^9) │ │ │ │ │ │ i2 : time describe oo │ │ │ - -- used 0.00850034s (cpu); 0.00606449s (thread); 0s (gc) │ │ │ + -- used 0.00333284s (cpu); 0.00519894s (thread); 0s (gc) │ │ │ │ │ │ o2 = rational map defined by forms of degree 2 │ │ │ source variety: PP^8 │ │ │ target variety: hypersurface of degree 3 in PP^9 │ │ │ dominance: true │ │ │ birationality: true │ │ │ projective degrees: {1, 2, 4, 8, 16, 21, 17, 9, 3} │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_to__External__String_lp__Rational__Map_rp.out │ │ │ @@ -7,34 +7,34 @@ │ │ │ i2 : str = toExternalString phi; │ │ │ │ │ │ i3 : #str │ │ │ │ │ │ o3 = 6927 │ │ │ │ │ │ i4 : time phi' = value str; │ │ │ - -- used 0.0200011s (cpu); 0.0206321s (thread); 0s (gc) │ │ │ + -- used 0.291917s (cpu); 0.0799198s (thread); 0s (gc) │ │ │ │ │ │ o4 : RationalMap (cubic birational map from PP^3 to hypersurface in PP^4) │ │ │ │ │ │ i5 : time describe phi' │ │ │ - -- used 0.00473485s (cpu); 0.00488245s (thread); 0s (gc) │ │ │ + -- used 0.00300748s (cpu); 0.00441817s (thread); 0s (gc) │ │ │ │ │ │ o5 = rational map defined by forms of degree 3 │ │ │ source variety: PP^3 │ │ │ target variety: smooth quadric hypersurface in PP^4 │ │ │ dominance: true │ │ │ birationality: true (the inverse map is already calculated) │ │ │ projective degrees: {1, 3, 4, 2} │ │ │ number of minimal representatives: 1 │ │ │ dimension base locus: 1 │ │ │ degree base locus: 5 │ │ │ coefficient ring: ZZ/33331 │ │ │ │ │ │ i6 : time describe inverse phi' │ │ │ - -- used 0.00350015s (cpu); 0.00391244s (thread); 0s (gc) │ │ │ + -- used 0.0022602s (cpu); 0.00354625s (thread); 0s (gc) │ │ │ │ │ │ o6 = rational map defined by forms of degree 2 │ │ │ source variety: smooth quadric hypersurface in PP^4 │ │ │ target variety: PP^3 │ │ │ dominance: true │ │ │ birationality: true (the inverse map is already calculated) │ │ │ projective degrees: {2, 4, 3, 1} │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/___Chern__Schwartz__Mac__Pherson.html │ │ │ @@ -96,27 +96,27 @@ │ │ │ 1 0 2 1 2 0 3 2 1 3 │ │ │ │ │ │ o2 : Ideal of GF 78125[x ..x ] │ │ │ 0 4
    │ │ │ │ │ │ │ │ │
    i3 : time ChernSchwartzMacPherson C
    │ │ │ - -- used 1.59361s (cpu); 0.953677s (thread); 0s (gc)
    │ │ │ + -- used 2.33275s (cpu); 1.5143s (thread); 0s (gc)
    │ │ │  
    │ │ │         4     3     2
    │ │ │  o3 = 3H  + 5H  + 3H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o3 : -----
    │ │ │          5
    │ │ │         H
    │ │ │ │ │ │ │ │ │
    i4 : time ChernSchwartzMacPherson(C,Certify=>true)
    │ │ │ - -- used 1.14112s (cpu); 0.844219s (thread); 0s (gc)
    │ │ │ + -- used 1.7595s (cpu); 1.10389s (thread); 0s (gc)
    │ │ │  Certify: output certified!
    │ │ │  
    │ │ │         4     3     2
    │ │ │  o4 = 3H  + 5H  + 3H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o4 : -----
    │ │ │ @@ -154,27 +154,27 @@
    │ │ │  
    │ │ │                  ZZ
    │ │ │  o8 : Ideal of ------[p   ..p   , p   , p   , p   , p   , p   , p   , p   , p   ]
    │ │ │                190181  0,1   0,2   1,2   0,3   1,3   2,3   0,4   1,4   2,4   3,4
    │ │ │ │ │ │ │ │ │
    i9 : time ChernClass G
    │ │ │ - -- used 0.303675s (cpu); 0.149817s (thread); 0s (gc)
    │ │ │ + -- used 0.265939s (cpu); 0.207493s (thread); 0s (gc)
    │ │ │  
    │ │ │          9      8      7      6      5      4     3
    │ │ │  o9 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o9 : -----
    │ │ │         10
    │ │ │        H
    │ │ │ │ │ │ │ │ │
    i10 : time ChernClass(G,Certify=>true)
    │ │ │ - -- used 0.00727497s (cpu); 0.0100965s (thread); 0s (gc)
    │ │ │ + -- used 0.342866s (cpu); 0.0600963s (thread); 0s (gc)
    │ │ │  Certify: output certified!
    │ │ │  
    │ │ │           9      8      7      6      5      4     3
    │ │ │  o10 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o10 : -----
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -40,25 +40,25 @@
    │ │ │ │                 2                           2
    │ │ │ │  o2 = ideal (- x  + x x , - x x  + x x , - x  + x x )
    │ │ │ │                 1    0 2     1 2    0 3     2    1 3
    │ │ │ │  
    │ │ │ │  o2 : Ideal of GF 78125[x ..x ]
    │ │ │ │                          0   4
    │ │ │ │  i3 : time ChernSchwartzMacPherson C
    │ │ │ │ - -- used 1.59361s (cpu); 0.953677s (thread); 0s (gc)
    │ │ │ │ + -- used 2.33275s (cpu); 1.5143s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         4     3     2
    │ │ │ │  o3 = 3H  + 5H  + 3H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o3 : -----
    │ │ │ │          5
    │ │ │ │         H
    │ │ │ │  i4 : time ChernSchwartzMacPherson(C,Certify=>true)
    │ │ │ │ - -- used 1.14112s (cpu); 0.844219s (thread); 0s (gc)
    │ │ │ │ + -- used 1.7595s (cpu); 1.10389s (thread); 0s (gc)
    │ │ │ │  Certify: output certified!
    │ │ │ │  
    │ │ │ │         4     3     2
    │ │ │ │  o4 = 3H  + 5H  + 3H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o4 : -----
    │ │ │ │ @@ -89,25 +89,25 @@
    │ │ │ │          0,2 1,3    0,1 2,3
    │ │ │ │  
    │ │ │ │                  ZZ
    │ │ │ │  o8 : Ideal of ------[p   ..p   , p   , p   , p   , p   , p   , p   , p   , p
    │ │ │ │  ]
    │ │ │ │                190181  0,1   0,2   1,2   0,3   1,3   2,3   0,4   1,4   2,4   3,4
    │ │ │ │  i9 : time ChernClass G
    │ │ │ │ - -- used 0.303675s (cpu); 0.149817s (thread); 0s (gc)
    │ │ │ │ + -- used 0.265939s (cpu); 0.207493s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          9      8      7      6      5      4     3
    │ │ │ │  o9 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o9 : -----
    │ │ │ │         10
    │ │ │ │        H
    │ │ │ │  i10 : time ChernClass(G,Certify=>true)
    │ │ │ │ - -- used 0.00727497s (cpu); 0.0100965s (thread); 0s (gc)
    │ │ │ │ + -- used 0.342866s (cpu); 0.0600963s (thread); 0s (gc)
    │ │ │ │  Certify: output certified!
    │ │ │ │  
    │ │ │ │           9      8      7      6      5      4     3
    │ │ │ │  o10 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │ │  
    │ │ │ │        ZZ[H]
    │ │ │ │  o10 : -----
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/___Euler__Characteristic.html
    │ │ │ @@ -86,21 +86,21 @@
    │ │ │  
    │ │ │                  ZZ
    │ │ │  o1 : Ideal of ------[p   ..p   , p   , p   , p   , p   , p   , p   , p   , p   ]
    │ │ │                190181  0,1   0,2   1,2   0,3   1,3   2,3   0,4   1,4   2,4   3,4
    │ │ │ │ │ │ │ │ │
    i2 : time EulerCharacteristic I
    │ │ │ - -- used 0.303459s (cpu); 0.15511s (thread); 0s (gc)
    │ │ │ + -- used 0.30337s (cpu); 0.137229s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 10
    │ │ │ │ │ │ │ │ │
    i3 : time EulerCharacteristic(I,Certify=>true)
    │ │ │ - -- used 0.010188s (cpu); 0.011592s (thread); 0s (gc)
    │ │ │ + -- used 0.0473119s (cpu); 0.0110623s (thread); 0s (gc)
    │ │ │  Certify: output certified!
    │ │ │  
    │ │ │  o3 = 10
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -32,19 +32,19 @@ │ │ │ │ i1 : I = Grassmannian(1,4,CoefficientRing=>ZZ/190181); │ │ │ │ │ │ │ │ ZZ │ │ │ │ o1 : Ideal of ------[p ..p , p , p , p , p , p , p , p , p │ │ │ │ ] │ │ │ │ 190181 0,1 0,2 1,2 0,3 1,3 2,3 0,4 1,4 2,4 3,4 │ │ │ │ i2 : time EulerCharacteristic I │ │ │ │ - -- used 0.303459s (cpu); 0.15511s (thread); 0s (gc) │ │ │ │ + -- used 0.30337s (cpu); 0.137229s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 10 │ │ │ │ i3 : time EulerCharacteristic(I,Certify=>true) │ │ │ │ - -- used 0.010188s (cpu); 0.011592s (thread); 0s (gc) │ │ │ │ + -- used 0.0473119s (cpu); 0.0110623s (thread); 0s (gc) │ │ │ │ Certify: output certified! │ │ │ │ │ │ │ │ o3 = 10 │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ No test is made to see if the projective variety is smooth. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _e_u_l_e_r_(_P_r_o_j_e_c_t_i_v_e_V_a_r_i_e_t_y_) -- topological Euler characteristic of a │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp!.html │ │ │ @@ -82,15 +82,15 @@ │ │ │ o3 = rational map defined by forms of degree 2 │ │ │ source variety: PP^5 │ │ │ target variety: PP^5 │ │ │ coefficient ring: QQ
    │ │ │ │ │ │ │ │ │
    i4 : time phi! ;
    │ │ │ - -- used 0.135191s (cpu); 0.0762212s (thread); 0s (gc)
    │ │ │ + -- used 0.514492s (cpu); 0.156149s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : RationalMap (Cremona transformation of PP^5 of type (2,2))
    │ │ │ │ │ │ │ │ │
    i5 : describe phi
    │ │ │  
    │ │ │  o5 = rational map defined by forms of degree 2
    │ │ │ @@ -115,15 +115,15 @@
    │ │ │  o8 = rational map defined by forms of degree 2
    │ │ │       source variety: PP^4
    │ │ │       target variety: PP^5
    │ │ │       coefficient ring: QQ
    │ │ │ │ │ │ │ │ │
    i9 : time phi! ;
    │ │ │ - -- used 0.133287s (cpu); 0.0709123s (thread); 0s (gc)
    │ │ │ + -- used 0.0936499s (cpu); 0.0318555s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : RationalMap (quadratic rational map from PP^4 to PP^5)
    │ │ │ │ │ │ │ │ │
    i10 : describe phi
    │ │ │  
    │ │ │  o10 = rational map defined by forms of degree 2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -22,15 +22,15 @@
    │ │ │ │  i3 : describe phi
    │ │ │ │  
    │ │ │ │  o3 = rational map defined by forms of degree 2
    │ │ │ │       source variety: PP^5
    │ │ │ │       target variety: PP^5
    │ │ │ │       coefficient ring: QQ
    │ │ │ │  i4 : time phi! ;
    │ │ │ │ - -- used 0.135191s (cpu); 0.0762212s (thread); 0s (gc)
    │ │ │ │ + -- used 0.514492s (cpu); 0.156149s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : RationalMap (Cremona transformation of PP^5 of type (2,2))
    │ │ │ │  i5 : describe phi
    │ │ │ │  
    │ │ │ │  o5 = rational map defined by forms of degree 2
    │ │ │ │       source variety: PP^5
    │ │ │ │       target variety: PP^5
    │ │ │ │ @@ -48,15 +48,15 @@
    │ │ │ │  i8 : describe phi
    │ │ │ │  
    │ │ │ │  o8 = rational map defined by forms of degree 2
    │ │ │ │       source variety: PP^4
    │ │ │ │       target variety: PP^5
    │ │ │ │       coefficient ring: QQ
    │ │ │ │  i9 : time phi! ;
    │ │ │ │ - -- used 0.133287s (cpu); 0.0709123s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0936499s (cpu); 0.0318555s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o9 : RationalMap (quadratic rational map from PP^4 to PP^5)
    │ │ │ │  i10 : describe phi
    │ │ │ │  
    │ │ │ │  o10 = rational map defined by forms of degree 2
    │ │ │ │        source variety: PP^4
    │ │ │ │        target variety: PP^5
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp^_st_st_sp__Ideal.html
    │ │ │ @@ -146,15 +146,15 @@
    │ │ │       ----------*v, x + ----------*v)
    │ │ │        d*e - a*f         d*e - a*f
    │ │ │  
    │ │ │  o5 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v]
    │ │ │ │ │ │ │ │ │
    i6 : time phi^** q
    │ │ │ - -- used 0.152268s (cpu); 0.150588s (thread); 0s (gc)
    │ │ │ + -- used 0.289867s (cpu); 0.227233s (thread); 0s (gc)
    │ │ │  
    │ │ │                  -e        -d        -c        -b        -a
    │ │ │  o6 = ideal (u + --*v, t + --*v, z + --*v, y + --*v, x + --*v)
    │ │ │                   f         f         f         f         f
    │ │ │  
    │ │ │  o6 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v]
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -83,15 +83,15 @@ │ │ │ │ 2 2 │ │ │ │ - a*c + e - b*c + f │ │ │ │ ----------*v, x + ----------*v) │ │ │ │ d*e - a*f d*e - a*f │ │ │ │ │ │ │ │ o5 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v] │ │ │ │ i6 : time phi^** q │ │ │ │ - -- used 0.152268s (cpu); 0.150588s (thread); 0s (gc) │ │ │ │ + -- used 0.289867s (cpu); 0.227233s (thread); 0s (gc) │ │ │ │ │ │ │ │ -e -d -c -b -a │ │ │ │ o6 = ideal (u + --*v, t + --*v, z + --*v, y + --*v, x + --*v) │ │ │ │ f f f f f │ │ │ │ │ │ │ │ o6 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v] │ │ │ │ i7 : oo == p │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/___Segre__Class.html │ │ │ @@ -131,52 +131,52 @@ │ │ │ o3 : Ideal of ------------------------------------------------------------------------------------------------------------------------- │ │ │ 2 2 2 2 2 2 2 2 │ │ │ x x - 2x x x x + x x - 2x x x x - 2x x x x + 4x x x x + x x + 4x x x x - 2x x x x - 2x x x x - 2x x x x + x x │ │ │ 3 4 2 3 4 5 2 5 1 3 4 6 1 2 5 6 0 3 5 6 1 6 1 2 4 7 0 3 4 7 0 2 5 7 0 1 6 7 0 7 │ │ │ │ │ │ │ │ │
    i4 : time SegreClass X
    │ │ │ - -- used 0.662143s (cpu); 0.428239s (thread); 0s (gc)
    │ │ │ + -- used 0.70577s (cpu); 0.544501s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5       4      3
    │ │ │  o4 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o4 : -----
    │ │ │          8
    │ │ │         H
    │ │ │ │ │ │ │ │ │
    i5 : time SegreClass lift(X,P7)
    │ │ │ - -- used 0.426867s (cpu); 0.277592s (thread); 0s (gc)
    │ │ │ + -- used 0.505052s (cpu); 0.447735s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5      4      3
    │ │ │  o5 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o5 : -----
    │ │ │          8
    │ │ │         H
    │ │ │ │ │ │ │ │ │
    i6 : time SegreClass(X,Certify=>true)
    │ │ │ - -- used 0.0232568s (cpu); 0.0222927s (thread); 0s (gc)
    │ │ │ + -- used 0.0738806s (cpu); 0.0177716s (thread); 0s (gc)
    │ │ │  Certify: output certified!
    │ │ │  
    │ │ │            7        6       5       4      3
    │ │ │  o6 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o6 : -----
    │ │ │          8
    │ │ │         H
    │ │ │ │ │ │ │ │ │
    i7 : time SegreClass(lift(X,P7),Certify=>true)
    │ │ │ - -- used 0.0972585s (cpu); 0.0986145s (thread); 0s (gc)
    │ │ │ + -- used 0.37345s (cpu); 0.205008s (thread); 0s (gc)
    │ │ │  Certify: output certified!
    │ │ │  
    │ │ │            7        6       5      4      3
    │ │ │  o7 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o7 : -----
    │ │ │ @@ -198,15 +198,15 @@
    │ │ │  o9 = ------[x ..x ]
    │ │ │       100003  0   6
    │ │ │  
    │ │ │  o9 : PolynomialRing
    │ │ │ │ │ │ │ │ │
    i10 : time phi = inverseMap toMap(minors(2,matrix{{x_0,x_1,x_3,x_4,x_5},{x_1,x_2,x_4,x_5,x_6}}),Dominant=>2)
    │ │ │ - -- used 0.0519939s (cpu); 0.0537215s (thread); 0s (gc)
    │ │ │ + -- used 0.0961548s (cpu); 0.0958205s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                          ZZ
    │ │ │                                                        ------[y ..y ]
    │ │ │                                                        100003  0   9                                                ZZ              2                              2
    │ │ │  o10 = map (----------------------------------------------------------------------------------------------------, ------[x ..x ], {y  - y y  - y y , y y  - y y , y  - y y  - y y , y y  + y y  - y y , y y  - y y , y y  - y y  - y y , y y  - y y  - y y })
    │ │ │             (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y )  100003  0   6     3    0 5    1 6   3 4    1 7   4    2 7    0 9   2 5    3 5    1 8   4 5    1 9   4 8    2 9    3 9   7 8    4 9    6 9
    │ │ │               5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │ @@ -216,15 +216,15 @@
    │ │ │                                                           100003  0   9                                                   ZZ
    │ │ │  o10 : RingMap ---------------------------------------------------------------------------------------------------- <-- ------[x ..x ]
    │ │ │                (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y )     100003  0   6
    │ │ │                  5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │ │ │ │ │ │ │
    i11 : time SegreClass phi
    │ │ │ - -- used 0.423874s (cpu); 0.279274s (thread); 0s (gc)
    │ │ │ + -- used 0.441667s (cpu); 0.332601s (thread); 0s (gc)
    │ │ │  
    │ │ │           9      8      7      6     5
    │ │ │  o11 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o11 : -----
    │ │ │          10
    │ │ │ @@ -246,28 +246,28 @@
    │ │ │  o12 : Ideal of ----------------------------------------------------------------------------------------------------
    │ │ │                 (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y )
    │ │ │                   5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │ │ │ │ │ │ │
    i13 : -- Segre class of B in G(1,4)
    │ │ │        time SegreClass B
    │ │ │ - -- used 0.423803s (cpu); 0.271486s (thread); 0s (gc)
    │ │ │ + -- used 0.44219s (cpu); 0.386603s (thread); 0s (gc)
    │ │ │  
    │ │ │           9      8      7      6     5
    │ │ │  o13 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o13 : -----
    │ │ │          10
    │ │ │         H
    │ │ │ │ │ │ │ │ │
    i14 : -- Segre class of B in P^9
    │ │ │        time SegreClass lift(B,ambient ring B)
    │ │ │ - -- used 1.33445s (cpu); 0.978665s (thread); 0s (gc)
    │ │ │ + -- used 1.4686s (cpu); 1.05555s (thread); 0s (gc)
    │ │ │  
    │ │ │             9       8       7      6     5
    │ │ │  o14 = 2764H  - 984H  + 294H  - 67H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o14 : -----
    │ │ │          10
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -82,46 +82,46 @@
    │ │ │ │                 2 2                2 2                                        2
    │ │ │ │  2                                                    2 2
    │ │ │ │                x x  - 2x x x x  + x x  - 2x x x x  - 2x x x x  + 4x x x x  + x x
    │ │ │ │  + 4x x x x  - 2x x x x  - 2x x x x  - 2x x x x  + x x
    │ │ │ │                 3 4     2 3 4 5    2 5     1 3 4 6     1 2 5 6     0 3 5 6    1
    │ │ │ │  6     1 2 4 7     0 3 4 7     0 2 5 7     0 1 6 7    0 7
    │ │ │ │  i4 : time SegreClass X
    │ │ │ │ - -- used 0.662143s (cpu); 0.428239s (thread); 0s (gc)
    │ │ │ │ + -- used 0.70577s (cpu); 0.544501s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            7        6       5       4      3
    │ │ │ │  o4 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o4 : -----
    │ │ │ │          8
    │ │ │ │         H
    │ │ │ │  i5 : time SegreClass lift(X,P7)
    │ │ │ │ - -- used 0.426867s (cpu); 0.277592s (thread); 0s (gc)
    │ │ │ │ + -- used 0.505052s (cpu); 0.447735s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            7        6       5      4      3
    │ │ │ │  o5 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o5 : -----
    │ │ │ │          8
    │ │ │ │         H
    │ │ │ │  i6 : time SegreClass(X,Certify=>true)
    │ │ │ │ - -- used 0.0232568s (cpu); 0.0222927s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0738806s (cpu); 0.0177716s (thread); 0s (gc)
    │ │ │ │  Certify: output certified!
    │ │ │ │  
    │ │ │ │            7        6       5       4      3
    │ │ │ │  o6 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o6 : -----
    │ │ │ │          8
    │ │ │ │         H
    │ │ │ │  i7 : time SegreClass(lift(X,P7),Certify=>true)
    │ │ │ │ - -- used 0.0972585s (cpu); 0.0986145s (thread); 0s (gc)
    │ │ │ │ + -- used 0.37345s (cpu); 0.205008s (thread); 0s (gc)
    │ │ │ │  Certify: output certified!
    │ │ │ │  
    │ │ │ │            7        6       5      4      3
    │ │ │ │  o7 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o7 : -----
    │ │ │ │ @@ -142,15 +142,15 @@
    │ │ │ │         ZZ
    │ │ │ │  o9 = ------[x ..x ]
    │ │ │ │       100003  0   6
    │ │ │ │  
    │ │ │ │  o9 : PolynomialRing
    │ │ │ │  i10 : time phi = inverseMap toMap(minors(2,matrix{{x_0,x_1,x_3,x_4,x_5},
    │ │ │ │  {x_1,x_2,x_4,x_5,x_6}}),Dominant=>2)
    │ │ │ │ - -- used 0.0519939s (cpu); 0.0537215s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0961548s (cpu); 0.0958205s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                                                          ZZ
    │ │ │ │                                                        ------[y ..y ]
    │ │ │ │                                                        100003  0   9
    │ │ │ │  ZZ              2                              2
    │ │ │ │  o10 = map (--------------------------------------------------------------------
    │ │ │ │  --------------------------------, ------[x ..x ], {y  - y y  - y y , y y  - y y
    │ │ │ │ @@ -170,15 +170,15 @@
    │ │ │ │  o10 : RingMap -----------------------------------------------------------------
    │ │ │ │  ----------------------------------- <-- ------[x ..x ]
    │ │ │ │                (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y
    │ │ │ │  - y y  + y y , y y  - y y  + y y )     100003  0   6
    │ │ │ │                  5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6
    │ │ │ │  1 7    0 8   2 3    1 4    0 5
    │ │ │ │  i11 : time SegreClass phi
    │ │ │ │ - -- used 0.423874s (cpu); 0.279274s (thread); 0s (gc)
    │ │ │ │ + -- used 0.441667s (cpu); 0.332601s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │           9      8      7      6     5
    │ │ │ │  o11 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │ │  
    │ │ │ │        ZZ[H]
    │ │ │ │  o11 : -----
    │ │ │ │          10
    │ │ │ │ @@ -199,26 +199,26 @@
    │ │ │ │  ------------------------------------
    │ │ │ │                 (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y
    │ │ │ │  - y y  + y y , y y  - y y  + y y )
    │ │ │ │                   5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2
    │ │ │ │  6    1 7    0 8   2 3    1 4    0 5
    │ │ │ │  i13 : -- Segre class of B in G(1,4)
    │ │ │ │        time SegreClass B
    │ │ │ │ - -- used 0.423803s (cpu); 0.271486s (thread); 0s (gc)
    │ │ │ │ + -- used 0.44219s (cpu); 0.386603s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │           9      8      7      6     5
    │ │ │ │  o13 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │ │  
    │ │ │ │        ZZ[H]
    │ │ │ │  o13 : -----
    │ │ │ │          10
    │ │ │ │         H
    │ │ │ │  i14 : -- Segre class of B in P^9
    │ │ │ │        time SegreClass lift(B,ambient ring B)
    │ │ │ │ - -- used 1.33445s (cpu); 0.978665s (thread); 0s (gc)
    │ │ │ │ + -- used 1.4686s (cpu); 1.05555s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │             9       8       7      6     5
    │ │ │ │  o14 = 2764H  - 984H  + 294H  - 67H  + 9H
    │ │ │ │  
    │ │ │ │        ZZ[H]
    │ │ │ │  o14 : -----
    │ │ │ │          10
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_abstract__Rational__Map.html
    │ │ │ @@ -97,15 +97,15 @@
    │ │ │  o3 = QQ[u ..u ]
    │ │ │           0   5
    │ │ │  
    │ │ │  o3 : PolynomialRing
    │ │ │ │ │ │ │ │ │
    i4 : time psi = abstractRationalMap(P4,P5,f)
    │ │ │ - -- used 0.00118846s (cpu); 0.000368992s (thread); 0s (gc)
    │ │ │ + -- used 0.00221773s (cpu); 0.000294312s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = -- rational map --
    │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │                        0   1   2   3   4   5
    │ │ │       defining forms: given by a function
    │ │ │ @@ -113,21 +113,21 @@
    │ │ │  o4 : AbstractRationalMap (rational map from PP^4 to PP^5)
    │ │ │ │ │ │ │ │ │

    Now we compute first the degree of the forms defining the abstract map psi and then the corresponding concrete rational map.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time projectiveDegrees(psi,3)
    │ │ │ - -- used 0.299552s (cpu); 0.15716s (thread); 0s (gc)
    │ │ │ + -- used 0.229326s (cpu); 0.169096s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 2
    │ │ │
    i6 : time rationalMap psi
    │ │ │ - -- used 0.40278s (cpu); 0.331735s (thread); 0s (gc)
    │ │ │ + -- used 0.430315s (cpu); 0.369564s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = -- rational map --
    │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │                        0   1   2   3   4   5
    │ │ │       defining forms: {
    │ │ │ @@ -211,15 +211,15 @@
    │ │ │  
    │ │ │                   ZZ
    │ │ │  o13 : Ideal of -----[x ..x ]
    │ │ │                 65521  0   3
    │ │ │
    i14 : time T = abstractRationalMap(I,"OADP")
    │ │ │ - -- used 0.151815s (cpu); 0.0652653s (thread); 0s (gc)
    │ │ │ + -- used 0.0639987s (cpu); 0.0649795s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │ @@ -229,39 +229,39 @@
    │ │ │  o14 : AbstractRationalMap (rational map from PP^3 to PP^3)
    │ │ │
    │ │ │

    The degree of the forms defining the abstract map T can be obtained by the following command:

    │ │ │ │ │ │ │ │ │ │ │ │
    i15 : time projectiveDegrees(T,2)
    │ │ │ - -- used 3.0254s (cpu); 1.69288s (thread); 0s (gc)
    │ │ │ + -- used 3.44941s (cpu); 1.95221s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3
    │ │ │
    │ │ │

    We verify that the composition of T with itself is defined by linear forms:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i16 : time T2 = T * T
    │ │ │ - -- used 0.000199554s (cpu); 2.7712e-05s (thread); 0s (gc)
    │ │ │ + -- used 0.000124975s (cpu); 2.712e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │        defining forms: given by a function
    │ │ │  
    │ │ │  o16 : AbstractRationalMap (rational map from PP^3 to PP^3)
    │ │ │
    i17 : time projectiveDegrees(T2,2)
    │ │ │ - -- used 5.28753s (cpu); 2.90553s (thread); 0s (gc)
    │ │ │ + -- used 6.23056s (cpu); 3.31739s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 = 1
    │ │ │
    │ │ │

    We verify that the composition of T with itself leaves a random point fixed:

    │ │ │ │ │ │ │ │ │ @@ -286,15 +286,15 @@ │ │ │ o20 : List │ │ │ │ │ │
    │ │ │

    We now compute the concrete rational map corresponding to T:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -282,15 +282,15 @@ │ │ │ } │ │ │ │ │ │ o7 : RationalMap (quadratic rational map from PP^8 to 8-dimensional subvariety of PP^11) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i21 : time f = rationalMap T
    │ │ │ - -- used 4.10257s (cpu); 2.25715s (thread); 0s (gc)
    │ │ │ + -- used 5.28201s (cpu); 3.46697s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -36,32 +36,32 @@
    │ │ │ │  i3 : P5 := QQ[u_0..u_5]
    │ │ │ │  
    │ │ │ │  o3 = QQ[u ..u ]
    │ │ │ │           0   5
    │ │ │ │  
    │ │ │ │  o3 : PolynomialRing
    │ │ │ │  i4 : time psi = abstractRationalMap(P4,P5,f)
    │ │ │ │ - -- used 0.00118846s (cpu); 0.000368992s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00221773s (cpu); 0.000294312s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = -- rational map --
    │ │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │ │                        0   1   2   3   4
    │ │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │ │                        0   1   2   3   4   5
    │ │ │ │       defining forms: given by a function
    │ │ │ │  
    │ │ │ │  o4 : AbstractRationalMap (rational map from PP^4 to PP^5)
    │ │ │ │  Now we compute first the degree of the forms defining the abstract map psi and
    │ │ │ │  then the corresponding concrete rational map.
    │ │ │ │  i5 : time projectiveDegrees(psi,3)
    │ │ │ │ - -- used 0.299552s (cpu); 0.15716s (thread); 0s (gc)
    │ │ │ │ + -- used 0.229326s (cpu); 0.169096s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = 2
    │ │ │ │  i6 : time rationalMap psi
    │ │ │ │ - -- used 0.40278s (cpu); 0.331735s (thread); 0s (gc)
    │ │ │ │ + -- used 0.430315s (cpu); 0.369564s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 = -- rational map --
    │ │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │ │                        0   1   2   3   4
    │ │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │ │                        0   1   2   3   4   5
    │ │ │ │       defining forms: {
    │ │ │ │ @@ -140,48 +140,48 @@
    │ │ │ │  o13 = ideal (- x  + x x , - x x  + x x , - x  + x x )
    │ │ │ │                  1    0 2     1 2    0 3     2    1 3
    │ │ │ │  
    │ │ │ │                   ZZ
    │ │ │ │  o13 : Ideal of -----[x ..x ]
    │ │ │ │                 65521  0   3
    │ │ │ │  i14 : time T = abstractRationalMap(I,"OADP")
    │ │ │ │ - -- used 0.151815s (cpu); 0.0652653s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0639987s (cpu); 0.0649795s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o14 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │ │                     65521  0   1   2   3
    │ │ │ │                       ZZ
    │ │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │ │                     65521  0   1   2   3
    │ │ │ │        defining forms: given by a function
    │ │ │ │  
    │ │ │ │  o14 : AbstractRationalMap (rational map from PP^3 to PP^3)
    │ │ │ │  The degree of the forms defining the abstract map T can be obtained by the
    │ │ │ │  following command:
    │ │ │ │  i15 : time projectiveDegrees(T,2)
    │ │ │ │ - -- used 3.0254s (cpu); 1.69288s (thread); 0s (gc)
    │ │ │ │ + -- used 3.44941s (cpu); 1.95221s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o15 = 3
    │ │ │ │  We verify that the composition of T with itself is defined by linear forms:
    │ │ │ │  i16 : time T2 = T * T
    │ │ │ │ - -- used 0.000199554s (cpu); 2.7712e-05s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000124975s (cpu); 2.712e-05s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o16 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │ │                     65521  0   1   2   3
    │ │ │ │                       ZZ
    │ │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │ │                     65521  0   1   2   3
    │ │ │ │        defining forms: given by a function
    │ │ │ │  
    │ │ │ │  o16 : AbstractRationalMap (rational map from PP^3 to PP^3)
    │ │ │ │  i17 : time projectiveDegrees(T2,2)
    │ │ │ │ - -- used 5.28753s (cpu); 2.90553s (thread); 0s (gc)
    │ │ │ │ + -- used 6.23056s (cpu); 3.31739s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o17 = 1
    │ │ │ │  We verify that the composition of T with itself leaves a random point fixed:
    │ │ │ │  i18 : p = apply(3,i->random(ZZ/65521))|{1}
    │ │ │ │  
    │ │ │ │  o18 = {28963, 31975, -30172, 1}
    │ │ │ │  
    │ │ │ │ @@ -194,15 +194,15 @@
    │ │ │ │  i20 : T q
    │ │ │ │  
    │ │ │ │  o20 = {28963, 31975, -30172, 1}
    │ │ │ │  
    │ │ │ │  o20 : List
    │ │ │ │  We now compute the concrete rational map corresponding to T:
    │ │ │ │  i21 : time f = rationalMap T
    │ │ │ │ - -- used 4.10257s (cpu); 2.25715s (thread); 0s (gc)
    │ │ │ │ + -- used 5.28201s (cpu); 3.46697s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o21 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │ │                     65521  0   1   2   3
    │ │ │ │                       ZZ
    │ │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_approximate__Inverse__Map.html
    │ │ │ @@ -129,15 +129,15 @@
    │ │ │                         1 2    0 4
    │ │ │                       }
    │ │ │  
    │ │ │  o2 : RationalMap (quadratic rational map from hypersurface in PP^9 to PP^8)
    │ │ │
    i3 : time psi = approximateInverseMap phi
    │ │ │ - -- used 0.218667s (cpu); 0.169055s (thread); 0s (gc)
    │ │ │ + -- used 0.372312s (cpu); 0.254928s (thread); 0s (gc)
    │ │ │  -- approximateInverseMap: step 1 of 10
    │ │ │  -- approximateInverseMap: step 2 of 10
    │ │ │  -- approximateInverseMap: step 3 of 10
    │ │ │  -- approximateInverseMap: step 4 of 10
    │ │ │  -- approximateInverseMap: step 5 of 10
    │ │ │  -- approximateInverseMap: step 6 of 10
    │ │ │  -- approximateInverseMap: step 7 of 10
    │ │ │ @@ -193,15 +193,15 @@
    │ │ │  o3 : RationalMap (quadratic rational map from PP^8 to hypersurface in PP^9)
    │ │ │
    i4 : assert(phi * psi == 1 and psi * phi == 1)
    │ │ │
    i5 : time psi' = approximateInverseMap(phi,CodimBsInv=>5);
    │ │ │ - -- used 0.218999s (cpu); 0.146713s (thread); 0s (gc)
    │ │ │ + -- used 0.283764s (cpu); 0.228417s (thread); 0s (gc)
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │  
    │ │ │  o5 : RationalMap (quadratic rational map from PP^8 to hypersurface in PP^9)
    │ │ │
    i8 : -- without the option 'CodimBsInv=>4', it takes about triple time 
    │ │ │       time psi=approximateInverseMap(phi,CodimBsInv=>4)
    │ │ │ - -- used 2.28934s (cpu); 1.6958s (thread); 0s (gc)
    │ │ │ + -- used 2.89445s (cpu); 2.60374s (thread); 0s (gc)
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │  
    │ │ │  o8 = -- rational map --
    │ │ │                                  ZZ
    │ │ │       source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x  , x  ]) defined by
    │ │ │ @@ -349,15 +349,15 @@
    │ │ │       phi * psi == 1
    │ │ │  
    │ │ │  o9 = false
    │ │ │
    i10 : -- in this case we can remedy enabling the option Certify
    │ │ │        time psi = approximateInverseMap(phi,CodimBsInv=>4,Certify=>true)
    │ │ │ - -- used 3.34434s (cpu); 2.48164s (thread); 0s (gc)
    │ │ │ + -- used 3.4615s (cpu); 3.05447s (thread); 0s (gc)
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │  Certify: output certified!
    │ │ │  
    │ │ │  o10 = -- rational map --
    │ │ │                                   ZZ
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -126,15 +126,15 @@
    │ │ │ │  
    │ │ │ │                        x x  - x x
    │ │ │ │                         1 2    0 4
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o2 : RationalMap (quadratic rational map from hypersurface in PP^9 to PP^8)
    │ │ │ │  i3 : time psi = approximateInverseMap phi
    │ │ │ │ - -- used 0.218667s (cpu); 0.169055s (thread); 0s (gc)
    │ │ │ │ + -- used 0.372312s (cpu); 0.254928s (thread); 0s (gc)
    │ │ │ │  -- approximateInverseMap: step 1 of 10
    │ │ │ │  -- approximateInverseMap: step 2 of 10
    │ │ │ │  -- approximateInverseMap: step 3 of 10
    │ │ │ │  -- approximateInverseMap: step 4 of 10
    │ │ │ │  -- approximateInverseMap: step 5 of 10
    │ │ │ │  -- approximateInverseMap: step 6 of 10
    │ │ │ │  -- approximateInverseMap: step 7 of 10
    │ │ │ │ @@ -250,15 +250,15 @@
    │ │ │ │  0 6     3 6      6      0 7      1 7      3 7      4 7      6 7      7      0 8
    │ │ │ │  1 8      2 8      3 8      4 8      5 8      6 8      7 8     8
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o3 : RationalMap (quadratic rational map from PP^8 to hypersurface in PP^9)
    │ │ │ │  i4 : assert(phi * psi == 1 and psi * phi == 1)
    │ │ │ │  i5 : time psi' = approximateInverseMap(phi,CodimBsInv=>5);
    │ │ │ │ - -- used 0.218999s (cpu); 0.146713s (thread); 0s (gc)
    │ │ │ │ + -- used 0.283764s (cpu); 0.228417s (thread); 0s (gc)
    │ │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ │  
    │ │ │ │  o5 : RationalMap (quadratic rational map from PP^8 to hypersurface in PP^9)
    │ │ │ │  i6 : assert(psi == psi')
    │ │ │ │  A more complicated example is the following (here _i_n_v_e_r_s_e_M_a_p takes a lot of
    │ │ │ │ @@ -416,15 +416,15 @@
    │ │ │ │  4 6      5 6      6      0 7      1 7      2 7     3 7      4 7      5 7      6 7     0 8      1 8      3 8     4 8
    │ │ │ │  5 8      6 8     7 8
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o7 : RationalMap (quadratic rational map from PP^8 to 8-dimensional subvariety of PP^11)
    │ │ │ │  i8 : -- without the option 'CodimBsInv=>4', it takes about triple time
    │ │ │ │       time psi=approximateInverseMap(phi,CodimBsInv=>4)
    │ │ │ │ - -- used 2.28934s (cpu); 1.6958s (thread); 0s (gc)
    │ │ │ │ + -- used 2.89445s (cpu); 2.60374s (thread); 0s (gc)
    │ │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ │  
    │ │ │ │  o8 = -- rational map --
    │ │ │ │                                  ZZ
    │ │ │ │       source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x  , x  ]) defined by
    │ │ │ │ @@ -523,15 +523,15 @@
    │ │ │ │  o8 : RationalMap (quadratic rational map from 8-dimensional subvariety of PP^11 to PP^8)
    │ │ │ │  i9 : -- but...
    │ │ │ │       phi * psi == 1
    │ │ │ │  
    │ │ │ │  o9 = false
    │ │ │ │  i10 : -- in this case we can remedy enabling the option Certify
    │ │ │ │        time psi = approximateInverseMap(phi,CodimBsInv=>4,Certify=>true)
    │ │ │ │ - -- used 3.34434s (cpu); 2.48164s (thread); 0s (gc)
    │ │ │ │ + -- used 3.4615s (cpu); 3.05447s (thread); 0s (gc)
    │ │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ │  Certify: output certified!
    │ │ │ │  
    │ │ │ │  o10 = -- rational map --
    │ │ │ │                                   ZZ
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_degree__Map.html
    │ │ │ @@ -91,15 +91,15 @@
    │ │ │  o4 = map (ringP8, ringP14, {- 95x  + 181x x  + 1028x  - 1384x x  - 1455x x  + 559x  - 502x x  + 1264x x  - 162x x  + 1209x  - 180x x  - 504x x  - 1168x x  - 676x x  + 501x  + 73x x  + 1263x x  + 1035x x  + 844x x  + 1593x x  + 785x  + 982x x  - 412x x  + 1335x x  + 1136x x  + 826x x  + 1078x x  + 1158x  + 335x x  - 982x x  - 1479x x  - 15x x  + 1363x x  + 1397x x  - 575x x  - 71x  + 1255x x  - 1138x x  - 1590x x  + 604x x  + 1182x x  - 63x x  - 1382x x  - 1255x x  - 613x , - 1444x  + 575x x  + 767x  - 1495x x  + 1631x x  - 217x  - 294x x  - 1511x x  - 504x x  - 1284x  - 1459x x  + 152x x  + 141x x  - 10x x  - 95x  + 1056x x  + 654x x  + 1397x x  - 930x x  + 578x x  - 696x  + 759x x  + 733x x  + 505x x  - 609x x  + 526x x  - 659x x  + 846x  + 1253x x  - 1519x x  + 635x x  + 576x x  + 54x x  - 1261x x  - 822x x  - 257x  - 986x x  + 356x x  - 1488x x  - 1561x x  - 850x x  - 85x x  - 1350x x  - 783x x  - 1335x , - 871x  + 1006x x  - 1399x  - 1636x x  - 699x x  - 769x  - 307x x  - 1645x x  - 502x x  - 719x  + 1405x x  + 870x x  - 1133x x  + 425x x  - 1203x  - 1601x x  + 117x x  - 382x x  + 318x x  - 117x x  - 560x  + 1135x x  + 1468x x  + 869x x  - 943x x  - 335x x  - 1218x x  + 201x  - 11x x  + 540x x  - 710x x  - 489x x  + 1605x x  + 1663x x  - 423x x  + 1246x  + 97x x  - 644x x  + 1655x x  + 1219x x  + 1476x x  + 1355x x  + 1594x x  + 893x x  + 1150x , - 143x  + 1240x x  - 1042x  + 1649x x  + 1024x x  + 794x  + 1442x x  - 1263x x  + 537x x  - 82x  - 734x x  - 1569x x  - 798x x  - 366x x  + 1289x  - 569x x  - 254x x  + 237x x  - 1234x x  - 807x x  + 264x  - 202x x  - 616x x  + 44x x  + 1465x x  + 685x x  + 1630x x  - 406x  - 123x x  - 4x x  + 1583x x  + 1235x x  + 162x x  + 1034x x  - 1035x x  + 737x  + 660x x  + 1459x x  - 359x x  - 1291x x  + 1638x x  - 325x x  - 631x x  + 73x x  - 1471x , - 1340x  + 31x x  - 994x  - 880x x  - 89x x  + 574x  + 760x x  - 1054x x  + 772x x  - 239x  - 443x x  + 1240x x  + 637x x  - 1423x x  + 320x  - 1363x x  - 1139x x  - 158x x  - 325x x  - 1578x x  + 32x  + 695x x  + 305x x  + 1012x x  + 1492x x  + 1290x x  + 1579x x  - 342x  - 83x x  - 104x x  + 998x x  - 92x x  + 1554x x  + 201x x  - 237x x  + 160x  - 228x x  - 543x x  - 1147x x  - 376x x  + 1313x x  + 603x x  + 106x x  - 1361x x  + 699x , - 228x  - 1510x x  + 277x  - 4x x  - 22x x  - 1526x  + 234x x  + 969x x  + 1253x x  - 1426x  - 1474x x  + 947x x  + 194x x  - 316x x  - 988x  - 1211x x  + 1087x x  + 536x x  - 491x x  + 870x x  - 659x  + 1490x x  - 469x x  + 1190x x  + 807x x  + 650x x  + 448x x  - 1353x  - 218x x  + 759x x  - 253x x  + 830x x  - 1080x x  - 143x x  - 1313x x  - 374x  - 180x x  + 741x x  + 742x x  - 1254x x  + 458x x  - 345x x  + 597x x  + 1567x x  - 31x , 1120x  + 709x x  - 1538x  - 1048x x  - 162x x  - 1518x  - 73x x  + 380x x  + 533x x  - 286x  + 1374x x  - 74x x  - 22x x  + 1535x x  - 1071x  - 839x x  - 560x x  + 928x x  + 335x x  - 1008x x  + 810x  - 448x x  - 357x x  - 107x x  + 40x x  + 784x x  - 1423x x  + 1276x  + 147x x  + 443x x  - 598x x  - 1077x x  - 1214x x  + 322x x  - 1408x x  + 72x  - 63x x  - 1513x x  - 791x x  + 11x x  + 77x x  + 836x x  - 1100x x  + 1637x x  - 788x , 1331x  + 318x x  - 704x  + 51x x  + 275x x  + 1149x  + 1526x x  + 768x x  + 414x x  - 782x  - 262x x  + 686x x  - 380x x  + 1377x x  + 1077x  + 1650x x  - 1129x x  - 508x x  + 846x x  + 1513x x  + 460x  - 1626x x  - 1024x x  + 862x x  + 1352x x  - 188x x  - 1382x x  - 650x  + 55x x  - 326x x  + 1037x x  + 705x x  - 667x x  + 1483x x  + 1661x x  - 1652x  - 1052x x  - 692x x  - 542x x  + 162x x  + 582x x  - 1369x x  + 934x x  + 1392x x  + 1227x , - 346x  + 1408x x  - 1225x  - 1536x x  - 1028x x  - 985x  - 210x x  - 1312x x  + 915x x  + 1633x  - 202x x  - 1636x x  - 1653x x  - 480x x  - 1260x  - 813x x  - 1623x x  - 1429x x  + 1094x x  - 747x x  + 955x  + 898x x  - 795x x  - 35x x  - 566x x  + 1631x x  - 324x x  + 926x  - 132x x  - 9x x  - 1290x x  - 543x x  + 902x x  + 735x x  - 342x x  - 400x  + 900x x  - 463x x  + 694x x  - 1262x x  - 1449x x  - 448x x  - 1402x x  - 731x x  - 996x , 301x  + 166x x  - 955x  - 739x x  - 1199x x  - 319x  + 1047x x  - 532x x  + 902x x  + 1195x  - 663x x  + 1215x x  - 534x x  - 332x x  - 973x  + 772x x  - 308x x  + 315x x  - 454x x  - 483x x  - 239x  - 1313x x  - 419x x  - 1340x x  - 1388x x  - 1340x x  - 1665x x  - 333x  - 465x x  - 1084x x  + 676x x  - 1612x x  - 288x x  + 11x x  - 1170x x  - 189x  + 498x x  - 889x x  + 693x x  + 1460x x  - 473x x  - 414x x  - 122x x  - 1659x x  - 1421x , 14x  - 1049x x  + 1506x  + 1235x x  + 642x x  - 1034x  + 460x x  + 150x x  + 760x x  - 1246x  - 1407x x  + 1570x x  + 1403x x  - 1610x x  - 431x  + 574x x  + 893x x  - 657x x  + 417x x  + 1362x x  + 224x  + 268x x  + 1097x x  + 1132x x  + 148x x  + 1331x x  - 77x x  - 756x  + 228x x  + 136x x  - 1484x x  - 1478x x  - 13x x  + 1620x x  - 701x x  - 769x  - 760x x  - 492x x  - 1077x x  - 1249x x  - 834x x  - 395x x  - 1358x x  - 988x x  + 113x , - 1634x  - 13x x  + 805x  - 21x x  - 1655x x  + 1479x  - 1510x x  - 646x x  + 225x x  - 1411x  + 1227x x  - 1108x x  + 1291x x  - 59x x  - 142x  + 586x x  - 676x x  + 655x x  - 1476x x  + 453x x  - 1076x  - 1152x x  + 1373x x  - 1191x x  - 416x x  + 699x x  + 317x x  + 825x  - 1560x x  - 488x x  - 1035x x  - 1561x x  - 644x x  - 1178x x  - 1320x x  + 158x  + 889x x  + 1444x x  - 1486x x  - 1211x x  + 1269x x  - 1228x x  + 568x x  + 1591x x  + 1207x , 105x  - 538x x  - 1222x  - 277x x  + 716x x  - 1067x  - 428x x  + 154x x  - 469x x  + 77x  + 538x x  - 179x x  + 921x x  - 223x x  + 1093x  - 262x x  + 1299x x  + 631x x  + 1486x x  - 1280x x  - 121x  - 50x x  - 978x x  - 694x x  - 531x x  + 505x x  + 1412x x  - 1061x  + 1202x x  + 448x x  - 187x x  + 1276x x  - 121x x  + 1361x x  + 697x x  + 682x  + 1592x x  + 705x x  - 227x x  - 7x x  - 1423x x  - 1446x x  - 1578x x  + 1511x x  + 917x , 1270x  - 391x x  - 1116x  - 287x x  + 653x x  + 1643x  + 1623x x  + 514x x  - 14x x  - 90x  + 1232x x  - 1434x x  + 1296x x  + 1522x x  + 136x  - 623x x  - 607x x  + 18x x  + 896x x  - 29x x  + 1059x  - 1053x x  + 1643x x  + 1652x x  - 1190x x  - 1073x x  + 1470x x  - 944x  - 93x x  - 187x x  - 994x x  - 1415x x  - 229x x  - 796x x  + 1642x x  + 1600x  - 344x x  + 905x x  + 1032x x  - 538x x  - 891x x  + 1243x x  + 1290x x  + 490x x  - 1148x , 1613x  + 175x x  - 1346x  - 1000x x  - 1217x x  - 729x  - 1296x x  + 1456x x  + 745x x  + 539x  + 525x x  - 811x x  + 753x x  + 1362x x  + 1629x  - 840x x  + 513x x  + 429x x  + 842x x  + 1414x x  - 308x  + 1415x x  - 1461x x  - 1135x x  + 701x x  + 766x x  + 785x x  + 1503x  + 147x x  + 929x x  - 1220x x  - 853x x  + 493x x  + 226x x  + 1416x x  + 280x  - 7x x  + 1632x x  + 520x x  + 1259x x  + 157x x  + 1596x x  + 655x x  - 42x x  - 586x })
    │ │ │                                   0       0 1        1        0 2        1 2       2       0 3        1 3       2 3        3       0 4       1 4        2 4       3 4       4      0 5        1 5        2 5       3 5        4 5       5       0 6       1 6        2 6        3 6       4 6        5 6        6       0 7       1 7        2 7      3 7        4 7        5 7       6 7      7        0 8        1 8        2 8       3 8        4 8      5 8        6 8        7 8       8         0       0 1       1        0 2        1 2       2       0 3        1 3       2 3        3        0 4       1 4       2 4      3 4      4        0 5       1 5        2 5       3 5       4 5       5       0 6       1 6       2 6       3 6       4 6       5 6       6        0 7        1 7       2 7       3 7      4 7        5 7       6 7       7       0 8       1 8        2 8        3 8       4 8      5 8        6 8       7 8        8        0        0 1        1        0 2       1 2       2       0 3        1 3       2 3       3        0 4       1 4        2 4       3 4        4        0 5       1 5       2 5       3 5       4 5       5        0 6        1 6       2 6       3 6       4 6        5 6       6      0 7       1 7       2 7       3 7        4 7        5 7       6 7        7      0 8       1 8        2 8        3 8        4 8        5 8        6 8       7 8        8        0        0 1        1        0 2        1 2       2        0 3        1 3       2 3      3       0 4        1 4       2 4       3 4        4       0 5       1 5       2 5        3 5       4 5       5       0 6       1 6      2 6        3 6       4 6        5 6       6       0 7     1 7        2 7        3 7       4 7        5 7        6 7       7       0 8        1 8       2 8        3 8        4 8       5 8       6 8      7 8        8         0      0 1       1       0 2      1 2       2       0 3        1 3       2 3       3       0 4        1 4       2 4        3 4       4        0 5        1 5       2 5       3 5        4 5      5       0 6       1 6        2 6        3 6        4 6        5 6       6      0 7       1 7       2 7      3 7        4 7       5 7       6 7       7       0 8       1 8        2 8       3 8        4 8       5 8       6 8        7 8       8        0        0 1       1     0 2      1 2        2       0 3       1 3        2 3        3        0 4       1 4       2 4       3 4       4        0 5        1 5       2 5       3 5       4 5       5        0 6       1 6        2 6       3 6       4 6       5 6        6       0 7       1 7       2 7       3 7        4 7       5 7        6 7       7       0 8       1 8       2 8        3 8       4 8       5 8       6 8        7 8      8       0       0 1        1        0 2       1 2        2      0 3       1 3       2 3       3        0 4      1 4      2 4        3 4        4       0 5       1 5       2 5       3 5        4 5       5       0 6       1 6       2 6      3 6       4 6        5 6        6       0 7       1 7       2 7        3 7        4 7       5 7        6 7      7      0 8        1 8       2 8      3 8      4 8       5 8        6 8        7 8       8       0       0 1       1      0 2       1 2        2        0 3       1 3       2 3       3       0 4       1 4       2 4        3 4        4        0 5        1 5       2 5       3 5        4 5       5        0 6        1 6       2 6        3 6       4 6        5 6       6      0 7       1 7        2 7       3 7       4 7        5 7        6 7        7        0 8       1 8       2 8       3 8       4 8        5 8       6 8        7 8        8        0        0 1        1        0 2        1 2       2       0 3        1 3       2 3        3       0 4        1 4        2 4       3 4        4       0 5        1 5        2 5        3 5       4 5       5       0 6       1 6      2 6       3 6        4 6       5 6       6       0 7     1 7        2 7       3 7       4 7       5 7       6 7       7       0 8       1 8       2 8        3 8        4 8       5 8        6 8       7 8       8      0       0 1       1       0 2        1 2       2        0 3       1 3       2 3        3       0 4        1 4       2 4       3 4       4       0 5       1 5       2 5       3 5       4 5       5        0 6       1 6        2 6        3 6        4 6        5 6       6       0 7        1 7       2 7        3 7       4 7      5 7        6 7       7       0 8       1 8       2 8        3 8       4 8       5 8       6 8        7 8        8     0        0 1        1        0 2       1 2        2       0 3       1 3       2 3        3        0 4        1 4        2 4        3 4       4       0 5       1 5       2 5       3 5        4 5       5       0 6        1 6        2 6       3 6        4 6      5 6       6       0 7       1 7        2 7        3 7      4 7        5 7       6 7       7       0 8       1 8        2 8        3 8       4 8       5 8        6 8       7 8       8         0      0 1       1      0 2        1 2        2        0 3       1 3       2 3        3        0 4        1 4        2 4      3 4       4       0 5       1 5       2 5        3 5       4 5        5        0 6        1 6        2 6       3 6       4 6       5 6       6        0 7       1 7        2 7        3 7       4 7        5 7        6 7       7       0 8        1 8        2 8        3 8        4 8        5 8       6 8        7 8        8      0       0 1        1       0 2       1 2        2       0 3       1 3       2 3      3       0 4       1 4       2 4       3 4        4       0 5        1 5       2 5        3 5        4 5       5      0 6       1 6       2 6       3 6       4 6        5 6        6        0 7       1 7       2 7        3 7       4 7        5 7       6 7       7        0 8       1 8       2 8     3 8        4 8        5 8        6 8        7 8       8       0       0 1        1       0 2       1 2        2        0 3       1 3      2 3      3        0 4        1 4        2 4        3 4       4       0 5       1 5      2 5       3 5      4 5        5        0 6        1 6        2 6        3 6        4 6        5 6       6      0 7       1 7       2 7        3 7       4 7       5 7        6 7        7       0 8       1 8        2 8       3 8       4 8        5 8        6 8       7 8        8       0       0 1        1        0 2        1 2       2        0 3        1 3       2 3       3       0 4       1 4       2 4        3 4        4       0 5       1 5       2 5       3 5        4 5       5        0 6        1 6        2 6       3 6       4 6       5 6        6       0 7       1 7        2 7       3 7       4 7       5 7        6 7       7     0 8        1 8       2 8        3 8       4 8        5 8       6 8      7 8       8
    │ │ │  
    │ │ │  o4 : RingMap ringP8 <-- ringP14
    │ │ │
    i5 : time degreeMap phi
    │ │ │ - -- used 0.131475s (cpu); 0.0571066s (thread); 0s (gc)
    │ │ │ + -- used 0.228985s (cpu); 0.0687556s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 1
    │ │ │
    i6 : -- Compose phi:P^8--->P^14 with a linear projection P^14--->P^8 from a general subspace of P^14 
    │ │ │       -- of dimension 5 (so that the composition phi':P^8--->P^8 must have degree equal to deg(G(1,5))=14)
    │ │ │       phi'=phi*map(ringP14,ringP8,for i to 8 list random(1,ringP14))
    │ │ │ @@ -108,15 +108,15 @@
    │ │ │  o6 = map (ringP8, ringP8, {- 780x  - 506x x  + 1537x  - 132x x  - 928x x  + 386x  - 102x x  + 422x x  + 725x x  - 1073x  - 905x x  - 830x x  + 1500x x  + 276x x  + 1533x  - 653x x  + 1558x x  + 939x x  - 1432x x  + 462x x  - 329x  - 92x x  + 661x x  - 1298x x  - 684x x  + 70x x  - 715x x  + 1093x  + 581x x  + 329x x  + 454x x  - 911x x  - 84x x  - 1452x x  - 809x x  + 1202x  + 1353x x  + 1503x x  + 482x x  + 893x x  - 643x x  + 598x x  + 110x x  + 1064x x  - 472x , - 522x  - 583x x  + 1339x  + 1535x x  - 1317x x  + 1113x  - 169x x  + 1440x x  - 1657x x  + 721x  + 40x x  - 1576x x  - 367x x  + 257x x  - 1454x  + 1612x x  + 1529x x  - 1068x x  + 560x x  - 1441x x  + 608x  - 92x x  - 1006x x  + 285x x  + 102x x  - 397x x  + 66x x  - 643x  - 38x x  + 1380x x  + 1069x x  - 426x x  + 1147x x  + 982x x  + 10x x  - 662x  + 16x x  + 1561x x  + 1597x x  + 512x x  + 1288x x  - 1253x x  + 1317x x  + 1481x x  - 354x , - 640x  - 1551x x  + 469x  + 1482x x  - 1593x x  - 986x  + 471x x  + 612x x  + 1228x x  + 1156x  - 731x x  + 1503x x  - 628x x  + 674x x  - 799x  + 1137x x  + 844x x  + 589x x  - 666x x  + 829x x  - 1024x  - 170x x  + 450x x  + 1497x x  + 1204x x  - 907x x  + 1621x x  - 417x  + 1297x x  + 1444x x  + 4x x  + 398x x  + 996x x  - 1031x x  + 239x x  + 303x  + 1215x x  - 83x x  + 1571x x  - 1543x x  - 925x x  - 694x x  + 151x x  - 520x x  + 880x , - 1210x  - 222x x  + 185x  + 245x x  + 1059x x  - 322x  + 238x x  + 962x x  + 1260x x  - 1581x  + 50x x  + 1352x x  - 1465x x  + 1555x x  + 1333x  + 1362x x  + 1365x x  + 1168x x  - 1401x x  + 149x x  - 652x  + 1378x x  - 557x x  - 112x x  + 26x x  + 315x x  + 111x x  + 1592x  - 283x x  - 1454x x  + 907x x  + 212x x  + 400x x  + 1049x x  - 882x x  - 1429x  - 183x x  + 1571x x  - 1286x x  - 1179x x  + 1319x x  + 240x x  - 1100x x  + 1500x x  - 348x , 1051x  - 1325x x  + 1354x  - 346x x  - 1532x x  - 466x  + 163x x  - 659x x  - 291x x  + 966x  + 789x x  + 393x x  + 403x x  - 1199x x  - 570x  - 93x x  - 492x x  - 418x x  + 713x x  - 1323x x  - 1384x  - 830x x  - 54x x  - 306x x  + 709x x  + 421x x  - 954x x  - 299x  + 1053x x  - 1080x x  + 686x x  + 170x x  - 1272x x  - 1661x x  + 1235x x  + 1553x  - 1454x x  - 1411x x  - 1195x x  - 962x x  + 737x x  - 390x x  + 957x x  + 1538x x  + 1234x , - 509x  + 9x x  - 1563x  - 710x x  - 642x x  + 541x  + 220x x  - 1214x x  - 16x x  + 1008x  - 1088x x  + 755x x  - 886x x  - 1433x x  + 1154x  + 1627x x  - 1547x x  - 951x x  + 866x x  + 163x x  - 1142x  - 668x x  + 1361x x  + 1324x x  - 490x x  + 282x x  - 1133x x  - 612x  + 805x x  - 126x x  + 1296x x  - 973x x  + 1271x x  - 1646x x  + 844x x  + 1073x  - 1452x x  - 1112x x  - 141x x  + 176x x  - 1579x x  - 78x x  + 848x x  - 1365x x  + 711x , x  + 1543x x  - 1076x  + 493x x  - 526x x  + 868x  - 582x x  - 996x x  + 206x x  - 419x  + 1258x x  - 391x x  + 1002x x  - 1539x x  + 931x  - 1504x x  + 810x x  + 324x x  + 1356x x  + 313x x  + 772x  + 299x x  + 1186x x  + 718x x  + 407x x  - 64x x  - 828x x  - 1393x  + 94x x  - 290x x  - 766x x  + 950x x  - 640x x  + 265x x  - 1640x x  - 1403x  - 126x x  + 891x x  - 1519x x  - 927x x  - 1335x x  - 1448x x  - x x  - 1103x x  - 1152x , 821x  + 558x x  - 1174x  - 168x x  + 986x x  + 790x  + 549x x  + 817x x  + 1396x x  + 695x  + 1211x x  + 878x x  - 1061x x  - 1244x x  - 880x  + 1409x x  - 567x x  + 1240x x  + 1126x x  - 1262x x  + 490x  + 1553x x  + 1276x x  + 805x x  + 576x x  - 1076x x  + 1617x x  - 495x  - 750x x  - 277x x  + 544x x  + 1479x x  - 784x x  - 64x x  - 1203x x  + 405x  + 1013x x  + 604x x  + 1301x x  + 1003x x  + 235x x  + 696x x  + 939x x  - 714x x  - 879x , - 1452x  + 727x x  - 1159x  + 449x x  - 1169x x  + 732x  + 575x x  - 600x x  + 924x x  - 837x  + 1298x x  - 860x x  + 1010x x  + 774x x  + 319x  + 1087x x  - 1120x x  + 1439x x  + 1175x x  - 1648x x  + 985x  - 1317x x  - 878x x  + 399x x  - 1339x x  + 70x x  - 463x x  + 470x  - 628x x  - 907x x  + 748x x  + 98x x  + 1150x x  + 1140x x  + 1308x x  + 621x  + 369x x  - 991x x  - 1186x x  + 61x x  - 907x x  - 681x x  - 1528x x  + 717x x  + 854x })
    │ │ │                                   0       0 1        1       0 2       1 2       2       0 3       1 3       2 3        3       0 4       1 4        2 4       3 4        4       0 5        1 5       2 5        3 5       4 5       5      0 6       1 6        2 6       3 6      4 6       5 6        6       0 7       1 7       2 7       3 7      4 7        5 7       6 7        7        0 8        1 8       2 8       3 8       4 8       5 8       6 8        7 8       8        0       0 1        1        0 2        1 2        2       0 3        1 3        2 3       3      0 4        1 4       2 4       3 4        4        0 5        1 5        2 5       3 5        4 5       5      0 6        1 6       2 6       3 6       4 6      5 6       6      0 7        1 7        2 7       3 7        4 7       5 7      6 7       7      0 8        1 8        2 8       3 8        4 8        5 8        6 8        7 8       8        0        0 1       1        0 2        1 2       2       0 3       1 3        2 3        3       0 4        1 4       2 4       3 4       4        0 5       1 5       2 5       3 5       4 5        5       0 6       1 6        2 6        3 6       4 6        5 6       6        0 7        1 7     2 7       3 7       4 7        5 7       6 7       7        0 8      1 8        2 8        3 8       4 8       5 8       6 8       7 8       8         0       0 1       1       0 2        1 2       2       0 3       1 3        2 3        3      0 4        1 4        2 4        3 4        4        0 5        1 5        2 5        3 5       4 5       5        0 6       1 6       2 6      3 6       4 6       5 6        6       0 7        1 7       2 7       3 7       4 7        5 7       6 7        7       0 8        1 8        2 8        3 8        4 8       5 8        6 8        7 8       8       0        0 1        1       0 2        1 2       2       0 3       1 3       2 3       3       0 4       1 4       2 4        3 4       4      0 5       1 5       2 5       3 5        4 5        5       0 6      1 6       2 6       3 6       4 6       5 6       6        0 7        1 7       2 7       3 7        4 7        5 7        6 7        7        0 8        1 8        2 8       3 8       4 8       5 8       6 8        7 8        8        0     0 1        1       0 2       1 2       2       0 3        1 3      2 3        3        0 4       1 4       2 4        3 4        4        0 5        1 5       2 5       3 5       4 5        5       0 6        1 6        2 6       3 6       4 6        5 6       6       0 7       1 7        2 7       3 7        4 7        5 7       6 7        7        0 8        1 8       2 8       3 8        4 8      5 8       6 8        7 8       8   0        0 1        1       0 2       1 2       2       0 3       1 3       2 3       3        0 4       1 4        2 4        3 4       4        0 5       1 5       2 5        3 5       4 5       5       0 6        1 6       2 6       3 6      4 6       5 6        6      0 7       1 7       2 7       3 7       4 7       5 7        6 7        7       0 8       1 8        2 8       3 8        4 8        5 8    6 8        7 8        8      0       0 1        1       0 2       1 2       2       0 3       1 3        2 3       3        0 4       1 4        2 4        3 4       4        0 5       1 5        2 5        3 5        4 5       5        0 6        1 6       2 6       3 6        4 6        5 6       6       0 7       1 7       2 7        3 7       4 7      5 7        6 7       7        0 8       1 8        2 8        3 8       4 8       5 8       6 8       7 8       8         0       0 1        1       0 2        1 2       2       0 3       1 3       2 3       3        0 4       1 4        2 4       3 4       4        0 5        1 5        2 5        3 5        4 5       5        0 6       1 6       2 6        3 6      4 6       5 6       6       0 7       1 7       2 7      3 7        4 7        5 7        6 7       7       0 8       1 8        2 8      3 8       4 8       5 8        6 8       7 8       8
    │ │ │  
    │ │ │  o6 : RingMap ringP8 <-- ringP8
    │ │ │
    i7 : time degreeMap phi'
    │ │ │ - -- used 0.763454s (cpu); 0.537536s (thread); 0s (gc)
    │ │ │ + -- used 0.716216s (cpu); 0.658864s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = 14
    │ │ │
    │ │ │ │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -267,15 +267,15 @@ │ │ │ │ 4 0 5 1 5 2 5 3 5 4 5 5 0 6 │ │ │ │ 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 │ │ │ │ 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 │ │ │ │ 8 3 8 4 8 5 8 6 8 7 8 8 │ │ │ │ │ │ │ │ o4 : RingMap ringP8 <-- ringP14 │ │ │ │ i5 : time degreeMap phi │ │ │ │ - -- used 0.131475s (cpu); 0.0571066s (thread); 0s (gc) │ │ │ │ + -- used 0.228985s (cpu); 0.0687556s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 1 │ │ │ │ i6 : -- Compose phi:P^8--->P^14 with a linear projection P^14--->P^8 from a │ │ │ │ general subspace of P^14 │ │ │ │ -- of dimension 5 (so that the composition phi':P^8--->P^8 must have │ │ │ │ degree equal to deg(G(1,5))=14) │ │ │ │ phi'=phi*map(ringP14,ringP8,for i to 8 list random(1,ringP14)) │ │ │ │ @@ -419,15 +419,15 @@ │ │ │ │ 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 │ │ │ │ 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 │ │ │ │ 7 4 7 5 7 6 7 7 0 8 1 8 2 8 │ │ │ │ 3 8 4 8 5 8 6 8 7 8 8 │ │ │ │ │ │ │ │ o6 : RingMap ringP8 <-- ringP8 │ │ │ │ i7 : time degreeMap phi' │ │ │ │ - -- used 0.763454s (cpu); 0.537536s (thread); 0s (gc) │ │ │ │ + -- used 0.716216s (cpu); 0.658864s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = 14 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_e_g_r_e_e_(_R_a_t_i_o_n_a_l_M_a_p_) -- degree of a rational map │ │ │ │ * _p_r_o_j_e_c_t_i_v_e_D_e_g_r_e_e_s -- projective degrees of a rational map between │ │ │ │ projective varieties │ │ │ │ ********** WWaayyss ttoo uussee ddeeggrreeeeMMaapp:: ********** │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_force__Image.html │ │ │ @@ -79,15 +79,15 @@ │ │ │ │ │ │
    i3 : Phi = rationalMap(X,Dominant=>2);
    │ │ │  
    │ │ │  o3 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │ │ │ │ │ │ │
    i4 : time forceImage(Phi,ideal 0_(target Phi))
    │ │ │ - -- used 0.00296865s (cpu); 0.000930424s (thread); 0s (gc)
    │ │ │ + -- used 0.000591067s (cpu); 0.000562725s (thread); 0s (gc) │ │ │ │ │ │ │ │ │
    i5 : Phi;
    │ │ │  
    │ │ │  o5 : RationalMap (cubic dominant rational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ │ │ │ │ o2 : Ideal of P6 │ │ │ │ i3 : Phi = rationalMap(X,Dominant=>2); │ │ │ │ │ │ │ │ o3 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of │ │ │ │ PP^9) │ │ │ │ i4 : time forceImage(Phi,ideal 0_(target Phi)) │ │ │ │ - -- used 0.00296865s (cpu); 0.000930424s (thread); 0s (gc) │ │ │ │ + -- used 0.000591067s (cpu); 0.000562725s (thread); 0s (gc) │ │ │ │ i5 : Phi; │ │ │ │ │ │ │ │ o5 : RationalMap (cubic dominant rational map from PP^6 to 6-dimensional │ │ │ │ subvariety of PP^9) │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ If the declaration is false, nonsensical answers may result. │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_graph.html │ │ │ @@ -113,15 +113,15 @@ │ │ │ 3 2 4 │ │ │ } │ │ │ │ │ │ o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ │ │ │ │ │
    i3 : time (p1,p2) = graph phi;
    │ │ │ - -- used 0.108255s (cpu); 0.0343845s (thread); 0s (gc)
    │ │ │ + -- used 0.0789011s (cpu); 0.0185917s (thread); 0s (gc) │ │ │ │ │ │ │ │ │
    i4 : p1
    │ │ │  
    │ │ │  o4 = -- rational map --
    │ │ │                                    ZZ                                 ZZ
    │ │ │       source: subvariety of Proj(------[x , x , x , x , x ]) x Proj(------[y , y , y , y , y , y ]) defined by
    │ │ │ @@ -260,15 +260,15 @@
    │ │ │  o8 : List
    │ │ │ │ │ │ │ │ │

    When the source of the rational map is a multi-projective variety, the method returns all the projections.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -51,15 +51,15 @@ │ │ │ │ - x + x x │ │ │ │ 3 2 4 │ │ │ │ } │ │ │ │ │ │ │ │ o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in │ │ │ │ PP^5) │ │ │ │ i3 : time (p1,p2) = graph phi; │ │ │ │ - -- used 0.108255s (cpu); 0.0343845s (thread); 0s (gc) │ │ │ │ + -- used 0.0789011s (cpu); 0.0185917s (thread); 0s (gc) │ │ │ │ i4 : p1 │ │ │ │ │ │ │ │ o4 = -- rational map -- │ │ │ │ ZZ ZZ │ │ │ │ source: subvariety of Proj(------[x , x , x , x , x ]) x Proj(------[y , y │ │ │ │ , y , y , y , y ]) defined by │ │ │ │ 190181 0 1 2 3 4 190181 0 │ │ │ │ @@ -193,15 +193,15 @@ │ │ │ │ │ │ │ │ o8 = {51, 28, 14, 6, 2} │ │ │ │ │ │ │ │ o8 : List │ │ │ │ When the source of the rational map is a multi-projective variety, the method │ │ │ │ returns all the projections. │ │ │ │ i9 : time g = graph p2; │ │ │ │ - -- used 0.0283961s (cpu); 0.0275265s (thread); 0s (gc) │ │ │ │ + -- used 0.0862843s (cpu); 0.0269329s (thread); 0s (gc) │ │ │ │ i10 : g_0; │ │ │ │ │ │ │ │ o10 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety │ │ │ │ of PP^4 x PP^5 x PP^5 to PP^4) │ │ │ │ i11 : g_1; │ │ │ │ │ │ │ │ o11 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_ideal_lp__Rational__Map_rp.html │ │ │ @@ -107,15 +107,15 @@ │ │ │ 1 0 3 │ │ │ } │ │ │ │ │ │ o2 : RationalMap (quadratic rational map from hypersurface in PP^5 to PP^4) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -99,15 +99,15 @@ │ │ │ │ │ │ │ │ w w - w w + w w │ │ │ │ 2 4 1 5 0 6 │ │ │ │ } │ │ │ │ │ │ │ │ o1 : RationalMap (quadratic Cremona transformation of PP^20) │ │ │ │ i2 : time psi = inverseMap phi │ │ │ │ - -- used 0.158746s (cpu); 0.0885499s (thread); 0s (gc) │ │ │ │ + -- used 0.333669s (cpu); 0.124609s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = -- rational map -- │ │ │ │ source: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w , w , w , w │ │ │ │ , w , w , w , w , w , w , w ]) │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 │ │ │ │ 14 15 16 17 18 19 20 │ │ │ │ target: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w , w , w , w │ │ │ │ @@ -217,15 +217,15 @@ │ │ │ │ 15 9 20 8 22 3 10 0 13 4 15 9 21 8 23 2 10 0 12 4 │ │ │ │ 20 6 21 8 24 1 10 0 11 4 22 6 23 9 24 4 5 3 6 0 7 │ │ │ │ 1 8 2 9 │ │ │ │ │ │ │ │ o4 : RingMap QQ[w ..w ] <-- QQ[w ..w ] │ │ │ │ 0 26 0 26 │ │ │ │ i5 : time psi = inverseMap phi │ │ │ │ - -- used 0.312892s (cpu); 0.187463s (thread); 0s (gc) │ │ │ │ + -- used 0.465234s (cpu); 0.344834s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = map (QQ[w ..w ], QQ[w ..w ], {- w w + w w + w w - w w - w w , │ │ │ │ - w w + w w + w w - w w - w w , - w w + w w + w w - w w - │ │ │ │ w w , - w w - w w + w w - w w - w w , - w w - w w + w w - │ │ │ │ w w - w w , - w w - w w + w w - w w - w w , - w w - w w + │ │ │ │ w w - w w - w w , w w - w w + w w - w w - w w , - w w + │ │ │ │ w w - w w + w w - w w , - w w + w w - w w + w w - w w │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_inverse_lp__Rational__Map_rp.html │ │ │ @@ -102,15 +102,15 @@ │ │ │ 2800 0 6350400 0 1 50803200 0 1 33868800 0 1 181440 1 196000 0 2 381024000 0 1 2 47628000 0 1 2 10160640 1 2 2268000 0 2 2126250 0 1 2 762048000 1 2 992250 0 2 31752000 1 2 529200 2 73500 0 3 28576800 0 1 3 32659200 0 1 3 6531840 1 3 15876000 0 2 3 21432600 0 1 2 3 137168640 1 2 3 158760000 0 2 3 571536000 1 2 3 95256000 2 3 15876000 0 3 228614400 0 1 3 65318400 1 3 190512000 0 2 3 95256000 1 2 3 31752000 2 3 352800 0 3 604800 1 3 31752000 2 3 15120 3 47628000 0 4 444528000 0 1 4 4267468800 0 1 4 152409600 1 4 714420000 0 2 4 16003008000 0 1 2 4 1524096000 1 2 4 95256000 0 2 4 533433600 1 2 4 211680 2 4 1000188000 0 3 4 2667168000 0 1 3 4 457228800 1 3 4 240045120 0 2 3 4 48009024000 1 2 3 4 14817600 2 3 4 4000752000 0 3 4 1524096000 1 3 4 2667168000 2 3 4 27216000 3 4 190512000 0 4 1778112000 0 1 4 304819200 1 4 47628000 0 2 4 1333584000 1 2 4 5292000 2 4 4000752000 0 3 4 71442000 1 3 4 1333584000 2 3 4 95256000 3 4 3969000 0 4 127008000 1 4 5292000 2 4 21168000 3 4 28000 4 │ │ │ } │ │ │ │ │ │ o2 : RationalMap (rational map from PP^4 to PP^4) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : time g = graph p2;
    │ │ │ - -- used 0.0283961s (cpu); 0.0275265s (thread); 0s (gc)
    │ │ │ + -- used 0.0862843s (cpu); 0.0269329s (thread); 0s (gc) │ │ │
    i10 : g_0;
    │ │ │  
    │ │ │  o10 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to PP^4)
    │ │ │
    i3 : time ideal phi
    │ │ │ - -- used 0.00399819s (cpu); 0.00324924s (thread); 0s (gc)
    │ │ │ + -- used 0.00174627s (cpu); 0.00298329s (thread); 0s (gc)
    │ │ │  
    │ │ │               2                                     2                      
    │ │ │  o3 = ideal (x  - x x , x x  - x x  + x x , x x  - x  + x x , x x  - x x  +
    │ │ │               4    3 5   2 4    3 4    1 5   2 3    3    1 4   1 2    1 3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │              2
    │ │ │       x x , x  - x x )
    │ │ │ @@ -185,15 +185,15 @@
    │ │ │                         4
    │ │ │                       }
    │ │ │  
    │ │ │  o5 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of PP^5 x PP^4 to PP^4)
    │ │ │
    i6 : time ideal phi'
    │ │ │ - -- used 0.0900955s (cpu); 0.087187s (thread); 0s (gc)
    │ │ │ + -- used 0.244771s (cpu); 0.180884s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = ideal 1
    │ │ │  
    │ │ │                                                                                                              QQ[x ..x , y ..y ]
    │ │ │                                                                                                                  0   5   0   4
    │ │ │  o6 : Ideal of --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    │ │ │                                                                                                                                                                                                       2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -47,15 +47,15 @@
    │ │ │ │                         2
    │ │ │ │                        x  - x x
    │ │ │ │                         1    0 3
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o2 : RationalMap (quadratic rational map from hypersurface in PP^5 to PP^4)
    │ │ │ │  i3 : time ideal phi
    │ │ │ │ - -- used 0.00399819s (cpu); 0.00324924s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00174627s (cpu); 0.00298329s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               2                                     2
    │ │ │ │  o3 = ideal (x  - x x , x x  - x x  + x x , x x  - x  + x x , x x  - x x  +
    │ │ │ │               4    3 5   2 4    3 4    1 5   2 3    3    1 4   1 2    1 3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │              2
    │ │ │ │       x x , x  - x x )
    │ │ │ │ @@ -122,15 +122,15 @@
    │ │ │ │                        y
    │ │ │ │                         4
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o5 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of
    │ │ │ │  PP^5 x PP^4 to PP^4)
    │ │ │ │  i6 : time ideal phi'
    │ │ │ │ - -- used 0.0900955s (cpu); 0.087187s (thread); 0s (gc)
    │ │ │ │ + -- used 0.244771s (cpu); 0.180884s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 = ideal 1
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  QQ[x ..x , y ..y ]
    │ │ │ │  
    │ │ │ │  0   5   0   4
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_inverse__Map.html
    │ │ │ @@ -154,15 +154,15 @@
    │ │ │                         2 4    1 5    0 6
    │ │ │                       }
    │ │ │  
    │ │ │  o1 : RationalMap (quadratic Cremona transformation of PP^20)
    │ │ │
    i2 : time psi = inverseMap phi
    │ │ │ - -- used 0.158746s (cpu); 0.0885499s (thread); 0s (gc)
    │ │ │ + -- used 0.333669s (cpu); 0.124609s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = -- rational map --
    │ │ │       source: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  ])
    │ │ │                        0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20
    │ │ │       target: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  ])
    │ │ │                        0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20
    │ │ │       defining forms: {
    │ │ │ @@ -246,15 +246,15 @@
    │ │ │                0   26       0   26     21 22    20 23    15 24    10 25    0 26   19 22    18 23    16 24    11 25    1 26   19 20    18 21    17 24    12 25    2 26   15 19    16 21    17 23    13 25    3 26   10 19    11 21    12 23    13 24    4 26   0 19    1 21    2 23    3 24    4 25   15 18    16 20    17 22    14 25    5 26   10 18    11 20    12 22    14 24    6 26   0 18    1 20    2 22    5 24    6 25   12 16    11 17    13 18    14 19    7 26   2 16    1 17    3 18    5 19    7 25   12 15    10 17    13 20    14 21    8 26   11 15    10 16    13 22    14 23    9 26   2 15    0 17    3 20    5 21    8 25   1 15    0 16    3 22    5 23    9 25   5 13    3 14    7 15    8 16    9 17   5 12    2 14    6 17    8 18    7 20   3 12    2 13    4 17    8 19    7 21   5 11    1 14    6 16    9 18    7 22   3 11    1 13    4 16    9 19    7 23   2 11    1 12    4 18    6 19    7 24   7 10    8 11    9 12    6 13    4 14   5 10    0 14    6 15    9 20    8 22   3 10    0 13    4 15    9 21    8 23   2 10    0 12    4 20    6 21    8 24   1 10    0 11    4 22    6 23    9 24   4 5    3 6    0 7    1 8    2 9
    │ │ │  
    │ │ │  o4 : RingMap QQ[w ..w  ] <-- QQ[w ..w  ]
    │ │ │                   0   26          0   26
    │ │ │
    i5 : time psi = inverseMap phi
    │ │ │ - -- used 0.312892s (cpu); 0.187463s (thread); 0s (gc)
    │ │ │ + -- used 0.465234s (cpu); 0.344834s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = map (QQ[w ..w  ], QQ[w ..w  ], {- w w   + w w   + w  w   - w  w   - w w  , - w w   + w w   + w  w   - w  w   - w w  , - w w   + w w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , w  w   - w  w   + w  w   - w  w   - w w  , - w  w   + w  w   - w  w   + w  w   - w  w  , - w  w   + w  w   - w  w   + w  w   - w  w  , w w   - w w   + w w   + w  w   - w  w  , - w w   + w w   + w  w   + w w   - w w  , - w w   + w w   + w  w   + w w   - w w  , - w w   - w  w   + w  w   + w w   - w w  , - w w   - w  w   + w  w   + w w   - w w  , w  w   - w  w   + w w   - w w   + w w  , w  w   - w w   + w w   - w w   + w w  , w  w   - w w   + w w   - w w   + w w  , w w  - w w   + w w   - w w   + w w  , w w  - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w  - w w  - w w   + w w   - w w  , - w w  + w w  + w w   - w w   + w w  , w w  - w w  - w w  + w w   - w w  })
    │ │ │                0   26       0   26       5 22    8 23    14 24    13 25    0 26     5 18    8 19    14 20    10 25    1 26     5 16    8 17    13 20    10 24    2 26     5 15    14 17    13 19    10 23    3 26     5 21    20 23    19 24    17 25    4 26     8 15    14 16    13 18    10 22    6 26     8 21    20 22    18 24    16 25    7 26   17 18    16 19    15 20    10 21    9 26     13 21    17 22    16 23    15 24    11 26     14 21    19 22    18 23    15 25    12 26   0 21    4 22    7 23    12 24    11 25     4 18    7 19    12 20    1 21    9 25     4 16    7 17    11 20    2 21    9 24     4 15    12 17    11 19    3 21    9 23     7 15    12 16    11 18    6 21    9 22   12 13    11 14    0 15    3 22    6 23   10 12    9 14    1 15    3 18    6 19   10 11    9 13    2 15    3 16    6 17   8 9    7 10    1 16    2 18    6 20   5 9    4 10    1 17    2 19    3 20   8 11    7 13    0 16    2 22    6 24   5 11    4 13    0 17    2 23    3 24   8 12    7 14    0 18    1 22    6 25   5 12    4 14    0 19    1 23    3 25   5 7    4 8    0 20    1 24    2 25     5 6    3 8    0 10    1 13    2 14   4 6    3 7    0 9    1 11    2 12
    │ │ │  
    │ │ │  o5 : RingMap QQ[w ..w  ] <-- QQ[w ..w  ]
    │ │ │                   0   26          0   26
    │ │ │
    i3 : time inverse phi
    │ │ │ - -- used 0.154532s (cpu); 0.0707467s (thread); 0s (gc)
    │ │ │ + -- used 0.166999s (cpu); 0.109695s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[x , x , x , x , x ])
    │ │ │                        0   1   2   3   4
    │ │ │       defining forms: {
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -282,15 +282,15 @@
    │ │ │ │  1333584000  1 2 4    5292000  2 4    4000752000  0 3 4   71442000 1 3 4
    │ │ │ │  1333584000  2 3 4    95256000  3 4    3969000 0 4   127008000 1 4    5292000  2
    │ │ │ │  4    21168000 3 4   28000 4
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o2 : RationalMap (rational map from PP^4 to PP^4)
    │ │ │ │  i3 : time inverse phi
    │ │ │ │ - -- used 0.154532s (cpu); 0.0707467s (thread); 0s (gc)
    │ │ │ │ + -- used 0.166999s (cpu); 0.109695s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = -- rational map --
    │ │ │ │       source: Proj(QQ[x , x , x , x , x ])
    │ │ │ │                        0   1   2   3   4
    │ │ │ │       target: Proj(QQ[x , x , x , x , x ])
    │ │ │ │                        0   1   2   3   4
    │ │ │ │       defining forms: {
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_is__Birational.html
    │ │ │ @@ -122,21 +122,21 @@
    │ │ │                           3    2 4
    │ │ │                       }
    │ │ │  
    │ │ │  o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in PP^5)
    │ │ │
    i3 : time isBirational phi
    │ │ │ - -- used 0.0199621s (cpu); 0.0179823s (thread); 0s (gc)
    │ │ │ + -- used 0.0806576s (cpu); 0.0265241s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │
    i4 : time isBirational(phi,Certify=>true)
    │ │ │ - -- used 0.0128589s (cpu); 0.0142427s (thread); 0s (gc)
    │ │ │ + -- used 0.0406175s (cpu); 0.0115317s (thread); 0s (gc)
    │ │ │  Certify: output certified!
    │ │ │  
    │ │ │  o4 = true
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -59,19 +59,19 @@ │ │ │ │ - t + t t │ │ │ │ 3 2 4 │ │ │ │ } │ │ │ │ │ │ │ │ o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in │ │ │ │ PP^5) │ │ │ │ i3 : time isBirational phi │ │ │ │ - -- used 0.0199621s (cpu); 0.0179823s (thread); 0s (gc) │ │ │ │ + -- used 0.0806576s (cpu); 0.0265241s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = true │ │ │ │ i4 : time isBirational(phi,Certify=>true) │ │ │ │ - -- used 0.0128589s (cpu); 0.0142427s (thread); 0s (gc) │ │ │ │ + -- used 0.0406175s (cpu); 0.0115317s (thread); 0s (gc) │ │ │ │ Certify: output certified! │ │ │ │ │ │ │ │ o4 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_D_o_m_i_n_a_n_t -- whether a rational map is dominant │ │ │ │ ********** WWaayyss ttoo uussee iissBBiirraattiioonnaall:: ********** │ │ │ │ * isBirational(RationalMap) │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_is__Dominant.html │ │ │ @@ -83,15 +83,15 @@ │ │ │ │ │ │
    i2 : phi = rationalMap ideal jacobian ideal det matrix{{x_0..x_4},{x_1..x_5},{x_2..x_6},{x_3..x_7},{x_4..x_8}};
    │ │ │  
    │ │ │  o2 : RationalMap (rational map from PP^8 to PP^8)
    │ │ │ │ │ │ │ │ │
    i3 : time isDominant(phi,Certify=>true)
    │ │ │ - -- used 2.25139s (cpu); 1.87155s (thread); 0s (gc)
    │ │ │ + -- used 3.58107s (cpu); 3.34407s (thread); 0s (gc)
    │ │ │  Certify: output certified!
    │ │ │  
    │ │ │  o3 = true
    │ │ │ │ │ │ │ │ │
    i4 : P7 = ZZ/101[x_0..x_7];
    │ │ │ │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ │
    i6 : phi = rationalMap(C,3,2);
    │ │ │  
    │ │ │  o6 : RationalMap (cubic rational map from PP^7 to PP^7)
    │ │ │ │ │ │ │ │ │
    i7 : time isDominant(phi,Certify=>true)
    │ │ │ - -- used 4.07363s (cpu); 2.75303s (thread); 0s (gc)
    │ │ │ + -- used 2.76432s (cpu); 2.14498s (thread); 0s (gc)
    │ │ │  Certify: output certified!
    │ │ │  
    │ │ │  o7 = false
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ be to perform the command kernel map phi == 0. │ │ │ │ i1 : P8 = ZZ/101[x_0..x_8]; │ │ │ │ i2 : phi = rationalMap ideal jacobian ideal det matrix{{x_0..x_4},{x_1..x_5},{x_2..x_6},{x_3..x_7}, │ │ │ │ {x_4..x_8}}; │ │ │ │ │ │ │ │ o2 : RationalMap (rational map from PP^8 to PP^8) │ │ │ │ i3 : time isDominant(phi,Certify=>true) │ │ │ │ - -- used 2.25139s (cpu); 1.87155s (thread); 0s (gc) │ │ │ │ + -- used 3.58107s (cpu); 3.34407s (thread); 0s (gc) │ │ │ │ Certify: output certified! │ │ │ │ │ │ │ │ o3 = true │ │ │ │ i4 : P7 = ZZ/101[x_0..x_7]; │ │ │ │ i5 : -- hyperelliptic curve of genus 3 │ │ │ │ C = ideal(x_4*x_5+23*x_5^2-23*x_0*x_6-18*x_1*x_6+6*x_2*x_6+37*x_3*x_6+23*x_4*x_6- │ │ │ │ 26*x_5*x_6+2*x_6^2-25*x_0*x_7+45*x_1*x_7+30*x_2*x_7-49*x_3*x_7-49*x_4*x_7+50*x_5*x_7,x_3*x_5- │ │ │ │ @@ -65,15 +65,15 @@ │ │ │ │ 47*x_1*x_7-19*x_2*x_7+25*x_3*x_7+28*x_4*x_7+34*x_5*x_7); │ │ │ │ │ │ │ │ o5 : Ideal of P7 │ │ │ │ i6 : phi = rationalMap(C,3,2); │ │ │ │ │ │ │ │ o6 : RationalMap (cubic rational map from PP^7 to PP^7) │ │ │ │ i7 : time isDominant(phi,Certify=>true) │ │ │ │ - -- used 4.07363s (cpu); 2.75303s (thread); 0s (gc) │ │ │ │ + -- used 2.76432s (cpu); 2.14498s (thread); 0s (gc) │ │ │ │ Certify: output certified! │ │ │ │ │ │ │ │ o7 = false │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_B_i_r_a_t_i_o_n_a_l -- whether a rational map is birational │ │ │ │ ********** WWaayyss ttoo uussee iissDDoommiinnaanntt:: ********** │ │ │ │ * isDominant(RationalMap) │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_kernel_lp__Ring__Map_cm__Z__Z_rp.html │ │ │ @@ -87,24 +87,24 @@ │ │ │ 0 8 0 11 0 3 2 4 3 4 0 5 2 5 3 5 4 5 5 0 6 2 6 4 6 5 6 6 4 7 5 7 6 7 4 8 5 8 6 8 1 2 1 5 0 6 1 6 4 6 5 6 0 7 1 7 2 7 5 7 6 7 1 8 7 8 0 0 2 0 4 2 4 4 0 5 2 5 4 5 0 6 4 6 5 6 0 7 2 7 4 7 5 7 6 7 0 8 4 8 7 8 2 4 3 4 4 2 5 4 5 5 6 6 3 7 4 7 5 7 6 7 3 8 4 8 5 8 6 8 0 4 2 4 2 5 4 5 0 6 2 6 4 6 5 6 4 7 5 7 6 7 4 8 5 8 6 8 0 4 4 1 5 4 5 0 6 1 6 4 6 5 6 4 7 5 7 6 7 4 8 5 8 6 8 2 3 4 4 5 4 6 5 6 6 3 7 4 7 5 7 6 7 4 8 5 8 6 8 1 3 1 5 1 6 4 6 5 6 6 3 7 0 3 3 4 4 0 5 4 5 0 6 4 6 5 6 6 3 7 4 7 5 7 6 7 4 8 5 8 6 8 0 2 2 2 4 4 2 5 4 5 0 6 5 6 2 7 4 7 5 7 6 7 0 8 2 8 4 8 5 8 6 8 7 8 0 1 1 2 1 4 0 6 1 6 4 6 0 7 0 2 1 2 0 4 1 4 1 5 2 5 4 5 0 6 1 6 4 6 2 7 0 8 1 8 5 8 6 8 7 8 │ │ │ │ │ │ o1 : RingMap QQ[x ..x ] <-- QQ[y ..y ] │ │ │ 0 8 0 11 │ │ │ │ │ │ │ │ │
    i2 : time kernel(phi,1)
    │ │ │ - -- used 0.115348s (cpu); 0.0365182s (thread); 0s (gc)
    │ │ │ + -- used 0.0119988s (cpu); 0.0142586s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = ideal ()
    │ │ │  
    │ │ │  o2 : Ideal of QQ[y ..y  ]
    │ │ │                    0   11
    │ │ │ │ │ │ │ │ │
    i3 : time kernel(phi,2)
    │ │ │ - -- used 0.474169s (cpu); 0.310819s (thread); 0s (gc)
    │ │ │ + -- used 0.498382s (cpu); 0.439796s (thread); 0s (gc)
    │ │ │  
    │ │ │                             2                                                
    │ │ │  o3 = ideal (y y  + y y  + y  + 5y y  + y y  + 5y y  - y y  - 4y y  - 5y y  -
    │ │ │               2 4    3 4    4     2 5    3 5     4 5    1 6     2 6     5 6  
    │ │ │       ------------------------------------------------------------------------
    │ │ │                                                                             
    │ │ │       4y y  - 2y y  - y y  + 4y y  - 5y y  - 4y y  + 3y y  - 4y y  - y y   -
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -68,22 +68,22 @@
    │ │ │ │  4 8     5 8     6 8     7 8      0 1    1 2    1 4     0 6    1 6    4 6    0 7
    │ │ │ │  0 2    1 2     0 4    1 4      1 5    2 5     4 5     0 6     1 6     4 6     2
    │ │ │ │  7     0 8     1 8     5 8     6 8     7 8
    │ │ │ │  
    │ │ │ │  o1 : RingMap QQ[x ..x ] <-- QQ[y ..y  ]
    │ │ │ │                   0   8          0   11
    │ │ │ │  i2 : time kernel(phi,1)
    │ │ │ │ - -- used 0.115348s (cpu); 0.0365182s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0119988s (cpu); 0.0142586s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = ideal ()
    │ │ │ │  
    │ │ │ │  o2 : Ideal of QQ[y ..y  ]
    │ │ │ │                    0   11
    │ │ │ │  i3 : time kernel(phi,2)
    │ │ │ │ - -- used 0.474169s (cpu); 0.310819s (thread); 0s (gc)
    │ │ │ │ + -- used 0.498382s (cpu); 0.439796s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                             2
    │ │ │ │  o3 = ideal (y y  + y y  + y  + 5y y  + y y  + 5y y  - y y  - 4y y  - 5y y  -
    │ │ │ │               2 4    3 4    4     2 5    3 5     4 5    1 6     2 6     5 6
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │  
    │ │ │ │       4y y  - 2y y  - y y  + 4y y  - 5y y  - 4y y  + 3y y  - 4y y  - y y   -
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_parametrize_lp__Ideal_rp.html
    │ │ │ @@ -101,15 +101,15 @@
    │ │ │  
    │ │ │                   ZZ
    │ │ │  o2 : Ideal of --------[x ..x ]
    │ │ │                10000019  0   9
    │ │ │ │ │ │ │ │ │
    i3 : time parametrize L
    │ │ │ - -- used 0.00400026s (cpu); 0.00430712s (thread); 0s (gc)
    │ │ │ + -- used 0.00400077s (cpu); 0.004189s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │                       ZZ
    │ │ │       source: Proj(--------[t , t , t , t , t , t ])
    │ │ │                    10000019  0   1   2   3   4   5
    │ │ │                       ZZ
    │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ @@ -193,15 +193,15 @@
    │ │ │  
    │ │ │                   ZZ
    │ │ │  o4 : Ideal of --------[x ..x ]
    │ │ │                10000019  0   9
    │ │ │ │ │ │ │ │ │
    i5 : time parametrize Q
    │ │ │ - -- used 0.567237s (cpu); 0.347295s (thread); 0s (gc)
    │ │ │ + -- used 0.730993s (cpu); 0.517449s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = -- rational map --
    │ │ │                       ZZ
    │ │ │       source: Proj(--------[t , t , t , t , t , t , t ])
    │ │ │                    10000019  0   1   2   3   4   5   6
    │ │ │                       ZZ
    │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -41,15 +41,15 @@
    │ │ │ │       - 849671x  + 3034137x )
    │ │ │ │                8           9
    │ │ │ │  
    │ │ │ │                   ZZ
    │ │ │ │  o2 : Ideal of --------[x ..x ]
    │ │ │ │                10000019  0   9
    │ │ │ │  i3 : time parametrize L
    │ │ │ │ - -- used 0.00400026s (cpu); 0.00430712s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00400077s (cpu); 0.004189s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │       source: Proj(--------[t , t , t , t , t , t ])
    │ │ │ │                    10000019  0   1   2   3   4   5
    │ │ │ │                       ZZ
    │ │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ │ @@ -137,15 +137,15 @@
    │ │ │ │       1211601x x  - 2168594x x  - 1801762x x  + 3022242x x  + 3618789x )
    │ │ │ │               5 9           6 9           7 9           8 9           9
    │ │ │ │  
    │ │ │ │                   ZZ
    │ │ │ │  o4 : Ideal of --------[x ..x ]
    │ │ │ │                10000019  0   9
    │ │ │ │  i5 : time parametrize Q
    │ │ │ │ - -- used 0.567237s (cpu); 0.347295s (thread); 0s (gc)
    │ │ │ │ + -- used 0.730993s (cpu); 0.517449s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │       source: Proj(--------[t , t , t , t , t , t , t ])
    │ │ │ │                    10000019  0   1   2   3   4   5   6
    │ │ │ │                       ZZ
    │ │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_point_lp__Quotient__Ring_rp.html
    │ │ │ @@ -76,15 +76,15 @@
    │ │ │            
    │ │ │                
    i1 : f = inverseMap specialQuadraticTransformation(9,ZZ/33331);
    │ │ │  
    │ │ │  o1 : RationalMap (cubic rational map from 8-dimensional subvariety of PP^11 to PP^8)
    │ │ │ │ │ │ │ │ │
    i2 : time p = point source f
    │ │ │ - -- used 0.201188s (cpu); 0.137863s (thread); 0s (gc)
    │ │ │ + -- used 0.218876s (cpu); 0.170155s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = ideal (y   - 9235y  , y  + 11075y  , y  - 5847y  , y  + 7396y  , y  +
    │ │ │               10        11   9         11   8        11   7        11   6  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       13530y  , y  + 4359y  , y  - 2924y  , y  + 13040y  , y  + 6904y  , y  -
    │ │ │             11   5        11   4        11   3         11   2        11   1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -96,15 +96,15 @@
    │ │ │                                                             33331  0   11
    │ │ │  o2 : Ideal of -------------------------------------------------------------------------------------------------------
    │ │ │                (y y  - y y  + y y  , y y  - y y  + y y  , y y  - y y  + y y  , y y  - y y  + y y , y y  - y y  + y y )
    │ │ │                  6 7    5 8    4 11   3 7    2 8    1 11   3 5    2 6    0 11   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ │ │ │ │ │ │
    i3 : time p == f^* f p
    │ │ │ - -- used 0.186193s (cpu); 0.119467s (thread); 0s (gc)
    │ │ │ + -- used 0.22745s (cpu); 0.173947s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ documentation) , see _p_o_i_n_t_(_M_u_l_t_i_p_r_o_j_e_c_t_i_v_e_V_a_r_i_e_t_y_). │ │ │ │ Below we verify the birationality of a rational map. │ │ │ │ i1 : f = inverseMap specialQuadraticTransformation(9,ZZ/33331); │ │ │ │ │ │ │ │ o1 : RationalMap (cubic rational map from 8-dimensional subvariety of PP^11 to │ │ │ │ PP^8) │ │ │ │ i2 : time p = point source f │ │ │ │ - -- used 0.201188s (cpu); 0.137863s (thread); 0s (gc) │ │ │ │ + -- used 0.218876s (cpu); 0.170155s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = ideal (y - 9235y , y + 11075y , y - 5847y , y + 7396y , y + │ │ │ │ 10 11 9 11 8 11 7 11 6 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 13530y , y + 4359y , y - 2924y , y + 13040y , y + 6904y , y - │ │ │ │ 11 5 11 4 11 3 11 2 11 1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ o2 : Ideal of ----------------------------------------------------------------- │ │ │ │ -------------------------------------- │ │ │ │ (y y - y y + y y , y y - y y + y y , y y - y y + y y , y │ │ │ │ y - y y + y y , y y - y y + y y ) │ │ │ │ 6 7 5 8 4 11 3 7 2 8 1 11 3 5 2 6 0 11 │ │ │ │ 3 4 1 6 0 8 2 4 1 5 0 7 │ │ │ │ i3 : time p == f^* f p │ │ │ │ - -- used 0.186193s (cpu); 0.119467s (thread); 0s (gc) │ │ │ │ + -- used 0.22745s (cpu); 0.173947s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_n_d_o_m_K_R_a_t_i_o_n_a_l_P_o_i_n_t -- Pick a random K rational point on the scheme X │ │ │ │ defined by I │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * point(PolynomialRing) │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_projective__Degrees.html │ │ │ @@ -90,15 +90,15 @@ │ │ │ 0 4 0 5 1 0 2 1 2 0 3 2 1 3 1 3 0 4 2 3 1 4 3 2 4 │ │ │ │ │ │ o2 : RingMap GF 109561[t ..t ] <-- GF 109561[x ..x ] │ │ │ 0 4 0 5
    │ │ │ │ │ │ │ │ │
    i3 : time projectiveDegrees(phi,Certify=>true)
    │ │ │ - -- used 0.0182582s (cpu); 0.0155028s (thread); 0s (gc)
    │ │ │ + -- used 0.0517608s (cpu); 0.0124244s (thread); 0s (gc)
    │ │ │  Certify: output certified!
    │ │ │  
    │ │ │  o3 = {1, 2, 4, 4, 2}
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ @@ -114,15 +114,15 @@ │ │ │ 0 5 │ │ │ o4 : RingMap ------------------ <-- GF 109561[t ..t ] │ │ │ x x - x x + x x 0 4 │ │ │ 2 3 1 4 0 5 │ │ │ │ │ │ │ │ │
    i5 : time projectiveDegrees(psi,Certify=>true)
    │ │ │ - -- used 0.00823188s (cpu); 0.0103648s (thread); 0s (gc)
    │ │ │ + -- used 0.0593251s (cpu); 0.0112806s (thread); 0s (gc)
    │ │ │  Certify: output certified!
    │ │ │  
    │ │ │  o5 = {2, 4, 4, 2, 1}
    │ │ │  
    │ │ │  o5 : List
    │ │ │ │ │ │ │ │ │ @@ -137,23 +137,23 @@ │ │ │ │ │ │ ZZ ZZ │ │ │ o6 : RingMap ------[x ..x ] <-- ------[x ..x ] │ │ │ 300007 0 6 300007 0 6 │ │ │ │ │ │ │ │ │
    i7 : time projectiveDegrees phi
    │ │ │ - -- used 0.00337059s (cpu); 4.1208e-05s (thread); 0s (gc)
    │ │ │ + -- used 0.00268412s (cpu); 2.9916e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {1, 2, 4, 8, 8, 4, 1}
    │ │ │  
    │ │ │  o7 : List
    │ │ │ │ │ │ │ │ │
    i8 : time projectiveDegrees(phi,NumDegrees=>1)
    │ │ │ - -- used 9.9857e-05s (cpu); 2.2512e-05s (thread); 0s (gc)
    │ │ │ + -- used 7.5101e-05s (cpu); 2.0058e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = {4, 1}
    │ │ │  
    │ │ │  o8 : List
    │ │ │ │ │ │ │ │ │

    Another way to use this method is by passing an integer i as second argument. However, this is equivalent to first projectiveDegrees(phi,NumDegrees=>i) and generally it is not faster.

    │ │ │ ├── html2text {} │ │ │ │ @@ -53,15 +53,15 @@ │ │ │ │ t + t t , - t t + t t , - t t + t t , - t + t t , a}) │ │ │ │ 0 4 0 5 1 0 2 1 2 0 3 │ │ │ │ 2 1 3 1 3 0 4 2 3 1 4 3 2 4 │ │ │ │ │ │ │ │ o2 : RingMap GF 109561[t ..t ] <-- GF 109561[x ..x ] │ │ │ │ 0 4 0 5 │ │ │ │ i3 : time projectiveDegrees(phi,Certify=>true) │ │ │ │ - -- used 0.0182582s (cpu); 0.0155028s (thread); 0s (gc) │ │ │ │ + -- used 0.0517608s (cpu); 0.0124244s (thread); 0s (gc) │ │ │ │ Certify: output certified! │ │ │ │ │ │ │ │ o3 = {1, 2, 4, 4, 2} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : psi=inverseMap(toMap(phi,Dominant=>infinity)) │ │ │ │ │ │ │ │ @@ -76,15 +76,15 @@ │ │ │ │ │ │ │ │ GF 109561[x ..x ] │ │ │ │ 0 5 │ │ │ │ o4 : RingMap ------------------ <-- GF 109561[t ..t ] │ │ │ │ x x - x x + x x 0 4 │ │ │ │ 2 3 1 4 0 5 │ │ │ │ i5 : time projectiveDegrees(psi,Certify=>true) │ │ │ │ - -- used 0.00823188s (cpu); 0.0103648s (thread); 0s (gc) │ │ │ │ + -- used 0.0593251s (cpu); 0.0112806s (thread); 0s (gc) │ │ │ │ Certify: output certified! │ │ │ │ │ │ │ │ o5 = {2, 4, 4, 2, 1} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ i6 : -- Cremona transformation of P^6 defined by the quadrics through a │ │ │ │ rational octic surface │ │ │ │ @@ -120,21 +120,21 @@ │ │ │ │ 4 5 5 0 6 1 6 2 6 3 6 4 6 │ │ │ │ 5 6 │ │ │ │ │ │ │ │ ZZ ZZ │ │ │ │ o6 : RingMap ------[x ..x ] <-- ------[x ..x ] │ │ │ │ 300007 0 6 300007 0 6 │ │ │ │ i7 : time projectiveDegrees phi │ │ │ │ - -- used 0.00337059s (cpu); 4.1208e-05s (thread); 0s (gc) │ │ │ │ + -- used 0.00268412s (cpu); 2.9916e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = {1, 2, 4, 8, 8, 4, 1} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : time projectiveDegrees(phi,NumDegrees=>1) │ │ │ │ - -- used 9.9857e-05s (cpu); 2.2512e-05s (thread); 0s (gc) │ │ │ │ + -- used 7.5101e-05s (cpu); 2.0058e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 = {4, 1} │ │ │ │ │ │ │ │ o8 : List │ │ │ │ Another way to use this method is by passing an integer i as second argument. │ │ │ │ However, this is equivalent to first projectiveDegrees(phi,NumDegrees=>i) and │ │ │ │ generally it is not faster. │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.html │ │ │ @@ -90,15 +90,15 @@ │ │ │ │ │ │ ZZ │ │ │ o2 : Ideal of -----[x ..x ] │ │ │ 33331 0 6 │ │ │ │ │ │ │ │ │
    i3 : time phi = rationalMap(V,3,2)
    │ │ │ - -- used 0.184482s (cpu); 0.107539s (thread); 0s (gc)
    │ │ │ + -- used 0.115708s (cpu); 0.116323s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │                      ZZ
    │ │ │       source: Proj(-----[x , x , x , x , x , x , x ])
    │ │ │                    33331  0   1   2   3   4   5   6
    │ │ │                      ZZ
    │ │ │       target: Proj(-----[y , y , y , y , y , y , y , y , y , y , y  , y  , y  , y  ])
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -35,15 +35,15 @@
    │ │ │ │  i1 : ZZ/33331[x_0..x_6]; V = ideal(x_4^2-x_3*x_5,x_2*x_4-x_1*x_5,x_2*x_3-
    │ │ │ │  x_1*x_4,x_2^2-x_0*x_5,x_1*x_2-x_0*x_4,x_1^2-x_0*x_3,x_6);
    │ │ │ │  
    │ │ │ │                  ZZ
    │ │ │ │  o2 : Ideal of -----[x ..x ]
    │ │ │ │                33331  0   6
    │ │ │ │  i3 : time phi = rationalMap(V,3,2)
    │ │ │ │ - -- used 0.184482s (cpu); 0.107539s (thread); 0s (gc)
    │ │ │ │ + -- used 0.115708s (cpu); 0.116323s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = -- rational map --
    │ │ │ │                      ZZ
    │ │ │ │       source: Proj(-----[x , x , x , x , x , x , x ])
    │ │ │ │                    33331  0   1   2   3   4   5   6
    │ │ │ │                      ZZ
    │ │ │ │       target: Proj(-----[y , y , y , y , y , y , y , y , y , y , y  , y  , y  ,
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ring_cm__Tally_rp.html
    │ │ │ @@ -104,15 +104,15 @@
    │ │ │  o4 : Ideal of X
    │ │ │ │ │ │ │ │ │
    i5 : D = new Tally from {H => 2,C => 1};
    │ │ │ │ │ │ │ │ │
    i6 : time phi = rationalMap D
    │ │ │ - -- used 0.0267469s (cpu); 0.0261443s (thread); 0s (gc)
    │ │ │ + -- used 0.0238955s (cpu); 0.02544s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = -- rational map --
    │ │ │                                    ZZ
    │ │ │       source: subvariety of Proj(-----[x , x , x , x , x , x ]) defined by
    │ │ │                                  65521  0   1   2   3   4   5
    │ │ │               {
    │ │ │                   2                  2
    │ │ │ @@ -210,15 +210,15 @@
    │ │ │                         0 1 5    0 2 5    1 2 5    2 5    1 4 5     2 4 5    4 5
    │ │ │                       }
    │ │ │  
    │ │ │  o6 : RationalMap (cubic rational map from surface in PP^5 to PP^20)
    │ │ │ │ │ │ │ │ │
    i7 : time ? image(phi,"F4")
    │ │ │ - -- used 1.26146s (cpu); 0.63888s (thread); 0s (gc)
    │ │ │ + -- used 2.58621s (cpu); 0.717812s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = surface of degree 38 and sectional genus 20 in PP^20 cut out by 153
    │ │ │       hypersurfaces of degree 2
    │ │ │ │ │ │ │ │ │

    See also the package Divisor, which provides general tools for working with divisors.

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ │ │ │ │ o4 = ideal(- 32646x - 28377x + 26433x - 29566x + 3783x + 26696x ) │ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ │ │ o4 : Ideal of X │ │ │ │ i5 : D = new Tally from {H => 2,C => 1}; │ │ │ │ i6 : time phi = rationalMap D │ │ │ │ - -- used 0.0267469s (cpu); 0.0261443s (thread); 0s (gc) │ │ │ │ + -- used 0.0238955s (cpu); 0.02544s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = -- rational map -- │ │ │ │ ZZ │ │ │ │ source: subvariety of Proj(-----[x , x , x , x , x , x ]) defined by │ │ │ │ 65521 0 1 2 3 4 5 │ │ │ │ { │ │ │ │ 2 2 │ │ │ │ @@ -170,15 +170,15 @@ │ │ │ │ 2 2 │ │ │ │ x x x + x x x + x x x + x x + x x x - 2x x x + x x │ │ │ │ 0 1 5 0 2 5 1 2 5 2 5 1 4 5 2 4 5 4 5 │ │ │ │ } │ │ │ │ │ │ │ │ o6 : RationalMap (cubic rational map from surface in PP^5 to PP^20) │ │ │ │ i7 : time ? image(phi,"F4") │ │ │ │ - -- used 1.26146s (cpu); 0.63888s (thread); 0s (gc) │ │ │ │ + -- used 2.58621s (cpu); 0.717812s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = surface of degree 38 and sectional genus 20 in PP^20 cut out by 153 │ │ │ │ hypersurfaces of degree 2 │ │ │ │ See also the package _D_i_v_i_s_o_r, which provides general tools for working with │ │ │ │ divisors. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_t_i_o_n_a_l_M_a_p -- makes a rational map │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_special__Cremona__Transformation.html │ │ │ @@ -70,15 +70,15 @@ │ │ │ │ │ │
    │ │ │

    Description

    │ │ │

    A Cremona transformation is said to be special if the base locus scheme is smooth and irreducible. To ensure this condition, the field K must be large enough but no check is made.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : time apply(1..12,i -> describe specialCremonaTransformation(i,ZZ/3331))
    │ │ │ - -- used 1.18389s (cpu); 0.973906s (thread); 0s (gc)
    │ │ │ + -- used 1.44067s (cpu); 1.20823s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = (rational map defined by forms of degree 3,
    │ │ │        source variety: PP^3                      
    │ │ │        target variety: PP^3                      
    │ │ │        dominance: true                           
    │ │ │        birationality: true                       
    │ │ │        projective degrees: {1, 3, 3, 1}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -17,15 +17,15 @@
    │ │ │ │              K, according to the classification given in Table 1 of _S_p_e_c_i_a_l
    │ │ │ │              _c_u_b_i_c_ _C_r_e_m_o_n_a_ _t_r_a_n_s_f_o_r_m_a_t_i_o_n_s_ _o_f_ _P_6_ _a_n_d_ _P_7.
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  A Cremona transformation is said to be special if the base locus scheme is
    │ │ │ │  smooth and irreducible. To ensure this condition, the field K must be large
    │ │ │ │  enough but no check is made.
    │ │ │ │  i1 : time apply(1..12,i -> describe specialCremonaTransformation(i,ZZ/3331))
    │ │ │ │ - -- used 1.18389s (cpu); 0.973906s (thread); 0s (gc)
    │ │ │ │ + -- used 1.44067s (cpu); 1.20823s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o1 = (rational map defined by forms of degree 3,
    │ │ │ │        source variety: PP^3
    │ │ │ │        target variety: PP^3
    │ │ │ │        dominance: true
    │ │ │ │        birationality: true
    │ │ │ │        projective degrees: {1, 3, 3, 1}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_special__Cubic__Transformation.html
    │ │ │ @@ -70,15 +70,15 @@
    │ │ │        
    │ │ │        
    │ │ │

    Description

    │ │ │

    The field K is required to be large enough.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : time specialCubicTransformation 9
    │ │ │ - -- used 0.0895158s (cpu); 0.0880504s (thread); 0s (gc)
    │ │ │ + -- used 0.119999s (cpu); 0.120048s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x , x , x ])
    │ │ │                        0   1   2   3   4   5   6
    │ │ │       target: subvariety of Proj(QQ[t , t , t , t , t , t , t , t , t , t ]) defined by
    │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │               {
    │ │ │ @@ -136,15 +136,15 @@
    │ │ │                          0 1      0 1      1      0 2      0 1 2      1 2      0 2      1 2     2     0 3      0 1 3      1 3      0 2 3      1 2 3      2 3      0 3      1 3      2 3      3     0 4     0 1 4      1 4      0 2 4     1 2 4     2 4     0 3 4      1 3 4      2 3 4      3 4     0 4     1 4     2 4     3 4    4      0 5      0 1 5      1 5     0 2 5      1 2 5     2 5      0 3 5      1 3 5      2 3 5      3 5      0 4 5     1 4 5     2 4 5     3 4 5     4 5     0 5      1 5     2 5      3 5    4 5     5     0 6     0 1 6      1 6      0 2 6      1 2 6     2 6      1 3 6      2 3 6      3 6    0 4 6     1 4 6     2 4 6     3 4 6     4 6      0 5 6      1 5 6     2 5 6      3 5 6      4 5 6     5 6     0 6      1 6     2 6      3 6     4 6     5 6
    │ │ │                       }
    │ │ │  
    │ │ │  o1 : RationalMap (cubic birational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │
    i2 : time describe oo
    │ │ │ - -- used 0.0199392s (cpu); 0.018788s (thread); 0s (gc)
    │ │ │ + -- used 0.0561777s (cpu); 0.0553741s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = rational map defined by forms of degree 3
    │ │ │       source variety: PP^6
    │ │ │       target variety: complete intersection of type (2,2,2) in PP^9
    │ │ │       dominance: true
    │ │ │       birationality: true
    │ │ │       projective degrees: {1, 3, 9, 17, 21, 16, 8}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,15 +16,15 @@
    │ │ │ │            o a _r_a_t_i_o_n_a_l_ _m_a_p, an example of special cubic birational
    │ │ │ │              transformation over K, according to the classification given in
    │ │ │ │              Table 2 of _S_p_e_c_i_a_l_ _c_u_b_i_c_ _b_i_r_a_t_i_o_n_a_l_ _t_r_a_n_s_f_o_r_m_a_t_i_o_n_s_ _o_f_ _p_r_o_j_e_c_t_i_v_e
    │ │ │ │              _s_p_a_c_e_s.
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  The field K is required to be large enough.
    │ │ │ │  i1 : time specialCubicTransformation 9
    │ │ │ │ - -- used 0.0895158s (cpu); 0.0880504s (thread); 0s (gc)
    │ │ │ │ + -- used 0.119999s (cpu); 0.120048s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o1 = -- rational map --
    │ │ │ │       source: Proj(QQ[x , x , x , x , x , x , x ])
    │ │ │ │                        0   1   2   3   4   5   6
    │ │ │ │       target: subvariety of Proj(QQ[t , t , t , t , t , t , t , t , t , t ])
    │ │ │ │  defined by
    │ │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │ │ @@ -324,15 +324,15 @@
    │ │ │ │  6     4 6      0 5 6      1 5 6     2 5 6      3 5 6      4 5 6     5 6     0 6
    │ │ │ │  1 6     2 6      3 6     4 6     5 6
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o1 : RationalMap (cubic birational map from PP^6 to 6-dimensional subvariety of
    │ │ │ │  PP^9)
    │ │ │ │  i2 : time describe oo
    │ │ │ │ - -- used 0.0199392s (cpu); 0.018788s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0561777s (cpu); 0.0553741s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = rational map defined by forms of degree 3
    │ │ │ │       source variety: PP^6
    │ │ │ │       target variety: complete intersection of type (2,2,2) in PP^9
    │ │ │ │       dominance: true
    │ │ │ │       birationality: true
    │ │ │ │       projective degrees: {1, 3, 9, 17, 21, 16, 8}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_special__Quadratic__Transformation.html
    │ │ │ @@ -70,15 +70,15 @@
    │ │ │        
    │ │ │        
    │ │ │

    Description

    │ │ │

    The field K is required to be large enough.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : time specialQuadraticTransformation 4
    │ │ │ - -- used 0.067479s (cpu); 0.065041s (thread); 0s (gc)
    │ │ │ + -- used 0.0519894s (cpu); 0.051045s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x , x , x , x , x ])
    │ │ │                        0   1   2   3   4   5   6   7   8
    │ │ │       target: subvariety of Proj(QQ[y , y , y , y , y , y , y , y , y , y ]) defined by
    │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │               {
    │ │ │ @@ -124,15 +124,15 @@
    │ │ │                         0 1    0 4    3 6    4 6    6    5 7
    │ │ │                       }
    │ │ │  
    │ │ │  o1 : RationalMap (quadratic birational map from PP^8 to hypersurface in PP^9)
    │ │ │
    i2 : time describe oo
    │ │ │ - -- used 0.00850034s (cpu); 0.00606449s (thread); 0s (gc)
    │ │ │ + -- used 0.00333284s (cpu); 0.00519894s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = rational map defined by forms of degree 2
    │ │ │       source variety: PP^8
    │ │ │       target variety: hypersurface of degree 3 in PP^9
    │ │ │       dominance: true
    │ │ │       birationality: true
    │ │ │       projective degrees: {1, 2, 4, 8, 16, 21, 17, 9, 3}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,15 +16,15 @@
    │ │ │ │            o a _r_a_t_i_o_n_a_l_ _m_a_p, an example of special quadratic birational
    │ │ │ │              transformation over K, according to the classification given in
    │ │ │ │              Table 1 of _E_x_a_m_p_l_e_s_ _o_f_ _s_p_e_c_i_a_l_ _q_u_a_d_r_a_t_i_c_ _b_i_r_a_t_i_o_n_a_l_ _t_r_a_n_s_f_o_r_m_a_t_i_o_n_s
    │ │ │ │              _i_n_t_o_ _c_o_m_p_l_e_t_e_ _i_n_t_e_r_s_e_c_t_i_o_n_s_ _o_f_ _q_u_a_d_r_i_c_s.
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  The field K is required to be large enough.
    │ │ │ │  i1 : time specialQuadraticTransformation 4
    │ │ │ │ - -- used 0.067479s (cpu); 0.065041s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0519894s (cpu); 0.051045s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o1 = -- rational map --
    │ │ │ │       source: Proj(QQ[x , x , x , x , x , x , x , x , x ])
    │ │ │ │                        0   1   2   3   4   5   6   7   8
    │ │ │ │       target: subvariety of Proj(QQ[y , y , y , y , y , y , y , y , y , y ])
    │ │ │ │  defined by
    │ │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │ │ @@ -79,15 +79,15 @@
    │ │ │ │                                                     2
    │ │ │ │                        x x  - x x  + x x  - x x  - x  - x x
    │ │ │ │                         0 1    0 4    3 6    4 6    6    5 7
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o1 : RationalMap (quadratic birational map from PP^8 to hypersurface in PP^9)
    │ │ │ │  i2 : time describe oo
    │ │ │ │ - -- used 0.00850034s (cpu); 0.00606449s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00333284s (cpu); 0.00519894s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = rational map defined by forms of degree 2
    │ │ │ │       source variety: PP^8
    │ │ │ │       target variety: hypersurface of degree 3 in PP^9
    │ │ │ │       dominance: true
    │ │ │ │       birationality: true
    │ │ │ │       projective degrees: {1, 2, 4, 8, 16, 21, 17, 9, 3}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_to__External__String_lp__Rational__Map_rp.html
    │ │ │ @@ -82,36 +82,36 @@
    │ │ │            
    i3 : #str
    │ │ │  
    │ │ │  o3 = 6927
    │ │ │
    i4 : time phi' = value str;
    │ │ │ - -- used 0.0200011s (cpu); 0.0206321s (thread); 0s (gc)
    │ │ │ + -- used 0.291917s (cpu); 0.0799198s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : RationalMap (cubic birational map from PP^3 to hypersurface in PP^4)
    │ │ │
    i5 : time describe phi'
    │ │ │ - -- used 0.00473485s (cpu); 0.00488245s (thread); 0s (gc)
    │ │ │ + -- used 0.00300748s (cpu); 0.00441817s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = rational map defined by forms of degree 3
    │ │ │       source variety: PP^3
    │ │ │       target variety: smooth quadric hypersurface in PP^4
    │ │ │       dominance: true
    │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │       projective degrees: {1, 3, 4, 2}
    │ │ │       number of minimal representatives: 1
    │ │ │       dimension base locus: 1
    │ │ │       degree base locus: 5
    │ │ │       coefficient ring: ZZ/33331
    │ │ │
    i6 : time describe inverse phi'
    │ │ │ - -- used 0.00350015s (cpu); 0.00391244s (thread); 0s (gc)
    │ │ │ + -- used 0.0022602s (cpu); 0.00354625s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = rational map defined by forms of degree 2
    │ │ │       source variety: smooth quadric hypersurface in PP^4
    │ │ │       target variety: PP^3
    │ │ │       dominance: true
    │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │       projective degrees: {2, 4, 3, 1}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -20,32 +20,32 @@
    │ │ │ │  
    │ │ │ │  o1 : RationalMap (cubic birational map from PP^3 to hypersurface in PP^4)
    │ │ │ │  i2 : str = toExternalString phi;
    │ │ │ │  i3 : #str
    │ │ │ │  
    │ │ │ │  o3 = 6927
    │ │ │ │  i4 : time phi' = value str;
    │ │ │ │ - -- used 0.0200011s (cpu); 0.0206321s (thread); 0s (gc)
    │ │ │ │ + -- used 0.291917s (cpu); 0.0799198s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : RationalMap (cubic birational map from PP^3 to hypersurface in PP^4)
    │ │ │ │  i5 : time describe phi'
    │ │ │ │ - -- used 0.00473485s (cpu); 0.00488245s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00300748s (cpu); 0.00441817s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = rational map defined by forms of degree 3
    │ │ │ │       source variety: PP^3
    │ │ │ │       target variety: smooth quadric hypersurface in PP^4
    │ │ │ │       dominance: true
    │ │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │ │       projective degrees: {1, 3, 4, 2}
    │ │ │ │       number of minimal representatives: 1
    │ │ │ │       dimension base locus: 1
    │ │ │ │       degree base locus: 5
    │ │ │ │       coefficient ring: ZZ/33331
    │ │ │ │  i6 : time describe inverse phi'
    │ │ │ │ - -- used 0.00350015s (cpu); 0.00391244s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0022602s (cpu); 0.00354625s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 = rational map defined by forms of degree 2
    │ │ │ │       source variety: smooth quadric hypersurface in PP^4
    │ │ │ │       target variety: PP^3
    │ │ │ │       dominance: true
    │ │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │ │       projective degrees: {2, 4, 3, 1}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/index.html
    │ │ │ @@ -48,63 +48,63 @@
    │ │ │          

    Below is an example using the methods provided by this package, dealing with a birational transformation $\Phi:\mathbb{P}^6 \dashrightarrow \mathbb{G}(2,4)\subset\mathbb{P}^9$ of bidegree $(3,3)$.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : ZZ/300007[t_0..t_6];
    │ │ │
    i2 : time phi = toMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ - -- used 0.00399965s (cpu); 0.00392251s (thread); 0s (gc)
    │ │ │ + -- used 0.00400782s (cpu); 0.00322771s (thread); 0s (gc)
    │ │ │  
    │ │ │              ZZ              ZZ                3                2    2                2        2                      2                  2    2                 2                       3                2    2                2                                 2                           2    2                                  2        2                      2                  2                        2                         2    2                 2                       3                2    2
    │ │ │  o2 = map (------[t ..t ], ------[x ..x ], {- t  + 2t t t  - t t  - t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t , - t t  + t t t  + t t t  - t t t  - t t  + t t t , - t t t  + t t  + t t  - t t t  - t t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t t  + t t t  - t t  - t t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t })
    │ │ │            300007  0   6   300007  0   9       2     1 2 3    0 3    1 4    0 2 4     2 3    1 3    1 2 4    0 3 4    1 5    0 2 5     2 3    2 4    1 3 4    0 4    1 2 5    0 3 5     3     2 3 4    1 4    2 5    1 3 5     2 4    1 3 4    1 2 5    0 3 5    1 6    0 2 6     2 3 4    1 4    2 5    0 4 5    1 2 6    0 3 6     3 4    2 4    2 3 5    1 4 5    2 6    1 3 6     2 4    2 3 5    1 4 5    0 5    1 3 6    0 4 6     3 4    3 5    2 4 5    1 5    2 3 6    1 4 6     4     3 4 5    2 5    3 6    2 4 6
    │ │ │  
    │ │ │                 ZZ                 ZZ
    │ │ │  o2 : RingMap ------[t ..t ] <-- ------[x ..x ]
    │ │ │               300007  0   6      300007  0   9
    │ │ │
    i3 : time J = kernel(phi,2)
    │ │ │ - -- used 0.0437451s (cpu); 0.0440403s (thread); 0s (gc)
    │ │ │ + -- used 0.0320008s (cpu); 0.0340255s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = ideal (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x 
    │ │ │               6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4
    │ │ │       ------------------------------------------------------------------------
    │ │ │       - x x  + x x , x x  - x x  + x x )
    │ │ │          1 6    0 8   2 4    1 5    0 7
    │ │ │  
    │ │ │                  ZZ
    │ │ │  o3 : Ideal of ------[x ..x ]
    │ │ │                300007  0   9
    │ │ │
    i4 : time degreeMap phi
    │ │ │ - -- used 0.0829531s (cpu); 0.0341009s (thread); 0s (gc)
    │ │ │ + -- used 0.124868s (cpu); 0.0674956s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 1
    │ │ │
    i5 : time projectiveDegrees phi
    │ │ │ - -- used 0.506956s (cpu); 0.382073s (thread); 0s (gc)
    │ │ │ + -- used 0.45759s (cpu); 0.397078s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │  
    │ │ │  o5 : List
    │ │ │
    i6 : time projectiveDegrees(phi,NumDegrees=>0)
    │ │ │ - -- used 0.0565176s (cpu); 0.0573171s (thread); 0s (gc)
    │ │ │ + -- used 0.0433452s (cpu); 0.0461662s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = {5}
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    i7 : time phi = toMap(phi,Dominant=>J)
    │ │ │ - -- used 0.000189065s (cpu); 0.00204299s (thread); 0s (gc)
    │ │ │ + -- used 0.00105715s (cpu); 0.00171203s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                         ZZ
    │ │ │                                                                       ------[x ..x ]
    │ │ │              ZZ                                                       300007  0   9                                                  3                2    2                2        2                      2                  2    2                 2                       3                2    2                2                                 2                           2    2                                  2        2                      2                  2                        2                         2    2                 2                       3                2    2
    │ │ │  o7 = map (------[t ..t ], ----------------------------------------------------------------------------------------------------, {- t  + 2t t t  - t t  - t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t , - t t  + t t t  + t t t  - t t t  - t t  + t t t , - t t t  + t t  + t t  - t t t  - t t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t t  + t t t  - t t  - t t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t })
    │ │ │            300007  0   6   (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )      2     1 2 3    0 3    1 4    0 2 4     2 3    1 3    1 2 4    0 3 4    1 5    0 2 5     2 3    2 4    1 3 4    0 4    1 2 5    0 3 5     3     2 3 4    1 4    2 5    1 3 5     2 4    1 3 4    1 2 5    0 3 5    1 6    0 2 6     2 3 4    1 4    2 5    0 4 5    1 2 6    0 3 6     3 4    2 4    2 3 5    1 4 5    2 6    1 3 6     2 4    2 3 5    1 4 5    0 5    1 3 6    0 4 6     3 4    3 5    2 4 5    1 5    2 3 6    1 4 6     4     3 4 5    2 5    3 6    2 4 6
    │ │ │                              6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ @@ -114,15 +114,15 @@
    │ │ │                 ZZ                                                          300007  0   9
    │ │ │  o7 : RingMap ------[t ..t ] <-- ----------------------------------------------------------------------------------------------------
    │ │ │               300007  0   6      (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )
    │ │ │                                    6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │
    i8 : time psi = inverseMap phi
    │ │ │ - -- used 0.566795s (cpu); 0.41755s (thread); 0s (gc)
    │ │ │ + -- used 0.599868s (cpu); 0.4454s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                         ZZ
    │ │ │                                                       ------[x ..x ]
    │ │ │                                                       300007  0   9                                                ZZ              3                2               2    2                        2                          2     2        2                               2                                   2               2             2                       3                                                 2                 2    2                                  2    2                 2                                                 3                         2      2    2      2                                              2
    │ │ │  o8 = map (----------------------------------------------------------------------------------------------------, ------[t ..t ], {x  - 2x x x  + x x  - x x x  + x x  + x x  + x x x  - x x x  + x x  - 2x x x  - x x x  - 2x x , x x  - x x  - x x x  + x x x  + x x x  + x x  - 2x x x  - x x x  + x x x , x x  - x x x  + x x  - x x x  + x x  - x x x  - x x x , x  - x x x  + x x x  + x x x  - 2x x x  - x x x , x x  - x x x  + x x  + x x  - x x x  - x x x  - x x x , x x  - x x  - x x x  + x x  + x x x  + x x x  - 2x x x  - x x x  + x x x , x  - 2x x x  - x x x  + x x  + x x  + x x  + x x  + x x x  - 2x x x  - x x x  - x x x  - 2x x })
    │ │ │            (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )  300007  0   6     2     1 2 3    0 3    1 2 5    0 5    1 6    0 2 6    0 4 6    1 7     0 2 7    0 4 7     0 9   2 3    1 3    1 2 6    0 3 6    0 5 6    1 8     0 2 8    0 4 8    0 1 9   2 3    1 3 6    0 6    0 3 8    1 9    0 2 9    0 4 9   3    1 3 8    0 6 8    1 2 9     0 3 9    0 5 9   3 6    2 3 8    0 8    2 9    1 3 9    0 6 9    0 7 9   3 6    3 8    2 6 8    1 8    2 3 9    2 5 9     1 6 9    1 7 9    0 8 9   6     3 6 8    5 6 8    2 8    4 8    3 9    5 9    2 6 9     4 6 9    2 7 9    4 7 9     0 9
    │ │ │              6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ @@ -132,38 +132,38 @@
    │ │ │                                                          300007  0   9                                                   ZZ
    │ │ │  o8 : RingMap ---------------------------------------------------------------------------------------------------- <-- ------[t ..t ]
    │ │ │               (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )     300007  0   6
    │ │ │                 6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │
    i9 : time isInverseMap(phi,psi)
    │ │ │ - -- used 0.0101323s (cpu); 0.00946356s (thread); 0s (gc)
    │ │ │ + -- used 0.00798632s (cpu); 0.00712739s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 = true
    │ │ │
    i10 : time degreeMap psi
    │ │ │ - -- used 0.297917s (cpu); 0.233828s (thread); 0s (gc)
    │ │ │ + -- used 0.255736s (cpu); 0.197823s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 1
    │ │ │
    i11 : time projectiveDegrees psi
    │ │ │ - -- used 4.99657s (cpu); 4.27726s (thread); 0s (gc)
    │ │ │ + -- used 5.73993s (cpu); 5.35784s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │  
    │ │ │  o11 : List
    │ │ │
    │ │ │

    We repeat the example using the type RationalMap and using deterministic methods.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : time phi = rationalMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ - -- used 0.0011253s (cpu); 0.00197141s (thread); 0s (gc)
    │ │ │ + -- used 0.00200211s (cpu); 0.00186545s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │                       ZZ
    │ │ │        target: Proj(------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ @@ -210,15 +210,15 @@
    │ │ │                            4     3 4 5    2 5    3 6    2 4 6
    │ │ │                        }
    │ │ │  
    │ │ │  o12 : RationalMap (cubic rational map from PP^6 to PP^9)
    │ │ │
    i13 : time phi = rationalMap(phi,Dominant=>2)
    │ │ │ - -- used 0.155471s (cpu); 0.0755467s (thread); 0s (gc)
    │ │ │ + -- used 0.193117s (cpu); 0.0663768s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │                                     ZZ
    │ │ │        target: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x ]) defined by
    │ │ │ @@ -281,15 +281,15 @@
    │ │ │                            4     3 4 5    2 5    3 6    2 4 6
    │ │ │                        }
    │ │ │  
    │ │ │  o13 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │
    i14 : time phi^(-1)
    │ │ │ - -- used 0.504825s (cpu); 0.425036s (thread); 0s (gc)
    │ │ │ + -- used 0.435332s (cpu); 0.435809s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = -- rational map --
    │ │ │                                     ZZ
    │ │ │        source: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x ]) defined by
    │ │ │                                   300007  0   1   2   3   4   5   6   7   8   9
    │ │ │                {
    │ │ │                 x x  - x x  + x x ,
    │ │ │ @@ -340,78 +340,78 @@
    │ │ │                          6     3 6 8    5 6 8    2 8    4 8    3 9    5 9    2 6 9     4 6 9    2 7 9    4 7 9     0 9
    │ │ │                        }
    │ │ │  
    │ │ │  o14 : RationalMap (cubic birational map from 6-dimensional subvariety of PP^9 to PP^6)
    │ │ │
    i15 : time degrees phi^(-1)
    │ │ │ - -- used 0.355466s (cpu); 0.270355s (thread); 0s (gc)
    │ │ │ + -- used 0.489651s (cpu); 0.36645s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │  
    │ │ │  o15 : List
    │ │ │
    i16 : time degrees phi
    │ │ │ - -- used 0.120907s (cpu); 0.0437002s (thread); 0s (gc)
    │ │ │ + -- used 0.0734552s (cpu); 0.0218007s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │  
    │ │ │  o16 : List
    │ │ │
    i17 : time describe phi
    │ │ │ - -- used 0.00320772s (cpu); 0.00316311s (thread); 0s (gc)
    │ │ │ + -- used 1.5298e-05s (cpu); 0.00351931s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 = rational map defined by forms of degree 3
    │ │ │        source variety: PP^6
    │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        dominance: true
    │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │        projective degrees: {1, 3, 9, 17, 21, 15, 5}
    │ │ │        coefficient ring: ZZ/300007
    │ │ │
    i18 : time describe phi^(-1)
    │ │ │ - -- used 0.00643296s (cpu); 0.00993896s (thread); 0s (gc)
    │ │ │ + -- used 0.00846573s (cpu); 0.0123656s (thread); 0s (gc)
    │ │ │  
    │ │ │  o18 = rational map defined by forms of degree 3
    │ │ │        source variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        target variety: PP^6
    │ │ │        dominance: true
    │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │        projective degrees: {5, 15, 21, 17, 9, 3, 1}
    │ │ │        number of minimal representatives: 1
    │ │ │        dimension base locus: 4
    │ │ │        degree base locus: 24
    │ │ │        coefficient ring: ZZ/300007
    │ │ │
    i19 : time (f,g) = graph phi^-1; f;
    │ │ │ - -- used 0.0084534s (cpu); 0.00881838s (thread); 0s (gc)
    │ │ │ + -- used 0.0520925s (cpu); 0.052059s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 : MultihomogeneousRationalMap (birational map from 6-dimensional subvariety of PP^9 x PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │
    i21 : time degrees f
    │ │ │ - -- used 1.19108s (cpu); 0.901679s (thread); 0s (gc)
    │ │ │ + -- used 1.50652s (cpu); 1.26241s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = {904, 508, 268, 130, 56, 20, 5}
    │ │ │  
    │ │ │  o21 : List
    │ │ │
    i22 : time degree f
    │ │ │ - -- used 0.000190698s (cpu); 1.3635e-05s (thread); 0s (gc)
    │ │ │ + -- used 0.000143619s (cpu); 1.1592e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o22 = 1
    │ │ │
    i23 : time describe f
    │ │ │ - -- used 0.000926578s (cpu); 0.00142987s (thread); 0s (gc)
    │ │ │ + -- used 0.000786354s (cpu); 0.00119327s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = rational map defined by multiforms of degree {1, 0}
    │ │ │        source variety: 6-dimensional subvariety of PP^9 x PP^6 cut out by 20 hypersurfaces of degrees ({1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{2, 0},{2, 0},{2, 0},{2, 0},{2, 0})
    │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        dominance: true
    │ │ │        birationality: true
    │ │ │        projective degrees: {904, 508, 268, 130, 56, 20, 5}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -25,15 +25,15 @@
    │ │ │ │  map) from a list of $m+1$ homogeneous elements of the same degree in $K
    │ │ │ │  [x_0,...,x_n]/I$.
    │ │ │ │  Below is an example using the methods provided by this package, dealing with a
    │ │ │ │  birational transformation $\Phi:\mathbb{P}^6 \dashrightarrow \mathbb{G}
    │ │ │ │  (2,4)\subset\mathbb{P}^9$ of bidegree $(3,3)$.
    │ │ │ │  i1 : ZZ/300007[t_0..t_6];
    │ │ │ │  i2 : time phi = toMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ │ - -- used 0.00399965s (cpu); 0.00392251s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00400782s (cpu); 0.00322771s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │              ZZ              ZZ                3                2    2
    │ │ │ │  2        2                      2                  2    2                 2
    │ │ │ │  3                2    2                2                                 2
    │ │ │ │  2    2                                  2        2                      2
    │ │ │ │  2                        2                         2    2                 2
    │ │ │ │  3                2    2
    │ │ │ │ @@ -52,43 +52,43 @@
    │ │ │ │  0 5    1 3 6    0 4 6     3 4    3 5    2 4 5    1 5    2 3 6    1 4 6     4
    │ │ │ │  3 4 5    2 5    3 6    2 4 6
    │ │ │ │  
    │ │ │ │                 ZZ                 ZZ
    │ │ │ │  o2 : RingMap ------[t ..t ] <-- ------[x ..x ]
    │ │ │ │               300007  0   6      300007  0   9
    │ │ │ │  i3 : time J = kernel(phi,2)
    │ │ │ │ - -- used 0.0437451s (cpu); 0.0440403s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0320008s (cpu); 0.0340255s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = ideal (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x
    │ │ │ │               6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       - x x  + x x , x x  - x x  + x x )
    │ │ │ │          1 6    0 8   2 4    1 5    0 7
    │ │ │ │  
    │ │ │ │                  ZZ
    │ │ │ │  o3 : Ideal of ------[x ..x ]
    │ │ │ │                300007  0   9
    │ │ │ │  i4 : time degreeMap phi
    │ │ │ │ - -- used 0.0829531s (cpu); 0.0341009s (thread); 0s (gc)
    │ │ │ │ + -- used 0.124868s (cpu); 0.0674956s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = 1
    │ │ │ │  i5 : time projectiveDegrees phi
    │ │ │ │ - -- used 0.506956s (cpu); 0.382073s (thread); 0s (gc)
    │ │ │ │ + -- used 0.45759s (cpu); 0.397078s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  i6 : time projectiveDegrees(phi,NumDegrees=>0)
    │ │ │ │ - -- used 0.0565176s (cpu); 0.0573171s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0433452s (cpu); 0.0461662s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 = {5}
    │ │ │ │  
    │ │ │ │  o6 : List
    │ │ │ │  i7 : time phi = toMap(phi,Dominant=>J)
    │ │ │ │ - -- used 0.000189065s (cpu); 0.00204299s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00105715s (cpu); 0.00171203s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                                                                         ZZ
    │ │ │ │                                                                       ------[x
    │ │ │ │  ..x ]
    │ │ │ │              ZZ                                                       300007  0
    │ │ │ │  9                                                  3                2    2
    │ │ │ │  2        2                      2                  2    2                 2
    │ │ │ │ @@ -123,15 +123,15 @@
    │ │ │ │  o7 : RingMap ------[t ..t ] <-- -----------------------------------------------
    │ │ │ │  -----------------------------------------------------
    │ │ │ │               300007  0   6      (x x  - x x  + x x , x x  - x x  + x x , x x  -
    │ │ │ │  x x  + x x , x x  - x x  + x x , x x  - x x  + x x )
    │ │ │ │                                    6 7    5 8    4 9   3 7    2 8    1 9   3 5
    │ │ │ │  2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ │  i8 : time psi = inverseMap phi
    │ │ │ │ - -- used 0.566795s (cpu); 0.41755s (thread); 0s (gc)
    │ │ │ │ + -- used 0.599868s (cpu); 0.4454s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                                                         ZZ
    │ │ │ │                                                       ------[x ..x ]
    │ │ │ │                                                       300007  0   9
    │ │ │ │  ZZ              3                2               2    2
    │ │ │ │  2                          2     2        2                               2
    │ │ │ │  2               2             2                       3
    │ │ │ │ @@ -164,31 +164,31 @@
    │ │ │ │  o8 : RingMap ------------------------------------------------------------------
    │ │ │ │  ---------------------------------- <-- ------[t ..t ]
    │ │ │ │               (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x
    │ │ │ │  - x x  + x x , x x  - x x  + x x )     300007  0   6
    │ │ │ │                 6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4
    │ │ │ │  1 6    0 8   2 4    1 5    0 7
    │ │ │ │  i9 : time isInverseMap(phi,psi)
    │ │ │ │ - -- used 0.0101323s (cpu); 0.00946356s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00798632s (cpu); 0.00712739s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o9 = true
    │ │ │ │  i10 : time degreeMap psi
    │ │ │ │ - -- used 0.297917s (cpu); 0.233828s (thread); 0s (gc)
    │ │ │ │ + -- used 0.255736s (cpu); 0.197823s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o10 = 1
    │ │ │ │  i11 : time projectiveDegrees psi
    │ │ │ │ - -- used 4.99657s (cpu); 4.27726s (thread); 0s (gc)
    │ │ │ │ + -- used 5.73993s (cpu); 5.35784s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o11 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │ │  
    │ │ │ │  o11 : List
    │ │ │ │  We repeat the example using the type _R_a_t_i_o_n_a_l_M_a_p and using deterministic
    │ │ │ │  methods.
    │ │ │ │  i12 : time phi = rationalMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ │ - -- used 0.0011253s (cpu); 0.00197141s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00200211s (cpu); 0.00186545s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o12 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │ │                       ZZ
    │ │ │ │        target: Proj(------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ │ @@ -233,15 +233,15 @@
    │ │ │ │                            3                2    2
    │ │ │ │                         - t  + 2t t t  - t t  - t t  + t t t
    │ │ │ │                            4     3 4 5    2 5    3 6    2 4 6
    │ │ │ │                        }
    │ │ │ │  
    │ │ │ │  o12 : RationalMap (cubic rational map from PP^6 to PP^9)
    │ │ │ │  i13 : time phi = rationalMap(phi,Dominant=>2)
    │ │ │ │ - -- used 0.155471s (cpu); 0.0755467s (thread); 0s (gc)
    │ │ │ │ + -- used 0.193117s (cpu); 0.0663768s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o13 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │ │                                     ZZ
    │ │ │ │        target: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x
    │ │ │ │ @@ -304,15 +304,15 @@
    │ │ │ │                         - t  + 2t t t  - t t  - t t  + t t t
    │ │ │ │                            4     3 4 5    2 5    3 6    2 4 6
    │ │ │ │                        }
    │ │ │ │  
    │ │ │ │  o13 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of
    │ │ │ │  PP^9)
    │ │ │ │  i14 : time phi^(-1)
    │ │ │ │ - -- used 0.504825s (cpu); 0.425036s (thread); 0s (gc)
    │ │ │ │ + -- used 0.435332s (cpu); 0.435809s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o14 = -- rational map --
    │ │ │ │                                     ZZ
    │ │ │ │        source: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x
    │ │ │ │  ]) defined by
    │ │ │ │                                   300007  0   1   2   3   4   5   6   7   8   9
    │ │ │ │                {
    │ │ │ │ @@ -373,67 +373,67 @@
    │ │ │ │                          6     3 6 8    5 6 8    2 8    4 8    3 9    5 9    2 6
    │ │ │ │  9     4 6 9    2 7 9    4 7 9     0 9
    │ │ │ │                        }
    │ │ │ │  
    │ │ │ │  o14 : RationalMap (cubic birational map from 6-dimensional subvariety of PP^9
    │ │ │ │  to PP^6)
    │ │ │ │  i15 : time degrees phi^(-1)
    │ │ │ │ - -- used 0.355466s (cpu); 0.270355s (thread); 0s (gc)
    │ │ │ │ + -- used 0.489651s (cpu); 0.36645s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o15 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │ │  
    │ │ │ │  o15 : List
    │ │ │ │  i16 : time degrees phi
    │ │ │ │ - -- used 0.120907s (cpu); 0.0437002s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0734552s (cpu); 0.0218007s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o16 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │ │  
    │ │ │ │  o16 : List
    │ │ │ │  i17 : time describe phi
    │ │ │ │ - -- used 0.00320772s (cpu); 0.00316311s (thread); 0s (gc)
    │ │ │ │ + -- used 1.5298e-05s (cpu); 0.00351931s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o17 = rational map defined by forms of degree 3
    │ │ │ │        source variety: PP^6
    │ │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5
    │ │ │ │  hypersurfaces of degree 2
    │ │ │ │        dominance: true
    │ │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │ │        projective degrees: {1, 3, 9, 17, 21, 15, 5}
    │ │ │ │        coefficient ring: ZZ/300007
    │ │ │ │  i18 : time describe phi^(-1)
    │ │ │ │ - -- used 0.00643296s (cpu); 0.00993896s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00846573s (cpu); 0.0123656s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o18 = rational map defined by forms of degree 3
    │ │ │ │        source variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5
    │ │ │ │  hypersurfaces of degree 2
    │ │ │ │        target variety: PP^6
    │ │ │ │        dominance: true
    │ │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │ │        projective degrees: {5, 15, 21, 17, 9, 3, 1}
    │ │ │ │        number of minimal representatives: 1
    │ │ │ │        dimension base locus: 4
    │ │ │ │        degree base locus: 24
    │ │ │ │        coefficient ring: ZZ/300007
    │ │ │ │  i19 : time (f,g) = graph phi^-1; f;
    │ │ │ │ - -- used 0.0084534s (cpu); 0.00881838s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0520925s (cpu); 0.052059s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o20 : MultihomogeneousRationalMap (birational map from 6-dimensional subvariety
    │ │ │ │  of PP^9 x PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │ │  i21 : time degrees f
    │ │ │ │ - -- used 1.19108s (cpu); 0.901679s (thread); 0s (gc)
    │ │ │ │ + -- used 1.50652s (cpu); 1.26241s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o21 = {904, 508, 268, 130, 56, 20, 5}
    │ │ │ │  
    │ │ │ │  o21 : List
    │ │ │ │  i22 : time degree f
    │ │ │ │ - -- used 0.000190698s (cpu); 1.3635e-05s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000143619s (cpu); 1.1592e-05s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o22 = 1
    │ │ │ │  i23 : time describe f
    │ │ │ │ - -- used 0.000926578s (cpu); 0.00142987s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000786354s (cpu); 0.00119327s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o23 = rational map defined by multiforms of degree {1, 0}
    │ │ │ │        source variety: 6-dimensional subvariety of PP^9 x PP^6 cut out by 20
    │ │ │ │  hypersurfaces of degrees ({1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1,
    │ │ │ │  1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{2, 0},{2, 0},{2, 0},{2,
    │ │ │ │  0},{2, 0})
    │ │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5
    │ │ ├── ./usr/share/doc/Macaulay2/Cyclotomic/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=10
    │ │ │  Q3ljbG90b21pYw==
    │ │ │  #:len=478
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiY3ljbG90b21pYyBmaWVsZHMiLCBEZXNj
    │ │ │  cmlwdGlvbiA9PiAoRU17IkN5Y2xvdG9taWMifSwiIGlzIGEgcGFja2FnZSBmb3IgY3ljbG90b21p
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=20
    │ │ │  c291cmNlKERHQWxnZWJyYU1hcCk=
    │ │ │  #:len=659
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiT3V0cHV0cyB0aGUgc291cmNlIG9mIGEg
    │ │ │  REdBbGdlYnJhTWFwIiwgImxpbmVudW0iID0+IDMxMDQsIElucHV0cyA9PiB7U1BBTntUVHsicGhp
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___Basic_spoperations_spon_sp__D__G_sp__Algebra_sp__Maps.out
    │ │ │ @@ -155,15 +155,15 @@
    │ │ │                                    2     2     2       2 2     2 2      2 2      2 2     2 2        2 2       2 2        2       2       2
    │ │ │         Differential => {a, b, c, a T , b T , c T , a*b c T , b c T , -a b T , -a c T , b c T T , -a c T T , b c T T , -a T T , c T T , b T T }
    │ │ │                                      1     2     3         1       4        6        5       3 4        3 5       2 4      1 7     3 7     2 7
    │ │ │  
    │ │ │  o16 : DGAlgebra
    │ │ │  
    │ │ │  i17 : HHg = HH g
    │ │ │ - -- used 0.0133052s (cpu); 0.0129559s (thread); 0s (gc)
    │ │ │ + -- used 0.0499711s (cpu); 0.013473s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │                            ZZ
    │ │ │                           ---[a..c]
    │ │ │              ZZ           101
    │ │ │  o17 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │             101  1   2           3   1     1
    │ │ │                          (c, b, a )
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___Basic_spoperations_spon_sp__D__G_sp__Algebras.out
    │ │ │ @@ -30,15 +30,15 @@
    │ │ │        Underlying algebra => R[S ..S ]
    │ │ │                                 1   4
    │ │ │        Differential => {a, b, c, d}
    │ │ │  
    │ │ │  o4 : DGAlgebra
    │ │ │  
    │ │ │  i5 : HB = HH B
    │ │ │ - -- used 0.0166251s (cpu); 0.0162396s (thread); 0s (gc)
    │ │ │ + -- used 0.131311s (cpu); 0.0232718s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o5 = HB
    │ │ │  
    │ │ │  o5 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │  
    │ │ │  i6 : describe HB
    │ │ │  
    │ │ │ @@ -68,15 +68,15 @@
    │ │ │                                      2
    │ │ │        Differential => {a, b, c, d, a T }
    │ │ │                                        1
    │ │ │  
    │ │ │  o9 : DGAlgebra
    │ │ │  
    │ │ │  i10 : homologyAlgebra(C,GenDegreeLimit=>4,RelDegreeLimit=>4)
    │ │ │ - -- used 0.0324166s (cpu); 0.0286597s (thread); 0s (gc)
    │ │ │ + -- used 0.0725772s (cpu); 0.0157891s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │         ZZ
    │ │ │  o10 = ---[X ..X ]
    │ │ │        101  1   3
    │ │ │  
    │ │ │  o10 : PolynomialRing, 3 skew commutative variable(s)
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___H__H_sp__D__G__Algebra__Map.out
    │ │ │ @@ -55,15 +55,15 @@
    │ │ │                 {2} | 0 |
    │ │ │                 {2} | 0 |
    │ │ │                 {2} | 1 |
    │ │ │  
    │ │ │  o6 : ChainComplexMap
    │ │ │  
    │ │ │  i7 : HHg = HH g
    │ │ │ - -- used 0.0133621s (cpu); 0.0130279s (thread); 0s (gc)
    │ │ │ + -- used 0.123641s (cpu); 0.0204562s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │                           ZZ
    │ │ │                          ---[a..c]
    │ │ │             ZZ           101
    │ │ │  o7 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │            101  1   2           3   1     1
    │ │ │                         (c, b, a )
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.out
    │ │ │ @@ -61,15 +61,15 @@
    │ │ │                    {9} | 0 0 0 0 0 0 0 0 0 0 0 0 d c b a |                
    │ │ │  
    │ │ │       4 : cokernel {12} | d c b a |                                       
    │ │ │  
    │ │ │  o6 : GradedModule
    │ │ │  
    │ │ │  i7 : HKR = HH KR
    │ │ │ - -- used 0.0980879s (cpu); 0.0432325s (thread); 0s (gc)
    │ │ │ + -- used 0.480558s (cpu); 0.0752885s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o7 = HKR
    │ │ │  
    │ │ │  o7 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │  
    │ │ │  i8 : ideal HKR
    │ │ │  
    │ │ │ @@ -80,15 +80,15 @@
    │ │ │  i9 : R' = ZZ/101[a,b,c,d]/ideal{a^3,b^3,c^3,d^3,a*c,a*d,b*c,b*d,a^2*b^2-c^2*d^2}
    │ │ │  
    │ │ │  o9 = R'
    │ │ │  
    │ │ │  o9 : QuotientRing
    │ │ │  
    │ │ │  i10 : HKR' = HH koszulComplexDGA R'
    │ │ │ - -- used 0.563938s (cpu); 0.492392s (thread); 0s (gc)
    │ │ │ + -- used 0.692824s (cpu); 0.63252s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o10 = HKR'
    │ │ │  
    │ │ │  o10 : QuotientRing
    │ │ │  
    │ │ │  i11 : numgens HKR'
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_cycles.out
    │ │ │ @@ -18,15 +18,15 @@
    │ │ │  i3 : apply(maxDegree A + 1, i -> numgens prune homology(i,A))
    │ │ │  
    │ │ │  o3 = {1, 4, 6, 4, 1}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : HA = homologyAlgebra(A)
    │ │ │ - -- used 0.0213997s (cpu); 0.0168211s (thread); 0s (gc)
    │ │ │ + -- used 0.0944368s (cpu); 0.0190203s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o4 = HA
    │ │ │  
    │ │ │  o4 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │  
    │ │ │  i5 : numgens HA
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Algebra.out
    │ │ │ @@ -18,15 +18,15 @@
    │ │ │  i3 : apply(maxDegree A + 1, i -> numgens prune homology(i,A))
    │ │ │  
    │ │ │  o3 = {1, 4, 6, 4, 1}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : HA = homologyAlgebra(A)
    │ │ │ - -- used 0.0166798s (cpu); 0.016755s (thread); 0s (gc)
    │ │ │ + -- used 0.426659s (cpu); 0.091143s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o4 = HA
    │ │ │  
    │ │ │  o4 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │  
    │ │ │  i5 : R = ZZ/101[a,b,c,d]/ideal{a^4,b^4,c^4,d^4,a^3*b^3*c^3*d^3}
    │ │ │  
    │ │ │ @@ -46,15 +46,15 @@
    │ │ │  i7 : apply(maxDegree A + 1, i -> numgens prune homology(i,A))
    │ │ │  
    │ │ │  o7 = {1, 5, 10, 10, 4}
    │ │ │  
    │ │ │  o7 : List
    │ │ │  
    │ │ │  i8 : HA = homologyAlgebra(A)
    │ │ │ - -- used 0.16452s (cpu); 0.0938128s (thread); 0s (gc)
    │ │ │ + -- used 0.483422s (cpu); 0.155874s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o8 = HA
    │ │ │  
    │ │ │  o8 : QuotientRing
    │ │ │  
    │ │ │  i9 : numgens HA
    │ │ │  
    │ │ │ @@ -114,15 +114,15 @@
    │ │ │  i15 : apply(maxDegree A + 1, i -> numgens prune homology(i,A))
    │ │ │  
    │ │ │  o15 = {1, 7, 7, 1}
    │ │ │  
    │ │ │  o15 : List
    │ │ │  
    │ │ │  i16 : HA = homologyAlgebra(A)
    │ │ │ - -- used 0.0534484s (cpu); 0.0489775s (thread); 0s (gc)
    │ │ │ + -- used 0.479344s (cpu); 0.0864946s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o16 = HA
    │ │ │  
    │ │ │  o16 : QuotientRing
    │ │ │  
    │ │ │  i17 : R = ZZ/101[a,b,c,d]
    │ │ │  
    │ │ │ @@ -151,14 +151,14 @@
    │ │ │         Underlying algebra => S[T ..T ]
    │ │ │                                  1   4
    │ │ │         Differential => {a, b, c, d}
    │ │ │  
    │ │ │  o20 : DGAlgebra
    │ │ │  
    │ │ │  i21 : HB = homologyAlgebra(B,GenDegreeLimit=>7,RelDegreeLimit=>14)
    │ │ │ - -- used 0.0287422s (cpu); 0.0272575s (thread); 0s (gc)
    │ │ │ + -- used 0.0882397s (cpu); 0.0153592s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o21 = HB
    │ │ │  
    │ │ │  o21 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │  
    │ │ │  i22 :
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Class.out
    │ │ │ @@ -43,15 +43,15 @@
    │ │ │  o6 = y T
    │ │ │          2
    │ │ │  
    │ │ │  o6 : R[T ..T ]
    │ │ │          1   3
    │ │ │  
    │ │ │  i7 : H = HH(KR)
    │ │ │ - -- used 0.0150847s (cpu); 0.0139493s (thread); 0s (gc)
    │ │ │ + -- used 0.0589662s (cpu); 0.0128478s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o7 = H
    │ │ │  
    │ │ │  o7 : PolynomialRing, 3 skew commutative variable(s)
    │ │ │  
    │ │ │  i8 : homologyClass(KR,z1*z2)
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Module.out
    │ │ │ @@ -34,15 +34,15 @@
    │ │ │  o5 = R  <-- R  <-- R  <-- R  <-- R
    │ │ │                                    
    │ │ │       0      1      2      3      4
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ │  
    │ │ │  i6 : HKR = HH(KR)
    │ │ │ - -- used 0.105472s (cpu); 0.102342s (thread); 0s (gc)
    │ │ │ + -- used 0.177312s (cpu); 0.116773s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o6 = HKR
    │ │ │  
    │ │ │  o6 : QuotientRing
    │ │ │  
    │ │ │  i7 : degList = first entries vars Q / degree / first
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_massey__Triple__Product.out
    │ │ │ @@ -68,15 +68,15 @@
    │ │ │                 2
    │ │ │  o9 = (true, x y T T T  - x x y T T T )
    │ │ │               2 2 1 2 3    1 2 2 2 3 4
    │ │ │  
    │ │ │  o9 : Sequence
    │ │ │  
    │ │ │  i10 : z123 = masseyTripleProduct(KR,z1,z2,z3)
    │ │ │ - -- used 0.40381s (cpu); 0.400564s (thread); 0s (gc)
    │ │ │ + -- used 0.68632s (cpu); 0.629492s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │               2
    │ │ │  o10 = x x y z T T T T
    │ │ │         1 2 2   2 3 4 5
    │ │ │  
    │ │ │  o10 : R[T ..T ]
    │ │ │           1   5
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_massey__Triple__Product_lp__D__G__Algebra_cm__Z__Z_cm__Z__Z_cm__Z__Z_rp.out
    │ │ │ @@ -27,15 +27,15 @@
    │ │ │                                 1   4
    │ │ │        Differential => {t , t , t , t }
    │ │ │                          1   2   3   4
    │ │ │  
    │ │ │  o4 : DGAlgebra
    │ │ │  
    │ │ │  i5 : H = HH(KR)
    │ │ │ - -- used 0.148943s (cpu); 0.143147s (thread); 0s (gc)
    │ │ │ + -- used 0.822595s (cpu); 0.402168s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o5 = H
    │ │ │  
    │ │ │  o5 : QuotientRing
    │ │ │  
    │ │ │  i6 : masseys = masseyTripleProduct(KR,1,1,1);
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_tor__Algebra_lp__Ring_cm__Ring_rp.out
    │ │ │ @@ -11,15 +11,15 @@
    │ │ │  i3 : S = R/ideal{a^3*b^3*c^3*d^3}
    │ │ │  
    │ │ │  o3 = S
    │ │ │  
    │ │ │  o3 : QuotientRing
    │ │ │  
    │ │ │  i4 : HB = torAlgebra(R,S,GenDegreeLimit=>4,RelDegreeLimit=>8)
    │ │ │ - -- used 0.449036s (cpu); 0.378625s (thread); 0s (gc)
    │ │ │ + -- used 1.0983s (cpu); 0.60554s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o4 = HB
    │ │ │  
    │ │ │  o4 : QuotientRing
    │ │ │  
    │ │ │  i5 : numgens HB
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/___Basic_spoperations_spon_sp__D__G_sp__Algebra_sp__Maps.html
    │ │ │ @@ -249,15 +249,15 @@
    │ │ │          
    │ │ │
    │ │ │

    One can also obtain the map on homology induced by a DGAlgebra map.

    │ │ │
    │ │ │ │ │ │ │ │ │
    i17 : HHg = HH g
    │ │ │ - -- used 0.0133052s (cpu); 0.0129559s (thread); 0s (gc)
    │ │ │ + -- used 0.0499711s (cpu); 0.013473s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │                            ZZ
    │ │ │                           ---[a..c]
    │ │ │              ZZ           101
    │ │ │  o17 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │             101  1   2           3   1     1
    │ │ │                          (c, b, a )
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -210,15 +210,15 @@
    │ │ │ │  a c T , b c T T , -a c T T , b c T T , -a T T , c T T , b T T }
    │ │ │ │                                      1     2     3         1       4        6
    │ │ │ │  5       3 4        3 5       2 4      1 7     3 7     2 7
    │ │ │ │  
    │ │ │ │  o16 : DGAlgebra
    │ │ │ │  One can also obtain the map on homology induced by a DGAlgebra map.
    │ │ │ │  i17 : HHg = HH g
    │ │ │ │ - -- used 0.0133052s (cpu); 0.0129559s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0499711s (cpu); 0.013473s (thread); 0s (gc)
    │ │ │ │  Finding easy relations           :
    │ │ │ │                            ZZ
    │ │ │ │                           ---[a..c]
    │ │ │ │              ZZ           101
    │ │ │ │  o17 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │ │             101  1   2           3   1     1
    │ │ │ │                          (c, b, a )
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/___Basic_spoperations_spon_sp__D__G_sp__Algebras.html
    │ │ │ @@ -97,15 +97,15 @@
    │ │ │          
    │ │ │
    │ │ │

    One can compute the homology algebra of a DGAlgebra using the homology (or HH) command.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -42,15 +42,15 @@ │ │ │ │ 1 4 │ │ │ │ Differential => {a, b, c, d} │ │ │ │ │ │ │ │ o4 : DGAlgebra │ │ │ │ One can compute the homology algebra of a DGAlgebra using the homology (or HH) │ │ │ │ command. │ │ │ │ i5 : HB = HH B │ │ │ │ - -- used 0.0166251s (cpu); 0.0162396s (thread); 0s (gc) │ │ │ │ + -- used 0.131311s (cpu); 0.0232718s (thread); 0s (gc) │ │ │ │ Finding easy relations : │ │ │ │ o5 = HB │ │ │ │ │ │ │ │ o5 : PolynomialRing, 4 skew commutative variable(s) │ │ │ │ i6 : describe HB │ │ │ │ │ │ │ │ ZZ │ │ │ │ @@ -86,15 +86,15 @@ │ │ │ │ 1 5 │ │ │ │ 2 │ │ │ │ Differential => {a, b, c, d, a T } │ │ │ │ 1 │ │ │ │ │ │ │ │ o9 : DGAlgebra │ │ │ │ i10 : homologyAlgebra(C,GenDegreeLimit=>4,RelDegreeLimit=>4) │ │ │ │ - -- used 0.0324166s (cpu); 0.0286597s (thread); 0s (gc) │ │ │ │ + -- used 0.0725772s (cpu); 0.0157891s (thread); 0s (gc) │ │ │ │ Finding easy relations : │ │ │ │ ZZ │ │ │ │ o10 = ---[X ..X ] │ │ │ │ 101 1 3 │ │ │ │ │ │ │ │ o10 : PolynomialRing, 3 skew commutative variable(s) │ │ │ │ i11 : C = killCycles(B) │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/___H__H_sp__D__G__Algebra__Map.html │ │ │ @@ -132,15 +132,15 @@ │ │ │ {2} | 0 | │ │ │ {2} | 1 | │ │ │ │ │ │ o6 : ChainComplexMap │ │ │ │ │ │ │ │ │
    i5 : HB = HH B
    │ │ │ - -- used 0.0166251s (cpu); 0.0162396s (thread); 0s (gc)
    │ │ │ + -- used 0.131311s (cpu); 0.0232718s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o5 = HB
    │ │ │  
    │ │ │  o5 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │
    i6 : describe HB
    │ │ │ @@ -148,15 +148,15 @@
    │ │ │        Differential => {a, b, c, d, a T }
    │ │ │                                        1
    │ │ │  
    │ │ │  o9 : DGAlgebra
    │ │ │
    i10 : homologyAlgebra(C,GenDegreeLimit=>4,RelDegreeLimit=>4)
    │ │ │ - -- used 0.0324166s (cpu); 0.0286597s (thread); 0s (gc)
    │ │ │ + -- used 0.0725772s (cpu); 0.0157891s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │         ZZ
    │ │ │  o10 = ---[X ..X ]
    │ │ │        101  1   3
    │ │ │  
    │ │ │  o10 : PolynomialRing, 3 skew commutative variable(s)
    │ │ │
    i7 : HHg = HH g
    │ │ │ - -- used 0.0133621s (cpu); 0.0130279s (thread); 0s (gc)
    │ │ │ + -- used 0.123641s (cpu); 0.0204562s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │                           ZZ
    │ │ │                          ---[a..c]
    │ │ │             ZZ           101
    │ │ │  o7 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │            101  1   2           3   1     1
    │ │ │                         (c, b, a )
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -63,15 +63,15 @@
    │ │ │ │       2 : R  <------------- R  : 2
    │ │ │ │                 {2} | 0 |
    │ │ │ │                 {2} | 0 |
    │ │ │ │                 {2} | 1 |
    │ │ │ │  
    │ │ │ │  o6 : ChainComplexMap
    │ │ │ │  i7 : HHg = HH g
    │ │ │ │ - -- used 0.0133621s (cpu); 0.0130279s (thread); 0s (gc)
    │ │ │ │ + -- used 0.123641s (cpu); 0.0204562s (thread); 0s (gc)
    │ │ │ │  Finding easy relations           :
    │ │ │ │                           ZZ
    │ │ │ │                          ---[a..c]
    │ │ │ │             ZZ           101
    │ │ │ │  o7 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │ │            101  1   2           3   1     1
    │ │ │ │                         (c, b, a )
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.html
    │ │ │ @@ -130,15 +130,15 @@
    │ │ │          
    │ │ │
    │ │ │

    Since the Koszul complex is a DG algebra, its homology is itself an algebra. One can obtain this algebra using the command homology, homologyAlgebra, or HH (all commands work). This algebra structure can detect whether or not the ring is a complete intersection or Gorenstein.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : HKR = HH KR
    │ │ │ - -- used 0.0980879s (cpu); 0.0432325s (thread); 0s (gc)
    │ │ │ + -- used 0.480558s (cpu); 0.0752885s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o7 = HKR
    │ │ │  
    │ │ │  o7 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │
    i8 : ideal HKR
    │ │ │ @@ -152,15 +152,15 @@
    │ │ │  
    │ │ │  o9 = R'
    │ │ │  
    │ │ │  o9 : QuotientRing
    │ │ │
    i10 : HKR' = HH koszulComplexDGA R'
    │ │ │ - -- used 0.563938s (cpu); 0.492392s (thread); 0s (gc)
    │ │ │ + -- used 0.692824s (cpu); 0.63252s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o10 = HKR'
    │ │ │  
    │ │ │  o10 : QuotientRing
    │ │ │
    i11 : numgens HKR'
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -75,15 +75,15 @@
    │ │ │ │  
    │ │ │ │  o6 : GradedModule
    │ │ │ │  Since the Koszul complex is a DG algebra, its homology is itself an algebra.
    │ │ │ │  One can obtain this algebra using the command homology, homologyAlgebra, or HH
    │ │ │ │  (all commands work). This algebra structure can detect whether or not the ring
    │ │ │ │  is a complete intersection or Gorenstein.
    │ │ │ │  i7 : HKR = HH KR
    │ │ │ │ - -- used 0.0980879s (cpu); 0.0432325s (thread); 0s (gc)
    │ │ │ │ + -- used 0.480558s (cpu); 0.0752885s (thread); 0s (gc)
    │ │ │ │  Finding easy relations           :
    │ │ │ │  o7 = HKR
    │ │ │ │  
    │ │ │ │  o7 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │ │  i8 : ideal HKR
    │ │ │ │  
    │ │ │ │  o8 = ideal ()
    │ │ │ │ @@ -92,15 +92,15 @@
    │ │ │ │  i9 : R' = ZZ/101[a,b,c,d]/ideal{a^3,b^3,c^3,d^3,a*c,a*d,b*c,b*d,a^2*b^2-
    │ │ │ │  c^2*d^2}
    │ │ │ │  
    │ │ │ │  o9 = R'
    │ │ │ │  
    │ │ │ │  o9 : QuotientRing
    │ │ │ │  i10 : HKR' = HH koszulComplexDGA R'
    │ │ │ │ - -- used 0.563938s (cpu); 0.492392s (thread); 0s (gc)
    │ │ │ │ + -- used 0.692824s (cpu); 0.63252s (thread); 0s (gc)
    │ │ │ │  Finding easy relations           :
    │ │ │ │  o10 = HKR'
    │ │ │ │  
    │ │ │ │  o10 : QuotientRing
    │ │ │ │  i11 : numgens HKR'
    │ │ │ │  
    │ │ │ │  o11 = 34
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_cycles.html
    │ │ │ @@ -78,15 +78,15 @@
    │ │ │  
    │ │ │  o3 = {1, 4, 6, 4, 1}
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    i4 : HA = homologyAlgebra(A)
    │ │ │ - -- used 0.0213997s (cpu); 0.0168211s (thread); 0s (gc)
    │ │ │ + -- used 0.0944368s (cpu); 0.0190203s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o4 = HA
    │ │ │  
    │ │ │  o4 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │
    i5 : numgens HA
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -24,15 +24,15 @@
    │ │ │ │  o2 : DGAlgebra
    │ │ │ │  i3 : apply(maxDegree A + 1, i -> numgens prune homology(i,A))
    │ │ │ │  
    │ │ │ │  o3 = {1, 4, 6, 4, 1}
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ │ │  i4 : HA = homologyAlgebra(A)
    │ │ │ │ - -- used 0.0213997s (cpu); 0.0168211s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0944368s (cpu); 0.0190203s (thread); 0s (gc)
    │ │ │ │  Finding easy relations           :
    │ │ │ │  o4 = HA
    │ │ │ │  
    │ │ │ │  o4 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │ │  i5 : numgens HA
    │ │ │ │  
    │ │ │ │  o5 = 4
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra.html
    │ │ │ @@ -100,15 +100,15 @@
    │ │ │  
    │ │ │  o3 = {1, 4, 6, 4, 1}
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    i4 : HA = homologyAlgebra(A)
    │ │ │ - -- used 0.0166798s (cpu); 0.016755s (thread); 0s (gc)
    │ │ │ + -- used 0.426659s (cpu); 0.091143s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o4 = HA
    │ │ │  
    │ │ │  o4 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │
    │ │ │
    │ │ │ @@ -137,15 +137,15 @@ │ │ │ │ │ │ o7 = {1, 5, 10, 10, 4} │ │ │ │ │ │ o7 : List
    │ │ │
    i8 : HA = homologyAlgebra(A)
    │ │ │ - -- used 0.16452s (cpu); 0.0938128s (thread); 0s (gc)
    │ │ │ + -- used 0.483422s (cpu); 0.155874s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o8 = HA
    │ │ │  
    │ │ │  o8 : QuotientRing
    │ │ │
    i9 : numgens HA
    │ │ │ @@ -215,15 +215,15 @@
    │ │ │  
    │ │ │  o15 = {1, 7, 7, 1}
    │ │ │  
    │ │ │  o15 : List
    │ │ │
    i16 : HA = homologyAlgebra(A)
    │ │ │ - -- used 0.0534484s (cpu); 0.0489775s (thread); 0s (gc)
    │ │ │ + -- used 0.479344s (cpu); 0.0864946s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o16 = HA
    │ │ │  
    │ │ │  o16 : QuotientRing
    │ │ │
    │ │ │
    │ │ │ @@ -265,15 +265,15 @@ │ │ │ 1 4 │ │ │ Differential => {a, b, c, d} │ │ │ │ │ │ o20 : DGAlgebra
    │ │ │
    i21 : HB = homologyAlgebra(B,GenDegreeLimit=>7,RelDegreeLimit=>14)
    │ │ │ - -- used 0.0287422s (cpu); 0.0272575s (thread); 0s (gc)
    │ │ │ + -- used 0.0882397s (cpu); 0.0153592s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o21 = HB
    │ │ │  
    │ │ │  o21 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -34,15 +34,15 @@ │ │ │ │ o2 : DGAlgebra │ │ │ │ i3 : apply(maxDegree A + 1, i -> numgens prune homology(i,A)) │ │ │ │ │ │ │ │ o3 = {1, 4, 6, 4, 1} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : HA = homologyAlgebra(A) │ │ │ │ - -- used 0.0166798s (cpu); 0.016755s (thread); 0s (gc) │ │ │ │ + -- used 0.426659s (cpu); 0.091143s (thread); 0s (gc) │ │ │ │ Finding easy relations : │ │ │ │ o4 = HA │ │ │ │ │ │ │ │ o4 : PolynomialRing, 4 skew commutative variable(s) │ │ │ │ Note that HA is a graded commutative polynomial ring (i.e. an exterior algebra) │ │ │ │ since R is a complete intersection. │ │ │ │ i5 : R = ZZ/101[a,b,c,d]/ideal{a^4,b^4,c^4,d^4,a^3*b^3*c^3*d^3} │ │ │ │ @@ -60,15 +60,15 @@ │ │ │ │ o6 : DGAlgebra │ │ │ │ i7 : apply(maxDegree A + 1, i -> numgens prune homology(i,A)) │ │ │ │ │ │ │ │ o7 = {1, 5, 10, 10, 4} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : HA = homologyAlgebra(A) │ │ │ │ - -- used 0.16452s (cpu); 0.0938128s (thread); 0s (gc) │ │ │ │ + -- used 0.483422s (cpu); 0.155874s (thread); 0s (gc) │ │ │ │ Finding easy relations : │ │ │ │ o8 = HA │ │ │ │ │ │ │ │ o8 : QuotientRing │ │ │ │ i9 : numgens HA │ │ │ │ │ │ │ │ o9 = 19 │ │ │ │ @@ -121,15 +121,15 @@ │ │ │ │ o14 : DGAlgebra │ │ │ │ i15 : apply(maxDegree A + 1, i -> numgens prune homology(i,A)) │ │ │ │ │ │ │ │ o15 = {1, 7, 7, 1} │ │ │ │ │ │ │ │ o15 : List │ │ │ │ i16 : HA = homologyAlgebra(A) │ │ │ │ - -- used 0.0534484s (cpu); 0.0489775s (thread); 0s (gc) │ │ │ │ + -- used 0.479344s (cpu); 0.0864946s (thread); 0s (gc) │ │ │ │ Finding easy relations : │ │ │ │ o16 = HA │ │ │ │ │ │ │ │ o16 : QuotientRing │ │ │ │ One can check that HA has Poincare duality since R is Gorenstein. │ │ │ │ If your DGAlgebra has generators in even degrees, then one must specify the │ │ │ │ options GenDegreeLimit and RelDegreeLimit. │ │ │ │ @@ -156,15 +156,15 @@ │ │ │ │ o20 = {Ring => S } │ │ │ │ Underlying algebra => S[T ..T ] │ │ │ │ 1 4 │ │ │ │ Differential => {a, b, c, d} │ │ │ │ │ │ │ │ o20 : DGAlgebra │ │ │ │ i21 : HB = homologyAlgebra(B,GenDegreeLimit=>7,RelDegreeLimit=>14) │ │ │ │ - -- used 0.0287422s (cpu); 0.0272575s (thread); 0s (gc) │ │ │ │ + -- used 0.0882397s (cpu); 0.0153592s (thread); 0s (gc) │ │ │ │ Finding easy relations : │ │ │ │ o21 = HB │ │ │ │ │ │ │ │ o21 : PolynomialRing, 4 skew commutative variable(s) │ │ │ │ ********** WWaayyss ttoo uussee hhoommoollooggyyAAllggeebbrraa:: ********** │ │ │ │ * homologyAlgebra(DGAlgebra) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Class.html │ │ │ @@ -123,15 +123,15 @@ │ │ │ 2 │ │ │ │ │ │ o6 : R[T ..T ] │ │ │ 1 3
    │ │ │
    i7 : H = HH(KR)
    │ │ │ - -- used 0.0150847s (cpu); 0.0139493s (thread); 0s (gc)
    │ │ │ + -- used 0.0589662s (cpu); 0.0128478s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o7 = H
    │ │ │  
    │ │ │  o7 : PolynomialRing, 3 skew commutative variable(s)
    │ │ │
    i8 : homologyClass(KR,z1*z2)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -54,15 +54,15 @@
    │ │ │ │        2
    │ │ │ │  o6 = y T
    │ │ │ │          2
    │ │ │ │  
    │ │ │ │  o6 : R[T ..T ]
    │ │ │ │          1   3
    │ │ │ │  i7 : H = HH(KR)
    │ │ │ │ - -- used 0.0150847s (cpu); 0.0139493s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0589662s (cpu); 0.0128478s (thread); 0s (gc)
    │ │ │ │  Finding easy relations           :
    │ │ │ │  o7 = H
    │ │ │ │  
    │ │ │ │  o7 : PolynomialRing, 3 skew commutative variable(s)
    │ │ │ │  i8 : homologyClass(KR,z1*z2)
    │ │ │ │  
    │ │ │ │  o8 = X X
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Module.html
    │ │ │ @@ -119,15 +119,15 @@
    │ │ │                                    
    │ │ │       0      1      2      3      4
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ │
    i6 : HKR = HH(KR)
    │ │ │ - -- used 0.105472s (cpu); 0.102342s (thread); 0s (gc)
    │ │ │ + -- used 0.177312s (cpu); 0.116773s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o6 = HKR
    │ │ │  
    │ │ │  o6 : QuotientRing
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -55,15 +55,15 @@ │ │ │ │ 1 4 6 4 1 │ │ │ │ o5 = R <-- R <-- R <-- R <-- R │ │ │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ │ │ o5 : ChainComplex │ │ │ │ i6 : HKR = HH(KR) │ │ │ │ - -- used 0.105472s (cpu); 0.102342s (thread); 0s (gc) │ │ │ │ + -- used 0.177312s (cpu); 0.116773s (thread); 0s (gc) │ │ │ │ Finding easy relations : │ │ │ │ o6 = HKR │ │ │ │ │ │ │ │ o6 : QuotientRing │ │ │ │ The following is the graded canonical module of R: │ │ │ │ i7 : degList = first entries vars Q / degree / first │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_massey__Triple__Product.html │ │ │ @@ -176,15 +176,15 @@ │ │ │
    │ │ │
    │ │ │

    Given cycles z1,z2,z3 such that z1*z2 and z2*z3 are boundaries, the Massey triple product of the homology classes represented by z1,z2 and z3 is the homology class of lift12*z3 + z1*lift23. To see this, we compute and check:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : z123 = masseyTripleProduct(KR,z1,z2,z3)
    │ │ │ - -- used 0.40381s (cpu); 0.400564s (thread); 0s (gc)
    │ │ │ + -- used 0.68632s (cpu); 0.629492s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │               2
    │ │ │  o10 = x x y z T T T T
    │ │ │         1 2 2   2 3 4 5
    │ │ │  
    │ │ │  o10 : R[T ..T ]
    │ │ │           1   5
    │ │ │ ├── html2text {} │ │ │ │ @@ -91,15 +91,15 @@ │ │ │ │ Note that the first return value of _g_e_t_B_o_u_n_d_a_r_y_P_r_e_i_m_a_g_e indicates that the │ │ │ │ inputs are indeed boundaries, and the second value is the lift of the boundary │ │ │ │ along the differential. │ │ │ │ Given cycles z1,z2,z3 such that z1*z2 and z2*z3 are boundaries, the Massey │ │ │ │ triple product of the homology classes represented by z1,z2 and z3 is the │ │ │ │ homology class of lift12*z3 + z1*lift23. To see this, we compute and check: │ │ │ │ i10 : z123 = masseyTripleProduct(KR,z1,z2,z3) │ │ │ │ - -- used 0.40381s (cpu); 0.400564s (thread); 0s (gc) │ │ │ │ + -- used 0.68632s (cpu); 0.629492s (thread); 0s (gc) │ │ │ │ Finding easy relations : │ │ │ │ 2 │ │ │ │ o10 = x x y z T T T T │ │ │ │ 1 2 2 2 3 4 5 │ │ │ │ │ │ │ │ o10 : R[T ..T ] │ │ │ │ 1 5 │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_massey__Triple__Product_lp__D__G__Algebra_cm__Z__Z_cm__Z__Z_cm__Z__Z_rp.html │ │ │ @@ -114,15 +114,15 @@ │ │ │ Differential => {t , t , t , t } │ │ │ 1 2 3 4 │ │ │ │ │ │ o4 : DGAlgebra │ │ │
    i5 : H = HH(KR)
    │ │ │ - -- used 0.148943s (cpu); 0.143147s (thread); 0s (gc)
    │ │ │ + -- used 0.822595s (cpu); 0.402168s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o5 = H
    │ │ │  
    │ │ │  o5 : QuotientRing
    │ │ │
    i6 : masseys = masseyTripleProduct(KR,1,1,1);
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -50,15 +50,15 @@
    │ │ │ │        Underlying algebra => R[T ..T ]
    │ │ │ │                                 1   4
    │ │ │ │        Differential => {t , t , t , t }
    │ │ │ │                          1   2   3   4
    │ │ │ │  
    │ │ │ │  o4 : DGAlgebra
    │ │ │ │  i5 : H = HH(KR)
    │ │ │ │ - -- used 0.148943s (cpu); 0.143147s (thread); 0s (gc)
    │ │ │ │ + -- used 0.822595s (cpu); 0.402168s (thread); 0s (gc)
    │ │ │ │  Finding easy relations           :
    │ │ │ │  o5 = H
    │ │ │ │  
    │ │ │ │  o5 : QuotientRing
    │ │ │ │  i6 : masseys = masseyTripleProduct(KR,1,1,1);
    │ │ │ │  
    │ │ │ │                5       343
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_tor__Algebra_lp__Ring_cm__Ring_rp.html
    │ │ │ @@ -95,15 +95,15 @@
    │ │ │  
    │ │ │  o3 = S
    │ │ │  
    │ │ │  o3 : QuotientRing
    │ │ │
    i4 : HB = torAlgebra(R,S,GenDegreeLimit=>4,RelDegreeLimit=>8)
    │ │ │ - -- used 0.449036s (cpu); 0.378625s (thread); 0s (gc)
    │ │ │ + -- used 1.0983s (cpu); 0.60554s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o4 = HB
    │ │ │  
    │ │ │  o4 : QuotientRing
    │ │ │
    i5 : numgens HB
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -28,15 +28,15 @@
    │ │ │ │  i2 : M = coker matrix {{a^3*b^3*c^3*d^3}};
    │ │ │ │  i3 : S = R/ideal{a^3*b^3*c^3*d^3}
    │ │ │ │  
    │ │ │ │  o3 = S
    │ │ │ │  
    │ │ │ │  o3 : QuotientRing
    │ │ │ │  i4 : HB = torAlgebra(R,S,GenDegreeLimit=>4,RelDegreeLimit=>8)
    │ │ │ │ - -- used 0.449036s (cpu); 0.378625s (thread); 0s (gc)
    │ │ │ │ + -- used 1.0983s (cpu); 0.60554s (thread); 0s (gc)
    │ │ │ │  Finding easy relations           :
    │ │ │ │  o4 = HB
    │ │ │ │  
    │ │ │ │  o4 : QuotientRing
    │ │ │ │  i5 : numgens HB
    │ │ │ │  
    │ │ │ │  o5 = 35
    │ │ ├── ./usr/share/doc/Macaulay2/DecomposableSparseSystems/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=29
    │ │ │  c29sdmVEZWNvbXBvc2FibGVTeXN0ZW0oTGlzdCk=
    │ │ │  #:len=338
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNzcwLCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhzb2x2ZURlY29tcG9zYWJsZVN5c3RlbSxMaXN0KSwi
    │ │ ├── ./usr/share/doc/Macaulay2/Depth/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=4
    │ │ │  U2VlZA==
    │ │ │  #:len=219
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNjQxLCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyJTZWVkIiwiU2VlZCIsIkRlcHRoIn0sIFByaW1hcnlU
    │ │ ├── ./usr/share/doc/Macaulay2/DeterminantalRepresentations/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=34
    │ │ │  Z2VuZXJhbGl6ZWRNaXhlZERpc2NyaW1pbmFudChMaXN0KQ==
    │ │ │  #:len=367
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gODYxLCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhnZW5lcmFsaXplZE1peGVkRGlzY3JpbWluYW50LExp
    │ │ ├── ./usr/share/doc/Macaulay2/DiffAlg/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=10
    │ │ │  bGluZWFyQ29tYg==
    │ │ │  #:len=2390
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiZ2VuZXJpYyBsaW5lYXIgY29tYmluYXRp
    │ │ │  b24gb2YgZWxlbWVudHMiLCAibGluZW51bSIgPT4gODY0LCBJbnB1dHMgPT4ge1NQQU57VFR7Ikwi
    │ │ ├── ./usr/share/doc/Macaulay2/Divisor/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=19
    │ │ │  Zmxvb3IoUldlaWxEaXZpc29yKQ==
    │ │ │  #:len=260
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjU1Nywgc3ltYm9sIERvY3VtZW50VGFn
    │ │ │  ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoZmxvb3IsUldlaWxEaXZpc29yKSwiZmxvb3IoUldl
    │ │ ├── ./usr/share/doc/Macaulay2/Divisor/example-output/___Basic__Divisor_sp_pl_sp__Basic__Divisor.out
    │ │ │ @@ -1,32 +1,32 @@
    │ │ │  -- -*- M2-comint -*- hash: 11085051886200177329
    │ │ │  
    │ │ │  i1 : R = QQ[x, y, z];
    │ │ │  
    │ │ │  i2 : D1 = divisor({1, 3, 2}, {ideal(x), ideal(y), ideal(z)})
    │ │ │  
    │ │ │ -o2 = Div(x) + 3*Div(y) + 2*Div(z)
    │ │ │ +o2 = 3*Div(y) + 2*Div(z) + Div(x)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : D2 = divisor({-2, 3, -5}, {ideal(z), ideal(y), ideal(x)})
    │ │ │  
    │ │ │ -o3 = -5*Div(x) + -2*Div(z) + 3*Div(y)
    │ │ │ +o3 = -2*Div(z) + 3*Div(y) + -5*Div(x)
    │ │ │  
    │ │ │  o3 : WeilDivisor on R
    │ │ │  
    │ │ │  i4 : D1 + D2
    │ │ │  
    │ │ │ -o4 = -4*Div(x) + 6*Div(y)
    │ │ │ +o4 = 6*Div(y) + -4*Div(x)
    │ │ │  
    │ │ │  o4 : WeilDivisor on R
    │ │ │  
    │ │ │  i5 : D1 - D2
    │ │ │  
    │ │ │ -o5 = 6*Div(x) + 4*Div(z)
    │ │ │ +o5 = 4*Div(z) + 6*Div(x)
    │ │ │  
    │ │ │  o5 : WeilDivisor on R
    │ │ │  
    │ │ │  i6 : R = QQ[x,y];
    │ │ │  
    │ │ │  i7 : D1 = divisor({3, 1}, {ideal(x), ideal(y)})
    │ │ │  
    │ │ │ @@ -64,30 +64,30 @@
    │ │ │  
    │ │ │  o12 : RWeilDivisor on R
    │ │ │  
    │ │ │  i13 : R = ZZ/3[x,y,z]/ideal(x^2-y*z);
    │ │ │  
    │ │ │  i14 : D = divisor({3, 0, -1}, {ideal(x,z), ideal(y,z), ideal(x-y, x-z)})
    │ │ │  
    │ │ │ -o14 = 3*Div(x, z) + 0*Div(y, z) + -Div(x-y, x-z)
    │ │ │ +o14 = 0*Div(y, z) + -Div(x-y, x-z) + 3*Div(x, z)
    │ │ │  
    │ │ │  o14 : WeilDivisor on R
    │ │ │  
    │ │ │  i15 : -D
    │ │ │  
    │ │ │ -o15 = -3*Div(x, z) + Div(x-y, x-z)
    │ │ │ +o15 = Div(x-y, x-z) + -3*Div(x, z)
    │ │ │  
    │ │ │  o15 : WeilDivisor on R
    │ │ │  
    │ │ │  i16 : E = divisor({3/2, -2/3}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o16 = 3/2*Div(x, z) + -2/3*Div(y, z)
    │ │ │ +o16 = -2/3*Div(y, z) + 3/2*Div(x, z)
    │ │ │  
    │ │ │  o16 : WeilDivisor on R
    │ │ │  
    │ │ │  i17 : -E
    │ │ │  
    │ │ │ -o17 = -3/2*Div(x, z) + 2/3*Div(y, z)
    │ │ │ +o17 = 2/3*Div(y, z) + -3/2*Div(x, z)
    │ │ │  
    │ │ │  o17 : WeilDivisor on R
    │ │ │  
    │ │ │  i18 :
    │ │ ├── ./usr/share/doc/Macaulay2/Divisor/example-output/___Number_sp_st_sp__Basic__Divisor.out
    │ │ │ @@ -10,15 +10,15 @@
    │ │ │  
    │ │ │  o3 = 1/2*Div(x) + -5/3*Div(y)
    │ │ │  
    │ │ │  o3 : QWeilDivisor on R
    │ │ │  
    │ │ │  i4 : F = divisor({1.5, 0, -3.2}, {ideal(x), ideal(y), ideal(x^2-y^3)}, CoefficientType=>RR)
    │ │ │  
    │ │ │ -o4 = 1.5*Div(x) + 0*Div(y) + -3.2*Div(-y^3+x^2)
    │ │ │ +o4 = -3.2*Div(-y^3+x^2) + 1.5*Div(x) + 0*Div(y)
    │ │ │  
    │ │ │  o4 : RWeilDivisor on R
    │ │ │  
    │ │ │  i5 : 8*D
    │ │ │  
    │ │ │  o5 = -8*Div(x+y) + 8*Div(y) + 16*Div(x)
    │ │ │  
    │ │ │ @@ -46,18 +46,18 @@
    │ │ │  
    │ │ │  o9 = 2.35667*Div(y) + -.707*Div(x)
    │ │ │  
    │ │ │  o9 : RWeilDivisor on R
    │ │ │  
    │ │ │  i10 : 6*F
    │ │ │  
    │ │ │ -o10 = 9*Div(x) + -19.2*Div(-y^3+x^2)
    │ │ │ +o10 = -19.2*Div(-y^3+x^2) + 9*Div(x)
    │ │ │  
    │ │ │  o10 : RWeilDivisor on R
    │ │ │  
    │ │ │  i11 : (-3/2)*F
    │ │ │  
    │ │ │ -o11 = -2.25*Div(x) + 4.8*Div(-y^3+x^2)
    │ │ │ +o11 = 4.8*Div(-y^3+x^2) + -2.25*Div(x)
    │ │ │  
    │ │ │  o11 : RWeilDivisor on R
    │ │ │  
    │ │ │  i12 :
    │ │ ├── ./usr/share/doc/Macaulay2/Divisor/example-output/_apply__To__Coefficients.out
    │ │ │ @@ -1,17 +1,17 @@
    │ │ │  -- -*- M2-comint -*- hash: 14937934652040812889
    │ │ │  
    │ │ │  i1 : R = QQ[x, y, z];
    │ │ │  
    │ │ │  i2 : D = divisor(x*y^2/z)
    │ │ │  
    │ │ │ -o2 = -Div(z) + 2*Div(y) + Div(x)
    │ │ │ +o2 = Div(x) + 2*Div(y) + -Div(z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : applyToCoefficients(D, u->5*u)
    │ │ │  
    │ │ │ -o3 = 10*Div(y) + -5*Div(z) + 5*Div(x)
    │ │ │ +o3 = 5*Div(x) + 10*Div(y) + -5*Div(z)
    │ │ │  
    │ │ │  o3 : WeilDivisor on R
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/Divisor/example-output/_dualize.out
    │ │ │ @@ -44,51 +44,51 @@
    │ │ │  i10 : J = m^9;
    │ │ │  
    │ │ │  o10 : Ideal of R
    │ │ │  
    │ │ │  i11 : M = J*R^1;
    │ │ │  
    │ │ │  i12 : time dualize(J, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.0442293s (cpu); 0.0454216s (thread); 0s (gc)
    │ │ │ + -- used 0.0706306s (cpu); 0.0712794s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 : Ideal of R
    │ │ │  
    │ │ │  i13 : time dualize(J, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.386445s (cpu); 0.388413s (thread); 0s (gc)
    │ │ │ + -- used 0.596945s (cpu); 0.599695s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 : Ideal of R
    │ │ │  
    │ │ │  i14 : time dualize(M, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.516665s (cpu); 0.447697s (thread); 0s (gc)
    │ │ │ + -- used 0.676855s (cpu); 0.618389s (thread); 0s (gc)
    │ │ │  
    │ │ │  i15 : time dualize(M, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.00277537s (cpu); 0.00285669s (thread); 0s (gc)
    │ │ │ + -- used 0.042174s (cpu); 0.0427084s (thread); 0s (gc)
    │ │ │  
    │ │ │  i16 : time embedAsIdeal dualize(M, Strategy=>ModuleStrategy);
    │ │ │ - -- used 3.8001e-05s (cpu); 0.00208153s (thread); 0s (gc)
    │ │ │ + -- used 8.4117e-05s (cpu); 0.0022917s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 : Ideal of R
    │ │ │  
    │ │ │  i17 : R = ZZ/7[x,y,u,v]/ideal(x*y-u*v);
    │ │ │  
    │ │ │  i18 : I = ideal(x,u);
    │ │ │  
    │ │ │  o18 : Ideal of R
    │ │ │  
    │ │ │  i19 : J = I^15;
    │ │ │  
    │ │ │  o19 : Ideal of R
    │ │ │  
    │ │ │  i20 : time dualize(J, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.172064s (cpu); 0.095124s (thread); 0s (gc)
    │ │ │ + -- used 0.163694s (cpu); 0.103046s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 : Ideal of R
    │ │ │  
    │ │ │  i21 : time dualize(J, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.00560499s (cpu); 0.00590381s (thread); 0s (gc)
    │ │ │ + -- used 0.00165973s (cpu); 0.00485289s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 : Ideal of R
    │ │ │  
    │ │ │  i22 : R = QQ[x,y]/ideal(x*y);
    │ │ │  
    │ │ │  i23 : J = ideal(x,y);
    │ │ ├── ./usr/share/doc/Macaulay2/Divisor/example-output/_is__Cartier.out
    │ │ │ @@ -12,27 +12,27 @@
    │ │ │  
    │ │ │  o3 = false
    │ │ │  
    │ │ │  i4 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │  
    │ │ │  i5 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o5 = Div(x, z) + 2*Div(y, z)
    │ │ │ +o5 = 2*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o5 : WeilDivisor on R
    │ │ │  
    │ │ │  i6 : isCartier( D )
    │ │ │  
    │ │ │  o6 = false
    │ │ │  
    │ │ │  i7 : R = QQ[x, y, z];
    │ │ │  
    │ │ │  i8 : D = divisor({1, 2}, {ideal(x), ideal(y)})
    │ │ │  
    │ │ │ -o8 = Div(x) + 2*Div(y)
    │ │ │ +o8 = 2*Div(y) + Div(x)
    │ │ │  
    │ │ │  o8 : WeilDivisor on R
    │ │ │  
    │ │ │  i9 : isCartier( D )
    │ │ │  
    │ │ │  o9 = true
    │ │ │  
    │ │ │ @@ -48,15 +48,15 @@
    │ │ │  
    │ │ │  o12 = true
    │ │ │  
    │ │ │  i13 : R = QQ[x, y, z] / ideal(x * y - z^2);
    │ │ │  
    │ │ │  i14 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o14 = Div(x, z) + 2*Div(y, z)
    │ │ │ +o14 = 2*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o14 : WeilDivisor on R
    │ │ │  
    │ │ │  i15 : isCartier(D, IsGraded => true)
    │ │ │  
    │ │ │  o15 = true
    │ │ ├── ./usr/share/doc/Macaulay2/Divisor/example-output/_is__Linear__Equivalent.out
    │ │ │ @@ -1,38 +1,38 @@
    │ │ │  -- -*- M2-comint -*- hash: 6019119347082811396
    │ │ │  
    │ │ │  i1 : R = QQ[x, y, z]/ ideal(x * y - z^2);
    │ │ │  
    │ │ │  i2 : D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o2 = 3*Div(x, z) + 8*Div(y, z)
    │ │ │ +o2 = 8*Div(y, z) + 3*Div(x, z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)})
    │ │ │  
    │ │ │ -o3 = Div(x, z) + 8*Div(y, z)
    │ │ │ +o3 = 8*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o3 : WeilDivisor on R
    │ │ │  
    │ │ │  i4 : isLinearEquivalent(D1, D2)
    │ │ │  
    │ │ │  o4 = true
    │ │ │  
    │ │ │  i5 : R = QQ[x, y, z]/ ideal(x * y - z^2);
    │ │ │  
    │ │ │  i6 : D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o6 = 8*Div(y, z) + 3*Div(x, z)
    │ │ │ +o6 = 3*Div(x, z) + 8*Div(y, z)
    │ │ │  
    │ │ │  o6 : WeilDivisor on R
    │ │ │  
    │ │ │  i7 : D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)})
    │ │ │  
    │ │ │ -o7 = 8*Div(y, z) + Div(x, z)
    │ │ │ +o7 = Div(x, z) + 8*Div(y, z)
    │ │ │  
    │ │ │  o7 : WeilDivisor on R
    │ │ │  
    │ │ │  i8 : isLinearEquivalent(D1, D2, IsGraded => true)
    │ │ │  
    │ │ │  o8 = false
    │ │ ├── ./usr/share/doc/Macaulay2/Divisor/example-output/_is__Q__Cartier.out
    │ │ │ @@ -1,20 +1,20 @@
    │ │ │  -- -*- M2-comint -*- hash: 13719144060491348416
    │ │ │  
    │ │ │  i1 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │  
    │ │ │  i2 : D1 = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o2 = 2*Div(y, z) + Div(x, z)
    │ │ │ +o2 = Div(x, z) + 2*Div(y, z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : D2 = divisor({1/2, 3/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o3 = 1/2*Div(y, z) + 3/4*Div(x, z)
    │ │ │ +o3 = 3/4*Div(x, z) + 1/2*Div(y, z)
    │ │ │  
    │ │ │  o3 : QWeilDivisor on R
    │ │ │  
    │ │ │  i4 : isQCartier(10, D1)
    │ │ │  
    │ │ │  o4 = 2
    │ │ │  
    │ │ │ @@ -44,21 +44,21 @@
    │ │ │  
    │ │ │  o10 = 0
    │ │ │  
    │ │ │  i11 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │  
    │ │ │  i12 : D1 = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o12 = Div(x, z) + 2*Div(y, z)
    │ │ │ +o12 = 2*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o12 : WeilDivisor on R
    │ │ │  
    │ │ │  i13 : D2 = divisor({1/2, 3/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o13 = 3/4*Div(x, z) + 1/2*Div(y, z)
    │ │ │ +o13 = 1/2*Div(y, z) + 3/4*Div(x, z)
    │ │ │  
    │ │ │  o13 : QWeilDivisor on R
    │ │ │  
    │ │ │  i14 : isQCartier(10, D1, IsGraded => true)
    │ │ │  
    │ │ │  o14 = 1
    │ │ ├── ./usr/share/doc/Macaulay2/Divisor/example-output/_is__Q__Linear__Equivalent.out
    │ │ │ @@ -1,20 +1,20 @@
    │ │ │  -- -*- M2-comint -*- hash: 13920959388108803216
    │ │ │  
    │ │ │  i1 : R = QQ[x, y, z] / ideal(x * y - z^2);
    │ │ │  
    │ │ │  i2 : D = divisor({1/2, 3/4}, {ideal(x, z), ideal(y, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o2 = 1/2*Div(x, z) + 3/4*Div(y, z)
    │ │ │ +o2 = 3/4*Div(y, z) + 1/2*Div(x, z)
    │ │ │  
    │ │ │  o2 : QWeilDivisor on R
    │ │ │  
    │ │ │  i3 : E = divisor({3/4, 5/2}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o3 = 5/2*Div(x, z) + 3/4*Div(y, z)
    │ │ │ +o3 = 3/4*Div(y, z) + 5/2*Div(x, z)
    │ │ │  
    │ │ │  o3 : QWeilDivisor on R
    │ │ │  
    │ │ │  i4 : isQLinearEquivalent(10, D, E)
    │ │ │  
    │ │ │  o4 = true
    │ │ │  
    │ │ │ @@ -36,21 +36,21 @@
    │ │ │  
    │ │ │  o9 = true
    │ │ │  
    │ │ │  i10 : R = QQ[x, y, z] / ideal(x * y - z^2);
    │ │ │  
    │ │ │  i11 : D = divisor({1/2, 3/4}, {ideal(x, z), ideal(y, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o11 = 3/4*Div(y, z) + 1/2*Div(x, z)
    │ │ │ +o11 = 1/2*Div(x, z) + 3/4*Div(y, z)
    │ │ │  
    │ │ │  o11 : QWeilDivisor on R
    │ │ │  
    │ │ │  i12 : E = divisor({3/2, -1/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o12 = 3/2*Div(y, z) + -1/4*Div(x, z)
    │ │ │ +o12 = -1/4*Div(x, z) + 3/2*Div(y, z)
    │ │ │  
    │ │ │  o12 : QWeilDivisor on R
    │ │ │  
    │ │ │  i13 : isQLinearEquivalent(10, D, E, IsGraded => true)
    │ │ │  
    │ │ │  o13 = true
    │ │ ├── ./usr/share/doc/Macaulay2/Divisor/example-output/_reflexify.out
    │ │ │ @@ -103,104 +103,104 @@
    │ │ │  o21 : Ideal of R
    │ │ │  
    │ │ │  i22 : J = I^21;
    │ │ │  
    │ │ │  o22 : Ideal of R
    │ │ │  
    │ │ │  i23 : time reflexify(J);
    │ │ │ - -- used 0.263984s (cpu); 0.186105s (thread); 0s (gc)
    │ │ │ + -- used 0.311119s (cpu); 0.216462s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 : Ideal of R
    │ │ │  
    │ │ │  i24 : time reflexify(J*R^1);
    │ │ │ - -- used 0.41735s (cpu); 0.34655s (thread); 0s (gc)
    │ │ │ + -- used 0.456279s (cpu); 0.403964s (thread); 0s (gc)
    │ │ │  
    │ │ │  i25 : R = ZZ/13[x,y,z]/ideal(x^3 + y^3-z^11*x*y);
    │ │ │  
    │ │ │  i26 : I = ideal(x-4*y, z);
    │ │ │  
    │ │ │  o26 : Ideal of R
    │ │ │  
    │ │ │  i27 : J = I^20;
    │ │ │  
    │ │ │  o27 : Ideal of R
    │ │ │  
    │ │ │  i28 : M = J*R^1;
    │ │ │  
    │ │ │  i29 : J1 = time reflexify( J, Strategy=>IdealStrategy )
    │ │ │ - -- used 0.264868s (cpu); 0.125615s (thread); 0s (gc)
    │ │ │ + -- used 0.30011s (cpu); 0.176381s (thread); 0s (gc)
    │ │ │  
    │ │ │                2            2     9       9   11
    │ │ │  o29 = ideal (x  + 5x*y + 3y , x*z  - 4y*z , z   + x - 4y)
    │ │ │  
    │ │ │  o29 : Ideal of R
    │ │ │  
    │ │ │  i30 : J2 = time reflexify( J, Strategy=>ModuleStrategy )
    │ │ │ - -- used 7.16298s (cpu); 5.01923s (thread); 0s (gc)
    │ │ │ + -- used 5.90236s (cpu); 4.60466s (thread); 0s (gc)
    │ │ │  
    │ │ │                2            2     9       9   11
    │ │ │  o30 = ideal (x  + 5x*y + 3y , x*z  - 4y*z , z   + x - 4y)
    │ │ │  
    │ │ │  o30 : Ideal of R
    │ │ │  
    │ │ │  i31 : J1 == J2
    │ │ │  
    │ │ │  o31 = true
    │ │ │  
    │ │ │  i32 : time reflexify( M, Strategy=>IdealStrategy );
    │ │ │ - -- used 5.86731s (cpu); 4.55029s (thread); 0s (gc)
    │ │ │ + -- used 5.94452s (cpu); 4.82164s (thread); 0s (gc)
    │ │ │  
    │ │ │  i33 : time reflexify( M, Strategy=>ModuleStrategy );
    │ │ │ - -- used 0.579493s (cpu); 0.401292s (thread); 0s (gc)
    │ │ │ + -- used 0.57163s (cpu); 0.431591s (thread); 0s (gc)
    │ │ │  
    │ │ │  i34 : R = QQ[x,y,u,v]/ideal(x*y-u*v);
    │ │ │  
    │ │ │  i35 : I = ideal(x,u);
    │ │ │  
    │ │ │  o35 : Ideal of R
    │ │ │  
    │ │ │  i36 : J = I^20;
    │ │ │  
    │ │ │  o36 : Ideal of R
    │ │ │  
    │ │ │  i37 : M = I^20*R^1;
    │ │ │  
    │ │ │  i38 : time reflexify( J, Strategy=>IdealStrategy )
    │ │ │ - -- used 0.879462s (cpu); 0.331789s (thread); 0s (gc)
    │ │ │ + -- used 1.26254s (cpu); 0.354247s (thread); 0s (gc)
    │ │ │  
    │ │ │                20     19   2 18   3 17   4 16   5 15   6 14   7 13   8 12 
    │ │ │  o38 = ideal (u  , x*u  , x u  , x u  , x u  , x u  , x u  , x u  , x u  ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         9 11   10 10   11 9   12 8   13 7   14 6   15 5   16 4   17 3   18 2 
    │ │ │        x u  , x  u  , x  u , x  u , x  u , x  u , x  u , x  u , x  u , x  u ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         19    20
    │ │ │        x  u, x  )
    │ │ │  
    │ │ │  o38 : Ideal of R
    │ │ │  
    │ │ │  i39 : time reflexify( J, Strategy=>ModuleStrategy )
    │ │ │ - -- used 0.240056s (cpu); 0.0751777s (thread); 0s (gc)
    │ │ │ + -- used 0.0093123s (cpu); 0.0121342s (thread); 0s (gc)
    │ │ │  
    │ │ │                20     19   2 18   3 17   4 16   5 15   6 14   7 13   8 12 
    │ │ │  o39 = ideal (u  , x*u  , x u  , x u  , x u  , x u  , x u  , x u  , x u  ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         9 11   10 10   11 9   12 8   13 7   14 6   15 5   16 4   17 3   18 2 
    │ │ │        x u  , x  u  , x  u , x  u , x  u , x  u , x  u , x  u , x  u , x  u ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         19    20
    │ │ │        x  u, x  )
    │ │ │  
    │ │ │  o39 : Ideal of R
    │ │ │  
    │ │ │  i40 : time reflexify( M, Strategy=>IdealStrategy );
    │ │ │ - -- used 0.0402565s (cpu); 0.0404667s (thread); 0s (gc)
    │ │ │ + -- used 0.268245s (cpu); 0.129089s (thread); 0s (gc)
    │ │ │  
    │ │ │  i41 : time reflexify( M, Strategy=>ModuleStrategy );
    │ │ │ - -- used 0.00492897s (cpu); 0.00705635s (thread); 0s (gc)
    │ │ │ + -- used 0.00322467s (cpu); 0.00538113s (thread); 0s (gc)
    │ │ │  
    │ │ │  i42 : R = QQ[x,y]/ideal(x*y);
    │ │ │  
    │ │ │  i43 : I = ideal(x,y);
    │ │ │  
    │ │ │  o43 : Ideal of R
    │ │ ├── ./usr/share/doc/Macaulay2/Divisor/example-output/_reflexive__Power.out
    │ │ │ @@ -23,44 +23,44 @@
    │ │ │  i5 : R = QQ[x,y,z]/ideal(-y^2*z +x^3 + x^2*z + x*z^2+z^3);
    │ │ │  
    │ │ │  i6 : I = ideal(x-z,y-2*z);
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │  
    │ │ │  i7 : time J20a = reflexivePower(20, I);
    │ │ │ - -- used 0.114875s (cpu); 0.0601963s (thread); 0s (gc)
    │ │ │ + -- used 0.0849408s (cpu); 0.0338104s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │  
    │ │ │  i8 : I20 = I^20;
    │ │ │  
    │ │ │  o8 : Ideal of R
    │ │ │  
    │ │ │  i9 : time J20b = reflexify(I20);
    │ │ │ - -- used 0.123502s (cpu); 0.125616s (thread); 0s (gc)
    │ │ │ + -- used 0.264096s (cpu); 0.265766s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : Ideal of R
    │ │ │  
    │ │ │  i10 : J20a == J20b
    │ │ │  
    │ │ │  o10 = true
    │ │ │  
    │ │ │  i11 : R = QQ[x,y,z]/ideal(-y^2*z +x^3 + x^2*z + x*z^2+z^3);
    │ │ │  
    │ │ │  i12 : I = ideal(x-z,y-2*z);
    │ │ │  
    │ │ │  o12 : Ideal of R
    │ │ │  
    │ │ │  i13 : time J1 = reflexivePower(20, I, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.0279996s (cpu); 0.0294503s (thread); 0s (gc)
    │ │ │ + -- used 0.0400012s (cpu); 0.0390273s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 : Ideal of R
    │ │ │  
    │ │ │  i14 : time J2 = reflexivePower(20, I, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.151204s (cpu); 0.0977003s (thread); 0s (gc)
    │ │ │ + -- used 0.149731s (cpu); 0.0876416s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 : Ideal of R
    │ │ │  
    │ │ │  i15 : J1 == J2
    │ │ │  
    │ │ │  o15 = true
    │ │ ├── ./usr/share/doc/Macaulay2/Divisor/example-output/_to__R__Weil__Divisor.out
    │ │ │ @@ -1,32 +1,32 @@
    │ │ │  -- -*- M2-comint -*- hash: 12819564349892123361
    │ │ │  
    │ │ │  i1 : R = ZZ/5[x,y];
    │ │ │  
    │ │ │  i2 : D = divisor({2, 0, -4}, {ideal(x), ideal(y), ideal(x-y)})
    │ │ │  
    │ │ │ -o2 = -4*Div(x-y) + 2*Div(x) + 0*Div(y)
    │ │ │ +o2 = 2*Div(x) + 0*Div(y) + -4*Div(x-y)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : E = (1/2)*D
    │ │ │  
    │ │ │ -o3 = -2*Div(x-y) + Div(x)
    │ │ │ +o3 = Div(x) + -2*Div(x-y)
    │ │ │  
    │ │ │  o3 : QWeilDivisor on R
    │ │ │  
    │ │ │  i4 : F = toRWeilDivisor(D)
    │ │ │  
    │ │ │ -o4 = -4*Div(x-y) + 2*Div(x)
    │ │ │ +o4 = 2*Div(x) + -4*Div(x-y)
    │ │ │  
    │ │ │  o4 : RWeilDivisor on R
    │ │ │  
    │ │ │  i5 : G = toRWeilDivisor(E)
    │ │ │  
    │ │ │ -o5 = -2*Div(x-y) + Div(x)
    │ │ │ +o5 = Div(x) + -2*Div(x-y)
    │ │ │  
    │ │ │  o5 : RWeilDivisor on R
    │ │ │  
    │ │ │  i6 : F == 2*G
    │ │ │  
    │ │ │  o6 = true
    │ │ ├── ./usr/share/doc/Macaulay2/Divisor/html/___Basic__Divisor_sp_pl_sp__Basic__Divisor.html
    │ │ │ @@ -79,36 +79,36 @@
    │ │ │          
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │          
    i1 : R = QQ[x, y, z];
    │ │ │
    i2 : D1 = divisor({1, 3, 2}, {ideal(x), ideal(y), ideal(z)})
    │ │ │  
    │ │ │ -o2 = Div(x) + 3*Div(y) + 2*Div(z)
    │ │ │ +o2 = 3*Div(y) + 2*Div(z) + Div(x)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │
    i3 : D2 = divisor({-2, 3, -5}, {ideal(z), ideal(y), ideal(x)})
    │ │ │  
    │ │ │ -o3 = -5*Div(x) + -2*Div(z) + 3*Div(y)
    │ │ │ +o3 = -2*Div(z) + 3*Div(y) + -5*Div(x)
    │ │ │  
    │ │ │  o3 : WeilDivisor on R
    │ │ │
    i4 : D1 + D2
    │ │ │  
    │ │ │ -o4 = -4*Div(x) + 6*Div(y)
    │ │ │ +o4 = 6*Div(y) + -4*Div(x)
    │ │ │  
    │ │ │  o4 : WeilDivisor on R
    │ │ │
    i5 : D1 - D2
    │ │ │  
    │ │ │ -o5 = 6*Div(x) + 4*Div(z)
    │ │ │ +o5 = 4*Div(z) + 6*Div(x)
    │ │ │  
    │ │ │  o5 : WeilDivisor on R
    │ │ │
    │ │ │
    │ │ │

    We can also add or subtract divisors with different coefficients.

    │ │ │
    │ │ │ @@ -165,36 +165,36 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : R = ZZ/3[x,y,z]/ideal(x^2-y*z);
    │ │ │
    i14 : D = divisor({3, 0, -1}, {ideal(x,z), ideal(y,z), ideal(x-y, x-z)})
    │ │ │  
    │ │ │ -o14 = 3*Div(x, z) + 0*Div(y, z) + -Div(x-y, x-z)
    │ │ │ +o14 = 0*Div(y, z) + -Div(x-y, x-z) + 3*Div(x, z)
    │ │ │  
    │ │ │  o14 : WeilDivisor on R
    │ │ │
    i15 : -D
    │ │ │  
    │ │ │ -o15 = -3*Div(x, z) + Div(x-y, x-z)
    │ │ │ +o15 = Div(x-y, x-z) + -3*Div(x, z)
    │ │ │  
    │ │ │  o15 : WeilDivisor on R
    │ │ │
    i16 : E = divisor({3/2, -2/3}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o16 = 3/2*Div(x, z) + -2/3*Div(y, z)
    │ │ │ +o16 = -2/3*Div(y, z) + 3/2*Div(x, z)
    │ │ │  
    │ │ │  o16 : WeilDivisor on R
    │ │ │
    i17 : -E
    │ │ │  
    │ │ │ -o17 = -3/2*Div(x, z) + 2/3*Div(y, z)
    │ │ │ +o17 = 2/3*Div(y, z) + -3/2*Div(x, z)
    │ │ │  
    │ │ │  o17 : WeilDivisor on R
    │ │ │
    │ │ │ │ │ │
    │ │ │

    Ways to use this method:

    │ │ │ ├── html2text {} │ │ │ │ @@ -17,30 +17,30 @@ │ │ │ │ * Outputs: │ │ │ │ o an instance of the type _B_a_s_i_c_D_i_v_i_s_o_r, │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ We can add or subtract two divisors: │ │ │ │ i1 : R = QQ[x, y, z]; │ │ │ │ i2 : D1 = divisor({1, 3, 2}, {ideal(x), ideal(y), ideal(z)}) │ │ │ │ │ │ │ │ -o2 = Div(x) + 3*Div(y) + 2*Div(z) │ │ │ │ +o2 = 3*Div(y) + 2*Div(z) + Div(x) │ │ │ │ │ │ │ │ o2 : WeilDivisor on R │ │ │ │ i3 : D2 = divisor({-2, 3, -5}, {ideal(z), ideal(y), ideal(x)}) │ │ │ │ │ │ │ │ -o3 = -5*Div(x) + -2*Div(z) + 3*Div(y) │ │ │ │ +o3 = -2*Div(z) + 3*Div(y) + -5*Div(x) │ │ │ │ │ │ │ │ o3 : WeilDivisor on R │ │ │ │ i4 : D1 + D2 │ │ │ │ │ │ │ │ -o4 = -4*Div(x) + 6*Div(y) │ │ │ │ +o4 = 6*Div(y) + -4*Div(x) │ │ │ │ │ │ │ │ o4 : WeilDivisor on R │ │ │ │ i5 : D1 - D2 │ │ │ │ │ │ │ │ -o5 = 6*Div(x) + 4*Div(z) │ │ │ │ +o5 = 4*Div(z) + 6*Div(x) │ │ │ │ │ │ │ │ o5 : WeilDivisor on R │ │ │ │ We can also add or subtract divisors with different coefficients. │ │ │ │ i6 : R = QQ[x,y]; │ │ │ │ i7 : D1 = divisor({3, 1}, {ideal(x), ideal(y)}) │ │ │ │ │ │ │ │ o7 = 3*Div(x) + Div(y) │ │ │ │ @@ -71,28 +71,28 @@ │ │ │ │ o12 = -Div(y) + 2.75*Div(x) │ │ │ │ │ │ │ │ o12 : RWeilDivisor on R │ │ │ │ Finally, we can negate a divisor. │ │ │ │ i13 : R = ZZ/3[x,y,z]/ideal(x^2-y*z); │ │ │ │ i14 : D = divisor({3, 0, -1}, {ideal(x,z), ideal(y,z), ideal(x-y, x-z)}) │ │ │ │ │ │ │ │ -o14 = 3*Div(x, z) + 0*Div(y, z) + -Div(x-y, x-z) │ │ │ │ +o14 = 0*Div(y, z) + -Div(x-y, x-z) + 3*Div(x, z) │ │ │ │ │ │ │ │ o14 : WeilDivisor on R │ │ │ │ i15 : -D │ │ │ │ │ │ │ │ -o15 = -3*Div(x, z) + Div(x-y, x-z) │ │ │ │ +o15 = Div(x-y, x-z) + -3*Div(x, z) │ │ │ │ │ │ │ │ o15 : WeilDivisor on R │ │ │ │ i16 : E = divisor({3/2, -2/3}, {ideal(x, z), ideal(y, z)}) │ │ │ │ │ │ │ │ -o16 = 3/2*Div(x, z) + -2/3*Div(y, z) │ │ │ │ +o16 = -2/3*Div(y, z) + 3/2*Div(x, z) │ │ │ │ │ │ │ │ o16 : WeilDivisor on R │ │ │ │ i17 : -E │ │ │ │ │ │ │ │ -o17 = -3/2*Div(x, z) + 2/3*Div(y, z) │ │ │ │ +o17 = 2/3*Div(y, z) + -3/2*Div(x, z) │ │ │ │ │ │ │ │ o17 : WeilDivisor on R │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _B_a_s_i_c_D_i_v_i_s_o_r_ _+_ _B_a_s_i_c_D_i_v_i_s_o_r -- add or subtract two divisors, or negate a │ │ │ │ divisor │ │ ├── ./usr/share/doc/Macaulay2/Divisor/html/___Number_sp_st_sp__Basic__Divisor.html │ │ │ @@ -89,15 +89,15 @@ │ │ │ o3 = 1/2*Div(x) + -5/3*Div(y) │ │ │ │ │ │ o3 : QWeilDivisor on R
    │ │ │
    i4 : F = divisor({1.5, 0, -3.2}, {ideal(x), ideal(y), ideal(x^2-y^3)}, CoefficientType=>RR)
    │ │ │  
    │ │ │ -o4 = 1.5*Div(x) + 0*Div(y) + -3.2*Div(-y^3+x^2)
    │ │ │ +o4 = -3.2*Div(-y^3+x^2) + 1.5*Div(x) + 0*Div(y)
    │ │ │  
    │ │ │  o4 : RWeilDivisor on R
    │ │ │
    i5 : 8*D
    │ │ │  
    │ │ │  o5 = -8*Div(x+y) + 8*Div(y) + 16*Div(x)
    │ │ │ @@ -131,22 +131,22 @@
    │ │ │  o9 = 2.35667*Div(y) + -.707*Div(x)
    │ │ │  
    │ │ │  o9 : RWeilDivisor on R
    │ │ │
    i10 : 6*F
    │ │ │  
    │ │ │ -o10 = 9*Div(x) + -19.2*Div(-y^3+x^2)
    │ │ │ +o10 = -19.2*Div(-y^3+x^2) + 9*Div(x)
    │ │ │  
    │ │ │  o10 : RWeilDivisor on R
    │ │ │
    i11 : (-3/2)*F
    │ │ │  
    │ │ │ -o11 = -2.25*Div(x) + 4.8*Div(-y^3+x^2)
    │ │ │ +o11 = 4.8*Div(-y^3+x^2) + -2.25*Div(x)
    │ │ │  
    │ │ │  o11 : RWeilDivisor on R
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use this method:

    │ │ │ ├── html2text {} │ │ │ │ @@ -23,15 +23,15 @@ │ │ │ │ │ │ │ │ o3 = 1/2*Div(x) + -5/3*Div(y) │ │ │ │ │ │ │ │ o3 : QWeilDivisor on R │ │ │ │ i4 : F = divisor({1.5, 0, -3.2}, {ideal(x), ideal(y), ideal(x^2-y^3)}, │ │ │ │ CoefficientType=>RR) │ │ │ │ │ │ │ │ -o4 = 1.5*Div(x) + 0*Div(y) + -3.2*Div(-y^3+x^2) │ │ │ │ +o4 = -3.2*Div(-y^3+x^2) + 1.5*Div(x) + 0*Div(y) │ │ │ │ │ │ │ │ o4 : RWeilDivisor on R │ │ │ │ i5 : 8*D │ │ │ │ │ │ │ │ o5 = -8*Div(x+y) + 8*Div(y) + 16*Div(x) │ │ │ │ │ │ │ │ o5 : WeilDivisor on R │ │ │ │ @@ -53,20 +53,20 @@ │ │ │ │ i9 : (-1.414)*E │ │ │ │ │ │ │ │ o9 = 2.35667*Div(y) + -.707*Div(x) │ │ │ │ │ │ │ │ o9 : RWeilDivisor on R │ │ │ │ i10 : 6*F │ │ │ │ │ │ │ │ -o10 = 9*Div(x) + -19.2*Div(-y^3+x^2) │ │ │ │ +o10 = -19.2*Div(-y^3+x^2) + 9*Div(x) │ │ │ │ │ │ │ │ o10 : RWeilDivisor on R │ │ │ │ i11 : (-3/2)*F │ │ │ │ │ │ │ │ -o11 = -2.25*Div(x) + 4.8*Div(-y^3+x^2) │ │ │ │ +o11 = 4.8*Div(-y^3+x^2) + -2.25*Div(x) │ │ │ │ │ │ │ │ o11 : RWeilDivisor on R │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _N_u_m_b_e_r_ _*_ _B_a_s_i_c_D_i_v_i_s_o_r -- multiply a divisor by a number │ │ │ │ * QQ * RWeilDivisor │ │ │ │ * QQ * WeilDivisor │ │ │ │ * RR * QWeilDivisor │ │ ├── ./usr/share/doc/Macaulay2/Divisor/html/_apply__To__Coefficients.html │ │ │ @@ -83,22 +83,22 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : R = QQ[x, y, z];
    │ │ │
    i2 : D = divisor(x*y^2/z)
    │ │ │  
    │ │ │ -o2 = -Div(z) + 2*Div(y) + Div(x)
    │ │ │ +o2 = Div(x) + 2*Div(y) + -Div(z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │
    i3 : applyToCoefficients(D, u->5*u)
    │ │ │  
    │ │ │ -o3 = 10*Div(y) + -5*Div(z) + 5*Div(x)
    │ │ │ +o3 = 5*Div(x) + 10*Div(y) + -5*Div(z)
    │ │ │  
    │ │ │  o3 : WeilDivisor on R
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -26,20 +26,20 @@ │ │ │ │ the output D is the same as the class of the input D1 (WeilDivisor, │ │ │ │ QWeilDivisor, RWeilDivisor, BasicDivisor). If Safe is set to true (the default │ │ │ │ is false), then the function will check to make sure the output is a valid │ │ │ │ divisor. │ │ │ │ i1 : R = QQ[x, y, z]; │ │ │ │ i2 : D = divisor(x*y^2/z) │ │ │ │ │ │ │ │ -o2 = -Div(z) + 2*Div(y) + Div(x) │ │ │ │ +o2 = Div(x) + 2*Div(y) + -Div(z) │ │ │ │ │ │ │ │ o2 : WeilDivisor on R │ │ │ │ i3 : applyToCoefficients(D, u->5*u) │ │ │ │ │ │ │ │ -o3 = 10*Div(y) + -5*Div(z) + 5*Div(x) │ │ │ │ +o3 = 5*Div(x) + 10*Div(y) + -5*Div(z) │ │ │ │ │ │ │ │ o3 : WeilDivisor on R │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _f_l_o_o_r_(_R_W_e_i_l_D_i_v_i_s_o_r_) -- produce a WeilDivisor whose coefficients are │ │ │ │ ceilings or floors of the divisor │ │ │ │ * _c_e_i_l_i_n_g_(_R_W_e_i_l_D_i_v_i_s_o_r_) -- produce a WeilDivisor whose coefficients are │ │ │ │ ceilings or floors of the divisor │ │ ├── ./usr/share/doc/Macaulay2/Divisor/html/_dualize.html │ │ │ @@ -145,35 +145,35 @@ │ │ │ o10 : Ideal of R │ │ │ │ │ │ │ │ │
    i11 : M = J*R^1;
    │ │ │ │ │ │ │ │ │
    i12 : time dualize(J, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.0442293s (cpu); 0.0454216s (thread); 0s (gc)
    │ │ │ + -- used 0.0706306s (cpu); 0.0712794s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 : Ideal of R
    │ │ │ │ │ │ │ │ │
    i13 : time dualize(J, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.386445s (cpu); 0.388413s (thread); 0s (gc)
    │ │ │ + -- used 0.596945s (cpu); 0.599695s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 : Ideal of R
    │ │ │ │ │ │ │ │ │
    i14 : time dualize(M, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.516665s (cpu); 0.447697s (thread); 0s (gc)
    │ │ │ + -- used 0.676855s (cpu); 0.618389s (thread); 0s (gc) │ │ │ │ │ │ │ │ │
    i15 : time dualize(M, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.00277537s (cpu); 0.00285669s (thread); 0s (gc)
    │ │ │ + -- used 0.042174s (cpu); 0.0427084s (thread); 0s (gc) │ │ │ │ │ │ │ │ │
    i16 : time embedAsIdeal dualize(M, Strategy=>ModuleStrategy);
    │ │ │ - -- used 3.8001e-05s (cpu); 0.00208153s (thread); 0s (gc)
    │ │ │ + -- used 8.4117e-05s (cpu); 0.0022917s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 : Ideal of R
    │ │ │ │ │ │ │ │ │
    │ │ │

    For monomial ideals in toric rings, frequently ModuleStrategy appears faster.

    │ │ │
    │ │ │ @@ -189,21 +189,21 @@ │ │ │ │ │ │
    i19 : J = I^15;
    │ │ │  
    │ │ │  o19 : Ideal of R
    │ │ │ │ │ │ │ │ │
    i20 : time dualize(J, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.172064s (cpu); 0.095124s (thread); 0s (gc)
    │ │ │ + -- used 0.163694s (cpu); 0.103046s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 : Ideal of R
    │ │ │ │ │ │ │ │ │
    i21 : time dualize(J, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.00560499s (cpu); 0.00590381s (thread); 0s (gc)
    │ │ │ + -- used 0.00165973s (cpu); 0.00485289s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 : Ideal of R
    │ │ │ │ │ │ │ │ │
    │ │ │

    KnownDomain is an option for dualize. If it is false (default is true), then the computer will first check whether the ring is a domain, if it is not then it will revert to ModuleStrategy. If KnownDomain is set to true for a non-domain, then the function can return an incorrect answer.

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -61,43 +61,43 @@ │ │ │ │ │ │ │ │ o9 : Ideal of R │ │ │ │ i10 : J = m^9; │ │ │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ i11 : M = J*R^1; │ │ │ │ i12 : time dualize(J, Strategy=>IdealStrategy); │ │ │ │ - -- used 0.0442293s (cpu); 0.0454216s (thread); 0s (gc) │ │ │ │ + -- used 0.0706306s (cpu); 0.0712794s (thread); 0s (gc) │ │ │ │ │ │ │ │ o12 : Ideal of R │ │ │ │ i13 : time dualize(J, Strategy=>ModuleStrategy); │ │ │ │ - -- used 0.386445s (cpu); 0.388413s (thread); 0s (gc) │ │ │ │ + -- used 0.596945s (cpu); 0.599695s (thread); 0s (gc) │ │ │ │ │ │ │ │ o13 : Ideal of R │ │ │ │ i14 : time dualize(M, Strategy=>IdealStrategy); │ │ │ │ - -- used 0.516665s (cpu); 0.447697s (thread); 0s (gc) │ │ │ │ + -- used 0.676855s (cpu); 0.618389s (thread); 0s (gc) │ │ │ │ i15 : time dualize(M, Strategy=>ModuleStrategy); │ │ │ │ - -- used 0.00277537s (cpu); 0.00285669s (thread); 0s (gc) │ │ │ │ + -- used 0.042174s (cpu); 0.0427084s (thread); 0s (gc) │ │ │ │ i16 : time embedAsIdeal dualize(M, Strategy=>ModuleStrategy); │ │ │ │ - -- used 3.8001e-05s (cpu); 0.00208153s (thread); 0s (gc) │ │ │ │ + -- used 8.4117e-05s (cpu); 0.0022917s (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 : Ideal of R │ │ │ │ For monomial ideals in toric rings, frequently ModuleStrategy appears faster. │ │ │ │ i17 : R = ZZ/7[x,y,u,v]/ideal(x*y-u*v); │ │ │ │ i18 : I = ideal(x,u); │ │ │ │ │ │ │ │ o18 : Ideal of R │ │ │ │ i19 : J = I^15; │ │ │ │ │ │ │ │ o19 : Ideal of R │ │ │ │ i20 : time dualize(J, Strategy=>IdealStrategy); │ │ │ │ - -- used 0.172064s (cpu); 0.095124s (thread); 0s (gc) │ │ │ │ + -- used 0.163694s (cpu); 0.103046s (thread); 0s (gc) │ │ │ │ │ │ │ │ o20 : Ideal of R │ │ │ │ i21 : time dualize(J, Strategy=>ModuleStrategy); │ │ │ │ - -- used 0.00560499s (cpu); 0.00590381s (thread); 0s (gc) │ │ │ │ + -- used 0.00165973s (cpu); 0.00485289s (thread); 0s (gc) │ │ │ │ │ │ │ │ o21 : Ideal of R │ │ │ │ KnownDomain is an option for dualize. If it is false (default is true), then │ │ │ │ the computer will first check whether the ring is a domain, if it is not then │ │ │ │ it will revert to ModuleStrategy. If KnownDomain is set to true for a non- │ │ │ │ domain, then the function can return an incorrect answer. │ │ │ │ i22 : R = QQ[x,y]/ideal(x*y); │ │ ├── ./usr/share/doc/Macaulay2/Divisor/html/_is__Cartier.html │ │ │ @@ -99,15 +99,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │
    i5 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o5 = Div(x, z) + 2*Div(y, z)
    │ │ │ +o5 = 2*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o5 : WeilDivisor on R
    │ │ │
    i6 : isCartier( D )
    │ │ │  
    │ │ │  o6 = false
    │ │ │ @@ -119,15 +119,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : R = QQ[x, y, z];
    │ │ │
    i8 : D = divisor({1, 2}, {ideal(x), ideal(y)})
    │ │ │  
    │ │ │ -o8 = Div(x) + 2*Div(y)
    │ │ │ +o8 = 2*Div(y) + Div(x)
    │ │ │  
    │ │ │  o8 : WeilDivisor on R
    │ │ │
    i9 : isCartier( D )
    │ │ │  
    │ │ │  o9 = true
    │ │ │ @@ -156,15 +156,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : R = QQ[x, y, z] / ideal(x * y - z^2);
    │ │ │
    i14 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o14 = Div(x, z) + 2*Div(y, z)
    │ │ │ +o14 = 2*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o14 : WeilDivisor on R
    │ │ │
    i15 : isCartier(D, IsGraded => true)
    │ │ │  
    │ │ │  o15 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -26,25 +26,25 @@ │ │ │ │ i3 : isCartier( D ) │ │ │ │ │ │ │ │ o3 = false │ │ │ │ Neither is this divisor. │ │ │ │ i4 : R = QQ[x, y, z] / ideal(x * y - z^2 ); │ │ │ │ i5 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)}) │ │ │ │ │ │ │ │ -o5 = Div(x, z) + 2*Div(y, z) │ │ │ │ +o5 = 2*Div(y, z) + Div(x, z) │ │ │ │ │ │ │ │ o5 : WeilDivisor on R │ │ │ │ i6 : isCartier( D ) │ │ │ │ │ │ │ │ o6 = false │ │ │ │ Of course the next divisor is Cartier. │ │ │ │ i7 : R = QQ[x, y, z]; │ │ │ │ i8 : D = divisor({1, 2}, {ideal(x), ideal(y)}) │ │ │ │ │ │ │ │ -o8 = Div(x) + 2*Div(y) │ │ │ │ +o8 = 2*Div(y) + Div(x) │ │ │ │ │ │ │ │ o8 : WeilDivisor on R │ │ │ │ i9 : isCartier( D ) │ │ │ │ │ │ │ │ o9 = true │ │ │ │ If the option IsGraded is set to true (it is false by default), this will check │ │ │ │ as if D is a divisor on the $Proj$ of the ambient graded ring. │ │ │ │ @@ -56,15 +56,15 @@ │ │ │ │ o11 : WeilDivisor on R │ │ │ │ i12 : isCartier(D, IsGraded => true) │ │ │ │ │ │ │ │ o12 = true │ │ │ │ i13 : R = QQ[x, y, z] / ideal(x * y - z^2); │ │ │ │ i14 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)}) │ │ │ │ │ │ │ │ -o14 = Div(x, z) + 2*Div(y, z) │ │ │ │ +o14 = 2*Div(y, z) + Div(x, z) │ │ │ │ │ │ │ │ o14 : WeilDivisor on R │ │ │ │ i15 : isCartier(D, IsGraded => true) │ │ │ │ │ │ │ │ o15 = true │ │ │ │ The output value of this function is stored in the divisor's cache with the │ │ │ │ value of the last IsGraded option. If you change the IsGraded option, the value │ │ ├── ./usr/share/doc/Macaulay2/Divisor/html/_is__Linear__Equivalent.html │ │ │ @@ -81,22 +81,22 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : R = QQ[x, y, z]/ ideal(x * y - z^2);
    │ │ │
    i2 : D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o2 = 3*Div(x, z) + 8*Div(y, z)
    │ │ │ +o2 = 8*Div(y, z) + 3*Div(x, z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │
    i3 : D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)})
    │ │ │  
    │ │ │ -o3 = Div(x, z) + 8*Div(y, z)
    │ │ │ +o3 = 8*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o3 : WeilDivisor on R
    │ │ │
    i4 : isLinearEquivalent(D1, D2)
    │ │ │  
    │ │ │  o4 = true
    │ │ │ @@ -108,22 +108,22 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : R = QQ[x, y, z]/ ideal(x * y - z^2);
    │ │ │
    i6 : D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o6 = 8*Div(y, z) + 3*Div(x, z)
    │ │ │ +o6 = 3*Div(x, z) + 8*Div(y, z)
    │ │ │  
    │ │ │  o6 : WeilDivisor on R
    │ │ │
    i7 : D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)})
    │ │ │  
    │ │ │ -o7 = 8*Div(y, z) + Div(x, z)
    │ │ │ +o7 = Div(x, z) + 8*Div(y, z)
    │ │ │  
    │ │ │  o7 : WeilDivisor on R
    │ │ │
    i8 : isLinearEquivalent(D1, D2, IsGraded => true)
    │ │ │  
    │ │ │  o8 = false
    │ │ │ ├── html2text {} │ │ │ │ @@ -18,36 +18,36 @@ │ │ │ │ o flag, a _B_o_o_l_e_a_n_ _v_a_l_u_e, │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Given two Weil divisors, this method checks whether they are linearly │ │ │ │ equivalent. │ │ │ │ i1 : R = QQ[x, y, z]/ ideal(x * y - z^2); │ │ │ │ i2 : D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)}) │ │ │ │ │ │ │ │ -o2 = 3*Div(x, z) + 8*Div(y, z) │ │ │ │ +o2 = 8*Div(y, z) + 3*Div(x, z) │ │ │ │ │ │ │ │ o2 : WeilDivisor on R │ │ │ │ i3 : D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)}) │ │ │ │ │ │ │ │ -o3 = Div(x, z) + 8*Div(y, z) │ │ │ │ +o3 = 8*Div(y, z) + Div(x, z) │ │ │ │ │ │ │ │ o3 : WeilDivisor on R │ │ │ │ i4 : isLinearEquivalent(D1, D2) │ │ │ │ │ │ │ │ o4 = true │ │ │ │ If IsGraded is set to true (by default it is false), then it treats the │ │ │ │ divisors as divisors on the $Proj$ of their ambient ring. │ │ │ │ i5 : R = QQ[x, y, z]/ ideal(x * y - z^2); │ │ │ │ i6 : D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)}) │ │ │ │ │ │ │ │ -o6 = 8*Div(y, z) + 3*Div(x, z) │ │ │ │ +o6 = 3*Div(x, z) + 8*Div(y, z) │ │ │ │ │ │ │ │ o6 : WeilDivisor on R │ │ │ │ i7 : D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)}) │ │ │ │ │ │ │ │ -o7 = 8*Div(y, z) + Div(x, z) │ │ │ │ +o7 = Div(x, z) + 8*Div(y, z) │ │ │ │ │ │ │ │ o7 : WeilDivisor on R │ │ │ │ i8 : isLinearEquivalent(D1, D2, IsGraded => true) │ │ │ │ │ │ │ │ o8 = false │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _O_O_ _R_W_e_i_l_D_i_v_i_s_o_r │ │ ├── ./usr/share/doc/Macaulay2/Divisor/html/_is__Q__Cartier.html │ │ │ @@ -84,22 +84,22 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │
    i2 : D1 = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o2 = 2*Div(y, z) + Div(x, z)
    │ │ │ +o2 = Div(x, z) + 2*Div(y, z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │
    i3 : D2 = divisor({1/2, 3/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o3 = 1/2*Div(y, z) + 3/4*Div(x, z)
    │ │ │ +o3 = 3/4*Div(x, z) + 1/2*Div(y, z)
    │ │ │  
    │ │ │  o3 : QWeilDivisor on R
    │ │ │
    i4 : isQCartier(10, D1)
    │ │ │  
    │ │ │  o4 = 2
    │ │ │ @@ -145,22 +145,22 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -30,22 +30,22 @@ │ │ │ │ i3 : g = x^2+c*x+d │ │ │ │ │ │ │ │ 2 │ │ │ │ o3 = x + x*c + d │ │ │ │ │ │ │ │ o3 : R │ │ │ │ i4 : time eliminate(x,ideal(f,g)) │ │ │ │ - -- used 0.0056703s (cpu); 0.00402894s (thread); 0s (gc) │ │ │ │ + -- used 8.0591e-05s (cpu); 0.00209451s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o4 = ideal(a*b*c - b*c - a d + a*c*d - b + 2b*d - d ) │ │ │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : time ideal resultant(f,g,x) │ │ │ │ - -- used 0.00111276s (cpu); 0.00238255s (thread); 0s (gc) │ │ │ │ + -- used 0.000242925s (cpu); 0.00121916s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o5 = ideal(- a*b*c + b*c + a d - a*c*d + b - 2b*d + d ) │ │ │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ i6 : sylvesterMatrix(f,g,x) │ │ ├── ./usr/share/doc/Macaulay2/Elimination/html/_eliminate.html │ │ │ @@ -91,24 +91,24 @@ │ │ │ 2 │ │ │ o3 = x + x*c + d │ │ │ │ │ │ o3 : R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -31,22 +31,22 @@ │ │ │ │ i3 : g = x^2+c*x+d │ │ │ │ │ │ │ │ 2 │ │ │ │ o3 = x + x*c + d │ │ │ │ │ │ │ │ o3 : R │ │ │ │ i4 : time eliminate(x,ideal(f,g)) │ │ │ │ - -- used 0.0862086s (cpu); 0.0112134s (thread); 0s (gc) │ │ │ │ + -- used 0.0678867s (cpu); 0.010439s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o4 = ideal(a*b*c - b*c - a d + a*c*d - b + 2b*d - d ) │ │ │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : time ideal resultant(f,g,x) │ │ │ │ - -- used 0.00047983s (cpu); 0.0014141s (thread); 0s (gc) │ │ │ │ + -- used 0.00035229s (cpu); 0.00120166s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o5 = ideal(- a*b*c + b*c + a d - a*c*d + b - 2b*d + d ) │ │ │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ i6 : sylvesterMatrix(f,g,x) │ │ ├── ./usr/share/doc/Macaulay2/Elimination/html/_resultant_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.html │ │ │ @@ -103,15 +103,15 @@ │ │ │ 8 5 │ │ │ o3 = x + x + x*c + d │ │ │ │ │ │ o3 : R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │
    i12 : D1 = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o12 = Div(x, z) + 2*Div(y, z)
    │ │ │ +o12 = 2*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o12 : WeilDivisor on R
    │ │ │
    i13 : D2 = divisor({1/2, 3/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o13 = 3/4*Div(x, z) + 1/2*Div(y, z)
    │ │ │ +o13 = 1/2*Div(y, z) + 3/4*Div(x, z)
    │ │ │  
    │ │ │  o13 : QWeilDivisor on R
    │ │ │
    i14 : isQCartier(10, D1, IsGraded => true)
    │ │ │  
    │ │ │  o14 = 1
    │ │ │ ├── html2text {} │ │ │ │ @@ -22,21 +22,21 @@ │ │ │ │ Check whether $m$ times a Weil or Q-divisor $D$ is Cartier for each $m$ from 1 │ │ │ │ to a fixed positive integer n1 (if the divisor is a QWeilDivisor, it can search │ │ │ │ slightly higher than n1). If m * D1 is Cartier, it returns m. If it fails to │ │ │ │ find an m, it returns 0. │ │ │ │ i1 : R = QQ[x, y, z] / ideal(x * y - z^2 ); │ │ │ │ i2 : D1 = divisor({1, 2}, {ideal(x, z), ideal(y, z)}) │ │ │ │ │ │ │ │ -o2 = 2*Div(y, z) + Div(x, z) │ │ │ │ +o2 = Div(x, z) + 2*Div(y, z) │ │ │ │ │ │ │ │ o2 : WeilDivisor on R │ │ │ │ i3 : D2 = divisor({1/2, 3/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => │ │ │ │ QQ) │ │ │ │ │ │ │ │ -o3 = 1/2*Div(y, z) + 3/4*Div(x, z) │ │ │ │ +o3 = 3/4*Div(x, z) + 1/2*Div(y, z) │ │ │ │ │ │ │ │ o3 : QWeilDivisor on R │ │ │ │ i4 : isQCartier(10, D1) │ │ │ │ │ │ │ │ o4 = 2 │ │ │ │ i5 : isQCartier(10, D2) │ │ │ │ │ │ │ │ @@ -60,21 +60,21 @@ │ │ │ │ │ │ │ │ o10 = 0 │ │ │ │ If the option IsGraded is set to true (by default it is false), then it treats │ │ │ │ the divisor as a divisor on the $Proj$ of their ambient ring. │ │ │ │ i11 : R = QQ[x, y, z] / ideal(x * y - z^2 ); │ │ │ │ i12 : D1 = divisor({1, 2}, {ideal(x, z), ideal(y, z)}) │ │ │ │ │ │ │ │ -o12 = Div(x, z) + 2*Div(y, z) │ │ │ │ +o12 = 2*Div(y, z) + Div(x, z) │ │ │ │ │ │ │ │ o12 : WeilDivisor on R │ │ │ │ i13 : D2 = divisor({1/2, 3/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => │ │ │ │ QQ) │ │ │ │ │ │ │ │ -o13 = 3/4*Div(x, z) + 1/2*Div(y, z) │ │ │ │ +o13 = 1/2*Div(y, z) + 3/4*Div(x, z) │ │ │ │ │ │ │ │ o13 : QWeilDivisor on R │ │ │ │ i14 : isQCartier(10, D1, IsGraded => true) │ │ │ │ │ │ │ │ o14 = 1 │ │ │ │ i15 : isQCartier(10, D2, IsGraded => true) │ │ ├── ./usr/share/doc/Macaulay2/Divisor/html/_is__Q__Linear__Equivalent.html │ │ │ @@ -83,22 +83,22 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : R = QQ[x, y, z] / ideal(x * y - z^2);
    │ │ │
    i2 : D = divisor({1/2, 3/4}, {ideal(x, z), ideal(y, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o2 = 1/2*Div(x, z) + 3/4*Div(y, z)
    │ │ │ +o2 = 3/4*Div(y, z) + 1/2*Div(x, z)
    │ │ │  
    │ │ │  o2 : QWeilDivisor on R
    │ │ │
    i3 : E = divisor({3/4, 5/2}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o3 = 5/2*Div(x, z) + 3/4*Div(y, z)
    │ │ │ +o3 = 3/4*Div(y, z) + 5/2*Div(x, z)
    │ │ │  
    │ │ │  o3 : QWeilDivisor on R
    │ │ │
    i4 : isQLinearEquivalent(10, D, E)
    │ │ │  
    │ │ │  o4 = true
    │ │ │ @@ -138,22 +138,22 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : R = QQ[x, y, z] / ideal(x * y - z^2);
    │ │ │
    i11 : D = divisor({1/2, 3/4}, {ideal(x, z), ideal(y, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o11 = 3/4*Div(y, z) + 1/2*Div(x, z)
    │ │ │ +o11 = 1/2*Div(x, z) + 3/4*Div(y, z)
    │ │ │  
    │ │ │  o11 : QWeilDivisor on R
    │ │ │
    i12 : E = divisor({3/2, -1/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o12 = 3/2*Div(y, z) + -1/4*Div(x, z)
    │ │ │ +o12 = -1/4*Div(x, z) + 3/2*Div(y, z)
    │ │ │  
    │ │ │  o12 : QWeilDivisor on R
    │ │ │
    i13 : isQLinearEquivalent(10, D, E, IsGraded => true)
    │ │ │  
    │ │ │  o13 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -20,20 +20,20 @@ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Given two rational divisors, this method returns true if they linearly │ │ │ │ equivalent after clearing denominators or if some further multiple up to n │ │ │ │ makes them linearly equivalent. Otherwise it returns false. │ │ │ │ i1 : R = QQ[x, y, z] / ideal(x * y - z^2); │ │ │ │ i2 : D = divisor({1/2, 3/4}, {ideal(x, z), ideal(y, z)}, CoefficientType => QQ) │ │ │ │ │ │ │ │ -o2 = 1/2*Div(x, z) + 3/4*Div(y, z) │ │ │ │ +o2 = 3/4*Div(y, z) + 1/2*Div(x, z) │ │ │ │ │ │ │ │ o2 : QWeilDivisor on R │ │ │ │ i3 : E = divisor({3/4, 5/2}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ) │ │ │ │ │ │ │ │ -o3 = 5/2*Div(x, z) + 3/4*Div(y, z) │ │ │ │ +o3 = 3/4*Div(y, z) + 5/2*Div(x, z) │ │ │ │ │ │ │ │ o3 : QWeilDivisor on R │ │ │ │ i4 : isQLinearEquivalent(10, D, E) │ │ │ │ │ │ │ │ o4 = true │ │ │ │ In the above ring, every pair of divisors is Q-linearly equivalent because the │ │ │ │ Weil divisor class group is isomorphic to Z/2. However, if we don't set n high │ │ │ │ @@ -53,21 +53,21 @@ │ │ │ │ o9 = true │ │ │ │ If IsGraded=>true (the default is false), then it treats the divisors as if │ │ │ │ they are divisors on the $Proj$ of their ambient ring. │ │ │ │ i10 : R = QQ[x, y, z] / ideal(x * y - z^2); │ │ │ │ i11 : D = divisor({1/2, 3/4}, {ideal(x, z), ideal(y, z)}, CoefficientType => │ │ │ │ QQ) │ │ │ │ │ │ │ │ -o11 = 3/4*Div(y, z) + 1/2*Div(x, z) │ │ │ │ +o11 = 1/2*Div(x, z) + 3/4*Div(y, z) │ │ │ │ │ │ │ │ o11 : QWeilDivisor on R │ │ │ │ i12 : E = divisor({3/2, -1/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => │ │ │ │ QQ) │ │ │ │ │ │ │ │ -o12 = 3/2*Div(y, z) + -1/4*Div(x, z) │ │ │ │ +o12 = -1/4*Div(x, z) + 3/2*Div(y, z) │ │ │ │ │ │ │ │ o12 : QWeilDivisor on R │ │ │ │ i13 : isQLinearEquivalent(10, D, E, IsGraded => true) │ │ │ │ │ │ │ │ o13 = true │ │ │ │ i14 : isQLinearEquivalent(10, 3*D, E, IsGraded => true) │ │ ├── ./usr/share/doc/Macaulay2/Divisor/html/_reflexify.html │ │ │ @@ -229,21 +229,21 @@ │ │ │
    i22 : J = I^21;
    │ │ │  
    │ │ │  o22 : Ideal of R
    │ │ │
    i23 : time reflexify(J);
    │ │ │ - -- used 0.263984s (cpu); 0.186105s (thread); 0s (gc)
    │ │ │ + -- used 0.311119s (cpu); 0.216462s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 : Ideal of R
    │ │ │
    i24 : time reflexify(J*R^1);
    │ │ │ - -- used 0.41735s (cpu); 0.34655s (thread); 0s (gc)
    │ │ │ + -- used 0.456279s (cpu); 0.403964s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │

    Because of this, there are two strategies for computing a reflexification (at least if the module embeds as an ideal).

    │ │ │
    │ │ │
    │ │ │

    IdealStrategy. In the case that $R$ is a domain, and our module is isomorphic to an ideal $I$, then one can compute the reflexification by computing colons.

    │ │ │ @@ -269,42 +269,42 @@ │ │ │ o27 : Ideal of R │ │ │
    i28 : M = J*R^1;
    │ │ │
    i29 : J1 = time reflexify( J, Strategy=>IdealStrategy )
    │ │ │ - -- used 0.264868s (cpu); 0.125615s (thread); 0s (gc)
    │ │ │ + -- used 0.30011s (cpu); 0.176381s (thread); 0s (gc)
    │ │ │  
    │ │ │                2            2     9       9   11
    │ │ │  o29 = ideal (x  + 5x*y + 3y , x*z  - 4y*z , z   + x - 4y)
    │ │ │  
    │ │ │  o29 : Ideal of R
    │ │ │
    i30 : J2 = time reflexify( J, Strategy=>ModuleStrategy )
    │ │ │ - -- used 7.16298s (cpu); 5.01923s (thread); 0s (gc)
    │ │ │ + -- used 5.90236s (cpu); 4.60466s (thread); 0s (gc)
    │ │ │  
    │ │ │                2            2     9       9   11
    │ │ │  o30 = ideal (x  + 5x*y + 3y , x*z  - 4y*z , z   + x - 4y)
    │ │ │  
    │ │ │  o30 : Ideal of R
    │ │ │
    i31 : J1 == J2
    │ │ │  
    │ │ │  o31 = true
    │ │ │
    i32 : time reflexify( M, Strategy=>IdealStrategy );
    │ │ │ - -- used 5.86731s (cpu); 4.55029s (thread); 0s (gc)
    │ │ │ + -- used 5.94452s (cpu); 4.82164s (thread); 0s (gc) │ │ │
    i33 : time reflexify( M, Strategy=>ModuleStrategy );
    │ │ │ - -- used 0.579493s (cpu); 0.401292s (thread); 0s (gc)
    │ │ │ + -- used 0.57163s (cpu); 0.431591s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │

    However, sometimes ModuleStrategy is faster, especially for Monomial ideals.

    │ │ │
    │ │ │ │ │ │ │ │ │ @@ -321,49 +321,49 @@ │ │ │ o36 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i37 : M = I^20*R^1;
    │ │ │
    i38 : time reflexify( J, Strategy=>IdealStrategy )
    │ │ │ - -- used 0.879462s (cpu); 0.331789s (thread); 0s (gc)
    │ │ │ + -- used 1.26254s (cpu); 0.354247s (thread); 0s (gc)
    │ │ │  
    │ │ │                20     19   2 18   3 17   4 16   5 15   6 14   7 13   8 12 
    │ │ │  o38 = ideal (u  , x*u  , x u  , x u  , x u  , x u  , x u  , x u  , x u  ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         9 11   10 10   11 9   12 8   13 7   14 6   15 5   16 4   17 3   18 2 
    │ │ │        x u  , x  u  , x  u , x  u , x  u , x  u , x  u , x  u , x  u , x  u ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         19    20
    │ │ │        x  u, x  )
    │ │ │  
    │ │ │  o38 : Ideal of R
    │ │ │
    i39 : time reflexify( J, Strategy=>ModuleStrategy )
    │ │ │ - -- used 0.240056s (cpu); 0.0751777s (thread); 0s (gc)
    │ │ │ + -- used 0.0093123s (cpu); 0.0121342s (thread); 0s (gc)
    │ │ │  
    │ │ │                20     19   2 18   3 17   4 16   5 15   6 14   7 13   8 12 
    │ │ │  o39 = ideal (u  , x*u  , x u  , x u  , x u  , x u  , x u  , x u  , x u  ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         9 11   10 10   11 9   12 8   13 7   14 6   15 5   16 4   17 3   18 2 
    │ │ │        x u  , x  u  , x  u , x  u , x  u , x  u , x  u , x  u , x  u , x  u ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         19    20
    │ │ │        x  u, x  )
    │ │ │  
    │ │ │  o39 : Ideal of R
    │ │ │
    i40 : time reflexify( M, Strategy=>IdealStrategy );
    │ │ │ - -- used 0.0402565s (cpu); 0.0404667s (thread); 0s (gc)
    │ │ │ + -- used 0.268245s (cpu); 0.129089s (thread); 0s (gc) │ │ │
    i41 : time reflexify( M, Strategy=>ModuleStrategy );
    │ │ │ - -- used 0.00492897s (cpu); 0.00705635s (thread); 0s (gc)
    │ │ │ + -- used 0.00322467s (cpu); 0.00538113s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │

    For ideals, if KnownDomain is false (default value is true), then the function will check whether it is a domain. If it is a domain (or assumed to be a domain), it will reflexify using a strategy which can speed up computation, if not it will compute using a sometimes slower method which is essentially reflexifying it as a module.

    │ │ │
    │ │ │
    │ │ │

    Consider the following example showing the importance of making the correct assumption about the ring being a domain.

    │ │ │ ├── html2text {} │ │ │ │ @@ -115,19 +115,19 @@ │ │ │ │ i21 : I = ideal(x-z,y-2*z); │ │ │ │ │ │ │ │ o21 : Ideal of R │ │ │ │ i22 : J = I^21; │ │ │ │ │ │ │ │ o22 : Ideal of R │ │ │ │ i23 : time reflexify(J); │ │ │ │ - -- used 0.263984s (cpu); 0.186105s (thread); 0s (gc) │ │ │ │ + -- used 0.311119s (cpu); 0.216462s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 : Ideal of R │ │ │ │ i24 : time reflexify(J*R^1); │ │ │ │ - -- used 0.41735s (cpu); 0.34655s (thread); 0s (gc) │ │ │ │ + -- used 0.456279s (cpu); 0.403964s (thread); 0s (gc) │ │ │ │ Because of this, there are two strategies for computing a reflexification (at │ │ │ │ least if the module embeds as an ideal). │ │ │ │ IdealStrategy. In the case that $R$ is a domain, and our module is isomorphic │ │ │ │ to an ideal $I$, then one can compute the reflexification by computing colons. │ │ │ │ ModuleStrategy. This computes the reflexification simply by computing $Hom$ │ │ │ │ twice. │ │ │ │ ModuleStrategy is the default strategy for modules, IdealStrategy is the │ │ │ │ @@ -140,73 +140,73 @@ │ │ │ │ │ │ │ │ o26 : Ideal of R │ │ │ │ i27 : J = I^20; │ │ │ │ │ │ │ │ o27 : Ideal of R │ │ │ │ i28 : M = J*R^1; │ │ │ │ i29 : J1 = time reflexify( J, Strategy=>IdealStrategy ) │ │ │ │ - -- used 0.264868s (cpu); 0.125615s (thread); 0s (gc) │ │ │ │ + -- used 0.30011s (cpu); 0.176381s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 9 9 11 │ │ │ │ o29 = ideal (x + 5x*y + 3y , x*z - 4y*z , z + x - 4y) │ │ │ │ │ │ │ │ o29 : Ideal of R │ │ │ │ i30 : J2 = time reflexify( J, Strategy=>ModuleStrategy ) │ │ │ │ - -- used 7.16298s (cpu); 5.01923s (thread); 0s (gc) │ │ │ │ + -- used 5.90236s (cpu); 4.60466s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 9 9 11 │ │ │ │ o30 = ideal (x + 5x*y + 3y , x*z - 4y*z , z + x - 4y) │ │ │ │ │ │ │ │ o30 : Ideal of R │ │ │ │ i31 : J1 == J2 │ │ │ │ │ │ │ │ o31 = true │ │ │ │ i32 : time reflexify( M, Strategy=>IdealStrategy ); │ │ │ │ - -- used 5.86731s (cpu); 4.55029s (thread); 0s (gc) │ │ │ │ + -- used 5.94452s (cpu); 4.82164s (thread); 0s (gc) │ │ │ │ i33 : time reflexify( M, Strategy=>ModuleStrategy ); │ │ │ │ - -- used 0.579493s (cpu); 0.401292s (thread); 0s (gc) │ │ │ │ + -- used 0.57163s (cpu); 0.431591s (thread); 0s (gc) │ │ │ │ However, sometimes ModuleStrategy is faster, especially for Monomial ideals. │ │ │ │ i34 : R = QQ[x,y,u,v]/ideal(x*y-u*v); │ │ │ │ i35 : I = ideal(x,u); │ │ │ │ │ │ │ │ o35 : Ideal of R │ │ │ │ i36 : J = I^20; │ │ │ │ │ │ │ │ o36 : Ideal of R │ │ │ │ i37 : M = I^20*R^1; │ │ │ │ i38 : time reflexify( J, Strategy=>IdealStrategy ) │ │ │ │ - -- used 0.879462s (cpu); 0.331789s (thread); 0s (gc) │ │ │ │ + -- used 1.26254s (cpu); 0.354247s (thread); 0s (gc) │ │ │ │ │ │ │ │ 20 19 2 18 3 17 4 16 5 15 6 14 7 13 8 12 │ │ │ │ o38 = ideal (u , x*u , x u , x u , x u , x u , x u , x u , x u , │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 9 11 10 10 11 9 12 8 13 7 14 6 15 5 16 4 17 3 18 2 │ │ │ │ x u , x u , x u , x u , x u , x u , x u , x u , x u , x u , │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 19 20 │ │ │ │ x u, x ) │ │ │ │ │ │ │ │ o38 : Ideal of R │ │ │ │ i39 : time reflexify( J, Strategy=>ModuleStrategy ) │ │ │ │ - -- used 0.240056s (cpu); 0.0751777s (thread); 0s (gc) │ │ │ │ + -- used 0.0093123s (cpu); 0.0121342s (thread); 0s (gc) │ │ │ │ │ │ │ │ 20 19 2 18 3 17 4 16 5 15 6 14 7 13 8 12 │ │ │ │ o39 = ideal (u , x*u , x u , x u , x u , x u , x u , x u , x u , │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 9 11 10 10 11 9 12 8 13 7 14 6 15 5 16 4 17 3 18 2 │ │ │ │ x u , x u , x u , x u , x u , x u , x u , x u , x u , x u , │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 19 20 │ │ │ │ x u, x ) │ │ │ │ │ │ │ │ o39 : Ideal of R │ │ │ │ i40 : time reflexify( M, Strategy=>IdealStrategy ); │ │ │ │ - -- used 0.0402565s (cpu); 0.0404667s (thread); 0s (gc) │ │ │ │ + -- used 0.268245s (cpu); 0.129089s (thread); 0s (gc) │ │ │ │ i41 : time reflexify( M, Strategy=>ModuleStrategy ); │ │ │ │ - -- used 0.00492897s (cpu); 0.00705635s (thread); 0s (gc) │ │ │ │ + -- used 0.00322467s (cpu); 0.00538113s (thread); 0s (gc) │ │ │ │ For ideals, if KnownDomain is false (default value is true), then the function │ │ │ │ will check whether it is a domain. If it is a domain (or assumed to be a │ │ │ │ domain), it will reflexify using a strategy which can speed up computation, if │ │ │ │ not it will compute using a sometimes slower method which is essentially │ │ │ │ reflexifying it as a module. │ │ │ │ Consider the following example showing the importance of making the correct │ │ │ │ assumption about the ring being a domain. │ │ ├── ./usr/share/doc/Macaulay2/Divisor/html/_reflexive__Power.html │ │ │ @@ -114,26 +114,26 @@ │ │ │
    i6 : I = ideal(x-z,y-2*z);
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │
    i7 : time J20a = reflexivePower(20, I);
    │ │ │ - -- used 0.114875s (cpu); 0.0601963s (thread); 0s (gc)
    │ │ │ + -- used 0.0849408s (cpu); 0.0338104s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │
    i8 : I20 = I^20;
    │ │ │  
    │ │ │  o8 : Ideal of R
    │ │ │
    i9 : time J20b = reflexify(I20);
    │ │ │ - -- used 0.123502s (cpu); 0.125616s (thread); 0s (gc)
    │ │ │ + -- used 0.264096s (cpu); 0.265766s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : Ideal of R
    │ │ │
    i10 : J20a == J20b
    │ │ │  
    │ │ │  o10 = true
    │ │ │ @@ -149,21 +149,21 @@ │ │ │
    i12 : I = ideal(x-z,y-2*z);
    │ │ │  
    │ │ │  o12 : Ideal of R
    │ │ │
    i13 : time J1 = reflexivePower(20, I, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.0279996s (cpu); 0.0294503s (thread); 0s (gc)
    │ │ │ + -- used 0.0400012s (cpu); 0.0390273s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 : Ideal of R
    │ │ │
    i14 : time J2 = reflexivePower(20, I, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.151204s (cpu); 0.0977003s (thread); 0s (gc)
    │ │ │ + -- used 0.149731s (cpu); 0.0876416s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 : Ideal of R
    │ │ │
    i15 : J1 == J2
    │ │ │  
    │ │ │  o15 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -41,39 +41,39 @@ │ │ │ │ of the generators of $I$. Consider the example of a cone over a point on an │ │ │ │ elliptic curve. │ │ │ │ i5 : R = QQ[x,y,z]/ideal(-y^2*z +x^3 + x^2*z + x*z^2+z^3); │ │ │ │ i6 : I = ideal(x-z,y-2*z); │ │ │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ i7 : time J20a = reflexivePower(20, I); │ │ │ │ - -- used 0.114875s (cpu); 0.0601963s (thread); 0s (gc) │ │ │ │ + -- used 0.0849408s (cpu); 0.0338104s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ i8 : I20 = I^20; │ │ │ │ │ │ │ │ o8 : Ideal of R │ │ │ │ i9 : time J20b = reflexify(I20); │ │ │ │ - -- used 0.123502s (cpu); 0.125616s (thread); 0s (gc) │ │ │ │ + -- used 0.264096s (cpu); 0.265766s (thread); 0s (gc) │ │ │ │ │ │ │ │ o9 : Ideal of R │ │ │ │ i10 : J20a == J20b │ │ │ │ │ │ │ │ o10 = true │ │ │ │ This passes the Strategy option to a reflexify call. Valid options are │ │ │ │ IdealStrategy and ModuleStrategy. │ │ │ │ i11 : R = QQ[x,y,z]/ideal(-y^2*z +x^3 + x^2*z + x*z^2+z^3); │ │ │ │ i12 : I = ideal(x-z,y-2*z); │ │ │ │ │ │ │ │ o12 : Ideal of R │ │ │ │ i13 : time J1 = reflexivePower(20, I, Strategy=>IdealStrategy); │ │ │ │ - -- used 0.0279996s (cpu); 0.0294503s (thread); 0s (gc) │ │ │ │ + -- used 0.0400012s (cpu); 0.0390273s (thread); 0s (gc) │ │ │ │ │ │ │ │ o13 : Ideal of R │ │ │ │ i14 : time J2 = reflexivePower(20, I, Strategy=>ModuleStrategy); │ │ │ │ - -- used 0.151204s (cpu); 0.0977003s (thread); 0s (gc) │ │ │ │ + -- used 0.149731s (cpu); 0.0876416s (thread); 0s (gc) │ │ │ │ │ │ │ │ o14 : Ideal of R │ │ │ │ i15 : J1 == J2 │ │ │ │ │ │ │ │ o15 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_f_l_e_x_i_f_y -- calculate the double dual of an ideal or module Hom(Hom(M, │ │ ├── ./usr/share/doc/Macaulay2/Divisor/html/_to__R__Weil__Divisor.html │ │ │ @@ -78,36 +78,36 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ - │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -24,26 +24,18 @@ │ │ │ │ sizes using a random recursive algorithm. Limits can be placed on the both │ │ │ │ number of recursive steps taken (see _B_r_a_n_c_h_L_i_m_i_t) and on the time taken (see │ │ │ │ _T_i_m_e_L_i_m_i_t). The method will return null if it cannot find a hypergraph within │ │ │ │ the branch and time limits. │ │ │ │ i1 : R = QQ[x_1..x_5]; │ │ │ │ i2 : randomHyperGraph(R,{3,2,4}) │ │ │ │ i3 : randomHyperGraph(R,{3,2,4}) │ │ │ │ - │ │ │ │ -o3 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}} │ │ │ │ - 1 2 5 2 4 1 3 4 5 │ │ │ │ - "ring" => R │ │ │ │ - "vertices" => {x , x , x , x , x } │ │ │ │ - 1 2 3 4 5 │ │ │ │ - │ │ │ │ -o3 : HyperGraph │ │ │ │ i4 : randomHyperGraph(R,{3,2,4}) │ │ │ │ │ │ │ │ o4 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}} │ │ │ │ - 1 4 5 2 5 1 2 3 4 │ │ │ │ + 1 2 3 3 4 1 2 4 5 │ │ │ │ "ring" => R │ │ │ │ "vertices" => {x , x , x , x , x } │ │ │ │ 1 2 3 4 5 │ │ │ │ │ │ │ │ o4 : HyperGraph │ │ │ │ i5 : randomHyperGraph(R,{4,4,2,2}) -- impossible, returns null when time/branch │ │ │ │ limit reached │ │ ├── ./usr/share/doc/Macaulay2/EigenSolver/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=19 │ │ │ emVyb0RpbVNvbHZlKElkZWFsKQ== │ │ │ #:len=254 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjc3LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyh6ZXJvRGltU29sdmUsSWRlYWwpLCJ6ZXJvRGltU29s │ │ ├── ./usr/share/doc/Macaulay2/EigenSolver/example-output/___Eigen__Solver.out │ │ │ @@ -15,14 +15,14 @@ │ │ │ a*b*e*f + a*d*e*f + c*d*e*f, a*b*c*d*e + a*b*c*d*f + a*b*c*e*f + │ │ │ ------------------------------------------------------------------------ │ │ │ a*b*d*e*f + a*c*d*e*f + b*c*d*e*f, a*b*c*d*e*f - 1) │ │ │ │ │ │ o2 : Ideal of QQ[a..f] │ │ │ │ │ │ i3 : elapsedTime sols = zeroDimSolve I; │ │ │ - -- .304758s elapsed │ │ │ + -- .409374s elapsed │ │ │ │ │ │ i4 : #sols -- 156 solutions │ │ │ │ │ │ o4 = 156 │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/EigenSolver/html/index.html │ │ │ @@ -68,15 +68,15 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ a*b*d*e*f + a*c*d*e*f + b*c*d*e*f, a*b*c*d*e*f - 1) │ │ │ │ │ │ o2 : Ideal of QQ[a..f] │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : R = ZZ/5[x,y];
    │ │ │
    i2 : D = divisor({2, 0, -4}, {ideal(x), ideal(y), ideal(x-y)})
    │ │ │  
    │ │ │ -o2 = -4*Div(x-y) + 2*Div(x) + 0*Div(y)
    │ │ │ +o2 = 2*Div(x) + 0*Div(y) + -4*Div(x-y)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │
    i3 : E = (1/2)*D
    │ │ │  
    │ │ │ -o3 = -2*Div(x-y) + Div(x)
    │ │ │ +o3 = Div(x) + -2*Div(x-y)
    │ │ │  
    │ │ │  o3 : QWeilDivisor on R
    │ │ │
    i4 : F = toRWeilDivisor(D)
    │ │ │  
    │ │ │ -o4 = -4*Div(x-y) + 2*Div(x)
    │ │ │ +o4 = 2*Div(x) + -4*Div(x-y)
    │ │ │  
    │ │ │  o4 : RWeilDivisor on R
    │ │ │
    i5 : G = toRWeilDivisor(E)
    │ │ │  
    │ │ │ -o5 = -2*Div(x-y) + Div(x)
    │ │ │ +o5 = Div(x) + -2*Div(x-y)
    │ │ │  
    │ │ │  o5 : RWeilDivisor on R
    │ │ │
    i6 : F == 2*G
    │ │ │  
    │ │ │  o6 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -16,30 +16,30 @@ │ │ │ │ o an instance of the type _R_W_e_i_l_D_i_v_i_s_o_r, │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Turn a Weil divisor or a Q-divisor into a R-divisor (or do nothing to a R- │ │ │ │ divisor). │ │ │ │ i1 : R = ZZ/5[x,y]; │ │ │ │ i2 : D = divisor({2, 0, -4}, {ideal(x), ideal(y), ideal(x-y)}) │ │ │ │ │ │ │ │ -o2 = -4*Div(x-y) + 2*Div(x) + 0*Div(y) │ │ │ │ +o2 = 2*Div(x) + 0*Div(y) + -4*Div(x-y) │ │ │ │ │ │ │ │ o2 : WeilDivisor on R │ │ │ │ i3 : E = (1/2)*D │ │ │ │ │ │ │ │ -o3 = -2*Div(x-y) + Div(x) │ │ │ │ +o3 = Div(x) + -2*Div(x-y) │ │ │ │ │ │ │ │ o3 : QWeilDivisor on R │ │ │ │ i4 : F = toRWeilDivisor(D) │ │ │ │ │ │ │ │ -o4 = -4*Div(x-y) + 2*Div(x) │ │ │ │ +o4 = 2*Div(x) + -4*Div(x-y) │ │ │ │ │ │ │ │ o4 : RWeilDivisor on R │ │ │ │ i5 : G = toRWeilDivisor(E) │ │ │ │ │ │ │ │ -o5 = -2*Div(x-y) + Div(x) │ │ │ │ +o5 = Div(x) + -2*Div(x-y) │ │ │ │ │ │ │ │ o5 : RWeilDivisor on R │ │ │ │ i6 : F == 2*G │ │ │ │ │ │ │ │ o6 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_o_W_e_i_l_D_i_v_i_s_o_r -- create a Weil divisor from a Q or R-divisor │ │ ├── ./usr/share/doc/Macaulay2/Dmodules/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ -# GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:38 2025 │ │ │ +# GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=8 │ │ │ RG1vZHVsZXM= │ │ │ #:len=758 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiRC1tb2R1bGVzIHBhY2thZ2UgY29sbGVj │ │ │ dGlvbiIsICJsaW5lbnVtIiA9PiAxNDIsICJmaWxlbmFtZSIgPT4gIkRtb2R1bGVzLm0yIiwgRGVz │ │ ├── ./usr/share/doc/Macaulay2/EagonResolution/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=9 │ │ │ VHJhbnNwb3Nl │ │ │ #:len=1366 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiVHJhbnNwb3NlID0+IGZhbHNlLCBkZWZh │ │ │ dWx0IG9wdGlvbiBmb3IgcGljdHVyZSIsICJsaW5lbnVtIiA9PiAxMzUwLCBJbnB1dHMgPT4ge1NQ │ │ ├── ./usr/share/doc/Macaulay2/EdgeIdeals/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=15 │ │ │ Y29tcGxlbWVudEdyYXBo │ │ │ #:len=2011 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAicmV0dXJucyB0aGUgY29tcGxlbWVudCBv │ │ │ ZiBhIGdyYXBoIG9yIGh5cGVyZ3JhcGgiLCAibGluZW51bSIgPT4gMjA4MCwgSW5wdXRzID0+IHtT │ │ ├── ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_random__Hyper__Graph.out │ │ │ @@ -2,26 +2,18 @@ │ │ │ │ │ │ i1 : R = QQ[x_1..x_5]; │ │ │ │ │ │ i2 : randomHyperGraph(R,{3,2,4}) │ │ │ │ │ │ i3 : randomHyperGraph(R,{3,2,4}) │ │ │ │ │ │ -o3 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}} │ │ │ - 1 2 5 2 4 1 3 4 5 │ │ │ - "ring" => R │ │ │ - "vertices" => {x , x , x , x , x } │ │ │ - 1 2 3 4 5 │ │ │ - │ │ │ -o3 : HyperGraph │ │ │ - │ │ │ i4 : randomHyperGraph(R,{3,2,4}) │ │ │ │ │ │ o4 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}} │ │ │ - 1 4 5 2 5 1 2 3 4 │ │ │ + 1 2 3 3 4 1 2 4 5 │ │ │ "ring" => R │ │ │ "vertices" => {x , x , x , x , x } │ │ │ 1 2 3 4 5 │ │ │ │ │ │ o4 : HyperGraph │ │ │ │ │ │ i5 : randomHyperGraph(R,{4,4,2,2}) -- impossible, returns null when time/branch limit reached │ │ ├── ./usr/share/doc/Macaulay2/EdgeIdeals/html/_random__Hyper__Graph.html │ │ │ @@ -84,29 +84,21 @@ │ │ │
    i1 : R = QQ[x_1..x_5];
    │ │ │
    i2 : randomHyperGraph(R,{3,2,4})
    │ │ │
    i3 : randomHyperGraph(R,{3,2,4})
    │ │ │ -
    │ │ │ -o3 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}}
    │ │ │ -                              1   2   5     2   4     1   3   4   5
    │ │ │ -                "ring" => R
    │ │ │ -                "vertices" => {x , x , x , x , x }
    │ │ │ -                                1   2   3   4   5
    │ │ │ -
    │ │ │ -o3 : HyperGraph
    │ │ │ +
    i3 : randomHyperGraph(R,{3,2,4})
    │ │ │
    i4 : randomHyperGraph(R,{3,2,4})
    │ │ │  
    │ │ │  o4 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}}
    │ │ │ -                              1   4   5     2   5     1   2   3   4
    │ │ │ +                              1   2   3     3   4     1   2   4   5
    │ │ │                  "ring" => R
    │ │ │                  "vertices" => {x , x , x , x , x }
    │ │ │                                  1   2   3   4   5
    │ │ │  
    │ │ │  o4 : HyperGraph
    │ │ │
    i3 : elapsedTime sols = zeroDimSolve I;
    │ │ │ - -- .304758s elapsed
    │ │ │ + -- .409374s elapsed │ │ │
    i4 : #sols -- 156 solutions
    │ │ │  
    │ │ │  o4 = 156
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ a*b*e*f + a*d*e*f + c*d*e*f, a*b*c*d*e + a*b*c*d*f + a*b*c*e*f + │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ a*b*d*e*f + a*c*d*e*f + b*c*d*e*f, a*b*c*d*e*f - 1) │ │ │ │ │ │ │ │ o2 : Ideal of QQ[a..f] │ │ │ │ i3 : elapsedTime sols = zeroDimSolve I; │ │ │ │ - -- .304758s elapsed │ │ │ │ + -- .409374s elapsed │ │ │ │ i4 : #sols -- 156 solutions │ │ │ │ │ │ │ │ o4 = 156 │ │ │ │ The authors would like to acknowledge the June 2020 Macaulay2 workshop held │ │ │ │ virtually at Warwick, where this package was first developed. │ │ │ │ RReeffeerreenncceess: │ │ │ │ * [1] Sturmfels, Bernd. Solving systems of polynomial equations. No. 97. │ │ ├── ./usr/share/doc/Macaulay2/Elimination/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=21 │ │ │ ZWxpbWluYXRlKElkZWFsLExpc3Qp │ │ │ #:len=200 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTgxLCAidW5kb2N1bWVudGVkIiA9PiB0 │ │ │ cnVlLCBzeW1ib2wgRG9jdW1lbnRUYWcgPT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhlbGltaW5h │ │ ├── ./usr/share/doc/Macaulay2/Elimination/example-output/_discriminant_lp__Ring__Element_cm__Ring__Element_rp.out │ │ │ @@ -17,23 +17,23 @@ │ │ │ │ │ │ 2 │ │ │ o3 = x + x*c + d │ │ │ │ │ │ o3 : R │ │ │ │ │ │ i4 : time eliminate(x,ideal(f,g)) │ │ │ - -- used 0.0056703s (cpu); 0.00402894s (thread); 0s (gc) │ │ │ + -- used 8.0591e-05s (cpu); 0.00209451s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 │ │ │ o4 = ideal(a*b*c - b*c - a d + a*c*d - b + 2b*d - d ) │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ │ │ i5 : time ideal resultant(f,g,x) │ │ │ - -- used 0.00111276s (cpu); 0.00238255s (thread); 0s (gc) │ │ │ + -- used 0.000242925s (cpu); 0.00121916s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 │ │ │ o5 = ideal(- a*b*c + b*c + a d - a*c*d + b - 2b*d + d ) │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ │ │ i6 : sylvesterMatrix(f,g,x) │ │ ├── ./usr/share/doc/Macaulay2/Elimination/example-output/_eliminate.out │ │ │ @@ -17,23 +17,23 @@ │ │ │ │ │ │ 2 │ │ │ o3 = x + x*c + d │ │ │ │ │ │ o3 : R │ │ │ │ │ │ i4 : time eliminate(x,ideal(f,g)) │ │ │ - -- used 0.0862086s (cpu); 0.0112134s (thread); 0s (gc) │ │ │ + -- used 0.0678867s (cpu); 0.010439s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 │ │ │ o4 = ideal(a*b*c - b*c - a d + a*c*d - b + 2b*d - d ) │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ │ │ i5 : time ideal resultant(f,g,x) │ │ │ - -- used 0.00047983s (cpu); 0.0014141s (thread); 0s (gc) │ │ │ + -- used 0.00035229s (cpu); 0.00120166s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 │ │ │ o5 = ideal(- a*b*c + b*c + a d - a*c*d + b - 2b*d + d ) │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ │ │ i6 : sylvesterMatrix(f,g,x) │ │ ├── ./usr/share/doc/Macaulay2/Elimination/example-output/_resultant_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.out │ │ │ @@ -17,15 +17,15 @@ │ │ │ │ │ │ 8 5 │ │ │ o3 = x + x + x*c + d │ │ │ │ │ │ o3 : R │ │ │ │ │ │ i4 : time eliminate(ideal(f,g),x) │ │ │ - -- used 1.82282s (cpu); 1.48437s (thread); 0s (gc) │ │ │ + -- used 2.07211s (cpu); 1.90246s (thread); 0s (gc) │ │ │ │ │ │ 7 8 3 5 8 6 3 4 7 3 3 2 │ │ │ o4 = ideal(a b*c - a d + a b - b - 6a b*c - 18a b c + 7b c + 48a b c - │ │ │ ------------------------------------------------------------------------ │ │ │ 6 2 3 2 3 5 3 3 4 4 4 3 5 2 6 7 │ │ │ 21b c - 46a b c + 35b c + 15a b*c - 35b c + 21b c - 7b c + b*c + │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -73,15 +73,15 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ 3 4 4 │ │ │ - 216b*c*d + 2052a*d - 1944d ) │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ │ │ i5 : time ideal resultant(f,g,x) │ │ │ - -- used 0.0171485s (cpu); 0.0171405s (thread); 0s (gc) │ │ │ + -- used 0.0119978s (cpu); 0.0128444s (thread); 0s (gc) │ │ │ │ │ │ 7 8 3 5 8 6 3 4 7 3 3 2 │ │ │ o5 = ideal(- a b*c + a d - a b + b + 6a b*c + 18a b c - 7b c - 48a b c + │ │ │ ------------------------------------------------------------------------ │ │ │ 6 2 3 2 3 5 3 3 4 4 4 3 5 2 6 7 │ │ │ 21b c + 46a b c - 35b c - 15a b*c + 35b c - 21b c + 7b c - b*c - │ │ │ ------------------------------------------------------------------------ │ │ ├── ./usr/share/doc/Macaulay2/Elimination/example-output/_sylvester__Matrix_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.out │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ │ │ 8 5 │ │ │ o4 = x + x + x*c + d │ │ │ │ │ │ o4 : R │ │ │ │ │ │ i5 : time eliminate(ideal(f,g),x) │ │ │ - -- used 1.83281s (cpu); 1.47452s (thread); 0s (gc) │ │ │ + -- used 1.96438s (cpu); 1.79449s (thread); 0s (gc) │ │ │ │ │ │ 7 8 3 5 8 6 3 4 7 3 3 2 │ │ │ o5 = ideal(a b*c - a d + a b - b - 6a b*c - 18a b c + 7b c + 48a b c - │ │ │ ------------------------------------------------------------------------ │ │ │ 6 2 3 2 3 5 3 3 4 4 4 3 5 2 6 7 │ │ │ 21b c - 46a b c + 35b c + 15a b*c - 35b c + 21b c - 7b c + b*c + │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -75,15 +75,15 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ 3 4 4 │ │ │ - 216b*c*d + 2052a*d - 1944d ) │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ │ │ i6 : time ideal resultant(f,g,x) │ │ │ - -- used 0.0159956s (cpu); 0.0178954s (thread); 0s (gc) │ │ │ + -- used 0.0159969s (cpu); 0.0130365s (thread); 0s (gc) │ │ │ │ │ │ 7 8 3 5 8 6 3 4 7 3 3 2 │ │ │ o6 = ideal(- a b*c + a d - a b + b + 6a b*c + 18a b c - 7b c - 48a b c + │ │ │ ------------------------------------------------------------------------ │ │ │ 6 2 3 2 3 5 3 3 4 4 4 3 5 2 6 7 │ │ │ 21b c + 46a b c - 35b c - 15a b*c + 35b c - 21b c + 7b c - b*c - │ │ │ ------------------------------------------------------------------------ │ │ ├── ./usr/share/doc/Macaulay2/Elimination/html/_discriminant_lp__Ring__Element_cm__Ring__Element_rp.html │ │ │ @@ -100,24 +100,24 @@ │ │ │ 2 │ │ │ o3 = x + x*c + d │ │ │ │ │ │ o3 : R │ │ │
    i4 : time eliminate(x,ideal(f,g))
    │ │ │ - -- used 0.0056703s (cpu); 0.00402894s (thread); 0s (gc)
    │ │ │ + -- used 8.0591e-05s (cpu); 0.00209451s (thread); 0s (gc)
    │ │ │  
    │ │ │                        2    2             2           2
    │ │ │  o4 = ideal(a*b*c - b*c  - a d + a*c*d - b  + 2b*d - d )
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │
    i5 : time ideal resultant(f,g,x)
    │ │ │ - -- used 0.00111276s (cpu); 0.00238255s (thread); 0s (gc)
    │ │ │ + -- used 0.000242925s (cpu); 0.00121916s (thread); 0s (gc)
    │ │ │  
    │ │ │                          2    2             2           2
    │ │ │  o5 = ideal(- a*b*c + b*c  + a d - a*c*d + b  - 2b*d + d )
    │ │ │  
    │ │ │  o5 : Ideal of R
    │ │ │
    i4 : time eliminate(x,ideal(f,g))
    │ │ │ - -- used 0.0862086s (cpu); 0.0112134s (thread); 0s (gc)
    │ │ │ + -- used 0.0678867s (cpu); 0.010439s (thread); 0s (gc)
    │ │ │  
    │ │ │                        2    2             2           2
    │ │ │  o4 = ideal(a*b*c - b*c  - a d + a*c*d - b  + 2b*d - d )
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │
    i5 : time ideal resultant(f,g,x)
    │ │ │ - -- used 0.00047983s (cpu); 0.0014141s (thread); 0s (gc)
    │ │ │ + -- used 0.00035229s (cpu); 0.00120166s (thread); 0s (gc)
    │ │ │  
    │ │ │                          2    2             2           2
    │ │ │  o5 = ideal(- a*b*c + b*c  + a d - a*c*d + b  - 2b*d + d )
    │ │ │  
    │ │ │  o5 : Ideal of R
    │ │ │
    i4 : time eliminate(ideal(f,g),x)
    │ │ │ - -- used 1.82282s (cpu); 1.48437s (thread); 0s (gc)
    │ │ │ + -- used 2.07211s (cpu); 1.90246s (thread); 0s (gc)
    │ │ │  
    │ │ │              7       8     3 5    8     6         3 4      7       3 3 2  
    │ │ │  o4 = ideal(a b*c - a d + a b  - b  - 6a b*c - 18a b c + 7b c + 48a b c  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7  
    │ │ │       21b c  - 46a b c  + 35b c  + 15a b*c  - 35b c  + 21b c  - 7b c  + b*c  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -160,15 +160,15 @@
    │ │ │                 3          4        4
    │ │ │       - 216b*c*d  + 2052a*d  - 1944d )
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │
    i5 : time ideal resultant(f,g,x)
    │ │ │ - -- used 0.0171485s (cpu); 0.0171405s (thread); 0s (gc)
    │ │ │ + -- used 0.0119978s (cpu); 0.0128444s (thread); 0s (gc)
    │ │ │  
    │ │ │                7       8     3 5    8     6         3 4      7       3 3 2  
    │ │ │  o5 = ideal(- a b*c + a d - a b  + b  + 6a b*c + 18a b c - 7b c - 48a b c  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7  
    │ │ │       21b c  + 46a b c  - 35b c  - 15a b*c  + 35b c  - 21b c  + 7b c  - b*c  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -36,15 +36,15 @@
    │ │ │ │  i3 : g = x^8+x^5+c*x+d
    │ │ │ │  
    │ │ │ │        8    5
    │ │ │ │  o3 = x  + x  + x*c + d
    │ │ │ │  
    │ │ │ │  o3 : R
    │ │ │ │  i4 : time eliminate(ideal(f,g),x)
    │ │ │ │ - -- used 1.82282s (cpu); 1.48437s (thread); 0s (gc)
    │ │ │ │ + -- used 2.07211s (cpu); 1.90246s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │              7       8     3 5    8     6         3 4      7       3 3 2
    │ │ │ │  o4 = ideal(a b*c - a d + a b  - b  - 6a b*c - 18a b c + 7b c + 48a b c  -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7
    │ │ │ │       21b c  - 46a b c  + 35b c  + 15a b*c  - 35b c  + 21b c  - 7b c  + b*c  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -91,15 +91,15 @@
    │ │ │ │       + 792a*b c*d - 1512a*b*c d + 648a*c d - 360a b*d  + 648a c*d  - 504b d
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                 3          4        4
    │ │ │ │       - 216b*c*d  + 2052a*d  - 1944d )
    │ │ │ │  
    │ │ │ │  o4 : Ideal of R
    │ │ │ │  i5 : time ideal resultant(f,g,x)
    │ │ │ │ - -- used 0.0171485s (cpu); 0.0171405s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0119978s (cpu); 0.0128444s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                7       8     3 5    8     6         3 4      7       3 3 2
    │ │ │ │  o5 = ideal(- a b*c + a d - a b  + b  + 6a b*c + 18a b c - 7b c - 48a b c  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7
    │ │ │ │       21b c  + 46a b c  - 35b c  - 15a b*c  + 35b c  - 21b c  + 7b c  - b*c  -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/Elimination/html/_sylvester__Matrix_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.html
    │ │ │ @@ -98,15 +98,15 @@
    │ │ │        8    5
    │ │ │  o4 = x  + x  + x*c + d
    │ │ │  
    │ │ │  o4 : R
    │ │ │
    i5 : time eliminate(ideal(f,g),x)
    │ │ │ - -- used 1.83281s (cpu); 1.47452s (thread); 0s (gc)
    │ │ │ + -- used 1.96438s (cpu); 1.79449s (thread); 0s (gc)
    │ │ │  
    │ │ │              7       8     3 5    8     6         3 4      7       3 3 2  
    │ │ │  o5 = ideal(a b*c - a d + a b  - b  - 6a b*c - 18a b c + 7b c + 48a b c  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7  
    │ │ │       21b c  - 46a b c  + 35b c  + 15a b*c  - 35b c  + 21b c  - 7b c  + b*c  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -155,15 +155,15 @@
    │ │ │                 3          4        4
    │ │ │       - 216b*c*d  + 2052a*d  - 1944d )
    │ │ │  
    │ │ │  o5 : Ideal of R
    │ │ │
    i6 : time ideal resultant(f,g,x)
    │ │ │ - -- used 0.0159956s (cpu); 0.0178954s (thread); 0s (gc)
    │ │ │ + -- used 0.0159969s (cpu); 0.0130365s (thread); 0s (gc)
    │ │ │  
    │ │ │                7       8     3 5    8     6         3 4      7       3 3 2  
    │ │ │  o6 = ideal(- a b*c + a d - a b  + b  + 6a b*c + 18a b c - 7b c - 48a b c  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7  
    │ │ │       21b c  + 46a b c  - 35b c  - 15a b*c  + 35b c  - 21b c  + 7b c  - b*c  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -31,15 +31,15 @@
    │ │ │ │  i4 : g = x^8+x^5+c*x+d
    │ │ │ │  
    │ │ │ │        8    5
    │ │ │ │  o4 = x  + x  + x*c + d
    │ │ │ │  
    │ │ │ │  o4 : R
    │ │ │ │  i5 : time eliminate(ideal(f,g),x)
    │ │ │ │ - -- used 1.83281s (cpu); 1.47452s (thread); 0s (gc)
    │ │ │ │ + -- used 1.96438s (cpu); 1.79449s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │              7       8     3 5    8     6         3 4      7       3 3 2
    │ │ │ │  o5 = ideal(a b*c - a d + a b  - b  - 6a b*c - 18a b c + 7b c + 48a b c  -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7
    │ │ │ │       21b c  - 46a b c  + 35b c  + 15a b*c  - 35b c  + 21b c  - 7b c  + b*c  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -86,15 +86,15 @@
    │ │ │ │       + 792a*b c*d - 1512a*b*c d + 648a*c d - 360a b*d  + 648a c*d  - 504b d
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                 3          4        4
    │ │ │ │       - 216b*c*d  + 2052a*d  - 1944d )
    │ │ │ │  
    │ │ │ │  o5 : Ideal of R
    │ │ │ │  i6 : time ideal resultant(f,g,x)
    │ │ │ │ - -- used 0.0159956s (cpu); 0.0178954s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0159969s (cpu); 0.0130365s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                7       8     3 5    8     6         3 4      7       3 3 2
    │ │ │ │  o6 = ideal(- a b*c + a d - a b  + b  + 6a b*c + 18a b c - 7b c - 48a b c  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7
    │ │ │ │       21b c  + 46a b c  - 35b c  - 15a b*c  + 35b c  - 21b c  + 7b c  - b*c  -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/EliminationMatrices/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=14
    │ │ │  bWF4Q29sKE1hdHJpeCk=
    │ │ │  #:len=257
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTEyMCwgc3ltYm9sIERvY3VtZW50VGFn
    │ │ │  ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsobWF4Q29sLE1hdHJpeCksIm1heENvbChNYXRyaXgp
    │ │ ├── ./usr/share/doc/Macaulay2/EllipticCurves/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=22
    │ │ │  RWxsUG9pbnRXID09IEVsbFBvaW50Vw==
    │ │ │  #:len=300
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNzQ3LCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhzeW1ib2wgPT0sRWxsUG9pbnRXLEVsbFBvaW50Vyks
    │ │ ├── ./usr/share/doc/Macaulay2/EllipticIntegrals/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=17
    │ │ │  RWxsaXB0aWNJbnRlZ3JhbHM=
    │ │ │  #:len=584
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtEZXNjcmlwdGlvbiA9PiAxOihESVZ7UEFSQXtURVh7IlRoaXMg
    │ │ │  cGFja2FnZSBwcm92aWRlcyBzb21lIGZ1bmN0aW9ucyBmb3IgY29tcHV0aW5nIGVsbGlwdGljIGlu
    │ │ ├── ./usr/share/doc/Macaulay2/EngineTests/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=11
    │ │ │  RW5naW5lVGVzdHM=
    │ │ │  #:len=327
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiYSB0ZXN0IHN1aXRlIGZvciB0aGUgTWFj
    │ │ │  YXVsYXkyIGVuZ2luZSIsICJsaW5lbnVtIiA9PiA0NzcsICJmaWxlbmFtZSIgPT4gIkVuZ2luZVRl
    │ │ ├── ./usr/share/doc/Macaulay2/EnumerationCurves/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=17
    │ │ │  RW51bWVyYXRpb25DdXJ2ZXM=
    │ │ │  #:len=747
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiRW51bWVyYXRpb24gb2YgcmF0aW9uYWwg
    │ │ │  Y3VydmVzIHZpYSB0b3J1cyBhY3Rpb25zIiwgRGVzY3JpcHRpb24gPT4gMTooRElWe1BBUkF7IiJ9
    │ │ ├── ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_lines__Hypersurface.out
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  -- -*- M2-comint -*- hash: 1331975673177
    │ │ │  
    │ │ │  i1 : time for n from 2 to 10 list linesHypersurface(n)
    │ │ │ - -- used 0.0296402s (cpu); 0.0266657s (thread); 0s (gc)
    │ │ │ + -- used 0.0199578s (cpu); 0.0216937s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       289139638632755625, 520764738758073845321}
    │ │ │  
    │ │ │  o1 : List
    │ │ ├── ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_rational__Curve.out
    │ │ │ @@ -37,83 +37,83 @@
    │ │ │  i6 : rationalCurve(2) - rationalCurve(1)/8
    │ │ │  
    │ │ │  o6 = 609250
    │ │ │  
    │ │ │  o6 : QQ
    │ │ │  
    │ │ │  i7 : time for D in T list rationalCurve(2,D) - rationalCurve(1,D)/8
    │ │ │ - -- used 0.336645s (cpu); 0.292669s (thread); 0s (gc)
    │ │ │ + -- used 0.444957s (cpu); 0.397796s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {609250, 92288, 52812, 22428, 9728}
    │ │ │  
    │ │ │  o7 : List
    │ │ │  
    │ │ │  i8 : time rationalCurve(3)
    │ │ │ - -- used 0.196522s (cpu); 0.152451s (thread); 0s (gc)
    │ │ │ + -- used 0.178508s (cpu); 0.18036s (thread); 0s (gc)
    │ │ │  
    │ │ │       8564575000
    │ │ │  o8 = ----------
    │ │ │           27
    │ │ │  
    │ │ │  o8 : QQ
    │ │ │  
    │ │ │  i9 : time for D in T list rationalCurve(3,D)
    │ │ │ - -- used 4.9158s (cpu); 4.16411s (thread); 0s (gc)
    │ │ │ + -- used 6.19664s (cpu); 5.71291s (thread); 0s (gc)
    │ │ │  
    │ │ │        8564575000  422690816           4834592  11239424
    │ │ │  o9 = {----------, ---------, 6424365, -------, --------}
    │ │ │            27          27                 3        27
    │ │ │  
    │ │ │  o9 : List
    │ │ │  
    │ │ │  i10 : time rationalCurve(3) - rationalCurve(1)/27
    │ │ │ - -- used 0.194165s (cpu); 0.14128s (thread); 0s (gc)
    │ │ │ + -- used 0.177237s (cpu); 0.180014s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 317206375
    │ │ │  
    │ │ │  o10 : QQ
    │ │ │  
    │ │ │  i11 : time for D in T list rationalCurve(3,D) - rationalCurve(1,D)/27
    │ │ │ - -- used 4.9366s (cpu); 4.18595s (thread); 0s (gc)
    │ │ │ + -- used 6.32825s (cpu); 5.63986s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = {317206375, 15655168, 6424326, 1611504, 416256}
    │ │ │  
    │ │ │  o11 : List
    │ │ │  
    │ │ │  i12 : time rationalCurve(4)
    │ │ │ - -- used 1.6582s (cpu); 1.34963s (thread); 0s (gc)
    │ │ │ + -- used 2.04936s (cpu); 1.64447s (thread); 0s (gc)
    │ │ │  
    │ │ │        15517926796875
    │ │ │  o12 = --------------
    │ │ │              64
    │ │ │  
    │ │ │  o12 : QQ
    │ │ │  
    │ │ │  i13 : time rationalCurve(4,{4,2})
    │ │ │ - -- used 7.15585s (cpu); 5.41896s (thread); 0s (gc)
    │ │ │ + -- used 8.19735s (cpu); 7.15957s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = 3883914084
    │ │ │  
    │ │ │  o13 : QQ
    │ │ │  
    │ │ │  i14 : time rationalCurve(4) - rationalCurve(2)/8
    │ │ │ - -- used 1.5404s (cpu); 1.29761s (thread); 0s (gc)
    │ │ │ + -- used 2.07382s (cpu); 1.93885s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = 242467530000
    │ │ │  
    │ │ │  o14 : QQ
    │ │ │  
    │ │ │  i15 : time rationalCurve(4,{4,2}) - rationalCurve(2,{4,2})/8
    │ │ │ - -- used 7.03999s (cpu); 5.27021s (thread); 0s (gc)
    │ │ │ + -- used 8.97928s (cpu); 7.75984s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3883902528
    │ │ │  
    │ │ │  o15 : QQ
    │ │ │  
    │ │ │  i16 : time rationalCurve(4,{3,3}) - rationalCurve(2,{3,3})/8
    │ │ │ - -- used 7.56636s (cpu); 5.42334s (thread); 0s (gc)
    │ │ │ + -- used 8.93705s (cpu); 7.26481s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = 1139448384
    │ │ │  
    │ │ │  o16 : QQ
    │ │ │  
    │ │ │  i17 :
    │ │ ├── ./usr/share/doc/Macaulay2/EnumerationCurves/html/_lines__Hypersurface.html
    │ │ │ @@ -70,15 +70,15 @@
    │ │ │          
    │ │ │

    Computes the number of lines on a general hypersurface of degree 2n - 3 in \mathbb P^n.

    │ │ │

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -12,15 +12,15 @@ │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the number of lines on a general hypersurface of degree │ │ │ │ 2n - 3 in \mathbb P^n │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Computes the number of lines on a general hypersurface of degree 2n - 3 in │ │ │ │ \mathbb P^n. │ │ │ │ i1 : time for n from 2 to 10 list linesHypersurface(n) │ │ │ │ - -- used 0.0296402s (cpu); 0.0266657s (thread); 0s (gc) │ │ │ │ + -- used 0.0199578s (cpu); 0.0216937s (thread); 0s (gc) │ │ │ │ │ │ │ │ o1 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 289139638632755625, 520764738758073845321} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ ********** WWaayyss ttoo uussee lliinneessHHyyppeerrssuurrffaaccee:: ********** │ │ ├── ./usr/share/doc/Macaulay2/EnumerationCurves/html/_rational__Curve.html │ │ │ @@ -140,39 +140,39 @@ │ │ │
    │ │ │

    The numbers of conics on general complete intersection Calabi-Yau threefolds can be computed as follows:

    │ │ │

    │ │ │
    │ │ │
    i1 : time for n from 2 to 10 list linesHypersurface(n)
    │ │ │ - -- used 0.0296402s (cpu); 0.0266657s (thread); 0s (gc)
    │ │ │ + -- used 0.0199578s (cpu); 0.0216937s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       289139638632755625, 520764738758073845321}
    │ │ │  
    │ │ │  o1 : List
    │ │ │
    │ │ │ │ │ │ │ │ │
    i7 : time for D in T list rationalCurve(2,D) - rationalCurve(1,D)/8
    │ │ │ - -- used 0.336645s (cpu); 0.292669s (thread); 0s (gc)
    │ │ │ + -- used 0.444957s (cpu); 0.397796s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {609250, 92288, 52812, 22428, 9728}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │
    │ │ │

    For rational curves of degree 3:

    │ │ │

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -180,89 +180,89 @@ │ │ │
    │ │ │

    The number of rational curves of degree 3 on a general quintic threefold can be computed as follows:

    │ │ │

    │ │ │
    │ │ │
    i8 : time rationalCurve(3)
    │ │ │ - -- used 0.196522s (cpu); 0.152451s (thread); 0s (gc)
    │ │ │ + -- used 0.178508s (cpu); 0.18036s (thread); 0s (gc)
    │ │ │  
    │ │ │       8564575000
    │ │ │  o8 = ----------
    │ │ │           27
    │ │ │  
    │ │ │  o8 : QQ
    │ │ │
    i9 : time for D in T list rationalCurve(3,D)
    │ │ │ - -- used 4.9158s (cpu); 4.16411s (thread); 0s (gc)
    │ │ │ + -- used 6.19664s (cpu); 5.71291s (thread); 0s (gc)
    │ │ │  
    │ │ │        8564575000  422690816           4834592  11239424
    │ │ │  o9 = {----------, ---------, 6424365, -------, --------}
    │ │ │            27          27                 3        27
    │ │ │  
    │ │ │  o9 : List
    │ │ │
    │ │ │ │ │ │ │ │ │
    i10 : time rationalCurve(3) - rationalCurve(1)/27
    │ │ │ - -- used 0.194165s (cpu); 0.14128s (thread); 0s (gc)
    │ │ │ + -- used 0.177237s (cpu); 0.180014s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 317206375
    │ │ │  
    │ │ │  o10 : QQ
    │ │ │
    │ │ │
    │ │ │

    The numbers of rational curves of degree 3 on general complete intersection Calabi-Yau threefolds can be computed as follows:

    │ │ │

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    i11 : time for D in T list rationalCurve(3,D) - rationalCurve(1,D)/27
    │ │ │ - -- used 4.9366s (cpu); 4.18595s (thread); 0s (gc)
    │ │ │ + -- used 6.32825s (cpu); 5.63986s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = {317206375, 15655168, 6424326, 1611504, 416256}
    │ │ │  
    │ │ │  o11 : List
    │ │ │
    │ │ │
    │ │ │

    For rational curves of degree 4:

    │ │ │

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : time rationalCurve(4)
    │ │ │ - -- used 1.6582s (cpu); 1.34963s (thread); 0s (gc)
    │ │ │ + -- used 2.04936s (cpu); 1.64447s (thread); 0s (gc)
    │ │ │  
    │ │ │        15517926796875
    │ │ │  o12 = --------------
    │ │ │              64
    │ │ │  
    │ │ │  o12 : QQ
    │ │ │
    i13 : time rationalCurve(4,{4,2})
    │ │ │ - -- used 7.15585s (cpu); 5.41896s (thread); 0s (gc)
    │ │ │ + -- used 8.19735s (cpu); 7.15957s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = 3883914084
    │ │ │  
    │ │ │  o13 : QQ
    │ │ │
    │ │ │
    │ │ │

    The number of rational curves of degree 4 on a general quintic threefold can be computed as follows:

    │ │ │

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    i14 : time rationalCurve(4) - rationalCurve(2)/8
    │ │ │ - -- used 1.5404s (cpu); 1.29761s (thread); 0s (gc)
    │ │ │ + -- used 2.07382s (cpu); 1.93885s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = 242467530000
    │ │ │  
    │ │ │  o14 : QQ
    │ │ │
    │ │ │
    │ │ │

    The numbers of rational curves of degree 4 on general complete intersections of types (4,2) and (3,3) in \mathbb P^5 can be computed as follows:

    │ │ │

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : time rationalCurve(4,{4,2}) - rationalCurve(2,{4,2})/8
    │ │ │ - -- used 7.03999s (cpu); 5.27021s (thread); 0s (gc)
    │ │ │ + -- used 8.97928s (cpu); 7.75984s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3883902528
    │ │ │  
    │ │ │  o15 : QQ
    │ │ │
    i16 : time rationalCurve(4,{3,3}) - rationalCurve(2,{3,3})/8
    │ │ │ - -- used 7.56636s (cpu); 5.42334s (thread); 0s (gc)
    │ │ │ + -- used 8.93705s (cpu); 7.26481s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = 1139448384
    │ │ │  
    │ │ │  o16 : QQ
    │ │ │
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -60,85 +60,85 @@ │ │ │ │ │ │ │ │ o6 = 609250 │ │ │ │ │ │ │ │ o6 : QQ │ │ │ │ The numbers of conics on general complete intersection Calabi-Yau threefolds │ │ │ │ can be computed as follows: │ │ │ │ i7 : time for D in T list rationalCurve(2,D) - rationalCurve(1,D)/8 │ │ │ │ - -- used 0.336645s (cpu); 0.292669s (thread); 0s (gc) │ │ │ │ + -- used 0.444957s (cpu); 0.397796s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = {609250, 92288, 52812, 22428, 9728} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ For rational curves of degree 3: │ │ │ │ i8 : time rationalCurve(3) │ │ │ │ - -- used 0.196522s (cpu); 0.152451s (thread); 0s (gc) │ │ │ │ + -- used 0.178508s (cpu); 0.18036s (thread); 0s (gc) │ │ │ │ │ │ │ │ 8564575000 │ │ │ │ o8 = ---------- │ │ │ │ 27 │ │ │ │ │ │ │ │ o8 : QQ │ │ │ │ i9 : time for D in T list rationalCurve(3,D) │ │ │ │ - -- used 4.9158s (cpu); 4.16411s (thread); 0s (gc) │ │ │ │ + -- used 6.19664s (cpu); 5.71291s (thread); 0s (gc) │ │ │ │ │ │ │ │ 8564575000 422690816 4834592 11239424 │ │ │ │ o9 = {----------, ---------, 6424365, -------, --------} │ │ │ │ 27 27 3 27 │ │ │ │ │ │ │ │ o9 : List │ │ │ │ The number of rational curves of degree 3 on a general quintic threefold can be │ │ │ │ computed as follows: │ │ │ │ i10 : time rationalCurve(3) - rationalCurve(1)/27 │ │ │ │ - -- used 0.194165s (cpu); 0.14128s (thread); 0s (gc) │ │ │ │ + -- used 0.177237s (cpu); 0.180014s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = 317206375 │ │ │ │ │ │ │ │ o10 : QQ │ │ │ │ The numbers of rational curves of degree 3 on general complete intersection │ │ │ │ Calabi-Yau threefolds can be computed as follows: │ │ │ │ i11 : time for D in T list rationalCurve(3,D) - rationalCurve(1,D)/27 │ │ │ │ - -- used 4.9366s (cpu); 4.18595s (thread); 0s (gc) │ │ │ │ + -- used 6.32825s (cpu); 5.63986s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 = {317206375, 15655168, 6424326, 1611504, 416256} │ │ │ │ │ │ │ │ o11 : List │ │ │ │ For rational curves of degree 4: │ │ │ │ i12 : time rationalCurve(4) │ │ │ │ - -- used 1.6582s (cpu); 1.34963s (thread); 0s (gc) │ │ │ │ + -- used 2.04936s (cpu); 1.64447s (thread); 0s (gc) │ │ │ │ │ │ │ │ 15517926796875 │ │ │ │ o12 = -------------- │ │ │ │ 64 │ │ │ │ │ │ │ │ o12 : QQ │ │ │ │ i13 : time rationalCurve(4,{4,2}) │ │ │ │ - -- used 7.15585s (cpu); 5.41896s (thread); 0s (gc) │ │ │ │ + -- used 8.19735s (cpu); 7.15957s (thread); 0s (gc) │ │ │ │ │ │ │ │ o13 = 3883914084 │ │ │ │ │ │ │ │ o13 : QQ │ │ │ │ The number of rational curves of degree 4 on a general quintic threefold can be │ │ │ │ computed as follows: │ │ │ │ i14 : time rationalCurve(4) - rationalCurve(2)/8 │ │ │ │ - -- used 1.5404s (cpu); 1.29761s (thread); 0s (gc) │ │ │ │ + -- used 2.07382s (cpu); 1.93885s (thread); 0s (gc) │ │ │ │ │ │ │ │ o14 = 242467530000 │ │ │ │ │ │ │ │ o14 : QQ │ │ │ │ The numbers of rational curves of degree 4 on general complete intersections of │ │ │ │ types (4,2) and (3,3) in \mathbb P^5 can be computed as follows: │ │ │ │ i15 : time rationalCurve(4,{4,2}) - rationalCurve(2,{4,2})/8 │ │ │ │ - -- used 7.03999s (cpu); 5.27021s (thread); 0s (gc) │ │ │ │ + -- used 8.97928s (cpu); 7.75984s (thread); 0s (gc) │ │ │ │ │ │ │ │ o15 = 3883902528 │ │ │ │ │ │ │ │ o15 : QQ │ │ │ │ i16 : time rationalCurve(4,{3,3}) - rationalCurve(2,{3,3})/8 │ │ │ │ - -- used 7.56636s (cpu); 5.42334s (thread); 0s (gc) │ │ │ │ + -- used 8.93705s (cpu); 7.26481s (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 = 1139448384 │ │ │ │ │ │ │ │ o16 : QQ │ │ │ │ ********** WWaayyss ttoo uussee rraattiioonnaallCCuurrvvee:: ********** │ │ │ │ * rationalCurve(ZZ) │ │ │ │ * rationalCurve(ZZ,List) │ │ ├── ./usr/share/doc/Macaulay2/EquivariantGB/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=33 │ │ │ YnVpbGRFTW9ub21pYWxNYXAoUmluZyxSaW5nLExpc3Qp │ │ │ #:len=299 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTIzNiwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoYnVpbGRFTW9ub21pYWxNYXAsUmluZyxSaW5nLExp │ │ ├── ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_egb__Toric.out │ │ │ @@ -10,34 +10,34 @@ │ │ │ o3 = map (R, S, {x , x x , x x , x }) │ │ │ 1 1 0 1 0 0 │ │ │ │ │ │ o3 : RingMap R <-- S │ │ │ │ │ │ i4 : G = egbToric(m, OutFile=>stdio) │ │ │ 3 │ │ │ - -- used .00406175 seconds │ │ │ + -- used .00317789 seconds │ │ │ -- used 0 seconds │ │ │ (9, 9) │ │ │ new stuff found │ │ │ 4 │ │ │ - -- used .00315213 seconds │ │ │ - -- used .00397295 seconds │ │ │ + -- used .00333321 seconds │ │ │ + -- used .00400031 seconds │ │ │ (16, 26) │ │ │ new stuff found │ │ │ 5 │ │ │ - -- used .00917258 seconds │ │ │ - -- used .023553 seconds │ │ │ + -- used .00337323 seconds │ │ │ + -- used .0318457 seconds │ │ │ (25, 60) │ │ │ 6 │ │ │ - -- used .0161827 seconds │ │ │ - -- used .187147 seconds │ │ │ + -- used .0159378 seconds │ │ │ + -- used .232856 seconds │ │ │ (36, 120) │ │ │ 7 │ │ │ - -- used .0342961 seconds │ │ │ - -- used .7618 seconds │ │ │ + -- used .0336027 seconds │ │ │ + -- used 1.10314 seconds │ │ │ (49, 217) │ │ │ │ │ │ 2 │ │ │ o4 = {- y + y , - y y + y , - y y + y y , - y y + │ │ │ 1,0 0,1 1,1 0,0 1,0 2,1 0,0 2,0 1,0 2,1 1,0 │ │ │ ------------------------------------------------------------------------ │ │ │ y y , - y y + y y , - y y + y y , - y y + │ │ ├── ./usr/share/doc/Macaulay2/EquivariantGB/html/_egb__Toric.html │ │ │ @@ -96,34 +96,34 @@ │ │ │ 1 1 0 1 0 0 │ │ │ │ │ │ o3 : RingMap R <-- S
    │ │ │
    i4 : G = egbToric(m, OutFile=>stdio)
    │ │ │  3
    │ │ │ -     -- used .00406175 seconds
    │ │ │ +     -- used .00317789 seconds
    │ │ │       -- used 0 seconds
    │ │ │  (9, 9)
    │ │ │  new stuff found
    │ │ │  4
    │ │ │ -     -- used .00315213 seconds
    │ │ │ -     -- used .00397295 seconds
    │ │ │ +     -- used .00333321 seconds
    │ │ │ +     -- used .00400031 seconds
    │ │ │  (16, 26)
    │ │ │  new stuff found
    │ │ │  5
    │ │ │ -     -- used .00917258 seconds
    │ │ │ -     -- used .023553 seconds
    │ │ │ +     -- used .00337323 seconds
    │ │ │ +     -- used .0318457 seconds
    │ │ │  (25, 60)
    │ │ │  6
    │ │ │ -     -- used .0161827 seconds
    │ │ │ -     -- used .187147 seconds
    │ │ │ +     -- used .0159378 seconds
    │ │ │ +     -- used .232856 seconds
    │ │ │  (36, 120)
    │ │ │  7
    │ │ │ -     -- used .0342961 seconds
    │ │ │ -     -- used .7618 seconds
    │ │ │ +     -- used .0336027 seconds
    │ │ │ +     -- used 1.10314 seconds
    │ │ │  (49, 217)
    │ │ │  
    │ │ │                                     2
    │ │ │  o4 = {- y    + y   , - y   y    + y   , - y   y    + y   y   , - y   y    +
    │ │ │           1,0    0,1     1,1 0,0    1,0     2,1 0,0    2,0 1,0     2,1 1,0  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       y   y   , - y   y    + y   y   , - y   y    + y   y   , - y   y    +
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -34,34 +34,34 @@
    │ │ │ │                    2               2
    │ │ │ │  o3 = map (R, S, {x , x x , x x , x })
    │ │ │ │                    1   1 0   1 0   0
    │ │ │ │  
    │ │ │ │  o3 : RingMap R <-- S
    │ │ │ │  i4 : G = egbToric(m, OutFile=>stdio)
    │ │ │ │  3
    │ │ │ │ -     -- used .00406175 seconds
    │ │ │ │ +     -- used .00317789 seconds
    │ │ │ │       -- used 0 seconds
    │ │ │ │  (9, 9)
    │ │ │ │  new stuff found
    │ │ │ │  4
    │ │ │ │ -     -- used .00315213 seconds
    │ │ │ │ -     -- used .00397295 seconds
    │ │ │ │ +     -- used .00333321 seconds
    │ │ │ │ +     -- used .00400031 seconds
    │ │ │ │  (16, 26)
    │ │ │ │  new stuff found
    │ │ │ │  5
    │ │ │ │ -     -- used .00917258 seconds
    │ │ │ │ -     -- used .023553 seconds
    │ │ │ │ +     -- used .00337323 seconds
    │ │ │ │ +     -- used .0318457 seconds
    │ │ │ │  (25, 60)
    │ │ │ │  6
    │ │ │ │ -     -- used .0161827 seconds
    │ │ │ │ -     -- used .187147 seconds
    │ │ │ │ +     -- used .0159378 seconds
    │ │ │ │ +     -- used .232856 seconds
    │ │ │ │  (36, 120)
    │ │ │ │  7
    │ │ │ │ -     -- used .0342961 seconds
    │ │ │ │ -     -- used .7618 seconds
    │ │ │ │ +     -- used .0336027 seconds
    │ │ │ │ +     -- used 1.10314 seconds
    │ │ │ │  (49, 217)
    │ │ │ │  
    │ │ │ │                                     2
    │ │ │ │  o4 = {- y    + y   , - y   y    + y   , - y   y    + y   y   , - y   y    +
    │ │ │ │           1,0    0,1     1,1 0,0    1,0     2,1 0,0    2,0 1,0     2,1 1,0
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       y   y   , - y   y    + y   y   , - y   y    + y   y   , - y   y    +
    │ │ ├── ./usr/share/doc/Macaulay2/ExampleSystems/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=5
    │ │ │  aGVhcnQ=
    │ │ │  #:len=1516
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiYW4gOC1kaW1lbnNpb25hbCBlY29ub21p
    │ │ │  Y3MgcHJvYmxlbSIsICJsaW5lbnVtIiA9PiA0OCwgSW5wdXRzID0+IHtTUEFOe1RUeyJrayJ9LCIs
    │ │ ├── ./usr/share/doc/Macaulay2/ExteriorIdeals/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=28
    │ │ │  c29sdmVNYWNhdWxheUV4cGFuc2lvbihMaXN0KQ==
    │ │ │  #:len=301
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNDMxLCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhzb2x2ZU1hY2F1bGF5RXhwYW5zaW9uLExpc3QpLCJz
    │ │ ├── ./usr/share/doc/Macaulay2/ExteriorModules/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=26
    │ │ │  YWxtb3N0U3RhYmxlTW9kdWxlKE1vZHVsZSk=
    │ │ │  #:len=292
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gODAyLCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhhbG1vc3RTdGFibGVNb2R1bGUsTW9kdWxlKSwiYWxt
    │ │ ├── ./usr/share/doc/Macaulay2/FGLM/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=16
    │ │ │  ZmdsbShJZGVhbCxSaW5nKQ==
    │ │ │  #:len=211
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzk2LCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhmZ2xtLElkZWFsLFJpbmcpLCJmZ2xtKElkZWFsLFJp
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=26
    │ │ │  cmVjdXJzaXZlTWlub3JzKFpaLE1hdHJpeCk=
    │ │ │  #:len=272
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjAyOCwgc3ltYm9sIERvY3VtZW50VGFn
    │ │ │  ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsocmVjdXJzaXZlTWlub3JzLFpaLE1hdHJpeCksInJl
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/___Fast__Minors__Strategy__Tutorial.out
    │ │ │ @@ -462,50 +462,50 @@
    │ │ │                 3 2 4     3 6
    │ │ │  o27 = ideal(12x x x  - 4x x )
    │ │ │                 3 7 9     3 9
    │ │ │  
    │ │ │  o27 : Ideal of S
    │ │ │  
    │ │ │  i28 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Random))
    │ │ │ - -- used 0.10715s (cpu); 0.107368s (thread); 0s (gc)
    │ │ │ + -- used 0.187939s (cpu); 0.186654s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = 2
    │ │ │  
    │ │ │  i29 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallest))
    │ │ │ - -- used 0.33389s (cpu); 0.203875s (thread); 0s (gc)
    │ │ │ + -- used 0.343333s (cpu); 0.243976s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = 3
    │ │ │  
    │ │ │  i30 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallestTerm))
    │ │ │ - -- used 0.404835s (cpu); 0.275085s (thread); 0s (gc)
    │ │ │ + -- used 0.516024s (cpu); 0.428512s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = 1
    │ │ │  
    │ │ │  i31 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexLargest))
    │ │ │ - -- used 0.314312s (cpu); 0.181456s (thread); 0s (gc)
    │ │ │ + -- used 0.490338s (cpu); 0.252617s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = 2
    │ │ │  
    │ │ │  i32 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexSmallest))
    │ │ │ - -- used 0.312529s (cpu); 0.1737s (thread); 0s (gc)
    │ │ │ + -- used 0.332258s (cpu); 0.235725s (thread); 0s (gc)
    │ │ │  
    │ │ │  o32 = 3
    │ │ │  
    │ │ │  i33 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexSmallestTerm))
    │ │ │ - -- used 0.348847s (cpu); 0.214069s (thread); 0s (gc)
    │ │ │ + -- used 0.460208s (cpu); 0.358773s (thread); 0s (gc)
    │ │ │  
    │ │ │  o33 = 3
    │ │ │  
    │ │ │  i34 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexLargest))
    │ │ │ - -- used 0.323316s (cpu); 0.192993s (thread); 0s (gc)
    │ │ │ + -- used 0.365933s (cpu); 0.273051s (thread); 0s (gc)
    │ │ │  
    │ │ │  o34 = 3
    │ │ │  
    │ │ │  i35 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Points))
    │ │ │ - -- used 13.4439s (cpu); 7.95676s (thread); 0s (gc)
    │ │ │ + -- used 17.3469s (cpu); 11.9013s (thread); 0s (gc)
    │ │ │  
    │ │ │  o35 = 1
    │ │ │  
    │ │ │  i36 : peek StrategyDefault
    │ │ │  
    │ │ │  o36 = OptionTable{GRevLexLargest => 0      }
    │ │ │                    GRevLexSmallest => 16
    │ │ │ @@ -514,15 +514,15 @@
    │ │ │                    LexSmallest => 16
    │ │ │                    LexSmallestTerm => 16
    │ │ │                    Points => 0
    │ │ │                    Random => 16
    │ │ │                    RandomNonzero => 16
    │ │ │  
    │ │ │  i37 : time chooseGoodMinors(20, 6, M, J, Strategy=>StrategyDefault, Verbose=>true);
    │ │ │ - -- used 0.539994s (cpu); 0.365803s (thread); 0s (gc)
    │ │ │ + -- used 0.600379s (cpu); 0.456404s (thread); 0s (gc)
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │ @@ -582,15 +582,15 @@
    │ │ │  i41 : ptsStratGeometric = new OptionTable from (options chooseGoodMinors)#PointOptions;
    │ │ │  
    │ │ │  i42 : ptsStratGeometric#ExtendField --look at the default value
    │ │ │  
    │ │ │  o42 = true
    │ │ │  
    │ │ │  i43 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, PointOptions=>ptsStratGeometric))
    │ │ │ - -- used 0.999209s (cpu); 0.602814s (thread); 0s (gc)
    │ │ │ + -- used 1.23084s (cpu); 0.729775s (thread); 0s (gc)
    │ │ │  
    │ │ │  o43 = 2
    │ │ │  
    │ │ │  i44 : ptsStratRational = ptsStratGeometric++{ExtendField=>false} --change that value
    │ │ │  
    │ │ │  o44 = OptionTable{DecompositionStrategy => Decompose}
    │ │ │                    DimensionFunction => dim
    │ │ │ @@ -605,47 +605,47 @@
    │ │ │  o44 : OptionTable
    │ │ │  
    │ │ │  i45 : ptsStratRational.ExtendField --look at our changed value
    │ │ │  
    │ │ │  o45 = false
    │ │ │  
    │ │ │  i46 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, PointOptions=>ptsStratRational))
    │ │ │ - -- used 0.699354s (cpu); 0.37s (thread); 0s (gc)
    │ │ │ + -- used 0.917925s (cpu); 0.525149s (thread); 0s (gc)
    │ │ │  
    │ │ │  o46 = 2
    │ │ │  
    │ │ │  i47 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefault)
    │ │ │ - -- used 4.96948s (cpu); 3.56542s (thread); 0s (gc)
    │ │ │ + -- used 6.32285s (cpu); 4.80086s (thread); 0s (gc)
    │ │ │  
    │ │ │  i48 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefaultNonRandom)
    │ │ │ - -- used 1.03145s (cpu); 0.679038s (thread); 0s (gc)
    │ │ │ + -- used 1.26344s (cpu); 0.939776s (thread); 0s (gc)
    │ │ │  
    │ │ │  o48 = true
    │ │ │  
    │ │ │  i49 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Random)
    │ │ │ - -- used 2.98086s (cpu); 2.51747s (thread); 0s (gc)
    │ │ │ + -- used 4.20522s (cpu); 3.52377s (thread); 0s (gc)
    │ │ │  
    │ │ │  i50 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>LexSmallest)
    │ │ │ - -- used 3.40978s (cpu); 2.04641s (thread); 0s (gc)
    │ │ │ + -- used 4.3251s (cpu); 2.8001s (thread); 0s (gc)
    │ │ │  
    │ │ │  i51 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>LexSmallestTerm)
    │ │ │ - -- used 1.07836s (cpu); 0.777656s (thread); 0s (gc)
    │ │ │ + -- used 1.62131s (cpu); 1.24061s (thread); 0s (gc)
    │ │ │  
    │ │ │  o51 = true
    │ │ │  
    │ │ │  i52 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>GRevLexSmallest)
    │ │ │ - -- used 4.00314s (cpu); 2.42639s (thread); 0s (gc)
    │ │ │ + -- used 5.24785s (cpu); 3.29254s (thread); 0s (gc)
    │ │ │  
    │ │ │  i53 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>GRevLexSmallestTerm)
    │ │ │ - -- used 4.46603s (cpu); 2.88283s (thread); 0s (gc)
    │ │ │ + -- used 6.44832s (cpu); 4.71612s (thread); 0s (gc)
    │ │ │  
    │ │ │  i54 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Points)
    │ │ │ - -- used 14.8083s (cpu); 8.44014s (thread); 0s (gc)
    │ │ │ + -- used 19.5055s (cpu); 12.6968s (thread); 0s (gc)
    │ │ │  
    │ │ │  o54 = true
    │ │ │  
    │ │ │  i55 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefaultWithPoints)
    │ │ │ - -- used 11.2852s (cpu); 6.42669s (thread); 0s (gc)
    │ │ │ + -- used 15.5131s (cpu); 10.0397s (thread); 0s (gc)
    │ │ │  
    │ │ │  o55 = true
    │ │ │  
    │ │ │  i56 :
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/___Regular__In__Codimension__Tutorial.out
    │ │ │ @@ -7,20 +7,20 @@
    │ │ │  o2 : Ideal of S
    │ │ │  
    │ │ │  i3 : dim (S/J)
    │ │ │  
    │ │ │  o3 = 4
    │ │ │  
    │ │ │  i4 : time regularInCodimension(1, S/J)
    │ │ │ - -- used 0.993739s (cpu); 0.691947s (thread); 0s (gc)
    │ │ │ + -- used 1.16092s (cpu); 0.922957s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = true
    │ │ │  
    │ │ │  i5 : time regularInCodimension(2, S/J)
    │ │ │ - -- used 10.1165s (cpu); 7.01836s (thread); 0s (gc)
    │ │ │ + -- used 13.42s (cpu); 10.3864s (thread); 0s (gc)
    │ │ │  
    │ │ │  i6 : time regularInCodimension(1, S/J, Verbose=>true)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 452.908 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │ @@ -87,21 +87,21 @@
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 49, and computed = 39
    │ │ │  regularInCodimension:  singularLocus dimension verified by isCodimAtLeast
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 2
    │ │ │ -regularInCodimension:  Loop completed, submatrices considered = 49, and compute -- used 1.33134s (cpu); 0.902944s (thread); 0s (gc)
    │ │ │ +regularInCodimension:  Loop completed, submatrices considered = 49, and compute -- used 1.80956s (cpu); 1.24704s (thread); 0s (gc)
    │ │ │  d = 39.  singular locus dimension appears to be = 2
    │ │ │  
    │ │ │  o6 = true
    │ │ │  
    │ │ │  i7 : time regularInCodimension(1, S/J, MaxMinors=>10, Verbose=>true)
    │ │ │ - -- used 0.174602s (cpu); 0.113061s (thread); 0s (gc)
    │ │ │ + -- used 0.228062s (cpu); 0.178088s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │ @@ -115,15 +115,15 @@
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 10, and computed = 10
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 3
    │ │ │  regularInCodimension:  Loop completed, submatrices considered = 10, and computed = 10.  singular locus dimension appears to be = 3
    │ │ │  
    │ │ │  i8 : time regularInCodimension(1, S/J, MaxMinors=>10, Strategy=>StrategyRandom, Verbose=>true)
    │ │ │ - -- used 0.157657s (cpu); 0.0982538s (thread); 0s (gc)
    │ │ │ + -- used 0.300788s (cpu); 0.134525s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │ @@ -137,15 +137,15 @@
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 10, and computed = 10
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 3
    │ │ │  regularInCodimension:  Loop completed, submatrices considered = 10, and computed = 10.  singular locus dimension appears to be = 3
    │ │ │  
    │ │ │  i9 : time regularInCodimension(1, S/J, MaxMinors=>10, MinMinorsFunction => t->3, Verbose=>true)
    │ │ │ - -- used 0.600684s (cpu); 0.416565s (thread); 0s (gc)
    │ │ │ + -- used 0.690735s (cpu); 0.568017s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 3, and computed = 3
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │ @@ -165,15 +165,15 @@
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 10, and computed = 10
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 3
    │ │ │  regularInCodimension:  Loop completed, submatrices considered = 10, and computed = 10.  singular locus dimension appears to be = 3
    │ │ │  
    │ │ │  i10 : time regularInCodimension(1, S/J, MaxMinors=>25, CodimCheckFunction => t->t/5, MinMinorsFunction => t->2, Verbose=>true)
    │ │ │ - -- used 0.701715s (cpu); 0.449993s (thread); 0s (gc)
    │ │ │ + -- used 0.829908s (cpu); 0.655906s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 25 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 2, and computed = 2
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 4
    │ │ │ @@ -214,15 +214,15 @@
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 25, and computed = 23
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 3
    │ │ │  regularInCodimension:  Loop completed, submatrices considered = 25, and computed = 23.  singular locus dimension appears to be = 3
    │ │ │  
    │ │ │  i11 : time regularInCodimension(1, S/J, MaxMinors=>25, UseOnlyFastCodim => true, Verbose=>true)
    │ │ │ - -- used 0.43376s (cpu); 0.25769s (thread); 0s (gc)
    │ │ │ + -- used 0.601116s (cpu); 0.348032s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 25 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/___Strategy__Default.out
    │ │ │ @@ -1,13 +1,13 @@
    │ │ │  -- -*- M2-comint -*- hash: 5509279875405941999
    │ │ │  
    │ │ │  i1 : T=ZZ/7[a..i]/ideal(f*h-e*i,c*h-b*i,f*g-d*i,e*g-d*h,c*g-a*i,b*g-a*h,c*e-b*f,c*d-a*f,b*d-a*e,g^3-h^2*i-g*i^2,d*g^2-e*h*i-d*i^2,a*g^2-b*h*i-a*i^2,d^2*g-e^2*i-d*f*i,a*d*g-b*e*i-a*f*i,a^2*g-b^2*i-a*c*i,d^3-e^2*f-d*f^2,a*d^2-b*e*f-a*f^2,a^2*d-b^2*f-a*c*f,c^3+f^3-i^3,b*c^2+e*f^2-h*i^2,a*c^2+d*f^2-g*i^2,b^2*c+e^2*f-h^2*i,a*b*c+d*e*f-g*h*i,a^2*c+d^2*f-g^2*i,b^3+e^3-h^3,a*b^2+d*e^2-g*h^2,a^2*b+d^2*e-g^2*h,a^3+e^2*f+d*f^2-h^2*i-g*i^2);
    │ │ │  
    │ │ │  i2 : elapsedTime regularInCodimension(1, T, Strategy=>StrategyDefault)
    │ │ │ - -- 1.65802s elapsed
    │ │ │ + -- 2.0323s elapsed
    │ │ │  
    │ │ │  o2 = true
    │ │ │  
    │ │ │  i3 : peek StrategyDefault
    │ │ │  
    │ │ │  o3 = OptionTable{GRevLexLargest => 0      }
    │ │ │                   GRevLexSmallest => 16
    │ │ │ @@ -16,12 +16,12 @@
    │ │ │                   LexSmallest => 16
    │ │ │                   LexSmallestTerm => 16
    │ │ │                   Points => 0
    │ │ │                   Random => 16
    │ │ │                   RandomNonzero => 16
    │ │ │  
    │ │ │  i4 : elapsedTime regularInCodimension(1, T, Strategy=>LexSmallestTerm)
    │ │ │ - -- 1.01214s elapsed
    │ │ │ + -- 1.35087s elapsed
    │ │ │  
    │ │ │  o4 = true
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/_is__Codim__At__Least.out
    │ │ │ @@ -16,29 +16,29 @@
    │ │ │  i5 : r = rank myDiff;
    │ │ │  
    │ │ │  i6 : J = chooseGoodMinors(15, r, myDiff, Strategy=>StrategyDefaultNonRandom);
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │  
    │ │ │  i7 : time isCodimAtLeast(3, J)
    │ │ │ - -- used 0.00400131s (cpu); 0.0024123s (thread); 0s (gc)
    │ │ │ + -- used 0.0408105s (cpu); 0.0424731s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = true
    │ │ │  
    │ │ │  i8 : I = ideal(x_2^8*x_10^3-3*x_1*x_2^7*x_10^2*x_11+3*x_1^2*x_2^6*x_10*x_11^2-x_1^3*x_2^5*x_11^3,x_5^5*x_6^3*x_11^3-3*x_5^6*x_6^2*x_11^2*x_12+3*x_5^7*x_6*x_11*x_12^2-x_5^8*x_12^3,x_1^5*x_2^3*x_4^3-3*x_1^6*x_2^2*x_4^2*x_5+3*x_1^7*x_2*x_4*x_5^2-x_1^8*x_5^3,x_6^8*x_11^3-3*x_5*x_6^7*x_11^2*x_12+3*x_5^2*x_6^6*x_11*x_12^2-x_5^3*x_6^5*x_12^3,x_8^3*x_10^8-3*x_7*x_8^2*x_10^7*x_11+3*x_7^2*x_8*x_10^6*x_11^2-x_7^3*x_10^5*x_11^3,x_2^8*x_4^3-3*x_1*x_2^7*x_4^2*x_5+3*x_1^2*x_2^6*x_4*x_5^2-x_1^3*x_2^5*x_5^3,-x_6^3*x_11^8+3*x_5*x_6^2*x_11^7*x_12-3*x_5^2*x_6*x_11^6*x_12^2+x_5^3*x_11^5*x_12^3,-x_6^3*x_7^3*x_9^5+3*x_4*x_6^2*x_7^2*x_9^6-3*x_4^2*x_6*x_7*x_9^7+x_4^3*x_9^8,x_8^8*x_10^3-3*x_7*x_8^7*x_10^2*x_11+3*x_7^2*x_8^6*x_10*x_11^2-x_7^3*x_8^5*x_11^3,x_2^5*x_3^3*x_11^3-3*x_2^6*x_3^2*x_11^2*x_12+3*x_2^7*x_3*x_11*x_12^2-x_2^8*x_12^3);
    │ │ │  
    │ │ │                 ZZ
    │ │ │  o8 : Ideal of ---[x  , x , x , x , x  , x , x , x  , x , x , x , x ]
    │ │ │                127  11   8   1   9   12   6   5   10   2   4   3   7
    │ │ │  
    │ │ │  i9 : time isCodimAtLeast(5, I, PairLimit => 5, Verbose=>true)
    │ │ │ - -- used 0.00265611s (cpu); 0.00233315s (thread); 0s (gc)
    │ │ │ + -- used 0.00028781s (cpu); 0.00212849s (thread); 0s (gc)
    │ │ │  isCodimAtLeast: Computing codim of monomials based on ideal generators.
    │ │ │  
    │ │ │  o9 = true
    │ │ │  
    │ │ │  i10 : time isCodimAtLeast(5, I, PairLimit => 200, Verbose=>false)
    │ │ │ - -- used 5.4772e-05s (cpu); 0.0022959s (thread); 0s (gc)
    │ │ │ + -- used 0.00158338s (cpu); 0.00207919s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = true
    │ │ │  
    │ │ │  i11 :
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/_proj__Dim.out
    │ │ │ @@ -7,17 +7,17 @@
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : pdim(module I)
    │ │ │  
    │ │ │  o3 = 2
    │ │ │  
    │ │ │  i4 : time projDim(module I, Strategy=>StrategyRandom)
    │ │ │ - -- used 0.255808s (cpu); 0.130559s (thread); 0s (gc)
    │ │ │ + -- used 0.280573s (cpu); 0.181159s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 1
    │ │ │  
    │ │ │  i5 : time projDim(module I, Strategy=>StrategyRandom, MinDimension => 1)
    │ │ │ - -- used 0.00883907s (cpu); 0.0114568s (thread); 0s (gc)
    │ │ │ + -- used 0.00800158s (cpu); 0.0112099s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 1
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/_recursive__Minors.out
    │ │ │ @@ -4,20 +4,20 @@
    │ │ │  
    │ │ │  i2 : M = random(R^{5,5,5,5,5,5}, R^7);
    │ │ │  
    │ │ │               6      7
    │ │ │  o2 : Matrix R  <-- R
    │ │ │  
    │ │ │  i3 : time I2 = recursiveMinors(4, M, Threads=>0);
    │ │ │ - -- used 0.437786s (cpu); 0.440787s (thread); 0s (gc)
    │ │ │ + -- used 0.611988s (cpu); 0.610769s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │  
    │ │ │  i4 : time I1 = minors(4, M, Strategy=>Cofactor);
    │ │ │ - -- used 1.59111s (cpu); 1.34157s (thread); 0s (gc)
    │ │ │ + -- used 2.22499s (cpu); 1.94741s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │  
    │ │ │  i5 : I1 == I2
    │ │ │  
    │ │ │  o5 = true
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/_regular__In__Codimension.out
    │ │ │ @@ -17,44 +17,44 @@
    │ │ │  i6 : S = T/I;
    │ │ │  
    │ │ │  i7 : dim S
    │ │ │  
    │ │ │  o7 = 3
    │ │ │  
    │ │ │  i8 : time regularInCodimension(1, S)
    │ │ │ - -- used 1.52067s (cpu); 1.10529s (thread); 0s (gc)
    │ │ │ + -- used 2.24596s (cpu); 1.74857s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = true
    │ │ │  
    │ │ │  i9 : time regularInCodimension(2, S)
    │ │ │ - -- used 6.53229s (cpu); 4.74206s (thread); 0s (gc)
    │ │ │ + -- used 8.53673s (cpu); 6.38222s (thread); 0s (gc)
    │ │ │  
    │ │ │  i10 : R = QQ[c, f, g, h]/ideal(g^3+h^3+1,f*g^3+f*h^3+f,c*g^3+c*h^3+c,f^2*g^3+f^2*h^3+f^2,c*f*g^3+c*f*h^3+c*f,c^2*g^3+c^2*h^3+c^2,f^3*g^3+f^3*h^3+f^3,c*f^2*g^3+c*f^2*h^3+c*f^2,c^2*f*g^3+c^2*f*h^3+c^2*f,c^3-f^2-c,c^3*h-f^2*h-c*h,c^3*g-f^2*g-c*g,c^3*h^2-f^2*h^2-c*h^2,c^3*g*h-f^2*g*h-c*g*h,c^3*g^2-f^2*g^2-c*g^2,c^3*h^3-f^2*h^3-c*h^3,c^3*g*h^2-f^2*g*h^2-c*g*h^2,c^3*g^2*h-f^2*g^2*h-c*g^2*h,c^3*g^3+f^2*h^3+c*h^3+f^2+c);
    │ │ │  
    │ │ │  i11 : dim(R)
    │ │ │  
    │ │ │  o11 = 2
    │ │ │  
    │ │ │  i12 : time (dim singularLocus (R))
    │ │ │ - -- used 0.0199993s (cpu); 0.0195143s (thread); 0s (gc)
    │ │ │ + -- used 0.0160025s (cpu); 0.0168s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 = -1
    │ │ │  
    │ │ │  i13 : time regularInCodimension(2, R)
    │ │ │ - -- used 0.493224s (cpu); 0.310068s (thread); 0s (gc)
    │ │ │ + -- used 0.688828s (cpu); 0.494292s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = true
    │ │ │  
    │ │ │  i14 : time regularInCodimension(2, R)
    │ │ │ - -- used 0.852714s (cpu); 0.524319s (thread); 0s (gc)
    │ │ │ + -- used 1.01499s (cpu); 0.776686s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = true
    │ │ │  
    │ │ │  i15 : time regularInCodimension(2, R)
    │ │ │ - -- used 0.322571s (cpu); 0.208202s (thread); 0s (gc)
    │ │ │ + -- used 0.380781s (cpu); 0.24463s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = true
    │ │ │  
    │ │ │  i16 : time regularInCodimension(2, S, Verbose=>true)
    │ │ │  regularInCodimension: ring dimension =3, there are 17325 possible 4 by 4 minors, we will compute up to 327.599 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ @@ -386,15 +386,15 @@
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ -internalChooseMinor: Choosing -- used 6.47455s (cpu); 4.61649s (thread); 0s (gc)
    │ │ │ +internalChooseMinor: Choosing -- used 9.50516s (cpu); 7.7463s (thread); 0s (gc)
    │ │ │   LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ @@ -430,15 +430,15 @@
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 328, and computed = 186
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 1
    │ │ │  regularInCodimension:  Loop completed, submatrices considered = 328, and computed = 186.  singular locus dimension appears to be = 1
    │ │ │  
    │ │ │  i17 : time regularInCodimension(2, S, Verbose=>true, MaxMinors=>30)
    │ │ │ - -- used 1.54762s (cpu); 1.2674s (thread); 0s (gc)
    │ │ │ + -- used 1.9773s (cpu); 1.57609s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =3, there are 17325 possible 4 by 4 minors, we will compute up to 30 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │ @@ -490,59 +490,59 @@
    │ │ │  i18 : StrategyCurrent#Random = 0;
    │ │ │  
    │ │ │  i19 : StrategyCurrent#LexSmallest = 100;
    │ │ │  
    │ │ │  i20 : StrategyCurrent#LexSmallestTerm = 0;
    │ │ │  
    │ │ │  i21 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.143625s (cpu); 0.0920942s (thread); 0s (gc)
    │ │ │ + -- used 0.168031s (cpu); 0.125249s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = true
    │ │ │  
    │ │ │  i22 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.271628s (cpu); 0.149929s (thread); 0s (gc)
    │ │ │ + -- used 0.29762s (cpu); 0.216079s (thread); 0s (gc)
    │ │ │  
    │ │ │  o22 = true
    │ │ │  
    │ │ │  i23 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 1.725s (cpu); 1.31345s (thread); 0s (gc)
    │ │ │ + -- used 2.04151s (cpu); 1.51965s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = true
    │ │ │  
    │ │ │  i24 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 1.13749s (cpu); 0.85499s (thread); 0s (gc)
    │ │ │ + -- used 1.59786s (cpu); 1.21613s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = true
    │ │ │  
    │ │ │  i25 : StrategyCurrent#LexSmallest = 0;
    │ │ │  
    │ │ │  i26 : StrategyCurrent#LexSmallestTerm = 100;
    │ │ │  
    │ │ │  i27 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.463182s (cpu); 0.273596s (thread); 0s (gc)
    │ │ │ + -- used 0.596072s (cpu); 0.329815s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = true
    │ │ │  
    │ │ │  i28 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 2.17628s (cpu); 1.4555s (thread); 0s (gc)
    │ │ │ + -- used 2.71977s (cpu); 2.17705s (thread); 0s (gc)
    │ │ │  
    │ │ │  i29 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.165936s (cpu); 0.105402s (thread); 0s (gc)
    │ │ │ + -- used 0.165608s (cpu); 0.128097s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = true
    │ │ │  
    │ │ │  i30 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.211774s (cpu); 0.158759s (thread); 0s (gc)
    │ │ │ + -- used 0.309078s (cpu); 0.261711s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = true
    │ │ │  
    │ │ │  i31 : time regularInCodimension(1, S, Strategy=>StrategyRandom)
    │ │ │ - -- used 1.48716s (cpu); 1.11753s (thread); 0s (gc)
    │ │ │ + -- used 2.27716s (cpu); 1.8885s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = true
    │ │ │  
    │ │ │  i32 : time regularInCodimension(1, S, Strategy=>StrategyRandom)
    │ │ │ - -- used 1.52406s (cpu); 1.15802s (thread); 0s (gc)
    │ │ │ + -- used 2.06232s (cpu); 1.60872s (thread); 0s (gc)
    │ │ │  
    │ │ │  o32 = true
    │ │ │  
    │ │ │  i33 :
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/___Fast__Minors__Strategy__Tutorial.html
    │ │ │ @@ -558,57 +558,57 @@
    │ │ │          
    │ │ │
    │ │ │

    Here the $1$ passed to the function says how many minors to compute. For instance, let's compute 8 minors for each of these strategies and see if that was enough to verify that the ring is regular in codimension 1. In other words, if the dimension of $J$ plus the ideal of partial minors is $\leq 1$ (since $S/J$ has dimension 3).

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i28 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Random))
    │ │ │ - -- used 0.10715s (cpu); 0.107368s (thread); 0s (gc)
    │ │ │ + -- used 0.187939s (cpu); 0.186654s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = 2
    │ │ │
    i29 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallest))
    │ │ │ - -- used 0.33389s (cpu); 0.203875s (thread); 0s (gc)
    │ │ │ + -- used 0.343333s (cpu); 0.243976s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = 3
    │ │ │
    i30 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallestTerm))
    │ │ │ - -- used 0.404835s (cpu); 0.275085s (thread); 0s (gc)
    │ │ │ + -- used 0.516024s (cpu); 0.428512s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = 1
    │ │ │
    i31 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexLargest))
    │ │ │ - -- used 0.314312s (cpu); 0.181456s (thread); 0s (gc)
    │ │ │ + -- used 0.490338s (cpu); 0.252617s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = 2
    │ │ │
    i32 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexSmallest))
    │ │ │ - -- used 0.312529s (cpu); 0.1737s (thread); 0s (gc)
    │ │ │ + -- used 0.332258s (cpu); 0.235725s (thread); 0s (gc)
    │ │ │  
    │ │ │  o32 = 3
    │ │ │
    i33 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexSmallestTerm))
    │ │ │ - -- used 0.348847s (cpu); 0.214069s (thread); 0s (gc)
    │ │ │ + -- used 0.460208s (cpu); 0.358773s (thread); 0s (gc)
    │ │ │  
    │ │ │  o33 = 3
    │ │ │
    i34 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexLargest))
    │ │ │ - -- used 0.323316s (cpu); 0.192993s (thread); 0s (gc)
    │ │ │ + -- used 0.365933s (cpu); 0.273051s (thread); 0s (gc)
    │ │ │  
    │ │ │  o34 = 3
    │ │ │
    i35 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Points))
    │ │ │ - -- used 13.4439s (cpu); 7.95676s (thread); 0s (gc)
    │ │ │ + -- used 17.3469s (cpu); 11.9013s (thread); 0s (gc)
    │ │ │  
    │ │ │  o35 = 1
    │ │ │
    │ │ │
    │ │ │

    Indeed, in this example, even computing determinants of 1,000 random submatrices is not typically enough to verify that $V(J)$ is regular in codimension 1. On the other hand, Points is almost always quite effective at finding valuable submatrices, but can be quite slow. In this particular example, we can see that LexSmallestTerm also performs very well (and does it quickly). Since different strategies work better or worse on different examples, the default strategy actually mixes and matches various strategies. The default strategy, which we now elucidate,

    │ │ │
    │ │ │ @@ -629,15 +629,15 @@ │ │ │
    │ │ │
    │ │ │

    says that we should use GRevLexSmallest, GRevLexSmallestTerm, LexSmallest, LexSmallestTerm, Random, RandomNonzero all with equal probability (note RandomNonzero, which we have not yet discussed chooses random submatrices where no row or column is zero, which is good for working in sparse matrices). For instance, if we run:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i37 : time chooseGoodMinors(20, 6, M, J, Strategy=>StrategyDefault, Verbose=>true);
    │ │ │ - -- used 0.539994s (cpu); 0.365803s (thread); 0s (gc)
    │ │ │ + -- used 0.600379s (cpu); 0.456404s (thread); 0s (gc)
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │ @@ -728,15 +728,15 @@
    │ │ │            
    i42 : ptsStratGeometric#ExtendField --look at the default value
    │ │ │  
    │ │ │  o42 = true
    │ │ │
    i43 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, PointOptions=>ptsStratGeometric))
    │ │ │ - -- used 0.999209s (cpu); 0.602814s (thread); 0s (gc)
    │ │ │ + -- used 1.23084s (cpu); 0.729775s (thread); 0s (gc)
    │ │ │  
    │ │ │  o43 = 2
    │ │ │
    i44 : ptsStratRational = ptsStratGeometric++{ExtendField=>false} --change that value
    │ │ │  
    │ │ │  o44 = OptionTable{DecompositionStrategy => Decompose}
    │ │ │ @@ -754,67 +754,67 @@
    │ │ │            
    i45 : ptsStratRational.ExtendField --look at our changed value
    │ │ │  
    │ │ │  o45 = false
    │ │ │
    i46 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, PointOptions=>ptsStratRational))
    │ │ │ - -- used 0.699354s (cpu); 0.37s (thread); 0s (gc)
    │ │ │ + -- used 0.917925s (cpu); 0.525149s (thread); 0s (gc)
    │ │ │  
    │ │ │  o46 = 2
    │ │ │
    │ │ │
    │ │ │

    Other options may also be passed to the RandomPoints package via the PointOptions option.

    │ │ │
    │ │ │
    │ │ │

    regularInCodimension: It is reasonable to think that you should find a few minors (with one strategy or another), and see if perhaps the minors you have computed so far are enough to verify our ring is regular in codimension 1. This is exactly what regularInCodimension does. One can control at a fine level how frequently new minors are computed, and how frequently the dimension of what we have computed so far is checked, by the option codimCheckFunction. For more on that, see RegularInCodimensionTutorial and regularInCodimension. Let us finish running regularInCodimension on our example with several different strategies.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i47 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefault)
    │ │ │ - -- used 4.96948s (cpu); 3.56542s (thread); 0s (gc)
    │ │ │ + -- used 6.32285s (cpu); 4.80086s (thread); 0s (gc) │ │ │
    i48 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefaultNonRandom)
    │ │ │ - -- used 1.03145s (cpu); 0.679038s (thread); 0s (gc)
    │ │ │ + -- used 1.26344s (cpu); 0.939776s (thread); 0s (gc)
    │ │ │  
    │ │ │  o48 = true
    │ │ │
    i49 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Random)
    │ │ │ - -- used 2.98086s (cpu); 2.51747s (thread); 0s (gc)
    │ │ │ + -- used 4.20522s (cpu); 3.52377s (thread); 0s (gc) │ │ │
    i50 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>LexSmallest)
    │ │ │ - -- used 3.40978s (cpu); 2.04641s (thread); 0s (gc)
    │ │ │ + -- used 4.3251s (cpu); 2.8001s (thread); 0s (gc) │ │ │
    i51 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>LexSmallestTerm)
    │ │ │ - -- used 1.07836s (cpu); 0.777656s (thread); 0s (gc)
    │ │ │ + -- used 1.62131s (cpu); 1.24061s (thread); 0s (gc)
    │ │ │  
    │ │ │  o51 = true
    │ │ │
    i52 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>GRevLexSmallest)
    │ │ │ - -- used 4.00314s (cpu); 2.42639s (thread); 0s (gc)
    │ │ │ + -- used 5.24785s (cpu); 3.29254s (thread); 0s (gc) │ │ │
    i53 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>GRevLexSmallestTerm)
    │ │ │ - -- used 4.46603s (cpu); 2.88283s (thread); 0s (gc)
    │ │ │ + -- used 6.44832s (cpu); 4.71612s (thread); 0s (gc) │ │ │
    i54 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Points)
    │ │ │ - -- used 14.8083s (cpu); 8.44014s (thread); 0s (gc)
    │ │ │ + -- used 19.5055s (cpu); 12.6968s (thread); 0s (gc)
    │ │ │  
    │ │ │  o54 = true
    │ │ │
    i55 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefaultWithPoints)
    │ │ │ - -- used 11.2852s (cpu); 6.42669s (thread); 0s (gc)
    │ │ │ + -- used 15.5131s (cpu); 10.0397s (thread); 0s (gc)
    │ │ │  
    │ │ │  o55 = true
    │ │ │
    │ │ │
    │ │ │

    If regularInCodimension outputs nothing, then it couldn't verify that the ring was regular in that codimension. We set MaxMinors => 100 to keep it from running too long with an ineffective strategy. Again, even though GRevLexSmallest and GRevLexSmallestTerm are not effective in this particular example, in others they perform better than other strategies. Note similar considerations also apply to projDim.

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -486,44 +486,44 @@ │ │ │ │ o27 : Ideal of S │ │ │ │ Here the $1$ passed to the function says how many minors to compute. For │ │ │ │ instance, let's compute 8 minors for each of these strategies and see if that │ │ │ │ was enough to verify that the ring is regular in codimension 1. In other words, │ │ │ │ if the dimension of $J$ plus the ideal of partial minors is $\leq 1$ (since $S/ │ │ │ │ J$ has dimension 3). │ │ │ │ i28 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Random)) │ │ │ │ - -- used 0.10715s (cpu); 0.107368s (thread); 0s (gc) │ │ │ │ + -- used 0.187939s (cpu); 0.186654s (thread); 0s (gc) │ │ │ │ │ │ │ │ o28 = 2 │ │ │ │ i29 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallest)) │ │ │ │ - -- used 0.33389s (cpu); 0.203875s (thread); 0s (gc) │ │ │ │ + -- used 0.343333s (cpu); 0.243976s (thread); 0s (gc) │ │ │ │ │ │ │ │ o29 = 3 │ │ │ │ i30 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallestTerm)) │ │ │ │ - -- used 0.404835s (cpu); 0.275085s (thread); 0s (gc) │ │ │ │ + -- used 0.516024s (cpu); 0.428512s (thread); 0s (gc) │ │ │ │ │ │ │ │ o30 = 1 │ │ │ │ i31 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexLargest)) │ │ │ │ - -- used 0.314312s (cpu); 0.181456s (thread); 0s (gc) │ │ │ │ + -- used 0.490338s (cpu); 0.252617s (thread); 0s (gc) │ │ │ │ │ │ │ │ o31 = 2 │ │ │ │ i32 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexSmallest)) │ │ │ │ - -- used 0.312529s (cpu); 0.1737s (thread); 0s (gc) │ │ │ │ + -- used 0.332258s (cpu); 0.235725s (thread); 0s (gc) │ │ │ │ │ │ │ │ o32 = 3 │ │ │ │ i33 : time dim (J + chooseGoodMinors(8, 6, M, J, │ │ │ │ Strategy=>GRevLexSmallestTerm)) │ │ │ │ - -- used 0.348847s (cpu); 0.214069s (thread); 0s (gc) │ │ │ │ + -- used 0.460208s (cpu); 0.358773s (thread); 0s (gc) │ │ │ │ │ │ │ │ o33 = 3 │ │ │ │ i34 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexLargest)) │ │ │ │ - -- used 0.323316s (cpu); 0.192993s (thread); 0s (gc) │ │ │ │ + -- used 0.365933s (cpu); 0.273051s (thread); 0s (gc) │ │ │ │ │ │ │ │ o34 = 3 │ │ │ │ i35 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Points)) │ │ │ │ - -- used 13.4439s (cpu); 7.95676s (thread); 0s (gc) │ │ │ │ + -- used 17.3469s (cpu); 11.9013s (thread); 0s (gc) │ │ │ │ │ │ │ │ o35 = 1 │ │ │ │ Indeed, in this example, even computing determinants of 1,000 random │ │ │ │ submatrices is not typically enough to verify that $V(J)$ is regular in │ │ │ │ codimension 1. On the other hand, Points is almost always quite effective at │ │ │ │ finding valuable submatrices, but can be quite slow. In this particular │ │ │ │ example, we can see that LexSmallestTerm also performs very well (and does it │ │ │ │ @@ -544,15 +544,15 @@ │ │ │ │ says that we should use GRevLexSmallest, GRevLexSmallestTerm, LexSmallest, │ │ │ │ LexSmallestTerm, Random, RandomNonzero all with equal probability (note │ │ │ │ RandomNonzero, which we have not yet discussed chooses random submatrices where │ │ │ │ no row or column is zero, which is good for working in sparse matrices). For │ │ │ │ instance, if we run: │ │ │ │ i37 : time chooseGoodMinors(20, 6, M, J, Strategy=>StrategyDefault, │ │ │ │ Verbose=>true); │ │ │ │ - -- used 0.539994s (cpu); 0.365803s (thread); 0s (gc) │ │ │ │ + -- used 0.600379s (cpu); 0.456404s (thread); 0s (gc) │ │ │ │ internalChooseMinor: Choosing Random │ │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ │ internalChooseMinor: Choosing Random │ │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ │ @@ -633,15 +633,15 @@ │ │ │ │ i41 : ptsStratGeometric = new OptionTable from (options │ │ │ │ chooseGoodMinors)#PointOptions; │ │ │ │ i42 : ptsStratGeometric#ExtendField --look at the default value │ │ │ │ │ │ │ │ o42 = true │ │ │ │ i43 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, │ │ │ │ PointOptions=>ptsStratGeometric)) │ │ │ │ - -- used 0.999209s (cpu); 0.602814s (thread); 0s (gc) │ │ │ │ + -- used 1.23084s (cpu); 0.729775s (thread); 0s (gc) │ │ │ │ │ │ │ │ o43 = 2 │ │ │ │ i44 : ptsStratRational = ptsStratGeometric++{ExtendField=>false} --change that │ │ │ │ value │ │ │ │ │ │ │ │ o44 = OptionTable{DecompositionStrategy => Decompose} │ │ │ │ DimensionFunction => dim │ │ │ │ @@ -655,58 +655,58 @@ │ │ │ │ │ │ │ │ o44 : OptionTable │ │ │ │ i45 : ptsStratRational.ExtendField --look at our changed value │ │ │ │ │ │ │ │ o45 = false │ │ │ │ i46 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, │ │ │ │ PointOptions=>ptsStratRational)) │ │ │ │ - -- used 0.699354s (cpu); 0.37s (thread); 0s (gc) │ │ │ │ + -- used 0.917925s (cpu); 0.525149s (thread); 0s (gc) │ │ │ │ │ │ │ │ o46 = 2 │ │ │ │ Other options may also be passed to the _R_a_n_d_o_m_P_o_i_n_t_s package via the │ │ │ │ _P_o_i_n_t_O_p_t_i_o_n_s option. │ │ │ │ rreegguullaarrIInnCCooddiimmeennssiioonn:: It is reasonable to think that you should find a few │ │ │ │ minors (with one strategy or another), and see if perhaps the minors you have │ │ │ │ computed so far are enough to verify our ring is regular in codimension 1. This │ │ │ │ is exactly what regularInCodimension does. One can control at a fine level how │ │ │ │ frequently new minors are computed, and how frequently the dimension of what we │ │ │ │ have computed so far is checked, by the option codimCheckFunction. For more on │ │ │ │ that, see _R_e_g_u_l_a_r_I_n_C_o_d_i_m_e_n_s_i_o_n_T_u_t_o_r_i_a_l and _r_e_g_u_l_a_r_I_n_C_o_d_i_m_e_n_s_i_o_n. Let us finish │ │ │ │ running regularInCodimension on our example with several different strategies. │ │ │ │ i47 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>StrategyDefault) │ │ │ │ - -- used 4.96948s (cpu); 3.56542s (thread); 0s (gc) │ │ │ │ + -- used 6.32285s (cpu); 4.80086s (thread); 0s (gc) │ │ │ │ i48 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>StrategyDefaultNonRandom) │ │ │ │ - -- used 1.03145s (cpu); 0.679038s (thread); 0s (gc) │ │ │ │ + -- used 1.26344s (cpu); 0.939776s (thread); 0s (gc) │ │ │ │ │ │ │ │ o48 = true │ │ │ │ i49 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Random) │ │ │ │ - -- used 2.98086s (cpu); 2.51747s (thread); 0s (gc) │ │ │ │ + -- used 4.20522s (cpu); 3.52377s (thread); 0s (gc) │ │ │ │ i50 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>LexSmallest) │ │ │ │ - -- used 3.40978s (cpu); 2.04641s (thread); 0s (gc) │ │ │ │ + -- used 4.3251s (cpu); 2.8001s (thread); 0s (gc) │ │ │ │ i51 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>LexSmallestTerm) │ │ │ │ - -- used 1.07836s (cpu); 0.777656s (thread); 0s (gc) │ │ │ │ + -- used 1.62131s (cpu); 1.24061s (thread); 0s (gc) │ │ │ │ │ │ │ │ o51 = true │ │ │ │ i52 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>GRevLexSmallest) │ │ │ │ - -- used 4.00314s (cpu); 2.42639s (thread); 0s (gc) │ │ │ │ + -- used 5.24785s (cpu); 3.29254s (thread); 0s (gc) │ │ │ │ i53 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>GRevLexSmallestTerm) │ │ │ │ - -- used 4.46603s (cpu); 2.88283s (thread); 0s (gc) │ │ │ │ + -- used 6.44832s (cpu); 4.71612s (thread); 0s (gc) │ │ │ │ i54 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Points) │ │ │ │ - -- used 14.8083s (cpu); 8.44014s (thread); 0s (gc) │ │ │ │ + -- used 19.5055s (cpu); 12.6968s (thread); 0s (gc) │ │ │ │ │ │ │ │ o54 = true │ │ │ │ i55 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>StrategyDefaultWithPoints) │ │ │ │ - -- used 11.2852s (cpu); 6.42669s (thread); 0s (gc) │ │ │ │ + -- used 15.5131s (cpu); 10.0397s (thread); 0s (gc) │ │ │ │ │ │ │ │ o55 = true │ │ │ │ If regularInCodimension outputs nothing, then it couldn't verify that the ring │ │ │ │ was regular in that codimension. We set MaxMinors => 100 to keep it from │ │ │ │ running too long with an ineffective strategy. Again, even though │ │ │ │ GRevLexSmallest and GRevLexSmallestTerm are not effective in this particular │ │ │ │ example, in others they perform better than other strategies. Note similar │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/___Regular__In__Codimension__Tutorial.html │ │ │ @@ -67,21 +67,21 @@ │ │ │
    │ │ │
    │ │ │

    It is the cone over $P^2 \times E$ where $E$ is an elliptic curve. We have embedded it with a Segre embedding inside $P^8$. In particular, this example is even regular in codimension 3.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time regularInCodimension(1, S/J)
    │ │ │ - -- used 0.993739s (cpu); 0.691947s (thread); 0s (gc)
    │ │ │ + -- used 1.16092s (cpu); 0.922957s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = true
    │ │ │
    i5 : time regularInCodimension(2, S/J)
    │ │ │ - -- used 10.1165s (cpu); 7.01836s (thread); 0s (gc)
    │ │ │ + -- used 13.42s (cpu); 10.3864s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │

    We try to verify that $S/J$ is regular in codimension 1 or 2 by computing the ideal made up of a small number of minors of the Jacobian matrix. In this example, instead of computing all relevant 1465128 minors to compute the singular locus, and then trying to compute the dimension of the ideal they generate, we instead compute a few of them. regularInCodimension returns true if it verified that the ring is regular in codim 1 or 2 (respectively) and null if not. Because of the randomness that exists in terms of selecting minors, the execution time can actually vary quite a bit. Let's take a look at what is occurring by using the Verbose option. We go through the output and explain what each line is telling us.

    │ │ │
    │ │ │ │ │ │ │ │ │ @@ -154,27 +154,27 @@ │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ internalChooseMinor: Choosing Random │ │ │ regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 49, and computed = 39 │ │ │ regularInCodimension: singularLocus dimension verified by isCodimAtLeast │ │ │ regularInCodimension: partial singular locus dimension computed, = 2 │ │ │ -regularInCodimension: Loop completed, submatrices considered = 49, and compute -- used 1.33134s (cpu); 0.902944s (thread); 0s (gc) │ │ │ +regularInCodimension: Loop completed, submatrices considered = 49, and compute -- used 1.80956s (cpu); 1.24704s (thread); 0s (gc) │ │ │ d = 39. singular locus dimension appears to be = 2 │ │ │ │ │ │ o6 = true │ │ │ │ │ │
    │ │ │
    │ │ │

    MaxMinors. The first output says that we will compute up to 452.9 minors before giving up. We can control that by setting the option MaxMinors.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time regularInCodimension(1, S/J, MaxMinors=>10, Verbose=>true)
    │ │ │ - -- used 0.174602s (cpu); 0.113061s (thread); 0s (gc)
    │ │ │ + -- used 0.228062s (cpu); 0.178088s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │ @@ -197,15 +197,15 @@
    │ │ │          
    │ │ │          
    │ │ │

    Selecting submatrices of the Jacobian. We also see output like: ``Choosing LexSmallest'' or ``Choosing Random''. This is saying how we are selecting a given submatrix. For instance, we can run:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : time regularInCodimension(1, S/J, MaxMinors=>10, Strategy=>StrategyRandom, Verbose=>true)
    │ │ │ - -- used 0.157657s (cpu); 0.0982538s (thread); 0s (gc)
    │ │ │ + -- used 0.300788s (cpu); 0.134525s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │ @@ -228,15 +228,15 @@
    │ │ │          
    │ │ │          
    │ │ │

    Computing minors vs considering the dimension of what has been computed. Periodically we compute the codimension of the partial ideal of minors we have computed so far. There are two options to control this. First, we can tell the function when to first compute the dimension of the working partial ideal of minors.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : time regularInCodimension(1, S/J, MaxMinors=>10, MinMinorsFunction => t->3, Verbose=>true)
    │ │ │ - -- used 0.600684s (cpu); 0.416565s (thread); 0s (gc)
    │ │ │ + -- used 0.690735s (cpu); 0.568017s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 3, and computed = 3
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │ @@ -265,15 +265,15 @@
    │ │ │          
    │ │ │          
    │ │ │

    CodimCheckFunction. The option CodimCheckFunction controls how frequently the dimension of the partial ideal of minors is computed. For instance, setting CodimCheckFunction => t -> t/5 will say it should compute dimension after every 5 minors are examined. In general, after the output of the CodimCheckFunction increases by an integer we compute the codimension again. The default function has the space between computations grow exponentially.

    │ │ │
    │ │ │ │ │ │ │ │ │
    i10 : time regularInCodimension(1, S/J, MaxMinors=>25, CodimCheckFunction => t->t/5, MinMinorsFunction => t->2, Verbose=>true)
    │ │ │ - -- used 0.701715s (cpu); 0.449993s (thread); 0s (gc)
    │ │ │ + -- used 0.829908s (cpu); 0.655906s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 25 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 2, and computed = 2
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 4
    │ │ │ @@ -320,15 +320,15 @@
    │ │ │          
    │ │ │
    │ │ │

    isCodimAtLeast and dim. We see the lines about the ``isCodimAtLeast failed''. This means that isCodimAtLeast was not enough on its own to verify that our ring is regular in codimension 1. After this, ``partial singular locus dimension computed'' indicates we did a complete dimension computation of the partial ideal defining the singular locus. How isCodimAtLeast is called can be controlled via the options SPairsFunction and PairLimit, which are simply passed to isCodimAtLeast. You can force the function to only use isCodimAtLeast and not call dimension by setting UseOnlyFastCodim => true.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : time regularInCodimension(1, S/J, MaxMinors=>25, UseOnlyFastCodim => true, Verbose=>true)
    │ │ │ - -- used 0.43376s (cpu); 0.25769s (thread); 0s (gc)
    │ │ │ + -- used 0.601116s (cpu); 0.348032s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 25 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -24,19 +24,19 @@
    │ │ │ │  i3 : dim (S/J)
    │ │ │ │  
    │ │ │ │  o3 = 4
    │ │ │ │  It is the cone over $P^2 \times E$ where $E$ is an elliptic curve. We have
    │ │ │ │  embedded it with a Segre embedding inside $P^8$. In particular, this example is
    │ │ │ │  even regular in codimension 3.
    │ │ │ │  i4 : time regularInCodimension(1, S/J)
    │ │ │ │ - -- used 0.993739s (cpu); 0.691947s (thread); 0s (gc)
    │ │ │ │ + -- used 1.16092s (cpu); 0.922957s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = true
    │ │ │ │  i5 : time regularInCodimension(2, S/J)
    │ │ │ │ - -- used 10.1165s (cpu); 7.01836s (thread); 0s (gc)
    │ │ │ │ + -- used 13.42s (cpu); 10.3864s (thread); 0s (gc)
    │ │ │ │  We try to verify that $S/J$ is regular in codimension 1 or 2 by computing the
    │ │ │ │  ideal made up of a small number of minors of the Jacobian matrix. In this
    │ │ │ │  example, instead of computing all relevant 1465128 minors to compute the
    │ │ │ │  singular locus, and then trying to compute the dimension of the ideal they
    │ │ │ │  generate, we instead compute a few of them. regularInCodimension returns true
    │ │ │ │  if it verified that the ring is regular in codim 1 or 2 (respectively) and null
    │ │ │ │  if not. Because of the randomness that exists in terms of selecting minors, the
    │ │ │ │ @@ -121,22 +121,22 @@
    │ │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices
    │ │ │ │  considered: 49, and computed = 39
    │ │ │ │  regularInCodimension:  singularLocus dimension verified by isCodimAtLeast
    │ │ │ │  regularInCodimension:  partial singular locus dimension computed, = 2
    │ │ │ │  regularInCodimension:  Loop completed, submatrices considered = 49, and compute
    │ │ │ │ --- used 1.33134s (cpu); 0.902944s (thread); 0s (gc)
    │ │ │ │ +-- used 1.80956s (cpu); 1.24704s (thread); 0s (gc)
    │ │ │ │  d = 39.  singular locus dimension appears to be = 2
    │ │ │ │  
    │ │ │ │  o6 = true
    │ │ │ │  MMaaxxMMiinnoorrss.. The first output says that we will compute up to 452.9 minors before
    │ │ │ │  giving up. We can control that by setting the option MaxMinors.
    │ │ │ │  i7 : time regularInCodimension(1, S/J, MaxMinors=>10, Verbose=>true)
    │ │ │ │ - -- used 0.174602s (cpu); 0.113061s (thread); 0s (gc)
    │ │ │ │ + -- used 0.228062s (cpu); 0.178088s (thread); 0s (gc)
    │ │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5
    │ │ │ │  minors, we will compute up to 10 of them.
    │ │ │ │  regularInCodimension: About to enter loop
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │ @@ -159,15 +159,15 @@
    │ │ │ │  There are other finer ways to control the MaxMinors option, but they will not
    │ │ │ │  be discussed in this tutorial. See _r_e_g_u_l_a_r_I_n_C_o_d_i_m_e_n_s_i_o_n.
    │ │ │ │  SSeelleeccttiinngg ssuubbmmaattrriicceess ooff tthhee JJaaccoobbiiaann.. We also see output like: ``Choosing
    │ │ │ │  LexSmallest'' or ``Choosing Random''. This is saying how we are selecting a
    │ │ │ │  given submatrix. For instance, we can run:
    │ │ │ │  i8 : time regularInCodimension(1, S/J, MaxMinors=>10, Strategy=>StrategyRandom,
    │ │ │ │  Verbose=>true)
    │ │ │ │ - -- used 0.157657s (cpu); 0.0982538s (thread); 0s (gc)
    │ │ │ │ + -- used 0.300788s (cpu); 0.134525s (thread); 0s (gc)
    │ │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5
    │ │ │ │  minors, we will compute up to 10 of them.
    │ │ │ │  regularInCodimension: About to enter loop
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │ @@ -197,15 +197,15 @@
    │ │ │ │  CCoommppuuttiinngg mmiinnoorrss vvss ccoonnssiiddeerriinngg tthhee ddiimmeennssiioonn ooff wwhhaatt hhaass bbeeeenn ccoommppuutteedd..
    │ │ │ │  Periodically we compute the codimension of the partial ideal of minors we have
    │ │ │ │  computed so far. There are two options to control this. First, we can tell the
    │ │ │ │  function when to first compute the dimension of the working partial ideal of
    │ │ │ │  minors.
    │ │ │ │  i9 : time regularInCodimension(1, S/J, MaxMinors=>10, MinMinorsFunction => t-
    │ │ │ │  >3, Verbose=>true)
    │ │ │ │ - -- used 0.600684s (cpu); 0.416565s (thread); 0s (gc)
    │ │ │ │ + -- used 0.690735s (cpu); 0.568017s (thread); 0s (gc)
    │ │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5
    │ │ │ │  minors, we will compute up to 10 of them.
    │ │ │ │  regularInCodimension: About to enter loop
    │ │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices
    │ │ │ │ @@ -243,15 +243,15 @@
    │ │ │ │  dimension of the partial ideal of minors is computed. For instance, setting
    │ │ │ │  CodimCheckFunction => t -> t/5 will say it should compute dimension after every
    │ │ │ │  5 minors are examined. In general, after the output of the CodimCheckFunction
    │ │ │ │  increases by an integer we compute the codimension again. The default function
    │ │ │ │  has the space between computations grow exponentially.
    │ │ │ │  i10 : time regularInCodimension(1, S/J, MaxMinors=>25, CodimCheckFunction => t-
    │ │ │ │  >t/5, MinMinorsFunction => t->2, Verbose=>true)
    │ │ │ │ - -- used 0.701715s (cpu); 0.449993s (thread); 0s (gc)
    │ │ │ │ + -- used 0.829908s (cpu); 0.655906s (thread); 0s (gc)
    │ │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5
    │ │ │ │  minors, we will compute up to 25 of them.
    │ │ │ │  regularInCodimension: About to enter loop
    │ │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices
    │ │ │ │  considered: 2, and computed = 2
    │ │ │ │ @@ -308,15 +308,15 @@
    │ │ │ │  dimension computed'' indicates we did a complete dimension computation of the
    │ │ │ │  partial ideal defining the singular locus. How isCodimAtLeast is called can be
    │ │ │ │  controlled via the options SPairsFunction and PairLimit, which are simply
    │ │ │ │  passed to _i_s_C_o_d_i_m_A_t_L_e_a_s_t. You can force the function to only use isCodimAtLeast
    │ │ │ │  and not call dimension by setting UseOnlyFastCodim => true.
    │ │ │ │  i11 : time regularInCodimension(1, S/J, MaxMinors=>25, UseOnlyFastCodim =>
    │ │ │ │  true, Verbose=>true)
    │ │ │ │ - -- used 0.43376s (cpu); 0.25769s (thread); 0s (gc)
    │ │ │ │ + -- used 0.601116s (cpu); 0.348032s (thread); 0s (gc)
    │ │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5
    │ │ │ │  minors, we will compute up to 25 of them.
    │ │ │ │  regularInCodimension: About to enter loop
    │ │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/___Strategy__Default.html
    │ │ │ @@ -66,15 +66,15 @@
    │ │ │          
    │ │ │  Below the details of how these strategies are constructed will be detailed below.  But first, we provide an example showing that these strategies can perform quite differently.  The following is the cone over the product of two elliptic curves.  We verify that this ring is regular in codimension 1 using different strategies.  Essentially, minors are computed until it is verified that the ring is regular in codimension 1.        
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │          
    i1 : T=ZZ/7[a..i]/ideal(f*h-e*i,c*h-b*i,f*g-d*i,e*g-d*h,c*g-a*i,b*g-a*h,c*e-b*f,c*d-a*f,b*d-a*e,g^3-h^2*i-g*i^2,d*g^2-e*h*i-d*i^2,a*g^2-b*h*i-a*i^2,d^2*g-e^2*i-d*f*i,a*d*g-b*e*i-a*f*i,a^2*g-b^2*i-a*c*i,d^3-e^2*f-d*f^2,a*d^2-b*e*f-a*f^2,a^2*d-b^2*f-a*c*f,c^3+f^3-i^3,b*c^2+e*f^2-h*i^2,a*c^2+d*f^2-g*i^2,b^2*c+e^2*f-h^2*i,a*b*c+d*e*f-g*h*i,a^2*c+d^2*f-g^2*i,b^3+e^3-h^3,a*b^2+d*e^2-g*h^2,a^2*b+d^2*e-g^2*h,a^3+e^2*f+d*f^2-h^2*i-g*i^2);
    │ │ │
    i2 : elapsedTime regularInCodimension(1, T, Strategy=>StrategyDefault)
    │ │ │ - -- 1.65802s elapsed
    │ │ │ + -- 2.0323s elapsed
    │ │ │  
    │ │ │  o2 = true
    │ │ │
    │ │ │ In this particular example, on one machine, we list average time to completion of each of the above strategies after 100 runs.
      │ │ │
    • │ │ │ StrategyDefault: 1.65 seconds
    • │ │ │ @@ -137,15 +137,15 @@ │ │ │ StrategyPoints: choose all submatrices via Points. │ │ │
    • │ │ │ StrategyDefaultWithPoints: like StrategyDefault but replaces the Random and RandomNonZero submatrices as with matrices chosen as in Points.
    • │ │ │
    │ │ │ Additionally, a MutableHashTable named StrategyCurrent is also exported. It begins as the default strategy, but the user can modify it.

    Using a single heuristic Alternatively, if the user only wants to use say LexSmallestTerm they can set, Strategy to point to that symbol, instead of a creating a custom strategy HashTable. For example: │ │ │ │ │ │ │ │ │
    i4 : elapsedTime regularInCodimension(1, T, Strategy=>LexSmallestTerm)
    │ │ │ - -- 1.01214s elapsed
    │ │ │ + -- 1.35087s elapsed
    │ │ │  
    │ │ │  o4 = true
    │ │ │
    │ │ │ │ │ │
    │ │ │

    For the programmer

    │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ i1 : T=ZZ/7[a..i]/ideal(f*h-e*i,c*h-b*i,f*g-d*i,e*g-d*h,c*g-a*i,b*g-a*h,c*e- │ │ │ │ b*f,c*d-a*f,b*d-a*e,g^3-h^2*i-g*i^2,d*g^2-e*h*i-d*i^2,a*g^2-b*h*i-a*i^2,d^2*g- │ │ │ │ e^2*i-d*f*i,a*d*g-b*e*i-a*f*i,a^2*g-b^2*i-a*c*i,d^3-e^2*f-d*f^2,a*d^2-b*e*f- │ │ │ │ a*f^2,a^2*d-b^2*f-a*c*f,c^3+f^3-i^3,b*c^2+e*f^2-h*i^2,a*c^2+d*f^2- │ │ │ │ g*i^2,b^2*c+e^2*f-h^2*i,a*b*c+d*e*f-g*h*i,a^2*c+d^2*f-g^2*i,b^3+e^3- │ │ │ │ h^3,a*b^2+d*e^2-g*h^2,a^2*b+d^2*e-g^2*h,a^3+e^2*f+d*f^2-h^2*i-g*i^2); │ │ │ │ i2 : elapsedTime regularInCodimension(1, T, Strategy=>StrategyDefault) │ │ │ │ - -- 1.65802s elapsed │ │ │ │ + -- 2.0323s elapsed │ │ │ │ │ │ │ │ o2 = true │ │ │ │ In this particular example, on one machine, we list average time to completion │ │ │ │ of each of the above strategies after 100 runs. │ │ │ │ * StrategyDefault: 1.65 seconds │ │ │ │ * StrategyRandom: 8.32 seconds │ │ │ │ * StrategyDefaultNonRandom: 0.99 seconds │ │ │ │ @@ -135,12 +135,12 @@ │ │ │ │ Additionally, a MutableHashTable named StrategyCurrent is also exported. It │ │ │ │ begins as the default strategy, but the user can modify it. │ │ │ │ │ │ │ │ UUssiinngg aa ssiinnggllee hheeuurriissttiicc Alternatively, if the user only wants to use say │ │ │ │ LexSmallestTerm they can set, Strategy to point to that symbol, instead of a │ │ │ │ creating a custom strategy HashTable. For example: │ │ │ │ i4 : elapsedTime regularInCodimension(1, T, Strategy=>LexSmallestTerm) │ │ │ │ - -- 1.01214s elapsed │ │ │ │ + -- 1.35087s elapsed │ │ │ │ │ │ │ │ o4 = true │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _S_t_r_a_t_e_g_y_D_e_f_a_u_l_t is an _o_p_t_i_o_n_ _t_a_b_l_e. │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/_is__Codim__At__Least.html │ │ │ @@ -106,15 +106,15 @@ │ │ │
    i6 : J = chooseGoodMinors(15, r, myDiff, Strategy=>StrategyDefaultNonRandom);
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │
    i7 : time isCodimAtLeast(3, J)
    │ │ │ - -- used 0.00400131s (cpu); 0.0024123s (thread); 0s (gc)
    │ │ │ + -- used 0.0408105s (cpu); 0.0424731s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = true
    │ │ │
    │ │ │
    │ │ │

    The function works by computing gb(I, PairLimit=>f(i)) for successive values of i. Here f(i) is a function that takes t, some approximation of the base degree value of the polynomial ring (for example, in a standard graded polynomial ring, this is probably expected to be \{1\}). And i is a counting variable. You can provide your own function by calling isCodimAtLeast(n, I, SPairsFunction=>( (i) -> f(i) ), the default function is SPairsFunction=>i->ceiling(1.5^i) Perhaps more commonly however, the user may want to instead tell the function to compute for larger values of i. This is done via the option PairLimit. This is the max value of i to be plugged into SPairsFunction before the function gives up. In other words, PairLimit=>5 will tell the function to check codimension 5 times.

    │ │ │
    │ │ │ @@ -124,22 +124,22 @@ │ │ │ │ │ │ ZZ │ │ │ o8 : Ideal of ---[x , x , x , x , x , x , x , x , x , x , x , x ] │ │ │ 127 11 8 1 9 12 6 5 10 2 4 3 7
    │ │ │
    i9 : time isCodimAtLeast(5, I, PairLimit => 5, Verbose=>true)
    │ │ │ - -- used 0.00265611s (cpu); 0.00233315s (thread); 0s (gc)
    │ │ │ + -- used 0.00028781s (cpu); 0.00212849s (thread); 0s (gc)
    │ │ │  isCodimAtLeast: Computing codim of monomials based on ideal generators.
    │ │ │  
    │ │ │  o9 = true
    │ │ │
    i10 : time isCodimAtLeast(5, I, PairLimit => 200, Verbose=>false)
    │ │ │ - -- used 5.4772e-05s (cpu); 0.0022959s (thread); 0s (gc)
    │ │ │ + -- used 0.00158338s (cpu); 0.00207919s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = true
    │ │ │
    │ │ │
    │ │ │

    Notice in the first case the function returned null, because the depth of search was not high enough. It only computed codim 5 times. The second returned true, but it did so as soon as the answer was found (and before we hit the PairLimit limit).

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -39,15 +39,15 @@ │ │ │ │ 30 12 │ │ │ │ o4 : Matrix R <-- R │ │ │ │ i5 : r = rank myDiff; │ │ │ │ i6 : J = chooseGoodMinors(15, r, myDiff, Strategy=>StrategyDefaultNonRandom); │ │ │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ i7 : time isCodimAtLeast(3, J) │ │ │ │ - -- used 0.00400131s (cpu); 0.0024123s (thread); 0s (gc) │ │ │ │ + -- used 0.0408105s (cpu); 0.0424731s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = true │ │ │ │ The function works by computing gb(I, PairLimit=>f(i)) for successive values of │ │ │ │ i. Here f(i) is a function that takes t, some approximation of the base degree │ │ │ │ value of the polynomial ring (for example, in a standard graded polynomial │ │ │ │ ring, this is probably expected to be \{1\}). And i is a counting variable. You │ │ │ │ can provide your own function by calling isCodimAtLeast(n, I, SPairsFunction=> │ │ │ │ @@ -73,20 +73,20 @@ │ │ │ │ x_7^3*x_8^5*x_11^3,x_2^5*x_3^3*x_11^3- │ │ │ │ 3*x_2^6*x_3^2*x_11^2*x_12+3*x_2^7*x_3*x_11*x_12^2-x_2^8*x_12^3); │ │ │ │ │ │ │ │ ZZ │ │ │ │ o8 : Ideal of ---[x , x , x , x , x , x , x , x , x , x , x , x ] │ │ │ │ 127 11 8 1 9 12 6 5 10 2 4 3 7 │ │ │ │ i9 : time isCodimAtLeast(5, I, PairLimit => 5, Verbose=>true) │ │ │ │ - -- used 0.00265611s (cpu); 0.00233315s (thread); 0s (gc) │ │ │ │ + -- used 0.00028781s (cpu); 0.00212849s (thread); 0s (gc) │ │ │ │ isCodimAtLeast: Computing codim of monomials based on ideal generators. │ │ │ │ │ │ │ │ o9 = true │ │ │ │ i10 : time isCodimAtLeast(5, I, PairLimit => 200, Verbose=>false) │ │ │ │ - -- used 5.4772e-05s (cpu); 0.0022959s (thread); 0s (gc) │ │ │ │ + -- used 0.00158338s (cpu); 0.00207919s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = true │ │ │ │ Notice in the first case the function returned null, because the depth of │ │ │ │ search was not high enough. It only computed codim 5 times. The second returned │ │ │ │ true, but it did so as soon as the answer was found (and before we hit the │ │ │ │ PairLimit limit). │ │ │ │ ********** WWaayyss ttoo uussee iissCCooddiimmAAttLLeeaasstt:: ********** │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/_proj__Dim.html │ │ │ @@ -100,21 +100,21 @@ │ │ │
    i3 : pdim(module I)
    │ │ │  
    │ │ │  o3 = 2
    │ │ │
    i4 : time projDim(module I, Strategy=>StrategyRandom)
    │ │ │ - -- used 0.255808s (cpu); 0.130559s (thread); 0s (gc)
    │ │ │ + -- used 0.280573s (cpu); 0.181159s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 1
    │ │ │
    i5 : time projDim(module I, Strategy=>StrategyRandom, MinDimension => 1)
    │ │ │ - -- used 0.00883907s (cpu); 0.0114568s (thread); 0s (gc)
    │ │ │ + -- used 0.00800158s (cpu); 0.0112099s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 1
    │ │ │
    │ │ │
    │ │ │

    The option MaxMinors can be used to control how many minors are computed at each step. If this is not specified, the number of minors is a function of the dimension $d$ of the polynomial ring and the possible minors $c$. Specifically it is 10 * d + 2 * log_1.3(c). Otherwise the user can set the option MaxMinors => ZZ to specify that a fixed integer is used for each step. Alternatively, the user can control the number of minors computed at each step by setting the option MaxMinors => List. In this case, the list specifies how many minors to be computed at each step, (working backwards). Finally, you can also set MaxMinors to be a custom function of the dimension $d$ of the polynomial ring and the maximum number of minors.

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -45,19 +45,19 @@ │ │ │ │ i2 : I = ideal((x^3+y)^2, (x^2+y^2)^2, (x+y^3)^2, (x*y)^2); │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : pdim(module I) │ │ │ │ │ │ │ │ o3 = 2 │ │ │ │ i4 : time projDim(module I, Strategy=>StrategyRandom) │ │ │ │ - -- used 0.255808s (cpu); 0.130559s (thread); 0s (gc) │ │ │ │ + -- used 0.280573s (cpu); 0.181159s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 1 │ │ │ │ i5 : time projDim(module I, Strategy=>StrategyRandom, MinDimension => 1) │ │ │ │ - -- used 0.00883907s (cpu); 0.0114568s (thread); 0s (gc) │ │ │ │ + -- used 0.00800158s (cpu); 0.0112099s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 1 │ │ │ │ The option MaxMinors can be used to control how many minors are computed at │ │ │ │ each step. If this is not specified, the number of minors is a function of the │ │ │ │ dimension $d$ of the polynomial ring and the possible minors $c$. Specifically │ │ │ │ it is 10 * d + 2 * log_1.3(c). Otherwise the user can set the option MaxMinors │ │ │ │ => ZZ to specify that a fixed integer is used for each step. Alternatively, the │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/_recursive__Minors.html │ │ │ @@ -94,21 +94,21 @@ │ │ │
    i2 : M = random(R^{5,5,5,5,5,5}, R^7);
    │ │ │  
    │ │ │               6      7
    │ │ │  o2 : Matrix R  <-- R
    │ │ │
    i3 : time I2 = recursiveMinors(4, M, Threads=>0);
    │ │ │ - -- used 0.437786s (cpu); 0.440787s (thread); 0s (gc)
    │ │ │ + -- used 0.611988s (cpu); 0.610769s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │
    i4 : time I1 = minors(4, M, Strategy=>Cofactor);
    │ │ │ - -- used 1.59111s (cpu); 1.34157s (thread); 0s (gc)
    │ │ │ + -- used 2.22499s (cpu); 1.94741s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │
    i5 : I1 == I2
    │ │ │  
    │ │ │  o5 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -28,19 +28,19 @@ │ │ │ │ strategy for minors │ │ │ │ i1 : R = QQ[x,y]; │ │ │ │ i2 : M = random(R^{5,5,5,5,5,5}, R^7); │ │ │ │ │ │ │ │ 6 7 │ │ │ │ o2 : Matrix R <-- R │ │ │ │ i3 : time I2 = recursiveMinors(4, M, Threads=>0); │ │ │ │ - -- used 0.437786s (cpu); 0.440787s (thread); 0s (gc) │ │ │ │ + -- used 0.611988s (cpu); 0.610769s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : Ideal of R │ │ │ │ i4 : time I1 = minors(4, M, Strategy=>Cofactor); │ │ │ │ - -- used 1.59111s (cpu); 1.34157s (thread); 0s (gc) │ │ │ │ + -- used 2.22499s (cpu); 1.94741s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : I1 == I2 │ │ │ │ │ │ │ │ o5 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_i_n_o_r_s -- ideal generated by minors │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/_regular__In__Codimension.html │ │ │ @@ -129,21 +129,21 @@ │ │ │
    i7 : dim S
    │ │ │  
    │ │ │  o7 = 3
    │ │ │
    i8 : time regularInCodimension(1, S)
    │ │ │ - -- used 1.52067s (cpu); 1.10529s (thread); 0s (gc)
    │ │ │ + -- used 2.24596s (cpu); 1.74857s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = true
    │ │ │
    i9 : time regularInCodimension(2, S)
    │ │ │ - -- used 6.53229s (cpu); 4.74206s (thread); 0s (gc)
    │ │ │ + -- used 8.53673s (cpu); 6.38222s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │

    There are numerous examples where regularInCodimension is several orders of magnitude faster that calls of dim singularLocus.

    │ │ │
    │ │ │
    │ │ │

    The following is a (pruned) affine chart on an Abelian surface obtained as a product of two elliptic curves. It is nonsingular, as our function verifies. If one does not prune it, then the dim singularLocus call takes an enormous amount of time, otherwise the running times of dim singularLocus and our function are frequently about the same.

    │ │ │ @@ -155,33 +155,33 @@ │ │ │
    i11 : dim(R)
    │ │ │  
    │ │ │  o11 = 2
    │ │ │
    i12 : time (dim singularLocus (R))
    │ │ │ - -- used 0.0199993s (cpu); 0.0195143s (thread); 0s (gc)
    │ │ │ + -- used 0.0160025s (cpu); 0.0168s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 = -1
    │ │ │
    i13 : time regularInCodimension(2, R)
    │ │ │ - -- used 0.493224s (cpu); 0.310068s (thread); 0s (gc)
    │ │ │ + -- used 0.688828s (cpu); 0.494292s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = true
    │ │ │
    i14 : time regularInCodimension(2, R)
    │ │ │ - -- used 0.852714s (cpu); 0.524319s (thread); 0s (gc)
    │ │ │ + -- used 1.01499s (cpu); 0.776686s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = true
    │ │ │
    i15 : time regularInCodimension(2, R)
    │ │ │ - -- used 0.322571s (cpu); 0.208202s (thread); 0s (gc)
    │ │ │ + -- used 0.380781s (cpu); 0.24463s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = true
    │ │ │
    │ │ │
    │ │ │

    The function works by choosing interesting looking submatrices, computing their determinants, and periodically (based on a logarithmic growth setting), computing the dimension of a subideal of the Jacobian. The option Verbose can be used to see this in action.

    │ │ │
    │ │ │ @@ -519,15 +519,15 @@ │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ internalChooseMinor: Choosing Random │ │ │ internalChooseMinor: Choosing Random │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ -internalChooseMinor: Choosing -- used 6.47455s (cpu); 4.61649s (thread); 0s (gc) │ │ │ +internalChooseMinor: Choosing -- used 9.50516s (cpu); 7.7463s (thread); 0s (gc) │ │ │ LexSmallestTerm │ │ │ internalChooseMinor: Choosing Random │ │ │ internalChooseMinor: Choosing Random │ │ │ internalChooseMinor: Choosing GRevLexSmallest │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ internalChooseMinor: Choosing GRevLexSmallest │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ @@ -569,15 +569,15 @@ │ │ │
    │ │ │
    │ │ │

    The maximum number of minors considered can be controlled by the option MaxMinors. Alternatively, it can be controlled in a more precise way by passing a function to the option MaxMinors. This function should have two inputs; the first is minimum number of minors needed to determine whether the ring is regular in codimension n, and the second is the total number of minors available in the Jacobian. The function regularInCodimension does not recompute determinants, so MaxMinors or is only an upper bound on the number of minors computed.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i17 : time regularInCodimension(2, S, Verbose=>true, MaxMinors=>30)
    │ │ │ - -- used 1.54762s (cpu); 1.2674s (thread); 0s (gc)
    │ │ │ + -- used 1.9773s (cpu); 1.57609s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =3, there are 17325 possible 4 by 4 minors, we will compute up to 30 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │ @@ -638,73 +638,73 @@
    │ │ │  
    i19 : StrategyCurrent#LexSmallest = 100;
    │ │ │
    i20 : StrategyCurrent#LexSmallestTerm = 0;
    │ │ │
    i21 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.143625s (cpu); 0.0920942s (thread); 0s (gc)
    │ │ │ + -- used 0.168031s (cpu); 0.125249s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = true
    │ │ │
    i22 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.271628s (cpu); 0.149929s (thread); 0s (gc)
    │ │ │ + -- used 0.29762s (cpu); 0.216079s (thread); 0s (gc)
    │ │ │  
    │ │ │  o22 = true
    │ │ │
    i23 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 1.725s (cpu); 1.31345s (thread); 0s (gc)
    │ │ │ + -- used 2.04151s (cpu); 1.51965s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = true
    │ │ │
    i24 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 1.13749s (cpu); 0.85499s (thread); 0s (gc)
    │ │ │ + -- used 1.59786s (cpu); 1.21613s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = true
    │ │ │
    i25 : StrategyCurrent#LexSmallest = 0;
    │ │ │
    i26 : StrategyCurrent#LexSmallestTerm = 100;
    │ │ │
    i27 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.463182s (cpu); 0.273596s (thread); 0s (gc)
    │ │ │ + -- used 0.596072s (cpu); 0.329815s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = true
    │ │ │
    i28 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 2.17628s (cpu); 1.4555s (thread); 0s (gc)
    │ │ │ + -- used 2.71977s (cpu); 2.17705s (thread); 0s (gc) │ │ │
    i29 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.165936s (cpu); 0.105402s (thread); 0s (gc)
    │ │ │ + -- used 0.165608s (cpu); 0.128097s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = true
    │ │ │
    i30 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.211774s (cpu); 0.158759s (thread); 0s (gc)
    │ │ │ + -- used 0.309078s (cpu); 0.261711s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = true
    │ │ │
    i31 : time regularInCodimension(1, S, Strategy=>StrategyRandom)
    │ │ │ - -- used 1.48716s (cpu); 1.11753s (thread); 0s (gc)
    │ │ │ + -- used 2.27716s (cpu); 1.8885s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = true
    │ │ │
    i32 : time regularInCodimension(1, S, Strategy=>StrategyRandom)
    │ │ │ - -- used 1.52406s (cpu); 1.15802s (thread); 0s (gc)
    │ │ │ + -- used 2.06232s (cpu); 1.60872s (thread); 0s (gc)
    │ │ │  
    │ │ │  o32 = true
    │ │ │
    │ │ │
    │ │ │

    The minimum number of minors computed before checking the codimension can also be controlled by an option MinMinorsFunction. This is should be a function of a single variable, the number of minors computed. Finally, via the option CodimCheckFunction, you can pass the regularInCodimension a function which controls how frequently the codimension of the partial Jacobian ideal is computed. By default this is the floor of 1.3^k. Finally, passing the option Modulus => p will do the computation after changing the coefficient ring to ZZ/p.

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -73,19 +73,19 @@ │ │ │ │ │ │ │ │ o5 : Ideal of T │ │ │ │ i6 : S = T/I; │ │ │ │ i7 : dim S │ │ │ │ │ │ │ │ o7 = 3 │ │ │ │ i8 : time regularInCodimension(1, S) │ │ │ │ - -- used 1.52067s (cpu); 1.10529s (thread); 0s (gc) │ │ │ │ + -- used 2.24596s (cpu); 1.74857s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 = true │ │ │ │ i9 : time regularInCodimension(2, S) │ │ │ │ - -- used 6.53229s (cpu); 4.74206s (thread); 0s (gc) │ │ │ │ + -- used 8.53673s (cpu); 6.38222s (thread); 0s (gc) │ │ │ │ There are numerous examples where regularInCodimension is several orders of │ │ │ │ magnitude faster that calls of dim singularLocus. │ │ │ │ The following is a (pruned) affine chart on an Abelian surface obtained as a │ │ │ │ product of two elliptic curves. It is nonsingular, as our function verifies. If │ │ │ │ one does not prune it, then the dim singularLocus call takes an enormous amount │ │ │ │ of time, otherwise the running times of dim singularLocus and our function are │ │ │ │ frequently about the same. │ │ │ │ @@ -93,27 +93,27 @@ │ │ │ │ (g^3+h^3+1,f*g^3+f*h^3+f,c*g^3+c*h^3+c,f^2*g^3+f^2*h^3+f^2,c*f*g^3+c*f*h^3+c*f,c^2*g^3+c^2*h^3+c^2,f^3*g^3+f^3*h^3+f^3,c*f^2*g^3+c*f^2*h^3+c*f^2,c^2*f*g^3+c^2*f*h^3+c^2*f,c^3- │ │ │ │ f^2-c,c^3*h-f^2*h-c*h,c^3*g-f^2*g-c*g,c^3*h^2-f^2*h^2-c*h^2,c^3*g*h-f^2*g*h-c*g*h,c^3*g^2-f^2*g^2-c*g^2,c^3*h^3-f^2*h^3-c*h^3,c^3*g*h^2-f^2*g*h^2-c*g*h^2,c^3*g^2*h-f^2*g^2*h- │ │ │ │ c*g^2*h,c^3*g^3+f^2*h^3+c*h^3+f^2+c); │ │ │ │ i11 : dim(R) │ │ │ │ │ │ │ │ o11 = 2 │ │ │ │ i12 : time (dim singularLocus (R)) │ │ │ │ - -- used 0.0199993s (cpu); 0.0195143s (thread); 0s (gc) │ │ │ │ + -- used 0.0160025s (cpu); 0.0168s (thread); 0s (gc) │ │ │ │ │ │ │ │ o12 = -1 │ │ │ │ i13 : time regularInCodimension(2, R) │ │ │ │ - -- used 0.493224s (cpu); 0.310068s (thread); 0s (gc) │ │ │ │ + -- used 0.688828s (cpu); 0.494292s (thread); 0s (gc) │ │ │ │ │ │ │ │ o13 = true │ │ │ │ i14 : time regularInCodimension(2, R) │ │ │ │ - -- used 0.852714s (cpu); 0.524319s (thread); 0s (gc) │ │ │ │ + -- used 1.01499s (cpu); 0.776686s (thread); 0s (gc) │ │ │ │ │ │ │ │ o14 = true │ │ │ │ i15 : time regularInCodimension(2, R) │ │ │ │ - -- used 0.322571s (cpu); 0.208202s (thread); 0s (gc) │ │ │ │ + -- used 0.380781s (cpu); 0.24463s (thread); 0s (gc) │ │ │ │ │ │ │ │ o15 = true │ │ │ │ The function works by choosing interesting looking submatrices, computing their │ │ │ │ determinants, and periodically (based on a logarithmic growth setting), │ │ │ │ computing the dimension of a subideal of the Jacobian. The option Verbose can │ │ │ │ be used to see this in action. │ │ │ │ i16 : time regularInCodimension(2, S, Verbose=>true) │ │ │ │ @@ -462,16 +462,15 @@ │ │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ │ internalChooseMinor: Choosing Random │ │ │ │ internalChooseMinor: Choosing Random │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ │ -internalChooseMinor: Choosing -- used 6.47455s (cpu); 4.61649s (thread); 0s │ │ │ │ -(gc) │ │ │ │ +internalChooseMinor: Choosing -- used 9.50516s (cpu); 7.7463s (thread); 0s (gc) │ │ │ │ LexSmallestTerm │ │ │ │ internalChooseMinor: Choosing Random │ │ │ │ internalChooseMinor: Choosing Random │ │ │ │ internalChooseMinor: Choosing GRevLexSmallest │ │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ │ internalChooseMinor: Choosing GRevLexSmallest │ │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ │ @@ -517,15 +516,15 @@ │ │ │ │ a function to the option MaxMinors. This function should have two inputs; the │ │ │ │ first is minimum number of minors needed to determine whether the ring is │ │ │ │ regular in codimension n, and the second is the total number of minors │ │ │ │ available in the Jacobian. The function regularInCodimension does not recompute │ │ │ │ determinants, so MaxMinors or is only an upper bound on the number of minors │ │ │ │ computed. │ │ │ │ i17 : time regularInCodimension(2, S, Verbose=>true, MaxMinors=>30) │ │ │ │ - -- used 1.54762s (cpu); 1.2674s (thread); 0s (gc) │ │ │ │ + -- used 1.9773s (cpu); 1.57609s (thread); 0s (gc) │ │ │ │ regularInCodimension: ring dimension =3, there are 17325 possible 4 by 4 │ │ │ │ minors, we will compute up to 30 of them. │ │ │ │ regularInCodimension: About to enter loop │ │ │ │ internalChooseMinor: Choosing Random │ │ │ │ internalChooseMinor: Choosing Random │ │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ @@ -592,51 +591,51 @@ │ │ │ │ because there are a small number of entries with nonzero constant terms, which │ │ │ │ are selected repeatedly). However, in our first example, the LexSmallestTerm is │ │ │ │ much faster, and Random does not perform well at all. │ │ │ │ i18 : StrategyCurrent#Random = 0; │ │ │ │ i19 : StrategyCurrent#LexSmallest = 100; │ │ │ │ i20 : StrategyCurrent#LexSmallestTerm = 0; │ │ │ │ i21 : time regularInCodimension(2, R, Strategy=>StrategyCurrent) │ │ │ │ - -- used 0.143625s (cpu); 0.0920942s (thread); 0s (gc) │ │ │ │ + -- used 0.168031s (cpu); 0.125249s (thread); 0s (gc) │ │ │ │ │ │ │ │ o21 = true │ │ │ │ i22 : time regularInCodimension(2, R, Strategy=>StrategyCurrent) │ │ │ │ - -- used 0.271628s (cpu); 0.149929s (thread); 0s (gc) │ │ │ │ + -- used 0.29762s (cpu); 0.216079s (thread); 0s (gc) │ │ │ │ │ │ │ │ o22 = true │ │ │ │ i23 : time regularInCodimension(1, S, Strategy=>StrategyCurrent) │ │ │ │ - -- used 1.725s (cpu); 1.31345s (thread); 0s (gc) │ │ │ │ + -- used 2.04151s (cpu); 1.51965s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 = true │ │ │ │ i24 : time regularInCodimension(1, S, Strategy=>StrategyCurrent) │ │ │ │ - -- used 1.13749s (cpu); 0.85499s (thread); 0s (gc) │ │ │ │ + -- used 1.59786s (cpu); 1.21613s (thread); 0s (gc) │ │ │ │ │ │ │ │ o24 = true │ │ │ │ i25 : StrategyCurrent#LexSmallest = 0; │ │ │ │ i26 : StrategyCurrent#LexSmallestTerm = 100; │ │ │ │ i27 : time regularInCodimension(2, R, Strategy=>StrategyCurrent) │ │ │ │ - -- used 0.463182s (cpu); 0.273596s (thread); 0s (gc) │ │ │ │ + -- used 0.596072s (cpu); 0.329815s (thread); 0s (gc) │ │ │ │ │ │ │ │ o27 = true │ │ │ │ i28 : time regularInCodimension(2, R, Strategy=>StrategyCurrent) │ │ │ │ - -- used 2.17628s (cpu); 1.4555s (thread); 0s (gc) │ │ │ │ + -- used 2.71977s (cpu); 2.17705s (thread); 0s (gc) │ │ │ │ i29 : time regularInCodimension(1, S, Strategy=>StrategyCurrent) │ │ │ │ - -- used 0.165936s (cpu); 0.105402s (thread); 0s (gc) │ │ │ │ + -- used 0.165608s (cpu); 0.128097s (thread); 0s (gc) │ │ │ │ │ │ │ │ o29 = true │ │ │ │ i30 : time regularInCodimension(1, S, Strategy=>StrategyCurrent) │ │ │ │ - -- used 0.211774s (cpu); 0.158759s (thread); 0s (gc) │ │ │ │ + -- used 0.309078s (cpu); 0.261711s (thread); 0s (gc) │ │ │ │ │ │ │ │ o30 = true │ │ │ │ i31 : time regularInCodimension(1, S, Strategy=>StrategyRandom) │ │ │ │ - -- used 1.48716s (cpu); 1.11753s (thread); 0s (gc) │ │ │ │ + -- used 2.27716s (cpu); 1.8885s (thread); 0s (gc) │ │ │ │ │ │ │ │ o31 = true │ │ │ │ i32 : time regularInCodimension(1, S, Strategy=>StrategyRandom) │ │ │ │ - -- used 1.52406s (cpu); 1.15802s (thread); 0s (gc) │ │ │ │ + -- used 2.06232s (cpu); 1.60872s (thread); 0s (gc) │ │ │ │ │ │ │ │ o32 = true │ │ │ │ The minimum number of minors computed before checking the codimension can also │ │ │ │ be controlled by an option MinMinorsFunction. This is should be a function of a │ │ │ │ single variable, the number of minors computed. Finally, via the option │ │ │ │ CodimCheckFunction, you can pass the regularInCodimension a function which │ │ │ │ controls how frequently the codimension of the partial Jacobian ideal is │ │ ├── ./usr/share/doc/Macaulay2/FiniteFittingIdeals/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=26 │ │ │ bmV4dERlZ3JlZShNYXRyaXgsWlosUmluZyk= │ │ │ #:len=288 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzU1LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhuZXh0RGVncmVlLE1hdHJpeCxaWixSaW5nKSwibmV4 │ │ ├── ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/___Fitting_spideals_spof_spfinite_spmodules.out │ │ │ @@ -81,23 +81,23 @@ │ │ │ │ │ │ i14 : K3=nextDegree(gens ker Q2,2,S); │ │ │ │ │ │ 8 8 │ │ │ o14 : Matrix R <-- R │ │ │ │ │ │ i15 : time I=co1Fitting(K3) │ │ │ - -- used 0.000134933s (cpu); 0.00237563s (thread); 0s (gc) │ │ │ + -- used 0.0012091s (cpu); 0.00204597s (thread); 0s (gc) │ │ │ │ │ │ o15 = ideal (a a + a - a , a a - a , a a + a - a , a a - a ) │ │ │ 9 11 5 12 3 11 6 9 10 4 11 3 10 5 │ │ │ │ │ │ o15 : Ideal of R │ │ │ │ │ │ i16 : time J=fittingIdeal(2-1,coker K3); │ │ │ - -- used 0.00561582s (cpu); 0.0061178s (thread); 0s (gc) │ │ │ + -- used 0.00474641s (cpu); 0.00498312s (thread); 0s (gc) │ │ │ │ │ │ o16 : Ideal of R │ │ │ │ │ │ i17 : I==J │ │ │ │ │ │ o17 = true │ │ ├── ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/___Fitting_spideals_spof_spfinite_spmodules.html │ │ │ @@ -166,24 +166,24 @@ │ │ │
    i14 : K3=nextDegree(gens ker Q2,2,S);
    │ │ │  
    │ │ │                8      8
    │ │ │  o14 : Matrix R  <-- R
    │ │ │
    i15 : time I=co1Fitting(K3)
    │ │ │ - -- used 0.000134933s (cpu); 0.00237563s (thread); 0s (gc)
    │ │ │ + -- used 0.0012091s (cpu); 0.00204597s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = ideal (a a   + a  - a  , a a   - a , a a   + a  - a  , a a   - a )
    │ │ │                9 11    5    12   3 11    6   9 10    4    11   3 10    5
    │ │ │  
    │ │ │  o15 : Ideal of R
    │ │ │
    i16 : time J=fittingIdeal(2-1,coker K3);
    │ │ │ - -- used 0.00561582s (cpu); 0.0061178s (thread); 0s (gc)
    │ │ │ + -- used 0.00474641s (cpu); 0.00498312s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 : Ideal of R
    │ │ │
    i17 : I==J
    │ │ │  
    │ │ │  o17 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -95,22 +95,22 @@ │ │ │ │ 2 6 │ │ │ │ o13 : Matrix R <-- R │ │ │ │ i14 : K3=nextDegree(gens ker Q2,2,S); │ │ │ │ │ │ │ │ 8 8 │ │ │ │ o14 : Matrix R <-- R │ │ │ │ i15 : time I=co1Fitting(K3) │ │ │ │ - -- used 0.000134933s (cpu); 0.00237563s (thread); 0s (gc) │ │ │ │ + -- used 0.0012091s (cpu); 0.00204597s (thread); 0s (gc) │ │ │ │ │ │ │ │ o15 = ideal (a a + a - a , a a - a , a a + a - a , a a - a ) │ │ │ │ 9 11 5 12 3 11 6 9 10 4 11 3 10 5 │ │ │ │ │ │ │ │ o15 : Ideal of R │ │ │ │ i16 : time J=fittingIdeal(2-1,coker K3); │ │ │ │ - -- used 0.00561582s (cpu); 0.0061178s (thread); 0s (gc) │ │ │ │ + -- used 0.00474641s (cpu); 0.00498312s (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 : Ideal of R │ │ │ │ i17 : I==J │ │ │ │ │ │ │ │ o17 = true │ │ │ │ Note that our method is a bit faster for this small example, and for rank 2 │ │ │ │ quotients of S^3=\mathbb{Z}[x,y]^3 the time difference is massive. │ │ ├── ./usr/share/doc/Macaulay2/FirstPackage/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=12 │ │ │ Rmlyc3RQYWNrYWdl │ │ │ #:len=509 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiYW4gZXhhbXBsZSBNYWNhdWxheTIgcGFj │ │ │ a2FnZSIsICJsaW5lbnVtIiA9PiA1MywgImZpbGVuYW1lIiA9PiAiRmlyc3RQYWNrYWdlLm0yIiwg │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=13 │ │ │ dmFsdWUodWludDE2KQ== │ │ │ #:len=273 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTY5Miwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsodmFsdWUsdWludDE2KSwidmFsdWUodWludDE2KSIs │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Object.out │ │ │ @@ -4,19 +4,19 @@ │ │ │ │ │ │ o1 = 5 │ │ │ │ │ │ o1 : ForeignObject of type int32 │ │ │ │ │ │ i2 : peek x │ │ │ │ │ │ -o2 = int32{Address => 0x7f5daa523ec0} │ │ │ +o2 = int32{Address => 0x7f0d842307a0} │ │ │ │ │ │ i3 : address x │ │ │ │ │ │ -o3 = 0x7f5daa523ec0 │ │ │ +o3 = 0x7f0d842307a0 │ │ │ │ │ │ o3 : Pointer │ │ │ │ │ │ i4 : class x │ │ │ │ │ │ o4 = int32 │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Pointer__Array__Type.out │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ │ │ o2 = {the, quick, brown, fox, jumps, over, the, lazy, dog} │ │ │ │ │ │ o2 : ForeignObject of type char** │ │ │ │ │ │ i3 : voidstarstar {address int 0, address int 1, address int 2} │ │ │ │ │ │ -o3 = {0x7fce2ba5fcd0, 0x7fce2ba5fcc0, 0x7fce2ba5fcb0} │ │ │ +o3 = {0x7f09585cb500, 0x7f09585cb4f0, 0x7f09585cb4e0} │ │ │ │ │ │ o3 : ForeignObject of type void** │ │ │ │ │ │ i4 : x = charstarstar {"foo", "bar", "baz"} │ │ │ │ │ │ o4 = {foo, bar, baz} │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Pointer__Array__Type_sp__Visible__List.out │ │ │ @@ -4,15 +4,15 @@ │ │ │ │ │ │ o1 = {foo, bar} │ │ │ │ │ │ o1 : ForeignObject of type char** │ │ │ │ │ │ i2 : voidstarstar {address int 0, address int 1, address int 2} │ │ │ │ │ │ -o2 = {0x7f9bfd1e7ae0, 0x7f9bfd1e7ad0, 0x7f9bfd1e7ac0} │ │ │ +o2 = {0x7f223b05ef30, 0x7f223b05ef20, 0x7f223b05ef10} │ │ │ │ │ │ o2 : ForeignObject of type void** │ │ │ │ │ │ i3 : int2star = foreignPointerArrayType(2 * int) │ │ │ │ │ │ o3 = int32[2]* │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Pointer__Type_sp__Pointer.out │ │ │ @@ -1,15 +1,15 @@ │ │ │ -- -*- M2-comint -*- hash: 1730835169888399450 │ │ │ │ │ │ i1 : ptr = address int 0 │ │ │ │ │ │ -o1 = 0x7f3cb62b2350 │ │ │ +o1 = 0x7f7b2de308b0 │ │ │ │ │ │ o1 : Pointer │ │ │ │ │ │ i2 : voidstar ptr │ │ │ │ │ │ -o2 = 0x7f3cb62b2350 │ │ │ +o2 = 0x7f7b2de308b0 │ │ │ │ │ │ o2 : ForeignObject of type void* │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Type_sp__Pointer.out │ │ │ @@ -4,15 +4,15 @@ │ │ │ │ │ │ o1 = 5 │ │ │ │ │ │ o1 : ForeignObject of type int32 │ │ │ │ │ │ i2 : ptr = address x │ │ │ │ │ │ -o2 = 0x7fa785fa61e0 │ │ │ +o2 = 0x7f7169e30890 │ │ │ │ │ │ o2 : Pointer │ │ │ │ │ │ i3 : int ptr │ │ │ │ │ │ o3 = 5 │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Type_sp_st_spvoidstar.out │ │ │ @@ -1,12 +1,12 @@ │ │ │ -- -*- M2-comint -*- hash: 1731230829183683930 │ │ │ │ │ │ i1 : ptr = voidstar address int 5 │ │ │ │ │ │ -o1 = 0x7f14108492a0 │ │ │ +o1 = 0x7f594da30770 │ │ │ │ │ │ o1 : ForeignObject of type void* │ │ │ │ │ │ i2 : int * ptr │ │ │ │ │ │ o2 = 5 │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Union__Type_sp__Thing.out │ │ │ @@ -4,15 +4,15 @@ │ │ │ │ │ │ o1 = myunion │ │ │ │ │ │ o1 : ForeignUnionType │ │ │ │ │ │ i2 : myunion 27 │ │ │ │ │ │ -o2 = HashTable{"bar" => 6.94487e-310} │ │ │ +o2 = HashTable{"bar" => 6.9037e-310} │ │ │ "foo" => 27 │ │ │ │ │ │ o2 : ForeignObject of type myunion │ │ │ │ │ │ i3 : myunion pi │ │ │ │ │ │ o3 = HashTable{"bar" => 3.14159 } │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Pointer.out │ │ │ @@ -4,28 +4,28 @@ │ │ │ │ │ │ o1 = 20 │ │ │ │ │ │ o1 : ForeignObject of type int32 │ │ │ │ │ │ i2 : peek x │ │ │ │ │ │ -o2 = int32{Address => 0x7f9390dc9080} │ │ │ +o2 = int32{Address => 0x7f1e080d57e0} │ │ │ │ │ │ i3 : ptr = address x │ │ │ │ │ │ -o3 = 0x7f9390dc9080 │ │ │ +o3 = 0x7f1e080d57e0 │ │ │ │ │ │ o3 : Pointer │ │ │ │ │ │ i4 : ptr + 5 │ │ │ │ │ │ -o4 = 0x7f9390dc9085 │ │ │ +o4 = 0x7f1e080d57e5 │ │ │ │ │ │ o4 : Pointer │ │ │ │ │ │ i5 : ptr - 3 │ │ │ │ │ │ -o5 = 0x7f9390dc907d │ │ │ +o5 = 0x7f1e080d57dd │ │ │ │ │ │ o5 : Pointer │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Shared__Library.out │ │ │ @@ -4,10 +4,10 @@ │ │ │ │ │ │ o1 = mpfr │ │ │ │ │ │ o1 : SharedLibrary │ │ │ │ │ │ i2 : peek mpfr │ │ │ │ │ │ -o2 = SharedLibrary{0x7f2afa172550, mpfr} │ │ │ +o2 = SharedLibrary{0x7f3a0dd50550, mpfr} │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/__st_spvoidstar_sp_eq_sp__Thing.out │ │ │ @@ -4,15 +4,15 @@ │ │ │ │ │ │ o1 = 5 │ │ │ │ │ │ o1 : ForeignObject of type int32 │ │ │ │ │ │ i2 : ptr = address x │ │ │ │ │ │ -o2 = 0x7f7a7a509710 │ │ │ +o2 = 0x7f85a447e100 │ │ │ │ │ │ o2 : Pointer │ │ │ │ │ │ i3 : *ptr = int 6 │ │ │ │ │ │ o3 = 6 │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_address.out │ │ │ @@ -1,15 +1,15 @@ │ │ │ -- -*- M2-comint -*- hash: 1730181884377373595 │ │ │ │ │ │ i1 : address int │ │ │ │ │ │ -o1 = 0x563f3b92bbc0 │ │ │ +o1 = 0x555df68ecbc0 │ │ │ │ │ │ o1 : Pointer │ │ │ │ │ │ i2 : address int 5 │ │ │ │ │ │ -o2 = 0x7f0602c6c0f0 │ │ │ +o2 = 0x7f18bce67b90 │ │ │ │ │ │ o2 : Pointer │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_foreign__Function.out │ │ │ @@ -78,14 +78,14 @@ │ │ │ │ │ │ o16 = free │ │ │ │ │ │ o16 : ForeignFunction │ │ │ │ │ │ i17 : x = malloc 8 │ │ │ │ │ │ -o17 = 0x7f01340639d0 │ │ │ +o17 = 0x7fa8540639d0 │ │ │ │ │ │ o17 : ForeignObject of type void* │ │ │ │ │ │ i18 : registerFinalizer(x, free) │ │ │ │ │ │ i19 : │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_get__Memory.out │ │ │ @@ -1,21 +1,21 @@ │ │ │ -- -*- M2-comint -*- hash: 10647988412767280310 │ │ │ │ │ │ i1 : ptr = getMemory 8 │ │ │ │ │ │ -o1 = 0x7f39cc2e59a0 │ │ │ +o1 = 0x7feb5bfbe9a0 │ │ │ │ │ │ o1 : ForeignObject of type void* │ │ │ │ │ │ i2 : ptr = getMemory(8, Atomic => true) │ │ │ │ │ │ -o2 = 0x7f39d4990d40 │ │ │ +o2 = 0x7feb58d85cd0 │ │ │ │ │ │ o2 : ForeignObject of type void* │ │ │ │ │ │ i3 : ptr = getMemory int │ │ │ │ │ │ -o3 = 0x7f39d4990c50 │ │ │ +o3 = 0x7feb58d85be0 │ │ │ │ │ │ o3 : ForeignObject of type void* │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_register__Finalizer_lp__Foreign__Object_cm__Function_rp.out │ │ │ @@ -17,18 +17,18 @@ │ │ │ o3 = finalizer │ │ │ │ │ │ o3 : FunctionClosure │ │ │ │ │ │ i4 : for i to 9 do (x := malloc 8; registerFinalizer(x, finalizer)) │ │ │ │ │ │ i5 : collectGarbage() │ │ │ -freeing memory at 0x7f114006a210 │ │ │ -freeing memory at 0x7f114005f3f0 │ │ │ -freeing memory at 0x7f114006a230 │ │ │ -freeing memory at 0x7f1140069180 │ │ │ -freeing memory at 0x7f11400639d0 │ │ │ -freeing memory at 0x7f1140063bf0 │ │ │ -freeing memory at 0x7f1140066c50 │ │ │ -freeing memory at 0x7f1140063bc0 │ │ │ -freeing memory at 0x7f11400639f0 │ │ │ +freeing memory at 0x7f534005f3f0 │ │ │ +freeing memory at 0x7f534006a210 │ │ │ +freeing memory at 0x7f53400639f0 │ │ │ +freeing memory at 0x7f5340063bf0 │ │ │ +freeing memory at 0x7f53400639d0 │ │ │ +freeing memory at 0x7f5340066c50 │ │ │ +freeing memory at 0x7f5340069180 │ │ │ +freeing memory at 0x7f5340063bc0 │ │ │ +freeing memory at 0x7f534006a230 │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_value_lp__Foreign__Object_rp.out │ │ │ @@ -20,21 +20,21 @@ │ │ │ │ │ │ o4 = 5 │ │ │ │ │ │ o4 : RR (of precision 53) │ │ │ │ │ │ i5 : x = voidstar address int 5 │ │ │ │ │ │ -o5 = 0x7f769ebd8d90 │ │ │ +o5 = 0x7f2d9e7c3010 │ │ │ │ │ │ o5 : ForeignObject of type void* │ │ │ │ │ │ i6 : value x │ │ │ │ │ │ -o6 = 0x7f769ebd8d90 │ │ │ +o6 = 0x7f2d9e7c3010 │ │ │ │ │ │ o6 : Pointer │ │ │ │ │ │ i7 : x = charstar "Hello, world!" │ │ │ │ │ │ o7 = Hello, world! │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Object.html │ │ │ @@ -54,25 +54,25 @@ │ │ │ o1 = 5 │ │ │ │ │ │ o1 : ForeignObject of type int32 │ │ │
    i2 : peek x
    │ │ │  
    │ │ │ -o2 = int32{Address => 0x7f5daa523ec0}
    │ │ │ +o2 = int32{Address => 0x7f0d842307a0} │ │ │
    │ │ │
    │ │ │

    To get this, use address.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    i3 : address x
    │ │ │  
    │ │ │ -o3 = 0x7f5daa523ec0
    │ │ │ +o3 = 0x7f0d842307a0
    │ │ │  
    │ │ │  o3 : Pointer
    │ │ │
    │ │ │
    │ │ │

    Use class to determine the type of the object.

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -10,19 +10,19 @@ │ │ │ │ i1 : x = int 5 │ │ │ │ │ │ │ │ o1 = 5 │ │ │ │ │ │ │ │ o1 : ForeignObject of type int32 │ │ │ │ i2 : peek x │ │ │ │ │ │ │ │ -o2 = int32{Address => 0x7f5daa523ec0} │ │ │ │ +o2 = int32{Address => 0x7f0d842307a0} │ │ │ │ To get this, use _a_d_d_r_e_s_s. │ │ │ │ i3 : address x │ │ │ │ │ │ │ │ -o3 = 0x7f5daa523ec0 │ │ │ │ +o3 = 0x7f0d842307a0 │ │ │ │ │ │ │ │ o3 : Pointer │ │ │ │ Use _c_l_a_s_s to determine the type of the object. │ │ │ │ i4 : class x │ │ │ │ │ │ │ │ o4 = int32 │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Pointer__Array__Type.html │ │ │ @@ -62,15 +62,15 @@ │ │ │ o2 = {the, quick, brown, fox, jumps, over, the, lazy, dog} │ │ │ │ │ │ o2 : ForeignObject of type char** │ │ │
    i3 : voidstarstar {address int 0, address int 1, address int 2}
    │ │ │  
    │ │ │ -o3 = {0x7fce2ba5fcd0, 0x7fce2ba5fcc0, 0x7fce2ba5fcb0}
    │ │ │ +o3 = {0x7f09585cb500, 0x7f09585cb4f0, 0x7f09585cb4e0}
    │ │ │  
    │ │ │  o3 : ForeignObject of type void**
    │ │ │
    │ │ │
    │ │ │

    Foreign pointer arrays may be subscripted using _.

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ "lazy", "dog"} │ │ │ │ │ │ │ │ o2 = {the, quick, brown, fox, jumps, over, the, lazy, dog} │ │ │ │ │ │ │ │ o2 : ForeignObject of type char** │ │ │ │ i3 : voidstarstar {address int 0, address int 1, address int 2} │ │ │ │ │ │ │ │ -o3 = {0x7fce2ba5fcd0, 0x7fce2ba5fcc0, 0x7fce2ba5fcb0} │ │ │ │ +o3 = {0x7f09585cb500, 0x7f09585cb4f0, 0x7f09585cb4e0} │ │ │ │ │ │ │ │ o3 : ForeignObject of type void** │ │ │ │ Foreign pointer arrays may be subscripted using __. │ │ │ │ i4 : x = charstarstar {"foo", "bar", "baz"} │ │ │ │ │ │ │ │ o4 = {foo, bar, baz} │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Pointer__Array__Type_sp__Visible__List.html │ │ │ @@ -81,15 +81,15 @@ │ │ │ o1 = {foo, bar} │ │ │ │ │ │ o1 : ForeignObject of type char** │ │ │ │ │ │ │ │ │
    i2 : voidstarstar {address int 0, address int 1, address int 2}
    │ │ │  
    │ │ │ -o2 = {0x7f9bfd1e7ae0, 0x7f9bfd1e7ad0, 0x7f9bfd1e7ac0}
    │ │ │ +o2 = {0x7f223b05ef30, 0x7f223b05ef20, 0x7f223b05ef10}
    │ │ │  
    │ │ │  o2 : ForeignObject of type void**
    │ │ │ │ │ │ │ │ │
    i3 : int2star = foreignPointerArrayType(2 * int)
    │ │ │  
    │ │ │  o3 = int32[2]*
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -21,15 +21,15 @@
    │ │ │ │  i1 : charstarstar {"foo", "bar"}
    │ │ │ │  
    │ │ │ │  o1 = {foo, bar}
    │ │ │ │  
    │ │ │ │  o1 : ForeignObject of type char**
    │ │ │ │  i2 : voidstarstar {address int 0, address int 1, address int 2}
    │ │ │ │  
    │ │ │ │ -o2 = {0x7f9bfd1e7ae0, 0x7f9bfd1e7ad0, 0x7f9bfd1e7ac0}
    │ │ │ │ +o2 = {0x7f223b05ef30, 0x7f223b05ef20, 0x7f223b05ef10}
    │ │ │ │  
    │ │ │ │  o2 : ForeignObject of type void**
    │ │ │ │  i3 : int2star = foreignPointerArrayType(2 * int)
    │ │ │ │  
    │ │ │ │  o3 = int32[2]*
    │ │ │ │  
    │ │ │ │  o3 : ForeignPointerArrayType
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Pointer__Type_sp__Pointer.html
    │ │ │ @@ -74,22 +74,22 @@
    │ │ │          
    │ │ │

    To cast a Macaulay2 pointer to a foreign object with a pointer type, give the type followed by the pointer.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : ptr = address int 0
    │ │ │  
    │ │ │ -o1 = 0x7f3cb62b2350
    │ │ │ +o1 = 0x7f7b2de308b0
    │ │ │  
    │ │ │  o1 : Pointer
    │ │ │
    i2 : voidstar ptr
    │ │ │  
    │ │ │ -o2 = 0x7f3cb62b2350
    │ │ │ +o2 = 0x7f7b2de308b0
    │ │ │  
    │ │ │  o2 : ForeignObject of type void*
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use this method:

    │ │ │ ├── html2text {} │ │ │ │ @@ -16,18 +16,18 @@ │ │ │ │ * Outputs: │ │ │ │ o a _f_o_r_e_i_g_n_ _o_b_j_e_c_t, │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ To cast a Macaulay2 pointer to a foreign object with a pointer type, give the │ │ │ │ type followed by the pointer. │ │ │ │ i1 : ptr = address int 0 │ │ │ │ │ │ │ │ -o1 = 0x7f3cb62b2350 │ │ │ │ +o1 = 0x7f7b2de308b0 │ │ │ │ │ │ │ │ o1 : Pointer │ │ │ │ i2 : voidstar ptr │ │ │ │ │ │ │ │ -o2 = 0x7f3cb62b2350 │ │ │ │ +o2 = 0x7f7b2de308b0 │ │ │ │ │ │ │ │ o2 : ForeignObject of type void* │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _F_o_r_e_i_g_n_P_o_i_n_t_e_r_T_y_p_e_ _P_o_i_n_t_e_r -- cast a Macaulay2 pointer to a foreign │ │ │ │ pointer │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Type_sp__Pointer.html │ │ │ @@ -81,15 +81,15 @@ │ │ │ o1 = 5 │ │ │ │ │ │ o1 : ForeignObject of type int32
    │ │ │ │ │ │ │ │ │
    i2 : ptr = address x
    │ │ │  
    │ │ │ -o2 = 0x7fa785fa61e0
    │ │ │ +o2 = 0x7f7169e30890
    │ │ │  
    │ │ │  o2 : Pointer
    │ │ │ │ │ │ │ │ │
    i3 : int ptr
    │ │ │  
    │ │ │  o3 = 5
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -19,15 +19,15 @@
    │ │ │ │  i1 : x = int 5
    │ │ │ │  
    │ │ │ │  o1 = 5
    │ │ │ │  
    │ │ │ │  o1 : ForeignObject of type int32
    │ │ │ │  i2 : ptr = address x
    │ │ │ │  
    │ │ │ │ -o2 = 0x7fa785fa61e0
    │ │ │ │ +o2 = 0x7f7169e30890
    │ │ │ │  
    │ │ │ │  o2 : Pointer
    │ │ │ │  i3 : int ptr
    │ │ │ │  
    │ │ │ │  o3 = 5
    │ │ │ │  
    │ │ │ │  o3 : ForeignObject of type int32
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Type_sp_st_spvoidstar.html
    │ │ │ @@ -74,15 +74,15 @@
    │ │ │          
    │ │ │

    This is syntactic sugar for T value ptr (see ForeignType Pointer) for dereferencing pointers.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : ptr = voidstar address int 5
    │ │ │  
    │ │ │ -o1 = 0x7f14108492a0
    │ │ │ +o1 = 0x7f594da30770
    │ │ │  
    │ │ │  o1 : ForeignObject of type void*
    │ │ │
    i2 : int * ptr
    │ │ │  
    │ │ │  o2 = 5
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,15 +15,15 @@
    │ │ │ │      * Outputs:
    │ │ │ │            o a _f_o_r_e_i_g_n_ _o_b_j_e_c_t, of type T;
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  This is syntactic sugar for T value ptr (see _F_o_r_e_i_g_n_T_y_p_e_ _P_o_i_n_t_e_r) for
    │ │ │ │  dereferencing pointers.
    │ │ │ │  i1 : ptr = voidstar address int 5
    │ │ │ │  
    │ │ │ │ -o1 = 0x7f14108492a0
    │ │ │ │ +o1 = 0x7f594da30770
    │ │ │ │  
    │ │ │ │  o1 : ForeignObject of type void*
    │ │ │ │  i2 : int * ptr
    │ │ │ │  
    │ │ │ │  o2 = 5
    │ │ │ │  
    │ │ │ │  o2 : ForeignObject of type int32
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Union__Type_sp__Thing.html
    │ │ │ @@ -81,15 +81,15 @@
    │ │ │  o1 = myunion
    │ │ │  
    │ │ │  o1 : ForeignUnionType
    │ │ │
    i2 : myunion 27
    │ │ │  
    │ │ │ -o2 = HashTable{"bar" => 6.94487e-310}
    │ │ │ +o2 = HashTable{"bar" => 6.9037e-310}
    │ │ │                 "foo" => 27
    │ │ │  
    │ │ │  o2 : ForeignObject of type myunion
    │ │ │
    i3 : myunion pi
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -21,15 +21,15 @@
    │ │ │ │  i1 : myunion = foreignUnionType("myunion", {"foo" => int, "bar" => double})
    │ │ │ │  
    │ │ │ │  o1 = myunion
    │ │ │ │  
    │ │ │ │  o1 : ForeignUnionType
    │ │ │ │  i2 : myunion 27
    │ │ │ │  
    │ │ │ │ -o2 = HashTable{"bar" => 6.94487e-310}
    │ │ │ │ +o2 = HashTable{"bar" => 6.9037e-310}
    │ │ │ │                 "foo" => 27
    │ │ │ │  
    │ │ │ │  o2 : ForeignObject of type myunion
    │ │ │ │  i3 : myunion pi
    │ │ │ │  
    │ │ │ │  o3 = HashTable{"bar" => 3.14159   }
    │ │ │ │                 "foo" => 1413754136
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Pointer.html
    │ │ │ @@ -54,44 +54,44 @@
    │ │ │  o1 = 20
    │ │ │  
    │ │ │  o1 : ForeignObject of type int32
    │ │ │
    i2 : peek x
    │ │ │  
    │ │ │ -o2 = int32{Address => 0x7f9390dc9080}
    │ │ │ +o2 = int32{Address => 0x7f1e080d57e0} │ │ │
    │ │ │
    │ │ │

    These pointers can be accessed using address.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    i3 : ptr = address x
    │ │ │  
    │ │ │ -o3 = 0x7f9390dc9080
    │ │ │ +o3 = 0x7f1e080d57e0
    │ │ │  
    │ │ │  o3 : Pointer
    │ │ │
    │ │ │
    │ │ │

    Simple arithmetic can be performed on pointers.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : ptr + 5
    │ │ │  
    │ │ │ -o4 = 0x7f9390dc9085
    │ │ │ +o4 = 0x7f1e080d57e5
    │ │ │  
    │ │ │  o4 : Pointer
    │ │ │
    i5 : ptr - 3
    │ │ │  
    │ │ │ -o5 = 0x7f9390dc907d
    │ │ │ +o5 = 0x7f1e080d57dd
    │ │ │  
    │ │ │  o5 : Pointer
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    Functions and methods returning a pointer:

    │ │ │ ├── html2text {} │ │ │ │ @@ -10,30 +10,30 @@ │ │ │ │ i1 : x = int 20 │ │ │ │ │ │ │ │ o1 = 20 │ │ │ │ │ │ │ │ o1 : ForeignObject of type int32 │ │ │ │ i2 : peek x │ │ │ │ │ │ │ │ -o2 = int32{Address => 0x7f9390dc9080} │ │ │ │ +o2 = int32{Address => 0x7f1e080d57e0} │ │ │ │ These pointers can be accessed using _a_d_d_r_e_s_s. │ │ │ │ i3 : ptr = address x │ │ │ │ │ │ │ │ -o3 = 0x7f9390dc9080 │ │ │ │ +o3 = 0x7f1e080d57e0 │ │ │ │ │ │ │ │ o3 : Pointer │ │ │ │ Simple arithmetic can be performed on pointers. │ │ │ │ i4 : ptr + 5 │ │ │ │ │ │ │ │ -o4 = 0x7f9390dc9085 │ │ │ │ +o4 = 0x7f1e080d57e5 │ │ │ │ │ │ │ │ o4 : Pointer │ │ │ │ i5 : ptr - 3 │ │ │ │ │ │ │ │ -o5 = 0x7f9390dc907d │ │ │ │ +o5 = 0x7f1e080d57dd │ │ │ │ │ │ │ │ o5 : Pointer │ │ │ │ ********** FFuunnccttiioonnss aanndd mmeetthhooddss rreettuurrnniinngg aa ppooiinntteerr:: ********** │ │ │ │ * _a_d_d_r_e_s_s -- pointer to type or object │ │ │ │ ********** MMeetthhooddss tthhaatt uussee aa ppooiinntteerr:: ********** │ │ │ │ * * Pointer = Thing -- see _*_ _v_o_i_d_s_t_a_r_ _=_ _T_h_i_n_g -- assign value to object at │ │ │ │ address │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Shared__Library.html │ │ │ @@ -54,15 +54,15 @@ │ │ │ o1 = mpfr │ │ │ │ │ │ o1 : SharedLibrary
    │ │ │ │ │ │ │ │ │
    i2 : peek mpfr
    │ │ │  
    │ │ │ -o2 = SharedLibrary{0x7f2afa172550, mpfr}
    │ │ │ +o2 = SharedLibrary{0x7f3a0dd50550, mpfr} │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    Functions and methods returning a shared library:

    │ │ │
    │ │ │
    │ │ │

    Ways to use address:

    │ │ │ ├── html2text {} │ │ │ │ @@ -12,22 +12,22 @@ │ │ │ │ * Outputs: │ │ │ │ o a _p_o_i_n_t_e_r, │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ If x is a foreign type, then this returns the address to the ffi_type struct │ │ │ │ used by libffi to identify the type. │ │ │ │ i1 : address int │ │ │ │ │ │ │ │ -o1 = 0x563f3b92bbc0 │ │ │ │ +o1 = 0x555df68ecbc0 │ │ │ │ │ │ │ │ o1 : Pointer │ │ │ │ If x is a foreign object, then this returns the address to the object. It │ │ │ │ behaves like the & "address-of" operator in C. │ │ │ │ i2 : address int 5 │ │ │ │ │ │ │ │ -o2 = 0x7f0602c6c0f0 │ │ │ │ +o2 = 0x7f18bce67b90 │ │ │ │ │ │ │ │ o2 : Pointer │ │ │ │ ********** WWaayyss ttoo uussee aaddddrreessss:: ********** │ │ │ │ * address(ForeignObject) │ │ │ │ * address(ForeignType) │ │ │ │ * address(Nothing) (missing documentation) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/_foreign__Function.html │ │ │ @@ -204,15 +204,15 @@ │ │ │ o16 = free │ │ │ │ │ │ o16 : ForeignFunction
    │ │ │ │ │ │ │ │ │
    i17 : x = malloc 8
    │ │ │  
    │ │ │ -o17 = 0x7f01340639d0
    │ │ │ +o17 = 0x7fa8540639d0
    │ │ │  
    │ │ │  o17 : ForeignObject of type void*
    │ │ │ │ │ │ │ │ │
    i18 : registerFinalizer(x, free)
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -96,15 +96,15 @@ │ │ │ │ i16 : free = foreignFunction("free", void, voidstar) │ │ │ │ │ │ │ │ o16 = free │ │ │ │ │ │ │ │ o16 : ForeignFunction │ │ │ │ i17 : x = malloc 8 │ │ │ │ │ │ │ │ -o17 = 0x7f01340639d0 │ │ │ │ +o17 = 0x7fa8540639d0 │ │ │ │ │ │ │ │ o17 : ForeignObject of type void* │ │ │ │ i18 : registerFinalizer(x, free) │ │ │ │ ********** WWaayyss ttoo uussee ffoorreeiiggnnFFuunnccttiioonn:: ********** │ │ │ │ * foreignFunction(Pointer,String,ForeignType,VisibleList) │ │ │ │ * foreignFunction(SharedLibrary,String,ForeignType,ForeignType) │ │ │ │ * foreignFunction(SharedLibrary,String,ForeignType,VisibleList) │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/_get__Memory.html │ │ │ @@ -79,39 +79,39 @@ │ │ │
    │ │ │

    Allocate n bytes of memory using the GC garbage collector.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    i1 : ptr = getMemory 8
    │ │ │  
    │ │ │ -o1 = 0x7f39cc2e59a0
    │ │ │ +o1 = 0x7feb5bfbe9a0
    │ │ │  
    │ │ │  o1 : ForeignObject of type void*
    │ │ │
    │ │ │
    │ │ │

    If the memory will not contain any pointers, then set the Atomic option to true.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    i2 : ptr = getMemory(8, Atomic => true)
    │ │ │  
    │ │ │ -o2 = 0x7f39d4990d40
    │ │ │ +o2 = 0x7feb58d85cd0
    │ │ │  
    │ │ │  o2 : ForeignObject of type void*
    │ │ │
    │ │ │
    │ │ │

    Alternatively, a foreign object type T may be specified. In this case, the number of bytes and whether the Atomic option should be set will be determined automatically.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    i3 : ptr = getMemory int
    │ │ │  
    │ │ │ -o3 = 0x7f39d4990c50
    │ │ │ +o3 = 0x7feb58d85be0
    │ │ │  
    │ │ │  o3 : ForeignObject of type void*
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -15,30 +15,30 @@ │ │ │ │ o Atomic => ..., default value false │ │ │ │ * Outputs: │ │ │ │ o an instance of the type _v_o_i_d_s_t_a_r, │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Allocate n bytes of memory using the _G_C_ _g_a_r_b_a_g_e_ _c_o_l_l_e_c_t_o_r. │ │ │ │ i1 : ptr = getMemory 8 │ │ │ │ │ │ │ │ -o1 = 0x7f39cc2e59a0 │ │ │ │ +o1 = 0x7feb5bfbe9a0 │ │ │ │ │ │ │ │ o1 : ForeignObject of type void* │ │ │ │ If the memory will not contain any pointers, then set the Atomic option to │ │ │ │ _t_r_u_e. │ │ │ │ i2 : ptr = getMemory(8, Atomic => true) │ │ │ │ │ │ │ │ -o2 = 0x7f39d4990d40 │ │ │ │ +o2 = 0x7feb58d85cd0 │ │ │ │ │ │ │ │ o2 : ForeignObject of type void* │ │ │ │ Alternatively, a foreign object type T may be specified. In this case, the │ │ │ │ number of bytes and whether the Atomic option should be set will be determined │ │ │ │ automatically. │ │ │ │ i3 : ptr = getMemory int │ │ │ │ │ │ │ │ -o3 = 0x7f39d4990c50 │ │ │ │ +o3 = 0x7feb58d85be0 │ │ │ │ │ │ │ │ o3 : ForeignObject of type void* │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_g_i_s_t_e_r_F_i_n_a_l_i_z_e_r_(_F_o_r_e_i_g_n_O_b_j_e_c_t_,_F_u_n_c_t_i_o_n_) -- register a finalizer for a │ │ │ │ foreign object │ │ │ │ ********** WWaayyss ttoo uussee ggeettMMeemmoorryy:: ********** │ │ │ │ * getMemory(ForeignType) │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/_register__Finalizer_lp__Foreign__Object_cm__Function_rp.html │ │ │ @@ -91,23 +91,23 @@ │ │ │ o3 : FunctionClosure │ │ │ │ │ │ │ │ │
    i4 : for i to 9 do (x := malloc 8; registerFinalizer(x, finalizer))
    │ │ │ │ │ │ │ │ │
    i5 : collectGarbage()
    │ │ │ -freeing memory at 0x7f114006a210
    │ │ │ -freeing memory at 0x7f114005f3f0
    │ │ │ -freeing memory at 0x7f114006a230
    │ │ │ -freeing memory at 0x7f1140069180
    │ │ │ -freeing memory at 0x7f11400639d0
    │ │ │ -freeing memory at 0x7f1140063bf0
    │ │ │ -freeing memory at 0x7f1140066c50
    │ │ │ -freeing memory at 0x7f1140063bc0
    │ │ │ -freeing memory at 0x7f11400639f0
    │ │ │ +freeing memory at 0x7f534005f3f0 │ │ │ +freeing memory at 0x7f534006a210 │ │ │ +freeing memory at 0x7f53400639f0 │ │ │ +freeing memory at 0x7f5340063bf0 │ │ │ +freeing memory at 0x7f53400639d0 │ │ │ +freeing memory at 0x7f5340066c50 │ │ │ +freeing memory at 0x7f5340069180 │ │ │ +freeing memory at 0x7f5340063bc0 │ │ │ +freeing memory at 0x7f534006a230 │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -242,21 +242,21 @@ │ │ │ │ o26 = | 7/4 1/2 7 6/7 | │ │ │ │ | 7/9 7/10 3/7 2/3 | │ │ │ │ | 7/10 7/3 5/2 1 | │ │ │ │ │ │ │ │ 3 4 │ │ │ │ o26 : Matrix QQ <-- QQ │ │ │ │ i27 : time C = orbitClosure(X,Mat) │ │ │ │ - -- used 0.602865s (cpu); 0.309627s (thread); 0s (gc) │ │ │ │ + -- used 9.5535s (cpu); 1.6112s (thread); 0s (gc) │ │ │ │ │ │ │ │ o27 = an "equivariant K-class" on a GKM variety │ │ │ │ │ │ │ │ o27 : KClass │ │ │ │ i28 : time C = orbitClosure(X,Mat, RREFMethod => true) │ │ │ │ - -- used 1.63569s (cpu); 0.773805s (thread); 0s (gc) │ │ │ │ + -- used 23.9633s (cpu); 4.26127s (thread); 0s (gc) │ │ │ │ │ │ │ │ o28 = an "equivariant K-class" on a GKM variety │ │ │ │ │ │ │ │ o28 : KClass │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _g_e_n_e_r_a_l_i_z_e_d_F_l_a_g_V_a_r_i_e_t_y -- makes a generalized flag variety as a GKM │ │ │ │ variety │ │ ├── ./usr/share/doc/Macaulay2/GenericInitialIdeal/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=10 │ │ │ Z2luKElkZWFsKQ== │ │ │ #:len=250 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAidGhlIGdlbmVyaWMgaW5pdGlhbCBpZGVh │ │ │ bCIsIERlc2NyaXB0aW9uID0+IHt9LCAibGluZW51bSIgPT4gMTc2LCBLZXkgPT4gKGdpbixJZGVh │ │ ├── ./usr/share/doc/Macaulay2/GeometricDecomposability/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=14 │ │ │ SXNJZGVhbFVubWl4ZWQ= │ │ │ #:len=1529 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAic3BlY2lmeSB3aGV0aGVyIGFuIGlkZWFs │ │ │ IGlzIHVubWl4ZWQiLCAibGluZW51bSIgPT4gMTg0NiwgU2VlQWxzbyA9PiBESVZ7SEVBREVSMnsi │ │ ├── ./usr/share/doc/Macaulay2/GradedLieAlgebras/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=15 │ │ │ WlogXyBFeHRBbGdlYnJh │ │ │ #:len=932 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiZ2V0IHRoZSB6ZXJvIGVsZW1lbnQiLCBE │ │ │ ZXNjcmlwdGlvbiA9PiAoRElWe0hFQURFUjJ7IlN5bm9wc2lzIn0sVUx7TEl7REx7ImNsYXNzIiA9 │ │ ├── ./usr/share/doc/Macaulay2/GraphicalModels/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=12 │ │ │ VmFyaWFibGVOYW1l │ │ │ #:len=616 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAib3B0aW9uYWwgaW5wdXQgdG8gY2hvb3Nl │ │ │ IGluZGV0ZXJtaW5hdGUgbmFtZSBpbiBtYXJrb3ZSaW5nIiwgImxpbmVudW0iID0+IDE4ODksIFNl │ │ ├── ./usr/share/doc/Macaulay2/GraphicalModelsMLE/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=21 │ │ │ c29sdmVyTUxFKExpc3QsR3JhcGgp │ │ │ #:len=274 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTk1OSwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoc29sdmVyTUxFLExpc3QsR3JhcGgpLCJzb2x2ZXJN │ │ ├── ./usr/share/doc/Macaulay2/Graphics/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=19 │ │ │ cGljdHVyZVpvbmUoU3BoZXJlKQ== │ │ │ #:len=747 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiZmluZCB0aGUgem9uZSB0aGF0IGNvbnRh │ │ │ aW5zIHRoZSBzcGhlcmUiLCAibGluZW51bSIgPT4gMTExNywgSW5wdXRzID0+IHtTUEFOe1RUeyJz │ │ ├── ./usr/share/doc/Macaulay2/Graphs/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=25 │ │ │ cmV2ZXJzZUJyZWFkdGhGaXJzdFNlYXJjaA== │ │ │ #:len=1565 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAicnVucyBhIHJldmVyc2UgYnJlYWR0aCBm │ │ │ aXJzdCBzZWFyY2ggb24gdGhlIGRpZ3JhcGggc3RhcnRpbmcgYXQgYSBzcGVjaWZpZWQgbm9kZSIs │ │ ├── ./usr/share/doc/Macaulay2/Graphs/example-output/_new__Digraph.out │ │ │ @@ -32,12 +32,12 @@ │ │ │ 5 => {6} │ │ │ 6 => {} │ │ │ │ │ │ o2 : SortedDigraph │ │ │ │ │ │ i3 : keys H │ │ │ │ │ │ -o3 = {digraph, map, newDigraph} │ │ │ +o3 = {map, newDigraph, digraph} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Graphs/html/_new__Digraph.html │ │ │ @@ -83,15 +83,15 @@ │ │ │ 6 => {} │ │ │ │ │ │ o2 : SortedDigraph │ │ │ │ │ │ │ │ │
    i3 : keys H
    │ │ │  
    │ │ │ -o3 = {digraph, map, newDigraph}
    │ │ │ +o3 = {map, newDigraph, digraph}
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -36,15 +36,15 @@ │ │ │ │ 4 => {} │ │ │ │ 5 => {6} │ │ │ │ 6 => {} │ │ │ │ │ │ │ │ o2 : SortedDigraph │ │ │ │ i3 : keys H │ │ │ │ │ │ │ │ -o3 = {digraph, map, newDigraph} │ │ │ │ +o3 = {map, newDigraph, digraph} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_o_p_S_o_r_t -- topologically sort the vertices of a digraph │ │ │ │ * _S_o_r_t_e_d_D_i_g_r_a_p_h -- hashtable used in topSort │ │ │ │ * _t_o_p_o_l_o_g_i_c_a_l_S_o_r_t -- outputs a list of vertices in a topologically sorted │ │ │ │ order of a DAG. │ │ ├── ./usr/share/doc/Macaulay2/GroebnerStrata/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=21 │ │ │ ZmluZFdlaWdodENvbnN0cmFpbnRz │ │ │ #:len=2630 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAicmV0dXJucyBhIG1hdHJpeCBvZiB3ZWln │ │ │ aHQgY29uc3RyYWludHMiLCAibGluZW51bSIgPT4gNjcyLCBJbnB1dHMgPT4ge1NQQU57VFR7Ik0i │ │ ├── ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/___Groebner__Strata.out │ │ │ @@ -243,67 +243,67 @@ │ │ │ | 2 2 2 2 2 2 2 2 2 2 2 2 | │ │ │ |t - t + t t t - t t + t t t + t t t - t t t t + 25t t + 4t t t - 2t t t t - 2t t t t - 2t t t t + t t t t + t t t t - 3t t + 3t t t t - 26t t t | │ │ │ | 6 23 16 20 22 14 22 23 22 13 23 16 19 16 22 13 19 16 19 23 20 21 20 22 13 21 16 20 19 21 23 13 19 21 22 13 19 21 16 13 19 21 20 21 20 13 19 21 13 19 21| │ │ │ +------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ │ │ │ i12 : pt1 = randomPointOnRationalVariety compsJ_0 │ │ │ │ │ │ -o12 = | -13 -21 -15 -5 36 46 -6 -25 12 -22 -33 37 24 -36 -36 -30 -29 -8 19 │ │ │ +o12 = | -14 48 41 -32 -39 30 48 36 2 -29 -30 -23 19 19 -10 -29 -8 -22 24 -13 │ │ │ ----------------------------------------------------------------------- │ │ │ - -13 19 -29 -29 -10 | │ │ │ + -36 -30 -29 -10 | │ │ │ │ │ │ 1 24 │ │ │ o12 : Matrix kk <-- kk │ │ │ │ │ │ i13 : pt2 = randomPointOnRationalVariety compsJ_1 │ │ │ │ │ │ -o13 = | 50 -8 -9 9 0 5 -15 38 0 -42 -18 28 45 39 16 -46 34 19 -16 -24 -38 0 │ │ │ +o13 = | -39 -22 11 26 -28 31 38 24 -31 -16 -16 -7 -41 -24 18 -17 19 34 -38 39 │ │ │ ----------------------------------------------------------------------- │ │ │ - -47 21 | │ │ │ + -16 0 -47 21 | │ │ │ │ │ │ 1 24 │ │ │ o13 : Matrix kk <-- kk │ │ │ │ │ │ i14 : F1 = sub(F, (vars S)|pt1) │ │ │ │ │ │ 2 2 2 │ │ │ -o14 = ideal (a + 12b*c - 5c - 22a*d + 36b*d - 21c*d - 13d , a*b - 36b*c - │ │ │ +o14 = ideal (a + 2b*c - 32c - 29a*d - 39b*d + 48c*d - 14d , a*b - 10b*c - │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 2 │ │ │ - 33c - 30a*d + 37b*d + 46c*d - 15d , b + 19b*c - 29c - 29a*d - 8b*d + │ │ │ + 2 2 2 2 │ │ │ + 30c - 29a*d - 23b*d + 30c*d + 41d , b - 36b*c - 8c - 30a*d - 22b*d + │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 │ │ │ - 24c*d - 6d , a*c - 29b*c + 19c - 10a*d - 13b*d - 36c*d - 25d ) │ │ │ + 2 2 2 │ │ │ + 19c*d + 48d , a*c - 29b*c + 24c - 10a*d - 13b*d + 19c*d + 36d ) │ │ │ │ │ │ o14 : Ideal of S │ │ │ │ │ │ i15 : F2 = sub(F, (vars S)|pt2) │ │ │ │ │ │ - 2 2 2 2 │ │ │ -o15 = ideal (a + 9c - 42a*d - 8c*d + 50d , a*b + 16b*c - 18c - 46a*d + │ │ │ + 2 2 2 │ │ │ +o15 = ideal (a - 31b*c + 26c - 16a*d - 28b*d - 22c*d - 39d , a*b + 18b*c - │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 2 │ │ │ - 28b*d + 5c*d - 9d , b - 38b*c + 34c + 19b*d + 45c*d - 15d , a*c - │ │ │ + 2 2 2 2 │ │ │ + 16c - 17a*d - 7b*d + 31c*d + 11d , b - 16b*c + 19c + 34b*d - 41c*d + │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 │ │ │ - 47b*c - 16c + 21a*d - 24b*d + 39c*d + 38d ) │ │ │ + 2 2 2 │ │ │ + 38d , a*c - 47b*c - 38c + 21a*d + 39b*d - 24c*d + 24d ) │ │ │ │ │ │ o15 : Ideal of S │ │ │ │ │ │ i16 : decompose F1 │ │ │ │ │ │ - 2 2 2 │ │ │ -o16 = {ideal (a - 29b + 19c - 48d, b + 19b*c - 29c - 41b*d - 31c*d + 16d ), │ │ │ + 2 2 2 │ │ │ +o16 = {ideal (a - 29b + 24c - 44d, b - 36b*c - 8c + 17b*d + 32c*d + 41d ), │ │ │ ----------------------------------------------------------------------- │ │ │ - ideal (c - 10d, b + 3d, a - d)} │ │ │ + ideal (c - 10d, b + 33d, a + 10d)} │ │ │ │ │ │ o16 : List │ │ │ │ │ │ i17 : decompose F2 │ │ │ │ │ │ -o17 = {ideal (b - 42c - 19d, a + 30c + 33d), ideal (b + 4c + 38d, a - 30c + │ │ │ +o17 = {ideal (b - 42c + 10d, a + 8c - 3d), ideal (b + 26c + 24d, a - 28c - │ │ │ ----------------------------------------------------------------------- │ │ │ - 26d)} │ │ │ + 29d)} │ │ │ │ │ │ o17 : List │ │ │ │ │ │ i18 : │ │ ├── ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_nonminimal__Maps.out │ │ │ @@ -103,46 +103,46 @@ │ │ │ │ │ │ i13 : #compsJ │ │ │ │ │ │ o13 = 2 │ │ │ │ │ │ i14 : pt1 = randomPointOnRationalVariety compsJ_0 │ │ │ │ │ │ -o14 = | 43 35 -43 7 38 31 47 48 46 21 8 10 6 -30 -40 10 -27 -10 -50 30 -21 │ │ │ +o14 = | -6 48 44 -23 -2 -11 -35 -26 27 -43 48 27 15 -22 25 -16 34 -29 46 -20 │ │ │ ----------------------------------------------------------------------- │ │ │ - -38 -16 -29 31 -36 39 -29 19 24 -24 -8 19 -29 21 -22 | │ │ │ + 40 21 -30 -38 -19 -8 -36 39 19 -29 -16 -29 -10 19 24 -24 | │ │ │ │ │ │ 1 36 │ │ │ o14 : Matrix kk <-- kk │ │ │ │ │ │ i15 : pt2 = randomPointOnRationalVariety compsJ_1 │ │ │ │ │ │ -o15 = | 18 13 -48 10 27 -33 13 4 37 33 -15 46 42 -47 -35 23 45 -13 33 -43 1 7 │ │ │ +o15 = | -48 -46 16 17 -1 -43 15 -1 12 -18 -6 -28 14 -28 -9 32 -22 -39 6 -47 │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 -47 46 19 16 14 -18 34 38 -15 0 -39 22 -28 | │ │ │ + 28 -37 -47 38 -16 -15 34 27 -13 -43 22 16 0 -18 19 2 | │ │ │ │ │ │ 1 36 │ │ │ o15 : Matrix kk <-- kk │ │ │ │ │ │ i16 : F1 = sub(F, (vars S)|pt1) │ │ │ │ │ │ - 2 2 2 │ │ │ -o16 = ideal (a - 40b*c + 21c + 10a*d + 31b*d - 43c*d + 43d , a*b + 31b*c - │ │ │ + 2 2 2 │ │ │ +o16 = ideal (a + 25b*c - 43c + 27a*d - 11b*d + 44c*d - 6d , a*b - 19b*c + │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 │ │ │ - 50c - 21a*d + 6b*d + 46c*d + 35d , a*c - 8b*c - 36c - 29a*d + 30b*d - │ │ │ + 2 2 2 │ │ │ + 46c + 40a*d + 15b*d + 27c*d + 48d , a*c - 29b*c - 8c + 39a*d - 20b*d │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 2 2 │ │ │ - 30c*d + 38d , b + 21b*c + 19c + 19a*d - 38b*d + 10c*d + 47d , b*c + │ │ │ + 2 2 2 2 2 │ │ │ + - 22c*d - 2d , b + 24b*c + 19c - 10a*d + 21b*d - 16c*d - 35d , b*c - │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 2 3 3 2 │ │ │ - 24b*c*d - 16c d + 39a*d - 27b*d + 8c*d + 7d , c - 22b*c*d - 24c d - │ │ │ + 2 2 2 2 3 3 2 │ │ │ + 29b*c*d - 30c d - 36a*d + 34b*d + 48c*d - 23d , c - 24b*c*d - 16c d │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 3 │ │ │ - 29a*d - 29b*d - 10c*d + 48d ) │ │ │ + 2 2 2 3 │ │ │ + + 19a*d - 38b*d - 29c*d - 26d ) │ │ │ │ │ │ o16 : Ideal of S │ │ │ │ │ │ i17 : betti res F1 │ │ │ │ │ │ 0 1 2 3 │ │ │ o17 = total: 1 6 8 3 │ │ │ @@ -150,28 +150,28 @@ │ │ │ 1: . 4 4 1 │ │ │ 2: . 2 4 2 │ │ │ │ │ │ o17 : BettiTally │ │ │ │ │ │ i18 : F2 = sub(F, (vars S)|pt2) │ │ │ │ │ │ - 2 2 2 │ │ │ -o18 = ideal (a - 35b*c + 33c + 46a*d - 33b*d - 48c*d + 18d , a*b + 46b*c + │ │ │ + 2 2 2 │ │ │ +o18 = ideal (a - 9b*c - 18c - 28a*d - 43b*d + 16c*d - 48d , a*b - 16b*c + │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 │ │ │ - 33c + a*d + 42b*d + 37c*d + 13d , a*c - 15b*c + 19c + 14a*d - 43b*d - │ │ │ + 2 2 2 │ │ │ + 6c + 28a*d + 14b*d + 12c*d - 46d , a*c + 16b*c - 15c + 27a*d - 47b*d │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 2 2 │ │ │ - 47c*d + 27d , b + 22b*c - 18c + 7b*d + 23c*d + 13d , b*c + 34b*c*d + │ │ │ + 2 2 2 2 2 │ │ │ + - 28c*d - d , b + 19b*c - 13c - 37b*d + 32c*d + 15d , b*c - 43b*c*d │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 2 3 3 2 2 │ │ │ - 2c d + 16a*d + 45b*d - 15c*d + 10d , c - 28b*c*d + 38c d - 39a*d - │ │ │ + 2 2 2 2 3 3 2 2 │ │ │ + - 47c d + 34a*d - 22b*d - 6c*d + 17d , c + 2b*c*d + 22c d - 18a*d │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 3 │ │ │ - 47b*d - 13c*d + 4d ) │ │ │ + 2 2 3 │ │ │ + + 38b*d - 39c*d - d ) │ │ │ │ │ │ o18 : Ideal of S │ │ │ │ │ │ i19 : betti res F2 │ │ │ │ │ │ 0 1 2 3 │ │ │ o19 = total: 1 6 8 3 │ │ │ @@ -179,26 +179,30 @@ │ │ │ 1: . 4 4 1 │ │ │ 2: . 2 4 2 │ │ │ │ │ │ o19 : BettiTally │ │ │ │ │ │ i20 : netList decompose F1 │ │ │ │ │ │ - +----------------------------------------------------------------------------------------------------------+ │ │ │ -o20 = |ideal (c - 16d, b + 31d, a + 12d) | │ │ │ - +----------------------------------------------------------------------------------------------------------+ │ │ │ - |ideal (c - 29d, b + 29d, a - 27d) | │ │ │ - +----------------------------------------------------------------------------------------------------------+ │ │ │ - |ideal (c + 41d, b + 35d, a - 25d) | │ │ │ - +----------------------------------------------------------------------------------------------------------+ │ │ │ - | 2 2 2 2 2 | │ │ │ - |ideal (a - 8b - 36c + 37d, c - 5b*d + 46c*d + 41d , b*c + 30b*d - 24c*d - 9d , b - 17b*d + 21c*d - 34d )| │ │ │ - +----------------------------------------------------------------------------------------------------------+ │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ +o20 = |ideal (c + 39d, b + 27d, a - 18d) | │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ + | 2 2 2 3 2 2 2 3 2 2 2 3 | │ │ │ + |ideal (a - 29b - 8c - 13d, b + 24b*c + 19c + 34b*d + 5c*d + 37d , c - 24b*c*d - 16c d + 8b*d + 22c*d + 19d , b*c - 29b*c*d - 30c d - 38c*d + 14d )| │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ │ │ │ i21 : netList decompose F2 │ │ │ │ │ │ - +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ - | 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 3 2 2 2 2 2 3 | │ │ │ -o21 = |ideal (a*c - 15b*c + 19c + 14a*d - 43b*d - 47c*d + 27d , b + 22b*c - 18c + 7b*d + 23c*d + 13d , a*b + 46b*c + 33c + a*d + 42b*d + 37c*d + 13d , a - 35b*c + 33c + 46a*d - 33b*d - 48c*d + 18d , c - 28b*c*d + 38c d - 39a*d - 47b*d - 13c*d + 4d , b*c + 34b*c*d + 2c d + 16a*d + 45b*d - 15c*d + 10d )| │ │ │ - +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ + +-------------------------------------------------------+ │ │ │ +o21 = |ideal (c - 32d, b - 5d, a - 29d) | │ │ │ + +-------------------------------------------------------+ │ │ │ + |ideal (c + 43d, b - 47d, a - 27d) | │ │ │ + +-------------------------------------------------------+ │ │ │ + |ideal (c + 24d, b - 49d, a) | │ │ │ + +-------------------------------------------------------+ │ │ │ + |ideal (c + 14d, b + 31d, a - 16d) | │ │ │ + +-------------------------------------------------------+ │ │ │ + | 2 2 | │ │ │ + |ideal (b + 11c + 22d, a + 11c + 42d, c - 43c*d + 31d )| │ │ │ + +-------------------------------------------------------+ │ │ │ │ │ │ i22 : │ │ ├── ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_random__Point__On__Rational__Variety_lp__Ideal_rp.out │ │ │ @@ -12,15 +12,15 @@ │ │ │ 2 │ │ │ c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f) │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ │ │ i4 : pt = randomPointOnRationalVariety I │ │ │ │ │ │ -o4 = | -25 20 -30 -16 24 -36 | │ │ │ +o4 = | 1 49 24 -23 -36 -30 | │ │ │ │ │ │ 1 6 │ │ │ o4 : Matrix kk <-- kk │ │ │ │ │ │ i5 : sub(I, pt) == 0 │ │ │ │ │ │ o5 = true │ │ ├── ./usr/share/doc/Macaulay2/GroebnerStrata/html/_nonminimal__Maps.html │ │ │ @@ -206,48 +206,48 @@ │ │ │
    i13 : #compsJ
    │ │ │  
    │ │ │  o13 = 2
    │ │ │ │ │ │ │ │ │
    i14 : pt1 = randomPointOnRationalVariety compsJ_0
    │ │ │  
    │ │ │ -o14 = | 43 35 -43 7 38 31 47 48 46 21 8 10 6 -30 -40 10 -27 -10 -50 30 -21
    │ │ │ +o14 = | -6 48 44 -23 -2 -11 -35 -26 27 -43 48 27 15 -22 25 -16 34 -29 46 -20
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -38 -16 -29 31 -36 39 -29 19 24 -24 -8 19 -29 21 -22 |
    │ │ │ +      40 21 -30 -38 -19 -8 -36 39 19 -29 -16 -29 -10 19 24 -24 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o14 : Matrix kk  <-- kk
    │ │ │ │ │ │ │ │ │
    i15 : pt2 = randomPointOnRationalVariety compsJ_1
    │ │ │  
    │ │ │ -o15 = | 18 13 -48 10 27 -33 13 4 37 33 -15 46 42 -47 -35 23 45 -13 33 -43 1 7
    │ │ │ +o15 = | -48 -46 16 17 -1 -43 15 -1 12 -18 -6 -28 14 -28 -9 32 -22 -39 6 -47
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      2 -47 46 19 16 14 -18 34 38 -15 0 -39 22 -28 |
    │ │ │ +      28 -37 -47 38 -16 -15 34 27 -13 -43 22 16 0 -18 19 2 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o15 : Matrix kk  <-- kk
    │ │ │ │ │ │ │ │ │
    i16 : F1 = sub(F, (vars S)|pt1)
    │ │ │  
    │ │ │ -              2              2                              2               
    │ │ │ -o16 = ideal (a  - 40b*c + 21c  + 10a*d + 31b*d - 43c*d + 43d , a*b + 31b*c -
    │ │ │ +              2              2                             2               
    │ │ │ +o16 = ideal (a  + 25b*c - 43c  + 27a*d - 11b*d + 44c*d - 6d , a*b - 19b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                             2                  2                  
    │ │ │ -      50c  - 21a*d + 6b*d + 46c*d + 35d , a*c - 8b*c - 36c  - 29a*d + 30b*d -
    │ │ │ +         2                              2                  2                
    │ │ │ +      46c  + 40a*d + 15b*d + 27c*d + 48d , a*c - 29b*c - 8c  + 39a*d - 20b*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                 2   2              2                              2     2  
    │ │ │ -      30c*d + 38d , b  + 21b*c + 19c  + 19a*d - 38b*d + 10c*d + 47d , b*c  +
    │ │ │ +                  2   2              2                              2     2  
    │ │ │ +      - 22c*d - 2d , b  + 24b*c + 19c  - 10a*d + 21b*d - 16c*d - 35d , b*c  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                   2         2        2       2     3   3                2   
    │ │ │ -      24b*c*d - 16c d + 39a*d  - 27b*d  + 8c*d  + 7d , c  - 22b*c*d - 24c d -
    │ │ │ +                   2         2        2        2      3   3                2 
    │ │ │ +      29b*c*d - 30c d - 36a*d  + 34b*d  + 48c*d  - 23d , c  - 24b*c*d - 16c d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2        2        2      3
    │ │ │ -      29a*d  - 29b*d  - 10c*d  + 48d )
    │ │ │ +             2        2        2      3
    │ │ │ +      + 19a*d  - 38b*d  - 29c*d  - 26d )
    │ │ │  
    │ │ │  o16 : Ideal of S
    │ │ │ │ │ │ │ │ │
    i17 : betti res F1
    │ │ │  
    │ │ │               0 1 2 3
    │ │ │ @@ -257,28 +257,28 @@
    │ │ │            2: . 2 4 2
    │ │ │  
    │ │ │  o17 : BettiTally
    │ │ │ │ │ │ │ │ │
    i18 : F2 = sub(F, (vars S)|pt2)
    │ │ │  
    │ │ │ -              2              2                              2               
    │ │ │ -o18 = ideal (a  - 35b*c + 33c  + 46a*d - 33b*d - 48c*d + 18d , a*b + 46b*c +
    │ │ │ +              2             2                              2               
    │ │ │ +o18 = ideal (a  - 9b*c - 18c  - 28a*d - 43b*d + 16c*d - 48d , a*b - 16b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                            2                   2                  
    │ │ │ -      33c  + a*d + 42b*d + 37c*d + 13d , a*c - 15b*c + 19c  + 14a*d - 43b*d -
    │ │ │ +        2                              2                   2                
    │ │ │ +      6c  + 28a*d + 14b*d + 12c*d - 46d , a*c + 16b*c - 15c  + 27a*d - 47b*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                 2   2              2                     2     2            
    │ │ │ -      47c*d + 27d , b  + 22b*c - 18c  + 7b*d + 23c*d + 13d , b*c  + 34b*c*d +
    │ │ │ +                 2   2              2                      2     2          
    │ │ │ +      - 28c*d - d , b  + 19b*c - 13c  - 37b*d + 32c*d + 15d , b*c  - 43b*c*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -        2         2        2        2      3   3                2         2  
    │ │ │ -      2c d + 16a*d  + 45b*d  - 15c*d  + 10d , c  - 28b*c*d + 38c d - 39a*d  -
    │ │ │ +           2         2        2       2      3   3               2         2
    │ │ │ +      - 47c d + 34a*d  - 22b*d  - 6c*d  + 17d , c  + 2b*c*d + 22c d - 18a*d 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2        2     3
    │ │ │ -      47b*d  - 13c*d  + 4d )
    │ │ │ +             2        2    3
    │ │ │ +      + 38b*d  - 39c*d  - d )
    │ │ │  
    │ │ │  o18 : Ideal of S
    │ │ │ │ │ │ │ │ │
    i19 : betti res F2
    │ │ │  
    │ │ │               0 1 2 3
    │ │ │ @@ -293,32 +293,36 @@
    │ │ │          
    │ │ │

    What are the ideals F1 and F2?

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i20 : netList decompose F1
    │ │ │  
    │ │ │ -      +----------------------------------------------------------------------------------------------------------+
    │ │ │ -o20 = |ideal (c - 16d, b + 31d, a + 12d)                                                                         |
    │ │ │ -      +----------------------------------------------------------------------------------------------------------+
    │ │ │ -      |ideal (c - 29d, b + 29d, a - 27d)                                                                         |
    │ │ │ -      +----------------------------------------------------------------------------------------------------------+
    │ │ │ -      |ideal (c + 41d, b + 35d, a - 25d)                                                                         |
    │ │ │ -      +----------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                            2                     2                          2   2                      2 |
    │ │ │ -      |ideal (a - 8b - 36c + 37d, c  - 5b*d + 46c*d + 41d , b*c + 30b*d - 24c*d - 9d , b  - 17b*d + 21c*d - 34d )|
    │ │ │ -      +----------------------------------------------------------------------------------------------------------+
    │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ +o20 = |ideal (c + 39d, b + 27d, a - 18d) | │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ + | 2 2 2 3 2 2 2 3 2 2 2 3 | │ │ │ + |ideal (a - 29b - 8c - 13d, b + 24b*c + 19c + 34b*d + 5c*d + 37d , c - 24b*c*d - 16c d + 8b*d + 22c*d + 19d , b*c - 29b*c*d - 30c d - 38c*d + 14d )| │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │
    i21 : netList decompose F2
    │ │ │  
    │ │ │ -      +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                        2                              2   2              2                     2                   2                            2   2              2                              2   3                2         2        2        2     3     2               2         2        2        2      3 |
    │ │ │ -o21 = |ideal (a*c - 15b*c + 19c  + 14a*d - 43b*d - 47c*d + 27d , b  + 22b*c - 18c  + 7b*d + 23c*d + 13d , a*b + 46b*c + 33c  + a*d + 42b*d + 37c*d + 13d , a  - 35b*c + 33c  + 46a*d - 33b*d - 48c*d + 18d , c  - 28b*c*d + 38c d - 39a*d  - 47b*d  - 13c*d  + 4d , b*c  + 34b*c*d + 2c d + 16a*d  + 45b*d  - 15c*d  + 10d )|
    │ │ │ -      +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ + +-------------------------------------------------------+ │ │ │ +o21 = |ideal (c - 32d, b - 5d, a - 29d) | │ │ │ + +-------------------------------------------------------+ │ │ │ + |ideal (c + 43d, b - 47d, a - 27d) | │ │ │ + +-------------------------------------------------------+ │ │ │ + |ideal (c + 24d, b - 49d, a) | │ │ │ + +-------------------------------------------------------+ │ │ │ + |ideal (c + 14d, b + 31d, a - 16d) | │ │ │ + +-------------------------------------------------------+ │ │ │ + | 2 2 | │ │ │ + |ideal (b + 11c + 22d, a + 11c + 42d, c - 43c*d + 31d )| │ │ │ + +-------------------------------------------------------+ │ │ │
    │ │ │
    │ │ │

    We can determine what these represent. One should be a set of 6 points, where 5 lie on a plane. The other should be 6 points with 3 points on one line, and the other 3 points on a skew line.

    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -171,71 +171,71 @@ │ │ │ │ 32 13 21 33 19 31 │ │ │ │ i12 : compsJ = decompose J; │ │ │ │ i13 : #compsJ │ │ │ │ │ │ │ │ o13 = 2 │ │ │ │ i14 : pt1 = randomPointOnRationalVariety compsJ_0 │ │ │ │ │ │ │ │ -o14 = | 43 35 -43 7 38 31 47 48 46 21 8 10 6 -30 -40 10 -27 -10 -50 30 -21 │ │ │ │ +o14 = | -6 48 44 -23 -2 -11 -35 -26 27 -43 48 27 15 -22 25 -16 34 -29 46 -20 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - -38 -16 -29 31 -36 39 -29 19 24 -24 -8 19 -29 21 -22 | │ │ │ │ + 40 21 -30 -38 -19 -8 -36 39 19 -29 -16 -29 -10 19 24 -24 | │ │ │ │ │ │ │ │ 1 36 │ │ │ │ o14 : Matrix kk <-- kk │ │ │ │ i15 : pt2 = randomPointOnRationalVariety compsJ_1 │ │ │ │ │ │ │ │ -o15 = | 18 13 -48 10 27 -33 13 4 37 33 -15 46 42 -47 -35 23 45 -13 33 -43 1 7 │ │ │ │ +o15 = | -48 -46 16 17 -1 -43 15 -1 12 -18 -6 -28 14 -28 -9 32 -22 -39 6 -47 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 -47 46 19 16 14 -18 34 38 -15 0 -39 22 -28 | │ │ │ │ + 28 -37 -47 38 -16 -15 34 27 -13 -43 22 16 0 -18 19 2 | │ │ │ │ │ │ │ │ 1 36 │ │ │ │ o15 : Matrix kk <-- kk │ │ │ │ i16 : F1 = sub(F, (vars S)|pt1) │ │ │ │ │ │ │ │ - 2 2 2 │ │ │ │ -o16 = ideal (a - 40b*c + 21c + 10a*d + 31b*d - 43c*d + 43d , a*b + 31b*c - │ │ │ │ + 2 2 2 │ │ │ │ +o16 = ideal (a + 25b*c - 43c + 27a*d - 11b*d + 44c*d - 6d , a*b - 19b*c + │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 │ │ │ │ - 50c - 21a*d + 6b*d + 46c*d + 35d , a*c - 8b*c - 36c - 29a*d + 30b*d - │ │ │ │ + 2 2 2 │ │ │ │ + 46c + 40a*d + 15b*d + 27c*d + 48d , a*c - 29b*c - 8c + 39a*d - 20b*d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 2 │ │ │ │ - 30c*d + 38d , b + 21b*c + 19c + 19a*d - 38b*d + 10c*d + 47d , b*c + │ │ │ │ + 2 2 2 2 2 │ │ │ │ + - 22c*d - 2d , b + 24b*c + 19c - 10a*d + 21b*d - 16c*d - 35d , b*c - │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 3 3 2 │ │ │ │ - 24b*c*d - 16c d + 39a*d - 27b*d + 8c*d + 7d , c - 22b*c*d - 24c d - │ │ │ │ + 2 2 2 2 3 3 2 │ │ │ │ + 29b*c*d - 30c d - 36a*d + 34b*d + 48c*d - 23d , c - 24b*c*d - 16c d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 3 │ │ │ │ - 29a*d - 29b*d - 10c*d + 48d ) │ │ │ │ + 2 2 2 3 │ │ │ │ + + 19a*d - 38b*d - 29c*d - 26d ) │ │ │ │ │ │ │ │ o16 : Ideal of S │ │ │ │ i17 : betti res F1 │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ o17 = total: 1 6 8 3 │ │ │ │ 0: 1 . . . │ │ │ │ 1: . 4 4 1 │ │ │ │ 2: . 2 4 2 │ │ │ │ │ │ │ │ o17 : BettiTally │ │ │ │ i18 : F2 = sub(F, (vars S)|pt2) │ │ │ │ │ │ │ │ - 2 2 2 │ │ │ │ -o18 = ideal (a - 35b*c + 33c + 46a*d - 33b*d - 48c*d + 18d , a*b + 46b*c + │ │ │ │ + 2 2 2 │ │ │ │ +o18 = ideal (a - 9b*c - 18c - 28a*d - 43b*d + 16c*d - 48d , a*b - 16b*c + │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 │ │ │ │ - 33c + a*d + 42b*d + 37c*d + 13d , a*c - 15b*c + 19c + 14a*d - 43b*d - │ │ │ │ + 2 2 2 │ │ │ │ + 6c + 28a*d + 14b*d + 12c*d - 46d , a*c + 16b*c - 15c + 27a*d - 47b*d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 2 │ │ │ │ - 47c*d + 27d , b + 22b*c - 18c + 7b*d + 23c*d + 13d , b*c + 34b*c*d + │ │ │ │ + 2 2 2 2 2 │ │ │ │ + - 28c*d - d , b + 19b*c - 13c - 37b*d + 32c*d + 15d , b*c - 43b*c*d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 3 3 2 2 │ │ │ │ - 2c d + 16a*d + 45b*d - 15c*d + 10d , c - 28b*c*d + 38c d - 39a*d - │ │ │ │ + 2 2 2 2 3 3 2 2 │ │ │ │ + - 47c d + 34a*d - 22b*d - 6c*d + 17d , c + 2b*c*d + 22c d - 18a*d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 3 │ │ │ │ - 47b*d - 13c*d + 4d ) │ │ │ │ + 2 2 3 │ │ │ │ + + 38b*d - 39c*d - d ) │ │ │ │ │ │ │ │ o18 : Ideal of S │ │ │ │ i19 : betti res F2 │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ o19 = total: 1 6 8 3 │ │ │ │ 0: 1 . . . │ │ │ │ @@ -243,54 +243,43 @@ │ │ │ │ 2: . 2 4 2 │ │ │ │ │ │ │ │ o19 : BettiTally │ │ │ │ What are the ideals F1 and F2? │ │ │ │ i20 : netList decompose F1 │ │ │ │ │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -----------------------------------+ │ │ │ │ -o20 = |ideal (c - 16d, b + 31d, a + 12d) │ │ │ │ -| │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ -----------------------------------+ │ │ │ │ - |ideal (c - 29d, b + 29d, a - 27d) │ │ │ │ -| │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ -----------------------------------+ │ │ │ │ - |ideal (c + 41d, b + 35d, a - 25d) │ │ │ │ +------------------------------------------------------------------------------- │ │ │ │ +--+ │ │ │ │ +o20 = |ideal (c + 39d, b + 27d, a - 18d) │ │ │ │ | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -----------------------------------+ │ │ │ │ - | 2 2 │ │ │ │ -2 2 2 | │ │ │ │ - |ideal (a - 8b - 36c + 37d, c - 5b*d + 46c*d + 41d , b*c + 30b*d - 24c*d │ │ │ │ -- 9d , b - 17b*d + 21c*d - 34d )| │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ -----------------------------------+ │ │ │ │ -i21 : netList decompose F2 │ │ │ │ - │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ -------------------------------------------------------------------------------- │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ -------------------------------------------------------------------------------- │ │ │ │ -+ │ │ │ │ - | 2 2 2 │ │ │ │ -2 2 2 2 2 │ │ │ │ -2 2 3 2 2 2 │ │ │ │ -2 3 2 2 2 2 2 3 | │ │ │ │ -o21 = |ideal (a*c - 15b*c + 19c + 14a*d - 43b*d - 47c*d + 27d , b + 22b*c - │ │ │ │ -18c + 7b*d + 23c*d + 13d , a*b + 46b*c + 33c + a*d + 42b*d + 37c*d + 13d , a │ │ │ │ -- 35b*c + 33c + 46a*d - 33b*d - 48c*d + 18d , c - 28b*c*d + 38c d - 39a*d - │ │ │ │ -47b*d - 13c*d + 4d , b*c + 34b*c*d + 2c d + 16a*d + 45b*d - 15c*d + 10d │ │ │ │ +--+ │ │ │ │ + | 2 2 2 3 │ │ │ │ +2 2 2 3 2 2 2 3 | │ │ │ │ + |ideal (a - 29b - 8c - 13d, b + 24b*c + 19c + 34b*d + 5c*d + 37d , c - │ │ │ │ +24b*c*d - 16c d + 8b*d + 22c*d + 19d , b*c - 29b*c*d - 30c d - 38c*d + 14d │ │ │ │ )| │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ -------------------------------------------------------------------------------- │ │ │ │ -------------------------------------------------------------------------------- │ │ │ │ -+ │ │ │ │ +--+ │ │ │ │ +i21 : netList decompose F2 │ │ │ │ + │ │ │ │ + +-------------------------------------------------------+ │ │ │ │ +o21 = |ideal (c - 32d, b - 5d, a - 29d) | │ │ │ │ + +-------------------------------------------------------+ │ │ │ │ + |ideal (c + 43d, b - 47d, a - 27d) | │ │ │ │ + +-------------------------------------------------------+ │ │ │ │ + |ideal (c + 24d, b - 49d, a) | │ │ │ │ + +-------------------------------------------------------+ │ │ │ │ + |ideal (c + 14d, b + 31d, a - 16d) | │ │ │ │ + +-------------------------------------------------------+ │ │ │ │ + | 2 2 | │ │ │ │ + |ideal (b + 11c + 22d, a + 11c + 42d, c - 43c*d + 31d )| │ │ │ │ + +-------------------------------------------------------+ │ │ │ │ We can determine what these represent. One should be a set of 6 points, where 5 │ │ │ │ lie on a plane. The other should be 6 points with 3 points on one line, and the │ │ │ │ other 3 points on a skew line. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_n_d_o_m_P_o_i_n_t_O_n_R_a_t_i_o_n_a_l_V_a_r_i_e_t_y -- find a random point on a variety that can │ │ │ │ be detected to be rational │ │ │ │ ********** WWaayyss ttoo uussee nnoonnmmiinniimmaallMMaappss:: ********** │ │ ├── ./usr/share/doc/Macaulay2/GroebnerStrata/html/_random__Point__On__Rational__Variety_lp__Ideal_rp.html │ │ │ @@ -90,15 +90,15 @@ │ │ │ c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f) │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ │ │ │ │ │
    i4 : pt = randomPointOnRationalVariety I
    │ │ │  
    │ │ │ -o4 = | -25 20 -30 -16 24 -36 |
    │ │ │ +o4 = | 1 49 24 -23 -36 -30 |
    │ │ │  
    │ │ │                1       6
    │ │ │  o4 : Matrix kk  <-- kk
    │ │ │ │ │ │ │ │ │
    i5 : sub(I, pt) == 0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -29,15 +29,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                                               2
    │ │ │ │       c*e + b*f, - c*d + b*e, - c*e + b*f, - e  + d*f)
    │ │ │ │  
    │ │ │ │  o3 : Ideal of S
    │ │ │ │  i4 : pt = randomPointOnRationalVariety I
    │ │ │ │  
    │ │ │ │ -o4 = | -25 20 -30 -16 24 -36 |
    │ │ │ │ +o4 = | 1 49 24 -23 -36 -30 |
    │ │ │ │  
    │ │ │ │                1       6
    │ │ │ │  o4 : Matrix kk  <-- kk
    │ │ │ │  i5 : sub(I, pt) == 0
    │ │ │ │  
    │ │ │ │  o5 = true
    │ │ │ │  i6 : S = kk[a..d];
    │ │ ├── ./usr/share/doc/Macaulay2/GroebnerStrata/html/index.html
    │ │ │ @@ -320,75 +320,75 @@
    │ │ │          
    │ │ │

    We can find random points on each component, since these components are rational.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : pt1 = randomPointOnRationalVariety compsJ_0
    │ │ │  
    │ │ │ -o12 = | -13 -21 -15 -5 36 46 -6 -25 12 -22 -33 37 24 -36 -36 -30 -29 -8 19
    │ │ │ +o12 = | -14 48 41 -32 -39 30 48 36 2 -29 -30 -23 19 19 -10 -29 -8 -22 24 -13
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -13 19 -29 -29 -10 |
    │ │ │ +      -36 -30 -29 -10 |
    │ │ │  
    │ │ │                 1       24
    │ │ │  o12 : Matrix kk  <-- kk
    │ │ │
    i13 : pt2 = randomPointOnRationalVariety compsJ_1
    │ │ │  
    │ │ │ -o13 = | 50 -8 -9 9 0 5 -15 38 0 -42 -18 28 45 39 16 -46 34 19 -16 -24 -38 0
    │ │ │ +o13 = | -39 -22 11 26 -28 31 38 24 -31 -16 -16 -7 -41 -24 18 -17 19 34 -38 39
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -47 21 |
    │ │ │ +      -16 0 -47 21 |
    │ │ │  
    │ │ │                 1       24
    │ │ │  o13 : Matrix kk  <-- kk
    │ │ │
    i14 : F1 = sub(F, (vars S)|pt1)
    │ │ │  
    │ │ │                2             2                              2               
    │ │ │ -o14 = ideal (a  + 12b*c - 5c  - 22a*d + 36b*d - 21c*d - 13d , a*b - 36b*c -
    │ │ │ +o14 = ideal (a  + 2b*c - 32c  - 29a*d - 39b*d + 48c*d - 14d , a*b - 10b*c -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                              2   2              2                 
    │ │ │ -      33c  - 30a*d + 37b*d + 46c*d - 15d , b  + 19b*c - 29c  - 29a*d - 8b*d +
    │ │ │ +         2                              2   2             2                  
    │ │ │ +      30c  - 29a*d - 23b*d + 30c*d + 41d , b  - 36b*c - 8c  - 30a*d - 22b*d +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                2                   2                              2
    │ │ │ -      24c*d - 6d , a*c - 29b*c + 19c  - 10a*d - 13b*d - 36c*d - 25d )
    │ │ │ +                 2                   2                              2
    │ │ │ +      19c*d + 48d , a*c - 29b*c + 24c  - 10a*d - 13b*d + 19c*d + 36d )
    │ │ │  
    │ │ │  o14 : Ideal of S
    │ │ │
    i15 : F2 = sub(F, (vars S)|pt2)
    │ │ │  
    │ │ │ -              2     2                     2                   2          
    │ │ │ -o15 = ideal (a  + 9c  - 42a*d - 8c*d + 50d , a*b + 16b*c - 18c  - 46a*d +
    │ │ │ +              2              2                              2               
    │ │ │ +o15 = ideal (a  - 31b*c + 26c  - 16a*d - 28b*d - 22c*d - 39d , a*b + 18b*c -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                       2   2              2                      2       
    │ │ │ -      28b*d + 5c*d - 9d , b  - 38b*c + 34c  + 19b*d + 45c*d - 15d , a*c -
    │ │ │ +         2                             2   2              2                  
    │ │ │ +      16c  - 17a*d - 7b*d + 31c*d + 11d , b  - 16b*c + 19c  + 34b*d - 41c*d +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                 2                              2
    │ │ │ -      47b*c - 16c  + 21a*d - 24b*d + 39c*d + 38d )
    │ │ │ +         2                   2                              2
    │ │ │ +      38d , a*c - 47b*c - 38c  + 21a*d + 39b*d - 24c*d + 24d )
    │ │ │  
    │ │ │  o15 : Ideal of S
    │ │ │
    i16 : decompose F1
    │ │ │  
    │ │ │ -                                    2              2                      2
    │ │ │ -o16 = {ideal (a - 29b + 19c - 48d, b  + 19b*c - 29c  - 41b*d - 31c*d + 16d ),
    │ │ │ +                                    2             2                      2
    │ │ │ +o16 = {ideal (a - 29b + 24c - 44d, b  - 36b*c - 8c  + 17b*d + 32c*d + 41d ),
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      ideal (c - 10d, b + 3d, a - d)}
    │ │ │ +      ideal (c - 10d, b + 33d, a + 10d)}
    │ │ │  
    │ │ │  o16 : List
    │ │ │
    i17 : decompose F2
    │ │ │  
    │ │ │ -o17 = {ideal (b - 42c - 19d, a + 30c + 33d), ideal (b + 4c + 38d, a - 30c +
    │ │ │ +o17 = {ideal (b - 42c + 10d, a + 8c - 3d), ideal (b + 26c + 24d, a - 28c -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      26d)}
    │ │ │ +      29d)}
    │ │ │  
    │ │ │  o17 : List
    │ │ │
    │ │ │
    │ │ │

    Note, the general element of one component is a plane conic union a point. (The dimension of the locus of all such is: (choice of plane) + (choice of degree 2 in plane) + choice of point. This is 3 + 5 + 3 = 11.

    │ │ │

    The other component consists of two skew lines. This has dimension (choice of line) + (choice of line). This is 4 + 4 = 8. Also notice that the 2 skew lines do not have to be defined over the base field, as in this case.

    │ │ │ ├── html2text {} │ │ │ │ @@ -424,65 +424,65 @@ │ │ │ │ -----------------------------------------------------------+ │ │ │ │ This tells us that there are 2 components (at least over the given field). │ │ │ │ Their dimensions are 11, 8. │ │ │ │ We can find random points on each component, since these components are │ │ │ │ rational. │ │ │ │ i12 : pt1 = randomPointOnRationalVariety compsJ_0 │ │ │ │ │ │ │ │ -o12 = | -13 -21 -15 -5 36 46 -6 -25 12 -22 -33 37 24 -36 -36 -30 -29 -8 19 │ │ │ │ +o12 = | -14 48 41 -32 -39 30 48 36 2 -29 -30 -23 19 19 -10 -29 -8 -22 24 -13 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - -13 19 -29 -29 -10 | │ │ │ │ + -36 -30 -29 -10 | │ │ │ │ │ │ │ │ 1 24 │ │ │ │ o12 : Matrix kk <-- kk │ │ │ │ i13 : pt2 = randomPointOnRationalVariety compsJ_1 │ │ │ │ │ │ │ │ -o13 = | 50 -8 -9 9 0 5 -15 38 0 -42 -18 28 45 39 16 -46 34 19 -16 -24 -38 0 │ │ │ │ +o13 = | -39 -22 11 26 -28 31 38 24 -31 -16 -16 -7 -41 -24 18 -17 19 34 -38 39 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - -47 21 | │ │ │ │ + -16 0 -47 21 | │ │ │ │ │ │ │ │ 1 24 │ │ │ │ o13 : Matrix kk <-- kk │ │ │ │ i14 : F1 = sub(F, (vars S)|pt1) │ │ │ │ │ │ │ │ 2 2 2 │ │ │ │ -o14 = ideal (a + 12b*c - 5c - 22a*d + 36b*d - 21c*d - 13d , a*b - 36b*c - │ │ │ │ +o14 = ideal (a + 2b*c - 32c - 29a*d - 39b*d + 48c*d - 14d , a*b - 10b*c - │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 │ │ │ │ - 33c - 30a*d + 37b*d + 46c*d - 15d , b + 19b*c - 29c - 29a*d - 8b*d + │ │ │ │ + 2 2 2 2 │ │ │ │ + 30c - 29a*d - 23b*d + 30c*d + 41d , b - 36b*c - 8c - 30a*d - 22b*d + │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 │ │ │ │ - 24c*d - 6d , a*c - 29b*c + 19c - 10a*d - 13b*d - 36c*d - 25d ) │ │ │ │ + 2 2 2 │ │ │ │ + 19c*d + 48d , a*c - 29b*c + 24c - 10a*d - 13b*d + 19c*d + 36d ) │ │ │ │ │ │ │ │ o14 : Ideal of S │ │ │ │ i15 : F2 = sub(F, (vars S)|pt2) │ │ │ │ │ │ │ │ - 2 2 2 2 │ │ │ │ -o15 = ideal (a + 9c - 42a*d - 8c*d + 50d , a*b + 16b*c - 18c - 46a*d + │ │ │ │ + 2 2 2 │ │ │ │ +o15 = ideal (a - 31b*c + 26c - 16a*d - 28b*d - 22c*d - 39d , a*b + 18b*c - │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 │ │ │ │ - 28b*d + 5c*d - 9d , b - 38b*c + 34c + 19b*d + 45c*d - 15d , a*c - │ │ │ │ + 2 2 2 2 │ │ │ │ + 16c - 17a*d - 7b*d + 31c*d + 11d , b - 16b*c + 19c + 34b*d - 41c*d + │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 │ │ │ │ - 47b*c - 16c + 21a*d - 24b*d + 39c*d + 38d ) │ │ │ │ + 2 2 2 │ │ │ │ + 38d , a*c - 47b*c - 38c + 21a*d + 39b*d - 24c*d + 24d ) │ │ │ │ │ │ │ │ o15 : Ideal of S │ │ │ │ i16 : decompose F1 │ │ │ │ │ │ │ │ - 2 2 2 │ │ │ │ -o16 = {ideal (a - 29b + 19c - 48d, b + 19b*c - 29c - 41b*d - 31c*d + 16d ), │ │ │ │ + 2 2 2 │ │ │ │ +o16 = {ideal (a - 29b + 24c - 44d, b - 36b*c - 8c + 17b*d + 32c*d + 41d ), │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - ideal (c - 10d, b + 3d, a - d)} │ │ │ │ + ideal (c - 10d, b + 33d, a + 10d)} │ │ │ │ │ │ │ │ o16 : List │ │ │ │ i17 : decompose F2 │ │ │ │ │ │ │ │ -o17 = {ideal (b - 42c - 19d, a + 30c + 33d), ideal (b + 4c + 38d, a - 30c + │ │ │ │ +o17 = {ideal (b - 42c + 10d, a + 8c - 3d), ideal (b + 26c + 24d, a - 28c - │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 26d)} │ │ │ │ + 29d)} │ │ │ │ │ │ │ │ o17 : List │ │ │ │ Note, the general element of one component is a plane conic union a point. (The │ │ │ │ dimension of the locus of all such is: (choice of plane) + (choice of degree 2 │ │ │ │ in plane) + choice of point. This is 3 + 5 + 3 = 11. │ │ │ │ The other component consists of two skew lines. This has dimension (choice of │ │ │ │ line) + (choice of line). This is 4 + 4 = 8. Also notice that the 2 skew lines │ │ ├── ./usr/share/doc/Macaulay2/GroebnerWalk/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=16 │ │ │ c2V0V2Fsa1RyYWNlKFpaKQ== │ │ │ #:len=251 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNTYxLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhzZXRXYWxrVHJhY2UsWlopLCJzZXRXYWxrVHJhY2Uo │ │ ├── ./usr/share/doc/Macaulay2/GroebnerWalk/example-output/___Groebner__Walk.out │ │ │ @@ -11,21 +11,21 @@ │ │ │ i3 : R2 = QQ[x,y,z,u,v, MonomialOrder=>Weights=>{0,0,0,1,1}]; │ │ │ │ │ │ i4 : I2 = sub(I1, R2); │ │ │ │ │ │ o4 : Ideal of R2 │ │ │ │ │ │ i5 : elapsedTime gb I2 │ │ │ - -- 3.77668s elapsed │ │ │ + -- 2.70794s elapsed │ │ │ │ │ │ o5 = GroebnerBasis[status: done; S-pairs encountered up to degree 16] │ │ │ │ │ │ o5 : GroebnerBasis │ │ │ │ │ │ i6 : elapsedTime groebnerWalk(gb I1, R2) │ │ │ - -- 2.99521s elapsed │ │ │ + -- 2.47807s elapsed │ │ │ │ │ │ o6 = GroebnerBasis[status: done; S-pairs encountered up to degree 0] │ │ │ │ │ │ o6 : GroebnerBasis │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/GroebnerWalk/html/index.html │ │ │ @@ -76,28 +76,28 @@ │ │ │ │ │ │
    i4 : I2 = sub(I1, R2);
    │ │ │  
    │ │ │  o4 : Ideal of R2
    │ │ │ │ │ │ │ │ │
    i5 : elapsedTime gb I2
    │ │ │ - -- 3.77668s elapsed
    │ │ │ + -- 2.70794s elapsed
    │ │ │  
    │ │ │  o5 = GroebnerBasis[status: done; S-pairs encountered up to degree 16]
    │ │ │  
    │ │ │  o5 : GroebnerBasis
    │ │ │ │ │ │ │ │ │
    │ │ │

    but it is faster to compute directly in the first order and then use the Groebner walk.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    i6 : elapsedTime groebnerWalk(gb I1, R2)
    │ │ │ - -- 2.99521s elapsed
    │ │ │ + -- 2.47807s elapsed
    │ │ │  
    │ │ │  o6 = GroebnerBasis[status: done; S-pairs encountered up to degree 0]
    │ │ │  
    │ │ │  o6 : GroebnerBasis
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -38,23 +38,23 @@ │ │ │ │ using a different weight vector and then graded reverse lexicographic we could │ │ │ │ substitute and compute directly, │ │ │ │ i3 : R2 = QQ[x,y,z,u,v, MonomialOrder=>Weights=>{0,0,0,1,1}]; │ │ │ │ i4 : I2 = sub(I1, R2); │ │ │ │ │ │ │ │ o4 : Ideal of R2 │ │ │ │ i5 : elapsedTime gb I2 │ │ │ │ - -- 3.77668s elapsed │ │ │ │ + -- 2.70794s elapsed │ │ │ │ │ │ │ │ o5 = GroebnerBasis[status: done; S-pairs encountered up to degree 16] │ │ │ │ │ │ │ │ o5 : GroebnerBasis │ │ │ │ but it is faster to compute directly in the first order and then use the │ │ │ │ Groebner walk. │ │ │ │ i6 : elapsedTime groebnerWalk(gb I1, R2) │ │ │ │ - -- 2.99521s elapsed │ │ │ │ + -- 2.47807s elapsed │ │ │ │ │ │ │ │ o6 = GroebnerBasis[status: done; S-pairs encountered up to degree 0] │ │ │ │ │ │ │ │ o6 : GroebnerBasis │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ The target ring must be the same ring as the ring of the starting ideal, except │ │ │ │ with different monomial order. The ring must be a polynomial ring over a field. │ │ ├── ./usr/share/doc/Macaulay2/Hadamard/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=23 │ │ │ aWRlYWxPZlByb2plY3RpdmVQb2ludHM= │ │ │ #:len=1240 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiY29tcHV0ZXMgdGhlIGlkZWFsIG9mIHNl │ │ │ dCBvZiBwb2ludHMiLCAibGluZW51bSIgPT4gNDI0LCBJbnB1dHMgPT4ge1NQQU57VFR7IkwifSwi │ │ ├── ./usr/share/doc/Macaulay2/HigherCIOperators/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=20 │ │ │ Y2lPcGVyYXRvclJlc29sdXRpb24= │ │ │ #:len=2668 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiXCJsaWZ0IHJlc29sdXRpb24gZnJvbSBj │ │ │ b21wbGV0ZSBpbnRlcnNlY3Rpb24gdXNpbmcgaGlnaGVyIGNpLW9wZXJhdG9yc1wiIiwgImxpbmVu │ │ ├── ./usr/share/doc/Macaulay2/HighestWeights/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=11 │ │ │ R3JvdXBBY3Rpbmc= │ │ │ #:len=621 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAic3RvcmVzIHRoZSBEeW5raW4gdHlwZSBv │ │ │ ZiB0aGUgZ3JvdXAgYWN0aW5nIG9uIGEgcmluZyIsICJsaW5lbnVtIiA9PiA4MywgU2VlQWxzbyA9 │ │ ├── ./usr/share/doc/Macaulay2/HodgeIntegrals/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=5 │ │ │ a2FwcGE= │ │ │ #:len=1396 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiTWlsbGVyLU1vcml0YS1NdW1mb3JkIGNs │ │ │ YXNzZXMiLCAibGluZW51bSIgPT4gNzM4LCBJbnB1dHMgPT4ge1NQQU57VFR7ImEifSwiLCAiLFNQ │ │ ├── ./usr/share/doc/Macaulay2/HolonomicSystems/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=14 │ │ │ ZXVsZXJPcGVyYXRvcnM= │ │ │ #:len=1959 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiRXVsZXIgT3BlcmF0b3JzIiwgImxpbmVu │ │ │ dW0iID0+IDE0MCwgSW5wdXRzID0+IHtTUEFOe1RUeyJBIn0sIiwgIixTUEFOeyJhICIsVE8ye25l │ │ ├── ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_css__Lead__Term.out │ │ │ @@ -42,19 +42,19 @@ │ │ │ i5 : w = {9,1,99999, 9999999, 3, 999} │ │ │ │ │ │ o5 = {9, 1, 99999, 9999999, 3, 999} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : netList cssLeadTerm(Hbeta, w) │ │ │ - -- .000004138s elapsed │ │ │ - -- .000002986s elapsed │ │ │ - -- .000003447s elapsed │ │ │ - -- .00000562s elapsed │ │ │ - -- .000002555s elapsed │ │ │ + -- .000003166s elapsed │ │ │ + -- .000003125s elapsed │ │ │ + -- .000003596s elapsed │ │ │ + -- .000003567s elapsed │ │ │ + -- .000003196s elapsed │ │ │ Warning: F4 Algorithm not available over current coefficient ring or inhomogeneous ideal. │ │ │ Converting to Naive algorithm. │ │ │ │ │ │ +----------------------------------------------------+ │ │ │ | 1 5 5 5 | │ │ │ | - - - - - - | │ │ │ | 2 2 2 2 | │ │ ├── ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_solve__Frobenius__Ideal.out │ │ │ @@ -3,15 +3,15 @@ │ │ │ i1 : R = QQ[t_1..t_5]; │ │ │ │ │ │ i2 : I = ideal(t_1+t_2+t_3+t_4+t_5, t_1+t_2-t_4, t_2+t_3-t_4, t_1*t_3, t_2*t_4); │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : solveFrobeniusIdeal I │ │ │ - -- .000004579s elapsed │ │ │ + -- .000003286s elapsed │ │ │ Warning: F4 Algorithm not available over current coefficient ring or inhomogeneous ideal. │ │ │ Converting to Naive algorithm. │ │ │ │ │ │ │ │ │ o3 = {1, - 2logX + 3logX - 2logX + logX , - logX + logX - logX + logX , │ │ │ 0 1 2 3 0 1 2 4 │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -24,15 +24,15 @@ │ │ │ 2 4 0 4 4 1 2 4 2 4 4 3 4 │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : W = makeWeylAlgebra(QQ[x_1..x_5]); │ │ │ │ │ │ i5 : solveFrobeniusIdeal(I, W) │ │ │ - -- .000004359s elapsed │ │ │ + -- .000002425s elapsed │ │ │ Warning: F4 Algorithm not available over current coefficient ring or inhomogeneous ideal. │ │ │ Converting to Naive algorithm. │ │ │ │ │ │ │ │ │ o5 = {1, - 2logX + 3logX - 2logX + logX , - logX + logX - logX + logX , │ │ │ 0 1 2 3 0 1 2 4 │ │ │ ------------------------------------------------------------------------ │ │ ├── ./usr/share/doc/Macaulay2/HolonomicSystems/html/_css__Lead__Term.html │ │ │ @@ -122,19 +122,19 @@ │ │ │ │ │ │ o5 = {9, 1, 99999, 9999999, 3, 999} │ │ │ │ │ │ o5 : List
    │ │ │ │ │ │ │ │ │
    i6 : netList cssLeadTerm(Hbeta, w)
    │ │ │ - -- .000004138s elapsed
    │ │ │ - -- .000002986s elapsed
    │ │ │ - -- .000003447s elapsed
    │ │ │ - -- .00000562s elapsed
    │ │ │ - -- .000002555s elapsed
    │ │ │ + -- .000003166s elapsed
    │ │ │ + -- .000003125s elapsed
    │ │ │ + -- .000003596s elapsed
    │ │ │ + -- .000003567s elapsed
    │ │ │ + -- .000003196s elapsed
    │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or inhomogeneous ideal.
    │ │ │  Converting to Naive algorithm.
    │ │ │  
    │ │ │       +----------------------------------------------------+
    │ │ │       |   1 5   5 5                                        |
    │ │ │       | - - - - - -                                        |
    │ │ │       |   2 2   2 2                                        |
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -55,19 +55,19 @@
    │ │ │ │                    1   6   1   6
    │ │ │ │  i5 : w = {9,1,99999, 9999999, 3, 999}
    │ │ │ │  
    │ │ │ │  o5 = {9, 1, 99999, 9999999, 3, 999}
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  i6 : netList cssLeadTerm(Hbeta, w)
    │ │ │ │ - -- .000004138s elapsed
    │ │ │ │ - -- .000002986s elapsed
    │ │ │ │ - -- .000003447s elapsed
    │ │ │ │ - -- .00000562s elapsed
    │ │ │ │ - -- .000002555s elapsed
    │ │ │ │ + -- .000003166s elapsed
    │ │ │ │ + -- .000003125s elapsed
    │ │ │ │ + -- .000003596s elapsed
    │ │ │ │ + -- .000003567s elapsed
    │ │ │ │ + -- .000003196s elapsed
    │ │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or
    │ │ │ │  inhomogeneous ideal.
    │ │ │ │  Converting to Naive algorithm.
    │ │ │ │  
    │ │ │ │       +----------------------------------------------------+
    │ │ │ │       |   1 5   5 5                                        |
    │ │ │ │       | - - - - - -                                        |
    │ │ ├── ./usr/share/doc/Macaulay2/HolonomicSystems/html/_solve__Frobenius__Ideal.html
    │ │ │ @@ -79,15 +79,15 @@
    │ │ │            
    │ │ │                
    i2 : I = ideal(t_1+t_2+t_3+t_4+t_5, t_1+t_2-t_4, t_2+t_3-t_4, t_1*t_3, t_2*t_4);
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │ │ │ │ │ │ │
    i3 : solveFrobeniusIdeal I
    │ │ │ - -- .000004579s elapsed
    │ │ │ + -- .000003286s elapsed
    │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or inhomogeneous ideal.
    │ │ │  Converting to Naive algorithm.
    │ │ │  
    │ │ │                                                                               
    │ │ │  o3 = {1, - 2logX  + 3logX  - 2logX  + logX , - logX  + logX  - logX  + logX ,
    │ │ │                  0        1        2       3        0       1       2       4 
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -104,15 +104,15 @@
    │ │ │          
    │ │ │          
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │          
    i4 : W = makeWeylAlgebra(QQ[x_1..x_5]);
    │ │ │
    i5 : solveFrobeniusIdeal(I, W)
    │ │ │ - -- .000004359s elapsed
    │ │ │ + -- .000002425s elapsed
    │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or inhomogeneous ideal.
    │ │ │  Converting to Naive algorithm.
    │ │ │  
    │ │ │                                                                               
    │ │ │  o5 = {1, - 2logX  + 3logX  - 2logX  + logX , - logX  + logX  - logX  + logX ,
    │ │ │                  0        1        2       3        0       1       2       4 
    │ │ │       ------------------------------------------------------------------------
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -17,15 +17,15 @@
    │ │ │ │  Here is [_S_S_T, Example 2.3.16]:
    │ │ │ │  i1 : R = QQ[t_1..t_5];
    │ │ │ │  i2 : I = ideal(t_1+t_2+t_3+t_4+t_5, t_1+t_2-t_4, t_2+t_3-t_4, t_1*t_3,
    │ │ │ │  t_2*t_4);
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : solveFrobeniusIdeal I
    │ │ │ │ - -- .000004579s elapsed
    │ │ │ │ + -- .000003286s elapsed
    │ │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or
    │ │ │ │  inhomogeneous ideal.
    │ │ │ │  Converting to Naive algorithm.
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  o3 = {1, - 2logX  + 3logX  - 2logX  + logX , - logX  + logX  - logX  + logX ,
    │ │ │ │                  0        1        2       3        0       1       2       4
    │ │ │ │ @@ -37,15 +37,15 @@
    │ │ │ │         1             1             1             3                 2
    │ │ │ │       - -logX logX  - -logX logX  - -logX logX  - -logX logX  + logX }
    │ │ │ │         2    4    0   4    4    1   2    4    2   4    4    3       4
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ │ │  i4 : W = makeWeylAlgebra(QQ[x_1..x_5]);
    │ │ │ │  i5 : solveFrobeniusIdeal(I, W)
    │ │ │ │ - -- .000004359s elapsed
    │ │ │ │ + -- .000002425s elapsed
    │ │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or
    │ │ │ │  inhomogeneous ideal.
    │ │ │ │  Converting to Naive algorithm.
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  o5 = {1, - 2logX  + 3logX  - 2logX  + logX , - logX  + logX  - logX  + logX ,
    │ │ │ │                  0        1        2       3        0       1       2       4
    │ │ ├── ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=21
    │ │ │  YWxsZ2VucyhER0FsZ2VicmEsWlop
    │ │ │  #:len=269
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNDY5LCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhhbGxnZW5zLERHQWxnZWJyYSxaWiksImFsbGdlbnMo
    │ │ ├── ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/_bracket.out
    │ │ │ @@ -85,82 +85,82 @@
    │ │ │  
    │ │ │  o13 = 600
    │ │ │  
    │ │ │  i14 : H' = select(keys H, k->H#k != 0);
    │ │ │  
    │ │ │  i15 : H'
    │ │ │  
    │ │ │ -o15 = {({T , T  }, - T T   + y*T  ), ({T , T }, T T  - T T   + x*T  ), ({T ,
    │ │ │ -          5   10      5 10      18      4   6    4 6    1 10      20      4 
    │ │ │ +o15 = {({T , T }, - T T  - T T  - T T  + z*T   + x*T  ), ({T , T }, T T  -
    │ │ │ +          1   8      3 6    5 7    1 8      12      14      4   9    4 9  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T }, - T T  - T T  + x*T  ), ({T , T }, T T  + T T  + T T  + y*T   -
    │ │ │ -       7      1 6    4 7      11      2   6    2 6    3 8    4 9      14  
    │ │ │ +      T T   - z*T   + z*T  ), ({T , T }, - T T  - T T  + y*T  ), ({T , T }, -
    │ │ │ +       5 10      17      19      2   8      2 8    5 9      15      5   7    
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      z*T  ), ({T , T  }, T T  - T T   - z*T   + z*T  ), ({T , T }, T T  +
    │ │ │ -         17      5   10    4 9    5 10      17      19      3   8    2 6  
    │ │ │ +      T T  - T T  - T T  + z*T   + x*T  ), ({T , T }, T T  + T T  + T T  +
    │ │ │ +       3 6    5 7    1 8      12      14      4   9    2 6    3 8    4 9  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T T  + T T  + y*T   - z*T  ), ({T , T }, T T  + y*T   - z*T  ), ({T ,
    │ │ │ -       3 8    4 9      14      17      3   6    3 6      11      12      5 
    │ │ │ +      y*T   - z*T  ), ({T , T  }, T T  + T T   - z*T   + y*T  ), ({T , T },
    │ │ │ +         14      17      3   10    5 6    3 10      18      20      5   6  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T }, - T T  - T T   + z*T   + z*T  ), ({T , T }, T T  + T T  - z*T   +
    │ │ │ -       7      5 7    4 10      12      20      3   7    4 6    3 7      11  
    │ │ │ +      T T  + T T   - z*T   + y*T  ), ({T , T  }, - T T  - T T   + z*T   +
    │ │ │ +       5 6    3 10      18      20      4   10      5 7    4 10      12  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      y*T  ), ({T , T }, - T T  + y*T  ), ({T , T }, - T T  - T T  - z*T   +
    │ │ │ -         13      2   9      2 9      16      1   9      5 6    1 9      14  
    │ │ │ +      z*T  ), ({T , T }, - T T  - T T  + x*T  ), ({T , T }, T T  + T T  -
    │ │ │ +         20      1   6      1 6    4 7      11      3   9    5 8    3 9  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      x*T  ), ({T , T }, - T T  + z*T  ), ({T , T  }, T T  - T T   + x*T  ),
    │ │ │ -         17      4   7      4 7      13      1   10    4 6    1 10      20  
    │ │ │ +      z*T   + x*T  ), ({T , T }, T T  + T T  - z*T   + y*T  ), ({T , T  }, -
    │ │ │ +         15      16      4   6    4 6    3 7      11      13      5   10    
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      ({T , T }, - T T  + z*T  ), ({T , T }, T T  - z*T   + x*T  ), ({T ,
    │ │ │ -         5   9      5 9      16      3   7    3 7      11      12      5 
    │ │ │ +      T T   + y*T  ), ({T , T }, T T  - T T   + x*T  ), ({T , T }, - T T  -
    │ │ │ +       5 10      18      4   6    4 6    1 10      20      4   7      1 6  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T }, - T T  - T T  - z*T   + x*T  ), ({T , T }, T T  + T T  - z*T   +
    │ │ │ -       6      5 6    1 9      14      17      5   8    5 8    3 9      15  
    │ │ │ +      T T  + x*T  ), ({T , T }, T T  + T T  + T T  + y*T   - z*T  ), ({T ,
    │ │ │ +       4 7      11      2   6    2 6    3 8    4 9      14      17      5 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      x*T  ), ({T , T }, - T T  - T T  + y*T   + z*T  ), ({T , T }, T T  -
    │ │ │ -         16      4   8      2 7    4 8      12      14      3   9    3 9  
    │ │ │ +      T  }, T T  - T T   - z*T   + z*T  ), ({T , T }, T T  + T T  + T T  +
    │ │ │ +       10    4 9    5 10      17      19      3   8    2 6    3 8    4 9  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      z*T   + y*T  ), ({T , T }, - T T  - T T  - T T  + z*T   + x*T  ), ({T ,
    │ │ │ -         15      17      3   6      3 6    5 7    1 8      12      14      1 
    │ │ │ +      y*T   - z*T  ), ({T , T }, T T  + y*T   - z*T  ), ({T , T }, - T T  -
    │ │ │ +         14      17      3   6    3 6      11      12      5   7      5 7  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T }, - T T  + x*T  ), ({T , T }, - T T  - T T  + y*T  ), ({T , T  }, -
    │ │ │ -       7      1 7      13      5   9      2 8    5 9      15      3   10    
    │ │ │ +      T T   + z*T   + z*T  ), ({T , T }, T T  + T T  - z*T   + y*T  ), ({T ,
    │ │ │ +       4 10      12      20      3   7    4 6    3 7      11      13      2 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T T  + T T   - z*T   + x*T  ), ({T , T }, - T T  - T T  + y*T   +
    │ │ │ -       4 8    3 10      18      19      2   7      2 7    4 8      12  
    │ │ │ +      T }, - T T  + y*T  ), ({T , T }, - T T  - T T  - z*T   + x*T  ), ({T ,
    │ │ │ +       9      2 9      16      1   9      5 6    1 9      14      17      4 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      z*T  ), ({T , T }, - T T  + T T   - z*T   + x*T  ), ({T , T  }, - T T 
    │ │ │ -         14      4   8      4 8    3 10      18      19      2   10      5 8
    │ │ │ +      T }, - T T  + z*T  ), ({T , T  }, T T  - T T   + x*T  ), ({T , T }, -
    │ │ │ +       7      4 7      13      1   10    4 6    1 10      20      5   9    
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      - T T   + y*T  ), ({T , T  }, - T T   + x*T  ), ({T , T }, - T T  -
    │ │ │ -         2 10      19      4   10      4 10      18      5   8      5 8  
    │ │ │ +      T T  + z*T  ), ({T , T }, T T  - z*T   + x*T  ), ({T , T }, - T T  -
    │ │ │ +       5 9      16      3   7    3 7      11      12      5   6      5 6  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T T   + y*T  ), ({T , T }, T T  + x*T   - z*T  ), ({T , T }, - T T  -
    │ │ │ -       2 10      19      3   8    3 8      15      17      1   8      3 6  
    │ │ │ +      T T  - z*T   + x*T  ), ({T , T }, T T  + T T  - z*T   + x*T  ), ({T ,
    │ │ │ +       1 9      14      17      5   8    5 8    3 9      15      16      4 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T T  - T T  + z*T   + x*T  ), ({T , T }, T T  - T T   - z*T   + z*T  ),
    │ │ │ -       5 7    1 8      12      14      4   9    4 9    5 10      17      19  
    │ │ │ +      T }, - T T  - T T  + y*T   + z*T  ), ({T , T }, T T  - z*T   + y*T  ),
    │ │ │ +       8      2 7    4 8      12      14      3   9    3 9      15      17  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      ({T , T }, - T T  - T T  + y*T  ), ({T , T }, - T T  - T T  - T T  +
    │ │ │ -         2   8      2 8    5 9      15      5   7      3 6    5 7    1 8  
    │ │ │ +      ({T , T }, - T T  - T T  - T T  + z*T   + x*T  ), ({T , T }, - T T  +
    │ │ │ +         3   6      3 6    5 7    1 8      12      14      1   7      1 7  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      z*T   + x*T  ), ({T , T }, T T  + T T  + T T  + y*T   - z*T  ), ({T ,
    │ │ │ -         12      14      4   9    2 6    3 8    4 9      14      17      3 
    │ │ │ +      x*T  ), ({T , T }, - T T  - T T  + y*T  ), ({T , T  }, - T T  + T T   -
    │ │ │ +         13      5   9      2 8    5 9      15      3   10      4 8    3 10  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T  }, T T  + T T   - z*T   + y*T  ), ({T , T }, T T  + T T   - z*T   +
    │ │ │ -       10    5 6    3 10      18      20      5   6    5 6    3 10      18  
    │ │ │ +      z*T   + x*T  ), ({T , T }, - T T  - T T  + y*T   + z*T  ), ({T , T }, -
    │ │ │ +         18      19      2   7      2 7    4 8      12      14      4   8    
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      y*T  ), ({T , T  }, - T T  - T T   + z*T   + z*T  ), ({T , T }, - T T 
    │ │ │ -         20      4   10      5 7    4 10      12      20      1   6      1 6
    │ │ │ +      T T  + T T   - z*T   + x*T  ), ({T , T  }, - T T  - T T   + y*T  ),
    │ │ │ +       4 8    3 10      18      19      2   10      5 8    2 10      19  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      - T T  + x*T  ), ({T , T }, T T  + T T  - z*T   + x*T  ), ({T , T },
    │ │ │ -         4 7      11      3   9    5 8    3 9      15      16      4   6  
    │ │ │ +      ({T , T  }, - T T   + x*T  ), ({T , T }, - T T  - T T   + y*T  ), ({T ,
    │ │ │ +         4   10      4 10      18      5   8      5 8    2 10      19      3 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T T  + T T  - z*T   + y*T  )}
    │ │ │ -       4 6    3 7      11      13
    │ │ │ +      T }, T T  + x*T   - z*T  )}
    │ │ │ +       8    3 8      15      17
    │ │ │  
    │ │ │  o15 : List
    │ │ │  
    │ │ │  i16 : H#(H'_0)
    │ │ │  
    │ │ │  o16 = -1
    │ │ ├── ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/_bracket.html
    │ │ │ @@ -191,82 +191,82 @@
    │ │ │  
    i14 : H' = select(keys H, k->H#k != 0);
    │ │ │
    i15 : H'
    │ │ │  
    │ │ │ -o15 = {({T , T  }, - T T   + y*T  ), ({T , T }, T T  - T T   + x*T  ), ({T ,
    │ │ │ -          5   10      5 10      18      4   6    4 6    1 10      20      4 
    │ │ │ +o15 = {({T , T }, - T T  - T T  - T T  + z*T   + x*T  ), ({T , T }, T T  -
    │ │ │ +          1   8      3 6    5 7    1 8      12      14      4   9    4 9  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T }, - T T  - T T  + x*T  ), ({T , T }, T T  + T T  + T T  + y*T   -
    │ │ │ -       7      1 6    4 7      11      2   6    2 6    3 8    4 9      14  
    │ │ │ +      T T   - z*T   + z*T  ), ({T , T }, - T T  - T T  + y*T  ), ({T , T }, -
    │ │ │ +       5 10      17      19      2   8      2 8    5 9      15      5   7    
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      z*T  ), ({T , T  }, T T  - T T   - z*T   + z*T  ), ({T , T }, T T  +
    │ │ │ -         17      5   10    4 9    5 10      17      19      3   8    2 6  
    │ │ │ +      T T  - T T  - T T  + z*T   + x*T  ), ({T , T }, T T  + T T  + T T  +
    │ │ │ +       3 6    5 7    1 8      12      14      4   9    2 6    3 8    4 9  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T T  + T T  + y*T   - z*T  ), ({T , T }, T T  + y*T   - z*T  ), ({T ,
    │ │ │ -       3 8    4 9      14      17      3   6    3 6      11      12      5 
    │ │ │ +      y*T   - z*T  ), ({T , T  }, T T  + T T   - z*T   + y*T  ), ({T , T },
    │ │ │ +         14      17      3   10    5 6    3 10      18      20      5   6  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T }, - T T  - T T   + z*T   + z*T  ), ({T , T }, T T  + T T  - z*T   +
    │ │ │ -       7      5 7    4 10      12      20      3   7    4 6    3 7      11  
    │ │ │ +      T T  + T T   - z*T   + y*T  ), ({T , T  }, - T T  - T T   + z*T   +
    │ │ │ +       5 6    3 10      18      20      4   10      5 7    4 10      12  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      y*T  ), ({T , T }, - T T  + y*T  ), ({T , T }, - T T  - T T  - z*T   +
    │ │ │ -         13      2   9      2 9      16      1   9      5 6    1 9      14  
    │ │ │ +      z*T  ), ({T , T }, - T T  - T T  + x*T  ), ({T , T }, T T  + T T  -
    │ │ │ +         20      1   6      1 6    4 7      11      3   9    5 8    3 9  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      x*T  ), ({T , T }, - T T  + z*T  ), ({T , T  }, T T  - T T   + x*T  ),
    │ │ │ -         17      4   7      4 7      13      1   10    4 6    1 10      20  
    │ │ │ +      z*T   + x*T  ), ({T , T }, T T  + T T  - z*T   + y*T  ), ({T , T  }, -
    │ │ │ +         15      16      4   6    4 6    3 7      11      13      5   10    
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      ({T , T }, - T T  + z*T  ), ({T , T }, T T  - z*T   + x*T  ), ({T ,
    │ │ │ -         5   9      5 9      16      3   7    3 7      11      12      5 
    │ │ │ +      T T   + y*T  ), ({T , T }, T T  - T T   + x*T  ), ({T , T }, - T T  -
    │ │ │ +       5 10      18      4   6    4 6    1 10      20      4   7      1 6  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T }, - T T  - T T  - z*T   + x*T  ), ({T , T }, T T  + T T  - z*T   +
    │ │ │ -       6      5 6    1 9      14      17      5   8    5 8    3 9      15  
    │ │ │ +      T T  + x*T  ), ({T , T }, T T  + T T  + T T  + y*T   - z*T  ), ({T ,
    │ │ │ +       4 7      11      2   6    2 6    3 8    4 9      14      17      5 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      x*T  ), ({T , T }, - T T  - T T  + y*T   + z*T  ), ({T , T }, T T  -
    │ │ │ -         16      4   8      2 7    4 8      12      14      3   9    3 9  
    │ │ │ +      T  }, T T  - T T   - z*T   + z*T  ), ({T , T }, T T  + T T  + T T  +
    │ │ │ +       10    4 9    5 10      17      19      3   8    2 6    3 8    4 9  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      z*T   + y*T  ), ({T , T }, - T T  - T T  - T T  + z*T   + x*T  ), ({T ,
    │ │ │ -         15      17      3   6      3 6    5 7    1 8      12      14      1 
    │ │ │ +      y*T   - z*T  ), ({T , T }, T T  + y*T   - z*T  ), ({T , T }, - T T  -
    │ │ │ +         14      17      3   6    3 6      11      12      5   7      5 7  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T }, - T T  + x*T  ), ({T , T }, - T T  - T T  + y*T  ), ({T , T  }, -
    │ │ │ -       7      1 7      13      5   9      2 8    5 9      15      3   10    
    │ │ │ +      T T   + z*T   + z*T  ), ({T , T }, T T  + T T  - z*T   + y*T  ), ({T ,
    │ │ │ +       4 10      12      20      3   7    4 6    3 7      11      13      2 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T T  + T T   - z*T   + x*T  ), ({T , T }, - T T  - T T  + y*T   +
    │ │ │ -       4 8    3 10      18      19      2   7      2 7    4 8      12  
    │ │ │ +      T }, - T T  + y*T  ), ({T , T }, - T T  - T T  - z*T   + x*T  ), ({T ,
    │ │ │ +       9      2 9      16      1   9      5 6    1 9      14      17      4 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      z*T  ), ({T , T }, - T T  + T T   - z*T   + x*T  ), ({T , T  }, - T T 
    │ │ │ -         14      4   8      4 8    3 10      18      19      2   10      5 8
    │ │ │ +      T }, - T T  + z*T  ), ({T , T  }, T T  - T T   + x*T  ), ({T , T }, -
    │ │ │ +       7      4 7      13      1   10    4 6    1 10      20      5   9    
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      - T T   + y*T  ), ({T , T  }, - T T   + x*T  ), ({T , T }, - T T  -
    │ │ │ -         2 10      19      4   10      4 10      18      5   8      5 8  
    │ │ │ +      T T  + z*T  ), ({T , T }, T T  - z*T   + x*T  ), ({T , T }, - T T  -
    │ │ │ +       5 9      16      3   7    3 7      11      12      5   6      5 6  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T T   + y*T  ), ({T , T }, T T  + x*T   - z*T  ), ({T , T }, - T T  -
    │ │ │ -       2 10      19      3   8    3 8      15      17      1   8      3 6  
    │ │ │ +      T T  - z*T   + x*T  ), ({T , T }, T T  + T T  - z*T   + x*T  ), ({T ,
    │ │ │ +       1 9      14      17      5   8    5 8    3 9      15      16      4 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T T  - T T  + z*T   + x*T  ), ({T , T }, T T  - T T   - z*T   + z*T  ),
    │ │ │ -       5 7    1 8      12      14      4   9    4 9    5 10      17      19  
    │ │ │ +      T }, - T T  - T T  + y*T   + z*T  ), ({T , T }, T T  - z*T   + y*T  ),
    │ │ │ +       8      2 7    4 8      12      14      3   9    3 9      15      17  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      ({T , T }, - T T  - T T  + y*T  ), ({T , T }, - T T  - T T  - T T  +
    │ │ │ -         2   8      2 8    5 9      15      5   7      3 6    5 7    1 8  
    │ │ │ +      ({T , T }, - T T  - T T  - T T  + z*T   + x*T  ), ({T , T }, - T T  +
    │ │ │ +         3   6      3 6    5 7    1 8      12      14      1   7      1 7  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      z*T   + x*T  ), ({T , T }, T T  + T T  + T T  + y*T   - z*T  ), ({T ,
    │ │ │ -         12      14      4   9    2 6    3 8    4 9      14      17      3 
    │ │ │ +      x*T  ), ({T , T }, - T T  - T T  + y*T  ), ({T , T  }, - T T  + T T   -
    │ │ │ +         13      5   9      2 8    5 9      15      3   10      4 8    3 10  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T  }, T T  + T T   - z*T   + y*T  ), ({T , T }, T T  + T T   - z*T   +
    │ │ │ -       10    5 6    3 10      18      20      5   6    5 6    3 10      18  
    │ │ │ +      z*T   + x*T  ), ({T , T }, - T T  - T T  + y*T   + z*T  ), ({T , T }, -
    │ │ │ +         18      19      2   7      2 7    4 8      12      14      4   8    
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      y*T  ), ({T , T  }, - T T  - T T   + z*T   + z*T  ), ({T , T }, - T T 
    │ │ │ -         20      4   10      5 7    4 10      12      20      1   6      1 6
    │ │ │ +      T T  + T T   - z*T   + x*T  ), ({T , T  }, - T T  - T T   + y*T  ),
    │ │ │ +       4 8    3 10      18      19      2   10      5 8    2 10      19  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      - T T  + x*T  ), ({T , T }, T T  + T T  - z*T   + x*T  ), ({T , T },
    │ │ │ -         4 7      11      3   9    5 8    3 9      15      16      4   6  
    │ │ │ +      ({T , T  }, - T T   + x*T  ), ({T , T }, - T T  - T T   + y*T  ), ({T ,
    │ │ │ +         4   10      4 10      18      5   8      5 8    2 10      19      3 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T T  + T T  - z*T   + y*T  )}
    │ │ │ -       4 6    3 7      11      13
    │ │ │ +      T }, T T  + x*T   - z*T  )}
    │ │ │ +       8    3 8      15      17
    │ │ │  
    │ │ │  o15 : List
    │ │ │
    i16 : H#(H'_0)
    │ │ │  
    │ │ │  o16 = -1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -119,82 +119,82 @@
    │ │ │ │  37   38   39   40   41   42   43   44
    │ │ │ │  i13 : #keys H
    │ │ │ │  
    │ │ │ │  o13 = 600
    │ │ │ │  i14 : H' = select(keys H, k->H#k != 0);
    │ │ │ │  i15 : H'
    │ │ │ │  
    │ │ │ │ -o15 = {({T , T  }, - T T   + y*T  ), ({T , T }, T T  - T T   + x*T  ), ({T ,
    │ │ │ │ -          5   10      5 10      18      4   6    4 6    1 10      20      4
    │ │ │ │ +o15 = {({T , T }, - T T  - T T  - T T  + z*T   + x*T  ), ({T , T }, T T  -
    │ │ │ │ +          1   8      3 6    5 7    1 8      12      14      4   9    4 9
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      T }, - T T  - T T  + x*T  ), ({T , T }, T T  + T T  + T T  + y*T   -
    │ │ │ │ -       7      1 6    4 7      11      2   6    2 6    3 8    4 9      14
    │ │ │ │ +      T T   - z*T   + z*T  ), ({T , T }, - T T  - T T  + y*T  ), ({T , T }, -
    │ │ │ │ +       5 10      17      19      2   8      2 8    5 9      15      5   7
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      z*T  ), ({T , T  }, T T  - T T   - z*T   + z*T  ), ({T , T }, T T  +
    │ │ │ │ -         17      5   10    4 9    5 10      17      19      3   8    2 6
    │ │ │ │ +      T T  - T T  - T T  + z*T   + x*T  ), ({T , T }, T T  + T T  + T T  +
    │ │ │ │ +       3 6    5 7    1 8      12      14      4   9    2 6    3 8    4 9
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      T T  + T T  + y*T   - z*T  ), ({T , T }, T T  + y*T   - z*T  ), ({T ,
    │ │ │ │ -       3 8    4 9      14      17      3   6    3 6      11      12      5
    │ │ │ │ +      y*T   - z*T  ), ({T , T  }, T T  + T T   - z*T   + y*T  ), ({T , T },
    │ │ │ │ +         14      17      3   10    5 6    3 10      18      20      5   6
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      T }, - T T  - T T   + z*T   + z*T  ), ({T , T }, T T  + T T  - z*T   +
    │ │ │ │ -       7      5 7    4 10      12      20      3   7    4 6    3 7      11
    │ │ │ │ +      T T  + T T   - z*T   + y*T  ), ({T , T  }, - T T  - T T   + z*T   +
    │ │ │ │ +       5 6    3 10      18      20      4   10      5 7    4 10      12
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      y*T  ), ({T , T }, - T T  + y*T  ), ({T , T }, - T T  - T T  - z*T   +
    │ │ │ │ -         13      2   9      2 9      16      1   9      5 6    1 9      14
    │ │ │ │ +      z*T  ), ({T , T }, - T T  - T T  + x*T  ), ({T , T }, T T  + T T  -
    │ │ │ │ +         20      1   6      1 6    4 7      11      3   9    5 8    3 9
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      x*T  ), ({T , T }, - T T  + z*T  ), ({T , T  }, T T  - T T   + x*T  ),
    │ │ │ │ -         17      4   7      4 7      13      1   10    4 6    1 10      20
    │ │ │ │ +      z*T   + x*T  ), ({T , T }, T T  + T T  - z*T   + y*T  ), ({T , T  }, -
    │ │ │ │ +         15      16      4   6    4 6    3 7      11      13      5   10
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      ({T , T }, - T T  + z*T  ), ({T , T }, T T  - z*T   + x*T  ), ({T ,
    │ │ │ │ -         5   9      5 9      16      3   7    3 7      11      12      5
    │ │ │ │ +      T T   + y*T  ), ({T , T }, T T  - T T   + x*T  ), ({T , T }, - T T  -
    │ │ │ │ +       5 10      18      4   6    4 6    1 10      20      4   7      1 6
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      T }, - T T  - T T  - z*T   + x*T  ), ({T , T }, T T  + T T  - z*T   +
    │ │ │ │ -       6      5 6    1 9      14      17      5   8    5 8    3 9      15
    │ │ │ │ +      T T  + x*T  ), ({T , T }, T T  + T T  + T T  + y*T   - z*T  ), ({T ,
    │ │ │ │ +       4 7      11      2   6    2 6    3 8    4 9      14      17      5
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      x*T  ), ({T , T }, - T T  - T T  + y*T   + z*T  ), ({T , T }, T T  -
    │ │ │ │ -         16      4   8      2 7    4 8      12      14      3   9    3 9
    │ │ │ │ +      T  }, T T  - T T   - z*T   + z*T  ), ({T , T }, T T  + T T  + T T  +
    │ │ │ │ +       10    4 9    5 10      17      19      3   8    2 6    3 8    4 9
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      z*T   + y*T  ), ({T , T }, - T T  - T T  - T T  + z*T   + x*T  ), ({T ,
    │ │ │ │ -         15      17      3   6      3 6    5 7    1 8      12      14      1
    │ │ │ │ +      y*T   - z*T  ), ({T , T }, T T  + y*T   - z*T  ), ({T , T }, - T T  -
    │ │ │ │ +         14      17      3   6    3 6      11      12      5   7      5 7
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      T }, - T T  + x*T  ), ({T , T }, - T T  - T T  + y*T  ), ({T , T  }, -
    │ │ │ │ -       7      1 7      13      5   9      2 8    5 9      15      3   10
    │ │ │ │ +      T T   + z*T   + z*T  ), ({T , T }, T T  + T T  - z*T   + y*T  ), ({T ,
    │ │ │ │ +       4 10      12      20      3   7    4 6    3 7      11      13      2
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      T T  + T T   - z*T   + x*T  ), ({T , T }, - T T  - T T  + y*T   +
    │ │ │ │ -       4 8    3 10      18      19      2   7      2 7    4 8      12
    │ │ │ │ +      T }, - T T  + y*T  ), ({T , T }, - T T  - T T  - z*T   + x*T  ), ({T ,
    │ │ │ │ +       9      2 9      16      1   9      5 6    1 9      14      17      4
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      z*T  ), ({T , T }, - T T  + T T   - z*T   + x*T  ), ({T , T  }, - T T
    │ │ │ │ -         14      4   8      4 8    3 10      18      19      2   10      5 8
    │ │ │ │ +      T }, - T T  + z*T  ), ({T , T  }, T T  - T T   + x*T  ), ({T , T }, -
    │ │ │ │ +       7      4 7      13      1   10    4 6    1 10      20      5   9
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      - T T   + y*T  ), ({T , T  }, - T T   + x*T  ), ({T , T }, - T T  -
    │ │ │ │ -         2 10      19      4   10      4 10      18      5   8      5 8
    │ │ │ │ +      T T  + z*T  ), ({T , T }, T T  - z*T   + x*T  ), ({T , T }, - T T  -
    │ │ │ │ +       5 9      16      3   7    3 7      11      12      5   6      5 6
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      T T   + y*T  ), ({T , T }, T T  + x*T   - z*T  ), ({T , T }, - T T  -
    │ │ │ │ -       2 10      19      3   8    3 8      15      17      1   8      3 6
    │ │ │ │ +      T T  - z*T   + x*T  ), ({T , T }, T T  + T T  - z*T   + x*T  ), ({T ,
    │ │ │ │ +       1 9      14      17      5   8    5 8    3 9      15      16      4
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      T T  - T T  + z*T   + x*T  ), ({T , T }, T T  - T T   - z*T   + z*T  ),
    │ │ │ │ -       5 7    1 8      12      14      4   9    4 9    5 10      17      19
    │ │ │ │ +      T }, - T T  - T T  + y*T   + z*T  ), ({T , T }, T T  - z*T   + y*T  ),
    │ │ │ │ +       8      2 7    4 8      12      14      3   9    3 9      15      17
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      ({T , T }, - T T  - T T  + y*T  ), ({T , T }, - T T  - T T  - T T  +
    │ │ │ │ -         2   8      2 8    5 9      15      5   7      3 6    5 7    1 8
    │ │ │ │ +      ({T , T }, - T T  - T T  - T T  + z*T   + x*T  ), ({T , T }, - T T  +
    │ │ │ │ +         3   6      3 6    5 7    1 8      12      14      1   7      1 7
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      z*T   + x*T  ), ({T , T }, T T  + T T  + T T  + y*T   - z*T  ), ({T ,
    │ │ │ │ -         12      14      4   9    2 6    3 8    4 9      14      17      3
    │ │ │ │ +      x*T  ), ({T , T }, - T T  - T T  + y*T  ), ({T , T  }, - T T  + T T   -
    │ │ │ │ +         13      5   9      2 8    5 9      15      3   10      4 8    3 10
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      T  }, T T  + T T   - z*T   + y*T  ), ({T , T }, T T  + T T   - z*T   +
    │ │ │ │ -       10    5 6    3 10      18      20      5   6    5 6    3 10      18
    │ │ │ │ +      z*T   + x*T  ), ({T , T }, - T T  - T T  + y*T   + z*T  ), ({T , T }, -
    │ │ │ │ +         18      19      2   7      2 7    4 8      12      14      4   8
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      y*T  ), ({T , T  }, - T T  - T T   + z*T   + z*T  ), ({T , T }, - T T
    │ │ │ │ -         20      4   10      5 7    4 10      12      20      1   6      1 6
    │ │ │ │ +      T T  + T T   - z*T   + x*T  ), ({T , T  }, - T T  - T T   + y*T  ),
    │ │ │ │ +       4 8    3 10      18      19      2   10      5 8    2 10      19
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      - T T  + x*T  ), ({T , T }, T T  + T T  - z*T   + x*T  ), ({T , T },
    │ │ │ │ -         4 7      11      3   9    5 8    3 9      15      16      4   6
    │ │ │ │ +      ({T , T  }, - T T   + x*T  ), ({T , T }, - T T  - T T   + y*T  ), ({T ,
    │ │ │ │ +         4   10      4 10      18      5   8      5 8    2 10      19      3
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      T T  + T T  - z*T   + y*T  )}
    │ │ │ │ -       4 6    3 7      11      13
    │ │ │ │ +      T }, T T  + x*T   - z*T  )}
    │ │ │ │ +       8    3 8      15      17
    │ │ │ │  
    │ │ │ │  o15 : List
    │ │ │ │  i16 : H#(H'_0)
    │ │ │ │  
    │ │ │ │  o16 = -1
    │ │ │ │  
    │ │ │ │  o16 : S[T ..T  ]
    │ │ ├── ./usr/share/doc/Macaulay2/HyperplaneArrangements/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=29
    │ │ │  cmVzdHJpY3Rpb24oQXJyYW5nZW1lbnQsTGlzdCk=
    │ │ │  #:len=343
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjc3Nywgc3ltYm9sIERvY3VtZW50VGFn
    │ │ │  ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsocmVzdHJpY3Rpb24sQXJyYW5nZW1lbnQsTGlzdCks
    │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=31
    │ │ │  aW50ZWdyYWxDbG9zdXJlKC4uLixMaW1pdD0+Li4uKQ==
    │ │ │  #:len=1120
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiZG8gYSBwYXJ0aWFsIGludGVncmFsIGNs
    │ │ │  b3N1cmUiLCAibGluZW51bSIgPT4gMTQyOCwgSW5wdXRzID0+IHtTUEFOe1RUeyJuIn0sIiwgIixT
    │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.out
    │ │ │ @@ -16,15 +16,15 @@
    │ │ │  i3 : R = S/f
    │ │ │  
    │ │ │  o3 = R
    │ │ │  
    │ │ │  o3 : QuotientRing
    │ │ │  
    │ │ │  i4 : time R' = integralClosure R
    │ │ │ - -- used 0.691658s (cpu); 0.373649s (thread); 0s (gc)
    │ │ │ + -- used 0.887862s (cpu); 0.532821s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = R'
    │ │ │  
    │ │ │  o4 : QuotientRing
    │ │ │  
    │ │ │  i5 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -83,15 +83,15 @@
    │ │ │  i9 : R = S/f
    │ │ │  
    │ │ │  o9 = R
    │ │ │  
    │ │ │  o9 : QuotientRing
    │ │ │  
    │ │ │  i10 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.599848s (cpu); 0.317903s (thread); 0s (gc)
    │ │ │ + -- used 0.833052s (cpu); 0.454312s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = R'
    │ │ │  
    │ │ │  o10 : QuotientRing
    │ │ │  
    │ │ │  i11 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -150,15 +150,15 @@
    │ │ │  i15 : R = S/f
    │ │ │  
    │ │ │  o15 = R
    │ │ │  
    │ │ │  o15 : QuotientRing
    │ │ │  
    │ │ │  i16 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.692691s (cpu); 0.349777s (thread); 0s (gc)
    │ │ │ + -- used 0.769119s (cpu); 0.488883s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = R'
    │ │ │  
    │ │ │  o16 : QuotientRing
    │ │ │  
    │ │ │  i17 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -208,15 +208,15 @@
    │ │ │  i20 : R = S/f
    │ │ │  
    │ │ │  o20 = R
    │ │ │  
    │ │ │  o20 : QuotientRing
    │ │ │  
    │ │ │  i21 : time R' = integralClosure(R, Strategy => SimplifyFractions)
    │ │ │ - -- used 0.876864s (cpu); 0.442627s (thread); 0s (gc)
    │ │ │ + -- used 1.13444s (cpu); 0.670078s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = R'
    │ │ │  
    │ │ │  o21 : QuotientRing
    │ │ │  
    │ │ │  i22 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -266,15 +266,15 @@
    │ │ │  i25 : R = S/f
    │ │ │  
    │ │ │  o25 = R
    │ │ │  
    │ │ │  o25 : QuotientRing
    │ │ │  
    │ │ │  i26 : time R' = integralClosure (R, Strategy => RadicalCodim1)
    │ │ │ - -- used 1.23059s (cpu); 0.60134s (thread); 0s (gc)
    │ │ │ + -- used 1.58482s (cpu); 0.939924s (thread); 0s (gc)
    │ │ │  
    │ │ │  o26 = R'
    │ │ │  
    │ │ │  o26 : QuotientRing
    │ │ │  
    │ │ │  i27 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -324,15 +324,15 @@
    │ │ │  i30 : R = S/f
    │ │ │  
    │ │ │  o30 = R
    │ │ │  
    │ │ │  o30 : QuotientRing
    │ │ │  
    │ │ │  i31 : time R' = integralClosure (R, Strategy => Vasconcelos)
    │ │ │ - -- used 0.817042s (cpu); 0.367945s (thread); 0s (gc)
    │ │ │ + -- used 1.04905s (cpu); 0.502139s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = R'
    │ │ │  
    │ │ │  o31 : QuotientRing
    │ │ │  
    │ │ │  i32 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -382,15 +382,15 @@
    │ │ │  i35 : R = S/f
    │ │ │  
    │ │ │  o35 = R
    │ │ │  
    │ │ │  o35 : QuotientRing
    │ │ │  
    │ │ │  i36 : time R' = integralClosure R
    │ │ │ - -- used 0.139028s (cpu); 0.0626647s (thread); 0s (gc)
    │ │ │ + -- used 0.158146s (cpu); 0.0932663s (thread); 0s (gc)
    │ │ │  
    │ │ │  o36 = R'
    │ │ │  
    │ │ │  o36 : QuotientRing
    │ │ │  
    │ │ │  i37 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -432,15 +432,15 @@
    │ │ │  i40 : R = S/I
    │ │ │  
    │ │ │  o40 = R
    │ │ │  
    │ │ │  o40 : QuotientRing
    │ │ │  
    │ │ │  i41 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.137365s (cpu); 0.0615872s (thread); 0s (gc)
    │ │ │ + -- used 0.150705s (cpu); 0.0908567s (thread); 0s (gc)
    │ │ │  
    │ │ │  o41 = R'
    │ │ │  
    │ │ │  o41 : QuotientRing
    │ │ │  
    │ │ │  i42 : icFractions R
    │ │ │  
    │ │ │ @@ -467,15 +467,15 @@
    │ │ │  i45 : R = S/I
    │ │ │  
    │ │ │  o45 = R
    │ │ │  
    │ │ │  o45 : QuotientRing
    │ │ │  
    │ │ │  i46 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.167495s (cpu); 0.0877408s (thread); 0s (gc)
    │ │ │ + -- used 0.13204s (cpu); 0.0681967s (thread); 0s (gc)
    │ │ │  
    │ │ │  o46 = R'
    │ │ │  
    │ │ │  o46 : QuotientRing
    │ │ │  
    │ │ │  i47 : icFractions R
    │ │ │  
    │ │ │ @@ -501,15 +501,15 @@
    │ │ │  i50 : R = S/I
    │ │ │  
    │ │ │  o50 = R
    │ │ │  
    │ │ │  o50 : QuotientRing
    │ │ │  
    │ │ │  i51 : time R' = integralClosure (R, Strategy => RadicalCodim1)
    │ │ │ - -- used 0.139863s (cpu); 0.0633843s (thread); 0s (gc)
    │ │ │ + -- used 0.186921s (cpu); 0.119854s (thread); 0s (gc)
    │ │ │  
    │ │ │  o51 = R'
    │ │ │  
    │ │ │  o51 : QuotientRing
    │ │ │  
    │ │ │  i52 : icFractions R
    │ │ │  
    │ │ │ @@ -536,15 +536,15 @@
    │ │ │  i55 : R = S/I
    │ │ │  
    │ │ │  o55 = R
    │ │ │  
    │ │ │  o55 : QuotientRing
    │ │ │  
    │ │ │  i56 : time R' = integralClosure (R, Strategy => Vasconcelos)
    │ │ │ - -- used 0.145503s (cpu); 0.060919s (thread); 0s (gc)
    │ │ │ + -- used 0.21552s (cpu); 0.154823s (thread); 0s (gc)
    │ │ │  
    │ │ │  o56 = R'
    │ │ │  
    │ │ │  o56 : QuotientRing
    │ │ │  
    │ │ │  i57 : icFractions R
    │ │ │  
    │ │ │ @@ -633,15 +633,15 @@
    │ │ │  i66 : R = S/I
    │ │ │  
    │ │ │  o66 = R
    │ │ │  
    │ │ │  o66 : QuotientRing
    │ │ │  
    │ │ │  i67 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.177738s (cpu); 0.0898242s (thread); 0s (gc)
    │ │ │ + -- used 0.224831s (cpu); 0.159891s (thread); 0s (gc)
    │ │ │  
    │ │ │  o67 = R'
    │ │ │  
    │ │ │  o67 : QuotientRing
    │ │ │  
    │ │ │  i68 : icFractions R
    │ │ │  
    │ │ │ @@ -722,15 +722,15 @@
    │ │ │  i77 : R = S/I
    │ │ │  
    │ │ │  o77 = R
    │ │ │  
    │ │ │  o77 : QuotientRing
    │ │ │  
    │ │ │  i78 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.500907s (cpu); 0.357025s (thread); 0s (gc)
    │ │ │ + -- used 0.62228s (cpu); 0.499672s (thread); 0s (gc)
    │ │ │  
    │ │ │  o78 = R'
    │ │ │  
    │ │ │  o78 : QuotientRing
    │ │ │  
    │ │ │  i79 : icFractions R
    │ │ │  
    │ │ │ @@ -750,15 +750,15 @@
    │ │ │  i81 : R = S/sub(I,S)
    │ │ │  
    │ │ │  o81 = R
    │ │ │  
    │ │ │  o81 : QuotientRing
    │ │ │  
    │ │ │  i82 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.413444s (cpu); 0.259042s (thread); 0s (gc)
    │ │ │ + -- used 0.731709s (cpu); 0.40774s (thread); 0s (gc)
    │ │ │  
    │ │ │  o82 = R'
    │ │ │  
    │ │ │  o82 : QuotientRing
    │ │ │  
    │ │ │  i83 : icFractions R
    │ │ │  
    │ │ │ @@ -778,20 +778,20 @@
    │ │ │  i85 : R = S/sub(I,S)
    │ │ │  
    │ │ │  o85 = R
    │ │ │  
    │ │ │  o85 : QuotientRing
    │ │ │  
    │ │ │  i86 : time R' = integralClosure (R, Strategy => RadicalCodim1, Verbosity => 1)
    │ │ │ - [jacobian time 0 sec #minors 4]
    │ │ │ + [jacobian time .00215067 sec #minors 4]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .0923998 sec  #fractions 6]
    │ │ │ - [step 1:  -- used 0.313375s (cpu); 0.230372s (thread); 0s (gc)
    │ │ │ -  time .216976 sec  #fractions 6]
    │ │ │ + [step 0:   time .191864 sec  #fractions 6]
    │ │ │ + [step 1:  -- used 0.724639s (cpu); 0.409971s (thread); 0s (gc)
    │ │ │ +  time .524771 sec  #fractions 6]
    │ │ │  
    │ │ │  o86 = R'
    │ │ │  
    │ │ │  o86 : QuotientRing
    │ │ │  
    │ │ │  i87 : icFractions R
    │ │ │  
    │ │ │ @@ -814,17 +814,17 @@
    │ │ │  
    │ │ │  o89 : QuotientRing
    │ │ │  
    │ │ │  i90 : time R' = integralClosure (R, Strategy => Vasconcelos, Verbosity => 1)
    │ │ │   [jacobian time 0 sec #minors 4]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .213809 sec  #fractions 6]
    │ │ │ - [step 1:  -- used 0.494127s (cpu); 0.320163s (thread); 0s (gc)
    │ │ │ -  time .276321 sec  #fractions 6]
    │ │ │ + [step 0:   time .574994 sec  #fractions 6]
    │ │ │ + [step 1:  -- used 0.952548s (cpu); 0.446174s (thread); 0s (gc)
    │ │ │ +  time .373652 sec  #fractions 6]
    │ │ │  
    │ │ │  o90 = R'
    │ │ │  
    │ │ │  o90 : QuotientRing
    │ │ │  
    │ │ │  i91 : icFractions R
    │ │ │  
    │ │ │ @@ -847,17 +847,17 @@
    │ │ │  
    │ │ │  o93 : QuotientRing
    │ │ │  
    │ │ │  i94 : time R' = integralClosure (R, Strategy => {Vasconcelos, StartWithOneMinor}, Verbosity => 1)
    │ │ │   [jacobian time 0 sec #minors 1]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .230136 sec  #fractions 6]
    │ │ │ - [step 1:  -- used 0.748048s (cpu); 0.513758s (thread); 0s (gc)
    │ │ │ -  time .513497 sec  #fractions 6]
    │ │ │ + [step 0:   time .327969 sec  #fractions 6]
    │ │ │ + [step 1:  -- used 0.956361s (cpu); 0.733282s (thread); 0s (gc)
    │ │ │ +  time .624615 sec  #fractions 6]
    │ │ │  
    │ │ │  o94 = R'
    │ │ │  
    │ │ │  o94 : QuotientRing
    │ │ │  
    │ │ │  i95 : icFractions R
    │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.out
    │ │ │ @@ -1,50 +1,50 @@
    │ │ │  -- -*- M2-comint -*- hash: 13177954069434615273
    │ │ │  
    │ │ │  i1 : R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3);
    │ │ │  
    │ │ │  i2 : time R' = integralClosure(R, Verbosity => 2)
    │ │ │ - [jacobian time .00369747 sec #minors 3]
    │ │ │ + [jacobian time 0 sec #minors 3]
    │ │ │  integral closure nvars 3 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │   [step 0: 
    │ │ │        radical (use minprimes) 0 seconds
    │ │ │ -      idlizer1:  .00796539 seconds
    │ │ │ -      idlizer2:  .0130686 seconds
    │ │ │ -      minpres:   .011545 seconds
    │ │ │ -  time .12558 sec  #fractions 4]
    │ │ │ +      idlizer1:  .00798892 seconds
    │ │ │ +      idlizer2:  .00800094 seconds
    │ │ │ +      minpres:   .00799965 seconds
    │ │ │ +  time .0981859 sec  #fractions 4]
    │ │ │   [step 1: 
    │ │ │ -      radical (use minprimes) .00400043 seconds
    │ │ │ -      idlizer1:  .016817 seconds
    │ │ │ -      idlizer2:  .0846016 seconds
    │ │ │ -      minpres:   .0119995 seconds
    │ │ │ -  time .131259 sec  #fractions 4]
    │ │ │ +      radical (use minprimes) .0039999 seconds
    │ │ │ +      idlizer1:  .060909 seconds
    │ │ │ +      idlizer2:  .0701711 seconds
    │ │ │ +      minpres:   .00799908 seconds
    │ │ │ +  time .151081 sec  #fractions 4]
    │ │ │   [step 2: 
    │ │ │        radical (use minprimes) 0 seconds
    │ │ │ -      idlizer1:  .0119982 seconds
    │ │ │ -      idlizer2:  .0120027 seconds
    │ │ │ -      minpres:   .0120025 seconds
    │ │ │ -  time .126433 sec  #fractions 5]
    │ │ │ +      idlizer1:  .011998 seconds
    │ │ │ +      idlizer2:  .00800113 seconds
    │ │ │ +      minpres:   .0568902 seconds
    │ │ │ +  time .205486 sec  #fractions 5]
    │ │ │   [step 3: 
    │ │ │ -      radical (use minprimes) 0 seconds
    │ │ │ -      idlizer1:  .0120008 seconds
    │ │ │ -      idlizer2:  .0159986 seconds
    │ │ │ -      minpres:   .102383 seconds
    │ │ │ -  time .146386 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .00400008 seconds
    │ │ │ +      idlizer1:  .0120016 seconds
    │ │ │ +      idlizer2:  .0137195 seconds
    │ │ │ +      minpres:   .0790716 seconds
    │ │ │ +  time .119053 sec  #fractions 5]
    │ │ │   [step 4: 
    │ │ │ -      radical (use minprimes) 0 seconds
    │ │ │ -      idlizer1:  .00800125 seconds
    │ │ │ -      idlizer2:  .0159992 seconds
    │ │ │ -      minpres:   .0119989 seconds
    │ │ │ -  time .0559994 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .00400077 seconds
    │ │ │ +      idlizer1:  .0093878 seconds
    │ │ │ +      idlizer2:  .0639988 seconds
    │ │ │ +      minpres:   .0120029 seconds
    │ │ │ +  time .0973903 sec  #fractions 5]
    │ │ │   [step 5: 
    │ │ │ -      radical (use minprimes) .00399864 seconds
    │ │ │ -      idlizer1:   -- used 0.692546s (cpu); 0.376483s (thread); 0s (gc)
    │ │ │ -.00665112 seconds
    │ │ │ -  time .100933 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .0409253 seconds
    │ │ │ +      idlizer1:   -- used 0.788996s (cpu); 0.51748s (thread); 0s (gc)
    │ │ │ +.00400008 seconds
    │ │ │ +  time .1138 sec  #fractions 5]
    │ │ │  
    │ │ │  o2 = R'
    │ │ │  
    │ │ │  o2 : QuotientRing
    │ │ │  
    │ │ │  i3 : trim ideal R'
    │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.out
    │ │ │ @@ -13,26 +13,26 @@
    │ │ │  
    │ │ │                  2      2    2        2   2 2     2
    │ │ │  o3 = ideal (2a*b c + 3a , 2a b*c + 3b , a b  + 3c )
    │ │ │  
    │ │ │  o3 : Ideal of S
    │ │ │  
    │ │ │  i4 : time integralClosure J
    │ │ │ - -- used 1.61913s (cpu); 0.70672s (thread); 0s (gc)
    │ │ │ + -- used 3.78342s (cpu); 1.1197s (thread); 0s (gc)
    │ │ │  
    │ │ │               2 2              2 2                2          2   2     
    │ │ │  o4 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2   3               2 2     2   5
    │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ │  
    │ │ │  o4 : Ideal of S
    │ │ │  
    │ │ │  i5 : time integralClosure(J, Strategy=>{RadicalCodim1})
    │ │ │ - -- used 0.940472s (cpu); 0.475156s (thread); 0s (gc)
    │ │ │ + -- used 2.58346s (cpu); 0.795824s (thread); 0s (gc)
    │ │ │  
    │ │ │               2 2              2 2                2          2   2     
    │ │ │  o5 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2   3               2 2     2   5
    │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.html
    │ │ │ @@ -90,15 +90,15 @@
    │ │ │  
    │ │ │  o3 = R
    │ │ │  
    │ │ │  o3 : QuotientRing
    │ │ │
    i4 : time R' = integralClosure R
    │ │ │ - -- used 0.691658s (cpu); 0.373649s (thread); 0s (gc)
    │ │ │ + -- used 0.887862s (cpu); 0.532821s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = R'
    │ │ │  
    │ │ │  o4 : QuotientRing
    │ │ │
    i5 : netList (ideal R')_*
    │ │ │ @@ -165,15 +165,15 @@
    │ │ │  
    │ │ │  o9 = R
    │ │ │  
    │ │ │  o9 : QuotientRing
    │ │ │
    i10 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.599848s (cpu); 0.317903s (thread); 0s (gc)
    │ │ │ + -- used 0.833052s (cpu); 0.454312s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = R'
    │ │ │  
    │ │ │  o10 : QuotientRing
    │ │ │
    i11 : netList (ideal R')_*
    │ │ │ @@ -240,15 +240,15 @@
    │ │ │  
    │ │ │  o15 = R
    │ │ │  
    │ │ │  o15 : QuotientRing
    │ │ │
    i16 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.692691s (cpu); 0.349777s (thread); 0s (gc)
    │ │ │ + -- used 0.769119s (cpu); 0.488883s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = R'
    │ │ │  
    │ │ │  o16 : QuotientRing
    │ │ │
    i17 : netList (ideal R')_*
    │ │ │ @@ -305,15 +305,15 @@
    │ │ │  
    │ │ │  o20 = R
    │ │ │  
    │ │ │  o20 : QuotientRing
    │ │ │
    i21 : time R' = integralClosure(R, Strategy => SimplifyFractions)
    │ │ │ - -- used 0.876864s (cpu); 0.442627s (thread); 0s (gc)
    │ │ │ + -- used 1.13444s (cpu); 0.670078s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = R'
    │ │ │  
    │ │ │  o21 : QuotientRing
    │ │ │
    i22 : netList (ideal R')_*
    │ │ │ @@ -370,15 +370,15 @@
    │ │ │  
    │ │ │  o25 = R
    │ │ │  
    │ │ │  o25 : QuotientRing
    │ │ │
    i26 : time R' = integralClosure (R, Strategy => RadicalCodim1)
    │ │ │ - -- used 1.23059s (cpu); 0.60134s (thread); 0s (gc)
    │ │ │ + -- used 1.58482s (cpu); 0.939924s (thread); 0s (gc)
    │ │ │  
    │ │ │  o26 = R'
    │ │ │  
    │ │ │  o26 : QuotientRing
    │ │ │
    i27 : netList (ideal R')_*
    │ │ │ @@ -435,15 +435,15 @@
    │ │ │  
    │ │ │  o30 = R
    │ │ │  
    │ │ │  o30 : QuotientRing
    │ │ │
    i31 : time R' = integralClosure (R, Strategy => Vasconcelos)
    │ │ │ - -- used 0.817042s (cpu); 0.367945s (thread); 0s (gc)
    │ │ │ + -- used 1.04905s (cpu); 0.502139s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = R'
    │ │ │  
    │ │ │  o31 : QuotientRing
    │ │ │
    i32 : netList (ideal R')_*
    │ │ │ @@ -500,15 +500,15 @@
    │ │ │  
    │ │ │  o35 = R
    │ │ │  
    │ │ │  o35 : QuotientRing
    │ │ │
    i36 : time R' = integralClosure R
    │ │ │ - -- used 0.139028s (cpu); 0.0626647s (thread); 0s (gc)
    │ │ │ + -- used 0.158146s (cpu); 0.0932663s (thread); 0s (gc)
    │ │ │  
    │ │ │  o36 = R'
    │ │ │  
    │ │ │  o36 : QuotientRing
    │ │ │
    i37 : netList (ideal R')_*
    │ │ │ @@ -560,15 +560,15 @@
    │ │ │  
    │ │ │  o40 = R
    │ │ │  
    │ │ │  o40 : QuotientRing
    │ │ │
    i41 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.137365s (cpu); 0.0615872s (thread); 0s (gc)
    │ │ │ + -- used 0.150705s (cpu); 0.0908567s (thread); 0s (gc)
    │ │ │  
    │ │ │  o41 = R'
    │ │ │  
    │ │ │  o41 : QuotientRing
    │ │ │
    i42 : icFractions R
    │ │ │ @@ -602,15 +602,15 @@
    │ │ │  
    │ │ │  o45 = R
    │ │ │  
    │ │ │  o45 : QuotientRing
    │ │ │
    i46 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.167495s (cpu); 0.0877408s (thread); 0s (gc)
    │ │ │ + -- used 0.13204s (cpu); 0.0681967s (thread); 0s (gc)
    │ │ │  
    │ │ │  o46 = R'
    │ │ │  
    │ │ │  o46 : QuotientRing
    │ │ │
    i47 : icFractions R
    │ │ │ @@ -643,15 +643,15 @@
    │ │ │  
    │ │ │  o50 = R
    │ │ │  
    │ │ │  o50 : QuotientRing
    │ │ │
    i51 : time R' = integralClosure (R, Strategy => RadicalCodim1)
    │ │ │ - -- used 0.139863s (cpu); 0.0633843s (thread); 0s (gc)
    │ │ │ + -- used 0.186921s (cpu); 0.119854s (thread); 0s (gc)
    │ │ │  
    │ │ │  o51 = R'
    │ │ │  
    │ │ │  o51 : QuotientRing
    │ │ │
    i52 : icFractions R
    │ │ │ @@ -685,15 +685,15 @@
    │ │ │  
    │ │ │  o55 = R
    │ │ │  
    │ │ │  o55 : QuotientRing
    │ │ │
    i56 : time R' = integralClosure (R, Strategy => Vasconcelos)
    │ │ │ - -- used 0.145503s (cpu); 0.060919s (thread); 0s (gc)
    │ │ │ + -- used 0.21552s (cpu); 0.154823s (thread); 0s (gc)
    │ │ │  
    │ │ │  o56 = R'
    │ │ │  
    │ │ │  o56 : QuotientRing
    │ │ │
    i57 : icFractions R
    │ │ │ @@ -798,15 +798,15 @@
    │ │ │  
    │ │ │  o66 = R
    │ │ │  
    │ │ │  o66 : QuotientRing
    │ │ │
    i67 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.177738s (cpu); 0.0898242s (thread); 0s (gc)
    │ │ │ + -- used 0.224831s (cpu); 0.159891s (thread); 0s (gc)
    │ │ │  
    │ │ │  o67 = R'
    │ │ │  
    │ │ │  o67 : QuotientRing
    │ │ │
    i68 : icFractions R
    │ │ │ @@ -900,15 +900,15 @@
    │ │ │  
    │ │ │  o77 = R
    │ │ │  
    │ │ │  o77 : QuotientRing
    │ │ │
    i78 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.500907s (cpu); 0.357025s (thread); 0s (gc)
    │ │ │ + -- used 0.62228s (cpu); 0.499672s (thread); 0s (gc)
    │ │ │  
    │ │ │  o78 = R'
    │ │ │  
    │ │ │  o78 : QuotientRing
    │ │ │
    i79 : icFractions R
    │ │ │ @@ -934,15 +934,15 @@
    │ │ │  
    │ │ │  o81 = R
    │ │ │  
    │ │ │  o81 : QuotientRing
    │ │ │
    i82 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.413444s (cpu); 0.259042s (thread); 0s (gc)
    │ │ │ + -- used 0.731709s (cpu); 0.40774s (thread); 0s (gc)
    │ │ │  
    │ │ │  o82 = R'
    │ │ │  
    │ │ │  o82 : QuotientRing
    │ │ │
    i83 : icFractions R
    │ │ │ @@ -968,20 +968,20 @@
    │ │ │  
    │ │ │  o85 = R
    │ │ │  
    │ │ │  o85 : QuotientRing
    │ │ │
    i86 : time R' = integralClosure (R, Strategy => RadicalCodim1, Verbosity => 1)
    │ │ │ - [jacobian time 0 sec #minors 4]
    │ │ │ + [jacobian time .00215067 sec #minors 4]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .0923998 sec  #fractions 6]
    │ │ │ - [step 1:  -- used 0.313375s (cpu); 0.230372s (thread); 0s (gc)
    │ │ │ -  time .216976 sec  #fractions 6]
    │ │ │ + [step 0:   time .191864 sec  #fractions 6]
    │ │ │ + [step 1:  -- used 0.724639s (cpu); 0.409971s (thread); 0s (gc)
    │ │ │ +  time .524771 sec  #fractions 6]
    │ │ │  
    │ │ │  o86 = R'
    │ │ │  
    │ │ │  o86 : QuotientRing
    │ │ │
    i87 : icFractions R
    │ │ │ @@ -1010,17 +1010,17 @@
    │ │ │  o89 : QuotientRing
    │ │ │
    i90 : time R' = integralClosure (R, Strategy => Vasconcelos, Verbosity => 1)
    │ │ │   [jacobian time 0 sec #minors 4]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .213809 sec  #fractions 6]
    │ │ │ - [step 1:  -- used 0.494127s (cpu); 0.320163s (thread); 0s (gc)
    │ │ │ -  time .276321 sec  #fractions 6]
    │ │ │ + [step 0:   time .574994 sec  #fractions 6]
    │ │ │ + [step 1:  -- used 0.952548s (cpu); 0.446174s (thread); 0s (gc)
    │ │ │ +  time .373652 sec  #fractions 6]
    │ │ │  
    │ │ │  o90 = R'
    │ │ │  
    │ │ │  o90 : QuotientRing
    │ │ │
    i91 : icFractions R
    │ │ │ @@ -1052,17 +1052,17 @@
    │ │ │  o93 : QuotientRing
    │ │ │
    i94 : time R' = integralClosure (R, Strategy => {Vasconcelos, StartWithOneMinor}, Verbosity => 1)
    │ │ │   [jacobian time 0 sec #minors 1]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .230136 sec  #fractions 6]
    │ │ │ - [step 1:  -- used 0.748048s (cpu); 0.513758s (thread); 0s (gc)
    │ │ │ -  time .513497 sec  #fractions 6]
    │ │ │ + [step 0:   time .327969 sec  #fractions 6]
    │ │ │ + [step 1:  -- used 0.956361s (cpu); 0.733282s (thread); 0s (gc)
    │ │ │ +  time .624615 sec  #fractions 6]
    │ │ │  
    │ │ │  o94 = R'
    │ │ │  
    │ │ │  o94 : QuotientRing
    │ │ │
    i95 : icFractions R
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -49,15 +49,15 @@
    │ │ │ │  o2 : Ideal of S
    │ │ │ │  i3 : R = S/f
    │ │ │ │  
    │ │ │ │  o3 = R
    │ │ │ │  
    │ │ │ │  o3 : QuotientRing
    │ │ │ │  i4 : time R' = integralClosure R
    │ │ │ │ - -- used 0.691658s (cpu); 0.373649s (thread); 0s (gc)
    │ │ │ │ + -- used 0.887862s (cpu); 0.532821s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = R'
    │ │ │ │  
    │ │ │ │  o4 : QuotientRing
    │ │ │ │  i5 : netList (ideal R')_*
    │ │ │ │  
    │ │ │ │       +------------------------------------------------------------------------+
    │ │ │ │ @@ -110,15 +110,15 @@
    │ │ │ │  o8 : Ideal of S
    │ │ │ │  i9 : R = S/f
    │ │ │ │  
    │ │ │ │  o9 = R
    │ │ │ │  
    │ │ │ │  o9 : QuotientRing
    │ │ │ │  i10 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ │ - -- used 0.599848s (cpu); 0.317903s (thread); 0s (gc)
    │ │ │ │ + -- used 0.833052s (cpu); 0.454312s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o10 = R'
    │ │ │ │  
    │ │ │ │  o10 : QuotientRing
    │ │ │ │  i11 : netList (ideal R')_*
    │ │ │ │  
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │ @@ -200,15 +200,15 @@
    │ │ │ │  o14 : Ideal of S
    │ │ │ │  i15 : R = S/f
    │ │ │ │  
    │ │ │ │  o15 = R
    │ │ │ │  
    │ │ │ │  o15 : QuotientRing
    │ │ │ │  i16 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ │ - -- used 0.692691s (cpu); 0.349777s (thread); 0s (gc)
    │ │ │ │ + -- used 0.769119s (cpu); 0.488883s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o16 = R'
    │ │ │ │  
    │ │ │ │  o16 : QuotientRing
    │ │ │ │  i17 : netList (ideal R')_*
    │ │ │ │  
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │ @@ -282,15 +282,15 @@
    │ │ │ │  o19 : Ideal of S
    │ │ │ │  i20 : R = S/f
    │ │ │ │  
    │ │ │ │  o20 = R
    │ │ │ │  
    │ │ │ │  o20 : QuotientRing
    │ │ │ │  i21 : time R' = integralClosure(R, Strategy => SimplifyFractions)
    │ │ │ │ - -- used 0.876864s (cpu); 0.442627s (thread); 0s (gc)
    │ │ │ │ + -- used 1.13444s (cpu); 0.670078s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o21 = R'
    │ │ │ │  
    │ │ │ │  o21 : QuotientRing
    │ │ │ │  i22 : netList (ideal R')_*
    │ │ │ │  
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │ @@ -364,15 +364,15 @@
    │ │ │ │  o24 : Ideal of S
    │ │ │ │  i25 : R = S/f
    │ │ │ │  
    │ │ │ │  o25 = R
    │ │ │ │  
    │ │ │ │  o25 : QuotientRing
    │ │ │ │  i26 : time R' = integralClosure (R, Strategy => RadicalCodim1)
    │ │ │ │ - -- used 1.23059s (cpu); 0.60134s (thread); 0s (gc)
    │ │ │ │ + -- used 1.58482s (cpu); 0.939924s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o26 = R'
    │ │ │ │  
    │ │ │ │  o26 : QuotientRing
    │ │ │ │  i27 : netList (ideal R')_*
    │ │ │ │  
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │ @@ -446,15 +446,15 @@
    │ │ │ │  o29 : Ideal of S
    │ │ │ │  i30 : R = S/f
    │ │ │ │  
    │ │ │ │  o30 = R
    │ │ │ │  
    │ │ │ │  o30 : QuotientRing
    │ │ │ │  i31 : time R' = integralClosure (R, Strategy => Vasconcelos)
    │ │ │ │ - -- used 0.817042s (cpu); 0.367945s (thread); 0s (gc)
    │ │ │ │ + -- used 1.04905s (cpu); 0.502139s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o31 = R'
    │ │ │ │  
    │ │ │ │  o31 : QuotientRing
    │ │ │ │  i32 : netList (ideal R')_*
    │ │ │ │  
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │ @@ -528,15 +528,15 @@
    │ │ │ │  o34 : Ideal of S
    │ │ │ │  i35 : R = S/f
    │ │ │ │  
    │ │ │ │  o35 = R
    │ │ │ │  
    │ │ │ │  o35 : QuotientRing
    │ │ │ │  i36 : time R' = integralClosure R
    │ │ │ │ - -- used 0.139028s (cpu); 0.0626647s (thread); 0s (gc)
    │ │ │ │ + -- used 0.158146s (cpu); 0.0932663s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o36 = R'
    │ │ │ │  
    │ │ │ │  o36 : QuotientRing
    │ │ │ │  i37 : netList (ideal R')_*
    │ │ │ │  
    │ │ │ │        +-----------+
    │ │ │ │ @@ -574,15 +574,15 @@
    │ │ │ │  o39 : Ideal of S
    │ │ │ │  i40 : R = S/I
    │ │ │ │  
    │ │ │ │  o40 = R
    │ │ │ │  
    │ │ │ │  o40 : QuotientRing
    │ │ │ │  i41 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ │ - -- used 0.137365s (cpu); 0.0615872s (thread); 0s (gc)
    │ │ │ │ + -- used 0.150705s (cpu); 0.0908567s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o41 = R'
    │ │ │ │  
    │ │ │ │  o41 : QuotientRing
    │ │ │ │  i42 : icFractions R
    │ │ │ │  
    │ │ │ │          2
    │ │ │ │ @@ -604,15 +604,15 @@
    │ │ │ │  o44 : Ideal of S
    │ │ │ │  i45 : R = S/I
    │ │ │ │  
    │ │ │ │  o45 = R
    │ │ │ │  
    │ │ │ │  o45 : QuotientRing
    │ │ │ │  i46 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ │ - -- used 0.167495s (cpu); 0.0877408s (thread); 0s (gc)
    │ │ │ │ + -- used 0.13204s (cpu); 0.0681967s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o46 = R'
    │ │ │ │  
    │ │ │ │  o46 : QuotientRing
    │ │ │ │  i47 : icFractions R
    │ │ │ │  
    │ │ │ │         b*d
    │ │ │ │ @@ -633,15 +633,15 @@
    │ │ │ │  o49 : Ideal of S
    │ │ │ │  i50 : R = S/I
    │ │ │ │  
    │ │ │ │  o50 = R
    │ │ │ │  
    │ │ │ │  o50 : QuotientRing
    │ │ │ │  i51 : time R' = integralClosure (R, Strategy => RadicalCodim1)
    │ │ │ │ - -- used 0.139863s (cpu); 0.0633843s (thread); 0s (gc)
    │ │ │ │ + -- used 0.186921s (cpu); 0.119854s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o51 = R'
    │ │ │ │  
    │ │ │ │  o51 : QuotientRing
    │ │ │ │  i52 : icFractions R
    │ │ │ │  
    │ │ │ │          2
    │ │ │ │ @@ -663,15 +663,15 @@
    │ │ │ │  o54 : Ideal of S
    │ │ │ │  i55 : R = S/I
    │ │ │ │  
    │ │ │ │  o55 = R
    │ │ │ │  
    │ │ │ │  o55 : QuotientRing
    │ │ │ │  i56 : time R' = integralClosure (R, Strategy => Vasconcelos)
    │ │ │ │ - -- used 0.145503s (cpu); 0.060919s (thread); 0s (gc)
    │ │ │ │ + -- used 0.21552s (cpu); 0.154823s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o56 = R'
    │ │ │ │  
    │ │ │ │  o56 : QuotientRing
    │ │ │ │  i57 : icFractions R
    │ │ │ │  
    │ │ │ │          2
    │ │ │ │ @@ -756,15 +756,15 @@
    │ │ │ │  o65 : BettiTally
    │ │ │ │  i66 : R = S/I
    │ │ │ │  
    │ │ │ │  o66 = R
    │ │ │ │  
    │ │ │ │  o66 : QuotientRing
    │ │ │ │  i67 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ │ - -- used 0.177738s (cpu); 0.0898242s (thread); 0s (gc)
    │ │ │ │ + -- used 0.224831s (cpu); 0.159891s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o67 = R'
    │ │ │ │  
    │ │ │ │  o67 : QuotientRing
    │ │ │ │  i68 : icFractions R
    │ │ │ │  
    │ │ │ │          2    2
    │ │ │ │ @@ -840,15 +840,15 @@
    │ │ │ │  o76 : BettiTally
    │ │ │ │  i77 : R = S/I
    │ │ │ │  
    │ │ │ │  o77 = R
    │ │ │ │  
    │ │ │ │  o77 : QuotientRing
    │ │ │ │  i78 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ │ - -- used 0.500907s (cpu); 0.357025s (thread); 0s (gc)
    │ │ │ │ + -- used 0.62228s (cpu); 0.499672s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o78 = R'
    │ │ │ │  
    │ │ │ │  o78 : QuotientRing
    │ │ │ │  i79 : icFractions R
    │ │ │ │  
    │ │ │ │          2    2   2     3      2
    │ │ │ │ @@ -864,15 +864,15 @@
    │ │ │ │  o80 : PolynomialRing
    │ │ │ │  i81 : R = S/sub(I,S)
    │ │ │ │  
    │ │ │ │  o81 = R
    │ │ │ │  
    │ │ │ │  o81 : QuotientRing
    │ │ │ │  i82 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ │ - -- used 0.413444s (cpu); 0.259042s (thread); 0s (gc)
    │ │ │ │ + -- used 0.731709s (cpu); 0.40774s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o82 = R'
    │ │ │ │  
    │ │ │ │  o82 : QuotientRing
    │ │ │ │  i83 : icFractions R
    │ │ │ │  
    │ │ │ │          2    2   2     3      2
    │ │ │ │ @@ -888,20 +888,20 @@
    │ │ │ │  o84 : PolynomialRing
    │ │ │ │  i85 : R = S/sub(I,S)
    │ │ │ │  
    │ │ │ │  o85 = R
    │ │ │ │  
    │ │ │ │  o85 : QuotientRing
    │ │ │ │  i86 : time R' = integralClosure (R, Strategy => RadicalCodim1, Verbosity => 1)
    │ │ │ │ - [jacobian time 0 sec #minors 4]
    │ │ │ │ + [jacobian time .00215067 sec #minors 4]
    │ │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │ │  
    │ │ │ │ - [step 0:   time .0923998 sec  #fractions 6]
    │ │ │ │ - [step 1:  -- used 0.313375s (cpu); 0.230372s (thread); 0s (gc)
    │ │ │ │ -  time .216976 sec  #fractions 6]
    │ │ │ │ + [step 0:   time .191864 sec  #fractions 6]
    │ │ │ │ + [step 1:  -- used 0.724639s (cpu); 0.409971s (thread); 0s (gc)
    │ │ │ │ +  time .524771 sec  #fractions 6]
    │ │ │ │  
    │ │ │ │  o86 = R'
    │ │ │ │  
    │ │ │ │  o86 : QuotientRing
    │ │ │ │  i87 : icFractions R
    │ │ │ │  
    │ │ │ │          2    2   2     3      2
    │ │ │ │ @@ -920,17 +920,17 @@
    │ │ │ │  o89 = R
    │ │ │ │  
    │ │ │ │  o89 : QuotientRing
    │ │ │ │  i90 : time R' = integralClosure (R, Strategy => Vasconcelos, Verbosity => 1)
    │ │ │ │   [jacobian time 0 sec #minors 4]
    │ │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │ │  
    │ │ │ │ - [step 0:   time .213809 sec  #fractions 6]
    │ │ │ │ - [step 1:  -- used 0.494127s (cpu); 0.320163s (thread); 0s (gc)
    │ │ │ │ -  time .276321 sec  #fractions 6]
    │ │ │ │ + [step 0:   time .574994 sec  #fractions 6]
    │ │ │ │ + [step 1:  -- used 0.952548s (cpu); 0.446174s (thread); 0s (gc)
    │ │ │ │ +  time .373652 sec  #fractions 6]
    │ │ │ │  
    │ │ │ │  o90 = R'
    │ │ │ │  
    │ │ │ │  o90 : QuotientRing
    │ │ │ │  i91 : icFractions R
    │ │ │ │  
    │ │ │ │          2    2   2     3      2
    │ │ │ │ @@ -952,17 +952,17 @@
    │ │ │ │  
    │ │ │ │  o93 : QuotientRing
    │ │ │ │  i94 : time R' = integralClosure (R, Strategy => {Vasconcelos,
    │ │ │ │  StartWithOneMinor}, Verbosity => 1)
    │ │ │ │   [jacobian time 0 sec #minors 1]
    │ │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │ │  
    │ │ │ │ - [step 0:   time .230136 sec  #fractions 6]
    │ │ │ │ - [step 1:  -- used 0.748048s (cpu); 0.513758s (thread); 0s (gc)
    │ │ │ │ -  time .513497 sec  #fractions 6]
    │ │ │ │ + [step 0:   time .327969 sec  #fractions 6]
    │ │ │ │ + [step 1:  -- used 0.956361s (cpu); 0.733282s (thread); 0s (gc)
    │ │ │ │ +  time .624615 sec  #fractions 6]
    │ │ │ │  
    │ │ │ │  o94 = R'
    │ │ │ │  
    │ │ │ │  o94 : QuotientRing
    │ │ │ │  i95 : icFractions R
    │ │ │ │  
    │ │ │ │           2     2          2   2     3      2
    │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.html
    │ │ │ @@ -66,52 +66,52 @@
    │ │ │          
    │ │ │          
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │          
    i1 : R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3);
    │ │ │
    i2 : time R' = integralClosure(R, Verbosity => 2)
    │ │ │ - [jacobian time .00369747 sec #minors 3]
    │ │ │ + [jacobian time 0 sec #minors 3]
    │ │ │  integral closure nvars 3 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │   [step 0: 
    │ │ │        radical (use minprimes) 0 seconds
    │ │ │ -      idlizer1:  .00796539 seconds
    │ │ │ -      idlizer2:  .0130686 seconds
    │ │ │ -      minpres:   .011545 seconds
    │ │ │ -  time .12558 sec  #fractions 4]
    │ │ │ +      idlizer1:  .00798892 seconds
    │ │ │ +      idlizer2:  .00800094 seconds
    │ │ │ +      minpres:   .00799965 seconds
    │ │ │ +  time .0981859 sec  #fractions 4]
    │ │ │   [step 1: 
    │ │ │ -      radical (use minprimes) .00400043 seconds
    │ │ │ -      idlizer1:  .016817 seconds
    │ │ │ -      idlizer2:  .0846016 seconds
    │ │ │ -      minpres:   .0119995 seconds
    │ │ │ -  time .131259 sec  #fractions 4]
    │ │ │ +      radical (use minprimes) .0039999 seconds
    │ │ │ +      idlizer1:  .060909 seconds
    │ │ │ +      idlizer2:  .0701711 seconds
    │ │ │ +      minpres:   .00799908 seconds
    │ │ │ +  time .151081 sec  #fractions 4]
    │ │ │   [step 2: 
    │ │ │        radical (use minprimes) 0 seconds
    │ │ │ -      idlizer1:  .0119982 seconds
    │ │ │ -      idlizer2:  .0120027 seconds
    │ │ │ -      minpres:   .0120025 seconds
    │ │ │ -  time .126433 sec  #fractions 5]
    │ │ │ +      idlizer1:  .011998 seconds
    │ │ │ +      idlizer2:  .00800113 seconds
    │ │ │ +      minpres:   .0568902 seconds
    │ │ │ +  time .205486 sec  #fractions 5]
    │ │ │   [step 3: 
    │ │ │ -      radical (use minprimes) 0 seconds
    │ │ │ -      idlizer1:  .0120008 seconds
    │ │ │ -      idlizer2:  .0159986 seconds
    │ │ │ -      minpres:   .102383 seconds
    │ │ │ -  time .146386 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .00400008 seconds
    │ │ │ +      idlizer1:  .0120016 seconds
    │ │ │ +      idlizer2:  .0137195 seconds
    │ │ │ +      minpres:   .0790716 seconds
    │ │ │ +  time .119053 sec  #fractions 5]
    │ │ │   [step 4: 
    │ │ │ -      radical (use minprimes) 0 seconds
    │ │ │ -      idlizer1:  .00800125 seconds
    │ │ │ -      idlizer2:  .0159992 seconds
    │ │ │ -      minpres:   .0119989 seconds
    │ │ │ -  time .0559994 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .00400077 seconds
    │ │ │ +      idlizer1:  .0093878 seconds
    │ │ │ +      idlizer2:  .0639988 seconds
    │ │ │ +      minpres:   .0120029 seconds
    │ │ │ +  time .0973903 sec  #fractions 5]
    │ │ │   [step 5: 
    │ │ │ -      radical (use minprimes) .00399864 seconds
    │ │ │ -      idlizer1:   -- used 0.692546s (cpu); 0.376483s (thread); 0s (gc)
    │ │ │ -.00665112 seconds
    │ │ │ -  time .100933 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .0409253 seconds
    │ │ │ +      idlizer1:   -- used 0.788996s (cpu); 0.51748s (thread); 0s (gc)
    │ │ │ +.00400008 seconds
    │ │ │ +  time .1138 sec  #fractions 5]
    │ │ │  
    │ │ │  o2 = R'
    │ │ │  
    │ │ │  o2 : QuotientRing
    │ │ │
    i3 : trim ideal R'
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -13,52 +13,52 @@
    │ │ │ │              displayed. A value of 0 means: keep quiet.
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  When the computation takes a considerable time, this function can be used to
    │ │ │ │  decide if it will ever finish, or to get a feel for what is happening during
    │ │ │ │  the computation.
    │ │ │ │  i1 : R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3);
    │ │ │ │  i2 : time R' = integralClosure(R, Verbosity => 2)
    │ │ │ │ - [jacobian time .00369747 sec #minors 3]
    │ │ │ │ + [jacobian time 0 sec #minors 3]
    │ │ │ │  integral closure nvars 3 numgens 1 is S2 codim 1 codimJ 2
    │ │ │ │  
    │ │ │ │   [step 0:
    │ │ │ │        radical (use minprimes) 0 seconds
    │ │ │ │ -      idlizer1:  .00796539 seconds
    │ │ │ │ -      idlizer2:  .0130686 seconds
    │ │ │ │ -      minpres:   .011545 seconds
    │ │ │ │ -  time .12558 sec  #fractions 4]
    │ │ │ │ +      idlizer1:  .00798892 seconds
    │ │ │ │ +      idlizer2:  .00800094 seconds
    │ │ │ │ +      minpres:   .00799965 seconds
    │ │ │ │ +  time .0981859 sec  #fractions 4]
    │ │ │ │   [step 1:
    │ │ │ │ -      radical (use minprimes) .00400043 seconds
    │ │ │ │ -      idlizer1:  .016817 seconds
    │ │ │ │ -      idlizer2:  .0846016 seconds
    │ │ │ │ -      minpres:   .0119995 seconds
    │ │ │ │ -  time .131259 sec  #fractions 4]
    │ │ │ │ +      radical (use minprimes) .0039999 seconds
    │ │ │ │ +      idlizer1:  .060909 seconds
    │ │ │ │ +      idlizer2:  .0701711 seconds
    │ │ │ │ +      minpres:   .00799908 seconds
    │ │ │ │ +  time .151081 sec  #fractions 4]
    │ │ │ │   [step 2:
    │ │ │ │        radical (use minprimes) 0 seconds
    │ │ │ │ -      idlizer1:  .0119982 seconds
    │ │ │ │ -      idlizer2:  .0120027 seconds
    │ │ │ │ -      minpres:   .0120025 seconds
    │ │ │ │ -  time .126433 sec  #fractions 5]
    │ │ │ │ +      idlizer1:  .011998 seconds
    │ │ │ │ +      idlizer2:  .00800113 seconds
    │ │ │ │ +      minpres:   .0568902 seconds
    │ │ │ │ +  time .205486 sec  #fractions 5]
    │ │ │ │   [step 3:
    │ │ │ │ -      radical (use minprimes) 0 seconds
    │ │ │ │ -      idlizer1:  .0120008 seconds
    │ │ │ │ -      idlizer2:  .0159986 seconds
    │ │ │ │ -      minpres:   .102383 seconds
    │ │ │ │ -  time .146386 sec  #fractions 5]
    │ │ │ │ +      radical (use minprimes) .00400008 seconds
    │ │ │ │ +      idlizer1:  .0120016 seconds
    │ │ │ │ +      idlizer2:  .0137195 seconds
    │ │ │ │ +      minpres:   .0790716 seconds
    │ │ │ │ +  time .119053 sec  #fractions 5]
    │ │ │ │   [step 4:
    │ │ │ │ -      radical (use minprimes) 0 seconds
    │ │ │ │ -      idlizer1:  .00800125 seconds
    │ │ │ │ -      idlizer2:  .0159992 seconds
    │ │ │ │ -      minpres:   .0119989 seconds
    │ │ │ │ -  time .0559994 sec  #fractions 5]
    │ │ │ │ +      radical (use minprimes) .00400077 seconds
    │ │ │ │ +      idlizer1:  .0093878 seconds
    │ │ │ │ +      idlizer2:  .0639988 seconds
    │ │ │ │ +      minpres:   .0120029 seconds
    │ │ │ │ +  time .0973903 sec  #fractions 5]
    │ │ │ │   [step 5:
    │ │ │ │ -      radical (use minprimes) .00399864 seconds
    │ │ │ │ -      idlizer1:   -- used 0.692546s (cpu); 0.376483s (thread); 0s (gc)
    │ │ │ │ -.00665112 seconds
    │ │ │ │ -  time .100933 sec  #fractions 5]
    │ │ │ │ +      radical (use minprimes) .0409253 seconds
    │ │ │ │ +      idlizer1:   -- used 0.788996s (cpu); 0.51748s (thread); 0s (gc)
    │ │ │ │ +.00400008 seconds
    │ │ │ │ +  time .1138 sec  #fractions 5]
    │ │ │ │  
    │ │ │ │  o2 = R'
    │ │ │ │  
    │ │ │ │  o2 : QuotientRing
    │ │ │ │  i3 : trim ideal R'
    │ │ │ │  
    │ │ │ │                       3   2                     2 2    4           4
    │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.html
    │ │ │ @@ -111,27 +111,27 @@
    │ │ │                  2      2    2        2   2 2     2
    │ │ │  o3 = ideal (2a*b c + 3a , 2a b*c + 3b , a b  + 3c )
    │ │ │  
    │ │ │  o3 : Ideal of S
    │ │ │
    i4 : time integralClosure J
    │ │ │ - -- used 1.61913s (cpu); 0.70672s (thread); 0s (gc)
    │ │ │ + -- used 3.78342s (cpu); 1.1197s (thread); 0s (gc)
    │ │ │  
    │ │ │               2 2              2 2                2          2   2     
    │ │ │  o4 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2   3               2 2     2   5
    │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ │  
    │ │ │  o4 : Ideal of S
    │ │ │
    i5 : time integralClosure(J, Strategy=>{RadicalCodim1})
    │ │ │ - -- used 0.940472s (cpu); 0.475156s (thread); 0s (gc)
    │ │ │ + -- used 2.58346s (cpu); 0.795824s (thread); 0s (gc)
    │ │ │  
    │ │ │               2 2              2 2                2          2   2     
    │ │ │  o5 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2   3               2 2     2   5
    │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -47,25 +47,25 @@
    │ │ │ │  i3 : J = ideal jacobian ideal F
    │ │ │ │  
    │ │ │ │                  2      2    2        2   2 2     2
    │ │ │ │  o3 = ideal (2a*b c + 3a , 2a b*c + 3b , a b  + 3c )
    │ │ │ │  
    │ │ │ │  o3 : Ideal of S
    │ │ │ │  i4 : time integralClosure J
    │ │ │ │ - -- used 1.61913s (cpu); 0.70672s (thread); 0s (gc)
    │ │ │ │ + -- used 3.78342s (cpu); 1.1197s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               2 2              2 2                2          2   2
    │ │ │ │  o4 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │             2   3               2 2     2   5
    │ │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ │ │  
    │ │ │ │  o4 : Ideal of S
    │ │ │ │  i5 : time integralClosure(J, Strategy=>{RadicalCodim1})
    │ │ │ │ - -- used 0.940472s (cpu); 0.475156s (thread); 0s (gc)
    │ │ │ │ + -- used 2.58346s (cpu); 0.795824s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               2 2              2 2                2          2   2
    │ │ │ │  o5 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │             2   3               2 2     2   5
    │ │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=13
    │ │ │  c2NocmVpZXJHcmFwaA==
    │ │ │  #:len=1712
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiU2NocmVpZXIgZ3JhcGggb2YgYSBmaW5p
    │ │ │  dGUgZ3JvdXAiLCAibGluZW51bSIgPT4gMjYxLCBJbnB1dHMgPT4ge1NQQU57VFR7IkcifSwiLCAi
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/example-output/_equivariant__Hilbert.out
    │ │ │ @@ -25,15 +25,15 @@
    │ │ │  o3 : DiagonalAction
    │ │ │  
    │ │ │  i4 : T.cache.?equivariantHilbert
    │ │ │  
    │ │ │  o4 = false
    │ │ │  
    │ │ │  i5 : elapsedTime equivariantHilbertSeries(T, Order => 5)
    │ │ │ - -- .00215919s elapsed
    │ │ │ + -- .00198847s elapsed
    │ │ │  
    │ │ │                    -1    -1       2 2              -2    -1 -1    -2  2  
    │ │ │  o5 = 1 + (z z  + z   + z  )T + (z z  + z  + z  + z   + z  z   + z  )T  +
    │ │ │             0 1    1     0        0 1    0    1    1     0  1     0      
    │ │ │       ------------------------------------------------------------------------
    │ │ │         3 3    2        2      -1        -3    -1      -1 -2    -2 -1    -3  3
    │ │ │       (z z  + z z  + z z  + z z   + 1 + z   + z  z  + z  z   + z  z   + z  )T 
    │ │ │ @@ -51,10 +51,10 @@
    │ │ │           0   1
    │ │ │  
    │ │ │  i6 : T.cache.?equivariantHilbert
    │ │ │  
    │ │ │  o6 = true
    │ │ │  
    │ │ │  i7 : elapsedTime equivariantHilbertSeries(T, Order => 5);
    │ │ │ - -- .000634819s elapsed
    │ │ │ + -- .000356685s elapsed
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hsop_spalgorithms.out
    │ │ │ @@ -23,23 +23,23 @@
    │ │ │  o3 = QQ[x..z] <- {| 0 -1 0  |, | 0 -1 0 |}
    │ │ │                    | 1 0  0  |  | 1 0  0 |
    │ │ │                    | 0 0  -1 |  | 0 0  1 |
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │  
    │ │ │  i4 : time P1=primaryInvariants C4xC2
    │ │ │ - -- used 0.703448s (cpu); 0.455373s (thread); 0s (gc)
    │ │ │ + -- used 1.03322s (cpu); 0.836639s (thread); 0s (gc)
    │ │ │  
    │ │ │ -       2   2    2   3       3
    │ │ │ -o4 = {z , x  + y , x y - x*y }
    │ │ │ +       2    2   2   3       3
    │ │ │ +o4 = {x  + y , z , x y - x*y }
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : time P2=primaryInvariants(C4xC2,Dade=>true)
    │ │ │ - -- used 0.639755s (cpu); 0.336773s (thread); 0s (gc)
    │ │ │ + -- used 1.04482s (cpu); 0.702253s (thread); 0s (gc)
    │ │ │  
    │ │ │             8         7          6 2         5 3         4 4         3 5  
    │ │ │  o5 = {4096x  + 24576x y + 38912x y  - 18432x y  - 65280x y  + 18432x y  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2 6           7        8         6 2         5   2         4 2 2  
    │ │ │       38912x y  - 24576x*y  + 4096y  - 23040x z  - 69120x y*z  - 28800x y z  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -81,23 +81,23 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │                 2 6             2 6            8
    │ │ │       348625296x z  - 348625296y z  + 43046721z }
    │ │ │  
    │ │ │  o5 : List
    │ │ │  
    │ │ │  i6 : time secondaryInvariants(P1,C4xC2)
    │ │ │ - -- used 0.019971s (cpu); 0.0214392s (thread); 0s (gc)
    │ │ │ + -- used 0.0199973s (cpu); 0.0211987s (thread); 0s (gc)
    │ │ │  
    │ │ │            4    4
    │ │ │  o6 = {1, x  + y }
    │ │ │  
    │ │ │  o6 : List
    │ │ │  
    │ │ │  i7 : time secondaryInvariants(P2,C4xC2)
    │ │ │ - -- used 1.83382s (cpu); 1.16479s (thread); 0s (gc)
    │ │ │ + -- used 3.19982s (cpu); 2.26863s (thread); 0s (gc)
    │ │ │  
    │ │ │            2   2    2   4   2 2    2 2   2 2   3       3   4    4   6   2 4  
    │ │ │  o7 = {1, z , x  + y , z , x z  + y z , x y , x y - x*y , x  + y , z , x z  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2 4   2 2 2   3   2      3 2   4 2    4 2   4 2    2 4   5       5   6
    │ │ │       y z , x y z , x y*z  - x*y z , x z  + y z , x y  + x y , x y - x*y , x 
    │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Degree__Bound_eq_gt..._rp.out
    │ │ │ @@ -14,28 +14,28 @@
    │ │ │             | 1 0 0 0 |  | 1 0 0 0 |
    │ │ │             | 0 0 1 0 |  | 0 1 0 0 |
    │ │ │             | 0 0 0 1 |  | 0 0 1 0 |
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │  
    │ │ │  i4 : elapsedTime invariants S4
    │ │ │ - -- .6125s elapsed
    │ │ │ + -- .828077s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ │        4
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : elapsedTime invariants(S4,DegreeBound=>4)
    │ │ │ - -- .634295s elapsed
    │ │ │ + -- .675065s elapsed
    │ │ │  
    │ │ │  Warning: stopping condition not met!
    │ │ │  Output may not generate the entire ring of invariants.
    │ │ │  Increase value of DegreeBound.
    │ │ │  
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.out
    │ │ │ @@ -14,28 +14,28 @@
    │ │ │             | 1 0 0 0 |  | 1 0 0 0 |
    │ │ │             | 0 0 1 0 |  | 0 1 0 0 |
    │ │ │             | 0 0 0 1 |  | 0 0 1 0 |
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │  
    │ │ │  i4 : elapsedTime invariants S4
    │ │ │ - -- .629561s elapsed
    │ │ │ + -- .740044s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ │        4
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : elapsedTime invariants(S4,UseLinearAlgebra=>true)
    │ │ │ - -- .0410553s elapsed
    │ │ │ + -- .0781188s elapsed
    │ │ │  
    │ │ │  o5 = {x  + x  + x  + x , x x  + x x  + x x  + x x  + x x  + x x , x x x  +
    │ │ │         1    2    3    4   1 2    1 3    2 3    1 4    2 4    3 4   1 2 3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x x x  + x x x  + x x x , x x x x }
    │ │ │        1 2 4    1 3 4    2 3 4   1 2 3 4
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/html/_equivariant__Hilbert.html
    │ │ │ @@ -76,15 +76,15 @@
    │ │ │            
    i4 : T.cache.?equivariantHilbert
    │ │ │  
    │ │ │  o4 = false
    │ │ │
    i5 : elapsedTime equivariantHilbertSeries(T, Order => 5)
    │ │ │ - -- .00215919s elapsed
    │ │ │ + -- .00198847s elapsed
    │ │ │  
    │ │ │                    -1    -1       2 2              -2    -1 -1    -2  2  
    │ │ │  o5 = 1 + (z z  + z   + z  )T + (z z  + z  + z  + z   + z  z   + z  )T  +
    │ │ │             0 1    1     0        0 1    0    1    1     0  1     0      
    │ │ │       ------------------------------------------------------------------------
    │ │ │         3 3    2        2      -1        -3    -1      -1 -2    -2 -1    -3  3
    │ │ │       (z z  + z z  + z z  + z z   + 1 + z   + z  z  + z  z   + z  z   + z  )T 
    │ │ │ @@ -104,15 +104,15 @@
    │ │ │            
    i6 : T.cache.?equivariantHilbert
    │ │ │  
    │ │ │  o6 = true
    │ │ │
    i7 : elapsedTime equivariantHilbertSeries(T, Order => 5);
    │ │ │ - -- .000634819s elapsed
    │ │ │ + -- .000356685s elapsed │ │ │
    │ │ │ │ │ │
    │ │ │

    For the programmer

    │ │ │

    The object equivariantHilbert is a symbol.

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -30,15 +30,15 @@ │ │ │ │ | 0 -1 1 | │ │ │ │ │ │ │ │ o3 : DiagonalAction │ │ │ │ i4 : T.cache.?equivariantHilbert │ │ │ │ │ │ │ │ o4 = false │ │ │ │ i5 : elapsedTime equivariantHilbertSeries(T, Order => 5) │ │ │ │ - -- .00215919s elapsed │ │ │ │ + -- .00198847s elapsed │ │ │ │ │ │ │ │ -1 -1 2 2 -2 -1 -1 -2 2 │ │ │ │ o5 = 1 + (z z + z + z )T + (z z + z + z + z + z z + z )T + │ │ │ │ 0 1 1 0 0 1 0 1 1 0 1 0 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 3 2 2 -1 -3 -1 -1 -2 -2 -1 -3 3 │ │ │ │ (z z + z z + z z + z z + 1 + z + z z + z z + z z + z )T │ │ │ │ @@ -54,10 +54,10 @@ │ │ │ │ │ │ │ │ o5 : ZZ[z ..z ][T] │ │ │ │ 0 1 │ │ │ │ i6 : T.cache.?equivariantHilbert │ │ │ │ │ │ │ │ o6 = true │ │ │ │ i7 : elapsedTime equivariantHilbertSeries(T, Order => 5); │ │ │ │ - -- .000634819s elapsed │ │ │ │ + -- .000356685s elapsed │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _e_q_u_i_v_a_r_i_a_n_t_H_i_l_b_e_r_t is a _s_y_m_b_o_l. │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/html/_hsop_spalgorithms.html │ │ │ @@ -78,24 +78,24 @@ │ │ │ o3 : FiniteGroupAction
    │ │ │
    │ │ │

    The two algorithms used in primaryInvariants are timed. One sees that the Dade algorithm is faster, however the primary invariants output are all of degree 8 and have ugly coefficients.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time P1=primaryInvariants C4xC2
    │ │ │ - -- used 0.703448s (cpu); 0.455373s (thread); 0s (gc)
    │ │ │ + -- used 1.03322s (cpu); 0.836639s (thread); 0s (gc)
    │ │ │  
    │ │ │ -       2   2    2   3       3
    │ │ │ -o4 = {z , x  + y , x y - x*y }
    │ │ │ +       2    2   2   3       3
    │ │ │ +o4 = {x  + y , z , x y - x*y }
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    i5 : time P2=primaryInvariants(C4xC2,Dade=>true)
    │ │ │ - -- used 0.639755s (cpu); 0.336773s (thread); 0s (gc)
    │ │ │ + -- used 1.04482s (cpu); 0.702253s (thread); 0s (gc)
    │ │ │  
    │ │ │             8         7          6 2         5 3         4 4         3 5  
    │ │ │  o5 = {4096x  + 24576x y + 38912x y  - 18432x y  - 65280x y  + 18432x y  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2 6           7        8         6 2         5   2         4 2 2  
    │ │ │       38912x y  - 24576x*y  + 4096y  - 23040x z  - 69120x y*z  - 28800x y z  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -141,24 +141,24 @@
    │ │ │  o5 : List
    │ │ │
    │ │ │

    The extra work done by the default algorithm to ensure an optimal hsop is rewarded by needing to calculate a smaller collection of corresponding secondary invariants. In fact, it has proved quicker overall to calculate the invariant ring based on the optimal algorithm rather than the Dade algorithm.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time secondaryInvariants(P1,C4xC2)
    │ │ │ - -- used 0.019971s (cpu); 0.0214392s (thread); 0s (gc)
    │ │ │ + -- used 0.0199973s (cpu); 0.0211987s (thread); 0s (gc)
    │ │ │  
    │ │ │            4    4
    │ │ │  o6 = {1, x  + y }
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    i7 : time secondaryInvariants(P2,C4xC2)
    │ │ │ - -- used 1.83382s (cpu); 1.16479s (thread); 0s (gc)
    │ │ │ + -- used 3.19982s (cpu); 2.26863s (thread); 0s (gc)
    │ │ │  
    │ │ │            2   2    2   4   2 2    2 2   2 2   3       3   4    4   6   2 4  
    │ │ │  o7 = {1, z , x  + y , z , x z  + y z , x y , x y - x*y , x  + y , z , x z  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2 4   2 2 2   3   2      3 2   4 2    4 2   4 2    2 4   5       5   6
    │ │ │       y z , x y z , x y*z  - x*y z , x z  + y z , x y  + x y , x y - x*y , x 
    │ │ │       ------------------------------------------------------------------------
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -69,22 +69,22 @@
    │ │ │ │                    | 0 0  -1 |  | 0 0  1 |
    │ │ │ │  
    │ │ │ │  o3 : FiniteGroupAction
    │ │ │ │  The two algorithms used in _p_r_i_m_a_r_y_I_n_v_a_r_i_a_n_t_s are timed. One sees that the Dade
    │ │ │ │  algorithm is faster, however the primary invariants output are all of degree 8
    │ │ │ │  and have ugly coefficients.
    │ │ │ │  i4 : time P1=primaryInvariants C4xC2
    │ │ │ │ - -- used 0.703448s (cpu); 0.455373s (thread); 0s (gc)
    │ │ │ │ + -- used 1.03322s (cpu); 0.836639s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │ -       2   2    2   3       3
    │ │ │ │ -o4 = {z , x  + y , x y - x*y }
    │ │ │ │ +       2    2   2   3       3
    │ │ │ │ +o4 = {x  + y , z , x y - x*y }
    │ │ │ │  
    │ │ │ │  o4 : List
    │ │ │ │  i5 : time P2=primaryInvariants(C4xC2,Dade=>true)
    │ │ │ │ - -- used 0.639755s (cpu); 0.336773s (thread); 0s (gc)
    │ │ │ │ + -- used 1.04482s (cpu); 0.702253s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │             8         7          6 2         5 3         4 4         3 5
    │ │ │ │  o5 = {4096x  + 24576x y + 38912x y  - 18432x y  - 65280x y  + 18432x y  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │             2 6           7        8         6 2         5   2         4 2 2
    │ │ │ │       38912x y  - 24576x*y  + 4096y  - 23040x z  - 69120x y*z  - 28800x y z  -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -129,22 +129,22 @@
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  The extra work done by the default algorithm to ensure an optimal hsop is
    │ │ │ │  rewarded by needing to calculate a smaller collection of corresponding
    │ │ │ │  secondary invariants. In fact, it has proved quicker overall to calculate the
    │ │ │ │  invariant ring based on the optimal algorithm rather than the Dade algorithm.
    │ │ │ │  i6 : time secondaryInvariants(P1,C4xC2)
    │ │ │ │ - -- used 0.019971s (cpu); 0.0214392s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0199973s (cpu); 0.0211987s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            4    4
    │ │ │ │  o6 = {1, x  + y }
    │ │ │ │  
    │ │ │ │  o6 : List
    │ │ │ │  i7 : time secondaryInvariants(P2,C4xC2)
    │ │ │ │ - -- used 1.83382s (cpu); 1.16479s (thread); 0s (gc)
    │ │ │ │ + -- used 3.19982s (cpu); 2.26863s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            2   2    2   4   2 2    2 2   2 2   3       3   4    4   6   2 4
    │ │ │ │  o7 = {1, z , x  + y , z , x z  + y z , x y , x y - x*y , x  + y , z , x z  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        2 4   2 2 2   3   2      3 2   4 2    4 2   4 2    2 4   5       5   6
    │ │ │ │       y z , x y z , x y*z  - x*y z , x z  + y z , x y  + x y , x y - x*y , x
    │ │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Degree__Bound_eq_gt..._rp.html
    │ │ │ @@ -89,29 +89,29 @@
    │ │ │             | 0 0 1 0 |  | 0 1 0 0 |
    │ │ │             | 0 0 0 1 |  | 0 0 1 0 |
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │
    i4 : elapsedTime invariants S4
    │ │ │ - -- .6125s elapsed
    │ │ │ + -- .828077s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ │        4
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    i5 : elapsedTime invariants(S4,DegreeBound=>4)
    │ │ │ - -- .634295s elapsed
    │ │ │ + -- .675065s elapsed
    │ │ │  
    │ │ │  Warning: stopping condition not met!
    │ │ │  Output may not generate the entire ring of invariants.
    │ │ │  Increase value of DegreeBound.
    │ │ │  
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -34,27 +34,27 @@
    │ │ │ │  o3 = R <- {| 0 1 0 0 |, | 0 0 0 1 |}
    │ │ │ │             | 1 0 0 0 |  | 1 0 0 0 |
    │ │ │ │             | 0 0 1 0 |  | 0 1 0 0 |
    │ │ │ │             | 0 0 0 1 |  | 0 0 1 0 |
    │ │ │ │  
    │ │ │ │  o3 : FiniteGroupAction
    │ │ │ │  i4 : elapsedTime invariants S4
    │ │ │ │ - -- .6125s elapsed
    │ │ │ │ + -- .828077s elapsed
    │ │ │ │  
    │ │ │ │                            2    2    2    2   3    3    3    3   4    4    4
    │ │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        4
    │ │ │ │       x }
    │ │ │ │        4
    │ │ │ │  
    │ │ │ │  o4 : List
    │ │ │ │  i5 : elapsedTime invariants(S4,DegreeBound=>4)
    │ │ │ │ - -- .634295s elapsed
    │ │ │ │ + -- .675065s elapsed
    │ │ │ │  
    │ │ │ │  Warning: stopping condition not met!
    │ │ │ │  Output may not generate the entire ring of invariants.
    │ │ │ │  Increase value of DegreeBound.
    │ │ │ │  
    │ │ │ │  
    │ │ │ │                            2    2    2    2   3    3    3    3   4    4    4
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.html
    │ │ │ @@ -89,29 +89,29 @@
    │ │ │             | 0 0 1 0 |  | 0 1 0 0 |
    │ │ │             | 0 0 0 1 |  | 0 0 1 0 |
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │
    i4 : elapsedTime invariants S4
    │ │ │ - -- .629561s elapsed
    │ │ │ + -- .740044s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ │        4
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    i5 : elapsedTime invariants(S4,UseLinearAlgebra=>true)
    │ │ │ - -- .0410553s elapsed
    │ │ │ + -- .0781188s elapsed
    │ │ │  
    │ │ │  o5 = {x  + x  + x  + x , x x  + x x  + x x  + x x  + x x  + x x , x x x  +
    │ │ │         1    2    3    4   1 2    1 3    2 3    1 4    2 4    3 4   1 2 3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x x x  + x x x  + x x x , x x x x }
    │ │ │        1 2 4    1 3 4    2 3 4   1 2 3 4
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -36,27 +36,27 @@
    │ │ │ │  o3 = R <- {| 0 1 0 0 |, | 0 0 0 1 |}
    │ │ │ │             | 1 0 0 0 |  | 1 0 0 0 |
    │ │ │ │             | 0 0 1 0 |  | 0 1 0 0 |
    │ │ │ │             | 0 0 0 1 |  | 0 0 1 0 |
    │ │ │ │  
    │ │ │ │  o3 : FiniteGroupAction
    │ │ │ │  i4 : elapsedTime invariants S4
    │ │ │ │ - -- .629561s elapsed
    │ │ │ │ + -- .740044s elapsed
    │ │ │ │  
    │ │ │ │                            2    2    2    2   3    3    3    3   4    4    4
    │ │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        4
    │ │ │ │       x }
    │ │ │ │        4
    │ │ │ │  
    │ │ │ │  o4 : List
    │ │ │ │  i5 : elapsedTime invariants(S4,UseLinearAlgebra=>true)
    │ │ │ │ - -- .0410553s elapsed
    │ │ │ │ + -- .0781188s elapsed
    │ │ │ │  
    │ │ │ │  o5 = {x  + x  + x  + x , x x  + x x  + x x  + x x  + x x  + x x , x x x  +
    │ │ │ │         1    2    3    4   1 2    1 3    2 3    1 4    2 4    3 4   1 2 3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       x x x  + x x x  + x x x , x x x x }
    │ │ │ │        1 2 4    1 3 4    2 3 4   1 2 3 4
    │ │ ├── ./usr/share/doc/Macaulay2/InverseSystems/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=16
    │ │ │  ZnJvbUR1YWwoTWF0cml4KQ==
    │ │ │  #:len=249
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNzI5LCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhmcm9tRHVhbCxNYXRyaXgpLCJmcm9tRHVhbChNYXRy
    │ │ ├── ./usr/share/doc/Macaulay2/InvolutiveBases/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=38
    │ │ │  aW52UmVkdWNlKFJpbmdFbGVtZW50LEludm9sdXRpdmVCYXNpcyk=
    │ │ │  #:len=299
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTEzMywgc3ltYm9sIERvY3VtZW50VGFn
    │ │ │  ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoaW52UmVkdWNlLFJpbmdFbGVtZW50LEludm9sdXRp
    │ │ ├── ./usr/share/doc/Macaulay2/Isomorphism/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=27
    │ │ │  aXNJc29tb3JwaGljKE1hdHJpeCxNYXRyaXgp
    │ │ │  #:len=270
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNDA2LCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhpc0lzb21vcnBoaWMsTWF0cml4LE1hdHJpeCksImlz
    │ │ ├── ./usr/share/doc/Macaulay2/JSON/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=13
    │ │ │  TmFtZVNlcGFyYXRvcg==
    │ │ │  #:len=210
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjc5LCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyJOYW1lU2VwYXJhdG9yIiwiTmFtZVNlcGFyYXRvciIs
    │ │ ├── ./usr/share/doc/Macaulay2/JSON/example-output/_from__J__S__O__N.out
    │ │ │ @@ -39,19 +39,19 @@
    │ │ │  
    │ │ │  o8 = {1, 2, 3}
    │ │ │  
    │ │ │  o8 : List
    │ │ │  
    │ │ │  i9 : jsonFile = temporaryFileName() | ".json"
    │ │ │  
    │ │ │ -o9 = /tmp/M2-134606-0/0.json
    │ │ │ +o9 = /tmp/M2-247428-0/0.json
    │ │ │  
    │ │ │  i10 : jsonFile << "[1, 2, 3]" << endl << close
    │ │ │  
    │ │ │ -o10 = /tmp/M2-134606-0/0.json
    │ │ │ +o10 = /tmp/M2-247428-0/0.json
    │ │ │  
    │ │ │  o10 : File
    │ │ │  
    │ │ │  i11 : fromJSON openIn jsonFile
    │ │ │  
    │ │ │  o11 = {1, 2, 3}
    │ │ ├── ./usr/share/doc/Macaulay2/JSON/html/_from__J__S__O__N.html
    │ │ │ @@ -150,20 +150,20 @@
    │ │ │          
    │ │ │

    The input may also be a file containing JSON data.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : jsonFile = temporaryFileName() | ".json"
    │ │ │  
    │ │ │ -o9 = /tmp/M2-134606-0/0.json
    │ │ │ +o9 = /tmp/M2-247428-0/0.json │ │ │
    i10 : jsonFile << "[1, 2, 3]" << endl << close
    │ │ │  
    │ │ │ -o10 = /tmp/M2-134606-0/0.json
    │ │ │ +o10 = /tmp/M2-247428-0/0.json
    │ │ │  
    │ │ │  o10 : File
    │ │ │
    i11 : fromJSON openIn jsonFile
    │ │ │  
    │ │ │  o11 = {1, 2, 3}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -54,18 +54,18 @@
    │ │ │ │  
    │ │ │ │  o8 = {1, 2, 3}
    │ │ │ │  
    │ │ │ │  o8 : List
    │ │ │ │  The input may also be a file containing JSON data.
    │ │ │ │  i9 : jsonFile = temporaryFileName() | ".json"
    │ │ │ │  
    │ │ │ │ -o9 = /tmp/M2-134606-0/0.json
    │ │ │ │ +o9 = /tmp/M2-247428-0/0.json
    │ │ │ │  i10 : jsonFile << "[1, 2, 3]" << endl << close
    │ │ │ │  
    │ │ │ │ -o10 = /tmp/M2-134606-0/0.json
    │ │ │ │ +o10 = /tmp/M2-247428-0/0.json
    │ │ │ │  
    │ │ │ │  o10 : File
    │ │ │ │  i11 : fromJSON openIn jsonFile
    │ │ │ │  
    │ │ │ │  o11 = {1, 2, 3}
    │ │ │ │  
    │ │ │ │  o11 : List
    │ │ ├── ./usr/share/doc/Macaulay2/Jets/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=22
    │ │ │  amV0cyhaWixBZmZpbmVWYXJpZXR5KQ==
    │ │ │  #:len=2469
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAidGhlIGpldHMgb2YgYW4gYWZmaW5lIHZh
    │ │ │  cmlldHkiLCAibGluZW51bSIgPT4gMTY2NywgSW5wdXRzID0+IHtTUEFOe1RUeyJuIn0sIiwgIixT
    │ │ ├── ./usr/share/doc/Macaulay2/Jets/example-output/___Example_sp1.out
    │ │ │ @@ -17,24 +17,24 @@
    │ │ │  o3 = ideal (y0*z0*x2 + x0*z0*y2 + x0*y0*z2 + z0*x1*y1 + y0*x1*z1 + x0*y1*z1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       y0*z0*x1 + x0*z0*y1 + x0*y0*z1, x0*y0*z0)
    │ │ │  
    │ │ │  o3 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]
    │ │ │  
    │ │ │  i4 : elapsedTime jetsRadical(2,I)
    │ │ │ - -- .00195448s elapsed
    │ │ │ + -- .00173645s elapsed
    │ │ │  
    │ │ │  o4 = ideal (y0*z0*x2, x0*z0*y2, x0*y0*z2, z0*x1*y1, y0*x1*z1, x0*y1*z1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       y0*z0*x1, x0*z0*y1, x0*y0*z1, x0*y0*z0)
    │ │ │  
    │ │ │  o4 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]
    │ │ │  
    │ │ │  i5 : elapsedTime radical J2I
    │ │ │ - -- .31263s elapsed
    │ │ │ + -- .595297s elapsed
    │ │ │  
    │ │ │  o5 = ideal (x0*y0*z0, x0*y0*z1, x0*z0*y1, y0*z0*x1, x0*y1*z1, y0*x1*z1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       z0*x1*y1, x0*y0*z2, x0*z0*y2, y0*z0*x2)
    │ │ │  
    │ │ │  o5 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]
    │ │ ├── ./usr/share/doc/Macaulay2/Jets/example-output/___Storing_sp__Computations.out
    │ │ │ @@ -33,15 +33,15 @@
    │ │ │  o6 : Ideal of R
    │ │ │  
    │ │ │  i7 : I.cache.?jet
    │ │ │  
    │ │ │  o7 = false
    │ │ │  
    │ │ │  i8 : elapsedTime jets(3,I)
    │ │ │ - -- .00789879s elapsed
    │ │ │ + -- .0074075s elapsed
    │ │ │  
    │ │ │                                                    2                 2
    │ │ │  o8 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o8 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │  
    │ │ │  i9 : I.cache.?jet
    │ │ │ @@ -53,23 +53,23 @@
    │ │ │  o10 = CacheTable{jetsMatrix => | 2x0x3-y3+2x1x2 |}
    │ │ │                                 | 2x0x2-y2+x1^2  |
    │ │ │                                 | 2x0x1-y1       |
    │ │ │                                 | x0^2-y0        |
    │ │ │                   jetsMaxOrder => 3
    │ │ │  
    │ │ │  i11 : elapsedTime jets(3,I)
    │ │ │ - -- .00214164s elapsed
    │ │ │ + -- .00196759s elapsed
    │ │ │  
    │ │ │                                                     2                 2
    │ │ │  o11 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o11 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │  
    │ │ │  i12 : elapsedTime jets(2,I)
    │ │ │ - -- .00194612s elapsed
    │ │ │ + -- .00176346s elapsed
    │ │ │  
    │ │ │                               2                 2
    │ │ │  o12 = ideal (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o12 : Ideal of QQ[x0, y0][x1, y1][x2, y2]
    │ │ │  
    │ │ │  i13 : Q = R/I
    │ │ │ @@ -148,15 +148,15 @@
    │ │ │  o22 = true
    │ │ │  
    │ │ │  i23 : f.cache.?jet
    │ │ │  
    │ │ │  o23 = false
    │ │ │  
    │ │ │  i24 : elapsedTime jets(3,f)
    │ │ │ - -- .0110379s elapsed
    │ │ │ + -- .0097507s elapsed
    │ │ │  
    │ │ │                                                QQ[x0, y0][x1, y1][x2, y2][x3, y3]                                                      2                    2
    │ │ │  o24 = map (QQ[t0][t1][t2][t3], ----------------------------------------------------------------, {t3, 2t0*t3 + 2t1*t2, t2, 2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │                                                                        2                 2
    │ │ │                                 (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │                                                      QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │ @@ -173,15 +173,15 @@
    │ │ │  o26 = CacheTable{jetsMatrix => | t3 2t0t3+2t1t2 |}
    │ │ │                                 | t2 2t0t2+t1^2  |
    │ │ │                                 | t1 2t0t1       |
    │ │ │                                 | t0 t0^2        |
    │ │ │                   jetsMaxOrder => 3
    │ │ │  
    │ │ │  i27 : elapsedTime jets(2,f)
    │ │ │ - -- .000765543s elapsed
    │ │ │ + -- .000528717s elapsed
    │ │ │  
    │ │ │                                     QQ[x0, y0][x1, y1][x2, y2]                          2                    2
    │ │ │  o27 = map (QQ[t0][t1][t2], ------------------------------------------, {t2, 2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │                                              2                 2
    │ │ │                             (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │                                           QQ[x0, y0][x1, y1][x2, y2]
    │ │ ├── ./usr/share/doc/Macaulay2/Jets/html/___Example_sp1.html
    │ │ │ @@ -73,25 +73,25 @@
    │ │ │          
    │ │ │
    │ │ │

    However, by [GS06, Theorem 3.1], the radical is always a (squarefree) monomial ideal. In fact, the proof of [GS06, Theorem 3.2] shows that the radical is generated by the individual terms in the generators of the ideal of jets. This observation provides an alternative algorithm for computing radicals of jets of monomial ideals, which can be faster than the default radical computation in Macaulay2.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -27,23 +27,23 @@ │ │ │ │ However, by [GS06, Theorem 3.1], the radical is always a (squarefree) monomial │ │ │ │ ideal. In fact, the proof of [GS06, Theorem 3.2] shows that the radical is │ │ │ │ generated by the individual terms in the generators of the ideal of jets. This │ │ │ │ observation provides an alternative algorithm for computing radicals of jets of │ │ │ │ monomial ideals, which can be faster than the default radical computation in │ │ │ │ Macaulay2. │ │ │ │ i4 : elapsedTime jetsRadical(2,I) │ │ │ │ - -- .00195448s elapsed │ │ │ │ + -- .00173645s elapsed │ │ │ │ │ │ │ │ o4 = ideal (y0*z0*x2, x0*z0*y2, x0*y0*z2, z0*x1*y1, y0*x1*z1, x0*y1*z1, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ y0*z0*x1, x0*z0*y1, x0*y0*z1, x0*y0*z0) │ │ │ │ │ │ │ │ o4 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2] │ │ │ │ i5 : elapsedTime radical J2I │ │ │ │ - -- .31263s elapsed │ │ │ │ + -- .595297s elapsed │ │ │ │ │ │ │ │ o5 = ideal (x0*y0*z0, x0*y0*z1, x0*z0*y1, y0*z0*x1, x0*y1*z1, y0*x1*z1, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ z0*x1*y1, x0*y0*z2, x0*z0*y2, y0*z0*x2) │ │ │ │ │ │ │ │ o5 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2] │ │ │ │ For a monomial hypersurface, [GS06, Theorem 3.2] describes the minimal primes │ │ ├── ./usr/share/doc/Macaulay2/Jets/html/___Storing_sp__Computations.html │ │ │ @@ -95,15 +95,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -118,24 +118,24 @@ │ │ │ | 2x0x2-y2+x1^2 | │ │ │ | 2x0x1-y1 | │ │ │ | x0^2-y0 | │ │ │ jetsMaxOrder => 3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime jetsRadical(2,I)
    │ │ │ - -- .00195448s elapsed
    │ │ │ + -- .00173645s elapsed
    │ │ │  
    │ │ │  o4 = ideal (y0*z0*x2, x0*z0*y2, x0*y0*z2, z0*x1*y1, y0*x1*z1, x0*y1*z1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       y0*z0*x1, x0*z0*y1, x0*y0*z1, x0*y0*z0)
    │ │ │  
    │ │ │  o4 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]
    │ │ │
    i5 : elapsedTime radical J2I
    │ │ │ - -- .31263s elapsed
    │ │ │ + -- .595297s elapsed
    │ │ │  
    │ │ │  o5 = ideal (x0*y0*z0, x0*y0*z1, x0*z0*y1, y0*z0*x1, x0*y1*z1, y0*x1*z1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       z0*x1*y1, x0*y0*z2, x0*z0*y2, y0*z0*x2)
    │ │ │  
    │ │ │  o5 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]
    │ │ │
    i7 : I.cache.?jet
    │ │ │  
    │ │ │  o7 = false
    │ │ │
    i8 : elapsedTime jets(3,I)
    │ │ │ - -- .00789879s elapsed
    │ │ │ + -- .0074075s elapsed
    │ │ │  
    │ │ │                                                    2                 2
    │ │ │  o8 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o8 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │
    i11 : elapsedTime jets(3,I)
    │ │ │ - -- .00214164s elapsed
    │ │ │ + -- .00196759s elapsed
    │ │ │  
    │ │ │                                                     2                 2
    │ │ │  o11 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o11 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │
    i12 : elapsedTime jets(2,I)
    │ │ │ - -- .00194612s elapsed
    │ │ │ + -- .00176346s elapsed
    │ │ │  
    │ │ │                               2                 2
    │ │ │  o12 = ideal (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o12 : Ideal of QQ[x0, y0][x1, y1][x2, y2]
    │ │ │
    │ │ │ @@ -236,15 +236,15 @@ │ │ │
    i23 : f.cache.?jet
    │ │ │  
    │ │ │  o23 = false
    │ │ │
    i24 : elapsedTime jets(3,f)
    │ │ │ - -- .0110379s elapsed
    │ │ │ + -- .0097507s elapsed
    │ │ │  
    │ │ │                                                QQ[x0, y0][x1, y1][x2, y2][x3, y3]                                                      2                    2
    │ │ │  o24 = map (QQ[t0][t1][t2][t3], ----------------------------------------------------------------, {t3, 2t0*t3 + 2t1*t2, t2, 2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │                                                                        2                 2
    │ │ │                                 (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │                                                      QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │ @@ -264,15 +264,15 @@
    │ │ │                                 | t2 2t0t2+t1^2  |
    │ │ │                                 | t1 2t0t1       |
    │ │ │                                 | t0 t0^2        |
    │ │ │                   jetsMaxOrder => 3
    │ │ │
    i27 : elapsedTime jets(2,f)
    │ │ │ - -- .000765543s elapsed
    │ │ │ + -- .000528717s elapsed
    │ │ │  
    │ │ │                                     QQ[x0, y0][x1, y1][x2, y2]                          2                    2
    │ │ │  o27 = map (QQ[t0][t1][t2], ------------------------------------------, {t2, 2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │                                              2                 2
    │ │ │                             (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │                                           QQ[x0, y0][x1, y1][x2, y2]
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -41,15 +41,15 @@
    │ │ │ │  o6 = ideal(x  - y)
    │ │ │ │  
    │ │ │ │  o6 : Ideal of R
    │ │ │ │  i7 : I.cache.?jet
    │ │ │ │  
    │ │ │ │  o7 = false
    │ │ │ │  i8 : elapsedTime jets(3,I)
    │ │ │ │ - -- .00789879s elapsed
    │ │ │ │ + -- .0074075s elapsed
    │ │ │ │  
    │ │ │ │                                                    2                 2
    │ │ │ │  o8 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │ │  
    │ │ │ │  o8 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │ │  i9 : I.cache.?jet
    │ │ │ │  
    │ │ │ │ @@ -58,22 +58,22 @@
    │ │ │ │  
    │ │ │ │  o10 = CacheTable{jetsMatrix => | 2x0x3-y3+2x1x2 |}
    │ │ │ │                                 | 2x0x2-y2+x1^2  |
    │ │ │ │                                 | 2x0x1-y1       |
    │ │ │ │                                 | x0^2-y0        |
    │ │ │ │                   jetsMaxOrder => 3
    │ │ │ │  i11 : elapsedTime jets(3,I)
    │ │ │ │ - -- .00214164s elapsed
    │ │ │ │ + -- .00196759s elapsed
    │ │ │ │  
    │ │ │ │                                                     2                 2
    │ │ │ │  o11 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │ │  
    │ │ │ │  o11 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │ │  i12 : elapsedTime jets(2,I)
    │ │ │ │ - -- .00194612s elapsed
    │ │ │ │ + -- .00176346s elapsed
    │ │ │ │  
    │ │ │ │                               2                 2
    │ │ │ │  o12 = ideal (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │ │  
    │ │ │ │  o12 : Ideal of QQ[x0, y0][x1, y1][x2, y2]
    │ │ │ │  For quotient rings, data is stored under *.jet. Each jets order gives rise to a
    │ │ │ │  different quotient that is stored separately under *.jet.jetsRing (order zero
    │ │ │ │ @@ -153,15 +153,15 @@
    │ │ │ │  i22 : isWellDefined f
    │ │ │ │  
    │ │ │ │  o22 = true
    │ │ │ │  i23 : f.cache.?jet
    │ │ │ │  
    │ │ │ │  o23 = false
    │ │ │ │  i24 : elapsedTime jets(3,f)
    │ │ │ │ - -- .0110379s elapsed
    │ │ │ │ + -- .0097507s elapsed
    │ │ │ │  
    │ │ │ │                                                QQ[x0, y0][x1, y1][x2, y2][x3,
    │ │ │ │  y3]                                                      2                    2
    │ │ │ │  o24 = map (QQ[t0][t1][t2][t3], ------------------------------------------------
    │ │ │ │  ----------------, {t3, 2t0*t3 + 2t1*t2, t2, 2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │ │                                                                        2
    │ │ │ │  2
    │ │ │ │ @@ -183,15 +183,15 @@
    │ │ │ │  
    │ │ │ │  o26 = CacheTable{jetsMatrix => | t3 2t0t3+2t1t2 |}
    │ │ │ │                                 | t2 2t0t2+t1^2  |
    │ │ │ │                                 | t1 2t0t1       |
    │ │ │ │                                 | t0 t0^2        |
    │ │ │ │                   jetsMaxOrder => 3
    │ │ │ │  i27 : elapsedTime jets(2,f)
    │ │ │ │ - -- .000765543s elapsed
    │ │ │ │ + -- .000528717s elapsed
    │ │ │ │  
    │ │ │ │                                     QQ[x0, y0][x1, y1][x2, y2]
    │ │ │ │  2                    2
    │ │ │ │  o27 = map (QQ[t0][t1][t2], ------------------------------------------, {t2,
    │ │ │ │  2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │ │                                              2                 2
    │ │ │ │                             (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=41
    │ │ │  Y2Fub25pY2FsSG9tb3RvcGllcyguLi4sRmluZUdyYWRpbmc9Pi4uLik=
    │ │ │  #:len=298
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTU4NSwgc3ltYm9sIERvY3VtZW50VGFn
    │ │ │  ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHtbY2Fub25pY2FsSG9tb3RvcGllcyxGaW5lR3JhZGlu
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_analyze__Strand.out
    │ │ │ @@ -19,15 +19,15 @@
    │ │ │        32003  0   5   0   5         32003  0   5   0   5          32003  0   5   0   5           32003  0   5   0   5           32003  0   5   0   5           32003  0   5   0   5           32003  0   5   0   5           32003  0   5   0   5           32003  0   5   0   5          32003  0   5   0   5         
    │ │ │                                                                                                                                                                                                                                                                                                                       10
    │ │ │       0                            1                             2                              3                              4                              5                              6                              7                              8                             9
    │ │ │  
    │ │ │  o3 : ChainComplex
    │ │ │  
    │ │ │  i4 : L = analyzeStrand(F,a); #L
    │ │ │ - -- .0229344s elapsed
    │ │ │ + -- .0605774s elapsed
    │ │ │  
    │ │ │  o5 = 350
    │ │ │  
    │ │ │  i6 : betti F_a, betti F
    │ │ │  
    │ │ │                 0         0  1   2   3   4   5   6   7  8 9
    │ │ │  o6 = (total: 833, total: 1 36 187 491 793 833 573 250 63 7)
    │ │ │ @@ -46,19 +46,19 @@
    │ │ │  o7 : Expression of class Product
    │ │ │  
    │ │ │  i8 : L3 = select(L,c->c%3==0); #L3
    │ │ │  
    │ │ │  o9 = 14
    │ │ │  
    │ │ │  i10 : carpetBettiTable(a,b,3)
    │ │ │ - -- .00203535s elapsed
    │ │ │ - -- .00582659s elapsed
    │ │ │ - -- .0231181s elapsed
    │ │ │ - -- .0314129s elapsed
    │ │ │ - -- .00364306s elapsed
    │ │ │ + -- .00179454s elapsed
    │ │ │ + -- .00497143s elapsed
    │ │ │ + -- .060344s elapsed
    │ │ │ + -- .00900955s elapsed
    │ │ │ + -- .00320145s elapsed
    │ │ │  
    │ │ │               0  1   2   3   4   5   6   7  8 9
    │ │ │  o10 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │            0: 1  .   .   .   .   .   .   .  . .
    │ │ │            1: . 36 160 315 288  14   .   .  . .
    │ │ │            2: .  .   .   .  14 288 315 160 36 .
    │ │ │            3: .  .   .   .   .   .   .   .  . 1
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Table.out
    │ │ │ @@ -3,20 +3,20 @@
    │ │ │  i1 : a=5,b=5
    │ │ │  
    │ │ │  o1 = (5, 5)
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │  
    │ │ │  i2 : elapsedTime T=carpetBettiTable(a,b,3)
    │ │ │ - -- .00224859s elapsed
    │ │ │ - -- .00607912s elapsed
    │ │ │ - -- .0220902s elapsed
    │ │ │ - -- .0100536s elapsed
    │ │ │ - -- .00340846s elapsed
    │ │ │ - -- .337028s elapsed
    │ │ │ + -- .00195235s elapsed
    │ │ │ + -- .00524863s elapsed
    │ │ │ + -- .0193959s elapsed
    │ │ │ + -- .00958441s elapsed
    │ │ │ + -- .00279801s elapsed
    │ │ │ + -- .395539s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o2 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -26,15 +26,15 @@
    │ │ │  i3 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
    │ │ │  
    │ │ │                ZZ
    │ │ │  o3 : Ideal of --[x ..x , y ..y ]
    │ │ │                 3  0   5   0   5
    │ │ │  
    │ │ │  i4 : elapsedTime T'=minimalBetti J
    │ │ │ - -- .219311s elapsed
    │ │ │ + -- .274046s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o4 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -48,22 +48,22 @@
    │ │ │           1: . . . . . . . . . .
    │ │ │           2: . . . . . . . . . .
    │ │ │           3: . . . . . . . . . .
    │ │ │  
    │ │ │  o5 : BettiTally
    │ │ │  
    │ │ │  i6 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ - -- .00425743s elapsed
    │ │ │ - -- .0173426s elapsed
    │ │ │ - -- .0943482s elapsed
    │ │ │ - -- 1.07453s elapsed
    │ │ │ - -- .306247s elapsed
    │ │ │ - -- .0523164s elapsed
    │ │ │ - -- .00604333s elapsed
    │ │ │ - -- 4.92691s elapsed
    │ │ │ + -- .0540031s elapsed
    │ │ │ + -- .0145816s elapsed
    │ │ │ + -- .154782s elapsed
    │ │ │ + -- 1.31986s elapsed
    │ │ │ + -- .391793s elapsed
    │ │ │ + -- .0779048s elapsed
    │ │ │ + -- .0054453s elapsed
    │ │ │ + -- 5.90773s elapsed
    │ │ │  
    │ │ │  i7 : carpetBettiTable(h,7)
    │ │ │  
    │ │ │              0  1   2   3    4    5    6    7   8   9 10 11
    │ │ │  o7 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55  1
    │ │ │           0: 1  .   .   .    .    .    .    .   .   .  .  .
    │ │ │           1: . 55 320 891 1408 1155    .    .   .   .  .  .
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Tables.out
    │ │ │ @@ -3,19 +3,19 @@
    │ │ │  i1 : a=5,b=5
    │ │ │  
    │ │ │  o1 = (5, 5)
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │  
    │ │ │  i2 : h=carpetBettiTables(a,b)
    │ │ │ - -- .00219401s elapsed
    │ │ │ - -- .00591613s elapsed
    │ │ │ - -- .0530805s elapsed
    │ │ │ - -- .00969284s elapsed
    │ │ │ - -- .0188432s elapsed
    │ │ │ + -- .00196056s elapsed
    │ │ │ + -- .00517971s elapsed
    │ │ │ + -- .0195997s elapsed
    │ │ │ + -- .00818808s elapsed
    │ │ │ + -- .00281309s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -48,15 +48,15 @@
    │ │ │  i4 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
    │ │ │  
    │ │ │                ZZ
    │ │ │  o4 : Ideal of --[x ..x , y ..y ]
    │ │ │                 3  0   5   0   5
    │ │ │  
    │ │ │  i5 : elapsedTime T'=minimalBetti J
    │ │ │ - -- .165128s elapsed
    │ │ │ + -- .250066s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o5 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -70,22 +70,22 @@
    │ │ │           1: . . . . . . . . . .
    │ │ │           2: . . . . . . . . . .
    │ │ │           3: . . . . . . . . . .
    │ │ │  
    │ │ │  o6 : BettiTally
    │ │ │  
    │ │ │  i7 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ - -- .00418592s elapsed
    │ │ │ - -- .041455s elapsed
    │ │ │ - -- .106786s elapsed
    │ │ │ - -- 1.12243s elapsed
    │ │ │ - -- .306161s elapsed
    │ │ │ - -- .0378051s elapsed
    │ │ │ - -- .00649705s elapsed
    │ │ │ - -- 4.94679s elapsed
    │ │ │ + -- .00402656s elapsed
    │ │ │ + -- .0150707s elapsed
    │ │ │ + -- .187955s elapsed
    │ │ │ + -- 1.38855s elapsed
    │ │ │ + -- .405881s elapsed
    │ │ │ + -- .0750955s elapsed
    │ │ │ + -- .00550418s elapsed
    │ │ │ + -- 6.20885s elapsed
    │ │ │  
    │ │ │  i8 : keys h
    │ │ │  
    │ │ │  o8 = {0, 2, 3, 5}
    │ │ │  
    │ │ │  o8 : List
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Det.out
    │ │ │ @@ -3,42 +3,42 @@
    │ │ │  i1 : a=4,b=4
    │ │ │  
    │ │ │  o1 = (4, 4)
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │  
    │ │ │  i2 : d=carpetDet(a,b)
    │ │ │ - -- .023887s elapsed
    │ │ │ - -- .0224611s elapsed
    │ │ │ - -- .000281838s elapsed
    │ │ │ - -- .000134322s elapsed
    │ │ │ - -- .000117361s elapsed
    │ │ │ - -- .000113723s elapsed
    │ │ │ - -- .000115275s elapsed
    │ │ │ - -- .000120876s elapsed
    │ │ │ - -- .000143789s elapsed
    │ │ │ - -- .000447297s elapsed
    │ │ │ - -- .000368159s elapsed
    │ │ │ - -- .000119123s elapsed
    │ │ │ - -- .000112329s elapsed
    │ │ │ - -- .000118642s elapsed
    │ │ │ - -- .000107462s elapsed
    │ │ │ - -- .000108013s elapsed
    │ │ │ - -- .000114595s elapsed
    │ │ │ - -- .000106309s elapsed
    │ │ │ - -- .000123922s elapsed
    │ │ │ - -- .000128231s elapsed
    │ │ │ - -- .000131386s elapsed
    │ │ │ - -- .000124613s elapsed
    │ │ │ - -- .000131696s elapsed
    │ │ │ - -- .000118632s elapsed
    │ │ │ - -- .00010717s elapsed
    │ │ │ - -- .00012855s elapsed
    │ │ │ - -- .0001177s elapsed
    │ │ │ - -- .000111488s elapsed
    │ │ │ + -- .00813004s elapsed
    │ │ │ + -- .0151821s elapsed
    │ │ │ + -- .000210683s elapsed
    │ │ │ + -- .000145201s elapsed
    │ │ │ + -- .000110266s elapsed
    │ │ │ + -- .000113962s elapsed
    │ │ │ + -- .00010155s elapsed
    │ │ │ + -- .000299048s elapsed
    │ │ │ + -- .000148066s elapsed
    │ │ │ + -- .000139039s elapsed
    │ │ │ + -- .000254766s elapsed
    │ │ │ + -- .000133519s elapsed
    │ │ │ + -- .000153757s elapsed
    │ │ │ + -- .000117559s elapsed
    │ │ │ + -- .000106218s elapsed
    │ │ │ + -- .000103673s elapsed
    │ │ │ + -- .000108984s elapsed
    │ │ │ + -- .000103645s elapsed
    │ │ │ + -- .000117719s elapsed
    │ │ │ + -- .000123641s elapsed
    │ │ │ + -- .000136404s elapsed
    │ │ │ + -- .000165299s elapsed
    │ │ │ + -- .000132147s elapsed
    │ │ │ + -- .00010642s elapsed
    │ │ │ + -- .000111127s elapsed
    │ │ │ + -- .000108342s elapsed
    │ │ │ + -- .00011782s elapsed
    │ │ │ + -- .000103855s elapsed
    │ │ │  (number Of blocks, 26)
    │ │ │  1
    │ │ │  1
    │ │ │  1
    │ │ │  1
    │ │ │  2
    │ │ │   2
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_compute__Bound.out
    │ │ │ @@ -3,17 +3,17 @@
    │ │ │  i1 : (a,b)=computeBound(6,4,3)
    │ │ │  
    │ │ │  o1 = (9, 7)
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │  
    │ │ │  i2 : computeBound 3
    │ │ │ - -- .231161s elapsed
    │ │ │ - -- .127287s elapsed
    │ │ │ - -- .192592s elapsed
    │ │ │ - -- .221279s elapsed
    │ │ │ - -- .151329s elapsed
    │ │ │ - -- .27634s elapsed
    │ │ │ + -- .310819s elapsed
    │ │ │ + -- .196029s elapsed
    │ │ │ + -- .288433s elapsed
    │ │ │ + -- .295623s elapsed
    │ │ │ + -- .220784s elapsed
    │ │ │ + -- .288721s elapsed
    │ │ │  
    │ │ │  o2 = 6
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_degenerate__K3__Betti__Tables.out
    │ │ │ @@ -9,19 +9,19 @@
    │ │ │  i2 : e=(-1,5)
    │ │ │  
    │ │ │  o2 = (-1, 5)
    │ │ │  
    │ │ │  o2 : Sequence
    │ │ │  
    │ │ │  i3 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ - -- .00231647s elapsed
    │ │ │ - -- .00572909s elapsed
    │ │ │ - -- .0420116s elapsed
    │ │ │ - -- .0100077s elapsed
    │ │ │ - -- .00326168s elapsed
    │ │ │ + -- .00231515s elapsed
    │ │ │ + -- .00492044s elapsed
    │ │ │ + -- .0706832s elapsed
    │ │ │ + -- .0079248s elapsed
    │ │ │ + -- .00298573s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o3 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -49,15 +49,15 @@
    │ │ │  i4 : keys h
    │ │ │  
    │ │ │  o4 = {0, 2, 3, 5}
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : elapsedTime T= minimalBetti degenerateK3(a,b,e,Characteristic=>5)
    │ │ │ - -- .190761s elapsed
    │ │ │ + -- .313112s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o5 = total: 1 36 167 370 476 476 370 167 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 322 336 140  48   7  . .
    │ │ │           2: .  .   7  48 140 336 322 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -77,19 +77,19 @@
    │ │ │  i7 : e=(-1,5^2)
    │ │ │  
    │ │ │  o7 = (-1, 25)
    │ │ │  
    │ │ │  o7 : Sequence
    │ │ │  
    │ │ │  i8 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ - -- .00238839s elapsed
    │ │ │ - -- .00636492s elapsed
    │ │ │ - -- .0233021s elapsed
    │ │ │ - -- .00920894s elapsed
    │ │ │ - -- .00338048s elapsed
    │ │ │ + -- .00225391s elapsed
    │ │ │ + -- .00567321s elapsed
    │ │ │ + -- .0722083s elapsed
    │ │ │ + -- .00821501s elapsed
    │ │ │ + -- .00301775s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o8 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1     }
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_resonance__Det.out
    │ │ │ @@ -1,33 +1,33 @@
    │ │ │  -- -*- M2-comint -*- hash: 1729182891690704738
    │ │ │  
    │ │ │  i1 : a=4
    │ │ │  
    │ │ │  o1 = 4
    │ │ │  
    │ │ │  i2 : (d1,d2)=resonanceDet(a)
    │ │ │ - -- .0384115s elapsed
    │ │ │ - -- .000040386s elapsed
    │ │ │ - -- .000105137s elapsed
    │ │ │ - -- .000089628s elapsed
    │ │ │ - -- .000109706s elapsed
    │ │ │ - -- .000203892s elapsed
    │ │ │ - -- .000115807s elapsed
    │ │ │ - -- .00003236s elapsed
    │ │ │ - -- .0639071s elapsed
    │ │ │ - -- .000145333s elapsed
    │ │ │ - -- .000126558s elapsed
    │ │ │ - -- .000122309s elapsed
    │ │ │ - -- .000122129s elapsed
    │ │ │ - -- .000105167s elapsed
    │ │ │ - -- .000094497s elapsed
    │ │ │ - -- .000122089s elapsed
    │ │ │ - -- .000033253s elapsed
    │ │ │ - -- .000093946s elapsed
    │ │ │ - -- .000030117s elapsed
    │ │ │ + -- .0104189s elapsed
    │ │ │ + -- .000033212s elapsed
    │ │ │ + -- .000073056s elapsed
    │ │ │ + -- .000055284s elapsed
    │ │ │ + -- .000062507s elapsed
    │ │ │ + -- .000068509s elapsed
    │ │ │ + -- .00006456s elapsed
    │ │ │ + -- .000019516s elapsed
    │ │ │ + -- .0330295s elapsed
    │ │ │ + -- .000080479s elapsed
    │ │ │ + -- .000069519s elapsed
    │ │ │ + -- .000103393s elapsed
    │ │ │ + -- .000100337s elapsed
    │ │ │ + -- .000089156s elapsed
    │ │ │ + -- .000073146s elapsed
    │ │ │ + -- .00008012s elapsed
    │ │ │ + -- .000025957s elapsed
    │ │ │ + -- .000058098s elapsed
    │ │ │ + -- .000027381s elapsed
    │ │ │  (number of blocks= , 18)
    │ │ │  (size of the matrices, Tally{1 => 4})
    │ │ │                               2 => 6
    │ │ │                               3 => 2
    │ │ │                               4 => 6
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_analyze__Strand.html
    │ │ │ @@ -96,15 +96,15 @@
    │ │ │                                                                                                                                                                                                                                                                                                                       10
    │ │ │       0                            1                             2                              3                              4                              5                              6                              7                              8                             9
    │ │ │  
    │ │ │  o3 : ChainComplex
    │ │ │
    i4 : L = analyzeStrand(F,a); #L
    │ │ │ - -- .0229344s elapsed
    │ │ │ + -- .0605774s elapsed
    │ │ │  
    │ │ │  o5 = 350
    │ │ │
    i6 : betti F_a, betti F
    │ │ │  
    │ │ │                 0         0  1   2   3   4   5   6   7  8 9
    │ │ │ @@ -127,19 +127,19 @@
    │ │ │            
    i8 : L3 = select(L,c->c%3==0); #L3
    │ │ │  
    │ │ │  o9 = 14
    │ │ │
    i10 : carpetBettiTable(a,b,3)
    │ │ │ - -- .00203535s elapsed
    │ │ │ - -- .00582659s elapsed
    │ │ │ - -- .0231181s elapsed
    │ │ │ - -- .0314129s elapsed
    │ │ │ - -- .00364306s elapsed
    │ │ │ + -- .00179454s elapsed
    │ │ │ + -- .00497143s elapsed
    │ │ │ + -- .060344s elapsed
    │ │ │ + -- .00900955s elapsed
    │ │ │ + -- .00320145s elapsed
    │ │ │  
    │ │ │               0  1   2   3   4   5   6   7  8 9
    │ │ │  o10 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │            0: 1  .   .   .   .   .   .   .  . .
    │ │ │            1: . 36 160 315 288  14   .   .  . .
    │ │ │            2: .  .   .   .  14 288 315 160 36 .
    │ │ │            3: .  .   .   .   .   .   .   .  . 1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -50,15 +50,15 @@
    │ │ │ │       0                            1                             2
    │ │ │ │  3                              4                              5
    │ │ │ │  6                              7                              8
    │ │ │ │  9
    │ │ │ │  
    │ │ │ │  o3 : ChainComplex
    │ │ │ │  i4 : L = analyzeStrand(F,a); #L
    │ │ │ │ - -- .0229344s elapsed
    │ │ │ │ + -- .0605774s elapsed
    │ │ │ │  
    │ │ │ │  o5 = 350
    │ │ │ │  i6 : betti F_a, betti F
    │ │ │ │  
    │ │ │ │                 0         0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o6 = (total: 833, total: 1 36 187 491 793 833 573 250 63 7)
    │ │ │ │            6: 350      0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │ @@ -73,19 +73,19 @@
    │ │ │ │  o7 = 2   3
    │ │ │ │  
    │ │ │ │  o7 : Expression of class Product
    │ │ │ │  i8 : L3 = select(L,c->c%3==0); #L3
    │ │ │ │  
    │ │ │ │  o9 = 14
    │ │ │ │  i10 : carpetBettiTable(a,b,3)
    │ │ │ │ - -- .00203535s elapsed
    │ │ │ │ - -- .00582659s elapsed
    │ │ │ │ - -- .0231181s elapsed
    │ │ │ │ - -- .0314129s elapsed
    │ │ │ │ - -- .00364306s elapsed
    │ │ │ │ + -- .00179454s elapsed
    │ │ │ │ + -- .00497143s elapsed
    │ │ │ │ + -- .060344s elapsed
    │ │ │ │ + -- .00900955s elapsed
    │ │ │ │ + -- .00320145s elapsed
    │ │ │ │  
    │ │ │ │               0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o10 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │ │            0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │            1: . 36 160 315 288  14   .   .  . .
    │ │ │ │            2: .  .   .   .  14 288 315 160 36 .
    │ │ │ │            3: .  .   .   .   .   .   .   .  . 1
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Table.html
    │ │ │ @@ -83,20 +83,20 @@
    │ │ │  
    │ │ │  o1 = (5, 5)
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │
    i2 : elapsedTime T=carpetBettiTable(a,b,3)
    │ │ │ - -- .00224859s elapsed
    │ │ │ - -- .00607912s elapsed
    │ │ │ - -- .0220902s elapsed
    │ │ │ - -- .0100536s elapsed
    │ │ │ - -- .00340846s elapsed
    │ │ │ - -- .337028s elapsed
    │ │ │ + -- .00195235s elapsed
    │ │ │ + -- .00524863s elapsed
    │ │ │ + -- .0193959s elapsed
    │ │ │ + -- .00958441s elapsed
    │ │ │ + -- .00279801s elapsed
    │ │ │ + -- .395539s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o2 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -108,15 +108,15 @@
    │ │ │  
    │ │ │                ZZ
    │ │ │  o3 : Ideal of --[x ..x , y ..y ]
    │ │ │                 3  0   5   0   5
    │ │ │
    i4 : elapsedTime T'=minimalBetti J
    │ │ │ - -- .219311s elapsed
    │ │ │ + -- .274046s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o4 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -132,22 +132,22 @@
    │ │ │           2: . . . . . . . . . .
    │ │ │           3: . . . . . . . . . .
    │ │ │  
    │ │ │  o5 : BettiTally
    │ │ │
    i6 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ - -- .00425743s elapsed
    │ │ │ - -- .0173426s elapsed
    │ │ │ - -- .0943482s elapsed
    │ │ │ - -- 1.07453s elapsed
    │ │ │ - -- .306247s elapsed
    │ │ │ - -- .0523164s elapsed
    │ │ │ - -- .00604333s elapsed
    │ │ │ - -- 4.92691s elapsed
    │ │ │ + -- .0540031s elapsed │ │ │ + -- .0145816s elapsed │ │ │ + -- .154782s elapsed │ │ │ + -- 1.31986s elapsed │ │ │ + -- .391793s elapsed │ │ │ + -- .0779048s elapsed │ │ │ + -- .0054453s elapsed │ │ │ + -- 5.90773s elapsed │ │ │
    i7 : carpetBettiTable(h,7)
    │ │ │  
    │ │ │              0  1   2   3    4    5    6    7   8   9 10 11
    │ │ │  o7 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55  1
    │ │ │           0: 1  .   .   .    .    .    .    .   .   .  .  .
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -26,20 +26,20 @@
    │ │ │ │  resulting data allow us to compute the Betti tables for arbitrary primes.
    │ │ │ │  i1 : a=5,b=5
    │ │ │ │  
    │ │ │ │  o1 = (5, 5)
    │ │ │ │  
    │ │ │ │  o1 : Sequence
    │ │ │ │  i2 : elapsedTime T=carpetBettiTable(a,b,3)
    │ │ │ │ - -- .00224859s elapsed
    │ │ │ │ - -- .00607912s elapsed
    │ │ │ │ - -- .0220902s elapsed
    │ │ │ │ - -- .0100536s elapsed
    │ │ │ │ - -- .00340846s elapsed
    │ │ │ │ - -- .337028s elapsed
    │ │ │ │ + -- .00195235s elapsed
    │ │ │ │ + -- .00524863s elapsed
    │ │ │ │ + -- .0193959s elapsed
    │ │ │ │ + -- .00958441s elapsed
    │ │ │ │ + -- .00279801s elapsed
    │ │ │ │ + -- .395539s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o2 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -47,15 +47,15 @@
    │ │ │ │  o2 : BettiTally
    │ │ │ │  i3 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
    │ │ │ │  
    │ │ │ │                ZZ
    │ │ │ │  o3 : Ideal of --[x ..x , y ..y ]
    │ │ │ │                 3  0   5   0   5
    │ │ │ │  i4 : elapsedTime T'=minimalBetti J
    │ │ │ │ - -- .219311s elapsed
    │ │ │ │ + -- .274046s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o4 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -67,22 +67,22 @@
    │ │ │ │  o5 = total: . . . . . . . . . .
    │ │ │ │           1: . . . . . . . . . .
    │ │ │ │           2: . . . . . . . . . .
    │ │ │ │           3: . . . . . . . . . .
    │ │ │ │  
    │ │ │ │  o5 : BettiTally
    │ │ │ │  i6 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ │ - -- .00425743s elapsed
    │ │ │ │ - -- .0173426s elapsed
    │ │ │ │ - -- .0943482s elapsed
    │ │ │ │ - -- 1.07453s elapsed
    │ │ │ │ - -- .306247s elapsed
    │ │ │ │ - -- .0523164s elapsed
    │ │ │ │ - -- .00604333s elapsed
    │ │ │ │ - -- 4.92691s elapsed
    │ │ │ │ + -- .0540031s elapsed
    │ │ │ │ + -- .0145816s elapsed
    │ │ │ │ + -- .154782s elapsed
    │ │ │ │ + -- 1.31986s elapsed
    │ │ │ │ + -- .391793s elapsed
    │ │ │ │ + -- .0779048s elapsed
    │ │ │ │ + -- .0054453s elapsed
    │ │ │ │ + -- 5.90773s elapsed
    │ │ │ │  i7 : carpetBettiTable(h,7)
    │ │ │ │  
    │ │ │ │              0  1   2   3    4    5    6    7   8   9 10 11
    │ │ │ │  o7 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55  1
    │ │ │ │           0: 1  .   .   .    .    .    .    .   .   .  .  .
    │ │ │ │           1: . 55 320 891 1408 1155    .    .   .   .  .  .
    │ │ │ │           2: .  .   .   .    .    . 1155 1408 891 320 55  .
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Tables.html
    │ │ │ @@ -78,19 +78,19 @@
    │ │ │  
    │ │ │  o1 = (5, 5)
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │
    i2 : h=carpetBettiTables(a,b)
    │ │ │ - -- .00219401s elapsed
    │ │ │ - -- .00591613s elapsed
    │ │ │ - -- .0530805s elapsed
    │ │ │ - -- .00969284s elapsed
    │ │ │ - -- .0188432s elapsed
    │ │ │ + -- .00196056s elapsed
    │ │ │ + -- .00517971s elapsed
    │ │ │ + -- .0195997s elapsed
    │ │ │ + -- .00818808s elapsed
    │ │ │ + -- .00281309s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -126,15 +126,15 @@
    │ │ │  
    │ │ │                ZZ
    │ │ │  o4 : Ideal of --[x ..x , y ..y ]
    │ │ │                 3  0   5   0   5
    │ │ │
    i5 : elapsedTime T'=minimalBetti J
    │ │ │ - -- .165128s elapsed
    │ │ │ + -- .250066s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o5 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -150,22 +150,22 @@
    │ │ │           2: . . . . . . . . . .
    │ │ │           3: . . . . . . . . . .
    │ │ │  
    │ │ │  o6 : BettiTally
    │ │ │
    i7 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ - -- .00418592s elapsed
    │ │ │ - -- .041455s elapsed
    │ │ │ - -- .106786s elapsed
    │ │ │ - -- 1.12243s elapsed
    │ │ │ - -- .306161s elapsed
    │ │ │ - -- .0378051s elapsed
    │ │ │ - -- .00649705s elapsed
    │ │ │ - -- 4.94679s elapsed
    │ │ │ + -- .00402656s elapsed │ │ │ + -- .0150707s elapsed │ │ │ + -- .187955s elapsed │ │ │ + -- 1.38855s elapsed │ │ │ + -- .405881s elapsed │ │ │ + -- .0750955s elapsed │ │ │ + -- .00550418s elapsed │ │ │ + -- 6.20885s elapsed │ │ │
    i8 : keys h
    │ │ │  
    │ │ │  o8 = {0, 2, 3, 5}
    │ │ │  
    │ │ │  o8 : List
    │ │ │ ├── html2text {} │ │ │ │ @@ -22,19 +22,19 @@ │ │ │ │ resulting data allow us to compute the Betti tables for arbitrary primes. │ │ │ │ i1 : a=5,b=5 │ │ │ │ │ │ │ │ o1 = (5, 5) │ │ │ │ │ │ │ │ o1 : Sequence │ │ │ │ i2 : h=carpetBettiTables(a,b) │ │ │ │ - -- .00219401s elapsed │ │ │ │ - -- .00591613s elapsed │ │ │ │ - -- .0530805s elapsed │ │ │ │ - -- .00969284s elapsed │ │ │ │ - -- .0188432s elapsed │ │ │ │ + -- .00196056s elapsed │ │ │ │ + -- .00517971s elapsed │ │ │ │ + -- .0195997s elapsed │ │ │ │ + -- .00818808s elapsed │ │ │ │ + -- .00281309s elapsed │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 │ │ │ │ o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1} │ │ │ │ 0: 1 . . . . . . . . . │ │ │ │ 1: . 36 160 315 288 . . . . . │ │ │ │ 2: . . . . . 288 315 160 36 . │ │ │ │ 3: . . . . . . . . . 1 │ │ │ │ @@ -64,15 +64,15 @@ │ │ │ │ o3 : BettiTally │ │ │ │ i4 : J=canonicalCarpet(a+b+1,b,Characteristic=>3); │ │ │ │ │ │ │ │ ZZ │ │ │ │ o4 : Ideal of --[x ..x , y ..y ] │ │ │ │ 3 0 5 0 5 │ │ │ │ i5 : elapsedTime T'=minimalBetti J │ │ │ │ - -- .165128s elapsed │ │ │ │ + -- .250066s elapsed │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 │ │ │ │ o5 = total: 1 36 160 315 302 302 315 160 36 1 │ │ │ │ 0: 1 . . . . . . . . . │ │ │ │ 1: . 36 160 315 288 14 . . . . │ │ │ │ 2: . . . . 14 288 315 160 36 . │ │ │ │ 3: . . . . . . . . . 1 │ │ │ │ @@ -84,22 +84,22 @@ │ │ │ │ o6 = total: . . . . . . . . . . │ │ │ │ 1: . . . . . . . . . . │ │ │ │ 2: . . . . . . . . . . │ │ │ │ 3: . . . . . . . . . . │ │ │ │ │ │ │ │ o6 : BettiTally │ │ │ │ i7 : elapsedTime h=carpetBettiTables(6,6); │ │ │ │ - -- .00418592s elapsed │ │ │ │ - -- .041455s elapsed │ │ │ │ - -- .106786s elapsed │ │ │ │ - -- 1.12243s elapsed │ │ │ │ - -- .306161s elapsed │ │ │ │ - -- .0378051s elapsed │ │ │ │ - -- .00649705s elapsed │ │ │ │ - -- 4.94679s elapsed │ │ │ │ + -- .00402656s elapsed │ │ │ │ + -- .0150707s elapsed │ │ │ │ + -- .187955s elapsed │ │ │ │ + -- 1.38855s elapsed │ │ │ │ + -- .405881s elapsed │ │ │ │ + -- .0750955s elapsed │ │ │ │ + -- .00550418s elapsed │ │ │ │ + -- 6.20885s elapsed │ │ │ │ i8 : keys h │ │ │ │ │ │ │ │ o8 = {0, 2, 3, 5} │ │ │ │ │ │ │ │ o8 : List │ │ │ │ i9 : carpetBettiTable(h,7) │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Det.html │ │ │ @@ -78,42 +78,42 @@ │ │ │ │ │ │ o1 = (4, 4) │ │ │ │ │ │ o1 : Sequence │ │ │
    i2 : d=carpetDet(a,b)
    │ │ │ - -- .023887s elapsed
    │ │ │ - -- .0224611s elapsed
    │ │ │ - -- .000281838s elapsed
    │ │ │ - -- .000134322s elapsed
    │ │ │ - -- .000117361s elapsed
    │ │ │ - -- .000113723s elapsed
    │ │ │ - -- .000115275s elapsed
    │ │ │ - -- .000120876s elapsed
    │ │ │ - -- .000143789s elapsed
    │ │ │ - -- .000447297s elapsed
    │ │ │ - -- .000368159s elapsed
    │ │ │ - -- .000119123s elapsed
    │ │ │ - -- .000112329s elapsed
    │ │ │ - -- .000118642s elapsed
    │ │ │ - -- .000107462s elapsed
    │ │ │ - -- .000108013s elapsed
    │ │ │ - -- .000114595s elapsed
    │ │ │ - -- .000106309s elapsed
    │ │ │ - -- .000123922s elapsed
    │ │ │ - -- .000128231s elapsed
    │ │ │ - -- .000131386s elapsed
    │ │ │ - -- .000124613s elapsed
    │ │ │ - -- .000131696s elapsed
    │ │ │ - -- .000118632s elapsed
    │ │ │ - -- .00010717s elapsed
    │ │ │ - -- .00012855s elapsed
    │ │ │ - -- .0001177s elapsed
    │ │ │ - -- .000111488s elapsed
    │ │ │ + -- .00813004s elapsed
    │ │ │ + -- .0151821s elapsed
    │ │ │ + -- .000210683s elapsed
    │ │ │ + -- .000145201s elapsed
    │ │ │ + -- .000110266s elapsed
    │ │ │ + -- .000113962s elapsed
    │ │ │ + -- .00010155s elapsed
    │ │ │ + -- .000299048s elapsed
    │ │ │ + -- .000148066s elapsed
    │ │ │ + -- .000139039s elapsed
    │ │ │ + -- .000254766s elapsed
    │ │ │ + -- .000133519s elapsed
    │ │ │ + -- .000153757s elapsed
    │ │ │ + -- .000117559s elapsed
    │ │ │ + -- .000106218s elapsed
    │ │ │ + -- .000103673s elapsed
    │ │ │ + -- .000108984s elapsed
    │ │ │ + -- .000103645s elapsed
    │ │ │ + -- .000117719s elapsed
    │ │ │ + -- .000123641s elapsed
    │ │ │ + -- .000136404s elapsed
    │ │ │ + -- .000165299s elapsed
    │ │ │ + -- .000132147s elapsed
    │ │ │ + -- .00010642s elapsed
    │ │ │ + -- .000111127s elapsed
    │ │ │ + -- .000108342s elapsed
    │ │ │ + -- .00011782s elapsed
    │ │ │ + -- .000103855s elapsed
    │ │ │  (number Of blocks, 26)
    │ │ │  1
    │ │ │  1
    │ │ │  1
    │ │ │  1
    │ │ │  2
    │ │ │   2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -20,42 +20,42 @@
    │ │ │ │  determinants and return their product.
    │ │ │ │  i1 : a=4,b=4
    │ │ │ │  
    │ │ │ │  o1 = (4, 4)
    │ │ │ │  
    │ │ │ │  o1 : Sequence
    │ │ │ │  i2 : d=carpetDet(a,b)
    │ │ │ │ - -- .023887s elapsed
    │ │ │ │ - -- .0224611s elapsed
    │ │ │ │ - -- .000281838s elapsed
    │ │ │ │ - -- .000134322s elapsed
    │ │ │ │ - -- .000117361s elapsed
    │ │ │ │ - -- .000113723s elapsed
    │ │ │ │ - -- .000115275s elapsed
    │ │ │ │ - -- .000120876s elapsed
    │ │ │ │ - -- .000143789s elapsed
    │ │ │ │ - -- .000447297s elapsed
    │ │ │ │ - -- .000368159s elapsed
    │ │ │ │ - -- .000119123s elapsed
    │ │ │ │ - -- .000112329s elapsed
    │ │ │ │ - -- .000118642s elapsed
    │ │ │ │ - -- .000107462s elapsed
    │ │ │ │ - -- .000108013s elapsed
    │ │ │ │ - -- .000114595s elapsed
    │ │ │ │ - -- .000106309s elapsed
    │ │ │ │ - -- .000123922s elapsed
    │ │ │ │ - -- .000128231s elapsed
    │ │ │ │ - -- .000131386s elapsed
    │ │ │ │ - -- .000124613s elapsed
    │ │ │ │ - -- .000131696s elapsed
    │ │ │ │ - -- .000118632s elapsed
    │ │ │ │ - -- .00010717s elapsed
    │ │ │ │ - -- .00012855s elapsed
    │ │ │ │ - -- .0001177s elapsed
    │ │ │ │ - -- .000111488s elapsed
    │ │ │ │ + -- .00813004s elapsed
    │ │ │ │ + -- .0151821s elapsed
    │ │ │ │ + -- .000210683s elapsed
    │ │ │ │ + -- .000145201s elapsed
    │ │ │ │ + -- .000110266s elapsed
    │ │ │ │ + -- .000113962s elapsed
    │ │ │ │ + -- .00010155s elapsed
    │ │ │ │ + -- .000299048s elapsed
    │ │ │ │ + -- .000148066s elapsed
    │ │ │ │ + -- .000139039s elapsed
    │ │ │ │ + -- .000254766s elapsed
    │ │ │ │ + -- .000133519s elapsed
    │ │ │ │ + -- .000153757s elapsed
    │ │ │ │ + -- .000117559s elapsed
    │ │ │ │ + -- .000106218s elapsed
    │ │ │ │ + -- .000103673s elapsed
    │ │ │ │ + -- .000108984s elapsed
    │ │ │ │ + -- .000103645s elapsed
    │ │ │ │ + -- .000117719s elapsed
    │ │ │ │ + -- .000123641s elapsed
    │ │ │ │ + -- .000136404s elapsed
    │ │ │ │ + -- .000165299s elapsed
    │ │ │ │ + -- .000132147s elapsed
    │ │ │ │ + -- .00010642s elapsed
    │ │ │ │ + -- .000111127s elapsed
    │ │ │ │ + -- .000108342s elapsed
    │ │ │ │ + -- .00011782s elapsed
    │ │ │ │ + -- .000103855s elapsed
    │ │ │ │  (number Of blocks, 26)
    │ │ │ │  1
    │ │ │ │  1
    │ │ │ │  1
    │ │ │ │  1
    │ │ │ │  2
    │ │ │ │   2
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_compute__Bound.html
    │ │ │ @@ -86,20 +86,20 @@
    │ │ │  
    │ │ │  o1 = (9, 7)
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │
    i2 : computeBound 3
    │ │ │ - -- .231161s elapsed
    │ │ │ - -- .127287s elapsed
    │ │ │ - -- .192592s elapsed
    │ │ │ - -- .221279s elapsed
    │ │ │ - -- .151329s elapsed
    │ │ │ - -- .27634s elapsed
    │ │ │ + -- .310819s elapsed
    │ │ │ + -- .196029s elapsed
    │ │ │ + -- .288433s elapsed
    │ │ │ + -- .295623s elapsed
    │ │ │ + -- .220784s elapsed
    │ │ │ + -- .288721s elapsed
    │ │ │  
    │ │ │  o2 = 6
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -26,20 +26,20 @@ │ │ │ │ classes mod k. We conjecture that c=k^2-k. │ │ │ │ i1 : (a,b)=computeBound(6,4,3) │ │ │ │ │ │ │ │ o1 = (9, 7) │ │ │ │ │ │ │ │ o1 : Sequence │ │ │ │ i2 : computeBound 3 │ │ │ │ - -- .231161s elapsed │ │ │ │ - -- .127287s elapsed │ │ │ │ - -- .192592s elapsed │ │ │ │ - -- .221279s elapsed │ │ │ │ - -- .151329s elapsed │ │ │ │ - -- .27634s elapsed │ │ │ │ + -- .310819s elapsed │ │ │ │ + -- .196029s elapsed │ │ │ │ + -- .288433s elapsed │ │ │ │ + -- .295623s elapsed │ │ │ │ + -- .220784s elapsed │ │ │ │ + -- .288721s elapsed │ │ │ │ │ │ │ │ o2 = 6 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_l_a_t_i_v_e_E_q_u_a_t_i_o_n_s -- compute the relative quadrics │ │ │ │ ********** WWaayyss ttoo uussee ccoommppuutteeBBoouunndd:: ********** │ │ │ │ * computeBound(ZZ) │ │ │ │ * computeBound(ZZ,ZZ,ZZ) │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_degenerate__K3__Betti__Tables.html │ │ │ @@ -87,19 +87,19 @@ │ │ │ │ │ │ o2 = (-1, 5) │ │ │ │ │ │ o2 : Sequence
    │ │ │ │ │ │ │ │ │
    i3 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ - -- .00231647s elapsed
    │ │ │ - -- .00572909s elapsed
    │ │ │ - -- .0420116s elapsed
    │ │ │ - -- .0100077s elapsed
    │ │ │ - -- .00326168s elapsed
    │ │ │ + -- .00231515s elapsed
    │ │ │ + -- .00492044s elapsed
    │ │ │ + -- .0706832s elapsed
    │ │ │ + -- .0079248s elapsed
    │ │ │ + -- .00298573s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o3 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -129,15 +129,15 @@
    │ │ │  
    │ │ │  o4 = {0, 2, 3, 5}
    │ │ │  
    │ │ │  o4 : List
    │ │ │ │ │ │ │ │ │
    i5 : elapsedTime T= minimalBetti degenerateK3(a,b,e,Characteristic=>5)
    │ │ │ - -- .190761s elapsed
    │ │ │ + -- .313112s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o5 = total: 1 36 167 370 476 476 370 167 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 322 336 140  48   7  . .
    │ │ │           2: .  .   7  48 140 336 322 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -165,19 +165,19 @@
    │ │ │  
    │ │ │  o7 = (-1, 25)
    │ │ │  
    │ │ │  o7 : Sequence
    │ │ │ │ │ │ │ │ │
    i8 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ - -- .00238839s elapsed
    │ │ │ - -- .00636492s elapsed
    │ │ │ - -- .0233021s elapsed
    │ │ │ - -- .00920894s elapsed
    │ │ │ - -- .00338048s elapsed
    │ │ │ + -- .00225391s elapsed
    │ │ │ + -- .00567321s elapsed
    │ │ │ + -- .0722083s elapsed
    │ │ │ + -- .00821501s elapsed
    │ │ │ + -- .00301775s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o8 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1     }
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -28,19 +28,19 @@
    │ │ │ │  o1 : Sequence
    │ │ │ │  i2 : e=(-1,5)
    │ │ │ │  
    │ │ │ │  o2 = (-1, 5)
    │ │ │ │  
    │ │ │ │  o2 : Sequence
    │ │ │ │  i3 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ │ - -- .00231647s elapsed
    │ │ │ │ - -- .00572909s elapsed
    │ │ │ │ - -- .0420116s elapsed
    │ │ │ │ - -- .0100077s elapsed
    │ │ │ │ - -- .00326168s elapsed
    │ │ │ │ + -- .00231515s elapsed
    │ │ │ │ + -- .00492044s elapsed
    │ │ │ │ + -- .0706832s elapsed
    │ │ │ │ + -- .0079248s elapsed
    │ │ │ │ + -- .00298573s elapsed
    │ │ │ │  
    │ │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o3 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -66,15 +66,15 @@
    │ │ │ │  o3 : HashTable
    │ │ │ │  i4 : keys h
    │ │ │ │  
    │ │ │ │  o4 = {0, 2, 3, 5}
    │ │ │ │  
    │ │ │ │  o4 : List
    │ │ │ │  i5 : elapsedTime T= minimalBetti degenerateK3(a,b,e,Characteristic=>5)
    │ │ │ │ - -- .190761s elapsed
    │ │ │ │ + -- .313112s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o5 = total: 1 36 167 370 476 476 370 167 36 1
    │ │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │           1: . 36 160 322 336 140  48   7  . .
    │ │ │ │           2: .  .   7  48 140 336 322 160 36 .
    │ │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -95,19 +95,19 @@
    │ │ │ │  these mistakes.
    │ │ │ │  i7 : e=(-1,5^2)
    │ │ │ │  
    │ │ │ │  o7 = (-1, 25)
    │ │ │ │  
    │ │ │ │  o7 : Sequence
    │ │ │ │  i8 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ │ - -- .00238839s elapsed
    │ │ │ │ - -- .00636492s elapsed
    │ │ │ │ - -- .0233021s elapsed
    │ │ │ │ - -- .00920894s elapsed
    │ │ │ │ - -- .00338048s elapsed
    │ │ │ │ + -- .00225391s elapsed
    │ │ │ │ + -- .00567321s elapsed
    │ │ │ │ + -- .0722083s elapsed
    │ │ │ │ + -- .00821501s elapsed
    │ │ │ │ + -- .00301775s elapsed
    │ │ │ │  
    │ │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o8 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1     }
    │ │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_resonance__Det.html
    │ │ │ @@ -76,33 +76,33 @@
    │ │ │            
    │ │ │                
    i1 : a=4
    │ │ │  
    │ │ │  o1 = 4
    │ │ │ │ │ │ │ │ │
    i2 : (d1,d2)=resonanceDet(a)
    │ │ │ - -- .0384115s elapsed
    │ │ │ - -- .000040386s elapsed
    │ │ │ - -- .000105137s elapsed
    │ │ │ - -- .000089628s elapsed
    │ │ │ - -- .000109706s elapsed
    │ │ │ - -- .000203892s elapsed
    │ │ │ - -- .000115807s elapsed
    │ │ │ - -- .00003236s elapsed
    │ │ │ - -- .0639071s elapsed
    │ │ │ - -- .000145333s elapsed
    │ │ │ - -- .000126558s elapsed
    │ │ │ - -- .000122309s elapsed
    │ │ │ - -- .000122129s elapsed
    │ │ │ - -- .000105167s elapsed
    │ │ │ - -- .000094497s elapsed
    │ │ │ - -- .000122089s elapsed
    │ │ │ - -- .000033253s elapsed
    │ │ │ - -- .000093946s elapsed
    │ │ │ - -- .000030117s elapsed
    │ │ │ + -- .0104189s elapsed
    │ │ │ + -- .000033212s elapsed
    │ │ │ + -- .000073056s elapsed
    │ │ │ + -- .000055284s elapsed
    │ │ │ + -- .000062507s elapsed
    │ │ │ + -- .000068509s elapsed
    │ │ │ + -- .00006456s elapsed
    │ │ │ + -- .000019516s elapsed
    │ │ │ + -- .0330295s elapsed
    │ │ │ + -- .000080479s elapsed
    │ │ │ + -- .000069519s elapsed
    │ │ │ + -- .000103393s elapsed
    │ │ │ + -- .000100337s elapsed
    │ │ │ + -- .000089156s elapsed
    │ │ │ + -- .000073146s elapsed
    │ │ │ + -- .00008012s elapsed
    │ │ │ + -- .000025957s elapsed
    │ │ │ + -- .000058098s elapsed
    │ │ │ + -- .000027381s elapsed
    │ │ │  (number of blocks= , 18)
    │ │ │  (size of the matrices, Tally{1 => 4})
    │ │ │                               2 => 6
    │ │ │                               3 => 2
    │ │ │                               4 => 6
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -20,33 +20,33 @@
    │ │ │ │  grading. Viewed as a resolution over QQ(e_1,e_2), this resolution is non-
    │ │ │ │  minimal and carries further gradings. We decompose the crucial map of the a-th
    │ │ │ │  strand into blocks, compute their determinants, and factor the product.
    │ │ │ │  i1 : a=4
    │ │ │ │  
    │ │ │ │  o1 = 4
    │ │ │ │  i2 : (d1,d2)=resonanceDet(a)
    │ │ │ │ - -- .0384115s elapsed
    │ │ │ │ - -- .000040386s elapsed
    │ │ │ │ - -- .000105137s elapsed
    │ │ │ │ - -- .000089628s elapsed
    │ │ │ │ - -- .000109706s elapsed
    │ │ │ │ - -- .000203892s elapsed
    │ │ │ │ - -- .000115807s elapsed
    │ │ │ │ - -- .00003236s elapsed
    │ │ │ │ - -- .0639071s elapsed
    │ │ │ │ - -- .000145333s elapsed
    │ │ │ │ - -- .000126558s elapsed
    │ │ │ │ - -- .000122309s elapsed
    │ │ │ │ - -- .000122129s elapsed
    │ │ │ │ - -- .000105167s elapsed
    │ │ │ │ - -- .000094497s elapsed
    │ │ │ │ - -- .000122089s elapsed
    │ │ │ │ - -- .000033253s elapsed
    │ │ │ │ - -- .000093946s elapsed
    │ │ │ │ - -- .000030117s elapsed
    │ │ │ │ + -- .0104189s elapsed
    │ │ │ │ + -- .000033212s elapsed
    │ │ │ │ + -- .000073056s elapsed
    │ │ │ │ + -- .000055284s elapsed
    │ │ │ │ + -- .000062507s elapsed
    │ │ │ │ + -- .000068509s elapsed
    │ │ │ │ + -- .00006456s elapsed
    │ │ │ │ + -- .000019516s elapsed
    │ │ │ │ + -- .0330295s elapsed
    │ │ │ │ + -- .000080479s elapsed
    │ │ │ │ + -- .000069519s elapsed
    │ │ │ │ + -- .000103393s elapsed
    │ │ │ │ + -- .000100337s elapsed
    │ │ │ │ + -- .000089156s elapsed
    │ │ │ │ + -- .000073146s elapsed
    │ │ │ │ + -- .00008012s elapsed
    │ │ │ │ + -- .000025957s elapsed
    │ │ │ │ + -- .000058098s elapsed
    │ │ │ │ + -- .000027381s elapsed
    │ │ │ │  (number of blocks= , 18)
    │ │ │ │  (size of the matrices, Tally{1 => 4})
    │ │ │ │                               2 => 6
    │ │ │ │                               3 => 2
    │ │ │ │                               4 => 6
    │ │ │ │         0 1
    │ │ │ │  total: 1 1
    │ │ ├── ./usr/share/doc/Macaulay2/K3Surfaces/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=38
    │ │ │  cHJvamVjdChWaXNpYmxlTGlzdCxFbWJlZGRlZEszc3VyZmFjZSk=
    │ │ │  #:len=279
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gOTU5LCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhwcm9qZWN0LFZpc2libGVMaXN0LEVtYmVkZGVkSzNz
    │ │ ├── ./usr/share/doc/Macaulay2/Kronecker/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=27
    │ │ │  a3JvbmVja2VyTm9ybWFsRm9ybShNYXRyaXgp
    │ │ │  #:len=279
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTA5Nywgc3ltYm9sIERvY3VtZW50VGFn
    │ │ │  ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoa3JvbmVja2VyTm9ybWFsRm9ybSxNYXRyaXgpLCJr
    │ │ ├── ./usr/share/doc/Macaulay2/KustinMiller/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=37
    │ │ │  a3VzdGluTWlsbGVyQ29tcGxleCguLi4sVmVyYm9zZT0+Li4uKQ==
    │ │ │  #:len=577
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiT3B0aW9uIHRvIHByaW50IGludGVybWVk
    │ │ │  aWF0ZSBkYXRhIiwgRGVzY3JpcHRpb24gPT4gMTooRElWe1BBUkF7VE97bmV3IERvY3VtZW50VGFn
    │ │ ├── ./usr/share/doc/Macaulay2/LLLBases/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=6
    │ │ │  UmVhbFhE
    │ │ │  #:len=499
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAidXNlIGV4dGVuZGVkIGV4cG9uZW50IHJl
    │ │ │  YWwgbnVtYmVycyIsIERlc2NyaXB0aW9uID0+IChUVHsiUmVhbFhEIn0sIiAtLSBhIHN0cmF0ZWd5
    │ │ ├── ./usr/share/doc/Macaulay2/LLLBases/example-output/___L__L__L_lp..._cm__Strategy_eq_gt..._rp.out
    │ │ │ @@ -7,55 +7,55 @@
    │ │ │  
    │ │ │  i2 : m = syz m1;
    │ │ │  
    │ │ │                50       47
    │ │ │  o2 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i3 : time LLL m;
    │ │ │ - -- used 0.00617129s (cpu); 0.00927838s (thread); 0s (gc)
    │ │ │ + -- used 0.00799891s (cpu); 0.00714432s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o3 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i4 : time LLL(m, Strategy=>CohenEngine);
    │ │ │ - -- used 0.0275576s (cpu); 0.0282043s (thread); 0s (gc)
    │ │ │ + -- used 0.0229392s (cpu); 0.023325s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o4 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i5 : time LLL(m, Strategy=>CohenTopLevel);
    │ │ │ - -- used 0.0981684s (cpu); 0.0994356s (thread); 0s (gc)
    │ │ │ + -- used 0.123509s (cpu); 0.123787s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o5 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i6 : time LLL(m, Strategy=>{Givens,RealFP});
    │ │ │ - -- used 0.0120219s (cpu); 0.0123051s (thread); 0s (gc)
    │ │ │ + -- used 0.0476131s (cpu); 0.0508222s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o6 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i7 : time LLL(m, Strategy=>{Givens,RealQP});
    │ │ │ - -- used 0.0464998s (cpu); 0.049258s (thread); 0s (gc)
    │ │ │ + -- used 0.0546132s (cpu); 0.0550711s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o7 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i8 : time LLL(m, Strategy=>{Givens,RealXD});
    │ │ │ - -- used 0.0584038s (cpu); 0.0599435s (thread); 0s (gc)
    │ │ │ + -- used 0.085402s (cpu); 0.0853611s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o8 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i9 : time LLL(m, Strategy=>{Givens,RealRR});
    │ │ │ - -- used 0.363093s (cpu); 0.36638s (thread); 0s (gc)
    │ │ │ + -- used 0.399975s (cpu); 0.399851s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o9 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i10 : time LLL(m, Strategy=>{BKZ,Givens,RealQP});
    │ │ │ - -- used 0.11236s (cpu); 0.113921s (thread); 0s (gc)
    │ │ │ + -- used 0.191798s (cpu); 0.192027s (thread); 0s (gc)
    │ │ │  
    │ │ │                 50       47
    │ │ │  o10 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i11 :
    │ │ ├── ./usr/share/doc/Macaulay2/LLLBases/html/___L__L__L_lp..._cm__Strategy_eq_gt..._rp.html
    │ │ │ @@ -162,64 +162,64 @@
    │ │ │                
    i2 : m = syz m1;
    │ │ │  
    │ │ │                50       47
    │ │ │  o2 : Matrix ZZ   <-- ZZ
    │ │ │ │ │ │ │ │ │
    i3 : time LLL m;
    │ │ │ - -- used 0.00617129s (cpu); 0.00927838s (thread); 0s (gc)
    │ │ │ + -- used 0.00799891s (cpu); 0.00714432s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o3 : Matrix ZZ   <-- ZZ
    │ │ │ │ │ │ │ │ │
    i4 : time LLL(m, Strategy=>CohenEngine);
    │ │ │ - -- used 0.0275576s (cpu); 0.0282043s (thread); 0s (gc)
    │ │ │ + -- used 0.0229392s (cpu); 0.023325s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o4 : Matrix ZZ   <-- ZZ
    │ │ │ │ │ │ │ │ │
    i5 : time LLL(m, Strategy=>CohenTopLevel);
    │ │ │ - -- used 0.0981684s (cpu); 0.0994356s (thread); 0s (gc)
    │ │ │ + -- used 0.123509s (cpu); 0.123787s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o5 : Matrix ZZ   <-- ZZ
    │ │ │ │ │ │ │ │ │
    i6 : time LLL(m, Strategy=>{Givens,RealFP});
    │ │ │ - -- used 0.0120219s (cpu); 0.0123051s (thread); 0s (gc)
    │ │ │ + -- used 0.0476131s (cpu); 0.0508222s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o6 : Matrix ZZ   <-- ZZ
    │ │ │ │ │ │ │ │ │
    i7 : time LLL(m, Strategy=>{Givens,RealQP});
    │ │ │ - -- used 0.0464998s (cpu); 0.049258s (thread); 0s (gc)
    │ │ │ + -- used 0.0546132s (cpu); 0.0550711s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o7 : Matrix ZZ   <-- ZZ
    │ │ │ │ │ │ │ │ │
    i8 : time LLL(m, Strategy=>{Givens,RealXD});
    │ │ │ - -- used 0.0584038s (cpu); 0.0599435s (thread); 0s (gc)
    │ │ │ + -- used 0.085402s (cpu); 0.0853611s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o8 : Matrix ZZ   <-- ZZ
    │ │ │ │ │ │ │ │ │
    i9 : time LLL(m, Strategy=>{Givens,RealRR});
    │ │ │ - -- used 0.363093s (cpu); 0.36638s (thread); 0s (gc)
    │ │ │ + -- used 0.399975s (cpu); 0.399851s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o9 : Matrix ZZ   <-- ZZ
    │ │ │ │ │ │ │ │ │
    i10 : time LLL(m, Strategy=>{BKZ,Givens,RealQP});
    │ │ │ - -- used 0.11236s (cpu); 0.113921s (thread); 0s (gc)
    │ │ │ + -- used 0.191798s (cpu); 0.192027s (thread); 0s (gc)
    │ │ │  
    │ │ │                 50       47
    │ │ │  o10 : Matrix ZZ   <-- ZZ
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -116,50 +116,50 @@ │ │ │ │ 50 50 │ │ │ │ o1 : Matrix ZZ <-- ZZ │ │ │ │ i2 : m = syz m1; │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o2 : Matrix ZZ <-- ZZ │ │ │ │ i3 : time LLL m; │ │ │ │ - -- used 0.00617129s (cpu); 0.00927838s (thread); 0s (gc) │ │ │ │ + -- used 0.00799891s (cpu); 0.00714432s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o3 : Matrix ZZ <-- ZZ │ │ │ │ i4 : time LLL(m, Strategy=>CohenEngine); │ │ │ │ - -- used 0.0275576s (cpu); 0.0282043s (thread); 0s (gc) │ │ │ │ + -- used 0.0229392s (cpu); 0.023325s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o4 : Matrix ZZ <-- ZZ │ │ │ │ i5 : time LLL(m, Strategy=>CohenTopLevel); │ │ │ │ - -- used 0.0981684s (cpu); 0.0994356s (thread); 0s (gc) │ │ │ │ + -- used 0.123509s (cpu); 0.123787s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o5 : Matrix ZZ <-- ZZ │ │ │ │ i6 : time LLL(m, Strategy=>{Givens,RealFP}); │ │ │ │ - -- used 0.0120219s (cpu); 0.0123051s (thread); 0s (gc) │ │ │ │ + -- used 0.0476131s (cpu); 0.0508222s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o6 : Matrix ZZ <-- ZZ │ │ │ │ i7 : time LLL(m, Strategy=>{Givens,RealQP}); │ │ │ │ - -- used 0.0464998s (cpu); 0.049258s (thread); 0s (gc) │ │ │ │ + -- used 0.0546132s (cpu); 0.0550711s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o7 : Matrix ZZ <-- ZZ │ │ │ │ i8 : time LLL(m, Strategy=>{Givens,RealXD}); │ │ │ │ - -- used 0.0584038s (cpu); 0.0599435s (thread); 0s (gc) │ │ │ │ + -- used 0.085402s (cpu); 0.0853611s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o8 : Matrix ZZ <-- ZZ │ │ │ │ i9 : time LLL(m, Strategy=>{Givens,RealRR}); │ │ │ │ - -- used 0.363093s (cpu); 0.36638s (thread); 0s (gc) │ │ │ │ + -- used 0.399975s (cpu); 0.399851s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o9 : Matrix ZZ <-- ZZ │ │ │ │ i10 : time LLL(m, Strategy=>{BKZ,Givens,RealQP}); │ │ │ │ - -- used 0.11236s (cpu); 0.113921s (thread); 0s (gc) │ │ │ │ + -- used 0.191798s (cpu); 0.192027s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o10 : Matrix ZZ <-- ZZ │ │ │ │ ********** FFuurrtthheerr iinnffoorrmmaattiioonn ********** │ │ │ │ * Default value: _N_T_L │ │ │ │ * Function: _L_L_L -- compute an LLL basis │ │ │ │ * Option key: _S_t_r_a_t_e_g_y -- an optional argument │ │ ├── ./usr/share/doc/Macaulay2/LatticePolytopes/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=28 │ │ │ YXJlSXNvbW9ycGhpYyhNYXRyaXgsTWF0cml4KQ== │ │ │ #:len=289 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gODg4LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhhcmVJc29tb3JwaGljLE1hdHJpeCxNYXRyaXgpLCJh │ │ ├── ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_are__Isomorphic.out │ │ │ @@ -16,14 +16,14 @@ │ │ │ │ │ │ 3 8 │ │ │ o4 : Matrix ZZ <-- ZZ │ │ │ │ │ │ i5 : P = convexHull(M); │ │ │ │ │ │ i6 : time areIsomorphic(P,P); │ │ │ - -- used 0.953075s (cpu); 0.458804s (thread); 0s (gc) │ │ │ + -- used 1.84567s (cpu); 0.453203s (thread); 0s (gc) │ │ │ │ │ │ i7 : time areIsomorphic(P,P,smoothTest=>false); │ │ │ - -- used 0.694874s (cpu); 0.330095s (thread); 0s (gc) │ │ │ + -- used 1.22661s (cpu); 0.36468s (thread); 0s (gc) │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/LatticePolytopes/html/_are__Isomorphic.html │ │ │ @@ -114,19 +114,19 @@ │ │ │ o4 : Matrix ZZ <-- ZZ │ │ │ │ │ │ │ │ │
    i5 : P = convexHull(M);
    │ │ │ │ │ │ │ │ │
    i6 : time areIsomorphic(P,P);
    │ │ │ - -- used 0.953075s (cpu); 0.458804s (thread); 0s (gc)
    │ │ │ + -- used 1.84567s (cpu); 0.453203s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │
    i7 : time areIsomorphic(P,P,smoothTest=>false);
    │ │ │ - -- used 0.694874s (cpu); 0.330095s (thread); 0s (gc)
    │ │ │ + -- used 1.22661s (cpu); 0.36468s (thread); 0s (gc) │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    Ways to use areIsomorphic:

    │ │ │
      │ │ │
    • │ │ │ ├── html2text {} │ │ │ │ @@ -36,15 +36,15 @@ │ │ │ │ | 0 0 1 0 1 0 1 1 | │ │ │ │ | 0 0 0 1 0 1 1 1 | │ │ │ │ │ │ │ │ 3 8 │ │ │ │ o4 : Matrix ZZ <-- ZZ │ │ │ │ i5 : P = convexHull(M); │ │ │ │ i6 : time areIsomorphic(P,P); │ │ │ │ - -- used 0.953075s (cpu); 0.458804s (thread); 0s (gc) │ │ │ │ + -- used 1.84567s (cpu); 0.453203s (thread); 0s (gc) │ │ │ │ i7 : time areIsomorphic(P,P,smoothTest=>false); │ │ │ │ - -- used 0.694874s (cpu); 0.330095s (thread); 0s (gc) │ │ │ │ + -- used 1.22661s (cpu); 0.36468s (thread); 0s (gc) │ │ │ │ ********** WWaayyss ttoo uussee aarreeIIssoommoorrpphhiicc:: ********** │ │ │ │ * areIsomorphic(Matrix,Matrix) │ │ │ │ * areIsomorphic(Polyhedron,Polyhedron) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _a_r_e_I_s_o_m_o_r_p_h_i_c is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ ├── ./usr/share/doc/Macaulay2/LexIdeals/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=9 │ │ │ TGV4SWRlYWxz │ │ │ #:len=470 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiYSBwYWNrYWdlIGZvciB3b3JraW5nIHdp │ │ │ dGggbGV4IGlkZWFscyIsIERlc2NyaXB0aW9uID0+IDE6KERJVntQQVJBe1RFWHsiIixFTXsiTGV4 │ │ ├── ./usr/share/doc/Macaulay2/Licenses/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=8 │ │ │ TGljZW5zZXM= │ │ │ #:len=349 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtEZXNjcmlwdGlvbiA9PiAxOihESVZ7UEFSQXtURVh7IlRoaXMg │ │ │ cGFja2FnZSBleGFtaW5lcyB0aGUgdmVyc2lvbiBudW1iZXIgb2YgdGhlIHZhcmlvdXMgcGFja2Fn │ │ ├── ./usr/share/doc/Macaulay2/LieTypes/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=22 │ │ │ TGllQWxnZWJyYU1vZHVsZSA9PSBaWg== │ │ │ #:len=205 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjU2MywgInVuZG9jdW1lbnRlZCIgPT4g │ │ │ dHJ1ZSwgc3ltYm9sIERvY3VtZW50VGFnID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoc3ltYm9s │ │ ├── ./usr/share/doc/Macaulay2/LinearTruncations/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=22 │ │ │ bGluZWFyVHJ1bmNhdGlvbnNCb3VuZA== │ │ │ #:len=2355 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiYm91bmRzIHRoZSByZWdpb24gd2hlcmUg │ │ │ dHJ1bmNhdGlvbnMgb2YgYSBtb2R1bGUgaGF2ZSBsaW5lYXIgcmVzb2x1dGlvbnMiLCAibGluZW51 │ │ ├── ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_find__Region.out │ │ │ @@ -29,21 +29,21 @@ │ │ │ i5 : findRegion({{0,0},{4,4}},M,f) │ │ │ │ │ │ o5 = {{1, 2}, {3, 1}} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : elapsedTime findRegion({{0,0},{4,4}},M,f) │ │ │ - -- .182944s elapsed │ │ │ + -- .206109s elapsed │ │ │ │ │ │ o6 = {{1, 2}, {3, 1}} │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : elapsedTime findRegion({{0,0},{4,4}},M,f,Inner=>{{1,2},{3,1}},Outer=>{{1,1}}) │ │ │ - -- .0430672s elapsed │ │ │ + -- .0116023s elapsed │ │ │ │ │ │ o7 = {{1, 2}, {3, 1}} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_linear__Truncations__Bound.out │ │ │ @@ -30,21 +30,21 @@ │ │ │ i5 : apply(L, d -> isLinearComplex res prune truncate(d,M)) │ │ │ │ │ │ o5 = {true, true} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : elapsedTime linearTruncations({{2,2,2},{4,4,4}}, M) │ │ │ - -- 3.82481s elapsed │ │ │ + -- 14.5753s elapsed │ │ │ │ │ │ o6 = {{4, 3, 3}, {4, 4, 2}} │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : elapsedTime linearTruncationsBound M │ │ │ - -- .0225246s elapsed │ │ │ + -- .0193842s elapsed │ │ │ │ │ │ o7 = {{4, 3, 3}, {4, 4, 2}} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/LinearTruncations/html/_find__Region.html │ │ │ @@ -117,23 +117,23 @@ │ │ │ │ │ │
      │ │ │

      If some degrees d are known to satisfy f(d,M), then they can be specified using the option Inner in order to expedite the computation. Similarly, degrees not above those given in Outer will be assumed not to satisfy f(d,M). If f takes options these can also be given to findRegion.

      │ │ │
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      i6 : elapsedTime findRegion({{0,0},{4,4}},M,f)
      │ │ │ - -- .182944s elapsed
      │ │ │ + -- .206109s elapsed
      │ │ │  
      │ │ │  o6 = {{1, 2}, {3, 1}}
      │ │ │  
      │ │ │  o6 : List
      │ │ │
      i7 : elapsedTime findRegion({{0,0},{4,4}},M,f,Inner=>{{1,2},{3,1}},Outer=>{{1,1}})
      │ │ │ - -- .0430672s elapsed
      │ │ │ + -- .0116023s elapsed
      │ │ │  
      │ │ │  o7 = {{1, 2}, {3, 1}}
      │ │ │  
      │ │ │  o7 : List
      │ │ │
      │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -49,22 +49,22 @@ │ │ │ │ │ │ │ │ o5 : List │ │ │ │ If some degrees d are known to satisfy f(d,M), then they can be specified using │ │ │ │ the option Inner in order to expedite the computation. Similarly, degrees not │ │ │ │ above those given in Outer will be assumed not to satisfy f(d,M). If f takes │ │ │ │ options these can also be given to findRegion. │ │ │ │ i6 : elapsedTime findRegion({{0,0},{4,4}},M,f) │ │ │ │ - -- .182944s elapsed │ │ │ │ + -- .206109s elapsed │ │ │ │ │ │ │ │ o6 = {{1, 2}, {3, 1}} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : elapsedTime findRegion({{0,0},{4,4}},M,f,Inner=>{{1,2},{3,1}},Outer=>{ │ │ │ │ {1,1}}) │ │ │ │ - -- .0430672s elapsed │ │ │ │ + -- .0116023s elapsed │ │ │ │ │ │ │ │ o7 = {{1, 2}, {3, 1}} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ ********** CCoonnttrriibbuuttoorrss ********** │ │ │ │ Mahrud Sayrafi contributed to the code for this function. │ │ │ │ ********** CCaavveeaatt ********** │ │ ├── ./usr/share/doc/Macaulay2/LinearTruncations/html/_linear__Truncations__Bound.html │ │ │ @@ -112,23 +112,23 @@ │ │ │ │ │ │
    │ │ │

    The output is a list of the minimal multidegrees $d$ such that the sum of the positive coordinates of $b-d$ is at most $i$ for all degrees $b$ appearing in the i-th step of the resolution of $M$.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : elapsedTime linearTruncations({{2,2,2},{4,4,4}}, M)
    │ │ │ - -- 3.82481s elapsed
    │ │ │ + -- 14.5753s elapsed
    │ │ │  
    │ │ │  o6 = {{4, 3, 3}, {4, 4, 2}}
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    i7 : elapsedTime linearTruncationsBound M
    │ │ │ - -- .0225246s elapsed
    │ │ │ + -- .0193842s elapsed
    │ │ │  
    │ │ │  o7 = {{4, 3, 3}, {4, 4, 2}}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -49,21 +49,21 @@ │ │ │ │ o5 = {true, true} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ The output is a list of the minimal multidegrees $d$ such that the sum of the │ │ │ │ positive coordinates of $b-d$ is at most $i$ for all degrees $b$ appearing in │ │ │ │ the i-th step of the resolution of $M$. │ │ │ │ i6 : elapsedTime linearTruncations({{2,2,2},{4,4,4}}, M) │ │ │ │ - -- 3.82481s elapsed │ │ │ │ + -- 14.5753s elapsed │ │ │ │ │ │ │ │ o6 = {{4, 3, 3}, {4, 4, 2}} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : elapsedTime linearTruncationsBound M │ │ │ │ - -- .0225246s elapsed │ │ │ │ + -- .0193842s elapsed │ │ │ │ │ │ │ │ o7 = {{4, 3, 3}, {4, 4, 2}} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ In general linearTruncationsBound will not find the minimal degrees where $M$ │ │ │ │ has a linear resolution but will be faster than repeatedly truncating $M$. │ │ ├── ./usr/share/doc/Macaulay2/LocalRings/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=10 │ │ │ TG9jYWxSaW5ncw== │ │ │ #:len=5276 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiTG9jYWxpemF0aW9ucyBvZiBwb2x5bm9t │ │ │ aWFsIHJpbmdzIGF0IHByaW1lIGlkZWFscyIsICJsaW5lbnVtIiA9PiA2NCwgImZpbGVuYW1lIiA9 │ │ ├── ./usr/share/doc/Macaulay2/LocalRings/example-output/_hilbert__Samuel__Function.out │ │ │ @@ -15,15 +15,15 @@ │ │ │ │ │ │ o4 = cokernel | x5+y3+z3 y5+x3+z3 z5+x3+y3 | │ │ │ │ │ │ 1 │ │ │ o4 : RP-module, quotient of RP │ │ │ │ │ │ i5 : elapsedTime hilbertSamuelFunction(M, 0, 6) │ │ │ - -- .418238s elapsed │ │ │ + -- .294097s elapsed │ │ │ │ │ │ o5 = {1, 3, 6, 7, 6, 3, 1} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : oo//sum │ │ │ │ │ │ @@ -44,21 +44,21 @@ │ │ │ │ │ │ 2 3 │ │ │ o10 = ideal (x , y ) │ │ │ │ │ │ o10 : Ideal of RP │ │ │ │ │ │ i11 : elapsedTime hilbertSamuelFunction(N, 0, 5) -- n+1 -- 0.02 seconds │ │ │ - -- .0114708s elapsed │ │ │ + -- .0102323s elapsed │ │ │ │ │ │ o11 = {1, 2, 3, 4, 5, 6} │ │ │ │ │ │ o11 : List │ │ │ │ │ │ i12 : elapsedTime hilbertSamuelFunction(q, N, 0, 5) -- 6(n+1) -- 0.32 seconds │ │ │ - -- .341941s elapsed │ │ │ + -- .374546s elapsed │ │ │ │ │ │ o12 = {6, 12, 18, 24, 30, 36} │ │ │ │ │ │ o12 : List │ │ │ │ │ │ i13 : │ │ ├── ./usr/share/doc/Macaulay2/LocalRings/html/_hilbert__Samuel__Function.html │ │ │ @@ -107,15 +107,15 @@ │ │ │ o4 = cokernel | x5+y3+z3 y5+x3+z3 z5+x3+y3 | │ │ │ │ │ │ 1 │ │ │ o4 : RP-module, quotient of RP
    │ │ │ │ │ │ │ │ │
    i5 : elapsedTime hilbertSamuelFunction(M, 0, 6)
    │ │ │ - -- .418238s elapsed
    │ │ │ + -- .294097s elapsed
    │ │ │  
    │ │ │  o5 = {1, 3, 6, 7, 6, 3, 1}
    │ │ │  
    │ │ │  o5 : List
    │ │ │ │ │ │ │ │ │
    i6 : oo//sum
    │ │ │ @@ -147,23 +147,23 @@
    │ │ │                2   3
    │ │ │  o10 = ideal (x , y )
    │ │ │  
    │ │ │  o10 : Ideal of RP
    │ │ │ │ │ │ │ │ │
    i11 : elapsedTime hilbertSamuelFunction(N, 0, 5) -- n+1 -- 0.02 seconds
    │ │ │ - -- .0114708s elapsed
    │ │ │ + -- .0102323s elapsed
    │ │ │  
    │ │ │  o11 = {1, 2, 3, 4, 5, 6}
    │ │ │  
    │ │ │  o11 : List
    │ │ │ │ │ │ │ │ │
    i12 : elapsedTime hilbertSamuelFunction(q, N, 0, 5) -- 6(n+1) -- 0.32 seconds
    │ │ │ - -- .341941s elapsed
    │ │ │ + -- .374546s elapsed
    │ │ │  
    │ │ │  o12 = {6, 12, 18, 24, 30, 36}
    │ │ │  
    │ │ │  o12 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -42,15 +42,15 @@ │ │ │ │ i4 : M = RP^1/I │ │ │ │ │ │ │ │ o4 = cokernel | x5+y3+z3 y5+x3+z3 z5+x3+y3 | │ │ │ │ │ │ │ │ 1 │ │ │ │ o4 : RP-module, quotient of RP │ │ │ │ i5 : elapsedTime hilbertSamuelFunction(M, 0, 6) │ │ │ │ - -- .418238s elapsed │ │ │ │ + -- .294097s elapsed │ │ │ │ │ │ │ │ o5 = {1, 3, 6, 7, 6, 3, 1} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ i6 : oo//sum │ │ │ │ │ │ │ │ o6 = 27 │ │ │ │ @@ -66,21 +66,21 @@ │ │ │ │ i10 : q = ideal"x2,y3" │ │ │ │ │ │ │ │ 2 3 │ │ │ │ o10 = ideal (x , y ) │ │ │ │ │ │ │ │ o10 : Ideal of RP │ │ │ │ i11 : elapsedTime hilbertSamuelFunction(N, 0, 5) -- n+1 -- 0.02 seconds │ │ │ │ - -- .0114708s elapsed │ │ │ │ + -- .0102323s elapsed │ │ │ │ │ │ │ │ o11 = {1, 2, 3, 4, 5, 6} │ │ │ │ │ │ │ │ o11 : List │ │ │ │ i12 : elapsedTime hilbertSamuelFunction(q, N, 0, 5) -- 6(n+1) -- 0.32 seconds │ │ │ │ - -- .341941s elapsed │ │ │ │ + -- .374546s elapsed │ │ │ │ │ │ │ │ o12 = {6, 12, 18, 24, 30, 36} │ │ │ │ │ │ │ │ o12 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ Hilbert-Samuel function with respect to a parameter ideal other than the │ │ │ │ maximal ideal can be slower. │ │ ├── ./usr/share/doc/Macaulay2/M0nbar/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=35 │ │ │ dGV4KEN1cnZlQ2xhc3NSZXByZXNlbnRhdGl2ZU0wbmJhcik= │ │ │ #:len=923 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiY29udmVydCB0byBUZVggZm9ybWF0Iiwg │ │ │ ImxpbmVudW0iID0+IDE1ODQsIElucHV0cyA9PiB7U1BBTntUVHsiQyJ9LCIsICIsU1BBTnsiYW4g │ │ ├── ./usr/share/doc/Macaulay2/MCMApproximations/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=31 │ │ │ Y29BcHByb3hpbWF0aW9uKC4uLixUb3RhbD0+Li4uKQ== │ │ │ #:len=293 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNDY5LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20ge1tjb0FwcHJveGltYXRpb24sVG90YWxdLCJjb0FwcHJv │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=24 │ │ │ dW5pbnN0YWxsUGFja2FnZShTdHJpbmcp │ │ │ #:len=297 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNjkxLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyh1bmluc3RhbGxQYWNrYWdlLFN0cmluZyksInVuaW5z │ │ │ @@ -12973,17 +12973,17 @@ │ │ │ YXMgdGhlIG5hbWUgb3IgdmFsdWUgb2YgYW4gb3B0aW9uYWwgYXJndW1lbnQiLCJzeW1ib2xzIHVz │ │ │ ZWQgYXMgdGhlIG5hbWUgb3IgdmFsdWUgb2YgYW4gb3B0aW9uYWwgYXJndW1lbnQiLCJNYWNhdWxh │ │ │ eTJEb2MifSwgS2V5ID0+ICJzeW1ib2xzIHVzZWQgYXMgdGhlIG5hbWUgb3IgdmFsdWUgb2YgYW4g │ │ │ b3B0aW9uYWwgYXJndW1lbnQiLCBTdWJub2RlcyA9PiBNRU5VeyJTeW1ib2xzIHVzZWQgYXMgYW4g │ │ │ b3B0aW9uIG5hbWUgb3IgdmFsdWUiLFRPe25ldyBEb2N1bWVudFRhZyBmcm9tIHsiU3l6eWdpZXMi │ │ │ LCJTeXp5Z2llcyIsIk1hY2F1bGF5MkRvYyJ9fSwiU3ltYm9scyB1c2VkIGFzIGFuIG9wdGlvbiBu │ │ │ YW1lIixUT3tuZXcgRG9jdW1lbnRUYWcgZnJvbSB7IlRocmVhZHMiLCJUaHJlYWRzIiwiTWFjYXVs │ │ │ -YXkyRG9jIn19LFRPe25ldyBEb2N1bWVudFRhZyBmcm9tIHsiU3RyYXRlZ3kiLCJTdHJhdGVneSIs │ │ │ -Ik1hY2F1bGF5MkRvYyJ9fSxUT3tuZXcgRG9jdW1lbnRUYWcgZnJvbSB7IkdlbmVyaWMiLCJHZW5l │ │ │ -cmljIiwiTWFjYXVsYXkyRG9jIn19LFRPe25ldyBEb2N1bWVudFRhZyBmcm9tIHsiRGVncmVlR3Jv │ │ │ +YXkyRG9jIn19LFRPe25ldyBEb2N1bWVudFRhZyBmcm9tIHsiR2VuZXJpYyIsIkdlbmVyaWMiLCJN │ │ │ +YWNhdWxheTJEb2MifX0sVE97bmV3IERvY3VtZW50VGFnIGZyb20geyJTdHJhdGVneSIsIlN0cmF0 │ │ │ +ZWd5IiwiTWFjYXVsYXkyRG9jIn19LFRPe25ldyBEb2N1bWVudFRhZyBmcm9tIHsiRGVncmVlR3Jv │ │ │ dXAiLCJEZWdyZWVHcm91cCIsIk1hY2F1bGF5MkRvYyJ9fSxUT3tuZXcgRG9jdW1lbnRUYWcgZnJv │ │ │ bSB7IlZhcmlhYmxlcyIsIlZhcmlhYmxlcyIsIk1hY2F1bGF5MkRvYyJ9fSxUT3tuZXcgRG9jdW1l │ │ │ bnRUYWcgZnJvbSB7IkRlZ3JlZUxpZnQiLCJEZWdyZWVMaWZ0IiwiTWFjYXVsYXkyRG9jIn19LFRP │ │ │ e25ldyBEb2N1bWVudFRhZyBmcm9tIHsiVmFyaWFibGVCYXNlTmFtZSIsIlZhcmlhYmxlQmFzZU5h │ │ │ bWUiLCJNYWNhdWxheTJEb2MifX0sVE97bmV3IERvY3VtZW50VGFnIGZyb20geyJEZWdyZWVSYW5r │ │ │ IiwiRGVncmVlUmFuayIsIk1hY2F1bGF5MkRvYyJ9fSxUT3tuZXcgRG9jdW1lbnRUYWcgZnJvbSB7 │ │ │ IkludmVyc2VzIiwiSW52ZXJzZXMiLCJNYWNhdWxheTJEb2MifX0sVE97bmV3IERvY3VtZW50VGFn │ │ │ @@ -12992,21 +12992,21 @@ │ │ │ dFRhZyBmcm9tIHsiTW9ub21pYWxTaXplIiwiTW9ub21pYWxTaXplIiwiTWFjYXVsYXkyRG9jIn19 │ │ │ LFRPe25ldyBEb2N1bWVudFRhZyBmcm9tIHsiTG9jYWwiLCJMb2NhbCIsIk1hY2F1bGF5MkRvYyJ9 │ │ │ fSxUT3tuZXcgRG9jdW1lbnRUYWcgZnJvbSB7IkhlZnQiLCJIZWZ0IiwiTWFjYXVsYXkyRG9jIn19 │ │ │ LFRPe25ldyBEb2N1bWVudFRhZyBmcm9tIHsiQ29uc3RhbnRzIiwiQ29uc3RhbnRzIiwiTWFjYXVs │ │ │ YXkyRG9jIn19LFRPe25ldyBEb2N1bWVudFRhZyBmcm9tIHsiU2tld0NvbW11dGF0aXZlIiwiU2tl │ │ │ d0NvbW11dGF0aXZlIiwiTWFjYXVsYXkyRG9jIn19LFRPe25ldyBEb2N1bWVudFRhZyBmcm9tIHsi │ │ │ RGVncmVlTWFwIiwiRGVncmVlTWFwIiwiTWFjYXVsYXkyRG9jIn19LFRPe25ldyBEb2N1bWVudFRh │ │ │ -ZyBmcm9tIHsiVmVyYm9zaXR5IiwiVmVyYm9zaXR5IiwiTWFjYXVsYXkyRG9jIn19LFRPe25ldyBE │ │ │ -b2N1bWVudFRhZyBmcm9tIHsiQ29kaW1lbnNpb25MaW1pdCIsIkNvZGltZW5zaW9uTGltaXQiLCJN │ │ │ -YWNhdWxheTJEb2MifX0sVE97bmV3IERvY3VtZW50VGFnIGZyb20geyJEZWdyZWVMaW1pdCIsIkRl │ │ │ -Z3JlZUxpbWl0IiwiTWFjYXVsYXkyRG9jIn19LFRPe25ldyBEb2N1bWVudFRhZyBmcm9tIHsiVmVy │ │ │ -aWZ5IiwiVmVyaWZ5IiwiTWFjYXVsYXkyRG9jIn19LFRPe25ldyBEb2N1bWVudFRhZyBmcm9tIHsi │ │ │ -QmFzaXNFbGVtZW50TGltaXQiLCJCYXNpc0VsZW1lbnRMaW1pdCIsIk1hY2F1bGF5MkRvYyJ9fSxU │ │ │ -T3tuZXcgRG9jdW1lbnRUYWcgZnJvbSB7IlBhaXJMaW1pdCIsIlBhaXJMaW1pdCIsIk1hY2F1bGF5 │ │ │ +ZyBmcm9tIHsiRGVncmVlTGltaXQiLCJEZWdyZWVMaW1pdCIsIk1hY2F1bGF5MkRvYyJ9fSxUT3tu │ │ │ +ZXcgRG9jdW1lbnRUYWcgZnJvbSB7IkJhc2lzRWxlbWVudExpbWl0IiwiQmFzaXNFbGVtZW50TGlt │ │ │ +aXQiLCJNYWNhdWxheTJEb2MifX0sVE97bmV3IERvY3VtZW50VGFnIGZyb20geyJQYWlyTGltaXQi │ │ │ +LCJQYWlyTGltaXQiLCJNYWNhdWxheTJEb2MifX0sVE97bmV3IERvY3VtZW50VGFnIGZyb20geyJW │ │ │ +ZXJib3NpdHkiLCJWZXJib3NpdHkiLCJNYWNhdWxheTJEb2MifX0sVE97bmV3IERvY3VtZW50VGFn │ │ │ +IGZyb20geyJDb2RpbWVuc2lvbkxpbWl0IiwiQ29kaW1lbnNpb25MaW1pdCIsIk1hY2F1bGF5MkRv │ │ │ +YyJ9fSxUT3tuZXcgRG9jdW1lbnRUYWcgZnJvbSB7IlZlcmlmeSIsIlZlcmlmeSIsIk1hY2F1bGF5 │ │ │ MkRvYyJ9fSxUT3tuZXcgRG9jdW1lbnRUYWcgZnJvbSB7IkNvZWZmaWNpZW50UmluZyIsIkNvZWZm │ │ │ aWNpZW50UmluZyIsIk1hY2F1bGF5MkRvYyJ9fSxUT3tuZXcgRG9jdW1lbnRUYWcgZnJvbSB7IkZv │ │ │ bGxvd0xpbmtzIiwiRm9sbG93TGlua3MiLCJNYWNhdWxheTJEb2MifX0sVE97bmV3IERvY3VtZW50 │ │ │ VGFnIGZyb20geyJFeGNsdWRlIiwiRXhjbHVkZSIsIk1hY2F1bGF5MkRvYyJ9fSxUT3tuZXcgRG9j │ │ │ dW1lbnRUYWcgZnJvbSB7Ikluc3RhbGxQcmVmaXgiLCJJbnN0YWxsUHJlZml4IiwiTWFjYXVsYXky │ │ │ RG9jIn19LFRPe25ldyBEb2N1bWVudFRhZyBmcm9tIHsiU3l6eWd5TWF0cml4IiwiU3l6eWd5TWF0 │ │ │ cml4IiwiTWFjYXVsYXkyRG9jIn19LFRPe25ldyBEb2N1bWVudFRhZyBmcm9tIHsiQ2hhbmdlTWF0 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Command.out │ │ │ @@ -5,12 +5,12 @@ │ │ │ i2 : f │ │ │ │ │ │ o2 = 1073741824 │ │ │ │ │ │ i3 : (c = Command "date";) │ │ │ │ │ │ i4 : c │ │ │ -Sun Feb 9 23:54:36 UTC 2025 │ │ │ +Sat Jul 19 03:40:32 UTC 2025 │ │ │ │ │ │ o4 = 0 │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Database.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 9579076464446459296 │ │ │ │ │ │ i1 : filename = temporaryFileName () | ".dbm" │ │ │ │ │ │ -o1 = /tmp/M2-11758-0/0.dbm │ │ │ +o1 = /tmp/M2-13205-0/0.dbm │ │ │ │ │ │ i2 : x = openDatabaseOut filename │ │ │ │ │ │ -o2 = /tmp/M2-11758-0/0.dbm │ │ │ +o2 = /tmp/M2-13205-0/0.dbm │ │ │ │ │ │ o2 : Database │ │ │ │ │ │ i3 : x#"first" = "hi there" │ │ │ │ │ │ o3 = hi there │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Fast__Nonminimal.out │ │ │ @@ -9,25 +9,25 @@ │ │ │ i2 : S = ring I │ │ │ │ │ │ o2 = S │ │ │ │ │ │ o2 : PolynomialRing │ │ │ │ │ │ i3 : elapsedTime C = res(I, FastNonminimal => true) │ │ │ - -- 1.80778s elapsed │ │ │ + -- 1.86095s elapsed │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 576 135 14 │ │ │ o3 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- 0 │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 11 │ │ │ │ │ │ o3 : ChainComplex │ │ │ │ │ │ i4 : elapsedTime C1 = res ideal(I_*) │ │ │ - -- .973592s elapsed │ │ │ + -- .845975s elapsed │ │ │ │ │ │ 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ o4 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- 0 │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 11 │ │ │ │ │ │ o4 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___File_sp_lt_lt_sp__Thing.out │ │ │ @@ -12,19 +12,19 @@ │ │ │ │ │ │ o2 = stdio │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : fn = temporaryFileName() │ │ │ │ │ │ -o3 = /tmp/M2-11872-0/0 │ │ │ +o3 = /tmp/M2-13439-0/0 │ │ │ │ │ │ i4 : fn << "hi there" << endl << close │ │ │ │ │ │ -o4 = /tmp/M2-11872-0/0 │ │ │ +o4 = /tmp/M2-13439-0/0 │ │ │ │ │ │ o4 : File │ │ │ │ │ │ i5 : get fn │ │ │ │ │ │ o5 = hi there │ │ │ │ │ │ @@ -49,27 +49,27 @@ │ │ │ x + 10x + 45x + 120x + 210x + 252x + 210x + 120x + 45x + 10x + 1 │ │ │ o8 = stdio │ │ │ │ │ │ o8 : File │ │ │ │ │ │ i9 : fn << f << close │ │ │ │ │ │ -o9 = /tmp/M2-11872-0/0 │ │ │ +o9 = /tmp/M2-13439-0/0 │ │ │ │ │ │ o9 : File │ │ │ │ │ │ i10 : get fn │ │ │ │ │ │ o10 = 10 9 8 7 6 5 4 3 2 │ │ │ x + 10x + 45x + 120x + 210x + 252x + 210x + 120x + 45x + 10x │ │ │ + 1 │ │ │ │ │ │ i11 : fn << toExternalString f << close │ │ │ │ │ │ -o11 = /tmp/M2-11872-0/0 │ │ │ +o11 = /tmp/M2-13439-0/0 │ │ │ │ │ │ o11 : File │ │ │ │ │ │ i12 : get fn │ │ │ │ │ │ o12 = x^10+10*x^9+45*x^8+120*x^7+210*x^6+252*x^5+210*x^4+120*x^3+45*x^2+10*x+ │ │ │ 1 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__Cstats.out │ │ │ @@ -1,19 +1,19 @@ │ │ │ -- -*- M2-comint -*- hash: 1731899428494721487 │ │ │ │ │ │ i1 : s = GCstats() │ │ │ │ │ │ -o1 = HashTable{"bytesAlloc" => 15334137450 } │ │ │ +o1 = HashTable{"bytesAlloc" => 15449393626 } │ │ │ "GC_free_space_divisor" => 3 │ │ │ "GC_LARGE_ALLOC_WARN_INTERVAL" => 1 │ │ │ "gcCpuTimeSecs" => 0 │ │ │ - "heapSize" => 194183168 │ │ │ - "numGCs" => 836 │ │ │ - "numGCThreads" => 6 │ │ │ + "heapSize" => 226713600 │ │ │ + "numGCs" => 824 │ │ │ + "numGCThreads" => 16 │ │ │ │ │ │ o1 : HashTable │ │ │ │ │ │ i2 : s#"heapSize" │ │ │ │ │ │ -o2 = 194183168 │ │ │ +o2 = 226713600 │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Minimal__Generators.out │ │ │ @@ -40,26 +40,26 @@ │ │ │ o6 : PolynomialRing │ │ │ │ │ │ i7 : I = truncate(8, monomialCurveIdeal(R,{1,4,5,9})); │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ │ │ i8 : time gens gb I; │ │ │ - -- used 0.0628534s (cpu); 0.0628529s (thread); 0s (gc) │ │ │ + -- used 0.0217891s (cpu); 0.0217888s (thread); 0s (gc) │ │ │ │ │ │ 1 428 │ │ │ o8 : Matrix R <-- R │ │ │ │ │ │ i9 : time J1 = saturate(I); │ │ │ - -- used 0.605726s (cpu); 0.339625s (thread); 0s (gc) │ │ │ + -- used 0.842929s (cpu); 0.221206s (thread); 0s (gc) │ │ │ │ │ │ o9 : Ideal of R │ │ │ │ │ │ i10 : time J = saturate(I, MinimalGenerators => false); │ │ │ - -- used 0.000202009s (cpu); 0.000202159s (thread); 0s (gc) │ │ │ + -- used 0.000106109s (cpu); 0.00010645s (thread); 0s (gc) │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ │ │ i11 : numgens J │ │ │ │ │ │ o11 = 7 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___S__V__D_lp..._cm__Divide__Conquer_eq_gt..._rp.out │ │ │ @@ -3,13 +3,13 @@ │ │ │ i1 : M = random(RR^200, RR^200); │ │ │ │ │ │ 200 200 │ │ │ o1 : Matrix RR <-- RR │ │ │ 53 53 │ │ │ │ │ │ i2 : time SVD(M); │ │ │ - -- used 0.0510253s (cpu); 0.0510246s (thread); 0s (gc) │ │ │ + -- used 0.0263697s (cpu); 0.0263675s (thread); 0s (gc) │ │ │ │ │ │ i3 : time SVD(M, DivideConquer=>true); │ │ │ - -- used 0.0514493s (cpu); 0.0514556s (thread); 0s (gc) │ │ │ + -- used 0.0263246s (cpu); 0.026337s (thread); 0s (gc) │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_a_spfirst_sp__Macaulay2_spsession.out │ │ │ @@ -351,15 +351,15 @@ │ │ │ | b e h k n q | │ │ │ | c f i l o r | │ │ │ │ │ │ 3 │ │ │ o58 : R-module, quotient of R │ │ │ │ │ │ i59 : time C = resolution M │ │ │ - -- used 0.00187636s (cpu); 0.00186805s (thread); 0s (gc) │ │ │ + -- used 0.00145835s (cpu); 0.0014456s (thread); 0s (gc) │ │ │ │ │ │ 3 6 15 18 6 │ │ │ o59 = R <-- R <-- R <-- R <-- R <-- 0 │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ o59 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_at__End__Of__File_lp__File_rp.out │ │ │ @@ -14,10 +14,10 @@ │ │ │ │ │ │ i4 : peek read f │ │ │ │ │ │ o4 = "hi there" │ │ │ │ │ │ i5 : atEndOfFile f │ │ │ │ │ │ -o5 = false │ │ │ +o5 = true │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_benchmark.out │ │ │ @@ -1,9 +1,9 @@ │ │ │ -- -*- M2-comint -*- hash: 1330379359420 │ │ │ │ │ │ i1 : benchmark "sqrt 2p100000" │ │ │ │ │ │ -o1 = .0002909794917276939 │ │ │ +o1 = .0003412512839561764 │ │ │ │ │ │ o1 : RR (of precision 53) │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_betti_lp..._cm__Minimize_eq_gt..._rp.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i2 : S = ring I │ │ │ │ │ │ o2 = S │ │ │ │ │ │ o2 : PolynomialRing │ │ │ │ │ │ i3 : elapsedTime C = res(I, FastNonminimal => true) │ │ │ - -- 2.45141s elapsed │ │ │ + -- 2.12843s elapsed │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 576 135 14 │ │ │ o3 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- 0 │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 11 │ │ │ │ │ │ o3 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cancel__Task_lp__Task_rp.out │ │ │ @@ -2,15 +2,15 @@ │ │ │ │ │ │ i1 : n = 0 │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : t = schedule(() -> while true do n = n+1) │ │ │ │ │ │ -o2 = <> │ │ │ +o2 = <> │ │ │ │ │ │ o2 : Task │ │ │ │ │ │ i3 : sleep 1 │ │ │ │ │ │ o3 = 0 │ │ │ │ │ │ @@ -18,29 +18,29 @@ │ │ │ │ │ │ o4 = <> │ │ │ │ │ │ o4 : Task │ │ │ │ │ │ i5 : n │ │ │ │ │ │ -o5 = 709345 │ │ │ +o5 = 1093202 │ │ │ │ │ │ i6 : sleep 1 │ │ │ │ │ │ o6 = 0 │ │ │ │ │ │ i7 : t │ │ │ │ │ │ o7 = <> │ │ │ │ │ │ o7 : Task │ │ │ │ │ │ i8 : n │ │ │ │ │ │ -o8 = 1451545 │ │ │ +o8 = 2219186 │ │ │ │ │ │ i9 : isReady t │ │ │ │ │ │ o9 = false │ │ │ │ │ │ i10 : cancelTask t │ │ │ │ │ │ @@ -53,22 +53,22 @@ │ │ │ │ │ │ o12 = <> │ │ │ │ │ │ o12 : Task │ │ │ │ │ │ i13 : n │ │ │ │ │ │ -o13 = 1451960 │ │ │ +o13 = 2219384 │ │ │ │ │ │ i14 : sleep 1 │ │ │ │ │ │ o14 = 0 │ │ │ │ │ │ i15 : n │ │ │ │ │ │ -o15 = 1451960 │ │ │ +o15 = 2219384 │ │ │ │ │ │ i16 : isReady t │ │ │ │ │ │ o16 = false │ │ │ │ │ │ i17 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_change__Directory.out │ │ │ @@ -1,19 +1,19 @@ │ │ │ -- -*- M2-comint -*- hash: 8535510246140175278 │ │ │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10626-0/0 │ │ │ +o1 = /tmp/M2-10905-0/0 │ │ │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ -o2 = /tmp/M2-10626-0/0 │ │ │ +o2 = /tmp/M2-10905-0/0 │ │ │ │ │ │ i3 : changeDirectory dir │ │ │ │ │ │ -o3 = /tmp/M2-10626-0/0/ │ │ │ +o3 = /tmp/M2-10905-0/0/ │ │ │ │ │ │ i4 : currentDirectory() │ │ │ │ │ │ -o4 = /tmp/M2-10626-0/0/ │ │ │ +o4 = /tmp/M2-10905-0/0/ │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_communicating_spwith_spprograms.out │ │ │ @@ -1,27 +1,27 @@ │ │ │ -- -*- M2-comint -*- hash: 10986518019608335719 │ │ │ │ │ │ i1 : run "uname -a" │ │ │ -Linux sbuild 6.1.0-31-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.128-1 (2025-02-07) x86_64 GNU/Linux │ │ │ +Linux sbuild 6.12.35+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.35-1 (2025-07-03) x86_64 GNU/Linux │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : "!grep a" << " ba \n bc \n ad \n ef \n" << close │ │ │ ba │ │ │ ad │ │ │ │ │ │ o2 = !grep a │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : peek get "!uname -a" │ │ │ │ │ │ -o3 = "Linux sbuild 6.1.0-31-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.128-1 │ │ │ +o3 = "Linux sbuild 6.12.35+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian │ │ │ " │ │ │ - (2025-02-07) x86_64 GNU/Linux │ │ │ + 6.12.35-1 (2025-07-03) x86_64 GNU/Linux │ │ │ │ │ │ i4 : f = openInOut "!egrep '^in'" │ │ │ │ │ │ o4 = !egrep '^in' │ │ │ │ │ │ o4 : File │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_computing_sp__Groebner_spbases.out │ │ │ @@ -126,15 +126,15 @@ │ │ │ │ │ │ ZZ │ │ │ o23 : Ideal of ----[x..z, w] │ │ │ 1277 │ │ │ │ │ │ i24 : gb I │ │ │ │ │ │ - -- registering gb 5 at 0x7fe96c5bd700 │ │ │ + -- registering gb 5 at 0x7fdd33824700 │ │ │ │ │ │ -- [gb]{2}(2)mm{3}(1)m{4}(2)om{5}(1)onumber of (nonminimal) gb elements = 4 │ │ │ -- number of monomials = 8 │ │ │ -- #reduction steps = 2 │ │ │ -- #spairs done = 6 │ │ │ -- ncalls = 0 │ │ │ -- nloop = 0 │ │ │ @@ -177,15 +177,15 @@ │ │ │ │ │ │ i32 : f = random(R^1,R^{-3,-3,-5,-6}); │ │ │ │ │ │ 1 4 │ │ │ o32 : Matrix R <-- R │ │ │ │ │ │ i33 : time betti gb f │ │ │ - -- used 0.307492s (cpu); 0.307469s (thread); 0s (gc) │ │ │ + -- used 0.152258s (cpu); 0.151986s (thread); 0s (gc) │ │ │ │ │ │ 0 1 │ │ │ o33 = total: 1 53 │ │ │ 0: 1 . │ │ │ 1: . . │ │ │ 2: . 2 │ │ │ 3: . 1 │ │ │ @@ -208,15 +208,15 @@ │ │ │ │ │ │ 3 5 8 9 12 14 17 │ │ │ o35 = 1 - 2T - T + 2T + 2T - T - 2T + T │ │ │ │ │ │ o35 : ZZ[T] │ │ │ │ │ │ i36 : time betti gb f │ │ │ - -- used 0.00800087s (cpu); 0.00553291s (thread); 0s (gc) │ │ │ + -- used 0.00179524s (cpu); 0.00217529s (thread); 0s (gc) │ │ │ │ │ │ 0 1 │ │ │ o36 = total: 1 53 │ │ │ 0: 1 . │ │ │ 1: . . │ │ │ 2: . 2 │ │ │ 3: . 1 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_computing_spresolutions.out │ │ │ @@ -36,16 +36,16 @@ │ │ │ << res M << endl << endl; │ │ │ break; │ │ │ ) else ( │ │ │ << "-- computation interrupted" << endl; │ │ │ status M.cache.resolution; │ │ │ << "-- continuing the computation" << endl; │ │ │ )) │ │ │ - -- used 1.30377s (cpu); 0.973789s (thread); 0s (gc) │ │ │ - -- used 0.508987s (cpu); 0.396067s (thread); 0s (gc) │ │ │ + -- used 1.13974s (cpu); 0.98458s (thread); 0s (gc) │ │ │ + -- used 0.232854s (cpu); 0.148313s (thread); 0s (gc) │ │ │ -- computation started: │ │ │ -- computation interrupted │ │ │ -- continuing the computation │ │ │ -- computation complete │ │ │ 4 11 89 122 40 │ │ │ R <-- R <-- R <-- R <-- R <-- 0 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_copy__Directory_lp__String_cm__String_rp.out │ │ │ @@ -1,76 +1,76 @@ │ │ │ -- -*- M2-comint -*- hash: 11422793294564310273 │ │ │ │ │ │ i1 : src = temporaryFileName() | "/" │ │ │ │ │ │ -o1 = /tmp/M2-11326-0/0/ │ │ │ +o1 = /tmp/M2-12313-0/0/ │ │ │ │ │ │ i2 : dst = temporaryFileName() | "/" │ │ │ │ │ │ -o2 = /tmp/M2-11326-0/1/ │ │ │ +o2 = /tmp/M2-12313-0/1/ │ │ │ │ │ │ i3 : makeDirectory (src|"a/") │ │ │ │ │ │ -o3 = /tmp/M2-11326-0/0/a/ │ │ │ +o3 = /tmp/M2-12313-0/0/a/ │ │ │ │ │ │ i4 : makeDirectory (src|"b/") │ │ │ │ │ │ -o4 = /tmp/M2-11326-0/0/b/ │ │ │ +o4 = /tmp/M2-12313-0/0/b/ │ │ │ │ │ │ i5 : makeDirectory (src|"b/c/") │ │ │ │ │ │ -o5 = /tmp/M2-11326-0/0/b/c/ │ │ │ +o5 = /tmp/M2-12313-0/0/b/c/ │ │ │ │ │ │ i6 : src|"a/f" << "hi there" << close │ │ │ │ │ │ -o6 = /tmp/M2-11326-0/0/a/f │ │ │ +o6 = /tmp/M2-12313-0/0/a/f │ │ │ │ │ │ o6 : File │ │ │ │ │ │ i7 : src|"a/g" << "hi there" << close │ │ │ │ │ │ -o7 = /tmp/M2-11326-0/0/a/g │ │ │ +o7 = /tmp/M2-12313-0/0/a/g │ │ │ │ │ │ o7 : File │ │ │ │ │ │ i8 : src|"b/c/g" << "ho there" << close │ │ │ │ │ │ -o8 = /tmp/M2-11326-0/0/b/c/g │ │ │ +o8 = /tmp/M2-12313-0/0/b/c/g │ │ │ │ │ │ o8 : File │ │ │ │ │ │ i9 : stack findFiles src │ │ │ │ │ │ -o9 = /tmp/M2-11326-0/0/ │ │ │ - /tmp/M2-11326-0/0/b/ │ │ │ - /tmp/M2-11326-0/0/b/c/ │ │ │ - /tmp/M2-11326-0/0/b/c/g │ │ │ - /tmp/M2-11326-0/0/a/ │ │ │ - /tmp/M2-11326-0/0/a/g │ │ │ - /tmp/M2-11326-0/0/a/f │ │ │ +o9 = /tmp/M2-12313-0/0/ │ │ │ + /tmp/M2-12313-0/0/b/ │ │ │ + /tmp/M2-12313-0/0/b/c/ │ │ │ + /tmp/M2-12313-0/0/b/c/g │ │ │ + /tmp/M2-12313-0/0/a/ │ │ │ + /tmp/M2-12313-0/0/a/f │ │ │ + /tmp/M2-12313-0/0/a/g │ │ │ │ │ │ i10 : copyDirectory(src,dst,Verbose=>true) │ │ │ - -- copying: /tmp/M2-11326-0/0/b/c/g -> /tmp/M2-11326-0/1/b/c/g │ │ │ - -- copying: /tmp/M2-11326-0/0/a/g -> /tmp/M2-11326-0/1/a/g │ │ │ - -- copying: /tmp/M2-11326-0/0/a/f -> /tmp/M2-11326-0/1/a/f │ │ │ + -- copying: /tmp/M2-12313-0/0/b/c/g -> /tmp/M2-12313-0/1/b/c/g │ │ │ + -- copying: /tmp/M2-12313-0/0/a/f -> /tmp/M2-12313-0/1/a/f │ │ │ + -- copying: /tmp/M2-12313-0/0/a/g -> /tmp/M2-12313-0/1/a/g │ │ │ │ │ │ i11 : copyDirectory(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ - -- skipping: /tmp/M2-11326-0/0/b/c/g not newer than /tmp/M2-11326-0/1/b/c/g │ │ │ - -- skipping: /tmp/M2-11326-0/0/a/g not newer than /tmp/M2-11326-0/1/a/g │ │ │ - -- skipping: /tmp/M2-11326-0/0/a/f not newer than /tmp/M2-11326-0/1/a/f │ │ │ + -- skipping: /tmp/M2-12313-0/0/b/c/g not newer than /tmp/M2-12313-0/1/b/c/g │ │ │ + -- skipping: /tmp/M2-12313-0/0/a/f not newer than /tmp/M2-12313-0/1/a/f │ │ │ + -- skipping: /tmp/M2-12313-0/0/a/g not newer than /tmp/M2-12313-0/1/a/g │ │ │ │ │ │ i12 : stack findFiles dst │ │ │ │ │ │ -o12 = /tmp/M2-11326-0/1/ │ │ │ - /tmp/M2-11326-0/1/a/ │ │ │ - /tmp/M2-11326-0/1/a/f │ │ │ - /tmp/M2-11326-0/1/a/g │ │ │ - /tmp/M2-11326-0/1/b/ │ │ │ - /tmp/M2-11326-0/1/b/c/ │ │ │ - /tmp/M2-11326-0/1/b/c/g │ │ │ +o12 = /tmp/M2-12313-0/1/ │ │ │ + /tmp/M2-12313-0/1/b/ │ │ │ + /tmp/M2-12313-0/1/b/c/ │ │ │ + /tmp/M2-12313-0/1/b/c/g │ │ │ + /tmp/M2-12313-0/1/a/ │ │ │ + /tmp/M2-12313-0/1/a/f │ │ │ + /tmp/M2-12313-0/1/a/g │ │ │ │ │ │ i13 : get (dst|"b/c/g") │ │ │ │ │ │ o13 = ho there │ │ │ │ │ │ i14 : rm = d -> if isDirectory d then removeDirectory d else removeFile d │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_copy__File_lp__String_cm__String_rp.out │ │ │ @@ -1,41 +1,41 @@ │ │ │ -- -*- M2-comint -*- hash: 11539475420155775110 │ │ │ │ │ │ i1 : src = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11095-0/0 │ │ │ +o1 = /tmp/M2-11862-0/0 │ │ │ │ │ │ i2 : dst = temporaryFileName() │ │ │ │ │ │ -o2 = /tmp/M2-11095-0/1 │ │ │ +o2 = /tmp/M2-11862-0/1 │ │ │ │ │ │ i3 : src << "hi there" << close │ │ │ │ │ │ -o3 = /tmp/M2-11095-0/0 │ │ │ +o3 = /tmp/M2-11862-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : copyFile(src,dst,Verbose=>true) │ │ │ - -- copying: /tmp/M2-11095-0/0 -> /tmp/M2-11095-0/1 │ │ │ + -- copying: /tmp/M2-11862-0/0 -> /tmp/M2-11862-0/1 │ │ │ │ │ │ i5 : get dst │ │ │ │ │ │ o5 = hi there │ │ │ │ │ │ i6 : copyFile(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ - -- skipping: /tmp/M2-11095-0/0 not newer than /tmp/M2-11095-0/1 │ │ │ + -- skipping: /tmp/M2-11862-0/0 not newer than /tmp/M2-11862-0/1 │ │ │ │ │ │ i7 : src << "ho there" << close │ │ │ │ │ │ -o7 = /tmp/M2-11095-0/0 │ │ │ +o7 = /tmp/M2-11862-0/0 │ │ │ │ │ │ o7 : File │ │ │ │ │ │ i8 : copyFile(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ - -- skipping: /tmp/M2-11095-0/0 not newer than /tmp/M2-11095-0/1 │ │ │ + -- skipping: /tmp/M2-11862-0/0 not newer than /tmp/M2-11862-0/1 │ │ │ │ │ │ i9 : get dst │ │ │ │ │ │ o9 = hi there │ │ │ │ │ │ i10 : removeFile src │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cpu__Time.out │ │ │ @@ -1,23 +1,23 @@ │ │ │ -- -*- M2-comint -*- hash: 15508153783232232453 │ │ │ │ │ │ i1 : t1 = cpuTime() │ │ │ │ │ │ -o1 = 258.991604772 │ │ │ +o1 = 244.703091515 │ │ │ │ │ │ o1 : RR (of precision 53) │ │ │ │ │ │ i2 : for i from 0 to 1000000 do 223131321321*324234324324; │ │ │ │ │ │ i3 : t2 = cpuTime() │ │ │ │ │ │ -o3 = 261.1503754559999 │ │ │ +o3 = 245.69947021 │ │ │ │ │ │ o3 : RR (of precision 53) │ │ │ │ │ │ i4 : t2-t1 │ │ │ │ │ │ -o4 = 2.15877068399999 │ │ │ +o4 = .9963786950000042 │ │ │ │ │ │ o4 : RR (of precision 53) │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__Time.out │ │ │ @@ -1,24 +1,24 @@ │ │ │ -- -*- M2-comint -*- hash: 3660839476107967259 │ │ │ │ │ │ i1 : currentTime() │ │ │ │ │ │ -o1 = 1739145345 │ │ │ +o1 = 1752896489 │ │ │ │ │ │ i2 : currentTime() /( (365 + 97./400) * 24 * 60 * 60 ) │ │ │ │ │ │ -o2 = 55.11132206304336 │ │ │ +o2 = 55.54707846942887 │ │ │ │ │ │ o2 : RR (of precision 53) │ │ │ │ │ │ i3 : 12 * (oo - floor oo) │ │ │ │ │ │ -o3 = 1.335864756520323 │ │ │ +o3 = 6.564941633146418 │ │ │ │ │ │ o3 : RR (of precision 53) │ │ │ │ │ │ i4 : run "date" │ │ │ -Sun Feb 9 23:55:45 UTC 2025 │ │ │ +Sat Jul 19 03:41:29 UTC 2025 │ │ │ │ │ │ o4 = 0 │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elapsed__Time.out │ │ │ @@ -1,8 +1,8 @@ │ │ │ -- -*- M2-comint -*- hash: 1330565958025 │ │ │ │ │ │ i1 : elapsedTime sleep 1 │ │ │ - -- 1.00014s elapsed │ │ │ + -- 1.00013s elapsed │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elapsed__Timing.out │ │ │ @@ -1,14 +1,14 @@ │ │ │ -- -*- M2-comint -*- hash: 1731106803207298715 │ │ │ │ │ │ i1 : elapsedTiming sleep 1 │ │ │ │ │ │ o1 = 0 │ │ │ - -- 1.00014 seconds │ │ │ + -- 1.00009 seconds │ │ │ │ │ │ o1 : Time │ │ │ │ │ │ i2 : peek oo │ │ │ │ │ │ -o2 = Time{1.00014, 0} │ │ │ +o2 = Time{1.00009, 0} │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elimination_spof_spvariables.out │ │ │ @@ -6,15 +6,15 @@ │ │ │ │ │ │ 3 3 2 3 │ │ │ o2 = ideal (- s - s*t + x - 1, - t - 3t - t + y, - s*t + z) │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : time leadTerm gens gb I │ │ │ - -- used 0.254683s (cpu); 0.254684s (thread); 0s (gc) │ │ │ + -- used 0.117515s (cpu); 0.117267s (thread); 0s (gc) │ │ │ │ │ │ o3 = | x3y9 5148txy3 108729sxy2z2 sy4z 46644741sxy3z 143sy5 6sxy4 │ │ │ ------------------------------------------------------------------------ │ │ │ 563515116021sx2y3 4374txy2z3 612704350498473090tx2yz3 217458ty4z2 │ │ │ ------------------------------------------------------------------------ │ │ │ 267076255345488270sy3z4 5256861933965245618410txyz6 │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -85,15 +85,15 @@ │ │ │ │ │ │ 3 3 2 3 │ │ │ o7 = ideal (- s - s*t + x - 1, - t - 3t + y - t, - s*t + z) │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ │ │ i8 : time G = eliminate(I,{s,t}) │ │ │ - -- used 0.4515s (cpu); 0.275672s (thread); 0s (gc) │ │ │ + -- used 0.121517s (cpu); 0.121522s (thread); 0s (gc) │ │ │ │ │ │ 3 9 2 9 2 8 2 6 3 9 2 7 8 │ │ │ o8 = ideal(x y - 3x y - 6x y z - 3x y z + 3x*y - x y z + 12x*y z + │ │ │ ------------------------------------------------------------------------ │ │ │ 7 2 2 5 3 6 3 7 3 5 4 3 6 9 7 │ │ │ 7x*y z - 324x y z + 6x*y z - y z - 15x*y z + 3x*y z - y + 2x*y z │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -154,15 +154,15 @@ │ │ │ i10 : R1 = QQ[x,y,z,s,t, Degrees=>{3,3,4,1,1}]; │ │ │ │ │ │ i11 : I1 = substitute(I,R1); │ │ │ │ │ │ o11 : Ideal of R1 │ │ │ │ │ │ i12 : time G = eliminate(I1,{s,t}) │ │ │ - -- used 0.0600603s (cpu); 0.060069s (thread); 0s (gc) │ │ │ + -- used 0.0460749s (cpu); 0.0460784s (thread); 0s (gc) │ │ │ │ │ │ 3 9 2 6 3 3 6 9 2 8 5 4 2 7 │ │ │ o12 = ideal(x y - 3x y z + 3x*y z - z - 6x y z - 15x*y z + 21y z - │ │ │ ----------------------------------------------------------------------- │ │ │ 2 9 2 5 3 6 3 7 3 2 6 3 6 7 2 │ │ │ 3x y - 324x y z + 6x*y z - y z - 405x*y z - 3y z + 7x*y z - │ │ │ ----------------------------------------------------------------------- │ │ │ @@ -228,15 +228,15 @@ │ │ │ │ │ │ 3 3 2 3 │ │ │ o16 = map (A, B, {s + s*t + 1, t + 3t + t, s*t }) │ │ │ │ │ │ o16 : RingMap A <-- B │ │ │ │ │ │ i17 : time G = kernel F │ │ │ - -- used 0.404083s (cpu); 0.234457s (thread); 0s (gc) │ │ │ + -- used 0.320628s (cpu); 0.139295s (thread); 0s (gc) │ │ │ │ │ │ 3 9 2 9 2 8 2 6 3 9 2 7 8 │ │ │ o17 = ideal(x y - 3x y - 6x y z - 3x y z + 3x*y - x y z + 12x*y z + │ │ │ ----------------------------------------------------------------------- │ │ │ 7 2 2 5 3 6 3 7 3 5 4 3 6 9 7 │ │ │ 7x*y z - 324x y z + 6x*y z - y z - 15x*y z + 3x*y z - y + 2x*y z │ │ │ ----------------------------------------------------------------------- │ │ │ @@ -297,23 +297,23 @@ │ │ │ i19 : use ring I │ │ │ │ │ │ o19 = R │ │ │ │ │ │ o19 : PolynomialRing │ │ │ │ │ │ i20 : time f1 = resultant(I_0,I_2,s) │ │ │ - -- used 0.00172022s (cpu); 0.00171993s (thread); 0s (gc) │ │ │ + -- used 0.00135128s (cpu); 0.00134931s (thread); 0s (gc) │ │ │ │ │ │ 9 9 7 3 │ │ │ o20 = x*t - t - z*t - z │ │ │ │ │ │ o20 : R │ │ │ │ │ │ i21 : time f2 = resultant(I_1,f1,t) │ │ │ - -- used 0.0562473s (cpu); 0.0562272s (thread); 0s (gc) │ │ │ + -- used 0.033369s (cpu); 0.033381s (thread); 0s (gc) │ │ │ │ │ │ 3 9 2 9 2 8 2 6 3 9 2 7 8 7 2 │ │ │ o21 = - x y + 3x y + 6x y z + 3x y z - 3x*y + x y z - 12x*y z - 7x*y z + │ │ │ ----------------------------------------------------------------------- │ │ │ 2 5 3 6 3 7 3 5 4 3 6 9 7 8 │ │ │ 324x y z - 6x*y z + y z + 15x*y z - 3x*y z + y - 2x*y z + 6y z + │ │ │ ----------------------------------------------------------------------- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_end__Package.out │ │ │ @@ -59,15 +59,15 @@ │ │ │ Version => 0.0 │ │ │ package prefix => /usr/ │ │ │ PackageIsLoaded => true │ │ │ pkgname => Foo │ │ │ private dictionary => Foo#"private dictionary" │ │ │ processed documentation => MutableHashTable{} │ │ │ raw documentation => MutableHashTable{} │ │ │ - source directory => /tmp/M2-10387-0/88-rundir/ │ │ │ + source directory => /tmp/M2-10448-0/88-rundir/ │ │ │ source file => stdio │ │ │ test inputs => MutableList{} │ │ │ │ │ │ i7 : dictionaryPath │ │ │ │ │ │ o7 = {Foo.Dictionary, PackageCitations.Dictionary, Varieties.Dictionary, │ │ │ ------------------------------------------------------------------------ │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Exists.out │ │ │ @@ -1,20 +1,20 @@ │ │ │ -- -*- M2-comint -*- hash: 7475038936570224899 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10721-0/0 │ │ │ +o1 = /tmp/M2-11100-0/0 │ │ │ │ │ │ i2 : fileExists fn │ │ │ │ │ │ o2 = false │ │ │ │ │ │ i3 : fn << "hi there" << close │ │ │ │ │ │ -o3 = /tmp/M2-10721-0/0 │ │ │ +o3 = /tmp/M2-11100-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : fileExists fn │ │ │ │ │ │ o4 = true │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Length.out │ │ │ @@ -1,28 +1,28 @@ │ │ │ -- -*- M2-comint -*- hash: 1216695447195237994 │ │ │ │ │ │ i1 : f = temporaryFileName() << "hi there" │ │ │ │ │ │ -o1 = /tmp/M2-12302-0/0 │ │ │ +o1 = /tmp/M2-14347-0/0 │ │ │ │ │ │ o1 : File │ │ │ │ │ │ i2 : fileLength f │ │ │ │ │ │ o2 = 8 │ │ │ │ │ │ i3 : close f │ │ │ │ │ │ -o3 = /tmp/M2-12302-0/0 │ │ │ +o3 = /tmp/M2-14347-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : filename = toString f │ │ │ │ │ │ -o4 = /tmp/M2-12302-0/0 │ │ │ +o4 = /tmp/M2-14347-0/0 │ │ │ │ │ │ i5 : fileLength filename │ │ │ │ │ │ o5 = 8 │ │ │ │ │ │ i6 : get filename │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Mode_lp__File_rp.out │ │ │ @@ -1,25 +1,25 @@ │ │ │ -- -*- M2-comint -*- hash: 11202140621123993633 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11497-0/0 │ │ │ +o1 = /tmp/M2-12664-0/0 │ │ │ │ │ │ i2 : f = fn << "hi there" │ │ │ │ │ │ -o2 = /tmp/M2-11497-0/0 │ │ │ +o2 = /tmp/M2-12664-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : fileMode f │ │ │ │ │ │ o3 = 420 │ │ │ │ │ │ i4 : close f │ │ │ │ │ │ -o4 = /tmp/M2-11497-0/0 │ │ │ +o4 = /tmp/M2-12664-0/0 │ │ │ │ │ │ o4 : File │ │ │ │ │ │ i5 : removeFile fn │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Mode_lp__String_rp.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 4782570202197464532 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11114-0/0 │ │ │ +o1 = /tmp/M2-11901-0/0 │ │ │ │ │ │ i2 : fn << "hi there" << close │ │ │ │ │ │ -o2 = /tmp/M2-11114-0/0 │ │ │ +o2 = /tmp/M2-11901-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : fileMode fn │ │ │ │ │ │ o3 = 420 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Mode_lp__Z__Z_cm__File_rp.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 17473878267845575442 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10998-0/0 │ │ │ +o1 = /tmp/M2-11665-0/0 │ │ │ │ │ │ i2 : f = fn << "hi there" │ │ │ │ │ │ -o2 = /tmp/M2-10998-0/0 │ │ │ +o2 = /tmp/M2-11665-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : m = 7 + 7*8 + 7*64 │ │ │ │ │ │ o3 = 511 │ │ │ │ │ │ @@ -18,15 +18,15 @@ │ │ │ │ │ │ i5 : fileMode f │ │ │ │ │ │ o5 = 511 │ │ │ │ │ │ i6 : close f │ │ │ │ │ │ -o6 = /tmp/M2-10998-0/0 │ │ │ +o6 = /tmp/M2-11665-0/0 │ │ │ │ │ │ o6 : File │ │ │ │ │ │ i7 : fileMode fn │ │ │ │ │ │ o7 = 511 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Mode_lp__Z__Z_cm__String_rp.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 16772784390799334723 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-12132-0/0 │ │ │ +o1 = /tmp/M2-14017-0/0 │ │ │ │ │ │ i2 : fn << "hi there" << close │ │ │ │ │ │ -o2 = /tmp/M2-12132-0/0 │ │ │ +o2 = /tmp/M2-14017-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : m = fileMode fn │ │ │ │ │ │ o3 = 420 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Time.out │ │ │ @@ -1,7 +1,7 @@ │ │ │ -- -*- M2-comint -*- hash: 1331310711075 │ │ │ │ │ │ i1 : currentTime() - fileTime "." │ │ │ │ │ │ -o1 = 48 │ │ │ +o1 = 39 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_force__G__B_lp..._cm__Syzygy__Matrix_eq_gt..._rp.out │ │ │ @@ -29,15 +29,15 @@ │ │ │ {4} | 0 x2-3 y3-1 | │ │ │ │ │ │ 3 3 │ │ │ o6 : Matrix R <-- R │ │ │ │ │ │ i7 : syz f │ │ │ │ │ │ - -- registering gb 0 at 0x7f53c265d000 │ │ │ + -- registering gb 0 at 0x7f598969b000 │ │ │ │ │ │ -- [gb]{2}(1)m{3}(1)m{4}(1)m{5}(1)z{6}(1)z{7}(1)znumber of (nonminimal) gb elements = 3 │ │ │ -- number of monomials = 9 │ │ │ -- #reduction steps = 6 │ │ │ -- #spairs done = 6 │ │ │ -- ncalls = 0 │ │ │ -- nloop = 0 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_get.out │ │ │ @@ -10,11 +10,11 @@ │ │ │ │ │ │ o2 = hi there │ │ │ │ │ │ i3 : removeFile "test-file" │ │ │ │ │ │ i4 : get "!date" │ │ │ │ │ │ -o4 = Sun Feb 9 23:55:06 UTC 2025 │ │ │ +o4 = Sat Jul 19 03:40:58 UTC 2025 │ │ │ │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_instances_lp__Type_rp.out │ │ │ @@ -11,15 +11,15 @@ │ │ │ defaultPrecision => 53 │ │ │ engineDebugLevel => 0 │ │ │ errorDepth => 0 │ │ │ gbTrace => 0 │ │ │ interpreterDepth => 1 │ │ │ lineNumber => 2 │ │ │ loadDepth => 3 │ │ │ - maxAllowableThreads => 7 │ │ │ + maxAllowableThreads => 17 │ │ │ maxExponent => 1073741823 │ │ │ minExponent => -1073741824 │ │ │ numTBBThreads => 0 │ │ │ o1 => 2432902008176640000 │ │ │ oo => 2432902008176640000 │ │ │ printingAccuracy => -1 │ │ │ printingLeadLimit => 5 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_is__Canceled_lp__Task_rp.out │ │ │ @@ -2,15 +2,15 @@ │ │ │ │ │ │ i1 : n = 0 │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : t = schedule(() -> while true do n = n + 1) │ │ │ │ │ │ -o2 = <> │ │ │ +o2 = <> │ │ │ │ │ │ o2 : Task │ │ │ │ │ │ i3 : sleep 1 │ │ │ │ │ │ o3 = 0 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_is__Directory.out │ │ │ @@ -2,19 +2,19 @@ │ │ │ │ │ │ i1 : isDirectory "." │ │ │ │ │ │ o1 = true │ │ │ │ │ │ i2 : fn = temporaryFileName() │ │ │ │ │ │ -o2 = /tmp/M2-10543-0/0 │ │ │ +o2 = /tmp/M2-10742-0/0 │ │ │ │ │ │ i3 : fn << "hi there" << close │ │ │ │ │ │ -o3 = /tmp/M2-10543-0/0 │ │ │ +o3 = /tmp/M2-10742-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : isDirectory fn │ │ │ │ │ │ o4 = false │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_is__Pseudoprime_lp__Z__Z_rp.out │ │ │ @@ -75,15 +75,15 @@ │ │ │ o17 = false │ │ │ │ │ │ i18 : isPrime(m*m*m1*m1*m2^6) │ │ │ │ │ │ o18 = false │ │ │ │ │ │ i19 : elapsedTime facs = factor(m*m1) │ │ │ - -- 4.34633s elapsed │ │ │ + -- 4.34639s elapsed │ │ │ │ │ │ o19 = 1000000000000000000000000000057*1000000000000000000010000000083 │ │ │ │ │ │ o19 : Expression of class Product │ │ │ │ │ │ i20 : facs = facs//toList/toList │ │ │ │ │ │ @@ -97,17 +97,17 @@ │ │ │ │ │ │ i22 : m3 = nextPrime (m^3) │ │ │ │ │ │ o22 = 10000000000000000000000000001710000000000000000000000000097470000000000 │ │ │ 00000000000000185613 │ │ │ │ │ │ i23 : elapsedTime isPrime m3 │ │ │ - -- .0563776s elapsed │ │ │ + -- .0467009s elapsed │ │ │ │ │ │ o23 = true │ │ │ │ │ │ i24 : elapsedTime isPseudoprime m3 │ │ │ - -- .000134241s elapsed │ │ │ + -- .000125735s elapsed │ │ │ │ │ │ o24 = true │ │ │ │ │ │ i25 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_is__Regular__File.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 4782205245758053629 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-12340-0/0 │ │ │ +o1 = /tmp/M2-14425-0/0 │ │ │ │ │ │ i2 : fn << "hi there" << close │ │ │ │ │ │ -o2 = /tmp/M2-12340-0/0 │ │ │ +o2 = /tmp/M2-14425-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : isRegularFile fn │ │ │ │ │ │ o3 = true │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_make__Directory_lp__String_rp.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 5113372159204571746 │ │ │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10866-0/0 │ │ │ +o1 = /tmp/M2-11393-0/0 │ │ │ │ │ │ i2 : makeDirectory (dir|"/a/b/c") │ │ │ │ │ │ -o2 = /tmp/M2-10866-0/0/a/b/c │ │ │ +o2 = /tmp/M2-11393-0/0/a/b/c │ │ │ │ │ │ i3 : removeDirectory (dir|"/a/b/c") │ │ │ │ │ │ i4 : removeDirectory (dir|"/a/b") │ │ │ │ │ │ i5 : removeDirectory (dir|"/a") │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max__Allowable__Threads.out │ │ │ @@ -1,7 +1,7 @@ │ │ │ -- -*- M2-comint -*- hash: 1331887830690 │ │ │ │ │ │ i1 : maxAllowableThreads │ │ │ │ │ │ -o1 = 7 │ │ │ +o1 = 17 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_memoize.out │ │ │ @@ -3,31 +3,31 @@ │ │ │ i1 : fib = n -> if n <= 1 then 1 else fib(n-1) + fib(n-2) │ │ │ │ │ │ o1 = fib │ │ │ │ │ │ o1 : FunctionClosure │ │ │ │ │ │ i2 : time fib 28 │ │ │ - -- used 1.31977s (cpu); 0.95198s (thread); 0s (gc) │ │ │ + -- used 0.894368s (cpu); 0.618538s (thread); 0s (gc) │ │ │ │ │ │ o2 = 514229 │ │ │ │ │ │ i3 : fib = memoize fib │ │ │ │ │ │ o3 = fib │ │ │ │ │ │ o3 : FunctionClosure │ │ │ │ │ │ i4 : time fib 28 │ │ │ - -- used 6.6595e-05s (cpu); 6.6164e-05s (thread); 0s (gc) │ │ │ + -- used 4.8801e-05s (cpu); 4.8141e-05s (thread); 0s (gc) │ │ │ │ │ │ o4 = 514229 │ │ │ │ │ │ i5 : time fib 28 │ │ │ - -- used 4.138e-06s (cpu); 3.807e-06s (thread); 0s (gc) │ │ │ + -- used 2.916e-06s (cpu); 2.365e-06s (thread); 0s (gc) │ │ │ │ │ │ o5 = 514229 │ │ │ │ │ │ i6 : fib = memoize( n -> fib(n-1) + fib(n-2) ) │ │ │ │ │ │ o6 = fib │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_methods.out │ │ │ @@ -18,20 +18,20 @@ │ │ │ {13 => (poincare, BettiTally) } │ │ │ {14 => (hilbertPolynomial, ZZ, BettiTally) } │ │ │ {15 => (degree, BettiTally) } │ │ │ {16 => (hilbertSeries, ZZ, BettiTally) } │ │ │ {17 => (^, Ring, BettiTally) } │ │ │ {18 => (regularity, BettiTally) } │ │ │ {19 => (mathML, BettiTally) } │ │ │ - {20 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)} │ │ │ - {21 => (truncate, BettiTally, ZZ, ZZ) } │ │ │ - {22 => (codim, BettiTally) } │ │ │ - {23 => (truncate, BettiTally, InfiniteNumber, ZZ) } │ │ │ - {24 => (truncate, BettiTally, ZZ, InfiniteNumber) } │ │ │ - {25 => (dual, BettiTally) } │ │ │ + {20 => (dual, BettiTally) } │ │ │ + {21 => (codim, BettiTally) } │ │ │ + {22 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)} │ │ │ + {23 => (truncate, BettiTally, ZZ, ZZ) } │ │ │ + {24 => (truncate, BettiTally, InfiniteNumber, ZZ) } │ │ │ + {25 => (truncate, BettiTally, ZZ, InfiniteNumber) } │ │ │ │ │ │ o1 : NumberedVerticalList │ │ │ │ │ │ i2 : methods resolution │ │ │ │ │ │ o2 = {0 => (resolution, Ideal) } │ │ │ {1 => (resolution, Module)} │ │ │ @@ -60,20 +60,20 @@ │ │ │ {1 => (++, Module, GradedModule)} │ │ │ {2 => (++, Module, Module) } │ │ │ │ │ │ o4 : NumberedVerticalList │ │ │ │ │ │ i5 : methods( Matrix, Matrix ) │ │ │ │ │ │ -o5 = {0 => (+, Matrix, Matrix) } │ │ │ - {1 => (-, Matrix, Matrix) } │ │ │ - {2 => (contract', Matrix, Matrix) } │ │ │ - {3 => (contract, Matrix, Matrix) } │ │ │ - {4 => (diff, Matrix, Matrix) } │ │ │ - {5 => (diff', Matrix, Matrix) } │ │ │ +o5 = {0 => (diff, Matrix, Matrix) } │ │ │ + {1 => (contract, Matrix, Matrix) } │ │ │ + {2 => (diff', Matrix, Matrix) } │ │ │ + {3 => (-, Matrix, Matrix) } │ │ │ + {4 => (contract', Matrix, Matrix) } │ │ │ + {5 => (+, Matrix, Matrix) } │ │ │ {6 => (markedGB, Matrix, Matrix) } │ │ │ {7 => (Hom, Matrix, Matrix) } │ │ │ {8 => (==, Matrix, Matrix) } │ │ │ {9 => (*, Matrix, Matrix) } │ │ │ {10 => (|, Matrix, Matrix) } │ │ │ {11 => (||, Matrix, Matrix) } │ │ │ {12 => (subquotient, Matrix, Matrix) } │ │ │ @@ -88,18 +88,18 @@ │ │ │ {21 => (quotient', Matrix, Matrix) } │ │ │ {22 => (quotient, Matrix, Matrix) } │ │ │ {23 => (remainder', Matrix, Matrix) } │ │ │ {24 => (remainder, Matrix, Matrix) } │ │ │ {25 => (%, Matrix, Matrix) } │ │ │ {26 => (pushout, Matrix, Matrix) } │ │ │ {27 => (solve, Matrix, Matrix) } │ │ │ - {28 => (intersection, Matrix, Matrix, Matrix, Matrix) } │ │ │ - {29 => (pullback, Matrix, Matrix) } │ │ │ - {30 => (tensor, Matrix, Matrix) } │ │ │ - {31 => (intersection, Matrix, Matrix) } │ │ │ + {28 => (pullback, Matrix, Matrix) } │ │ │ + {29 => (intersection, Matrix, Matrix, Matrix, Matrix) } │ │ │ + {30 => (intersection, Matrix, Matrix) } │ │ │ + {31 => (tensor, Matrix, Matrix) } │ │ │ {32 => (substitute, Matrix, Matrix) } │ │ │ {33 => (checkDegrees, Matrix, Matrix) } │ │ │ {34 => (isIsomorphic, Matrix, Matrix) } │ │ │ {35 => (coneFromVData, Matrix, Matrix) } │ │ │ {36 => (coneFromHData, Matrix, Matrix) } │ │ │ {37 => (fan, Matrix, Matrix, List) } │ │ │ {38 => (fan, Matrix, Matrix, Sequence) } │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_minimal__Betti.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i2 : S = ring I │ │ │ │ │ │ o2 = S │ │ │ │ │ │ o2 : PolynomialRing │ │ │ │ │ │ i3 : elapsedTime C = minimalBetti I │ │ │ - -- 2.37905s elapsed │ │ │ + -- 4.50648s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ o3 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ 0: 1 . . . . . . . . . . │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ @@ -26,44 +26,44 @@ │ │ │ o3 : BettiTally │ │ │ │ │ │ i4 : I = ideal I_*; │ │ │ │ │ │ o4 : Ideal of S │ │ │ │ │ │ i5 : elapsedTime C = minimalBetti(I, DegreeLimit=>2) │ │ │ - -- .748075s elapsed │ │ │ + -- 1.64364s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ o5 = total: 1 35 140 385 819 1080 735 196 │ │ │ 0: 1 . . . . . . . │ │ │ 1: . 35 140 189 84 . . . │ │ │ 2: . . . 196 735 1080 735 196 │ │ │ │ │ │ o5 : BettiTally │ │ │ │ │ │ i6 : I = ideal I_*; │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ │ │ i7 : elapsedTime C = minimalBetti(I, DegreeLimit=>1, LengthLimit=>5) │ │ │ - -- .0319761s elapsed │ │ │ + -- .0578398s elapsed │ │ │ │ │ │ 0 1 2 3 4 │ │ │ o7 = total: 1 35 140 189 84 │ │ │ 0: 1 . . . . │ │ │ 1: . 35 140 189 84 │ │ │ │ │ │ o7 : BettiTally │ │ │ │ │ │ i8 : I = ideal I_*; │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ │ │ i9 : elapsedTime C = minimalBetti(I, LengthLimit=>5) │ │ │ - -- 1.22946s elapsed │ │ │ + -- 1.38309s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ o9 = total: 1 35 140 385 819 1080 │ │ │ 0: 1 . . . . . │ │ │ 1: . 35 140 189 84 . │ │ │ 2: . . . 196 735 1080 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_mkdir.out │ │ │ @@ -1,22 +1,22 @@ │ │ │ -- -*- M2-comint -*- hash: 15555226809509933135 │ │ │ │ │ │ i1 : p = temporaryFileName() | "/" │ │ │ │ │ │ -o1 = /tmp/M2-10885-0/0/ │ │ │ +o1 = /tmp/M2-11432-0/0/ │ │ │ │ │ │ i2 : mkdir p │ │ │ │ │ │ i3 : isDirectory p │ │ │ │ │ │ o3 = true │ │ │ │ │ │ i4 : (fn = p | "foo") << "hi there" << close │ │ │ │ │ │ -o4 = /tmp/M2-10885-0/0/foo │ │ │ +o4 = /tmp/M2-11432-0/0/foo │ │ │ │ │ │ o4 : File │ │ │ │ │ │ i5 : get fn │ │ │ │ │ │ o5 = hi there │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_move__File_lp__String_cm__String_rp.out │ │ │ @@ -1,31 +1,31 @@ │ │ │ -- -*- M2-comint -*- hash: 4857944042471093218 │ │ │ │ │ │ i1 : src = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10759-0/0 │ │ │ +o1 = /tmp/M2-11178-0/0 │ │ │ │ │ │ i2 : dst = temporaryFileName() │ │ │ │ │ │ -o2 = /tmp/M2-10759-0/1 │ │ │ +o2 = /tmp/M2-11178-0/1 │ │ │ │ │ │ i3 : src << "hi there" << close │ │ │ │ │ │ -o3 = /tmp/M2-10759-0/0 │ │ │ +o3 = /tmp/M2-11178-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : moveFile(src,dst,Verbose=>true) │ │ │ ---moving: /tmp/M2-10759-0/0 -> /tmp/M2-10759-0/1 │ │ │ +--moving: /tmp/M2-11178-0/0 -> /tmp/M2-11178-0/1 │ │ │ │ │ │ i5 : get dst │ │ │ │ │ │ o5 = hi there │ │ │ │ │ │ i6 : bak = moveFile(dst,Verbose=>true) │ │ │ ---backup file created: /tmp/M2-10759-0/1.bak │ │ │ +--backup file created: /tmp/M2-11178-0/1.bak │ │ │ │ │ │ -o6 = /tmp/M2-10759-0/1.bak │ │ │ +o6 = /tmp/M2-11178-0/1.bak │ │ │ │ │ │ i7 : removeFile bak │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_nanosleep.out │ │ │ @@ -1,8 +1,8 @@ │ │ │ -- -*- M2-comint -*- hash: 1331114612441 │ │ │ │ │ │ i1 : elapsedTime nanosleep 500000000 │ │ │ - -- .500227s elapsed │ │ │ + -- .500097s elapsed │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallel_spprogramming_spwith_spthreads_spand_sptasks.out │ │ │ @@ -5,26 +5,26 @@ │ │ │ o1 = {1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800} │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : L = random toList (1..10000); │ │ │ │ │ │ i3 : elapsedTime apply(1..100, n -> sort L); │ │ │ - -- .60735s elapsed │ │ │ + -- .740176s elapsed │ │ │ │ │ │ i4 : elapsedTime parallelApply(1..100, n -> sort L); │ │ │ - -- .295654s elapsed │ │ │ + -- .163264s elapsed │ │ │ │ │ │ i5 : allowableThreads │ │ │ │ │ │ o5 = 5 │ │ │ │ │ │ i6 : allowableThreads = maxAllowableThreads │ │ │ │ │ │ -o6 = 7 │ │ │ +o6 = 17 │ │ │ │ │ │ i7 : R = ZZ/101[x,y,z]; │ │ │ │ │ │ i8 : I = (ideal vars R)^2 │ │ │ │ │ │ 2 2 2 │ │ │ o8 = ideal (x , x*y, x*z, y , y*z, z ) │ │ │ @@ -82,15 +82,15 @@ │ │ │ │ │ │ o17 : Task │ │ │ │ │ │ i18 : schedule t'; │ │ │ │ │ │ i19 : t' │ │ │ │ │ │ -o19 = <> │ │ │ +o19 = <> │ │ │ │ │ │ o19 : Task │ │ │ │ │ │ i20 : taskResult t' │ │ │ │ │ │ 1 6 8 3 │ │ │ o20 = R <-- R <-- R <-- R <-- 0 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallelism_spin_spengine_spcomputations.out │ │ │ @@ -67,15 +67,15 @@ │ │ │ i3 : S = ring I │ │ │ │ │ │ o3 = S │ │ │ │ │ │ o3 : PolynomialRing │ │ │ │ │ │ i4 : elapsedTime minimalBetti I │ │ │ - -- 3.11318s elapsed │ │ │ + -- 2.56513s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ o4 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ 0: 1 . . . . . . . . . . │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ @@ -84,15 +84,15 @@ │ │ │ o4 : BettiTally │ │ │ │ │ │ i5 : I = ideal I_*; │ │ │ │ │ │ o5 : Ideal of S │ │ │ │ │ │ i6 : elapsedTime minimalBetti(I, ParallelizeByDegree => true) │ │ │ - -- 2.33669s elapsed │ │ │ + -- 2.33464s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ o6 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ 0: 1 . . . . . . . . . . │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ @@ -105,15 +105,15 @@ │ │ │ o7 : Ideal of S │ │ │ │ │ │ i8 : numTBBThreads = 1 │ │ │ │ │ │ o8 = 1 │ │ │ │ │ │ i9 : elapsedTime minimalBetti(I) │ │ │ - -- 2.03997s elapsed │ │ │ + -- 2.11254s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ o9 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ 0: 1 . . . . . . . . . . │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ @@ -132,15 +132,15 @@ │ │ │ o11 = 0 │ │ │ │ │ │ i12 : I = ideal I_*; │ │ │ │ │ │ o12 : Ideal of S │ │ │ │ │ │ i13 : elapsedTime freeResolution(I, Strategy => Nonminimal) │ │ │ - -- 2.05922s elapsed │ │ │ + -- 4.14556s elapsed │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 576 135 14 │ │ │ o13 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ │ │ o13 : Complex │ │ │ @@ -150,15 +150,15 @@ │ │ │ o14 = 1 │ │ │ │ │ │ i15 : I = ideal I_*; │ │ │ │ │ │ o15 : Ideal of S │ │ │ │ │ │ i16 : elapsedTime freeResolution(I, Strategy => Nonminimal) │ │ │ - -- 1.99304s elapsed │ │ │ + -- 2.07918s elapsed │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 576 135 14 │ │ │ o16 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ │ │ o16 : Complex │ │ │ @@ -174,43 +174,43 @@ │ │ │ o18 : PolynomialRing │ │ │ │ │ │ i19 : I = ideal random(S^1, S^{4:-5}); │ │ │ │ │ │ o19 : Ideal of S │ │ │ │ │ │ i20 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ - -- 4.49471s elapsed │ │ │ + -- 5.22478s elapsed │ │ │ │ │ │ 1 108 │ │ │ o20 : Matrix S <-- S │ │ │ │ │ │ i21 : numTBBThreads = 1 │ │ │ │ │ │ o21 = 1 │ │ │ │ │ │ i22 : I = ideal I_*; │ │ │ │ │ │ o22 : Ideal of S │ │ │ │ │ │ i23 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ - -- 7.78738s elapsed │ │ │ + -- 6.40932s elapsed │ │ │ │ │ │ 1 108 │ │ │ o23 : Matrix S <-- S │ │ │ │ │ │ i24 : numTBBThreads = 10 │ │ │ │ │ │ o24 = 10 │ │ │ │ │ │ i25 : I = ideal I_*; │ │ │ │ │ │ o25 : Ideal of S │ │ │ │ │ │ i26 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ - -- 4.79613s elapsed │ │ │ + -- 3.59757s elapsed │ │ │ │ │ │ 1 108 │ │ │ o26 : Matrix S <-- S │ │ │ │ │ │ i27 : needsPackage "AssociativeAlgebras" │ │ │ │ │ │ o27 = AssociativeAlgebras │ │ │ @@ -233,15 +233,15 @@ │ │ │ o30 = ideal (5a + 2b*c + 3c*b, 3a*c + 5b + 2c*a, 2a*b + 3b*a + 5c ) │ │ │ │ │ │ ZZ │ │ │ o30 : Ideal of ---<|a, b, c|> │ │ │ 101 │ │ │ │ │ │ i31 : elapsedTime NCGB(I, 22); │ │ │ - -- 1.26729s elapsed │ │ │ + -- 1.10176s elapsed │ │ │ │ │ │ ZZ 1 ZZ 148 │ │ │ o31 : Matrix (---<|a, b, c|>) <-- (---<|a, b, c|>) │ │ │ 101 101 │ │ │ │ │ │ i32 : I = ideal I_* │ │ │ │ │ │ @@ -253,14 +253,14 @@ │ │ │ 101 │ │ │ │ │ │ i33 : numTBBThreads = 1 │ │ │ │ │ │ o33 = 1 │ │ │ │ │ │ i34 : elapsedTime NCGB(I, 22); │ │ │ - -- 1.1978s elapsed │ │ │ + -- 1.24741s elapsed │ │ │ │ │ │ ZZ 1 ZZ 148 │ │ │ o34 : Matrix (---<|a, b, c|>) <-- (---<|a, b, c|>) │ │ │ 101 101 │ │ │ │ │ │ i35 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_poincare.out │ │ │ @@ -146,65 +146,65 @@ │ │ │ o26 : ZZ[T] │ │ │ │ │ │ i27 : gbTrace = 3 │ │ │ │ │ │ o27 = 3 │ │ │ │ │ │ i28 : time poincare I │ │ │ - -- used 0.00336927s (cpu); 1.6521e-05s (thread); 0s (gc) │ │ │ + -- used 0.00192958s (cpu); 7.865e-06s (thread); 0s (gc) │ │ │ │ │ │ 3 6 9 │ │ │ o28 = 1 - 3T + 3T - T │ │ │ │ │ │ o28 : ZZ[T] │ │ │ │ │ │ i29 : time gens gb I; │ │ │ │ │ │ - -- registering gb 19 at 0x7fec4bc63e00 │ │ │ + -- registering gb 19 at 0x7f188450ee00 │ │ │ │ │ │ -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(2,6)mm{7}(1,4)m{8}(0,2)number of (nonminimal) gb elements = 11 │ │ │ -- number of monomials = 4186 │ │ │ -- #reduction steps = 38 │ │ │ -- #spairs done = 11 │ │ │ -- ncalls = 10 │ │ │ -- nloop = 29 │ │ │ -- nsaved = 0 │ │ │ - -- -- used 0.0206106s (cpu); 0.0205024s (thread); 0s (gc) │ │ │ + -- -- used 0.0100611s (cpu); 0.0099988s (thread); 0s (gc) │ │ │ │ │ │ 1 11 │ │ │ o29 : Matrix R <-- R │ │ │ │ │ │ i30 : R = QQ[a..d]; │ │ │ │ │ │ i31 : I = ideal random(R^1, R^{3:-3}); │ │ │ │ │ │ - -- registering gb 20 at 0x7fec4bc63c40 │ │ │ + -- registering gb 20 at 0x7f188450ec40 │ │ │ │ │ │ -- [gb]number of (nonminimal) gb elements = 0 │ │ │ -- number of monomials = 0 │ │ │ -- #reduction steps = 0 │ │ │ -- #spairs done = 0 │ │ │ -- ncalls = 0 │ │ │ -- nloop = 0 │ │ │ -- nsaved = 0 │ │ │ -- │ │ │ o31 : Ideal of R │ │ │ │ │ │ i32 : time p = poincare I │ │ │ │ │ │ - -- registering gb 21 at 0x7fec4bc638c0 │ │ │ + -- registering gb 21 at 0x7f188450e8c0 │ │ │ │ │ │ -- [gb]{3}(3)mmm{4}(2)mm{5}(3)mmm{6}(6)mmoooo{7}(4)mooo{8}(2)oonumber of (nonminimal) gb elements = 11 │ │ │ -- number of monomials = 267 │ │ │ -- #reduction steps = 236 │ │ │ -- #spairs done = 30 │ │ │ -- ncalls = 10 │ │ │ -- nloop = 20 │ │ │ -- nsaved = 0 │ │ │ - -- -- used 0.00799675s (cpu); 0.00881508s (thread); 0s (gc) │ │ │ + -- -- used 0.00388814s (cpu); 0.00363116s (thread); 0s (gc) │ │ │ │ │ │ 3 6 9 │ │ │ o32 = 1 - 3T + 3T - T │ │ │ │ │ │ o32 : ZZ[T] │ │ │ │ │ │ i33 : S = QQ[a..d, MonomialOrder => Eliminate 2] │ │ │ @@ -254,27 +254,27 @@ │ │ │ │ │ │ i36 : gbTrace = 3 │ │ │ │ │ │ o36 = 3 │ │ │ │ │ │ i37 : time gens gb J; │ │ │ │ │ │ - -- registering gb 22 at 0x7fec4bc63700 │ │ │ + -- registering gb 22 at 0x7f188450e700 │ │ │ │ │ │ -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(3,7)mmm{7}(3,8)mmm{8}(3,9)mmm{9}(3,9)m │ │ │ -- mm{10}(2,8)mm{11}(1,5)m{12}(1,3)m{13}(1,3)m{14}(1,3)m{15}(1,3)m{16}(1,3)m │ │ │ -- {17}(1,3)m{18}(1,3)m{19}(1,3)m{20}(1,3)m{21}(1,3)m{22}(1,3)m{23}(1,3)m{24}(1,3)m │ │ │ -- {25}(1,3)m{26}(1,3)m{27}(1,3)m{28}(0,2)number of (nonminimal) gb elements = 39 │ │ │ -- number of monomials = 1051 │ │ │ -- #reduction steps = 284 │ │ │ -- #spairs done = 53 │ │ │ -- ncalls = 46 │ │ │ -- nloop = 54 │ │ │ -- nsaved = 0 │ │ │ - -- -- used 0.0679993s (cpu); 0.0696023s (thread); 0s (gc) │ │ │ + -- -- used 0.0560149s (cpu); 0.0553724s (thread); 0s (gc) │ │ │ │ │ │ 1 39 │ │ │ o37 : Matrix S <-- S │ │ │ │ │ │ i38 : selectInSubring(1, gens gb J) │ │ │ │ │ │ o38 = | 243873059890414515367459726418219472801881021280016638460434780718278 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_process__I__D.out │ │ │ @@ -1,7 +1,7 @@ │ │ │ -- -*- M2-comint -*- hash: 1330513630563 │ │ │ │ │ │ i1 : processID() │ │ │ │ │ │ -o1 = 10387 │ │ │ +o1 = 10448 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_profile.out │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ │ │ 123 110 13 │ │ │ o2 = x + x + x + 1 │ │ │ │ │ │ o2 : R │ │ │ │ │ │ i3 : time factor f │ │ │ - -- used 0.00278858s (cpu); 0.0027806s (thread); 0s (gc) │ │ │ + -- used 0.00239599s (cpu); 0.00238081s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 2 4 3 2 4 3 2 4 3 2 10 8 6 4 2 10 8 6 4 2 10 8 6 4 2 10 8 6 4 2 10 8 6 4 2 10 8 6 4 2 10 8 6 4 2 10 8 6 4 2 10 8 6 4 2 10 8 6 4 2 │ │ │ o3 = (x + 1)(x - 15)(x + 8)(x + 4)(x + 2)(x + 1)(x - 4x + 11x - 4x + 1)(x - 6x - 2x - 6x + 1)(x + 9x - 4x + 9x + 1)(x - 5x - 8x - 4x - 13x + 1)(x - 9x + 15x - 2x + 10x + 1)(x - 10x - x - x + 9x + 1)(x - 11x - 8x - 4x + 11x + 1)(x - 13x - 4x - 8x - 5x + 1)(x + 13x - 2x + 15x + 5x + 1)(x + 11x - 4x - 8x - 11x + 1)(x + 10x - 2x + 15x - 9x + 1)(x + 9x - x - x - 10x + 1)(x + 5x + 15x - 2x + 13x + 1) │ │ │ │ │ │ o3 : Expression of class Product │ │ │ │ │ │ i4 : g = () -> factor f │ │ │ @@ -38,11 +38,11 @@ │ │ │ o6 = h │ │ │ │ │ │ o6 : FunctionClosure │ │ │ │ │ │ i7 : for i to 10 do (g();h();h()) │ │ │ │ │ │ i8 : profileSummary │ │ │ -g: 11 times, used .0266591 seconds │ │ │ -h: 22 times, used .0532723 seconds │ │ │ +g: 11 times, used .0234191 seconds │ │ │ +h: 22 times, used .0666404 seconds │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random__K__Rational__Point.out │ │ │ @@ -13,15 +13,15 @@ │ │ │ i5 : codim I, degree I │ │ │ │ │ │ o5 = (2, 10) │ │ │ │ │ │ o5 : Sequence │ │ │ │ │ │ i6 : time randomKRationalPoint(I) │ │ │ - -- used 0.186982s (cpu); 0.129358s (thread); 0s (gc) │ │ │ + -- used 0.224136s (cpu); 0.0635276s (thread); 0s (gc) │ │ │ │ │ │ o6 = ideal (x - 53x , x + 8x , x - 4x ) │ │ │ 2 3 1 3 0 3 │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ │ │ i7 : R=kk[x_0..x_5]; │ │ │ @@ -33,15 +33,15 @@ │ │ │ i9 : codim I, degree I │ │ │ │ │ │ o9 = (3, 10) │ │ │ │ │ │ o9 : Sequence │ │ │ │ │ │ i10 : time randomKRationalPoint(I) │ │ │ - -- used 0.403357s (cpu); 0.338406s (thread); 0s (gc) │ │ │ + -- used 0.390978s (cpu); 0.207144s (thread); 0s (gc) │ │ │ │ │ │ o10 = ideal (x - 27x , x - 16x , x - 9x , x + 44x , x - 52x ) │ │ │ 4 5 3 5 2 5 1 5 0 5 │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ │ │ i11 : p=10007,kk=ZZ/p,R=kk[x_0..x_2] │ │ │ @@ -58,12 +58,12 @@ │ │ │ │ │ │ i14 : I=ideal random(n,R); │ │ │ │ │ │ o14 : Ideal of R │ │ │ │ │ │ i15 : time (#select(apply(100,i->(degs=apply(decompose(I+ideal random(1,R)),c->degree c); │ │ │ #select(degs,d->d==1))),f->f>0)) │ │ │ - -- used 3.98035s (cpu); 2.47525s (thread); 0s (gc) │ │ │ + -- used 3.84275s (cpu); 2.01402s (thread); 0s (gc) │ │ │ │ │ │ o15 = 58 │ │ │ │ │ │ i16 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_read__Directory.out │ │ │ @@ -1,20 +1,20 @@ │ │ │ -- -*- M2-comint -*- hash: 20910736704070514 │ │ │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11649-0/0 │ │ │ +o1 = /tmp/M2-12976-0/0 │ │ │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ -o2 = /tmp/M2-11649-0/0 │ │ │ +o2 = /tmp/M2-12976-0/0 │ │ │ │ │ │ i3 : (fn = dir | "/" | "foo") << "hi there" << close │ │ │ │ │ │ -o3 = /tmp/M2-11649-0/0/foo │ │ │ +o3 = /tmp/M2-12976-0/0/foo │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : readDirectory dir │ │ │ │ │ │ o4 = {., .., foo} │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_reading_spfiles.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 13513555104200944796 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11232-0/0 │ │ │ +o1 = /tmp/M2-12139-0/0 │ │ │ │ │ │ i2 : fn << "z^6+3*x*z^4+6*y*z^4+3*x^2*z^2+12*x*y*z^2+12*y^2*z^2+x^3+6*x^2*y+12*x*y^2+8*y^3" << endl << close │ │ │ │ │ │ -o2 = /tmp/M2-11232-0/0 │ │ │ +o2 = /tmp/M2-12139-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : get fn │ │ │ │ │ │ o3 = z^6+3*x*z^4+6*y*z^4+3*x^2*z^2+12*x*y*z^2+12*y^2*z^2+x^3+6*x^2*y+12*x*y^2 │ │ │ +8*y^3 │ │ │ @@ -38,15 +38,15 @@ │ │ │ │ │ │ o6 : Expression of class Product │ │ │ │ │ │ i7 : fn << "sample = 2^100 │ │ │ print sample │ │ │ " << close │ │ │ │ │ │ -o7 = /tmp/M2-11232-0/0 │ │ │ +o7 = /tmp/M2-12139-0/0 │ │ │ │ │ │ o7 : File │ │ │ │ │ │ i8 : get fn │ │ │ │ │ │ o8 = sample = 2^100 │ │ │ print sample │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_readlink.out │ │ │ @@ -1,12 +1,12 @@ │ │ │ -- -*- M2-comint -*- hash: 4408639611478781130 │ │ │ │ │ │ i1 : p = temporaryFileName () │ │ │ │ │ │ -o1 = /tmp/M2-11961-0/0 │ │ │ +o1 = /tmp/M2-13608-0/0 │ │ │ │ │ │ i2 : symlinkFile ("foo", p) │ │ │ │ │ │ i3 : readlink p │ │ │ │ │ │ o3 = foo │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_realpath.out │ │ │ @@ -1,39 +1,39 @@ │ │ │ -- -*- M2-comint -*- hash: 324072347213224656 │ │ │ │ │ │ i1 : realpath "." │ │ │ │ │ │ -o1 = /tmp/M2-10387-0/83-rundir/ │ │ │ +o1 = /tmp/M2-10448-0/83-rundir/ │ │ │ │ │ │ i2 : p = temporaryFileName() │ │ │ │ │ │ -o2 = /tmp/M2-11980-0/0 │ │ │ +o2 = /tmp/M2-13647-0/0 │ │ │ │ │ │ i3 : q = temporaryFileName() │ │ │ │ │ │ -o3 = /tmp/M2-11980-0/1 │ │ │ +o3 = /tmp/M2-13647-0/1 │ │ │ │ │ │ i4 : symlinkFile(p,q) │ │ │ │ │ │ i5 : p << close │ │ │ │ │ │ -o5 = /tmp/M2-11980-0/0 │ │ │ +o5 = /tmp/M2-13647-0/0 │ │ │ │ │ │ o5 : File │ │ │ │ │ │ i6 : readlink q │ │ │ │ │ │ -o6 = /tmp/M2-11980-0/0 │ │ │ +o6 = /tmp/M2-13647-0/0 │ │ │ │ │ │ i7 : realpath q │ │ │ │ │ │ -o7 = /tmp/M2-11980-0/0 │ │ │ +o7 = /tmp/M2-13647-0/0 │ │ │ │ │ │ i8 : removeFile p │ │ │ │ │ │ i9 : removeFile q │ │ │ │ │ │ i10 : realpath "" │ │ │ │ │ │ -o10 = /tmp/M2-10387-0/83-rundir/ │ │ │ +o10 = /tmp/M2-10448-0/83-rundir/ │ │ │ │ │ │ i11 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_register__Finalizer.out │ │ │ @@ -1,15 +1,15 @@ │ │ │ -- -*- M2-comint -*- hash: 1729384374372662693 │ │ │ │ │ │ i1 : for i from 1 to 9 do (x := 0 .. 10000 ; registerFinalizer(x, "-- finalizing sequence #"|i|" --")) │ │ │ │ │ │ i2 : collectGarbage() │ │ │ --finalization: (1)[7]: -- finalizing sequence #8 -- │ │ │ ---finalization: (2)[4]: -- finalizing sequence #5 -- │ │ │ ---finalization: (3)[1]: -- finalizing sequence #2 -- │ │ │ ---finalization: (4)[2]: -- finalizing sequence #3 -- │ │ │ ---finalization: (5)[3]: -- finalizing sequence #4 -- │ │ │ ---finalization: (6)[5]: -- finalizing sequence #6 -- │ │ │ +--finalization: (2)[3]: -- finalizing sequence #4 -- │ │ │ +--finalization: (3)[0]: -- finalizing sequence #1 -- │ │ │ +--finalization: (4)[5]: -- finalizing sequence #6 -- │ │ │ +--finalization: (5)[4]: -- finalizing sequence #5 -- │ │ │ +--finalization: (6)[1]: -- finalizing sequence #2 -- │ │ │ --finalization: (7)[6]: -- finalizing sequence #7 -- │ │ │ ---finalization: (8)[0]: -- finalizing sequence #1 -- │ │ │ +--finalization: (8)[2]: -- finalizing sequence #3 -- │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_remove__Directory.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 8532980310097060089 │ │ │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10923-0/0 │ │ │ +o1 = /tmp/M2-11510-0/0 │ │ │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ -o2 = /tmp/M2-10923-0/0 │ │ │ +o2 = /tmp/M2-11510-0/0 │ │ │ │ │ │ i3 : readDirectory dir │ │ │ │ │ │ o3 = {., ..} │ │ │ │ │ │ o3 : List │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_root__Path.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 1731420232148149387 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10465-0/0 │ │ │ +o1 = /tmp/M2-10584-0/0 │ │ │ │ │ │ i2 : rootPath | fn │ │ │ │ │ │ -o2 = /tmp/M2-10465-0/0 │ │ │ +o2 = /tmp/M2-10584-0/0 │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_root__U__R__I.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 1731420231525572968 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11592-0/0 │ │ │ +o1 = /tmp/M2-12859-0/0 │ │ │ │ │ │ i2 : rootURI | fn │ │ │ │ │ │ -o2 = file:///tmp/M2-11592-0/0 │ │ │ +o2 = file:///tmp/M2-12859-0/0 │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_saving_sppolynomials_spand_spmatrices_spin_spfiles.out │ │ │ @@ -25,19 +25,19 @@ │ │ │ o4 = image | x2 x2-y2 xyz7 | │ │ │ │ │ │ 1 │ │ │ o4 : R-module, submodule of R │ │ │ │ │ │ i5 : f = temporaryFileName() │ │ │ │ │ │ -o5 = /tmp/M2-11478-0/0 │ │ │ +o5 = /tmp/M2-12625-0/0 │ │ │ │ │ │ i6 : f << toString (p,m,M) << close │ │ │ │ │ │ -o6 = /tmp/M2-11478-0/0 │ │ │ +o6 = /tmp/M2-12625-0/0 │ │ │ │ │ │ o6 : File │ │ │ │ │ │ i7 : get f │ │ │ │ │ │ o7 = (x^3-3*x^2*y+3*x*y^2-y^3-3*x^2+6*x*y-3*y^2+3*x-3*y-1,matrix {{x^2, │ │ │ x^2-y^2, x*y*z^7}},image matrix {{x^2, x^2-y^2, x*y*z^7}}) │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_schedule.out │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ │ │ i4 : taskResult t │ │ │ │ │ │ o4 = 8 │ │ │ │ │ │ i5 : u = schedule(f,4) │ │ │ │ │ │ -o5 = <> │ │ │ +o5 = <> │ │ │ │ │ │ o5 : Task │ │ │ │ │ │ i6 : taskResult u │ │ │ │ │ │ o6 = 16 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_serial__Number.out │ │ │ @@ -1,15 +1,15 @@ │ │ │ -- -*- M2-comint -*- hash: 5271760183816554957 │ │ │ │ │ │ i1 : serialNumber asdf │ │ │ │ │ │ -o1 = 1528251 │ │ │ +o1 = 1628251 │ │ │ │ │ │ i2 : serialNumber foo │ │ │ │ │ │ -o2 = 1528253 │ │ │ +o2 = 1628253 │ │ │ │ │ │ i3 : serialNumber ZZ │ │ │ │ │ │ o3 = 1000050 │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_solve.out │ │ │ @@ -191,18 +191,18 @@ │ │ │ o25 = 40 │ │ │ │ │ │ i26 : A = mutableMatrix(CC_53, N, N); fillMatrix A; │ │ │ │ │ │ i28 : B = mutableMatrix(CC_53, N, 2); fillMatrix B; │ │ │ │ │ │ i30 : time X = solve(A,B); │ │ │ - -- used 0.000236533s (cpu); 0.000229119s (thread); 0s (gc) │ │ │ + -- used 0.000140143s (cpu); 0.000128931s (thread); 0s (gc) │ │ │ │ │ │ i31 : time X = solve(A,B, MaximalRank=>true); │ │ │ - -- used 0.000168847s (cpu); 0.000168906s (thread); 0s (gc) │ │ │ + -- used 9.3294e-05s (cpu); 9.3475e-05s (thread); 0s (gc) │ │ │ │ │ │ i32 : norm(A*X-B) │ │ │ │ │ │ o32 = 5.111850690840453e-15 │ │ │ │ │ │ o32 : RR (of precision 53) │ │ │ │ │ │ @@ -211,18 +211,18 @@ │ │ │ o33 = 100 │ │ │ │ │ │ i34 : A = mutableMatrix(CC_100, N, N); fillMatrix A; │ │ │ │ │ │ i36 : B = mutableMatrix(CC_100, N, 2); fillMatrix B; │ │ │ │ │ │ i38 : time X = solve(A,B); │ │ │ - -- used 0.484036s (cpu); 0.306285s (thread); 0s (gc) │ │ │ + -- used 0.145216s (cpu); 0.145221s (thread); 0s (gc) │ │ │ │ │ │ i39 : time X = solve(A,B, MaximalRank=>true); │ │ │ - -- used 0.238738s (cpu); 0.23868s (thread); 0s (gc) │ │ │ + -- used 0.12495s (cpu); 0.12496s (thread); 0s (gc) │ │ │ │ │ │ i40 : norm(A*X-B) │ │ │ │ │ │ o40 = 1.491578274689709814082355885932e-28 │ │ │ │ │ │ o40 : RR (of precision 100) │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_symlink__Directory_lp__String_cm__String_rp.out │ │ │ @@ -1,60 +1,60 @@ │ │ │ -- -*- M2-comint -*- hash: 2989513528213557691 │ │ │ │ │ │ i1 : src = temporaryFileName() | "/" │ │ │ │ │ │ -o1 = /tmp/M2-11272-0/0/ │ │ │ +o1 = /tmp/M2-12219-0/0/ │ │ │ │ │ │ i2 : dst = temporaryFileName() | "/" │ │ │ │ │ │ -o2 = /tmp/M2-11272-0/1/ │ │ │ +o2 = /tmp/M2-12219-0/1/ │ │ │ │ │ │ i3 : makeDirectory (src|"a/") │ │ │ │ │ │ -o3 = /tmp/M2-11272-0/0/a/ │ │ │ +o3 = /tmp/M2-12219-0/0/a/ │ │ │ │ │ │ i4 : makeDirectory (src|"b/") │ │ │ │ │ │ -o4 = /tmp/M2-11272-0/0/b/ │ │ │ +o4 = /tmp/M2-12219-0/0/b/ │ │ │ │ │ │ i5 : makeDirectory (src|"b/c/") │ │ │ │ │ │ -o5 = /tmp/M2-11272-0/0/b/c/ │ │ │ +o5 = /tmp/M2-12219-0/0/b/c/ │ │ │ │ │ │ i6 : src|"a/f" << "hi there" << close │ │ │ │ │ │ -o6 = /tmp/M2-11272-0/0/a/f │ │ │ +o6 = /tmp/M2-12219-0/0/a/f │ │ │ │ │ │ o6 : File │ │ │ │ │ │ i7 : src|"a/g" << "hi there" << close │ │ │ │ │ │ -o7 = /tmp/M2-11272-0/0/a/g │ │ │ +o7 = /tmp/M2-12219-0/0/a/g │ │ │ │ │ │ o7 : File │ │ │ │ │ │ i8 : src|"b/c/g" << "ho there" << close │ │ │ │ │ │ -o8 = /tmp/M2-11272-0/0/b/c/g │ │ │ +o8 = /tmp/M2-12219-0/0/b/c/g │ │ │ │ │ │ o8 : File │ │ │ │ │ │ i9 : symlinkDirectory(src,dst,Verbose=>true) │ │ │ ---symlinking: ../../../0/b/c/g -> /tmp/M2-11272-0/1/b/c/g │ │ │ ---symlinking: ../../0/a/g -> /tmp/M2-11272-0/1/a/g │ │ │ ---symlinking: ../../0/a/f -> /tmp/M2-11272-0/1/a/f │ │ │ +--symlinking: ../../../0/b/c/g -> /tmp/M2-12219-0/1/b/c/g │ │ │ +--symlinking: ../../0/a/f -> /tmp/M2-12219-0/1/a/f │ │ │ +--symlinking: ../../0/a/g -> /tmp/M2-12219-0/1/a/g │ │ │ │ │ │ i10 : get (dst|"b/c/g") │ │ │ │ │ │ o10 = ho there │ │ │ │ │ │ i11 : symlinkDirectory(src,dst,Verbose=>true,Undo=>true) │ │ │ ---unsymlinking: ../../../0/b/c/g -> /tmp/M2-11272-0/1/b/c/g │ │ │ ---unsymlinking: ../../0/a/g -> /tmp/M2-11272-0/1/a/g │ │ │ ---unsymlinking: ../../0/a/f -> /tmp/M2-11272-0/1/a/f │ │ │ +--unsymlinking: ../../../0/b/c/g -> /tmp/M2-12219-0/1/b/c/g │ │ │ +--unsymlinking: ../../0/a/f -> /tmp/M2-12219-0/1/a/f │ │ │ +--unsymlinking: ../../0/a/g -> /tmp/M2-12219-0/1/a/g │ │ │ │ │ │ i12 : rm = d -> if isDirectory d then removeDirectory d else removeFile d │ │ │ │ │ │ o12 = rm │ │ │ │ │ │ o12 : FunctionClosure │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_symlink__File.out │ │ │ @@ -1,12 +1,12 @@ │ │ │ -- -*- M2-comint -*- hash: 9343844672940306595 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11345-0/0 │ │ │ +o1 = /tmp/M2-12352-0/0 │ │ │ │ │ │ i2 : symlinkFile("qwert", fn) │ │ │ │ │ │ i3 : fileExists fn │ │ │ │ │ │ o3 = false │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_temporary__File__Name.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 1731926531291302106 │ │ │ │ │ │ i1 : temporaryFileName () | ".tex" │ │ │ │ │ │ -o1 = /tmp/M2-12321-0/0.tex │ │ │ +o1 = /tmp/M2-14386-0/0.tex │ │ │ │ │ │ i2 : temporaryFileName () | ".html" │ │ │ │ │ │ -o2 = /tmp/M2-12321-0/1.html │ │ │ +o2 = /tmp/M2-14386-0/1.html │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_time.out │ │ │ @@ -1,8 +1,8 @@ │ │ │ -- -*- M2-comint -*- hash: 1332435500723 │ │ │ │ │ │ i1 : time 3^30 │ │ │ - -- used 1.3776e-05s (cpu); 5.69e-06s (thread); 0s (gc) │ │ │ + -- used 2.0499e-05s (cpu); 5.37e-06s (thread); 0s (gc) │ │ │ │ │ │ o1 = 205891132094649 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_timing.out │ │ │ @@ -1,14 +1,14 @@ │ │ │ -- -*- M2-comint -*- hash: 1730988300469098603 │ │ │ │ │ │ i1 : timing 3^30 │ │ │ │ │ │ o1 = 205891132094649 │ │ │ - -- .000014217 seconds │ │ │ + -- .000015719 seconds │ │ │ │ │ │ o1 : Time │ │ │ │ │ │ i2 : peek oo │ │ │ │ │ │ -o2 = Time{.000014217, 205891132094649} │ │ │ +o2 = Time{.000015719, 205891132094649} │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_version.out │ │ │ @@ -33,15 +33,15 @@ │ │ │ "memtailor version" => 1.0 │ │ │ "mpfi version" => 1.5.4 │ │ │ "mpfr version" => 4.2.1 │ │ │ "mpsolve version" => 3.2.1 │ │ │ "mysql version" => not present │ │ │ "normaliz version" => 3.10.4 │ │ │ "ntl version" => 11.5.1 │ │ │ - "operating system release" => 6.1.0-31-amd64 │ │ │ + "operating system release" => 6.12.35+deb13-cloud-amd64 │ │ │ "operating system" => Linux │ │ │ "packages" => Style FirstPackage Macaulay2Doc Parsing Classic Browse Benchmark Text SimpleDoc PackageTemplate Saturation PrimaryDecomposition FourierMotzkin Dmodules WeylAlgebras HolonomicSystems BernsteinSato Depth Elimination GenericInitialIdeal IntegralClosure HyperplaneArrangements LexIdeals Markov NoetherNormalization Points ReesAlgebra Regularity SchurRings SymmetricPolynomials SchurFunctors SimplicialComplexes LLLBases TangentCone ChainComplexExtras Varieties Schubert2 PushForward LocalRings PruneComplex BoijSoederberg BGG Bruns InvolutiveBases ConwayPolynomials EdgeIdeals FourTiTwo StatePolytope Polyhedra Truncations Polymake gfanInterface PieriMaps Normaliz Posets XML OpenMath SCSCP RationalPoints MapleInterface ConvexInterface SRdeformations NumericalAlgebraicGeometry BeginningMacaulay2 FormalGroupLaws Graphics WeylGroups HodgeIntegrals Cyclotomic Binomials Kronecker Nauty ToricVectorBundles ModuleDeformations PHCpack SimplicialDecomposability BooleanGB AdjointIdeal Parametrization Serialization NAGtypes NormalToricVarieties DGAlgebras Graphs GraphicalModels BIBasis KustinMiller Units NautyGraphs VersalDeformations CharacteristicClasses RandomIdeals RandomObjects RandomPlaneCurves RandomSpaceCurves RandomGenus14Curves RandomCanonicalCurves RandomCurves TensorComplexes MonomialAlgebras QthPower EliminationMatrices EllipticIntegrals Triplets CompleteIntersectionResolutions EagonResolution MCMApproximations MultiplierIdeals InvariantRing QuillenSuslin EnumerationCurves Book3264Examples Divisor EllipticCurves HighestWeights MinimalPrimes Bertini TorAlgebra Permanents BinomialEdgeIdeals TateOnProducts LatticePolytopes FiniteFittingIdeals HigherCIOperators LieTypes ConformalBlocks M0nbar AnalyzeSheafOnP1 MultiplierIdealsDim2 RunExternalM2 NumericalSchubertCalculus ToricTopology Cremona Resultants VectorFields SLPexpressions Miura ResidualIntersections Visualize EquivariantGB ExampleSystems RationalMaps FastMinors RandomPoints SwitchingFields SpectralSequences SectionRing OldPolyhedra OldToricVectorBundles K3Carpets ChainComplexOperations NumericalCertification PhylogeneticTrees MonodromySolver ReactionNetworks PackageCitations NumericSolutions GradedLieAlgebras InverseSystems Pullback EngineTests SVDComplexes RandomComplexes CohomCalg Topcom Triangulations ReflexivePolytopesDB AbstractToricVarieties Licenses TestIdeals FrobeniusThresholds Seminormalization AlgebraicSplines TriangularSets Chordal Tropical SymbolicPowers Complexes GroebnerWalk RandomMonomialIdeals Matroids NumericalImplicitization NonminimalComplexes CoincidentRootLoci RelativeCanonicalResolution RandomCurvesOverVerySmallFiniteFields StronglyStableIdeals SLnEquivariantMatrices CorrespondenceScrolls NCAlgebra SpaceCurves ExteriorIdeals ToricInvariants SegreClasses SemidefiniteProgramming SumsOfSquares MultiGradedRationalMap AssociativeAlgebras VirtualResolutions Quasidegrees DiffAlg DeterminantalRepresentations FGLM SpechtModule SchurComplexes SimplicialPosets SlackIdeals PositivityToricBundles SparseResultants DecomposableSparseSystems MixedMultiplicity PencilsOfQuadrics ThreadedGB AdjunctionForSurfaces VectorGraphics GKMVarieties MonomialIntegerPrograms NoetherianOperators Hadamard StatGraphs GraphicalModelsMLE EigenSolver MultiplicitySequence ResolutionsOfStanleyReisnerRings NumericalLinearAlgebra ResLengthThree MonomialOrbits MultiprojectiveVarieties SpecialFanoFourfolds RationalPoints2 SuperLinearAlgebra SubalgebraBases AInfinity LinearTruncations ThinSincereQuivers Python BettiCharacters Jets FunctionFieldDesingularization HomotopyLieAlgebra TSpreadIdeals RealRoots ExteriorModules K3Surfaces GroebnerStrata QuaternaryQuartics CotangentSchubert OnlineLookup MergeTeX Probability Isomorphism CodingTheory WhitneyStratifications JSON ForeignFunctions GeometricDecomposability PseudomonomialPrimaryDecomposition PolyominoIdeals MatchingFields CellularResolutions SagbiGbDetection A1BrouwerDegrees QuadraticIdealExamplesByRoos TerraciniLoci MatrixSchubert RInterface OIGroebnerBases PlaneCurveLinearSeries Valuations SchurVeronese VNumber TropicalToric MultigradedBGG AbstractSimplicialComplexes MultigradedImplicitization Msolve Permutations SCMAlgebras NumericalSemigroups │ │ │ "pointer size" => 8 │ │ │ "python version" => 3.13.2 │ │ │ "readline version" => 8.2 │ │ │ "scscp version" => not present │ │ │ "tbb version" => 2022.0 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Basis__Element__Limit.html │ │ │ @@ -34,15 +34,15 @@ │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │ │ │ │ -
    next | previous | forward | backward | up | index | toc
    │ │ │ +next | previous | forward | backward | up | index | toc
    │ │ │ │ │ │
    │ │ │

    BasisElementLimit -- an optional argument

    │ │ │
    │ │ │

    Description

    │ │ │ A symbol used as the name of an optional argument.
    │ │ │
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Codimension__Limit.html │ │ │ @@ -34,15 +34,15 @@ │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │ │ │ │ -
    next | previous | forward | backward | up | index | toc
    │ │ │ +next | previous | forward | backward | up | index | toc
    │ │ │
    │ │ │
    │ │ │

    CodimensionLimit -- an optional argument

    │ │ │
    │ │ │

    Description

    │ │ │ A symbol used as the name of an optional argument.
    │ │ │
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Coefficient__Ring.html │ │ │ @@ -34,15 +34,15 @@ │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │ │ │ │ -
    next | previous | forward | backward | up | index | toc
    │ │ │ +next | previous | forward | backward | up | index | toc
    │ │ │
    │ │ │
    │ │ │

    CoefficientRing -- an optional argument

    │ │ │
    │ │ │

    Description

    │ │ │ A symbol used as the name of an optional argument.
    │ │ │
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Command.html │ │ │ @@ -77,15 +77,15 @@ │ │ │ o2 = 1073741824 │ │ │ │ │ │ │ │ │
    i3 : (c = Command "date";)
    │ │ │ │ │ │ │ │ │
    i4 : c
    │ │ │ -Sun Feb  9 23:54:36 UTC 2025
    │ │ │ +Sat Jul 19 03:40:32 UTC 2025
    │ │ │  
    │ │ │  o4 = 0
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ in a file), then it gets executed with empty argument list. │ │ │ │ i1 : (f = Command ( () -> 2^30 );) │ │ │ │ i2 : f │ │ │ │ │ │ │ │ o2 = 1073741824 │ │ │ │ i3 : (c = Command "date";) │ │ │ │ i4 : c │ │ │ │ -Sun Feb 9 23:54:36 UTC 2025 │ │ │ │ +Sat Jul 19 03:40:32 UTC 2025 │ │ │ │ │ │ │ │ o4 = 0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_u_n -- run an external command │ │ │ │ * _A_f_t_e_r_E_v_a_l -- top level method applied after evaluation │ │ │ │ ********** MMeetthhooddss tthhaatt uussee aa ccoommmmaanndd:: ********** │ │ │ │ * ? Command (missing documentation) │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Database.html │ │ │ @@ -44,20 +44,20 @@ │ │ │

    Database -- the class of all database files

    │ │ │
    │ │ │

    Description

    │ │ │ A database file is just like a hash table, except both the keys and values have to be strings. In this example we create a database file, store a few entries, remove an entry with remove, close the file, and then remove the file. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : filename = temporaryFileName () | ".dbm"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11758-0/0.dbm
    │ │ │ +o1 = /tmp/M2-13205-0/0.dbm │ │ │
    i2 : x = openDatabaseOut filename
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11758-0/0.dbm
    │ │ │ +o2 = /tmp/M2-13205-0/0.dbm
    │ │ │  
    │ │ │  o2 : Database
    │ │ │
    i3 : x#"first" = "hi there"
    │ │ │  
    │ │ │  o3 = hi there
    │ │ │ ├── html2text {} │ │ │ │ @@ -6,18 +6,18 @@ │ │ │ │ ************ DDaattaabbaassee ---- tthhee ccllaassss ooff aallll ddaattaabbaassee ffiilleess ************ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ A database file is just like a hash table, except both the keys and values have │ │ │ │ to be strings. In this example we create a database file, store a few entries, │ │ │ │ remove an entry with _r_e_m_o_v_e, close the file, and then remove the file. │ │ │ │ i1 : filename = temporaryFileName () | ".dbm" │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11758-0/0.dbm │ │ │ │ +o1 = /tmp/M2-13205-0/0.dbm │ │ │ │ i2 : x = openDatabaseOut filename │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11758-0/0.dbm │ │ │ │ +o2 = /tmp/M2-13205-0/0.dbm │ │ │ │ │ │ │ │ o2 : Database │ │ │ │ i3 : x#"first" = "hi there" │ │ │ │ │ │ │ │ o3 = hi there │ │ │ │ i4 : x#"first" │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Degree__Group.html │ │ │ @@ -34,15 +34,15 @@ │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │ │ │ │ -
    next | previous | forward | backward | up | index | toc
    │ │ │ +next | previous | forward | backward | up | index | toc
    │ │ │ │ │ │
    │ │ │

    DegreeGroup -- an optional argument

    │ │ │
    │ │ │

    Description

    │ │ │ A symbol used as the name of an optional argument.
    │ │ │
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Degree__Limit.html │ │ │ @@ -34,15 +34,15 @@ │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │ │ │ │ -
    next | previous | forward | backward | up | index | toc
    │ │ │ +next | previous | forward | backward | up | index | toc
    │ │ │
    │ │ │
    │ │ │

    DegreeLimit -- an optional argument

    │ │ │
    │ │ │

    Description

    │ │ │ A symbol used as the name of an optional argument.
    │ │ │
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Degree__Map.html │ │ │ @@ -34,15 +34,15 @@ │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │ │ │ │ -
    next | previous | forward | backward | up | index | toc
    │ │ │ +next | previous | forward | backward | up | index | toc
    │ │ │
    │ │ │
    │ │ │

    DegreeMap -- an optional argument

    │ │ │
    │ │ │

    Description

    │ │ │ A symbol used as the name of an optional argument.
    │ │ │
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Fast__Nonminimal.html │ │ │ @@ -84,26 +84,26 @@ │ │ │ │ │ │ o2 = S │ │ │ │ │ │ o2 : PolynomialRing │ │ │
    i3 : elapsedTime C = res(I, FastNonminimal => true)
    │ │ │ - -- 1.80778s elapsed
    │ │ │ + -- 1.86095s elapsed
    │ │ │  
    │ │ │        1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o3 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S   <-- 0
    │ │ │                                                                                                           
    │ │ │       0      1       2        3        4         5         6         7         8        9        10      11
    │ │ │  
    │ │ │  o3 : ChainComplex
    │ │ │
    i4 : elapsedTime C1 = res ideal(I_*)
    │ │ │ - -- .973592s elapsed
    │ │ │ + -- .845975s elapsed
    │ │ │  
    │ │ │        1      35      140      385      819      1080      819      385      140      35      1
    │ │ │  o4 = S  <-- S   <-- S    <-- S    <-- S    <-- S     <-- S    <-- S    <-- S    <-- S   <-- S  <-- 0
    │ │ │                                                                                                      
    │ │ │       0      1       2        3        4        5         6        7        8        9       10     11
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -30,28 +30,28 @@ │ │ │ │ 0,5 1,5 2,5 3,5 4,5 0,6 1,6 2,6 3,6 4,6 5,6 │ │ │ │ i2 : S = ring I │ │ │ │ │ │ │ │ o2 = S │ │ │ │ │ │ │ │ o2 : PolynomialRing │ │ │ │ i3 : elapsedTime C = res(I, FastNonminimal => true) │ │ │ │ - -- 1.80778s elapsed │ │ │ │ + -- 1.86095s elapsed │ │ │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 │ │ │ │ 576 135 14 │ │ │ │ o3 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S │ │ │ │ <-- S <-- S <-- 0 │ │ │ │ │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 │ │ │ │ 9 10 11 │ │ │ │ │ │ │ │ o3 : ChainComplex │ │ │ │ i4 : elapsedTime C1 = res ideal(I_*) │ │ │ │ - -- .973592s elapsed │ │ │ │ + -- .845975s elapsed │ │ │ │ │ │ │ │ 1 35 140 385 819 1080 819 385 140 │ │ │ │ 35 1 │ │ │ │ o4 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S │ │ │ │ <-- S <-- S <-- 0 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___File_sp_lt_lt_sp__Thing.html │ │ │ @@ -97,20 +97,20 @@ │ │ │ o2 = stdio │ │ │ │ │ │ o2 : File │ │ │
    i3 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o3 = /tmp/M2-11872-0/0
    │ │ │ +o3 = /tmp/M2-13439-0/0 │ │ │
    i4 : fn << "hi there" << endl << close
    │ │ │  
    │ │ │ -o4 = /tmp/M2-11872-0/0
    │ │ │ +o4 = /tmp/M2-13439-0/0
    │ │ │  
    │ │ │  o4 : File
    │ │ │
    i5 : get fn
    │ │ │  
    │ │ │  o5 = hi there
    │ │ │ @@ -139,29 +139,29 @@ │ │ │ o8 = stdio │ │ │ │ │ │ o8 : File │ │ │
    i9 : fn << f << close
    │ │ │  
    │ │ │ -o9 = /tmp/M2-11872-0/0
    │ │ │ +o9 = /tmp/M2-13439-0/0
    │ │ │  
    │ │ │  o9 : File
    │ │ │
    i10 : get fn
    │ │ │  
    │ │ │  o10 =  10      9      8       7       6       5       4       3      2
    │ │ │        x   + 10x  + 45x  + 120x  + 210x  + 252x  + 210x  + 120x  + 45x  + 10x
    │ │ │        + 1
    │ │ │
    i11 : fn << toExternalString f << close
    │ │ │  
    │ │ │ -o11 = /tmp/M2-11872-0/0
    │ │ │ +o11 = /tmp/M2-13439-0/0
    │ │ │  
    │ │ │  o11 : File
    │ │ │
    i12 : get fn
    │ │ │  
    │ │ │  o12 = x^10+10*x^9+45*x^8+120*x^7+210*x^6+252*x^5+210*x^4+120*x^3+45*x^2+10*x+
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -38,18 +38,18 @@
    │ │ │ │  -- ho there --
    │ │ │ │  
    │ │ │ │  o2 = stdio
    │ │ │ │  
    │ │ │ │  o2 : File
    │ │ │ │  i3 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o3 = /tmp/M2-11872-0/0
    │ │ │ │ +o3 = /tmp/M2-13439-0/0
    │ │ │ │  i4 : fn << "hi there" << endl << close
    │ │ │ │  
    │ │ │ │ -o4 = /tmp/M2-11872-0/0
    │ │ │ │ +o4 = /tmp/M2-13439-0/0
    │ │ │ │  
    │ │ │ │  o4 : File
    │ │ │ │  i5 : get fn
    │ │ │ │  
    │ │ │ │  o5 = hi there
    │ │ │ │  i6 : R = QQ[x]
    │ │ │ │  
    │ │ │ │ @@ -68,25 +68,25 @@
    │ │ │ │   10      9      8       7       6       5       4       3      2
    │ │ │ │  x   + 10x  + 45x  + 120x  + 210x  + 252x  + 210x  + 120x  + 45x  + 10x + 1
    │ │ │ │  o8 = stdio
    │ │ │ │  
    │ │ │ │  o8 : File
    │ │ │ │  i9 : fn << f << close
    │ │ │ │  
    │ │ │ │ -o9 = /tmp/M2-11872-0/0
    │ │ │ │ +o9 = /tmp/M2-13439-0/0
    │ │ │ │  
    │ │ │ │  o9 : File
    │ │ │ │  i10 : get fn
    │ │ │ │  
    │ │ │ │  o10 =  10      9      8       7       6       5       4       3      2
    │ │ │ │        x   + 10x  + 45x  + 120x  + 210x  + 252x  + 210x  + 120x  + 45x  + 10x
    │ │ │ │        + 1
    │ │ │ │  i11 : fn << toExternalString f << close
    │ │ │ │  
    │ │ │ │ -o11 = /tmp/M2-11872-0/0
    │ │ │ │ +o11 = /tmp/M2-13439-0/0
    │ │ │ │  
    │ │ │ │  o11 : File
    │ │ │ │  i12 : get fn
    │ │ │ │  
    │ │ │ │  o12 = x^10+10*x^9+45*x^8+120*x^7+210*x^6+252*x^5+210*x^4+120*x^3+45*x^2+10*x+
    │ │ │ │        1
    │ │ │ │  i13 : value get fn
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__Cstats.html
    │ │ │ @@ -45,31 +45,31 @@
    │ │ │        
    │ │ │

    Description

    │ │ │

    Macaulay2 uses the Hans Boehm garbage collector to reclaim unused memory. The function GCstats provides information about its status, such as the total number of bytes allocated, the current heap size, the number of garbage collections done, the number of threads used in each collection, the total cpu time spent in garbage collection, etc.

    │ │ │ │ │ │ │ │ │ │ │ │
    i1 : s = GCstats()
    │ │ │  
    │ │ │ -o1 = HashTable{"bytesAlloc" => 15334137450        }
    │ │ │ +o1 = HashTable{"bytesAlloc" => 15449393626        }
    │ │ │                 "GC_free_space_divisor" => 3
    │ │ │                 "GC_LARGE_ALLOC_WARN_INTERVAL" => 1
    │ │ │                 "gcCpuTimeSecs" => 0
    │ │ │ -               "heapSize" => 194183168
    │ │ │ -               "numGCs" => 836
    │ │ │ -               "numGCThreads" => 6
    │ │ │ +               "heapSize" => 226713600
    │ │ │ +               "numGCs" => 824
    │ │ │ +               "numGCThreads" => 16
    │ │ │  
    │ │ │  o1 : HashTable
    │ │ │
    │ │ │

    The value returned is a hash table, from which individual bits of information can be easily extracted, as follows.

    │ │ │ │ │ │ │ │ │ │ │ │
    i2 : s#"heapSize"
    │ │ │  
    │ │ │ -o2 = 194183168
    │ │ │ +o2 = 226713600 │ │ │
    │ │ │

    Any entries whose keys are all upper case give the values of environment variables affecting the operation of the garbage collector that have been specified by the user.

    │ │ │

    For further information about the individual items in the table, we refer the user to the source code and documentation of the garbage collector.

    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -8,28 +8,28 @@ │ │ │ │ Macaulay2 uses the Hans Boehm _g_a_r_b_a_g_e_ _c_o_l_l_e_c_t_o_r to reclaim unused memory. The │ │ │ │ function GCstats provides information about its status, such as the total │ │ │ │ number of bytes allocated, the current heap size, the number of garbage │ │ │ │ collections done, the number of threads used in each collection, the total cpu │ │ │ │ time spent in garbage collection, etc. │ │ │ │ i1 : s = GCstats() │ │ │ │ │ │ │ │ -o1 = HashTable{"bytesAlloc" => 15334137450 } │ │ │ │ +o1 = HashTable{"bytesAlloc" => 15449393626 } │ │ │ │ "GC_free_space_divisor" => 3 │ │ │ │ "GC_LARGE_ALLOC_WARN_INTERVAL" => 1 │ │ │ │ "gcCpuTimeSecs" => 0 │ │ │ │ - "heapSize" => 194183168 │ │ │ │ - "numGCs" => 836 │ │ │ │ - "numGCThreads" => 6 │ │ │ │ + "heapSize" => 226713600 │ │ │ │ + "numGCs" => 824 │ │ │ │ + "numGCThreads" => 16 │ │ │ │ │ │ │ │ o1 : HashTable │ │ │ │ The value returned is a hash table, from which individual bits of information │ │ │ │ can be easily extracted, as follows. │ │ │ │ i2 : s#"heapSize" │ │ │ │ │ │ │ │ -o2 = 194183168 │ │ │ │ +o2 = 226713600 │ │ │ │ Any entries whose keys are all upper case give the values of environment │ │ │ │ variables affecting the operation of the garbage collector that have been │ │ │ │ specified by the user. │ │ │ │ For further information about the individual items in the table, we refer the │ │ │ │ user to the source code and documentation of the garbage collector. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _G_C_ _g_a_r_b_a_g_e_ _c_o_l_l_e_c_t_o_r │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Generic.html │ │ │ @@ -34,15 +34,15 @@ │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │ │ │ │ -
    next | previous | forward | backward | up | index | toc
    │ │ │ +next | previous | forward | backward | up | index | toc
    │ │ │
    │ │ │
    │ │ │

    Generic -- an optional argument

    │ │ │
    │ │ │

    Description

    │ │ │ A symbol used as the name of an optional argument.
    │ │ │
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Minimal__Generators.html │ │ │ @@ -106,28 +106,28 @@ │ │ │
    i7 : I = truncate(8, monomialCurveIdeal(R,{1,4,5,9}));
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │
    i8 : time gens gb I;
    │ │ │ - -- used 0.0628534s (cpu); 0.0628529s (thread); 0s (gc)
    │ │ │ + -- used 0.0217891s (cpu); 0.0217888s (thread); 0s (gc)
    │ │ │  
    │ │ │               1      428
    │ │ │  o8 : Matrix R  <-- R
    │ │ │
    i9 : time J1 = saturate(I);
    │ │ │ - -- used 0.605726s (cpu); 0.339625s (thread); 0s (gc)
    │ │ │ + -- used 0.842929s (cpu); 0.221206s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : Ideal of R
    │ │ │
    i10 : time J = saturate(I, MinimalGenerators => false);
    │ │ │ - -- used 0.000202009s (cpu); 0.000202159s (thread); 0s (gc)
    │ │ │ + -- used 0.000106109s (cpu); 0.00010645s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 : Ideal of R
    │ │ │
    i11 : numgens J
    │ │ │  
    │ │ │  o11 = 7
    │ │ │ ├── html2text {} │ │ │ │ @@ -44,24 +44,24 @@ │ │ │ │ o6 = R │ │ │ │ │ │ │ │ o6 : PolynomialRing │ │ │ │ i7 : I = truncate(8, monomialCurveIdeal(R,{1,4,5,9})); │ │ │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ i8 : time gens gb I; │ │ │ │ - -- used 0.0628534s (cpu); 0.0628529s (thread); 0s (gc) │ │ │ │ + -- used 0.0217891s (cpu); 0.0217888s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 428 │ │ │ │ o8 : Matrix R <-- R │ │ │ │ i9 : time J1 = saturate(I); │ │ │ │ - -- used 0.605726s (cpu); 0.339625s (thread); 0s (gc) │ │ │ │ + -- used 0.842929s (cpu); 0.221206s (thread); 0s (gc) │ │ │ │ │ │ │ │ o9 : Ideal of R │ │ │ │ i10 : time J = saturate(I, MinimalGenerators => false); │ │ │ │ - -- used 0.000202009s (cpu); 0.000202159s (thread); 0s (gc) │ │ │ │ + -- used 0.000106109s (cpu); 0.00010645s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ i11 : numgens J │ │ │ │ │ │ │ │ o11 = 7 │ │ │ │ i12 : numgens J1 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Pair__Limit.html │ │ │ @@ -34,15 +34,15 @@ │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │ │ │ │ -
    next | previous | forward | backward | up | index | toc
    │ │ │ +next | previous | forward | backward | up | index | toc
    │ │ │ │ │ │
    │ │ │

    PairLimit -- an optional argument

    │ │ │
    │ │ │

    Description

    │ │ │ A symbol used as the name of an optional argument.
    │ │ │
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___S__V__D_lp..._cm__Divide__Conquer_eq_gt..._rp.html │ │ │ @@ -61,19 +61,19 @@ │ │ │ │ │ │ 200 200 │ │ │ o1 : Matrix RR <-- RR │ │ │ 53 53 │ │ │
    i2 : time SVD(M);
    │ │ │ - -- used 0.0510253s (cpu); 0.0510246s (thread); 0s (gc)
    │ │ │ + -- used 0.0263697s (cpu); 0.0263675s (thread); 0s (gc) │ │ │
    i3 : time SVD(M, DivideConquer=>true);
    │ │ │ - -- used 0.0514493s (cpu); 0.0514556s (thread); 0s (gc)
    │ │ │ + -- used 0.0263246s (cpu); 0.026337s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │
    │ │ │

    Further information

    │ │ │
      │ │ │
    • │ │ │ ├── html2text {} │ │ │ │ @@ -12,17 +12,17 @@ │ │ │ │ For large matrices, this algorithm is often much faster. │ │ │ │ i1 : M = random(RR^200, RR^200); │ │ │ │ │ │ │ │ 200 200 │ │ │ │ o1 : Matrix RR <-- RR │ │ │ │ 53 53 │ │ │ │ i2 : time SVD(M); │ │ │ │ - -- used 0.0510253s (cpu); 0.0510246s (thread); 0s (gc) │ │ │ │ + -- used 0.0263697s (cpu); 0.0263675s (thread); 0s (gc) │ │ │ │ i3 : time SVD(M, DivideConquer=>true); │ │ │ │ - -- used 0.0514493s (cpu); 0.0514556s (thread); 0s (gc) │ │ │ │ + -- used 0.0263246s (cpu); 0.026337s (thread); 0s (gc) │ │ │ │ ********** FFuurrtthheerr iinnffoorrmmaattiioonn ********** │ │ │ │ * Default value: _t_r_u_e │ │ │ │ * Function: _S_V_D -- singular value decomposition of a matrix │ │ │ │ * Option key: _D_i_v_i_d_e_C_o_n_q_u_e_r -- an optional argument │ │ │ │ ********** FFuunnccttiioonnss wwiitthh ooppttiioonnaall aarrgguummeenntt nnaammeedd DDiivviiddeeCCoonnqquueerr:: ********** │ │ │ │ * _S_V_D_(_._._._,_D_i_v_i_d_e_C_o_n_q_u_e_r_=_>_._._._) -- Use the lapack divide and conquer SVD │ │ │ │ algorithm │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Strategy.html │ │ │ @@ -34,15 +34,15 @@ │ │ │
      │ │ │ │ │ │
      │ │ │
      │ │ │ │ │ │ │ │ │ -
      next | previous | forward | backward | up | index | toc
      │ │ │ +next | previous | forward | backward | up | index | toc
      │ │ │
    │ │ │
    │ │ │

    Strategy -- an optional argument

    │ │ │
    │ │ │

    Description

    │ │ │ A symbol used as the name of an optional argument.
    │ │ │
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Threads.html │ │ │ @@ -34,15 +34,15 @@ │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │ │ │ │ -
    next | previous | forward | backward | up | index | toc
    │ │ │ +next | previous | forward | backward | up | index | toc
    │ │ │
    │ │ │
    │ │ │

    Threads -- an optional argument

    │ │ │
    │ │ │

    Description

    │ │ │ A symbol used as the name of an optional argument.
    │ │ │
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Verbosity.html │ │ │ @@ -34,15 +34,15 @@ │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │ │ │ │ -
    next | previous | forward | backward | up | index | toc
    │ │ │ +next | previous | forward | backward | up | index | toc
    │ │ │
    │ │ │
    │ │ │

    Verbosity -- an optional argument

    │ │ │
    │ │ │

    Description

    │ │ │ A symbol used as the name of an optional argument.
    │ │ │
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Verify.html │ │ │ @@ -34,15 +34,15 @@ │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │ │ │ │ -
    next | previous | forward | backward | up | index | toc
    │ │ │ +next | previous | forward | backward | up | index | toc
    │ │ │
    │ │ │
    │ │ │

    Verify -- an optional argument

    │ │ │
    │ │ │

    Description

    │ │ │ A symbol used as the name of an optional argument.
    │ │ │
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_a_spfirst_sp__Macaulay2_spsession.html │ │ │ @@ -554,15 +554,15 @@ │ │ │ 3 │ │ │ o58 : R-module, quotient of R │ │ │ │ │ │ │ │ │ We may use resolution to produce a projective resolution of it, and time to report the time required. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i59 : time C = resolution M
    │ │ │ - -- used 0.00187636s (cpu); 0.00186805s (thread); 0s (gc)
    │ │ │ + -- used 0.00145835s (cpu); 0.0014456s (thread); 0s (gc)
    │ │ │  
    │ │ │         3      6      15      18      6
    │ │ │  o59 = R  <-- R  <-- R   <-- R   <-- R  <-- 0
    │ │ │                                              
    │ │ │        0      1      2       3       4      5
    │ │ │  
    │ │ │  o59 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -386,15 +386,15 @@ │ │ │ │ | c f i l o r | │ │ │ │ │ │ │ │ 3 │ │ │ │ o58 : R-module, quotient of R │ │ │ │ We may use _r_e_s_o_l_u_t_i_o_n to produce a projective resolution of it, and _t_i_m_e to │ │ │ │ report the time required. │ │ │ │ i59 : time C = resolution M │ │ │ │ - -- used 0.00187636s (cpu); 0.00186805s (thread); 0s (gc) │ │ │ │ + -- used 0.00145835s (cpu); 0.0014456s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 6 15 18 6 │ │ │ │ o59 = R <-- R <-- R <-- R <-- R <-- 0 │ │ │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ │ │ o59 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_at__End__Of__File_lp__File_rp.html │ │ │ @@ -89,15 +89,15 @@ │ │ │
    i4 : peek read f
    │ │ │  
    │ │ │  o4 = "hi there"
    │ │ │
    i5 : atEndOfFile f
    │ │ │  
    │ │ │ -o5 = false
    │ │ │ +o5 = true │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use this method:

    │ │ │
      │ │ │
    • │ │ │ ├── html2text {} │ │ │ │ @@ -23,10 +23,10 @@ │ │ │ │ │ │ │ │ o3 = false │ │ │ │ i4 : peek read f │ │ │ │ │ │ │ │ o4 = "hi there" │ │ │ │ i5 : atEndOfFile f │ │ │ │ │ │ │ │ -o5 = false │ │ │ │ +o5 = true │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _a_t_E_n_d_O_f_F_i_l_e_(_F_i_l_e_) -- test for end of file │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_benchmark.html │ │ │ @@ -67,15 +67,15 @@ │ │ │
    │ │ │
    │ │ │

    Description

    │ │ │ Produces an accurate timing for the code contained in the string s. The value returned is the number of seconds. │ │ │ │ │ │ │ │ │
    i1 : benchmark "sqrt 2p100000"
    │ │ │  
    │ │ │ -o1 = .0002909794917276939
    │ │ │ +o1 = .0003412512839561764
    │ │ │  
    │ │ │  o1 : RR (of precision 53)
    │ │ │
    │ │ │ The snippet of code provided will be run enough times to register meaningfully on the clock, and the garbage collector will be called beforehand.
    │ │ │
    │ │ │

    For the programmer

    │ │ │ ├── html2text {} │ │ │ │ @@ -13,14 +13,14 @@ │ │ │ │ o a _r_e_a_l_ _n_u_m_b_e_r, the number of seconds it takes to evaluate the code │ │ │ │ in s │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Produces an accurate timing for the code contained in the string s. The value │ │ │ │ returned is the number of seconds. │ │ │ │ i1 : benchmark "sqrt 2p100000" │ │ │ │ │ │ │ │ -o1 = .0002909794917276939 │ │ │ │ +o1 = .0003412512839561764 │ │ │ │ │ │ │ │ o1 : RR (of precision 53) │ │ │ │ The snippet of code provided will be run enough times to register meaningfully │ │ │ │ on the clock, and the garbage collector will be called beforehand. │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _b_e_n_c_h_m_a_r_k is a _f_u_n_c_t_i_o_n_ _c_l_o_s_u_r_e. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_betti_lp..._cm__Minimize_eq_gt..._rp.html │ │ │ @@ -83,15 +83,15 @@ │ │ │ │ │ │ o2 = S │ │ │ │ │ │ o2 : PolynomialRing │ │ │ │ │ │ │ │ │
    i3 : elapsedTime C = res(I, FastNonminimal => true)
    │ │ │ - -- 2.45141s elapsed
    │ │ │ + -- 2.12843s elapsed
    │ │ │  
    │ │ │        1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o3 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S   <-- 0
    │ │ │                                                                                                           
    │ │ │       0      1       2        3        4         5         6         7         8        9        10      11
    │ │ │  
    │ │ │  o3 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -27,15 +27,15 @@ │ │ │ │ 0,5 1,5 2,5 3,5 4,5 0,6 1,6 2,6 3,6 4,6 5,6 │ │ │ │ i2 : S = ring I │ │ │ │ │ │ │ │ o2 = S │ │ │ │ │ │ │ │ o2 : PolynomialRing │ │ │ │ i3 : elapsedTime C = res(I, FastNonminimal => true) │ │ │ │ - -- 2.45141s elapsed │ │ │ │ + -- 2.12843s elapsed │ │ │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 │ │ │ │ 576 135 14 │ │ │ │ o3 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S │ │ │ │ <-- S <-- S <-- 0 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cancel__Task_lp__Task_rp.html │ │ │ @@ -76,15 +76,15 @@ │ │ │
    i1 : n = 0
    │ │ │  
    │ │ │  o1 = 0
    │ │ │ │ │ │ │ │ │
    i2 : t = schedule(() -> while true do n = n+1)
    │ │ │  
    │ │ │ -o2 = <<task, running>>
    │ │ │ +o2 = <<task, created>>
    │ │ │  
    │ │ │  o2 : Task
    │ │ │ │ │ │ │ │ │
    i3 : sleep 1
    │ │ │  
    │ │ │  o3 = 0
    │ │ │ @@ -95,15 +95,15 @@ │ │ │ o4 = <<task, running>> │ │ │ │ │ │ o4 : Task │ │ │ │ │ │ │ │ │
    i5 : n
    │ │ │  
    │ │ │ -o5 = 709345
    │ │ │ +o5 = 1093202 │ │ │ │ │ │ │ │ │
    i6 : sleep 1
    │ │ │  
    │ │ │  o6 = 0
    │ │ │ │ │ │ │ │ │ @@ -112,15 +112,15 @@ │ │ │ o7 = <<task, running>> │ │ │ │ │ │ o7 : Task │ │ │ │ │ │ │ │ │
    i8 : n
    │ │ │  
    │ │ │ -o8 = 1451545
    │ │ │ +o8 = 2219186 │ │ │ │ │ │ │ │ │
    i9 : isReady t
    │ │ │  
    │ │ │  o9 = false
    │ │ │ │ │ │ │ │ │ @@ -138,25 +138,25 @@ │ │ │ o12 = <<task, canceled>> │ │ │ │ │ │ o12 : Task │ │ │ │ │ │ │ │ │
    i13 : n
    │ │ │  
    │ │ │ -o13 = 1451960
    │ │ │ +o13 = 2219384 │ │ │ │ │ │ │ │ │
    i14 : sleep 1
    │ │ │  
    │ │ │  o14 = 0
    │ │ │ │ │ │ │ │ │
    i15 : n
    │ │ │  
    │ │ │ -o15 = 1451960
    │ │ │ +o15 = 2219384 │ │ │ │ │ │ │ │ │
    i16 : isReady t
    │ │ │  
    │ │ │  o16 = false
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -16,39 +16,39 @@ │ │ │ │ stop. │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : n = 0 │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ i2 : t = schedule(() -> while true do n = n+1) │ │ │ │ │ │ │ │ -o2 = <> │ │ │ │ +o2 = <> │ │ │ │ │ │ │ │ o2 : Task │ │ │ │ i3 : sleep 1 │ │ │ │ │ │ │ │ o3 = 0 │ │ │ │ i4 : t │ │ │ │ │ │ │ │ o4 = <> │ │ │ │ │ │ │ │ o4 : Task │ │ │ │ i5 : n │ │ │ │ │ │ │ │ -o5 = 709345 │ │ │ │ +o5 = 1093202 │ │ │ │ i6 : sleep 1 │ │ │ │ │ │ │ │ o6 = 0 │ │ │ │ i7 : t │ │ │ │ │ │ │ │ o7 = <> │ │ │ │ │ │ │ │ o7 : Task │ │ │ │ i8 : n │ │ │ │ │ │ │ │ -o8 = 1451545 │ │ │ │ +o8 = 2219186 │ │ │ │ i9 : isReady t │ │ │ │ │ │ │ │ o9 = false │ │ │ │ i10 : cancelTask t │ │ │ │ i11 : sleep 2 │ │ │ │ stdio:2:25:(3):[1]: error: interrupted │ │ │ │ │ │ │ │ @@ -56,19 +56,19 @@ │ │ │ │ i12 : t │ │ │ │ │ │ │ │ o12 = <> │ │ │ │ │ │ │ │ o12 : Task │ │ │ │ i13 : n │ │ │ │ │ │ │ │ -o13 = 1451960 │ │ │ │ +o13 = 2219384 │ │ │ │ i14 : sleep 1 │ │ │ │ │ │ │ │ o14 = 0 │ │ │ │ i15 : n │ │ │ │ │ │ │ │ -o15 = 1451960 │ │ │ │ +o15 = 2219384 │ │ │ │ i16 : isReady t │ │ │ │ │ │ │ │ o16 = false │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _c_a_n_c_e_l_T_a_s_k_(_T_a_s_k_) -- stop a task │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_change__Directory.html │ │ │ @@ -70,30 +70,30 @@ │ │ │
    │ │ │

    Change the current working directory to dir.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : dir = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10626-0/0
    │ │ │ +o1 = /tmp/M2-10905-0/0 │ │ │
    i2 : makeDirectory dir
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10626-0/0
    │ │ │ +o2 = /tmp/M2-10905-0/0 │ │ │
    i3 : changeDirectory dir
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10626-0/0/
    │ │ │ +o3 = /tmp/M2-10905-0/0/ │ │ │
    i4 : currentDirectory()
    │ │ │  
    │ │ │ -o4 = /tmp/M2-10626-0/0/
    │ │ │ +o4 = /tmp/M2-10905-0/0/ │ │ │
    │ │ │
    │ │ │

    If dir is omitted, then the current working directory is changed to the user's home directory.

    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -11,23 +11,23 @@ │ │ │ │ o dir, a _s_t_r_i_n_g, │ │ │ │ * Outputs: │ │ │ │ o a _s_t_r_i_n_g, the new working directory; │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Change the current working directory to dir. │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10626-0/0 │ │ │ │ +o1 = /tmp/M2-10905-0/0 │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10626-0/0 │ │ │ │ +o2 = /tmp/M2-10905-0/0 │ │ │ │ i3 : changeDirectory dir │ │ │ │ │ │ │ │ -o3 = /tmp/M2-10626-0/0/ │ │ │ │ +o3 = /tmp/M2-10905-0/0/ │ │ │ │ i4 : currentDirectory() │ │ │ │ │ │ │ │ -o4 = /tmp/M2-10626-0/0/ │ │ │ │ +o4 = /tmp/M2-10905-0/0/ │ │ │ │ If dir is omitted, then the current working directory is changed to the user's │ │ │ │ home directory. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_u_r_r_e_n_t_D_i_r_e_c_t_o_r_y -- current working directory │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _c_h_a_n_g_e_D_i_r_e_c_t_o_r_y is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_communicating_spwith_spprograms.html │ │ │ @@ -42,15 +42,15 @@ │ │ │
    │ │ │
    │ │ │

    communicating with programs

    │ │ │
    │ │ │ The most naive way to interact with another program is simply to run it, let it communicate directly with the user, and wait for it to finish. This is done with the run command. │ │ │ │ │ │ │ │ │
    i1 : run "uname -a"
    │ │ │ -Linux sbuild 6.1.0-31-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.128-1 (2025-02-07) x86_64 GNU/Linux
    │ │ │ +Linux sbuild 6.12.35+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.35-1 (2025-07-03) x86_64 GNU/Linux
    │ │ │  
    │ │ │  o1 = 0
    │ │ │
    │ │ │ To run a program and provide it with input, one way is use the operator <<, with a file name whose first character is an exclamation point; the rest of the file name will be taken as the command to run, as in the following example. │ │ │ │ │ │ │ │ │
    i2 : "!grep a" << " ba \n bc \n ad \n ef \n" << close
    │ │ │ @@ -62,17 +62,17 @@
    │ │ │  o2 : File
    │ │ │
    │ │ │ More often, one wants to write Macaulay2 code to obtain and manipulate the output from the other program. If the program requires no input data, then we can use get with a file name whose first character is an exclamation point. In the following example, we also peek at the string to see whether it includes a newline character. │ │ │ │ │ │ │ │ │
    i3 : peek get "!uname -a"
    │ │ │  
    │ │ │ -o3 = "Linux sbuild 6.1.0-31-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.128-1
    │ │ │ +o3 = "Linux sbuild 6.12.35+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian
    │ │ │       "
    │ │ │ -     (2025-02-07) x86_64 GNU/Linux
    │ │ │ + 6.12.35-1 (2025-07-03) x86_64 GNU/Linux │ │ │
    │ │ │ Bidirectional communication with a program is also possible. We use openInOut to create a file that serves as a bidirectional connection to a program. That file is called an input output file. In this example we open a connection to the unix utility egrep and use it to locate the symbol names in Macaulay2 that begin with in. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : f = openInOut "!egrep '^in'"
    │ │ │  
    │ │ │  o4 = !egrep '^in'
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -4,16 +4,16 @@
    │ │ │ │  _n_e_x_t | _p_r_e_v_i_o_u_s | _f_o_r_w_a_r_d | _b_a_c_k_w_a_r_d | _u_p | _i_n_d_e_x | _t_o_c
    │ │ │ │  ===============================================================================
    │ │ │ │  ************ ccoommmmuunniiccaattiinngg wwiitthh pprrooggrraammss ************
    │ │ │ │  The most naive way to interact with another program is simply to run it, let it
    │ │ │ │  communicate directly with the user, and wait for it to finish. This is done
    │ │ │ │  with the _r_u_n command.
    │ │ │ │  i1 : run "uname -a"
    │ │ │ │ -Linux sbuild 6.1.0-31-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.128-1 (2025-02-
    │ │ │ │ -07) x86_64 GNU/Linux
    │ │ │ │ +Linux sbuild 6.12.35+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.35-1
    │ │ │ │ +(2025-07-03) x86_64 GNU/Linux
    │ │ │ │  
    │ │ │ │  o1 = 0
    │ │ │ │  To run a program and provide it with input, one way is use the operator _<_<,
    │ │ │ │  with a file name whose first character is an exclamation point; the rest of the
    │ │ │ │  file name will be taken as the command to run, as in the following example.
    │ │ │ │  i2 : "!grep a" << " ba \n bc \n ad \n ef \n" << close
    │ │ │ │   ba
    │ │ │ │ @@ -25,17 +25,17 @@
    │ │ │ │  More often, one wants to write Macaulay2 code to obtain and manipulate the
    │ │ │ │  output from the other program. If the program requires no input data, then we
    │ │ │ │  can use _g_e_t with a file name whose first character is an exclamation point. In
    │ │ │ │  the following example, we also peek at the string to see whether it includes a
    │ │ │ │  newline character.
    │ │ │ │  i3 : peek get "!uname -a"
    │ │ │ │  
    │ │ │ │ -o3 = "Linux sbuild 6.1.0-31-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.128-1
    │ │ │ │ +o3 = "Linux sbuild 6.12.35+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian
    │ │ │ │       "
    │ │ │ │ -     (2025-02-07) x86_64 GNU/Linux
    │ │ │ │ +     6.12.35-1 (2025-07-03) x86_64 GNU/Linux
    │ │ │ │  Bidirectional communication with a program is also possible. We use _o_p_e_n_I_n_O_u_t
    │ │ │ │  to create a file that serves as a bidirectional connection to a program. That
    │ │ │ │  file is called an input output file. In this example we open a connection to
    │ │ │ │  the unix utility egrep and use it to locate the symbol names in Macaulay2 that
    │ │ │ │  begin with in.
    │ │ │ │  i4 : f = openInOut "!egrep '^in'"
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_computing_sp__Groebner_spbases.html
    │ │ │ @@ -215,15 +215,15 @@
    │ │ │                  ZZ
    │ │ │  o23 : Ideal of ----[x..z, w]
    │ │ │                 1277
    │ │ │
    i24 : gb I
    │ │ │  
    │ │ │ -   -- registering gb 5 at 0x7fe96c5bd700
    │ │ │ +   -- registering gb 5 at 0x7fdd33824700
    │ │ │  
    │ │ │     -- [gb]{2}(2)mm{3}(1)m{4}(2)om{5}(1)onumber of (nonminimal) gb elements = 4
    │ │ │     -- number of monomials                = 8
    │ │ │     -- #reduction steps = 2
    │ │ │     -- #spairs done = 6
    │ │ │     -- ncalls = 0
    │ │ │     -- nloop = 0
    │ │ │ @@ -301,15 +301,15 @@
    │ │ │  
    i32 : f = random(R^1,R^{-3,-3,-5,-6});
    │ │ │  
    │ │ │                1      4
    │ │ │  o32 : Matrix R  <-- R
    │ │ │
    i33 : time betti gb f
    │ │ │ - -- used 0.307492s (cpu); 0.307469s (thread); 0s (gc)
    │ │ │ + -- used 0.152258s (cpu); 0.151986s (thread); 0s (gc)
    │ │ │  
    │ │ │               0  1
    │ │ │  o33 = total: 1 53
    │ │ │            0: 1  .
    │ │ │            1: .  .
    │ │ │            2: .  2
    │ │ │            3: .  1
    │ │ │ @@ -339,15 +339,15 @@
    │ │ │              3    5     8     9    12     14    17
    │ │ │  o35 = 1 - 2T  - T  + 2T  + 2T  - T   - 2T   + T
    │ │ │  
    │ │ │  o35 : ZZ[T]
    │ │ │
    i36 : time betti gb f
    │ │ │ - -- used 0.00800087s (cpu); 0.00553291s (thread); 0s (gc)
    │ │ │ + -- used 0.00179524s (cpu); 0.00217529s (thread); 0s (gc)
    │ │ │  
    │ │ │               0  1
    │ │ │  o36 = total: 1 53
    │ │ │            0: 1  .
    │ │ │            1: .  .
    │ │ │            2: .  2
    │ │ │            3: .  1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -139,15 +139,15 @@
    │ │ │ │  o23 = ideal (x*y - z , y  - w )
    │ │ │ │  
    │ │ │ │                  ZZ
    │ │ │ │  o23 : Ideal of ----[x..z, w]
    │ │ │ │                 1277
    │ │ │ │  i24 : gb I
    │ │ │ │  
    │ │ │ │ -   -- registering gb 5 at 0x7fe96c5bd700
    │ │ │ │ +   -- registering gb 5 at 0x7fdd33824700
    │ │ │ │  
    │ │ │ │     -- [gb]{2}(2)mm{3}(1)m{4}(2)om{5}(1)onumber of (nonminimal) gb elements = 4
    │ │ │ │     -- number of monomials                = 8
    │ │ │ │     -- #reduction steps = 2
    │ │ │ │     -- #spairs done = 6
    │ │ │ │     -- ncalls = 0
    │ │ │ │     -- nloop = 0
    │ │ │ │ @@ -212,15 +212,15 @@
    │ │ │ │  
    │ │ │ │  o31 : ZZ[T]
    │ │ │ │  i32 : f = random(R^1,R^{-3,-3,-5,-6});
    │ │ │ │  
    │ │ │ │                1      4
    │ │ │ │  o32 : Matrix R  <-- R
    │ │ │ │  i33 : time betti gb f
    │ │ │ │ - -- used 0.307492s (cpu); 0.307469s (thread); 0s (gc)
    │ │ │ │ + -- used 0.152258s (cpu); 0.151986s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               0  1
    │ │ │ │  o33 = total: 1 53
    │ │ │ │            0: 1  .
    │ │ │ │            1: .  .
    │ │ │ │            2: .  2
    │ │ │ │            3: .  1
    │ │ │ │ @@ -244,15 +244,15 @@
    │ │ │ │  i35 : poincare cokernel f = (1-T^3)*(1-T^3)*(1-T^5)*(1-T^6) -- cache poincare
    │ │ │ │  
    │ │ │ │              3    5     8     9    12     14    17
    │ │ │ │  o35 = 1 - 2T  - T  + 2T  + 2T  - T   - 2T   + T
    │ │ │ │  
    │ │ │ │  o35 : ZZ[T]
    │ │ │ │  i36 : time betti gb f
    │ │ │ │ - -- used 0.00800087s (cpu); 0.00553291s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00179524s (cpu); 0.00217529s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               0  1
    │ │ │ │  o36 = total: 1 53
    │ │ │ │            0: 1  .
    │ │ │ │            1: .  .
    │ │ │ │            2: .  2
    │ │ │ │            3: .  1
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_computing_spresolutions.html
    │ │ │ @@ -92,16 +92,16 @@
    │ │ │            << res M << endl << endl;
    │ │ │            break;
    │ │ │            ) else (
    │ │ │            << "-- computation interrupted" << endl;
    │ │ │            status M.cache.resolution;
    │ │ │            << "-- continuing the computation" << endl;
    │ │ │            ))
    │ │ │ - -- used 1.30377s (cpu); 0.973789s (thread); 0s (gc)
    │ │ │ - -- used 0.508987s (cpu); 0.396067s (thread); 0s (gc)
    │ │ │ + -- used 1.13974s (cpu); 0.98458s (thread); 0s (gc)
    │ │ │ + -- used 0.232854s (cpu); 0.148313s (thread); 0s (gc)
    │ │ │  -- computation started: 
    │ │ │  -- computation interrupted
    │ │ │  -- continuing the computation
    │ │ │  -- computation complete
    │ │ │   4      11      89      122      40
    │ │ │  R  <-- R   <-- R   <-- R    <-- R   <-- 0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -50,16 +50,16 @@
    │ │ │ │            << res M << endl << endl;
    │ │ │ │            break;
    │ │ │ │            ) else (
    │ │ │ │            << "-- computation interrupted" << endl;
    │ │ │ │            status M.cache.resolution;
    │ │ │ │            << "-- continuing the computation" << endl;
    │ │ │ │            ))
    │ │ │ │ - -- used 1.30377s (cpu); 0.973789s (thread); 0s (gc)
    │ │ │ │ - -- used 0.508987s (cpu); 0.396067s (thread); 0s (gc)
    │ │ │ │ + -- used 1.13974s (cpu); 0.98458s (thread); 0s (gc)
    │ │ │ │ + -- used 0.232854s (cpu); 0.148313s (thread); 0s (gc)
    │ │ │ │  -- computation started:
    │ │ │ │  -- computation interrupted
    │ │ │ │  -- continuing the computation
    │ │ │ │  -- computation complete
    │ │ │ │   4      11      89      122      40
    │ │ │ │  R  <-- R   <-- R   <-- R    <-- R   <-- 0
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_copy__Directory_lp__String_cm__String_rp.html
    │ │ │ @@ -85,90 +85,90 @@
    │ │ │        
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : src = temporaryFileName() | "/"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11326-0/0/
    │ │ │ +o1 = /tmp/M2-12313-0/0/ │ │ │
    i2 : dst = temporaryFileName() | "/"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11326-0/1/
    │ │ │ +o2 = /tmp/M2-12313-0/1/ │ │ │
    i3 : makeDirectory (src|"a/")
    │ │ │  
    │ │ │ -o3 = /tmp/M2-11326-0/0/a/
    │ │ │ +o3 = /tmp/M2-12313-0/0/a/ │ │ │
    i4 : makeDirectory (src|"b/")
    │ │ │  
    │ │ │ -o4 = /tmp/M2-11326-0/0/b/
    │ │ │ +o4 = /tmp/M2-12313-0/0/b/ │ │ │
    i5 : makeDirectory (src|"b/c/")
    │ │ │  
    │ │ │ -o5 = /tmp/M2-11326-0/0/b/c/
    │ │ │ +o5 = /tmp/M2-12313-0/0/b/c/ │ │ │
    i6 : src|"a/f" << "hi there" << close
    │ │ │  
    │ │ │ -o6 = /tmp/M2-11326-0/0/a/f
    │ │ │ +o6 = /tmp/M2-12313-0/0/a/f
    │ │ │  
    │ │ │  o6 : File
    │ │ │
    i7 : src|"a/g" << "hi there" << close
    │ │ │  
    │ │ │ -o7 = /tmp/M2-11326-0/0/a/g
    │ │ │ +o7 = /tmp/M2-12313-0/0/a/g
    │ │ │  
    │ │ │  o7 : File
    │ │ │
    i8 : src|"b/c/g" << "ho there" << close
    │ │ │  
    │ │ │ -o8 = /tmp/M2-11326-0/0/b/c/g
    │ │ │ +o8 = /tmp/M2-12313-0/0/b/c/g
    │ │ │  
    │ │ │  o8 : File
    │ │ │
    i9 : stack findFiles src
    │ │ │  
    │ │ │ -o9 = /tmp/M2-11326-0/0/
    │ │ │ -     /tmp/M2-11326-0/0/b/
    │ │ │ -     /tmp/M2-11326-0/0/b/c/
    │ │ │ -     /tmp/M2-11326-0/0/b/c/g
    │ │ │ -     /tmp/M2-11326-0/0/a/
    │ │ │ -     /tmp/M2-11326-0/0/a/g
    │ │ │ -     /tmp/M2-11326-0/0/a/f
    │ │ │ +o9 = /tmp/M2-12313-0/0/ │ │ │ + /tmp/M2-12313-0/0/b/ │ │ │ + /tmp/M2-12313-0/0/b/c/ │ │ │ + /tmp/M2-12313-0/0/b/c/g │ │ │ + /tmp/M2-12313-0/0/a/ │ │ │ + /tmp/M2-12313-0/0/a/f │ │ │ + /tmp/M2-12313-0/0/a/g │ │ │
    i10 : copyDirectory(src,dst,Verbose=>true)
    │ │ │ - -- copying: /tmp/M2-11326-0/0/b/c/g -> /tmp/M2-11326-0/1/b/c/g
    │ │ │ - -- copying: /tmp/M2-11326-0/0/a/g -> /tmp/M2-11326-0/1/a/g
    │ │ │ - -- copying: /tmp/M2-11326-0/0/a/f -> /tmp/M2-11326-0/1/a/f
    │ │ │ + -- copying: /tmp/M2-12313-0/0/b/c/g -> /tmp/M2-12313-0/1/b/c/g │ │ │ + -- copying: /tmp/M2-12313-0/0/a/f -> /tmp/M2-12313-0/1/a/f │ │ │ + -- copying: /tmp/M2-12313-0/0/a/g -> /tmp/M2-12313-0/1/a/g │ │ │
    i11 : copyDirectory(src,dst,Verbose=>true,UpdateOnly => true)
    │ │ │ - -- skipping: /tmp/M2-11326-0/0/b/c/g not newer than /tmp/M2-11326-0/1/b/c/g
    │ │ │ - -- skipping: /tmp/M2-11326-0/0/a/g not newer than /tmp/M2-11326-0/1/a/g
    │ │ │ - -- skipping: /tmp/M2-11326-0/0/a/f not newer than /tmp/M2-11326-0/1/a/f
    │ │ │ + -- skipping: /tmp/M2-12313-0/0/b/c/g not newer than /tmp/M2-12313-0/1/b/c/g │ │ │ + -- skipping: /tmp/M2-12313-0/0/a/f not newer than /tmp/M2-12313-0/1/a/f │ │ │ + -- skipping: /tmp/M2-12313-0/0/a/g not newer than /tmp/M2-12313-0/1/a/g │ │ │
    i12 : stack findFiles dst
    │ │ │  
    │ │ │ -o12 = /tmp/M2-11326-0/1/
    │ │ │ -      /tmp/M2-11326-0/1/a/
    │ │ │ -      /tmp/M2-11326-0/1/a/f
    │ │ │ -      /tmp/M2-11326-0/1/a/g
    │ │ │ -      /tmp/M2-11326-0/1/b/
    │ │ │ -      /tmp/M2-11326-0/1/b/c/
    │ │ │ -      /tmp/M2-11326-0/1/b/c/g
    │ │ │ +o12 = /tmp/M2-12313-0/1/ │ │ │ + /tmp/M2-12313-0/1/b/ │ │ │ + /tmp/M2-12313-0/1/b/c/ │ │ │ + /tmp/M2-12313-0/1/b/c/g │ │ │ + /tmp/M2-12313-0/1/a/ │ │ │ + /tmp/M2-12313-0/1/a/f │ │ │ + /tmp/M2-12313-0/1/a/g │ │ │
    i13 : get (dst|"b/c/g")
    │ │ │  
    │ │ │  o13 = ho there
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -26,68 +26,68 @@ │ │ │ │ individual file operations │ │ │ │ * Consequences: │ │ │ │ o a copy of the directory tree rooted at src is created, rooted at │ │ │ │ dst │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : src = temporaryFileName() | "/" │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11326-0/0/ │ │ │ │ +o1 = /tmp/M2-12313-0/0/ │ │ │ │ i2 : dst = temporaryFileName() | "/" │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11326-0/1/ │ │ │ │ +o2 = /tmp/M2-12313-0/1/ │ │ │ │ i3 : makeDirectory (src|"a/") │ │ │ │ │ │ │ │ -o3 = /tmp/M2-11326-0/0/a/ │ │ │ │ +o3 = /tmp/M2-12313-0/0/a/ │ │ │ │ i4 : makeDirectory (src|"b/") │ │ │ │ │ │ │ │ -o4 = /tmp/M2-11326-0/0/b/ │ │ │ │ +o4 = /tmp/M2-12313-0/0/b/ │ │ │ │ i5 : makeDirectory (src|"b/c/") │ │ │ │ │ │ │ │ -o5 = /tmp/M2-11326-0/0/b/c/ │ │ │ │ +o5 = /tmp/M2-12313-0/0/b/c/ │ │ │ │ i6 : src|"a/f" << "hi there" << close │ │ │ │ │ │ │ │ -o6 = /tmp/M2-11326-0/0/a/f │ │ │ │ +o6 = /tmp/M2-12313-0/0/a/f │ │ │ │ │ │ │ │ o6 : File │ │ │ │ i7 : src|"a/g" << "hi there" << close │ │ │ │ │ │ │ │ -o7 = /tmp/M2-11326-0/0/a/g │ │ │ │ +o7 = /tmp/M2-12313-0/0/a/g │ │ │ │ │ │ │ │ o7 : File │ │ │ │ i8 : src|"b/c/g" << "ho there" << close │ │ │ │ │ │ │ │ -o8 = /tmp/M2-11326-0/0/b/c/g │ │ │ │ +o8 = /tmp/M2-12313-0/0/b/c/g │ │ │ │ │ │ │ │ o8 : File │ │ │ │ i9 : stack findFiles src │ │ │ │ │ │ │ │ -o9 = /tmp/M2-11326-0/0/ │ │ │ │ - /tmp/M2-11326-0/0/b/ │ │ │ │ - /tmp/M2-11326-0/0/b/c/ │ │ │ │ - /tmp/M2-11326-0/0/b/c/g │ │ │ │ - /tmp/M2-11326-0/0/a/ │ │ │ │ - /tmp/M2-11326-0/0/a/g │ │ │ │ - /tmp/M2-11326-0/0/a/f │ │ │ │ +o9 = /tmp/M2-12313-0/0/ │ │ │ │ + /tmp/M2-12313-0/0/b/ │ │ │ │ + /tmp/M2-12313-0/0/b/c/ │ │ │ │ + /tmp/M2-12313-0/0/b/c/g │ │ │ │ + /tmp/M2-12313-0/0/a/ │ │ │ │ + /tmp/M2-12313-0/0/a/f │ │ │ │ + /tmp/M2-12313-0/0/a/g │ │ │ │ i10 : copyDirectory(src,dst,Verbose=>true) │ │ │ │ - -- copying: /tmp/M2-11326-0/0/b/c/g -> /tmp/M2-11326-0/1/b/c/g │ │ │ │ - -- copying: /tmp/M2-11326-0/0/a/g -> /tmp/M2-11326-0/1/a/g │ │ │ │ - -- copying: /tmp/M2-11326-0/0/a/f -> /tmp/M2-11326-0/1/a/f │ │ │ │ + -- copying: /tmp/M2-12313-0/0/b/c/g -> /tmp/M2-12313-0/1/b/c/g │ │ │ │ + -- copying: /tmp/M2-12313-0/0/a/f -> /tmp/M2-12313-0/1/a/f │ │ │ │ + -- copying: /tmp/M2-12313-0/0/a/g -> /tmp/M2-12313-0/1/a/g │ │ │ │ i11 : copyDirectory(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ │ - -- skipping: /tmp/M2-11326-0/0/b/c/g not newer than /tmp/M2-11326-0/1/b/c/g │ │ │ │ - -- skipping: /tmp/M2-11326-0/0/a/g not newer than /tmp/M2-11326-0/1/a/g │ │ │ │ - -- skipping: /tmp/M2-11326-0/0/a/f not newer than /tmp/M2-11326-0/1/a/f │ │ │ │ + -- skipping: /tmp/M2-12313-0/0/b/c/g not newer than /tmp/M2-12313-0/1/b/c/g │ │ │ │ + -- skipping: /tmp/M2-12313-0/0/a/f not newer than /tmp/M2-12313-0/1/a/f │ │ │ │ + -- skipping: /tmp/M2-12313-0/0/a/g not newer than /tmp/M2-12313-0/1/a/g │ │ │ │ i12 : stack findFiles dst │ │ │ │ │ │ │ │ -o12 = /tmp/M2-11326-0/1/ │ │ │ │ - /tmp/M2-11326-0/1/a/ │ │ │ │ - /tmp/M2-11326-0/1/a/f │ │ │ │ - /tmp/M2-11326-0/1/a/g │ │ │ │ - /tmp/M2-11326-0/1/b/ │ │ │ │ - /tmp/M2-11326-0/1/b/c/ │ │ │ │ - /tmp/M2-11326-0/1/b/c/g │ │ │ │ +o12 = /tmp/M2-12313-0/1/ │ │ │ │ + /tmp/M2-12313-0/1/b/ │ │ │ │ + /tmp/M2-12313-0/1/b/c/ │ │ │ │ + /tmp/M2-12313-0/1/b/c/g │ │ │ │ + /tmp/M2-12313-0/1/a/ │ │ │ │ + /tmp/M2-12313-0/1/a/f │ │ │ │ + /tmp/M2-12313-0/1/a/g │ │ │ │ i13 : get (dst|"b/c/g") │ │ │ │ │ │ │ │ o13 = ho there │ │ │ │ Now we remove the files and directories we created. │ │ │ │ i14 : rm = d -> if isDirectory d then removeDirectory d else removeFile d │ │ │ │ │ │ │ │ o14 = rm │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_copy__File_lp__String_cm__String_rp.html │ │ │ @@ -81,51 +81,51 @@ │ │ │
    │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -19,37 +19,37 @@ │ │ │ │ o Verbose => a _B_o_o_l_e_a_n_ _v_a_l_u_e, default value false, whether to report │ │ │ │ individual file operations │ │ │ │ * Consequences: │ │ │ │ o the file may be copied │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : src = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11095-0/0 │ │ │ │ +o1 = /tmp/M2-11862-0/0 │ │ │ │ i2 : dst = temporaryFileName() │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11095-0/1 │ │ │ │ +o2 = /tmp/M2-11862-0/1 │ │ │ │ i3 : src << "hi there" << close │ │ │ │ │ │ │ │ -o3 = /tmp/M2-11095-0/0 │ │ │ │ +o3 = /tmp/M2-11862-0/0 │ │ │ │ │ │ │ │ o3 : File │ │ │ │ i4 : copyFile(src,dst,Verbose=>true) │ │ │ │ - -- copying: /tmp/M2-11095-0/0 -> /tmp/M2-11095-0/1 │ │ │ │ + -- copying: /tmp/M2-11862-0/0 -> /tmp/M2-11862-0/1 │ │ │ │ i5 : get dst │ │ │ │ │ │ │ │ o5 = hi there │ │ │ │ i6 : copyFile(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ │ - -- skipping: /tmp/M2-11095-0/0 not newer than /tmp/M2-11095-0/1 │ │ │ │ + -- skipping: /tmp/M2-11862-0/0 not newer than /tmp/M2-11862-0/1 │ │ │ │ i7 : src << "ho there" << close │ │ │ │ │ │ │ │ -o7 = /tmp/M2-11095-0/0 │ │ │ │ +o7 = /tmp/M2-11862-0/0 │ │ │ │ │ │ │ │ o7 : File │ │ │ │ i8 : copyFile(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ │ - -- skipping: /tmp/M2-11095-0/0 not newer than /tmp/M2-11095-0/1 │ │ │ │ + -- skipping: /tmp/M2-11862-0/0 not newer than /tmp/M2-11862-0/1 │ │ │ │ i9 : get dst │ │ │ │ │ │ │ │ o9 = hi there │ │ │ │ i10 : removeFile src │ │ │ │ i11 : removeFile dst │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_o_p_y_D_i_r_e_c_t_o_r_y │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cpu__Time.html │ │ │ @@ -61,32 +61,32 @@ │ │ │ │ │ │
    │ │ │

    Description

    │ │ │
    i1 : src = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11095-0/0
    │ │ │ +o1 = /tmp/M2-11862-0/0 │ │ │
    i2 : dst = temporaryFileName()
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11095-0/1
    │ │ │ +o2 = /tmp/M2-11862-0/1 │ │ │
    i3 : src << "hi there" << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-11095-0/0
    │ │ │ +o3 = /tmp/M2-11862-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    i4 : copyFile(src,dst,Verbose=>true)
    │ │ │ - -- copying: /tmp/M2-11095-0/0 -> /tmp/M2-11095-0/1
    │ │ │ + -- copying: /tmp/M2-11862-0/0 -> /tmp/M2-11862-0/1 │ │ │
    i5 : get dst
    │ │ │  
    │ │ │  o5 = hi there
    │ │ │
    i6 : copyFile(src,dst,Verbose=>true,UpdateOnly => true)
    │ │ │ - -- skipping: /tmp/M2-11095-0/0 not newer than /tmp/M2-11095-0/1
    │ │ │ + -- skipping: /tmp/M2-11862-0/0 not newer than /tmp/M2-11862-0/1 │ │ │
    i7 : src << "ho there" << close
    │ │ │  
    │ │ │ -o7 = /tmp/M2-11095-0/0
    │ │ │ +o7 = /tmp/M2-11862-0/0
    │ │ │  
    │ │ │  o7 : File
    │ │ │
    i8 : copyFile(src,dst,Verbose=>true,UpdateOnly => true)
    │ │ │ - -- skipping: /tmp/M2-11095-0/0 not newer than /tmp/M2-11095-0/1
    │ │ │ + -- skipping: /tmp/M2-11862-0/0 not newer than /tmp/M2-11862-0/1 │ │ │
    i9 : get dst
    │ │ │  
    │ │ │  o9 = hi there
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : t1 = cpuTime()
    │ │ │  
    │ │ │ -o1 = 258.991604772
    │ │ │ +o1 = 244.703091515
    │ │ │  
    │ │ │  o1 : RR (of precision 53)
    │ │ │
    i2 : for i from 0 to 1000000 do 223131321321*324234324324;
    │ │ │
    i3 : t2 = cpuTime()
    │ │ │  
    │ │ │ -o3 = 261.1503754559999
    │ │ │ +o3 = 245.69947021
    │ │ │  
    │ │ │  o3 : RR (of precision 53)
    │ │ │
    i4 : t2-t1
    │ │ │  
    │ │ │ -o4 = 2.15877068399999
    │ │ │ +o4 = .9963786950000042
    │ │ │  
    │ │ │  o4 : RR (of precision 53)
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -9,26 +9,26 @@ │ │ │ │ cpuTime() │ │ │ │ * Outputs: │ │ │ │ o a _r_e_a_l_ _n_u_m_b_e_r, the number of seconds of cpu time used since the │ │ │ │ program was started │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : t1 = cpuTime() │ │ │ │ │ │ │ │ -o1 = 258.991604772 │ │ │ │ +o1 = 244.703091515 │ │ │ │ │ │ │ │ o1 : RR (of precision 53) │ │ │ │ i2 : for i from 0 to 1000000 do 223131321321*324234324324; │ │ │ │ i3 : t2 = cpuTime() │ │ │ │ │ │ │ │ -o3 = 261.1503754559999 │ │ │ │ +o3 = 245.69947021 │ │ │ │ │ │ │ │ o3 : RR (of precision 53) │ │ │ │ i4 : t2-t1 │ │ │ │ │ │ │ │ -o4 = 2.15877068399999 │ │ │ │ +o4 = .9963786950000042 │ │ │ │ │ │ │ │ o4 : RR (of precision 53) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_i_m_e -- time a computation │ │ │ │ * _t_i_m_i_n_g -- time a computation │ │ │ │ * _c_u_r_r_e_n_t_T_i_m_e -- get the current time │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__Time.html │ │ │ @@ -61,42 +61,42 @@ │ │ │
    │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │
    i1 : currentTime()
    │ │ │  
    │ │ │ -o1 = 1739145345
    │ │ │ +o1 = 1752896489 │ │ │
    │ │ │

    We can compute, roughly, how many years ago the epoch began as follows.

    │ │ │ │ │ │ │ │ │ │ │ │
    i2 : currentTime() /( (365 + 97./400) * 24 * 60 * 60 )
    │ │ │  
    │ │ │ -o2 = 55.11132206304336
    │ │ │ +o2 = 55.54707846942887
    │ │ │  
    │ │ │  o2 : RR (of precision 53)
    │ │ │
    │ │ │

    We can also compute how many months account for the fractional part of that number.

    │ │ │ │ │ │ │ │ │ │ │ │
    i3 : 12 * (oo - floor oo)
    │ │ │  
    │ │ │ -o3 = 1.335864756520323
    │ │ │ +o3 = 6.564941633146418
    │ │ │  
    │ │ │  o3 : RR (of precision 53)
    │ │ │
    │ │ │

    Compare that to the current date, available from a standard Unix command.

    │ │ │ │ │ │ │ │ │ │ │ │
    i4 : run "date"
    │ │ │ -Sun Feb  9 23:55:45 UTC 2025
    │ │ │ +Sat Jul 19 03:41:29 UTC 2025
    │ │ │  
    │ │ │  o4 = 0
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    For the programmer

    │ │ │ ├── html2text {} │ │ │ │ @@ -9,28 +9,28 @@ │ │ │ │ currentTime() │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the current time, in seconds since 00:00:00 1970-01-01 │ │ │ │ UTC, the beginning of the epoch │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : currentTime() │ │ │ │ │ │ │ │ -o1 = 1739145345 │ │ │ │ +o1 = 1752896489 │ │ │ │ We can compute, roughly, how many years ago the epoch began as follows. │ │ │ │ i2 : currentTime() /( (365 + 97./400) * 24 * 60 * 60 ) │ │ │ │ │ │ │ │ -o2 = 55.11132206304336 │ │ │ │ +o2 = 55.54707846942887 │ │ │ │ │ │ │ │ o2 : RR (of precision 53) │ │ │ │ We can also compute how many months account for the fractional part of that │ │ │ │ number. │ │ │ │ i3 : 12 * (oo - floor oo) │ │ │ │ │ │ │ │ -o3 = 1.335864756520323 │ │ │ │ +o3 = 6.564941633146418 │ │ │ │ │ │ │ │ o3 : RR (of precision 53) │ │ │ │ Compare that to the current date, available from a standard Unix command. │ │ │ │ i4 : run "date" │ │ │ │ -Sun Feb 9 23:55:45 UTC 2025 │ │ │ │ +Sat Jul 19 03:41:29 UTC 2025 │ │ │ │ │ │ │ │ o4 = 0 │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _c_u_r_r_e_n_t_T_i_m_e is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elapsed__Time.html │ │ │ @@ -54,15 +54,15 @@ │ │ │ │ │ │
    │ │ │
    │ │ │

    Description

    │ │ │ elapsedTime e evaluates e, prints the amount of time elapsed, and returns the value of e. │ │ │ │ │ │ │ │ │
    i1 : elapsedTime sleep 1
    │ │ │ - -- 1.00014s elapsed
    │ │ │ + -- 1.00013s elapsed
    │ │ │  
    │ │ │  o1 = 0
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -8,15 +8,15 @@ │ │ │ │ ********** SSyynnooppssiiss ********** │ │ │ │ * Usage: │ │ │ │ elapsedTime e │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ elapsedTime e evaluates e, prints the amount of time elapsed, and returns the │ │ │ │ value of e. │ │ │ │ i1 : elapsedTime sleep 1 │ │ │ │ - -- 1.00014s elapsed │ │ │ │ + -- 1.00013s elapsed │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_i_n_g -- time a computation using time elapsed │ │ │ │ * _c_p_u_T_i_m_e -- seconds of cpu time used since Macaulay2 began │ │ │ │ * _G_C_s_t_a_t_s -- information about the status of the garbage collector │ │ │ │ * _p_a_r_a_l_l_e_l_ _p_r_o_g_r_a_m_m_i_n_g_ _w_i_t_h_ _t_h_r_e_a_d_s_ _a_n_d_ _t_a_s_k_s │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elapsed__Timing.html │ │ │ @@ -46,22 +46,22 @@ │ │ │

    Description

    │ │ │ elapsedTiming e evaluates e and returns a list of type Time of the form {t,v}, where t is the number of seconds of time elapsed, and v is the value of the expression.

    │ │ │ The default method for printing such timing results is to display the timing separately in a comment below the computed value. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : elapsedTiming sleep 1
    │ │ │  
    │ │ │  o1 = 0
    │ │ │ -     -- 1.00014 seconds
    │ │ │ +     -- 1.00009 seconds
    │ │ │  
    │ │ │  o1 : Time
    │ │ │
    i2 : peek oo
    │ │ │  
    │ │ │ -o2 = Time{1.00014, 0}
    │ │ │ +o2 = Time{1.00009, 0} │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │
    • │ │ │ ├── html2text {} │ │ │ │ @@ -10,20 +10,20 @@ │ │ │ │ where t is the number of seconds of time elapsed, and v is the value of the │ │ │ │ expression. │ │ │ │ The default method for printing such timing results is to display the timing │ │ │ │ separately in a comment below the computed value. │ │ │ │ i1 : elapsedTiming sleep 1 │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ - -- 1.00014 seconds │ │ │ │ + -- 1.00009 seconds │ │ │ │ │ │ │ │ o1 : Time │ │ │ │ i2 : peek oo │ │ │ │ │ │ │ │ -o2 = Time{1.00014, 0} │ │ │ │ +o2 = Time{1.00009, 0} │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _T_i_m_e -- the class of all timing results │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_e -- time a computation including time elapsed │ │ │ │ * _c_p_u_T_i_m_e -- seconds of cpu time used since Macaulay2 began │ │ │ │ * _t_i_m_i_n_g -- time a computation │ │ │ │ * _t_i_m_e -- time a computation │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elimination_spof_spvariables.html │ │ │ @@ -53,15 +53,15 @@ │ │ │ 3 3 2 3 │ │ │ o2 = ideal (- s - s*t + x - 1, - t - 3t - t + y, - s*t + z) │ │ │ │ │ │ o2 : Ideal of R
    │ │ │
    i3 : time leadTerm gens gb I
    │ │ │ - -- used 0.254683s (cpu); 0.254684s (thread); 0s (gc)
    │ │ │ + -- used 0.117515s (cpu); 0.117267s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = | x3y9 5148txy3 108729sxy2z2 sy4z 46644741sxy3z 143sy5 6sxy4
    │ │ │       ------------------------------------------------------------------------
    │ │ │       563515116021sx2y3 4374txy2z3 612704350498473090tx2yz3 217458ty4z2
    │ │ │       ------------------------------------------------------------------------
    │ │ │       267076255345488270sy3z4 5256861933965245618410txyz6
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -140,15 +140,15 @@
    │ │ │                 3                   3     2               3
    │ │ │  o7 = ideal (- s  - s*t + x - 1, - t  - 3t  + y - t, - s*t  + z)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │
    i8 : time G = eliminate(I,{s,t})
    │ │ │ - -- used 0.4515s (cpu); 0.275672s (thread); 0s (gc)
    │ │ │ + -- used 0.121517s (cpu); 0.121522s (thread); 0s (gc)
    │ │ │  
    │ │ │              3 9     2 9     2 8      2 6 3       9    2 7         8   
    │ │ │  o8 = ideal(x y  - 3x y  - 6x y z - 3x y z  + 3x*y  - x y z + 12x*y z +
    │ │ │       ------------------------------------------------------------------------
    │ │ │           7 2       2 5 3       6 3    7 3        5 4       3 6    9       7 
    │ │ │       7x*y z  - 324x y z  + 6x*y z  - y z  - 15x*y z  + 3x*y z  - y  + 2x*y z
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -215,15 +215,15 @@
    │ │ │            
    i11 : I1 = substitute(I,R1);
    │ │ │  
    │ │ │  o11 : Ideal of R1
    │ │ │
    i12 : time G = eliminate(I1,{s,t})
    │ │ │ - -- used 0.0600603s (cpu); 0.060069s (thread); 0s (gc)
    │ │ │ + -- used 0.0460749s (cpu); 0.0460784s (thread); 0s (gc)
    │ │ │  
    │ │ │               3 9     2 6 3       3 6    9     2 8         5 4      2 7  
    │ │ │  o12 = ideal(x y  - 3x y z  + 3x*y z  - z  - 6x y z - 15x*y z  + 21y z  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │          2 9       2 5 3       6 3    7 3         2 6     3 6       7 2  
    │ │ │        3x y  - 324x y z  + 6x*y z  - y z  - 405x*y z  - 3y z  + 7x*y z  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -297,15 +297,15 @@
    │ │ │                     3             3     2         3
    │ │ │  o16 = map (A, B, {s  + s*t + 1, t  + 3t  + t, s*t })
    │ │ │  
    │ │ │  o16 : RingMap A <-- B
    │ │ │
    i17 : time G = kernel F
    │ │ │ - -- used 0.404083s (cpu); 0.234457s (thread); 0s (gc)
    │ │ │ + -- used 0.320628s (cpu); 0.139295s (thread); 0s (gc)
    │ │ │  
    │ │ │               3 9     2 9     2 8      2 6 3       9    2 7         8   
    │ │ │  o17 = ideal(x y  - 3x y  - 6x y z - 3x y z  + 3x*y  - x y z + 12x*y z +
    │ │ │        -----------------------------------------------------------------------
    │ │ │            7 2       2 5 3       6 3    7 3        5 4       3 6    9       7 
    │ │ │        7x*y z  - 324x y z  + 6x*y z  - y z  - 15x*y z  + 3x*y z  - y  + 2x*y z
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -372,24 +372,24 @@
    │ │ │  
    │ │ │  o19 = R
    │ │ │  
    │ │ │  o19 : PolynomialRing
    │ │ │
    i20 : time f1 = resultant(I_0,I_2,s)
    │ │ │ - -- used 0.00172022s (cpu); 0.00171993s (thread); 0s (gc)
    │ │ │ + -- used 0.00135128s (cpu); 0.00134931s (thread); 0s (gc)
    │ │ │  
    │ │ │           9    9      7    3
    │ │ │  o20 = x*t  - t  - z*t  - z
    │ │ │  
    │ │ │  o20 : R
    │ │ │
    i21 : time f2 = resultant(I_1,f1,t)
    │ │ │ - -- used 0.0562473s (cpu); 0.0562272s (thread); 0s (gc)
    │ │ │ + -- used 0.033369s (cpu); 0.033381s (thread); 0s (gc)
    │ │ │  
    │ │ │           3 9     2 9     2 8      2 6 3       9    2 7         8        7 2  
    │ │ │  o21 = - x y  + 3x y  + 6x y z + 3x y z  - 3x*y  + x y z - 12x*y z - 7x*y z  +
    │ │ │        -----------------------------------------------------------------------
    │ │ │            2 5 3       6 3    7 3        5 4       3 6    9       7      8   
    │ │ │        324x y z  - 6x*y z  + y z  + 15x*y z  - 3x*y z  + y  - 2x*y z + 6y z +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -13,15 +13,15 @@
    │ │ │ │  i2 : I = ideal(x-s^3-s*t-1, y-t^3-3*t^2-t, z-s*t^3)
    │ │ │ │  
    │ │ │ │                 3                   3     2               3
    │ │ │ │  o2 = ideal (- s  - s*t + x - 1, - t  - 3t  - t + y, - s*t  + z)
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : time leadTerm gens gb I
    │ │ │ │ - -- used 0.254683s (cpu); 0.254684s (thread); 0s (gc)
    │ │ │ │ + -- used 0.117515s (cpu); 0.117267s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = | x3y9 5148txy3 108729sxy2z2 sy4z 46644741sxy3z 143sy5 6sxy4
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       563515116021sx2y3 4374txy2z3 612704350498473090tx2yz3 217458ty4z2
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       267076255345488270sy3z4 5256861933965245618410txyz6
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -89,15 +89,15 @@
    │ │ │ │  i7 : I = ideal(x-s^3-s*t-1, y-t^3-3*t^2-t, z-s*t^3)
    │ │ │ │  
    │ │ │ │                 3                   3     2               3
    │ │ │ │  o7 = ideal (- s  - s*t + x - 1, - t  - 3t  + y - t, - s*t  + z)
    │ │ │ │  
    │ │ │ │  o7 : Ideal of R
    │ │ │ │  i8 : time G = eliminate(I,{s,t})
    │ │ │ │ - -- used 0.4515s (cpu); 0.275672s (thread); 0s (gc)
    │ │ │ │ + -- used 0.121517s (cpu); 0.121522s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │              3 9     2 9     2 8      2 6 3       9    2 7         8
    │ │ │ │  o8 = ideal(x y  - 3x y  - 6x y z - 3x y z  + 3x*y  - x y z + 12x*y z +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │           7 2       2 5 3       6 3    7 3        5 4       3 6    9       7
    │ │ │ │       7x*y z  - 324x y z  + 6x*y z  - y z  - 15x*y z  + 3x*y z  - y  + 2x*y z
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -156,15 +156,15 @@
    │ │ │ │  Sometimes giving the variables different degrees will speed up the
    │ │ │ │  computations. Here, we set the degrees of x, y, and z to be the total degrees.
    │ │ │ │  i10 : R1 = QQ[x,y,z,s,t, Degrees=>{3,3,4,1,1}];
    │ │ │ │  i11 : I1 = substitute(I,R1);
    │ │ │ │  
    │ │ │ │  o11 : Ideal of R1
    │ │ │ │  i12 : time G = eliminate(I1,{s,t})
    │ │ │ │ - -- used 0.0600603s (cpu); 0.060069s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0460749s (cpu); 0.0460784s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               3 9     2 6 3       3 6    9     2 8         5 4      2 7
    │ │ │ │  o12 = ideal(x y  - 3x y z  + 3x*y z  - z  - 6x y z - 15x*y z  + 21y z  -
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │          2 9       2 5 3       6 3    7 3         2 6     3 6       7 2
    │ │ │ │        3x y  - 324x y z  + 6x*y z  - y z  - 405x*y z  - 3y z  + 7x*y z  -
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ @@ -227,15 +227,15 @@
    │ │ │ │  i16 : F = map(A,B,{s^3+s*t+1, t^3+3*t^2+t, s*t^3})
    │ │ │ │  
    │ │ │ │                     3             3     2         3
    │ │ │ │  o16 = map (A, B, {s  + s*t + 1, t  + 3t  + t, s*t })
    │ │ │ │  
    │ │ │ │  o16 : RingMap A <-- B
    │ │ │ │  i17 : time G = kernel F
    │ │ │ │ - -- used 0.404083s (cpu); 0.234457s (thread); 0s (gc)
    │ │ │ │ + -- used 0.320628s (cpu); 0.139295s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               3 9     2 9     2 8      2 6 3       9    2 7         8
    │ │ │ │  o17 = ideal(x y  - 3x y  - 6x y z - 3x y z  + 3x*y  - x y z + 12x*y z +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │            7 2       2 5 3       6 3    7 3        5 4       3 6    9       7
    │ │ │ │        7x*y z  - 324x y z  + 6x*y z  - y z  - 15x*y z  + 3x*y z  - y  + 2x*y z
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ @@ -296,22 +296,22 @@
    │ │ │ │  involve the variables s and t.
    │ │ │ │  i19 : use ring I
    │ │ │ │  
    │ │ │ │  o19 = R
    │ │ │ │  
    │ │ │ │  o19 : PolynomialRing
    │ │ │ │  i20 : time f1 = resultant(I_0,I_2,s)
    │ │ │ │ - -- used 0.00172022s (cpu); 0.00171993s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00135128s (cpu); 0.00134931s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │           9    9      7    3
    │ │ │ │  o20 = x*t  - t  - z*t  - z
    │ │ │ │  
    │ │ │ │  o20 : R
    │ │ │ │  i21 : time f2 = resultant(I_1,f1,t)
    │ │ │ │ - -- used 0.0562473s (cpu); 0.0562272s (thread); 0s (gc)
    │ │ │ │ + -- used 0.033369s (cpu); 0.033381s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │           3 9     2 9     2 8      2 6 3       9    2 7         8        7 2
    │ │ │ │  o21 = - x y  + 3x y  + 6x y z + 3x y z  - 3x*y  + x y z - 12x*y z - 7x*y z  +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │            2 5 3       6 3    7 3        5 4       3 6    9       7      8
    │ │ │ │        324x y z  - 6x*y z  + y z  + 15x*y z  - 3x*y z  + y  - 2x*y z + 6y z +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_end__Package.html
    │ │ │ @@ -144,15 +144,15 @@
    │ │ │                                      Version => 0.0
    │ │ │               package prefix => /usr/
    │ │ │               PackageIsLoaded => true
    │ │ │               pkgname => Foo
    │ │ │               private dictionary => Foo#"private dictionary"
    │ │ │               processed documentation => MutableHashTable{}
    │ │ │               raw documentation => MutableHashTable{}
    │ │ │ -             source directory => /tmp/M2-10387-0/88-rundir/
    │ │ │ +             source directory => /tmp/M2-10448-0/88-rundir/
    │ │ │               source file => stdio
    │ │ │               test inputs => MutableList{}
    │ │ │
    i7 : dictionaryPath
    │ │ │  
    │ │ │  o7 = {Foo.Dictionary, PackageCitations.Dictionary, Varieties.Dictionary,
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -78,15 +78,15 @@
    │ │ │ │                                      Version => 0.0
    │ │ │ │               package prefix => /usr/
    │ │ │ │               PackageIsLoaded => true
    │ │ │ │               pkgname => Foo
    │ │ │ │               private dictionary => Foo#"private dictionary"
    │ │ │ │               processed documentation => MutableHashTable{}
    │ │ │ │               raw documentation => MutableHashTable{}
    │ │ │ │ -             source directory => /tmp/M2-10387-0/88-rundir/
    │ │ │ │ +             source directory => /tmp/M2-10448-0/88-rundir/
    │ │ │ │               source file => stdio
    │ │ │ │               test inputs => MutableList{}
    │ │ │ │  i7 : dictionaryPath
    │ │ │ │  
    │ │ │ │  o7 = {Foo.Dictionary, PackageCitations.Dictionary, Varieties.Dictionary,
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       Truncations.Dictionary, Polyhedra.Dictionary, Saturation.Dictionary,
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Exists.html
    │ │ │ @@ -67,25 +67,25 @@
    │ │ │        
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10721-0/0
    │ │ │ +o1 = /tmp/M2-11100-0/0 │ │ │
    i2 : fileExists fn
    │ │ │  
    │ │ │  o2 = false
    │ │ │
    i3 : fn << "hi there" << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10721-0/0
    │ │ │ +o3 = /tmp/M2-11100-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    i4 : fileExists fn
    │ │ │  
    │ │ │  o4 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -11,21 +11,21 @@ │ │ │ │ * Inputs: │ │ │ │ o fn, a _s_t_r_i_n_g │ │ │ │ * Outputs: │ │ │ │ o a _B_o_o_l_e_a_n_ _v_a_l_u_e, whether a file with the filename or path fn exists │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10721-0/0 │ │ │ │ +o1 = /tmp/M2-11100-0/0 │ │ │ │ i2 : fileExists fn │ │ │ │ │ │ │ │ o2 = false │ │ │ │ i3 : fn << "hi there" << close │ │ │ │ │ │ │ │ -o3 = /tmp/M2-10721-0/0 │ │ │ │ +o3 = /tmp/M2-11100-0/0 │ │ │ │ │ │ │ │ o3 : File │ │ │ │ i4 : fileExists fn │ │ │ │ │ │ │ │ o4 = true │ │ │ │ i5 : removeFile fn │ │ │ │ If fn refers to a symbolic link, then whether the file exists is determined by │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Length.html │ │ │ @@ -68,34 +68,34 @@ │ │ │
    │ │ │

    Description

    │ │ │

    The length of an open output file is determined from the internal count of the number of bytes written so far.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -12,28 +12,28 @@ │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the length of the file f or the file whose name is f │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ The length of an open output file is determined from the internal count of the │ │ │ │ number of bytes written so far. │ │ │ │ i1 : f = temporaryFileName() << "hi there" │ │ │ │ │ │ │ │ -o1 = /tmp/M2-12302-0/0 │ │ │ │ +o1 = /tmp/M2-14347-0/0 │ │ │ │ │ │ │ │ o1 : File │ │ │ │ i2 : fileLength f │ │ │ │ │ │ │ │ o2 = 8 │ │ │ │ i3 : close f │ │ │ │ │ │ │ │ -o3 = /tmp/M2-12302-0/0 │ │ │ │ +o3 = /tmp/M2-14347-0/0 │ │ │ │ │ │ │ │ o3 : File │ │ │ │ i4 : filename = toString f │ │ │ │ │ │ │ │ -o4 = /tmp/M2-12302-0/0 │ │ │ │ +o4 = /tmp/M2-14347-0/0 │ │ │ │ i5 : fileLength filename │ │ │ │ │ │ │ │ o5 = 8 │ │ │ │ i6 : get filename │ │ │ │ │ │ │ │ o6 = hi there │ │ │ │ i7 : length oo │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Mode_lp__File_rp.html │ │ │ @@ -69,32 +69,32 @@ │ │ │ │ │ │
    │ │ │

    Description

    │ │ │
    i1 : f = temporaryFileName() << "hi there"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-12302-0/0
    │ │ │ +o1 = /tmp/M2-14347-0/0
    │ │ │  
    │ │ │  o1 : File
    │ │ │
    i2 : fileLength f
    │ │ │  
    │ │ │  o2 = 8
    │ │ │
    i3 : close f
    │ │ │  
    │ │ │ -o3 = /tmp/M2-12302-0/0
    │ │ │ +o3 = /tmp/M2-14347-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    i4 : filename = toString f
    │ │ │  
    │ │ │ -o4 = /tmp/M2-12302-0/0
    │ │ │ +o4 = /tmp/M2-14347-0/0 │ │ │
    i5 : fileLength filename
    │ │ │  
    │ │ │  o5 = 8
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11497-0/0
    │ │ │ +o1 = /tmp/M2-12664-0/0 │ │ │
    i2 : f = fn << "hi there"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11497-0/0
    │ │ │ +o2 = /tmp/M2-12664-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    i3 : fileMode f
    │ │ │  
    │ │ │  o3 = 420
    │ │ │
    i4 : close f
    │ │ │  
    │ │ │ -o4 = /tmp/M2-11497-0/0
    │ │ │ +o4 = /tmp/M2-12664-0/0
    │ │ │  
    │ │ │  o4 : File
    │ │ │
    i5 : removeFile fn
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -11,24 +11,24 @@ │ │ │ │ * Inputs: │ │ │ │ o f │ │ │ │ * Outputs: │ │ │ │ o the mode of the open file f │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11497-0/0 │ │ │ │ +o1 = /tmp/M2-12664-0/0 │ │ │ │ i2 : f = fn << "hi there" │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11497-0/0 │ │ │ │ +o2 = /tmp/M2-12664-0/0 │ │ │ │ │ │ │ │ o2 : File │ │ │ │ i3 : fileMode f │ │ │ │ │ │ │ │ o3 = 420 │ │ │ │ i4 : close f │ │ │ │ │ │ │ │ -o4 = /tmp/M2-11497-0/0 │ │ │ │ +o4 = /tmp/M2-12664-0/0 │ │ │ │ │ │ │ │ o4 : File │ │ │ │ i5 : removeFile fn │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _f_i_l_e_M_o_d_e_(_F_i_l_e_) -- get file mode │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Mode_lp__String_rp.html │ │ │ @@ -69,20 +69,20 @@ │ │ │
    │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -114,15 +114,15 @@ │ │ │ │ │ │ o9 = (3, 10) │ │ │ │ │ │ o9 : Sequence │ │ │ │ │ │ │ │ │ │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11114-0/0
    │ │ │ +o1 = /tmp/M2-11901-0/0 │ │ │
    i2 : fn << "hi there" << close
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11114-0/0
    │ │ │ +o2 = /tmp/M2-11901-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    i3 : fileMode fn
    │ │ │  
    │ │ │  o3 = 420
    │ │ │ ├── html2text {} │ │ │ │ @@ -11,18 +11,18 @@ │ │ │ │ * Inputs: │ │ │ │ o fn │ │ │ │ * Outputs: │ │ │ │ o the mode of the file located at the filename or path fn │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11114-0/0 │ │ │ │ +o1 = /tmp/M2-11901-0/0 │ │ │ │ i2 : fn << "hi there" << close │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11114-0/0 │ │ │ │ +o2 = /tmp/M2-11901-0/0 │ │ │ │ │ │ │ │ o2 : File │ │ │ │ i3 : fileMode fn │ │ │ │ │ │ │ │ o3 = 420 │ │ │ │ i4 : removeFile fn │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Mode_lp__Z__Z_cm__File_rp.html │ │ │ @@ -73,20 +73,20 @@ │ │ │ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10998-0/0
    │ │ │ +o1 = /tmp/M2-11665-0/0 │ │ │
    i2 : f = fn << "hi there"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10998-0/0
    │ │ │ +o2 = /tmp/M2-11665-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    i3 : m = 7 + 7*8 + 7*64
    │ │ │  
    │ │ │  o3 = 511
    │ │ │ @@ -98,15 +98,15 @@ │ │ │
    i5 : fileMode f
    │ │ │  
    │ │ │  o5 = 511
    │ │ │
    i6 : close f
    │ │ │  
    │ │ │ -o6 = /tmp/M2-10998-0/0
    │ │ │ +o6 = /tmp/M2-11665-0/0
    │ │ │  
    │ │ │  o6 : File
    │ │ │
    i7 : fileMode fn
    │ │ │  
    │ │ │  o7 = 511
    │ │ │ ├── html2text {} │ │ │ │ @@ -12,30 +12,30 @@ │ │ │ │ o mo │ │ │ │ o f │ │ │ │ * Consequences: │ │ │ │ o the mode of the open file f is set to mo │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10998-0/0 │ │ │ │ +o1 = /tmp/M2-11665-0/0 │ │ │ │ i2 : f = fn << "hi there" │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10998-0/0 │ │ │ │ +o2 = /tmp/M2-11665-0/0 │ │ │ │ │ │ │ │ o2 : File │ │ │ │ i3 : m = 7 + 7*8 + 7*64 │ │ │ │ │ │ │ │ o3 = 511 │ │ │ │ i4 : fileMode(m,f) │ │ │ │ i5 : fileMode f │ │ │ │ │ │ │ │ o5 = 511 │ │ │ │ i6 : close f │ │ │ │ │ │ │ │ -o6 = /tmp/M2-10998-0/0 │ │ │ │ +o6 = /tmp/M2-11665-0/0 │ │ │ │ │ │ │ │ o6 : File │ │ │ │ i7 : fileMode fn │ │ │ │ │ │ │ │ o7 = 511 │ │ │ │ i8 : removeFile fn │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Mode_lp__Z__Z_cm__String_rp.html │ │ │ @@ -73,20 +73,20 @@ │ │ │ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-12132-0/0
    │ │ │ +o1 = /tmp/M2-14017-0/0 │ │ │
    i2 : fn << "hi there" << close
    │ │ │  
    │ │ │ -o2 = /tmp/M2-12132-0/0
    │ │ │ +o2 = /tmp/M2-14017-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    i3 : m = fileMode fn
    │ │ │  
    │ │ │  o3 = 420
    │ │ │ ├── html2text {} │ │ │ │ @@ -13,18 +13,18 @@ │ │ │ │ o fn │ │ │ │ * Consequences: │ │ │ │ o the mode of the file located at the filename or path fn is set to │ │ │ │ mo │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-12132-0/0 │ │ │ │ +o1 = /tmp/M2-14017-0/0 │ │ │ │ i2 : fn << "hi there" << close │ │ │ │ │ │ │ │ -o2 = /tmp/M2-12132-0/0 │ │ │ │ +o2 = /tmp/M2-14017-0/0 │ │ │ │ │ │ │ │ o2 : File │ │ │ │ i3 : m = fileMode fn │ │ │ │ │ │ │ │ o3 = 420 │ │ │ │ i4 : fileMode(m|7,fn) │ │ │ │ i5 : fileMode fn │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Time.html │ │ │ @@ -77,15 +77,15 @@ │ │ │ │ │ │
    │ │ │

    Description

    │ │ │ The value is the number of seconds since 00:00:00 1970-01-01 UTC, the beginning of the epoch, so the number of seconds ago a file or directory was modified may be found by using the following code. │ │ │ │ │ │ │ │ │
    i1 : currentTime() - fileTime "."
    │ │ │  
    │ │ │ -o1 = 48
    │ │ │ +o1 = 39 │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │
    • │ │ │ ├── html2text {} │ │ │ │ @@ -19,13 +19,13 @@ │ │ │ │ returns null if no error occurs │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ The value is the number of seconds since 00:00:00 1970-01-01 UTC, the beginning │ │ │ │ of the epoch, so the number of seconds ago a file or directory was modified may │ │ │ │ be found by using the following code. │ │ │ │ i1 : currentTime() - fileTime "." │ │ │ │ │ │ │ │ -o1 = 48 │ │ │ │ +o1 = 39 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_u_r_r_e_n_t_T_i_m_e -- get the current time │ │ │ │ * _f_i_l_e_ _m_a_n_i_p_u_l_a_t_i_o_n -- Unix file manipulation functions │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _f_i_l_e_T_i_m_e is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_force__G__B_lp..._cm__Syzygy__Matrix_eq_gt..._rp.html │ │ │ @@ -106,15 +106,15 @@ │ │ │ │ │ │ 3 3 │ │ │ o6 : Matrix R <-- R │ │ │
    i7 : syz f
    │ │ │  
    │ │ │ -   -- registering gb 0 at 0x7f53c265d000
    │ │ │ +   -- registering gb 0 at 0x7f598969b000
    │ │ │  
    │ │ │     -- [gb]{2}(1)m{3}(1)m{4}(1)m{5}(1)z{6}(1)z{7}(1)znumber of (nonminimal) gb elements = 3
    │ │ │     -- number of monomials                = 9
    │ │ │     -- #reduction steps = 6
    │ │ │     -- #spairs done = 6
    │ │ │     -- ncalls = 0
    │ │ │     -- nloop = 0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -37,15 +37,15 @@
    │ │ │ │       {3} | x2-3  0     -z4+2 |
    │ │ │ │       {4} | 0     x2-3  y3-1  |
    │ │ │ │  
    │ │ │ │               3      3
    │ │ │ │  o6 : Matrix R  <-- R
    │ │ │ │  i7 : syz f
    │ │ │ │  
    │ │ │ │ -   -- registering gb 0 at 0x7f53c265d000
    │ │ │ │ +   -- registering gb 0 at 0x7f598969b000
    │ │ │ │  
    │ │ │ │     -- [gb]{2}(1)m{3}(1)m{4}(1)m{5}(1)z{6}(1)z{7}(1)znumber of (nonminimal) gb
    │ │ │ │  elements = 3
    │ │ │ │     -- number of monomials                = 9
    │ │ │ │     -- #reduction steps = 6
    │ │ │ │     -- #spairs done = 6
    │ │ │ │     -- ncalls = 0
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_get.html
    │ │ │ @@ -90,15 +90,15 @@
    │ │ │  
    i3 : removeFile "test-file"
    │ │ │
    i4 : get "!date"
    │ │ │  
    │ │ │ -o4 = Sun Feb  9 23:55:06 UTC 2025
    │ │ │ +o4 = Sat Jul 19 03:40:58 UTC 2025 │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │
    • │ │ │ ├── html2text {} │ │ │ │ @@ -25,15 +25,15 @@ │ │ │ │ o1 : File │ │ │ │ i2 : get "test-file" │ │ │ │ │ │ │ │ o2 = hi there │ │ │ │ i3 : removeFile "test-file" │ │ │ │ i4 : get "!date" │ │ │ │ │ │ │ │ -o4 = Sun Feb 9 23:55:06 UTC 2025 │ │ │ │ +o4 = Sat Jul 19 03:40:58 UTC 2025 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_a_d -- read from a file │ │ │ │ * _r_e_m_o_v_e_F_i_l_e -- remove a file │ │ │ │ * _c_l_o_s_e -- close a file │ │ │ │ * _F_i_l_e_ _<_<_ _T_h_i_n_g -- print to a file │ │ │ │ ********** WWaayyss ttoo uussee ggeett:: ********** │ │ │ │ * get(File) │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_instances_lp__Type_rp.html │ │ │ @@ -83,15 +83,15 @@ │ │ │ defaultPrecision => 53 │ │ │ engineDebugLevel => 0 │ │ │ errorDepth => 0 │ │ │ gbTrace => 0 │ │ │ interpreterDepth => 1 │ │ │ lineNumber => 2 │ │ │ loadDepth => 3 │ │ │ - maxAllowableThreads => 7 │ │ │ + maxAllowableThreads => 17 │ │ │ maxExponent => 1073741823 │ │ │ minExponent => -1073741824 │ │ │ numTBBThreads => 0 │ │ │ o1 => 2432902008176640000 │ │ │ oo => 2432902008176640000 │ │ │ printingAccuracy => -1 │ │ │ printingLeadLimit => 5 │ │ │ ├── html2text {} │ │ │ │ @@ -24,15 +24,15 @@ │ │ │ │ defaultPrecision => 53 │ │ │ │ engineDebugLevel => 0 │ │ │ │ errorDepth => 0 │ │ │ │ gbTrace => 0 │ │ │ │ interpreterDepth => 1 │ │ │ │ lineNumber => 2 │ │ │ │ loadDepth => 3 │ │ │ │ - maxAllowableThreads => 7 │ │ │ │ + maxAllowableThreads => 17 │ │ │ │ maxExponent => 1073741823 │ │ │ │ minExponent => -1073741824 │ │ │ │ numTBBThreads => 0 │ │ │ │ o1 => 2432902008176640000 │ │ │ │ oo => 2432902008176640000 │ │ │ │ printingAccuracy => -1 │ │ │ │ printingLeadLimit => 5 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_is__Canceled_lp__Task_rp.html │ │ │ @@ -74,15 +74,15 @@ │ │ │
    i1 : n = 0
    │ │ │  
    │ │ │  o1 = 0
    │ │ │
    i2 : t = schedule(() -> while true do n = n + 1)
    │ │ │  
    │ │ │ -o2 = <<task, created>>
    │ │ │ +o2 = <<task, running>>
    │ │ │  
    │ │ │  o2 : Task
    │ │ │
    i3 : sleep 1
    │ │ │  
    │ │ │  o3 = 0
    │ │ │ ├── html2text {} │ │ │ │ @@ -15,15 +15,15 @@ │ │ │ │ o whether the task t has been canceled │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : n = 0 │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ i2 : t = schedule(() -> while true do n = n + 1) │ │ │ │ │ │ │ │ -o2 = <> │ │ │ │ +o2 = <> │ │ │ │ │ │ │ │ o2 : Task │ │ │ │ i3 : sleep 1 │ │ │ │ │ │ │ │ o3 = 0 │ │ │ │ i4 : isCanceled t │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_is__Directory.html │ │ │ @@ -72,20 +72,20 @@ │ │ │
    i1 : isDirectory "."
    │ │ │  
    │ │ │  o1 = true
    │ │ │
    i2 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10543-0/0
    │ │ │ +o2 = /tmp/M2-10742-0/0 │ │ │
    i3 : fn << "hi there" << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10543-0/0
    │ │ │ +o3 = /tmp/M2-10742-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    i4 : isDirectory fn
    │ │ │  
    │ │ │  o4 = false
    │ │ │ ├── html2text {} │ │ │ │ @@ -14,18 +14,18 @@ │ │ │ │ o a _B_o_o_l_e_a_n_ _v_a_l_u_e, whether fn is the path to a directory │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : isDirectory "." │ │ │ │ │ │ │ │ o1 = true │ │ │ │ i2 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10543-0/0 │ │ │ │ +o2 = /tmp/M2-10742-0/0 │ │ │ │ i3 : fn << "hi there" << close │ │ │ │ │ │ │ │ -o3 = /tmp/M2-10543-0/0 │ │ │ │ +o3 = /tmp/M2-10742-0/0 │ │ │ │ │ │ │ │ o3 : File │ │ │ │ i4 : isDirectory fn │ │ │ │ │ │ │ │ o4 = false │ │ │ │ i5 : removeFile fn │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_is__Pseudoprime_lp__Z__Z_rp.html │ │ │ @@ -175,15 +175,15 @@ │ │ │
    i18 : isPrime(m*m*m1*m1*m2^6)
    │ │ │  
    │ │ │  o18 = false
    │ │ │
    i19 : elapsedTime facs = factor(m*m1)
    │ │ │ - -- 4.34633s elapsed
    │ │ │ + -- 4.34639s elapsed
    │ │ │  
    │ │ │  o19 = 1000000000000000000000000000057*1000000000000000000010000000083
    │ │ │  
    │ │ │  o19 : Expression of class Product
    │ │ │
    i20 : facs = facs//toList/toList
    │ │ │ @@ -201,21 +201,21 @@
    │ │ │  
    i22 : m3 = nextPrime (m^3)
    │ │ │  
    │ │ │  o22 = 10000000000000000000000000001710000000000000000000000000097470000000000
    │ │ │        00000000000000185613
    │ │ │
    i23 : elapsedTime isPrime m3
    │ │ │ - -- .0563776s elapsed
    │ │ │ + -- .0467009s elapsed
    │ │ │  
    │ │ │  o23 = true
    │ │ │
    i24 : elapsedTime isPseudoprime m3
    │ │ │ - -- .000134241s elapsed
    │ │ │ + -- .000125735s elapsed
    │ │ │  
    │ │ │  o24 = true
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ i17 : isPrime (m*m1) │ │ │ │ │ │ │ │ o17 = false │ │ │ │ i18 : isPrime(m*m*m1*m1*m2^6) │ │ │ │ │ │ │ │ o18 = false │ │ │ │ i19 : elapsedTime facs = factor(m*m1) │ │ │ │ - -- 4.34633s elapsed │ │ │ │ + -- 4.34639s elapsed │ │ │ │ │ │ │ │ o19 = 1000000000000000000000000000057*1000000000000000000010000000083 │ │ │ │ │ │ │ │ o19 : Expression of class Product │ │ │ │ i20 : facs = facs//toList/toList │ │ │ │ │ │ │ │ o20 = {{1000000000000000000000000000057, 1}, │ │ │ │ @@ -98,19 +98,19 @@ │ │ │ │ o20 : List │ │ │ │ i21 : assert(set facs === set {{m,1}, {m1,1}}) │ │ │ │ i22 : m3 = nextPrime (m^3) │ │ │ │ │ │ │ │ o22 = 10000000000000000000000000001710000000000000000000000000097470000000000 │ │ │ │ 00000000000000185613 │ │ │ │ i23 : elapsedTime isPrime m3 │ │ │ │ - -- .0563776s elapsed │ │ │ │ + -- .0467009s elapsed │ │ │ │ │ │ │ │ o23 = true │ │ │ │ i24 : elapsedTime isPseudoprime m3 │ │ │ │ - -- .000134241s elapsed │ │ │ │ + -- .000125735s elapsed │ │ │ │ │ │ │ │ o24 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_P_r_i_m_e_(_Z_Z_) -- whether a integer or polynomial is prime │ │ │ │ * _f_a_c_t_o_r_(_Z_Z_) -- factor a ring element │ │ │ │ * _n_e_x_t_P_r_i_m_e_(_N_u_m_b_e_r_) -- compute the smallest prime greater than or equal to │ │ │ │ a given number │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_is__Regular__File.html │ │ │ @@ -67,20 +67,20 @@ │ │ │
    │ │ │
    │ │ │

    Description

    │ │ │ In UNIX, a regular file is one that is not special in some way. Special files include symbolic links and directories. A regular file is a sequence of bytes stored permanently in a file system. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-12340-0/0
    │ │ │ +o1 = /tmp/M2-14425-0/0 │ │ │
    i2 : fn << "hi there" << close
    │ │ │  
    │ │ │ -o2 = /tmp/M2-12340-0/0
    │ │ │ +o2 = /tmp/M2-14425-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    i3 : isRegularFile fn
    │ │ │  
    │ │ │  o3 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -14,18 +14,18 @@ │ │ │ │ o a _B_o_o_l_e_a_n_ _v_a_l_u_e, whether fn is the path to a regular file │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ In UNIX, a regular file is one that is not special in some way. Special files │ │ │ │ include symbolic links and directories. A regular file is a sequence of bytes │ │ │ │ stored permanently in a file system. │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-12340-0/0 │ │ │ │ +o1 = /tmp/M2-14425-0/0 │ │ │ │ i2 : fn << "hi there" << close │ │ │ │ │ │ │ │ -o2 = /tmp/M2-12340-0/0 │ │ │ │ +o2 = /tmp/M2-14425-0/0 │ │ │ │ │ │ │ │ o2 : File │ │ │ │ i3 : isRegularFile fn │ │ │ │ │ │ │ │ o3 = true │ │ │ │ i4 : removeFile fn │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_make__Directory_lp__String_rp.html │ │ │ @@ -77,20 +77,20 @@ │ │ │ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -14,18 +14,18 @@ │ │ │ │ * Outputs: │ │ │ │ o a _s_t_r_i_n_g, the name of the newly made directory │ │ │ │ * Consequences: │ │ │ │ o the directory is made, with as many new path components as needed │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10866-0/0 │ │ │ │ +o1 = /tmp/M2-11393-0/0 │ │ │ │ i2 : makeDirectory (dir|"/a/b/c") │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10866-0/0/a/b/c │ │ │ │ +o2 = /tmp/M2-11393-0/0/a/b/c │ │ │ │ i3 : removeDirectory (dir|"/a/b/c") │ │ │ │ i4 : removeDirectory (dir|"/a/b") │ │ │ │ i5 : removeDirectory (dir|"/a") │ │ │ │ A filename starting with ~/ will have the tilde replaced by the home directory. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_k_d_i_r │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max__Allowable__Threads.html │ │ │ @@ -61,15 +61,15 @@ │ │ │ │ │ │
    │ │ │

    Description

    │ │ │
    i1 : dir = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10866-0/0
    │ │ │ +o1 = /tmp/M2-11393-0/0 │ │ │
    i2 : makeDirectory (dir|"/a/b/c")
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10866-0/0/a/b/c
    │ │ │ +o2 = /tmp/M2-11393-0/0/a/b/c │ │ │
    i3 : removeDirectory (dir|"/a/b/c")
    │ │ │
    i4 : removeDirectory (dir|"/a/b")
    │ │ │
    │ │ │ │ │ │ │ │ │
    i1 : maxAllowableThreads
    │ │ │  
    │ │ │ -o1 = 7
    │ │ │ +o1 = 17 │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │
    • │ │ │ ├── html2text {} │ │ │ │ @@ -10,12 +10,12 @@ │ │ │ │ * Usage: │ │ │ │ maxAllowableThreads │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the maximum number to which _a_l_l_o_w_a_b_l_e_T_h_r_e_a_d_s can be set │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : maxAllowableThreads │ │ │ │ │ │ │ │ -o1 = 7 │ │ │ │ +o1 = 17 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _p_a_r_a_l_l_e_l_ _p_r_o_g_r_a_m_m_i_n_g_ _w_i_t_h_ _t_h_r_e_a_d_s_ _a_n_d_ _t_a_s_k_s │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _m_a_x_A_l_l_o_w_a_b_l_e_T_h_r_e_a_d_s is an _i_n_t_e_g_e_r. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_memoize.html │ │ │ @@ -51,34 +51,34 @@ │ │ │ │ │ │ o1 = fib │ │ │ │ │ │ o1 : FunctionClosure │ │ │
    i2 : time fib 28
    │ │ │ - -- used 1.31977s (cpu); 0.95198s (thread); 0s (gc)
    │ │ │ + -- used 0.894368s (cpu); 0.618538s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 514229
    │ │ │
    i3 : fib = memoize fib
    │ │ │  
    │ │ │  o3 = fib
    │ │ │  
    │ │ │  o3 : FunctionClosure
    │ │ │
    i4 : time fib 28
    │ │ │ - -- used 6.6595e-05s (cpu); 6.6164e-05s (thread); 0s (gc)
    │ │ │ + -- used 4.8801e-05s (cpu); 4.8141e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 514229
    │ │ │
    i5 : time fib 28
    │ │ │ - -- used 4.138e-06s (cpu); 3.807e-06s (thread); 0s (gc)
    │ │ │ + -- used 2.916e-06s (cpu); 2.365e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 514229
    │ │ │
    │ │ │

    An optional second argument to memoize provides a list of initial values, each of the form x => v, where v is the value to be provided for the argument x.

    │ │ │

    Alternatively, values can be provided after defining the memoized function using the syntax f x = v. A slightly more efficient implementation of the above would be

    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -10,28 +10,28 @@ │ │ │ │ arguments are presented. │ │ │ │ i1 : fib = n -> if n <= 1 then 1 else fib(n-1) + fib(n-2) │ │ │ │ │ │ │ │ o1 = fib │ │ │ │ │ │ │ │ o1 : FunctionClosure │ │ │ │ i2 : time fib 28 │ │ │ │ - -- used 1.31977s (cpu); 0.95198s (thread); 0s (gc) │ │ │ │ + -- used 0.894368s (cpu); 0.618538s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 514229 │ │ │ │ i3 : fib = memoize fib │ │ │ │ │ │ │ │ o3 = fib │ │ │ │ │ │ │ │ o3 : FunctionClosure │ │ │ │ i4 : time fib 28 │ │ │ │ - -- used 6.6595e-05s (cpu); 6.6164e-05s (thread); 0s (gc) │ │ │ │ + -- used 4.8801e-05s (cpu); 4.8141e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 514229 │ │ │ │ i5 : time fib 28 │ │ │ │ - -- used 4.138e-06s (cpu); 3.807e-06s (thread); 0s (gc) │ │ │ │ + -- used 2.916e-06s (cpu); 2.365e-06s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 514229 │ │ │ │ An optional second argument to memoize provides a list of initial values, each │ │ │ │ of the form x => v, where v is the value to be provided for the argument x. │ │ │ │ Alternatively, values can be provided after defining the memoized function │ │ │ │ using the syntax f x = v. A slightly more efficient implementation of the above │ │ │ │ would be │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_methods.html │ │ │ @@ -86,20 +86,20 @@ │ │ │ {13 => (poincare, BettiTally) } │ │ │ {14 => (hilbertPolynomial, ZZ, BettiTally) } │ │ │ {15 => (degree, BettiTally) } │ │ │ {16 => (hilbertSeries, ZZ, BettiTally) } │ │ │ {17 => (^, Ring, BettiTally) } │ │ │ {18 => (regularity, BettiTally) } │ │ │ {19 => (mathML, BettiTally) } │ │ │ - {20 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)} │ │ │ - {21 => (truncate, BettiTally, ZZ, ZZ) } │ │ │ - {22 => (codim, BettiTally) } │ │ │ - {23 => (truncate, BettiTally, InfiniteNumber, ZZ) } │ │ │ - {24 => (truncate, BettiTally, ZZ, InfiniteNumber) } │ │ │ - {25 => (dual, BettiTally) } │ │ │ + {20 => (dual, BettiTally) } │ │ │ + {21 => (codim, BettiTally) } │ │ │ + {22 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)} │ │ │ + {23 => (truncate, BettiTally, ZZ, ZZ) } │ │ │ + {24 => (truncate, BettiTally, InfiniteNumber, ZZ) } │ │ │ + {25 => (truncate, BettiTally, ZZ, InfiniteNumber) } │ │ │ │ │ │ o1 : NumberedVerticalList │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : methods resolution
    │ │ │  
    │ │ │  o2 = {0 => (resolution, Ideal) }
    │ │ │ @@ -186,20 +186,20 @@
    │ │ │                
    │ │ │              
    │ │ │            
    │ │ │            
    │ │ │              
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │          
    i5 : methods( Matrix, Matrix )
    │ │ │  
    │ │ │ -o5 = {0 => (+, Matrix, Matrix)                                   }
    │ │ │ -     {1 => (-, Matrix, Matrix)                                   }
    │ │ │ -     {2 => (contract', Matrix, Matrix)                           }
    │ │ │ -     {3 => (contract, Matrix, Matrix)                            }
    │ │ │ -     {4 => (diff, Matrix, Matrix)                                }
    │ │ │ -     {5 => (diff', Matrix, Matrix)                               }
    │ │ │ +o5 = {0 => (diff, Matrix, Matrix)                                }
    │ │ │ +     {1 => (contract, Matrix, Matrix)                            }
    │ │ │ +     {2 => (diff', Matrix, Matrix)                               }
    │ │ │ +     {3 => (-, Matrix, Matrix)                                   }
    │ │ │ +     {4 => (contract', Matrix, Matrix)                           }
    │ │ │ +     {5 => (+, Matrix, Matrix)                                   }
    │ │ │       {6 => (markedGB, Matrix, Matrix)                            }
    │ │ │       {7 => (Hom, Matrix, Matrix)                                 }
    │ │ │       {8 => (==, Matrix, Matrix)                                  }
    │ │ │       {9 => (*, Matrix, Matrix)                                   }
    │ │ │       {10 => (|, Matrix, Matrix)                                  }
    │ │ │       {11 => (||, Matrix, Matrix)                                 }
    │ │ │       {12 => (subquotient, Matrix, Matrix)                        }
    │ │ │ @@ -214,18 +214,18 @@
    │ │ │       {21 => (quotient', Matrix, Matrix)                          }
    │ │ │       {22 => (quotient, Matrix, Matrix)                           }
    │ │ │       {23 => (remainder', Matrix, Matrix)                         }
    │ │ │       {24 => (remainder, Matrix, Matrix)                          }
    │ │ │       {25 => (%, Matrix, Matrix)                                  }
    │ │ │       {26 => (pushout, Matrix, Matrix)                            }
    │ │ │       {27 => (solve, Matrix, Matrix)                              }
    │ │ │ -     {28 => (intersection, Matrix, Matrix, Matrix, Matrix)       }
    │ │ │ -     {29 => (pullback, Matrix, Matrix)                           }
    │ │ │ -     {30 => (tensor, Matrix, Matrix)                             }
    │ │ │ -     {31 => (intersection, Matrix, Matrix)                       }
    │ │ │ +     {28 => (pullback, Matrix, Matrix)                           }
    │ │ │ +     {29 => (intersection, Matrix, Matrix, Matrix, Matrix)       }
    │ │ │ +     {30 => (intersection, Matrix, Matrix)                       }
    │ │ │ +     {31 => (tensor, Matrix, Matrix)                             }
    │ │ │       {32 => (substitute, Matrix, Matrix)                         }
    │ │ │       {33 => (checkDegrees, Matrix, Matrix)                       }
    │ │ │       {34 => (isIsomorphic, Matrix, Matrix)                       }
    │ │ │       {35 => (coneFromVData, Matrix, Matrix)                      }
    │ │ │       {36 => (coneFromHData, Matrix, Matrix)                      }
    │ │ │       {37 => (fan, Matrix, Matrix, List)                          }
    │ │ │       {38 => (fan, Matrix, Matrix, Sequence)                      }
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -30,20 +30,20 @@
    │ │ │ │       {13 => (poincare, BettiTally)                                }
    │ │ │ │       {14 => (hilbertPolynomial, ZZ, BettiTally)                   }
    │ │ │ │       {15 => (degree, BettiTally)                                  }
    │ │ │ │       {16 => (hilbertSeries, ZZ, BettiTally)                       }
    │ │ │ │       {17 => (^, Ring, BettiTally)                                 }
    │ │ │ │       {18 => (regularity, BettiTally)                              }
    │ │ │ │       {19 => (mathML, BettiTally)                                  }
    │ │ │ │ -     {20 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)}
    │ │ │ │ -     {21 => (truncate, BettiTally, ZZ, ZZ)                        }
    │ │ │ │ -     {22 => (codim, BettiTally)                                   }
    │ │ │ │ -     {23 => (truncate, BettiTally, InfiniteNumber, ZZ)            }
    │ │ │ │ -     {24 => (truncate, BettiTally, ZZ, InfiniteNumber)            }
    │ │ │ │ -     {25 => (dual, BettiTally)                                    }
    │ │ │ │ +     {20 => (dual, BettiTally)                                    }
    │ │ │ │ +     {21 => (codim, BettiTally)                                   }
    │ │ │ │ +     {22 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)}
    │ │ │ │ +     {23 => (truncate, BettiTally, ZZ, ZZ)                        }
    │ │ │ │ +     {24 => (truncate, BettiTally, InfiniteNumber, ZZ)            }
    │ │ │ │ +     {25 => (truncate, BettiTally, ZZ, InfiniteNumber)            }
    │ │ │ │  
    │ │ │ │  o1 : NumberedVerticalList
    │ │ │ │  i2 : methods resolution
    │ │ │ │  
    │ │ │ │  o2 = {0 => (resolution, Ideal) }
    │ │ │ │       {1 => (resolution, Module)}
    │ │ │ │       {2 => (resolution, Matrix)}
    │ │ │ │ @@ -85,20 +85,20 @@
    │ │ │ │      * Inputs:
    │ │ │ │            o X, a _t_y_p_e
    │ │ │ │            o Y, a _t_y_p_e
    │ │ │ │      * Outputs:
    │ │ │ │            o a _v_e_r_t_i_c_a_l_ _l_i_s_t of those methods associated with
    │ │ │ │  i5 : methods( Matrix, Matrix )
    │ │ │ │  
    │ │ │ │ -o5 = {0 => (+, Matrix, Matrix)                                   }
    │ │ │ │ -     {1 => (-, Matrix, Matrix)                                   }
    │ │ │ │ -     {2 => (contract', Matrix, Matrix)                           }
    │ │ │ │ -     {3 => (contract, Matrix, Matrix)                            }
    │ │ │ │ -     {4 => (diff, Matrix, Matrix)                                }
    │ │ │ │ -     {5 => (diff', Matrix, Matrix)                               }
    │ │ │ │ +o5 = {0 => (diff, Matrix, Matrix)                                }
    │ │ │ │ +     {1 => (contract, Matrix, Matrix)                            }
    │ │ │ │ +     {2 => (diff', Matrix, Matrix)                               }
    │ │ │ │ +     {3 => (-, Matrix, Matrix)                                   }
    │ │ │ │ +     {4 => (contract', Matrix, Matrix)                           }
    │ │ │ │ +     {5 => (+, Matrix, Matrix)                                   }
    │ │ │ │       {6 => (markedGB, Matrix, Matrix)                            }
    │ │ │ │       {7 => (Hom, Matrix, Matrix)                                 }
    │ │ │ │       {8 => (==, Matrix, Matrix)                                  }
    │ │ │ │       {9 => (*, Matrix, Matrix)                                   }
    │ │ │ │       {10 => (|, Matrix, Matrix)                                  }
    │ │ │ │       {11 => (||, Matrix, Matrix)                                 }
    │ │ │ │       {12 => (subquotient, Matrix, Matrix)                        }
    │ │ │ │ @@ -113,18 +113,18 @@
    │ │ │ │       {21 => (quotient', Matrix, Matrix)                          }
    │ │ │ │       {22 => (quotient, Matrix, Matrix)                           }
    │ │ │ │       {23 => (remainder', Matrix, Matrix)                         }
    │ │ │ │       {24 => (remainder, Matrix, Matrix)                          }
    │ │ │ │       {25 => (%, Matrix, Matrix)                                  }
    │ │ │ │       {26 => (pushout, Matrix, Matrix)                            }
    │ │ │ │       {27 => (solve, Matrix, Matrix)                              }
    │ │ │ │ -     {28 => (intersection, Matrix, Matrix, Matrix, Matrix)       }
    │ │ │ │ -     {29 => (pullback, Matrix, Matrix)                           }
    │ │ │ │ -     {30 => (tensor, Matrix, Matrix)                             }
    │ │ │ │ -     {31 => (intersection, Matrix, Matrix)                       }
    │ │ │ │ +     {28 => (pullback, Matrix, Matrix)                           }
    │ │ │ │ +     {29 => (intersection, Matrix, Matrix, Matrix, Matrix)       }
    │ │ │ │ +     {30 => (intersection, Matrix, Matrix)                       }
    │ │ │ │ +     {31 => (tensor, Matrix, Matrix)                             }
    │ │ │ │       {32 => (substitute, Matrix, Matrix)                         }
    │ │ │ │       {33 => (checkDegrees, Matrix, Matrix)                       }
    │ │ │ │       {34 => (isIsomorphic, Matrix, Matrix)                       }
    │ │ │ │       {35 => (coneFromVData, Matrix, Matrix)                      }
    │ │ │ │       {36 => (coneFromHData, Matrix, Matrix)                      }
    │ │ │ │       {37 => (fan, Matrix, Matrix, List)                          }
    │ │ │ │       {38 => (fan, Matrix, Matrix, Sequence)                      }
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_minimal__Betti.html
    │ │ │ @@ -97,15 +97,15 @@
    │ │ │  
    │ │ │  o2 = S
    │ │ │  
    │ │ │  o2 : PolynomialRing
    │ │ │
    i3 : elapsedTime C = minimalBetti I
    │ │ │ - -- 2.37905s elapsed
    │ │ │ + -- 4.50648s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5   6   7   8  9 10
    │ │ │  o3 = total: 1 35 140 385 819 1080 819 385 140 35  1
    │ │ │           0: 1  .   .   .   .    .   .   .   .  .  .
    │ │ │           1: . 35 140 189  84    .   .   .   .  .  .
    │ │ │           2: .  .   . 196 735 1080 735 196   .  .  .
    │ │ │           3: .  .   .   .   .    .  84 189 140 35  .
    │ │ │ @@ -121,15 +121,15 @@
    │ │ │            
    i4 : I = ideal I_*;
    │ │ │  
    │ │ │  o4 : Ideal of S
    │ │ │
    i5 : elapsedTime C = minimalBetti(I, DegreeLimit=>2)
    │ │ │ - -- .748075s elapsed
    │ │ │ + -- 1.64364s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5   6   7
    │ │ │  o5 = total: 1 35 140 385 819 1080 735 196
    │ │ │           0: 1  .   .   .   .    .   .   .
    │ │ │           1: . 35 140 189  84    .   .   .
    │ │ │           2: .  .   . 196 735 1080 735 196
    │ │ │  
    │ │ │ @@ -138,15 +138,15 @@
    │ │ │            
    i6 : I = ideal I_*;
    │ │ │  
    │ │ │  o6 : Ideal of S
    │ │ │
    i7 : elapsedTime C = minimalBetti(I, DegreeLimit=>1, LengthLimit=>5)
    │ │ │ - -- .0319761s elapsed
    │ │ │ + -- .0578398s elapsed
    │ │ │  
    │ │ │              0  1   2   3  4
    │ │ │  o7 = total: 1 35 140 189 84
    │ │ │           0: 1  .   .   .  .
    │ │ │           1: . 35 140 189 84
    │ │ │  
    │ │ │  o7 : BettiTally
    │ │ │ @@ -154,15 +154,15 @@ │ │ │
    i8 : I = ideal I_*;
    │ │ │  
    │ │ │  o8 : Ideal of S
    │ │ │
    i9 : elapsedTime C = minimalBetti(I, LengthLimit=>5)
    │ │ │ - -- 1.22946s elapsed
    │ │ │ + -- 1.38309s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5
    │ │ │  o9 = total: 1 35 140 385 819 1080
    │ │ │           0: 1  .   .   .   .    .
    │ │ │           1: . 35 140 189  84    .
    │ │ │           2: .  .   . 196 735 1080
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -44,15 +44,15 @@
    │ │ │ │  0,5   1,5   2,5   3,5   4,5   0,6   1,6   2,6   3,6   4,6   5,6
    │ │ │ │  i2 : S = ring I
    │ │ │ │  
    │ │ │ │  o2 = S
    │ │ │ │  
    │ │ │ │  o2 : PolynomialRing
    │ │ │ │  i3 : elapsedTime C = minimalBetti I
    │ │ │ │ - -- 2.37905s elapsed
    │ │ │ │ + -- 4.50648s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4    5   6   7   8  9 10
    │ │ │ │  o3 = total: 1 35 140 385 819 1080 819 385 140 35  1
    │ │ │ │           0: 1  .   .   .   .    .   .   .   .  .  .
    │ │ │ │           1: . 35 140 189  84    .   .   .   .  .  .
    │ │ │ │           2: .  .   . 196 735 1080 735 196   .  .  .
    │ │ │ │           3: .  .   .   .   .    .  84 189 140 35  .
    │ │ │ │ @@ -61,40 +61,40 @@
    │ │ │ │  o3 : BettiTally
    │ │ │ │  One can compute smaller parts of the Betti table, by using _D_e_g_r_e_e_L_i_m_i_t and/or
    │ │ │ │  _L_e_n_g_t_h_L_i_m_i_t.
    │ │ │ │  i4 : I = ideal I_*;
    │ │ │ │  
    │ │ │ │  o4 : Ideal of S
    │ │ │ │  i5 : elapsedTime C = minimalBetti(I, DegreeLimit=>2)
    │ │ │ │ - -- .748075s elapsed
    │ │ │ │ + -- 1.64364s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4    5   6   7
    │ │ │ │  o5 = total: 1 35 140 385 819 1080 735 196
    │ │ │ │           0: 1  .   .   .   .    .   .   .
    │ │ │ │           1: . 35 140 189  84    .   .   .
    │ │ │ │           2: .  .   . 196 735 1080 735 196
    │ │ │ │  
    │ │ │ │  o5 : BettiTally
    │ │ │ │  i6 : I = ideal I_*;
    │ │ │ │  
    │ │ │ │  o6 : Ideal of S
    │ │ │ │  i7 : elapsedTime C = minimalBetti(I, DegreeLimit=>1, LengthLimit=>5)
    │ │ │ │ - -- .0319761s elapsed
    │ │ │ │ + -- .0578398s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3  4
    │ │ │ │  o7 = total: 1 35 140 189 84
    │ │ │ │           0: 1  .   .   .  .
    │ │ │ │           1: . 35 140 189 84
    │ │ │ │  
    │ │ │ │  o7 : BettiTally
    │ │ │ │  i8 : I = ideal I_*;
    │ │ │ │  
    │ │ │ │  o8 : Ideal of S
    │ │ │ │  i9 : elapsedTime C = minimalBetti(I, LengthLimit=>5)
    │ │ │ │ - -- 1.22946s elapsed
    │ │ │ │ + -- 1.38309s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4    5
    │ │ │ │  o9 = total: 1 35 140 385 819 1080
    │ │ │ │           0: 1  .   .   .   .    .
    │ │ │ │           1: . 35 140 189  84    .
    │ │ │ │           2: .  .   . 196 735 1080
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_mkdir.html
    │ │ │ @@ -70,28 +70,28 @@
    │ │ │        
    │ │ │

    Description

    │ │ │

    Only one directory will be made, so the components of the path p other than the last must already exist.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : p = temporaryFileName() | "/"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10885-0/0/
    │ │ │ +o1 = /tmp/M2-11432-0/0/ │ │ │
    i2 : mkdir p
    │ │ │
    i3 : isDirectory p
    │ │ │  
    │ │ │  o3 = true
    │ │ │
    i4 : (fn = p | "foo") << "hi there" << close
    │ │ │  
    │ │ │ -o4 = /tmp/M2-10885-0/0/foo
    │ │ │ +o4 = /tmp/M2-11432-0/0/foo
    │ │ │  
    │ │ │  o4 : File
    │ │ │
    i5 : get fn
    │ │ │  
    │ │ │  o5 = hi there
    │ │ │ ├── html2text {} │ │ │ │ @@ -12,22 +12,22 @@ │ │ │ │ * Consequences: │ │ │ │ o a directory will be created at the path p │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Only one directory will be made, so the components of the path p other than the │ │ │ │ last must already exist. │ │ │ │ i1 : p = temporaryFileName() | "/" │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10885-0/0/ │ │ │ │ +o1 = /tmp/M2-11432-0/0/ │ │ │ │ i2 : mkdir p │ │ │ │ i3 : isDirectory p │ │ │ │ │ │ │ │ o3 = true │ │ │ │ i4 : (fn = p | "foo") << "hi there" << close │ │ │ │ │ │ │ │ -o4 = /tmp/M2-10885-0/0/foo │ │ │ │ +o4 = /tmp/M2-11432-0/0/foo │ │ │ │ │ │ │ │ o4 : File │ │ │ │ i5 : get fn │ │ │ │ │ │ │ │ o5 = hi there │ │ │ │ i6 : removeFile fn │ │ │ │ i7 : removeDirectory p │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_move__File_lp__String_cm__String_rp.html │ │ │ @@ -85,42 +85,42 @@ │ │ │ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : src = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10759-0/0
    │ │ │ +o1 = /tmp/M2-11178-0/0 │ │ │
    i2 : dst = temporaryFileName()
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10759-0/1
    │ │ │ +o2 = /tmp/M2-11178-0/1 │ │ │
    i3 : src << "hi there" << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10759-0/0
    │ │ │ +o3 = /tmp/M2-11178-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    i4 : moveFile(src,dst,Verbose=>true)
    │ │ │ ---moving: /tmp/M2-10759-0/0 -> /tmp/M2-10759-0/1
    │ │ │ +--moving: /tmp/M2-11178-0/0 -> /tmp/M2-11178-0/1 │ │ │
    i5 : get dst
    │ │ │  
    │ │ │  o5 = hi there
    │ │ │
    i6 : bak = moveFile(dst,Verbose=>true)
    │ │ │ ---backup file created: /tmp/M2-10759-0/1.bak
    │ │ │ +--backup file created: /tmp/M2-11178-0/1.bak
    │ │ │  
    │ │ │ -o6 = /tmp/M2-10759-0/1.bak
    │ │ │ +o6 = /tmp/M2-11178-0/1.bak │ │ │
    i7 : removeFile bak
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -21,31 +21,31 @@ │ │ │ │ o the name of the backup file if one was created, or _n_u_l_l │ │ │ │ * Consequences: │ │ │ │ o the file will be moved by creating a new link to the file and │ │ │ │ removing the old one │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : src = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10759-0/0 │ │ │ │ +o1 = /tmp/M2-11178-0/0 │ │ │ │ i2 : dst = temporaryFileName() │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10759-0/1 │ │ │ │ +o2 = /tmp/M2-11178-0/1 │ │ │ │ i3 : src << "hi there" << close │ │ │ │ │ │ │ │ -o3 = /tmp/M2-10759-0/0 │ │ │ │ +o3 = /tmp/M2-11178-0/0 │ │ │ │ │ │ │ │ o3 : File │ │ │ │ i4 : moveFile(src,dst,Verbose=>true) │ │ │ │ ---moving: /tmp/M2-10759-0/0 -> /tmp/M2-10759-0/1 │ │ │ │ +--moving: /tmp/M2-11178-0/0 -> /tmp/M2-11178-0/1 │ │ │ │ i5 : get dst │ │ │ │ │ │ │ │ o5 = hi there │ │ │ │ i6 : bak = moveFile(dst,Verbose=>true) │ │ │ │ ---backup file created: /tmp/M2-10759-0/1.bak │ │ │ │ +--backup file created: /tmp/M2-11178-0/1.bak │ │ │ │ │ │ │ │ -o6 = /tmp/M2-10759-0/1.bak │ │ │ │ +o6 = /tmp/M2-11178-0/1.bak │ │ │ │ i7 : removeFile bak │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_o_p_y_F_i_l_e │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * moveFile(String) │ │ │ │ * _m_o_v_e_F_i_l_e_(_S_t_r_i_n_g_,_S_t_r_i_n_g_) │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_nanosleep.html │ │ │ @@ -43,15 +43,15 @@ │ │ │
    │ │ │

    nanosleep -- sleep for a given number of nanoseconds

    │ │ │
    │ │ │

    Description

    │ │ │ nanosleep n -- sleeps for n nanoseconds. │ │ │ │ │ │ │ │ │
    i1 : elapsedTime nanosleep 500000000
    │ │ │ - -- .500227s elapsed
    │ │ │ + -- .500097s elapsed
    │ │ │  
    │ │ │  o1 = 0
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -4,14 +4,14 @@ │ │ │ │ [q ] │ │ │ │ _n_e_x_t | _p_r_e_v_i_o_u_s | _f_o_r_w_a_r_d | _b_a_c_k_w_a_r_d | _u_p | _i_n_d_e_x | _t_o_c │ │ │ │ =============================================================================== │ │ │ │ ************ nnaannoosslleeeepp ---- sslleeeepp ffoorr aa ggiivveenn nnuummbbeerr ooff nnaannoosseeccoonnddss ************ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ nanosleep n -- sleeps for n nanoseconds. │ │ │ │ i1 : elapsedTime nanosleep 500000000 │ │ │ │ - -- .500227s elapsed │ │ │ │ + -- .500097s elapsed │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_l_e_e_p -- sleep for a while │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _n_a_n_o_s_l_e_e_p is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallel_spprogramming_spwith_spthreads_spand_sptasks.html │ │ │ @@ -60,19 +60,19 @@ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : L = random toList (1..10000);
    │ │ │
    i3 : elapsedTime         apply(1..100, n -> sort L);
    │ │ │ - -- .60735s elapsed
    │ │ │ + -- .740176s elapsed │ │ │
    i4 : elapsedTime parallelApply(1..100, n -> sort L);
    │ │ │ - -- .295654s elapsed
    │ │ │ + -- .163264s elapsed │ │ │
    │ │ │
    │ │ │

    You will have to try it on your examples to see how much they speed up.

    │ │ │

    Warning: Threads computing in parallel can give wrong answers if their code is not "thread safe", meaning they make modifications to memory without ensuring the modifications get safely communicated to other threads. (Thread safety can slow computations some.) Currently, modifications to Macaulay2 variables and mutable hash tables are thread safe, but not changes inside mutable lists. Also, access to external libraries such as singular, etc., may not currently be thread safe.

    │ │ │

    The rest of this document describes how to control parallel tasks more directly.

    │ │ │

    The task system schedules functions and inputs to run on a preset number of threads. The number of threads to be used is given by the variable allowableThreads, and may be examined and changed as follows. (allowableThreads is temporarily increased if necessary inside parallelApply.)

    │ │ │ @@ -82,15 +82,15 @@ │ │ │
    i5 : allowableThreads
    │ │ │  
    │ │ │  o5 = 5
    │ │ │
    i6 : allowableThreads = maxAllowableThreads
    │ │ │  
    │ │ │ -o6 = 7
    │ │ │ +o6 = 17 │ │ │
    │ │ │
    │ │ │

    To run a function in another thread use schedule, as in the following example.

    │ │ │
    │ │ │ │ │ │ │ │ │ @@ -191,15 +191,15 @@ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i18 : schedule t';
    │ │ │
    i19 : t'
    │ │ │  
    │ │ │ -o19 = <<task, running>>
    │ │ │ +o19 = <<task, created>>
    │ │ │  
    │ │ │  o19 : Task
    │ │ │
    i20 : taskResult t'
    │ │ │  
    │ │ │         1      6      8      3
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -17,17 +17,17 @@
    │ │ │ │  big computation. If the list is long, it will be split into chunks for each
    │ │ │ │  core, reducing the overhead. But the speedup is still limited by the different
    │ │ │ │  threads competing for memory, including cpu caches; it is like running
    │ │ │ │  Macaulay2 on a computer that is running other big programs at the same time. We
    │ │ │ │  can see this using _e_l_a_p_s_e_d_T_i_m_e.
    │ │ │ │  i2 : L = random toList (1..10000);
    │ │ │ │  i3 : elapsedTime         apply(1..100, n -> sort L);
    │ │ │ │ - -- .60735s elapsed
    │ │ │ │ + -- .740176s elapsed
    │ │ │ │  i4 : elapsedTime parallelApply(1..100, n -> sort L);
    │ │ │ │ - -- .295654s elapsed
    │ │ │ │ + -- .163264s elapsed
    │ │ │ │  You will have to try it on your examples to see how much they speed up.
    │ │ │ │  Warning: Threads computing in parallel can give wrong answers if their code is
    │ │ │ │  not "thread safe", meaning they make modifications to memory without ensuring
    │ │ │ │  the modifications get safely communicated to other threads. (Thread safety can
    │ │ │ │  slow computations some.) Currently, modifications to Macaulay2 variables and
    │ │ │ │  mutable hash tables are thread safe, but not changes inside mutable lists.
    │ │ │ │  Also, access to external libraries such as singular, etc., may not currently be
    │ │ │ │ @@ -39,15 +39,15 @@
    │ │ │ │  _a_l_l_o_w_a_b_l_e_T_h_r_e_a_d_s, and may be examined and changed as follows. (_a_l_l_o_w_a_b_l_e_T_h_r_e_a_d_s
    │ │ │ │  is temporarily increased if necessary inside _p_a_r_a_l_l_e_l_A_p_p_l_y.)
    │ │ │ │  i5 : allowableThreads
    │ │ │ │  
    │ │ │ │  o5 = 5
    │ │ │ │  i6 : allowableThreads = maxAllowableThreads
    │ │ │ │  
    │ │ │ │ -o6 = 7
    │ │ │ │ +o6 = 17
    │ │ │ │  To run a function in another thread use _s_c_h_e_d_u_l_e, as in the following example.
    │ │ │ │  i7 : R = ZZ/101[x,y,z];
    │ │ │ │  i8 : I = (ideal vars R)^2
    │ │ │ │  
    │ │ │ │               2             2        2
    │ │ │ │  o8 = ideal (x , x*y, x*z, y , y*z, z )
    │ │ │ │  
    │ │ │ │ @@ -99,15 +99,15 @@
    │ │ │ │  o17 = <>
    │ │ │ │  
    │ │ │ │  o17 : Task
    │ │ │ │  Start it running with _s_c_h_e_d_u_l_e.
    │ │ │ │  i18 : schedule t';
    │ │ │ │  i19 : t'
    │ │ │ │  
    │ │ │ │ -o19 = <>
    │ │ │ │ +o19 = <>
    │ │ │ │  
    │ │ │ │  o19 : Task
    │ │ │ │  i20 : taskResult t'
    │ │ │ │  
    │ │ │ │         1      6      8      3
    │ │ │ │  o20 = R  <-- R  <-- R  <-- R  <-- 0
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallelism_spin_spengine_spcomputations.html
    │ │ │ @@ -123,15 +123,15 @@
    │ │ │  
    │ │ │  o3 = S
    │ │ │  
    │ │ │  o3 : PolynomialRing
    │ │ │
    i4 : elapsedTime minimalBetti I
    │ │ │ - -- 3.11318s elapsed
    │ │ │ + -- 2.56513s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5   6   7   8  9 10
    │ │ │  o4 = total: 1 35 140 385 819 1080 819 385 140 35  1
    │ │ │           0: 1  .   .   .   .    .   .   .   .  .  .
    │ │ │           1: . 35 140 189  84    .   .   .   .  .  .
    │ │ │           2: .  .   . 196 735 1080 735 196   .  .  .
    │ │ │           3: .  .   .   .   .    .  84 189 140 35  .
    │ │ │ @@ -142,15 +142,15 @@
    │ │ │            
    i5 : I = ideal I_*;
    │ │ │  
    │ │ │  o5 : Ideal of S
    │ │ │
    i6 : elapsedTime minimalBetti(I, ParallelizeByDegree => true)
    │ │ │ - -- 2.33669s elapsed
    │ │ │ + -- 2.33464s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5   6   7   8  9 10
    │ │ │  o6 = total: 1 35 140 385 819 1080 819 385 140 35  1
    │ │ │           0: 1  .   .   .   .    .   .   .   .  .  .
    │ │ │           1: . 35 140 189  84    .   .   .   .  .  .
    │ │ │           2: .  .   . 196 735 1080 735 196   .  .  .
    │ │ │           3: .  .   .   .   .    .  84 189 140 35  .
    │ │ │ @@ -166,15 +166,15 @@
    │ │ │            
    i8 : numTBBThreads = 1
    │ │ │  
    │ │ │  o8 = 1
    │ │ │
    i9 : elapsedTime minimalBetti(I)
    │ │ │ - -- 2.03997s elapsed
    │ │ │ + -- 2.11254s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5   6   7   8  9 10
    │ │ │  o9 = total: 1 35 140 385 819 1080 819 385 140 35  1
    │ │ │           0: 1  .   .   .   .    .   .   .   .  .  .
    │ │ │           1: . 35 140 189  84    .   .   .   .  .  .
    │ │ │           2: .  .   . 196 735 1080 735 196   .  .  .
    │ │ │           3: .  .   .   .   .    .  84 189 140 35  .
    │ │ │ @@ -199,15 +199,15 @@
    │ │ │            
    i12 : I = ideal I_*;
    │ │ │  
    │ │ │  o12 : Ideal of S
    │ │ │
    i13 : elapsedTime freeResolution(I, Strategy => Nonminimal)
    │ │ │ - -- 2.05922s elapsed
    │ │ │ + -- 4.14556s elapsed
    │ │ │  
    │ │ │         1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o13 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S
    │ │ │                                                                                                    
    │ │ │        0      1       2        3        4         5         6         7         8        9        10
    │ │ │  
    │ │ │  o13 : Complex
    │ │ │ @@ -220,15 +220,15 @@ │ │ │
    i15 : I = ideal I_*;
    │ │ │  
    │ │ │  o15 : Ideal of S
    │ │ │
    i16 : elapsedTime freeResolution(I, Strategy => Nonminimal)
    │ │ │ - -- 1.99304s elapsed
    │ │ │ + -- 2.07918s elapsed
    │ │ │  
    │ │ │         1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o16 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S
    │ │ │                                                                                                    
    │ │ │        0      1       2        3        4         5         6         7         8        9        10
    │ │ │  
    │ │ │  o16 : Complex
    │ │ │ @@ -253,15 +253,15 @@ │ │ │
    i19 : I = ideal random(S^1, S^{4:-5});
    │ │ │  
    │ │ │  o19 : Ideal of S
    │ │ │
    i20 : elapsedTime groebnerBasis(I, Strategy => "F4");
    │ │ │ - -- 4.49471s elapsed
    │ │ │ + -- 5.22478s elapsed
    │ │ │  
    │ │ │                1      108
    │ │ │  o20 : Matrix S  <-- S
    │ │ │
    i21 : numTBBThreads = 1
    │ │ │  
    │ │ │ @@ -270,15 +270,15 @@
    │ │ │            
    i22 : I = ideal I_*;
    │ │ │  
    │ │ │  o22 : Ideal of S
    │ │ │
    i23 : elapsedTime groebnerBasis(I, Strategy => "F4");
    │ │ │ - -- 7.78738s elapsed
    │ │ │ + -- 6.40932s elapsed
    │ │ │  
    │ │ │                1      108
    │ │ │  o23 : Matrix S  <-- S
    │ │ │
    i24 : numTBBThreads = 10
    │ │ │  
    │ │ │ @@ -287,15 +287,15 @@
    │ │ │            
    i25 : I = ideal I_*;
    │ │ │  
    │ │ │  o25 : Ideal of S
    │ │ │
    i26 : elapsedTime groebnerBasis(I, Strategy => "F4");
    │ │ │ - -- 4.79613s elapsed
    │ │ │ + -- 3.59757s elapsed
    │ │ │  
    │ │ │                1      108
    │ │ │  o26 : Matrix S  <-- S
    │ │ │
    │ │ │
    │ │ │

    For Groebner basis computation in associative algebras, ParallelizeByDegree is not relevant. In this case, use numTBBThreads to control the amount of parallelism.

    │ │ │ @@ -328,15 +328,15 @@ │ │ │ │ │ │ ZZ │ │ │ o30 : Ideal of ---<|a, b, c|> │ │ │ 101
    │ │ │
    i31 : elapsedTime NCGB(I, 22);
    │ │ │ - -- 1.26729s elapsed
    │ │ │ + -- 1.10176s elapsed
    │ │ │  
    │ │ │                 ZZ            1       ZZ            148
    │ │ │  o31 : Matrix (---<|a, b, c|>)  <-- (---<|a, b, c|>)
    │ │ │                101                   101
    │ │ │
    i32 : I = ideal I_*
    │ │ │ @@ -351,15 +351,15 @@
    │ │ │            
    i33 : numTBBThreads = 1
    │ │ │  
    │ │ │  o33 = 1
    │ │ │
    i34 : elapsedTime NCGB(I, 22);
    │ │ │ - -- 1.1978s elapsed
    │ │ │ + -- 1.24741s elapsed
    │ │ │  
    │ │ │                 ZZ            1       ZZ            148
    │ │ │  o34 : Matrix (---<|a, b, c|>)  <-- (---<|a, b, c|>)
    │ │ │                101                   101
    │ │ │
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -92,30 +92,30 @@ │ │ │ │ 0,5 1,5 2,5 3,5 4,5 0,6 1,6 2,6 3,6 4,6 5,6 │ │ │ │ i3 : S = ring I │ │ │ │ │ │ │ │ o3 = S │ │ │ │ │ │ │ │ o3 : PolynomialRing │ │ │ │ i4 : elapsedTime minimalBetti I │ │ │ │ - -- 3.11318s elapsed │ │ │ │ + -- 2.56513s elapsed │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ o4 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ │ 0: 1 . . . . . . . . . . │ │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ │ 4: . . . . . . . . . . 1 │ │ │ │ │ │ │ │ o4 : BettiTally │ │ │ │ i5 : I = ideal I_*; │ │ │ │ │ │ │ │ o5 : Ideal of S │ │ │ │ i6 : elapsedTime minimalBetti(I, ParallelizeByDegree => true) │ │ │ │ - -- 2.33669s elapsed │ │ │ │ + -- 2.33464s elapsed │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ o6 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ │ 0: 1 . . . . . . . . . . │ │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ │ @@ -125,15 +125,15 @@ │ │ │ │ i7 : I = ideal I_*; │ │ │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ i8 : numTBBThreads = 1 │ │ │ │ │ │ │ │ o8 = 1 │ │ │ │ i9 : elapsedTime minimalBetti(I) │ │ │ │ - -- 2.03997s elapsed │ │ │ │ + -- 2.11254s elapsed │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ o9 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ │ 0: 1 . . . . . . . . . . │ │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ │ @@ -148,15 +148,15 @@ │ │ │ │ i11 : numTBBThreads = 0 │ │ │ │ │ │ │ │ o11 = 0 │ │ │ │ i12 : I = ideal I_*; │ │ │ │ │ │ │ │ o12 : Ideal of S │ │ │ │ i13 : elapsedTime freeResolution(I, Strategy => Nonminimal) │ │ │ │ - -- 2.05922s elapsed │ │ │ │ + -- 4.14556s elapsed │ │ │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 │ │ │ │ 576 135 14 │ │ │ │ o13 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <- │ │ │ │ - S <-- S <-- S │ │ │ │ │ │ │ │ │ │ │ │ @@ -167,15 +167,15 @@ │ │ │ │ i14 : numTBBThreads = 1 │ │ │ │ │ │ │ │ o14 = 1 │ │ │ │ i15 : I = ideal I_*; │ │ │ │ │ │ │ │ o15 : Ideal of S │ │ │ │ i16 : elapsedTime freeResolution(I, Strategy => Nonminimal) │ │ │ │ - -- 1.99304s elapsed │ │ │ │ + -- 2.07918s elapsed │ │ │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 │ │ │ │ 576 135 14 │ │ │ │ o16 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <- │ │ │ │ - S <-- S <-- S │ │ │ │ │ │ │ │ │ │ │ │ @@ -194,37 +194,37 @@ │ │ │ │ o18 = S │ │ │ │ │ │ │ │ o18 : PolynomialRing │ │ │ │ i19 : I = ideal random(S^1, S^{4:-5}); │ │ │ │ │ │ │ │ o19 : Ideal of S │ │ │ │ i20 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ │ - -- 4.49471s elapsed │ │ │ │ + -- 5.22478s elapsed │ │ │ │ │ │ │ │ 1 108 │ │ │ │ o20 : Matrix S <-- S │ │ │ │ i21 : numTBBThreads = 1 │ │ │ │ │ │ │ │ o21 = 1 │ │ │ │ i22 : I = ideal I_*; │ │ │ │ │ │ │ │ o22 : Ideal of S │ │ │ │ i23 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ │ - -- 7.78738s elapsed │ │ │ │ + -- 6.40932s elapsed │ │ │ │ │ │ │ │ 1 108 │ │ │ │ o23 : Matrix S <-- S │ │ │ │ i24 : numTBBThreads = 10 │ │ │ │ │ │ │ │ o24 = 10 │ │ │ │ i25 : I = ideal I_*; │ │ │ │ │ │ │ │ o25 : Ideal of S │ │ │ │ i26 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ │ - -- 4.79613s elapsed │ │ │ │ + -- 3.59757s elapsed │ │ │ │ │ │ │ │ 1 108 │ │ │ │ o26 : Matrix S <-- S │ │ │ │ For Groebner basis computation in associative algebras, ParallelizeByDegree is │ │ │ │ not relevant. In this case, use numTBBThreads to control the amount of │ │ │ │ parallelism. │ │ │ │ i27 : needsPackage "AssociativeAlgebras" │ │ │ │ @@ -245,15 +245,15 @@ │ │ │ │ 2 2 2 │ │ │ │ o30 = ideal (5a + 2b*c + 3c*b, 3a*c + 5b + 2c*a, 2a*b + 3b*a + 5c ) │ │ │ │ │ │ │ │ ZZ │ │ │ │ o30 : Ideal of ---<|a, b, c|> │ │ │ │ 101 │ │ │ │ i31 : elapsedTime NCGB(I, 22); │ │ │ │ - -- 1.26729s elapsed │ │ │ │ + -- 1.10176s elapsed │ │ │ │ │ │ │ │ ZZ 1 ZZ 148 │ │ │ │ o31 : Matrix (---<|a, b, c|>) <-- (---<|a, b, c|>) │ │ │ │ 101 101 │ │ │ │ i32 : I = ideal I_* │ │ │ │ │ │ │ │ 2 2 2 │ │ │ │ @@ -262,15 +262,15 @@ │ │ │ │ ZZ │ │ │ │ o32 : Ideal of ---<|a, b, c|> │ │ │ │ 101 │ │ │ │ i33 : numTBBThreads = 1 │ │ │ │ │ │ │ │ o33 = 1 │ │ │ │ i34 : elapsedTime NCGB(I, 22); │ │ │ │ - -- 1.1978s elapsed │ │ │ │ + -- 1.24741s elapsed │ │ │ │ │ │ │ │ ZZ 1 ZZ 148 │ │ │ │ o34 : Matrix (---<|a, b, c|>) <-- (---<|a, b, c|>) │ │ │ │ 101 101 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_i_n_i_m_a_l_B_e_t_t_i -- minimal betti numbers of (the minimal free resolution of) │ │ │ │ a homogeneous ideal or module │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_poincare.html │ │ │ @@ -314,34 +314,34 @@ │ │ │
    i27 : gbTrace = 3
    │ │ │  
    │ │ │  o27 = 3
    │ │ │
    i28 : time poincare I
    │ │ │ - -- used 0.00336927s (cpu); 1.6521e-05s (thread); 0s (gc)
    │ │ │ + -- used 0.00192958s (cpu); 7.865e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │              3     6    9
    │ │ │  o28 = 1 - 3T  + 3T  - T
    │ │ │  
    │ │ │  o28 : ZZ[T]
    │ │ │
    i29 : time gens gb I;
    │ │ │  
    │ │ │ -   -- registering gb 19 at 0x7fec4bc63e00
    │ │ │ +   -- registering gb 19 at 0x7f188450ee00
    │ │ │  
    │ │ │     -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(2,6)mm{7}(1,4)m{8}(0,2)number of (nonminimal) gb elements = 11
    │ │ │     -- number of monomials                = 4186
    │ │ │     -- #reduction steps = 38
    │ │ │     -- #spairs done = 11
    │ │ │     -- ncalls = 10
    │ │ │     -- nloop = 29
    │ │ │     -- nsaved = 0
    │ │ │ -   --  -- used 0.0206106s (cpu); 0.0205024s (thread); 0s (gc)
    │ │ │ +   --  -- used 0.0100611s (cpu); 0.0099988s (thread); 0s (gc)
    │ │ │  
    │ │ │                1      11
    │ │ │  o29 : Matrix R  <-- R
    │ │ │
    │ │ │
    │ │ │

    In this case, the savings is minimal, but often it can be dramatic. Another important situation is to compute a Gröbner basis using a different monomial order.

    │ │ │ @@ -349,39 +349,39 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -436,27 +436,27 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -92,16 +92,16 @@ │ │ │ o6 : FunctionClosure │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i30 : R = QQ[a..d];
    │ │ │
    i31 : I = ideal random(R^1, R^{3:-3});
    │ │ │  
    │ │ │ -   -- registering gb 20 at 0x7fec4bc63c40
    │ │ │ +   -- registering gb 20 at 0x7f188450ec40
    │ │ │  
    │ │ │     -- [gb]number of (nonminimal) gb elements = 0
    │ │ │     -- number of monomials                = 0
    │ │ │     -- #reduction steps = 0
    │ │ │     -- #spairs done = 0
    │ │ │     -- ncalls = 0
    │ │ │     -- nloop = 0
    │ │ │     -- nsaved = 0
    │ │ │     -- 
    │ │ │  o31 : Ideal of R
    │ │ │
    i32 : time p = poincare I
    │ │ │  
    │ │ │ -   -- registering gb 21 at 0x7fec4bc638c0
    │ │ │ +   -- registering gb 21 at 0x7f188450e8c0
    │ │ │  
    │ │ │     -- [gb]{3}(3)mmm{4}(2)mm{5}(3)mmm{6}(6)mmoooo{7}(4)mooo{8}(2)oonumber of (nonminimal) gb elements = 11
    │ │ │     -- number of monomials                = 267
    │ │ │     -- #reduction steps = 236
    │ │ │     -- #spairs done = 30
    │ │ │     -- ncalls = 10
    │ │ │     -- nloop = 20
    │ │ │     -- nsaved = 0
    │ │ │ -   --  -- used 0.00799675s (cpu); 0.00881508s (thread); 0s (gc)
    │ │ │ +   --  -- used 0.00388814s (cpu); 0.00363116s (thread); 0s (gc)
    │ │ │  
    │ │ │              3     6    9
    │ │ │  o32 = 1 - 3T  + 3T  - T
    │ │ │  
    │ │ │  o32 : ZZ[T]
    │ │ │
    i36 : gbTrace = 3
    │ │ │  
    │ │ │  o36 = 3
    │ │ │
    i37 : time gens gb J;
    │ │ │  
    │ │ │ -   -- registering gb 22 at 0x7fec4bc63700
    │ │ │ +   -- registering gb 22 at 0x7f188450e700
    │ │ │  
    │ │ │     -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(3,7)mmm{7}(3,8)mmm{8}(3,9)mmm{9}(3,9)m
    │ │ │     -- mm{10}(2,8)mm{11}(1,5)m{12}(1,3)m{13}(1,3)m{14}(1,3)m{15}(1,3)m{16}(1,3)m
    │ │ │     -- {17}(1,3)m{18}(1,3)m{19}(1,3)m{20}(1,3)m{21}(1,3)m{22}(1,3)m{23}(1,3)m{24}(1,3)m
    │ │ │     -- {25}(1,3)m{26}(1,3)m{27}(1,3)m{28}(0,2)number of (nonminimal) gb elements = 39
    │ │ │     -- number of monomials                = 1051
    │ │ │     -- #reduction steps = 284
    │ │ │     -- #spairs done = 53
    │ │ │     -- ncalls = 46
    │ │ │     -- nloop = 54
    │ │ │     -- nsaved = 0
    │ │ │ -   --  -- used 0.0679993s (cpu); 0.0696023s (thread); 0s (gc)
    │ │ │ +   --  -- used 0.0560149s (cpu); 0.0553724s (thread); 0s (gc)
    │ │ │  
    │ │ │                1      39
    │ │ │  o37 : Matrix S  <-- S
    │ │ │
    i38 : selectInSubring(1, gens gb J)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -179,66 +179,66 @@
    │ │ │ │  o26 = 1 - 3T  + 3T  - T
    │ │ │ │  
    │ │ │ │  o26 : ZZ[T]
    │ │ │ │  i27 : gbTrace = 3
    │ │ │ │  
    │ │ │ │  o27 = 3
    │ │ │ │  i28 : time poincare I
    │ │ │ │ - -- used 0.00336927s (cpu); 1.6521e-05s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00192958s (cpu); 7.865e-06s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │              3     6    9
    │ │ │ │  o28 = 1 - 3T  + 3T  - T
    │ │ │ │  
    │ │ │ │  o28 : ZZ[T]
    │ │ │ │  i29 : time gens gb I;
    │ │ │ │  
    │ │ │ │ -   -- registering gb 19 at 0x7fec4bc63e00
    │ │ │ │ +   -- registering gb 19 at 0x7f188450ee00
    │ │ │ │  
    │ │ │ │     -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(2,6)mm{7}(1,4)m{8}(0,2)number of
    │ │ │ │  (nonminimal) gb elements = 11
    │ │ │ │     -- number of monomials                = 4186
    │ │ │ │     -- #reduction steps = 38
    │ │ │ │     -- #spairs done = 11
    │ │ │ │     -- ncalls = 10
    │ │ │ │     -- nloop = 29
    │ │ │ │     -- nsaved = 0
    │ │ │ │ -   --  -- used 0.0206106s (cpu); 0.0205024s (thread); 0s (gc)
    │ │ │ │ +   --  -- used 0.0100611s (cpu); 0.0099988s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                1      11
    │ │ │ │  o29 : Matrix R  <-- R
    │ │ │ │  In this case, the savings is minimal, but often it can be dramatic. Another
    │ │ │ │  important situation is to compute a Gröbner basis using a different monomial
    │ │ │ │  order.
    │ │ │ │  i30 : R = QQ[a..d];
    │ │ │ │  i31 : I = ideal random(R^1, R^{3:-3});
    │ │ │ │  
    │ │ │ │ -   -- registering gb 20 at 0x7fec4bc63c40
    │ │ │ │ +   -- registering gb 20 at 0x7f188450ec40
    │ │ │ │  
    │ │ │ │     -- [gb]number of (nonminimal) gb elements = 0
    │ │ │ │     -- number of monomials                = 0
    │ │ │ │     -- #reduction steps = 0
    │ │ │ │     -- #spairs done = 0
    │ │ │ │     -- ncalls = 0
    │ │ │ │     -- nloop = 0
    │ │ │ │     -- nsaved = 0
    │ │ │ │     --
    │ │ │ │  o31 : Ideal of R
    │ │ │ │  i32 : time p = poincare I
    │ │ │ │  
    │ │ │ │ -   -- registering gb 21 at 0x7fec4bc638c0
    │ │ │ │ +   -- registering gb 21 at 0x7f188450e8c0
    │ │ │ │  
    │ │ │ │     -- [gb]{3}(3)mmm{4}(2)mm{5}(3)mmm{6}(6)mmoooo{7}(4)mooo{8}(2)oonumber of
    │ │ │ │  (nonminimal) gb elements = 11
    │ │ │ │     -- number of monomials                = 267
    │ │ │ │     -- #reduction steps = 236
    │ │ │ │     -- #spairs done = 30
    │ │ │ │     -- ncalls = 10
    │ │ │ │     -- nloop = 20
    │ │ │ │     -- nsaved = 0
    │ │ │ │ -   --  -- used 0.00799675s (cpu); 0.00881508s (thread); 0s (gc)
    │ │ │ │ +   --  -- used 0.00388814s (cpu); 0.00363116s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │              3     6    9
    │ │ │ │  o32 = 1 - 3T  + 3T  - T
    │ │ │ │  
    │ │ │ │  o32 : ZZ[T]
    │ │ │ │  i33 : S = QQ[a..d, MonomialOrder => Eliminate 2]
    │ │ │ │  
    │ │ │ │ @@ -283,30 +283,30 @@
    │ │ │ │  
    │ │ │ │  o35 : ZZ[T]
    │ │ │ │  i36 : gbTrace = 3
    │ │ │ │  
    │ │ │ │  o36 = 3
    │ │ │ │  i37 : time gens gb J;
    │ │ │ │  
    │ │ │ │ -   -- registering gb 22 at 0x7fec4bc63700
    │ │ │ │ +   -- registering gb 22 at 0x7f188450e700
    │ │ │ │  
    │ │ │ │     -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(3,7)mmm{7}(3,8)mmm{8}(3,9)mmm{9}
    │ │ │ │  (3,9)m
    │ │ │ │     -- mm{10}(2,8)mm{11}(1,5)m{12}(1,3)m{13}(1,3)m{14}(1,3)m{15}(1,3)m{16}(1,3)m
    │ │ │ │     -- {17}(1,3)m{18}(1,3)m{19}(1,3)m{20}(1,3)m{21}(1,3)m{22}(1,3)m{23}(1,3)m
    │ │ │ │  {24}(1,3)m
    │ │ │ │     -- {25}(1,3)m{26}(1,3)m{27}(1,3)m{28}(0,2)number of (nonminimal) gb elements
    │ │ │ │  = 39
    │ │ │ │     -- number of monomials                = 1051
    │ │ │ │     -- #reduction steps = 284
    │ │ │ │     -- #spairs done = 53
    │ │ │ │     -- ncalls = 46
    │ │ │ │     -- nloop = 54
    │ │ │ │     -- nsaved = 0
    │ │ │ │ -   --  -- used 0.0679993s (cpu); 0.0696023s (thread); 0s (gc)
    │ │ │ │ +   --  -- used 0.0560149s (cpu); 0.0553724s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                1      39
    │ │ │ │  o37 : Matrix S  <-- S
    │ │ │ │  i38 : selectInSubring(1, gens gb J)
    │ │ │ │  
    │ │ │ │  o38 = | 243873059890414515367459726418219472801881021280016638460434780718278
    │ │ │ │        -----------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_process__I__D.html
    │ │ │ @@ -61,15 +61,15 @@
    │ │ │        
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │
    i1 : processID()
    │ │ │  
    │ │ │ -o1 = 10387
    │ │ │ +o1 = 10448 │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │
    • │ │ │ ├── html2text {} │ │ │ │ @@ -9,13 +9,13 @@ │ │ │ │ * Usage: │ │ │ │ processID() │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the process identifier of the current Macaulay2 process │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : processID() │ │ │ │ │ │ │ │ -o1 = 10387 │ │ │ │ +o1 = 10448 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _g_r_o_u_p_I_D -- the process group identifier │ │ │ │ * _s_e_t_G_r_o_u_p_I_D -- set the process group identifier │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _p_r_o_c_e_s_s_I_D is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_profile.html │ │ │ @@ -59,15 +59,15 @@ │ │ │ 123 110 13 │ │ │ o2 = x + x + x + 1 │ │ │ │ │ │ o2 : R
    │ │ │
    i3 : time factor f
    │ │ │ - -- used 0.00278858s (cpu); 0.0027806s (thread); 0s (gc)
    │ │ │ + -- used 0.00239599s (cpu); 0.00238081s (thread); 0s (gc)
    │ │ │  
    │ │ │                2        2       2       2       2       4     3      2            4     3     2            4     3     2            10     8     6     4      2       10     8      6     4      2       10      8    6    4     2       10      8     6     4      2       10      8     6     4     2       10      8     6      4     2       10      8     6     4      2       10      8     6      4     2       10     8    6    4      2       10     8      6     4      2
    │ │ │  o3 = (x + 1)(x  - 15)(x  + 8)(x  + 4)(x  + 2)(x  + 1)(x  - 4x  + 11x  - 4x + 1)(x  - 6x  - 2x  - 6x + 1)(x  + 9x  - 4x  + 9x + 1)(x   - 5x  - 8x  - 4x  - 13x  + 1)(x   - 9x  + 15x  - 2x  + 10x  + 1)(x   - 10x  - x  - x  + 9x  + 1)(x   - 11x  - 8x  - 4x  + 11x  + 1)(x   - 13x  - 4x  - 8x  - 5x  + 1)(x   + 13x  - 2x  + 15x  + 5x  + 1)(x   + 11x  - 4x  - 8x  - 11x  + 1)(x   + 10x  - 2x  + 15x  - 9x  + 1)(x   + 9x  - x  - x  - 10x  + 1)(x   + 5x  + 15x  - 2x  + 13x  + 1)
    │ │ │  
    │ │ │  o3 : Expression of class Product
    │ │ │
    i7 : for i to 10 do (g();h();h())
    │ │ │
    i8 : profileSummary
    │ │ │ -g: 11 times, used .0266591 seconds
    │ │ │ -h: 22 times, used .0532723 seconds
    │ │ │ +g: 11 times, used .0234191 seconds │ │ │ +h: 22 times, used .0666404 seconds │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use profile:

    │ │ │
      │ │ │
    • │ │ │ ├── html2text {} │ │ │ │ @@ -17,15 +17,15 @@ │ │ │ │ i2 : f = (x^110+1)*(x^13+1) │ │ │ │ │ │ │ │ 123 110 13 │ │ │ │ o2 = x + x + x + 1 │ │ │ │ │ │ │ │ o2 : R │ │ │ │ i3 : time factor f │ │ │ │ - -- used 0.00278858s (cpu); 0.0027806s (thread); 0s (gc) │ │ │ │ + -- used 0.00239599s (cpu); 0.00238081s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 2 4 3 2 │ │ │ │ 4 3 2 4 3 2 10 8 6 4 2 │ │ │ │ 10 8 6 4 2 10 8 6 4 2 10 8 │ │ │ │ 6 4 2 10 8 6 4 2 10 8 6 4 │ │ │ │ 2 10 8 6 4 2 10 8 6 4 2 │ │ │ │ 10 8 6 4 2 10 8 6 4 2 │ │ │ │ @@ -50,14 +50,14 @@ │ │ │ │ i6 : h = profile("h", () -> factor f) │ │ │ │ │ │ │ │ o6 = h │ │ │ │ │ │ │ │ o6 : FunctionClosure │ │ │ │ i7 : for i to 10 do (g();h();h()) │ │ │ │ i8 : profileSummary │ │ │ │ -g: 11 times, used .0266591 seconds │ │ │ │ -h: 22 times, used .0532723 seconds │ │ │ │ +g: 11 times, used .0234191 seconds │ │ │ │ +h: 22 times, used .0666404 seconds │ │ │ │ ********** WWaayyss ttoo uussee pprrooffiillee:: ********** │ │ │ │ * profile(Function) │ │ │ │ * profile(String,Function) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _p_r_o_f_i_l_e is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random__K__Rational__Point.html │ │ │ @@ -90,15 +90,15 @@ │ │ │ │ │ │ o5 = (2, 10) │ │ │ │ │ │ o5 : Sequence │ │ │
    i6 : time randomKRationalPoint(I)
    │ │ │ - -- used 0.186982s (cpu); 0.129358s (thread); 0s (gc)
    │ │ │ + -- used 0.224136s (cpu); 0.0635276s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = ideal (x  - 53x , x  + 8x , x  - 4x )
    │ │ │               2      3   1     3   0     3
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │
    i10 : time randomKRationalPoint(I)
    │ │ │ - -- used 0.403357s (cpu); 0.338406s (thread); 0s (gc)
    │ │ │ + -- used 0.390978s (cpu); 0.207144s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = ideal (x  - 27x , x  - 16x , x  - 9x , x  + 44x , x  - 52x )
    │ │ │                4      5   3      5   2     5   1      5   0      5
    │ │ │  
    │ │ │  o10 : Ideal of R
    │ │ │
    │ │ │ @@ -148,15 +148,15 @@ │ │ │
    i14 : I=ideal random(n,R);
    │ │ │  
    │ │ │  o14 : Ideal of R
    │ │ │
    i15 : time (#select(apply(100,i->(degs=apply(decompose(I+ideal random(1,R)),c->degree c);
    │ │ │                       #select(degs,d->d==1))),f->f>0))
    │ │ │ - -- used 3.98035s (cpu); 2.47525s (thread); 0s (gc)
    │ │ │ + -- used 3.84275s (cpu); 2.01402s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 58
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use randomKRationalPoint:

    │ │ │ ├── html2text {} │ │ │ │ @@ -30,15 +30,15 @@ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : codim I, degree I │ │ │ │ │ │ │ │ o5 = (2, 10) │ │ │ │ │ │ │ │ o5 : Sequence │ │ │ │ i6 : time randomKRationalPoint(I) │ │ │ │ - -- used 0.186982s (cpu); 0.129358s (thread); 0s (gc) │ │ │ │ + -- used 0.224136s (cpu); 0.0635276s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = ideal (x - 53x , x + 8x , x - 4x ) │ │ │ │ 2 3 1 3 0 3 │ │ │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ i7 : R=kk[x_0..x_5]; │ │ │ │ i8 : I=minors(3,random(R^5,R^{3:-1})); │ │ │ │ @@ -46,15 +46,15 @@ │ │ │ │ o8 : Ideal of R │ │ │ │ i9 : codim I, degree I │ │ │ │ │ │ │ │ o9 = (3, 10) │ │ │ │ │ │ │ │ o9 : Sequence │ │ │ │ i10 : time randomKRationalPoint(I) │ │ │ │ - -- used 0.403357s (cpu); 0.338406s (thread); 0s (gc) │ │ │ │ + -- used 0.390978s (cpu); 0.207144s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = ideal (x - 27x , x - 16x , x - 9x , x + 44x , x - 52x ) │ │ │ │ 4 5 3 5 2 5 1 5 0 5 │ │ │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ The claim that $63 \%$ of the intersections contain a K-rational point can be │ │ │ │ experimentally tested: │ │ │ │ @@ -70,14 +70,14 @@ │ │ │ │ o13 : RR (of precision 53) │ │ │ │ i14 : I=ideal random(n,R); │ │ │ │ │ │ │ │ o14 : Ideal of R │ │ │ │ i15 : time (#select(apply(100,i->(degs=apply(decompose(I+ideal random(1,R)),c- │ │ │ │ >degree c); │ │ │ │ #select(degs,d->d==1))),f->f>0)) │ │ │ │ - -- used 3.98035s (cpu); 2.47525s (thread); 0s (gc) │ │ │ │ + -- used 3.84275s (cpu); 2.01402s (thread); 0s (gc) │ │ │ │ │ │ │ │ o15 = 58 │ │ │ │ ********** WWaayyss ttoo uussee rraannddoommKKRRaattiioonnaallPPooiinntt:: ********** │ │ │ │ * randomKRationalPoint(Ideal) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _r_a_n_d_o_m_K_R_a_t_i_o_n_a_l_P_o_i_n_t is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_read__Directory.html │ │ │ @@ -67,25 +67,25 @@ │ │ │
    │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : dir = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11649-0/0
    │ │ │ +o1 = /tmp/M2-12976-0/0 │ │ │
    i2 : makeDirectory dir
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11649-0/0
    │ │ │ +o2 = /tmp/M2-12976-0/0 │ │ │
    i3 : (fn = dir | "/" | "foo") << "hi there" << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-11649-0/0/foo
    │ │ │ +o3 = /tmp/M2-12976-0/0/foo
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    i4 : readDirectory dir
    │ │ │  
    │ │ │  o4 = {., .., foo}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -11,21 +11,21 @@
    │ │ │ │      * Inputs:
    │ │ │ │            o dir, a _s_t_r_i_n_g, a filename or path to a directory
    │ │ │ │      * Outputs:
    │ │ │ │            o a _l_i_s_t, the list of filenames stored in the directory
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  i1 : dir = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-11649-0/0
    │ │ │ │ +o1 = /tmp/M2-12976-0/0
    │ │ │ │  i2 : makeDirectory dir
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-11649-0/0
    │ │ │ │ +o2 = /tmp/M2-12976-0/0
    │ │ │ │  i3 : (fn = dir | "/" | "foo") << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o3 = /tmp/M2-11649-0/0/foo
    │ │ │ │ +o3 = /tmp/M2-12976-0/0/foo
    │ │ │ │  
    │ │ │ │  o3 : File
    │ │ │ │  i4 : readDirectory dir
    │ │ │ │  
    │ │ │ │  o4 = {., .., foo}
    │ │ │ │  
    │ │ │ │  o4 : List
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_reading_spfiles.html
    │ │ │ @@ -44,20 +44,20 @@
    │ │ │        

    reading files

    │ │ │
    │ │ │ Sometimes a file will contain a single expression whose value you wish to have access to. For example, it might be a polynomial produced by another program. The function get can be used to obtain the entire contents of a file as a single string. We illustrate this here with a file whose name is expression.

    │ │ │ First we create the file by writing the desired text to it. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11232-0/0
    │ │ │ +o1 = /tmp/M2-12139-0/0 │ │ │
    i2 : fn << "z^6+3*x*z^4+6*y*z^4+3*x^2*z^2+12*x*y*z^2+12*y^2*z^2+x^3+6*x^2*y+12*x*y^2+8*y^3" << endl << close
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11232-0/0
    │ │ │ +o2 = /tmp/M2-12139-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │ Now we get the contents of the file, as a single string. │ │ │ │ │ │
    i3 : get fn
    │ │ │ @@ -96,15 +96,15 @@
    │ │ │          
    │ │ │ Often a file will contain code written in the Macaulay2 language. Let's create such a file. │ │ │ │ │ │ │ │ │
    i7 : fn << "sample = 2^100
    │ │ │       print sample
    │ │ │       " << close
    │ │ │  
    │ │ │ -o7 = /tmp/M2-11232-0/0
    │ │ │ +o7 = /tmp/M2-12139-0/0
    │ │ │  
    │ │ │  o7 : File
    │ │ │
    │ │ │ Now verify that it contains the desired text with get. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : get fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -7,20 +7,20 @@
    │ │ │ │  Sometimes a file will contain a single expression whose value you wish to have
    │ │ │ │  access to. For example, it might be a polynomial produced by another program.
    │ │ │ │  The function _g_e_t can be used to obtain the entire contents of a file as a
    │ │ │ │  single string. We illustrate this here with a file whose name is expression.
    │ │ │ │  First we create the file by writing the desired text to it.
    │ │ │ │  i1 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-11232-0/0
    │ │ │ │ +o1 = /tmp/M2-12139-0/0
    │ │ │ │  i2 : fn <<
    │ │ │ │  "z^6+3*x*z^4+6*y*z^4+3*x^2*z^2+12*x*y*z^2+12*y^2*z^2+x^3+6*x^2*y+12*x*y^2+8*y^3"
    │ │ │ │  << endl << close
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-11232-0/0
    │ │ │ │ +o2 = /tmp/M2-12139-0/0
    │ │ │ │  
    │ │ │ │  o2 : File
    │ │ │ │  Now we get the contents of the file, as a single string.
    │ │ │ │  i3 : get fn
    │ │ │ │  
    │ │ │ │  o3 = z^6+3*x*z^4+6*y*z^4+3*x^2*z^2+12*x*y*z^2+12*y^2*z^2+x^3+6*x^2*y+12*x*y^2
    │ │ │ │       +8*y^3
    │ │ │ │ @@ -50,15 +50,15 @@
    │ │ │ │  o6 : Expression of class Product
    │ │ │ │  Often a file will contain code written in the Macaulay2 language. Let's create
    │ │ │ │  such a file.
    │ │ │ │  i7 : fn << "sample = 2^100
    │ │ │ │       print sample
    │ │ │ │       " << close
    │ │ │ │  
    │ │ │ │ -o7 = /tmp/M2-11232-0/0
    │ │ │ │ +o7 = /tmp/M2-12139-0/0
    │ │ │ │  
    │ │ │ │  o7 : File
    │ │ │ │  Now verify that it contains the desired text with _g_e_t.
    │ │ │ │  i8 : get fn
    │ │ │ │  
    │ │ │ │  o8 = sample = 2^100
    │ │ │ │       print sample
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_readlink.html
    │ │ │ @@ -67,15 +67,15 @@
    │ │ │        
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : p = temporaryFileName ()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11961-0/0
    │ │ │ +o1 = /tmp/M2-13608-0/0 │ │ │
    i2 : symlinkFile ("foo", p)
    │ │ │
    i3 : readlink p
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -11,15 +11,15 @@
    │ │ │ │      * Inputs:
    │ │ │ │            o fn, a _s_t_r_i_n_g, a filename or path to a file
    │ │ │ │      * Outputs:
    │ │ │ │            o a _B_o_o_l_e_a_n_ _v_a_l_u_e, whether fn is the path to a symbolic link
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  i1 : p = temporaryFileName ()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-11961-0/0
    │ │ │ │ +o1 = /tmp/M2-13608-0/0
    │ │ │ │  i2 : symlinkFile ("foo", p)
    │ │ │ │  i3 : readlink p
    │ │ │ │  
    │ │ │ │  o3 = foo
    │ │ │ │  i4 : removeFile p
    │ │ │ │  ********** FFoorr tthhee pprrooggrraammmmeerr **********
    │ │ │ │  The object _r_e_a_d_l_i_n_k is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n.
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_realpath.html
    │ │ │ @@ -67,59 +67,59 @@
    │ │ │        
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : realpath "."
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10387-0/83-rundir/
    │ │ │ +o1 = /tmp/M2-10448-0/83-rundir/ │ │ │
    i2 : p = temporaryFileName()
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11980-0/0
    │ │ │ +o2 = /tmp/M2-13647-0/0 │ │ │
    i3 : q = temporaryFileName()
    │ │ │  
    │ │ │ -o3 = /tmp/M2-11980-0/1
    │ │ │ +o3 = /tmp/M2-13647-0/1 │ │ │
    i4 : symlinkFile(p,q)
    │ │ │
    i5 : p << close
    │ │ │  
    │ │ │ -o5 = /tmp/M2-11980-0/0
    │ │ │ +o5 = /tmp/M2-13647-0/0
    │ │ │  
    │ │ │  o5 : File
    │ │ │
    i6 : readlink q
    │ │ │  
    │ │ │ -o6 = /tmp/M2-11980-0/0
    │ │ │ +o6 = /tmp/M2-13647-0/0 │ │ │
    i7 : realpath q
    │ │ │  
    │ │ │ -o7 = /tmp/M2-11980-0/0
    │ │ │ +o7 = /tmp/M2-13647-0/0 │ │ │
    i8 : removeFile p
    │ │ │
    i9 : removeFile q
    │ │ │
    │ │ │

    The empty string is interpreted as a reference to the current directory.

    │ │ │ │ │ │ │ │ │ │ │ │
    i10 : realpath ""
    │ │ │  
    │ │ │ -o10 = /tmp/M2-10387-0/83-rundir/
    │ │ │ +o10 = /tmp/M2-10448-0/83-rundir/ │ │ │
    │ │ │
    │ │ │
    │ │ │

    Caveat

    │ │ │ Every component of the path must exist in the file system and be accessible to the user. Terminal slashes will be dropped. Warning: under most operating systems, the value returned is an absolute path (one starting at the root of the file system), but under Solaris, this system call may, in certain circumstances, return a relative path when given a relative path.
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -13,39 +13,39 @@ │ │ │ │ o fn, a _s_t_r_i_n_g, a filename, or path to a file │ │ │ │ * Outputs: │ │ │ │ o a _s_t_r_i_n_g, a pathname to fn passing through no symbolic links, and │ │ │ │ ending with a slash if fn refers to a directory │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : realpath "." │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10387-0/83-rundir/ │ │ │ │ +o1 = /tmp/M2-10448-0/83-rundir/ │ │ │ │ i2 : p = temporaryFileName() │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11980-0/0 │ │ │ │ +o2 = /tmp/M2-13647-0/0 │ │ │ │ i3 : q = temporaryFileName() │ │ │ │ │ │ │ │ -o3 = /tmp/M2-11980-0/1 │ │ │ │ +o3 = /tmp/M2-13647-0/1 │ │ │ │ i4 : symlinkFile(p,q) │ │ │ │ i5 : p << close │ │ │ │ │ │ │ │ -o5 = /tmp/M2-11980-0/0 │ │ │ │ +o5 = /tmp/M2-13647-0/0 │ │ │ │ │ │ │ │ o5 : File │ │ │ │ i6 : readlink q │ │ │ │ │ │ │ │ -o6 = /tmp/M2-11980-0/0 │ │ │ │ +o6 = /tmp/M2-13647-0/0 │ │ │ │ i7 : realpath q │ │ │ │ │ │ │ │ -o7 = /tmp/M2-11980-0/0 │ │ │ │ +o7 = /tmp/M2-13647-0/0 │ │ │ │ i8 : removeFile p │ │ │ │ i9 : removeFile q │ │ │ │ The empty string is interpreted as a reference to the current directory. │ │ │ │ i10 : realpath "" │ │ │ │ │ │ │ │ -o10 = /tmp/M2-10387-0/83-rundir/ │ │ │ │ +o10 = /tmp/M2-10448-0/83-rundir/ │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ Every component of the path must exist in the file system and be accessible to │ │ │ │ the user. Terminal slashes will be dropped. Warning: under most operating │ │ │ │ systems, the value returned is an absolute path (one starting at the root of │ │ │ │ the file system), but under Solaris, this system call may, in certain │ │ │ │ circumstances, return a relative path when given a relative path. │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_register__Finalizer.html │ │ │ @@ -74,21 +74,21 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : for i from 1 to 9 do (x := 0 .. 10000 ; registerFinalizer(x, "-- finalizing sequence #"|i|" --"))
    │ │ │
    i2 : collectGarbage() 
    │ │ │  --finalization: (1)[7]: -- finalizing sequence #8 --
    │ │ │ ---finalization: (2)[4]: -- finalizing sequence #5 --
    │ │ │ ---finalization: (3)[1]: -- finalizing sequence #2 --
    │ │ │ ---finalization: (4)[2]: -- finalizing sequence #3 --
    │ │ │ ---finalization: (5)[3]: -- finalizing sequence #4 --
    │ │ │ ---finalization: (6)[5]: -- finalizing sequence #6 --
    │ │ │ +--finalization: (2)[3]: -- finalizing sequence #4 --
    │ │ │ +--finalization: (3)[0]: -- finalizing sequence #1 --
    │ │ │ +--finalization: (4)[5]: -- finalizing sequence #6 --
    │ │ │ +--finalization: (5)[4]: -- finalizing sequence #5 --
    │ │ │ +--finalization: (6)[1]: -- finalizing sequence #2 --
    │ │ │  --finalization: (7)[6]: -- finalizing sequence #7 --
    │ │ │ ---finalization: (8)[0]: -- finalizing sequence #1 --
    │ │ │ +--finalization: (8)[2]: -- finalizing sequence #3 -- │ │ │
    │ │ │
    │ │ │
    │ │ │

    Caveat

    │ │ │ This function should mainly be used for debugging. Having a large number of finalizers might degrade the performance of the program. Moreover, registering two or more objects that are members of a circular chain of pointers for finalization will result in a memory leak, with none of the objects in the chain being freed, even if nothing else points to any of them.
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -16,21 +16,21 @@ │ │ │ │ o A finalizer is registered with the garbage collector to print a │ │ │ │ string when that object is collected as garbage │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : for i from 1 to 9 do (x := 0 .. 10000 ; registerFinalizer(x, "- │ │ │ │ - finalizing sequence #"|i|" --")) │ │ │ │ i2 : collectGarbage() │ │ │ │ --finalization: (1)[7]: -- finalizing sequence #8 -- │ │ │ │ ---finalization: (2)[4]: -- finalizing sequence #5 -- │ │ │ │ ---finalization: (3)[1]: -- finalizing sequence #2 -- │ │ │ │ ---finalization: (4)[2]: -- finalizing sequence #3 -- │ │ │ │ ---finalization: (5)[3]: -- finalizing sequence #4 -- │ │ │ │ ---finalization: (6)[5]: -- finalizing sequence #6 -- │ │ │ │ +--finalization: (2)[3]: -- finalizing sequence #4 -- │ │ │ │ +--finalization: (3)[0]: -- finalizing sequence #1 -- │ │ │ │ +--finalization: (4)[5]: -- finalizing sequence #6 -- │ │ │ │ +--finalization: (5)[4]: -- finalizing sequence #5 -- │ │ │ │ +--finalization: (6)[1]: -- finalizing sequence #2 -- │ │ │ │ --finalization: (7)[6]: -- finalizing sequence #7 -- │ │ │ │ ---finalization: (8)[0]: -- finalizing sequence #1 -- │ │ │ │ +--finalization: (8)[2]: -- finalizing sequence #3 -- │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ This function should mainly be used for debugging. Having a large number of │ │ │ │ finalizers might degrade the performance of the program. Moreover, registering │ │ │ │ two or more objects that are members of a circular chain of pointers for │ │ │ │ finalization will result in a memory leak, with none of the objects in the │ │ │ │ chain being freed, even if nothing else points to any of them. │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_remove__Directory.html │ │ │ @@ -69,20 +69,20 @@ │ │ │
    │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -28,15 +28,15 @@ │ │ │ │ o1 : Matroid │ │ │ │ i2 : U25 = uniformMatroid(2,5) │ │ │ │ │ │ │ │ o2 = a "matroid" of rank 2 on 5 elements │ │ │ │ │ │ │ │ o2 : Matroid │ │ │ │ i3 : elapsedTime L = allMinors(V, U25); │ │ │ │ - -- .203206s elapsed │ │ │ │ + -- .113405s elapsed │ │ │ │ i4 : #L │ │ │ │ │ │ │ │ o4 = 64 │ │ │ │ i5 : netList L_{0..4} │ │ │ │ │ │ │ │ +----------+-------+ │ │ │ │ o5 = |set {5, 3}|set {2}| │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_get__Isos.html │ │ │ @@ -123,15 +123,15 @@ │ │ │ │ │ │ o6 = a "matroid" of rank 3 on 7 elements │ │ │ │ │ │ o6 : Matroid │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : dir = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10923-0/0
    │ │ │ +o1 = /tmp/M2-11510-0/0 │ │ │
    i2 : makeDirectory dir
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10923-0/0
    │ │ │ +o2 = /tmp/M2-11510-0/0 │ │ │
    i3 : readDirectory dir
    │ │ │  
    │ │ │  o3 = {., ..}
    │ │ │  
    │ │ │  o3 : List
    │ │ │ ├── html2text {} │ │ │ │ @@ -11,18 +11,18 @@ │ │ │ │ * Inputs: │ │ │ │ o dir, a _s_t_r_i_n_g, a filename or path to a directory │ │ │ │ * Consequences: │ │ │ │ o the directory is removed │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10923-0/0 │ │ │ │ +o1 = /tmp/M2-11510-0/0 │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10923-0/0 │ │ │ │ +o2 = /tmp/M2-11510-0/0 │ │ │ │ i3 : readDirectory dir │ │ │ │ │ │ │ │ o3 = {., ..} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : removeDirectory dir │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_root__Path.html │ │ │ @@ -62,20 +62,20 @@ │ │ │
    │ │ │

    Description

    │ │ │

    This string may be concatenated with an absolute path to get one understandable by external programs. Currently, this makes a difference only under Microsoft Windows with Cygwin, but there it's crucial for those external programs that are not part of Cygwin. Fortunately, programs compiled under Cygwin know were to look for files whose paths start with something like C:/, so it is safe always to concatenate with the value of rootPath, even when it is unknown whether the external program has been compiled under Cygwin.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10465-0/0
    │ │ │ +o1 = /tmp/M2-10584-0/0 │ │ │
    i2 : rootPath | fn
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10465-0/0
    │ │ │ +o2 = /tmp/M2-10584-0/0 │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │
    • │ │ │ ├── html2text {} │ │ │ │ @@ -16,15 +16,15 @@ │ │ │ │ Windows with Cygwin, but there it's crucial for those external programs that │ │ │ │ are not part of Cygwin. Fortunately, programs compiled under Cygwin know were │ │ │ │ to look for files whose paths start with something like C:/, so it is safe │ │ │ │ always to concatenate with the value of _r_o_o_t_P_a_t_h, even when it is unknown │ │ │ │ whether the external program has been compiled under Cygwin. │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10465-0/0 │ │ │ │ +o1 = /tmp/M2-10584-0/0 │ │ │ │ i2 : rootPath | fn │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10465-0/0 │ │ │ │ +o2 = /tmp/M2-10584-0/0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_o_o_t_U_R_I │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _r_o_o_t_P_a_t_h is a _s_t_r_i_n_g. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_root__U__R__I.html │ │ │ @@ -62,20 +62,20 @@ │ │ │
      │ │ │

      Description

      │ │ │

      This string may be concatenated with an absolute path to get one understandable by an external browser. Currently, this makes a difference only under Microsoft Windows with Cygwin, but there it's crucial for those external programs that are not part of Cygwin. Fortunately, programs compiled under Cygwin know were to look for files whose paths start with something like C:/, so it is safe always to concatenate with the value of rootPath, even when it is unknown whether the external program has been compiled under Cygwin.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      i1 : fn = temporaryFileName()
      │ │ │  
      │ │ │ -o1 = /tmp/M2-11592-0/0
      │ │ │ +o1 = /tmp/M2-12859-0/0 │ │ │
      i2 : rootURI | fn
      │ │ │  
      │ │ │ -o2 = file:///tmp/M2-11592-0/0
      │ │ │ +o2 = file:///tmp/M2-12859-0/0 │ │ │
      │ │ │
      │ │ │
      │ │ │

      See also

      │ │ │
        │ │ │
      • │ │ │ ├── html2text {} │ │ │ │ @@ -16,15 +16,15 @@ │ │ │ │ Windows with Cygwin, but there it's crucial for those external programs that │ │ │ │ are not part of Cygwin. Fortunately, programs compiled under Cygwin know were │ │ │ │ to look for files whose paths start with something like C:/, so it is safe │ │ │ │ always to concatenate with the value of _r_o_o_t_P_a_t_h, even when it is unknown │ │ │ │ whether the external program has been compiled under Cygwin. │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11592-0/0 │ │ │ │ +o1 = /tmp/M2-12859-0/0 │ │ │ │ i2 : rootURI | fn │ │ │ │ │ │ │ │ -o2 = file:///tmp/M2-11592-0/0 │ │ │ │ +o2 = file:///tmp/M2-12859-0/0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_o_o_t_P_a_t_h │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _r_o_o_t_U_R_I is a _s_t_r_i_n_g. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_saving_sppolynomials_spand_spmatrices_spin_spfiles.html │ │ │ @@ -74,20 +74,20 @@ │ │ │ │ │ │ 1 │ │ │ o4 : R-module, submodule of R │ │ │
    i5 : f = temporaryFileName()
    │ │ │  
    │ │ │ -o5 = /tmp/M2-11478-0/0
    │ │ │ +o5 = /tmp/M2-12625-0/0 │ │ │
    i6 : f << toString (p,m,M) << close
    │ │ │  
    │ │ │ -o6 = /tmp/M2-11478-0/0
    │ │ │ +o6 = /tmp/M2-12625-0/0
    │ │ │  
    │ │ │  o6 : File
    │ │ │
    i7 : get f
    │ │ │  
    │ │ │  o7 = (x^3-3*x^2*y+3*x*y^2-y^3-3*x^2+6*x*y-3*y^2+3*x-3*y-1,matrix {{x^2,
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -28,18 +28,18 @@
    │ │ │ │  
    │ │ │ │  o4 = image | x2 x2-y2 xyz7 |
    │ │ │ │  
    │ │ │ │                               1
    │ │ │ │  o4 : R-module, submodule of R
    │ │ │ │  i5 : f = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o5 = /tmp/M2-11478-0/0
    │ │ │ │ +o5 = /tmp/M2-12625-0/0
    │ │ │ │  i6 : f << toString (p,m,M) << close
    │ │ │ │  
    │ │ │ │ -o6 = /tmp/M2-11478-0/0
    │ │ │ │ +o6 = /tmp/M2-12625-0/0
    │ │ │ │  
    │ │ │ │  o6 : File
    │ │ │ │  i7 : get f
    │ │ │ │  
    │ │ │ │  o7 = (x^3-3*x^2*y+3*x*y^2-y^3-3*x^2+6*x*y-3*y^2+3*x-3*y-1,matrix {{x^2,
    │ │ │ │       x^2-y^2, x*y*z^7}},image matrix {{x^2, x^2-y^2, x*y*z^7}})
    │ │ │ │  i8 : (p',m',M') = value get f
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_schedule.html
    │ │ │ @@ -103,15 +103,15 @@
    │ │ │  
    i4 : taskResult t
    │ │ │  
    │ │ │  o4 = 8
    │ │ │
    i5 : u = schedule(f,4)
    │ │ │  
    │ │ │ -o5 = <<task, result available, task done>>
    │ │ │ +o5 = <<task, created>>
    │ │ │  
    │ │ │  o5 : Task
    │ │ │
    i6 : taskResult u
    │ │ │  
    │ │ │  o6 = 16
    │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ │ │ │ │ o3 : Task │ │ │ │ i4 : taskResult t │ │ │ │ │ │ │ │ o4 = 8 │ │ │ │ i5 : u = schedule(f,4) │ │ │ │ │ │ │ │ -o5 = <> │ │ │ │ +o5 = <> │ │ │ │ │ │ │ │ o5 : Task │ │ │ │ i6 : taskResult u │ │ │ │ │ │ │ │ o6 = 16 │ │ │ │ ********** WWaayyss ttoo uussee sscchheedduullee:: ********** │ │ │ │ * schedule(Function) │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_serial__Number.html │ │ │ @@ -67,20 +67,20 @@ │ │ │ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : serialNumber asdf
    │ │ │  
    │ │ │ -o1 = 1528251
    │ │ │ +o1 = 1628251 │ │ │
    i2 : serialNumber foo
    │ │ │  
    │ │ │ -o2 = 1528253
    │ │ │ +o2 = 1628253 │ │ │
    i3 : serialNumber ZZ
    │ │ │  
    │ │ │  o3 = 1000050
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -11,16 +11,16 @@ │ │ │ │ * Inputs: │ │ │ │ o x │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the serial number of x │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : serialNumber asdf │ │ │ │ │ │ │ │ -o1 = 1528251 │ │ │ │ +o1 = 1628251 │ │ │ │ i2 : serialNumber foo │ │ │ │ │ │ │ │ -o2 = 1528253 │ │ │ │ +o2 = 1628253 │ │ │ │ i3 : serialNumber ZZ │ │ │ │ │ │ │ │ o3 = 1000050 │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _s_e_r_i_a_l_N_u_m_b_e_r is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_solve.html │ │ │ @@ -320,19 +320,19 @@ │ │ │
    i26 : A = mutableMatrix(CC_53, N, N); fillMatrix A;
    │ │ │
    i28 : B = mutableMatrix(CC_53, N, 2); fillMatrix B;
    │ │ │
    i30 : time X = solve(A,B);
    │ │ │ - -- used 0.000236533s (cpu); 0.000229119s (thread); 0s (gc)
    │ │ │ + -- used 0.000140143s (cpu); 0.000128931s (thread); 0s (gc) │ │ │
    i31 : time X = solve(A,B, MaximalRank=>true);
    │ │ │ - -- used 0.000168847s (cpu); 0.000168906s (thread); 0s (gc)
    │ │ │ + -- used 9.3294e-05s (cpu); 9.3475e-05s (thread); 0s (gc) │ │ │
    i32 : norm(A*X-B)
    │ │ │  
    │ │ │  o32 = 5.111850690840453e-15
    │ │ │  
    │ │ │  o32 : RR (of precision 53)
    │ │ │ @@ -353,19 +353,19 @@ │ │ │
    i34 : A = mutableMatrix(CC_100, N, N); fillMatrix A;
    │ │ │
    i36 : B = mutableMatrix(CC_100, N, 2); fillMatrix B;
    │ │ │
    i38 : time X = solve(A,B);
    │ │ │ - -- used 0.484036s (cpu); 0.306285s (thread); 0s (gc)
    │ │ │ + -- used 0.145216s (cpu); 0.145221s (thread); 0s (gc) │ │ │
    i39 : time X = solve(A,B, MaximalRank=>true);
    │ │ │ - -- used 0.238738s (cpu); 0.23868s (thread); 0s (gc)
    │ │ │ + -- used 0.12495s (cpu); 0.12496s (thread); 0s (gc) │ │ │
    i40 : norm(A*X-B)
    │ │ │  
    │ │ │  o40 = 1.491578274689709814082355885932e-28
    │ │ │  
    │ │ │  o40 : RR (of precision 100)
    │ │ │ ├── html2text {} │ │ │ │ @@ -195,33 +195,33 @@ │ │ │ │ i24 : printingPrecision = 4; │ │ │ │ i25 : N = 40 │ │ │ │ │ │ │ │ o25 = 40 │ │ │ │ i26 : A = mutableMatrix(CC_53, N, N); fillMatrix A; │ │ │ │ i28 : B = mutableMatrix(CC_53, N, 2); fillMatrix B; │ │ │ │ i30 : time X = solve(A,B); │ │ │ │ - -- used 0.000236533s (cpu); 0.000229119s (thread); 0s (gc) │ │ │ │ + -- used 0.000140143s (cpu); 0.000128931s (thread); 0s (gc) │ │ │ │ i31 : time X = solve(A,B, MaximalRank=>true); │ │ │ │ - -- used 0.000168847s (cpu); 0.000168906s (thread); 0s (gc) │ │ │ │ + -- used 9.3294e-05s (cpu); 9.3475e-05s (thread); 0s (gc) │ │ │ │ i32 : norm(A*X-B) │ │ │ │ │ │ │ │ o32 = 5.111850690840453e-15 │ │ │ │ │ │ │ │ o32 : RR (of precision 53) │ │ │ │ Over higher precision RR or CC, these routines will be much slower than the │ │ │ │ lower precision lapack routines. │ │ │ │ i33 : N = 100 │ │ │ │ │ │ │ │ o33 = 100 │ │ │ │ i34 : A = mutableMatrix(CC_100, N, N); fillMatrix A; │ │ │ │ i36 : B = mutableMatrix(CC_100, N, 2); fillMatrix B; │ │ │ │ i38 : time X = solve(A,B); │ │ │ │ - -- used 0.484036s (cpu); 0.306285s (thread); 0s (gc) │ │ │ │ + -- used 0.145216s (cpu); 0.145221s (thread); 0s (gc) │ │ │ │ i39 : time X = solve(A,B, MaximalRank=>true); │ │ │ │ - -- used 0.238738s (cpu); 0.23868s (thread); 0s (gc) │ │ │ │ + -- used 0.12495s (cpu); 0.12496s (thread); 0s (gc) │ │ │ │ i40 : norm(A*X-B) │ │ │ │ │ │ │ │ o40 = 1.491578274689709814082355885932e-28 │ │ │ │ │ │ │ │ o40 : RR (of precision 100) │ │ │ │ Giving the option ClosestFit=>true, in the case when the field is RR or CC, │ │ │ │ uses a least squares algorithm to find a best fit solution. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_symbols_spused_spas_spthe_spname_spor_spvalue_spof_span_spoptional_spargument.html │ │ │┄ Ordering differences only │ │ │ @@ -53,18 +53,18 @@ │ │ │ Syzygies -- an optional argument │ │ │ │ │ │

    Symbols used as an option name

    │ │ │
      │ │ │
    • │ │ │ Threads -- an optional argument
    • │ │ │
    • │ │ │ -Strategy -- an optional argument
    • │ │ │ -
    • │ │ │ Generic -- an optional argument
    • │ │ │
    • │ │ │ +Strategy -- an optional argument
    • │ │ │ +
    • │ │ │ DegreeGroup -- an optional argument
    • │ │ │
    • │ │ │ Variables -- an optional argument
    • │ │ │
    • │ │ │ DegreeLift -- an optional argument
    • │ │ │
    • │ │ │ VariableBaseName -- an optional argument
    • │ │ │ @@ -85,26 +85,26 @@ │ │ │
    • │ │ │ Constants -- an optional argument
    • │ │ │
    • │ │ │ SkewCommutative -- an optional argument
    • │ │ │
    • │ │ │ DegreeMap -- an optional argument
    • │ │ │
    • │ │ │ -Verbosity -- an optional argument
    • │ │ │ -
    • │ │ │ -CodimensionLimit -- an optional argument
    • │ │ │ -
    • │ │ │ DegreeLimit -- an optional argument
    • │ │ │
    • │ │ │ -Verify -- an optional argument
    • │ │ │ -
    • │ │ │ BasisElementLimit -- an optional argument
    • │ │ │
    • │ │ │ PairLimit -- an optional argument
    • │ │ │
    • │ │ │ +Verbosity -- an optional argument
    • │ │ │ +
    • │ │ │ +CodimensionLimit -- an optional argument
    • │ │ │ +
    • │ │ │ +Verify -- an optional argument
    • │ │ │ +
    • │ │ │ CoefficientRing -- an optional argument
    • │ │ │
    • │ │ │ FollowLinks -- an optional argument
    • │ │ │
    • │ │ │ Exclude -- an optional argument
    • │ │ │
    • │ │ │ InstallPrefix -- an optional argument
    • │ │ │ ├── html2text {} │ │ │ │ @@ -6,36 +6,36 @@ │ │ │ │ =============================================================================== │ │ │ │ ************ ssyymmbboollss uusseedd aass tthhee nnaammee oorr vvaalluuee ooff aann ooppttiioonnaall aarrgguummeenntt ************ │ │ │ │ ******** MMeennuu ******** │ │ │ │ ****** SSyymmbboollss uusseedd aass aann ooppttiioonn nnaammee oorr vvaalluuee ****** │ │ │ │ * _S_y_z_y_g_i_e_s -- an optional argument │ │ │ │ ****** SSyymmbboollss uusseedd aass aann ooppttiioonn nnaammee ****** │ │ │ │ * _T_h_r_e_a_d_s -- an optional argument │ │ │ │ - * _S_t_r_a_t_e_g_y -- an optional argument │ │ │ │ * _G_e_n_e_r_i_c -- an optional argument │ │ │ │ + * _S_t_r_a_t_e_g_y -- an optional argument │ │ │ │ * _D_e_g_r_e_e_G_r_o_u_p -- an optional argument │ │ │ │ * _V_a_r_i_a_b_l_e_s -- an optional argument │ │ │ │ * _D_e_g_r_e_e_L_i_f_t -- an optional argument │ │ │ │ * _V_a_r_i_a_b_l_e_B_a_s_e_N_a_m_e -- an optional argument │ │ │ │ * _D_e_g_r_e_e_R_a_n_k -- an optional argument │ │ │ │ * _I_n_v_e_r_s_e_s -- an optional argument │ │ │ │ * _D_e_g_r_e_e_s -- an optional argument │ │ │ │ * _J_o_i_n -- an optional argument │ │ │ │ * _M_o_n_o_m_i_a_l_S_i_z_e -- an optional argument │ │ │ │ * _L_o_c_a_l -- an optional argument │ │ │ │ * _H_e_f_t -- an optional argument │ │ │ │ * _C_o_n_s_t_a_n_t_s -- an optional argument │ │ │ │ * _S_k_e_w_C_o_m_m_u_t_a_t_i_v_e -- an optional argument │ │ │ │ * _D_e_g_r_e_e_M_a_p -- an optional argument │ │ │ │ - * _V_e_r_b_o_s_i_t_y -- an optional argument │ │ │ │ - * _C_o_d_i_m_e_n_s_i_o_n_L_i_m_i_t -- an optional argument │ │ │ │ * _D_e_g_r_e_e_L_i_m_i_t -- an optional argument │ │ │ │ - * _V_e_r_i_f_y -- an optional argument │ │ │ │ * _B_a_s_i_s_E_l_e_m_e_n_t_L_i_m_i_t -- an optional argument │ │ │ │ * _P_a_i_r_L_i_m_i_t -- an optional argument │ │ │ │ + * _V_e_r_b_o_s_i_t_y -- an optional argument │ │ │ │ + * _C_o_d_i_m_e_n_s_i_o_n_L_i_m_i_t -- an optional argument │ │ │ │ + * _V_e_r_i_f_y -- an optional argument │ │ │ │ * _C_o_e_f_f_i_c_i_e_n_t_R_i_n_g -- an optional argument │ │ │ │ * _F_o_l_l_o_w_L_i_n_k_s -- an optional argument │ │ │ │ * _E_x_c_l_u_d_e -- an optional argument │ │ │ │ * _I_n_s_t_a_l_l_P_r_e_f_i_x -- an optional argument │ │ │ │ * _S_y_z_y_g_y_M_a_t_r_i_x -- an optional argument │ │ │ │ * _C_h_a_n_g_e_M_a_t_r_i_x -- an optional argument │ │ │ │ * _M_i_n_i_m_a_l_M_a_t_r_i_x -- an optional argument │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_symlink__Directory_lp__String_cm__String_rp.html │ │ │ @@ -85,73 +85,73 @@ │ │ │ │ │ │
      │ │ │

      Description

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      i1 : src = temporaryFileName() | "/"
      │ │ │  
      │ │ │ -o1 = /tmp/M2-11272-0/0/
      │ │ │ +o1 = /tmp/M2-12219-0/0/ │ │ │
      i2 : dst = temporaryFileName() | "/"
      │ │ │  
      │ │ │ -o2 = /tmp/M2-11272-0/1/
      │ │ │ +o2 = /tmp/M2-12219-0/1/ │ │ │
      i3 : makeDirectory (src|"a/")
      │ │ │  
      │ │ │ -o3 = /tmp/M2-11272-0/0/a/
      │ │ │ +o3 = /tmp/M2-12219-0/0/a/ │ │ │
      i4 : makeDirectory (src|"b/")
      │ │ │  
      │ │ │ -o4 = /tmp/M2-11272-0/0/b/
      │ │ │ +o4 = /tmp/M2-12219-0/0/b/ │ │ │
      i5 : makeDirectory (src|"b/c/")
      │ │ │  
      │ │ │ -o5 = /tmp/M2-11272-0/0/b/c/
      │ │ │ +o5 = /tmp/M2-12219-0/0/b/c/ │ │ │
      i6 : src|"a/f" << "hi there" << close
      │ │ │  
      │ │ │ -o6 = /tmp/M2-11272-0/0/a/f
      │ │ │ +o6 = /tmp/M2-12219-0/0/a/f
      │ │ │  
      │ │ │  o6 : File
      │ │ │
      i7 : src|"a/g" << "hi there" << close
      │ │ │  
      │ │ │ -o7 = /tmp/M2-11272-0/0/a/g
      │ │ │ +o7 = /tmp/M2-12219-0/0/a/g
      │ │ │  
      │ │ │  o7 : File
      │ │ │
      i8 : src|"b/c/g" << "ho there" << close
      │ │ │  
      │ │ │ -o8 = /tmp/M2-11272-0/0/b/c/g
      │ │ │ +o8 = /tmp/M2-12219-0/0/b/c/g
      │ │ │  
      │ │ │  o8 : File
      │ │ │
      i9 : symlinkDirectory(src,dst,Verbose=>true)
      │ │ │ ---symlinking: ../../../0/b/c/g -> /tmp/M2-11272-0/1/b/c/g
      │ │ │ ---symlinking: ../../0/a/g -> /tmp/M2-11272-0/1/a/g
      │ │ │ ---symlinking: ../../0/a/f -> /tmp/M2-11272-0/1/a/f
      │ │ │ +--symlinking: ../../../0/b/c/g -> /tmp/M2-12219-0/1/b/c/g │ │ │ +--symlinking: ../../0/a/f -> /tmp/M2-12219-0/1/a/f │ │ │ +--symlinking: ../../0/a/g -> /tmp/M2-12219-0/1/a/g │ │ │
      i10 : get (dst|"b/c/g")
      │ │ │  
      │ │ │  o10 = ho there
      │ │ │
      i11 : symlinkDirectory(src,dst,Verbose=>true,Undo=>true)
      │ │ │ ---unsymlinking: ../../../0/b/c/g -> /tmp/M2-11272-0/1/b/c/g
      │ │ │ ---unsymlinking: ../../0/a/g -> /tmp/M2-11272-0/1/a/g
      │ │ │ ---unsymlinking: ../../0/a/f -> /tmp/M2-11272-0/1/a/f
      │ │ │ +--unsymlinking: ../../../0/b/c/g -> /tmp/M2-12219-0/1/b/c/g │ │ │ +--unsymlinking: ../../0/a/f -> /tmp/M2-12219-0/1/a/f │ │ │ +--unsymlinking: ../../0/a/g -> /tmp/M2-12219-0/1/a/g │ │ │
      │ │ │ Now we remove the files and directories we created. │ │ │ │ │ │
      i12 : rm = d -> if isDirectory d then removeDirectory d else removeFile d
      │ │ │  
      │ │ │  o12 = rm
      │ │ │ ├── html2text {}
      │ │ │ │ @@ -31,53 +31,53 @@
      │ │ │ │            o The directory tree rooted at src is duplicated by a directory tree
      │ │ │ │              rooted at dst. The files in the source tree are represented by
      │ │ │ │              relative symbolic links in the destination tree to the original
      │ │ │ │              files in the source tree.
      │ │ │ │  ********** DDeessccrriippttiioonn **********
      │ │ │ │  i1 : src = temporaryFileName() | "/"
      │ │ │ │  
      │ │ │ │ -o1 = /tmp/M2-11272-0/0/
      │ │ │ │ +o1 = /tmp/M2-12219-0/0/
      │ │ │ │  i2 : dst = temporaryFileName() | "/"
      │ │ │ │  
      │ │ │ │ -o2 = /tmp/M2-11272-0/1/
      │ │ │ │ +o2 = /tmp/M2-12219-0/1/
      │ │ │ │  i3 : makeDirectory (src|"a/")
      │ │ │ │  
      │ │ │ │ -o3 = /tmp/M2-11272-0/0/a/
      │ │ │ │ +o3 = /tmp/M2-12219-0/0/a/
      │ │ │ │  i4 : makeDirectory (src|"b/")
      │ │ │ │  
      │ │ │ │ -o4 = /tmp/M2-11272-0/0/b/
      │ │ │ │ +o4 = /tmp/M2-12219-0/0/b/
      │ │ │ │  i5 : makeDirectory (src|"b/c/")
      │ │ │ │  
      │ │ │ │ -o5 = /tmp/M2-11272-0/0/b/c/
      │ │ │ │ +o5 = /tmp/M2-12219-0/0/b/c/
      │ │ │ │  i6 : src|"a/f" << "hi there" << close
      │ │ │ │  
      │ │ │ │ -o6 = /tmp/M2-11272-0/0/a/f
      │ │ │ │ +o6 = /tmp/M2-12219-0/0/a/f
      │ │ │ │  
      │ │ │ │  o6 : File
      │ │ │ │  i7 : src|"a/g" << "hi there" << close
      │ │ │ │  
      │ │ │ │ -o7 = /tmp/M2-11272-0/0/a/g
      │ │ │ │ +o7 = /tmp/M2-12219-0/0/a/g
      │ │ │ │  
      │ │ │ │  o7 : File
      │ │ │ │  i8 : src|"b/c/g" << "ho there" << close
      │ │ │ │  
      │ │ │ │ -o8 = /tmp/M2-11272-0/0/b/c/g
      │ │ │ │ +o8 = /tmp/M2-12219-0/0/b/c/g
      │ │ │ │  
      │ │ │ │  o8 : File
      │ │ │ │  i9 : symlinkDirectory(src,dst,Verbose=>true)
      │ │ │ │ ---symlinking: ../../../0/b/c/g -> /tmp/M2-11272-0/1/b/c/g
      │ │ │ │ ---symlinking: ../../0/a/g -> /tmp/M2-11272-0/1/a/g
      │ │ │ │ ---symlinking: ../../0/a/f -> /tmp/M2-11272-0/1/a/f
      │ │ │ │ +--symlinking: ../../../0/b/c/g -> /tmp/M2-12219-0/1/b/c/g
      │ │ │ │ +--symlinking: ../../0/a/f -> /tmp/M2-12219-0/1/a/f
      │ │ │ │ +--symlinking: ../../0/a/g -> /tmp/M2-12219-0/1/a/g
      │ │ │ │  i10 : get (dst|"b/c/g")
      │ │ │ │  
      │ │ │ │  o10 = ho there
      │ │ │ │  i11 : symlinkDirectory(src,dst,Verbose=>true,Undo=>true)
      │ │ │ │ ---unsymlinking: ../../../0/b/c/g -> /tmp/M2-11272-0/1/b/c/g
      │ │ │ │ ---unsymlinking: ../../0/a/g -> /tmp/M2-11272-0/1/a/g
      │ │ │ │ ---unsymlinking: ../../0/a/f -> /tmp/M2-11272-0/1/a/f
      │ │ │ │ +--unsymlinking: ../../../0/b/c/g -> /tmp/M2-12219-0/1/b/c/g
      │ │ │ │ +--unsymlinking: ../../0/a/f -> /tmp/M2-12219-0/1/a/f
      │ │ │ │ +--unsymlinking: ../../0/a/g -> /tmp/M2-12219-0/1/a/g
      │ │ │ │  Now we remove the files and directories we created.
      │ │ │ │  i12 : rm = d -> if isDirectory d then removeDirectory d else removeFile d
      │ │ │ │  
      │ │ │ │  o12 = rm
      │ │ │ │  
      │ │ │ │  o12 : FunctionClosure
      │ │ │ │  i13 : scan(reverse findFiles src, rm)
      │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_symlink__File.html
      │ │ │ @@ -71,15 +71,15 @@
      │ │ │        
      │ │ │        
      │ │ │

      Description

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      i1 : fn = temporaryFileName()
      │ │ │  
      │ │ │ -o1 = /tmp/M2-11345-0/0
      │ │ │ +o1 = /tmp/M2-12352-0/0 │ │ │
      i2 : symlinkFile("qwert", fn)
      │ │ │
      i3 : fileExists fn
      │ │ │ ├── html2text {}
      │ │ │ │ @@ -13,15 +13,15 @@
      │ │ │ │            o dst, a _s_t_r_i_n_g
      │ │ │ │      * Consequences:
      │ │ │ │            o a symbolic link at the location in the directory tree specified by
      │ │ │ │              dst is created, pointing to src
      │ │ │ │  ********** DDeessccrriippttiioonn **********
      │ │ │ │  i1 : fn = temporaryFileName()
      │ │ │ │  
      │ │ │ │ -o1 = /tmp/M2-11345-0/0
      │ │ │ │ +o1 = /tmp/M2-12352-0/0
      │ │ │ │  i2 : symlinkFile("qwert", fn)
      │ │ │ │  i3 : fileExists fn
      │ │ │ │  
      │ │ │ │  o3 = false
      │ │ │ │  i4 : readlink fn
      │ │ │ │  
      │ │ │ │  o4 = qwert
      │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_temporary__File__Name.html
      │ │ │ @@ -61,20 +61,20 @@
      │ │ │        
      │ │ │        
      │ │ │

      Description

      │ │ │ The file name is so unique that even with various suffixes appended, no collision with existing files will occur. The files will be removed when the program terminates, unless it terminates as the result of an error. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      i1 : temporaryFileName () | ".tex"
      │ │ │  
      │ │ │ -o1 = /tmp/M2-12321-0/0.tex
      │ │ │ +o1 = /tmp/M2-14386-0/0.tex │ │ │
      i2 : temporaryFileName () | ".html"
      │ │ │  
      │ │ │ -o2 = /tmp/M2-12321-0/1.html
      │ │ │ +o2 = /tmp/M2-14386-0/1.html │ │ │
      │ │ │

      This function will work under Unix, and also under Windows if you have a directory on the same drive called /tmp.

      │ │ │

      If the name of the temporary file will be given to an external program, it may be necessary to concatenate it with rootPath or rootURI to enable the external program to find the file.

      │ │ │

      The temporary file name is derived from the value of the environment variable TMPDIR, if it has one.

      │ │ │

      If fork is used, then the parent and child Macaulay2 processes will each remove their own temporary files upon termination, with the parent removing any files created before fork was called.

      │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -12,18 +12,18 @@ │ │ │ │ o a unique temporary file name. │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ The file name is so unique that even with various suffixes appended, no │ │ │ │ collision with existing files will occur. The files will be removed when the │ │ │ │ program terminates, unless it terminates as the result of an error. │ │ │ │ i1 : temporaryFileName () | ".tex" │ │ │ │ │ │ │ │ -o1 = /tmp/M2-12321-0/0.tex │ │ │ │ +o1 = /tmp/M2-14386-0/0.tex │ │ │ │ i2 : temporaryFileName () | ".html" │ │ │ │ │ │ │ │ -o2 = /tmp/M2-12321-0/1.html │ │ │ │ +o2 = /tmp/M2-14386-0/1.html │ │ │ │ This function will work under Unix, and also under Windows if you have a │ │ │ │ directory on the same drive called /tmp. │ │ │ │ If the name of the temporary file will be given to an external program, it may │ │ │ │ be necessary to concatenate it with _r_o_o_t_P_a_t_h or _r_o_o_t_U_R_I to enable the external │ │ │ │ program to find the file. │ │ │ │ The temporary file name is derived from the value of the environment variable │ │ │ │ TMPDIR, if it has one. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_time.html │ │ │ @@ -54,15 +54,15 @@ │ │ │ │ │ │ │ │ │
      │ │ │

      Description

      │ │ │ time e evaluates e, prints the amount of cpu time used, and returns the value of e. The time used by the the current thread and garbage collection during the evaluation of e is also shown. │ │ │ │ │ │ │ │ │
      i1 : time 3^30
      │ │ │ - -- used 1.3776e-05s (cpu); 5.69e-06s (thread); 0s (gc)
      │ │ │ + -- used 2.0499e-05s (cpu); 5.37e-06s (thread); 0s (gc)
      │ │ │  
      │ │ │  o1 = 205891132094649
      │ │ │
      │ │ │
      │ │ │
      │ │ │

      See also

      │ │ │ ├── html2text {} │ │ │ │ @@ -8,15 +8,15 @@ │ │ │ │ * Usage: │ │ │ │ time e │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ time e evaluates e, prints the amount of cpu time used, and returns the value │ │ │ │ of e. The time used by the the current thread and garbage collection during the │ │ │ │ evaluation of e is also shown. │ │ │ │ i1 : time 3^30 │ │ │ │ - -- used 1.3776e-05s (cpu); 5.69e-06s (thread); 0s (gc) │ │ │ │ + -- used 2.0499e-05s (cpu); 5.37e-06s (thread); 0s (gc) │ │ │ │ │ │ │ │ o1 = 205891132094649 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_i_m_i_n_g -- time a computation │ │ │ │ * _c_p_u_T_i_m_e -- seconds of cpu time used since Macaulay2 began │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_i_n_g -- time a computation using time elapsed │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_e -- time a computation including time elapsed │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_timing.html │ │ │ @@ -46,22 +46,22 @@ │ │ │

      Description

      │ │ │ timing e evaluates e and returns a list of type Time of the form {t,v}, where t is the number of seconds of cpu timing used, and v is the value of the expression.

      │ │ │ The default method for printing such timing results is to display the timing separately in a comment below the computed value. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      i1 : timing 3^30
      │ │ │  
      │ │ │  o1 = 205891132094649
      │ │ │ -     -- .000014217 seconds
      │ │ │ +     -- .000015719 seconds
      │ │ │  
      │ │ │  o1 : Time
      │ │ │
      i2 : peek oo
      │ │ │  
      │ │ │ -o2 = Time{.000014217, 205891132094649}
      │ │ │ +o2 = Time{.000015719, 205891132094649} │ │ │
      │ │ │
      │ │ │
      │ │ │

      See also

      │ │ │
        │ │ │
      • │ │ │ ├── html2text {} │ │ │ │ @@ -9,20 +9,20 @@ │ │ │ │ is the number of seconds of cpu timing used, and v is the value of the │ │ │ │ expression. │ │ │ │ The default method for printing such timing results is to display the timing │ │ │ │ separately in a comment below the computed value. │ │ │ │ i1 : timing 3^30 │ │ │ │ │ │ │ │ o1 = 205891132094649 │ │ │ │ - -- .000014217 seconds │ │ │ │ + -- .000015719 seconds │ │ │ │ │ │ │ │ o1 : Time │ │ │ │ i2 : peek oo │ │ │ │ │ │ │ │ -o2 = Time{.000014217, 205891132094649} │ │ │ │ +o2 = Time{.000015719, 205891132094649} │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _T_i_m_e -- the class of all timing results │ │ │ │ * _t_i_m_e -- time a computation │ │ │ │ * _c_p_u_T_i_m_e -- seconds of cpu time used since Macaulay2 began │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_i_n_g -- time a computation using time elapsed │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_e -- time a computation including time elapsed │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_version.html │ │ │ @@ -98,15 +98,15 @@ │ │ │ "memtailor version" => 1.0 │ │ │ "mpfi version" => 1.5.4 │ │ │ "mpfr version" => 4.2.1 │ │ │ "mpsolve version" => 3.2.1 │ │ │ "mysql version" => not present │ │ │ "normaliz version" => 3.10.4 │ │ │ "ntl version" => 11.5.1 │ │ │ - "operating system release" => 6.1.0-31-amd64 │ │ │ + "operating system release" => 6.12.35+deb13-cloud-amd64 │ │ │ "operating system" => Linux │ │ │ "packages" => Style FirstPackage Macaulay2Doc Parsing Classic Browse Benchmark Text SimpleDoc PackageTemplate Saturation PrimaryDecomposition FourierMotzkin Dmodules WeylAlgebras HolonomicSystems BernsteinSato Depth Elimination GenericInitialIdeal IntegralClosure HyperplaneArrangements LexIdeals Markov NoetherNormalization Points ReesAlgebra Regularity SchurRings SymmetricPolynomials SchurFunctors SimplicialComplexes LLLBases TangentCone ChainComplexExtras Varieties Schubert2 PushForward LocalRings PruneComplex BoijSoederberg BGG Bruns InvolutiveBases ConwayPolynomials EdgeIdeals FourTiTwo StatePolytope Polyhedra Truncations Polymake gfanInterface PieriMaps Normaliz Posets XML OpenMath SCSCP RationalPoints MapleInterface ConvexInterface SRdeformations NumericalAlgebraicGeometry BeginningMacaulay2 FormalGroupLaws Graphics WeylGroups HodgeIntegrals Cyclotomic Binomials Kronecker Nauty ToricVectorBundles ModuleDeformations PHCpack SimplicialDecomposability BooleanGB AdjointIdeal Parametrization Serialization NAGtypes NormalToricVarieties DGAlgebras Graphs GraphicalModels BIBasis KustinMiller Units NautyGraphs VersalDeformations CharacteristicClasses RandomIdeals RandomObjects RandomPlaneCurves RandomSpaceCurves RandomGenus14Curves RandomCanonicalCurves RandomCurves TensorComplexes MonomialAlgebras QthPower EliminationMatrices EllipticIntegrals Triplets CompleteIntersectionResolutions EagonResolution MCMApproximations MultiplierIdeals InvariantRing QuillenSuslin EnumerationCurves Book3264Examples Divisor EllipticCurves HighestWeights MinimalPrimes Bertini TorAlgebra Permanents BinomialEdgeIdeals TateOnProducts LatticePolytopes FiniteFittingIdeals HigherCIOperators LieTypes ConformalBlocks M0nbar AnalyzeSheafOnP1 MultiplierIdealsDim2 RunExternalM2 NumericalSchubertCalculus ToricTopology Cremona Resultants VectorFields SLPexpressions Miura ResidualIntersections Visualize EquivariantGB ExampleSystems RationalMaps FastMinors RandomPoints SwitchingFields SpectralSequences SectionRing OldPolyhedra OldToricVectorBundles K3Carpets ChainComplexOperations NumericalCertification PhylogeneticTrees MonodromySolver ReactionNetworks PackageCitations NumericSolutions GradedLieAlgebras InverseSystems Pullback EngineTests SVDComplexes RandomComplexes CohomCalg Topcom Triangulations ReflexivePolytopesDB AbstractToricVarieties Licenses TestIdeals FrobeniusThresholds Seminormalization AlgebraicSplines TriangularSets Chordal Tropical SymbolicPowers Complexes GroebnerWalk RandomMonomialIdeals Matroids NumericalImplicitization NonminimalComplexes CoincidentRootLoci RelativeCanonicalResolution RandomCurvesOverVerySmallFiniteFields StronglyStableIdeals SLnEquivariantMatrices CorrespondenceScrolls NCAlgebra SpaceCurves ExteriorIdeals ToricInvariants SegreClasses SemidefiniteProgramming SumsOfSquares MultiGradedRationalMap AssociativeAlgebras VirtualResolutions Quasidegrees DiffAlg DeterminantalRepresentations FGLM SpechtModule SchurComplexes SimplicialPosets SlackIdeals PositivityToricBundles SparseResultants DecomposableSparseSystems MixedMultiplicity PencilsOfQuadrics ThreadedGB AdjunctionForSurfaces VectorGraphics GKMVarieties MonomialIntegerPrograms NoetherianOperators Hadamard StatGraphs GraphicalModelsMLE EigenSolver MultiplicitySequence ResolutionsOfStanleyReisnerRings NumericalLinearAlgebra ResLengthThree MonomialOrbits MultiprojectiveVarieties SpecialFanoFourfolds RationalPoints2 SuperLinearAlgebra SubalgebraBases AInfinity LinearTruncations ThinSincereQuivers Python BettiCharacters Jets FunctionFieldDesingularization HomotopyLieAlgebra TSpreadIdeals RealRoots ExteriorModules K3Surfaces GroebnerStrata QuaternaryQuartics CotangentSchubert OnlineLookup MergeTeX Probability Isomorphism CodingTheory WhitneyStratifications JSON ForeignFunctions GeometricDecomposability PseudomonomialPrimaryDecomposition PolyominoIdeals MatchingFields CellularResolutions SagbiGbDetection A1BrouwerDegrees QuadraticIdealExamplesByRoos TerraciniLoci MatrixSchubert RInterface OIGroebnerBases PlaneCurveLinearSeries Valuations SchurVeronese VNumber TropicalToric MultigradedBGG AbstractSimplicialComplexes MultigradedImplicitization Msolve Permutations SCMAlgebras NumericalSemigroups │ │ │ "pointer size" => 8 │ │ │ "python version" => 3.13.2 │ │ │ "readline version" => 8.2 │ │ │ "scscp version" => not present │ │ │ "tbb version" => 2022.0 │ │ │ ├── html2text {} │ │ │ │ @@ -64,15 +64,15 @@ │ │ │ │ "memtailor version" => 1.0 │ │ │ │ "mpfi version" => 1.5.4 │ │ │ │ "mpfr version" => 4.2.1 │ │ │ │ "mpsolve version" => 3.2.1 │ │ │ │ "mysql version" => not present │ │ │ │ "normaliz version" => 3.10.4 │ │ │ │ "ntl version" => 11.5.1 │ │ │ │ - "operating system release" => 6.1.0-31-amd64 │ │ │ │ + "operating system release" => 6.12.35+deb13-cloud-amd64 │ │ │ │ "operating system" => Linux │ │ │ │ "packages" => Style FirstPackage Macaulay2Doc Parsing Classic │ │ │ │ Browse Benchmark Text SimpleDoc PackageTemplate Saturation PrimaryDecomposition │ │ │ │ FourierMotzkin Dmodules WeylAlgebras HolonomicSystems BernsteinSato Depth │ │ │ │ Elimination GenericInitialIdeal IntegralClosure HyperplaneArrangements │ │ │ │ LexIdeals Markov NoetherNormalization Points ReesAlgebra Regularity SchurRings │ │ │ │ SymmetricPolynomials SchurFunctors SimplicialComplexes LLLBases TangentCone │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/toc.html │ │ │┄ Ordering differences only │ │ │ @@ -7399,19 +7399,19 @@ │ │ │
      • │ │ │
      • │ │ │
        │ │ │ Threads -- an optional argument
        │ │ │
      • │ │ │
      • │ │ │
        │ │ │ -Strategy -- an optional argument
        │ │ │ +Generic -- an optional argument
      │ │ │ │ │ │
    • │ │ │
      │ │ │ -Generic -- an optional argument
      │ │ │ +Strategy -- an optional argument │ │ │
    • │ │ │
    • │ │ │
      │ │ │ DegreeGroup -- an optional argument
      │ │ │
    • │ │ │
    • │ │ │
      │ │ │ @@ -7463,35 +7463,35 @@ │ │ │
    • │ │ │
    • │ │ │
      │ │ │ DegreeMap -- an optional argument
      │ │ │
    • │ │ │
    • │ │ │
      │ │ │ -Verbosity -- an optional argument
      │ │ │ +DegreeLimit -- an optional argument │ │ │
    • │ │ │
    • │ │ │
      │ │ │ -CodimensionLimit -- an optional argument
      │ │ │ +BasisElementLimit -- an optional argument │ │ │
    • │ │ │
    • │ │ │
      │ │ │ -DegreeLimit -- an optional argument
      │ │ │ +PairLimit -- an optional argument │ │ │
    • │ │ │
    • │ │ │
      │ │ │ -Verify -- an optional argument
      │ │ │ +Verbosity -- an optional argument │ │ │
    • │ │ │
    • │ │ │
      │ │ │ -BasisElementLimit -- an optional argument
      │ │ │ +CodimensionLimit -- an optional argument │ │ │
    • │ │ │
    • │ │ │
      │ │ │ -PairLimit -- an optional argument
      │ │ │ +Verify -- an optional argument │ │ │
    • │ │ │
    • │ │ │
      │ │ │ CoefficientRing -- an optional argument
      │ │ │
    • │ │ │
    • │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -2047,36 +2047,36 @@ │ │ │ │ * _S_y_m_b_o_l_ ___ _R_i_n_g -- get a ring variable by name │ │ │ │ * _S_y_m_b_o_l_ ___ _T_h_i_n_g -- index variable │ │ │ │ * _S_y_m_b_o_l_ ___ _T_h_i_n_g_ _=_ _T_h_i_n_g -- assignment to an indexed variable │ │ │ │ * _s_y_m_b_o_l_B_o_d_y -- symbol bodies │ │ │ │ * _s_y_m_b_o_l_s_ _u_s_e_d_ _a_s_ _t_h_e_ _n_a_m_e_ _o_r_ _v_a_l_u_e_ _o_f_ _a_n_ _o_p_t_i_o_n_a_l_ _a_r_g_u_m_e_n_t │ │ │ │ o _S_y_z_y_g_i_e_s -- an optional argument │ │ │ │ o _T_h_r_e_a_d_s -- an optional argument │ │ │ │ - o _S_t_r_a_t_e_g_y -- an optional argument │ │ │ │ o _G_e_n_e_r_i_c -- an optional argument │ │ │ │ + o _S_t_r_a_t_e_g_y -- an optional argument │ │ │ │ o _D_e_g_r_e_e_G_r_o_u_p -- an optional argument │ │ │ │ o _V_a_r_i_a_b_l_e_s -- an optional argument │ │ │ │ o _D_e_g_r_e_e_L_i_f_t -- an optional argument │ │ │ │ o _V_a_r_i_a_b_l_e_B_a_s_e_N_a_m_e -- an optional argument │ │ │ │ o _D_e_g_r_e_e_R_a_n_k -- an optional argument │ │ │ │ o _I_n_v_e_r_s_e_s -- an optional argument │ │ │ │ o _D_e_g_r_e_e_s -- an optional argument │ │ │ │ o _J_o_i_n -- an optional argument │ │ │ │ o _M_o_n_o_m_i_a_l_S_i_z_e -- an optional argument │ │ │ │ o _L_o_c_a_l -- an optional argument │ │ │ │ o _H_e_f_t -- an optional argument │ │ │ │ o _C_o_n_s_t_a_n_t_s -- an optional argument │ │ │ │ o _S_k_e_w_C_o_m_m_u_t_a_t_i_v_e -- an optional argument │ │ │ │ o _D_e_g_r_e_e_M_a_p -- an optional argument │ │ │ │ - o _V_e_r_b_o_s_i_t_y -- an optional argument │ │ │ │ - o _C_o_d_i_m_e_n_s_i_o_n_L_i_m_i_t -- an optional argument │ │ │ │ o _D_e_g_r_e_e_L_i_m_i_t -- an optional argument │ │ │ │ - o _V_e_r_i_f_y -- an optional argument │ │ │ │ o _B_a_s_i_s_E_l_e_m_e_n_t_L_i_m_i_t -- an optional argument │ │ │ │ o _P_a_i_r_L_i_m_i_t -- an optional argument │ │ │ │ + o _V_e_r_b_o_s_i_t_y -- an optional argument │ │ │ │ + o _C_o_d_i_m_e_n_s_i_o_n_L_i_m_i_t -- an optional argument │ │ │ │ + o _V_e_r_i_f_y -- an optional argument │ │ │ │ o _C_o_e_f_f_i_c_i_e_n_t_R_i_n_g -- an optional argument │ │ │ │ o _F_o_l_l_o_w_L_i_n_k_s -- an optional argument │ │ │ │ o _E_x_c_l_u_d_e -- an optional argument │ │ │ │ o _I_n_s_t_a_l_l_P_r_e_f_i_x -- an optional argument │ │ │ │ o _S_y_z_y_g_y_M_a_t_r_i_x -- an optional argument │ │ │ │ o _C_h_a_n_g_e_M_a_t_r_i_x -- an optional argument │ │ │ │ o _M_i_n_i_m_a_l_M_a_t_r_i_x -- an optional argument │ │ ├── ./usr/share/doc/Macaulay2/MapleInterface/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=5 │ │ │ c3RvcmU= │ │ │ #:len=651 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiU3RvcmUgcmVzdWx0IG9mIGEgTWFwbGUg │ │ │ Y29tcHV0YXRpb24gaW4gYSBmaWxlLiIsIERlc2NyaXB0aW9uID0+IDE6KERJVntQQVJBe1RFWHsi │ │ ├── ./usr/share/doc/Macaulay2/Markov/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=21 │ │ │ Z2F1c3NJZGVhbChSaW5nLExpc3Qp │ │ │ #:len=239 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNjE4LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhnYXVzc0lkZWFsLFJpbmcsTGlzdCksImdhdXNzSWRl │ │ ├── ./usr/share/doc/Macaulay2/Markov/example-output/___Markov.out │ │ │ @@ -70,15 +70,15 @@ │ │ │ | 1,2,1,2 2,2,1,1 1,2,1,1 2,2,1,2| 1,2,2,2 2,2,2,1 1,2,2,1 2,2,2,2| │ │ │ +-------------------------------------+-------------------------------------+ │ │ │ |- p p + p p |- p p + p p | │ │ │ | 1,1,2,1 1,2,1,1 1,1,1,1 1,2,2,1| 1,1,2,2 1,2,1,2 1,1,1,2 1,2,2,2| │ │ │ +-------------------------------------+-------------------------------------+ │ │ │ │ │ │ i8 : time netList primaryDecomposition J │ │ │ - -- used 3.13287s (cpu); 1.71368s (thread); 0s (gc) │ │ │ + -- used 3.79413s (cpu); 2.17435s (thread); 0s (gc) │ │ │ │ │ │ +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ o8 = |ideal (p , p , p , p , p p - p p , p p - p p ) | │ │ │ | 1,2,2,2 1,2,2,1 1,2,1,2 1,2,1,1 1,1,2,2 2,1,2,1 1,1,2,1 2,1,2,2 1,1,1,2 2,1,1,1 1,1,1,1 2,1,1,2 | │ │ │ +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ |ideal (p , p , p , p , p p - p p , p p - p p ) | │ │ │ | 1,2,2,2 1,2,2,1 1,1,2,2 1,1,2,1 1,2,1,2 2,2,1,1 1,2,1,1 2,2,1,2 1,1,1,2 2,1,1,1 1,1,1,1 2,1,1,2 | │ │ ├── ./usr/share/doc/Macaulay2/Markov/html/index.html │ │ │ @@ -139,15 +139,15 @@ │ │ │
    • │ │ │
      │ │ │

      This ideal has 5 primary components. The first is the one that has statistical significance. The significance of the other components is still poorly understood.

      │ │ │
      │ │ │ │ │ │ │ │ │
      i8 : time netList primaryDecomposition J
      │ │ │ - -- used 3.13287s (cpu); 1.71368s (thread); 0s (gc)
      │ │ │ + -- used 3.79413s (cpu); 2.17435s (thread); 0s (gc)
      │ │ │  
      │ │ │       +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
      │ │ │  o8 = |ideal (p       , p       , p       , p       , p       p        - p       p       , p       p        - p       p       )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
      │ │ │       |        1,2,2,2   1,2,2,1   1,2,1,2   1,2,1,1   1,1,2,2 2,1,2,1    1,1,2,1 2,1,2,2   1,1,1,2 2,1,1,1    1,1,1,1 2,1,1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
      │ │ │       +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
      │ │ │       |ideal (p       , p       , p       , p       , p       p        - p       p       , p       p        - p       p       )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
      │ │ │       |        1,2,2,2   1,2,2,1   1,1,2,2   1,1,2,1   1,2,1,2 2,2,1,1    1,2,1,1 2,2,1,2   1,1,1,2 2,1,1,1    1,1,1,1 2,1,1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
      │ │ │ ├── html2text {}
      │ │ │ │ @@ -102,15 +102,15 @@
      │ │ │ │  1,2,2,2|
      │ │ │ │       +-------------------------------------+-----------------------------------
      │ │ │ │  --+
      │ │ │ │  This ideal has 5 primary components. The first is the one that has statistical
      │ │ │ │  significance. The significance of the other components is still poorly
      │ │ │ │  understood.
      │ │ │ │  i8 : time netList primaryDecomposition J
      │ │ │ │ - -- used 3.13287s (cpu); 1.71368s (thread); 0s (gc)
      │ │ │ │ + -- used 3.79413s (cpu); 2.17435s (thread); 0s (gc)
      │ │ │ │  
      │ │ │ │       +-------------------------------------------------------------------------
      │ │ │ │  -------------------------------------------------------------------------------
      │ │ │ │  -------------------------------------------------------------------------------
      │ │ │ │  -------------------------------------------------------------------------------
      │ │ │ │  -------------------------------------------------------------------------------
      │ │ │ │  -------------------------------------------------------------------------------
      │ │ ├── ./usr/share/doc/Macaulay2/MatchingFields/dump/rawdocumentation.dump
      │ │ │ @@ -1,11 +1,11 @@
      │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
      │ │ │  #:version=1.1
      │ │ │  #:file=rawdocumentation-dcba-8.db
      │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
      │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
      │ │ │  #:format=standard
      │ │ │  # End of header
      │ │ │  #:len=24
      │ │ │  YWxnZWJyYWljTWF0cm9pZENpcmN1aXRz
      │ │ │  #:len=1461
      │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiVGhlIGJhc2VzIG9mIHRoZSBhbGdlYnJh
      │ │ │  aWMgbWF0cm9pZCIsICJsaW5lbnVtIiA9PiAyMTIxLCBJbnB1dHMgPT4ge1NQQU57VFR7IkwifSwi
      │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/dump/rawdocumentation.dump
      │ │ │ @@ -1,11 +1,11 @@
      │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
      │ │ │  #:version=1.1
      │ │ │  #:file=rawdocumentation-dcba-8.db
      │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
      │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
      │ │ │  #:format=standard
      │ │ │  # End of header
      │ │ │  #:len=16
      │ │ │  aXNBU01VbmlvbihMaXN0KQ==
      │ │ │  #:len=285
      │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTA2MSwgc3ltYm9sIERvY3VtZW50VGFn
      │ │ │  ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoaXNBU01VbmlvbixMaXN0KSwiaXNBU01VbmlvbihM
      │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Investigating_sp__A__S__M_spvarieties.out
      │ │ │ @@ -212,17 +212,17 @@
      │ │ │        | 1 -1 1 |
      │ │ │        | 0 1  0 |
      │ │ │  
      │ │ │                 3       3
      │ │ │  o22 : Matrix ZZ  <-- ZZ
      │ │ │  
      │ │ │  i23 : time schubertRegularity B
      │ │ │ - -- used 0.0762177s (cpu); 0.0314497s (thread); 0s (gc)
      │ │ │ + -- used 0.0847111s (cpu); 0.0254131s (thread); 0s (gc)
      │ │ │  
      │ │ │  o23 = 1
      │ │ │  
      │ │ │  i24 : time regularity comodule schubertDeterminantalIdeal B
      │ │ │ - -- used 0.010001s (cpu); 0.0137971s (thread); 0s (gc)
      │ │ │ + -- used 0.0100116s (cpu); 0.0120553s (thread); 0s (gc)
      │ │ │  
      │ │ │  o24 = 1
      │ │ │  
      │ │ │  i25 :
      │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Investigating_spmatrix_sp__Schubert_spvarieties.out
      │ │ │ @@ -166,17 +166,17 @@
      │ │ │        z   z   z   , z   z   z    - z   z   , z   z   z    - z   z   )
      │ │ │         1,2 1,3 2,4   1,2 1,4 2,2    1,2 2,4   1,2 1,3 2,2    1,2 2,3
      │ │ │  
      │ │ │  o14 : Ideal of QQ[z   ..z   ]
      │ │ │                     1,1   5,5
      │ │ │  
      │ │ │  i15 : time schubertRegularity p
      │ │ │ - -- used 0.000811421s (cpu); 0.000282139s (thread); 0s (gc)
      │ │ │ + -- used 0.00265319s (cpu); 0.000216806s (thread); 0s (gc)
      │ │ │  
      │ │ │  o15 = 5
      │ │ │  
      │ │ │  i16 : time regularity comodule I
      │ │ │ - -- used 0.0148788s (cpu); 0.0151641s (thread); 0s (gc)
      │ │ │ + -- used 0.00928066s (cpu); 0.012135s (thread); 0s (gc)
      │ │ │  
      │ │ │  o16 = 5
      │ │ │  
      │ │ │  i17 :
      │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_grothendieck__Polynomial.out
      │ │ │ @@ -3,25 +3,25 @@
      │ │ │  i1 : w = {2,1,4,3}
      │ │ │  
      │ │ │  o1 = {2, 1, 4, 3}
      │ │ │  
      │ │ │  o1 : List
      │ │ │  
      │ │ │  i2 : time grothendieckPolynomial w
      │ │ │ - -- used 0.00400002s (cpu); 0.00427234s (thread); 0s (gc)
      │ │ │ + -- used 0.00400087s (cpu); 0.00359277s (thread); 0s (gc)
      │ │ │  
      │ │ │        2        2      2               2
      │ │ │  o2 = x x x  - x x  - x x  - x x x  + x  + x x  + x x
      │ │ │        1 2 3    1 2    1 3    1 2 3    1    1 2    1 3
      │ │ │  
      │ │ │  o2 : QQ[x ..x ]
      │ │ │           1   4
      │ │ │  
      │ │ │  i3 : time grothendieckPolynomial (w,Algorithm=>"PipeDream")
      │ │ │ - -- used 0.00234252s (cpu); 0.00182869s (thread); 0s (gc)
      │ │ │ + -- used 0.00162331s (cpu); 0.00159932s (thread); 0s (gc)
      │ │ │  
      │ │ │        2        2      2               2
      │ │ │  o3 = x x x  - x x  - x x  - x x x  + x  + x x  + x x
      │ │ │        1 2 3    1 2    1 3    1 2 3    1    1 2    1 3
      │ │ │  
      │ │ │  o3 : QQ[x ..x ]
      │ │ │           1   4
      │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Investigating_sp__A__S__M_spvarieties.html
      │ │ │ @@ -333,21 +333,21 @@
      │ │ │          
      │ │ │
      │ │ │

      Additionally, this package facilitates the investigating homological invariants of ASM ideals efficiently by computing the associated invariants for their antidiagonal initial ideals, which are known to be squarefree by [Wei17]. Therefore the extremal Betti numbers (which encode regularity, depth, and projective dimension) of ASM ideals coincide with those of their antidiagonal initial ideals by [CV20].

      │ │ │
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      i23 : time schubertRegularity B
      │ │ │ - -- used 0.0762177s (cpu); 0.0314497s (thread); 0s (gc)
      │ │ │ + -- used 0.0847111s (cpu); 0.0254131s (thread); 0s (gc)
      │ │ │  
      │ │ │  o23 = 1
      │ │ │
      i24 : time regularity comodule schubertDeterminantalIdeal B
      │ │ │ - -- used 0.010001s (cpu); 0.0137971s (thread); 0s (gc)
      │ │ │ + -- used 0.0100116s (cpu); 0.0120553s (thread); 0s (gc)
      │ │ │  
      │ │ │  o24 = 1
      │ │ │
      │ │ │
      │ │ │

      Functions for investigating ASM varieties

      │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -241,19 +241,19 @@ │ │ │ │ Additionally, this package facilitates the investigating homological invariants │ │ │ │ of ASM ideals efficiently by computing the associated invariants for their │ │ │ │ antidiagonal initial ideals, which are known to be squarefree by [Wei17]. │ │ │ │ Therefore the extremal Betti numbers (which encode regularity, depth, and │ │ │ │ projective dimension) of ASM ideals coincide with those of their antidiagonal │ │ │ │ initial ideals by [CV20]. │ │ │ │ i23 : time schubertRegularity B │ │ │ │ - -- used 0.0762177s (cpu); 0.0314497s (thread); 0s (gc) │ │ │ │ + -- used 0.0847111s (cpu); 0.0254131s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 = 1 │ │ │ │ i24 : time regularity comodule schubertDeterminantalIdeal B │ │ │ │ - -- used 0.010001s (cpu); 0.0137971s (thread); 0s (gc) │ │ │ │ + -- used 0.0100116s (cpu); 0.0120553s (thread); 0s (gc) │ │ │ │ │ │ │ │ o24 = 1 │ │ │ │ ********** FFuunnccttiioonnss ffoorr iinnvveessttiiggaattiinngg AASSMM vvaarriieettiieess ********** │ │ │ │ * _i_s_P_a_r_t_i_a_l_A_S_M_(_M_a_t_r_i_x_) -- whether a matrix is a partial alternating sign │ │ │ │ matrix │ │ │ │ * _p_a_r_t_i_a_l_A_S_M_T_o_A_S_M_(_M_a_t_r_i_x_) -- extend a partial alternating sign matrix to an │ │ │ │ alternating sign matrix │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Investigating_spmatrix_sp__Schubert_spvarieties.html │ │ │ @@ -268,21 +268,21 @@ │ │ │
      │ │ │
      │ │ │

      Finally, this package contains functions for investigating homological invariants of matrix Schubert varieties efficiently through combinatorial algorithms produced in [PSW21].

      │ │ │
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      i15 : time schubertRegularity p
      │ │ │ - -- used 0.000811421s (cpu); 0.000282139s (thread); 0s (gc)
      │ │ │ + -- used 0.00265319s (cpu); 0.000216806s (thread); 0s (gc)
      │ │ │  
      │ │ │  o15 = 5
      │ │ │
      i16 : time regularity comodule I
      │ │ │ - -- used 0.0148788s (cpu); 0.0151641s (thread); 0s (gc)
      │ │ │ + -- used 0.00928066s (cpu); 0.012135s (thread); 0s (gc)
      │ │ │  
      │ │ │  o16 = 5
      │ │ │
      │ │ │
      │ │ │

      Functions for investigating matrix Schubert varieties

      │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -532,19 +532,19 @@ │ │ │ │ │ │ │ │ o14 : Ideal of QQ[z ..z ] │ │ │ │ 1,1 5,5 │ │ │ │ Finally, this package contains functions for investigating homological │ │ │ │ invariants of matrix Schubert varieties efficiently through combinatorial │ │ │ │ algorithms produced in [PSW21]. │ │ │ │ i15 : time schubertRegularity p │ │ │ │ - -- used 0.000811421s (cpu); 0.000282139s (thread); 0s (gc) │ │ │ │ + -- used 0.00265319s (cpu); 0.000216806s (thread); 0s (gc) │ │ │ │ │ │ │ │ o15 = 5 │ │ │ │ i16 : time regularity comodule I │ │ │ │ - -- used 0.0148788s (cpu); 0.0151641s (thread); 0s (gc) │ │ │ │ + -- used 0.00928066s (cpu); 0.012135s (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 = 5 │ │ │ │ ********** FFuunnccttiioonnss ffoorr iinnvveessttiiggaattiinngg mmaattrriixx SScchhuubbeerrtt vvaarriieettiieess ********** │ │ │ │ * _a_n_t_i_D_i_a_g_I_n_i_t_(_L_i_s_t_) -- compute the (unique) antidiagonal initial ideal of │ │ │ │ an ASM ideal │ │ │ │ * _r_a_n_k_T_a_b_l_e_(_L_i_s_t_) -- compute a table of rank conditions that determines a │ │ │ │ Schubert determinantal ideal or, more generally, an alternating sign │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/html/_grothendieck__Polynomial.html │ │ │ @@ -77,26 +77,26 @@ │ │ │ │ │ │ o1 = {2, 1, 4, 3} │ │ │ │ │ │ o1 : List │ │ │
    i2 : time grothendieckPolynomial w
    │ │ │ - -- used 0.00400002s (cpu); 0.00427234s (thread); 0s (gc)
    │ │ │ + -- used 0.00400087s (cpu); 0.00359277s (thread); 0s (gc)
    │ │ │  
    │ │ │        2        2      2               2
    │ │ │  o2 = x x x  - x x  - x x  - x x x  + x  + x x  + x x
    │ │ │        1 2 3    1 2    1 3    1 2 3    1    1 2    1 3
    │ │ │  
    │ │ │  o2 : QQ[x ..x ]
    │ │ │           1   4
    │ │ │
    i3 : time grothendieckPolynomial (w,Algorithm=>"PipeDream")
    │ │ │ - -- used 0.00234252s (cpu); 0.00182869s (thread); 0s (gc)
    │ │ │ + -- used 0.00162331s (cpu); 0.00159932s (thread); 0s (gc)
    │ │ │  
    │ │ │        2        2      2               2
    │ │ │  o3 = x x x  - x x  - x x  - x x x  + x  + x x  + x x
    │ │ │        1 2 3    1 2    1 3    1 2 3    1    1 2    1 3
    │ │ │  
    │ │ │  o3 : QQ[x ..x ]
    │ │ │           1   4
    │ │ │ ├── html2text {} │ │ │ │ @@ -19,24 +19,24 @@ │ │ │ │ PipeDream. │ │ │ │ i1 : w = {2,1,4,3} │ │ │ │ │ │ │ │ o1 = {2, 1, 4, 3} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : time grothendieckPolynomial w │ │ │ │ - -- used 0.00400002s (cpu); 0.00427234s (thread); 0s (gc) │ │ │ │ + -- used 0.00400087s (cpu); 0.00359277s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o2 = x x x - x x - x x - x x x + x + x x + x x │ │ │ │ 1 2 3 1 2 1 3 1 2 3 1 1 2 1 3 │ │ │ │ │ │ │ │ o2 : QQ[x ..x ] │ │ │ │ 1 4 │ │ │ │ i3 : time grothendieckPolynomial (w,Algorithm=>"PipeDream") │ │ │ │ - -- used 0.00234252s (cpu); 0.00182869s (thread); 0s (gc) │ │ │ │ + -- used 0.00162331s (cpu); 0.00159932s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o3 = x x x - x x - x x - x x x + x + x x + x x │ │ │ │ 1 2 3 1 2 1 3 1 2 3 1 1 2 1 3 │ │ │ │ │ │ │ │ o3 : QQ[x ..x ] │ │ │ │ 1 4 │ │ ├── ./usr/share/doc/Macaulay2/Matroids/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=24 │ │ │ ZmxhdHMoTWF0cm9pZCxaWixTdHJpbmcp │ │ │ #:len=255 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTEzOSwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoZmxhdHMsTWF0cm9pZCxaWixTdHJpbmcpLCJmbGF0 │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/___Matroid.out │ │ │ @@ -51,20 +51,20 @@ │ │ │ i9 : keys R10.cache │ │ │ │ │ │ o9 = {groundSet, rankFunction, storedRepresentation} │ │ │ │ │ │ o9 : List │ │ │ │ │ │ i10 : time isWellDefined R10 │ │ │ - -- used 0.1578s (cpu); 0.0717953s (thread); 0s (gc) │ │ │ + -- used 0.154694s (cpu); 0.085799s (thread); 0s (gc) │ │ │ │ │ │ o10 = true │ │ │ │ │ │ i11 : time fVector R10 │ │ │ - -- used 0.145769s (cpu); 0.0633631s (thread); 0s (gc) │ │ │ + -- used 0.137435s (cpu); 0.0758691s (thread); 0s (gc) │ │ │ │ │ │ o11 = HashTable{0 => 1 } │ │ │ 1 => 10 │ │ │ 2 => 45 │ │ │ 3 => 75 │ │ │ 4 => 30 │ │ │ 5 => 1 │ │ │ @@ -76,15 +76,15 @@ │ │ │ o12 = {hyperplanes, flatsRelationsTable, rankFunction, ideal, ranks, flats, │ │ │ ----------------------------------------------------------------------- │ │ │ groundSet, dual, storedRepresentation} │ │ │ │ │ │ o12 : List │ │ │ │ │ │ i13 : time fVector R10 │ │ │ - -- used 0.000363171s (cpu); 0.00029826s (thread); 0s (gc) │ │ │ + -- used 0.000307677s (cpu); 0.000157315s (thread); 0s (gc) │ │ │ │ │ │ o13 = HashTable{0 => 1 } │ │ │ 1 => 10 │ │ │ 2 => 45 │ │ │ 3 => 75 │ │ │ 4 => 30 │ │ │ 5 => 1 │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_all__Minors.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i2 : U25 = uniformMatroid(2,5) │ │ │ │ │ │ o2 = a "matroid" of rank 2 on 5 elements │ │ │ │ │ │ o2 : Matroid │ │ │ │ │ │ i3 : elapsedTime L = allMinors(V, U25); │ │ │ - -- .203206s elapsed │ │ │ + -- .113405s elapsed │ │ │ │ │ │ i4 : #L │ │ │ │ │ │ o4 = 64 │ │ │ │ │ │ i5 : netList L_{0..4} │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_get__Isos.out │ │ │ @@ -33,14 +33,14 @@ │ │ │ i6 : F7 = specificMatroid "fano" │ │ │ │ │ │ o6 = a "matroid" of rank 3 on 7 elements │ │ │ │ │ │ o6 : Matroid │ │ │ │ │ │ i7 : time autF7 = getIsos(F7, F7); │ │ │ - -- used 0.228153s (cpu); 0.0609033s (thread); 0s (gc) │ │ │ + -- used 0.230943s (cpu); 0.100864s (thread); 0s (gc) │ │ │ │ │ │ i8 : #autF7 │ │ │ │ │ │ o8 = 168 │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_has__Minor.out │ │ │ @@ -9,12 +9,12 @@ │ │ │ o1 : Sequence │ │ │ │ │ │ i2 : hasMinor(M4, uniformMatroid(2,4)) │ │ │ │ │ │ o2 = false │ │ │ │ │ │ i3 : time hasMinor(M6, M5) │ │ │ - -- used 1.62715s (cpu); 1.07556s (thread); 0s (gc) │ │ │ + -- used 1.76526s (cpu); 1.2321s (thread); 0s (gc) │ │ │ │ │ │ o3 = true │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_isomorphism_lp__Matroid_cm__Matroid_rp.out │ │ │ @@ -19,15 +19,15 @@ │ │ │ i4 : minorM6 = minor(M6, set{8}, set{4,5,6,7}) │ │ │ │ │ │ o4 = a "matroid" of rank 4 on 10 elements │ │ │ │ │ │ o4 : Matroid │ │ │ │ │ │ i5 : time isomorphism(M5, minorM6) │ │ │ - -- used 0.0160021s (cpu); 0.0130043s (thread); 0s (gc) │ │ │ + -- used 0.0120031s (cpu); 0.0109728s (thread); 0s (gc) │ │ │ │ │ │ o5 = HashTable{0 => 1} │ │ │ 1 => 0 │ │ │ 2 => 3 │ │ │ 3 => 2 │ │ │ 4 => 6 │ │ │ 5 => 5 │ │ │ @@ -56,15 +56,15 @@ │ │ │ i7 : N = relabel M6 │ │ │ │ │ │ o7 = a "matroid" of rank 5 on 15 elements │ │ │ │ │ │ o7 : Matroid │ │ │ │ │ │ i8 : time phi = isomorphism(N,M6) │ │ │ - -- used 4.93772s (cpu); 2.56293s (thread); 0s (gc) │ │ │ + -- used 6.14969s (cpu); 3.30257s (thread); 0s (gc) │ │ │ │ │ │ o8 = HashTable{0 => 11 } │ │ │ 1 => 0 │ │ │ 2 => 1 │ │ │ 3 => 6 │ │ │ 4 => 9 │ │ │ 5 => 8 │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_quick__Isomorphism__Test.out │ │ │ @@ -37,15 +37,15 @@ │ │ │ o7 : Matroid │ │ │ │ │ │ i8 : R = ZZ[x,y]; tuttePolynomial(M0, R) == tuttePolynomial(M1, R) │ │ │ │ │ │ o9 = true │ │ │ │ │ │ i10 : time quickIsomorphismTest(M0, M1) │ │ │ - -- used 0.00245681s (cpu); 0.000493465s (thread); 0s (gc) │ │ │ + -- used 0.00133375s (cpu); 0.00053877s (thread); 0s (gc) │ │ │ │ │ │ o10 = false │ │ │ │ │ │ i11 : value oo === false │ │ │ │ │ │ o11 = true │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_set__Representation.out │ │ │ @@ -35,15 +35,15 @@ │ │ │ i5 : keys M.cache │ │ │ │ │ │ o5 = {groundSet, rankFunction, storedRepresentation} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : elapsedTime fVector M │ │ │ - -- .0916028s elapsed │ │ │ + -- .0815457s elapsed │ │ │ │ │ │ o6 = HashTable{0 => 1 } │ │ │ 1 => 6 │ │ │ 2 => 15 │ │ │ 3 => 20 │ │ │ 4 => 1 │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/___Matroid.html │ │ │ @@ -122,21 +122,21 @@ │ │ │ │ │ │ o9 = {groundSet, rankFunction, storedRepresentation} │ │ │ │ │ │ o9 : List │ │ │
    i10 : time isWellDefined R10
    │ │ │ - -- used 0.1578s (cpu); 0.0717953s (thread); 0s (gc)
    │ │ │ + -- used 0.154694s (cpu); 0.085799s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = true
    │ │ │
    i11 : time fVector R10
    │ │ │ - -- used 0.145769s (cpu); 0.0633631s (thread); 0s (gc)
    │ │ │ + -- used 0.137435s (cpu); 0.0758691s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = HashTable{0 => 1 }
    │ │ │                  1 => 10
    │ │ │                  2 => 45
    │ │ │                  3 => 75
    │ │ │                  4 => 30
    │ │ │                  5 => 1
    │ │ │ @@ -150,15 +150,15 @@
    │ │ │        -----------------------------------------------------------------------
    │ │ │        groundSet, dual, storedRepresentation}
    │ │ │  
    │ │ │  o12 : List
    │ │ │
    i13 : time fVector R10
    │ │ │ - -- used 0.000363171s (cpu); 0.00029826s (thread); 0s (gc)
    │ │ │ + -- used 0.000307677s (cpu); 0.000157315s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = HashTable{0 => 1 }
    │ │ │                  1 => 10
    │ │ │                  2 => 45
    │ │ │                  3 => 75
    │ │ │                  4 => 30
    │ │ │                  5 => 1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -71,19 +71,19 @@
    │ │ │ │  o8 : Matroid
    │ │ │ │  i9 : keys R10.cache
    │ │ │ │  
    │ │ │ │  o9 = {groundSet, rankFunction, storedRepresentation}
    │ │ │ │  
    │ │ │ │  o9 : List
    │ │ │ │  i10 : time isWellDefined R10
    │ │ │ │ - -- used 0.1578s (cpu); 0.0717953s (thread); 0s (gc)
    │ │ │ │ + -- used 0.154694s (cpu); 0.085799s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o10 = true
    │ │ │ │  i11 : time fVector R10
    │ │ │ │ - -- used 0.145769s (cpu); 0.0633631s (thread); 0s (gc)
    │ │ │ │ + -- used 0.137435s (cpu); 0.0758691s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o11 = HashTable{0 => 1 }
    │ │ │ │                  1 => 10
    │ │ │ │                  2 => 45
    │ │ │ │                  3 => 75
    │ │ │ │                  4 => 30
    │ │ │ │                  5 => 1
    │ │ │ │ @@ -93,15 +93,15 @@
    │ │ │ │  
    │ │ │ │  o12 = {hyperplanes, flatsRelationsTable, rankFunction, ideal, ranks, flats,
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │        groundSet, dual, storedRepresentation}
    │ │ │ │  
    │ │ │ │  o12 : List
    │ │ │ │  i13 : time fVector R10
    │ │ │ │ - -- used 0.000363171s (cpu); 0.00029826s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000307677s (cpu); 0.000157315s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o13 = HashTable{0 => 1 }
    │ │ │ │                  1 => 10
    │ │ │ │                  2 => 45
    │ │ │ │                  3 => 75
    │ │ │ │                  4 => 30
    │ │ │ │                  5 => 1
    │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_all__Minors.html
    │ │ │ @@ -88,15 +88,15 @@
    │ │ │  
    │ │ │  o2 = a "matroid" of rank 2 on 5 elements
    │ │ │  
    │ │ │  o2 : Matroid
    │ │ │
    i3 : elapsedTime L = allMinors(V, U25);
    │ │ │ - -- .203206s elapsed
    │ │ │ + -- .113405s elapsed │ │ │
    i4 : #L
    │ │ │  
    │ │ │  o4 = 64
    │ │ │
    i7 : time autF7 = getIsos(F7, F7);
    │ │ │ - -- used 0.228153s (cpu); 0.0609033s (thread); 0s (gc)
    │ │ │ + -- used 0.230943s (cpu); 0.100864s (thread); 0s (gc) │ │ │
    i8 : #autF7
    │ │ │  
    │ │ │  o8 = 168
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -52,15 +52,15 @@ │ │ │ │ symmetric group S_7: │ │ │ │ i6 : F7 = specificMatroid "fano" │ │ │ │ │ │ │ │ o6 = a "matroid" of rank 3 on 7 elements │ │ │ │ │ │ │ │ o6 : Matroid │ │ │ │ i7 : time autF7 = getIsos(F7, F7); │ │ │ │ - -- used 0.228153s (cpu); 0.0609033s (thread); 0s (gc) │ │ │ │ + -- used 0.230943s (cpu); 0.100864s (thread); 0s (gc) │ │ │ │ i8 : #autF7 │ │ │ │ │ │ │ │ o8 = 168 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_o_m_o_r_p_h_i_s_m_(_M_a_t_r_o_i_d_,_M_a_t_r_o_i_d_) -- computes an isomorphism between │ │ │ │ isomorphic matroids │ │ │ │ * _q_u_i_c_k_I_s_o_m_o_r_p_h_i_s_m_T_e_s_t -- quick checks for isomorphism between matroids │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_has__Minor.html │ │ │ @@ -94,15 +94,15 @@ │ │ │
    i2 : hasMinor(M4, uniformMatroid(2,4))
    │ │ │  
    │ │ │  o2 = false
    │ │ │
    i3 : time hasMinor(M6, M5)
    │ │ │ - -- used 1.62715s (cpu); 1.07556s (thread); 0s (gc)
    │ │ │ + -- used 1.76526s (cpu); 1.2321s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -35,15 +35,15 @@ │ │ │ │ elements, a "matroid" of rank 5 on 15 elements) │ │ │ │ │ │ │ │ o1 : Sequence │ │ │ │ i2 : hasMinor(M4, uniformMatroid(2,4)) │ │ │ │ │ │ │ │ o2 = false │ │ │ │ i3 : time hasMinor(M6, M5) │ │ │ │ - -- used 1.62715s (cpu); 1.07556s (thread); 0s (gc) │ │ │ │ + -- used 1.76526s (cpu); 1.2321s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_i_n_o_r -- minor of matroid │ │ │ │ * _i_s_B_i_n_a_r_y -- whether a matroid is representable over F_2 │ │ │ │ ********** WWaayyss ttoo uussee hhaassMMiinnoorr:: ********** │ │ │ │ * hasMinor(Matroid,Matroid) │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_isomorphism_lp__Matroid_cm__Matroid_rp.html │ │ │ @@ -102,15 +102,15 @@ │ │ │ │ │ │ o4 = a "matroid" of rank 4 on 10 elements │ │ │ │ │ │ o4 : Matroid
    │ │ │
    i5 : time isomorphism(M5, minorM6)
    │ │ │ - -- used 0.0160021s (cpu); 0.0130043s (thread); 0s (gc)
    │ │ │ + -- used 0.0120031s (cpu); 0.0109728s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = HashTable{0 => 1}
    │ │ │                 1 => 0
    │ │ │                 2 => 3
    │ │ │                 3 => 2
    │ │ │                 4 => 6
    │ │ │                 5 => 5
    │ │ │ @@ -142,15 +142,15 @@
    │ │ │  
    │ │ │  o7 = a "matroid" of rank 5 on 15 elements
    │ │ │  
    │ │ │  o7 : Matroid
    │ │ │
    i8 : time phi = isomorphism(N,M6)
    │ │ │ - -- used 4.93772s (cpu); 2.56293s (thread); 0s (gc)
    │ │ │ + -- used 6.14969s (cpu); 3.30257s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = HashTable{0 => 11 }
    │ │ │                 1 => 0
    │ │ │                 2 => 1
    │ │ │                 3 => 6
    │ │ │                 4 => 9
    │ │ │                 5 => 8
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -35,15 +35,15 @@
    │ │ │ │  o3 : Sequence
    │ │ │ │  i4 : minorM6 = minor(M6, set{8}, set{4,5,6,7})
    │ │ │ │  
    │ │ │ │  o4 = a "matroid" of rank 4 on 10 elements
    │ │ │ │  
    │ │ │ │  o4 : Matroid
    │ │ │ │  i5 : time isomorphism(M5, minorM6)
    │ │ │ │ - -- used 0.0160021s (cpu); 0.0130043s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0120031s (cpu); 0.0109728s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = HashTable{0 => 1}
    │ │ │ │                 1 => 0
    │ │ │ │                 2 => 3
    │ │ │ │                 3 => 2
    │ │ │ │                 4 => 6
    │ │ │ │                 5 => 5
    │ │ │ │ @@ -69,15 +69,15 @@
    │ │ │ │  o6 : HashTable
    │ │ │ │  i7 : N = relabel M6
    │ │ │ │  
    │ │ │ │  o7 = a "matroid" of rank 5 on 15 elements
    │ │ │ │  
    │ │ │ │  o7 : Matroid
    │ │ │ │  i8 : time phi = isomorphism(N,M6)
    │ │ │ │ - -- used 4.93772s (cpu); 2.56293s (thread); 0s (gc)
    │ │ │ │ + -- used 6.14969s (cpu); 3.30257s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 = HashTable{0 => 11 }
    │ │ │ │                 1 => 0
    │ │ │ │                 2 => 1
    │ │ │ │                 3 => 6
    │ │ │ │                 4 => 9
    │ │ │ │                 5 => 8
    │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_quick__Isomorphism__Test.html
    │ │ │ @@ -121,15 +121,15 @@
    │ │ │            
    i8 : R = ZZ[x,y]; tuttePolynomial(M0, R) == tuttePolynomial(M1, R)
    │ │ │  
    │ │ │  o9 = true
    │ │ │
    i10 : time quickIsomorphismTest(M0, M1)
    │ │ │ - -- used 0.00245681s (cpu); 0.000493465s (thread); 0s (gc)
    │ │ │ + -- used 0.00133375s (cpu); 0.00053877s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = false
    │ │ │
    i11 : value oo === false
    │ │ │  
    │ │ │  o11 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -52,15 +52,15 @@ │ │ │ │ o7 = a "matroid" of rank 7 on 11 elements │ │ │ │ │ │ │ │ o7 : Matroid │ │ │ │ i8 : R = ZZ[x,y]; tuttePolynomial(M0, R) == tuttePolynomial(M1, R) │ │ │ │ │ │ │ │ o9 = true │ │ │ │ i10 : time quickIsomorphismTest(M0, M1) │ │ │ │ - -- used 0.00245681s (cpu); 0.000493465s (thread); 0s (gc) │ │ │ │ + -- used 0.00133375s (cpu); 0.00053877s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = false │ │ │ │ i11 : value oo === false │ │ │ │ │ │ │ │ o11 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_o_m_o_r_p_h_i_s_m_(_M_a_t_r_o_i_d_,_M_a_t_r_o_i_d_) -- computes an isomorphism between │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_set__Representation.html │ │ │ @@ -116,15 +116,15 @@ │ │ │ │ │ │ o5 = {groundSet, rankFunction, storedRepresentation} │ │ │ │ │ │ o5 : List │ │ │
    i6 : elapsedTime fVector M
    │ │ │ - -- .0916028s elapsed
    │ │ │ + -- .0815457s elapsed
    │ │ │  
    │ │ │  o6 = HashTable{0 => 1 }
    │ │ │                 1 => 6
    │ │ │                 2 => 15
    │ │ │                 3 => 20
    │ │ │                 4 => 1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -49,15 +49,15 @@
    │ │ │ │  o4 : Matrix QQ  <-- QQ
    │ │ │ │  i5 : keys M.cache
    │ │ │ │  
    │ │ │ │  o5 = {groundSet, rankFunction, storedRepresentation}
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  i6 : elapsedTime fVector M
    │ │ │ │ - -- .0916028s elapsed
    │ │ │ │ + -- .0815457s elapsed
    │ │ │ │  
    │ │ │ │  o6 = HashTable{0 => 1 }
    │ │ │ │                 1 => 6
    │ │ │ │                 2 => 15
    │ │ │ │                 3 => 20
    │ │ │ │                 4 => 1
    │ │ ├── ./usr/share/doc/Macaulay2/MergeTeX/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=23
    │ │ │  bWVyZ2VUZVgoLi4uLFBhdGg9Pi4uLik=
    │ │ │  #:len=236
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjAxLCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20ge1ttZXJnZVRlWCxQYXRoXSwibWVyZ2VUZVgoLi4uLFBh
    │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=30
    │ │ │  ZGVjb21wb3NlKElkZWFsLFN0cmF0ZWd5PT4uLi4p
    │ │ │  #:len=285
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzEwLCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20ge1soZGVjb21wb3NlLElkZWFsKSxTdHJhdGVneV0sImRl
    │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/___Hybrid.out
    │ │ │ @@ -5,16 +5,16 @@
    │ │ │  i2 : R = ZZ/101[w..z];
    │ │ │  
    │ │ │  i3 : I = ideal(w*x^2-42*y*z, x^6+12*w*y+x^3*z, w^2-47*x^4*z-47*x*z^2);
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │  
    │ │ │  i4 : elapsedTime minimalPrimes(ideal I_*, Strategy => Hybrid{Linear,Birational,Factorization,DecomposeMonomials}, Verbosity => 2);
    │ │ │ -  Strategy: Linear            (time 0)         #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: Birational        (time .0119314)  #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: Factorization     (time 0)         #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: Linear            (time .0526113)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: Birational        (time .0453312)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: Factorization     (time .00252051)  #primes = 0 #prunedViaCodim = 0
    │ │ │    Strategy: DecomposeMonomials -- Converting annotated ideals to ideals and selecting minimal primes...
    │ │ │ - --  Time taken : 0
    │ │ │ - -- .0346098s elapsed
    │ │ │ + --  Time taken : .0000215
    │ │ │ + -- .0776985s elapsed
    │ │ │  (time 0)         #primes = 1 #prunedViaCodim = 0
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical.out
    │ │ │ @@ -30,21 +30,21 @@
    │ │ │  
    │ │ │               2        2   3     2
    │ │ │  o5 = ideal (c , a*c, a , b , a*b )
    │ │ │  
    │ │ │  o5 : Ideal of R
    │ │ │  
    │ │ │  i6 : elapsedTime radical(ideal I_*, Strategy => Monomial)
    │ │ │ - -- .000400291s elapsed
    │ │ │ + -- .000515263s elapsed
    │ │ │  
    │ │ │  o6 = ideal (a, b, c)
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │  
    │ │ │  i7 : elapsedTime radical(ideal I_*, Unmixed => true)
    │ │ │ - -- .0108096s elapsed
    │ │ │ + -- .0111118s elapsed
    │ │ │  
    │ │ │  o7 = ideal (c, b, a)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical__Containment.out
    │ │ │ @@ -29,22 +29,22 @@
    │ │ │  o5 = 840
    │ │ │  
    │ │ │  i6 : x_0^(D-1) % I != 0 and x_0^D % I == 0
    │ │ │  
    │ │ │  o6 = true
    │ │ │  
    │ │ │  i7 : elapsedTime radicalContainment(x_0, I)
    │ │ │ - -- .0803977s elapsed
    │ │ │ + -- .106302s elapsed
    │ │ │  
    │ │ │  o7 = true
    │ │ │  
    │ │ │  i8 : elapsedTime radicalContainment(x_0, I, Strategy => "Kollar")
    │ │ │ - -- .00150213s elapsed
    │ │ │ + -- .00131765s elapsed
    │ │ │  
    │ │ │  o8 = true
    │ │ │  
    │ │ │  i9 : elapsedTime radicalContainment(x_n, I, Strategy => "Kollar")
    │ │ │ - -- .00113311s elapsed
    │ │ │ + -- .00102472s elapsed
    │ │ │  
    │ │ │  o9 = false
    │ │ │  
    │ │ │  i10 :
    │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/html/___Hybrid.html
    │ │ │ @@ -58,20 +58,20 @@
    │ │ │            
    i3 : I = ideal(w*x^2-42*y*z, x^6+12*w*y+x^3*z, w^2-47*x^4*z-47*x*z^2);
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │
    i4 : elapsedTime minimalPrimes(ideal I_*, Strategy => Hybrid{Linear,Birational,Factorization,DecomposeMonomials}, Verbosity => 2);
    │ │ │ -  Strategy: Linear            (time 0)         #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: Birational        (time .0119314)  #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: Factorization     (time 0)         #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: Linear            (time .0526113)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: Birational        (time .0453312)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: Factorization     (time .00252051)  #primes = 0 #prunedViaCodim = 0
    │ │ │    Strategy: DecomposeMonomials -- Converting annotated ideals to ideals and selecting minimal primes...
    │ │ │ - --  Time taken : 0
    │ │ │ - -- .0346098s elapsed
    │ │ │ + --  Time taken : .0000215
    │ │ │ + -- .0776985s elapsed
    │ │ │  (time 0)         #primes = 1 #prunedViaCodim = 0
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -11,20 +11,20 @@ │ │ │ │ i1 : debug MinimalPrimes │ │ │ │ i2 : R = ZZ/101[w..z]; │ │ │ │ i3 : I = ideal(w*x^2-42*y*z, x^6+12*w*y+x^3*z, w^2-47*x^4*z-47*x*z^2); │ │ │ │ │ │ │ │ o3 : Ideal of R │ │ │ │ i4 : elapsedTime minimalPrimes(ideal I_*, Strategy => Hybrid │ │ │ │ {Linear,Birational,Factorization,DecomposeMonomials}, Verbosity => 2); │ │ │ │ - Strategy: Linear (time 0) #primes = 0 #prunedViaCodim = 0 │ │ │ │ - Strategy: Birational (time .0119314) #primes = 0 #prunedViaCodim = 0 │ │ │ │ - Strategy: Factorization (time 0) #primes = 0 #prunedViaCodim = 0 │ │ │ │ + Strategy: Linear (time .0526113) #primes = 0 #prunedViaCodim = 0 │ │ │ │ + Strategy: Birational (time .0453312) #primes = 0 #prunedViaCodim = 0 │ │ │ │ + Strategy: Factorization (time .00252051) #primes = 0 #prunedViaCodim = 0 │ │ │ │ Strategy: DecomposeMonomials -- Converting annotated ideals to ideals and │ │ │ │ selecting minimal primes... │ │ │ │ - -- Time taken : 0 │ │ │ │ - -- .0346098s elapsed │ │ │ │ + -- Time taken : .0000215 │ │ │ │ + -- .0776985s elapsed │ │ │ │ (time 0) #primes = 1 #prunedViaCodim = 0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _p_r_i_m_a_r_y_D_e_c_o_m_p_o_s_i_t_i_o_n_(_._._._,_S_t_r_a_t_e_g_y_=_>_._._._) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _H_y_b_r_i_d is a _s_e_l_f_ _i_n_i_t_i_a_l_i_z_i_n_g_ _t_y_p_e, with ancestor classes _L_i_s_t < │ │ │ │ _V_i_s_i_b_l_e_L_i_s_t < _B_a_s_i_c_L_i_s_t < _T_h_i_n_g. │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical.html │ │ │ @@ -123,23 +123,23 @@ │ │ │ 2 2 3 2 │ │ │ o5 = ideal (c , a*c, a , b , a*b ) │ │ │ │ │ │ o5 : Ideal of R
    │ │ │
    i6 : elapsedTime radical(ideal I_*, Strategy => Monomial)
    │ │ │ - -- .000400291s elapsed
    │ │ │ + -- .000515263s elapsed
    │ │ │  
    │ │ │  o6 = ideal (a, b, c)
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │
    i7 : elapsedTime radical(ideal I_*, Unmixed => true)
    │ │ │ - -- .0108096s elapsed
    │ │ │ + -- .0111118s elapsed
    │ │ │  
    │ │ │  o7 = ideal (c, b, a)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -63,21 +63,21 @@ │ │ │ │ i5 : I = intersect(ideal(a^2,b^2,c), ideal(a,b^3,c^2)) │ │ │ │ │ │ │ │ 2 2 3 2 │ │ │ │ o5 = ideal (c , a*c, a , b , a*b ) │ │ │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ i6 : elapsedTime radical(ideal I_*, Strategy => Monomial) │ │ │ │ - -- .000400291s elapsed │ │ │ │ + -- .000515263s elapsed │ │ │ │ │ │ │ │ o6 = ideal (a, b, c) │ │ │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ i7 : elapsedTime radical(ideal I_*, Unmixed => true) │ │ │ │ - -- .0108096s elapsed │ │ │ │ + -- .0111118s elapsed │ │ │ │ │ │ │ │ o7 = ideal (c, b, a) │ │ │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ For another example, see _P_r_i_m_a_r_y_D_e_c_o_m_p_o_s_i_t_i_o_n. │ │ │ │ ********** RReeffeerreenncceess ********** │ │ │ │ Eisenbud, Huneke, Vasconcelos, Invent. Math. 110 207-235 (1992). │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical__Containment.html │ │ │ @@ -115,27 +115,27 @@ │ │ │
    i6 : x_0^(D-1) % I != 0 and x_0^D % I == 0
    │ │ │  
    │ │ │  o6 = true
    │ │ │
    i7 : elapsedTime radicalContainment(x_0, I)
    │ │ │ - -- .0803977s elapsed
    │ │ │ + -- .106302s elapsed
    │ │ │  
    │ │ │  o7 = true
    │ │ │
    i8 : elapsedTime radicalContainment(x_0, I, Strategy => "Kollar")
    │ │ │ - -- .00150213s elapsed
    │ │ │ + -- .00131765s elapsed
    │ │ │  
    │ │ │  o8 = true
    │ │ │
    i9 : elapsedTime radicalContainment(x_n, I, Strategy => "Kollar")
    │ │ │ - -- .00113311s elapsed
    │ │ │ + -- .00102472s elapsed
    │ │ │  
    │ │ │  o9 = false
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -51,23 +51,23 @@ │ │ │ │ i5 : D = product(I_*/degree/sum) │ │ │ │ │ │ │ │ o5 = 840 │ │ │ │ i6 : x_0^(D-1) % I != 0 and x_0^D % I == 0 │ │ │ │ │ │ │ │ o6 = true │ │ │ │ i7 : elapsedTime radicalContainment(x_0, I) │ │ │ │ - -- .0803977s elapsed │ │ │ │ + -- .106302s elapsed │ │ │ │ │ │ │ │ o7 = true │ │ │ │ i8 : elapsedTime radicalContainment(x_0, I, Strategy => "Kollar") │ │ │ │ - -- .00150213s elapsed │ │ │ │ + -- .00131765s elapsed │ │ │ │ │ │ │ │ o8 = true │ │ │ │ i9 : elapsedTime radicalContainment(x_n, I, Strategy => "Kollar") │ │ │ │ - -- .00113311s elapsed │ │ │ │ + -- .00102472s elapsed │ │ │ │ │ │ │ │ o9 = false │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_d_i_c_a_l -- the radical of an ideal │ │ │ │ ********** WWaayyss ttoo uussee rraaddiiccaallCCoonnttaaiinnmmeenntt:: ********** │ │ │ │ * radicalContainment(Ideal,Ideal) │ │ │ │ * radicalContainment(RingElement,Ideal) │ │ ├── ./usr/share/doc/Macaulay2/Miura/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=20 │ │ │ c2NhbGFyTXVsdGlwbGljYXRpb24= │ │ │ #:len=1333 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiQWRkIFJlZHVjZWQgSWRlYWwgTXVsdGlw │ │ │ bGUgVGltZXMiLCAibGluZW51bSIgPT4gMjAwLCBJbnB1dHMgPT4ge1NQQU57VFR7IkoifSwiLCAi │ │ ├── ./usr/share/doc/Macaulay2/MixedMultiplicity/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=21 │ │ │ bXVsdGlSZWVzSWRlYWwoSWRlYWwp │ │ │ #:len=280 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNjA5LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhtdWx0aVJlZXNJZGVhbCxJZGVhbCksIm11bHRpUmVl │ │ ├── ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_multi__Rees__Ideal.out │ │ │ @@ -57,29 +57,29 @@ │ │ │ i9 : J = ideal vars U │ │ │ │ │ │ o9 = ideal (a, b, c) │ │ │ │ │ │ o9 : Ideal of U │ │ │ │ │ │ i10 : time multiReesIdeal J │ │ │ - -- used 0.133142s (cpu); 0.0729098s (thread); 0s (gc) │ │ │ + -- used 0.654047s (cpu); 0.199659s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ o10 = ideal (c*X - b*X , b*X - a*X , a*X - c*X , c*X - a*X , b*X - c*X , │ │ │ 1 2 1 2 1 2 0 2 0 2 │ │ │ ----------------------------------------------------------------------- │ │ │ 2 2 2 │ │ │ a*X - b*X , X - X X , X X - X , X - X X ) │ │ │ 0 2 1 0 2 0 1 2 0 1 2 │ │ │ │ │ │ o10 : Ideal of U[X ..X ] │ │ │ 0 2 │ │ │ │ │ │ i11 : time multiReesIdeal (J, a) │ │ │ - -- used 0.0112772s (cpu); 0.0102657s (thread); 0s (gc) │ │ │ + -- used 0.464114s (cpu); 0.0791983s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ o11 = ideal (c*X - b*X , b*X - a*X , a*X - c*X , c*X - a*X , b*X - c*X , │ │ │ 1 2 1 2 1 2 0 2 0 2 │ │ │ ----------------------------------------------------------------------- │ │ │ 2 2 2 │ │ │ a*X - b*X , X - X X , X X - X , X - X X ) │ │ ├── ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_multi__Rees__Ideal.html │ │ │ @@ -157,30 +157,30 @@ │ │ │ │ │ │ o9 = ideal (a, b, c) │ │ │ │ │ │ o9 : Ideal of U │ │ │ │ │ │ │ │ │
    i10 : time multiReesIdeal J
    │ │ │ - -- used 0.133142s (cpu); 0.0729098s (thread); 0s (gc)
    │ │ │ + -- used 0.654047s (cpu); 0.199659s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                               
    │ │ │  o10 = ideal (c*X  - b*X , b*X  - a*X , a*X  - c*X , c*X  - a*X , b*X  - c*X ,
    │ │ │                  1      2     1      2     1      2     0      2     0      2 
    │ │ │        -----------------------------------------------------------------------
    │ │ │                      2                 2   2
    │ │ │        a*X  - b*X , X  - X X , X X  - X , X  - X X )
    │ │ │           0      2   1    0 2   0 1    2   0    1 2
    │ │ │  
    │ │ │  o10 : Ideal of U[X ..X ]
    │ │ │                    0   2
    │ │ │ │ │ │ │ │ │
    i11 : time multiReesIdeal (J, a)
    │ │ │ - -- used 0.0112772s (cpu); 0.0102657s (thread); 0s (gc)
    │ │ │ + -- used 0.464114s (cpu); 0.0791983s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                               
    │ │ │  o11 = ideal (c*X  - b*X , b*X  - a*X , a*X  - c*X , c*X  - a*X , b*X  - c*X ,
    │ │ │                  1      2     1      2     1      2     0      2     0      2 
    │ │ │        -----------------------------------------------------------------------
    │ │ │                      2                 2   2
    │ │ │        a*X  - b*X , X  - X X , X X  - X , X  - X X )
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -80,28 +80,28 @@
    │ │ │ │  i8 : U = T/minors(2,m);
    │ │ │ │  i9 : J = ideal vars U
    │ │ │ │  
    │ │ │ │  o9 = ideal (a, b, c)
    │ │ │ │  
    │ │ │ │  o9 : Ideal of U
    │ │ │ │  i10 : time multiReesIdeal J
    │ │ │ │ - -- used 0.133142s (cpu); 0.0729098s (thread); 0s (gc)
    │ │ │ │ + -- used 0.654047s (cpu); 0.199659s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  o10 = ideal (c*X  - b*X , b*X  - a*X , a*X  - c*X , c*X  - a*X , b*X  - c*X ,
    │ │ │ │                  1      2     1      2     1      2     0      2     0      2
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │                      2                 2   2
    │ │ │ │        a*X  - b*X , X  - X X , X X  - X , X  - X X )
    │ │ │ │           0      2   1    0 2   0 1    2   0    1 2
    │ │ │ │  
    │ │ │ │  o10 : Ideal of U[X ..X ]
    │ │ │ │                    0   2
    │ │ │ │  i11 : time multiReesIdeal (J, a)
    │ │ │ │ - -- used 0.0112772s (cpu); 0.0102657s (thread); 0s (gc)
    │ │ │ │ + -- used 0.464114s (cpu); 0.0791983s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  o11 = ideal (c*X  - b*X , b*X  - a*X , a*X  - c*X , c*X  - a*X , b*X  - c*X ,
    │ │ │ │                  1      2     1      2     1      2     0      2     0      2
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │                      2                 2   2
    │ │ │ │        a*X  - b*X , X  - X X , X X  - X , X  - X X )
    │ │ ├── ./usr/share/doc/Macaulay2/ModuleDeformations/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=15
    │ │ │  ZGVmb3JtTUNNTW9kdWxl
    │ │ │  #:len=2237
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAidmVyc2FsIGRlZm9ybWF0aW9uIG9mIE1D
    │ │ │  TS1tb2R1bGUgb24gaHlwZXJzdXJmYWNlIiwgRGVzY3JpcHRpb24gPT4gKCJUaGlzIGlzIHRoZSBt
    │ │ ├── ./usr/share/doc/Macaulay2/ModuleDeformations/example-output/_deform__M__C__M__Module_lp__Module_rp.out
    │ │ │ @@ -40,15 +40,15 @@
    │ │ │  
    │ │ │  o7 = image | x2 y2 |
    │ │ │  
    │ │ │                               1
    │ │ │  o7 : R-module, submodule of R
    │ │ │  
    │ │ │  i8 : (S,N) = time deformMCMModule N0 
    │ │ │ - -- used 0.448688s (cpu); 0.330463s (thread); 0s (gc)
    │ │ │ + -- used 0.484335s (cpu); 0.3451s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = (S, cokernel {6} | x2-xxi_2-xi_1+xi_2^2-yxi_4^2-2xi_3xi_4^2+xi_2xi_4^3
    │ │ │                    {8} | xxi_4-y+xi_3                                       
    │ │ │       ------------------------------------------------------------------------
    │ │ │       xyxi_4+2xxi_3xi_4-xxi_2xi_4^2+y2+yxi_3+xi_3^2-xi_1xi_4^2 |)
    │ │ │       -x2-xxi_2-xi_1                                           |
    │ │ │  
    │ │ │ @@ -70,15 +70,15 @@
    │ │ │  o10 = cokernel | x2 y2  |
    │ │ │                 | -y -x2 |
    │ │ │  
    │ │ │                               2
    │ │ │  o10 : R-module, quotient of R
    │ │ │  
    │ │ │  i11 : (S',N') = time deformMCMModule N0'
    │ │ │ - -- used 0.699233s (cpu); 0.550851s (thread); 0s (gc)
    │ │ │ + -- used 0.775042s (cpu); 0.503718s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = (S', cokernel | x2-xxi_4^3-xxi_2+xi_2xi_4^3-3xi_3xi_4^2+xi_2^2-xi_1
    │ │ │                      | xxi_4-y+xi_3                                       
    │ │ │        -----------------------------------------------------------------------
    │ │ │        x2xi_4^2+xyxi_4+2xxi_3xi_4+y2+yxi_3+xi_3^2 |)
    │ │ │        -x2-xxi_2-xi_1                             |
    │ │ ├── ./usr/share/doc/Macaulay2/ModuleDeformations/html/_deform__M__C__M__Module_lp__Module_rp.html
    │ │ │ @@ -134,15 +134,15 @@
    │ │ │  o7 = image | x2 y2 |
    │ │ │  
    │ │ │                               1
    │ │ │  o7 : R-module, submodule of R
    │ │ │ │ │ │ │ │ │
    i8 : (S,N) = time deformMCMModule N0 
    │ │ │ - -- used 0.448688s (cpu); 0.330463s (thread); 0s (gc)
    │ │ │ + -- used 0.484335s (cpu); 0.3451s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = (S, cokernel {6} | x2-xxi_2-xi_1+xi_2^2-yxi_4^2-2xi_3xi_4^2+xi_2xi_4^3
    │ │ │                    {8} | xxi_4-y+xi_3                                       
    │ │ │       ------------------------------------------------------------------------
    │ │ │       xyxi_4+2xxi_3xi_4-xxi_2xi_4^2+y2+yxi_3+xi_3^2-xi_1xi_4^2 |)
    │ │ │       -x2-xxi_2-xi_1                                           |
    │ │ │  
    │ │ │ @@ -169,15 +169,15 @@
    │ │ │                 | -y -x2 |
    │ │ │  
    │ │ │                               2
    │ │ │  o10 : R-module, quotient of R
    │ │ │ │ │ │ │ │ │
    i11 : (S',N') = time deformMCMModule N0'
    │ │ │ - -- used 0.699233s (cpu); 0.550851s (thread); 0s (gc)
    │ │ │ + -- used 0.775042s (cpu); 0.503718s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = (S', cokernel | x2-xxi_4^3-xxi_2+xi_2xi_4^3-3xi_3xi_4^2+xi_2^2-xi_1
    │ │ │                      | xxi_4-y+xi_3                                       
    │ │ │        -----------------------------------------------------------------------
    │ │ │        x2xi_4^2+xyxi_4+2xxi_3xi_4+y2+yxi_3+xi_3^2 |)
    │ │ │        -x2-xxi_2-xi_1                             |
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -71,15 +71,15 @@
    │ │ │ │  i7 : N0 = module ideal (x^2,y^2)
    │ │ │ │  
    │ │ │ │  o7 = image | x2 y2 |
    │ │ │ │  
    │ │ │ │                               1
    │ │ │ │  o7 : R-module, submodule of R
    │ │ │ │  i8 : (S,N) = time deformMCMModule N0
    │ │ │ │ - -- used 0.448688s (cpu); 0.330463s (thread); 0s (gc)
    │ │ │ │ + -- used 0.484335s (cpu); 0.3451s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 = (S, cokernel {6} | x2-xxi_2-xi_1+xi_2^2-yxi_4^2-2xi_3xi_4^2+xi_2xi_4^3
    │ │ │ │                    {8} | xxi_4-y+xi_3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       xyxi_4+2xxi_3xi_4-xxi_2xi_4^2+y2+yxi_3+xi_3^2-xi_1xi_4^2 |)
    │ │ │ │       -x2-xxi_2-xi_1                                           |
    │ │ │ │  
    │ │ │ │ @@ -104,15 +104,15 @@
    │ │ │ │  
    │ │ │ │  o10 = cokernel | x2 y2  |
    │ │ │ │                 | -y -x2 |
    │ │ │ │  
    │ │ │ │                               2
    │ │ │ │  o10 : R-module, quotient of R
    │ │ │ │  i11 : (S',N') = time deformMCMModule N0'
    │ │ │ │ - -- used 0.699233s (cpu); 0.550851s (thread); 0s (gc)
    │ │ │ │ + -- used 0.775042s (cpu); 0.503718s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o11 = (S', cokernel | x2-xxi_4^3-xxi_2+xi_2xi_4^3-3xi_3xi_4^2+xi_2^2-xi_1
    │ │ │ │                      | xxi_4-y+xi_3
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │        x2xi_4^2+xyxi_4+2xxi_3xi_4+y2+yxi_3+xi_3^2 |)
    │ │ │ │        -x2-xxi_2-xi_1                             |
    │ │ ├── ./usr/share/doc/Macaulay2/MonodromySolver/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=46
    │ │ │  c3BhcnNlTW9ub2Ryb215U29sdmUoLi4uLE51bWJlck9mUmVwZWF0cz0+Li4uKQ==
    │ │ │  #:len=345
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzg2LCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20ge1tzcGFyc2VNb25vZHJvbXlTb2x2ZSxOdW1iZXJPZlJl
    │ │ ├── ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_dynamic__Flower__Solve.out
    │ │ │ @@ -3,27 +3,27 @@
    │ │ │  i1 : R = CC[a,b,c,d][x,y];
    │ │ │  
    │ │ │  i2 : polys = polySystem {a*x+b*y^2,c*x*y+d};
    │ │ │  
    │ │ │  i3 : (p0, x0) = createSeedPair polys;
    │ │ │  
    │ │ │  i4 : (L, npaths) = dynamicFlowerSolve(polys.PolyMap,p0,{x0})
    │ │ │ - -- .00293529s elapsed
    │ │ │ - -- .00270725s elapsed
    │ │ │ - -- .000331491s elapsed
    │ │ │ - -- .00264599s elapsed
    │ │ │ - -- .0619881s elapsed
    │ │ │ - -- .00035814s elapsed
    │ │ │ - -- .0029127s elapsed
    │ │ │ - -- .00246511s elapsed
    │ │ │ - -- .000212939s elapsed
    │ │ │ - -- .00238499s elapsed
    │ │ │ - -- .0024502s elapsed
    │ │ │ - -- .0119058s elapsed
    │ │ │ ---backup directory created: /tmp/M2-86321-0/1
    │ │ │ + -- .00397159s elapsed
    │ │ │ + -- .003989s elapsed
    │ │ │ + -- .000379439s elapsed
    │ │ │ + -- .00420825s elapsed
    │ │ │ + -- .0179321s elapsed
    │ │ │ + -- .000300622s elapsed
    │ │ │ + -- .00252447s elapsed
    │ │ │ + -- .00236236s elapsed
    │ │ │ + -- .000238896s elapsed
    │ │ │ + -- .0428276s elapsed
    │ │ │ + -- .00257593s elapsed
    │ │ │ + -- .000249075s elapsed
    │ │ │ +--backup directory created: /tmp/M2-152514-0/1
    │ │ │    H01: 1
    │ │ │    H10: 1
    │ │ │  number of paths tracked: 2
    │ │ │  found 1 points in the fiber so far
    │ │ │    H01: 1
    │ │ │    H10: 1
    │ │ │  number of paths tracked: 4
    │ │ ├── ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_monodromy__Group.out
    │ │ │ @@ -14,128 +14,128 @@
    │ │ │  
    │ │ │  i7 : dLoss = diff(varMatrix, gateMatrix{{loss}});
    │ │ │  
    │ │ │  i8 : G = gateSystem(paramMatrix,varMatrix,transpose dLoss);
    │ │ │  
    │ │ │  i9 : monodromyGroup(G,"msOptions" => {NumberOfEdges=>10})
    │ │ │  
    │ │ │ -o9 = {{13, 10, 5, 15, 4, 12, 6, 2, 7, 9, 14, 8, 11, 16, 1, 17, 0, 3, 19, 20,
    │ │ │ +o9 = {{0, 9, 15, 20, 10, 8, 14, 12, 17, 1, 4, 2, 3, 13, 6, 18, 16, 19, 5, 7,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18}, {15, 1, 0, 7, 4, 8, 6, 12, 13, 9, 10, 2, 16, 17, 14, 11, 3, 5, 19,
    │ │ │ +     11}, {10, 9, 15, 20, 0, 8, 13, 12, 17, 16, 4, 2, 3, 14, 6, 18, 1, 19, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 18}, {13, 10, 5, 15, 4, 12, 6, 2, 7, 9, 14, 8, 11, 16, 1, 17, 0, 3,
    │ │ │ +     7, 11}, {0, 1, 6, 3, 7, 2, 11, 8, 9, 5, 10, 12, 4, 13, 14, 15, 16, 17,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19, 20, 18}, {0, 1, 2, 20, 4, 7, 6, 11, 8, 9, 10, 5, 12, 13, 14, 18, 16,
    │ │ │ +     18, 19, 20}, {10, 9, 15, 20, 0, 8, 13, 12, 17, 16, 4, 2, 3, 14, 6, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19, 15, 17, 3}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
    │ │ │ +     1, 19, 5, 7, 11}, {10, 9, 15, 20, 0, 8, 13, 12, 17, 16, 4, 2, 3, 14, 6,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 17, 18, 19, 20}, {0, 1, 2, 20, 4, 7, 6, 11, 8, 9, 10, 5, 12, 13, 14,
    │ │ │ +     18, 1, 19, 5, 7, 11}, {3, 1, 6, 5, 16, 2, 0, 8, 9, 13, 10, 12, 4, 15,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 16, 19, 15, 17, 3}, {0, 1, 2, 20, 4, 7, 6, 11, 8, 9, 10, 5, 12, 13,
    │ │ │ +     14, 7, 17, 11, 18, 19, 20}, {0, 1, 6, 20, 7, 15, 11, 17, 9, 5, 10, 3, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     14, 18, 16, 19, 15, 17, 3}, {13, 10, 5, 15, 4, 12, 6, 2, 7, 9, 14, 8,
    │ │ │ +     13, 14, 18, 16, 19, 2, 8, 12}, {0, 1, 15, 20, 4, 8, 6, 12, 17, 9, 10, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 16, 1, 17, 0, 3, 18, 19, 20}, {16, 6, 3, 19, 10, 2, 14, 8, 15, 1, 9,
    │ │ │ +     3, 13, 14, 18, 16, 19, 5, 7, 11}, {10, 9, 15, 20, 0, 8, 13, 12, 17, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 17, 0, 4, 20, 13, 18, 11, 5, 7}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
    │ │ │ +     4, 2, 3, 14, 6, 18, 1, 19, 5, 7, 11}, {0, 1, 6, 20, 7, 2, 11, 8, 9, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 12, 13, 14, 15, 16, 17, 19, 20, 18}, {16, 6, 3, 19, 10, 2, 14, 8,
    │ │ │ +     10, 12, 4, 13, 14, 18, 16, 19, 15, 17, 3}, {13, 10, 5, 15, 4, 12, 6, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 1, 9, 12, 17, 0, 4, 20, 13, 18, 11, 5, 7}, {13, 10, 8, 15, 4, 7, 6,
    │ │ │ +     7, 9, 14, 8, 11, 16, 1, 17, 0, 3, 19, 20, 18}, {15, 1, 0, 7, 4, 8, 6,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 12, 9, 14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, {0, 1, 2, 20, 4, 7,
    │ │ │ +     12, 13, 9, 10, 2, 16, 17, 14, 11, 3, 5, 19, 20, 18}, {13, 10, 5, 15, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     6, 11, 8, 9, 10, 5, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {15, 9, 0, 7,
    │ │ │ +     12, 6, 2, 7, 9, 14, 8, 11, 16, 1, 17, 0, 3, 19, 20, 18}, {0, 1, 2, 20,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 8, 14, 12, 13, 1, 4, 2, 16, 17, 6, 11, 3, 5, 19, 20, 18}, {0, 1, 2,
    │ │ │ +     4, 7, 6, 11, 8, 9, 10, 5, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {0, 1, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {1, 6,
    │ │ │ +     3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {0, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     3, 19, 16, 2, 0, 8, 15, 13, 9, 12, 17, 10, 4, 20, 14, 18, 11, 5, 7},
    │ │ │ +     2, 20, 4, 7, 6, 11, 8, 9, 10, 5, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {16, 1, 3, 19, 9, 2, 4, 8, 15, 6, 10, 12, 17, 0, 14, 20, 13, 18, 11, 5,
    │ │ │ +     1, 2, 20, 4, 7, 6, 11, 8, 9, 10, 5, 12, 13, 14, 18, 16, 19, 15, 17, 3},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     7}, {3, 6, 1, 19, 16, 2, 0, 8, 10, 13, 9, 12, 14, 15, 4, 20, 17, 18, 11,
    │ │ │ +     {13, 10, 5, 15, 4, 12, 6, 2, 7, 9, 14, 8, 11, 16, 1, 17, 0, 3, 18, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     5, 7}, {3, 1, 2, 19, 4, 16, 6, 0, 8, 9, 10, 13, 12, 15, 14, 20, 17, 18,
    │ │ │ +     20}, {16, 6, 3, 19, 10, 2, 14, 8, 15, 1, 9, 12, 17, 0, 4, 20, 13, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 5, 7}, {1, 6, 3, 19, 16, 2, 0, 8, 15, 13, 9, 12, 17, 10, 4, 20, 14,
    │ │ │ +     11, 5, 7}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 11, 5, 7}, {16, 6, 3, 19, 1, 2, 10, 8, 15, 14, 9, 12, 17, 0, 4, 20,
    │ │ │ +     17, 19, 20, 18}, {16, 6, 3, 19, 10, 2, 14, 8, 15, 1, 9, 12, 17, 0, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     13, 18, 11, 5, 7}, {13, 10, 8, 15, 6, 7, 9, 11, 12, 4, 14, 5, 2, 16, 1,
    │ │ │ +     20, 13, 18, 11, 5, 7}, {13, 10, 8, 15, 4, 7, 6, 11, 12, 9, 14, 5, 2, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     17, 0, 3, 19, 20, 18}, {19, 14, 4, 16, 2, 3, 8, 15, 6, 12, 1, 17, 9, 20,
    │ │ │ +     1, 17, 0, 3, 19, 20, 18}, {0, 1, 2, 20, 4, 7, 6, 11, 8, 9, 10, 5, 12,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 0, 18, 13, 11, 5, 7}, {13, 10, 8, 15, 6, 7, 9, 11, 12, 4, 14, 5, 2,
    │ │ │ +     13, 14, 18, 16, 19, 15, 17, 3}, {15, 9, 0, 7, 10, 8, 14, 12, 13, 1, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 1, 17, 0, 3, 19, 20, 18}, {16, 14, 4, 19, 2, 3, 8, 15, 6, 12, 1, 17,
    │ │ │ +     2, 16, 17, 6, 11, 3, 5, 19, 20, 18}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 0, 10, 20, 13, 18, 11, 5, 7}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
    │ │ │ +     11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {1, 6, 3, 19, 16, 2, 0, 8, 15,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 13, 14, 15, 16, 17, 18, 19, 20}, {1, 6, 3, 19, 16, 2, 0, 8, 15, 13,
    │ │ │ +     13, 9, 12, 17, 10, 4, 20, 14, 18, 11, 5, 7}, {16, 1, 3, 19, 9, 2, 4, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 12, 17, 10, 4, 20, 14, 18, 11, 5, 7}, {7, 1, 9, 0, 12, 17, 2, 3, 4,
    │ │ │ +     15, 6, 10, 12, 17, 0, 14, 20, 13, 18, 11, 5, 7}, {3, 6, 1, 19, 16, 2, 0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 10, 15, 6, 11, 14, 13, 5, 16, 19, 20, 18}, {3, 1, 6, 19, 0, 2, 13, 8,
    │ │ │ +     8, 10, 13, 9, 12, 14, 15, 4, 20, 17, 18, 11, 5, 7}, {3, 1, 2, 19, 4, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 16, 10, 12, 4, 15, 14, 20, 17, 18, 11, 5, 7}, {13, 10, 8, 15, 6, 7,
    │ │ │ +     6, 0, 8, 9, 10, 13, 12, 15, 14, 20, 17, 18, 11, 5, 7}, {1, 6, 3, 19, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 11, 12, 4, 14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, {1, 6, 3, 19, 16,
    │ │ │ +     2, 0, 8, 15, 13, 9, 12, 17, 10, 4, 20, 14, 18, 11, 5, 7}, {16, 6, 3, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     2, 0, 8, 15, 13, 9, 12, 17, 10, 4, 20, 14, 18, 11, 5, 7}, {0, 1, 2, 3,
    │ │ │ +     1, 2, 10, 8, 15, 14, 9, 12, 17, 0, 4, 20, 13, 18, 11, 5, 7}, {13, 10, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {13, 10,
    │ │ │ +     15, 6, 7, 9, 11, 12, 4, 14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, {19, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 15, 6, 7, 9, 11, 12, 4, 14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, {13,
    │ │ │ +     4, 16, 2, 3, 8, 15, 6, 12, 1, 17, 9, 20, 10, 0, 18, 13, 11, 5, 7}, {13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       10, 8, 15, 6, 7, 9, 11, 12, 4, 14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {10, 9, 7, 0, 12, 17, 2, 3, 11, 8, 4, 15, 5, 14, 6, 13, 1, 16, 19, 20,
    │ │ │ +     {16, 14, 4, 19, 2, 3, 8, 15, 6, 12, 1, 17, 9, 0, 10, 20, 13, 18, 11, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18}, {11, 10, 12, 13, 6, 20, 9, 18, 2, 4, 14, 19, 8, 5, 1, 16, 7, 0, 3,
    │ │ │ +     7}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 17}, {13, 10, 19, 2, 6, 5, 9, 7, 20, 4, 14, 11, 18, 16, 1, 8, 0, 12,
    │ │ │ +     19, 20}, {1, 6, 3, 19, 16, 2, 0, 8, 15, 13, 9, 12, 17, 10, 4, 20, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     17, 3, 15}, {6, 10, 12, 13, 11, 20, 5, 18, 2, 7, 14, 19, 8, 9, 1, 16, 4,
    │ │ │ +     18, 11, 5, 7}, {7, 1, 9, 0, 12, 17, 2, 3, 4, 8, 10, 15, 6, 11, 14, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     0, 3, 15, 17}, {13, 10, 19, 2, 6, 5, 9, 7, 20, 4, 14, 11, 18, 16, 1, 8,
    │ │ │ +     5, 16, 19, 20, 18}, {3, 1, 6, 19, 0, 2, 13, 8, 9, 16, 10, 12, 4, 15, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     0, 12, 17, 3, 15}, {13, 1, 19, 2, 6, 5, 9, 7, 20, 4, 10, 11, 18, 16, 14,
    │ │ │ +     20, 17, 18, 11, 5, 7}, {13, 10, 8, 15, 6, 7, 9, 11, 12, 4, 14, 5, 2, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 0, 12, 17, 3, 15}, {6, 10, 7, 13, 2, 20, 8, 18, 11, 12, 14, 19, 5, 9,
    │ │ │ +     1, 17, 0, 3, 19, 20, 18}, {1, 6, 3, 19, 16, 2, 0, 8, 15, 13, 9, 12, 17,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     1, 16, 4, 0, 3, 15, 17}, {11, 10, 8, 13, 6, 20, 9, 18, 12, 4, 14, 19, 2,
    │ │ │ +     10, 4, 20, 14, 18, 11, 5, 7}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     5, 1, 16, 7, 0, 3, 15, 17}, {10, 0, 5, 2, 6, 19, 9, 20, 7, 4, 13, 18,
    │ │ │ +     13, 14, 15, 16, 17, 18, 19, 20}, {13, 10, 8, 15, 6, 7, 9, 11, 12, 4, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 14, 16, 8, 1, 12, 17, 3, 15}, {6, 10, 12, 13, 11, 20, 5, 18, 2, 7,
    │ │ │ +     5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, {13, 10, 8, 15, 6, 7, 9, 11, 12, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     14, 19, 8, 9, 1, 16, 4, 0, 3, 15, 17}, {7, 10, 8, 13, 6, 20, 9, 18, 12,
    │ │ │ +     14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, {10, 9, 7, 0, 12, 17, 2, 3, 11,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     4, 14, 19, 2, 11, 1, 16, 5, 0, 3, 15, 17}, {0, 9, 15, 20, 10, 8, 14, 12,
    │ │ │ +     8, 4, 15, 5, 14, 6, 13, 1, 16, 19, 20, 18}, {11, 10, 12, 13, 6, 20, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     17, 1, 4, 2, 3, 13, 6, 18, 16, 19, 5, 7, 11}, {10, 9, 15, 20, 0, 8, 13,
    │ │ │ +     18, 2, 4, 14, 19, 8, 5, 1, 16, 7, 0, 3, 15, 17}, {13, 10, 19, 2, 6, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 17, 16, 4, 2, 3, 14, 6, 18, 1, 19, 5, 7, 11}, {0, 1, 6, 3, 7, 2, 11,
    │ │ │ +     9, 7, 20, 4, 14, 11, 18, 16, 1, 8, 0, 12, 17, 3, 15}, {6, 10, 12, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 9, 5, 10, 12, 4, 13, 14, 15, 16, 17, 18, 19, 20}, {10, 9, 15, 20, 0,
    │ │ │ +     11, 20, 5, 18, 2, 7, 14, 19, 8, 9, 1, 16, 4, 0, 3, 15, 17}, {13, 10, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 13, 12, 17, 16, 4, 2, 3, 14, 6, 18, 1, 19, 5, 7, 11}, {10, 9, 15, 20,
    │ │ │ +     2, 6, 5, 9, 7, 20, 4, 14, 11, 18, 16, 1, 8, 0, 12, 17, 3, 15}, {13, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     0, 8, 13, 12, 17, 16, 4, 2, 3, 14, 6, 18, 1, 19, 5, 7, 11}, {3, 1, 6, 5,
    │ │ │ +     19, 2, 6, 5, 9, 7, 20, 4, 10, 11, 18, 16, 14, 8, 0, 12, 17, 3, 15}, {6,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 2, 0, 8, 9, 13, 10, 12, 4, 15, 14, 7, 17, 11, 18, 19, 20}, {0, 1, 6,
    │ │ │ +     10, 7, 13, 2, 20, 8, 18, 11, 12, 14, 19, 5, 9, 1, 16, 4, 0, 3, 15, 17},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 7, 15, 11, 17, 9, 5, 10, 3, 4, 13, 14, 18, 16, 19, 2, 8, 12}, {0, 1,
    │ │ │ +     {11, 10, 8, 13, 6, 20, 9, 18, 12, 4, 14, 19, 2, 5, 1, 16, 7, 0, 3, 15,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 20, 4, 8, 6, 12, 17, 9, 10, 2, 3, 13, 14, 18, 16, 19, 5, 7, 11},
    │ │ │ +     17}, {10, 0, 5, 2, 6, 19, 9, 20, 7, 4, 13, 18, 11, 14, 16, 8, 1, 12, 17,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {10, 9, 15, 20, 0, 8, 13, 12, 17, 16, 4, 2, 3, 14, 6, 18, 1, 19, 5, 7,
    │ │ │ +     3, 15}, {6, 10, 12, 13, 11, 20, 5, 18, 2, 7, 14, 19, 8, 9, 1, 16, 4, 0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11}, {0, 1, 6, 20, 7, 2, 11, 8, 9, 5, 10, 12, 4, 13, 14, 18, 16, 19, 15,
    │ │ │ +     3, 15, 17}, {7, 10, 8, 13, 6, 20, 9, 18, 12, 4, 14, 19, 2, 11, 1, 16, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     17, 3}}
    │ │ │ +     0, 3, 15, 17}}
    │ │ │  
    │ │ │  o9 : List
    │ │ │  
    │ │ │  i10 :
    │ │ ├── ./usr/share/doc/Macaulay2/MonodromySolver/html/_dynamic__Flower__Solve.html
    │ │ │ @@ -96,27 +96,27 @@
    │ │ │                
    i2 : polys = polySystem {a*x+b*y^2,c*x*y+d};
    │ │ │ │ │ │ │ │ │
    i3 : (p0, x0) = createSeedPair polys;
    │ │ │ │ │ │ │ │ │
    i4 : (L, npaths) = dynamicFlowerSolve(polys.PolyMap,p0,{x0})
    │ │ │ - -- .00293529s elapsed
    │ │ │ - -- .00270725s elapsed
    │ │ │ - -- .000331491s elapsed
    │ │ │ - -- .00264599s elapsed
    │ │ │ - -- .0619881s elapsed
    │ │ │ - -- .00035814s elapsed
    │ │ │ - -- .0029127s elapsed
    │ │ │ - -- .00246511s elapsed
    │ │ │ - -- .000212939s elapsed
    │ │ │ - -- .00238499s elapsed
    │ │ │ - -- .0024502s elapsed
    │ │ │ - -- .0119058s elapsed
    │ │ │ ---backup directory created: /tmp/M2-86321-0/1
    │ │ │ + -- .00397159s elapsed
    │ │ │ + -- .003989s elapsed
    │ │ │ + -- .000379439s elapsed
    │ │ │ + -- .00420825s elapsed
    │ │ │ + -- .0179321s elapsed
    │ │ │ + -- .000300622s elapsed
    │ │ │ + -- .00252447s elapsed
    │ │ │ + -- .00236236s elapsed
    │ │ │ + -- .000238896s elapsed
    │ │ │ + -- .0428276s elapsed
    │ │ │ + -- .00257593s elapsed
    │ │ │ + -- .000249075s elapsed
    │ │ │ +--backup directory created: /tmp/M2-152514-0/1
    │ │ │    H01: 1
    │ │ │    H10: 1
    │ │ │  number of paths tracked: 2
    │ │ │  found 1 points in the fiber so far
    │ │ │    H01: 1
    │ │ │    H10: 1
    │ │ │  number of paths tracked: 4
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -23,27 +23,27 @@
    │ │ │ │            o npaths, an _i_n_t_e_g_e_r,
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  Output is verbose. For other dynamic strategies, see _M_o_n_o_d_r_o_m_y_S_o_l_v_e_r_O_p_t_i_o_n_s.
    │ │ │ │  i1 : R = CC[a,b,c,d][x,y];
    │ │ │ │  i2 : polys = polySystem {a*x+b*y^2,c*x*y+d};
    │ │ │ │  i3 : (p0, x0) = createSeedPair polys;
    │ │ │ │  i4 : (L, npaths) = dynamicFlowerSolve(polys.PolyMap,p0,{x0})
    │ │ │ │ - -- .00293529s elapsed
    │ │ │ │ - -- .00270725s elapsed
    │ │ │ │ - -- .000331491s elapsed
    │ │ │ │ - -- .00264599s elapsed
    │ │ │ │ - -- .0619881s elapsed
    │ │ │ │ - -- .00035814s elapsed
    │ │ │ │ - -- .0029127s elapsed
    │ │ │ │ - -- .00246511s elapsed
    │ │ │ │ - -- .000212939s elapsed
    │ │ │ │ - -- .00238499s elapsed
    │ │ │ │ - -- .0024502s elapsed
    │ │ │ │ - -- .0119058s elapsed
    │ │ │ │ ---backup directory created: /tmp/M2-86321-0/1
    │ │ │ │ + -- .00397159s elapsed
    │ │ │ │ + -- .003989s elapsed
    │ │ │ │ + -- .000379439s elapsed
    │ │ │ │ + -- .00420825s elapsed
    │ │ │ │ + -- .0179321s elapsed
    │ │ │ │ + -- .000300622s elapsed
    │ │ │ │ + -- .00252447s elapsed
    │ │ │ │ + -- .00236236s elapsed
    │ │ │ │ + -- .000238896s elapsed
    │ │ │ │ + -- .0428276s elapsed
    │ │ │ │ + -- .00257593s elapsed
    │ │ │ │ + -- .000249075s elapsed
    │ │ │ │ +--backup directory created: /tmp/M2-152514-0/1
    │ │ │ │    H01: 1
    │ │ │ │    H10: 1
    │ │ │ │  number of paths tracked: 2
    │ │ │ │  found 1 points in the fiber so far
    │ │ │ │    H01: 1
    │ │ │ │    H10: 1
    │ │ │ │  number of paths tracked: 4
    │ │ ├── ./usr/share/doc/Macaulay2/MonodromySolver/html/_monodromy__Group.html
    │ │ │ @@ -104,131 +104,131 @@
    │ │ │            
    │ │ │            
    │ │ │                
    i8 : G = gateSystem(paramMatrix,varMatrix,transpose dLoss);
    │ │ │ │ │ │ │ │ │
    i9 : monodromyGroup(G,"msOptions" => {NumberOfEdges=>10})
    │ │ │  
    │ │ │ -o9 = {{13, 10, 5, 15, 4, 12, 6, 2, 7, 9, 14, 8, 11, 16, 1, 17, 0, 3, 19, 20,
    │ │ │ +o9 = {{0, 9, 15, 20, 10, 8, 14, 12, 17, 1, 4, 2, 3, 13, 6, 18, 16, 19, 5, 7,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18}, {15, 1, 0, 7, 4, 8, 6, 12, 13, 9, 10, 2, 16, 17, 14, 11, 3, 5, 19,
    │ │ │ +     11}, {10, 9, 15, 20, 0, 8, 13, 12, 17, 16, 4, 2, 3, 14, 6, 18, 1, 19, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 18}, {13, 10, 5, 15, 4, 12, 6, 2, 7, 9, 14, 8, 11, 16, 1, 17, 0, 3,
    │ │ │ +     7, 11}, {0, 1, 6, 3, 7, 2, 11, 8, 9, 5, 10, 12, 4, 13, 14, 15, 16, 17,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19, 20, 18}, {0, 1, 2, 20, 4, 7, 6, 11, 8, 9, 10, 5, 12, 13, 14, 18, 16,
    │ │ │ +     18, 19, 20}, {10, 9, 15, 20, 0, 8, 13, 12, 17, 16, 4, 2, 3, 14, 6, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19, 15, 17, 3}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
    │ │ │ +     1, 19, 5, 7, 11}, {10, 9, 15, 20, 0, 8, 13, 12, 17, 16, 4, 2, 3, 14, 6,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 17, 18, 19, 20}, {0, 1, 2, 20, 4, 7, 6, 11, 8, 9, 10, 5, 12, 13, 14,
    │ │ │ +     18, 1, 19, 5, 7, 11}, {3, 1, 6, 5, 16, 2, 0, 8, 9, 13, 10, 12, 4, 15,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 16, 19, 15, 17, 3}, {0, 1, 2, 20, 4, 7, 6, 11, 8, 9, 10, 5, 12, 13,
    │ │ │ +     14, 7, 17, 11, 18, 19, 20}, {0, 1, 6, 20, 7, 15, 11, 17, 9, 5, 10, 3, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     14, 18, 16, 19, 15, 17, 3}, {13, 10, 5, 15, 4, 12, 6, 2, 7, 9, 14, 8,
    │ │ │ +     13, 14, 18, 16, 19, 2, 8, 12}, {0, 1, 15, 20, 4, 8, 6, 12, 17, 9, 10, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 16, 1, 17, 0, 3, 18, 19, 20}, {16, 6, 3, 19, 10, 2, 14, 8, 15, 1, 9,
    │ │ │ +     3, 13, 14, 18, 16, 19, 5, 7, 11}, {10, 9, 15, 20, 0, 8, 13, 12, 17, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 17, 0, 4, 20, 13, 18, 11, 5, 7}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
    │ │ │ +     4, 2, 3, 14, 6, 18, 1, 19, 5, 7, 11}, {0, 1, 6, 20, 7, 2, 11, 8, 9, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 12, 13, 14, 15, 16, 17, 19, 20, 18}, {16, 6, 3, 19, 10, 2, 14, 8,
    │ │ │ +     10, 12, 4, 13, 14, 18, 16, 19, 15, 17, 3}, {13, 10, 5, 15, 4, 12, 6, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 1, 9, 12, 17, 0, 4, 20, 13, 18, 11, 5, 7}, {13, 10, 8, 15, 4, 7, 6,
    │ │ │ +     7, 9, 14, 8, 11, 16, 1, 17, 0, 3, 19, 20, 18}, {15, 1, 0, 7, 4, 8, 6,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 12, 9, 14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, {0, 1, 2, 20, 4, 7,
    │ │ │ +     12, 13, 9, 10, 2, 16, 17, 14, 11, 3, 5, 19, 20, 18}, {13, 10, 5, 15, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     6, 11, 8, 9, 10, 5, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {15, 9, 0, 7,
    │ │ │ +     12, 6, 2, 7, 9, 14, 8, 11, 16, 1, 17, 0, 3, 19, 20, 18}, {0, 1, 2, 20,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 8, 14, 12, 13, 1, 4, 2, 16, 17, 6, 11, 3, 5, 19, 20, 18}, {0, 1, 2,
    │ │ │ +     4, 7, 6, 11, 8, 9, 10, 5, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {0, 1, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {1, 6,
    │ │ │ +     3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {0, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     3, 19, 16, 2, 0, 8, 15, 13, 9, 12, 17, 10, 4, 20, 14, 18, 11, 5, 7},
    │ │ │ +     2, 20, 4, 7, 6, 11, 8, 9, 10, 5, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {16, 1, 3, 19, 9, 2, 4, 8, 15, 6, 10, 12, 17, 0, 14, 20, 13, 18, 11, 5,
    │ │ │ +     1, 2, 20, 4, 7, 6, 11, 8, 9, 10, 5, 12, 13, 14, 18, 16, 19, 15, 17, 3},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     7}, {3, 6, 1, 19, 16, 2, 0, 8, 10, 13, 9, 12, 14, 15, 4, 20, 17, 18, 11,
    │ │ │ +     {13, 10, 5, 15, 4, 12, 6, 2, 7, 9, 14, 8, 11, 16, 1, 17, 0, 3, 18, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     5, 7}, {3, 1, 2, 19, 4, 16, 6, 0, 8, 9, 10, 13, 12, 15, 14, 20, 17, 18,
    │ │ │ +     20}, {16, 6, 3, 19, 10, 2, 14, 8, 15, 1, 9, 12, 17, 0, 4, 20, 13, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 5, 7}, {1, 6, 3, 19, 16, 2, 0, 8, 15, 13, 9, 12, 17, 10, 4, 20, 14,
    │ │ │ +     11, 5, 7}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 11, 5, 7}, {16, 6, 3, 19, 1, 2, 10, 8, 15, 14, 9, 12, 17, 0, 4, 20,
    │ │ │ +     17, 19, 20, 18}, {16, 6, 3, 19, 10, 2, 14, 8, 15, 1, 9, 12, 17, 0, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     13, 18, 11, 5, 7}, {13, 10, 8, 15, 6, 7, 9, 11, 12, 4, 14, 5, 2, 16, 1,
    │ │ │ +     20, 13, 18, 11, 5, 7}, {13, 10, 8, 15, 4, 7, 6, 11, 12, 9, 14, 5, 2, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     17, 0, 3, 19, 20, 18}, {19, 14, 4, 16, 2, 3, 8, 15, 6, 12, 1, 17, 9, 20,
    │ │ │ +     1, 17, 0, 3, 19, 20, 18}, {0, 1, 2, 20, 4, 7, 6, 11, 8, 9, 10, 5, 12,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 0, 18, 13, 11, 5, 7}, {13, 10, 8, 15, 6, 7, 9, 11, 12, 4, 14, 5, 2,
    │ │ │ +     13, 14, 18, 16, 19, 15, 17, 3}, {15, 9, 0, 7, 10, 8, 14, 12, 13, 1, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 1, 17, 0, 3, 19, 20, 18}, {16, 14, 4, 19, 2, 3, 8, 15, 6, 12, 1, 17,
    │ │ │ +     2, 16, 17, 6, 11, 3, 5, 19, 20, 18}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 0, 10, 20, 13, 18, 11, 5, 7}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
    │ │ │ +     11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {1, 6, 3, 19, 16, 2, 0, 8, 15,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 13, 14, 15, 16, 17, 18, 19, 20}, {1, 6, 3, 19, 16, 2, 0, 8, 15, 13,
    │ │ │ +     13, 9, 12, 17, 10, 4, 20, 14, 18, 11, 5, 7}, {16, 1, 3, 19, 9, 2, 4, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 12, 17, 10, 4, 20, 14, 18, 11, 5, 7}, {7, 1, 9, 0, 12, 17, 2, 3, 4,
    │ │ │ +     15, 6, 10, 12, 17, 0, 14, 20, 13, 18, 11, 5, 7}, {3, 6, 1, 19, 16, 2, 0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 10, 15, 6, 11, 14, 13, 5, 16, 19, 20, 18}, {3, 1, 6, 19, 0, 2, 13, 8,
    │ │ │ +     8, 10, 13, 9, 12, 14, 15, 4, 20, 17, 18, 11, 5, 7}, {3, 1, 2, 19, 4, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 16, 10, 12, 4, 15, 14, 20, 17, 18, 11, 5, 7}, {13, 10, 8, 15, 6, 7,
    │ │ │ +     6, 0, 8, 9, 10, 13, 12, 15, 14, 20, 17, 18, 11, 5, 7}, {1, 6, 3, 19, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 11, 12, 4, 14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, {1, 6, 3, 19, 16,
    │ │ │ +     2, 0, 8, 15, 13, 9, 12, 17, 10, 4, 20, 14, 18, 11, 5, 7}, {16, 6, 3, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     2, 0, 8, 15, 13, 9, 12, 17, 10, 4, 20, 14, 18, 11, 5, 7}, {0, 1, 2, 3,
    │ │ │ +     1, 2, 10, 8, 15, 14, 9, 12, 17, 0, 4, 20, 13, 18, 11, 5, 7}, {13, 10, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {13, 10,
    │ │ │ +     15, 6, 7, 9, 11, 12, 4, 14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, {19, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 15, 6, 7, 9, 11, 12, 4, 14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, {13,
    │ │ │ +     4, 16, 2, 3, 8, 15, 6, 12, 1, 17, 9, 20, 10, 0, 18, 13, 11, 5, 7}, {13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       10, 8, 15, 6, 7, 9, 11, 12, 4, 14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {10, 9, 7, 0, 12, 17, 2, 3, 11, 8, 4, 15, 5, 14, 6, 13, 1, 16, 19, 20,
    │ │ │ +     {16, 14, 4, 19, 2, 3, 8, 15, 6, 12, 1, 17, 9, 0, 10, 20, 13, 18, 11, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18}, {11, 10, 12, 13, 6, 20, 9, 18, 2, 4, 14, 19, 8, 5, 1, 16, 7, 0, 3,
    │ │ │ +     7}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 17}, {13, 10, 19, 2, 6, 5, 9, 7, 20, 4, 14, 11, 18, 16, 1, 8, 0, 12,
    │ │ │ +     19, 20}, {1, 6, 3, 19, 16, 2, 0, 8, 15, 13, 9, 12, 17, 10, 4, 20, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     17, 3, 15}, {6, 10, 12, 13, 11, 20, 5, 18, 2, 7, 14, 19, 8, 9, 1, 16, 4,
    │ │ │ +     18, 11, 5, 7}, {7, 1, 9, 0, 12, 17, 2, 3, 4, 8, 10, 15, 6, 11, 14, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     0, 3, 15, 17}, {13, 10, 19, 2, 6, 5, 9, 7, 20, 4, 14, 11, 18, 16, 1, 8,
    │ │ │ +     5, 16, 19, 20, 18}, {3, 1, 6, 19, 0, 2, 13, 8, 9, 16, 10, 12, 4, 15, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     0, 12, 17, 3, 15}, {13, 1, 19, 2, 6, 5, 9, 7, 20, 4, 10, 11, 18, 16, 14,
    │ │ │ +     20, 17, 18, 11, 5, 7}, {13, 10, 8, 15, 6, 7, 9, 11, 12, 4, 14, 5, 2, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 0, 12, 17, 3, 15}, {6, 10, 7, 13, 2, 20, 8, 18, 11, 12, 14, 19, 5, 9,
    │ │ │ +     1, 17, 0, 3, 19, 20, 18}, {1, 6, 3, 19, 16, 2, 0, 8, 15, 13, 9, 12, 17,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     1, 16, 4, 0, 3, 15, 17}, {11, 10, 8, 13, 6, 20, 9, 18, 12, 4, 14, 19, 2,
    │ │ │ +     10, 4, 20, 14, 18, 11, 5, 7}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     5, 1, 16, 7, 0, 3, 15, 17}, {10, 0, 5, 2, 6, 19, 9, 20, 7, 4, 13, 18,
    │ │ │ +     13, 14, 15, 16, 17, 18, 19, 20}, {13, 10, 8, 15, 6, 7, 9, 11, 12, 4, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 14, 16, 8, 1, 12, 17, 3, 15}, {6, 10, 12, 13, 11, 20, 5, 18, 2, 7,
    │ │ │ +     5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, {13, 10, 8, 15, 6, 7, 9, 11, 12, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     14, 19, 8, 9, 1, 16, 4, 0, 3, 15, 17}, {7, 10, 8, 13, 6, 20, 9, 18, 12,
    │ │ │ +     14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, {10, 9, 7, 0, 12, 17, 2, 3, 11,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     4, 14, 19, 2, 11, 1, 16, 5, 0, 3, 15, 17}, {0, 9, 15, 20, 10, 8, 14, 12,
    │ │ │ +     8, 4, 15, 5, 14, 6, 13, 1, 16, 19, 20, 18}, {11, 10, 12, 13, 6, 20, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     17, 1, 4, 2, 3, 13, 6, 18, 16, 19, 5, 7, 11}, {10, 9, 15, 20, 0, 8, 13,
    │ │ │ +     18, 2, 4, 14, 19, 8, 5, 1, 16, 7, 0, 3, 15, 17}, {13, 10, 19, 2, 6, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 17, 16, 4, 2, 3, 14, 6, 18, 1, 19, 5, 7, 11}, {0, 1, 6, 3, 7, 2, 11,
    │ │ │ +     9, 7, 20, 4, 14, 11, 18, 16, 1, 8, 0, 12, 17, 3, 15}, {6, 10, 12, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 9, 5, 10, 12, 4, 13, 14, 15, 16, 17, 18, 19, 20}, {10, 9, 15, 20, 0,
    │ │ │ +     11, 20, 5, 18, 2, 7, 14, 19, 8, 9, 1, 16, 4, 0, 3, 15, 17}, {13, 10, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 13, 12, 17, 16, 4, 2, 3, 14, 6, 18, 1, 19, 5, 7, 11}, {10, 9, 15, 20,
    │ │ │ +     2, 6, 5, 9, 7, 20, 4, 14, 11, 18, 16, 1, 8, 0, 12, 17, 3, 15}, {13, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     0, 8, 13, 12, 17, 16, 4, 2, 3, 14, 6, 18, 1, 19, 5, 7, 11}, {3, 1, 6, 5,
    │ │ │ +     19, 2, 6, 5, 9, 7, 20, 4, 10, 11, 18, 16, 14, 8, 0, 12, 17, 3, 15}, {6,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 2, 0, 8, 9, 13, 10, 12, 4, 15, 14, 7, 17, 11, 18, 19, 20}, {0, 1, 6,
    │ │ │ +     10, 7, 13, 2, 20, 8, 18, 11, 12, 14, 19, 5, 9, 1, 16, 4, 0, 3, 15, 17},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 7, 15, 11, 17, 9, 5, 10, 3, 4, 13, 14, 18, 16, 19, 2, 8, 12}, {0, 1,
    │ │ │ +     {11, 10, 8, 13, 6, 20, 9, 18, 12, 4, 14, 19, 2, 5, 1, 16, 7, 0, 3, 15,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 20, 4, 8, 6, 12, 17, 9, 10, 2, 3, 13, 14, 18, 16, 19, 5, 7, 11},
    │ │ │ +     17}, {10, 0, 5, 2, 6, 19, 9, 20, 7, 4, 13, 18, 11, 14, 16, 8, 1, 12, 17,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {10, 9, 15, 20, 0, 8, 13, 12, 17, 16, 4, 2, 3, 14, 6, 18, 1, 19, 5, 7,
    │ │ │ +     3, 15}, {6, 10, 12, 13, 11, 20, 5, 18, 2, 7, 14, 19, 8, 9, 1, 16, 4, 0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11}, {0, 1, 6, 20, 7, 2, 11, 8, 9, 5, 10, 12, 4, 13, 14, 18, 16, 19, 15,
    │ │ │ +     3, 15, 17}, {7, 10, 8, 13, 6, 20, 9, 18, 12, 4, 14, 19, 2, 11, 1, 16, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     17, 3}}
    │ │ │ +     0, 3, 15, 17}}
    │ │ │  
    │ │ │  o9 : List
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    Caveat

    │ │ │ ├── html2text {} │ │ │ │ @@ -32,131 +32,131 @@ │ │ │ │ i4 : varMatrix = gateMatrix{{t_1,t_2}}; │ │ │ │ i5 : phi = transpose gateMatrix{{t_1^3, t_1^2*t_2, t_1*t_2^2, t_2^3}}; │ │ │ │ i6 : loss = sum for i from 0 to 3 list (u_i - phi_(i,0))^2; │ │ │ │ i7 : dLoss = diff(varMatrix, gateMatrix{{loss}}); │ │ │ │ i8 : G = gateSystem(paramMatrix,varMatrix,transpose dLoss); │ │ │ │ i9 : monodromyGroup(G,"msOptions" => {NumberOfEdges=>10}) │ │ │ │ │ │ │ │ -o9 = {{13, 10, 5, 15, 4, 12, 6, 2, 7, 9, 14, 8, 11, 16, 1, 17, 0, 3, 19, 20, │ │ │ │ +o9 = {{0, 9, 15, 20, 10, 8, 14, 12, 17, 1, 4, 2, 3, 13, 6, 18, 16, 19, 5, 7, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 18}, {15, 1, 0, 7, 4, 8, 6, 12, 13, 9, 10, 2, 16, 17, 14, 11, 3, 5, 19, │ │ │ │ + 11}, {10, 9, 15, 20, 0, 8, 13, 12, 17, 16, 4, 2, 3, 14, 6, 18, 1, 19, 5, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 20, 18}, {13, 10, 5, 15, 4, 12, 6, 2, 7, 9, 14, 8, 11, 16, 1, 17, 0, 3, │ │ │ │ + 7, 11}, {0, 1, 6, 3, 7, 2, 11, 8, 9, 5, 10, 12, 4, 13, 14, 15, 16, 17, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 19, 20, 18}, {0, 1, 2, 20, 4, 7, 6, 11, 8, 9, 10, 5, 12, 13, 14, 18, 16, │ │ │ │ + 18, 19, 20}, {10, 9, 15, 20, 0, 8, 13, 12, 17, 16, 4, 2, 3, 14, 6, 18, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 19, 15, 17, 3}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, │ │ │ │ + 1, 19, 5, 7, 11}, {10, 9, 15, 20, 0, 8, 13, 12, 17, 16, 4, 2, 3, 14, 6, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 16, 17, 18, 19, 20}, {0, 1, 2, 20, 4, 7, 6, 11, 8, 9, 10, 5, 12, 13, 14, │ │ │ │ + 18, 1, 19, 5, 7, 11}, {3, 1, 6, 5, 16, 2, 0, 8, 9, 13, 10, 12, 4, 15, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 18, 16, 19, 15, 17, 3}, {0, 1, 2, 20, 4, 7, 6, 11, 8, 9, 10, 5, 12, 13, │ │ │ │ + 14, 7, 17, 11, 18, 19, 20}, {0, 1, 6, 20, 7, 15, 11, 17, 9, 5, 10, 3, 4, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 14, 18, 16, 19, 15, 17, 3}, {13, 10, 5, 15, 4, 12, 6, 2, 7, 9, 14, 8, │ │ │ │ + 13, 14, 18, 16, 19, 2, 8, 12}, {0, 1, 15, 20, 4, 8, 6, 12, 17, 9, 10, 2, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 11, 16, 1, 17, 0, 3, 18, 19, 20}, {16, 6, 3, 19, 10, 2, 14, 8, 15, 1, 9, │ │ │ │ + 3, 13, 14, 18, 16, 19, 5, 7, 11}, {10, 9, 15, 20, 0, 8, 13, 12, 17, 16, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 12, 17, 0, 4, 20, 13, 18, 11, 5, 7}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, │ │ │ │ + 4, 2, 3, 14, 6, 18, 1, 19, 5, 7, 11}, {0, 1, 6, 20, 7, 2, 11, 8, 9, 5, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 11, 12, 13, 14, 15, 16, 17, 19, 20, 18}, {16, 6, 3, 19, 10, 2, 14, 8, │ │ │ │ + 10, 12, 4, 13, 14, 18, 16, 19, 15, 17, 3}, {13, 10, 5, 15, 4, 12, 6, 2, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 15, 1, 9, 12, 17, 0, 4, 20, 13, 18, 11, 5, 7}, {13, 10, 8, 15, 4, 7, 6, │ │ │ │ + 7, 9, 14, 8, 11, 16, 1, 17, 0, 3, 19, 20, 18}, {15, 1, 0, 7, 4, 8, 6, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 11, 12, 9, 14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, {0, 1, 2, 20, 4, 7, │ │ │ │ + 12, 13, 9, 10, 2, 16, 17, 14, 11, 3, 5, 19, 20, 18}, {13, 10, 5, 15, 4, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 6, 11, 8, 9, 10, 5, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {15, 9, 0, 7, │ │ │ │ + 12, 6, 2, 7, 9, 14, 8, 11, 16, 1, 17, 0, 3, 19, 20, 18}, {0, 1, 2, 20, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 10, 8, 14, 12, 13, 1, 4, 2, 16, 17, 6, 11, 3, 5, 19, 20, 18}, {0, 1, 2, │ │ │ │ + 4, 7, 6, 11, 8, 9, 10, 5, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {0, 1, 2, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {1, 6, │ │ │ │ + 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {0, 1, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 3, 19, 16, 2, 0, 8, 15, 13, 9, 12, 17, 10, 4, 20, 14, 18, 11, 5, 7}, │ │ │ │ + 2, 20, 4, 7, 6, 11, 8, 9, 10, 5, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {16, 1, 3, 19, 9, 2, 4, 8, 15, 6, 10, 12, 17, 0, 14, 20, 13, 18, 11, 5, │ │ │ │ + 1, 2, 20, 4, 7, 6, 11, 8, 9, 10, 5, 12, 13, 14, 18, 16, 19, 15, 17, 3}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 7}, {3, 6, 1, 19, 16, 2, 0, 8, 10, 13, 9, 12, 14, 15, 4, 20, 17, 18, 11, │ │ │ │ + {13, 10, 5, 15, 4, 12, 6, 2, 7, 9, 14, 8, 11, 16, 1, 17, 0, 3, 18, 19, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 5, 7}, {3, 1, 2, 19, 4, 16, 6, 0, 8, 9, 10, 13, 12, 15, 14, 20, 17, 18, │ │ │ │ + 20}, {16, 6, 3, 19, 10, 2, 14, 8, 15, 1, 9, 12, 17, 0, 4, 20, 13, 18, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 11, 5, 7}, {1, 6, 3, 19, 16, 2, 0, 8, 15, 13, 9, 12, 17, 10, 4, 20, 14, │ │ │ │ + 11, 5, 7}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 18, 11, 5, 7}, {16, 6, 3, 19, 1, 2, 10, 8, 15, 14, 9, 12, 17, 0, 4, 20, │ │ │ │ + 17, 19, 20, 18}, {16, 6, 3, 19, 10, 2, 14, 8, 15, 1, 9, 12, 17, 0, 4, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 13, 18, 11, 5, 7}, {13, 10, 8, 15, 6, 7, 9, 11, 12, 4, 14, 5, 2, 16, 1, │ │ │ │ + 20, 13, 18, 11, 5, 7}, {13, 10, 8, 15, 4, 7, 6, 11, 12, 9, 14, 5, 2, 16, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 17, 0, 3, 19, 20, 18}, {19, 14, 4, 16, 2, 3, 8, 15, 6, 12, 1, 17, 9, 20, │ │ │ │ + 1, 17, 0, 3, 19, 20, 18}, {0, 1, 2, 20, 4, 7, 6, 11, 8, 9, 10, 5, 12, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 10, 0, 18, 13, 11, 5, 7}, {13, 10, 8, 15, 6, 7, 9, 11, 12, 4, 14, 5, 2, │ │ │ │ + 13, 14, 18, 16, 19, 15, 17, 3}, {15, 9, 0, 7, 10, 8, 14, 12, 13, 1, 4, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 16, 1, 17, 0, 3, 19, 20, 18}, {16, 14, 4, 19, 2, 3, 8, 15, 6, 12, 1, 17, │ │ │ │ + 2, 16, 17, 6, 11, 3, 5, 19, 20, 18}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 9, 0, 10, 20, 13, 18, 11, 5, 7}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, │ │ │ │ + 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {1, 6, 3, 19, 16, 2, 0, 8, 15, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 12, 13, 14, 15, 16, 17, 18, 19, 20}, {1, 6, 3, 19, 16, 2, 0, 8, 15, 13, │ │ │ │ + 13, 9, 12, 17, 10, 4, 20, 14, 18, 11, 5, 7}, {16, 1, 3, 19, 9, 2, 4, 8, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 9, 12, 17, 10, 4, 20, 14, 18, 11, 5, 7}, {7, 1, 9, 0, 12, 17, 2, 3, 4, │ │ │ │ + 15, 6, 10, 12, 17, 0, 14, 20, 13, 18, 11, 5, 7}, {3, 6, 1, 19, 16, 2, 0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 8, 10, 15, 6, 11, 14, 13, 5, 16, 19, 20, 18}, {3, 1, 6, 19, 0, 2, 13, 8, │ │ │ │ + 8, 10, 13, 9, 12, 14, 15, 4, 20, 17, 18, 11, 5, 7}, {3, 1, 2, 19, 4, 16, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 9, 16, 10, 12, 4, 15, 14, 20, 17, 18, 11, 5, 7}, {13, 10, 8, 15, 6, 7, │ │ │ │ + 6, 0, 8, 9, 10, 13, 12, 15, 14, 20, 17, 18, 11, 5, 7}, {1, 6, 3, 19, 16, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 9, 11, 12, 4, 14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, {1, 6, 3, 19, 16, │ │ │ │ + 2, 0, 8, 15, 13, 9, 12, 17, 10, 4, 20, 14, 18, 11, 5, 7}, {16, 6, 3, 19, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 2, 0, 8, 15, 13, 9, 12, 17, 10, 4, 20, 14, 18, 11, 5, 7}, {0, 1, 2, 3, │ │ │ │ + 1, 2, 10, 8, 15, 14, 9, 12, 17, 0, 4, 20, 13, 18, 11, 5, 7}, {13, 10, 8, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {13, 10, │ │ │ │ + 15, 6, 7, 9, 11, 12, 4, 14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, {19, 14, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 8, 15, 6, 7, 9, 11, 12, 4, 14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, {13, │ │ │ │ + 4, 16, 2, 3, 8, 15, 6, 12, 1, 17, 9, 20, 10, 0, 18, 13, 11, 5, 7}, {13, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 10, 8, 15, 6, 7, 9, 11, 12, 4, 14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {10, 9, 7, 0, 12, 17, 2, 3, 11, 8, 4, 15, 5, 14, 6, 13, 1, 16, 19, 20, │ │ │ │ + {16, 14, 4, 19, 2, 3, 8, 15, 6, 12, 1, 17, 9, 0, 10, 20, 13, 18, 11, 5, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 18}, {11, 10, 12, 13, 6, 20, 9, 18, 2, 4, 14, 19, 8, 5, 1, 16, 7, 0, 3, │ │ │ │ + 7}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 15, 17}, {13, 10, 19, 2, 6, 5, 9, 7, 20, 4, 14, 11, 18, 16, 1, 8, 0, 12, │ │ │ │ + 19, 20}, {1, 6, 3, 19, 16, 2, 0, 8, 15, 13, 9, 12, 17, 10, 4, 20, 14, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 17, 3, 15}, {6, 10, 12, 13, 11, 20, 5, 18, 2, 7, 14, 19, 8, 9, 1, 16, 4, │ │ │ │ + 18, 11, 5, 7}, {7, 1, 9, 0, 12, 17, 2, 3, 4, 8, 10, 15, 6, 11, 14, 13, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 0, 3, 15, 17}, {13, 10, 19, 2, 6, 5, 9, 7, 20, 4, 14, 11, 18, 16, 1, 8, │ │ │ │ + 5, 16, 19, 20, 18}, {3, 1, 6, 19, 0, 2, 13, 8, 9, 16, 10, 12, 4, 15, 14, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 0, 12, 17, 3, 15}, {13, 1, 19, 2, 6, 5, 9, 7, 20, 4, 10, 11, 18, 16, 14, │ │ │ │ + 20, 17, 18, 11, 5, 7}, {13, 10, 8, 15, 6, 7, 9, 11, 12, 4, 14, 5, 2, 16, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 8, 0, 12, 17, 3, 15}, {6, 10, 7, 13, 2, 20, 8, 18, 11, 12, 14, 19, 5, 9, │ │ │ │ + 1, 17, 0, 3, 19, 20, 18}, {1, 6, 3, 19, 16, 2, 0, 8, 15, 13, 9, 12, 17, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 1, 16, 4, 0, 3, 15, 17}, {11, 10, 8, 13, 6, 20, 9, 18, 12, 4, 14, 19, 2, │ │ │ │ + 10, 4, 20, 14, 18, 11, 5, 7}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 5, 1, 16, 7, 0, 3, 15, 17}, {10, 0, 5, 2, 6, 19, 9, 20, 7, 4, 13, 18, │ │ │ │ + 13, 14, 15, 16, 17, 18, 19, 20}, {13, 10, 8, 15, 6, 7, 9, 11, 12, 4, 14, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 11, 14, 16, 8, 1, 12, 17, 3, 15}, {6, 10, 12, 13, 11, 20, 5, 18, 2, 7, │ │ │ │ + 5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, {13, 10, 8, 15, 6, 7, 9, 11, 12, 4, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 14, 19, 8, 9, 1, 16, 4, 0, 3, 15, 17}, {7, 10, 8, 13, 6, 20, 9, 18, 12, │ │ │ │ + 14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, {10, 9, 7, 0, 12, 17, 2, 3, 11, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 4, 14, 19, 2, 11, 1, 16, 5, 0, 3, 15, 17}, {0, 9, 15, 20, 10, 8, 14, 12, │ │ │ │ + 8, 4, 15, 5, 14, 6, 13, 1, 16, 19, 20, 18}, {11, 10, 12, 13, 6, 20, 9, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 17, 1, 4, 2, 3, 13, 6, 18, 16, 19, 5, 7, 11}, {10, 9, 15, 20, 0, 8, 13, │ │ │ │ + 18, 2, 4, 14, 19, 8, 5, 1, 16, 7, 0, 3, 15, 17}, {13, 10, 19, 2, 6, 5, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 12, 17, 16, 4, 2, 3, 14, 6, 18, 1, 19, 5, 7, 11}, {0, 1, 6, 3, 7, 2, 11, │ │ │ │ + 9, 7, 20, 4, 14, 11, 18, 16, 1, 8, 0, 12, 17, 3, 15}, {6, 10, 12, 13, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 8, 9, 5, 10, 12, 4, 13, 14, 15, 16, 17, 18, 19, 20}, {10, 9, 15, 20, 0, │ │ │ │ + 11, 20, 5, 18, 2, 7, 14, 19, 8, 9, 1, 16, 4, 0, 3, 15, 17}, {13, 10, 19, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 8, 13, 12, 17, 16, 4, 2, 3, 14, 6, 18, 1, 19, 5, 7, 11}, {10, 9, 15, 20, │ │ │ │ + 2, 6, 5, 9, 7, 20, 4, 14, 11, 18, 16, 1, 8, 0, 12, 17, 3, 15}, {13, 1, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 0, 8, 13, 12, 17, 16, 4, 2, 3, 14, 6, 18, 1, 19, 5, 7, 11}, {3, 1, 6, 5, │ │ │ │ + 19, 2, 6, 5, 9, 7, 20, 4, 10, 11, 18, 16, 14, 8, 0, 12, 17, 3, 15}, {6, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 16, 2, 0, 8, 9, 13, 10, 12, 4, 15, 14, 7, 17, 11, 18, 19, 20}, {0, 1, 6, │ │ │ │ + 10, 7, 13, 2, 20, 8, 18, 11, 12, 14, 19, 5, 9, 1, 16, 4, 0, 3, 15, 17}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 20, 7, 15, 11, 17, 9, 5, 10, 3, 4, 13, 14, 18, 16, 19, 2, 8, 12}, {0, 1, │ │ │ │ + {11, 10, 8, 13, 6, 20, 9, 18, 12, 4, 14, 19, 2, 5, 1, 16, 7, 0, 3, 15, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 15, 20, 4, 8, 6, 12, 17, 9, 10, 2, 3, 13, 14, 18, 16, 19, 5, 7, 11}, │ │ │ │ + 17}, {10, 0, 5, 2, 6, 19, 9, 20, 7, 4, 13, 18, 11, 14, 16, 8, 1, 12, 17, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {10, 9, 15, 20, 0, 8, 13, 12, 17, 16, 4, 2, 3, 14, 6, 18, 1, 19, 5, 7, │ │ │ │ + 3, 15}, {6, 10, 12, 13, 11, 20, 5, 18, 2, 7, 14, 19, 8, 9, 1, 16, 4, 0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 11}, {0, 1, 6, 20, 7, 2, 11, 8, 9, 5, 10, 12, 4, 13, 14, 18, 16, 19, 15, │ │ │ │ + 3, 15, 17}, {7, 10, 8, 13, 6, 20, 9, 18, 12, 4, 14, 19, 2, 11, 1, 16, 5, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 17, 3}} │ │ │ │ + 0, 3, 15, 17}} │ │ │ │ │ │ │ │ o9 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ This is still somewhat experimental. │ │ │ │ ********** WWaayyss ttoo uussee mmoonnooddrroommyyGGrroouupp:: ********** │ │ │ │ * monodromyGroup(System) │ │ │ │ * monodromyGroup(System,AbstractPoint,List) │ │ ├── ./usr/share/doc/Macaulay2/MonomialAlgebras/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=28 │ │ │ ZGVjb21wb3NlSG9tb2dlbmVvdXNNQShMaXN0KQ== │ │ │ #:len=308 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTYxMSwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoZGVjb21wb3NlSG9tb2dlbmVvdXNNQSxMaXN0KSwi │ │ ├── ./usr/share/doc/Macaulay2/MonomialIntegerPrograms/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=12 │ │ │ R3JhZGVkQmV0dGlz │ │ │ #:len=431 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtEZXNjcmlwdGlvbiA9PiB7fSwgImxpbmVudW0iID0+IDExNDYs │ │ │ IHN5bWJvbCBEb2N1bWVudFRhZyA9PiBuZXcgRG9jdW1lbnRUYWcgZnJvbSB7IkdyYWRlZEJldHRp │ │ ├── ./usr/share/doc/Macaulay2/MonomialOrbits/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=22 │ │ │ aGlsYmVydFJlcHJlc2VudGF0aXZlcw== │ │ │ #:len=3397 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiZmluZCByZXByZXNlbnRhdGl2ZXMgb2Yg │ │ │ bW9ub21pYWwgaWRlYWxzIHVuZGVyIHBlcm11dGF0aW9ucyBvZiB0aGUgdmFyaWFibGVzIiwgImxp │ │ ├── ./usr/share/doc/Macaulay2/Msolve/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=16 │ │ │ bXNvbHZlUlVSKElkZWFsKQ== │ │ │ #:len=227 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNjM2LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhtc29sdmVSVVIsSWRlYWwpLCJtc29sdmVSVVIoSWRl │ │ ├── ./usr/share/doc/Macaulay2/Msolve/example-output/___Msolve.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i2 : I = ideal(x, y, z) │ │ │ │ │ │ o2 = ideal (x, y, z) │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : msolveGB(I, Verbosity => 2, Threads => 6) │ │ │ - -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-144574-0/0-in.ms -o /tmp/M2-144574-0/0-out.ms │ │ │ + -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-266668-0/0-in.ms -o /tmp/M2-266668-0/0-out.ms │ │ │ │ │ │ --------------- INPUT DATA --------------- │ │ │ #variables 3 │ │ │ #equations 3 │ │ │ #invalid equations 0 │ │ │ field characteristic 0 │ │ │ homogeneous input? 1 │ │ │ @@ -45,25 +45,25 @@ │ │ │ time(rd) time of the current f4 round in seconds given │ │ │ for real and cpu time │ │ │ -------------------------------------------------------- │ │ │ │ │ │ deg sel pairs mat density new data time(rd) in sec (real|cpu) │ │ │ ------------------------------------------------------------------------------------------------------ │ │ │ ------------------------------------------------------------------------------------------------------ │ │ │ -reduce final basis 3 x 3 33.33% 3 new 0 zero 0.02 | 0.08 │ │ │ +reduce final basis 3 x 3 33.33% 3 new 0 zero 0.00 | 0.00 │ │ │ ------------------------------------------------------------------------------------------------------ │ │ │ │ │ │ ---------------- TIMINGS ---------------- │ │ │ -overall(elapsed) 0.04 sec │ │ │ -overall(cpu) 0.11 sec │ │ │ +overall(elapsed) 0.00 sec │ │ │ +overall(cpu) 0.00 sec │ │ │ select 0.00 sec 0.0% │ │ │ -symbolic prep. 0.00 sec 0.0% │ │ │ -update 0.01 sec 35.5% │ │ │ -convert 0.02 sec 64.3% │ │ │ -linear algebra 0.00 sec 0.0% │ │ │ +symbolic prep. 0.00 sec 0.3% │ │ │ +update 0.00 sec 77.6% │ │ │ +convert 0.00 sec 3.1% │ │ │ +linear algebra 0.00 sec 1.5% │ │ │ reduce gb 0.00 sec 0.0% │ │ │ ----------------------------------------- │ │ │ │ │ │ ---------- COMPUTATIONAL DATA ----------- │ │ │ size of basis 3 │ │ │ #terms in basis 3 │ │ │ #pairs reduced 0 │ │ │ @@ -89,15 +89,15 @@ │ │ │ ----------------------------------------- │ │ │ │ │ │ multi-modular steps │ │ │ ------------------------------------------------------------------------------------------------------ │ │ │ {1}{2}<100.00%> │ │ │ │ │ │ ------------------------------------------------------------------------------------ │ │ │ -msolve overall time 0.31 sec (elapsed) / 0.91 sec (cpu) │ │ │ +msolve overall time 0.14 sec (elapsed) / 0.11 sec (cpu) │ │ │ ------------------------------------------------------------------------------------ │ │ │ │ │ │ ------------------------------------------------------------------------------------------------------ │ │ │ │ │ │ │ │ │ ---------- COMPUTATIONAL DATA ----------- │ │ │ Max coeff. bitsize 1 │ │ ├── ./usr/share/doc/Macaulay2/Msolve/example-output/_msolve__Real__Solutions.out │ │ │ @@ -11,87 +11,87 @@ │ │ │ 2 2 │ │ │ o2 = ideal (x - x, y - 5) │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : rationalIntervalSols = msolveRealSolutions I │ │ │ │ │ │ - 4294967295 4294967297 4801919417 9603838835 1 │ │ │ -o3 = {{{----------, ----------}, {----------, ----------}}, {{- ----------, │ │ │ - 4294967296 4294967296 2147483648 4294967296 4294967296 │ │ │ - ------------------------------------------------------------------------ │ │ │ - 1 4801919417 9603838835 4294967295 4294967297 │ │ │ - ----------}, {----------, ----------}}, {{----------, ----------}, {- │ │ │ - 4294967296 2147483648 4294967296 4294967296 4294967296 │ │ │ - ------------------------------------------------------------------------ │ │ │ - 9603838835 4801919417 1 1 9603838835 │ │ │ - ----------, - ----------}}, {{- ----------, ----------}, {- ----------, │ │ │ - 4294967296 2147483648 4294967296 4294967296 4294967296 │ │ │ - ------------------------------------------------------------------------ │ │ │ - 4801919417 │ │ │ - - ----------}}} │ │ │ - 2147483648 │ │ │ + 4294967295 4294967297 4801919417 9603838835 4294967295 │ │ │ +o3 = {{{----------, ----------}, {----------, ----------}}, {{----------, │ │ │ + 4294967296 4294967296 2147483648 4294967296 4294967296 │ │ │ + ------------------------------------------------------------------------ │ │ │ + 4294967297 9603838835 4801919417 1 1 │ │ │ + ----------}, {- ----------, - ----------}}, {{- ----------, ----------}, │ │ │ + 4294967296 4294967296 2147483648 4294967296 4294967296 │ │ │ + ------------------------------------------------------------------------ │ │ │ + 4801919417 9603838835 1 1 9603838835 │ │ │ + {----------, ----------}}, {{- ----------, ----------}, {- ----------, - │ │ │ + 2147483648 4294967296 4294967296 4294967296 4294967296 │ │ │ + ------------------------------------------------------------------------ │ │ │ + 4801919417 │ │ │ + ----------}}} │ │ │ + 2147483648 │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : rationalApproxSols = msolveRealSolutions(I, QQ) │ │ │ │ │ │ - 19207677669 19207677669 19207677669 │ │ │ -o4 = {{0, -----------}, {1, -----------}, {0, - -----------}, {1, - │ │ │ - 8589934592 8589934592 8589934592 │ │ │ + 19207677669 19207677669 19207677669 │ │ │ +o4 = {{1, -----------}, {1, - -----------}, {0, -----------}, {0, - │ │ │ + 8589934592 8589934592 8589934592 │ │ │ ------------------------------------------------------------------------ │ │ │ 19207677669 │ │ │ -----------}} │ │ │ 8589934592 │ │ │ │ │ │ o4 : List │ │ │ │ │ │ i5 : floatIntervalSols = msolveRealSolutions(I, RRi) │ │ │ │ │ │ -o5 = {{[1,1], [2.23607,2.23607]}, {[-2.32831e-10,2.32831e-10], │ │ │ +o5 = {{[1,1], [2.23607,2.23607]}, {[1,1], [-2.23607,-2.23607]}, │ │ │ ------------------------------------------------------------------------ │ │ │ - [2.23607,2.23607]}, {[1,1], [-2.23607,-2.23607]}, │ │ │ + {[-2.32831e-10,2.32831e-10], [2.23607,2.23607]}, │ │ │ ------------------------------------------------------------------------ │ │ │ {[-2.32831e-10,2.32831e-10], [-2.23607,-2.23607]}} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : floatIntervalSols = msolveRealSolutions(I, RRi_10) │ │ │ │ │ │ -o6 = {{[-.000976562,.000976562], [-2.23633,-2.23535]}, {[.999023,1.00098], │ │ │ +o6 = {{[.999023,1.00098], [2.23535,2.23633]}, {[.999023,1.00098], │ │ │ ------------------------------------------------------------------------ │ │ │ [-2.23633,-2.23535]}, {[-.000976562,.000976562], [2.23535,2.23633]}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {[.999023,1.00098], [2.23535,2.23633]}} │ │ │ + {[-.000976562,.000976562], [-2.23633,-2.23535]}} │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : floatApproxSols = msolveRealSolutions(I, RR) │ │ │ │ │ │ -o7 = {{1, -2.23607}, {0, -2.23607}, {1, 2.23607}, {0, 2.23607}} │ │ │ +o7 = {{1, 2.23607}, {1, -2.23607}, {0, 2.23607}, {0, -2.23607}} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : floatApproxSols = msolveRealSolutions(I, RR_10) │ │ │ │ │ │ -o8 = {{1, -2.23584}, {0, -2.23584}, {1, 2.23584}, {0, 2.23584}} │ │ │ +o8 = {{1, 2.23584}, {1, -2.23584}, {0, 2.23584}, {0, -2.23584}} │ │ │ │ │ │ o8 : List │ │ │ │ │ │ i9 : I = ideal {(x-1)*x^3, (y^2-5)^2} │ │ │ │ │ │ 4 3 4 2 │ │ │ o9 = ideal (x - x , y - 10y + 25) │ │ │ │ │ │ o9 : Ideal of R │ │ │ │ │ │ i10 : floatApproxSols = msolveRealSolutions(I, RRi) │ │ │ │ │ │ -o10 = {{[-2.32831e-10,2.32831e-10], [-2.23607,-2.23607]}, {[1,1], │ │ │ +o10 = {{[1,1], [2.23607,2.23607]}, {[1,1], [-2.23607,-2.23607]}, │ │ │ ----------------------------------------------------------------------- │ │ │ - [-2.23607,-2.23607]}, {[-2.32831e-10,2.32831e-10], [2.23607,2.23607]}, │ │ │ + {[-2.32831e-10,2.32831e-10], [2.23607,2.23607]}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {[1,1], [2.23607,2.23607]}} │ │ │ + {[-2.32831e-10,2.32831e-10], [-2.23607,-2.23607]}} │ │ │ │ │ │ o10 : List │ │ │ │ │ │ i11 : │ │ ├── ./usr/share/doc/Macaulay2/Msolve/html/_msolve__Real__Solutions.html │ │ │ @@ -99,78 +99,78 @@ │ │ │ o2 = ideal (x - x, y - 5) │ │ │ │ │ │ o2 : Ideal of R
    │ │ │ │ │ │ │ │ │
    i3 : rationalIntervalSols = msolveRealSolutions I
    │ │ │  
    │ │ │ -        4294967295  4294967297    4801919417  9603838835             1     
    │ │ │ -o3 = {{{----------, ----------}, {----------, ----------}}, {{- ----------,
    │ │ │ -        4294967296  4294967296    2147483648  4294967296        4294967296 
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -          1        4801919417  9603838835      4294967295  4294967297     
    │ │ │ -     ----------}, {----------, ----------}}, {{----------, ----------}, {-
    │ │ │ -     4294967296    2147483648  4294967296      4294967296  4294967296     
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     9603838835    4801919417             1           1          9603838835 
    │ │ │ -     ----------, - ----------}}, {{- ----------, ----------}, {- ----------,
    │ │ │ -     4294967296    2147483648        4294967296  4294967296      4294967296 
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -       4801919417
    │ │ │ -     - ----------}}}
    │ │ │ -       2147483648
    │ │ │ +        4294967295  4294967297    4801919417  9603838835      4294967295 
    │ │ │ +o3 = {{{----------, ----------}, {----------, ----------}}, {{----------,
    │ │ │ +        4294967296  4294967296    2147483648  4294967296      4294967296 
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     4294967297      9603838835    4801919417             1           1      
    │ │ │ +     ----------}, {- ----------, - ----------}}, {{- ----------, ----------},
    │ │ │ +     4294967296      4294967296    2147483648        4294967296  4294967296  
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +      4801919417  9603838835             1           1          9603838835   
    │ │ │ +     {----------, ----------}}, {{- ----------, ----------}, {- ----------, -
    │ │ │ +      2147483648  4294967296        4294967296  4294967296      4294967296   
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     4801919417
    │ │ │ +     ----------}}}
    │ │ │ +     2147483648
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │
    i4 : rationalApproxSols = msolveRealSolutions(I, QQ)
    │ │ │  
    │ │ │ -          19207677669       19207677669         19207677669        
    │ │ │ -o4 = {{0, -----------}, {1, -----------}, {0, - -----------}, {1, -
    │ │ │ -           8589934592        8589934592          8589934592        
    │ │ │ +          19207677669         19207677669       19207677669        
    │ │ │ +o4 = {{1, -----------}, {1, - -----------}, {0, -----------}, {0, -
    │ │ │ +           8589934592          8589934592        8589934592        
    │ │ │       ------------------------------------------------------------------------
    │ │ │       19207677669
    │ │ │       -----------}}
    │ │ │        8589934592
    │ │ │  
    │ │ │  o4 : List
    │ │ │ │ │ │ │ │ │
    i5 : floatIntervalSols = msolveRealSolutions(I, RRi)
    │ │ │  
    │ │ │ -o5 = {{[1,1], [2.23607,2.23607]}, {[-2.32831e-10,2.32831e-10],
    │ │ │ +o5 = {{[1,1], [2.23607,2.23607]}, {[1,1], [-2.23607,-2.23607]},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     [2.23607,2.23607]}, {[1,1], [-2.23607,-2.23607]},
    │ │ │ +     {[-2.32831e-10,2.32831e-10], [2.23607,2.23607]},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {[-2.32831e-10,2.32831e-10], [-2.23607,-2.23607]}}
    │ │ │  
    │ │ │  o5 : List
    │ │ │ │ │ │ │ │ │
    i6 : floatIntervalSols = msolveRealSolutions(I, RRi_10)
    │ │ │  
    │ │ │ -o6 = {{[-.000976562,.000976562], [-2.23633,-2.23535]}, {[.999023,1.00098],
    │ │ │ +o6 = {{[.999023,1.00098], [2.23535,2.23633]}, {[.999023,1.00098],
    │ │ │       ------------------------------------------------------------------------
    │ │ │       [-2.23633,-2.23535]}, {[-.000976562,.000976562], [2.23535,2.23633]},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {[.999023,1.00098], [2.23535,2.23633]}}
    │ │ │ +     {[-.000976562,.000976562], [-2.23633,-2.23535]}}
    │ │ │  
    │ │ │  o6 : List
    │ │ │ │ │ │ │ │ │
    i7 : floatApproxSols = msolveRealSolutions(I, RR)
    │ │ │  
    │ │ │ -o7 = {{1, -2.23607}, {0, -2.23607}, {1, 2.23607}, {0, 2.23607}}
    │ │ │ +o7 = {{1, 2.23607}, {1, -2.23607}, {0, 2.23607}, {0, -2.23607}}
    │ │ │  
    │ │ │  o7 : List
    │ │ │ │ │ │ │ │ │
    i8 : floatApproxSols = msolveRealSolutions(I, RR_10)
    │ │ │  
    │ │ │ -o8 = {{1, -2.23584}, {0, -2.23584}, {1, 2.23584}, {0, 2.23584}}
    │ │ │ +o8 = {{1, 2.23584}, {1, -2.23584}, {0, 2.23584}, {0, -2.23584}}
    │ │ │  
    │ │ │  o8 : List
    │ │ │ │ │ │ │ │ │
    │ │ │

    Note in cases where solutions have multiplicity this is not reflected in the output. While the solver does not return multiplicities, it reliably outputs the verified isolating intervals for multiple solutions.

    │ │ │
    │ │ │ @@ -182,19 +182,19 @@ │ │ │ o9 = ideal (x - x , y - 10y + 25) │ │ │ │ │ │ o9 : Ideal of R
    │ │ │ │ │ │ │ │ │
    i10 : floatApproxSols = msolveRealSolutions(I, RRi)
    │ │ │  
    │ │ │ -o10 = {{[-2.32831e-10,2.32831e-10], [-2.23607,-2.23607]}, {[1,1],
    │ │ │ +o10 = {{[1,1], [2.23607,2.23607]}, {[1,1], [-2.23607,-2.23607]},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      [-2.23607,-2.23607]}, {[-2.32831e-10,2.32831e-10], [2.23607,2.23607]},
    │ │ │ +      {[-2.32831e-10,2.32831e-10], [2.23607,2.23607]},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {[1,1], [2.23607,2.23607]}}
    │ │ │ +      {[-2.32831e-10,2.32831e-10], [-2.23607,-2.23607]}}
    │ │ │  
    │ │ │  o10 : List
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    Ways to use msolveRealSolutions:

    │ │ │ ├── html2text {} │ │ │ │ @@ -44,86 +44,86 @@ │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o2 = ideal (x - x, y - 5) │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : rationalIntervalSols = msolveRealSolutions I │ │ │ │ │ │ │ │ - 4294967295 4294967297 4801919417 9603838835 1 │ │ │ │ -o3 = {{{----------, ----------}, {----------, ----------}}, {{- ----------, │ │ │ │ - 4294967296 4294967296 2147483648 4294967296 4294967296 │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - 1 4801919417 9603838835 4294967295 4294967297 │ │ │ │ - ----------}, {----------, ----------}}, {{----------, ----------}, {- │ │ │ │ - 4294967296 2147483648 4294967296 4294967296 4294967296 │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - 9603838835 4801919417 1 1 9603838835 │ │ │ │ - ----------, - ----------}}, {{- ----------, ----------}, {- ----------, │ │ │ │ - 4294967296 2147483648 4294967296 4294967296 4294967296 │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - 4801919417 │ │ │ │ - - ----------}}} │ │ │ │ - 2147483648 │ │ │ │ + 4294967295 4294967297 4801919417 9603838835 4294967295 │ │ │ │ +o3 = {{{----------, ----------}, {----------, ----------}}, {{----------, │ │ │ │ + 4294967296 4294967296 2147483648 4294967296 4294967296 │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + 4294967297 9603838835 4801919417 1 1 │ │ │ │ + ----------}, {- ----------, - ----------}}, {{- ----------, ----------}, │ │ │ │ + 4294967296 4294967296 2147483648 4294967296 4294967296 │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + 4801919417 9603838835 1 1 9603838835 │ │ │ │ + {----------, ----------}}, {{- ----------, ----------}, {- ----------, - │ │ │ │ + 2147483648 4294967296 4294967296 4294967296 4294967296 │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + 4801919417 │ │ │ │ + ----------}}} │ │ │ │ + 2147483648 │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : rationalApproxSols = msolveRealSolutions(I, QQ) │ │ │ │ │ │ │ │ - 19207677669 19207677669 19207677669 │ │ │ │ -o4 = {{0, -----------}, {1, -----------}, {0, - -----------}, {1, - │ │ │ │ - 8589934592 8589934592 8589934592 │ │ │ │ + 19207677669 19207677669 19207677669 │ │ │ │ +o4 = {{1, -----------}, {1, - -----------}, {0, -----------}, {0, - │ │ │ │ + 8589934592 8589934592 8589934592 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 19207677669 │ │ │ │ -----------}} │ │ │ │ 8589934592 │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : floatIntervalSols = msolveRealSolutions(I, RRi) │ │ │ │ │ │ │ │ -o5 = {{[1,1], [2.23607,2.23607]}, {[-2.32831e-10,2.32831e-10], │ │ │ │ +o5 = {{[1,1], [2.23607,2.23607]}, {[1,1], [-2.23607,-2.23607]}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - [2.23607,2.23607]}, {[1,1], [-2.23607,-2.23607]}, │ │ │ │ + {[-2.32831e-10,2.32831e-10], [2.23607,2.23607]}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {[-2.32831e-10,2.32831e-10], [-2.23607,-2.23607]}} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ i6 : floatIntervalSols = msolveRealSolutions(I, RRi_10) │ │ │ │ │ │ │ │ -o6 = {{[-.000976562,.000976562], [-2.23633,-2.23535]}, {[.999023,1.00098], │ │ │ │ +o6 = {{[.999023,1.00098], [2.23535,2.23633]}, {[.999023,1.00098], │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ [-2.23633,-2.23535]}, {[-.000976562,.000976562], [2.23535,2.23633]}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {[.999023,1.00098], [2.23535,2.23633]}} │ │ │ │ + {[-.000976562,.000976562], [-2.23633,-2.23535]}} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : floatApproxSols = msolveRealSolutions(I, RR) │ │ │ │ │ │ │ │ -o7 = {{1, -2.23607}, {0, -2.23607}, {1, 2.23607}, {0, 2.23607}} │ │ │ │ +o7 = {{1, 2.23607}, {1, -2.23607}, {0, 2.23607}, {0, -2.23607}} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : floatApproxSols = msolveRealSolutions(I, RR_10) │ │ │ │ │ │ │ │ -o8 = {{1, -2.23584}, {0, -2.23584}, {1, 2.23584}, {0, 2.23584}} │ │ │ │ +o8 = {{1, 2.23584}, {1, -2.23584}, {0, 2.23584}, {0, -2.23584}} │ │ │ │ │ │ │ │ o8 : List │ │ │ │ Note in cases where solutions have multiplicity this is not reflected in the │ │ │ │ output. While the solver does not return multiplicities, it reliably outputs │ │ │ │ the verified isolating intervals for multiple solutions. │ │ │ │ i9 : I = ideal {(x-1)*x^3, (y^2-5)^2} │ │ │ │ │ │ │ │ 4 3 4 2 │ │ │ │ o9 = ideal (x - x , y - 10y + 25) │ │ │ │ │ │ │ │ o9 : Ideal of R │ │ │ │ i10 : floatApproxSols = msolveRealSolutions(I, RRi) │ │ │ │ │ │ │ │ -o10 = {{[-2.32831e-10,2.32831e-10], [-2.23607,-2.23607]}, {[1,1], │ │ │ │ +o10 = {{[1,1], [2.23607,2.23607]}, {[1,1], [-2.23607,-2.23607]}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - [-2.23607,-2.23607]}, {[-2.32831e-10,2.32831e-10], [2.23607,2.23607]}, │ │ │ │ + {[-2.32831e-10,2.32831e-10], [2.23607,2.23607]}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {[1,1], [2.23607,2.23607]}} │ │ │ │ + {[-2.32831e-10,2.32831e-10], [-2.23607,-2.23607]}} │ │ │ │ │ │ │ │ o10 : List │ │ │ │ ********** WWaayyss ttoo uussee mmssoollvveeRReeaallSSoolluuttiioonnss:: ********** │ │ │ │ * msolveRealSolutions(Ideal) │ │ │ │ * msolveRealSolutions(Ideal,Ring) │ │ │ │ * msolveRealSolutions(Ideal,RingFamily) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/Msolve/html/index.html │ │ │ @@ -66,15 +66,15 @@ │ │ │ │ │ │ o2 = ideal (x, y, z) │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ │ │ │
    i3 : msolveGB(I, Verbosity => 2, Threads => 6)
    │ │ │ - -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-144574-0/0-in.ms -o /tmp/M2-144574-0/0-out.ms
    │ │ │ + -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-266668-0/0-in.ms -o /tmp/M2-266668-0/0-out.ms
    │ │ │  
    │ │ │  --------------- INPUT DATA ---------------
    │ │ │  #variables                       3
    │ │ │  #equations                       3
    │ │ │  #invalid equations               0
    │ │ │  field characteristic             0
    │ │ │  homogeneous input?               1
    │ │ │ @@ -102,25 +102,25 @@
    │ │ │  time(rd)  time of the current f4 round in seconds given
    │ │ │            for real and cpu time
    │ │ │  --------------------------------------------------------
    │ │ │  
    │ │ │  deg     sel   pairs        mat          density            new data         time(rd) in sec (real|cpu)
    │ │ │  ------------------------------------------------------------------------------------------------------
    │ │ │  ------------------------------------------------------------------------------------------------------
    │ │ │ -reduce final basis        3 x 3          33.33%        3 new       0 zero         0.02 | 0.08         
    │ │ │ +reduce final basis        3 x 3          33.33%        3 new       0 zero         0.00 | 0.00         
    │ │ │  ------------------------------------------------------------------------------------------------------
    │ │ │  
    │ │ │  ---------------- TIMINGS ----------------
    │ │ │ -overall(elapsed)        0.04 sec
    │ │ │ -overall(cpu)            0.11 sec
    │ │ │ +overall(elapsed)        0.00 sec
    │ │ │ +overall(cpu)            0.00 sec
    │ │ │  select                  0.00 sec   0.0%
    │ │ │ -symbolic prep.          0.00 sec   0.0%
    │ │ │ -update                  0.01 sec  35.5%
    │ │ │ -convert                 0.02 sec  64.3%
    │ │ │ -linear algebra          0.00 sec   0.0%
    │ │ │ +symbolic prep.          0.00 sec   0.3%
    │ │ │ +update                  0.00 sec  77.6%
    │ │ │ +convert                 0.00 sec   3.1%
    │ │ │ +linear algebra          0.00 sec   1.5%
    │ │ │  reduce gb               0.00 sec   0.0%
    │ │ │  -----------------------------------------
    │ │ │  
    │ │ │  ---------- COMPUTATIONAL DATA -----------
    │ │ │  size of basis                     3
    │ │ │  #terms in basis                   3
    │ │ │  #pairs reduced                    0
    │ │ │ @@ -146,15 +146,15 @@
    │ │ │  -----------------------------------------
    │ │ │  
    │ │ │  multi-modular steps
    │ │ │  ------------------------------------------------------------------------------------------------------
    │ │ │  {1}{2}<100.00%>
    │ │ │  
    │ │ │  ------------------------------------------------------------------------------------
    │ │ │ -msolve overall time           0.31 sec (elapsed) /  0.91 sec (cpu)
    │ │ │ +msolve overall time           0.14 sec (elapsed) /  0.11 sec (cpu)
    │ │ │  ------------------------------------------------------------------------------------
    │ │ │   
    │ │ │  ------------------------------------------------------------------------------------------------------
    │ │ │  
    │ │ │  
    │ │ │  ---------- COMPUTATIONAL DATA -----------
    │ │ │  Max coeff. bitsize                1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -31,16 +31,16 @@
    │ │ │ │  o1 : PolynomialRing
    │ │ │ │  i2 : I = ideal(x, y, z)
    │ │ │ │  
    │ │ │ │  o2 = ideal (x, y, z)
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : msolveGB(I, Verbosity => 2, Threads => 6)
    │ │ │ │ - -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-144574-0/0-in.ms -o /
    │ │ │ │ -tmp/M2-144574-0/0-out.ms
    │ │ │ │ + -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-266668-0/0-in.ms -o /
    │ │ │ │ +tmp/M2-266668-0/0-out.ms
    │ │ │ │  
    │ │ │ │  --------------- INPUT DATA ---------------
    │ │ │ │  #variables                       3
    │ │ │ │  #equations                       3
    │ │ │ │  #invalid equations               0
    │ │ │ │  field characteristic             0
    │ │ │ │  homogeneous input?               1
    │ │ │ │ @@ -72,26 +72,26 @@
    │ │ │ │  deg     sel   pairs        mat          density            new data
    │ │ │ │  time(rd) in sec (real|cpu)
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │  -----------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │  -----------------------
    │ │ │ │  reduce final basis        3 x 3          33.33%        3 new       0 zero
    │ │ │ │ -0.02 | 0.08
    │ │ │ │ +0.00 | 0.00
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │  -----------------------
    │ │ │ │  
    │ │ │ │  ---------------- TIMINGS ----------------
    │ │ │ │ -overall(elapsed)        0.04 sec
    │ │ │ │ -overall(cpu)            0.11 sec
    │ │ │ │ +overall(elapsed)        0.00 sec
    │ │ │ │ +overall(cpu)            0.00 sec
    │ │ │ │  select                  0.00 sec   0.0%
    │ │ │ │ -symbolic prep.          0.00 sec   0.0%
    │ │ │ │ -update                  0.01 sec  35.5%
    │ │ │ │ -convert                 0.02 sec  64.3%
    │ │ │ │ -linear algebra          0.00 sec   0.0%
    │ │ │ │ +symbolic prep.          0.00 sec   0.3%
    │ │ │ │ +update                  0.00 sec  77.6%
    │ │ │ │ +convert                 0.00 sec   3.1%
    │ │ │ │ +linear algebra          0.00 sec   1.5%
    │ │ │ │  reduce gb               0.00 sec   0.0%
    │ │ │ │  -----------------------------------------
    │ │ │ │  
    │ │ │ │  ---------- COMPUTATIONAL DATA -----------
    │ │ │ │  size of basis                     3
    │ │ │ │  #terms in basis                   3
    │ │ │ │  #pairs reduced                    0
    │ │ │ │ @@ -119,15 +119,15 @@
    │ │ │ │  multi-modular steps
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │  -----------------------
    │ │ │ │  {1}{2}<100.00%>
    │ │ │ │  
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │  -----
    │ │ │ │ -msolve overall time           0.31 sec (elapsed) /  0.91 sec (cpu)
    │ │ │ │ +msolve overall time           0.14 sec (elapsed) /  0.11 sec (cpu)
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │  -----
    │ │ │ │  
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │  -----------------------
    │ │ ├── ./usr/share/doc/Macaulay2/MultiGradedRationalMap/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=18
    │ │ │  ZGVncmVlT2ZNYXAoSWRlYWwp
    │ │ │  #:len=283
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNjk3LCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhkZWdyZWVPZk1hcCxJZGVhbCksImRlZ3JlZU9mTWFw
    │ │ ├── ./usr/share/doc/Macaulay2/MultigradedBGG/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=26
    │ │ │  ZGVncmVlKERpZmZlcmVudGlhbE1vZHVsZSk=
    │ │ │  #:len=1348
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAicmV0dXJucyB0aGUgZGVncmVlIG9mIHRo
    │ │ │  ZSBkaWZmZXJlbnRpYWwiLCAibGluZW51bSIgPT4gNDYzLCBJbnB1dHMgPT4ge1NQQU57VFR7IkQi
    │ │ ├── ./usr/share/doc/Macaulay2/MultigradedImplicitization/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=17
    │ │ │  VXNlTWF0cm9pZFNwZWVkdXA=
    │ │ │  #:len=723
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAib3B0aW9uYWwgYXJndW1lbnQiLCBEZXNj
    │ │ │  cmlwdGlvbiA9PiAxOihESVZ7UEFSQXtURVh7IlRoZSBvcHRpb24gVXNlTWF0cm9pZFNwZWVkdXAg
    │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=11
    │ │ │  Z3JHcihJZGVhbCk=
    │ │ │  #:len=249
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzg2LCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhnckdyLElkZWFsKSwiZ3JHcihJZGVhbCkiLCJNdWx0
    │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_j__Mult.out
    │ │ │ @@ -9,25 +9,25 @@
    │ │ │  i2 : I = ideal"xy,yz,zx"
    │ │ │  
    │ │ │  o2 = ideal (x*y, y*z, x*z)
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : elapsedTime jMult I
    │ │ │ - -- .0212025s elapsed
    │ │ │ + -- .0204144s elapsed
    │ │ │  
    │ │ │  o3 = 2
    │ │ │  
    │ │ │  i4 : elapsedTime monjMult I
    │ │ │ - -- .24679s elapsed
    │ │ │ + -- .496935s elapsed
    │ │ │  
    │ │ │  o4 = 2
    │ │ │  
    │ │ │  i5 : elapsedTime multiplicitySequence I
    │ │ │ - -- .155598s elapsed
    │ │ │ + -- .803903s elapsed
    │ │ │  
    │ │ │  o5 = HashTable{2 => 3}
    │ │ │                 3 => 2
    │ │ │  
    │ │ │  o5 : HashTable
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_mon__Analytic__Spread.out
    │ │ │ @@ -10,12 +10,12 @@
    │ │ │  
    │ │ │               2        3
    │ │ │  o2 = ideal (x , x*y, y )
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : elapsedTime monAnalyticSpread I
    │ │ │ - -- .179396s elapsed
    │ │ │ + -- .282645s elapsed
    │ │ │  
    │ │ │  o3 = 2
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_monj__Mult.out
    │ │ │ @@ -13,17 +13,17 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │        10 11   8 12   9 11   10 10   11 9   12 8
    │ │ │       x  y  , x y  , x y  , x  y  , x  y , x  y )
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : elapsedTime monjMult I
    │ │ │ - -- .215844s elapsed
    │ │ │ + -- .599575s elapsed
    │ │ │  
    │ │ │  o3 = 192
    │ │ │  
    │ │ │  i4 : elapsedTime jMult I
    │ │ │ - -- 1.04785s elapsed
    │ │ │ + -- 2.17659s elapsed
    │ │ │  
    │ │ │  o4 = 192
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_j__Mult.html
    │ │ │ @@ -83,27 +83,27 @@
    │ │ │  
    │ │ │  o2 = ideal (x*y, y*z, x*z)
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │ │ │ │ │ │ │
    i3 : elapsedTime jMult I
    │ │ │ - -- .0212025s elapsed
    │ │ │ + -- .0204144s elapsed
    │ │ │  
    │ │ │  o3 = 2
    │ │ │ │ │ │ │ │ │
    i4 : elapsedTime monjMult I
    │ │ │ - -- .24679s elapsed
    │ │ │ + -- .496935s elapsed
    │ │ │  
    │ │ │  o4 = 2
    │ │ │ │ │ │ │ │ │
    i5 : elapsedTime multiplicitySequence I
    │ │ │ - -- .155598s elapsed
    │ │ │ + -- .803903s elapsed
    │ │ │  
    │ │ │  o5 = HashTable{2 => 3}
    │ │ │                 3 => 2
    │ │ │  
    │ │ │  o5 : HashTable
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -21,23 +21,23 @@ │ │ │ │ o1 : PolynomialRing │ │ │ │ i2 : I = ideal"xy,yz,zx" │ │ │ │ │ │ │ │ o2 = ideal (x*y, y*z, x*z) │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : elapsedTime jMult I │ │ │ │ - -- .0212025s elapsed │ │ │ │ + -- .0204144s elapsed │ │ │ │ │ │ │ │ o3 = 2 │ │ │ │ i4 : elapsedTime monjMult I │ │ │ │ - -- .24679s elapsed │ │ │ │ + -- .496935s elapsed │ │ │ │ │ │ │ │ o4 = 2 │ │ │ │ i5 : elapsedTime multiplicitySequence I │ │ │ │ - -- .155598s elapsed │ │ │ │ + -- .803903s elapsed │ │ │ │ │ │ │ │ o5 = HashTable{2 => 3} │ │ │ │ 3 => 2 │ │ │ │ │ │ │ │ o5 : HashTable │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_u_l_t_i_p_l_i_c_i_t_y_S_e_q_u_e_n_c_e -- the multiplicity sequence of an ideal │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_mon__Analytic__Spread.html │ │ │ @@ -84,15 +84,15 @@ │ │ │ 2 3 │ │ │ o2 = ideal (x , x*y, y ) │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ │ │ │
    i3 : elapsedTime monAnalyticSpread I
    │ │ │ - -- .179396s elapsed
    │ │ │ + -- .282645s elapsed
    │ │ │  
    │ │ │  o3 = 2
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -23,15 +23,15 @@ │ │ │ │ i2 : I = ideal"x2,xy,y3" │ │ │ │ │ │ │ │ 2 3 │ │ │ │ o2 = ideal (x , x*y, y ) │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : elapsedTime monAnalyticSpread I │ │ │ │ - -- .179396s elapsed │ │ │ │ + -- .282645s elapsed │ │ │ │ │ │ │ │ o3 = 2 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _N_P -- the Newton polyhedron of a monomial ideal │ │ │ │ ********** WWaayyss ttoo uussee mmoonnAAnnaallyyttiiccSSpprreeaadd:: ********** │ │ │ │ * monAnalyticSpread(Ideal) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_monj__Mult.html │ │ │ @@ -87,21 +87,21 @@ │ │ │ 10 11 8 12 9 11 10 10 11 9 12 8 │ │ │ x y , x y , x y , x y , x y , x y ) │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ │ │ │
    i3 : elapsedTime monjMult I
    │ │ │ - -- .215844s elapsed
    │ │ │ + -- .599575s elapsed
    │ │ │  
    │ │ │  o3 = 192
    │ │ │ │ │ │ │ │ │
    i4 : elapsedTime jMult I
    │ │ │ - -- 1.04785s elapsed
    │ │ │ + -- 2.17659s elapsed
    │ │ │  
    │ │ │  o4 = 192
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -25,19 +25,19 @@ │ │ │ │ o2 = ideal (x y , x y , x y , x y , x y , x y , x y , x y , x y , │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 10 11 8 12 9 11 10 10 11 9 12 8 │ │ │ │ x y , x y , x y , x y , x y , x y ) │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : elapsedTime monjMult I │ │ │ │ - -- .215844s elapsed │ │ │ │ + -- .599575s elapsed │ │ │ │ │ │ │ │ o3 = 192 │ │ │ │ i4 : elapsedTime jMult I │ │ │ │ - -- 1.04785s elapsed │ │ │ │ + -- 2.17659s elapsed │ │ │ │ │ │ │ │ o4 = 192 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_u_l_t_i_p_l_i_c_i_t_y_S_e_q_u_e_n_c_e -- the multiplicity sequence of an ideal │ │ │ │ * _j_M_u_l_t -- the j-multiplicity of an ideal │ │ │ │ * _m_o_n_R_e_d_u_c_t_i_o_n -- the minimal monomial reduction of a monomial ideal │ │ │ │ * _N_P -- the Newton polyhedron of a monomial ideal │ │ ├── ./usr/share/doc/Macaulay2/MultiplierIdeals/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=41 │ │ │ bG9nQ2Fub25pY2FsVGhyZXNob2xkKENlbnRyYWxBcnJhbmdlbWVudCk= │ │ │ #:len=361 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjA2OSwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsobG9nQ2Fub25pY2FsVGhyZXNob2xkLENlbnRyYWxB │ │ ├── ./usr/share/doc/Macaulay2/MultiplierIdealsDim2/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=9 │ │ │ TXVsdElkZWFs │ │ │ #:len=1359 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiQ29tcHV0ZXMgdGhlIG11bHRpcGxpZXIg │ │ │ aWRlYWwgb2YgYSBnaXZlbiBudW1iZXIuIiwgImxpbmVudW0iID0+IDY0OCwgSW5wdXRzID0+IHtT │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=12 │ │ │ dGV4TWF0aChSQVQp │ │ │ #:len=209 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNDE5OSwgInVuZG9jdW1lbnRlZCIgPT4g │ │ │ dHJ1ZSwgc3ltYm9sIERvY3VtZW50VGFnID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsodGV4TWF0 │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Embedded__Projective__Variety_sp_eq_eq_eq_gt_sp__Embedded__Projective__Variety.out │ │ │ @@ -13,15 +13,15 @@ │ │ │ o4 : ProjectiveVariety, curve in PP^8 │ │ │ │ │ │ i5 : ? X │ │ │ │ │ │ o5 = curve in PP^8 cut out by 17 hypersurfaces of degrees 1^2 2^15 │ │ │ │ │ │ i6 : time f = X ===> Y; │ │ │ - -- used 3.61187s (cpu); 2.07472s (thread); 0s (gc) │ │ │ + -- used 8.10238s (cpu); 3.70567s (thread); 0s (gc) │ │ │ │ │ │ o6 : MultirationalMap (automorphism of PP^8) │ │ │ │ │ │ i7 : f X │ │ │ │ │ │ o7 = Y │ │ │ │ │ │ @@ -38,15 +38,15 @@ │ │ │ o9 : ProjectiveVariety, 6-dimensional subvariety of PP^8 │ │ │ │ │ │ i10 : W = random({{2},{1}},Y); │ │ │ │ │ │ o10 : ProjectiveVariety, 6-dimensional subvariety of PP^8 │ │ │ │ │ │ i11 : time g = V ===> W; │ │ │ - -- used 3.44985s (cpu); 1.81373s (thread); 0s (gc) │ │ │ + -- used 8.51391s (cpu); 3.89965s (thread); 0s (gc) │ │ │ │ │ │ o11 : MultirationalMap (automorphism of PP^8) │ │ │ │ │ │ i12 : g||W │ │ │ │ │ │ o12 = multi-rational map consisting of one single rational map │ │ │ source variety: 6-dimensional subvariety of PP^8 cut out by 2 hypersurfaces of degrees 1^1 2^1 │ │ │ @@ -129,15 +129,15 @@ │ │ │ o15 : ProjectiveVariety, 6-dimensional subvariety of PP^9 │ │ │ │ │ │ i16 : ? Z │ │ │ │ │ │ o16 = 6-dimensional subvariety of PP^9 cut out by 5 hypersurfaces of degree 2 │ │ │ │ │ │ i17 : time h = Z ===> GG_K(1,4) │ │ │ - -- used 7.98739s (cpu); 4.64055s (thread); 0s (gc) │ │ │ + -- used 12.2511s (cpu); 8.12525s (thread); 0s (gc) │ │ │ │ │ │ o17 = h │ │ │ │ │ │ o17 : MultirationalMap (isomorphism from PP^9 to PP^9) │ │ │ │ │ │ i18 : h || GG_K(1,4) │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.out │ │ │ @@ -7,15 +7,15 @@ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4) │ │ │ │ │ │ i3 : Y = projectiveVariety ideal(random({1,1},ring target Phi), random({1,1},ring target Phi)); │ │ │ │ │ │ o3 : ProjectiveVariety, 4-dimensional subvariety of PP^2 x PP^4 │ │ │ │ │ │ i4 : time X = Phi^* Y; │ │ │ - -- used 4.74547s (cpu); 3.30375s (thread); 0s (gc) │ │ │ + -- used 3.6681s (cpu); 2.93148s (thread); 0s (gc) │ │ │ │ │ │ o4 : ProjectiveVariety, curve in PP^3 x PP^2 x PP^4 (subvariety of codimension 2 in threefold in PP^3 x PP^2 x PP^4 cut out by 12 hypersurfaces of multi-degrees (0,0,2)^1 (0,1,1)^2 (1,0,1)^7 (1,1,0)^2 ) │ │ │ │ │ │ i5 : dim X, degree X, degrees X │ │ │ │ │ │ o5 = (1, 31, {({0, 0, 2}, 1), ({0, 0, 3}, 4), ({0, 1, 1}, 4), ({0, 4, 1}, 1), │ │ │ ------------------------------------------------------------------------ │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp__Multiprojective__Variety.out │ │ │ @@ -11,26 +11,26 @@ │ │ │ o3 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^7 to PP^7 x PP^7) │ │ │ │ │ │ i4 : Z = source Phi; │ │ │ │ │ │ o4 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^7 │ │ │ │ │ │ i5 : time Phi Z; │ │ │ - -- used 0.0929525s (cpu); 0.0923825s (thread); 0s (gc) │ │ │ + -- used 0.796659s (cpu); 0.226534s (thread); 0s (gc) │ │ │ │ │ │ o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^7 │ │ │ │ │ │ i6 : dim oo, degree oo, degrees oo │ │ │ │ │ │ o6 = (4, 80, {({0, 2}, 5), ({1, 1}, 33), ({2, 0}, 5)}) │ │ │ │ │ │ o6 : Sequence │ │ │ │ │ │ i7 : time Phi (point Z + point Z + point Z) │ │ │ - -- used 2.12072s (cpu); 1.27842s (thread); 0s (gc) │ │ │ + -- used 5.82399s (cpu); 2.79473s (thread); 0s (gc) │ │ │ │ │ │ o7 = 0-dimensional subvariety of PP^7 x PP^7 cut out by 22 hypersurfaces of multi-degrees (0,1)^5 (0,2)^3 (1,0)^5 (1,1)^6 (2,0)^3 │ │ │ │ │ │ o7 : ProjectiveVariety, 0-dimensional subvariety of PP^7 x PP^7 │ │ │ │ │ │ i8 : dim oo, degree oo, degrees oo │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_cm__Option_rp.out │ │ │ @@ -11,22 +11,22 @@ │ │ │ o3 = multi-rational map consisting of one single rational map │ │ │ source variety: threefold in PP^4 x PP^4 cut out by 13 hypersurfaces of │ │ │ target variety: hypersurface in PP^4 defined by a form of degree 2 │ │ │ ------------------------------------------------------------------------ │ │ │ multi-degrees (0,2)^1 (1,1)^3 (2,1)^8 (4,0)^1 │ │ │ │ │ │ i4 : time degree(Phi,Strategy=>"random point") │ │ │ - -- used 4.21068s (cpu); 2.53763s (thread); 0s (gc) │ │ │ + -- used 8.60794s (cpu); 1.99728s (thread); 0s (gc) │ │ │ │ │ │ o4 = 2 │ │ │ │ │ │ i5 : time degree(Phi,Strategy=>"0-th projective degree") │ │ │ - -- used 0.312606s (cpu); 0.236089s (thread); 0s (gc) │ │ │ + -- used 0.309751s (cpu); 0.242231s (thread); 0s (gc) │ │ │ │ │ │ o5 = 2 │ │ │ │ │ │ i6 : time degree Phi │ │ │ - -- used 0.326294s (cpu); 0.24353s (thread); 0s (gc) │ │ │ + -- used 0.172914s (cpu); 0.173914s (thread); 0s (gc) │ │ │ │ │ │ o6 = 2 │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_rp.out │ │ │ @@ -3,12 +3,12 @@ │ │ │ i1 : ZZ/300007[x_0..x_3], f = rationalMap {x_2^2-x_1*x_3, x_1*x_2-x_0*x_3, x_1^2-x_0*x_2}, g = rationalMap {x_1^2-x_0*x_2, x_0*x_3, x_1*x_3, x_2*x_3, x_3^2}; │ │ │ │ │ │ i2 : Phi = last graph rationalMap {f,g}; │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4) │ │ │ │ │ │ i3 : time degree Phi │ │ │ - -- used 0.571211s (cpu); 0.424891s (thread); 0s (gc) │ │ │ + -- used 0.510038s (cpu); 0.32469s (thread); 0s (gc) │ │ │ │ │ │ o3 = 1 │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_describe_lp__Multirational__Map_rp.out │ │ │ @@ -1,52 +1,52 @@ │ │ │ -- -*- M2-comint -*- hash: 11533721324852072161 │ │ │ │ │ │ i1 : Phi = multirationalMap graph rationalMap PP_(ZZ/65521)^(1,4); │ │ │ │ │ │ o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^4 x PP^5) │ │ │ │ │ │ i2 : time ? Phi │ │ │ - -- used 0.0017476s (cpu); 0.000210294s (thread); 0s (gc) │ │ │ + -- used 0.00108592s (cpu); 0.000124764s (thread); 0s (gc) │ │ │ │ │ │ o2 = multi-rational map consisting of 2 rational maps │ │ │ source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 │ │ │ target variety: PP^4 x PP^5 │ │ │ ------------------------------------------------------------------------ │ │ │ hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ │ │ │ i3 : image Phi; │ │ │ │ │ │ o3 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^5 │ │ │ │ │ │ i4 : time ? Phi │ │ │ - -- used 0.00400281s (cpu); 0.000328677s (thread); 0s (gc) │ │ │ + -- used 0.00226652s (cpu); 0.000256101s (thread); 0s (gc) │ │ │ │ │ │ o4 = multi-rational map consisting of 2 rational maps │ │ │ source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ target variety: PP^4 x PP^5 │ │ │ dominance: false │ │ │ image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ │ │ │ i5 : time describe Phi │ │ │ - -- used 1.5069s (cpu); 1.10379s (thread); 0s (gc) │ │ │ + -- used 2.96765s (cpu); 2.59941s (thread); 0s (gc) │ │ │ │ │ │ o5 = multi-rational map consisting of 2 rational maps │ │ │ source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ target variety: PP^4 x PP^5 │ │ │ base locus: empty subscheme of PP^4 x PP^5 │ │ │ dominance: false │ │ │ image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ multidegree: {51, 51, 51, 51, 51} │ │ │ degree: 1 │ │ │ degree sequence (map 1/2): [(1,0), (0,2)] │ │ │ degree sequence (map 2/2): [(0,1), (2,0)] │ │ │ coefficient ring: ZZ/65521 │ │ │ │ │ │ i6 : time ? Phi │ │ │ - -- used 0.000149972s (cpu); 0.000376616s (thread); 0s (gc) │ │ │ + -- used 0.000105859s (cpu); 0.000315862s (thread); 0s (gc) │ │ │ │ │ │ o6 = multi-rational map consisting of 2 rational maps │ │ │ source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ target variety: PP^4 x PP^5 │ │ │ base locus: empty subscheme of PP^4 x PP^5 │ │ │ dominance: false │ │ │ image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_graph_lp__Multirational__Map_rp.out │ │ │ @@ -3,45 +3,45 @@ │ │ │ i1 : Phi = rationalMap(PP_(ZZ/333331)^(1,4),Dominant=>true) │ │ │ │ │ │ o1 = Phi │ │ │ │ │ │ o1 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ │ │ i2 : time (Phi1,Phi2) = graph Phi │ │ │ - -- used 0.0199683s (cpu); 0.0203147s (thread); 0s (gc) │ │ │ + -- used 0.195567s (cpu); 0.058218s (thread); 0s (gc) │ │ │ │ │ │ o2 = (Phi1, Phi2) │ │ │ │ │ │ o2 : Sequence │ │ │ │ │ │ i3 : Phi1; │ │ │ │ │ │ o3 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^4) │ │ │ │ │ │ i4 : Phi2; │ │ │ │ │ │ o4 : MultirationalMap (dominant rational map from 4-dimensional subvariety of PP^4 x PP^5 to hypersurface in PP^5) │ │ │ │ │ │ i5 : time (Phi21,Phi22) = graph Phi2 │ │ │ - -- used 0.0308626s (cpu); 0.0318301s (thread); 0s (gc) │ │ │ + -- used 0.0835289s (cpu); 0.0292452s (thread); 0s (gc) │ │ │ │ │ │ o5 = (Phi21, Phi22) │ │ │ │ │ │ o5 : Sequence │ │ │ │ │ │ i6 : Phi21; │ │ │ │ │ │ o6 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5) │ │ │ │ │ │ i7 : Phi22; │ │ │ │ │ │ o7 : MultirationalMap (dominant rational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to hypersurface in PP^5) │ │ │ │ │ │ i8 : time (Phi211,Phi212) = graph Phi21 │ │ │ - -- used 0.188571s (cpu); 0.120925s (thread); 0s (gc) │ │ │ + -- used 0.598917s (cpu); 0.172583s (thread); 0s (gc) │ │ │ │ │ │ o8 = (Phi211, Phi212) │ │ │ │ │ │ o8 : Sequence │ │ │ │ │ │ i9 : Phi211; │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_image_lp__Multirational__Map_rp.out │ │ │ @@ -11,25 +11,25 @@ │ │ │ o3 : RationalMap (quadratic rational map from PP^4 to PP^4) │ │ │ │ │ │ i4 : Phi = rationalMap {f,g}; │ │ │ │ │ │ o4 : MultirationalMap (rational map from PP^4 to PP^7 x PP^4) │ │ │ │ │ │ i5 : time Z = image Phi; │ │ │ - -- used 0.193919s (cpu); 0.194375s (thread); 0s (gc) │ │ │ + -- used 0.326902s (cpu); 0.260371s (thread); 0s (gc) │ │ │ │ │ │ o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4 │ │ │ │ │ │ i6 : dim Z, degree Z, degrees Z │ │ │ │ │ │ o6 = (4, 151, {({1, 1}, 4), ({1, 2}, 3), ({2, 0}, 5), ({2, 1}, 13)}) │ │ │ │ │ │ o6 : Sequence │ │ │ │ │ │ i7 : time Z' = projectiveVariety (map segre target Phi) image(segre Phi,"F4"); │ │ │ - -- used 8.21524s (cpu); 3.17664s (thread); 0s (gc) │ │ │ + -- used 21.9591s (cpu); 4.80259s (thread); 0s (gc) │ │ │ │ │ │ o7 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4 │ │ │ │ │ │ i8 : assert(Z == Z') │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse2.out │ │ │ @@ -4,25 +4,25 @@ │ │ │ │ │ │ i2 : -- map defined by the cubics through the secant variety to the rational normal curve of degree 6 │ │ │ Phi = multirationalMap rationalMap(ring PP_K^6,ring GG_K(2,4),gens ideal PP_K([6],2)); │ │ │ │ │ │ o2 : MultirationalMap (rational map from PP^6 to GG(2,4)) │ │ │ │ │ │ i3 : time Psi = inverse2 Phi; │ │ │ - -- used 0.380852s (cpu); 0.296207s (thread); 0s (gc) │ │ │ + -- used 1.37433s (cpu); 0.614694s (thread); 0s (gc) │ │ │ │ │ │ o3 : MultirationalMap (birational map from GG(2,4) to PP^6) │ │ │ │ │ │ i4 : assert(Phi * Psi == 1) │ │ │ │ │ │ i5 : Phi' = Phi || Phi; │ │ │ │ │ │ o5 : MultirationalMap (rational map from PP^6 x PP^6 to GG(2,4) x GG(2,4)) │ │ │ │ │ │ i6 : time Psi' = inverse2 Phi'; │ │ │ - -- used 1.86808s (cpu); 1.29771s (thread); 0s (gc) │ │ │ + -- used 2.85058s (cpu); 2.01873s (thread); 0s (gc) │ │ │ │ │ │ o6 : MultirationalMap (birational map from GG(2,4) x GG(2,4) to PP^6 x PP^6) │ │ │ │ │ │ i7 : assert(Phi' * Psi' == 1) │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse_lp__Multirational__Map_rp.out │ │ │ @@ -7,33 +7,33 @@ │ │ │ │ │ │ i2 : -- we see Phi as a dominant map │ │ │ Phi = rationalMap(Phi,image Phi); │ │ │ │ │ │ o2 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ │ │ i3 : time inverse Phi; │ │ │ - -- used 0.0442329s (cpu); 0.0417169s (thread); 0s (gc) │ │ │ + -- used 0.807672s (cpu); 0.131399s (thread); 0s (gc) │ │ │ │ │ │ o3 : MultirationalMap (birational map from hypersurface in PP^5 to PP^4) │ │ │ │ │ │ i4 : Psi = last graph Phi; │ │ │ │ │ │ o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to hypersurface in PP^5) │ │ │ │ │ │ i5 : time inverse Psi; │ │ │ - -- used 0.177065s (cpu); 0.0983666s (thread); 0s (gc) │ │ │ + -- used 0.64434s (cpu); 0.281716s (thread); 0s (gc) │ │ │ │ │ │ o5 : MultirationalMap (birational map from hypersurface in PP^5 to 4-dimensional subvariety of PP^4 x PP^5) │ │ │ │ │ │ i6 : Eta = first graph Psi; │ │ │ │ │ │ o6 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5) │ │ │ │ │ │ i7 : time inverse Eta; │ │ │ - -- used 0.453153s (cpu); 0.286087s (thread); 0s (gc) │ │ │ + -- used 2.39753s (cpu); 0.700055s (thread); 0s (gc) │ │ │ │ │ │ o7 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5 x PP^5) │ │ │ │ │ │ i8 : assert(Phi * Phi^-1 == 1 and Phi^-1 * Phi == 1) │ │ │ │ │ │ i9 : assert(Psi * Psi^-1 == 1 and Psi^-1 * Psi == 1) │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Isomorphism_lp__Multirational__Map_rp.out │ │ │ @@ -6,32 +6,32 @@ │ │ │ o2 : RationalMap (quadratic rational map from PP^3 to PP^2) │ │ │ │ │ │ i3 : Phi = rationalMap {f,f}; │ │ │ │ │ │ o3 : MultirationalMap (rational map from PP^3 to PP^2 x PP^2) │ │ │ │ │ │ i4 : time isIsomorphism Phi │ │ │ - -- used 0.00369049s (cpu); 1.033e-05s (thread); 0s (gc) │ │ │ + -- used 0.00389415s (cpu); 5.791e-06s (thread); 0s (gc) │ │ │ │ │ │ o4 = false │ │ │ │ │ │ i5 : Psi = first graph Phi; │ │ │ │ │ │ o5 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 to PP^3) │ │ │ │ │ │ i6 : time isIsomorphism Psi │ │ │ - -- used 0.323078s (cpu); 0.152253s (thread); 0s (gc) │ │ │ + -- used 1.31022s (cpu); 0.409418s (thread); 0s (gc) │ │ │ │ │ │ o6 = false │ │ │ │ │ │ i7 : Eta = first graph Psi; │ │ │ │ │ │ o7 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 x PP^3 to threefold in PP^3 x PP^2 x PP^2) │ │ │ │ │ │ i8 : time isIsomorphism Eta │ │ │ - -- used 1.39409s (cpu); 0.718132s (thread); 0s (gc) │ │ │ + -- used 3.7902s (cpu); 1.51658s (thread); 0s (gc) │ │ │ │ │ │ o8 = true │ │ │ │ │ │ i9 : assert(o8 and (not o6) and (not o4)) │ │ │ │ │ │ i10 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Morphism_lp__Multirational__Map_rp.out │ │ │ @@ -3,24 +3,24 @@ │ │ │ i1 : ZZ/300007[a..e], f = first graph rationalMap ideal(c^2-b*d,b*c-a*d,b^2-a*c,e), g = rationalMap submatrix(matrix f,{0..2}); │ │ │ │ │ │ i2 : Phi = rationalMap {f,g}; │ │ │ │ │ │ o2 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^7 to PP^4 x PP^2) │ │ │ │ │ │ i3 : time isMorphism Phi │ │ │ - -- used 0.230726s (cpu); 0.159482s (thread); 0s (gc) │ │ │ + -- used 0.29478s (cpu); 0.230752s (thread); 0s (gc) │ │ │ │ │ │ o3 = false │ │ │ │ │ │ i4 : time Psi = first graph Phi; │ │ │ - -- used 0.158078s (cpu); 0.0838548s (thread); 0s (gc) │ │ │ + -- used 0.955989s (cpu); 0.247508s (thread); 0s (gc) │ │ │ │ │ │ o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^7 x PP^4 x PP^2 to 4-dimensional subvariety of PP^4 x PP^7) │ │ │ │ │ │ i5 : time isMorphism Psi │ │ │ - -- used 4.10881s (cpu); 2.89424s (thread); 0s (gc) │ │ │ + -- used 6.74807s (cpu); 5.82189s (thread); 0s (gc) │ │ │ │ │ │ o5 = true │ │ │ │ │ │ i6 : assert((not o3) and o5) │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_linearly__Normal__Embedding.out │ │ │ @@ -3,24 +3,24 @@ │ │ │ i1 : K = ZZ/333331; │ │ │ │ │ │ i2 : X = PP_K^(1,7); -- rational normal curve of degree 7 │ │ │ │ │ │ o2 : ProjectiveVariety, curve in PP^7 │ │ │ │ │ │ i3 : time f = linearlyNormalEmbedding X; │ │ │ - -- used 0.00799341s (cpu); 0.00882943s (thread); 0s (gc) │ │ │ + -- used 0.00803099s (cpu); 0.00781773s (thread); 0s (gc) │ │ │ │ │ │ o3 : MultirationalMap (automorphism of X) │ │ │ │ │ │ i4 : Y = (rationalMap {for i to 3 list random(1,ring ambient X)}) X; -- an isomorphic projection of X in PP^3 │ │ │ │ │ │ o4 : ProjectiveVariety, curve in PP^3 │ │ │ │ │ │ i5 : time g = linearlyNormalEmbedding Y; │ │ │ - -- used 0.560105s (cpu); 0.400122s (thread); 0s (gc) │ │ │ + -- used 1.43896s (cpu); 1.23947s (thread); 0s (gc) │ │ │ │ │ │ o5 : MultirationalMap (birational map from Y to curve in PP^7) │ │ │ │ │ │ i6 : assert(isIsomorphism g) │ │ │ │ │ │ i7 : describe g │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Multirational__Map_rp.out │ │ │ @@ -3,15 +3,15 @@ │ │ │ i1 : ZZ/300007[x_0..x_3], f = rationalMap {x_2^2-x_1*x_3, x_1*x_2-x_0*x_3, x_1^2-x_0*x_2}, g = rationalMap {x_1^2-x_0*x_2, x_0*x_3, x_1*x_3, x_2*x_3, x_3^2}; │ │ │ │ │ │ i2 : Phi = last graph rationalMap {f,g}; │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4) │ │ │ │ │ │ i3 : time multidegree Phi │ │ │ - -- used 0.549954s (cpu); 0.410961s (thread); 0s (gc) │ │ │ + -- used 1.24188s (cpu); 0.632383s (thread); 0s (gc) │ │ │ │ │ │ o3 = {66, 46, 31, 20} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : (degree source Phi,degree image Phi) │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.out │ │ │ @@ -1,21 +1,21 @@ │ │ │ -- -*- M2-comint -*- hash: 16199733219210081214 │ │ │ │ │ │ i1 : Phi = last graph rationalMap PP_(ZZ/300007)^(1,4); │ │ │ │ │ │ o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^5) │ │ │ │ │ │ i2 : for i in {4,3,2,1,0} list time multidegree(i,Phi) │ │ │ - -- used 0.00402065s (cpu); 0.00152952s (thread); 0s (gc) │ │ │ - -- used 0.156121s (cpu); 0.106571s (thread); 0s (gc) │ │ │ - -- used 0.216164s (cpu); 0.135241s (thread); 0s (gc) │ │ │ - -- used 0.180607s (cpu); 0.107667s (thread); 0s (gc) │ │ │ - -- used 0.127909s (cpu); 0.0773013s (thread); 0s (gc) │ │ │ + -- used 0.00215027s (cpu); 0.0011356s (thread); 0s (gc) │ │ │ + -- used 0.178981s (cpu); 0.116603s (thread); 0s (gc) │ │ │ + -- used 0.174219s (cpu); 0.109074s (thread); 0s (gc) │ │ │ + -- used 0.186167s (cpu); 0.113206s (thread); 0s (gc) │ │ │ + -- used 0.154433s (cpu); 0.0805549s (thread); 0s (gc) │ │ │ │ │ │ o2 = {51, 28, 14, 6, 2} │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : time assert(oo == multidegree Phi) │ │ │ - -- used 0.0486544s (cpu); 0.0500349s (thread); 0s (gc) │ │ │ + -- used 0.197938s (cpu); 0.0508185s (thread); 0s (gc) │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_point_lp__Multiprojective__Variety_rp.out │ │ │ @@ -3,26 +3,26 @@ │ │ │ i1 : K = ZZ/1000003; │ │ │ │ │ │ i2 : X = PP_K^({1,1,2},{3,2,3}); │ │ │ │ │ │ o2 : ProjectiveVariety, 4-dimensional subvariety of PP^3 x PP^2 x PP^9 │ │ │ │ │ │ i3 : time p := point X │ │ │ - -- used 0.0160848s (cpu); 0.0148379s (thread); 0s (gc) │ │ │ + -- used 0.516235s (cpu); 0.0818124s (thread); 0s (gc) │ │ │ │ │ │ o3 = point of coordinates ([421369, 39917, -212481, 1],[-128795, -176966, 1],[3870, -390108, -496127, -308581, 46649, 164926, -446111, 48038, 415309, 1]) │ │ │ │ │ │ o3 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9 │ │ │ │ │ │ i4 : Y = random({2,1,2},X); │ │ │ │ │ │ o4 : ProjectiveVariety, hypersurface in PP^3 x PP^2 x PP^9 │ │ │ │ │ │ i5 : time q = point Y │ │ │ - -- used 2.0638s (cpu); 1.06252s (thread); 0s (gc) │ │ │ + -- used 2.70174s (cpu); 1.51899s (thread); 0s (gc) │ │ │ │ │ │ o5 = q │ │ │ │ │ │ o5 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9 │ │ │ │ │ │ i6 : assert(isSubset(p,X) and isSubset(q,Y)) │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_segre_lp__Multirational__Map_rp.out │ │ │ @@ -15,15 +15,15 @@ │ │ │ o4 : RationalMap (quadratic rational map from PP^4 to PP^4) │ │ │ │ │ │ i5 : Phi = rationalMap {f,g,h}; │ │ │ │ │ │ o5 : MultirationalMap (rational map from PP^4 to hypersurface in PP^5 x PP^4 x PP^4) │ │ │ │ │ │ i6 : time segre Phi; │ │ │ - -- used 0.84109s (cpu); 0.510468s (thread); 0s (gc) │ │ │ + -- used 7.36297s (cpu); 1.6609s (thread); 0s (gc) │ │ │ │ │ │ o6 : RationalMap (rational map from PP^4 to PP^149) │ │ │ │ │ │ i7 : describe segre Phi │ │ │ │ │ │ o7 = rational map defined by forms of degree 6 │ │ │ source variety: PP^4 │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_show_lp__Multirational__Map_rp.out │ │ │ @@ -3,15 +3,15 @@ │ │ │ i1 : Phi = inverse first graph last graph rationalMap PP_(ZZ/33331)^(1,3) │ │ │ │ │ │ o1 = Phi │ │ │ │ │ │ o1 : MultirationalMap (birational map from threefold in PP^3 x PP^2 to threefold in PP^3 x PP^2 x PP^2) │ │ │ │ │ │ i2 : time describe Phi │ │ │ - -- used 0.255978s (cpu); 0.169365s (thread); 0s (gc) │ │ │ + -- used 0.177758s (cpu); 0.106991s (thread); 0s (gc) │ │ │ │ │ │ o2 = multi-rational map consisting of 3 rational maps │ │ │ source variety: threefold in PP^3 x PP^2 cut out by 2 hypersurfaces of multi-degree (1,1) │ │ │ target variety: threefold in PP^3 x PP^2 x PP^2 cut out by 7 hypersurfaces of multi-degrees (0,1,1)^3 (1,0,1)^2 (1,1,0)^2 │ │ │ base locus: empty subscheme of PP^3 x PP^2 │ │ │ dominance: true │ │ │ multidegree: {10, 14, 19, 25} │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Embedded__Projective__Variety_sp_eq_eq_eq_gt_sp__Embedded__Projective__Variety.html │ │ │ @@ -94,15 +94,15 @@ │ │ │ │ │ │
    i5 : ? X
    │ │ │  
    │ │ │  o5 = curve in PP^8 cut out by 17 hypersurfaces of degrees 1^2 2^15 
    │ │ │ │ │ │ │ │ │
    i6 : time f = X ===> Y;
    │ │ │ - -- used 3.61187s (cpu); 2.07472s (thread); 0s (gc)
    │ │ │ + -- used 8.10238s (cpu); 3.70567s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : MultirationalMap (automorphism of PP^8)
    │ │ │ │ │ │ │ │ │
    i7 : f X
    │ │ │  
    │ │ │  o7 = Y
    │ │ │ @@ -124,15 +124,15 @@
    │ │ │            
    │ │ │                
    i10 : W = random({{2},{1}},Y);
    │ │ │  
    │ │ │  o10 : ProjectiveVariety, 6-dimensional subvariety of PP^8
    │ │ │ │ │ │ │ │ │
    i11 : time g = V ===> W;
    │ │ │ - -- used 3.44985s (cpu); 1.81373s (thread); 0s (gc)
    │ │ │ + -- used 8.51391s (cpu); 3.89965s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 : MultirationalMap (automorphism of PP^8)
    │ │ │ │ │ │ │ │ │
    i12 : g||W
    │ │ │  
    │ │ │  o12 = multi-rational map consisting of one single rational map
    │ │ │ @@ -223,15 +223,15 @@
    │ │ │            
    │ │ │                
    i16 : ? Z
    │ │ │  
    │ │ │  o16 = 6-dimensional subvariety of PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │ │ │ │ │ │ │
    i17 : time h = Z ===> GG_K(1,4)
    │ │ │ - -- used 7.98739s (cpu); 4.64055s (thread); 0s (gc)
    │ │ │ + -- used 12.2511s (cpu); 8.12525s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 = h
    │ │ │  
    │ │ │  o17 : MultirationalMap (isomorphism from PP^9 to PP^9)
    │ │ │ │ │ │ │ │ │
    i18 : h || GG_K(1,4)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -34,15 +34,15 @@
    │ │ │ │  take(N,-2));
    │ │ │ │  
    │ │ │ │  o4 : ProjectiveVariety, curve in PP^8
    │ │ │ │  i5 : ? X
    │ │ │ │  
    │ │ │ │  o5 = curve in PP^8 cut out by 17 hypersurfaces of degrees 1^2 2^15
    │ │ │ │  i6 : time f = X ===> Y;
    │ │ │ │ - -- used 3.61187s (cpu); 2.07472s (thread); 0s (gc)
    │ │ │ │ + -- used 8.10238s (cpu); 3.70567s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 : MultirationalMap (automorphism of PP^8)
    │ │ │ │  i7 : f X
    │ │ │ │  
    │ │ │ │  o7 = Y
    │ │ │ │  
    │ │ │ │  o7 : ProjectiveVariety, curve in PP^8
    │ │ │ │ @@ -54,15 +54,15 @@
    │ │ │ │  i9 : V = random({{2},{1}},X);
    │ │ │ │  
    │ │ │ │  o9 : ProjectiveVariety, 6-dimensional subvariety of PP^8
    │ │ │ │  i10 : W = random({{2},{1}},Y);
    │ │ │ │  
    │ │ │ │  o10 : ProjectiveVariety, 6-dimensional subvariety of PP^8
    │ │ │ │  i11 : time g = V ===> W;
    │ │ │ │ - -- used 3.44985s (cpu); 1.81373s (thread); 0s (gc)
    │ │ │ │ + -- used 8.51391s (cpu); 3.89965s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o11 : MultirationalMap (automorphism of PP^8)
    │ │ │ │  i12 : g||W
    │ │ │ │  
    │ │ │ │  o12 = multi-rational map consisting of one single rational map
    │ │ │ │        source variety: 6-dimensional subvariety of PP^8 cut out by 2
    │ │ │ │  hypersurfaces of degrees 1^1 2^1
    │ │ │ │ @@ -145,15 +145,15 @@
    │ │ │ │  i15 : Z = projectiveVariety pfaffians(4,A);
    │ │ │ │  
    │ │ │ │  o15 : ProjectiveVariety, 6-dimensional subvariety of PP^9
    │ │ │ │  i16 : ? Z
    │ │ │ │  
    │ │ │ │  o16 = 6-dimensional subvariety of PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │ │  i17 : time h = Z ===> GG_K(1,4)
    │ │ │ │ - -- used 7.98739s (cpu); 4.64055s (thread); 0s (gc)
    │ │ │ │ + -- used 12.2511s (cpu); 8.12525s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o17 = h
    │ │ │ │  
    │ │ │ │  o17 : MultirationalMap (isomorphism from PP^9 to PP^9)
    │ │ │ │  i18 : h || GG_K(1,4)
    │ │ │ │  
    │ │ │ │  o18 = multi-rational map consisting of one single rational map
    │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.html
    │ │ │ @@ -84,15 +84,15 @@
    │ │ │            
    │ │ │                
    i3 : Y = projectiveVariety ideal(random({1,1},ring target Phi), random({1,1},ring target Phi));
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, 4-dimensional subvariety of PP^2 x PP^4
    │ │ │ │ │ │ │ │ │
    i4 : time X = Phi^* Y;
    │ │ │ - -- used 4.74547s (cpu); 3.30375s (thread); 0s (gc)
    │ │ │ + -- used 3.6681s (cpu); 2.93148s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, curve in PP^3 x PP^2 x PP^4 (subvariety of codimension 2 in threefold in PP^3 x PP^2 x PP^4 cut out by 12 hypersurfaces of multi-degrees (0,0,2)^1 (0,1,1)^2 (1,0,1)^7 (1,1,0)^2 )
    │ │ │ │ │ │ │ │ │
    i5 : dim X, degree X, degrees X
    │ │ │  
    │ │ │  o5 = (1, 31, {({0, 0, 2}, 1), ({0, 0, 3}, 4), ({0, 1, 1}, 4), ({0, 4, 1}, 1),
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -27,15 +27,15 @@
    │ │ │ │  o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to
    │ │ │ │  PP^2 x PP^4)
    │ │ │ │  i3 : Y = projectiveVariety ideal(random({1,1},ring target Phi), random(
    │ │ │ │  {1,1},ring target Phi));
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, 4-dimensional subvariety of PP^2 x PP^4
    │ │ │ │  i4 : time X = Phi^* Y;
    │ │ │ │ - -- used 4.74547s (cpu); 3.30375s (thread); 0s (gc)
    │ │ │ │ + -- used 3.6681s (cpu); 2.93148s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : ProjectiveVariety, curve in PP^3 x PP^2 x PP^4 (subvariety of codimension
    │ │ │ │  2 in threefold in PP^3 x PP^2 x PP^4 cut out by 12 hypersurfaces of multi-
    │ │ │ │  degrees (0,0,2)^1 (0,1,1)^2 (1,0,1)^7 (1,1,0)^2 )
    │ │ │ │  i5 : dim X, degree X, degrees X
    │ │ │ │  
    │ │ │ │  o5 = (1, 31, {({0, 0, 2}, 1), ({0, 0, 3}, 4), ({0, 1, 1}, 4), ({0, 4, 1}, 1),
    │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp__Multiprojective__Variety.html
    │ │ │ @@ -88,28 +88,28 @@
    │ │ │            
    │ │ │                
    i4 : Z = source Phi;
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^7
    │ │ │ │ │ │ │ │ │
    i5 : time Phi Z;
    │ │ │ - -- used 0.0929525s (cpu); 0.0923825s (thread); 0s (gc)
    │ │ │ + -- used 0.796659s (cpu); 0.226534s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^7
    │ │ │ │ │ │ │ │ │
    i6 : dim oo, degree oo, degrees oo
    │ │ │  
    │ │ │  o6 = (4, 80, {({0, 2}, 5), ({1, 1}, 33), ({2, 0}, 5)})
    │ │ │  
    │ │ │  o6 : Sequence
    │ │ │ │ │ │ │ │ │
    i7 : time Phi (point Z + point Z + point Z)
    │ │ │ - -- used 2.12072s (cpu); 1.27842s (thread); 0s (gc)
    │ │ │ + -- used 5.82399s (cpu); 2.79473s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = 0-dimensional subvariety of PP^7 x PP^7 cut out by 22 hypersurfaces of multi-degrees (0,1)^5 (0,2)^3 (1,0)^5 (1,1)^6 (2,0)^3 
    │ │ │  
    │ │ │  o7 : ProjectiveVariety, 0-dimensional subvariety of PP^7 x PP^7
    │ │ │ │ │ │ │ │ │
    i8 : dim oo, degree oo, degrees oo
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -26,24 +26,24 @@
    │ │ │ │  
    │ │ │ │  o3 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x
    │ │ │ │  PP^7 to PP^7 x PP^7)
    │ │ │ │  i4 : Z = source Phi;
    │ │ │ │  
    │ │ │ │  o4 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^7
    │ │ │ │  i5 : time Phi Z;
    │ │ │ │ - -- used 0.0929525s (cpu); 0.0923825s (thread); 0s (gc)
    │ │ │ │ + -- used 0.796659s (cpu); 0.226534s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^7
    │ │ │ │  i6 : dim oo, degree oo, degrees oo
    │ │ │ │  
    │ │ │ │  o6 = (4, 80, {({0, 2}, 5), ({1, 1}, 33), ({2, 0}, 5)})
    │ │ │ │  
    │ │ │ │  o6 : Sequence
    │ │ │ │  i7 : time Phi (point Z + point Z + point Z)
    │ │ │ │ - -- used 2.12072s (cpu); 1.27842s (thread); 0s (gc)
    │ │ │ │ + -- used 5.82399s (cpu); 2.79473s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o7 = 0-dimensional subvariety of PP^7 x PP^7 cut out by 22 hypersurfaces of
    │ │ │ │  multi-degrees (0,1)^5 (0,2)^3 (1,0)^5 (1,1)^6 (2,0)^3
    │ │ │ │  
    │ │ │ │  o7 : ProjectiveVariety, 0-dimensional subvariety of PP^7 x PP^7
    │ │ │ │  i8 : dim oo, degree oo, degrees oo
    │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_cm__Option_rp.html
    │ │ │ @@ -88,27 +88,27 @@
    │ │ │       source variety: threefold in PP^4 x PP^4 cut out by 13 hypersurfaces of
    │ │ │       target variety: hypersurface in PP^4 defined by a form of degree 2
    │ │ │       ------------------------------------------------------------------------
    │ │ │       multi-degrees (0,2)^1 (1,1)^3 (2,1)^8 (4,0)^1
    │ │ │ │ │ │ │ │ │
    i4 : time degree(Phi,Strategy=>"random point")
    │ │ │ - -- used 4.21068s (cpu); 2.53763s (thread); 0s (gc)
    │ │ │ + -- used 8.60794s (cpu); 1.99728s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 2
    │ │ │ │ │ │ │ │ │
    i5 : time degree(Phi,Strategy=>"0-th projective degree")
    │ │ │ - -- used 0.312606s (cpu); 0.236089s (thread); 0s (gc)
    │ │ │ + -- used 0.309751s (cpu); 0.242231s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 2
    │ │ │ │ │ │ │ │ │
    i6 : time degree Phi
    │ │ │ - -- used 0.326294s (cpu); 0.24353s (thread); 0s (gc)
    │ │ │ + -- used 0.172914s (cpu); 0.173914s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = 2
    │ │ │ │ │ │ │ │ │

    Note, as in the example above, that calculation times may vary depending on the strategy used.

    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -28,23 +28,23 @@ │ │ │ │ │ │ │ │ o3 = multi-rational map consisting of one single rational map │ │ │ │ source variety: threefold in PP^4 x PP^4 cut out by 13 hypersurfaces of │ │ │ │ target variety: hypersurface in PP^4 defined by a form of degree 2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ multi-degrees (0,2)^1 (1,1)^3 (2,1)^8 (4,0)^1 │ │ │ │ i4 : time degree(Phi,Strategy=>"random point") │ │ │ │ - -- used 4.21068s (cpu); 2.53763s (thread); 0s (gc) │ │ │ │ + -- used 8.60794s (cpu); 1.99728s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 2 │ │ │ │ i5 : time degree(Phi,Strategy=>"0-th projective degree") │ │ │ │ - -- used 0.312606s (cpu); 0.236089s (thread); 0s (gc) │ │ │ │ + -- used 0.309751s (cpu); 0.242231s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 2 │ │ │ │ i6 : time degree Phi │ │ │ │ - -- used 0.326294s (cpu); 0.24353s (thread); 0s (gc) │ │ │ │ + -- used 0.172914s (cpu); 0.173914s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = 2 │ │ │ │ Note, as in the example above, that calculation times may vary depending on the │ │ │ │ strategy used. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_e_g_r_e_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- degree of a multi-rational map │ │ │ │ * _d_e_g_r_e_e_M_a_p_(_R_a_t_i_o_n_a_l_M_a_p_) -- degree of a rational map │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_rp.html │ │ │ @@ -77,15 +77,15 @@ │ │ │ │ │ │
    i2 : Phi = last graph rationalMap {f,g};
    │ │ │  
    │ │ │  o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4)
    │ │ │ │ │ │ │ │ │
    i3 : time degree Phi
    │ │ │ - -- used 0.571211s (cpu); 0.424891s (thread); 0s (gc)
    │ │ │ + -- used 0.510038s (cpu); 0.32469s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = 1
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ x_1^2-x_0*x_2}, g = rationalMap {x_1^2-x_0*x_2, x_0*x_3, x_1*x_3, x_2*x_3, │ │ │ │ x_3^2}; │ │ │ │ i2 : Phi = last graph rationalMap {f,g}; │ │ │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to │ │ │ │ PP^2 x PP^4) │ │ │ │ i3 : time degree Phi │ │ │ │ - -- used 0.571211s (cpu); 0.424891s (thread); 0s (gc) │ │ │ │ + -- used 0.510038s (cpu); 0.32469s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = 1 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_e_g_r_e_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_,_O_p_t_i_o_n_) -- degree of a multi-rational map using a │ │ │ │ probabilistic approach │ │ │ │ * _d_e_g_r_e_e_(_R_a_t_i_o_n_a_l_M_a_p_) -- degree of a rational map │ │ │ │ * _m_u_l_t_i_d_e_g_r_e_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- projective degrees of a multi-rational │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_describe_lp__Multirational__Map_rp.html │ │ │ @@ -75,40 +75,40 @@ │ │ │ │ │ │
    i1 : Phi = multirationalMap graph rationalMap PP_(ZZ/65521)^(1,4);
    │ │ │  
    │ │ │  o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^4 x PP^5)
    │ │ │ │ │ │ │ │ │
    i2 : time ? Phi
    │ │ │ - -- used 0.0017476s (cpu); 0.000210294s (thread); 0s (gc)
    │ │ │ + -- used 0.00108592s (cpu); 0.000124764s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = multi-rational map consisting of 2 rational maps
    │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9
    │ │ │       target variety: PP^4 x PP^5
    │ │ │       ------------------------------------------------------------------------
    │ │ │       hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │ │ │ │ │ │
    i3 : image Phi;
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^5
    │ │ │ │ │ │ │ │ │
    i4 : time ? Phi
    │ │ │ - -- used 0.00400281s (cpu); 0.000328677s (thread); 0s (gc)
    │ │ │ + -- used 0.00226652s (cpu); 0.000256101s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = multi-rational map consisting of 2 rational maps
    │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 
    │ │ │       target variety: PP^4 x PP^5
    │ │ │       dominance: false
    │ │ │       image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 
    │ │ │ │ │ │ │ │ │
    i5 : time describe Phi
    │ │ │ - -- used 1.5069s (cpu); 1.10379s (thread); 0s (gc)
    │ │ │ + -- used 2.96765s (cpu); 2.59941s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = multi-rational map consisting of 2 rational maps
    │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 
    │ │ │       target variety: PP^4 x PP^5
    │ │ │       base locus: empty subscheme of PP^4 x PP^5
    │ │ │       dominance: false
    │ │ │       image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 
    │ │ │ @@ -116,15 +116,15 @@
    │ │ │       degree: 1
    │ │ │       degree sequence (map 1/2): [(1,0), (0,2)]
    │ │ │       degree sequence (map 2/2): [(0,1), (2,0)]
    │ │ │       coefficient ring: ZZ/65521
    │ │ │ │ │ │ │ │ │
    i6 : time ? Phi
    │ │ │ - -- used 0.000149972s (cpu); 0.000376616s (thread); 0s (gc)
    │ │ │ + -- used 0.000105859s (cpu); 0.000315862s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = multi-rational map consisting of 2 rational maps
    │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 
    │ │ │       target variety: PP^4 x PP^5
    │ │ │       base locus: empty subscheme of PP^4 x PP^5
    │ │ │       dominance: false
    │ │ │       image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -17,36 +17,36 @@
    │ │ │ │  ? Phi is a lite version of describe Phi. The latter has a different behavior
    │ │ │ │  than _d_e_s_c_r_i_b_e_(_R_a_t_i_o_n_a_l_M_a_p_), since it performs computations.
    │ │ │ │  i1 : Phi = multirationalMap graph rationalMap PP_(ZZ/65521)^(1,4);
    │ │ │ │  
    │ │ │ │  o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x
    │ │ │ │  PP^5 to PP^4 x PP^5)
    │ │ │ │  i2 : time ? Phi
    │ │ │ │ - -- used 0.0017476s (cpu); 0.000210294s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00108592s (cpu); 0.000124764s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = multi-rational map consisting of 2 rational maps
    │ │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9
    │ │ │ │       target variety: PP^4 x PP^5
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │  i3 : image Phi;
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^5
    │ │ │ │  i4 : time ? Phi
    │ │ │ │ - -- used 0.00400281s (cpu); 0.000328677s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00226652s (cpu); 0.000256101s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = multi-rational map consisting of 2 rational maps
    │ │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9
    │ │ │ │  hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │       target variety: PP^4 x PP^5
    │ │ │ │       dominance: false
    │ │ │ │       image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces
    │ │ │ │  of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │  i5 : time describe Phi
    │ │ │ │ - -- used 1.5069s (cpu); 1.10379s (thread); 0s (gc)
    │ │ │ │ + -- used 2.96765s (cpu); 2.59941s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = multi-rational map consisting of 2 rational maps
    │ │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9
    │ │ │ │  hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │       target variety: PP^4 x PP^5
    │ │ │ │       base locus: empty subscheme of PP^4 x PP^5
    │ │ │ │       dominance: false
    │ │ │ │ @@ -54,15 +54,15 @@
    │ │ │ │  of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │       multidegree: {51, 51, 51, 51, 51}
    │ │ │ │       degree: 1
    │ │ │ │       degree sequence (map 1/2): [(1,0), (0,2)]
    │ │ │ │       degree sequence (map 2/2): [(0,1), (2,0)]
    │ │ │ │       coefficient ring: ZZ/65521
    │ │ │ │  i6 : time ? Phi
    │ │ │ │ - -- used 0.000149972s (cpu); 0.000376616s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000105859s (cpu); 0.000315862s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 = multi-rational map consisting of 2 rational maps
    │ │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9
    │ │ │ │  hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │       target variety: PP^4 x PP^5
    │ │ │ │       base locus: empty subscheme of PP^4 x PP^5
    │ │ │ │       dominance: false
    │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_graph_lp__Multirational__Map_rp.html
    │ │ │ @@ -84,15 +84,15 @@
    │ │ │  
    │ │ │  o1 = Phi
    │ │ │  
    │ │ │  o1 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5)
    │ │ │ │ │ │ │ │ │
    i2 : time (Phi1,Phi2) = graph Phi
    │ │ │ - -- used 0.0199683s (cpu); 0.0203147s (thread); 0s (gc)
    │ │ │ + -- used 0.195567s (cpu); 0.058218s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = (Phi1, Phi2)
    │ │ │  
    │ │ │  o2 : Sequence
    │ │ │ │ │ │ │ │ │
    i3 : Phi1;
    │ │ │ @@ -102,15 +102,15 @@
    │ │ │            
    │ │ │                
    i4 : Phi2;
    │ │ │  
    │ │ │  o4 : MultirationalMap (dominant rational map from 4-dimensional subvariety of PP^4 x PP^5 to hypersurface in PP^5)
    │ │ │ │ │ │ │ │ │
    i5 : time (Phi21,Phi22) = graph Phi2
    │ │ │ - -- used 0.0308626s (cpu); 0.0318301s (thread); 0s (gc)
    │ │ │ + -- used 0.0835289s (cpu); 0.0292452s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = (Phi21, Phi22)
    │ │ │  
    │ │ │  o5 : Sequence
    │ │ │ │ │ │ │ │ │
    i6 : Phi21;
    │ │ │ @@ -120,15 +120,15 @@
    │ │ │            
    │ │ │                
    i7 : Phi22;
    │ │ │  
    │ │ │  o7 : MultirationalMap (dominant rational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to hypersurface in PP^5)
    │ │ │ │ │ │ │ │ │
    i8 : time (Phi211,Phi212) = graph Phi21
    │ │ │ - -- used 0.188571s (cpu); 0.120925s (thread); 0s (gc)
    │ │ │ + -- used 0.598917s (cpu); 0.172583s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = (Phi211, Phi212)
    │ │ │  
    │ │ │  o8 : Sequence
    │ │ │ │ │ │ │ │ │
    i9 : Phi211;
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -20,43 +20,43 @@
    │ │ │ │  Phi)^-1 * (last graph Phi) == Phi are always satisfied.
    │ │ │ │  i1 : Phi = rationalMap(PP_(ZZ/333331)^(1,4),Dominant=>true)
    │ │ │ │  
    │ │ │ │  o1 = Phi
    │ │ │ │  
    │ │ │ │  o1 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5)
    │ │ │ │  i2 : time (Phi1,Phi2) = graph Phi
    │ │ │ │ - -- used 0.0199683s (cpu); 0.0203147s (thread); 0s (gc)
    │ │ │ │ + -- used 0.195567s (cpu); 0.058218s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = (Phi1, Phi2)
    │ │ │ │  
    │ │ │ │  o2 : Sequence
    │ │ │ │  i3 : Phi1;
    │ │ │ │  
    │ │ │ │  o3 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x
    │ │ │ │  PP^5 to PP^4)
    │ │ │ │  i4 : Phi2;
    │ │ │ │  
    │ │ │ │  o4 : MultirationalMap (dominant rational map from 4-dimensional subvariety of
    │ │ │ │  PP^4 x PP^5 to hypersurface in PP^5)
    │ │ │ │  i5 : time (Phi21,Phi22) = graph Phi2
    │ │ │ │ - -- used 0.0308626s (cpu); 0.0318301s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0835289s (cpu); 0.0292452s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = (Phi21, Phi22)
    │ │ │ │  
    │ │ │ │  o5 : Sequence
    │ │ │ │  i6 : Phi21;
    │ │ │ │  
    │ │ │ │  o6 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x
    │ │ │ │  PP^5 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5)
    │ │ │ │  i7 : Phi22;
    │ │ │ │  
    │ │ │ │  o7 : MultirationalMap (dominant rational map from 4-dimensional subvariety of
    │ │ │ │  PP^4 x PP^5 x PP^5 to hypersurface in PP^5)
    │ │ │ │  i8 : time (Phi211,Phi212) = graph Phi21
    │ │ │ │ - -- used 0.188571s (cpu); 0.120925s (thread); 0s (gc)
    │ │ │ │ + -- used 0.598917s (cpu); 0.172583s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 = (Phi211, Phi212)
    │ │ │ │  
    │ │ │ │  o8 : Sequence
    │ │ │ │  i9 : Phi211;
    │ │ │ │  
    │ │ │ │  o9 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x
    │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_image_lp__Multirational__Map_rp.html
    │ │ │ @@ -87,15 +87,15 @@
    │ │ │            
    │ │ │                
    i4 : Phi = rationalMap {f,g};
    │ │ │  
    │ │ │  o4 : MultirationalMap (rational map from PP^4 to PP^7 x PP^4)
    │ │ │ │ │ │ │ │ │
    i5 : time Z = image Phi;
    │ │ │ - -- used 0.193919s (cpu); 0.194375s (thread); 0s (gc)
    │ │ │ + -- used 0.326902s (cpu); 0.260371s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4
    │ │ │ │ │ │ │ │ │
    i6 : dim Z, degree Z, degrees Z
    │ │ │  
    │ │ │  o6 = (4, 151, {({1, 1}, 4), ({1, 2}, 3), ({2, 0}, 5), ({2, 1}, 13)})
    │ │ │ @@ -103,15 +103,15 @@
    │ │ │  o6 : Sequence
    │ │ │ │ │ │ │ │ │

    Alternatively, the calculation can be performed using the Segre embedding as follows:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time Z' = projectiveVariety (map segre target Phi) image(segre Phi,"F4");
    │ │ │ - -- used 8.21524s (cpu); 3.17664s (thread); 0s (gc)
    │ │ │ + -- used 21.9591s (cpu); 4.80259s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4
    │ │ │
    i8 : assert(Z == Z')
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -24,26 +24,26 @@ │ │ │ │ 3*x_2^2+2*x_1*x_3+x_0*x_4, 2*x_1*x_2-2*x_0*x_3, -x_1^2+x_0*x_2}; │ │ │ │ │ │ │ │ o3 : RationalMap (quadratic rational map from PP^4 to PP^4) │ │ │ │ i4 : Phi = rationalMap {f,g}; │ │ │ │ │ │ │ │ o4 : MultirationalMap (rational map from PP^4 to PP^7 x PP^4) │ │ │ │ i5 : time Z = image Phi; │ │ │ │ - -- used 0.193919s (cpu); 0.194375s (thread); 0s (gc) │ │ │ │ + -- used 0.326902s (cpu); 0.260371s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4 │ │ │ │ i6 : dim Z, degree Z, degrees Z │ │ │ │ │ │ │ │ o6 = (4, 151, {({1, 1}, 4), ({1, 2}, 3), ({2, 0}, 5), ({2, 1}, 13)}) │ │ │ │ │ │ │ │ o6 : Sequence │ │ │ │ Alternatively, the calculation can be performed using the Segre embedding as │ │ │ │ follows: │ │ │ │ i7 : time Z' = projectiveVariety (map segre target Phi) image(segre Phi,"F4"); │ │ │ │ - -- used 8.21524s (cpu); 3.17664s (thread); 0s (gc) │ │ │ │ + -- used 21.9591s (cpu); 4.80259s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4 │ │ │ │ i8 : assert(Z == Z') │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_ _M_u_l_t_i_p_r_o_j_e_c_t_i_v_e_V_a_r_i_e_t_y -- direct image via a multi- │ │ │ │ rational map │ │ │ │ * _i_m_a_g_e_(_R_a_t_i_o_n_a_l_M_a_p_) -- closure of the image of a rational map │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse2.html │ │ │ @@ -78,29 +78,29 @@ │ │ │
    i2 : -- map defined by the cubics through the secant variety to the rational normal curve of degree 6
    │ │ │       Phi = multirationalMap rationalMap(ring PP_K^6,ring GG_K(2,4),gens ideal PP_K([6],2));
    │ │ │  
    │ │ │  o2 : MultirationalMap (rational map from PP^6 to GG(2,4))
    │ │ │ │ │ │ │ │ │
    i3 : time Psi = inverse2 Phi;
    │ │ │ - -- used 0.380852s (cpu); 0.296207s (thread); 0s (gc)
    │ │ │ + -- used 1.37433s (cpu); 0.614694s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : MultirationalMap (birational map from GG(2,4) to PP^6)
    │ │ │ │ │ │ │ │ │
    i4 : assert(Phi * Psi == 1)
    │ │ │ │ │ │ │ │ │
    i5 : Phi' = Phi || Phi;
    │ │ │  
    │ │ │  o5 : MultirationalMap (rational map from PP^6 x PP^6 to GG(2,4) x GG(2,4))
    │ │ │ │ │ │ │ │ │
    i6 : time Psi' = inverse2 Phi';
    │ │ │ - -- used 1.86808s (cpu); 1.29771s (thread); 0s (gc)
    │ │ │ + -- used 2.85058s (cpu); 2.01873s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : MultirationalMap (birational map from GG(2,4) x GG(2,4) to PP^6 x PP^6)
    │ │ │ │ │ │ │ │ │
    i7 : assert(Phi' * Psi' == 1)
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -25,23 +25,23 @@ │ │ │ │ i2 : -- map defined by the cubics through the secant variety to the rational │ │ │ │ normal curve of degree 6 │ │ │ │ Phi = multirationalMap rationalMap(ring PP_K^6,ring GG_K(2,4),gens ideal │ │ │ │ PP_K([6],2)); │ │ │ │ │ │ │ │ o2 : MultirationalMap (rational map from PP^6 to GG(2,4)) │ │ │ │ i3 : time Psi = inverse2 Phi; │ │ │ │ - -- used 0.380852s (cpu); 0.296207s (thread); 0s (gc) │ │ │ │ + -- used 1.37433s (cpu); 0.614694s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : MultirationalMap (birational map from GG(2,4) to PP^6) │ │ │ │ i4 : assert(Phi * Psi == 1) │ │ │ │ i5 : Phi' = Phi || Phi; │ │ │ │ │ │ │ │ o5 : MultirationalMap (rational map from PP^6 x PP^6 to GG(2,4) x GG(2,4)) │ │ │ │ i6 : time Psi' = inverse2 Phi'; │ │ │ │ - -- used 1.86808s (cpu); 1.29771s (thread); 0s (gc) │ │ │ │ + -- used 2.85058s (cpu); 2.01873s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 : MultirationalMap (birational map from GG(2,4) x GG(2,4) to PP^6 x PP^6) │ │ │ │ i7 : assert(Phi' * Psi' == 1) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_n_v_e_r_s_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- inverse of a birational map │ │ │ │ * _M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_ _<_=_=_>_ _M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p -- equality of multi-rational maps │ │ │ │ with checks on internal data │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse_lp__Multirational__Map_rp.html │ │ │ @@ -84,37 +84,37 @@ │ │ │
    i2 : -- we see Phi as a dominant map
    │ │ │       Phi = rationalMap(Phi,image Phi);
    │ │ │  
    │ │ │  o2 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5)
    │ │ │ │ │ │ │ │ │
    i3 : time inverse Phi;
    │ │ │ - -- used 0.0442329s (cpu); 0.0417169s (thread); 0s (gc)
    │ │ │ + -- used 0.807672s (cpu); 0.131399s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : MultirationalMap (birational map from hypersurface in PP^5 to PP^4)
    │ │ │ │ │ │ │ │ │
    i4 : Psi = last graph Phi;
    │ │ │  
    │ │ │  o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to hypersurface in PP^5)
    │ │ │ │ │ │ │ │ │
    i5 : time inverse Psi;
    │ │ │ - -- used 0.177065s (cpu); 0.0983666s (thread); 0s (gc)
    │ │ │ + -- used 0.64434s (cpu); 0.281716s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : MultirationalMap (birational map from hypersurface in PP^5 to 4-dimensional subvariety of PP^4 x PP^5)
    │ │ │ │ │ │ │ │ │
    i6 : Eta = first graph Psi;
    │ │ │  
    │ │ │  o6 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5)
    │ │ │ │ │ │ │ │ │
    i7 : time inverse Eta;
    │ │ │ - -- used 0.453153s (cpu); 0.286087s (thread); 0s (gc)
    │ │ │ + -- used 2.39753s (cpu); 0.700055s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5 x PP^5)
    │ │ │ │ │ │ │ │ │
    i8 : assert(Phi * Phi^-1 == 1 and Phi^-1 * Phi == 1)
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -25,32 +25,32 @@ │ │ │ │ │ │ │ │ o1 : MultirationalMap (rational map from PP^4 to PP^5) │ │ │ │ i2 : -- we see Phi as a dominant map │ │ │ │ Phi = rationalMap(Phi,image Phi); │ │ │ │ │ │ │ │ o2 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ i3 : time inverse Phi; │ │ │ │ - -- used 0.0442329s (cpu); 0.0417169s (thread); 0s (gc) │ │ │ │ + -- used 0.807672s (cpu); 0.131399s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : MultirationalMap (birational map from hypersurface in PP^5 to PP^4) │ │ │ │ i4 : Psi = last graph Phi; │ │ │ │ │ │ │ │ o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 to hypersurface in PP^5) │ │ │ │ i5 : time inverse Psi; │ │ │ │ - -- used 0.177065s (cpu); 0.0983666s (thread); 0s (gc) │ │ │ │ + -- used 0.64434s (cpu); 0.281716s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : MultirationalMap (birational map from hypersurface in PP^5 to 4- │ │ │ │ dimensional subvariety of PP^4 x PP^5) │ │ │ │ i6 : Eta = first graph Psi; │ │ │ │ │ │ │ │ o6 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5) │ │ │ │ i7 : time inverse Eta; │ │ │ │ - -- used 0.453153s (cpu); 0.286087s (thread); 0s (gc) │ │ │ │ + -- used 2.39753s (cpu); 0.700055s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 to 4-dimensional subvariety of PP^4 x PP^5 x PP^5) │ │ │ │ i8 : assert(Phi * Phi^-1 == 1 and Phi^-1 * Phi == 1) │ │ │ │ i9 : assert(Psi * Psi^-1 == 1 and Psi^-1 * Psi == 1) │ │ │ │ i10 : assert(Eta * Eta^-1 == 1 and Eta^-1 * Eta == 1) │ │ │ │ ********** RReeffeerreenncceess ********** │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Isomorphism_lp__Multirational__Map_rp.html │ │ │ @@ -79,37 +79,37 @@ │ │ │ │ │ │
    i3 : Phi = rationalMap {f,f};
    │ │ │  
    │ │ │  o3 : MultirationalMap (rational map from PP^3 to PP^2 x PP^2)
    │ │ │ │ │ │ │ │ │
    i4 : time isIsomorphism Phi
    │ │ │ - -- used 0.00369049s (cpu); 1.033e-05s (thread); 0s (gc)
    │ │ │ + -- used 0.00389415s (cpu); 5.791e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = false
    │ │ │ │ │ │ │ │ │
    i5 : Psi = first graph Phi;
    │ │ │  
    │ │ │  o5 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 to PP^3)
    │ │ │ │ │ │ │ │ │
    i6 : time isIsomorphism Psi
    │ │ │ - -- used 0.323078s (cpu); 0.152253s (thread); 0s (gc)
    │ │ │ + -- used 1.31022s (cpu); 0.409418s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = false
    │ │ │ │ │ │ │ │ │
    i7 : Eta = first graph Psi;
    │ │ │  
    │ │ │  o7 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 x PP^3 to threefold in PP^3 x PP^2 x PP^2)
    │ │ │ │ │ │ │ │ │
    i8 : time isIsomorphism Eta
    │ │ │ - -- used 1.39409s (cpu); 0.718132s (thread); 0s (gc)
    │ │ │ + -- used 3.7902s (cpu); 1.51658s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = true
    │ │ │ │ │ │ │ │ │
    i9 : assert(o8 and (not o6) and (not o4))
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -18,31 +18,31 @@ │ │ │ │ ZZ/33331[a..d]; f = rationalMap {c^2-b*d,b*c-a*d,b^2-a*c}; │ │ │ │ │ │ │ │ o2 : RationalMap (quadratic rational map from PP^3 to PP^2) │ │ │ │ i3 : Phi = rationalMap {f,f}; │ │ │ │ │ │ │ │ o3 : MultirationalMap (rational map from PP^3 to PP^2 x PP^2) │ │ │ │ i4 : time isIsomorphism Phi │ │ │ │ - -- used 0.00369049s (cpu); 1.033e-05s (thread); 0s (gc) │ │ │ │ + -- used 0.00389415s (cpu); 5.791e-06s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = false │ │ │ │ i5 : Psi = first graph Phi; │ │ │ │ │ │ │ │ o5 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 to │ │ │ │ PP^3) │ │ │ │ i6 : time isIsomorphism Psi │ │ │ │ - -- used 0.323078s (cpu); 0.152253s (thread); 0s (gc) │ │ │ │ + -- used 1.31022s (cpu); 0.409418s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = false │ │ │ │ i7 : Eta = first graph Psi; │ │ │ │ │ │ │ │ o7 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 x │ │ │ │ PP^3 to threefold in PP^3 x PP^2 x PP^2) │ │ │ │ i8 : time isIsomorphism Eta │ │ │ │ - -- used 1.39409s (cpu); 0.718132s (thread); 0s (gc) │ │ │ │ + -- used 3.7902s (cpu); 1.51658s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 = true │ │ │ │ i9 : assert(o8 and (not o6) and (not o4)) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_n_v_e_r_s_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- inverse of a birational map │ │ │ │ * _i_s_M_o_r_p_h_i_s_m_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- whether a multi-rational map is a │ │ │ │ morphism │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Morphism_lp__Multirational__Map_rp.html │ │ │ @@ -76,27 +76,27 @@ │ │ │ │ │ │
    i2 : Phi = rationalMap {f,g};
    │ │ │  
    │ │ │  o2 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^7 to PP^4 x PP^2)
    │ │ │ │ │ │ │ │ │
    i3 : time isMorphism Phi
    │ │ │ - -- used 0.230726s (cpu); 0.159482s (thread); 0s (gc)
    │ │ │ + -- used 0.29478s (cpu); 0.230752s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = false
    │ │ │ │ │ │ │ │ │
    i4 : time Psi = first graph Phi;
    │ │ │ - -- used 0.158078s (cpu); 0.0838548s (thread); 0s (gc)
    │ │ │ + -- used 0.955989s (cpu); 0.247508s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^7 x PP^4 x PP^2 to 4-dimensional subvariety of PP^4 x PP^7)
    │ │ │ │ │ │ │ │ │
    i5 : time isMorphism Psi
    │ │ │ - -- used 4.10881s (cpu); 2.89424s (thread); 0s (gc)
    │ │ │ + -- used 6.74807s (cpu); 5.82189s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = true
    │ │ │ │ │ │ │ │ │
    i6 : assert((not o3) and o5)
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -18,24 +18,24 @@ │ │ │ │ i1 : ZZ/300007[a..e], f = first graph rationalMap ideal(c^2-b*d,b*c-a*d,b^2- │ │ │ │ a*c,e), g = rationalMap submatrix(matrix f,{0..2}); │ │ │ │ i2 : Phi = rationalMap {f,g}; │ │ │ │ │ │ │ │ o2 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^7 to PP^4 x PP^2) │ │ │ │ i3 : time isMorphism Phi │ │ │ │ - -- used 0.230726s (cpu); 0.159482s (thread); 0s (gc) │ │ │ │ + -- used 0.29478s (cpu); 0.230752s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = false │ │ │ │ i4 : time Psi = first graph Phi; │ │ │ │ - -- used 0.158078s (cpu); 0.0838548s (thread); 0s (gc) │ │ │ │ + -- used 0.955989s (cpu); 0.247508s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^7 x PP^4 x PP^2 to 4-dimensional subvariety of PP^4 x PP^7) │ │ │ │ i5 : time isMorphism Psi │ │ │ │ - -- used 4.10881s (cpu); 2.89424s (thread); 0s (gc) │ │ │ │ + -- used 6.74807s (cpu); 5.82189s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = true │ │ │ │ i6 : assert((not o3) and o5) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_I_s_o_m_o_r_p_h_i_s_m_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- whether a birational map is an │ │ │ │ isomorphism │ │ │ │ * _i_s_M_o_r_p_h_i_s_m_(_R_a_t_i_o_n_a_l_M_a_p_) -- whether a rational map is a morphism │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_linearly__Normal__Embedding.html │ │ │ @@ -74,26 +74,26 @@ │ │ │ │ │ │
    i2 : X = PP_K^(1,7); -- rational normal curve of degree 7
    │ │ │  
    │ │ │  o2 : ProjectiveVariety, curve in PP^7
    │ │ │ │ │ │ │ │ │
    i3 : time f = linearlyNormalEmbedding X;
    │ │ │ - -- used 0.00799341s (cpu); 0.00882943s (thread); 0s (gc)
    │ │ │ + -- used 0.00803099s (cpu); 0.00781773s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : MultirationalMap (automorphism of X)
    │ │ │ │ │ │ │ │ │
    i4 : Y = (rationalMap {for i to 3 list random(1,ring ambient X)}) X; -- an isomorphic projection of X in PP^3
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, curve in PP^3
    │ │ │ │ │ │ │ │ │
    i5 : time g = linearlyNormalEmbedding Y;
    │ │ │ - -- used 0.560105s (cpu); 0.400122s (thread); 0s (gc)
    │ │ │ + -- used 1.43896s (cpu); 1.23947s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : MultirationalMap (birational map from Y to curve in PP^7)
    │ │ │ │ │ │ │ │ │
    i6 : assert(isIsomorphism g)
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -14,23 +14,23 @@ │ │ │ │ is a linear projection │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : K = ZZ/333331; │ │ │ │ i2 : X = PP_K^(1,7); -- rational normal curve of degree 7 │ │ │ │ │ │ │ │ o2 : ProjectiveVariety, curve in PP^7 │ │ │ │ i3 : time f = linearlyNormalEmbedding X; │ │ │ │ - -- used 0.00799341s (cpu); 0.00882943s (thread); 0s (gc) │ │ │ │ + -- used 0.00803099s (cpu); 0.00781773s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : MultirationalMap (automorphism of X) │ │ │ │ i4 : Y = (rationalMap {for i to 3 list random(1,ring ambient X)}) X; -- an │ │ │ │ isomorphic projection of X in PP^3 │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, curve in PP^3 │ │ │ │ i5 : time g = linearlyNormalEmbedding Y; │ │ │ │ - -- used 0.560105s (cpu); 0.400122s (thread); 0s (gc) │ │ │ │ + -- used 1.43896s (cpu); 1.23947s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : MultirationalMap (birational map from Y to curve in PP^7) │ │ │ │ i6 : assert(isIsomorphism g) │ │ │ │ i7 : describe g │ │ │ │ │ │ │ │ o7 = multi-rational map consisting of one single rational map │ │ │ │ source variety: curve in PP^3 cut out by 6 hypersurfaces of degree 4 │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Multirational__Map_rp.html │ │ │ @@ -77,15 +77,15 @@ │ │ │ │ │ │
    i2 : Phi = last graph rationalMap {f,g};
    │ │ │  
    │ │ │  o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4)
    │ │ │ │ │ │ │ │ │
    i3 : time multidegree Phi
    │ │ │ - -- used 0.549954s (cpu); 0.410961s (thread); 0s (gc)
    │ │ │ + -- used 1.24188s (cpu); 0.632383s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = {66, 46, 31, 20}
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │
    i4 : (degree source Phi,degree image Phi)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -20,15 +20,15 @@
    │ │ │ │  x_1^2-x_0*x_2}, g = rationalMap {x_1^2-x_0*x_2, x_0*x_3, x_1*x_3, x_2*x_3,
    │ │ │ │  x_3^2};
    │ │ │ │  i2 : Phi = last graph rationalMap {f,g};
    │ │ │ │  
    │ │ │ │  o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to
    │ │ │ │  PP^2 x PP^4)
    │ │ │ │  i3 : time multidegree Phi
    │ │ │ │ - -- used 0.549954s (cpu); 0.410961s (thread); 0s (gc)
    │ │ │ │ + -- used 1.24188s (cpu); 0.632383s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = {66, 46, 31, 20}
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ │ │  i4 : (degree source Phi,degree image Phi)
    │ │ │ │  
    │ │ │ │  o4 = (66, 20)
    │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.html
    │ │ │ @@ -76,27 +76,27 @@
    │ │ │            
    │ │ │                
    i1 : Phi = last graph rationalMap PP_(ZZ/300007)^(1,4);
    │ │ │  
    │ │ │  o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^5)
    │ │ │ │ │ │ │ │ │
    i2 : for i in {4,3,2,1,0} list time multidegree(i,Phi)
    │ │ │ - -- used 0.00402065s (cpu); 0.00152952s (thread); 0s (gc)
    │ │ │ - -- used 0.156121s (cpu); 0.106571s (thread); 0s (gc)
    │ │ │ - -- used 0.216164s (cpu); 0.135241s (thread); 0s (gc)
    │ │ │ - -- used 0.180607s (cpu); 0.107667s (thread); 0s (gc)
    │ │ │ - -- used 0.127909s (cpu); 0.0773013s (thread); 0s (gc)
    │ │ │ + -- used 0.00215027s (cpu); 0.0011356s (thread); 0s (gc)
    │ │ │ + -- used 0.178981s (cpu); 0.116603s (thread); 0s (gc)
    │ │ │ + -- used 0.174219s (cpu); 0.109074s (thread); 0s (gc)
    │ │ │ + -- used 0.186167s (cpu); 0.113206s (thread); 0s (gc)
    │ │ │ + -- used 0.154433s (cpu); 0.0805549s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = {51, 28, 14, 6, 2}
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │
    i3 : time assert(oo == multidegree Phi)
    │ │ │ - -- used 0.0486544s (cpu); 0.0500349s (thread); 0s (gc)
    │ │ │ + -- used 0.197938s (cpu); 0.0508185s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    References

    │ │ │ ArXiv preprint: Computations with rational maps between multi-projective varieties.
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -18,25 +18,25 @@ │ │ │ │ This is calculated by means of the inverse image of an appropriate random │ │ │ │ subvariety of the target. │ │ │ │ i1 : Phi = last graph rationalMap PP_(ZZ/300007)^(1,4); │ │ │ │ │ │ │ │ o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 to PP^5) │ │ │ │ i2 : for i in {4,3,2,1,0} list time multidegree(i,Phi) │ │ │ │ - -- used 0.00402065s (cpu); 0.00152952s (thread); 0s (gc) │ │ │ │ - -- used 0.156121s (cpu); 0.106571s (thread); 0s (gc) │ │ │ │ - -- used 0.216164s (cpu); 0.135241s (thread); 0s (gc) │ │ │ │ - -- used 0.180607s (cpu); 0.107667s (thread); 0s (gc) │ │ │ │ - -- used 0.127909s (cpu); 0.0773013s (thread); 0s (gc) │ │ │ │ + -- used 0.00215027s (cpu); 0.0011356s (thread); 0s (gc) │ │ │ │ + -- used 0.178981s (cpu); 0.116603s (thread); 0s (gc) │ │ │ │ + -- used 0.174219s (cpu); 0.109074s (thread); 0s (gc) │ │ │ │ + -- used 0.186167s (cpu); 0.113206s (thread); 0s (gc) │ │ │ │ + -- used 0.154433s (cpu); 0.0805549s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = {51, 28, 14, 6, 2} │ │ │ │ │ │ │ │ o2 : List │ │ │ │ i3 : time assert(oo == multidegree Phi) │ │ │ │ - -- used 0.0486544s (cpu); 0.0500349s (thread); 0s (gc) │ │ │ │ + -- used 0.197938s (cpu); 0.0508185s (thread); 0s (gc) │ │ │ │ ********** RReeffeerreenncceess ********** │ │ │ │ ArXiv preprint: _C_o_m_p_u_t_a_t_i_o_n_s_ _w_i_t_h_ _r_a_t_i_o_n_a_l_ _m_a_p_s_ _b_e_t_w_e_e_n_ _m_u_l_t_i_-_p_r_o_j_e_c_t_i_v_e │ │ │ │ _v_a_r_i_e_t_i_e_s. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_u_l_t_i_d_e_g_r_e_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- projective degrees of a multi-rational │ │ │ │ map │ │ │ │ * _p_r_o_j_e_c_t_i_v_e_D_e_g_r_e_e_s_(_R_a_t_i_o_n_a_l_M_a_p_) -- projective degrees of a rational map │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_point_lp__Multiprojective__Variety_rp.html │ │ │ @@ -76,28 +76,28 @@ │ │ │ │ │ │
    i2 : X = PP_K^({1,1,2},{3,2,3});
    │ │ │  
    │ │ │  o2 : ProjectiveVariety, 4-dimensional subvariety of PP^3 x PP^2 x PP^9
    │ │ │ │ │ │ │ │ │
    i3 : time p := point X
    │ │ │ - -- used 0.0160848s (cpu); 0.0148379s (thread); 0s (gc)
    │ │ │ + -- used 0.516235s (cpu); 0.0818124s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = point of coordinates ([421369, 39917, -212481, 1],[-128795, -176966, 1],[3870, -390108, -496127, -308581, 46649, 164926, -446111, 48038, 415309, 1])
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9
    │ │ │ │ │ │ │ │ │
    i4 : Y = random({2,1,2},X);
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, hypersurface in PP^3 x PP^2 x PP^9
    │ │ │ │ │ │ │ │ │
    i5 : time q = point Y
    │ │ │ - -- used 2.0638s (cpu); 1.06252s (thread); 0s (gc)
    │ │ │ + -- used 2.70174s (cpu); 1.51899s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = q
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9
    │ │ │ │ │ │ │ │ │
    i6 : assert(isSubset(p,X) and isSubset(q,Y))
    │ │ │ ├── html2text {} │ │ │ │ @@ -15,25 +15,25 @@ │ │ │ │ o a _m_u_l_t_i_-_p_r_o_j_e_c_t_i_v_e_ _v_a_r_i_e_t_y, a random rational point on $X$ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : K = ZZ/1000003; │ │ │ │ i2 : X = PP_K^({1,1,2},{3,2,3}); │ │ │ │ │ │ │ │ o2 : ProjectiveVariety, 4-dimensional subvariety of PP^3 x PP^2 x PP^9 │ │ │ │ i3 : time p := point X │ │ │ │ - -- used 0.0160848s (cpu); 0.0148379s (thread); 0s (gc) │ │ │ │ + -- used 0.516235s (cpu); 0.0818124s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = point of coordinates ([421369, 39917, -212481, 1],[-128795, -176966, 1], │ │ │ │ [3870, -390108, -496127, -308581, 46649, 164926, -446111, 48038, 415309, 1]) │ │ │ │ │ │ │ │ o3 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9 │ │ │ │ i4 : Y = random({2,1,2},X); │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, hypersurface in PP^3 x PP^2 x PP^9 │ │ │ │ i5 : time q = point Y │ │ │ │ - -- used 2.0638s (cpu); 1.06252s (thread); 0s (gc) │ │ │ │ + -- used 2.70174s (cpu); 1.51899s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = q │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9 │ │ │ │ i6 : assert(isSubset(p,X) and isSubset(q,Y)) │ │ │ │ The list of homogeneous coordinates can be obtained with the operator |-. │ │ │ │ i7 : |- p │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_segre_lp__Multirational__Map_rp.html │ │ │ @@ -91,15 +91,15 @@ │ │ │ │ │ │
    i5 : Phi = rationalMap {f,g,h};
    │ │ │  
    │ │ │  o5 : MultirationalMap (rational map from PP^4 to hypersurface in PP^5 x PP^4 x PP^4)
    │ │ │ │ │ │ │ │ │
    i6 : time segre Phi;
    │ │ │ - -- used 0.84109s (cpu); 0.510468s (thread); 0s (gc)
    │ │ │ + -- used 7.36297s (cpu); 1.6609s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : RationalMap (rational map from PP^4 to PP^149)
    │ │ │ │ │ │ │ │ │
    i7 : describe segre Phi
    │ │ │  
    │ │ │  o7 = rational map defined by forms of degree 6
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -30,15 +30,15 @@
    │ │ │ │  
    │ │ │ │  o4 : RationalMap (quadratic rational map from PP^4 to PP^4)
    │ │ │ │  i5 : Phi = rationalMap {f,g,h};
    │ │ │ │  
    │ │ │ │  o5 : MultirationalMap (rational map from PP^4 to hypersurface in PP^5 x PP^4 x
    │ │ │ │  PP^4)
    │ │ │ │  i6 : time segre Phi;
    │ │ │ │ - -- used 0.84109s (cpu); 0.510468s (thread); 0s (gc)
    │ │ │ │ + -- used 7.36297s (cpu); 1.6609s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 : RationalMap (rational map from PP^4 to PP^149)
    │ │ │ │  i7 : describe segre Phi
    │ │ │ │  
    │ │ │ │  o7 = rational map defined by forms of degree 6
    │ │ │ │       source variety: PP^4
    │ │ │ │       target variety: PP^149
    │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_show_lp__Multirational__Map_rp.html
    │ │ │ @@ -75,15 +75,15 @@
    │ │ │  
    │ │ │  o1 = Phi
    │ │ │  
    │ │ │  o1 : MultirationalMap (birational map from threefold in PP^3 x PP^2 to threefold in PP^3 x PP^2 x PP^2)
    │ │ │ │ │ │ │ │ │
    i2 : time describe Phi
    │ │ │ - -- used 0.255978s (cpu); 0.169365s (thread); 0s (gc)
    │ │ │ + -- used 0.177758s (cpu); 0.106991s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = multi-rational map consisting of 3 rational maps
    │ │ │       source variety: threefold in PP^3 x PP^2 cut out by 2 hypersurfaces of multi-degree (1,1)
    │ │ │       target variety: threefold in PP^3 x PP^2 x PP^2 cut out by 7 hypersurfaces of multi-degrees (0,1,1)^3 (1,0,1)^2 (1,1,0)^2 
    │ │ │       base locus: empty subscheme of PP^3 x PP^2
    │ │ │       dominance: true
    │ │ │       multidegree: {10, 14, 19, 25}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,15 +16,15 @@
    │ │ │ │  i1 : Phi = inverse first graph last graph rationalMap PP_(ZZ/33331)^(1,3)
    │ │ │ │  
    │ │ │ │  o1 = Phi
    │ │ │ │  
    │ │ │ │  o1 : MultirationalMap (birational map from threefold in PP^3 x PP^2 to
    │ │ │ │  threefold in PP^3 x PP^2 x PP^2)
    │ │ │ │  i2 : time describe Phi
    │ │ │ │ - -- used 0.255978s (cpu); 0.169365s (thread); 0s (gc)
    │ │ │ │ + -- used 0.177758s (cpu); 0.106991s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = multi-rational map consisting of 3 rational maps
    │ │ │ │       source variety: threefold in PP^3 x PP^2 cut out by 2 hypersurfaces of
    │ │ │ │  multi-degree (1,1)
    │ │ │ │       target variety: threefold in PP^3 x PP^2 x PP^2 cut out by 7 hypersurfaces
    │ │ │ │  of multi-degrees (0,1,1)^3 (1,0,1)^2 (1,1,0)^2
    │ │ │ │       base locus: empty subscheme of PP^3 x PP^2
    │ │ ├── ./usr/share/doc/Macaulay2/NAGtypes/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=9
    │ │ │  UG9seVNwYWNl
    │ │ │  #:len=827
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiYSBwb2x5bm9taWFsIHZlY3RvciBzdWJz
    │ │ │  cGFjZSIsICJsaW5lbnVtIiA9PiA4NTcsIFNlZUFsc28gPT4gRElWe0hFQURFUjJ7IlNlZSBhbHNv
    │ │ ├── ./usr/share/doc/Macaulay2/NCAlgebra/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=20
    │ │ │  UVEgJSBOQ0dyb2VibmVyQmFzaXM=
    │ │ │  #:len=317
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTY3MCwgc3ltYm9sIERvY3VtZW50VGFn
    │ │ │  ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoc3ltYm9sICUsUVEsTkNHcm9lYm5lckJhc2lzKSwi
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=30
    │ │ │  Z2VuZXJhdGVSYW5kb21HcmFwaHMoWlosWlosWlop
    │ │ │  #:len=275
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTExMiwgc3ltYm9sIERvY3VtZW50VGFn
    │ │ │  ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoZ2VuZXJhdGVSYW5kb21HcmFwaHMsWlosWlosWlop
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/example-output/___Example_co_sp__Generating_spand_spfiltering_spgraphs.out
    │ │ │ @@ -26,22 +26,22 @@
    │ │ │  
    │ │ │  i7 : connected = buildGraphFilter {"Connectivity" => 0, "NegateConnectivity" => true};
    │ │ │  
    │ │ │  i8 : prob = n -> log(n)/n;
    │ │ │  
    │ │ │  i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), connected))
    │ │ │  
    │ │ │ -o9 = (69, 80, 81, 89, 94, 95, 96, 94, 100, 97, 96, 97, 96, 98, 99, 97, 99,
    │ │ │ +o9 = (70, 81, 88, 94, 92, 98, 96, 93, 94, 97, 99, 97, 97, 99, 92, 96, 98, 96,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     94, 99, 97, 99, 99, 98, 98, 99, 98, 99, 99, 98)
    │ │ │ +     99, 98, 96, 97, 100, 100, 99, 98, 99, 96, 98)
    │ │ │  
    │ │ │  o9 : Sequence
    │ │ │  
    │ │ │  i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), connected))
    │ │ │  
    │ │ │ -o10 = (21, 11, 5, 4, 0, 2, 6, 1, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1,
    │ │ │ +o10 = (17, 8, 5, 2, 1, 3, 2, 2, 1, 0, 3, 1, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      0, 0, 1, 1, 1, 0)
    │ │ │ +      0, 0, 0, 0, 2, 0)
    │ │ │  
    │ │ │  o10 : Sequence
    │ │ │  
    │ │ │  i11 :
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/example-output/_generate__Random__Graphs.out
    │ │ │ @@ -4,15 +4,15 @@
    │ │ │  
    │ │ │  o1 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │  
    │ │ │  o1 : List
    │ │ │  
    │ │ │  i2 : generateRandomGraphs(5, 5)
    │ │ │  
    │ │ │ -o2 = {DGg, D}W, D[{, Du[, Dww}
    │ │ │ +o2 = {Dmg, DYS, DUC, DnW, Dhk}
    │ │ │  
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │  
    │ │ │  o3 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/example-output/_generate__Random__Regular__Graphs.out
    │ │ │ @@ -1,21 +1,21 @@
    │ │ │  -- -*- M2-comint -*- hash: 1729831171060067675
    │ │ │  
    │ │ │  i1 : R = QQ[a..e];
    │ │ │  
    │ │ │  i2 : generateRandomRegularGraphs(R, 3, 2)
    │ │ │  
    │ │ │ -o2 = {Graph{"edges" => {{a, c}, {a, d}, {b, d}, {b, e}, {c, e}}},
    │ │ │ +o2 = {Graph{"edges" => {{a, c}, {b, d}, {c, d}, {a, e}, {b, e}}},
    │ │ │              "ring" => R                                          
    │ │ │              "vertices" => {a, b, c, d, e}                        
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     Graph{"edges" => {{a, b}, {b, d}, {c, d}, {a, e}, {c, e}}},
    │ │ │ +     Graph{"edges" => {{b, c}, {a, d}, {c, d}, {a, e}, {b, e}}},
    │ │ │             "ring" => R                                          
    │ │ │             "vertices" => {a, b, c, d, e}                        
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     Graph{"edges" => {{a, b}, {b, d}, {c, d}, {a, e}, {c, e}}}}
    │ │ │ +     Graph{"edges" => {{a, b}, {a, d}, {c, d}, {b, e}, {c, e}}}}
    │ │ │             "ring" => R
    │ │ │             "vertices" => {a, b, c, d, e}
    │ │ │  
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/example-output/_graph__Complement.out
    │ │ │ @@ -13,13 +13,13 @@
    │ │ │  i3 : graphComplement "Dhc"
    │ │ │  
    │ │ │  o3 = DUW
    │ │ │  
    │ │ │  i4 : G = generateBipartiteGraphs 7;
    │ │ │  
    │ │ │  i5 : time graphComplement G;
    │ │ │ - -- used 0.000482564s (cpu); 0.000422561s (thread); 0s (gc)
    │ │ │ + -- used 0.000509146s (cpu); 0.000475473s (thread); 0s (gc)
    │ │ │  
    │ │ │  i6 : time (graphComplement \ G);
    │ │ │ - -- used 0.0467584s (cpu); 0.0451558s (thread); 0s (gc)
    │ │ │ + -- used 0.0548717s (cpu); 0.0527698s (thread); 0s (gc)
    │ │ │  
    │ │ │  i7 :
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/html/___Example_co_sp__Generating_spand_spfiltering_spgraphs.html
    │ │ │ @@ -93,26 +93,26 @@
    │ │ │            
    │ │ │            
    │ │ │                
    i8 : prob = n -> log(n)/n;
    │ │ │ │ │ │ │ │ │
    i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), connected))
    │ │ │  
    │ │ │ -o9 = (69, 80, 81, 89, 94, 95, 96, 94, 100, 97, 96, 97, 96, 98, 99, 97, 99,
    │ │ │ +o9 = (70, 81, 88, 94, 92, 98, 96, 93, 94, 97, 99, 97, 97, 99, 92, 96, 98, 96,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     94, 99, 97, 99, 99, 98, 98, 99, 98, 99, 99, 98)
    │ │ │ +     99, 98, 96, 97, 100, 100, 99, 98, 99, 96, 98)
    │ │ │  
    │ │ │  o9 : Sequence
    │ │ │ │ │ │ │ │ │
    i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), connected))
    │ │ │  
    │ │ │ -o10 = (21, 11, 5, 4, 0, 2, 6, 1, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1,
    │ │ │ +o10 = (17, 8, 5, 2, 1, 3, 2, 2, 1, 0, 3, 1, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      0, 0, 1, 1, 1, 0)
    │ │ │ +      0, 0, 0, 0, 2, 0)
    │ │ │  
    │ │ │  o10 : Sequence
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -38,25 +38,25 @@ │ │ │ │ connected, at least as $n$ tends to infinity. │ │ │ │ i7 : connected = buildGraphFilter {"Connectivity" => 0, "NegateConnectivity" => │ │ │ │ true}; │ │ │ │ i8 : prob = n -> log(n)/n; │ │ │ │ i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), │ │ │ │ connected)) │ │ │ │ │ │ │ │ -o9 = (69, 80, 81, 89, 94, 95, 96, 94, 100, 97, 96, 97, 96, 98, 99, 97, 99, │ │ │ │ +o9 = (70, 81, 88, 94, 92, 98, 96, 93, 94, 97, 99, 97, 97, 99, 92, 96, 98, 96, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 94, 99, 97, 99, 99, 98, 98, 99, 98, 99, 99, 98) │ │ │ │ + 99, 98, 96, 97, 100, 100, 99, 98, 99, 96, 98) │ │ │ │ │ │ │ │ o9 : Sequence │ │ │ │ i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), │ │ │ │ connected)) │ │ │ │ │ │ │ │ -o10 = (21, 11, 5, 4, 0, 2, 6, 1, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, │ │ │ │ +o10 = (17, 8, 5, 2, 1, 3, 2, 2, 1, 0, 3, 1, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 0, 0, 1, 1, 1, 0) │ │ │ │ + 0, 0, 0, 0, 2, 0) │ │ │ │ │ │ │ │ o10 : Sequence │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _b_u_i_l_d_G_r_a_p_h_F_i_l_t_e_r -- creates the appropriate filter string for use with │ │ │ │ filterGraphs and countGraphs │ │ │ │ * _f_i_l_t_e_r_G_r_a_p_h_s -- filters (i.e., selects) graphs in a list for given │ │ │ │ properties │ │ ├── ./usr/share/doc/Macaulay2/Nauty/html/_generate__Random__Graphs.html │ │ │ @@ -104,15 +104,15 @@ │ │ │ o1 = {DDO, Dx_, Dlw, Dx{, D_K} │ │ │ │ │ │ o1 : List
    │ │ │ │ │ │ │ │ │
    i2 : generateRandomGraphs(5, 5)
    │ │ │  
    │ │ │ -o2 = {DGg, D}W, D[{, Du[, Dww}
    │ │ │ +o2 = {Dmg, DYS, DUC, DnW, Dhk}
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │
    i3 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │  
    │ │ │  o3 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -38,15 +38,15 @@
    │ │ │ │  i1 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ │  
    │ │ │ │  o1 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │ │  
    │ │ │ │  o1 : List
    │ │ │ │  i2 : generateRandomGraphs(5, 5)
    │ │ │ │  
    │ │ │ │ -o2 = {DGg, D}W, D[{, Du[, Dww}
    │ │ │ │ +o2 = {Dmg, DYS, DUC, DnW, Dhk}
    │ │ │ │  
    │ │ │ │  o2 : List
    │ │ │ │  i3 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ │  
    │ │ │ │  o3 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/html/_generate__Random__Regular__Graphs.html
    │ │ │ @@ -89,23 +89,23 @@
    │ │ │          
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │          
    i1 : R = QQ[a..e];
    │ │ │
    i2 : generateRandomRegularGraphs(R, 3, 2)
    │ │ │  
    │ │ │ -o2 = {Graph{"edges" => {{a, c}, {a, d}, {b, d}, {b, e}, {c, e}}},
    │ │ │ +o2 = {Graph{"edges" => {{a, c}, {b, d}, {c, d}, {a, e}, {b, e}}},
    │ │ │              "ring" => R                                          
    │ │ │              "vertices" => {a, b, c, d, e}                        
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     Graph{"edges" => {{a, b}, {b, d}, {c, d}, {a, e}, {c, e}}},
    │ │ │ +     Graph{"edges" => {{b, c}, {a, d}, {c, d}, {a, e}, {b, e}}},
    │ │ │             "ring" => R                                          
    │ │ │             "vertices" => {a, b, c, d, e}                        
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     Graph{"edges" => {{a, b}, {b, d}, {c, d}, {a, e}, {c, e}}}}
    │ │ │ +     Graph{"edges" => {{a, b}, {a, d}, {c, d}, {b, e}, {c, e}}}}
    │ │ │             "ring" => R
    │ │ │             "vertices" => {a, b, c, d, e}
    │ │ │  
    │ │ │  o2 : List
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -25,23 +25,23 @@ │ │ │ │ vertices with a given regularity. Note that some graphs may be isomorphic. │ │ │ │ If a _P_o_l_y_n_o_m_i_a_l_R_i_n_g $R$ is supplied instead, then the number of vertices is the │ │ │ │ number of generators. Moreover, the nauty-based strings are automatically │ │ │ │ converted to instances of the class _G_r_a_p_h in $R$. │ │ │ │ i1 : R = QQ[a..e]; │ │ │ │ i2 : generateRandomRegularGraphs(R, 3, 2) │ │ │ │ │ │ │ │ -o2 = {Graph{"edges" => {{a, c}, {a, d}, {b, d}, {b, e}, {c, e}}}, │ │ │ │ +o2 = {Graph{"edges" => {{a, c}, {b, d}, {c, d}, {a, e}, {b, e}}}, │ │ │ │ "ring" => R │ │ │ │ "vertices" => {a, b, c, d, e} │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - Graph{"edges" => {{a, b}, {b, d}, {c, d}, {a, e}, {c, e}}}, │ │ │ │ + Graph{"edges" => {{b, c}, {a, d}, {c, d}, {a, e}, {b, e}}}, │ │ │ │ "ring" => R │ │ │ │ "vertices" => {a, b, c, d, e} │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - Graph{"edges" => {{a, b}, {b, d}, {c, d}, {a, e}, {c, e}}}} │ │ │ │ + Graph{"edges" => {{a, b}, {a, d}, {c, d}, {b, e}, {c, e}}}} │ │ │ │ "ring" => R │ │ │ │ "vertices" => {a, b, c, d, e} │ │ │ │ │ │ │ │ o2 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ The number of vertices $n$ must be positive as nauty cannot handle graphs with │ │ │ │ zero vertices. │ │ ├── ./usr/share/doc/Macaulay2/Nauty/html/_graph__Complement.html │ │ │ @@ -113,19 +113,19 @@ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : G = generateBipartiteGraphs 7;
    │ │ │
    i5 : time graphComplement G;
    │ │ │ - -- used 0.000482564s (cpu); 0.000422561s (thread); 0s (gc)
    │ │ │ + -- used 0.000509146s (cpu); 0.000475473s (thread); 0s (gc) │ │ │
    i6 : time (graphComplement \ G);
    │ │ │ - -- used 0.0467584s (cpu); 0.0451558s (thread); 0s (gc)
    │ │ │ + -- used 0.0548717s (cpu); 0.0527698s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │
    • │ │ │ ├── html2text {} │ │ │ │ @@ -42,17 +42,17 @@ │ │ │ │ │ │ │ │ o3 = DUW │ │ │ │ Batch calls can be performed considerably faster when using the List input │ │ │ │ format. However, care should be taken as the returned list is entirely in │ │ │ │ Graph6 or Sparse6 format. │ │ │ │ i4 : G = generateBipartiteGraphs 7; │ │ │ │ i5 : time graphComplement G; │ │ │ │ - -- used 0.000482564s (cpu); 0.000422561s (thread); 0s (gc) │ │ │ │ + -- used 0.000509146s (cpu); 0.000475473s (thread); 0s (gc) │ │ │ │ i6 : time (graphComplement \ G); │ │ │ │ - -- used 0.0467584s (cpu); 0.0451558s (thread); 0s (gc) │ │ │ │ + -- used 0.0548717s (cpu); 0.0527698s (thread); 0s (gc) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_o_m_p_l_e_m_e_n_t_G_r_a_p_h -- returns the complement of a graph or hypergraph │ │ │ │ ********** WWaayyss ttoo uussee ggrraapphhCCoommpplleemmeenntt:: ********** │ │ │ │ * graphComplement(Graph) │ │ │ │ * graphComplement(List) │ │ │ │ * graphComplement(String) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=31 │ │ │ YWRkRWRnZXMoLi4uLE5vTmV3NUN5Y2xlcz0+Li4uKQ== │ │ │ #:len=261 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNTkxLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20ge1thZGRFZGdlcyxOb05ldzVDeWNsZXNdLCJhZGRFZGdl │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/example-output/___Example_co_sp__Generating_spand_spfiltering_spgraphs.out │ │ │ @@ -26,22 +26,22 @@ │ │ │ │ │ │ i7 : connected = buildGraphFilter {"Connectivity" => 0, "NegateConnectivity" => true}; │ │ │ │ │ │ i8 : prob = n -> log(n)/n; │ │ │ │ │ │ i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), connected)) │ │ │ │ │ │ -o9 = (63, 83, 88, 90, 98, 97, 96, 95, 95, 98, 95, 95, 94, 99, 96, 96, 100, │ │ │ +o9 = (65, 83, 81, 97, 96, 93, 96, 98, 95, 94, 94, 99, 96, 96, 98, 98, 97, 97, │ │ │ ------------------------------------------------------------------------ │ │ │ - 97, 98, 97, 99, 100, 99, 98, 100, 99, 97, 97, 99) │ │ │ + 99, 99, 95, 98, 96, 96, 97, 99, 99, 99, 99) │ │ │ │ │ │ o9 : Sequence │ │ │ │ │ │ i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), connected)) │ │ │ │ │ │ -o10 = (26, 9, 6, 2, 2, 1, 4, 2, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, │ │ │ +o10 = (19, 9, 3, 2, 6, 5, 3, 3, 1, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, │ │ │ ----------------------------------------------------------------------- │ │ │ - 0, 0, 0, 0, 0, 1) │ │ │ + 0, 1, 1, 0, 0, 0) │ │ │ │ │ │ o10 : Sequence │ │ │ │ │ │ i11 : │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_generate__Random__Graphs.out │ │ │ @@ -4,15 +4,15 @@ │ │ │ │ │ │ o1 = {DDO, Dx_, Dlw, Dx{, D_K} │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : generateRandomGraphs(5, 5) │ │ │ │ │ │ -o2 = {DXg, D?_, DlW, D}[, DJs} │ │ │ +o2 = {DnO, DU{, D_S, DJc, DH{} │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : generateRandomGraphs(5, 5, RandomSeed => 314159) │ │ │ │ │ │ o3 = {DDO, Dx_, Dlw, Dx{, D_K} │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_generate__Random__Regular__Graphs.out │ │ │ @@ -1,9 +1,9 @@ │ │ │ -- -*- M2-comint -*- hash: 1331287392268 │ │ │ │ │ │ i1 : generateRandomRegularGraphs(5, 3, 2) │ │ │ │ │ │ -o1 = {DYc, DpS, DMg} │ │ │ +o1 = {DkK, DpS, DUW} │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_graph__Complement.out │ │ │ @@ -13,13 +13,13 @@ │ │ │ 4 => {2, 1} │ │ │ │ │ │ o2 : Graph │ │ │ │ │ │ i3 : G = generateBipartiteGraphs 7; │ │ │ │ │ │ i4 : time graphComplement G; │ │ │ - -- used 0.000473788s (cpu); 0.000427112s (thread); 0s (gc) │ │ │ + -- used 0.000747031s (cpu); 0.000629351s (thread); 0s (gc) │ │ │ │ │ │ i5 : time (graphComplement \ G); │ │ │ - -- used 0.132423s (cpu); 0.0571132s (thread); 0s (gc) │ │ │ + -- used 0.143133s (cpu); 0.069226s (thread); 0s (gc) │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/html/___Example_co_sp__Generating_spand_spfiltering_spgraphs.html │ │ │ @@ -93,26 +93,26 @@ │ │ │ │ │ │ │ │ │
      i8 : prob = n -> log(n)/n;
      │ │ │ │ │ │ │ │ │
      i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), connected))
      │ │ │  
      │ │ │ -o9 = (63, 83, 88, 90, 98, 97, 96, 95, 95, 98, 95, 95, 94, 99, 96, 96, 100,
      │ │ │ +o9 = (65, 83, 81, 97, 96, 93, 96, 98, 95, 94, 94, 99, 96, 96, 98, 98, 97, 97,
      │ │ │       ------------------------------------------------------------------------
      │ │ │ -     97, 98, 97, 99, 100, 99, 98, 100, 99, 97, 97, 99)
      │ │ │ +     99, 99, 95, 98, 96, 96, 97, 99, 99, 99, 99)
      │ │ │  
      │ │ │  o9 : Sequence
      │ │ │ │ │ │ │ │ │
      i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), connected))
      │ │ │  
      │ │ │ -o10 = (26, 9, 6, 2, 2, 1, 4, 2, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
      │ │ │ +o10 = (19, 9, 3, 2, 6, 5, 3, 3, 1, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0,
      │ │ │        -----------------------------------------------------------------------
      │ │ │ -      0, 0, 0, 0, 0, 1)
      │ │ │ +      0, 1, 1, 0, 0, 0)
      │ │ │  
      │ │ │  o10 : Sequence
      │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -38,25 +38,25 @@ │ │ │ │ connected, at least as $n$ tends to infinity. │ │ │ │ i7 : connected = buildGraphFilter {"Connectivity" => 0, "NegateConnectivity" => │ │ │ │ true}; │ │ │ │ i8 : prob = n -> log(n)/n; │ │ │ │ i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), │ │ │ │ connected)) │ │ │ │ │ │ │ │ -o9 = (63, 83, 88, 90, 98, 97, 96, 95, 95, 98, 95, 95, 94, 99, 96, 96, 100, │ │ │ │ +o9 = (65, 83, 81, 97, 96, 93, 96, 98, 95, 94, 94, 99, 96, 96, 98, 98, 97, 97, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 97, 98, 97, 99, 100, 99, 98, 100, 99, 97, 97, 99) │ │ │ │ + 99, 99, 95, 98, 96, 96, 97, 99, 99, 99, 99) │ │ │ │ │ │ │ │ o9 : Sequence │ │ │ │ i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), │ │ │ │ connected)) │ │ │ │ │ │ │ │ -o10 = (26, 9, 6, 2, 2, 1, 4, 2, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, │ │ │ │ +o10 = (19, 9, 3, 2, 6, 5, 3, 3, 1, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 0, 0, 0, 0, 0, 1) │ │ │ │ + 0, 1, 1, 0, 0, 0) │ │ │ │ │ │ │ │ o10 : Sequence │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _b_u_i_l_d_G_r_a_p_h_F_i_l_t_e_r -- creates the appropriate filter string for use with │ │ │ │ filterGraphs and countGraphs │ │ │ │ * _f_i_l_t_e_r_G_r_a_p_h_s -- filters (i.e., selects) graphs in a list for given │ │ │ │ properties │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/html/_generate__Random__Graphs.html │ │ │ @@ -96,15 +96,15 @@ │ │ │ o1 = {DDO, Dx_, Dlw, Dx{, D_K} │ │ │ │ │ │ o1 : List
    │ │ │ │ │ │ │ │ │
    i2 : generateRandomGraphs(5, 5)
    │ │ │  
    │ │ │ -o2 = {DXg, D?_, DlW, D}[, DJs}
    │ │ │ +o2 = {DnO, DU{, D_S, DJc, DH{}
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │
    i3 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │  
    │ │ │  o3 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -31,15 +31,15 @@
    │ │ │ │  i1 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ │  
    │ │ │ │  o1 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │ │  
    │ │ │ │  o1 : List
    │ │ │ │  i2 : generateRandomGraphs(5, 5)
    │ │ │ │  
    │ │ │ │ -o2 = {DXg, D?_, DlW, D}[, DJs}
    │ │ │ │ +o2 = {DnO, DU{, D_S, DJc, DH{}
    │ │ │ │  
    │ │ │ │  o2 : List
    │ │ │ │  i3 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ │  
    │ │ │ │  o3 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/html/_generate__Random__Regular__Graphs.html
    │ │ │ @@ -80,15 +80,15 @@
    │ │ │          
    │ │ │

    This method generates a specified number of random graphs on a given number of vertices with a given regularity. Note that some graphs may be isomorphic.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    i1 : generateRandomRegularGraphs(5, 3, 2)
    │ │ │  
    │ │ │ -o1 = {DYc, DpS, DMg}
    │ │ │ +o1 = {DkK, DpS, DUW}
    │ │ │  
    │ │ │  o1 : List
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    Caveat

    │ │ │ ├── html2text {} │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ * Outputs: │ │ │ │ o G, a _l_i_s_t, the randomly generated regular graphs │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ This method generates a specified number of random graphs on a given number of │ │ │ │ vertices with a given regularity. Note that some graphs may be isomorphic. │ │ │ │ i1 : generateRandomRegularGraphs(5, 3, 2) │ │ │ │ │ │ │ │ -o1 = {DYc, DpS, DMg} │ │ │ │ +o1 = {DkK, DpS, DUW} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ The number of vertices $n$ must be positive as nauty cannot handle graphs with │ │ │ │ zero vertices. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _g_e_n_e_r_a_t_e_R_a_n_d_o_m_G_r_a_p_h_s -- generates random graphs on a given number of │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/html/_graph__Complement.html │ │ │ @@ -109,19 +109,19 @@ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : G = generateBipartiteGraphs 7;
    │ │ │
    i4 : time graphComplement G;
    │ │ │ - -- used 0.000473788s (cpu); 0.000427112s (thread); 0s (gc)
    │ │ │ + -- used 0.000747031s (cpu); 0.000629351s (thread); 0s (gc) │ │ │
    i5 : time (graphComplement \ G);
    │ │ │ - -- used 0.132423s (cpu); 0.0571132s (thread); 0s (gc)
    │ │ │ + -- used 0.143133s (cpu); 0.069226s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use graphComplement:

    │ │ │
      │ │ │
    • │ │ │ ├── html2text {} │ │ │ │ @@ -39,16 +39,16 @@ │ │ │ │ │ │ │ │ o2 : Graph │ │ │ │ Batch calls can be performed considerably faster when using the List input │ │ │ │ format. However, care should be taken as the returned list is entirely in │ │ │ │ Graph6 or Sparse6 format. │ │ │ │ i3 : G = generateBipartiteGraphs 7; │ │ │ │ i4 : time graphComplement G; │ │ │ │ - -- used 0.000473788s (cpu); 0.000427112s (thread); 0s (gc) │ │ │ │ + -- used 0.000747031s (cpu); 0.000629351s (thread); 0s (gc) │ │ │ │ i5 : time (graphComplement \ G); │ │ │ │ - -- used 0.132423s (cpu); 0.0571132s (thread); 0s (gc) │ │ │ │ + -- used 0.143133s (cpu); 0.069226s (thread); 0s (gc) │ │ │ │ ********** WWaayyss ttoo uussee ggrraapphhCCoommpplleemmeenntt:: ********** │ │ │ │ * graphComplement(Graph) │ │ │ │ * graphComplement(List) │ │ │ │ * graphComplement(String) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _g_r_a_p_h_C_o_m_p_l_e_m_e_n_t is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ ├── ./usr/share/doc/Macaulay2/NoetherNormalization/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=38 │ │ │ bm9ldGhlck5vcm1hbGl6YXRpb24oLi4uLFZlcmJvc2U9Pi4uLik= │ │ │ #:len=326 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzEzLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20ge1tub2V0aGVyTm9ybWFsaXphdGlvbixWZXJib3NlXSwi │ │ ├── ./usr/share/doc/Macaulay2/NoetherianOperators/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=32 │ │ │ bm9ldGhlcmlhbk9wZXJhdG9ycyhJZGVhbCxJZGVhbCk= │ │ │ #:len=2583 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiTm9ldGhlcmlhbiBvcGVyYXRvcnMgb2Yg │ │ │ YSBwcmltYXJ5IGNvbXBvbmVudCIsICJsaW5lbnVtIiA9PiAyNzQ5LCBJbnB1dHMgPT4ge1NQQU57 │ │ ├── ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.out │ │ │ @@ -47,15 +47,15 @@ │ │ │ o4 : Ideal of R │ │ │ │ │ │ i5 : isPrimary Q │ │ │ │ │ │ o5 = true │ │ │ │ │ │ i6 : elapsedTime noetherianOperators(Q, Strategy => "PunctualQuot") │ │ │ - -- .0926449s elapsed │ │ │ + -- .187677s elapsed │ │ │ │ │ │ o6 = {| 1 |, | dx_1 |, | dx_2 |, | dx_1^2 |, | dx_1dx_2 |, | dx_2^2 |, | │ │ │ ------------------------------------------------------------------------ │ │ │ 2x_1x_3dx_1^3+3x_2x_3dx_1^2dx_2-3x_3x_4dx_1dx_2^2-2x_1x_4dx_2^3 |} │ │ │ │ │ │ o6 : List │ │ ├── ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.html │ │ │ @@ -102,15 +102,15 @@ │ │ │ │ │ │
      i5 : isPrimary Q
      │ │ │  
      │ │ │  o5 = true
      │ │ │ │ │ │ │ │ │
      i6 : elapsedTime noetherianOperators(Q, Strategy => "PunctualQuot")
      │ │ │ - -- .0926449s elapsed
      │ │ │ + -- .187677s elapsed
      │ │ │  
      │ │ │  o6 = {| 1 |, | dx_1 |, | dx_2 |, | dx_1^2 |, | dx_1dx_2 |, | dx_2^2 |, |
      │ │ │       ------------------------------------------------------------------------
      │ │ │       2x_1x_3dx_1^3+3x_2x_3dx_1^2dx_2-3x_3x_4dx_1dx_2^2-2x_1x_4dx_2^3 |}
      │ │ │  
      │ │ │  o6 : List
      │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -51,15 +51,15 @@ │ │ │ │ 1 2 3 2 3 │ │ │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : isPrimary Q │ │ │ │ │ │ │ │ o5 = true │ │ │ │ i6 : elapsedTime noetherianOperators(Q, Strategy => "PunctualQuot") │ │ │ │ - -- .0926449s elapsed │ │ │ │ + -- .187677s elapsed │ │ │ │ │ │ │ │ o6 = {| 1 |, | dx_1 |, | dx_2 |, | dx_1^2 |, | dx_1dx_2 |, | dx_2^2 |, | │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2x_1x_3dx_1^3+3x_2x_3dx_1^2dx_2-3x_3x_4dx_1dx_2^2-2x_1x_4dx_2^3 |} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/NonminimalComplexes/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=19 │ │ │ Tm9ubWluaW1hbENvbXBsZXhlcw== │ │ │ #:len=668 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAic3VwcG9ydCBmb3IgY29tcHV0aW5nIGhv │ │ │ bW9sb2d5LCByYW5rcyBhbmQgU1ZEIGNvbXBsZXhlcywgZnJvbSBhIGNoYWluIGNvbXBsZXggb3Zl │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=18 │ │ │ VG9yaWNEaXZpc29yID09IFpa │ │ │ #:len=349 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTQ0MSwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoc3ltYm9sID09LFRvcmljRGl2aXNvcixaWiksIlRv │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Chow_spring.out │ │ │ @@ -78,15 +78,15 @@ │ │ │ i13 : for i to dim X list hilbertFunction (i, A1) │ │ │ │ │ │ o13 = {1, 2, 3, 3, 2, 1} │ │ │ │ │ │ o13 : List │ │ │ │ │ │ i14 : Y = time smoothFanoToricVariety(5,100); │ │ │ - -- used 0.298531s (cpu); 0.299707s (thread); 0s (gc) │ │ │ + -- used 0.36222s (cpu); 0.363444s (thread); 0s (gc) │ │ │ │ │ │ i15 : A2 = intersectionRing Y; │ │ │ │ │ │ i16 : assert (# rays Y === numgens A2) │ │ │ │ │ │ i17 : ideal A2 │ │ │ │ │ │ @@ -110,19 +110,19 @@ │ │ │ 2 2 2 2 2 2 2 2 3 2 │ │ │ (t + t t , t t + t , t + t t , t t , t t + t , t - t t - 3t t + t t + 2t , - t t + t + 2t t , t t , - t t + t , t t ) │ │ │ 3 3 5 3 5 5 5 5 6 3 6 5 6 6 8 8 9 8 10 9 10 10 8 9 9 9 10 8 9 8 10 10 8 10 │ │ │ │ │ │ o18 : QuotientRing │ │ │ │ │ │ i19 : for i to dim Y list time hilbertFunction (i, A2) │ │ │ - -- used 0.00144935s (cpu); 0.00144823s (thread); 0s (gc) │ │ │ - -- used 2.2452e-05s (cpu); 8.0521e-05s (thread); 0s (gc) │ │ │ - -- used 8.756e-06s (cpu); 6.4241e-05s (thread); 0s (gc) │ │ │ - -- used 1.609e-05s (cpu); 7.0222e-05s (thread); 0s (gc) │ │ │ - -- used 8.606e-06s (cpu); 5.9061e-05s (thread); 0s (gc) │ │ │ - -- used 5.0224e-05s (cpu); 7.0663e-05s (thread); 0s (gc) │ │ │ + -- used 0.00400225s (cpu); 0.00105592s (thread); 0s (gc) │ │ │ + -- used 2.3515e-05s (cpu); 7.3728e-05s (thread); 0s (gc) │ │ │ + -- used 9.307e-06s (cpu); 6.1696e-05s (thread); 0s (gc) │ │ │ + -- used 8.696e-06s (cpu); 5.8991e-05s (thread); 0s (gc) │ │ │ + -- used 7.955e-06s (cpu); 5.7147e-05s (thread); 0s (gc) │ │ │ + -- used 7.905e-06s (cpu); 5.7618e-05s (thread); 0s (gc) │ │ │ │ │ │ o19 = {1, 6, 13, 13, 6, 1} │ │ │ │ │ │ o19 : List │ │ │ │ │ │ i20 : │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_is__Well__Defined_lp__Normal__Toric__Variety_rp.out │ │ │ @@ -2,27 +2,27 @@ │ │ │ │ │ │ i1 : assert all (5, d -> isWellDefined toricProjectiveSpace (d+1)) │ │ │ │ │ │ i2 : setRandomSeed (currentTime ()); │ │ │ │ │ │ i3 : a = sort apply (3, i -> random (7)) │ │ │ │ │ │ -o3 = {1, 3, 4} │ │ │ +o3 = {3, 5, 6} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : assert isWellDefined kleinschmidt (4,a) │ │ │ │ │ │ i5 : q = sort apply (5, j -> random (1,9)); │ │ │ │ │ │ i6 : while not all (subsets (q,#q-1), s -> gcd s === 1) do q = sort apply (5, j -> random (1,9)); │ │ │ │ │ │ i7 : q │ │ │ │ │ │ -o7 = {1, 1, 3, 6, 9} │ │ │ +o7 = {1, 3, 3, 4, 6} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : assert isWellDefined weightedProjectiveSpace q │ │ │ │ │ │ i9 : X = new MutableHashTable; │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_monomials_lp__Toric__Divisor_rp.out │ │ │ @@ -6,61 +6,61 @@ │ │ │ │ │ │ o2 = 5*PP2 │ │ │ 0 │ │ │ │ │ │ o2 : ToricDivisor on PP2 │ │ │ │ │ │ i3 : M1 = elapsedTime monomials D1 │ │ │ - -- .0354582s elapsed │ │ │ + -- .0236384s elapsed │ │ │ │ │ │ 5 4 4 2 3 3 2 3 3 2 2 2 2 2 3 2 4 │ │ │ o3 = {x , x x , x x , x x , x x x , x x , x x , x x x , x x x , x x , x x , │ │ │ 2 1 2 0 2 1 2 0 1 2 0 2 1 2 0 1 2 0 1 2 0 2 1 2 │ │ │ ------------------------------------------------------------------------ │ │ │ 3 2 2 3 4 5 4 2 3 3 2 4 5 │ │ │ x x x , x x x , x x x , x x , x , x x , x x , x x , x x , x } │ │ │ 0 1 2 0 1 2 0 1 2 0 2 1 0 1 0 1 0 1 0 1 0 │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : elapsedTime assert (set M1 === set first entries basis(degree D1, ring variety D1)) │ │ │ - -- .00151969s elapsed │ │ │ + -- .0010556s elapsed │ │ │ │ │ │ i5 : FF2 = hirzebruchSurface 2; │ │ │ │ │ │ i6 : D2 = 2*FF2_0 + 3 * FF2_1 │ │ │ │ │ │ o6 = 2*FF2 + 3*FF2 │ │ │ 0 1 │ │ │ │ │ │ o6 : ToricDivisor on FF2 │ │ │ │ │ │ i7 : M2 = elapsedTime monomials D2 │ │ │ - -- .0964156s elapsed │ │ │ + -- .110963s elapsed │ │ │ │ │ │ 2 3 2 3 2 3 │ │ │ o7 = {x x , x x , x x x , x x } │ │ │ 1 3 1 2 0 1 2 0 1 │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : elapsedTime assert (set M2 === set first entries basis (degree D2, ring variety D2)) │ │ │ - -- .00113966s elapsed │ │ │ + -- .000849296s elapsed │ │ │ │ │ │ i9 : X = kleinschmidt (5, {1,2,3}); │ │ │ │ │ │ i10 : D3 = 3*X_0 + 5*X_1 │ │ │ │ │ │ o10 = 3*X + 5*X │ │ │ 0 1 │ │ │ │ │ │ o10 : ToricDivisor on X │ │ │ │ │ │ i11 : m3 = elapsedTime # monomials D3 │ │ │ - -- 39.4377s elapsed │ │ │ + -- 43.1615s elapsed │ │ │ │ │ │ o11 = 7909 │ │ │ │ │ │ i12 : elapsedTime assert (m3 === #first entries basis (degree D3, ring variety D3)) │ │ │ - -- .0257955s elapsed │ │ │ + -- .0221523s elapsed │ │ │ │ │ │ i13 : │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Fan_rp.out │ │ │ @@ -24,19 +24,19 @@ │ │ │ o3 : List │ │ │ │ │ │ i4 : X = normalToricVariety F; │ │ │ │ │ │ i5 : assert (transpose matrix rays X == rays F and max X == sort maxCones F) │ │ │ │ │ │ i6 : X1 = time normalToricVariety ({{-1,-1},{1,0},{0,1}}, {{0,1},{1,2},{0,2}}) │ │ │ - -- used 0.00304489s (cpu); 2.2332e-05s (thread); 0s (gc) │ │ │ + -- used 0.00230841s (cpu); 1.6581e-05s (thread); 0s (gc) │ │ │ │ │ │ o6 = X1 │ │ │ │ │ │ o6 : NormalToricVariety │ │ │ │ │ │ i7 : X2 = time normalToricVariety fan {posHull matrix {{-1,1},{-1,0}}, posHull matrix {{1,0},{0,1}}, posHull matrix{{-1,0},{-1,1}}}; │ │ │ - -- used 0.206737s (cpu); 0.0677457s (thread); 0s (gc) │ │ │ + -- used 0.200997s (cpu); 0.0974426s (thread); 0s (gc) │ │ │ │ │ │ i8 : assert (sort rays X1 == sort rays X2 and max X1 == max X2) │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Polyhedron_rp.out │ │ │ @@ -88,15 +88,15 @@ │ │ │ o18 = | 0 1 0 | │ │ │ | 0 0 1 | │ │ │ │ │ │ 2 3 │ │ │ o18 : Matrix ZZ <-- ZZ │ │ │ │ │ │ i19 : X1 = time normalToricVariety convexHull (vertMatrix); │ │ │ - -- used 0.106449s (cpu); 0.0339456s (thread); 0s (gc) │ │ │ + -- used 0.137947s (cpu); 0.0771225s (thread); 0s (gc) │ │ │ │ │ │ i20 : X2 = time normalToricVariety vertMatrix; │ │ │ - -- used 0.0044979s (cpu); 0.00448742s (thread); 0s (gc) │ │ │ + -- used 0.0017407s (cpu); 0.00231854s (thread); 0s (gc) │ │ │ │ │ │ i21 : assert (set rays X2 === set rays X1 and max X1 === max X2) │ │ │ │ │ │ i22 : │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Chow_spring.html │ │ │ @@ -181,15 +181,15 @@ │ │ │ │ │ │
      │ │ │

      We end with a slightly larger example.

      │ │ │
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -218,20 +218,20 @@ │ │ │ (t + t t , t t + t , t + t t , t t , t t + t , t - t t - 3t t + t t + 2t , - t t + t + 2t t , t t , - t t + t , t t ) │ │ │ 3 3 5 3 5 5 5 5 6 3 6 5 6 6 8 8 9 8 10 9 10 10 8 9 9 9 10 8 9 8 10 10 8 10 │ │ │ │ │ │ o18 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │
      i14 : Y = time smoothFanoToricVariety(5,100);
      │ │ │ - -- used 0.298531s (cpu); 0.299707s (thread); 0s (gc)
      │ │ │ + -- used 0.36222s (cpu); 0.363444s (thread); 0s (gc) │ │ │
      i15 : A2 = intersectionRing Y;
      │ │ │
      i16 : assert (# rays Y === numgens A2)
      │ │ │
      i19 : for i to dim Y list time hilbertFunction (i, A2)
      │ │ │ - -- used 0.00144935s (cpu); 0.00144823s (thread); 0s (gc)
      │ │ │ - -- used 2.2452e-05s (cpu); 8.0521e-05s (thread); 0s (gc)
      │ │ │ - -- used 8.756e-06s (cpu); 6.4241e-05s (thread); 0s (gc)
      │ │ │ - -- used 1.609e-05s (cpu); 7.0222e-05s (thread); 0s (gc)
      │ │ │ - -- used 8.606e-06s (cpu); 5.9061e-05s (thread); 0s (gc)
      │ │ │ - -- used 5.0224e-05s (cpu); 7.0663e-05s (thread); 0s (gc)
      │ │ │ + -- used 0.00400225s (cpu); 0.00105592s (thread); 0s (gc)
      │ │ │ + -- used 2.3515e-05s (cpu); 7.3728e-05s (thread); 0s (gc)
      │ │ │ + -- used 9.307e-06s (cpu); 6.1696e-05s (thread); 0s (gc)
      │ │ │ + -- used 8.696e-06s (cpu); 5.8991e-05s (thread); 0s (gc)
      │ │ │ + -- used 7.955e-06s (cpu); 5.7147e-05s (thread); 0s (gc)
      │ │ │ + -- used 7.905e-06s (cpu); 5.7618e-05s (thread); 0s (gc)
      │ │ │  
      │ │ │  o19 = {1, 6, 13, 13, 6, 1}
      │ │ │  
      │ │ │  o19 : List
      │ │ │
      │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -97,15 +97,15 @@ │ │ │ │ i13 : for i to dim X list hilbertFunction (i, A1) │ │ │ │ │ │ │ │ o13 = {1, 2, 3, 3, 2, 1} │ │ │ │ │ │ │ │ o13 : List │ │ │ │ We end with a slightly larger example. │ │ │ │ i14 : Y = time smoothFanoToricVariety(5,100); │ │ │ │ - -- used 0.298531s (cpu); 0.299707s (thread); 0s (gc) │ │ │ │ + -- used 0.36222s (cpu); 0.363444s (thread); 0s (gc) │ │ │ │ i15 : A2 = intersectionRing Y; │ │ │ │ i16 : assert (# rays Y === numgens A2) │ │ │ │ i17 : ideal A2 │ │ │ │ │ │ │ │ o17 = ideal (t t , t t , t t , t t , t t , t t , t t , t t , t t t , │ │ │ │ 2 3 2 5 4 5 3 6 4 6 1 7 7 9 8 9 0 1 10 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ @@ -130,20 +130,20 @@ │ │ │ │ (t + t t , t t + t , t + t t , t t , t t + t , t - t t - 3t t + t │ │ │ │ t + 2t , - t t + t + 2t t , t t , - t t + t , t t ) │ │ │ │ 3 3 5 3 5 5 5 5 6 3 6 5 6 6 8 8 9 8 10 │ │ │ │ 9 10 10 8 9 9 9 10 8 9 8 10 10 8 10 │ │ │ │ │ │ │ │ o18 : QuotientRing │ │ │ │ i19 : for i to dim Y list time hilbertFunction (i, A2) │ │ │ │ - -- used 0.00144935s (cpu); 0.00144823s (thread); 0s (gc) │ │ │ │ - -- used 2.2452e-05s (cpu); 8.0521e-05s (thread); 0s (gc) │ │ │ │ - -- used 8.756e-06s (cpu); 6.4241e-05s (thread); 0s (gc) │ │ │ │ - -- used 1.609e-05s (cpu); 7.0222e-05s (thread); 0s (gc) │ │ │ │ - -- used 8.606e-06s (cpu); 5.9061e-05s (thread); 0s (gc) │ │ │ │ - -- used 5.0224e-05s (cpu); 7.0663e-05s (thread); 0s (gc) │ │ │ │ + -- used 0.00400225s (cpu); 0.00105592s (thread); 0s (gc) │ │ │ │ + -- used 2.3515e-05s (cpu); 7.3728e-05s (thread); 0s (gc) │ │ │ │ + -- used 9.307e-06s (cpu); 6.1696e-05s (thread); 0s (gc) │ │ │ │ + -- used 8.696e-06s (cpu); 5.8991e-05s (thread); 0s (gc) │ │ │ │ + -- used 7.955e-06s (cpu); 5.7147e-05s (thread); 0s (gc) │ │ │ │ + -- used 7.905e-06s (cpu); 5.7618e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o19 = {1, 6, 13, 13, 6, 1} │ │ │ │ │ │ │ │ o19 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _w_o_r_k_i_n_g_ _w_i_t_h_ _s_h_e_a_v_e_s -- information about coherent sheaves and total │ │ │ │ coordinate rings (a.k.a. Cox rings) │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_is__Well__Defined_lp__Normal__Toric__Variety_rp.html │ │ │ @@ -100,15 +100,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : setRandomSeed (currentTime ());
    │ │ │
    i3 : a = sort apply (3, i -> random (7))
    │ │ │  
    │ │ │ -o3 = {1, 3, 4}
    │ │ │ +o3 = {3, 5, 6}
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    i4 : assert isWellDefined kleinschmidt (4,a)
    │ │ │
    │ │ │ @@ -118,15 +118,15 @@ │ │ │ │ │ │ │ │ │
    i6 : while not all (subsets (q,#q-1), s -> gcd s === 1) do q = sort apply (5, j -> random (1,9));
    │ │ │ │ │ │ │ │ │
    i7 : q
    │ │ │  
    │ │ │ -o7 = {1, 1, 3, 6, 9}
    │ │ │ +o7 = {1, 3, 3, 4, 6}
    │ │ │  
    │ │ │  o7 : List
    │ │ │ │ │ │ │ │ │
    i8 : assert isWellDefined weightedProjectiveSpace q
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -31,24 +31,24 @@ │ │ │ │ The first examples illustrate that small projective spaces are well-defined. │ │ │ │ i1 : assert all (5, d -> isWellDefined toricProjectiveSpace (d+1)) │ │ │ │ The second examples show that a randomly selected Kleinschmidt toric variety │ │ │ │ and a weighted projective space are also well-defined. │ │ │ │ i2 : setRandomSeed (currentTime ()); │ │ │ │ i3 : a = sort apply (3, i -> random (7)) │ │ │ │ │ │ │ │ -o3 = {1, 3, 4} │ │ │ │ +o3 = {3, 5, 6} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : assert isWellDefined kleinschmidt (4,a) │ │ │ │ i5 : q = sort apply (5, j -> random (1,9)); │ │ │ │ i6 : while not all (subsets (q,#q-1), s -> gcd s === 1) do q = sort apply (5, j │ │ │ │ -> random (1,9)); │ │ │ │ i7 : q │ │ │ │ │ │ │ │ -o7 = {1, 1, 3, 6, 9} │ │ │ │ +o7 = {1, 3, 3, 4, 6} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : assert isWellDefined weightedProjectiveSpace q │ │ │ │ The next ten examples illustrate various ways that two lists can fail to define │ │ │ │ a normal toric variety. By making the current debugging level greater than one, │ │ │ │ one gets some addition information about the nature of the failure. │ │ │ │ i9 : X = new MutableHashTable; │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_monomials_lp__Toric__Divisor_rp.html │ │ │ @@ -94,29 +94,29 @@ │ │ │ o2 = 5*PP2 │ │ │ 0 │ │ │ │ │ │ o2 : ToricDivisor on PP2
    │ │ │ │ │ │ │ │ │
    i3 : M1 = elapsedTime monomials D1
    │ │ │ - -- .0354582s elapsed
    │ │ │ + -- .0236384s elapsed
    │ │ │  
    │ │ │         5     4     4   2 3       3   2 3   3 2     2 2   2   2   3 2   4   
    │ │ │  o3 = {x , x x , x x , x x , x x x , x x , x x , x x x , x x x , x x , x x ,
    │ │ │         2   1 2   0 2   1 2   0 1 2   0 2   1 2   0 1 2   0 1 2   0 2   1 2 
    │ │ │       ------------------------------------------------------------------------
    │ │ │          3     2 2     3       4     5     4   2 3   3 2   4     5
    │ │ │       x x x , x x x , x x x , x x , x , x x , x x , x x , x x , x }
    │ │ │        0 1 2   0 1 2   0 1 2   0 2   1   0 1   0 1   0 1   0 1   0
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │
    i4 : elapsedTime assert (set M1 === set first entries basis(degree D1, ring variety D1))
    │ │ │ - -- .00151969s elapsed
    │ │ │ + -- .0010556s elapsed
    │ │ │ │ │ │ │ │ │
    │ │ │

    Toric varieties of Picard-rank 2 are slightly more interesting.

    │ │ │
    │ │ │ │ │ │ │ │ │ @@ -128,46 +128,46 @@ │ │ │ o6 = 2*FF2 + 3*FF2 │ │ │ 0 1 │ │ │ │ │ │ o6 : ToricDivisor on FF2 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : M2 = elapsedTime monomials D2
    │ │ │ - -- .0964156s elapsed
    │ │ │ + -- .110963s elapsed
    │ │ │  
    │ │ │         2     3 2     3     2 3
    │ │ │  o7 = {x x , x x , x x x , x x }
    │ │ │         1 3   1 2   0 1 2   0 1
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    i8 : elapsedTime assert (set M2 === set first entries basis (degree D2, ring variety D2))
    │ │ │ - -- .00113966s elapsed
    │ │ │ + -- .000849296s elapsed │ │ │
    i9 : X = kleinschmidt (5, {1,2,3});
    │ │ │
    i10 : D3 = 3*X_0 + 5*X_1
    │ │ │  
    │ │ │  o10 = 3*X  + 5*X
    │ │ │           0      1
    │ │ │  
    │ │ │  o10 : ToricDivisor on X
    │ │ │
    i11 : m3 = elapsedTime # monomials D3
    │ │ │ - -- 39.4377s elapsed
    │ │ │ + -- 43.1615s elapsed
    │ │ │  
    │ │ │  o11 = 7909
    │ │ │
    i12 : elapsedTime assert (m3 === #first entries basis (degree D3, ring variety D3))
    │ │ │ - -- .0257955s elapsed
    │ │ │ + -- .0221523s elapsed │ │ │
    │ │ │
    │ │ │

    By exploiting latticePoints, this method function avoids using the basis function.

    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -28,61 +28,61 @@ │ │ │ │ i2 : D1 = 5*PP2_0 │ │ │ │ │ │ │ │ o2 = 5*PP2 │ │ │ │ 0 │ │ │ │ │ │ │ │ o2 : ToricDivisor on PP2 │ │ │ │ i3 : M1 = elapsedTime monomials D1 │ │ │ │ - -- .0354582s elapsed │ │ │ │ + -- .0236384s elapsed │ │ │ │ │ │ │ │ 5 4 4 2 3 3 2 3 3 2 2 2 2 2 3 2 4 │ │ │ │ o3 = {x , x x , x x , x x , x x x , x x , x x , x x x , x x x , x x , x x , │ │ │ │ 2 1 2 0 2 1 2 0 1 2 0 2 1 2 0 1 2 0 1 2 0 2 1 2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 2 2 3 4 5 4 2 3 3 2 4 5 │ │ │ │ x x x , x x x , x x x , x x , x , x x , x x , x x , x x , x } │ │ │ │ 0 1 2 0 1 2 0 1 2 0 2 1 0 1 0 1 0 1 0 1 0 │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : elapsedTime assert (set M1 === set first entries basis(degree D1, ring │ │ │ │ variety D1)) │ │ │ │ - -- .00151969s elapsed │ │ │ │ + -- .0010556s elapsed │ │ │ │ Toric varieties of Picard-rank 2 are slightly more interesting. │ │ │ │ i5 : FF2 = hirzebruchSurface 2; │ │ │ │ i6 : D2 = 2*FF2_0 + 3 * FF2_1 │ │ │ │ │ │ │ │ o6 = 2*FF2 + 3*FF2 │ │ │ │ 0 1 │ │ │ │ │ │ │ │ o6 : ToricDivisor on FF2 │ │ │ │ i7 : M2 = elapsedTime monomials D2 │ │ │ │ - -- .0964156s elapsed │ │ │ │ + -- .110963s elapsed │ │ │ │ │ │ │ │ 2 3 2 3 2 3 │ │ │ │ o7 = {x x , x x , x x x , x x } │ │ │ │ 1 3 1 2 0 1 2 0 1 │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : elapsedTime assert (set M2 === set first entries basis (degree D2, ring │ │ │ │ variety D2)) │ │ │ │ - -- .00113966s elapsed │ │ │ │ + -- .000849296s elapsed │ │ │ │ i9 : X = kleinschmidt (5, {1,2,3}); │ │ │ │ i10 : D3 = 3*X_0 + 5*X_1 │ │ │ │ │ │ │ │ o10 = 3*X + 5*X │ │ │ │ 0 1 │ │ │ │ │ │ │ │ o10 : ToricDivisor on X │ │ │ │ i11 : m3 = elapsedTime # monomials D3 │ │ │ │ - -- 39.4377s elapsed │ │ │ │ + -- 43.1615s elapsed │ │ │ │ │ │ │ │ o11 = 7909 │ │ │ │ i12 : elapsedTime assert (m3 === #first entries basis (degree D3, ring variety │ │ │ │ D3)) │ │ │ │ - -- .0257955s elapsed │ │ │ │ + -- .0221523s elapsed │ │ │ │ By exploiting _l_a_t_t_i_c_e_P_o_i_n_t_s, this method function avoids using the _b_a_s_i_s │ │ │ │ function. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _w_o_r_k_i_n_g_ _w_i_t_h_ _d_i_v_i_s_o_r_s -- information about toric divisors and their │ │ │ │ related groups │ │ │ │ * _r_i_n_g_(_N_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y_) -- make the total coordinate ring (a.k.a. Cox │ │ │ │ ring) │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Fan_rp.html │ │ │ @@ -120,23 +120,23 @@ │ │ │ │ │ │
    │ │ │

    The recommended method for creating a NormalToricVariety from a fan is normalToricVariety(List,List). In fact, this package avoids using objects from the Polyhedra package whenever possible. Here is a trivial example, namely projective 2-space, illustrating the substantial increase in time resulting from the use of a Polyhedra fan.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : X1 = time normalToricVariety ({{-1,-1},{1,0},{0,1}}, {{0,1},{1,2},{0,2}})
    │ │ │ - -- used 0.00304489s (cpu); 2.2332e-05s (thread); 0s (gc)
    │ │ │ + -- used 0.00230841s (cpu); 1.6581e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = X1
    │ │ │  
    │ │ │  o6 : NormalToricVariety
    │ │ │
    i7 : X2 = time normalToricVariety fan {posHull matrix {{-1,1},{-1,0}}, posHull matrix {{1,0},{0,1}}, posHull matrix{{-1,0},{-1,1}}};
    │ │ │ - -- used 0.206737s (cpu); 0.0677457s (thread); 0s (gc)
    │ │ │ + -- used 0.200997s (cpu); 0.0974426s (thread); 0s (gc) │ │ │
    i8 : assert (sort rays X1 == sort rays X2 and max X1 == max X2)
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -49,22 +49,22 @@ │ │ │ │ i5 : assert (transpose matrix rays X == rays F and max X == sort maxCones F) │ │ │ │ The recommended method for creating a _N_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y from a fan is │ │ │ │ _n_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y_(_L_i_s_t_,_L_i_s_t_). In fact, this package avoids using objects from │ │ │ │ the _P_o_l_y_h_e_d_r_a package whenever possible. Here is a trivial example, namely │ │ │ │ projective 2-space, illustrating the substantial increase in time resulting │ │ │ │ from the use of a _P_o_l_y_h_e_d_r_a fan. │ │ │ │ i6 : X1 = time normalToricVariety ({{-1,-1},{1,0},{0,1}}, {{0,1},{1,2},{0,2}}) │ │ │ │ - -- used 0.00304489s (cpu); 2.2332e-05s (thread); 0s (gc) │ │ │ │ + -- used 0.00230841s (cpu); 1.6581e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = X1 │ │ │ │ │ │ │ │ o6 : NormalToricVariety │ │ │ │ i7 : X2 = time normalToricVariety fan {posHull matrix {{-1,1},{-1,0}}, posHull │ │ │ │ matrix {{1,0},{0,1}}, posHull matrix{{-1,0},{-1,1}}}; │ │ │ │ - -- used 0.206737s (cpu); 0.0677457s (thread); 0s (gc) │ │ │ │ + -- used 0.200997s (cpu); 0.0974426s (thread); 0s (gc) │ │ │ │ i8 : assert (sort rays X1 == sort rays X2 and max X1 == max X2) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_a_k_i_n_g_ _n_o_r_m_a_l_ _t_o_r_i_c_ _v_a_r_i_e_t_i_e_s -- information about the basic constructors │ │ │ │ * _n_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y -- make a normal toric variety │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _n_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y_(_F_a_n_) -- make a normal toric variety from a 'Polyhedra' │ │ │ │ fan │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Polyhedron_rp.html │ │ │ @@ -202,19 +202,19 @@ │ │ │ | 0 0 1 | │ │ │ │ │ │ 2 3 │ │ │ o18 : Matrix ZZ <-- ZZ │ │ │ │ │ │ │ │ │
    i19 : X1 = time normalToricVariety convexHull (vertMatrix);
    │ │ │ - -- used 0.106449s (cpu); 0.0339456s (thread); 0s (gc)
    │ │ │ + -- used 0.137947s (cpu); 0.0771225s (thread); 0s (gc) │ │ │ │ │ │ │ │ │
    i20 : X2 = time normalToricVariety vertMatrix;
    │ │ │ - -- used 0.0044979s (cpu); 0.00448742s (thread); 0s (gc)
    │ │ │ + -- used 0.0017407s (cpu); 0.00231854s (thread); 0s (gc) │ │ │ │ │ │ │ │ │
    i21 : assert (set rays X2 === set rays X1 and max X1 === max X2)
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -103,17 +103,17 @@ │ │ │ │ │ │ │ │ o18 = | 0 1 0 | │ │ │ │ | 0 0 1 | │ │ │ │ │ │ │ │ 2 3 │ │ │ │ o18 : Matrix ZZ <-- ZZ │ │ │ │ i19 : X1 = time normalToricVariety convexHull (vertMatrix); │ │ │ │ - -- used 0.106449s (cpu); 0.0339456s (thread); 0s (gc) │ │ │ │ + -- used 0.137947s (cpu); 0.0771225s (thread); 0s (gc) │ │ │ │ i20 : X2 = time normalToricVariety vertMatrix; │ │ │ │ - -- used 0.0044979s (cpu); 0.00448742s (thread); 0s (gc) │ │ │ │ + -- used 0.0017407s (cpu); 0.00231854s (thread); 0s (gc) │ │ │ │ i21 : assert (set rays X2 === set rays X1 and max X1 === max X2) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_a_k_i_n_g_ _n_o_r_m_a_l_ _t_o_r_i_c_ _v_a_r_i_e_t_i_e_s -- information about the basic constructors │ │ │ │ * _n_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y_(_M_a_t_r_i_x_) -- make a normal toric variety from a polytope │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _n_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y_(_P_o_l_y_h_e_d_r_o_n_) -- make a normal toric variety from a │ │ │ │ 'Polyhedra' polyhedron │ │ ├── ./usr/share/doc/Macaulay2/Normaliz/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=32 │ │ │ aW50Y2xNb25JZGVhbChJZGVhbCxSaW5nRWxlbWVudCk= │ │ │ #:len=2753 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAibm9ybWFsaXphdGlvbiBvZiBSZWVzIGFs │ │ │ Z2VicmEiLCAibGluZW51bSIgPT4gMTg2OSwgSW5wdXRzID0+IHtTUEFOe1NQQU57ImFuICIsVE8y │ │ ├── ./usr/share/doc/Macaulay2/NumericSolutions/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=18 │ │ │ am9yZGFuRm9ybShNYXRyaXgp │ │ │ #:len=263 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gODE0LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhqb3JkYW5Gb3JtLE1hdHJpeCksImpvcmRhbkZvcm0o │ │ ├── ./usr/share/doc/Macaulay2/NumericalAlgebraicGeometry/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=43 │ │ │ aXNTdWJzZXQoTnVtZXJpY2FsVmFyaWV0eSxOdW1lcmljYWxWYXJpZXR5KQ== │ │ │ #:len=1173 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiY2hlY2sgY29udGFpbm1lbnQiLCAibGlu │ │ │ ZW51bSIgPT4gNzg5LCBJbnB1dHMgPT4ge1NQQU57VFR7IlYifSwiLCAiLCIgb3IgIixTUEFOeyJh │ │ ├── ./usr/share/doc/Macaulay2/NumericalCertification/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=23 │ │ │ aW50ZXJ2YWxDQ2koUlJpLE51bWJlcik= │ │ │ #:len=261 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNDQsICJ1bmRvY3VtZW50ZWQiID0+IHRy │ │ │ dWUsIHN5bWJvbCBEb2N1bWVudFRhZyA9PiBuZXcgRG9jdW1lbnRUYWcgZnJvbSB7KGludGVydmFs │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ -# GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:38 2025 │ │ │ +# GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=42 │ │ │ bnVtZXJpY2FsSGlsYmVydEZ1bmN0aW9uKFJpbmdNYXAsSWRlYWwsWlop │ │ │ #:len=367 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNDUwLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhudW1lcmljYWxIaWxiZXJ0RnVuY3Rpb24sUmluZ01h │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/___Convert__To__Cone.out │ │ │ @@ -23,19 +23,19 @@ │ │ │ -- warning: experimental computation over inexact field begun │ │ │ -- results not reliable (one warning given per session) │ │ │ │ │ │ o4 = true │ │ │ │ │ │ i5 : T = numericalHilbertFunction(F, I, 3, ConvertToCone => true) │ │ │ Sampling image points ... │ │ │ - -- used .00400102 seconds │ │ │ + -- used .00509194 seconds │ │ │ Creating interpolation matrix ... │ │ │ - -- used .00399574 seconds │ │ │ + -- used .00399935 seconds │ │ │ Performing normalization preconditioning ... │ │ │ - -- used 0 seconds │ │ │ + -- used .00399958 seconds │ │ │ Computing numerical kernel ... │ │ │ -- used 0 seconds │ │ │ │ │ │ o5 = a "numerical interpolation table", indicating │ │ │ the space of degree 3 forms in the ideal of the image has dimension 3 │ │ │ │ │ │ o5 : NumericalInterpolationTable │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_extract__Image__Equations.out │ │ │ @@ -13,19 +13,19 @@ │ │ │ o2 = | s3 s2t st2 t3 | │ │ │ │ │ │ 1 4 │ │ │ o2 : Matrix R <-- R │ │ │ │ │ │ i3 : extractImageEquations(F, ideal 0_R, 2, AttemptZZ => true) │ │ │ Sampling image points ... │ │ │ - -- used 0 seconds │ │ │ + -- used .00400068 seconds │ │ │ Creating interpolation matrix ... │ │ │ - -- used .0022852 seconds │ │ │ + -- used 0 seconds │ │ │ Performing normalization preconditioning ... │ │ │ - -- used .00168203 seconds │ │ │ + -- used .00400112 seconds │ │ │ Computing numerical kernel ... │ │ │ -- used 0 seconds │ │ │ │ │ │ o3 = | y_1^2-y_0y_2 y_1y_2-y_0y_3 y_2^2-y_1y_3 | │ │ │ │ │ │ 1 3 │ │ │ o3 : Matrix (CC [y ..y ]) <-- (CC [y ..y ]) │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Hilbert__Function.out │ │ │ @@ -13,40 +13,40 @@ │ │ │ o2 = | s3 s2t st2 t3 | │ │ │ │ │ │ 1 4 │ │ │ o2 : Matrix R <-- R │ │ │ │ │ │ i3 : numericalHilbertFunction(F, ideal 0_R, 4) │ │ │ Sampling image points ... │ │ │ - -- used .011988 seconds │ │ │ + -- used .0114397 seconds │ │ │ Creating interpolation matrix ... │ │ │ - -- used .0102348 seconds │ │ │ + -- used .0079962 seconds │ │ │ Performing normalization preconditioning ... │ │ │ - -- used .00876388 seconds │ │ │ + -- used .00800126 seconds │ │ │ Computing numerical kernel ... │ │ │ - -- used .00303253 seconds │ │ │ + -- used 0 seconds │ │ │ │ │ │ o3 = a "numerical interpolation table", indicating │ │ │ the space of degree 4 forms in the ideal of the image has dimension 22 │ │ │ │ │ │ o3 : NumericalInterpolationTable │ │ │ │ │ │ i4 : R = CC[x_(1,1)..x_(2,4)]; │ │ │ │ │ │ i5 : F = (minors(2, genericMatrix(R, 2, 4)))_*; │ │ │ │ │ │ i6 : S = numericalImageSample(F, ideal 0_R, 60); │ │ │ │ │ │ i7 : numericalHilbertFunction(F, ideal 0_R, S, 2, UseSLP => true) │ │ │ Creating interpolation matrix ... │ │ │ - -- used .00400256 seconds │ │ │ + -- used .00399902 seconds │ │ │ Performing normalization preconditioning ... │ │ │ - -- used .00697058 seconds │ │ │ + -- used .00799975 seconds │ │ │ Computing numerical kernel ... │ │ │ - -- used .00394506 seconds │ │ │ + -- used .000016821 seconds │ │ │ │ │ │ o7 = a "numerical interpolation table", indicating │ │ │ the space of degree 2 forms in the ideal of the image has dimension 1 │ │ │ │ │ │ o7 : NumericalInterpolationTable │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Image__Dim.out │ │ │ @@ -22,12 +22,12 @@ │ │ │ -- warning: experimental computation over inexact field begun │ │ │ -- results not reliable (one warning given per session) │ │ │ │ │ │ 1 70 │ │ │ o8 : Matrix R <-- R │ │ │ │ │ │ i9 : time numericalImageDim(F, ideal 0_R) │ │ │ - -- used 0.059049s (cpu); 0.0599583s (thread); 0s (gc) │ │ │ + -- used 0.0919986s (cpu); 0.0925198s (thread); 0s (gc) │ │ │ │ │ │ o9 = 69 │ │ │ │ │ │ i10 : │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_real__Point.out │ │ │ @@ -31,15 +31,15 @@ │ │ │ o5 : Ideal of R │ │ │ │ │ │ i6 : I = I1 + I2; │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ │ │ i7 : elapsedTime p = realPoint(I, Iterations => 100) │ │ │ - -- .72672s elapsed │ │ │ + -- .702197s elapsed │ │ │ │ │ │ o7 = p │ │ │ │ │ │ o7 : Point │ │ │ │ │ │ i8 : matrix pack(5, p#Coordinates) │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Convert__To__Cone.html │ │ │ @@ -89,19 +89,19 @@ │ │ │ -- results not reliable (one warning given per session) │ │ │ │ │ │ o4 = true │ │ │ │ │ │ │ │ │
    i5 : T = numericalHilbertFunction(F, I, 3, ConvertToCone => true)
    │ │ │  Sampling image points ...
    │ │ │ -     -- used .00400102 seconds
    │ │ │ +     -- used .00509194 seconds
    │ │ │  Creating interpolation matrix ...
    │ │ │ -     -- used .00399574 seconds
    │ │ │ +     -- used .00399935 seconds
    │ │ │  Performing normalization preconditioning ...
    │ │ │ -     -- used 0 seconds
    │ │ │ +     -- used .00399958 seconds
    │ │ │  Computing numerical kernel ...
    │ │ │       -- used 0 seconds
    │ │ │  
    │ │ │  o5 = a "numerical interpolation table", indicating
    │ │ │       the space of degree 3 forms in the ideal of the image has dimension 3
    │ │ │  
    │ │ │  o5 : NumericalInterpolationTable
    │ │ │ ├── html2text {} │ │ │ │ @@ -36,19 +36,19 @@ │ │ │ │ == 0 │ │ │ │ -- warning: experimental computation over inexact field begun │ │ │ │ -- results not reliable (one warning given per session) │ │ │ │ │ │ │ │ o4 = true │ │ │ │ i5 : T = numericalHilbertFunction(F, I, 3, ConvertToCone => true) │ │ │ │ Sampling image points ... │ │ │ │ - -- used .00400102 seconds │ │ │ │ + -- used .00509194 seconds │ │ │ │ Creating interpolation matrix ... │ │ │ │ - -- used .00399574 seconds │ │ │ │ + -- used .00399935 seconds │ │ │ │ Performing normalization preconditioning ... │ │ │ │ - -- used 0 seconds │ │ │ │ + -- used .00399958 seconds │ │ │ │ Computing numerical kernel ... │ │ │ │ -- used 0 seconds │ │ │ │ │ │ │ │ o5 = a "numerical interpolation table", indicating │ │ │ │ the space of degree 3 forms in the ideal of the image has dimension 3 │ │ │ │ │ │ │ │ o5 : NumericalInterpolationTable │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_extract__Image__Equations.html │ │ │ @@ -105,19 +105,19 @@ │ │ │ │ │ │ 1 4 │ │ │ o2 : Matrix R <-- R │ │ │ │ │ │ │ │ │
    i3 : extractImageEquations(F, ideal 0_R, 2, AttemptZZ => true)
    │ │ │  Sampling image points ...
    │ │ │ -     -- used 0 seconds
    │ │ │ +     -- used .00400068 seconds
    │ │ │  Creating interpolation matrix ...
    │ │ │ -     -- used .0022852 seconds
    │ │ │ +     -- used 0 seconds
    │ │ │  Performing normalization preconditioning ...
    │ │ │ -     -- used .00168203 seconds
    │ │ │ +     -- used .00400112 seconds
    │ │ │  Computing numerical kernel ...
    │ │ │       -- used 0 seconds
    │ │ │  
    │ │ │  o3 = | y_1^2-y_0y_2 y_1y_2-y_0y_3 y_2^2-y_1y_3 |
    │ │ │  
    │ │ │                            1                   3
    │ │ │  o3 : Matrix (CC  [y ..y ])  <-- (CC  [y ..y ])
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -41,19 +41,19 @@
    │ │ │ │  
    │ │ │ │  o2 = | s3 s2t st2 t3 |
    │ │ │ │  
    │ │ │ │               1      4
    │ │ │ │  o2 : Matrix R  <-- R
    │ │ │ │  i3 : extractImageEquations(F, ideal 0_R, 2, AttemptZZ => true)
    │ │ │ │  Sampling image points ...
    │ │ │ │ -     -- used 0 seconds
    │ │ │ │ +     -- used .00400068 seconds
    │ │ │ │  Creating interpolation matrix ...
    │ │ │ │ -     -- used .0022852 seconds
    │ │ │ │ +     -- used 0 seconds
    │ │ │ │  Performing normalization preconditioning ...
    │ │ │ │ -     -- used .00168203 seconds
    │ │ │ │ +     -- used .00400112 seconds
    │ │ │ │  Computing numerical kernel ...
    │ │ │ │       -- used 0 seconds
    │ │ │ │  
    │ │ │ │  o3 = | y_1^2-y_0y_2 y_1y_2-y_0y_3 y_2^2-y_1y_3 |
    │ │ │ │  
    │ │ │ │                            1                   3
    │ │ │ │  o3 : Matrix (CC  [y ..y ])  <-- (CC  [y ..y ])
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Hilbert__Function.html
    │ │ │ @@ -114,21 +114,21 @@
    │ │ │  
    │ │ │               1      4
    │ │ │  o2 : Matrix R  <-- R
    │ │ │ │ │ │ │ │ │
    i3 : numericalHilbertFunction(F, ideal 0_R, 4)
    │ │ │  Sampling image points ...
    │ │ │ -     -- used .011988 seconds
    │ │ │ +     -- used .0114397 seconds
    │ │ │  Creating interpolation matrix ...
    │ │ │ -     -- used .0102348 seconds
    │ │ │ +     -- used .0079962 seconds
    │ │ │  Performing normalization preconditioning ...
    │ │ │ -     -- used .00876388 seconds
    │ │ │ +     -- used .00800126 seconds
    │ │ │  Computing numerical kernel ...
    │ │ │ -     -- used .00303253 seconds
    │ │ │ +     -- used 0 seconds
    │ │ │  
    │ │ │  o3 = a "numerical interpolation table", indicating
    │ │ │       the space of degree 4 forms in the ideal of the image has dimension 22
    │ │ │  
    │ │ │  o3 : NumericalInterpolationTable
    │ │ │ │ │ │ │ │ │ @@ -146,19 +146,19 @@ │ │ │ │ │ │ │ │ │
    i6 : S = numericalImageSample(F, ideal 0_R, 60);
    │ │ │ │ │ │ │ │ │
    i7 : numericalHilbertFunction(F, ideal 0_R, S, 2, UseSLP => true)
    │ │ │  Creating interpolation matrix ...
    │ │ │ -     -- used .00400256 seconds
    │ │ │ +     -- used .00399902 seconds
    │ │ │  Performing normalization preconditioning ...
    │ │ │ -     -- used .00697058 seconds
    │ │ │ +     -- used .00799975 seconds
    │ │ │  Computing numerical kernel ...
    │ │ │ -     -- used .00394506 seconds
    │ │ │ +     -- used .000016821 seconds
    │ │ │  
    │ │ │  o7 = a "numerical interpolation table", indicating
    │ │ │       the space of degree 2 forms in the ideal of the image has dimension 1
    │ │ │  
    │ │ │  o7 : NumericalInterpolationTable
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -60,39 +60,39 @@ │ │ │ │ │ │ │ │ o2 = | s3 s2t st2 t3 | │ │ │ │ │ │ │ │ 1 4 │ │ │ │ o2 : Matrix R <-- R │ │ │ │ i3 : numericalHilbertFunction(F, ideal 0_R, 4) │ │ │ │ Sampling image points ... │ │ │ │ - -- used .011988 seconds │ │ │ │ + -- used .0114397 seconds │ │ │ │ Creating interpolation matrix ... │ │ │ │ - -- used .0102348 seconds │ │ │ │ + -- used .0079962 seconds │ │ │ │ Performing normalization preconditioning ... │ │ │ │ - -- used .00876388 seconds │ │ │ │ + -- used .00800126 seconds │ │ │ │ Computing numerical kernel ... │ │ │ │ - -- used .00303253 seconds │ │ │ │ + -- used 0 seconds │ │ │ │ │ │ │ │ o3 = a "numerical interpolation table", indicating │ │ │ │ the space of degree 4 forms in the ideal of the image has dimension 22 │ │ │ │ │ │ │ │ o3 : NumericalInterpolationTable │ │ │ │ The following example computes the dimension of Plücker quadrics in the │ │ │ │ defining ideal of the Grassmannian $Gr(2,4)$ of $P^1$'s in $P^3$, in the │ │ │ │ ambient space $P^5$. │ │ │ │ i4 : R = CC[x_(1,1)..x_(2,4)]; │ │ │ │ i5 : F = (minors(2, genericMatrix(R, 2, 4)))_*; │ │ │ │ i6 : S = numericalImageSample(F, ideal 0_R, 60); │ │ │ │ i7 : numericalHilbertFunction(F, ideal 0_R, S, 2, UseSLP => true) │ │ │ │ Creating interpolation matrix ... │ │ │ │ - -- used .00400256 seconds │ │ │ │ + -- used .00399902 seconds │ │ │ │ Performing normalization preconditioning ... │ │ │ │ - -- used .00697058 seconds │ │ │ │ + -- used .00799975 seconds │ │ │ │ Computing numerical kernel ... │ │ │ │ - -- used .00394506 seconds │ │ │ │ + -- used .000016821 seconds │ │ │ │ │ │ │ │ o7 = a "numerical interpolation table", indicating │ │ │ │ the space of degree 2 forms in the ideal of the image has dimension 1 │ │ │ │ │ │ │ │ o7 : NumericalInterpolationTable │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _N_u_m_e_r_i_c_a_l_I_n_t_e_r_p_o_l_a_t_i_o_n_T_a_b_l_e -- the class of all │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Dim.html │ │ │ @@ -129,15 +129,15 @@ │ │ │ -- results not reliable (one warning given per session) │ │ │ │ │ │ 1 70 │ │ │ o8 : Matrix R <-- R │ │ │ │ │ │ │ │ │
    i9 : time numericalImageDim(F, ideal 0_R)
    │ │ │ - -- used 0.059049s (cpu); 0.0599583s (thread); 0s (gc)
    │ │ │ + -- used 0.0919986s (cpu); 0.0925198s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 = 69
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    Ways to use numericalImageDim:

    │ │ │ ├── html2text {} │ │ │ │ @@ -46,15 +46,15 @@ │ │ │ │ i8 : F = sum(1..14, i -> basis(4, R, Variables=>toList(a_(i,1)..a_(i,5)))); │ │ │ │ -- warning: experimental computation over inexact field begun │ │ │ │ -- results not reliable (one warning given per session) │ │ │ │ │ │ │ │ 1 70 │ │ │ │ o8 : Matrix R <-- R │ │ │ │ i9 : time numericalImageDim(F, ideal 0_R) │ │ │ │ - -- used 0.059049s (cpu); 0.0599583s (thread); 0s (gc) │ │ │ │ + -- used 0.0919986s (cpu); 0.0925198s (thread); 0s (gc) │ │ │ │ │ │ │ │ o9 = 69 │ │ │ │ ********** WWaayyss ttoo uussee nnuummeerriiccaallIImmaaggeeDDiimm:: ********** │ │ │ │ * numericalImageDim(List,Ideal) │ │ │ │ * numericalImageDim(List,Ideal,Point) │ │ │ │ * numericalImageDim(Matrix,Ideal) │ │ │ │ * numericalImageDim(Matrix,Ideal,Point) │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_real__Point.html │ │ │ @@ -123,15 +123,15 @@ │ │ │ │ │ │
    i6 : I = I1 + I2;
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │ │ │ │ │ │ │
    i7 : elapsedTime p = realPoint(I, Iterations => 100)
    │ │ │ - -- .72672s elapsed
    │ │ │ + -- .702197s elapsed
    │ │ │  
    │ │ │  o7 = p
    │ │ │  
    │ │ │  o7 : Point
    │ │ │ │ │ │ │ │ │
    i8 : matrix pack(5, p#Coordinates)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -50,15 +50,15 @@
    │ │ │ │  i5 : I2 = ideal apply(entries transpose A, row -> sum(row, v -> v^2) - 1);
    │ │ │ │  
    │ │ │ │  o5 : Ideal of R
    │ │ │ │  i6 : I = I1 + I2;
    │ │ │ │  
    │ │ │ │  o6 : Ideal of R
    │ │ │ │  i7 : elapsedTime p = realPoint(I, Iterations => 100)
    │ │ │ │ - -- .72672s elapsed
    │ │ │ │ + -- .702197s elapsed
    │ │ │ │  
    │ │ │ │  o7 = p
    │ │ │ │  
    │ │ │ │  o7 : Point
    │ │ │ │  i8 : matrix pack(5, p#Coordinates)
    │ │ │ │  
    │ │ │ │  o8 = | .722359  .289465  -.295808  .591752  -.454678 |
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalLinearAlgebra/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=35
    │ │ │  bnVtZXJpY2FsS2VybmVsKC4uLixUb2xlcmFuY2U9Pi4uLik=
    │ │ │  #:len=352
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjE1LCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20ge1tudW1lcmljYWxLZXJuZWwsVG9sZXJhbmNlXSwibnVt
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=32
    │ │ │  UGllcmlSb290Q291bnQoLi4uLFZlcmJvc2U9Pi4uLik=
    │ │ │  #:len=334
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAicmVxdWVzdCB2ZXJib3NlIGZlZWRiYWNr
    │ │ │  IiwgRGVzY3JpcHRpb24gPT4ge30sICJsaW5lbnVtIiA9PiAzMzMsIHN5bWJvbCBEb2N1bWVudFRh
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=37
    │ │ │  aGV1cmlzdGljU21vb3RobmVzcyguLi4sVmVyYm9zZT0+Li4uKQ==
    │ │ │  #:len=320
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjc0NCwgc3ltYm9sIERvY3VtZW50VGFn
    │ │ │  ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHtbaGV1cmlzdGljU21vb3RobmVzcyxWZXJib3NlXSwi
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/___Lab__Book__Protocol.out
    │ │ │ @@ -14,35 +14,35 @@
    │ │ │  
    │ │ │  i4 : LL7a=select(LL7,L->not knownExample L);#LL7a
    │ │ │  
    │ │ │  o5 = 2
    │ │ │  
    │ │ │  i6 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup(L,0.25,0,Verbose=>true))
    │ │ │  unfolding
    │ │ │ - -- .151522s elapsed
    │ │ │ + -- .0706523s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .140684s elapsed
    │ │ │ + -- .0605123s elapsed
    │ │ │  next gb
    │ │ │ - -- .00124739s elapsed
    │ │ │ + -- .000553214s elapsed
    │ │ │  true
    │ │ │  unfolding
    │ │ │ - -- .131949s elapsed
    │ │ │ + -- .0633293s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .108241s elapsed
    │ │ │ + -- .0608818s elapsed
    │ │ │  next gb
    │ │ │ - -- .000704851s elapsed
    │ │ │ + -- .000361444s elapsed
    │ │ │  true
    │ │ │ - -- 1.55972s elapsed
    │ │ │ + -- .736451s elapsed
    │ │ │  
    │ │ │  o6 = {}
    │ │ │  
    │ │ │  o6 : List
    │ │ │  
    │ │ │  i7 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup(L,0.25,0))
    │ │ │ - -- 1.14586s elapsed
    │ │ │ + -- .730826s elapsed
    │ │ │  
    │ │ │  o7 = {}
    │ │ │  
    │ │ │  o7 : List
    │ │ │  
    │ │ │  i8 : LL7b=={}
    │ │ │  
    │ │ │ @@ -75,22 +75,22 @@
    │ │ │  
    │ │ │  o10 : Sequence
    │ │ │  
    │ │ │  i11 : elapsedTime nonWeierstrassSemigroups(m,g,Verbose=>true)
    │ │ │  (13, 1)
    │ │ │  {5, 8, 11, 12}
    │ │ │  unfolding
    │ │ │ - -- .31452s elapsed
    │ │ │ + -- .134398s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .222111s elapsed
    │ │ │ + -- .0921477s elapsed
    │ │ │  next gb
    │ │ │ - -- .00146195s elapsed
    │ │ │ + -- .000657969s elapsed
    │ │ │  true
    │ │ │ - -- .851703s elapsed
    │ │ │ -(5, 8,  all semigroups are smoothable) -- .915236s elapsed
    │ │ │ + -- .366155s elapsed
    │ │ │ +(5, 8,  all semigroups are smoothable) -- .399945s elapsed
    │ │ │  
    │ │ │  
    │ │ │  o11 = {}
    │ │ │  
    │ │ │  o11 : List
    │ │ │  
    │ │ │  i12 : L={6,8,9,11}
    │ │ │ @@ -100,22 +100,22 @@
    │ │ │  o12 : List
    │ │ │  
    │ │ │  i13 : genus L
    │ │ │  
    │ │ │  o13 = 8
    │ │ │  
    │ │ │  i14 : isWeierstrassSemigroup(L,0.2,Verbose=>true)
    │ │ │ - -- .0789936s elapsed
    │ │ │ + -- .0418583s elapsed
    │ │ │  6
    │ │ │  false
    │ │ │  5
    │ │ │  false
    │ │ │  4
    │ │ │  decompose
    │ │ │ - -- .446926s elapsed
    │ │ │ + -- .197709s elapsed
    │ │ │  number of components: 2
    │ │ │  support c, codim c: {(1, 1), (16, 3)}
    │ │ │  {0, -1}
    │ │ │  
    │ │ │  o14 = true
    │ │ │  
    │ │ │  i15 :
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_heuristic__Smoothness.out
    │ │ │ @@ -9,15 +9,15 @@
    │ │ │  i3 : setRandomSeed "some singular and some smooth curves";
    │ │ │  
    │ │ │  i4 : elapsedTime tally apply(10,i-> (
    │ │ │               c=minors(2,random(S^2,S^{3:-2}));
    │ │ │               c=sub(c,x_0=>1);
    │ │ │               R=kk[support c];c=sub(c,R);
    │ │ │               heuristicSmoothness c))
    │ │ │ - -- 3.07914s elapsed
    │ │ │ + -- 1.90367s elapsed
    │ │ │  
    │ │ │  o4 = Tally{false => 6}
    │ │ │             true => 4
    │ │ │  
    │ │ │  o4 : Tally
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__Smoothable__Semigroup.out
    │ │ │ @@ -7,17 +7,17 @@
    │ │ │  o1 : List
    │ │ │  
    │ │ │  i2 : genus L
    │ │ │  
    │ │ │  o2 = 8
    │ │ │  
    │ │ │  i3 : elapsedTime isSmoothableSemigroup(L,0.30,0)
    │ │ │ - -- .771857s elapsed
    │ │ │ + -- .546023s elapsed
    │ │ │  
    │ │ │  o3 = false
    │ │ │  
    │ │ │  i4 : elapsedTime isSmoothableSemigroup(L,0.14,0)
    │ │ │ - -- 4.57876s elapsed
    │ │ │ + -- 2.06113s elapsed
    │ │ │  
    │ │ │  o4 = true
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__Weierstrass__Semigroup.out
    │ │ │ @@ -7,12 +7,12 @@
    │ │ │  o1 : List
    │ │ │  
    │ │ │  i2 : genus L
    │ │ │  
    │ │ │  o2 = 8
    │ │ │  
    │ │ │  i3 : elapsedTime isWeierstrassSemigroup(L,0.15)
    │ │ │ - -- 3.84044s elapsed
    │ │ │ + -- 2.12333s elapsed
    │ │ │  
    │ │ │  o3 = true
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_non__Weierstrass__Semigroups.out
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  -- -*- M2-comint -*- hash: 6860996532851631556
    │ │ │  
    │ │ │  i1 : elapsedTime nonWeierstrassSemigroups(6,7)
    │ │ │ -(6, 7,  all semigroups are smoothable) -- 1.56638s elapsed
    │ │ │ +(6, 7,  all semigroups are smoothable) -- .7741s elapsed
    │ │ │  
    │ │ │  
    │ │ │  o1 = {}
    │ │ │  
    │ │ │  o1 : List
    │ │ │  
    │ │ │  i2 : LLdifficult={{6, 8, 9, 11}}
    │ │ │ @@ -14,61 +14,61 @@
    │ │ │  
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 : elapsedTime nonWeierstrassSemigroups(6,8,LLdifficult,Verbose=>true)
    │ │ │  (17, 5)
    │ │ │  {6, 7, 8, 17}
    │ │ │  unfolding
    │ │ │ - -- .380066s elapsed
    │ │ │ + -- .24143s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .178994s elapsed
    │ │ │ + -- .0875304s elapsed
    │ │ │  next gb
    │ │ │ - -- .00179905s elapsed
    │ │ │ + -- .00130079s elapsed
    │ │ │  true
    │ │ │ - -- .959568s elapsed
    │ │ │ + -- .553599s elapsed
    │ │ │  {6, 7, 9, 17}
    │ │ │  unfolding
    │ │ │ - -- .402129s elapsed
    │ │ │ + -- .236677s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .190718s elapsed
    │ │ │ + -- .100247s elapsed
    │ │ │  next gb
    │ │ │ - -- .00255459s elapsed
    │ │ │ + -- .00185122s elapsed
    │ │ │  decompose
    │ │ │ - -- .183642s elapsed
    │ │ │ + -- .112114s elapsed
    │ │ │  number of components: 2
    │ │ │  support c, codim c: {(2, 2), (5, 2)}
    │ │ │  {0, -1}
    │ │ │ - -- 2.51269s elapsed
    │ │ │ + -- 1.81031s elapsed
    │ │ │  {6, 8, 9, 10}
    │ │ │  unfolding
    │ │ │ - -- .0737587s elapsed
    │ │ │ + -- .0659571s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .0919318s elapsed
    │ │ │ + -- .0866994s elapsed
    │ │ │  next gb
    │ │ │ - -- .000445154s elapsed
    │ │ │ + -- .000368268s elapsed
    │ │ │  true
    │ │ │ - -- .609331s elapsed
    │ │ │ + -- .40854s elapsed
    │ │ │  {6, 8, 10, 11, 13}
    │ │ │  unfolding
    │ │ │ - -- .475404s elapsed
    │ │ │ + -- .314834s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .292145s elapsed
    │ │ │ + -- .126464s elapsed
    │ │ │  next gb
    │ │ │ - -- .00644164s elapsed
    │ │ │ + -- .002645s elapsed
    │ │ │  decompose
    │ │ │ - -- 1.13216s elapsed
    │ │ │ + -- .514707s elapsed
    │ │ │  number of components: 1
    │ │ │  support c, codim c: {(5, 1)}
    │ │ │  {-1}
    │ │ │ - -- 3.15341s elapsed
    │ │ │ - -- 7.23516s elapsed
    │ │ │ + -- 1.54433s elapsed
    │ │ │ + -- 4.3169s elapsed
    │ │ │  0
    │ │ │  
    │ │ │ - -- .0000054s elapsed
    │ │ │ - -- 7.26994s elapsed
    │ │ │ + -- .000003096s elapsed
    │ │ │ + -- 4.34576s elapsed
    │ │ │  {}
    │ │ │  
    │ │ │  o3 = {{6, 8, 9, 11}}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/html/___Lab__Book__Protocol.html
    │ │ │ @@ -89,36 +89,36 @@
    │ │ │                
    i4 : LL7a=select(LL7,L->not knownExample L);#LL7a
    │ │ │  
    │ │ │  o5 = 2
    │ │ │ │ │ │ │ │ │
    i6 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup(L,0.25,0,Verbose=>true))
    │ │ │  unfolding
    │ │ │ - -- .151522s elapsed
    │ │ │ + -- .0706523s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .140684s elapsed
    │ │ │ + -- .0605123s elapsed
    │ │ │  next gb
    │ │ │ - -- .00124739s elapsed
    │ │ │ + -- .000553214s elapsed
    │ │ │  true
    │ │ │  unfolding
    │ │ │ - -- .131949s elapsed
    │ │ │ + -- .0633293s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .108241s elapsed
    │ │ │ + -- .0608818s elapsed
    │ │ │  next gb
    │ │ │ - -- .000704851s elapsed
    │ │ │ + -- .000361444s elapsed
    │ │ │  true
    │ │ │ - -- 1.55972s elapsed
    │ │ │ + -- .736451s elapsed
    │ │ │  
    │ │ │  o6 = {}
    │ │ │  
    │ │ │  o6 : List
    │ │ │ │ │ │ │ │ │
    i7 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup(L,0.25,0))
    │ │ │ - -- 1.14586s elapsed
    │ │ │ + -- .730826s elapsed
    │ │ │  
    │ │ │  o7 = {}
    │ │ │  
    │ │ │  o7 : List
    │ │ │ │ │ │ │ │ │
    i8 : LL7b=={}
    │ │ │ @@ -167,22 +167,22 @@
    │ │ │  o10 : Sequence
    │ │ │ │ │ │ │ │ │
    i11 : elapsedTime nonWeierstrassSemigroups(m,g,Verbose=>true)
    │ │ │  (13, 1)
    │ │ │  {5, 8, 11, 12}
    │ │ │  unfolding
    │ │ │ - -- .31452s elapsed
    │ │ │ + -- .134398s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .222111s elapsed
    │ │ │ + -- .0921477s elapsed
    │ │ │  next gb
    │ │ │ - -- .00146195s elapsed
    │ │ │ + -- .000657969s elapsed
    │ │ │  true
    │ │ │ - -- .851703s elapsed
    │ │ │ -(5, 8,  all semigroups are smoothable) -- .915236s elapsed
    │ │ │ + -- .366155s elapsed
    │ │ │ +(5, 8,  all semigroups are smoothable) -- .399945s elapsed
    │ │ │  
    │ │ │  
    │ │ │  o11 = {}
    │ │ │  
    │ │ │  o11 : List
    │ │ │ │ │ │ │ │ │ @@ -200,22 +200,22 @@ │ │ │ │ │ │
    i13 : genus L
    │ │ │  
    │ │ │  o13 = 8
    │ │ │ │ │ │ │ │ │
    i14 : isWeierstrassSemigroup(L,0.2,Verbose=>true)
    │ │ │ - -- .0789936s elapsed
    │ │ │ + -- .0418583s elapsed
    │ │ │  6
    │ │ │  false
    │ │ │  5
    │ │ │  false
    │ │ │  4
    │ │ │  decompose
    │ │ │ - -- .446926s elapsed
    │ │ │ + -- .197709s elapsed
    │ │ │  number of components: 2
    │ │ │  support c, codim c: {(1, 1), (16, 3)}
    │ │ │  {0, -1}
    │ │ │  
    │ │ │  o14 = true
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -27,34 +27,34 @@ │ │ │ │ o3 = 39 │ │ │ │ i4 : LL7a=select(LL7,L->not knownExample L);#LL7a │ │ │ │ │ │ │ │ o5 = 2 │ │ │ │ i6 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup │ │ │ │ (L,0.25,0,Verbose=>true)) │ │ │ │ unfolding │ │ │ │ - -- .151522s elapsed │ │ │ │ + -- .0706523s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .140684s elapsed │ │ │ │ + -- .0605123s elapsed │ │ │ │ next gb │ │ │ │ - -- .00124739s elapsed │ │ │ │ + -- .000553214s elapsed │ │ │ │ true │ │ │ │ unfolding │ │ │ │ - -- .131949s elapsed │ │ │ │ + -- .0633293s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .108241s elapsed │ │ │ │ + -- .0608818s elapsed │ │ │ │ next gb │ │ │ │ - -- .000704851s elapsed │ │ │ │ + -- .000361444s elapsed │ │ │ │ true │ │ │ │ - -- 1.55972s elapsed │ │ │ │ + -- .736451s elapsed │ │ │ │ │ │ │ │ o6 = {} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup(L,0.25,0)) │ │ │ │ - -- 1.14586s elapsed │ │ │ │ + -- .730826s elapsed │ │ │ │ │ │ │ │ o7 = {} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : LL7b=={} │ │ │ │ │ │ │ │ o8 = true │ │ │ │ @@ -93,22 +93,22 @@ │ │ │ │ o10 = (5, 8) │ │ │ │ │ │ │ │ o10 : Sequence │ │ │ │ i11 : elapsedTime nonWeierstrassSemigroups(m,g,Verbose=>true) │ │ │ │ (13, 1) │ │ │ │ {5, 8, 11, 12} │ │ │ │ unfolding │ │ │ │ - -- .31452s elapsed │ │ │ │ + -- .134398s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .222111s elapsed │ │ │ │ + -- .0921477s elapsed │ │ │ │ next gb │ │ │ │ - -- .00146195s elapsed │ │ │ │ + -- .000657969s elapsed │ │ │ │ true │ │ │ │ - -- .851703s elapsed │ │ │ │ -(5, 8, all semigroups are smoothable) -- .915236s elapsed │ │ │ │ + -- .366155s elapsed │ │ │ │ +(5, 8, all semigroups are smoothable) -- .399945s elapsed │ │ │ │ │ │ │ │ │ │ │ │ o11 = {} │ │ │ │ │ │ │ │ o11 : List │ │ │ │ In the verbose mode we get timings of various computation steps and further │ │ │ │ information. The first line, (13,1), indicates that there 13 semigroups of │ │ │ │ @@ -121,22 +121,22 @@ │ │ │ │ o12 = {6, 8, 9, 11} │ │ │ │ │ │ │ │ o12 : List │ │ │ │ i13 : genus L │ │ │ │ │ │ │ │ o13 = 8 │ │ │ │ i14 : isWeierstrassSemigroup(L,0.2,Verbose=>true) │ │ │ │ - -- .0789936s elapsed │ │ │ │ + -- .0418583s elapsed │ │ │ │ 6 │ │ │ │ false │ │ │ │ 5 │ │ │ │ false │ │ │ │ 4 │ │ │ │ decompose │ │ │ │ - -- .446926s elapsed │ │ │ │ + -- .197709s elapsed │ │ │ │ number of components: 2 │ │ │ │ support c, codim c: {(1, 1), (16, 3)} │ │ │ │ {0, -1} │ │ │ │ │ │ │ │ o14 = true │ │ │ │ The first integer, 6, tells that in this attempt deformation parameters of │ │ │ │ degree >= 6 were used and no smooth fiber was found. Finally with all │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_heuristic__Smoothness.html │ │ │ @@ -91,15 +91,15 @@ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime tally apply(10,i-> (
    │ │ │               c=minors(2,random(S^2,S^{3:-2}));
    │ │ │               c=sub(c,x_0=>1);
    │ │ │               R=kk[support c];c=sub(c,R);
    │ │ │               heuristicSmoothness c))
    │ │ │ - -- 3.07914s elapsed
    │ │ │ + -- 1.90367s elapsed
    │ │ │  
    │ │ │  o4 = Tally{false => 6}
    │ │ │             true => 4
    │ │ │  
    │ │ │  o4 : Tally
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -26,15 +26,15 @@ │ │ │ │ o2 : PolynomialRing │ │ │ │ i3 : setRandomSeed "some singular and some smooth curves"; │ │ │ │ i4 : elapsedTime tally apply(10,i-> ( │ │ │ │ c=minors(2,random(S^2,S^{3:-2})); │ │ │ │ c=sub(c,x_0=>1); │ │ │ │ R=kk[support c];c=sub(c,R); │ │ │ │ heuristicSmoothness c)) │ │ │ │ - -- 3.07914s elapsed │ │ │ │ + -- 1.90367s elapsed │ │ │ │ │ │ │ │ o4 = Tally{false => 6} │ │ │ │ true => 4 │ │ │ │ │ │ │ │ o4 : Tally │ │ │ │ ********** WWaayyss ttoo uussee hheeuurriissttiiccSSmmooootthhnneessss:: ********** │ │ │ │ * heuristicSmoothness(Ideal) │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__Smoothable__Semigroup.html │ │ │ @@ -95,21 +95,21 @@ │ │ │ │ │ │
    i2 : genus L
    │ │ │  
    │ │ │  o2 = 8
    │ │ │ │ │ │ │ │ │
    i3 : elapsedTime isSmoothableSemigroup(L,0.30,0)
    │ │ │ - -- .771857s elapsed
    │ │ │ + -- .546023s elapsed
    │ │ │  
    │ │ │  o3 = false
    │ │ │ │ │ │ │ │ │
    i4 : elapsedTime isSmoothableSemigroup(L,0.14,0)
    │ │ │ - -- 4.57876s elapsed
    │ │ │ + -- 2.06113s elapsed
    │ │ │  
    │ │ │  o4 = true
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -30,19 +30,19 @@ │ │ │ │ o1 = {6, 8, 9, 11} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : genus L │ │ │ │ │ │ │ │ o2 = 8 │ │ │ │ i3 : elapsedTime isSmoothableSemigroup(L,0.30,0) │ │ │ │ - -- .771857s elapsed │ │ │ │ + -- .546023s elapsed │ │ │ │ │ │ │ │ o3 = false │ │ │ │ i4 : elapsedTime isSmoothableSemigroup(L,0.14,0) │ │ │ │ - -- 4.57876s elapsed │ │ │ │ + -- 2.06113s elapsed │ │ │ │ │ │ │ │ o4 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_a_k_e_U_n_f_o_l_d_i_n_g -- Makes the universal homogeneous unfolding of an ideal │ │ │ │ with positive degree parameters │ │ │ │ * _f_l_a_t_t_e_n_i_n_g_R_e_l_a_t_i_o_n_s -- Compute the flattening relations of an unfolding │ │ │ │ * _g_e_t_F_l_a_t_F_a_m_i_l_y -- Compute the flat family depending on a subset of │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__Weierstrass__Semigroup.html │ │ │ @@ -93,15 +93,15 @@ │ │ │ │ │ │
    i2 : genus L
    │ │ │  
    │ │ │  o2 = 8
    │ │ │ │ │ │ │ │ │
    i3 : elapsedTime isWeierstrassSemigroup(L,0.15)
    │ │ │ - -- 3.84044s elapsed
    │ │ │ + -- 2.12333s elapsed
    │ │ │  
    │ │ │  o3 = true
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -30,15 +30,15 @@ │ │ │ │ o1 = {6, 8, 9, 11} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : genus L │ │ │ │ │ │ │ │ o2 = 8 │ │ │ │ i3 : elapsedTime isWeierstrassSemigroup(L,0.15) │ │ │ │ - -- 3.84044s elapsed │ │ │ │ + -- 2.12333s elapsed │ │ │ │ │ │ │ │ o3 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_a_k_e_U_n_f_o_l_d_i_n_g -- Makes the universal homogeneous unfolding of an ideal │ │ │ │ with positive degree parameters │ │ │ │ * _f_l_a_t_t_e_n_i_n_g_R_e_l_a_t_i_o_n_s -- Compute the flattening relations of an unfolding │ │ │ │ * _g_e_t_F_l_a_t_F_a_m_i_l_y -- Compute the flat family depending on a subset of │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_non__Weierstrass__Semigroups.html │ │ │ @@ -82,15 +82,15 @@ │ │ │

    Description

    │ │ │
    │ │ │

    We test which semigroups of multiplicity m and genus g are smoothable. If no smoothing was found then L is a candidate for a non Weierstrass semigroup. In this search certain semigroups L in LLdifficult, where the computation is particular heavy are excluded.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -101,61 +101,61 @@ │ │ │ o2 : List │ │ │ │ │ │ │ │ │ │ │ │
    i1 : elapsedTime nonWeierstrassSemigroups(6,7)
    │ │ │ -(6, 7,  all semigroups are smoothable) -- 1.56638s elapsed
    │ │ │ +(6, 7,  all semigroups are smoothable) -- .7741s elapsed
    │ │ │  
    │ │ │  
    │ │ │  o1 = {}
    │ │ │  
    │ │ │  o1 : List
    │ │ │
    i3 : elapsedTime nonWeierstrassSemigroups(6,8,LLdifficult,Verbose=>true)
    │ │ │  (17, 5)
    │ │ │  {6, 7, 8, 17}
    │ │ │  unfolding
    │ │ │ - -- .380066s elapsed
    │ │ │ + -- .24143s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .178994s elapsed
    │ │ │ + -- .0875304s elapsed
    │ │ │  next gb
    │ │ │ - -- .00179905s elapsed
    │ │ │ + -- .00130079s elapsed
    │ │ │  true
    │ │ │ - -- .959568s elapsed
    │ │ │ + -- .553599s elapsed
    │ │ │  {6, 7, 9, 17}
    │ │ │  unfolding
    │ │ │ - -- .402129s elapsed
    │ │ │ + -- .236677s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .190718s elapsed
    │ │ │ + -- .100247s elapsed
    │ │ │  next gb
    │ │ │ - -- .00255459s elapsed
    │ │ │ + -- .00185122s elapsed
    │ │ │  decompose
    │ │ │ - -- .183642s elapsed
    │ │ │ + -- .112114s elapsed
    │ │ │  number of components: 2
    │ │ │  support c, codim c: {(2, 2), (5, 2)}
    │ │ │  {0, -1}
    │ │ │ - -- 2.51269s elapsed
    │ │ │ + -- 1.81031s elapsed
    │ │ │  {6, 8, 9, 10}
    │ │ │  unfolding
    │ │ │ - -- .0737587s elapsed
    │ │ │ + -- .0659571s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .0919318s elapsed
    │ │ │ + -- .0866994s elapsed
    │ │ │  next gb
    │ │ │ - -- .000445154s elapsed
    │ │ │ + -- .000368268s elapsed
    │ │ │  true
    │ │ │ - -- .609331s elapsed
    │ │ │ + -- .40854s elapsed
    │ │ │  {6, 8, 10, 11, 13}
    │ │ │  unfolding
    │ │ │ - -- .475404s elapsed
    │ │ │ + -- .314834s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .292145s elapsed
    │ │ │ + -- .126464s elapsed
    │ │ │  next gb
    │ │ │ - -- .00644164s elapsed
    │ │ │ + -- .002645s elapsed
    │ │ │  decompose
    │ │ │ - -- 1.13216s elapsed
    │ │ │ + -- .514707s elapsed
    │ │ │  number of components: 1
    │ │ │  support c, codim c: {(5, 1)}
    │ │ │  {-1}
    │ │ │ - -- 3.15341s elapsed
    │ │ │ - -- 7.23516s elapsed
    │ │ │ + -- 1.54433s elapsed
    │ │ │ + -- 4.3169s elapsed
    │ │ │  0
    │ │ │  
    │ │ │ - -- .0000054s elapsed
    │ │ │ - -- 7.26994s elapsed
    │ │ │ + -- .000003096s elapsed
    │ │ │ + -- 4.34576s elapsed
    │ │ │  {}
    │ │ │  
    │ │ │  o3 = {{6, 8, 9, 11}}
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -22,76 +22,76 @@ │ │ │ │ LLdifficult │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ We test which semigroups of multiplicity m and genus g are smoothable. If no │ │ │ │ smoothing was found then L is a candidate for a non Weierstrass semigroup. In │ │ │ │ this search certain semigroups L in LLdifficult, where the computation is │ │ │ │ particular heavy are excluded. │ │ │ │ i1 : elapsedTime nonWeierstrassSemigroups(6,7) │ │ │ │ -(6, 7, all semigroups are smoothable) -- 1.56638s elapsed │ │ │ │ +(6, 7, all semigroups are smoothable) -- .7741s elapsed │ │ │ │ │ │ │ │ │ │ │ │ o1 = {} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : LLdifficult={{6, 8, 9, 11}} │ │ │ │ │ │ │ │ o2 = {{6, 8, 9, 11}} │ │ │ │ │ │ │ │ o2 : List │ │ │ │ i3 : elapsedTime nonWeierstrassSemigroups(6,8,LLdifficult,Verbose=>true) │ │ │ │ (17, 5) │ │ │ │ {6, 7, 8, 17} │ │ │ │ unfolding │ │ │ │ - -- .380066s elapsed │ │ │ │ + -- .24143s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .178994s elapsed │ │ │ │ + -- .0875304s elapsed │ │ │ │ next gb │ │ │ │ - -- .00179905s elapsed │ │ │ │ + -- .00130079s elapsed │ │ │ │ true │ │ │ │ - -- .959568s elapsed │ │ │ │ + -- .553599s elapsed │ │ │ │ {6, 7, 9, 17} │ │ │ │ unfolding │ │ │ │ - -- .402129s elapsed │ │ │ │ + -- .236677s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .190718s elapsed │ │ │ │ + -- .100247s elapsed │ │ │ │ next gb │ │ │ │ - -- .00255459s elapsed │ │ │ │ + -- .00185122s elapsed │ │ │ │ decompose │ │ │ │ - -- .183642s elapsed │ │ │ │ + -- .112114s elapsed │ │ │ │ number of components: 2 │ │ │ │ support c, codim c: {(2, 2), (5, 2)} │ │ │ │ {0, -1} │ │ │ │ - -- 2.51269s elapsed │ │ │ │ + -- 1.81031s elapsed │ │ │ │ {6, 8, 9, 10} │ │ │ │ unfolding │ │ │ │ - -- .0737587s elapsed │ │ │ │ + -- .0659571s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .0919318s elapsed │ │ │ │ + -- .0866994s elapsed │ │ │ │ next gb │ │ │ │ - -- .000445154s elapsed │ │ │ │ + -- .000368268s elapsed │ │ │ │ true │ │ │ │ - -- .609331s elapsed │ │ │ │ + -- .40854s elapsed │ │ │ │ {6, 8, 10, 11, 13} │ │ │ │ unfolding │ │ │ │ - -- .475404s elapsed │ │ │ │ + -- .314834s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .292145s elapsed │ │ │ │ + -- .126464s elapsed │ │ │ │ next gb │ │ │ │ - -- .00644164s elapsed │ │ │ │ + -- .002645s elapsed │ │ │ │ decompose │ │ │ │ - -- 1.13216s elapsed │ │ │ │ + -- .514707s elapsed │ │ │ │ number of components: 1 │ │ │ │ support c, codim c: {(5, 1)} │ │ │ │ {-1} │ │ │ │ - -- 3.15341s elapsed │ │ │ │ - -- 7.23516s elapsed │ │ │ │ + -- 1.54433s elapsed │ │ │ │ + -- 4.3169s elapsed │ │ │ │ 0 │ │ │ │ │ │ │ │ - -- .0000054s elapsed │ │ │ │ - -- 7.26994s elapsed │ │ │ │ + -- .000003096s elapsed │ │ │ │ + -- 4.34576s elapsed │ │ │ │ {} │ │ │ │ │ │ │ │ o3 = {{6, 8, 9, 11}} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ In the verbose mode we get timings of various computation steps and further │ │ │ │ information. The first line, (17,5), indicates that there 17 semigroups of │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=29 │ │ │ dG9TdHJpbmcoUG9seW5vbWlhbE9JQWxnZWJyYSk= │ │ │ #:len=1044 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiZGlzcGxheSBhIHBvbHlub21pYWwgT0kt │ │ │ YWxnZWJyYSBpbiBjb25kZW5zZWQgZm9ybSIsICJsaW5lbnVtIiA9PiAxNTE2LCBJbnB1dHMgPT4g │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___O__I__Resolution.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 1) │ │ │ - -- used 0.151035s (cpu); 0.0852379s (thread); 0s (gc) │ │ │ + -- used 0.128907s (cpu); 0.0746386s (thread); 0s (gc) │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ 1: (e1, {4, 4}, {-4, -4}) │ │ │ │ │ │ o5 : OIResolution │ │ │ │ │ │ i6 : C.dd_0 │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___O__I__Resolution_sp_us_sp__Z__Z.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 1); │ │ │ - -- used 0.149075s (cpu); 0.0863072s (thread); 0s (gc) │ │ │ + -- used 0.155667s (cpu); 0.102495s (thread); 0s (gc) │ │ │ │ │ │ i6 : C_0 │ │ │ │ │ │ o6 = Basis symbol: e0 │ │ │ Basis element widths: {2} │ │ │ Degree shifts: {-2} │ │ │ Polynomial OI-algebra: (2, x, QQ, RowUpColUp) │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Top__Nonminimal.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time oiRes({b}, 2, TopNonminimal => true) │ │ │ - -- used 0.341566s (cpu); 0.24142s (thread); 0s (gc) │ │ │ + -- used 0.278713s (cpu); 0.182372s (thread); 0s (gc) │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ 1: (e1, {4}, {-4}) │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ o5 : OIResolution │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe__Full.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 1); │ │ │ - -- used 0.121853s (cpu); 0.084206s (thread); 0s (gc) │ │ │ + -- used 0.136724s (cpu); 0.08879s (thread); 0s (gc) │ │ │ │ │ │ i6 : describeFull C │ │ │ │ │ │ o6 = 0: Module: Basis symbol: e0 │ │ │ Basis element widths: {2} │ │ │ Degree shifts: {-2} │ │ │ Polynomial OI-algebra: (2, x, QQ, RowUpColUp) │ │ │ @@ -21,11 +21,11 @@ │ │ │ Differential: Source: (e0, {2}, {-2}) Target: (e, {1, 1}, {0, 0}) │ │ │ 1: Module: Basis symbol: e1 │ │ │ Basis element widths: {4, 4} │ │ │ Degree shifts: {-4, -4} │ │ │ Polynomial OI-algebra: (2, x, QQ, RowUpColUp) │ │ │ Monomial order: Lex │ │ │ Differential: Source: (e1, {4, 4}, {-4, -4}) Target: (e0, {2}, {-2}) │ │ │ - Basis element images: {-x x e0 + x x e0 + x x e0 - x x e0 , 0} │ │ │ - 2,3 1,1 4,{2, 4},1 2,4 1,1 4,{2, 3},1 2,3 1,2 4,{1, 4},1 2,4 1,2 4,{1, 3},1 │ │ │ + Basis element images: {0, -x x e0 + x x e0 + x x e0 - x x e0 } │ │ │ + 2,3 1,1 4,{2, 4},1 2,4 1,1 4,{2, 3},1 2,3 1,2 4,{1, 4},1 2,4 1,2 4,{1, 3},1 │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__Free__O__I__Module__Map_rp.out │ │ │ @@ -10,21 +10,18 @@ │ │ │ │ │ │ i5 : C = oiRes({b}, 2); │ │ │ │ │ │ i6 : phi = C.dd_1; │ │ │ │ │ │ i7 : describe phi │ │ │ │ │ │ -o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2}) │ │ │ - Basis element images: {-x e0 + x e0 + │ │ │ - 2,2 5,{1, 3, 5},1 2,2 5,{1, 3, 4},1 │ │ │ +o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2}) │ │ │ + Basis element images: {x x e0 - x x e0 │ │ │ + 2,3 1,1 5,{2, 4, 5},1 2,4 1,1 5,{2, 3, 5},1 │ │ │ ------------------------------------------------------------------------ │ │ │ - x e0 - x e0 , x x e0 - │ │ │ - 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 2,3 1,1 5,{2, 4, 5},1 │ │ │ + - x x e0 + x x e0 , -x e0 │ │ │ + 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, 5},1 2,2 5,{1, 3, │ │ │ ------------------------------------------------------------------------ │ │ │ - x x e0 - x x e0 + x x e0 │ │ │ - 2,4 1,1 5,{2, 3, 5},1 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, │ │ │ - ------------------------------------------------------------------------ │ │ │ - } │ │ │ - 5},1 │ │ │ + + x e0 + x e0 - x e0 } │ │ │ + 5},1 2,2 5,{1, 3, 4},1 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__O__I__Resolution_rp.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 1); │ │ │ - -- used 0.150135s (cpu); 0.100171s (thread); 0s (gc) │ │ │ + -- used 0.126077s (cpu); 0.0749056s (thread); 0s (gc) │ │ │ │ │ │ i6 : describe C │ │ │ │ │ │ o6 = 0: Module: Basis symbol: e0 │ │ │ Basis element widths: {2} │ │ │ Degree shifts: {-2} │ │ │ Polynomial OI-algebra: (2, x, QQ, RowUpColUp) │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Complex.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 2, TopNonminimal => true) │ │ │ - -- used 0.349406s (cpu); 0.23824s (thread); 0s (gc) │ │ │ + -- used 0.301099s (cpu); 0.192379s (thread); 0s (gc) │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ 1: (e1, {4}, {-4}) │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ o5 : OIResolution │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__O__I__G__B.out │ │ │ @@ -15,15 +15,15 @@ │ │ │ i8 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3); │ │ │ │ │ │ i10 : isOIGB {b1, b2} │ │ │ │ │ │ o10 = false │ │ │ │ │ │ i11 : time B = oiGB {b1, b2} │ │ │ - -- used 0.0196182s (cpu); 0.0219962s (thread); 0s (gc) │ │ │ + -- used 0.0159993s (cpu); 0.0177285s (thread); 0s (gc) │ │ │ │ │ │ o11 = {x e + x e , x x e + x x e , │ │ │ 1,1 1,{1},1 2,1 1,{1},2 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ ----------------------------------------------------------------------- │ │ │ x x x e - x x x e } │ │ │ 2,3 2,2 1,1 3,{2, 3},3 2,3 2,1 1,2 3,{1, 3},3 │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_minimize__O__I__G__B.out │ │ │ @@ -11,15 +11,15 @@ │ │ │ i5 : installGeneratorsInWidth(F, 3); │ │ │ │ │ │ i6 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2); │ │ │ │ │ │ i8 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3); │ │ │ │ │ │ i10 : time B = oiGB {b1, b2} │ │ │ - -- used 0.0239924s (cpu); 0.0236563s (thread); 0s (gc) │ │ │ + -- used 0.0199998s (cpu); 0.0202587s (thread); 0s (gc) │ │ │ │ │ │ o10 = {x e + x e , x x e + x x e , │ │ │ 1,1 1,{1},1 2,1 1,{1},2 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ ----------------------------------------------------------------------- │ │ │ x x x e - x x x e } │ │ │ 2,3 2,2 1,1 3,{2, 3},3 2,3 2,1 1,2 3,{1, 3},3 │ │ │ │ │ │ @@ -41,18 +41,18 @@ │ │ │ - x x e } │ │ │ 3},3 2,1 1,2 3,{1, 3},3 │ │ │ │ │ │ o13 : List │ │ │ │ │ │ i14 : minimizeOIGB C -- an element gets removed │ │ │ │ │ │ - │ │ │ -o14 = {x x e + x x e , x x x e - │ │ │ - 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 2,3 2,2 1,1 3,{2, 3},3 │ │ │ + │ │ │ +o14 = {x e + x e , x x e + x x e , │ │ │ + 1,1 1,{1},1 2,1 1,{1},2 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 │ │ │ - x x e , x e + x e } │ │ │ - 2,1 1,2 3,{1, 3},3 1,1 1,{1},1 2,1 1,{1},2 │ │ │ + 2 │ │ │ + x x x e - x x e } │ │ │ + 2,3 2,2 1,1 3,{2, 3},3 2,1 1,2 3,{1, 3},3 │ │ │ │ │ │ o14 : List │ │ │ │ │ │ i15 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__O__I__Resolution_rp.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 1); │ │ │ - -- used 0.152193s (cpu); 0.0872943s (thread); 0s (gc) │ │ │ + -- used 0.12806s (cpu); 0.0712107s (thread); 0s (gc) │ │ │ │ │ │ i6 : net C │ │ │ │ │ │ o6 = 0: (e0, {2}, {-2}) │ │ │ 1: (e1, {4, 4}, {-4, -4}) │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__G__B.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i4 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i5 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2); │ │ │ │ │ │ i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3); │ │ │ │ │ │ i9 : time oiGB {b1, b2} │ │ │ - -- used 0.0240585s (cpu); 0.0242842s (thread); 0s (gc) │ │ │ + -- used 0.0199672s (cpu); 0.0212784s (thread); 0s (gc) │ │ │ │ │ │ o9 = {x e + x e , x x e + x x e , │ │ │ 1,1 1,{1},1 2,1 1,{1},2 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ ------------------------------------------------------------------------ │ │ │ x x x e - x x x e } │ │ │ 2,3 2,2 1,1 3,{2, 3},3 2,3 2,1 1,2 3,{1, 3},3 │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Res.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time oiRes({b}, 2, TopNonminimal => true) │ │ │ - -- used 0.446407s (cpu); 0.288554s (thread); 0s (gc) │ │ │ + -- used 0.301528s (cpu); 0.200939s (thread); 0s (gc) │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ 1: (e1, {4}, {-4}) │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ o5 : OIResolution │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_reduce__O__I__G__B.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i4 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i5 : use F_1; b1 = x_(2,1)*e_(1,{1},2)+x_(1,1)*e_(1,{1},2); │ │ │ │ │ │ i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(1,2)*e_(2,{2},2); │ │ │ │ │ │ i9 : time B = oiGB({b1, b2}, Strategy => FastNonminimal) │ │ │ - -- used 0.249592s (cpu); 0.189708s (thread); 0s (gc) │ │ │ + -- used 0.148745s (cpu); 0.0934098s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ o9 = {x e + x e , x x e + x x e , │ │ │ 2,1 1,{1},2 1,1 1,{1},2 1,2 1,1 2,{2},1 2,2 1,2 2,{2},2 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 │ │ │ x x e - x x e } │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Resolution.html │ │ │ @@ -58,15 +58,15 @@ │ │ │
    i3 : installGeneratorsInWidth(F, 2);
    │ │ │ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 1)
    │ │ │ - -- used 0.151035s (cpu); 0.0852379s (thread); 0s (gc)
    │ │ │ + -- used 0.128907s (cpu); 0.0746386s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 0: (e0, {2}, {-2})
    │ │ │       1: (e1, {4, 4}, {-4, -4})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ complex, use _i_s_C_o_m_p_l_e_x. To get the $n$th differential in an OI-resolution C, │ │ │ │ use C.dd_n. │ │ │ │ i1 : P = makePolynomialOIAlgebra(2, x, QQ); │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ i5 : time C = oiRes({b}, 1) │ │ │ │ - -- used 0.151035s (cpu); 0.0852379s (thread); 0s (gc) │ │ │ │ + -- used 0.128907s (cpu); 0.0746386s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ │ 1: (e1, {4, 4}, {-4, -4}) │ │ │ │ │ │ │ │ o5 : OIResolution │ │ │ │ i6 : C.dd_0 │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Resolution_sp_us_sp__Z__Z.html │ │ │ @@ -85,15 +85,15 @@ │ │ │
    i3 : installGeneratorsInWidth(F, 2);
    │ │ │ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 1);
    │ │ │ - -- used 0.149075s (cpu); 0.0863072s (thread); 0s (gc)
    │ │ │ + -- used 0.155667s (cpu); 0.102495s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │
    i6 : C_0
    │ │ │  
    │ │ │  o6 = Basis symbol: e0
    │ │ │       Basis element widths: {2}
    │ │ │       Degree shifts: {-2}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -17,15 +17,15 @@
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  Returns the free OI-module of $C$ in homological degree $n$.
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │  i5 : time C = oiRes({b}, 1);
    │ │ │ │ - -- used 0.149075s (cpu); 0.0863072s (thread); 0s (gc)
    │ │ │ │ + -- used 0.155667s (cpu); 0.102495s (thread); 0s (gc)
    │ │ │ │  i6 : C_0
    │ │ │ │  
    │ │ │ │  o6 = Basis symbol: e0
    │ │ │ │       Basis element widths: {2}
    │ │ │ │       Degree shifts: {-2}
    │ │ │ │       Polynomial OI-algebra: (2, x, QQ, RowUpColUp)
    │ │ │ │       Monomial order: Lex
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Top__Nonminimal.html
    │ │ │ @@ -58,15 +58,15 @@
    │ │ │                
    i3 : installGeneratorsInWidth(F, 2);
    │ │ │ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │
    i5 : time oiRes({b}, 2, TopNonminimal => true)
    │ │ │ - -- used 0.341566s (cpu); 0.24142s (thread); 0s (gc)
    │ │ │ + -- used 0.278713s (cpu); 0.182372s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 0: (e0, {2}, {-2})
    │ │ │       1: (e1, {4}, {-4})
    │ │ │       2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ homological degree $n-1$ to be minimized. Therefore, use TopNonminimal => true │ │ │ │ for no minimization of the basis in degree $n-1$. │ │ │ │ i1 : P = makePolynomialOIAlgebra(2, x, QQ); │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ i5 : time oiRes({b}, 2, TopNonminimal => true) │ │ │ │ - -- used 0.341566s (cpu); 0.24142s (thread); 0s (gc) │ │ │ │ + -- used 0.278713s (cpu); 0.182372s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ │ 1: (e1, {4}, {-4}) │ │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ │ │ o5 : OIResolution │ │ │ │ ********** FFuunnccttiioonnss wwiitthh ooppttiioonnaall aarrgguummeenntt nnaammeedd TTooppNNoonnmmiinniimmaall:: ********** │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe__Full.html │ │ │ @@ -81,15 +81,15 @@ │ │ │
    i3 : installGeneratorsInWidth(F, 2);
    │ │ │ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 1);
    │ │ │ - -- used 0.121853s (cpu); 0.084206s (thread); 0s (gc)
    │ │ │ + -- used 0.136724s (cpu); 0.08879s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │
    i6 : describeFull C
    │ │ │  
    │ │ │  o6 = 0: Module: Basis symbol: e0
    │ │ │                  Basis element widths: {2}
    │ │ │                  Degree shifts: {-2}
    │ │ │ @@ -98,16 +98,16 @@
    │ │ │       Differential: Source: (e0, {2}, {-2}) Target: (e, {1, 1}, {0, 0})
    │ │ │       1: Module: Basis symbol: e1
    │ │ │                  Basis element widths: {4, 4}
    │ │ │                  Degree shifts: {-4, -4}
    │ │ │                  Polynomial OI-algebra: (2, x, QQ, RowUpColUp)
    │ │ │                  Monomial order: Lex
    │ │ │       Differential: Source: (e1, {4, 4}, {-4, -4}) Target: (e0, {2}, {-2})
    │ │ │ -                   Basis element images: {-x   x   e0           + x   x   e0           + x   x   e0           - x   x   e0          , 0}
    │ │ │ -                                            2,3 1,1  4,{2, 4},1    2,4 1,1  4,{2, 3},1    2,3 1,2  4,{1, 4},1    2,4 1,2  4,{1, 3},1
    │ │ │ + Basis element images: {0, -x x e0 + x x e0 + x x e0 - x x e0 } │ │ │ + 2,3 1,1 4,{2, 4},1 2,4 1,1 4,{2, 3},1 2,3 1,2 4,{1, 4},1 2,4 1,2 4,{1, 3},1 │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    Ways to use describeFull:

    │ │ │
      │ │ │
    • │ │ │ ├── html2text {} │ │ │ │ @@ -15,30 +15,30 @@ │ │ │ │ Displays the free OI-modules and describes the differentials of an OI- │ │ │ │ resolution. │ │ │ │ i1 : P = makePolynomialOIAlgebra(2, x, QQ); │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ i5 : time C = oiRes({b}, 1); │ │ │ │ - -- used 0.121853s (cpu); 0.084206s (thread); 0s (gc) │ │ │ │ + -- used 0.136724s (cpu); 0.08879s (thread); 0s (gc) │ │ │ │ i6 : describeFull C │ │ │ │ │ │ │ │ o6 = 0: Module: Basis symbol: e0 │ │ │ │ Basis element widths: {2} │ │ │ │ Degree shifts: {-2} │ │ │ │ Polynomial OI-algebra: (2, x, QQ, RowUpColUp) │ │ │ │ Monomial order: Lex │ │ │ │ Differential: Source: (e0, {2}, {-2}) Target: (e, {1, 1}, {0, 0}) │ │ │ │ 1: Module: Basis symbol: e1 │ │ │ │ Basis element widths: {4, 4} │ │ │ │ Degree shifts: {-4, -4} │ │ │ │ Polynomial OI-algebra: (2, x, QQ, RowUpColUp) │ │ │ │ Monomial order: Lex │ │ │ │ Differential: Source: (e1, {4, 4}, {-4, -4}) Target: (e0, {2}, {-2}) │ │ │ │ - Basis element images: {-x x e0 + x x e0 │ │ │ │ -+ x x e0 - x x e0 , 0} │ │ │ │ - 2,3 1,1 4,{2, 4},1 2,4 1,1 4, │ │ │ │ -{2, 3},1 2,3 1,2 4,{1, 4},1 2,4 1,2 4,{1, 3},1 │ │ │ │ + Basis element images: {0, -x x e0 + x x e0 │ │ │ │ ++ x x e0 - x x e0 } │ │ │ │ + 2,3 1,1 4,{2, 4},1 2,4 1,1 │ │ │ │ +4,{2, 3},1 2,3 1,2 4,{1, 4},1 2,4 1,2 4,{1, 3},1 │ │ │ │ ********** WWaayyss ttoo uussee ddeessccrriibbeeFFuullll:: ********** │ │ │ │ * describeFull(OIResolution) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _d_e_s_c_r_i_b_e_F_u_l_l is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n. │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__Free__O__I__Module__Map_rp.html │ │ │ @@ -90,26 +90,23 @@ │ │ │ │ │ │ │ │ │
      i6 : phi = C.dd_1;
      │ │ │ │ │ │ │ │ │
      i7 : describe phi
      │ │ │  
      │ │ │ -o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2})
      │ │ │ -     Basis element images: {-x   e0              + x   e0              +
      │ │ │ -                              2,2  5,{1, 3, 5},1    2,2  5,{1, 3, 4},1  
      │ │ │ +o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2})
      │ │ │ +     Basis element images: {x   x   e0              - x   x   e0             
      │ │ │ +                             2,3 1,1  5,{2, 4, 5},1    2,4 1,1  5,{2, 3, 5},1
      │ │ │       ------------------------------------------------------------------------
      │ │ │ -     x   e0              - x   e0             , x   x   e0              -
      │ │ │ -      2,3  5,{1, 2, 5},1    2,3  5,{1, 2, 4},1   2,3 1,1  5,{2, 4, 5},1  
      │ │ │ +     - x   x   e0              + x   x   e0             , -x   e0        
      │ │ │ +        2,3 1,2  5,{1, 4, 5},1    2,4 1,2  5,{1, 3, 5},1    2,2  5,{1, 3,
      │ │ │       ------------------------------------------------------------------------
      │ │ │ -     x   x   e0              - x   x   e0              + x   x   e0        
      │ │ │ -      2,4 1,1  5,{2, 3, 5},1    2,3 1,2  5,{1, 4, 5},1    2,4 1,2  5,{1, 3,
      │ │ │ -     ------------------------------------------------------------------------
      │ │ │ -         }
      │ │ │ -     5},1
      │ │ │ + + x e0 + x e0 - x e0 } │ │ │ + 5},1 2,2 5,{1, 3, 4},1 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    Ways to use this method:

    │ │ │
      │ │ │
    • │ │ │ ├── html2text {} │ │ │ │ @@ -19,21 +19,18 @@ │ │ │ │ i2 : F = makeFreeOIModule(e, {1,2}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 3); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2); │ │ │ │ i5 : C = oiRes({b}, 2); │ │ │ │ i6 : phi = C.dd_1; │ │ │ │ i7 : describe phi │ │ │ │ │ │ │ │ -o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2}) │ │ │ │ - Basis element images: {-x e0 + x e0 + │ │ │ │ - 2,2 5,{1, 3, 5},1 2,2 5,{1, 3, 4},1 │ │ │ │ +o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2}) │ │ │ │ + Basis element images: {x x e0 - x x e0 │ │ │ │ + 2,3 1,1 5,{2, 4, 5},1 2,4 1,1 5,{2, 3, 5},1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - x e0 - x e0 , x x e0 - │ │ │ │ - 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 2,3 1,1 5,{2, 4, 5},1 │ │ │ │ + - x x e0 + x x e0 , -x e0 │ │ │ │ + 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, 5},1 2,2 5,{1, 3, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - x x e0 - x x e0 + x x e0 │ │ │ │ - 2,4 1,1 5,{2, 3, 5},1 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - } │ │ │ │ - 5},1 │ │ │ │ + + x e0 + x e0 - x e0 } │ │ │ │ + 5},1 2,2 5,{1, 3, 4},1 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _d_e_s_c_r_i_b_e_(_F_r_e_e_O_I_M_o_d_u_l_e_M_a_p_) -- display a free OI-module map │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__O__I__Resolution_rp.html │ │ │ @@ -83,15 +83,15 @@ │ │ │
      i3 : installGeneratorsInWidth(F, 2);
      │ │ │ │ │ │ │ │ │
      i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
      │ │ │ │ │ │ │ │ │
      i5 : time C = oiRes({b}, 1);
      │ │ │ - -- used 0.150135s (cpu); 0.100171s (thread); 0s (gc)
      │ │ │ + -- used 0.126077s (cpu); 0.0749056s (thread); 0s (gc) │ │ │ │ │ │ │ │ │
      i6 : describe C
      │ │ │  
      │ │ │  o6 = 0: Module: Basis symbol: e0
      │ │ │                  Basis element widths: {2}
      │ │ │                  Degree shifts: {-2}
      │ │ │ ├── html2text {}
      │ │ │ │ @@ -15,15 +15,15 @@
      │ │ │ │  ********** DDeessccrriippttiioonn **********
      │ │ │ │  Displays the free OI-modules and differentials of an OI-resolution.
      │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
      │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1}, P);
      │ │ │ │  i3 : installGeneratorsInWidth(F, 2);
      │ │ │ │  i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
      │ │ │ │  i5 : time C = oiRes({b}, 1);
      │ │ │ │ - -- used 0.150135s (cpu); 0.100171s (thread); 0s (gc)
      │ │ │ │ + -- used 0.126077s (cpu); 0.0749056s (thread); 0s (gc)
      │ │ │ │  i6 : describe C
      │ │ │ │  
      │ │ │ │  o6 = 0: Module: Basis symbol: e0
      │ │ │ │                  Basis element widths: {2}
      │ │ │ │                  Degree shifts: {-2}
      │ │ │ │                  Polynomial OI-algebra: (2, x, QQ, RowUpColUp)
      │ │ │ │                  Monomial order: Lex
      │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Complex.html
      │ │ │ @@ -87,15 +87,15 @@
      │ │ │                
      i3 : installGeneratorsInWidth(F, 2);
      │ │ │ │ │ │ │ │ │
      i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
      │ │ │ │ │ │ │ │ │
      i5 : time C = oiRes({b}, 2, TopNonminimal => true)
      │ │ │ - -- used 0.349406s (cpu); 0.23824s (thread); 0s (gc)
      │ │ │ + -- used 0.301099s (cpu); 0.192379s (thread); 0s (gc)
      │ │ │  
      │ │ │  o5 = 0: (e0, {2}, {-2})
      │ │ │       1: (e1, {4}, {-4})
      │ │ │       2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5})
      │ │ │  
      │ │ │  o5 : OIResolution
      │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -18,15 +18,15 @@ │ │ │ │ option must be either true or false, depending on whether one wants debug │ │ │ │ information printed. │ │ │ │ i1 : P = makePolynomialOIAlgebra(2, x, QQ); │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ i5 : time C = oiRes({b}, 2, TopNonminimal => true) │ │ │ │ - -- used 0.349406s (cpu); 0.23824s (thread); 0s (gc) │ │ │ │ + -- used 0.301099s (cpu); 0.192379s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ │ 1: (e1, {4}, {-4}) │ │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ │ │ o5 : OIResolution │ │ │ │ i6 : isComplex C │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__O__I__G__B.html │ │ │ @@ -101,15 +101,15 @@ │ │ │ │ │ │
      i10 : isOIGB {b1, b2}
      │ │ │  
      │ │ │  o10 = false
      │ │ │ │ │ │ │ │ │
      i11 : time B = oiGB {b1, b2}
      │ │ │ - -- used 0.0196182s (cpu); 0.0219962s (thread); 0s (gc)
      │ │ │ + -- used 0.0159993s (cpu); 0.0177285s (thread); 0s (gc)
      │ │ │  
      │ │ │  o11 = {x   e        + x   e       , x   x   e        + x   x   e          ,
      │ │ │          1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3 
      │ │ │        -----------------------------------------------------------------------
      │ │ │        x   x   x   e           - x   x   x   e          }
      │ │ │         2,3 2,2 1,1 3,{2, 3},3    2,3 2,1 1,2 3,{1, 3},3
      │ │ │ ├── html2text {}
      │ │ │ │ @@ -25,15 +25,15 @@
      │ │ │ │  i5 : installGeneratorsInWidth(F, 3);
      │ │ │ │  i6 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2);
      │ │ │ │  i8 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3);
      │ │ │ │  i10 : isOIGB {b1, b2}
      │ │ │ │  
      │ │ │ │  o10 = false
      │ │ │ │  i11 : time B = oiGB {b1, b2}
      │ │ │ │ - -- used 0.0196182s (cpu); 0.0219962s (thread); 0s (gc)
      │ │ │ │ + -- used 0.0159993s (cpu); 0.0177285s (thread); 0s (gc)
      │ │ │ │  
      │ │ │ │  o11 = {x   e        + x   e       , x   x   e        + x   x   e          ,
      │ │ │ │          1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3
      │ │ │ │        -----------------------------------------------------------------------
      │ │ │ │        x   x   x   e           - x   x   x   e          }
      │ │ │ │         2,3 2,2 1,1 3,{2, 3},3    2,3 2,1 1,2 3,{1, 3},3
      │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_minimize__O__I__G__B.html
      │ │ │ @@ -96,15 +96,15 @@
      │ │ │                
      i6 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2);
      │ │ │ │ │ │ │ │ │
      i8 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3);
      │ │ │ │ │ │ │ │ │
      i10 : time B = oiGB {b1, b2}
      │ │ │ - -- used 0.0239924s (cpu); 0.0236563s (thread); 0s (gc)
      │ │ │ + -- used 0.0199998s (cpu); 0.0202587s (thread); 0s (gc)
      │ │ │  
      │ │ │  o10 = {x   e        + x   e       , x   x   e        + x   x   e          ,
      │ │ │          1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3 
      │ │ │        -----------------------------------------------------------------------
      │ │ │        x   x   x   e           - x   x   x   e          }
      │ │ │         2,3 2,2 1,1 3,{2, 3},3    2,3 2,1 1,2 3,{1, 3},3
      │ │ │  
      │ │ │ @@ -129,21 +129,21 @@
      │ │ │        3},3    2,1 1,2 3,{1, 3},3
      │ │ │  
      │ │ │  o13 : List
      │ │ │ │ │ │ │ │ │
      i14 : minimizeOIGB C -- an element gets removed
      │ │ │  
      │ │ │ -                                                                        
      │ │ │ -o14 = {x   x   e        + x   x   e          , x   x   x   e           -
      │ │ │ -        1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3   2,3 2,2 1,1 3,{2, 3},3  
      │ │ │ +                                                                           
      │ │ │ +o14 = {x   e        + x   e       , x   x   e        + x   x   e          ,
      │ │ │ +        1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3 
      │ │ │        -----------------------------------------------------------------------
      │ │ │ -           2
      │ │ │ -      x   x   e          , x   e        + x   e       }
      │ │ │ -       2,1 1,2 3,{1, 3},3   1,1 1,{1},1    2,1 1,{1},2
      │ │ │ +                                     2
      │ │ │ +      x   x   x   e           - x   x   e          }
      │ │ │ +       2,3 2,2 1,1 3,{2, 3},3    2,1 1,2 3,{1, 3},3
      │ │ │  
      │ │ │  o14 : List
      │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    Ways to use minimizeOIGB:

    │ │ │ ├── html2text {} │ │ │ │ @@ -22,15 +22,15 @@ │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1,2}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 1); │ │ │ │ i4 : installGeneratorsInWidth(F, 2); │ │ │ │ i5 : installGeneratorsInWidth(F, 3); │ │ │ │ i6 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2); │ │ │ │ i8 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3); │ │ │ │ i10 : time B = oiGB {b1, b2} │ │ │ │ - -- used 0.0239924s (cpu); 0.0236563s (thread); 0s (gc) │ │ │ │ + -- used 0.0199998s (cpu); 0.0202587s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = {x e + x e , x x e + x x e , │ │ │ │ 1,1 1,{1},1 2,1 1,{1},2 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ x x x e - x x x e } │ │ │ │ 2,3 2,2 1,1 3,{2, 3},3 2,3 2,1 1,2 3,{1, 3},3 │ │ │ │ │ │ │ │ @@ -51,19 +51,19 @@ │ │ │ │ - x x e } │ │ │ │ 3},3 2,1 1,2 3,{1, 3},3 │ │ │ │ │ │ │ │ o13 : List │ │ │ │ i14 : minimizeOIGB C -- an element gets removed │ │ │ │ │ │ │ │ │ │ │ │ -o14 = {x x e + x x e , x x x e - │ │ │ │ - 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 2,3 2,2 1,1 3,{2, 3},3 │ │ │ │ +o14 = {x e + x e , x x e + x x e , │ │ │ │ + 1,1 1,{1},1 2,1 1,{1},2 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 │ │ │ │ - x x e , x e + x e } │ │ │ │ - 2,1 1,2 3,{1, 3},3 1,1 1,{1},1 2,1 1,{1},2 │ │ │ │ + 2 │ │ │ │ + x x x e - x x e } │ │ │ │ + 2,3 2,2 1,1 3,{2, 3},3 2,1 1,2 3,{1, 3},3 │ │ │ │ │ │ │ │ o14 : List │ │ │ │ ********** WWaayyss ttoo uussee mmiinniimmiizzeeOOIIGGBB:: ********** │ │ │ │ * minimizeOIGB(List) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _m_i_n_i_m_i_z_e_O_I_G_B is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__O__I__Resolution_rp.html │ │ │ @@ -83,15 +83,15 @@ │ │ │
    i3 : installGeneratorsInWidth(F, 2);
    │ │ │ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 1);
    │ │ │ - -- used 0.152193s (cpu); 0.0872943s (thread); 0s (gc)
    │ │ │ + -- used 0.12806s (cpu); 0.0712107s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │
    i6 : net C
    │ │ │  
    │ │ │  o6 = 0: (e0, {2}, {-2})
    │ │ │       1: (e1, {4, 4}, {-4, -4})
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -16,14 +16,14 @@ │ │ │ │ Displays the basis element widths and degree shifts of the free OI-modules in │ │ │ │ an OI-resolution. │ │ │ │ i1 : P = makePolynomialOIAlgebra(2, x, QQ); │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ i5 : time C = oiRes({b}, 1); │ │ │ │ - -- used 0.152193s (cpu); 0.0872943s (thread); 0s (gc) │ │ │ │ + -- used 0.12806s (cpu); 0.0712107s (thread); 0s (gc) │ │ │ │ i6 : net C │ │ │ │ │ │ │ │ o6 = 0: (e0, {2}, {-2}) │ │ │ │ 1: (e1, {4, 4}, {-4, -4}) │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _n_e_t_(_O_I_R_e_s_o_l_u_t_i_o_n_) -- display an OI-resolution │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__G__B.html │ │ │ @@ -104,15 +104,15 @@ │ │ │
    i5 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2);
    │ │ │ │ │ │ │ │ │
    i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3);
    │ │ │ │ │ │ │ │ │
    i9 : time oiGB {b1, b2}
    │ │ │ - -- used 0.0240585s (cpu); 0.0242842s (thread); 0s (gc)
    │ │ │ + -- used 0.0199672s (cpu); 0.0212784s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 = {x   e        + x   e       , x   x   e        + x   x   e          ,
    │ │ │         1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3 
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x   x   x   e           - x   x   x   e          }
    │ │ │        2,3 2,2 1,1 3,{2, 3},3    2,3 2,1 1,2 3,{1, 3},3
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -29,15 +29,15 @@
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1,2}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 1);
    │ │ │ │  i4 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i5 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2);
    │ │ │ │  i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3);
    │ │ │ │  i9 : time oiGB {b1, b2}
    │ │ │ │ - -- used 0.0240585s (cpu); 0.0242842s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0199672s (cpu); 0.0212784s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o9 = {x   e        + x   e       , x   x   e        + x   x   e          ,
    │ │ │ │         1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       x   x   x   e           - x   x   x   e          }
    │ │ │ │        2,3 2,2 1,1 3,{2, 3},3    2,3 2,1 1,2 3,{1, 3},3
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Res.html
    │ │ │ @@ -105,15 +105,15 @@
    │ │ │                
    i3 : installGeneratorsInWidth(F, 2);
    │ │ │ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │
    i5 : time oiRes({b}, 2, TopNonminimal => true)
    │ │ │ - -- used 0.446407s (cpu); 0.288554s (thread); 0s (gc)
    │ │ │ + -- used 0.301528s (cpu); 0.200939s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 0: (e0, {2}, {-2})
    │ │ │       1: (e1, {4}, {-4})
    │ │ │       2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -34,15 +34,15 @@ │ │ │ │ Therefore, use TopNonminimal => true for no minimization of the basis in degree │ │ │ │ $n-1$. │ │ │ │ i1 : P = makePolynomialOIAlgebra(2, x, QQ); │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ i5 : time oiRes({b}, 2, TopNonminimal => true) │ │ │ │ - -- used 0.446407s (cpu); 0.288554s (thread); 0s (gc) │ │ │ │ + -- used 0.301528s (cpu); 0.200939s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ │ 1: (e1, {4}, {-4}) │ │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ │ │ o5 : OIResolution │ │ │ │ ********** WWaayyss ttoo uussee ooiiRReess:: ********** │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_reduce__O__I__G__B.html │ │ │ @@ -93,15 +93,15 @@ │ │ │
    i5 : use F_1; b1 = x_(2,1)*e_(1,{1},2)+x_(1,1)*e_(1,{1},2);
    │ │ │ │ │ │ │ │ │
    i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(1,2)*e_(2,{2},2);
    │ │ │ │ │ │ │ │ │
    i9 : time B = oiGB({b1, b2}, Strategy => FastNonminimal)
    │ │ │ - -- used 0.249592s (cpu); 0.189708s (thread); 0s (gc)
    │ │ │ + -- used 0.148745s (cpu); 0.0934098s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                         
    │ │ │  o9 = {x   e        + x   e       , x   x   e        + x   x   e       ,
    │ │ │         2,1 1,{1},2    1,1 1,{1},2   1,2 1,1 2,{2},1    2,2 1,2 2,{2},2 
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2                  2
    │ │ │       x   x   e        - x   x   e       }
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -21,15 +21,15 @@
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1,2}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 1);
    │ │ │ │  i4 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i5 : use F_1; b1 = x_(2,1)*e_(1,{1},2)+x_(1,1)*e_(1,{1},2);
    │ │ │ │  i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(1,2)*e_(2,{2},2);
    │ │ │ │  i9 : time B = oiGB({b1, b2}, Strategy => FastNonminimal)
    │ │ │ │ - -- used 0.249592s (cpu); 0.189708s (thread); 0s (gc)
    │ │ │ │ + -- used 0.148745s (cpu); 0.0934098s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  o9 = {x   e        + x   e       , x   x   e        + x   x   e       ,
    │ │ │ │         2,1 1,{1},2    1,1 1,{1},2   1,2 1,1 2,{2},1    2,2 1,2 2,{2},2
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        2                  2
    │ │ │ │       x   x   e        - x   x   e       }
    │ │ ├── ./usr/share/doc/Macaulay2/OldPolyhedra/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=8
    │ │ │  bWF4Q29uZXM=
    │ │ │  #:len=1120
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiZGlzcGxheXMgdGhlIGdlbmVyYXRpbmcg
    │ │ │  Q29uZXMgb2YgYSBGYW4iLCAibGluZW51bSIgPT4gNTIzMiwgSW5wdXRzID0+IHtTUEFOe1RUeyJG
    │ │ ├── ./usr/share/doc/Macaulay2/OldToricVectorBundles/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=23
    │ │ │  ZHVhbChUb3JpY1ZlY3RvckJ1bmRsZSk=
    │ │ │  #:len=1522
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiIHRoZSBkdWFsIGJ1bmRsZSBvZiBhIHRv
    │ │ │  cmljIHZlY3RvciBidW5kbGUiLCAibGluZW51bSIgPT4gMjc2MiwgSW5wdXRzID0+IHtTUEFOe1RU
    │ │ ├── ./usr/share/doc/Macaulay2/OnlineLookup/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=4
    │ │ │  b2Vpcw==
    │ │ │  #:len=753
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiT0VJUyBsb29rdXAiLCBEZXNjcmlwdGlv
    │ │ │  biA9PiAoRElWe1BBUkF7VEVYeyJUaGlzIGZ1bmN0aW9uIGxvb2tzIHVwIHRoZSBhcmd1bWVudCAo
    │ │ ├── ./usr/share/doc/Macaulay2/OpenMath/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=8
    │ │ │  T3Blbk1hdGg=
    │ │ │  #:len=478
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiT3Blbk1hdGggc3VwcG9ydCIsICJsaW5l
    │ │ │  bnVtIiA9PiA4NSwgU2VlQWxzbyA9PiBESVZ7SEVBREVSMnsiU2VlIGFsc28ifSxVTHtMSXtUT0h7
    │ │ ├── ./usr/share/doc/Macaulay2/PHCpack/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=34
    │ │ │  ZmFjdG9yV2l0bmVzc1NldCguLi4sVmVyYm9zZT0+Li4uKQ==
    │ │ │  #:len=595
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAib3B0aW9uIHRvIHNwZWNpZnkgd2hldGhl
    │ │ │  ciBhZGRpdGlvbmFsIG91dHB1dCBpcyB3YW50ZWQiLCAibGluZW51bSIgPT4gNDEyLCAiZmlsZW5h
    │ │ ├── ./usr/share/doc/Macaulay2/PackageCitations/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=16
    │ │ │  UGFja2FnZUNpdGF0aW9ucw==
    │ │ │  #:len=1928
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiYSBwYWNrYWdlIGZhY2lsaXRhdGluZyBj
    │ │ │  aXRhdGlvbiBvZiBNYWNhdWxheTIgcGFja2FnZXMiLCAibGluZW51bSIgPT4gMjY4LCBTZWVBbHNv
    │ │ ├── ./usr/share/doc/Macaulay2/PackageTemplate/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=14
    │ │ │  c2Vjb25kRnVuY3Rpb24=
    │ │ │  #:len=379
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiYSBzaWxseSBzZWNvbmQgZnVuY3Rpb24i
    │ │ │  LCBEZXNjcmlwdGlvbiA9PiAoIlRoaXMgZnVuY3Rpb24gaXMgcHJvdmlkZWQgYnkgdGhlIHBhY2th
    │ │ ├── ./usr/share/doc/Macaulay2/Parametrization/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=16
    │ │ │  cGFyYW1ldHJpemVDb25pYw==
    │ │ │  #:len=1904
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiT3B0aW9uIHdoZXRoZXIgdG8gcmF0aW9u
    │ │ │  YWxseSBwYXJhbWV0cml6ZSBjb25pY3MuIiwgImxpbmVudW0iID0+IDE2ODYsICJmaWxlbmFtZSIg
    │ │ ├── ./usr/share/doc/Macaulay2/Parsing/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=12
    │ │ │  Y2hhckFuYWx5emVy
    │ │ │  #:len=752
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiYSBsZXhpY2FsIGFuYWx5emVyIHRoYXQg
    │ │ │  cHJvdmlkZXMgY2hhcmFjdGVycyBmcm9tIGEgc3RyaW5nIG9uZSBhdCBhIHRpbWUiLCAibGluZW51
    │ │ ├── ./usr/share/doc/Macaulay2/PencilsOfQuadrics/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=30
    │ │ │  cmFuZG9tRXh0ZW5zaW9uKE1hdHJpeCxNYXRyaXgp
    │ │ │  #:len=301
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzE5Nywgc3ltYm9sIERvY3VtZW50VGFn
    │ │ │  ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsocmFuZG9tRXh0ZW5zaW9uLE1hdHJpeCxNYXRyaXgp
    │ │ ├── ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/___Lab__Book__Protocol.out
    │ │ │ @@ -41,15 +41,15 @@
    │ │ │  i3 : g=3
    │ │ │  
    │ │ │  o3 = 3
    │ │ │  
    │ │ │  i4 : kk= ZZ/101;
    │ │ │  
    │ │ │  i5 : elapsedTime (S,qq,R,u, M1,M2, Mu1, Mu2)=randomNicePencil(kk,g);
    │ │ │ - -- 1.36437s elapsed
    │ │ │ + -- 2.32739s elapsed
    │ │ │  
    │ │ │  i6 : M=cliffordModule(Mu1,Mu2,R)
    │ │ │  
    │ │ │  o6 = CliffordModule{...6...}
    │ │ │  
    │ │ │  o6 : CliffordModule
    │ │ │  
    │ │ │ @@ -67,30 +67,30 @@
    │ │ │            m12=randomExtension(m1.yAction,m2.yAction);
    │ │ │            V = vectorBundleOnE m12;
    │ │ │            Ul=tensorProduct(Mor,V);
    │ │ │            Ul1=tensorProduct(Mor1,V);
    │ │ │            d0=unique degrees target Ul.yAction;
    │ │ │            d1=unique degrees target Ul1.yAction;
    │ │ │            #d1 >=3 or #d0 >=3) do ();
    │ │ │ - -- .537002s elapsed
    │ │ │ + -- .72192s elapsed
    │ │ │  
    │ │ │  i12 : betti Ul.yAction, betti Ul1.yAction
    │ │ │  
    │ │ │                 0  1          0  1
    │ │ │  o12 = (total: 32 32, total: 32 32)
    │ │ │            -4: 16  .     -2: 32  .
    │ │ │            -3: 16  .     -1:  .  .
    │ │ │            -2:  .  .      0:  .  .
    │ │ │            -1:  . 16      1:  . 32
    │ │ │             0:  . 16
    │ │ │  
    │ │ │  o12 : Sequence
    │ │ │  
    │ │ │  i13 : elapsedTime Ul = tensorProduct(M,V); -- the heaviest part computing the actions of generators
    │ │ │ - -- 21.965s elapsed
    │ │ │ + -- 28.9739s elapsed
    │ │ │  
    │ │ │  i14 : M1Ul=sum(#Ul.oddOperators,i->S_i*sub(Ul.oddOperators_i,S));
    │ │ │  
    │ │ │                32      32
    │ │ │  o14 : Matrix S   <-- S
    │ │ │  
    │ │ │  i15 : r=2
    │ │ ├── ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/_search__Ulrich.out
    │ │ │ @@ -45,30 +45,30 @@
    │ │ │  i11 : M=cliffordModule(Mu1,Mu2,R)
    │ │ │  
    │ │ │  o11 = CliffordModule{...6...}
    │ │ │  
    │ │ │  o11 : CliffordModule
    │ │ │  
    │ │ │  i12 : elapsedTime Ulr = searchUlrich(M,S);
    │ │ │ - -- 1.04827s elapsed
    │ │ │ + -- 1.32685s elapsed
    │ │ │  
    │ │ │  i13 : betti res Ulr
    │ │ │  
    │ │ │               0  1 2
    │ │ │  o13 = total: 8 16 8
    │ │ │            0: 8 16 8
    │ │ │  
    │ │ │  o13 : BettiTally
    │ │ │  
    │ │ │  i14 : ann Ulr == ideal qs
    │ │ │  
    │ │ │  o14 = true
    │ │ │  
    │ │ │  i15 : elapsedTime Ulr3 = searchUlrich(M,S,3);
    │ │ │ - -- 2.68875s elapsed
    │ │ │ + -- 5.0853s elapsed
    │ │ │  
    │ │ │  i16 : betti res Ulr3
    │ │ │  
    │ │ │                0  1  2
    │ │ │  o16 = total: 12 24 12
    │ │ │            0: 12 24 12
    │ │ ├── ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/___Lab__Book__Protocol.html
    │ │ │ @@ -120,15 +120,15 @@
    │ │ │  o3 = 3
    │ │ │ │ │ │ │ │ │
    i4 : kk= ZZ/101;
    │ │ │ │ │ │ │ │ │
    i5 : elapsedTime (S,qq,R,u, M1,M2, Mu1, Mu2)=randomNicePencil(kk,g);
    │ │ │ - -- 1.36437s elapsed
    │ │ │ + -- 2.32739s elapsed
    │ │ │ │ │ │ │ │ │
    i6 : M=cliffordModule(Mu1,Mu2,R)
    │ │ │  
    │ │ │  o6 = CliffordModule{...6...}
    │ │ │  
    │ │ │  o6 : CliffordModule
    │ │ │ @@ -152,15 +152,15 @@ │ │ │ m12=randomExtension(m1.yAction,m2.yAction); │ │ │ V = vectorBundleOnE m12; │ │ │ Ul=tensorProduct(Mor,V); │ │ │ Ul1=tensorProduct(Mor1,V); │ │ │ d0=unique degrees target Ul.yAction; │ │ │ d1=unique degrees target Ul1.yAction; │ │ │ #d1 >=3 or #d0 >=3) do (); │ │ │ - -- .537002s elapsed
    │ │ │ + -- .72192s elapsed │ │ │ │ │ │ │ │ │
    i12 : betti Ul.yAction, betti Ul1.yAction
    │ │ │  
    │ │ │                 0  1          0  1
    │ │ │  o12 = (total: 32 32, total: 32 32)
    │ │ │            -4: 16  .     -2: 32  .
    │ │ │ @@ -169,15 +169,15 @@
    │ │ │            -1:  . 16      1:  . 32
    │ │ │             0:  . 16
    │ │ │  
    │ │ │  o12 : Sequence
    │ │ │ │ │ │ │ │ │
    i13 : elapsedTime Ul = tensorProduct(M,V); -- the heaviest part computing the actions of generators
    │ │ │ - -- 21.965s elapsed
    │ │ │ + -- 28.9739s elapsed │ │ │ │ │ │ │ │ │
    i14 : M1Ul=sum(#Ul.oddOperators,i->S_i*sub(Ul.oddOperators_i,S));
    │ │ │  
    │ │ │                32      32
    │ │ │  o14 : Matrix S   <-- S
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -56,15 +56,15 @@ │ │ │ │ -- will give an Ulrich bundle, with betti table │ │ │ │ -- 16 32 16 │ │ │ │ i3 : g=3 │ │ │ │ │ │ │ │ o3 = 3 │ │ │ │ i4 : kk= ZZ/101; │ │ │ │ i5 : elapsedTime (S,qq,R,u, M1,M2, Mu1, Mu2)=randomNicePencil(kk,g); │ │ │ │ - -- 1.36437s elapsed │ │ │ │ + -- 2.32739s elapsed │ │ │ │ i6 : M=cliffordModule(Mu1,Mu2,R) │ │ │ │ │ │ │ │ o6 = CliffordModule{...6...} │ │ │ │ │ │ │ │ o6 : CliffordModule │ │ │ │ i7 : Mor = vectorBundleOnE M.evenCenter; │ │ │ │ i8 : Mor1= vectorBundleOnE M.oddCenter; │ │ │ │ @@ -76,29 +76,29 @@ │ │ │ │ m12=randomExtension(m1.yAction,m2.yAction); │ │ │ │ V = vectorBundleOnE m12; │ │ │ │ Ul=tensorProduct(Mor,V); │ │ │ │ Ul1=tensorProduct(Mor1,V); │ │ │ │ d0=unique degrees target Ul.yAction; │ │ │ │ d1=unique degrees target Ul1.yAction; │ │ │ │ #d1 >=3 or #d0 >=3) do (); │ │ │ │ - -- .537002s elapsed │ │ │ │ + -- .72192s elapsed │ │ │ │ i12 : betti Ul.yAction, betti Ul1.yAction │ │ │ │ │ │ │ │ 0 1 0 1 │ │ │ │ o12 = (total: 32 32, total: 32 32) │ │ │ │ -4: 16 . -2: 32 . │ │ │ │ -3: 16 . -1: . . │ │ │ │ -2: . . 0: . . │ │ │ │ -1: . 16 1: . 32 │ │ │ │ 0: . 16 │ │ │ │ │ │ │ │ o12 : Sequence │ │ │ │ i13 : elapsedTime Ul = tensorProduct(M,V); -- the heaviest part computing the │ │ │ │ actions of generators │ │ │ │ - -- 21.965s elapsed │ │ │ │ + -- 28.9739s elapsed │ │ │ │ i14 : M1Ul=sum(#Ul.oddOperators,i->S_i*sub(Ul.oddOperators_i,S)); │ │ │ │ │ │ │ │ 32 32 │ │ │ │ o14 : Matrix S <-- S │ │ │ │ i15 : r=2 │ │ │ │ │ │ │ │ o15 = 2 │ │ ├── ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/_search__Ulrich.html │ │ │ @@ -139,15 +139,15 @@ │ │ │ │ │ │ o11 = CliffordModule{...6...} │ │ │ │ │ │ o11 : CliffordModule │ │ │ │ │ │ │ │ │
    i12 : elapsedTime Ulr = searchUlrich(M,S);
    │ │ │ - -- 1.04827s elapsed
    │ │ │ + -- 1.32685s elapsed │ │ │ │ │ │ │ │ │
    i13 : betti res Ulr
    │ │ │  
    │ │ │               0  1 2
    │ │ │  o13 = total: 8 16 8
    │ │ │            0: 8 16 8
    │ │ │ @@ -157,15 +157,15 @@
    │ │ │            
    │ │ │                
    i14 : ann Ulr == ideal qs
    │ │ │  
    │ │ │  o14 = true
    │ │ │ │ │ │ │ │ │
    i15 : elapsedTime Ulr3 = searchUlrich(M,S,3);
    │ │ │ - -- 2.68875s elapsed
    │ │ │ + -- 5.0853s elapsed
    │ │ │ │ │ │ │ │ │
    i16 : betti res Ulr3
    │ │ │  
    │ │ │                0  1  2
    │ │ │  o16 = total: 12 24 12
    │ │ │            0: 12 24 12
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -64,27 +64,27 @@
    │ │ │ │  o10 : Matrix S  <-- S
    │ │ │ │  i11 : M=cliffordModule(Mu1,Mu2,R)
    │ │ │ │  
    │ │ │ │  o11 = CliffordModule{...6...}
    │ │ │ │  
    │ │ │ │  o11 : CliffordModule
    │ │ │ │  i12 : elapsedTime Ulr = searchUlrich(M,S);
    │ │ │ │ - -- 1.04827s elapsed
    │ │ │ │ + -- 1.32685s elapsed
    │ │ │ │  i13 : betti res Ulr
    │ │ │ │  
    │ │ │ │               0  1 2
    │ │ │ │  o13 = total: 8 16 8
    │ │ │ │            0: 8 16 8
    │ │ │ │  
    │ │ │ │  o13 : BettiTally
    │ │ │ │  i14 : ann Ulr == ideal qs
    │ │ │ │  
    │ │ │ │  o14 = true
    │ │ │ │  i15 : elapsedTime Ulr3 = searchUlrich(M,S,3);
    │ │ │ │ - -- 2.68875s elapsed
    │ │ │ │ + -- 5.0853s elapsed
    │ │ │ │  i16 : betti res Ulr3
    │ │ │ │  
    │ │ │ │                0  1  2
    │ │ │ │  o16 = total: 12 24 12
    │ │ │ │            0: 12 24 12
    │ │ │ │  
    │ │ │ │  o16 : BettiTally
    │ │ ├── ./usr/share/doc/Macaulay2/Permanents/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=5
    │ │ │  cnlzZXI=
    │ │ │  #:len=2107
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiY29tcHV0ZSBwZXJtYW5lbnQgdXNpbmcg
    │ │ │  UnlzZXIncyBmb3JtdWxhIiwgImxpbmVudW0iID0+IDQ0NCwgSW5wdXRzID0+IHtTUEFOe1RUeyJN
    │ │ ├── ./usr/share/doc/Macaulay2/Permutations/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=21
    │ │ │  ZGVzY2VudHMoUGVybXV0YXRpb24p
    │ │ │  #:len=258
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gOTMxLCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhkZXNjZW50cyxQZXJtdXRhdGlvbiksImRlc2NlbnRz
    │ │ ├── ./usr/share/doc/Macaulay2/PhylogeneticTrees/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=15
    │ │ │  cGh5bG9Ub3JpY1F1YWRz
    │ │ │  #:len=2848
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiY29tcHV0ZSB0aGUgcXVhZHJhdGljIGlu
    │ │ │  dmFyaWFudHMgb2YgYSBncm91cC1iYXNlZCBwaHlsb2dlbmV0aWMgbW9kZWwiLCAibGluZW51bSIg
    │ │ ├── ./usr/share/doc/Macaulay2/PieriMaps/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=25
    │ │ │  c3RhbmRhcmRUYWJsZWF1eChaWixMaXN0KQ==
    │ │ │  #:len=268
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNTA1LCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhzdGFuZGFyZFRhYmxlYXV4LFpaLExpc3QpLCJzdGFu
    │ │ ├── ./usr/share/doc/Macaulay2/PlaneCurveLinearSeries/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=27
    │ │ │  YWRkaXRpb24oSWRlYWwsSWRlYWwsSWRlYWwp
    │ │ │  #:len=295
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNDU5LCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhhZGRpdGlvbixJZGVhbCxJZGVhbCxJZGVhbCksImFk
    │ │ ├── ./usr/share/doc/Macaulay2/Points/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=24
    │ │ │  cmFuZG9tUG9pbnRzTWF0KFJpbmcsWlop
    │ │ │  #:len=255
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gODc0LCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhyYW5kb21Qb2ludHNNYXQsUmluZyxaWiksInJhbmRv
    │ │ ├── ./usr/share/doc/Macaulay2/Points/example-output/_affine__Fat__Points.out
    │ │ │ @@ -66,17 +66,17 @@
    │ │ │  i9 : mults = {1,2,3,1,2,3,1,2,3,1,2,3}
    │ │ │  
    │ │ │  o9 = {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}
    │ │ │  
    │ │ │  o9 : List
    │ │ │  
    │ │ │  i10 : elapsedTime (Q,inG,G) = affineFatPoints(M,mults,R);
    │ │ │ - -- 2.39928s elapsed
    │ │ │ + -- 2.02362s elapsed
    │ │ │  
    │ │ │  i11 : elapsedTime H = affineFatPointsByIntersection(M,mults,R);
    │ │ │ - -- 4.0879s elapsed
    │ │ │ + -- 3.72416s elapsed
    │ │ │  
    │ │ │  i12 : G==H
    │ │ │  
    │ │ │  o12 = true
    │ │ │  
    │ │ │  i13 :
    │ │ ├── ./usr/share/doc/Macaulay2/Points/html/_affine__Fat__Points.html
    │ │ │ @@ -162,19 +162,19 @@
    │ │ │  
    │ │ │  o9 = {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}
    │ │ │  
    │ │ │  o9 : List
    │ │ │ │ │ │ │ │ │
    i10 : elapsedTime (Q,inG,G) = affineFatPoints(M,mults,R);
    │ │ │ - -- 2.39928s elapsed
    │ │ │ + -- 2.02362s elapsed │ │ │ │ │ │ │ │ │
    i11 : elapsedTime H = affineFatPointsByIntersection(M,mults,R);
    │ │ │ - -- 4.0879s elapsed
    │ │ │ + -- 3.72416s elapsed │ │ │ │ │ │ │ │ │
    i12 : G==H
    │ │ │  
    │ │ │  o12 = true
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -82,17 +82,17 @@ │ │ │ │ o8 : Matrix K <-- K │ │ │ │ i9 : mults = {1,2,3,1,2,3,1,2,3,1,2,3} │ │ │ │ │ │ │ │ o9 = {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3} │ │ │ │ │ │ │ │ o9 : List │ │ │ │ i10 : elapsedTime (Q,inG,G) = affineFatPoints(M,mults,R); │ │ │ │ - -- 2.39928s elapsed │ │ │ │ + -- 2.02362s elapsed │ │ │ │ i11 : elapsedTime H = affineFatPointsByIntersection(M,mults,R); │ │ │ │ - -- 4.0879s elapsed │ │ │ │ + -- 3.72416s elapsed │ │ │ │ i12 : G==H │ │ │ │ │ │ │ │ o12 = true │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ For reduced points, this function may be a bit slower than _a_f_f_i_n_e_P_o_i_n_t_s. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _a_f_f_i_n_e_F_a_t_P_o_i_n_t_s_B_y_I_n_t_e_r_s_e_c_t_i_o_n_(_M_a_t_r_i_x_,_L_i_s_t_,_R_i_n_g_) -- computes ideal of fat │ │ ├── ./usr/share/doc/Macaulay2/Polyhedra/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=8 │ │ │ bWF4Q29uZXM= │ │ │ #:len=1185 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiZGlzcGxheXMgdGhlIGdlbmVyYXRpbmcg │ │ │ Q29uZXMgb2YgYSBGYW4iLCAibGluZW51bSIgPT4gODQzLCBJbnB1dHMgPT4ge1NQQU57VFR7IkYi │ │ ├── ./usr/share/doc/Macaulay2/Polymake/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=8 │ │ │ UG9seW1ha2U= │ │ │ #:len=610 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiYSBwYWNrYWdlIGZvciBpbnRlcmZhY2lu │ │ │ ZyB3aXRoIHBvbHltYWtlIiwgRGVzY3JpcHRpb24gPT4gKEVNeyJQb2x5bWFrZSJ9LCIgaXMgYSBw │ │ ├── ./usr/share/doc/Macaulay2/PolyominoIdeals/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=16 │ │ │ cG9seW9JZGVhbChMaXN0KQ== │ │ │ #:len=256 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNDkzLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhwb2x5b0lkZWFsLExpc3QpLCJwb2x5b0lkZWFsKExp │ │ ├── ./usr/share/doc/Macaulay2/PolyominoIdeals/example-output/___Field.out │ │ │ @@ -7,16 +7,16 @@ │ │ │ o1 : GaloisField │ │ │ │ │ │ i2 : Q={{{1,1},{2,2}},{{2,1},{3,2}},{{2,2},{3,3}}}; │ │ │ │ │ │ i3 : I = polyoIdeal(Q,Field=> F,RingChoice=>1,TermOrder=> GRevLex) │ │ │ │ │ │ o3 = ideal (- x x + x x , - x x + x x , - x x + │ │ │ - 3,2 2,3 3,3 2,2 3,1 2,2 3,2 2,1 3,1 2,3 │ │ │ + 3,1 2,3 3,3 2,1 2,1 1,2 2,2 1,1 3,1 1,2 │ │ │ ------------------------------------------------------------------------ │ │ │ x x , - x x + x x , - x x + x x ) │ │ │ - 3,3 2,1 2,1 1,2 2,2 1,1 3,1 1,2 3,2 1,1 │ │ │ + 3,2 1,1 3,2 2,3 3,3 2,2 3,1 2,2 3,2 2,1 │ │ │ │ │ │ o3 : Ideal of F[x , x , x , x , x , x , x , x ] │ │ │ 3,3 3,2 3,1 2,3 2,2 2,1 1,2 1,1 │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/PolyominoIdeals/example-output/_polyo__Ideal.out │ │ │ @@ -5,44 +5,44 @@ │ │ │ o1 = {{{1, 1}, {2, 2}}, {{2, 1}, {3, 2}}, {{2, 2}, {3, 3}}} │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : I = polyoIdeal Q │ │ │ │ │ │ o2 = ideal (x x - x x , x x - x x , x x - x x , │ │ │ - 2,2 1,1 2,1 1,2 3,3 2,2 3,2 2,3 3,2 1,1 3,1 1,2 │ │ │ + 3,3 2,2 3,2 2,3 3,2 1,1 3,1 1,2 3,3 2,1 3,1 2,3 │ │ │ ------------------------------------------------------------------------ │ │ │ x x - x x , x x - x x ) │ │ │ - 3,3 2,1 3,1 2,3 3,2 2,1 3,1 2,2 │ │ │ + 3,2 2,1 3,1 2,2 2,2 1,1 2,1 1,2 │ │ │ │ │ │ o2 : Ideal of QQ[x , x , x , x , x , x , x , x ] │ │ │ 3,3 3,2 3,1 2,3 2,2 2,1 1,2 1,1 │ │ │ │ │ │ i3 : Q={{{1, 1}, {2, 2}}, {{2, 1}, {3, 2}}, {{3, 1}, {4, 2}}, {{3, 2}, {4, 3}}, {{3, 3}, {4, 4}}, {{2, 3}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 2}, {2, 3}}}; │ │ │ │ │ │ i4 : I = polyoIdeal Q │ │ │ │ │ │ o4 = ideal (x x - x x , x x - x x , x x - x x , │ │ │ - 2,4 1,3 2,3 1,4 4,4 3,3 4,3 3,4 3,2 1,1 3,1 1,2 │ │ │ + 4,4 2,3 4,3 2,4 2,2 1,1 2,1 1,2 4,2 3,1 4,1 3,2 │ │ │ ------------------------------------------------------------------------ │ │ │ x x - x x , x x - x x , x x - x x , x x │ │ │ - 4,4 2,3 4,3 2,4 2,2 1,1 2,1 1,2 4,2 3,1 4,1 3,2 2,3 1,1 │ │ │ + 2,3 1,1 2,1 1,3 4,3 3,1 4,1 3,3 4,4 1,3 4,3 1,4 3,4 2,3 │ │ │ ------------------------------------------------------------------------ │ │ │ - x x , x x - x x , x x - x x , x x - │ │ │ - 2,1 1,3 4,3 3,1 4,1 3,3 4,4 1,3 4,3 1,4 3,4 2,3 │ │ │ + 3,3 2,4 4,2 2,1 4,1 2,2 2,3 1,2 2,2 1,3 2,4 1,1 │ │ │ ------------------------------------------------------------------------ │ │ │ x x , x x - x x , x x - x x , x x - x x , │ │ │ - 3,3 2,4 4,2 2,1 4,1 2,2 2,3 1,2 2,2 1,3 2,4 1,1 2,1 1,4 │ │ │ + 2,1 1,4 4,4 3,1 4,1 3,4 4,3 3,2 4,2 3,3 3,4 1,3 3,3 1,4 │ │ │ ------------------------------------------------------------------------ │ │ │ x x - x x , x x - x x , x x - x x , x x │ │ │ - 4,4 3,1 4,1 3,4 4,3 3,2 4,2 3,3 3,4 1,3 3,3 1,4 3,2 2,1 │ │ │ + 3,2 2,1 3,1 2,2 4,2 1,1 4,1 1,2 2,4 1,2 2,2 1,4 4,4 3,2 │ │ │ ------------------------------------------------------------------------ │ │ │ - x x , x x - x x , x x - x x , x x - │ │ │ - 3,1 2,2 4,2 1,1 4,1 1,2 2,4 1,2 2,2 1,4 4,4 3,2 │ │ │ + 4,2 3,4 2,4 1,3 2,3 1,4 4,4 3,3 4,3 3,4 3,2 1,1 │ │ │ ------------------------------------------------------------------------ │ │ │ x x ) │ │ │ - 4,2 3,4 │ │ │ + 3,1 1,2 │ │ │ │ │ │ o4 : Ideal of QQ[x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x ] │ │ │ 4,4 4,3 4,2 4,1 3,4 3,3 3,2 3,1 2,4 2,3 2,2 2,1 1,4 1,3 1,2 1,1 │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/PolyominoIdeals/html/___Field.html │ │ │ @@ -55,18 +55,18 @@ │ │ │ │ │ │
    i2 : Q={{{1,1},{2,2}},{{2,1},{3,2}},{{2,2},{3,3}}};
    │ │ │ │ │ │ │ │ │
    i3 : I = polyoIdeal(Q,Field=> F,RingChoice=>1,TermOrder=> GRevLex)
    │ │ │  
    │ │ │  o3 = ideal (- x   x    + x   x   , - x   x    + x   x   , - x   x    +
    │ │ │ -               3,2 2,3    3,3 2,2     3,1 2,2    3,2 2,1     3,1 2,3  
    │ │ │ +               3,1 2,3    3,3 2,1     2,1 1,2    2,2 1,1     3,1 1,2  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x   x   , - x   x    + x   x   , - x   x    + x   x   )
    │ │ │ -      3,3 2,1     2,1 1,2    2,2 1,1     3,1 1,2    3,2 1,1
    │ │ │ +      3,2 1,1     3,2 2,3    3,3 2,2     3,1 2,2    3,2 2,1
    │ │ │  
    │ │ │  o3 : Ideal of F[x   , x   , x   , x   , x   , x   , x   , x   ]
    │ │ │                   3,3   3,2   3,1   2,3   2,2   2,1   1,2   1,1
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -12,18 +12,18 @@ │ │ │ │ o1 = F │ │ │ │ │ │ │ │ o1 : GaloisField │ │ │ │ i2 : Q={{{1,1},{2,2}},{{2,1},{3,2}},{{2,2},{3,3}}}; │ │ │ │ i3 : I = polyoIdeal(Q,Field=> F,RingChoice=>1,TermOrder=> GRevLex) │ │ │ │ │ │ │ │ o3 = ideal (- x x + x x , - x x + x x , - x x + │ │ │ │ - 3,2 2,3 3,3 2,2 3,1 2,2 3,2 2,1 3,1 2,3 │ │ │ │ + 3,1 2,3 3,3 2,1 2,1 1,2 2,2 1,1 3,1 1,2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ x x , - x x + x x , - x x + x x ) │ │ │ │ - 3,3 2,1 2,1 1,2 2,2 1,1 3,1 1,2 3,2 1,1 │ │ │ │ + 3,2 1,1 3,2 2,3 3,3 2,2 3,1 2,2 3,2 2,1 │ │ │ │ │ │ │ │ o3 : Ideal of F[x , x , x , x , x , x , x , x ] │ │ │ │ 3,3 3,2 3,1 2,3 2,2 2,1 1,2 1,1 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _p_o_l_y_o_I_d_e_a_l -- Ideal of inner 2-minors of a collection of cells │ │ │ │ ********** FFuunnccttiioonnss wwiitthh ooppttiioonnaall aarrgguummeenntt nnaammeedd FFiieelldd:: ********** │ │ │ │ * polyoIdeal(...,Field=>...) │ │ ├── ./usr/share/doc/Macaulay2/PolyominoIdeals/html/_polyo__Ideal.html │ │ │ @@ -85,50 +85,50 @@ │ │ │ │ │ │ o1 : List │ │ │ │ │ │ │ │ │
    i2 : I = polyoIdeal Q
    │ │ │  
    │ │ │  o2 = ideal (x   x    - x   x   , x   x    - x   x   , x   x    - x   x   ,
    │ │ │ -             2,2 1,1    2,1 1,2   3,3 2,2    3,2 2,3   3,2 1,1    3,1 1,2 
    │ │ │ +             3,3 2,2    3,2 2,3   3,2 1,1    3,1 1,2   3,3 2,1    3,1 2,3 
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x   x    - x   x   , x   x    - x   x   )
    │ │ │ -      3,3 2,1    3,1 2,3   3,2 2,1    3,1 2,2
    │ │ │ +      3,2 2,1    3,1 2,2   2,2 1,1    2,1 1,2
    │ │ │  
    │ │ │  o2 : Ideal of QQ[x   , x   , x   , x   , x   , x   , x   , x   ]
    │ │ │                    3,3   3,2   3,1   2,3   2,2   2,1   1,2   1,1
    │ │ │ │ │ │ │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : Q={{{1, 1}, {2, 2}}, {{2, 1}, {3, 2}}, {{3, 1}, {4, 2}}, {{3, 2}, {4, 3}}, {{3, 3}, {4, 4}}, {{2, 3}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 2}, {2, 3}}};
    │ │ │
    i4 : I = polyoIdeal Q
    │ │ │  
    │ │ │  o4 = ideal (x   x    - x   x   , x   x    - x   x   , x   x    - x   x   ,
    │ │ │ -             2,4 1,3    2,3 1,4   4,4 3,3    4,3 3,4   3,2 1,1    3,1 1,2 
    │ │ │ +             4,4 2,3    4,3 2,4   2,2 1,1    2,1 1,2   4,2 3,1    4,1 3,2 
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x   x    - x   x   , x   x    - x   x   , x   x    - x   x   , x   x   
    │ │ │ -      4,4 2,3    4,3 2,4   2,2 1,1    2,1 1,2   4,2 3,1    4,1 3,2   2,3 1,1
    │ │ │ +      2,3 1,1    2,1 1,3   4,3 3,1    4,1 3,3   4,4 1,3    4,3 1,4   3,4 2,3
    │ │ │       ------------------------------------------------------------------------
    │ │ │       - x   x   , x   x    - x   x   , x   x    - x   x   , x   x    -
    │ │ │ -        2,1 1,3   4,3 3,1    4,1 3,3   4,4 1,3    4,3 1,4   3,4 2,3  
    │ │ │ +        3,3 2,4   4,2 2,1    4,1 2,2   2,3 1,2    2,2 1,3   2,4 1,1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x   x   , x   x    - x   x   , x   x    - x   x   , x   x    - x   x   ,
    │ │ │ -      3,3 2,4   4,2 2,1    4,1 2,2   2,3 1,2    2,2 1,3   2,4 1,1    2,1 1,4 
    │ │ │ +      2,1 1,4   4,4 3,1    4,1 3,4   4,3 3,2    4,2 3,3   3,4 1,3    3,3 1,4 
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x   x    - x   x   , x   x    - x   x   , x   x    - x   x   , x   x   
    │ │ │ -      4,4 3,1    4,1 3,4   4,3 3,2    4,2 3,3   3,4 1,3    3,3 1,4   3,2 2,1
    │ │ │ +      3,2 2,1    3,1 2,2   4,2 1,1    4,1 1,2   2,4 1,2    2,2 1,4   4,4 3,2
    │ │ │       ------------------------------------------------------------------------
    │ │ │       - x   x   , x   x    - x   x   , x   x    - x   x   , x   x    -
    │ │ │ -        3,1 2,2   4,2 1,1    4,1 1,2   2,4 1,2    2,2 1,4   4,4 3,2  
    │ │ │ +        4,2 3,4   2,4 1,3    2,3 1,4   4,4 3,3    4,3 3,4   3,2 1,1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x   x   )
    │ │ │ -      4,2 3,4
    │ │ │ +      3,1 1,2
    │ │ │  
    │ │ │  o4 : Ideal of QQ[x   , x   , x   , x   , x   , x   , x   , x   , x   , x   , x   , x   , x   , x   , x   , x   ]
    │ │ │                    4,4   4,3   4,2   4,1   3,4   3,3   3,2   3,1   2,4   2,3   2,2   2,1   1,4   1,3   1,2   1,1
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -32,47 +32,47 @@ │ │ │ │ │ │ │ │ o1 = {{{1, 1}, {2, 2}}, {{2, 1}, {3, 2}}, {{2, 2}, {3, 3}}} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : I = polyoIdeal Q │ │ │ │ │ │ │ │ o2 = ideal (x x - x x , x x - x x , x x - x x , │ │ │ │ - 2,2 1,1 2,1 1,2 3,3 2,2 3,2 2,3 3,2 1,1 3,1 1,2 │ │ │ │ + 3,3 2,2 3,2 2,3 3,2 1,1 3,1 1,2 3,3 2,1 3,1 2,3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ x x - x x , x x - x x ) │ │ │ │ - 3,3 2,1 3,1 2,3 3,2 2,1 3,1 2,2 │ │ │ │ + 3,2 2,1 3,1 2,2 2,2 1,1 2,1 1,2 │ │ │ │ │ │ │ │ o2 : Ideal of QQ[x , x , x , x , x , x , x , x ] │ │ │ │ 3,3 3,2 3,1 2,3 2,2 2,1 1,2 1,1 │ │ │ │ │ │ │ │ │ │ │ │ i3 : Q={{{1, 1}, {2, 2}}, {{2, 1}, {3, 2}}, {{3, 1}, {4, 2}}, {{3, 2}, {4, 3}}, │ │ │ │ {{3, 3}, {4, 4}}, {{2, 3}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 2}, {2, 3}}}; │ │ │ │ i4 : I = polyoIdeal Q │ │ │ │ │ │ │ │ o4 = ideal (x x - x x , x x - x x , x x - x x , │ │ │ │ - 2,4 1,3 2,3 1,4 4,4 3,3 4,3 3,4 3,2 1,1 3,1 1,2 │ │ │ │ + 4,4 2,3 4,3 2,4 2,2 1,1 2,1 1,2 4,2 3,1 4,1 3,2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ x x - x x , x x - x x , x x - x x , x x │ │ │ │ - 4,4 2,3 4,3 2,4 2,2 1,1 2,1 1,2 4,2 3,1 4,1 3,2 2,3 1,1 │ │ │ │ + 2,3 1,1 2,1 1,3 4,3 3,1 4,1 3,3 4,4 1,3 4,3 1,4 3,4 2,3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - x x , x x - x x , x x - x x , x x - │ │ │ │ - 2,1 1,3 4,3 3,1 4,1 3,3 4,4 1,3 4,3 1,4 3,4 2,3 │ │ │ │ + 3,3 2,4 4,2 2,1 4,1 2,2 2,3 1,2 2,2 1,3 2,4 1,1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ x x , x x - x x , x x - x x , x x - x x , │ │ │ │ - 3,3 2,4 4,2 2,1 4,1 2,2 2,3 1,2 2,2 1,3 2,4 1,1 2,1 1,4 │ │ │ │ + 2,1 1,4 4,4 3,1 4,1 3,4 4,3 3,2 4,2 3,3 3,4 1,3 3,3 1,4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ x x - x x , x x - x x , x x - x x , x x │ │ │ │ - 4,4 3,1 4,1 3,4 4,3 3,2 4,2 3,3 3,4 1,3 3,3 1,4 3,2 2,1 │ │ │ │ + 3,2 2,1 3,1 2,2 4,2 1,1 4,1 1,2 2,4 1,2 2,2 1,4 4,4 3,2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - x x , x x - x x , x x - x x , x x - │ │ │ │ - 3,1 2,2 4,2 1,1 4,1 1,2 2,4 1,2 2,2 1,4 4,4 3,2 │ │ │ │ + 4,2 3,4 2,4 1,3 2,3 1,4 4,4 3,3 4,3 3,4 3,2 1,1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ x x ) │ │ │ │ - 4,2 3,4 │ │ │ │ + 3,1 1,2 │ │ │ │ │ │ │ │ o4 : Ideal of QQ[x , x , x , x , x , x , x , x , x , x , x │ │ │ │ , x , x , x , x , x ] │ │ │ │ 4,4 4,3 4,2 4,1 3,4 3,3 3,2 3,1 2,4 2,3 │ │ │ │ 2,2 2,1 1,4 1,3 1,2 1,1 │ │ │ │ ********** WWaayyss ttoo uussee ppoollyyooIIddeeaall:: ********** │ │ │ │ * polyoIdeal(List) │ │ ├── ./usr/share/doc/Macaulay2/Posets/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=17 │ │ │ bWF4aW1hbEFudGljaGFpbnM= │ │ │ #:len=1127 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiY29tcHV0ZXMgYWxsIG1heGltYWwgYW50 │ │ │ aWNoYWlucyBvZiBhIHBvc2V0IiwgImxpbmVudW0iID0+IDQ4NzgsIElucHV0cyA9PiB7U1BBTntU │ │ ├── ./usr/share/doc/Macaulay2/Posets/example-output/___Precompute.out │ │ │ @@ -31,27 +31,27 @@ │ │ │ o5 = CacheTable{name => P} │ │ │ │ │ │ i6 : C == P │ │ │ │ │ │ o6 = true │ │ │ │ │ │ i7 : time isDistributive C │ │ │ - -- used 0.000627246s (cpu); 7.434e-06s (thread); 0s (gc) │ │ │ + -- used 0.00378664s (cpu); 7.724e-06s (thread); 0s (gc) │ │ │ │ │ │ o7 = true │ │ │ │ │ │ i8 : time isDistributive P │ │ │ - -- used 6.1046s (cpu); 4.14657s (thread); 0s (gc) │ │ │ + -- used 8.55574s (cpu); 5.58938s (thread); 0s (gc) │ │ │ │ │ │ o8 = true │ │ │ │ │ │ i9 : C' = dual C; │ │ │ │ │ │ i10 : time isDistributive C' │ │ │ - -- used 0.000291406s (cpu); 6.492e-06s (thread); 0s (gc) │ │ │ + -- used 0.000194174s (cpu); 3.597e-06s (thread); 0s (gc) │ │ │ │ │ │ o10 = true │ │ │ │ │ │ i11 : peek C'.cache │ │ │ │ │ │ o11 = CacheTable{connectedComponents => {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}} } │ │ │ coveringRelations => {{1, 0}, {2, 1}, {3, 2}, {4, 3}, {5, 4}, {6, 5}, {7, 6}, {8, 7}, {9, 8}} │ │ ├── ./usr/share/doc/Macaulay2/Posets/example-output/_greene__Kleitman__Partition.out │ │ │ @@ -7,22 +7,22 @@ │ │ │ o2 = Partition{4, 2} │ │ │ │ │ │ o2 : Partition │ │ │ │ │ │ i3 : D = dominanceLattice 6; │ │ │ │ │ │ i4 : time greeneKleitmanPartition(D, Strategy => "antichains") │ │ │ - -- used 0.454112s (cpu); 0.262257s (thread); 0s (gc) │ │ │ + -- used 0.505912s (cpu); 0.30656s (thread); 0s (gc) │ │ │ │ │ │ o4 = Partition{9, 2} │ │ │ │ │ │ o4 : Partition │ │ │ │ │ │ i5 : time greeneKleitmanPartition(D, Strategy => "chains") │ │ │ - -- used 0.000245891s (cpu); 1.076e-05s (thread); 0s (gc) │ │ │ + -- used 0.000155412s (cpu); 8.536e-06s (thread); 0s (gc) │ │ │ │ │ │ o5 = Partition{9, 2} │ │ │ │ │ │ o5 : Partition │ │ │ │ │ │ i6 : greeneKleitmanPartition chain 10 │ │ ├── ./usr/share/doc/Macaulay2/Posets/html/___Precompute.html │ │ │ @@ -87,35 +87,35 @@ │ │ │ │ │ │
    i6 : C == P
    │ │ │  
    │ │ │  o6 = true
    │ │ │ │ │ │ │ │ │
    i7 : time isDistributive C
    │ │ │ - -- used 0.000627246s (cpu); 7.434e-06s (thread); 0s (gc)
    │ │ │ + -- used 0.00378664s (cpu); 7.724e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = true
    │ │ │ │ │ │ │ │ │
    i8 : time isDistributive P
    │ │ │ - -- used 6.1046s (cpu); 4.14657s (thread); 0s (gc)
    │ │ │ + -- used 8.55574s (cpu); 5.58938s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = true
    │ │ │ │ │ │ │ │ │
    │ │ │

    We also know that the dual of a distributive lattice is again a distributive lattice. Other information is copied when possible.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : C' = dual C;
    │ │ │
    i10 : time isDistributive C'
    │ │ │ - -- used 0.000291406s (cpu); 6.492e-06s (thread); 0s (gc)
    │ │ │ + -- used 0.000194174s (cpu); 3.597e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = true
    │ │ │
    i11 : peek C'.cache
    │ │ │  
    │ │ │  o11 = CacheTable{connectedComponents => {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}}                                      }
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -41,26 +41,26 @@
    │ │ │ │  i5 : peek P.cache
    │ │ │ │  
    │ │ │ │  o5 = CacheTable{name => P}
    │ │ │ │  i6 : C == P
    │ │ │ │  
    │ │ │ │  o6 = true
    │ │ │ │  i7 : time isDistributive C
    │ │ │ │ - -- used 0.000627246s (cpu); 7.434e-06s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00378664s (cpu); 7.724e-06s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o7 = true
    │ │ │ │  i8 : time isDistributive P
    │ │ │ │ - -- used 6.1046s (cpu); 4.14657s (thread); 0s (gc)
    │ │ │ │ + -- used 8.55574s (cpu); 5.58938s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 = true
    │ │ │ │  We also know that the dual of a distributive lattice is again a distributive
    │ │ │ │  lattice. Other information is copied when possible.
    │ │ │ │  i9 : C' = dual C;
    │ │ │ │  i10 : time isDistributive C'
    │ │ │ │ - -- used 0.000291406s (cpu); 6.492e-06s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000194174s (cpu); 3.597e-06s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o10 = true
    │ │ │ │  i11 : peek C'.cache
    │ │ │ │  
    │ │ │ │  o11 = CacheTable{connectedComponents => {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}}
    │ │ │ │  }
    │ │ │ │                   coveringRelations => {{1, 0}, {2, 1}, {3, 2}, {4, 3}, {5, 4},
    │ │ ├── ./usr/share/doc/Macaulay2/Posets/html/_greene__Kleitman__Partition.html
    │ │ │ @@ -95,23 +95,23 @@
    │ │ │          
    │ │ │          
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │            
    │ │ │  
    │ │ │          
    i3 : D = dominanceLattice 6;
    │ │ │
    i4 : time greeneKleitmanPartition(D, Strategy => "antichains")
    │ │ │ - -- used 0.454112s (cpu); 0.262257s (thread); 0s (gc)
    │ │ │ + -- used 0.505912s (cpu); 0.30656s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = Partition{9, 2}
    │ │ │  
    │ │ │  o4 : Partition
    │ │ │
    i5 : time greeneKleitmanPartition(D, Strategy => "chains")
    │ │ │ - -- used 0.000245891s (cpu); 1.076e-05s (thread); 0s (gc)
    │ │ │ + -- used 0.000155412s (cpu); 8.536e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = Partition{9, 2}
    │ │ │  
    │ │ │  o5 : Partition
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,21 +29,21 @@ │ │ │ │ │ │ │ │ o2 : Partition │ │ │ │ The conjugate of $l$ has the same property, but with chains replaced by │ │ │ │ _a_n_t_i_c_h_a_i_n_s. Because of this, it is often better to count via antichains instead │ │ │ │ of chains. This can be done by passing "antichains" as the Strategy. │ │ │ │ i3 : D = dominanceLattice 6; │ │ │ │ i4 : time greeneKleitmanPartition(D, Strategy => "antichains") │ │ │ │ - -- used 0.454112s (cpu); 0.262257s (thread); 0s (gc) │ │ │ │ + -- used 0.505912s (cpu); 0.30656s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = Partition{9, 2} │ │ │ │ │ │ │ │ o4 : Partition │ │ │ │ i5 : time greeneKleitmanPartition(D, Strategy => "chains") │ │ │ │ - -- used 0.000245891s (cpu); 1.076e-05s (thread); 0s (gc) │ │ │ │ + -- used 0.000155412s (cpu); 8.536e-06s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = Partition{9, 2} │ │ │ │ │ │ │ │ o5 : Partition │ │ │ │ The Greene-Kleitman partition of the $n$ _c_h_a_i_n is the partition of $n$ with $1$ │ │ │ │ part. │ │ │ │ i6 : greeneKleitmanPartition chain 10 │ │ ├── ./usr/share/doc/Macaulay2/PositivityToricBundles/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=20 │ │ │ ZHJhd1BhcmxpYW1lbnQyRHRpa3o= │ │ │ #:len=2626 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAidmlzdWFsaXNlcyB0aGUgcGFybGlhbWVu │ │ │ dCBvZiBwb2x5dG9wZXMgZm9yIGEgdmVjdG9yIGJ1bmRsZSBvbiBhIHRvcmljIHN1cmZhY2UgdXNp │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=35 │ │ │ cHJpbWFyeUNvbXBvbmVudCguLi4sU3RyYXRlZ3k9Pi4uLik= │ │ │ #:len=316 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNzQ5LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20ge1twcmltYXJ5Q29tcG9uZW50LFN0cmF0ZWd5XSwicHJp │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_kernel__Of__Localization.out │ │ │ @@ -24,35 +24,35 @@ │ │ │ | 0 0 0 x_1^3-x_0x_2^2 0 | │ │ │ | 0 0 0 0 x_1^5-x_0x_2^4 | │ │ │ │ │ │ 3 │ │ │ o3 : R-module, quotient of R │ │ │ │ │ │ i4 : elapsedTime kernelOfLocalization(M, I1) │ │ │ - -- .225134s elapsed │ │ │ + -- .186633s elapsed │ │ │ │ │ │ o4 = subquotient (| 0 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 0 |) │ │ │ | 1 0 | | 0 0 0 x_1^3-x_0x_2^2 0 | │ │ │ | 0 1 | | 0 0 0 0 x_1^5-x_0x_2^4 | │ │ │ │ │ │ 3 │ │ │ o4 : R-module, subquotient of R │ │ │ │ │ │ i5 : elapsedTime kernelOfLocalization(M, I2) │ │ │ - -- .0849113s elapsed │ │ │ + -- .0712993s elapsed │ │ │ │ │ │ o5 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 0 |) │ │ │ | 0 0 | | 0 0 0 x_1^3-x_0x_2^2 0 | │ │ │ | 0 1 | | 0 0 0 0 x_1^5-x_0x_2^4 | │ │ │ │ │ │ 3 │ │ │ o5 : R-module, subquotient of R │ │ │ │ │ │ i6 : elapsedTime kernelOfLocalization(M, I3) │ │ │ - -- .0294912s elapsed │ │ │ + -- .0155793s elapsed │ │ │ │ │ │ o6 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 0 |) │ │ │ | 0 1 | | 0 0 0 x_1^3-x_0x_2^2 0 | │ │ │ | 0 0 | | 0 0 0 0 x_1^5-x_0x_2^4 | │ │ │ │ │ │ 3 │ │ │ o6 : R-module, subquotient of R │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_reg__Seq__In__Ideal.out │ │ │ @@ -13,15 +13,15 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ x x ) │ │ │ 0 4 │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : elapsedTime regSeqInIdeal I │ │ │ - -- .0877917s elapsed │ │ │ + -- .0808574s elapsed │ │ │ │ │ │ o3 = ideal (x x , x x + x x , x x + x x , x x + x x ) │ │ │ 2 7 3 6 0 7 2 5 0 7 1 4 0 7 │ │ │ │ │ │ o3 : Ideal of R │ │ │ │ │ │ i4 : R = QQ[h,l,s,x,y,z] │ │ │ @@ -41,15 +41,15 @@ │ │ │ o5 : Ideal of R │ │ │ │ │ │ i6 : isSubset(I, ideal(s,l,h)) -- implies codim I == 3 │ │ │ │ │ │ o6 = true │ │ │ │ │ │ i7 : elapsedTime regSeqInIdeal(I, 3, 3, 1) │ │ │ - -- .0078238s elapsed │ │ │ + -- .00797509s elapsed │ │ │ │ │ │ 2 3 2 2 8 3 2 2 │ │ │ o7 = ideal (h*l - l - 4l*s + h*y, h + l s - h x, s + h + l s - h x) │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_kernel__Of__Localization.html │ │ │ @@ -101,37 +101,37 @@ │ │ │ | 0 0 0 0 x_1^5-x_0x_2^4 | │ │ │ │ │ │ 3 │ │ │ o3 : R-module, quotient of R
    │ │ │
    i4 : elapsedTime kernelOfLocalization(M, I1)
    │ │ │ - -- .225134s elapsed
    │ │ │ + -- .186633s elapsed
    │ │ │  
    │ │ │  o4 = subquotient (| 0 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0              0              |)
    │ │ │                    | 1 0 |  | 0            0             0            x_1^3-x_0x_2^2 0              |
    │ │ │                    | 0 1 |  | 0            0             0            0              x_1^5-x_0x_2^4 |
    │ │ │  
    │ │ │                                 3
    │ │ │  o4 : R-module, subquotient of R
    │ │ │
    i5 : elapsedTime kernelOfLocalization(M, I2)
    │ │ │ - -- .0849113s elapsed
    │ │ │ + -- .0712993s elapsed
    │ │ │  
    │ │ │  o5 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0              0              |)
    │ │ │                    | 0 0 |  | 0            0             0            x_1^3-x_0x_2^2 0              |
    │ │ │                    | 0 1 |  | 0            0             0            0              x_1^5-x_0x_2^4 |
    │ │ │  
    │ │ │                                 3
    │ │ │  o5 : R-module, subquotient of R
    │ │ │
    i6 : elapsedTime kernelOfLocalization(M, I3)
    │ │ │ - -- .0294912s elapsed
    │ │ │ + -- .0155793s elapsed
    │ │ │  
    │ │ │  o6 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0              0              |)
    │ │ │                    | 0 1 |  | 0            0             0            x_1^3-x_0x_2^2 0              |
    │ │ │                    | 0 0 |  | 0            0             0            0              x_1^5-x_0x_2^4 |
    │ │ │  
    │ │ │                                 3
    │ │ │  o6 : R-module, subquotient of R
    │ │ │ ├── html2text {} │ │ │ │ @@ -42,39 +42,39 @@ │ │ │ │ | │ │ │ │ | 0 0 0 0 x_1^5- │ │ │ │ x_0x_2^4 | │ │ │ │ │ │ │ │ 3 │ │ │ │ o3 : R-module, quotient of R │ │ │ │ i4 : elapsedTime kernelOfLocalization(M, I1) │ │ │ │ - -- .225134s elapsed │ │ │ │ + -- .186633s elapsed │ │ │ │ │ │ │ │ o4 = subquotient (| 0 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 │ │ │ │ 0 |) │ │ │ │ | 1 0 | | 0 0 0 x_1^3- │ │ │ │ x_0x_2^2 0 | │ │ │ │ | 0 1 | | 0 0 0 0 │ │ │ │ x_1^5-x_0x_2^4 | │ │ │ │ │ │ │ │ 3 │ │ │ │ o4 : R-module, subquotient of R │ │ │ │ i5 : elapsedTime kernelOfLocalization(M, I2) │ │ │ │ - -- .0849113s elapsed │ │ │ │ + -- .0712993s elapsed │ │ │ │ │ │ │ │ o5 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 │ │ │ │ 0 |) │ │ │ │ | 0 0 | | 0 0 0 x_1^3- │ │ │ │ x_0x_2^2 0 | │ │ │ │ | 0 1 | | 0 0 0 0 │ │ │ │ x_1^5-x_0x_2^4 | │ │ │ │ │ │ │ │ 3 │ │ │ │ o5 : R-module, subquotient of R │ │ │ │ i6 : elapsedTime kernelOfLocalization(M, I3) │ │ │ │ - -- .0294912s elapsed │ │ │ │ + -- .0155793s elapsed │ │ │ │ │ │ │ │ o6 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 │ │ │ │ 0 |) │ │ │ │ | 0 1 | | 0 0 0 x_1^3- │ │ │ │ x_0x_2^2 0 | │ │ │ │ | 0 0 | | 0 0 0 0 │ │ │ │ x_1^5-x_0x_2^4 | │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_reg__Seq__In__Ideal.html │ │ │ @@ -102,15 +102,15 @@ │ │ │ x x ) │ │ │ 0 4 │ │ │ │ │ │ o2 : Ideal of R │ │ │
    i3 : elapsedTime regSeqInIdeal I
    │ │ │ - -- .0877917s elapsed
    │ │ │ + -- .0808574s elapsed
    │ │ │  
    │ │ │  o3 = ideal (x x , x x  + x x , x x  + x x , x x  + x x )
    │ │ │               2 7   3 6    0 7   2 5    0 7   1 4    0 7
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │
    │ │ │ @@ -140,15 +140,15 @@ │ │ │ │ │ │
    i6 : isSubset(I, ideal(s,l,h)) -- implies codim I == 3
    │ │ │  
    │ │ │  o6 = true
    │ │ │ │ │ │ │ │ │
    i7 : elapsedTime regSeqInIdeal(I, 3, 3, 1)
    │ │ │ - -- .0078238s elapsed
    │ │ │ + -- .00797509s elapsed
    │ │ │  
    │ │ │                     2                3    2     2    8    3    2     2
    │ │ │  o7 = ideal (h*l - l  - 4l*s + h*y, h  + l s - h x, s  + h  + l s - h x)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ 2 7 0 7 3 6 2 6 1 6 0 6 2 5 0 5 3 4 2 4 1 4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ x x ) │ │ │ │ 0 4 │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : elapsedTime regSeqInIdeal I │ │ │ │ - -- .0877917s elapsed │ │ │ │ + -- .0808574s elapsed │ │ │ │ │ │ │ │ o3 = ideal (x x , x x + x x , x x + x x , x x + x x ) │ │ │ │ 2 7 3 6 0 7 2 5 0 7 1 4 0 7 │ │ │ │ │ │ │ │ o3 : Ideal of R │ │ │ │ If I is the unit ideal, then an ideal of variables of the ring is returned. │ │ │ │ If the codimension of I is already known, then one can specify this, along with │ │ │ │ @@ -71,15 +71,15 @@ │ │ │ │ l , s ) │ │ │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ i6 : isSubset(I, ideal(s,l,h)) -- implies codim I == 3 │ │ │ │ │ │ │ │ o6 = true │ │ │ │ i7 : elapsedTime regSeqInIdeal(I, 3, 3, 1) │ │ │ │ - -- .0078238s elapsed │ │ │ │ + -- .00797509s elapsed │ │ │ │ │ │ │ │ 2 3 2 2 8 3 2 2 │ │ │ │ o7 = ideal (h*l - l - 4l*s + h*y, h + l s - h x, s + h + l s - h x) │ │ │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_d_i_c_a_l -- the radical of an ideal │ │ ├── ./usr/share/doc/Macaulay2/Probability/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=21 │ │ │ dERpc3RyaWJ1dGlvbihOdW1iZXIp │ │ │ #:len=261 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTIyMiwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsodERpc3RyaWJ1dGlvbixOdW1iZXIpLCJ0RGlzdHJp │ │ ├── ./usr/share/doc/Macaulay2/PruneComplex/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=33 │ │ │ cHJ1bmVDb21wbGV4KC4uLixQcnVuaW5nTWFwPT4uLi4p │ │ │ #:len=276 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzQ3LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20ge1twcnVuZUNvbXBsZXgsUHJ1bmluZ01hcF0sInBydW5l │ │ ├── ./usr/share/doc/Macaulay2/PseudomonomialPrimaryDecomposition/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=34 │ │ │ UHNldWRvbW9ub21pYWxQcmltYXJ5RGVjb21wb3NpdGlvbg== │ │ │ #:len=1413 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAicHJpbWFyeSBkZWNvbXBvc2l0aW9uIG9m │ │ │ IGEgc3F1YXJlIGZyZWUgcHNldWRvbW9ub21pYWwgaWRlYWwiLCBEZXNjcmlwdGlvbiA9PiAoRElW │ │ ├── ./usr/share/doc/Macaulay2/Pullback/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=31 │ │ │ aW50ZXJuYWxVc2VEaXJlY3RTdW0oUmluZyxSaW5nKQ== │ │ │ #:len=285 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNDU1LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhpbnRlcm5hbFVzZURpcmVjdFN1bSxSaW5nLFJpbmcp │ │ ├── ./usr/share/doc/Macaulay2/PushForward/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=15 │ │ │ cHVzaEZ3ZChNb2R1bGUp │ │ │ #:len=267 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzgxLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhwdXNoRndkLE1vZHVsZSksInB1c2hGd2QoTW9kdWxl │ │ ├── ./usr/share/doc/Macaulay2/Python/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=27 │ │ │ UHl0aG9uT2JqZWN0IC8gUHl0aG9uT2JqZWN0 │ │ │ #:len=267 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTMwLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhzeW1ib2wgLyxQeXRob25PYmplY3QsUHl0aG9uT2Jq │ │ ├── ./usr/share/doc/Macaulay2/Python/example-output/_iterator_lp__Python__Object_rp.out │ │ │ @@ -4,12 +4,12 @@ │ │ │ │ │ │ o1 = range(0, 3) │ │ │ │ │ │ o1 : PythonObject of class range │ │ │ │ │ │ i2 : i = iterator x │ │ │ │ │ │ -o2 = │ │ │ +o2 = │ │ │ │ │ │ o2 : PythonObject of class range_iterator │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Python/example-output/_next_lp__Python__Object_rp.out │ │ │ @@ -4,15 +4,15 @@ │ │ │ │ │ │ o1 = range(0, 3) │ │ │ │ │ │ o1 : PythonObject of class range │ │ │ │ │ │ i2 : i = iterator x │ │ │ │ │ │ -o2 = │ │ │ +o2 = │ │ │ │ │ │ o2 : PythonObject of class range_iterator │ │ │ │ │ │ i3 : next i │ │ │ │ │ │ o3 = 0 │ │ ├── ./usr/share/doc/Macaulay2/Python/example-output/_to__Python.out │ │ │ @@ -72,15 +72,15 @@ │ │ │ │ │ │ o12 = m2sqrt │ │ │ │ │ │ o12 : FunctionClosure │ │ │ │ │ │ i13 : pysqrt = toPython m2sqrt │ │ │ │ │ │ -o13 = │ │ │ +o13 = │ │ │ │ │ │ o13 : PythonObject of class builtin_function_or_method │ │ │ │ │ │ i14 : pysqrt 2 │ │ │ calling Macaulay2 code from Python! │ │ │ │ │ │ o14 = 1.4142135623730951 │ │ ├── ./usr/share/doc/Macaulay2/Python/html/_iterator_lp__Python__Object_rp.html │ │ │ @@ -79,15 +79,15 @@ │ │ │ o1 = range(0, 3) │ │ │ │ │ │ o1 : PythonObject of class range │ │ │ │ │ │ │ │ │
    i2 : i = iterator x
    │ │ │  
    │ │ │ -o2 = <range_iterator object at 0x7fc71203b450>
    │ │ │ +o2 = <range_iterator object at 0x7f09c3c17390>
    │ │ │  
    │ │ │  o2 : PythonObject of class range_iterator
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -18,14 +18,14 @@ │ │ │ │ i1 : x = pythonValue "range(3)" │ │ │ │ │ │ │ │ o1 = range(0, 3) │ │ │ │ │ │ │ │ o1 : PythonObject of class range │ │ │ │ i2 : i = iterator x │ │ │ │ │ │ │ │ -o2 = │ │ │ │ +o2 = │ │ │ │ │ │ │ │ o2 : PythonObject of class range_iterator │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _n_e_x_t_(_P_y_t_h_o_n_O_b_j_e_c_t_) -- retrieve the next item from a python iterator │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _i_t_e_r_a_t_o_r_(_P_y_t_h_o_n_O_b_j_e_c_t_) -- get iterator of iterable python object │ │ ├── ./usr/share/doc/Macaulay2/Python/html/_next_lp__Python__Object_rp.html │ │ │ @@ -73,15 +73,15 @@ │ │ │ o1 = range(0, 3) │ │ │ │ │ │ o1 : PythonObject of class range │ │ │ │ │ │ │ │ │
    i2 : i = iterator x
    │ │ │  
    │ │ │ -o2 = <range_iterator object at 0x7fc4db76f420>
    │ │ │ +o2 = <range_iterator object at 0x7ff7810bf390>
    │ │ │  
    │ │ │  o2 : PythonObject of class range_iterator
    │ │ │ │ │ │ │ │ │
    i3 : next i
    │ │ │  
    │ │ │  o3 = 0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -17,15 +17,15 @@
    │ │ │ │  i1 : x = pythonValue "range(3)"
    │ │ │ │  
    │ │ │ │  o1 = range(0, 3)
    │ │ │ │  
    │ │ │ │  o1 : PythonObject of class range
    │ │ │ │  i2 : i = iterator x
    │ │ │ │  
    │ │ │ │ -o2 = 
    │ │ │ │ +o2 = 
    │ │ │ │  
    │ │ │ │  o2 : PythonObject of class range_iterator
    │ │ │ │  i3 : next i
    │ │ │ │  
    │ │ │ │  o3 = 0
    │ │ │ │  
    │ │ │ │  o3 : PythonObject of class int
    │ │ ├── ./usr/share/doc/Macaulay2/Python/html/_to__Python.html
    │ │ │ @@ -156,15 +156,15 @@
    │ │ │  o12 = m2sqrt
    │ │ │  
    │ │ │  o12 : FunctionClosure
    │ │ │ │ │ │ │ │ │
    i13 : pysqrt = toPython m2sqrt
    │ │ │  
    │ │ │ -o13 = <built-in method m2sqrt of PyCapsule object at 0x7f76c3e22890>
    │ │ │ +o13 = <built-in method m2sqrt of PyCapsule object at 0x7feb9f892890>
    │ │ │  
    │ │ │  o13 : PythonObject of class builtin_function_or_method
    │ │ │ │ │ │ │ │ │
    i14 : pysqrt 2
    │ │ │  calling Macaulay2 code from Python!
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -73,15 +73,15 @@
    │ │ │ │            sqrt x)
    │ │ │ │  
    │ │ │ │  o12 = m2sqrt
    │ │ │ │  
    │ │ │ │  o12 : FunctionClosure
    │ │ │ │  i13 : pysqrt = toPython m2sqrt
    │ │ │ │  
    │ │ │ │ -o13 = 
    │ │ │ │ +o13 = 
    │ │ │ │  
    │ │ │ │  o13 : PythonObject of class builtin_function_or_method
    │ │ │ │  i14 : pysqrt 2
    │ │ │ │  calling Macaulay2 code from Python!
    │ │ │ │  
    │ │ │ │  o14 = 1.4142135623730951
    │ │ ├── ./usr/share/doc/Macaulay2/QthPower/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=12
    │ │ │  bWluaW1pemF0aW9u
    │ │ │  #:len=2755
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiY2hhbmdlIHRvIGEgYmV0dGVyIE5vZXRo
    │ │ │  ZXIgbm9ybWFsaXphdGlvbiBzdWdnZXN0ZWQgYnkgdGhlIGluZHVjZWQgd2VpZ2h0cyIsICJsaW5l
    │ │ ├── ./usr/share/doc/Macaulay2/QuadraticIdealExamplesByRoos/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=16
    │ │ │  aGlnaGVyRGVwdGhUYWJsZQ==
    │ │ │  #:len=793
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiQ3JlYXRlcyBoYXNodGFibGUgb2YgSmFu
    │ │ │  LUVyaWsgUm9vcycgZXhhbXBsZXMgb2YgcXVhZHJhdGljIGlkZWFscyB3aXRoIHBvc2l0aXZlIGRl
    │ │ ├── ./usr/share/doc/Macaulay2/Quasidegrees/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=27
    │ │ │  cXVhc2lkZWdyZWVzTG9jYWxDb2hvbW9sb2d5
    │ │ │  #:len=3881
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAicmV0dXJucyB0aGUgcXVhc2lkZWdyZWUg
    │ │ │  c2V0cyBvZiBsb2NhbCBjb2hvbW9sb2d5IG1vZHVsZXMiLCAibGluZW51bSIgPT4gNzczLCBJbnB1
    │ │ ├── ./usr/share/doc/Macaulay2/QuaternaryQuartics/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=4
    │ │ │  W1FRXQ==
    │ │ │  #:len=544
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiUXVhdGVybmFyeSBRdWFydGljIEZvcm1z
    │ │ │  IGFuZCBHb3JlbnN0ZWluIHJpbmdzIChLYXB1c3RrYSwgS2FwdXN0a2EsIFJhbmVzdGFkLCBTY2hl
    │ │ ├── ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.out
    │ │ │ @@ -179,15 +179,15 @@
    │ │ │  i21 : L = trim groebnerStratum F;
    │ │ │  
    │ │ │  o21 : Ideal of T
    │ │ │  
    │ │ │  i22 : assert(dim L == 18)
    │ │ │  
    │ │ │  i23 : elapsedTime isPrime L
    │ │ │ - -- 3.03312s elapsed
    │ │ │ + -- 4.69806s elapsed
    │ │ │  
    │ │ │  o23 = true
    │ │ │  
    │ │ │  i24 : I = pointsIdeal randomPoints(S, 6)
    │ │ │  
    │ │ │                               2                              2   2          
    │ │ │  o24 = ideal (a*c - 7b*c - 49c  + 40a*d - 42b*d + 12c*d + 28d , b  - 36b*c -
    │ │ │ @@ -301,15 +301,15 @@
    │ │ │  o38 = true
    │ │ │  
    │ │ │  i39 : L441 = trim(L + ideal M1);
    │ │ │  
    │ │ │  o39 : Ideal of T
    │ │ │  
    │ │ │  i40 : elapsedTime compsL441 = decompose L441;
    │ │ │ - -- 2.63738s elapsed
    │ │ │ + -- 3.59341s elapsed
    │ │ │  
    │ │ │  i41 : #compsL441
    │ │ │  
    │ │ │  o41 = 2
    │ │ │  
    │ │ │  i42 : compsL441/dim -- two components, of dimensions 14 and 16.
    │ │ │  
    │ │ │ @@ -319,37 +319,37 @@
    │ │ │  
    │ │ │  i43 : compsL441/dim == {16, 14}
    │ │ │  
    │ │ │  o43 = true
    │ │ │  
    │ │ │  i44 : pta = randomPointOnRationalVariety compsL441_0
    │ │ │  
    │ │ │ -o44 = | -40 -4 -40 44 -22 -50 -30 13 -1 -16 45 -23 29 19 14 23 -21 19 14 29 6
    │ │ │ +o44 = | -49 11 -25 17 44 -16 -27 40 -34 20 -19 29 41 19 -40 42 -13 5 17 39 31
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      10 -32 18 -22 37 34 15 5 -10 -29 26 49 -50 45 -28 |
    │ │ │ +      10 45 26 43 49 -32 -29 19 -50 15 18 37 -10 34 -28 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o44 : Matrix kk  <-- kk
    │ │ │  
    │ │ │  i45 : Fa = sub(F, (vars S) | pta)
    │ │ │  
    │ │ │                2              2                              2               
    │ │ │ -o45 = ideal (a  + 14b*c - 16c  - 23a*d - 50b*d - 40c*d - 40d , a*b - 22b*c +
    │ │ │ +o45 = ideal (a  - 40b*c + 20c  + 29a*d - 16b*d - 25c*d - 49d , a*b + 43b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                          2   2              2                  
    │ │ │ -      14c  + 6a*d + 29b*d - c*d - 4d , b  + 45b*c + 15c  + 49a*d + 10b*d +
    │ │ │ +         2                              2   2              2                
    │ │ │ +      17c  + 31a*d + 41b*d - 34c*d + 11d , b  + 34b*c - 29c  + 37a*d + 10b*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                 2                   2                             2     2  
    │ │ │ -      23c*d - 30d , a*c + 26b*c + 37c  + 5a*d + 29b*d + 19c*d - 22d , b*c  -
    │ │ │ +                   2                   2                              2     2
    │ │ │ +      + 42c*d - 27d , a*c + 18b*c + 49c  + 19a*d + 39b*d + 19c*d + 44d , b*c 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                   2         2        2        2      3   3                2 
    │ │ │ -      10b*c*d - 32c d + 34a*d  - 21b*d  + 45c*d  + 44d , c  - 28b*c*d - 29c d
    │ │ │ +                     2         2        2        2      3   3            
    │ │ │ +      - 50b*c*d + 45c d - 32a*d  - 13b*d  - 19c*d  + 17d , c  - 28b*c*d +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2        2      3
    │ │ │ -      - 50a*d  + 18b*d  + 19c*d  + 13d )
    │ │ │ +         2         2        2       2      3
    │ │ │ +      15c d - 10a*d  + 26b*d  + 5c*d  + 40d )
    │ │ │  
    │ │ │  o45 : Ideal of S
    │ │ │  
    │ │ │  i46 : betti res Fa
    │ │ │  
    │ │ │               0 1 2 3
    │ │ │  o46 = total: 1 6 8 3
    │ │ │ @@ -357,84 +357,81 @@
    │ │ │            1: . 4 4 1
    │ │ │            2: . 2 4 2
    │ │ │  
    │ │ │  o46 : BettiTally
    │ │ │  
    │ │ │  i47 : netList decompose Fa -- this one is 5 points on a plane, and another point
    │ │ │  
    │ │ │ -      +------------------------------------------------------------------------------------------------------------+
    │ │ │ -o47 = |ideal (c + 5d, b - 33d, a - 21d)                                                                            |
    │ │ │ -      +------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                      2              2                                                      |
    │ │ │ -      |ideal (b + 45c + 49d, a - 22c - 26d, c  + 49c*d + 42d )                                                     |
    │ │ │ -      +------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                             2                      2                           2   2                     2 |
    │ │ │ -      |ideal (a + 26b + 37c + 36d, c  - 21b*d + 43c*d + 27d , b*c - 30b*d + 16c*d + 26d , b  - 3b*d - 24c*d - 36d )|
    │ │ │ -      +------------------------------------------------------------------------------------------------------------+
    │ │ │ +      +-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +o47 = |ideal (c + 19d, b - 10d, a + 6d)                                                                                                                                   |
    │ │ │ +      +-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +      |                            2              2                      2   3                2        2        2      3     2                2         2        2      3 |
    │ │ │ +      |ideal (a + 18b + 49c - 3d, b  + 34b*c - 29c  - 50b*d + 47c*d - 17d , c  - 28b*c*d + 15c d + 4b*d  - 10c*d  + 10d , b*c  - 50b*c*d + 45c d - 43b*d  + 34c*d  + 22d )|
    │ │ │ +      +-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │  
    │ │ │  i48 : CFa = minimalPrimes Fa
    │ │ │  
    │ │ │ -                                                                             
    │ │ │ -o48 = {ideal (c + 5d, b - 33d, a - 21d), ideal (b + 45c + 49d, a - 22c - 26d,
    │ │ │ +                                                                     2  
    │ │ │ +o48 = {ideal (c + 19d, b - 10d, a + 6d), ideal (a + 18b + 49c - 3d, b  +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -       2              2                                2                  
    │ │ │ -      c  + 49c*d + 42d ), ideal (a + 26b + 37c + 36d, c  - 21b*d + 43c*d +
    │ │ │ +                 2                      2   3                2        2  
    │ │ │ +      34b*c - 29c  - 50b*d + 47c*d - 17d , c  - 28b*c*d + 15c d + 4b*d  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                           2   2                     2
    │ │ │ -      27d , b*c - 30b*d + 16c*d + 26d , b  - 3b*d - 24c*d - 36d )}
    │ │ │ +           2      3     2                2         2        2      3
    │ │ │ +      10c*d  + 10d , b*c  - 50b*c*d + 45c d - 43b*d  + 34c*d  + 22d )}
    │ │ │  
    │ │ │  o48 : List
    │ │ │  
    │ │ │  i49 : lin = CFa_1_0 -- a linear form, defining a plane.
    │ │ │  
    │ │ │ -o49 = b + 45c + 49d
    │ │ │ +o49 = a + 18b + 49c - 3d
    │ │ │  
    │ │ │  o49 : S
    │ │ │  
    │ │ │  i50 : CFa/degree
    │ │ │  
    │ │ │ -o50 = {1, 2, 3}
    │ │ │ +o50 = {1, 5}
    │ │ │  
    │ │ │  o50 : List
    │ │ │  
    │ │ │  i51 : CFa/(I -> lin % I == 0) -- so 5 points on the plane.
    │ │ │  
    │ │ │ -o51 = {false, true, false}
    │ │ │ +o51 = {false, true}
    │ │ │  
    │ │ │  o51 : List
    │ │ │  
    │ │ │  i52 : degree(Fa : (Fa : lin))  -- somewhat simpler(?) way to see the ideal of the 5 points
    │ │ │  
    │ │ │ -o52 = 2
    │ │ │ +o52 = 5
    │ │ │  
    │ │ │  i53 : ptb = randomPointOnRationalVariety compsL441_1
    │ │ │  
    │ │ │ -o53 = | 31 42 28 25 19 3 43 -7 -3 -42 -29 -29 14 2 50 5 36 -13 -42 47 13 31
    │ │ │ +o53 = | 27 12 -34 9 -19 -43 -32 27 40 45 -13 29 -41 -13 22 -49 -4 -4 9 -23 43
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -37 -23 -24 -4 38 -29 -23 21 17 9 0 21 -9 -47 |
    │ │ │ +      18 -9 -47 43 21 38 17 -20 21 -29 47 0 2 -37 9 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o53 : Matrix kk  <-- kk
    │ │ │  
    │ │ │  i54 : Fb = sub(F, (vars S) | ptb)
    │ │ │  
    │ │ │ -              2              2                             2               
    │ │ │ -o54 = ideal (a  + 50b*c - 42c  - 29a*d + 3b*d + 28c*d + 31d , a*b - 24b*c -
    │ │ │ +              2              2                              2               
    │ │ │ +o54 = ideal (a  + 22b*c + 45c  + 29a*d - 43b*d - 34c*d + 27d , a*b + 43b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                             2   2             2                 
    │ │ │ -      42c  + 13a*d + 14b*d - 3c*d + 42d , b  - 9b*c - 29c  + 31b*d + 5c*d +
    │ │ │ +        2                              2   2              2                  
    │ │ │ +      9c  + 43a*d - 41b*d + 40c*d + 12d , b  - 37b*c + 17c  + 18b*d - 49c*d -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                 2                             2     2            
    │ │ │ -      43d , a*c + 9b*c - 4c  - 23a*d + 47b*d + 2c*d + 19d , b*c  + 21b*c*d -
    │ │ │ +         2                   2                              2     2          
    │ │ │ +      32d , a*c + 47b*c + 21c  - 20a*d - 23b*d - 13c*d - 19d , b*c  + 21b*c*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2         2        2        2      3   3                2         2
    │ │ │ -      37c d + 38a*d  + 36b*d  - 29c*d  + 25d , c  - 47b*c*d + 17c d + 21a*d 
    │ │ │ +          2         2       2        2     3   3               2        2  
    │ │ │ +      - 9c d + 38a*d  - 4b*d  - 13c*d  + 9d , c  + 9b*c*d - 29c d + 2a*d  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2     3
    │ │ │ -      - 23b*d  - 13c*d  - 7d )
    │ │ │ +           2       2      3
    │ │ │ +      47b*d  - 4c*d  + 27d )
    │ │ │  
    │ │ │  o54 : Ideal of S
    │ │ │  
    │ │ │  i55 : betti res Fb
    │ │ │  
    │ │ │               0 1 2 3
    │ │ │  o55 = total: 1 6 8 3
    │ │ │ @@ -442,114 +439,80 @@
    │ │ │            1: . 4 4 1
    │ │ │            2: . 2 4 2
    │ │ │  
    │ │ │  o55 : BettiTally
    │ │ │  
    │ │ │  i56 : netList decompose Fb --
    │ │ │  
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -o56 = |ideal (c - 45d, b + 16d, a + 38d)                      |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |ideal (c + 43d, b + 10d, a + 8d)                       |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |ideal (c + 34d, b + 15d, a + 28d)                      |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |ideal (c + 11d, b + 39d, a + 23d)                      |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |                                      2              2 |
    │ │ │ -      |ideal (b - 32c + 42d, a - 19c - 16d, c  - 28c*d - 40d )|
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ +      +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +      |                                      2              2                                                                                                                                                               |
    │ │ │ +o56 = |ideal (b - 50c - 43d, a + 15c - 46d, c  + 12c*d - 37d )                                                                                                                                                              |
    │ │ │ +      +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +      |        2                             2                                 2                                   2   2                            2                                   2   2                             2 |
    │ │ │ +      |ideal (c  + 46a*d - 39b*d + 2c*d - 24d , b*c - 9a*d + 16b*d + 2c*d + 27d , a*c + 43a*d + 44b*d - 48c*d + 24d , b  - 4a*d - 40b*d - 9c*d - 39d , a*b + 16a*d + 26b*d + 37c*d - 24d , a  - 25a*d + 47b*d + 34c*d + 8d )|
    │ │ │ +      +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │  
    │ │ │  i57 : netList for x in subsets(decompose Fb, 3) list intersect(x#0, x#1, x#2)
    │ │ │  
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                          2                      2                         2   2                      2                                                                                                             |
    │ │ │ -o57 = |ideal (a - 7b + 32c + d, c  + 42b*d + 33c*d - 10d , b*c - b*d + 13c*d + 18d , b  + 28b*d - 32c*d + 16d )                                                                                                            |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                          2                      2                           2   2                      2                                                                                                           |
    │ │ │ -      |ideal (a - 7b + 32c + d, c  + 40b*d - 36c*d + 33d , b*c + 45b*d - 16c*d + 39d , b  - 20b*d + 29c*d + 38d )                                                                                                          |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                          2                      2                           2   2                     2                                                                                                            |
    │ │ │ -      |ideal (a - 7b + 32c + d, c  - 10b*d + 17c*d - 21d , b*c - 17b*d - 23c*d - 32d , b  - 8b*d - 12c*d - 46d )                                                                                                           |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                     3      2         2      3                                                                                                                                                      |
    │ │ │ -      |ideal (b + 23c - 11d, a - 9c + 25d, c  - 13c d - 14c*d  + 23d )                                                                                                                                                     |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                     2                      2   2      2                      2   3      2         2        2      3                                                                                |
    │ │ │ -      |ideal (a + 48b - 40c - 20d, b*c - 32c  + 43b*d - 21c*d - 12d , b  - 14c  + 14b*d + 18c*d + 36d , c  + 28c d - 20b*d  + 42c*d  - 50d )                                                                               |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                   2                      2   2      2                      2   3      2         2        2     3                                                                                   |
    │ │ │ -      |ideal (a + b + 50c + 26d, b*c - 32c  + 34b*d - 36c*d + 14d , b  - 14c  + 34b*d - 16c*d - 33d , c  + 28c d + 39b*d  - 28c*d  + 4d )                                                                                  |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |        2                            2                                 2                                 2   2                              2                                  2   2                              2 |
    │ │ │ -      |ideal (c  - 7a*d - 19b*d + 6c*d - 19d , b*c - 5a*d + 49b*d - 4c*d + 50d , a*c - 6a*d + 35b*d - 39c*d - 2d , b  - 46a*d + 22b*d + 42c*d + 43d , a*b + 3a*d - 12b*d - 49c*d + 40d , a  + 28a*d - 13b*d - 25c*d - 35d )|
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                     2                     2   2      2                      2   3      2         2        2     3                                                                                  |
    │ │ │ -      |ideal (a - 46b + 39c - 29d, b*c - 32c  + 11b*d - 7c*d - 43d , b  - 14c  + 29b*d + 43c*d - 41d , c  + 28c d + 46b*d  - 50c*d  - 5d )                                                                                 |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |        2                              2                                2                                   2   2                              2                                 2   2                           2  |
    │ │ │ -      |ideal (c  + 15a*d + 27b*d + 35c*d + 46d , b*c - 6a*d + b*d + 36c*d - 31d , a*c - 10a*d + 45b*d + 20c*d - 23d , b  - 23a*d + 15b*d + 31c*d - 13d , a*b - 6a*d - 40b*d + 8c*d + 18d , a  - 8a*d - 24b*d + c*d - 22d ) |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |        2                              2                                2                                  2   2                      2                                   2   2                              2      |
    │ │ │ -      |ideal (c  + 37a*d + 25b*d - 16c*d + 14d , b*c - 7a*d + 47b*d - 3c*d - 2d , a*c - 14a*d + 27b*d - 35c*d - 8d , b  - 33b*d + 19c*d + 27d , a*b - 15a*d - 30b*d - 40c*d - 24d , a  - 44a*d + 16b*d + 11c*d + 12d )     |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +o57 = ++
    │ │ │ +      ++
    │ │ │  
    │ │ │  i58 : pt0 = randomPointOnRationalVariety(compsL441_0)
    │ │ │  
    │ │ │ -o58 = | 13 -24 9 5 -49 49 36 -36 -50 8 31 -22 49 8 35 49 6 -42 32 15 -8 -24
    │ │ │ +o58 = | 44 15 26 -28 -4 33 49 -19 -6 -18 -37 -34 18 -42 -23 23 38 -40 27 26
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -33 -22 28 -2 -23 18 -40 -29 15 -13 39 -18 -21 46 |
    │ │ │ +      -39 -24 -21 -13 38 39 -33 15 8 -18 18 -22 -2 -29 -23 46 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o58 : Matrix kk  <-- kk
    │ │ │  
    │ │ │  i59 : pt1 = randomPointOnRationalVariety(compsL441_1)
    │ │ │  
    │ │ │ -o59 = | -45 18 -9 38 21 29 50 -8 -5 45 -47 -26 37 -35 -21 28 27 46 -17 -49
    │ │ │ +o59 = | -8 41 28 -44 50 33 -38 33 -23 1 -2 -47 32 46 30 -22 -2 -14 27 37 15
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -23 15 -50 37 -39 -14 21 10 -31 3 -18 32 0 3 -15 33 |
    │ │ │ +      -25 -15 33 -23 3 21 -18 -9 3 10 -49 0 -35 -50 32 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o59 : Matrix kk  <-- kk
    │ │ │  
    │ │ │  i60 : I0 = sub(sub(F, (vars ring F) | sub(pt0, ring F)), S)
    │ │ │  
    │ │ │ -              2             2                             2               
    │ │ │ -o60 = ideal (a  + 35b*c + 8c  - 22a*d + 49b*d + 9c*d + 13d , a*b + 28b*c +
    │ │ │ +              2              2                              2               
    │ │ │ +o60 = ideal (a  - 23b*c - 18c  - 34a*d + 33b*d + 26c*d + 44d , a*b + 38b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                             2   2              2                  
    │ │ │ -      32c  - 8a*d + 49b*d - 50c*d - 24d , b  - 21b*c + 18c  + 39a*d - 24b*d +
    │ │ │ +         2                             2   2              2                 
    │ │ │ +      27c  - 39a*d + 18b*d - 6c*d + 15d , b  - 23b*c + 15c  - 2a*d - 24b*d +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                 2                  2                             2     2  
    │ │ │ -      49c*d + 36d , a*c - 13b*c - 2c  - 40a*d + 15b*d + 8c*d - 49d , b*c  -
    │ │ │ +                 2                   2                            2     2  
    │ │ │ +      23c*d + 49d , a*c - 22b*c + 39c  + 8a*d + 26b*d - 42c*d - 4d , b*c  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                   2         2       2        2     3   3                2   
    │ │ │ -      29b*c*d - 33c d - 23a*d  + 6b*d  + 31c*d  + 5d , c  + 46b*c*d + 15c d -
    │ │ │ +                   2         2        2        2      3   3                2 
    │ │ │ +      18b*c*d - 21c d - 33a*d  + 38b*d  - 37c*d  - 28d , c  + 46b*c*d + 18c d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2        2        2      3
    │ │ │ -      18a*d  - 22b*d  - 42c*d  - 36d )
    │ │ │ +             2        2        2      3
    │ │ │ +      - 29a*d  - 13b*d  - 40c*d  - 19d )
    │ │ │  
    │ │ │  o60 : Ideal of S
    │ │ │  
    │ │ │  i61 : I1 = sub(sub(F, (vars ring F) | sub(pt1, ring F)), S)
    │ │ │  
    │ │ │ -              2              2                             2               
    │ │ │ -o61 = ideal (a  - 21b*c + 45c  - 26a*d + 29b*d - 9c*d - 45d , a*b - 39b*c -
    │ │ │ +              2            2                             2               
    │ │ │ +o61 = ideal (a  + 30b*c + c  - 47a*d + 33b*d + 28c*d - 8d , a*b - 23b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                             2   2              2                  
    │ │ │ -      17c  - 23a*d + 37b*d - 5c*d + 18d , b  - 15b*c + 10c  + 15b*d + 28c*d +
    │ │ │ +         2                              2   2              2                
    │ │ │ +      27c  + 15a*d + 32b*d - 23c*d + 41d , b  - 50b*c - 18c  - 25b*d - 22c*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                   2                              2     2         
    │ │ │ -      50d , a*c + 32b*c - 14c  - 31a*d - 49b*d - 35c*d + 21d , b*c  + 3b*c*d
    │ │ │ +           2                  2                             2     2         
    │ │ │ +      - 38d , a*c - 49b*c + 3c  - 9a*d + 37b*d + 46c*d + 50d , b*c  + 3b*c*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2         2        2        2      3   3                2        2
    │ │ │ -      - 50c d + 21a*d  + 27b*d  - 47c*d  + 38d , c  + 33b*c*d - 18c d + 3a*d 
    │ │ │ +           2         2       2       2      3   3                2         2
    │ │ │ +      - 15c d + 21a*d  - 2b*d  - 2c*d  - 44d , c  + 32b*c*d + 10c d - 35a*d 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2     3
    │ │ │ -      + 37b*d  + 46c*d  - 8d )
    │ │ │ +             2        2      3
    │ │ │ +      + 33b*d  - 14c*d  + 33d )
    │ │ │  
    │ │ │  o61 : Ideal of S
    │ │ │  
    │ │ │  i62 : betti res I0
    │ │ │  
    │ │ │               0 1 2 3
    │ │ │  o62 = total: 1 6 8 3
    │ │ │ @@ -567,38 +530,34 @@
    │ │ │            1: . 4 4 1
    │ │ │            2: . 2 4 2
    │ │ │  
    │ │ │  o63 : BettiTally
    │ │ │  
    │ │ │  i64 : netList decompose I0
    │ │ │  
    │ │ │ -      +-------------------------------------------------------------------------------------------------------+
    │ │ │ -o64 = |ideal (c - 40d, b - 10d, a + 32d)                                                                      |
    │ │ │ -      +-------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                      2              2                                                 |
    │ │ │ -      |ideal (b + 10c + 25d, a + 27c - 50d, c  - 34c*d - 17d )                                                |
    │ │ │ -      +-------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                            2                    2                          2   2                    2 |
    │ │ │ -      |ideal (a - 13b - 2c + 29d, c  - 5b*d - 20c*d + 8d , b*c + 40b*d + 16c*d + 8d , b  - b*d + 15c*d + 40d )|
    │ │ │ -      +-------------------------------------------------------------------------------------------------------+
    │ │ │ +      +------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +o64 = |ideal (c + 8d, b + 5d, a - 25d)                                                                                                                             |
    │ │ │ +      +------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +      |                             2              2              2   3                2         2        2      3     2                2         2        2     3 |
    │ │ │ +      |ideal (a - 22b + 39c + 50d, b  - 23b*c + 15c  + 33b*d + 48d , c  + 46b*c*d + 18c d - 45b*d  - 20c*d  + 17d , b*c  - 18b*c*d - 21c d + 19b*d  + 38c*d  + 6d )|
    │ │ │ +      +------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │  
    │ │ │  i65 : netList decompose I1
    │ │ │  
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -o65 = |ideal (c + 32d, b + 18d, a - 33d)                     |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |ideal (c + 29d, b - 8d, a + 50d)                      |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |ideal (c + 16d, b + 39d, a - 32d)                     |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |ideal (c + 5d, b - 14d, a + 7d)                       |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |                                     2              2 |
    │ │ │ -      |ideal (b - 40c + 5d, a - 47c + 24d, c  - 27c*d + 15d )|
    │ │ │ -      +------------------------------------------------------+
    │ │ │ +      +---------------------------------+
    │ │ │ +o65 = |ideal (c - 9d, b + 15d, a + 27d) |
    │ │ │ +      +---------------------------------+
    │ │ │ +      |ideal (c + 48d, b + 11d, a - 37d)|
    │ │ │ +      +---------------------------------+
    │ │ │ +      |ideal (c + 29d, b + 46d, a + 18d)|
    │ │ │ +      +---------------------------------+
    │ │ │ +      |ideal (c + 24d, b + 46d, a + 33d)|
    │ │ │ +      +---------------------------------+
    │ │ │ +      |ideal (c + 22d, b + 38d, a - 50d)|
    │ │ │ +      +---------------------------------+
    │ │ │  
    │ │ │  i66 : L430 = (trim minors(2, M1)) + groebnerStratum F;
    │ │ │  
    │ │ │  o66 : Ideal of T
    │ │ │  
    │ │ │  i67 : C = res(I, FastNonminimal => true)
    │ │ ├── ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.html
    │ │ │ @@ -291,15 +291,15 @@
    │ │ │  o21 : Ideal of T
    │ │ │ │ │ │ │ │ │
    i22 : assert(dim L == 18)
    │ │ │ │ │ │ │ │ │
    i23 : elapsedTime isPrime L
    │ │ │ - -- 3.03312s elapsed
    │ │ │ + -- 4.69806s elapsed
    │ │ │  
    │ │ │  o23 = true
    │ │ │ │ │ │ │ │ │
    │ │ │

    The Schreyer resolution and minimal Betti numbers

    │ │ │
    │ │ │ @@ -469,15 +469,15 @@ │ │ │ │ │ │
    i39 : L441 = trim(L + ideal M1);
    │ │ │  
    │ │ │  o39 : Ideal of T
    │ │ │ │ │ │ │ │ │
    i40 : elapsedTime compsL441 = decompose L441;
    │ │ │ - -- 2.63738s elapsed
    │ │ │ + -- 3.59341s elapsed │ │ │ │ │ │ │ │ │
    i41 : #compsL441
    │ │ │  
    │ │ │  o41 = 2
    │ │ │ │ │ │ │ │ │ @@ -496,38 +496,38 @@ │ │ │
    │ │ │

    Both components are rational, and here are random points, one on each component:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i44 : pta = randomPointOnRationalVariety compsL441_0
    │ │ │  
    │ │ │ -o44 = | -40 -4 -40 44 -22 -50 -30 13 -1 -16 45 -23 29 19 14 23 -21 19 14 29 6
    │ │ │ +o44 = | -49 11 -25 17 44 -16 -27 40 -34 20 -19 29 41 19 -40 42 -13 5 17 39 31
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      10 -32 18 -22 37 34 15 5 -10 -29 26 49 -50 45 -28 |
    │ │ │ +      10 45 26 43 49 -32 -29 19 -50 15 18 37 -10 34 -28 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o44 : Matrix kk  <-- kk
    │ │ │
    i45 : Fa = sub(F, (vars S) | pta)
    │ │ │  
    │ │ │                2              2                              2               
    │ │ │ -o45 = ideal (a  + 14b*c - 16c  - 23a*d - 50b*d - 40c*d - 40d , a*b - 22b*c +
    │ │ │ +o45 = ideal (a  - 40b*c + 20c  + 29a*d - 16b*d - 25c*d - 49d , a*b + 43b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                          2   2              2                  
    │ │ │ -      14c  + 6a*d + 29b*d - c*d - 4d , b  + 45b*c + 15c  + 49a*d + 10b*d +
    │ │ │ +         2                              2   2              2                
    │ │ │ +      17c  + 31a*d + 41b*d - 34c*d + 11d , b  + 34b*c - 29c  + 37a*d + 10b*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                 2                   2                             2     2  
    │ │ │ -      23c*d - 30d , a*c + 26b*c + 37c  + 5a*d + 29b*d + 19c*d - 22d , b*c  -
    │ │ │ +                   2                   2                              2     2
    │ │ │ +      + 42c*d - 27d , a*c + 18b*c + 49c  + 19a*d + 39b*d + 19c*d + 44d , b*c 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                   2         2        2        2      3   3                2 
    │ │ │ -      10b*c*d - 32c d + 34a*d  - 21b*d  + 45c*d  + 44d , c  - 28b*c*d - 29c d
    │ │ │ +                     2         2        2        2      3   3            
    │ │ │ +      - 50b*c*d + 45c d - 32a*d  - 13b*d  - 19c*d  + 17d , c  - 28b*c*d +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2        2      3
    │ │ │ -      - 50a*d  + 18b*d  + 19c*d  + 13d )
    │ │ │ +         2         2        2       2      3
    │ │ │ +      15c d - 10a*d  + 26b*d  + 5c*d  + 40d )
    │ │ │  
    │ │ │  o45 : Ideal of S
    │ │ │
    i46 : betti res Fa
    │ │ │  
    │ │ │               0 1 2 3
    │ │ │ @@ -537,93 +537,90 @@
    │ │ │            2: . 2 4 2
    │ │ │  
    │ │ │  o46 : BettiTally
    │ │ │
    i47 : netList decompose Fa -- this one is 5 points on a plane, and another point
    │ │ │  
    │ │ │ -      +------------------------------------------------------------------------------------------------------------+
    │ │ │ -o47 = |ideal (c + 5d, b - 33d, a - 21d)                                                                            |
    │ │ │ -      +------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                      2              2                                                      |
    │ │ │ -      |ideal (b + 45c + 49d, a - 22c - 26d, c  + 49c*d + 42d )                                                     |
    │ │ │ -      +------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                             2                      2                           2   2                     2 |
    │ │ │ -      |ideal (a + 26b + 37c + 36d, c  - 21b*d + 43c*d + 27d , b*c - 30b*d + 16c*d + 26d , b  - 3b*d - 24c*d - 36d )|
    │ │ │ -      +------------------------------------------------------------------------------------------------------------+
    │ │ │ + +-------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ +o47 = |ideal (c + 19d, b - 10d, a + 6d) | │ │ │ + +-------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ + | 2 2 2 3 2 2 2 3 2 2 2 2 3 | │ │ │ + |ideal (a + 18b + 49c - 3d, b + 34b*c - 29c - 50b*d + 47c*d - 17d , c - 28b*c*d + 15c d + 4b*d - 10c*d + 10d , b*c - 50b*c*d + 45c d - 43b*d + 34c*d + 22d )| │ │ │ + +-------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │
    i48 : CFa = minimalPrimes Fa
    │ │ │  
    │ │ │ -                                                                             
    │ │ │ -o48 = {ideal (c + 5d, b - 33d, a - 21d), ideal (b + 45c + 49d, a - 22c - 26d,
    │ │ │ +                                                                     2  
    │ │ │ +o48 = {ideal (c + 19d, b - 10d, a + 6d), ideal (a + 18b + 49c - 3d, b  +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -       2              2                                2                  
    │ │ │ -      c  + 49c*d + 42d ), ideal (a + 26b + 37c + 36d, c  - 21b*d + 43c*d +
    │ │ │ +                 2                      2   3                2        2  
    │ │ │ +      34b*c - 29c  - 50b*d + 47c*d - 17d , c  - 28b*c*d + 15c d + 4b*d  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                           2   2                     2
    │ │ │ -      27d , b*c - 30b*d + 16c*d + 26d , b  - 3b*d - 24c*d - 36d )}
    │ │ │ +           2      3     2                2         2        2      3
    │ │ │ +      10c*d  + 10d , b*c  - 50b*c*d + 45c d - 43b*d  + 34c*d  + 22d )}
    │ │ │  
    │ │ │  o48 : List
    │ │ │
    i49 : lin = CFa_1_0 -- a linear form, defining a plane.
    │ │ │  
    │ │ │ -o49 = b + 45c + 49d
    │ │ │ +o49 = a + 18b + 49c - 3d
    │ │ │  
    │ │ │  o49 : S
    │ │ │
    i50 : CFa/degree
    │ │ │  
    │ │ │ -o50 = {1, 2, 3}
    │ │ │ +o50 = {1, 5}
    │ │ │  
    │ │ │  o50 : List
    │ │ │
    i51 : CFa/(I -> lin % I == 0) -- so 5 points on the plane.
    │ │ │  
    │ │ │ -o51 = {false, true, false}
    │ │ │ +o51 = {false, true}
    │ │ │  
    │ │ │  o51 : List
    │ │ │
    i52 : degree(Fa : (Fa : lin))  -- somewhat simpler(?) way to see the ideal of the 5 points
    │ │ │  
    │ │ │ -o52 = 2
    │ │ │ +o52 = 5 │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i53 : ptb = randomPointOnRationalVariety compsL441_1
    │ │ │  
    │ │ │ -o53 = | 31 42 28 25 19 3 43 -7 -3 -42 -29 -29 14 2 50 5 36 -13 -42 47 13 31
    │ │ │ +o53 = | 27 12 -34 9 -19 -43 -32 27 40 45 -13 29 -41 -13 22 -49 -4 -4 9 -23 43
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -37 -23 -24 -4 38 -29 -23 21 17 9 0 21 -9 -47 |
    │ │ │ +      18 -9 -47 43 21 38 17 -20 21 -29 47 0 2 -37 9 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o53 : Matrix kk  <-- kk
    │ │ │
    i54 : Fb = sub(F, (vars S) | ptb)
    │ │ │  
    │ │ │ -              2              2                             2               
    │ │ │ -o54 = ideal (a  + 50b*c - 42c  - 29a*d + 3b*d + 28c*d + 31d , a*b - 24b*c -
    │ │ │ +              2              2                              2               
    │ │ │ +o54 = ideal (a  + 22b*c + 45c  + 29a*d - 43b*d - 34c*d + 27d , a*b + 43b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                             2   2             2                 
    │ │ │ -      42c  + 13a*d + 14b*d - 3c*d + 42d , b  - 9b*c - 29c  + 31b*d + 5c*d +
    │ │ │ +        2                              2   2              2                  
    │ │ │ +      9c  + 43a*d - 41b*d + 40c*d + 12d , b  - 37b*c + 17c  + 18b*d - 49c*d -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                 2                             2     2            
    │ │ │ -      43d , a*c + 9b*c - 4c  - 23a*d + 47b*d + 2c*d + 19d , b*c  + 21b*c*d -
    │ │ │ +         2                   2                              2     2          
    │ │ │ +      32d , a*c + 47b*c + 21c  - 20a*d - 23b*d - 13c*d - 19d , b*c  + 21b*c*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2         2        2        2      3   3                2         2
    │ │ │ -      37c d + 38a*d  + 36b*d  - 29c*d  + 25d , c  - 47b*c*d + 17c d + 21a*d 
    │ │ │ +          2         2       2        2     3   3               2        2  
    │ │ │ +      - 9c d + 38a*d  - 4b*d  - 13c*d  + 9d , c  + 9b*c*d - 29c d + 2a*d  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2     3
    │ │ │ -      - 23b*d  - 13c*d  - 7d )
    │ │ │ +           2       2      3
    │ │ │ +      47b*d  - 4c*d  + 27d )
    │ │ │  
    │ │ │  o54 : Ideal of S
    │ │ │
    i55 : betti res Fb
    │ │ │  
    │ │ │               0 1 2 3
    │ │ │ @@ -633,126 +630,92 @@
    │ │ │            2: . 2 4 2
    │ │ │  
    │ │ │  o55 : BettiTally
    │ │ │
    i56 : netList decompose Fb --
    │ │ │  
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -o56 = |ideal (c - 45d, b + 16d, a + 38d)                      |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |ideal (c + 43d, b + 10d, a + 8d)                       |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |ideal (c + 34d, b + 15d, a + 28d)                      |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |ideal (c + 11d, b + 39d, a + 23d)                      |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |                                      2              2 |
    │ │ │ -      |ideal (b - 32c + 42d, a - 19c - 16d, c  - 28c*d - 40d )|
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ + | 2 2 | │ │ │ +o56 = |ideal (b - 50c - 43d, a + 15c - 46d, c + 12c*d - 37d ) | │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ + | 2 2 2 2 2 2 2 2 2 | │ │ │ + |ideal (c + 46a*d - 39b*d + 2c*d - 24d , b*c - 9a*d + 16b*d + 2c*d + 27d , a*c + 43a*d + 44b*d - 48c*d + 24d , b - 4a*d - 40b*d - 9c*d - 39d , a*b + 16a*d + 26b*d + 37c*d - 24d , a - 25a*d + 47b*d + 34c*d + 8d )| │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │
    i57 : netList for x in subsets(decompose Fb, 3) list intersect(x#0, x#1, x#2)
    │ │ │  
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                          2                      2                         2   2                      2                                                                                                             |
    │ │ │ -o57 = |ideal (a - 7b + 32c + d, c  + 42b*d + 33c*d - 10d , b*c - b*d + 13c*d + 18d , b  + 28b*d - 32c*d + 16d )                                                                                                            |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                          2                      2                           2   2                      2                                                                                                           |
    │ │ │ -      |ideal (a - 7b + 32c + d, c  + 40b*d - 36c*d + 33d , b*c + 45b*d - 16c*d + 39d , b  - 20b*d + 29c*d + 38d )                                                                                                          |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                          2                      2                           2   2                     2                                                                                                            |
    │ │ │ -      |ideal (a - 7b + 32c + d, c  - 10b*d + 17c*d - 21d , b*c - 17b*d - 23c*d - 32d , b  - 8b*d - 12c*d - 46d )                                                                                                           |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                     3      2         2      3                                                                                                                                                      |
    │ │ │ -      |ideal (b + 23c - 11d, a - 9c + 25d, c  - 13c d - 14c*d  + 23d )                                                                                                                                                     |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                     2                      2   2      2                      2   3      2         2        2      3                                                                                |
    │ │ │ -      |ideal (a + 48b - 40c - 20d, b*c - 32c  + 43b*d - 21c*d - 12d , b  - 14c  + 14b*d + 18c*d + 36d , c  + 28c d - 20b*d  + 42c*d  - 50d )                                                                               |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                   2                      2   2      2                      2   3      2         2        2     3                                                                                   |
    │ │ │ -      |ideal (a + b + 50c + 26d, b*c - 32c  + 34b*d - 36c*d + 14d , b  - 14c  + 34b*d - 16c*d - 33d , c  + 28c d + 39b*d  - 28c*d  + 4d )                                                                                  |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |        2                            2                                 2                                 2   2                              2                                  2   2                              2 |
    │ │ │ -      |ideal (c  - 7a*d - 19b*d + 6c*d - 19d , b*c - 5a*d + 49b*d - 4c*d + 50d , a*c - 6a*d + 35b*d - 39c*d - 2d , b  - 46a*d + 22b*d + 42c*d + 43d , a*b + 3a*d - 12b*d - 49c*d + 40d , a  + 28a*d - 13b*d - 25c*d - 35d )|
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                     2                     2   2      2                      2   3      2         2        2     3                                                                                  |
    │ │ │ -      |ideal (a - 46b + 39c - 29d, b*c - 32c  + 11b*d - 7c*d - 43d , b  - 14c  + 29b*d + 43c*d - 41d , c  + 28c d + 46b*d  - 50c*d  - 5d )                                                                                 |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |        2                              2                                2                                   2   2                              2                                 2   2                           2  |
    │ │ │ -      |ideal (c  + 15a*d + 27b*d + 35c*d + 46d , b*c - 6a*d + b*d + 36c*d - 31d , a*c - 10a*d + 45b*d + 20c*d - 23d , b  - 23a*d + 15b*d + 31c*d - 13d , a*b - 6a*d - 40b*d + 8c*d + 18d , a  - 8a*d - 24b*d + c*d - 22d ) |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |        2                              2                                2                                  2   2                      2                                   2   2                              2      |
    │ │ │ -      |ideal (c  + 37a*d + 25b*d - 16c*d + 14d , b*c - 7a*d + 47b*d - 3c*d - 2d , a*c - 14a*d + 27b*d - 35c*d - 8d , b  - 33b*d + 19c*d + 27d , a*b - 15a*d - 30b*d - 40c*d - 24d , a  - 44a*d + 16b*d + 11c*d + 12d )     |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +o57 = ++ │ │ │ + ++ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i58 : pt0 = randomPointOnRationalVariety(compsL441_0)
    │ │ │  
    │ │ │ -o58 = | 13 -24 9 5 -49 49 36 -36 -50 8 31 -22 49 8 35 49 6 -42 32 15 -8 -24
    │ │ │ +o58 = | 44 15 26 -28 -4 33 49 -19 -6 -18 -37 -34 18 -42 -23 23 38 -40 27 26
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -33 -22 28 -2 -23 18 -40 -29 15 -13 39 -18 -21 46 |
    │ │ │ +      -39 -24 -21 -13 38 39 -33 15 8 -18 18 -22 -2 -29 -23 46 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o58 : Matrix kk  <-- kk
    │ │ │
    i59 : pt1 = randomPointOnRationalVariety(compsL441_1)
    │ │ │  
    │ │ │ -o59 = | -45 18 -9 38 21 29 50 -8 -5 45 -47 -26 37 -35 -21 28 27 46 -17 -49
    │ │ │ +o59 = | -8 41 28 -44 50 33 -38 33 -23 1 -2 -47 32 46 30 -22 -2 -14 27 37 15
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -23 15 -50 37 -39 -14 21 10 -31 3 -18 32 0 3 -15 33 |
    │ │ │ +      -25 -15 33 -23 3 21 -18 -9 3 10 -49 0 -35 -50 32 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o59 : Matrix kk  <-- kk
    │ │ │
    │ │ │
    │ │ │

    We compute the ideal of the corresponding zero dimensional scheme with length 6, corresponding to the points pt0, pt1 in Hilb.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i60 : I0 = sub(sub(F, (vars ring F) | sub(pt0, ring F)), S)
    │ │ │  
    │ │ │ -              2             2                             2               
    │ │ │ -o60 = ideal (a  + 35b*c + 8c  - 22a*d + 49b*d + 9c*d + 13d , a*b + 28b*c +
    │ │ │ +              2              2                              2               
    │ │ │ +o60 = ideal (a  - 23b*c - 18c  - 34a*d + 33b*d + 26c*d + 44d , a*b + 38b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                             2   2              2                  
    │ │ │ -      32c  - 8a*d + 49b*d - 50c*d - 24d , b  - 21b*c + 18c  + 39a*d - 24b*d +
    │ │ │ +         2                             2   2              2                 
    │ │ │ +      27c  - 39a*d + 18b*d - 6c*d + 15d , b  - 23b*c + 15c  - 2a*d - 24b*d +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                 2                  2                             2     2  
    │ │ │ -      49c*d + 36d , a*c - 13b*c - 2c  - 40a*d + 15b*d + 8c*d - 49d , b*c  -
    │ │ │ +                 2                   2                            2     2  
    │ │ │ +      23c*d + 49d , a*c - 22b*c + 39c  + 8a*d + 26b*d - 42c*d - 4d , b*c  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                   2         2       2        2     3   3                2   
    │ │ │ -      29b*c*d - 33c d - 23a*d  + 6b*d  + 31c*d  + 5d , c  + 46b*c*d + 15c d -
    │ │ │ +                   2         2        2        2      3   3                2 
    │ │ │ +      18b*c*d - 21c d - 33a*d  + 38b*d  - 37c*d  - 28d , c  + 46b*c*d + 18c d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2        2        2      3
    │ │ │ -      18a*d  - 22b*d  - 42c*d  - 36d )
    │ │ │ +             2        2        2      3
    │ │ │ +      - 29a*d  - 13b*d  - 40c*d  - 19d )
    │ │ │  
    │ │ │  o60 : Ideal of S
    │ │ │
    i61 : I1 = sub(sub(F, (vars ring F) | sub(pt1, ring F)), S)
    │ │ │  
    │ │ │ -              2              2                             2               
    │ │ │ -o61 = ideal (a  - 21b*c + 45c  - 26a*d + 29b*d - 9c*d - 45d , a*b - 39b*c -
    │ │ │ +              2            2                             2               
    │ │ │ +o61 = ideal (a  + 30b*c + c  - 47a*d + 33b*d + 28c*d - 8d , a*b - 23b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                             2   2              2                  
    │ │ │ -      17c  - 23a*d + 37b*d - 5c*d + 18d , b  - 15b*c + 10c  + 15b*d + 28c*d +
    │ │ │ +         2                              2   2              2                
    │ │ │ +      27c  + 15a*d + 32b*d - 23c*d + 41d , b  - 50b*c - 18c  - 25b*d - 22c*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                   2                              2     2         
    │ │ │ -      50d , a*c + 32b*c - 14c  - 31a*d - 49b*d - 35c*d + 21d , b*c  + 3b*c*d
    │ │ │ +           2                  2                             2     2         
    │ │ │ +      - 38d , a*c - 49b*c + 3c  - 9a*d + 37b*d + 46c*d + 50d , b*c  + 3b*c*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2         2        2        2      3   3                2        2
    │ │ │ -      - 50c d + 21a*d  + 27b*d  - 47c*d  + 38d , c  + 33b*c*d - 18c d + 3a*d 
    │ │ │ +           2         2       2       2      3   3                2         2
    │ │ │ +      - 15c d + 21a*d  - 2b*d  - 2c*d  - 44d , c  + 32b*c*d + 10c d - 35a*d 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2     3
    │ │ │ -      + 37b*d  + 46c*d  - 8d )
    │ │ │ +             2        2      3
    │ │ │ +      + 33b*d  - 14c*d  + 33d )
    │ │ │  
    │ │ │  o61 : Ideal of S
    │ │ │
    i62 : betti res I0
    │ │ │  
    │ │ │               0 1 2 3
    │ │ │ @@ -775,39 +738,35 @@
    │ │ │  o63 : BettiTally
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i64 : netList decompose I0
    │ │ │  
    │ │ │ -      +-------------------------------------------------------------------------------------------------------+
    │ │ │ -o64 = |ideal (c - 40d, b - 10d, a + 32d)                                                                      |
    │ │ │ -      +-------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                      2              2                                                 |
    │ │ │ -      |ideal (b + 10c + 25d, a + 27c - 50d, c  - 34c*d - 17d )                                                |
    │ │ │ -      +-------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                            2                    2                          2   2                    2 |
    │ │ │ -      |ideal (a - 13b - 2c + 29d, c  - 5b*d - 20c*d + 8d , b*c + 40b*d + 16c*d + 8d , b  - b*d + 15c*d + 40d )|
    │ │ │ -      +-------------------------------------------------------------------------------------------------------+
    │ │ │ + +------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ +o64 = |ideal (c + 8d, b + 5d, a - 25d) | │ │ │ + +------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ + | 2 2 2 3 2 2 2 3 2 2 2 2 3 | │ │ │ + |ideal (a - 22b + 39c + 50d, b - 23b*c + 15c + 33b*d + 48d , c + 46b*c*d + 18c d - 45b*d - 20c*d + 17d , b*c - 18b*c*d - 21c d + 19b*d + 38c*d + 6d )| │ │ │ + +------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │
    i65 : netList decompose I1
    │ │ │  
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -o65 = |ideal (c + 32d, b + 18d, a - 33d)                     |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |ideal (c + 29d, b - 8d, a + 50d)                      |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |ideal (c + 16d, b + 39d, a - 32d)                     |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |ideal (c + 5d, b - 14d, a + 7d)                       |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |                                     2              2 |
    │ │ │ -      |ideal (b - 40c + 5d, a - 47c + 24d, c  - 27c*d + 15d )|
    │ │ │ -      +------------------------------------------------------+
    │ │ │ + +---------------------------------+ │ │ │ +o65 = |ideal (c - 9d, b + 15d, a + 27d) | │ │ │ + +---------------------------------+ │ │ │ + |ideal (c + 48d, b + 11d, a - 37d)| │ │ │ + +---------------------------------+ │ │ │ + |ideal (c + 29d, b + 46d, a + 18d)| │ │ │ + +---------------------------------+ │ │ │ + |ideal (c + 24d, b + 46d, a + 33d)| │ │ │ + +---------------------------------+ │ │ │ + |ideal (c + 22d, b + 38d, a - 50d)| │ │ │ + +---------------------------------+ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i66 : L430 = (trim minors(2, M1)) + groebnerStratum F;
    │ │ │  
    │ │ │  o66 : Ideal of T
    │ │ │ ├── html2text {} │ │ │ │ @@ -250,15 +250,15 @@ │ │ │ │ | 31 33 32 34 35 36 | │ │ │ │ +--------------------------------------------------------------+ │ │ │ │ i21 : L = trim groebnerStratum F; │ │ │ │ │ │ │ │ o21 : Ideal of T │ │ │ │ i22 : assert(dim L == 18) │ │ │ │ i23 : elapsedTime isPrime L │ │ │ │ - -- 3.03312s elapsed │ │ │ │ + -- 4.69806s elapsed │ │ │ │ │ │ │ │ o23 = true │ │ │ │ ********** TThhee SScchhrreeyyeerr rreessoolluuttiioonn aanndd mmiinniimmaall BBeettttii nnuummbbeerrss ********** │ │ │ │ Schreyer's construction of a nonminimal free resolution starts with a Groebner │ │ │ │ basis. First, one constructs the SScchhrreeyyeerr ffrraammee (see La Scala, Stillman). This │ │ │ │ is determined solely from the initial ideal $J$ and its minimal generators (but │ │ │ │ depends on some choices of ordering, but otherwise is combinatorial). This │ │ │ │ @@ -414,15 +414,15 @@ │ │ │ │ We now compute the locus in $V(L)$ where the Betti diagram has no cancellation. │ │ │ │ This is a closed subscheme of $V(L)$, which is a closed subscheme of the │ │ │ │ Hilbert scheme. Notice that there are two components. │ │ │ │ i39 : L441 = trim(L + ideal M1); │ │ │ │ │ │ │ │ o39 : Ideal of T │ │ │ │ i40 : elapsedTime compsL441 = decompose L441; │ │ │ │ - -- 2.63738s elapsed │ │ │ │ + -- 3.59341s elapsed │ │ │ │ i41 : #compsL441 │ │ │ │ │ │ │ │ o41 = 2 │ │ │ │ i42 : compsL441/dim -- two components, of dimensions 14 and 16. │ │ │ │ │ │ │ │ o42 = {16, 14} │ │ │ │ │ │ │ │ @@ -430,36 +430,36 @@ │ │ │ │ i43 : compsL441/dim == {16, 14} │ │ │ │ │ │ │ │ o43 = true │ │ │ │ Both components are rational, and here are random points, one on each │ │ │ │ component: │ │ │ │ i44 : pta = randomPointOnRationalVariety compsL441_0 │ │ │ │ │ │ │ │ -o44 = | -40 -4 -40 44 -22 -50 -30 13 -1 -16 45 -23 29 19 14 23 -21 19 14 29 6 │ │ │ │ +o44 = | -49 11 -25 17 44 -16 -27 40 -34 20 -19 29 41 19 -40 42 -13 5 17 39 31 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 10 -32 18 -22 37 34 15 5 -10 -29 26 49 -50 45 -28 | │ │ │ │ + 10 45 26 43 49 -32 -29 19 -50 15 18 37 -10 34 -28 | │ │ │ │ │ │ │ │ 1 36 │ │ │ │ o44 : Matrix kk <-- kk │ │ │ │ i45 : Fa = sub(F, (vars S) | pta) │ │ │ │ │ │ │ │ 2 2 2 │ │ │ │ -o45 = ideal (a + 14b*c - 16c - 23a*d - 50b*d - 40c*d - 40d , a*b - 22b*c + │ │ │ │ +o45 = ideal (a - 40b*c + 20c + 29a*d - 16b*d - 25c*d - 49d , a*b + 43b*c + │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 │ │ │ │ - 14c + 6a*d + 29b*d - c*d - 4d , b + 45b*c + 15c + 49a*d + 10b*d + │ │ │ │ + 2 2 2 2 │ │ │ │ + 17c + 31a*d + 41b*d - 34c*d + 11d , b + 34b*c - 29c + 37a*d + 10b*d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 │ │ │ │ - 23c*d - 30d , a*c + 26b*c + 37c + 5a*d + 29b*d + 19c*d - 22d , b*c - │ │ │ │ + 2 2 2 2 │ │ │ │ + + 42c*d - 27d , a*c + 18b*c + 49c + 19a*d + 39b*d + 19c*d + 44d , b*c │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 3 3 2 │ │ │ │ - 10b*c*d - 32c d + 34a*d - 21b*d + 45c*d + 44d , c - 28b*c*d - 29c d │ │ │ │ + 2 2 2 2 3 3 │ │ │ │ + - 50b*c*d + 45c d - 32a*d - 13b*d - 19c*d + 17d , c - 28b*c*d + │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 3 │ │ │ │ - - 50a*d + 18b*d + 19c*d + 13d ) │ │ │ │ + 2 2 2 2 3 │ │ │ │ + 15c d - 10a*d + 26b*d + 5c*d + 40d ) │ │ │ │ │ │ │ │ o45 : Ideal of S │ │ │ │ i46 : betti res Fa │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ o46 = total: 1 6 8 3 │ │ │ │ 0: 1 . . . │ │ │ │ @@ -467,256 +467,172 @@ │ │ │ │ 2: . 2 4 2 │ │ │ │ │ │ │ │ o46 : BettiTally │ │ │ │ i47 : netList decompose Fa -- this one is 5 points on a plane, and another │ │ │ │ point │ │ │ │ │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------------------------------+ │ │ │ │ -o47 = |ideal (c + 5d, b - 33d, a - 21d) │ │ │ │ -| │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ -------------------------------------+ │ │ │ │ - | 2 2 │ │ │ │ -| │ │ │ │ - |ideal (b + 45c + 49d, a - 22c - 26d, c + 49c*d + 42d ) │ │ │ │ +------------------------------------------------------------------------------- │ │ │ │ +------------+ │ │ │ │ +o47 = |ideal (c + 19d, b - 10d, a + 6d) │ │ │ │ | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------------------------------+ │ │ │ │ - | 2 2 │ │ │ │ -2 2 2 | │ │ │ │ - |ideal (a + 26b + 37c + 36d, c - 21b*d + 43c*d + 27d , b*c - 30b*d + │ │ │ │ -16c*d + 26d , b - 3b*d - 24c*d - 36d )| │ │ │ │ +------------------------------------------------------------------------------- │ │ │ │ +------------+ │ │ │ │ + | 2 2 2 3 │ │ │ │ +2 2 2 3 2 2 2 2 3 | │ │ │ │ + |ideal (a + 18b + 49c - 3d, b + 34b*c - 29c - 50b*d + 47c*d - 17d , c │ │ │ │ +- 28b*c*d + 15c d + 4b*d - 10c*d + 10d , b*c - 50b*c*d + 45c d - 43b*d + │ │ │ │ +34c*d + 22d )| │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------------------------------+ │ │ │ │ +------------------------------------------------------------------------------- │ │ │ │ +------------+ │ │ │ │ i48 : CFa = minimalPrimes Fa │ │ │ │ │ │ │ │ - │ │ │ │ -o48 = {ideal (c + 5d, b - 33d, a - 21d), ideal (b + 45c + 49d, a - 22c - 26d, │ │ │ │ + 2 │ │ │ │ +o48 = {ideal (c + 19d, b - 10d, a + 6d), ideal (a + 18b + 49c - 3d, b + │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 │ │ │ │ - c + 49c*d + 42d ), ideal (a + 26b + 37c + 36d, c - 21b*d + 43c*d + │ │ │ │ + 2 2 3 2 2 │ │ │ │ + 34b*c - 29c - 50b*d + 47c*d - 17d , c - 28b*c*d + 15c d + 4b*d - │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 │ │ │ │ - 27d , b*c - 30b*d + 16c*d + 26d , b - 3b*d - 24c*d - 36d )} │ │ │ │ + 2 3 2 2 2 2 3 │ │ │ │ + 10c*d + 10d , b*c - 50b*c*d + 45c d - 43b*d + 34c*d + 22d )} │ │ │ │ │ │ │ │ o48 : List │ │ │ │ i49 : lin = CFa_1_0 -- a linear form, defining a plane. │ │ │ │ │ │ │ │ -o49 = b + 45c + 49d │ │ │ │ +o49 = a + 18b + 49c - 3d │ │ │ │ │ │ │ │ o49 : S │ │ │ │ i50 : CFa/degree │ │ │ │ │ │ │ │ -o50 = {1, 2, 3} │ │ │ │ +o50 = {1, 5} │ │ │ │ │ │ │ │ o50 : List │ │ │ │ i51 : CFa/(I -> lin % I == 0) -- so 5 points on the plane. │ │ │ │ │ │ │ │ -o51 = {false, true, false} │ │ │ │ +o51 = {false, true} │ │ │ │ │ │ │ │ o51 : List │ │ │ │ i52 : degree(Fa : (Fa : lin)) -- somewhat simpler(?) way to see the ideal of │ │ │ │ the 5 points │ │ │ │ │ │ │ │ -o52 = 2 │ │ │ │ +o52 = 5 │ │ │ │ i53 : ptb = randomPointOnRationalVariety compsL441_1 │ │ │ │ │ │ │ │ -o53 = | 31 42 28 25 19 3 43 -7 -3 -42 -29 -29 14 2 50 5 36 -13 -42 47 13 31 │ │ │ │ +o53 = | 27 12 -34 9 -19 -43 -32 27 40 45 -13 29 -41 -13 22 -49 -4 -4 9 -23 43 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - -37 -23 -24 -4 38 -29 -23 21 17 9 0 21 -9 -47 | │ │ │ │ + 18 -9 -47 43 21 38 17 -20 21 -29 47 0 2 -37 9 | │ │ │ │ │ │ │ │ 1 36 │ │ │ │ o53 : Matrix kk <-- kk │ │ │ │ i54 : Fb = sub(F, (vars S) | ptb) │ │ │ │ │ │ │ │ - 2 2 2 │ │ │ │ -o54 = ideal (a + 50b*c - 42c - 29a*d + 3b*d + 28c*d + 31d , a*b - 24b*c - │ │ │ │ + 2 2 2 │ │ │ │ +o54 = ideal (a + 22b*c + 45c + 29a*d - 43b*d - 34c*d + 27d , a*b + 43b*c + │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 │ │ │ │ - 42c + 13a*d + 14b*d - 3c*d + 42d , b - 9b*c - 29c + 31b*d + 5c*d + │ │ │ │ + 2 2 2 2 │ │ │ │ + 9c + 43a*d - 41b*d + 40c*d + 12d , b - 37b*c + 17c + 18b*d - 49c*d - │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 │ │ │ │ - 43d , a*c + 9b*c - 4c - 23a*d + 47b*d + 2c*d + 19d , b*c + 21b*c*d - │ │ │ │ + 2 2 2 2 │ │ │ │ + 32d , a*c + 47b*c + 21c - 20a*d - 23b*d - 13c*d - 19d , b*c + 21b*c*d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 3 3 2 2 │ │ │ │ - 37c d + 38a*d + 36b*d - 29c*d + 25d , c - 47b*c*d + 17c d + 21a*d │ │ │ │ + 2 2 2 2 3 3 2 2 │ │ │ │ + - 9c d + 38a*d - 4b*d - 13c*d + 9d , c + 9b*c*d - 29c d + 2a*d - │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 3 │ │ │ │ - - 23b*d - 13c*d - 7d ) │ │ │ │ + 2 2 3 │ │ │ │ + 47b*d - 4c*d + 27d ) │ │ │ │ │ │ │ │ o54 : Ideal of S │ │ │ │ i55 : betti res Fb │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ o55 = total: 1 6 8 3 │ │ │ │ 0: 1 . . . │ │ │ │ 1: . 4 4 1 │ │ │ │ 2: . 2 4 2 │ │ │ │ │ │ │ │ o55 : BettiTally │ │ │ │ i56 : netList decompose Fb -- │ │ │ │ │ │ │ │ - +-------------------------------------------------------+ │ │ │ │ -o56 = |ideal (c - 45d, b + 16d, a + 38d) | │ │ │ │ - +-------------------------------------------------------+ │ │ │ │ - |ideal (c + 43d, b + 10d, a + 8d) | │ │ │ │ - +-------------------------------------------------------+ │ │ │ │ - |ideal (c + 34d, b + 15d, a + 28d) | │ │ │ │ - +-------------------------------------------------------+ │ │ │ │ - |ideal (c + 11d, b + 39d, a + 23d) | │ │ │ │ - +-------------------------------------------------------+ │ │ │ │ - | 2 2 | │ │ │ │ - |ideal (b - 32c + 42d, a - 19c - 16d, c - 28c*d - 40d )| │ │ │ │ - +-------------------------------------------------------+ │ │ │ │ -i57 : netList for x in subsets(decompose Fb, 3) list intersect(x#0, x#1, x#2) │ │ │ │ - │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ --------------------------------------------------------------+ │ │ │ │ - | 2 2 │ │ │ │ -2 2 2 │ │ │ │ -| │ │ │ │ -o57 = |ideal (a - 7b + 32c + d, c + 42b*d + 33c*d - 10d , b*c - b*d + 13c*d + │ │ │ │ -18d , b + 28b*d - 32c*d + 16d ) │ │ │ │ -| │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ -------------------------------------------------------------------------------- │ │ │ │ --------------------------------------------------------------+ │ │ │ │ - | 2 2 │ │ │ │ -2 2 2 │ │ │ │ -| │ │ │ │ - |ideal (a - 7b + 32c + d, c + 40b*d - 36c*d + 33d , b*c + 45b*d - 16c*d │ │ │ │ -+ 39d , b - 20b*d + 29c*d + 38d ) │ │ │ │ -| │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ -------------------------------------------------------------------------------- │ │ │ │ --------------------------------------------------------------+ │ │ │ │ - | 2 2 │ │ │ │ -2 2 2 │ │ │ │ -| │ │ │ │ - |ideal (a - 7b + 32c + d, c - 10b*d + 17c*d - 21d , b*c - 17b*d - 23c*d │ │ │ │ -- 32d , b - 8b*d - 12c*d - 46d ) │ │ │ │ -| │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ -------------------------------------------------------------------------------- │ │ │ │ --------------------------------------------------------------+ │ │ │ │ - | 3 2 2 3 │ │ │ │ -| │ │ │ │ - |ideal (b + 23c - 11d, a - 9c + 25d, c - 13c d - 14c*d + 23d ) │ │ │ │ -| │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ -------------------------------------------------------------------------------- │ │ │ │ --------------------------------------------------------------+ │ │ │ │ - | 2 2 2 2 │ │ │ │ -2 3 2 2 2 3 │ │ │ │ -| │ │ │ │ - |ideal (a + 48b - 40c - 20d, b*c - 32c + 43b*d - 21c*d - 12d , b - 14c │ │ │ │ -+ 14b*d + 18c*d + 36d , c + 28c d - 20b*d + 42c*d - 50d ) │ │ │ │ -| │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ -------------------------------------------------------------------------------- │ │ │ │ --------------------------------------------------------------+ │ │ │ │ - | 2 2 2 2 │ │ │ │ -2 3 2 2 2 3 │ │ │ │ -| │ │ │ │ - |ideal (a + b + 50c + 26d, b*c - 32c + 34b*d - 36c*d + 14d , b - 14c + │ │ │ │ -34b*d - 16c*d - 33d , c + 28c d + 39b*d - 28c*d + 4d ) │ │ │ │ -| │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ -------------------------------------------------------------------------------- │ │ │ │ --------------------------------------------------------------+ │ │ │ │ - | 2 2 2 │ │ │ │ -2 2 2 2 2 │ │ │ │ -2 | │ │ │ │ - |ideal (c - 7a*d - 19b*d + 6c*d - 19d , b*c - 5a*d + 49b*d - 4c*d + 50d │ │ │ │ -, a*c - 6a*d + 35b*d - 39c*d - 2d , b - 46a*d + 22b*d + 42c*d + 43d , a*b + │ │ │ │ -3a*d - 12b*d - 49c*d + 40d , a + 28a*d - 13b*d - 25c*d - 35d )| │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ -------------------------------------------------------------------------------- │ │ │ │ --------------------------------------------------------------+ │ │ │ │ - | 2 2 2 2 │ │ │ │ -2 3 2 2 2 3 │ │ │ │ +--------------------------------------------------------------+ │ │ │ │ + | 2 2 │ │ │ │ | │ │ │ │ - |ideal (a - 46b + 39c - 29d, b*c - 32c + 11b*d - 7c*d - 43d , b - 14c │ │ │ │ -+ 29b*d + 43c*d - 41d , c + 28c d + 46b*d - 50c*d - 5d ) │ │ │ │ +o56 = |ideal (b - 50c - 43d, a + 15c - 46d, c + 12c*d - 37d ) │ │ │ │ | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ --------------------------------------------------------------+ │ │ │ │ - | 2 2 │ │ │ │ -2 2 2 2 │ │ │ │ -2 2 2 | │ │ │ │ - |ideal (c + 15a*d + 27b*d + 35c*d + 46d , b*c - 6a*d + b*d + 36c*d - 31d │ │ │ │ -, a*c - 10a*d + 45b*d + 20c*d - 23d , b - 23a*d + 15b*d + 31c*d - 13d , a*b - │ │ │ │ -6a*d - 40b*d + 8c*d + 18d , a - 8a*d - 24b*d + c*d - 22d ) | │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ -------------------------------------------------------------------------------- │ │ │ │ --------------------------------------------------------------+ │ │ │ │ - | 2 2 │ │ │ │ -2 2 2 2 │ │ │ │ -2 2 2 | │ │ │ │ - |ideal (c + 37a*d + 25b*d - 16c*d + 14d , b*c - 7a*d + 47b*d - 3c*d - 2d │ │ │ │ -, a*c - 14a*d + 27b*d - 35c*d - 8d , b - 33b*d + 19c*d + 27d , a*b - 15a*d - │ │ │ │ -30b*d - 40c*d - 24d , a - 44a*d + 16b*d + 11c*d + 12d ) | │ │ │ │ +--------------------------------------------------------------+ │ │ │ │ + | 2 2 │ │ │ │ +2 2 2 2 │ │ │ │ +2 2 2 | │ │ │ │ + |ideal (c + 46a*d - 39b*d + 2c*d - 24d , b*c - 9a*d + 16b*d + 2c*d + 27d │ │ │ │ +, a*c + 43a*d + 44b*d - 48c*d + 24d , b - 4a*d - 40b*d - 9c*d - 39d , a*b + │ │ │ │ +16a*d + 26b*d + 37c*d - 24d , a - 25a*d + 47b*d + 34c*d + 8d )| │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ --------------------------------------------------------------+ │ │ │ │ +--------------------------------------------------------------+ │ │ │ │ +i57 : netList for x in subsets(decompose Fb, 3) list intersect(x#0, x#1, x#2) │ │ │ │ + │ │ │ │ +o57 = ++ │ │ │ │ + ++ │ │ │ │ i58 : pt0 = randomPointOnRationalVariety(compsL441_0) │ │ │ │ │ │ │ │ -o58 = | 13 -24 9 5 -49 49 36 -36 -50 8 31 -22 49 8 35 49 6 -42 32 15 -8 -24 │ │ │ │ +o58 = | 44 15 26 -28 -4 33 49 -19 -6 -18 -37 -34 18 -42 -23 23 38 -40 27 26 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - -33 -22 28 -2 -23 18 -40 -29 15 -13 39 -18 -21 46 | │ │ │ │ + -39 -24 -21 -13 38 39 -33 15 8 -18 18 -22 -2 -29 -23 46 | │ │ │ │ │ │ │ │ 1 36 │ │ │ │ o58 : Matrix kk <-- kk │ │ │ │ i59 : pt1 = randomPointOnRationalVariety(compsL441_1) │ │ │ │ │ │ │ │ -o59 = | -45 18 -9 38 21 29 50 -8 -5 45 -47 -26 37 -35 -21 28 27 46 -17 -49 │ │ │ │ +o59 = | -8 41 28 -44 50 33 -38 33 -23 1 -2 -47 32 46 30 -22 -2 -14 27 37 15 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - -23 15 -50 37 -39 -14 21 10 -31 3 -18 32 0 3 -15 33 | │ │ │ │ + -25 -15 33 -23 3 21 -18 -9 3 10 -49 0 -35 -50 32 | │ │ │ │ │ │ │ │ 1 36 │ │ │ │ o59 : Matrix kk <-- kk │ │ │ │ We compute the ideal of the corresponding zero dimensional scheme with length │ │ │ │ 6, corresponding to the points pt0, pt1 in Hilb. │ │ │ │ i60 : I0 = sub(sub(F, (vars ring F) | sub(pt0, ring F)), S) │ │ │ │ │ │ │ │ - 2 2 2 │ │ │ │ -o60 = ideal (a + 35b*c + 8c - 22a*d + 49b*d + 9c*d + 13d , a*b + 28b*c + │ │ │ │ + 2 2 2 │ │ │ │ +o60 = ideal (a - 23b*c - 18c - 34a*d + 33b*d + 26c*d + 44d , a*b + 38b*c + │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 2 2 2 2 │ │ │ │ - 32c - 8a*d + 49b*d - 50c*d - 24d , b - 21b*c + 18c + 39a*d - 24b*d + │ │ │ │ + 27c - 39a*d + 18b*d - 6c*d + 15d , b - 23b*c + 15c - 2a*d - 24b*d + │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 │ │ │ │ - 49c*d + 36d , a*c - 13b*c - 2c - 40a*d + 15b*d + 8c*d - 49d , b*c - │ │ │ │ + 2 2 2 2 │ │ │ │ + 23c*d + 49d , a*c - 22b*c + 39c + 8a*d + 26b*d - 42c*d - 4d , b*c - │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 3 3 2 │ │ │ │ - 29b*c*d - 33c d - 23a*d + 6b*d + 31c*d + 5d , c + 46b*c*d + 15c d - │ │ │ │ + 2 2 2 2 3 3 2 │ │ │ │ + 18b*c*d - 21c d - 33a*d + 38b*d - 37c*d - 28d , c + 46b*c*d + 18c d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 3 │ │ │ │ - 18a*d - 22b*d - 42c*d - 36d ) │ │ │ │ + 2 2 2 3 │ │ │ │ + - 29a*d - 13b*d - 40c*d - 19d ) │ │ │ │ │ │ │ │ o60 : Ideal of S │ │ │ │ i61 : I1 = sub(sub(F, (vars ring F) | sub(pt1, ring F)), S) │ │ │ │ │ │ │ │ - 2 2 2 │ │ │ │ -o61 = ideal (a - 21b*c + 45c - 26a*d + 29b*d - 9c*d - 45d , a*b - 39b*c - │ │ │ │ + 2 2 2 │ │ │ │ +o61 = ideal (a + 30b*c + c - 47a*d + 33b*d + 28c*d - 8d , a*b - 23b*c + │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 │ │ │ │ - 17c - 23a*d + 37b*d - 5c*d + 18d , b - 15b*c + 10c + 15b*d + 28c*d + │ │ │ │ + 2 2 2 2 │ │ │ │ + 27c + 15a*d + 32b*d - 23c*d + 41d , b - 50b*c - 18c - 25b*d - 22c*d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 │ │ │ │ - 50d , a*c + 32b*c - 14c - 31a*d - 49b*d - 35c*d + 21d , b*c + 3b*c*d │ │ │ │ + 2 2 2 2 │ │ │ │ + - 38d , a*c - 49b*c + 3c - 9a*d + 37b*d + 46c*d + 50d , b*c + 3b*c*d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 3 3 2 2 │ │ │ │ - - 50c d + 21a*d + 27b*d - 47c*d + 38d , c + 33b*c*d - 18c d + 3a*d │ │ │ │ + 2 2 2 2 3 3 2 2 │ │ │ │ + - 15c d + 21a*d - 2b*d - 2c*d - 44d , c + 32b*c*d + 10c d - 35a*d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 3 │ │ │ │ - + 37b*d + 46c*d - 8d ) │ │ │ │ + 2 2 3 │ │ │ │ + + 33b*d - 14c*d + 33d ) │ │ │ │ │ │ │ │ o61 : Ideal of S │ │ │ │ i62 : betti res I0 │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ o62 = total: 1 6 8 3 │ │ │ │ 0: 1 . . . │ │ │ │ @@ -732,45 +648,42 @@ │ │ │ │ 1: . 4 4 1 │ │ │ │ 2: . 2 4 2 │ │ │ │ │ │ │ │ o63 : BettiTally │ │ │ │ i64 : netList decompose I0 │ │ │ │ │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ --------------------------------+ │ │ │ │ -o64 = |ideal (c - 40d, b - 10d, a + 32d) │ │ │ │ -| │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ --------------------------------+ │ │ │ │ - | 2 2 │ │ │ │ -| │ │ │ │ - |ideal (b + 10c + 25d, a + 27c - 50d, c - 34c*d - 17d ) │ │ │ │ +------------------------------------------------------------------------------- │ │ │ │ +-----+ │ │ │ │ +o64 = |ideal (c + 8d, b + 5d, a - 25d) │ │ │ │ | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ --------------------------------+ │ │ │ │ - | 2 2 │ │ │ │ -2 2 2 | │ │ │ │ - |ideal (a - 13b - 2c + 29d, c - 5b*d - 20c*d + 8d , b*c + 40b*d + 16c*d │ │ │ │ -+ 8d , b - b*d + 15c*d + 40d )| │ │ │ │ +------------------------------------------------------------------------------- │ │ │ │ +-----+ │ │ │ │ + | 2 2 2 3 │ │ │ │ +2 2 2 3 2 2 2 2 3 | │ │ │ │ + |ideal (a - 22b + 39c + 50d, b - 23b*c + 15c + 33b*d + 48d , c + │ │ │ │ +46b*c*d + 18c d - 45b*d - 20c*d + 17d , b*c - 18b*c*d - 21c d + 19b*d + │ │ │ │ +38c*d + 6d )| │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ --------------------------------+ │ │ │ │ +------------------------------------------------------------------------------- │ │ │ │ +-----+ │ │ │ │ i65 : netList decompose I1 │ │ │ │ │ │ │ │ - +------------------------------------------------------+ │ │ │ │ -o65 = |ideal (c + 32d, b + 18d, a - 33d) | │ │ │ │ - +------------------------------------------------------+ │ │ │ │ - |ideal (c + 29d, b - 8d, a + 50d) | │ │ │ │ - +------------------------------------------------------+ │ │ │ │ - |ideal (c + 16d, b + 39d, a - 32d) | │ │ │ │ - +------------------------------------------------------+ │ │ │ │ - |ideal (c + 5d, b - 14d, a + 7d) | │ │ │ │ - +------------------------------------------------------+ │ │ │ │ - | 2 2 | │ │ │ │ - |ideal (b - 40c + 5d, a - 47c + 24d, c - 27c*d + 15d )| │ │ │ │ - +------------------------------------------------------+ │ │ │ │ + +---------------------------------+ │ │ │ │ +o65 = |ideal (c - 9d, b + 15d, a + 27d) | │ │ │ │ + +---------------------------------+ │ │ │ │ + |ideal (c + 48d, b + 11d, a - 37d)| │ │ │ │ + +---------------------------------+ │ │ │ │ + |ideal (c + 29d, b + 46d, a + 18d)| │ │ │ │ + +---------------------------------+ │ │ │ │ + |ideal (c + 24d, b + 46d, a + 33d)| │ │ │ │ + +---------------------------------+ │ │ │ │ + |ideal (c + 22d, b + 38d, a - 50d)| │ │ │ │ + +---------------------------------+ │ │ │ │ i66 : L430 = (trim minors(2, M1)) + groebnerStratum F; │ │ │ │ │ │ │ │ o66 : Ideal of T │ │ │ │ i67 : C = res(I, FastNonminimal => true) │ │ │ │ │ │ │ │ 1 4 5 2 │ │ │ │ o67 = S <-- S <-- S <-- S <-- 0 │ │ ├── ./usr/share/doc/Macaulay2/QuillenSuslin/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=8 │ │ │ aG9ycm9ja3M= │ │ │ #:len=4664 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiY29tcHV0ZXMgYSBsb2NhbCBzb2x1dGlv │ │ │ biB0byB0aGUgdW5pbW9kdWxhciByb3cgcHJvYmxlbSBvdmVyIGEgbG9jYWxpemF0aW9uIGF0IGEg │ │ ├── ./usr/share/doc/Macaulay2/RInterface/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=19 │ │ │ bmV3IFJPYmplY3QgZnJvbSBDQw== │ │ │ #:len=251 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTMyLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhOZXdGcm9tTWV0aG9kLFJPYmplY3QsQ0MpLCJuZXcg │ │ ├── ./usr/share/doc/Macaulay2/RandomCanonicalCurves/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=20 │ │ │ cmFuZG9tQ2Fub25pY2FsQ3VydmU= │ │ │ #:len=218 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzAsICJ1bmRvY3VtZW50ZWQiID0+IHRy │ │ │ dWUsIHN5bWJvbCBEb2N1bWVudFRhZyA9PiBuZXcgRG9jdW1lbnRUYWcgZnJvbSB7InJhbmRvbUNh │ │ ├── ./usr/share/doc/Macaulay2/RandomCanonicalCurves/example-output/_canonical__Curve.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : g=14; │ │ │ │ │ │ i3 : FF=ZZ/10007; │ │ │ │ │ │ i4 : R=FF[x_0..x_(g-1)]; │ │ │ │ │ │ i5 : time betti(I=(random canonicalCurve)(g,R)) │ │ │ - -- used 7.86379s (cpu); 5.87077s (thread); 0s (gc) │ │ │ + -- used 10.9851s (cpu); 8.58118s (thread); 0s (gc) │ │ │ │ │ │ 0 1 │ │ │ o5 = total: 1 66 │ │ │ 0: 1 . │ │ │ 1: . 66 │ │ │ │ │ │ o5 : BettiTally │ │ ├── ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/_canonical__Curve.html │ │ │ @@ -83,15 +83,15 @@ │ │ │
    i3 : FF=ZZ/10007;
    │ │ │
    i4 : R=FF[x_0..x_(g-1)];
    │ │ │
    i5 : time betti(I=(random canonicalCurve)(g,R))
    │ │ │ - -- used 7.86379s (cpu); 5.87077s (thread); 0s (gc)
    │ │ │ + -- used 10.9851s (cpu); 8.58118s (thread); 0s (gc)
    │ │ │  
    │ │ │              0  1
    │ │ │  o5 = total: 1 66
    │ │ │           0: 1  .
    │ │ │           1: . 66
    │ │ │  
    │ │ │  o5 : BettiTally
    │ │ │ ├── html2text {} │ │ │ │ @@ -17,15 +17,15 @@ │ │ │ │ Compute a random canonical curve of genus $g \le{} 14$, based on the proofs of │ │ │ │ unirationality of $M_g$ by Severi, Sernesi, Chang-Ran and Verra. │ │ │ │ i1 : setRandomSeed "alpha"; │ │ │ │ i2 : g=14; │ │ │ │ i3 : FF=ZZ/10007; │ │ │ │ i4 : R=FF[x_0..x_(g-1)]; │ │ │ │ i5 : time betti(I=(random canonicalCurve)(g,R)) │ │ │ │ - -- used 7.86379s (cpu); 5.87077s (thread); 0s (gc) │ │ │ │ + -- used 10.9851s (cpu); 8.58118s (thread); 0s (gc) │ │ │ │ │ │ │ │ 0 1 │ │ │ │ o5 = total: 1 66 │ │ │ │ 0: 1 . │ │ │ │ 1: . 66 │ │ │ │ │ │ │ │ o5 : BettiTally │ │ ├── ./usr/share/doc/Macaulay2/RandomComplexes/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=26 │ │ │ bWF4aW1hbEVudHJ5KENoYWluQ29tcGxleCk= │ │ │ #:len=280 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzg1LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhtYXhpbWFsRW50cnksQ2hhaW5Db21wbGV4KSwibWF4 │ │ ├── ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_test__Time__For__L__L__Lon__Syzygies.out │ │ │ @@ -6,42 +6,42 @@ │ │ │ │ │ │ o2 = (10, 20) │ │ │ │ │ │ o2 : Sequence │ │ │ │ │ │ i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) │ │ │ │ │ │ -o3 = ({5, 2.91596e52, 9}, .00138046, 0) │ │ │ +o3 = ({5, 2.91596e52, 9}, 0, 0) │ │ │ │ │ │ o3 : Sequence │ │ │ │ │ │ i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) │ │ │ │ │ │ -o4 = ({50, 2.30853e454, 98}, .00618369, .0388145) │ │ │ +o4 = ({50, 2.30853e454, 98}, .0071902, .0294253) │ │ │ │ │ │ o4 : Sequence │ │ │ │ │ │ i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) │ │ │ │ │ │ -o5 = {{.00415423, .0129743}, {.00772311, .0045526}, {.00327175, .00800128}, │ │ │ +o5 = {{.00325437, .0119979}, {.00400018, .00400053}, {.00400019, .00400104}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {.00449345, .012301}, {.00573879, .0131784}, {.00740736, .0112207}, │ │ │ + {.00399913, .00799843}, {.00400038, .0119972}, {.00400124, .0119974}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {.00400166, .00799792}, {.00798013, .00399967}, {.00800154, .00399867}, │ │ │ + {0, .00399857}, {.0040008, .0367455}, {.00399943, .00400034}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {.00800417, .00799329}} │ │ │ + {.00400125, .00799759}} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : 1/10*sum(L,t->t_0) │ │ │ │ │ │ -o6 = .006077619700000004 │ │ │ +o6 = .003525697699999997 │ │ │ │ │ │ o6 : RR (of precision 53) │ │ │ │ │ │ i7 : 1/10*sum(L,t->t_1) │ │ │ │ │ │ -o7 = .008621774699999963 │ │ │ +o7 = .0104734578 │ │ │ │ │ │ o7 : RR (of precision 53) │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/RandomComplexes/html/_test__Time__For__L__L__Lon__Syzygies.html │ │ │ @@ -92,49 +92,49 @@ │ │ │ o2 = (10, 20) │ │ │ │ │ │ o2 : Sequence │ │ │
    i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11)
    │ │ │  
    │ │ │ -o3 = ({5, 2.91596e52, 9}, .00138046, 0)
    │ │ │ +o3 = ({5, 2.91596e52, 9}, 0, 0)
    │ │ │  
    │ │ │  o3 : Sequence
    │ │ │
    i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100)
    │ │ │  
    │ │ │ -o4 = ({50, 2.30853e454, 98}, .00618369, .0388145)
    │ │ │ +o4 = ({50, 2.30853e454, 98}, .0071902, .0294253)
    │ │ │  
    │ │ │  o4 : Sequence
    │ │ │
    i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2})
    │ │ │  
    │ │ │ -o5 = {{.00415423, .0129743}, {.00772311, .0045526}, {.00327175, .00800128},
    │ │ │ +o5 = {{.00325437, .0119979}, {.00400018, .00400053}, {.00400019, .00400104},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {.00449345, .012301}, {.00573879, .0131784}, {.00740736, .0112207},
    │ │ │ +     {.00399913, .00799843}, {.00400038, .0119972}, {.00400124, .0119974},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {.00400166, .00799792}, {.00798013, .00399967}, {.00800154, .00399867},
    │ │ │ +     {0, .00399857}, {.0040008, .0367455}, {.00399943, .00400034},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {.00800417, .00799329}}
    │ │ │ +     {.00400125, .00799759}}
    │ │ │  
    │ │ │  o5 : List
    │ │ │
    i6 : 1/10*sum(L,t->t_0)
    │ │ │  
    │ │ │ -o6 = .006077619700000004
    │ │ │ +o6 = .003525697699999997
    │ │ │  
    │ │ │  o6 : RR (of precision 53)
    │ │ │
    i7 : 1/10*sum(L,t->t_1)
    │ │ │  
    │ │ │ -o7 = .008621774699999963
    │ │ │ +o7 = .0104734578
    │ │ │  
    │ │ │  o7 : RR (of precision 53)
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use testTimeForLLLonSyzygies:

    │ │ │ ├── html2text {} │ │ │ │ @@ -25,40 +25,40 @@ │ │ │ │ i2 : r=10,n=20 │ │ │ │ │ │ │ │ o2 = (10, 20) │ │ │ │ │ │ │ │ o2 : Sequence │ │ │ │ i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) │ │ │ │ │ │ │ │ -o3 = ({5, 2.91596e52, 9}, .00138046, 0) │ │ │ │ +o3 = ({5, 2.91596e52, 9}, 0, 0) │ │ │ │ │ │ │ │ o3 : Sequence │ │ │ │ i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) │ │ │ │ │ │ │ │ -o4 = ({50, 2.30853e454, 98}, .00618369, .0388145) │ │ │ │ +o4 = ({50, 2.30853e454, 98}, .0071902, .0294253) │ │ │ │ │ │ │ │ o4 : Sequence │ │ │ │ i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) │ │ │ │ │ │ │ │ -o5 = {{.00415423, .0129743}, {.00772311, .0045526}, {.00327175, .00800128}, │ │ │ │ +o5 = {{.00325437, .0119979}, {.00400018, .00400053}, {.00400019, .00400104}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {.00449345, .012301}, {.00573879, .0131784}, {.00740736, .0112207}, │ │ │ │ + {.00399913, .00799843}, {.00400038, .0119972}, {.00400124, .0119974}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {.00400166, .00799792}, {.00798013, .00399967}, {.00800154, .00399867}, │ │ │ │ + {0, .00399857}, {.0040008, .0367455}, {.00399943, .00400034}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {.00800417, .00799329}} │ │ │ │ + {.00400125, .00799759}} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ i6 : 1/10*sum(L,t->t_0) │ │ │ │ │ │ │ │ -o6 = .006077619700000004 │ │ │ │ +o6 = .003525697699999997 │ │ │ │ │ │ │ │ o6 : RR (of precision 53) │ │ │ │ i7 : 1/10*sum(L,t->t_1) │ │ │ │ │ │ │ │ -o7 = .008621774699999963 │ │ │ │ +o7 = .0104734578 │ │ │ │ │ │ │ │ o7 : RR (of precision 53) │ │ │ │ ********** WWaayyss ttoo uussee tteessttTTiimmeeFFoorrLLLLLLoonnSSyyzzyyggiieess:: ********** │ │ │ │ * testTimeForLLLonSyzygies(ZZ,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _t_e_s_t_T_i_m_e_F_o_r_L_L_L_o_n_S_y_z_y_g_i_e_s is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ ├── ./usr/share/doc/Macaulay2/RandomCurves/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=12 │ │ │ UmFuZG9tQ3VydmVz │ │ │ #:len=775 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAicmFuZG9tIGN1cnZlcyIsIERlc2NyaXB0 │ │ │ aW9uID0+IDE6KERJVntQQVJBe1RFWHsiVGhpcyBwYWNrYWdlIGxvYWRzIHRoZSAifSxUT3tuZXcg │ │ ├── ./usr/share/doc/Macaulay2/RandomCurvesOverVerySmallFiniteFields/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=46 │ │ │ c21vb3RoQ2Fub25pY2FsQ3VydmVHZW51czE1KC4uLixQcmludGluZz0+Li4uKQ== │ │ │ #:len=370 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTI4Nywgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHtbc21vb3RoQ2Fub25pY2FsQ3VydmVHZW51czE1LFBy │ │ ├── ./usr/share/doc/Macaulay2/RandomCurvesOverVerySmallFiniteFields/example-output/_smooth__Canonical__Curve.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 11549527689790345152 │ │ │ │ │ │ i1 : time ICan = smoothCanonicalCurve(11,5); │ │ │ - -- used 1.26634s (cpu); 1.02757s (thread); 0s (gc) │ │ │ + -- used 1.58877s (cpu); 1.38252s (thread); 0s (gc) │ │ │ │ │ │ ZZ │ │ │ o1 : Ideal of --[t ..t ] │ │ │ 5 0 10 │ │ │ │ │ │ i2 : (dim ICan, genus ICan, degree ICan) │ │ ├── ./usr/share/doc/Macaulay2/RandomCurvesOverVerySmallFiniteFields/html/_smooth__Canonical__Curve.html │ │ │ @@ -85,15 +85,15 @@ │ │ │

    For g=15 the curves are constructed via matrix factorizations.

    │ │ │

    If the option Printing is set to true then printings about the current step in the construction are displayed.

    │ │ │

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -37,30 +37,28 @@ │ │ │ │ it's added to I; if a minimal generator is chosen, it's replaced by the square- │ │ │ │ free part of the maximal ideal times it. the chance of making the given move is │ │ │ │ then 1/(#ISocgens+#Igens), and the chance of making the move back would be the │ │ │ │ similar quantity for J, so we make the move or not depending on whether random │ │ │ │ RR < (nJ+nSocJ)/(nI+nSocI) or not; here random RR is a random number in [0,1]. │ │ │ │ i1 : setRandomSeed(currentTime()) │ │ │ │ │ │ │ │ -o1 = 1739147131 │ │ │ │ +o1 = 1752898290 │ │ │ │ i2 : S=ZZ/2[vars(0..3)] │ │ │ │ │ │ │ │ o2 = S │ │ │ │ │ │ │ │ o2 : PolynomialRing │ │ │ │ i3 : J = monomialIdeal"ab,ad, bcd" │ │ │ │ │ │ │ │ o3 = monomialIdeal (a*b, a*d, b*c*d) │ │ │ │ │ │ │ │ o3 : MonomialIdeal of S │ │ │ │ i4 : randomSquareFreeStep J │ │ │ │ │ │ │ │ -o4 = {monomialIdeal (a*b, a*c, a*d, b*c*d), {a*b, a*c, a*d, b*c*d}, {c*d, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - b*d, b*c, a}} │ │ │ │ +o4 = {monomialIdeal (a*b, a*d), {a*b, a*d}, {b*c*d, a*c}} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ With 4 variables and 168 possible monomial ideals, a run of 5000 takes less │ │ │ │ than 6 seconds on a reasonably fast machine. With 10 variables a run of 1000 │ │ │ │ takes about 2 seconds. │ │ │ │ i5 : setRandomSeed(1) │ │ │ │ │ │ │ │ @@ -73,15 +71,15 @@ │ │ │ │ i7 : J = monomialIdeal 0_S │ │ │ │ │ │ │ │ o7 = monomialIdeal () │ │ │ │ │ │ │ │ o7 : MonomialIdeal of S │ │ │ │ i8 : time T=tally for t from 1 to 5000 list first (J=rsfs │ │ │ │ (J,AlexanderProbability => .01)); │ │ │ │ - -- used 4.308s (cpu); 2.68151s (thread); 0s (gc) │ │ │ │ + -- used 7.38417s (cpu); 5.02413s (thread); 0s (gc) │ │ │ │ i9 : #T │ │ │ │ │ │ │ │ o9 = 168 │ │ │ │ i10 : T │ │ │ │ │ │ │ │ o10 = Tally{monomialIdeal () => 45 } │ │ │ │ monomialIdeal (a*b*c, a*b*d) => 33 │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/html/index.html │ │ │ @@ -47,31 +47,31 @@ │ │ │
    │ │ │

    This package can be used to make experiments, trying many ideals, perhaps over small fields. For example...what would you expect the regularities of "typical" monomial ideals with 10 generators of degree 3 in 6 variables to be? Try a bunch of examples -- it's fast. Here we do only 500 -- this takes about a second on a fast machine -- but with a little patience, thousands can be done conveniently.

    │ │ │
    │ │ │
    i1 : time ICan = smoothCanonicalCurve(11,5);
    │ │ │ - -- used 1.26634s (cpu); 1.02757s (thread); 0s (gc)
    │ │ │ + -- used 1.58877s (cpu); 1.38252s (thread); 0s (gc)
    │ │ │  
    │ │ │                ZZ
    │ │ │  o1 : Ideal of --[t ..t  ]
    │ │ │                 5  0   10
    │ │ │
    i2 : (dim ICan, genus ICan, degree ICan)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -30,15 +30,15 @@
    │ │ │ │  For g<=10 the curves are constructed via plane models.
    │ │ │ │  For g<=13 the curves are constructed via space models.
    │ │ │ │  For g=14 the curves are constructed by Verra's method.
    │ │ │ │  For g=15 the curves are constructed via matrix factorizations.
    │ │ │ │  If the option Printing is set to true then printings about the current step in
    │ │ │ │  the construction are displayed.
    │ │ │ │  i1 : time ICan = smoothCanonicalCurve(11,5);
    │ │ │ │ - -- used 1.26634s (cpu); 1.02757s (thread); 0s (gc)
    │ │ │ │ + -- used 1.58877s (cpu); 1.38252s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                ZZ
    │ │ │ │  o1 : Ideal of --[t ..t  ]
    │ │ │ │                 5  0   10
    │ │ │ │  i2 : (dim ICan, genus ICan, degree ICan)
    │ │ │ │  
    │ │ │ │  o2 = (2, 11, 20)
    │ │ ├── ./usr/share/doc/Macaulay2/RandomGenus14Curves/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=21
    │ │ │  Y2Fub25pY2FsQ3VydmVHZW51czE0
    │ │ │  #:len=1011
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiY29tcHV0ZSBhIHJhbmRvbSBjdXJ2ZSBv
    │ │ │  ZiBnZW51cyAxNCBpbiBpdHMgY2Fub25pY2FsIGVtYmVkZGluZyIsICJsaW5lbnVtIiA9PiAyMDEs
    │ │ ├── ./usr/share/doc/Macaulay2/RandomGenus14Curves/example-output/_random__Curve__Genus14__Degree18in__P6.out
    │ │ │ @@ -3,15 +3,15 @@
    │ │ │  i1 : setRandomSeed("alpha");
    │ │ │  
    │ │ │  i2 : FF=ZZ/10007;
    │ │ │  
    │ │ │  i3 : S=FF[x_0..x_6];
    │ │ │  
    │ │ │  i4 : time I=randomCurveGenus14Degree18inP6(S);
    │ │ │ - -- used 1.77032s (cpu); 1.47337s (thread); 0s (gc)
    │ │ │ + -- used 2.00727s (cpu); 1.87101s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : Ideal of S
    │ │ │  
    │ │ │  i5 : betti res I
    │ │ │  
    │ │ │              0  1  2  3  4 5
    │ │ │  o5 = total: 1 13 45 56 25 2
    │ │ ├── ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/_random__Curve__Genus14__Degree18in__P6.html
    │ │ │ @@ -87,15 +87,15 @@
    │ │ │  
    i2 : FF=ZZ/10007;
    │ │ │
    i3 : S=FF[x_0..x_6];
    │ │ │
    i4 : time I=randomCurveGenus14Degree18inP6(S);
    │ │ │ - -- used 1.77032s (cpu); 1.47337s (thread); 0s (gc)
    │ │ │ + -- used 2.00727s (cpu); 1.87101s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : Ideal of S
    │ │ │
    i5 : betti res I
    │ │ │  
    │ │ │              0  1  2  3  4 5
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -28,15 +28,15 @@
    │ │ │ │  the unirationality of $M_{14}$. It proves the unirationality of $M_{14}$ for
    │ │ │ │  fields of the chosen finite characteristic 10007, for fields of characteristic
    │ │ │ │  0 by semi-continuity, and, hence, for all but finitely many primes $p$.
    │ │ │ │  i1 : setRandomSeed("alpha");
    │ │ │ │  i2 : FF=ZZ/10007;
    │ │ │ │  i3 : S=FF[x_0..x_6];
    │ │ │ │  i4 : time I=randomCurveGenus14Degree18inP6(S);
    │ │ │ │ - -- used 1.77032s (cpu); 1.47337s (thread); 0s (gc)
    │ │ │ │ + -- used 2.00727s (cpu); 1.87101s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : Ideal of S
    │ │ │ │  i5 : betti res I
    │ │ │ │  
    │ │ │ │              0  1  2  3  4 5
    │ │ │ │  o5 = total: 1 13 45 56 25 2
    │ │ │ │           0: 1  .  .  .  . .
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=25
    │ │ │  cmFuZG9tU2hlbGxhYmxlSWRlYWxDaGFpbg==
    │ │ │  #:len=1807
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiUHJvZHVjZXMgYSBjaGFpbiBvZiBpZGVh
    │ │ │  bHMgZnJvbSBhIHJhbmRvbSBzaGVsbGluZyIsICJsaW5lbnVtIiA9PiA3NjksIElucHV0cyA9PiB7
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/example-output/___Random__Ideals.out
    │ │ │ @@ -1,23 +1,23 @@
    │ │ │  -- -*- M2-comint -*- hash: 9542801742429495161
    │ │ │  
    │ │ │  i1 : setRandomSeed(currentTime())
    │ │ │  
    │ │ │ -o1 = 1739147038
    │ │ │ +o1 = 1752898181
    │ │ │  
    │ │ │  i2 : kk=ZZ/101;
    │ │ │  
    │ │ │  i3 : S=kk[vars(0..5)];
    │ │ │  
    │ │ │  i4 : time tally for n from 1 to 500 list regularity randomMonomialIdeal(10:3,S)
    │ │ │ - -- used 1.72944s (cpu); 1.22524s (thread); 0s (gc)
    │ │ │ + -- used 2.55741s (cpu); 2.03658s (thread); 0s (gc)
    │ │ │  
    │ │ │ -o4 = Tally{4 => 32 }
    │ │ │ -           5 => 219
    │ │ │ -           6 => 166
    │ │ │ -           7 => 68
    │ │ │ -           8 => 14
    │ │ │ +o4 = Tally{4 => 37 }
    │ │ │ +           5 => 203
    │ │ │ +           6 => 183
    │ │ │ +           7 => 60
    │ │ │ +           8 => 16
    │ │ │             9 => 1
    │ │ │  
    │ │ │  o4 : Tally
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Monomial.out
    │ │ │ @@ -1,12 +1,12 @@
    │ │ │  -- -*- M2-comint -*- hash: 5959465567197821046
    │ │ │  
    │ │ │  i1 : setRandomSeed(currentTime())
    │ │ │  
    │ │ │ -o1 = 1739147084
    │ │ │ +o1 = 1752898235
    │ │ │  
    │ │ │  i2 : kk=ZZ/101
    │ │ │  
    │ │ │  o2 = kk
    │ │ │  
    │ │ │  o2 : QuotientRing
    │ │ │  
    │ │ │ @@ -14,13 +14,13 @@
    │ │ │  
    │ │ │  o3 = S
    │ │ │  
    │ │ │  o3 : PolynomialRing
    │ │ │  
    │ │ │  i4 : randomMonomial(3,S)
    │ │ │  
    │ │ │ -      3
    │ │ │ -o4 = a
    │ │ │ +      2
    │ │ │ +o4 = a b
    │ │ │  
    │ │ │  o4 : S
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Square__Free__Monomial__Ideal.out
    │ │ │ @@ -1,12 +1,12 @@
    │ │ │  -- -*- M2-comint -*- hash: 8876340562021865447
    │ │ │  
    │ │ │  i1 : setRandomSeed(currentTime())
    │ │ │  
    │ │ │ -o1 = 1739147148
    │ │ │ +o1 = 1752898316
    │ │ │  
    │ │ │  i2 : kk=ZZ/101
    │ │ │  
    │ │ │  o2 = kk
    │ │ │  
    │ │ │  o2 : QuotientRing
    │ │ │  
    │ │ │ @@ -21,18 +21,18 @@
    │ │ │  o4 = {3, 5, 7}
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : randomSquareFreeMonomialIdeal(L, S)
    │ │ │  low degree gens generated everything
    │ │ │  
    │ │ │ -o5 = ideal(a*d*e)
    │ │ │ +o5 = ideal(a*b*c)
    │ │ │  
    │ │ │  o5 : Ideal of S
    │ │ │  
    │ │ │  i6 : randomSquareFreeMonomialIdeal(5:2, S)
    │ │ │  
    │ │ │ -o6 = ideal (a*c, d*e, b*d, b*c, b*e)
    │ │ │ +o6 = ideal (a*c, c*e, b*c, a*b, d*e)
    │ │ │  
    │ │ │  o6 : Ideal of S
    │ │ │  
    │ │ │  i7 :
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Square__Free__Step.out
    │ │ │ @@ -1,12 +1,12 @@
    │ │ │  -- -*- M2-comint -*- hash: 10504911213508281315
    │ │ │  
    │ │ │  i1 : setRandomSeed(currentTime())
    │ │ │  
    │ │ │ -o1 = 1739147131
    │ │ │ +o1 = 1752898290
    │ │ │  
    │ │ │  i2 : S=ZZ/2[vars(0..3)]
    │ │ │  
    │ │ │  o2 = S
    │ │ │  
    │ │ │  o2 : PolynomialRing
    │ │ │  
    │ │ │ @@ -14,17 +14,15 @@
    │ │ │  
    │ │ │  o3 = monomialIdeal (a*b, a*d, b*c*d)
    │ │ │  
    │ │ │  o3 : MonomialIdeal of S
    │ │ │  
    │ │ │  i4 : randomSquareFreeStep J
    │ │ │  
    │ │ │ -o4 = {monomialIdeal (a*b, a*c, a*d, b*c*d), {a*b, a*c, a*d, b*c*d}, {c*d,
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     b*d, b*c, a}}
    │ │ │ +o4 = {monomialIdeal (a*b, a*d), {a*b, a*d}, {b*c*d, a*c}}
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : setRandomSeed(1)
    │ │ │  
    │ │ │  o5 = 1
    │ │ │  
    │ │ │ @@ -37,15 +35,15 @@
    │ │ │  i7 : J = monomialIdeal 0_S
    │ │ │  
    │ │ │  o7 = monomialIdeal ()
    │ │ │  
    │ │ │  o7 : MonomialIdeal of S
    │ │ │  
    │ │ │  i8 : time T=tally for t from 1 to 5000 list first (J=rsfs(J,AlexanderProbability => .01));
    │ │ │ - -- used 4.308s (cpu); 2.68151s (thread); 0s (gc)
    │ │ │ + -- used 7.38417s (cpu); 5.02413s (thread); 0s (gc)
    │ │ │  
    │ │ │  i9 : #T
    │ │ │  
    │ │ │  o9 = 168
    │ │ │  
    │ │ │  i10 : T
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Monomial.html
    │ │ │ @@ -72,15 +72,15 @@
    │ │ │          
    │ │ │

    Chooses a random monomial.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : setRandomSeed(currentTime())
    │ │ │  
    │ │ │ -o1 = 1739147084
    │ │ │ +o1 = 1752898235 │ │ │
    i2 : kk=ZZ/101
    │ │ │  
    │ │ │  o2 = kk
    │ │ │  
    │ │ │  o2 : QuotientRing
    │ │ │ @@ -91,16 +91,16 @@ │ │ │ o3 = S │ │ │ │ │ │ o3 : PolynomialRing │ │ │
    i4 : randomMonomial(3,S)
    │ │ │  
    │ │ │ -      3
    │ │ │ -o4 = a
    │ │ │ +      2
    │ │ │ +o4 = a b
    │ │ │  
    │ │ │  o4 : S
    │ │ │
    │ │ │ │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -13,29 +13,29 @@ │ │ │ │ o S, a _r_i_n_g, polynomial ring │ │ │ │ * Outputs: │ │ │ │ o m, a _r_i_n_g_ _e_l_e_m_e_n_t, monomial of S │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Chooses a random monomial. │ │ │ │ i1 : setRandomSeed(currentTime()) │ │ │ │ │ │ │ │ -o1 = 1739147084 │ │ │ │ +o1 = 1752898235 │ │ │ │ i2 : kk=ZZ/101 │ │ │ │ │ │ │ │ o2 = kk │ │ │ │ │ │ │ │ o2 : QuotientRing │ │ │ │ i3 : S=kk[a,b,c] │ │ │ │ │ │ │ │ o3 = S │ │ │ │ │ │ │ │ o3 : PolynomialRing │ │ │ │ i4 : randomMonomial(3,S) │ │ │ │ │ │ │ │ - 3 │ │ │ │ -o4 = a │ │ │ │ + 2 │ │ │ │ +o4 = a b │ │ │ │ │ │ │ │ o4 : S │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_n_d_o_m_M_o_n_o_m_i_a_l_I_d_e_a_l -- random monomial ideal with given degree generators │ │ │ │ * _r_a_n_d_o_m_S_q_u_a_r_e_F_r_e_e_M_o_n_o_m_i_a_l_I_d_e_a_l -- random square-free monomial ideal with │ │ │ │ given degree generators │ │ │ │ ********** WWaayyss ttoo uussee rraannddoommMMoonnoommiiaall:: ********** │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Square__Free__Monomial__Ideal.html │ │ │ @@ -72,15 +72,15 @@ │ │ │
    │ │ │

    Choose a random square-free monomial ideal whose generators have the degrees specified by the list or sequence L.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : setRandomSeed(currentTime())
    │ │ │  
    │ │ │ -o1 = 1739147148
    │ │ │ +o1 = 1752898316 │ │ │
    i2 : kk=ZZ/101
    │ │ │  
    │ │ │  o2 = kk
    │ │ │  
    │ │ │  o2 : QuotientRing
    │ │ │ @@ -99,22 +99,22 @@ │ │ │ │ │ │ o4 : List │ │ │
    i5 : randomSquareFreeMonomialIdeal(L, S)
    │ │ │  low degree gens generated everything
    │ │ │  
    │ │ │ -o5 = ideal(a*d*e)
    │ │ │ +o5 = ideal(a*b*c)
    │ │ │  
    │ │ │  o5 : Ideal of S
    │ │ │
    i6 : randomSquareFreeMonomialIdeal(5:2, S)
    │ │ │  
    │ │ │ -o6 = ideal (a*c, d*e, b*d, b*c, b*e)
    │ │ │ +o6 = ideal (a*c, c*e, b*c, a*b, d*e)
    │ │ │  
    │ │ │  o6 : Ideal of S
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    Caveat

    │ │ │ ├── html2text {} │ │ │ │ @@ -15,15 +15,15 @@ │ │ │ │ o I, an _i_d_e_a_l, square-free monomial ideal with generators of │ │ │ │ specified degrees │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Choose a random square-free monomial ideal whose generators have the degrees │ │ │ │ specified by the list or sequence L. │ │ │ │ i1 : setRandomSeed(currentTime()) │ │ │ │ │ │ │ │ -o1 = 1739147148 │ │ │ │ +o1 = 1752898316 │ │ │ │ i2 : kk=ZZ/101 │ │ │ │ │ │ │ │ o2 = kk │ │ │ │ │ │ │ │ o2 : QuotientRing │ │ │ │ i3 : S=kk[a..e] │ │ │ │ │ │ │ │ @@ -34,20 +34,20 @@ │ │ │ │ │ │ │ │ o4 = {3, 5, 7} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : randomSquareFreeMonomialIdeal(L, S) │ │ │ │ low degree gens generated everything │ │ │ │ │ │ │ │ -o5 = ideal(a*d*e) │ │ │ │ +o5 = ideal(a*b*c) │ │ │ │ │ │ │ │ o5 : Ideal of S │ │ │ │ i6 : randomSquareFreeMonomialIdeal(5:2, S) │ │ │ │ │ │ │ │ -o6 = ideal (a*c, d*e, b*d, b*c, b*e) │ │ │ │ +o6 = ideal (a*c, c*e, b*c, a*b, d*e) │ │ │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ The ideal is constructed degree by degree, starting from the lowest degree │ │ │ │ specified. If there are not enough monomials of the next specified degree that │ │ │ │ are not already in the ideal, the function prints a warning and returns an │ │ │ │ ideal containing all the generators of that degree. │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Square__Free__Step.html │ │ │ @@ -82,15 +82,15 @@ │ │ │

    With probability p the routine takes the Alexander dual of I; the default value of p is .05, and it can be set with the option AlexanderProbility.

    │ │ │

    Otherwise uses the Metropolis algorithm to produce a random walk on the space of square-free ideals. Note that there are a LOT of square-free ideals; these are the Dedekind numbers, and the sequence (with 1,2,3,4,5,6,7,8 variables) begins 3,6,20,168,7581, 7828354, 2414682040998, 56130437228687557907788. (see the Online Encyclopedia of Integer Sequences for more information). Given I in a polynomial ring S, we make a list ISocgens of the square-free minimal monomial generators of the socle of S/(squares+I) and a list of minimal generators Igens of I. A candidate "next" ideal J is formed as follows: We choose randomly from the union of these lists; if a socle element is chosen, it's added to I; if a minimal generator is chosen, it's replaced by the square-free part of the maximal ideal times it. the chance of making the given move is then 1/(#ISocgens+#Igens), and the chance of making the move back would be the similar quantity for J, so we make the move or not depending on whether random RR < (nJ+nSocJ)/(nI+nSocI) or not; here random RR is a random number in [0,1].

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : setRandomSeed(currentTime())
    │ │ │  
    │ │ │ -o1 = 1739147131
    │ │ │ +o1 = 1752898290 │ │ │
    i2 : S=ZZ/2[vars(0..3)]
    │ │ │  
    │ │ │  o2 = S
    │ │ │  
    │ │ │  o2 : PolynomialRing
    │ │ │ @@ -101,17 +101,15 @@ │ │ │ o3 = monomialIdeal (a*b, a*d, b*c*d) │ │ │ │ │ │ o3 : MonomialIdeal of S │ │ │
    i4 : randomSquareFreeStep J
    │ │ │  
    │ │ │ -o4 = {monomialIdeal (a*b, a*c, a*d, b*c*d), {a*b, a*c, a*d, b*c*d}, {c*d,
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     b*d, b*c, a}}
    │ │ │ +o4 = {monomialIdeal (a*b, a*d), {a*b, a*d}, {b*c*d, a*c}}
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │
    │ │ │

    With 4 variables and 168 possible monomial ideals, a run of 5000 takes less than 6 seconds on a reasonably fast machine. With 10 variables a run of 1000 takes about 2 seconds.

    │ │ │
    │ │ │ @@ -133,15 +131,15 @@ │ │ │ │ │ │ o7 = monomialIdeal () │ │ │ │ │ │ o7 : MonomialIdeal of S
    │ │ │
    i8 : time T=tally for t from 1 to 5000 list first (J=rsfs(J,AlexanderProbability => .01));
    │ │ │ - -- used 4.308s (cpu); 2.68151s (thread); 0s (gc)
    │ │ │ + -- used 7.38417s (cpu); 5.02413s (thread); 0s (gc) │ │ │
    i9 : #T
    │ │ │  
    │ │ │  o9 = 168
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : setRandomSeed(currentTime())
    │ │ │  
    │ │ │ -o1 = 1739147038
    │ │ │ +o1 = 1752898181 │ │ │
    i2 : kk=ZZ/101;
    │ │ │
    i3 : S=kk[vars(0..5)];
    │ │ │
    i4 : time tally for n from 1 to 500 list regularity randomMonomialIdeal(10:3,S)
    │ │ │ - -- used 1.72944s (cpu); 1.22524s (thread); 0s (gc)
    │ │ │ + -- used 2.55741s (cpu); 2.03658s (thread); 0s (gc)
    │ │ │  
    │ │ │ -o4 = Tally{4 => 32 }
    │ │ │ -           5 => 219
    │ │ │ -           6 => 166
    │ │ │ -           7 => 68
    │ │ │ -           8 => 14
    │ │ │ +o4 = Tally{4 => 37 }
    │ │ │ +           5 => 203
    │ │ │ +           6 => 183
    │ │ │ +           7 => 60
    │ │ │ +           8 => 16
    │ │ │             9 => 1
    │ │ │  
    │ │ │  o4 : Tally
    │ │ │
    │ │ │
    │ │ │

    How does this compare with the case of binomial ideals? or pure binomial ideals? We invite the reader to experiment, replacing "randomMonomialIdeal" above with "randomBinomialIdeal" or "randomPureBinomialIdeal", or taking larger numbers of examples. Click the link "Finding Extreme Examples" below to see some other, more elaborate ways to search.

    │ │ │ ├── html2text {} │ │ │ │ @@ -10,25 +10,25 @@ │ │ │ │ small fields. For example...what would you expect the regularities of "typical" │ │ │ │ monomial ideals with 10 generators of degree 3 in 6 variables to be? Try a │ │ │ │ bunch of examples -- it's fast. Here we do only 500 -- this takes about a │ │ │ │ second on a fast machine -- but with a little patience, thousands can be done │ │ │ │ conveniently. │ │ │ │ i1 : setRandomSeed(currentTime()) │ │ │ │ │ │ │ │ -o1 = 1739147038 │ │ │ │ +o1 = 1752898181 │ │ │ │ i2 : kk=ZZ/101; │ │ │ │ i3 : S=kk[vars(0..5)]; │ │ │ │ i4 : time tally for n from 1 to 500 list regularity randomMonomialIdeal(10:3,S) │ │ │ │ - -- used 1.72944s (cpu); 1.22524s (thread); 0s (gc) │ │ │ │ + -- used 2.55741s (cpu); 2.03658s (thread); 0s (gc) │ │ │ │ │ │ │ │ -o4 = Tally{4 => 32 } │ │ │ │ - 5 => 219 │ │ │ │ - 6 => 166 │ │ │ │ - 7 => 68 │ │ │ │ - 8 => 14 │ │ │ │ +o4 = Tally{4 => 37 } │ │ │ │ + 5 => 203 │ │ │ │ + 6 => 183 │ │ │ │ + 7 => 60 │ │ │ │ + 8 => 16 │ │ │ │ 9 => 1 │ │ │ │ │ │ │ │ o4 : Tally │ │ │ │ How does this compare with the case of binomial ideals? or pure binomial │ │ │ │ ideals? We invite the reader to experiment, replacing "randomMonomialIdeal" │ │ │ │ above with "randomBinomialIdeal" or "randomPureBinomialIdeal", or taking larger │ │ │ │ numbers of examples. Click the link "Finding Extreme Examples" below to see │ │ ├── ./usr/share/doc/Macaulay2/RandomMonomialIdeals/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=12 │ │ │ VmFyaWFibGVOYW1l │ │ │ #:len=1241 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAib3B0aW9uYWwgaW5wdXQgdG8gY2hvb3Nl │ │ │ IHRoZSBpbmRleGVkIHZhcmlhYmxlIG5hbWUgZm9yIHRoZSBwb2x5bm9taWFsIHJpbmciLCAibGlu │ │ ├── ./usr/share/doc/Macaulay2/RandomObjects/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=8 │ │ │ QXR0ZW1wdHM= │ │ │ #:len=502 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAibnVtYmVyIG9mIGF0dGVtcHRzIGluIHRo │ │ │ ZSBjb25zdHJ1Y3Rpb24gb2YgYSByYW5kb20gb2JqZWN0IiwgImxpbmVudW0iID0+IDI2MiwgImZp │ │ ├── ./usr/share/doc/Macaulay2/RandomPlaneCurves/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=49 │ │ │ Y29tcGxldGVMaW5lYXJTeXN0ZW1Pbk5vZGFsUGxhbmVDdXJ2ZShJZGVhbCxMaXN0KQ== │ │ │ #:len=382 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjc2LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhjb21wbGV0ZUxpbmVhclN5c3RlbU9uTm9kYWxQbGFu │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=46 │ │ │ ZmluZEFOb25aZXJvTWlub3IoLi4uLFBvaW50Q2hlY2tBdHRlbXB0cz0+Li4uKQ== │ │ │ #:len=315 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTg5MSwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHtbZmluZEFOb25aZXJvTWlub3IsUG9pbnRDaGVja0F0 │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/example-output/_dim__Via__Bezout.out │ │ │ @@ -5,17 +5,17 @@ │ │ │ i2 : S=kk[y_0..y_8]; │ │ │ │ │ │ i3 : I=ideal random(S^1,S^{-2,-2,-2,-2})+(ideal random(2,S))^2; │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ │ │ i4 : elapsedTime dimViaBezout(I) │ │ │ - -- 1.72465s elapsed │ │ │ + -- 1.89486s elapsed │ │ │ │ │ │ o4 = 4 │ │ │ │ │ │ i5 : elapsedTime dim I │ │ │ - -- 2.94822s elapsed │ │ │ + -- 4.02503s elapsed │ │ │ │ │ │ o5 = 4 │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/example-output/_extend__Ideal__By__Non__Zero__Minor.out │ │ │ @@ -35,15 +35,15 @@ │ │ │ i8 : i = 0; │ │ │ │ │ │ i9 : J = I; │ │ │ │ │ │ o9 : Ideal of T │ │ │ │ │ │ i10 : elapsedTime(while (i < 10) and dim J > 1 do (i = i+1; J = extendIdealByNonZeroMinor(4, M, J)) ); │ │ │ - -- 2.03564s elapsed │ │ │ + -- 2.16388s elapsed │ │ │ │ │ │ i11 : dim J │ │ │ │ │ │ o11 = 1 │ │ │ │ │ │ i12 : i │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/example-output/_random__Points.out │ │ │ @@ -27,24 +27,24 @@ │ │ │ i6 : S=ZZ/103[y_0..y_30]; │ │ │ │ │ │ i7 : I=minors(2,random(S^3,S^{3:-1})); │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ │ │ i8 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, DecompositionStrategy=>MultiplicationTable) │ │ │ - -- 3.17305s elapsed │ │ │ + -- 3.60362s elapsed │ │ │ │ │ │ o8 = {{-4, -35, -7, 0, 0, 1, 5, -13, 0, -47, 0, 41, 0, -51, -46, 35, 0, 0, │ │ │ ------------------------------------------------------------------------ │ │ │ -47, 14, -30, 42, 30, 4, -41, 24, 0, 0, 15, 20, 1}} │ │ │ │ │ │ o8 : List │ │ │ │ │ │ i9 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, DecompositionStrategy=>Decompose) │ │ │ - -- 2.24874s elapsed │ │ │ + -- 2.81786s elapsed │ │ │ │ │ │ o9 = {{11, 9, -9, -15, -7, 27, 19, -36, 48, 26, -4, 3, 29, -8, 7, -32, 16, │ │ │ ------------------------------------------------------------------------ │ │ │ 11, 7, 7, 25, -14, -39, 17, -16, 4, -50, -12, 21, -50, 51}} │ │ │ │ │ │ o9 : List │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/html/_dim__Via__Bezout.html │ │ │ @@ -94,21 +94,21 @@ │ │ │ │ │ │
    i3 : I=ideal random(S^1,S^{-2,-2,-2,-2})+(ideal random(2,S))^2;
    │ │ │  
    │ │ │  o3 : Ideal of S
    │ │ │ │ │ │ │ │ │
    i4 : elapsedTime dimViaBezout(I)
    │ │ │ - -- 1.72465s elapsed
    │ │ │ + -- 1.89486s elapsed
    │ │ │  
    │ │ │  o4 = 4
    │ │ │ │ │ │ │ │ │
    i5 : elapsedTime dim I
    │ │ │ - -- 2.94822s elapsed
    │ │ │ + -- 4.02503s elapsed
    │ │ │  
    │ │ │  o5 = 4
    │ │ │ │ │ │ │ │ │
    │ │ │

    The user may set the MinimumFieldSize to ensure that the field being worked over is big enough. For instance, there are relatively few linear spaces over a field of characteristic 2, and this can cause incorrect results to be provided. If no size is provided, the function tries to guess a good size based on ambient ring.

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -33,19 +33,19 @@ │ │ │ │ examples, the built in dim function is much faster. │ │ │ │ i1 : kk=ZZ/101; │ │ │ │ i2 : S=kk[y_0..y_8]; │ │ │ │ i3 : I=ideal random(S^1,S^{-2,-2,-2,-2})+(ideal random(2,S))^2; │ │ │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ i4 : elapsedTime dimViaBezout(I) │ │ │ │ - -- 1.72465s elapsed │ │ │ │ + -- 1.89486s elapsed │ │ │ │ │ │ │ │ o4 = 4 │ │ │ │ i5 : elapsedTime dim I │ │ │ │ - -- 2.94822s elapsed │ │ │ │ + -- 4.02503s elapsed │ │ │ │ │ │ │ │ o5 = 4 │ │ │ │ The user may set the MinimumFieldSize to ensure that the field being worked │ │ │ │ over is big enough. For instance, there are relatively few linear spaces over a │ │ │ │ field of characteristic 2, and this can cause incorrect results to be provided. │ │ │ │ If no size is provided, the function tries to guess a good size based on │ │ │ │ ambient ring. │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/html/_extend__Ideal__By__Non__Zero__Minor.html │ │ │ @@ -149,15 +149,15 @@ │ │ │ │ │ │
    i9 : J = I;
    │ │ │  
    │ │ │  o9 : Ideal of T
    │ │ │ │ │ │ │ │ │
    i10 : elapsedTime(while (i < 10) and dim J > 1 do (i = i+1; J = extendIdealByNonZeroMinor(4, M, J)) );
    │ │ │ - -- 2.03564s elapsed
    │ │ │ + -- 2.16388s elapsed │ │ │ │ │ │ │ │ │
    i11 : dim J
    │ │ │  
    │ │ │  o11 = 1
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ o7 : Matrix T <-- T │ │ │ │ i8 : i = 0; │ │ │ │ i9 : J = I; │ │ │ │ │ │ │ │ o9 : Ideal of T │ │ │ │ i10 : elapsedTime(while (i < 10) and dim J > 1 do (i = i+1; J = │ │ │ │ extendIdealByNonZeroMinor(4, M, J)) ); │ │ │ │ - -- 2.03564s elapsed │ │ │ │ + -- 2.16388s elapsed │ │ │ │ i11 : dim J │ │ │ │ │ │ │ │ o11 = 1 │ │ │ │ i12 : i │ │ │ │ │ │ │ │ o12 = 4 │ │ │ │ In this particular example, there tend to be about 5 associated primes when │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/html/_random__Points.html │ │ │ @@ -141,25 +141,25 @@ │ │ │ │ │ │
    i7 : I=minors(2,random(S^3,S^{3:-1}));
    │ │ │  
    │ │ │  o7 : Ideal of S
    │ │ │ │ │ │ │ │ │
    i8 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, DecompositionStrategy=>MultiplicationTable)
    │ │ │ - -- 3.17305s elapsed
    │ │ │ + -- 3.60362s elapsed
    │ │ │  
    │ │ │  o8 = {{-4, -35, -7, 0, 0, 1, 5, -13, 0, -47, 0, 41, 0, -51, -46, 35, 0, 0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       -47, 14, -30, 42, 30, 4, -41, 24, 0, 0, 15, 20, 1}}
    │ │ │  
    │ │ │  o8 : List
    │ │ │ │ │ │ │ │ │
    i9 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, DecompositionStrategy=>Decompose)
    │ │ │ - -- 2.24874s elapsed
    │ │ │ + -- 2.81786s elapsed
    │ │ │  
    │ │ │  o9 = {{11, 9, -9, -15, -7, 27, 19, -36, 48, 26, -4, 3, 29, -8, 7, -32, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       11, 7, 7, 25, -14, -39, 17, -16, 4, -50, -12, 21, -50, 51}}
    │ │ │  
    │ │ │  o9 : List
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -67,24 +67,24 @@ │ │ │ │ first in rings with more variables. │ │ │ │ i6 : S=ZZ/103[y_0..y_30]; │ │ │ │ i7 : I=minors(2,random(S^3,S^{3:-1})); │ │ │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ i8 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, │ │ │ │ DecompositionStrategy=>MultiplicationTable) │ │ │ │ - -- 3.17305s elapsed │ │ │ │ + -- 3.60362s elapsed │ │ │ │ │ │ │ │ o8 = {{-4, -35, -7, 0, 0, 1, 5, -13, 0, -47, 0, 41, 0, -51, -46, 35, 0, 0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ -47, 14, -30, 42, 30, 4, -41, 24, 0, 0, 15, 20, 1}} │ │ │ │ │ │ │ │ o8 : List │ │ │ │ i9 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, │ │ │ │ DecompositionStrategy=>Decompose) │ │ │ │ - -- 2.24874s elapsed │ │ │ │ + -- 2.81786s elapsed │ │ │ │ │ │ │ │ o9 = {{11, 9, -9, -15, -7, 27, 19, -36, 48, 26, -4, 3, 29, -8, 7, -32, 16, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 11, 7, 7, 25, -14, -39, 17, -16, 4, -50, -12, 21, -50, 51}} │ │ │ │ │ │ │ │ o9 : List │ │ │ │ ********** WWaayyss ttoo uussee rraannddoommPPooiinnttss:: ********** │ │ ├── ./usr/share/doc/Macaulay2/RandomSpaceCurves/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=38 │ │ │ a25vd25VbmlyYXRpb25hbENvbXBvbmVudE9mU3BhY2VDdXJ2ZXM= │ │ │ #:len=2298 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiY2hlY2sgd2hldGhlciB0aGVyZSBpcyBh │ │ │ IHVuaXJhdGlvbmFsIGNvbnN0cnVjdGlvbiBmb3IgYSBjb21wb25lbnQgb2YgdGhlIEhpbGJlcnQg │ │ ├── ./usr/share/doc/Macaulay2/RationalMaps/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=46 │ │ │ aXNCaXJhdGlvbmFsT250b0ltYWdlKC4uLixBc3N1bWVEb21pbmFudD0+Li4uKQ== │ │ │ #:len=321 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTgwNywgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHtbaXNCaXJhdGlvbmFsT250b0ltYWdlLEFzc3VtZURv │ │ ├── ./usr/share/doc/Macaulay2/RationalMaps/example-output/_inverse__Of__Map.out │ │ │ @@ -49,15 +49,15 @@ │ │ │ i12 : Q=QQ[x,y,z,t,u]; │ │ │ │ │ │ i13 : phi=map(Q,Q,matrix{{x^5,y*x^4,z*x^4+y^5,t*x^4+z^5,u*x^4+t^5}}); │ │ │ │ │ │ o13 : RingMap Q <-- Q │ │ │ │ │ │ i14 : time inverseOfMap(phi,CheckBirational=>false, Verbosity=>0) │ │ │ - -- used 0.571395s (cpu); 0.3667s (thread); 0s (gc) │ │ │ + -- used 1.55369s (cpu); 0.6396s (thread); 0s (gc) │ │ │ │ │ │ 125 124 120 5 124 100 25 104 20 108 15 2 112 10 3 116 5 4 120 5 124 125 4 120 8 115 2 12 110 3 16 105 4 20 100 5 24 95 6 28 90 7 32 85 8 36 80 9 40 75 10 44 70 11 48 65 12 52 60 13 56 55 14 60 50 15 64 45 16 68 40 17 72 35 18 76 30 19 80 25 20 84 20 21 88 15 22 92 10 23 96 5 24 100 25 24 100 28 95 32 90 2 36 85 3 40 80 4 44 75 5 48 70 6 52 65 7 56 60 8 60 55 9 64 50 10 68 45 11 72 40 12 76 35 13 80 30 14 84 25 15 88 20 16 92 15 17 96 10 18 100 5 19 104 20 48 75 2 52 70 2 56 65 2 2 60 60 3 2 64 55 4 2 68 50 5 2 72 45 6 2 76 40 7 2 80 35 8 2 84 30 9 2 88 25 10 2 92 20 11 2 96 15 12 2 100 10 13 2 104 5 14 2 108 15 2 72 50 3 76 45 3 80 40 2 3 84 35 3 3 88 30 4 3 92 25 5 3 96 20 6 3 100 15 7 3 104 10 8 3 108 5 9 3 112 10 3 96 25 4 100 20 4 104 15 2 4 108 10 3 4 112 5 4 4 116 5 4 120 5 124 │ │ │ o14 = Proj Q - - - > Proj Q {x , x y, - x y + x z, x y - 5x y z + 10x y z - 10x y z + 5x y z - x z + x t, - y + 25x y z - 300x y z + 2300x y z - 12650x y z + 53130x y z - 177100x y z + 480700x y z - 1081575x y z + 2042975x y z - 3268760x y z + 4457400x y z - 5200300x y z + 5200300x y z - 4457400x y z + 3268760x y z - 2042975x y z + 1081575x y z - 480700x y z + 177100x y z - 53130x y z + 12650x y z - 2300x y z + 300x y z - 25x y z + x z - 5x y t + 100x y z*t - 950x y z t + 5700x y z t - 24225x y z t + 77520x y z t - 193800x y z t + 387600x y z t - 629850x y z t + 839800x y z t - 923780x y z t + 839800x y z t - 629850x y z t + 387600x y z t - 193800x y z t + 77520x y z t - 24225x y z t + 5700x y z t - 950x y z t + 100x y z t - 5x z t - 10x y t + 150x y z*t - 1050x y z t + 4550x y z t - 13650x y z t + 30030x y z t - 50050x y z t + 64350x y z t - 64350x y z t + 50050x y z t - 30030x y z t + 13650x y z t - 4550x y z t + 1050x y z t - 150x y z t + 10x z t - 10x y t + 100x y z*t - 450x y z t + 1200x y z t - 2100x y z t + 2520x y z t - 2100x y z t + 1200x y z t - 450x y z t + 100x y z t - 10x z t - 5x y t + 25x y z*t - 50x y z t + 50x y z t - 25x y z t + 5x z t - x t + x u} │ │ │ │ │ │ o14 : RationalMapping │ │ │ │ │ │ i15 : R=QQ[x,y,z,t]/(z-2*t); │ │ ├── ./usr/share/doc/Macaulay2/RationalMaps/html/_inverse__Of__Map.html │ │ │ @@ -171,15 +171,15 @@ │ │ │ │ │ │
    i13 : phi=map(Q,Q,matrix{{x^5,y*x^4,z*x^4+y^5,t*x^4+z^5,u*x^4+t^5}});
    │ │ │  
    │ │ │  o13 : RingMap Q <-- Q
    │ │ │ │ │ │ │ │ │
    i14 : time inverseOfMap(phi,CheckBirational=>false, Verbosity=>0)
    │ │ │ - -- used 0.571395s (cpu); 0.3667s (thread); 0s (gc)
    │ │ │ + -- used 1.55369s (cpu); 0.6396s (thread); 0s (gc)
    │ │ │  
    │ │ │                                  125   124      120 5    124    100 25     104 20       108 15 2      112 10 3     116 5 4    120 5    124      125      4 120        8 115 2        12 110 3         16 105 4         20 100 5          24 95 6          28 90 7           32 85 8           36 80 9           40 75 10           44 70 11           48 65 12           52 60 13           56 55 14           60 50 15           64 45 16           68 40 17          72 35 18          76 30 19         80 25 20         84 20 21        88 15 22       92 10 23      96 5 24    100 25     24 100        28 95          32 90 2         36 85 3          40 80 4          44 75 5           48 70 6           52 65 7           56 60 8           60 55 9           64 50 10           68 45 11           72 40 12           76 35 13           80 30 14          84 25 15          88 20 16         92 15 17        96 10 18        100 5 19      104 20       48 75 2       52 70   2        56 65 2 2        60 60 3 2         64 55 4 2         68 50 5 2         72 45 6 2         76 40 7 2         80 35 8 2         84 30 9 2         88 25 10 2         92 20 11 2        96 15 12 2        100 10 13 2       104 5 14 2      108 15 2      72 50 3       76 45   3       80 40 2 3        84 35 3 3        88 30 4 3        92 25 5 3        96 20 6 3        100 15 7 3       104 10 8 3       108 5 9 3      112 10 3     96 25 4      100 20   4      104 15 2 4      108 10 3 4      112 5 4 4     116 5 4    120 5    124
    │ │ │  o14 = Proj Q - - - > Proj Q   {x   , x   y, - x   y  + x   z, x   y   - 5x   y  z + 10x   y  z  - 10x   y  z  + 5x   y z  - x   z  + x   t, - y    + 25x y   z - 300x y   z  + 2300x  y   z  - 12650x  y   z  + 53130x  y   z  - 177100x  y  z  + 480700x  y  z  - 1081575x  y  z  + 2042975x  y  z  - 3268760x  y  z   + 4457400x  y  z   - 5200300x  y  z   + 5200300x  y  z   - 4457400x  y  z   + 3268760x  y  z   - 2042975x  y  z   + 1081575x  y  z   - 480700x  y  z   + 177100x  y  z   - 53130x  y  z   + 12650x  y  z   - 2300x  y  z   + 300x  y  z   - 25x  y z   + x   z   - 5x  y   t + 100x  y  z*t - 950x  y  z t + 5700x  y  z t - 24225x  y  z t + 77520x  y  z t - 193800x  y  z t + 387600x  y  z t - 629850x  y  z t + 839800x  y  z t - 923780x  y  z  t + 839800x  y  z  t - 629850x  y  z  t + 387600x  y  z  t - 193800x  y  z  t + 77520x  y  z  t - 24225x  y  z  t + 5700x  y  z  t - 950x  y  z  t + 100x   y z  t - 5x   z  t - 10x  y  t  + 150x  y  z*t  - 1050x  y  z t  + 4550x  y  z t  - 13650x  y  z t  + 30030x  y  z t  - 50050x  y  z t  + 64350x  y  z t  - 64350x  y  z t  + 50050x  y  z t  - 30030x  y  z  t  + 13650x  y  z  t  - 4550x  y  z  t  + 1050x   y  z  t  - 150x   y z  t  + 10x   z  t  - 10x  y  t  + 100x  y  z*t  - 450x  y  z t  + 1200x  y  z t  - 2100x  y  z t  + 2520x  y  z t  - 2100x  y  z t  + 1200x   y  z t  - 450x   y  z t  + 100x   y z t  - 10x   z  t  - 5x  y  t  + 25x   y  z*t  - 50x   y  z t  + 50x   y  z t  - 25x   y z t  + 5x   z t  - x   t  + x   u}
    │ │ │  
    │ │ │  o14 : RationalMapping
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -95,15 +95,15 @@ │ │ │ │ o11 : Ideal of blowUpSubvar │ │ │ │ The next example is a birational map on $\mathbb{P}^4$. │ │ │ │ i12 : Q=QQ[x,y,z,t,u]; │ │ │ │ i13 : phi=map(Q,Q,matrix{{x^5,y*x^4,z*x^4+y^5,t*x^4+z^5,u*x^4+t^5}}); │ │ │ │ │ │ │ │ o13 : RingMap Q <-- Q │ │ │ │ i14 : time inverseOfMap(phi,CheckBirational=>false, Verbosity=>0) │ │ │ │ - -- used 0.571395s (cpu); 0.3667s (thread); 0s (gc) │ │ │ │ + -- used 1.55369s (cpu); 0.6396s (thread); 0s (gc) │ │ │ │ │ │ │ │ 125 124 120 5 124 100 25 104 │ │ │ │ 20 108 15 2 112 10 3 116 5 4 120 5 124 125 4 120 │ │ │ │ 8 115 2 12 110 3 16 105 4 20 100 5 24 95 6 │ │ │ │ 28 90 7 32 85 8 36 80 9 40 75 10 44 70 │ │ │ │ 11 48 65 12 52 60 13 56 55 14 60 50 15 │ │ │ │ 64 45 16 68 40 17 72 35 18 76 30 19 80 25 │ │ ├── ./usr/share/doc/Macaulay2/RationalPoints/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=8 │ │ │ U29ydEdlbnM= │ │ │ #:len=246 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzg3LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyJTb3J0R2VucyIsIlNvcnRHZW5zIiwiUmF0aW9uYWxQ │ │ ├── ./usr/share/doc/Macaulay2/RationalPoints2/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=20 │ │ │ bmV0KFByb2plY3RpdmVQb2ludCk= │ │ │ #:len=205 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gOTcsICJ1bmRvY3VtZW50ZWQiID0+IHRy │ │ │ dWUsIHN5bWJvbCBEb2N1bWVudFRhZyA9PiBuZXcgRG9jdW1lbnRUYWcgZnJvbSB7KG5ldCxQcm9q │ │ ├── ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_rational__Points.out │ │ │ @@ -48,15 +48,15 @@ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ │ │ ZZ │ │ │ o13 : Ideal of ---[u ..u ] │ │ │ 101 0 10 │ │ │ │ │ │ i14 : time rationalPoints(I, Amount => true) │ │ │ - -- used 0.0024039s (cpu); 0.0049125s (thread); 0s (gc) │ │ │ + -- used 0.00407818s (cpu); 0.00267448s (thread); 0s (gc) │ │ │ │ │ │ o14 = 110462212541120451001 │ │ │ │ │ │ i15 : QQ[x,y,z]; I = homogenize(ideal(y^2-x*(x-1)*(x-2)*(x-5)*(x-6)), z); │ │ │ │ │ │ o16 : Ideal of QQ[x..z] │ │ │ │ │ │ @@ -141,24 +141,24 @@ │ │ │ o30 : Ideal of R │ │ │ │ │ │ i31 : nodes = I + ideal jacobian I; │ │ │ │ │ │ o31 : Ideal of R │ │ │ │ │ │ i32 : time rationalPoints(variety nodes, Split=>true, Verbose=>true); │ │ │ - -- used 0.963533s (cpu); 0.744977s (thread); 0s (gc) │ │ │ + -- used 1.55189s (cpu); 1.32883s (thread); 0s (gc) │ │ │ -- base change to the field QQ[a]/(a^8-40*a^6+230*a^4-200*a^2+25) │ │ │ │ │ │ i33 : #oo │ │ │ │ │ │ o33 = 31 │ │ │ │ │ │ i34 : nodes' = baseChange_32003 nodes; │ │ │ │ │ │ o34 : Ideal of GF 1048969271299456081[x..z, w] │ │ │ │ │ │ i35 : time #rationalPoints(variety nodes', Split=>true, Verbose=>true) │ │ │ - -- used 0.286815s (cpu); 0.206311s (thread); 0s (gc) │ │ │ + -- used 0.377933s (cpu); 0.32083s (thread); 0s (gc) │ │ │ │ │ │ o35 = 31 │ │ │ │ │ │ i36 : │ │ ├── ./usr/share/doc/Macaulay2/RationalPoints2/html/_rational__Points.html │ │ │ @@ -167,15 +167,15 @@ │ │ │ │ │ │ ZZ │ │ │ o13 : Ideal of ---[u ..u ] │ │ │ 101 0 10 │ │ │ │ │ │ │ │ │
    i14 : time rationalPoints(I, Amount => true)
    │ │ │ - -- used 0.0024039s (cpu); 0.0049125s (thread); 0s (gc)
    │ │ │ + -- used 0.00407818s (cpu); 0.00267448s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = 110462212541120451001
    │ │ │ │ │ │ │ │ │
    │ │ │

    Over number fields

    │ │ │
    │ │ │ @@ -308,15 +308,15 @@ │ │ │ │ │ │
    i31 : nodes = I + ideal jacobian I;
    │ │ │  
    │ │ │  o31 : Ideal of R
    │ │ │ │ │ │ │ │ │
    i32 : time rationalPoints(variety nodes, Split=>true, Verbose=>true);
    │ │ │ - -- used 0.963533s (cpu); 0.744977s (thread); 0s (gc)
    │ │ │ + -- used 1.55189s (cpu); 1.32883s (thread); 0s (gc)
    │ │ │  -- base change to the field QQ[a]/(a^8-40*a^6+230*a^4-200*a^2+25)
    │ │ │ │ │ │ │ │ │
    i33 : #oo
    │ │ │  
    │ │ │  o33 = 31
    │ │ │ │ │ │ @@ -328,15 +328,15 @@ │ │ │ │ │ │
    i34 : nodes' = baseChange_32003 nodes;
    │ │ │  
    │ │ │  o34 : Ideal of GF 1048969271299456081[x..z, w]
    │ │ │ │ │ │ │ │ │
    i35 : time #rationalPoints(variety nodes', Split=>true, Verbose=>true)
    │ │ │ - -- used 0.286815s (cpu); 0.206311s (thread); 0s (gc)
    │ │ │ + -- used 0.377933s (cpu); 0.32083s (thread); 0s (gc)
    │ │ │  
    │ │ │  o35 = 31
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    Caveat

    │ │ │ ├── html2text {} │ │ │ │ @@ -90,15 +90,15 @@ │ │ │ │ o13 = ideal(u + u + u + u + u + u + u + u + u + u + u ) │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ │ │ │ │ ZZ │ │ │ │ o13 : Ideal of ---[u ..u ] │ │ │ │ 101 0 10 │ │ │ │ i14 : time rationalPoints(I, Amount => true) │ │ │ │ - -- used 0.0024039s (cpu); 0.0049125s (thread); 0s (gc) │ │ │ │ + -- used 0.00407818s (cpu); 0.00267448s (thread); 0s (gc) │ │ │ │ │ │ │ │ o14 = 110462212541120451001 │ │ │ │ ******** OOvveerr nnuummbbeerr ffiieellddss ******** │ │ │ │ Over a number field one can use the option Bound to specify a maximal │ │ │ │ multiplicative height given by $(x_0:\dots:x_n)\mapsto \prod_{v}\max_i|x_i|_v ^ │ │ │ │ {d_v/d}$ (this is also available as a method _g_l_o_b_a_l_H_e_i_g_h_t). │ │ │ │ i15 : QQ[x,y,z]; I = homogenize(ideal(y^2-x*(x-1)*(x-2)*(x-5)*(x-6)), z); │ │ │ │ @@ -197,25 +197,25 @@ │ │ │ │ (2z-qw)(4(x2+y2-z2)+(1+3(5-q2))w2)2"; │ │ │ │ │ │ │ │ o30 : Ideal of R │ │ │ │ i31 : nodes = I + ideal jacobian I; │ │ │ │ │ │ │ │ o31 : Ideal of R │ │ │ │ i32 : time rationalPoints(variety nodes, Split=>true, Verbose=>true); │ │ │ │ - -- used 0.963533s (cpu); 0.744977s (thread); 0s (gc) │ │ │ │ + -- used 1.55189s (cpu); 1.32883s (thread); 0s (gc) │ │ │ │ -- base change to the field QQ[a]/(a^8-40*a^6+230*a^4-200*a^2+25) │ │ │ │ i33 : #oo │ │ │ │ │ │ │ │ o33 = 31 │ │ │ │ Still it runs a lot faster when reduced to a positive characteristic. │ │ │ │ i34 : nodes' = baseChange_32003 nodes; │ │ │ │ │ │ │ │ o34 : Ideal of GF 1048969271299456081[x..z, w] │ │ │ │ i35 : time #rationalPoints(variety nodes', Split=>true, Verbose=>true) │ │ │ │ - -- used 0.286815s (cpu); 0.206311s (thread); 0s (gc) │ │ │ │ + -- used 0.377933s (cpu); 0.32083s (thread); 0s (gc) │ │ │ │ │ │ │ │ o35 = 31 │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ For a number field other than QQ, the enumeration of elements with bounded │ │ │ │ height depends on an algorithm by Doyle–Krumm, which is currently only │ │ │ │ implemented in Sage. │ │ │ │ ********** WWaayyss ttoo uussee rraattiioonnaallPPooiinnttss:: ********** │ │ ├── ./usr/share/doc/Macaulay2/ReactionNetworks/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=30 │ │ │ bW9kaWZpY2F0aW9uT2ZUd29TdWJzdHJhdGVzSCgp │ │ │ #:len=344 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzg1LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20gezE6KG1vZGlmaWNhdGlvbk9mVHdvU3Vic3RyYXRlc0gp │ │ ├── ./usr/share/doc/Macaulay2/RealRoots/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=14 │ │ │ U3lsdmVzdGVyQ291bnQ= │ │ │ #:len=2145 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAidGhlIGRpZmZlcmVuY2UgaW4gdmFyaWF0 │ │ │ aW9ucyBvZiB0aGUgU3lsdmVzdGVyIHNlcXVlbmNlIG9mIHR3byByYXRpb25hbCB1bml2YXJpYXRl │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=20 │ │ │ aXNMaW5lYXJUeXBlKE1vZHVsZSk= │ │ │ #:len=257 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTIxMCwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoaXNMaW5lYXJUeXBlLE1vZHVsZSksImlzTGluZWFy │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/___Plane__Curve__Singularities.out │ │ │ @@ -331,15 +331,15 @@ │ │ │ 2 2 2 2 2 2 2 │ │ │ - p w , p y - p , p w y - p p , p w - p ) │ │ │ 2 1 0 1 0 0 1 2 0 0 2 │ │ │ │ │ │ o47 : Ideal of B2 │ │ │ │ │ │ i48 : time sing2 = ideal singularLocus strictTransform2; │ │ │ - -- used 0.858404s (cpu); 0.724585s (thread); 0s (gc) │ │ │ + -- used 1.11597s (cpu); 0.920221s (thread); 0s (gc) │ │ │ │ │ │ ZZ │ │ │ o48 : Ideal of -----[p ..p , w ..w , x..y] │ │ │ 32003 0 2 0 1 │ │ │ │ │ │ i49 : saturate(sing2, sub(irrelTot, ring sing2)) │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_expected__Rees__Ideal.out │ │ │ @@ -57,15 +57,15 @@ │ │ │ o5 : Matrix S <-- S │ │ │ │ │ │ i6 : I = minors(n-1, M); │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ │ │ i7 : time rI = expectedReesIdeal I; -- n= 5 case takes < 1 sec. │ │ │ - -- used 1.09519s (cpu); 0.772014s (thread); 0s (gc) │ │ │ + -- used 1.2093s (cpu); 0.984319s (thread); 0s (gc) │ │ │ │ │ │ o7 : Ideal of S[w ..w ] │ │ │ 0 4 │ │ │ │ │ │ i8 : kk = ZZ/101; │ │ │ │ │ │ i9 : S = kk[x,y,z]; │ │ │ @@ -76,19 +76,19 @@ │ │ │ o10 : Matrix S <-- S │ │ │ │ │ │ i11 : I = minors(3,m); │ │ │ │ │ │ o11 : Ideal of S │ │ │ │ │ │ i12 : time reesIdeal (I, I_0); │ │ │ - -- used 1.47858s (cpu); 1.13496s (thread); 0s (gc) │ │ │ + -- used 1.90712s (cpu); 1.50629s (thread); 0s (gc) │ │ │ │ │ │ o12 : Ideal of S[w ..w ] │ │ │ 0 3 │ │ │ │ │ │ i13 : time reesIdeal (I, I_0, Jacobian =>false); │ │ │ - -- used 1.59206s (cpu); 1.20982s (thread); 0s (gc) │ │ │ + -- used 1.68094s (cpu); 1.42792s (thread); 0s (gc) │ │ │ │ │ │ o13 : Ideal of S[w ..w ] │ │ │ 0 3 │ │ │ │ │ │ i14 : │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_rees__Ideal.out │ │ │ @@ -13,21 +13,21 @@ │ │ │ 3 2 │ │ │ - x x x , x - x x ) │ │ │ 0 2 4 1 0 4 │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ │ │ i4 : time V1 = reesIdeal i; │ │ │ - -- used 0.0296671s (cpu); 0.026976s (thread); 0s (gc) │ │ │ + -- used 0.146548s (cpu); 0.0237621s (thread); 0s (gc) │ │ │ │ │ │ o4 : Ideal of S[w ..w ] │ │ │ 0 6 │ │ │ │ │ │ i5 : time V2 = reesIdeal(i,i_0); │ │ │ - -- used 0.120321s (cpu); 0.122344s (thread); 0s (gc) │ │ │ + -- used 0.188336s (cpu); 0.135312s (thread); 0s (gc) │ │ │ │ │ │ o5 : Ideal of S[w ..w ] │ │ │ 0 6 │ │ │ │ │ │ i6 : S=kk[a,b,c] │ │ │ │ │ │ o6 = S │ │ │ @@ -47,21 +47,21 @@ │ │ │ │ │ │ 2 2 │ │ │ o8 = ideal (a , a*b, b ) │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ │ │ i9 : time I1 = reesIdeal i; │ │ │ - -- used 0.0194455s (cpu); 0.0184988s (thread); 0s (gc) │ │ │ + -- used 0.363757s (cpu); 0.0473346s (thread); 0s (gc) │ │ │ │ │ │ o9 : Ideal of S[w ..w ] │ │ │ 0 2 │ │ │ │ │ │ i10 : time I2 = reesIdeal(i,i_0); │ │ │ - -- used 0.00778222s (cpu); 0.0084035s (thread); 0s (gc) │ │ │ + -- used 0.0528772s (cpu); 0.0100092s (thread); 0s (gc) │ │ │ │ │ │ o10 : Ideal of S[w ..w ] │ │ │ 0 2 │ │ │ │ │ │ i11 : transpose gens I1 │ │ │ │ │ │ o11 = {-1, -3} | aw_1-bw_2 | │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/html/___Plane__Curve__Singularities.html │ │ │ @@ -485,15 +485,15 @@ │ │ │ │ │ │
    │ │ │

    We compute the singular locus once again:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -162,22 +162,22 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i48 : time sing2 = ideal singularLocus strictTransform2;
    │ │ │ - -- used 0.858404s (cpu); 0.724585s (thread); 0s (gc)
    │ │ │ + -- used 1.11597s (cpu); 0.920221s (thread); 0s (gc)
    │ │ │  
    │ │ │                   ZZ
    │ │ │  o48 : Ideal of -----[p ..p , w ..w , x..y]
    │ │ │                 32003  0   2   0   1
    │ │ │
    i49 : saturate(sing2, sub(irrelTot, ring sing2))
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -325,15 +325,15 @@
    │ │ │ │                 2 2    2   2             2 2    2
    │ │ │ │        - p w , p y  - p , p w y - p p , p w  - p )
    │ │ │ │           2 1   0      1   0 0     1 2   0 0    2
    │ │ │ │  
    │ │ │ │  o47 : Ideal of B2
    │ │ │ │  We compute the singular locus once again:
    │ │ │ │  i48 : time sing2 = ideal singularLocus strictTransform2;
    │ │ │ │ - -- used 0.858404s (cpu); 0.724585s (thread); 0s (gc)
    │ │ │ │ + -- used 1.11597s (cpu); 0.920221s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                   ZZ
    │ │ │ │  o48 : Ideal of -----[p ..p , w ..w , x..y]
    │ │ │ │                 32003  0   2   0   1
    │ │ │ │  i49 : saturate(sing2, sub(irrelTot, ring sing2))
    │ │ │ │  
    │ │ │ │  o49 = ideal 1
    │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/html/_expected__Rees__Ideal.html
    │ │ │ @@ -138,15 +138,15 @@
    │ │ │            
    i6 : I = minors(n-1, M);
    │ │ │  
    │ │ │  o6 : Ideal of S
    │ │ │
    i7 : time rI = expectedReesIdeal I; -- n= 5 case takes < 1 sec.
    │ │ │ - -- used 1.09519s (cpu); 0.772014s (thread); 0s (gc)
    │ │ │ + -- used 1.2093s (cpu); 0.984319s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of S[w ..w ]
    │ │ │                   0   4
    │ │ │
    i8 : kk = ZZ/101;
    │ │ │
    i11 : I = minors(3,m);
    │ │ │  
    │ │ │  o11 : Ideal of S
    │ │ │
    i12 : time reesIdeal (I, I_0);
    │ │ │ - -- used 1.47858s (cpu); 1.13496s (thread); 0s (gc)
    │ │ │ + -- used 1.90712s (cpu); 1.50629s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 : Ideal of S[w ..w ]
    │ │ │                    0   3
    │ │ │
    i13 : time reesIdeal (I, I_0, Jacobian =>false);
    │ │ │ - -- used 1.59206s (cpu); 1.20982s (thread); 0s (gc)
    │ │ │ + -- used 1.68094s (cpu); 1.42792s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 : Ideal of S[w ..w ]
    │ │ │                    0   3
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -86,34 +86,34 @@ │ │ │ │ │ │ │ │ 5 4 │ │ │ │ o5 : Matrix S <-- S │ │ │ │ i6 : I = minors(n-1, M); │ │ │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ i7 : time rI = expectedReesIdeal I; -- n= 5 case takes < 1 sec. │ │ │ │ - -- used 1.09519s (cpu); 0.772014s (thread); 0s (gc) │ │ │ │ + -- used 1.2093s (cpu); 0.984319s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : Ideal of S[w ..w ] │ │ │ │ 0 4 │ │ │ │ i8 : kk = ZZ/101; │ │ │ │ i9 : S = kk[x,y,z]; │ │ │ │ i10 : m = random(S^3, S^{4:-2}); │ │ │ │ │ │ │ │ 3 4 │ │ │ │ o10 : Matrix S <-- S │ │ │ │ i11 : I = minors(3,m); │ │ │ │ │ │ │ │ o11 : Ideal of S │ │ │ │ i12 : time reesIdeal (I, I_0); │ │ │ │ - -- used 1.47858s (cpu); 1.13496s (thread); 0s (gc) │ │ │ │ + -- used 1.90712s (cpu); 1.50629s (thread); 0s (gc) │ │ │ │ │ │ │ │ o12 : Ideal of S[w ..w ] │ │ │ │ 0 3 │ │ │ │ i13 : time reesIdeal (I, I_0, Jacobian =>false); │ │ │ │ - -- used 1.59206s (cpu); 1.20982s (thread); 0s (gc) │ │ │ │ + -- used 1.68094s (cpu); 1.42792s (thread); 0s (gc) │ │ │ │ │ │ │ │ o13 : Ideal of S[w ..w ] │ │ │ │ 0 3 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_y_m_m_e_t_r_i_c_A_l_g_e_b_r_a_I_d_e_a_l -- Ideal of the symmetric algebra of an ideal or │ │ │ │ module │ │ │ │ * _j_a_c_o_b_i_a_n_D_u_a_l -- Computes the 'jacobian dual', part of a method of finding │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal.html │ │ │ @@ -113,22 +113,22 @@ │ │ │ - x x x , x - x x ) │ │ │ 0 2 4 1 0 4 │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ │ │ │ │ │
    i4 : time V1 = reesIdeal i;
    │ │ │ - -- used 0.0296671s (cpu); 0.026976s (thread); 0s (gc)
    │ │ │ + -- used 0.146548s (cpu); 0.0237621s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : Ideal of S[w ..w ]
    │ │ │                   0   6
    │ │ │ │ │ │ │ │ │
    i5 : time V2 = reesIdeal(i,i_0);
    │ │ │ - -- used 0.120321s (cpu); 0.122344s (thread); 0s (gc)
    │ │ │ + -- used 0.188336s (cpu); 0.135312s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : Ideal of S[w ..w ]
    │ │ │                   0   6
    │ │ │ │ │ │ │ │ │
    │ │ │

    The following example shows how we handle degrees

    │ │ │ @@ -157,22 +157,22 @@ │ │ │ 2 2 │ │ │ o8 = ideal (a , a*b, b ) │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ │ │ │ │ │
    i9 : time I1 = reesIdeal i;
    │ │ │ - -- used 0.0194455s (cpu); 0.0184988s (thread); 0s (gc)
    │ │ │ + -- used 0.363757s (cpu); 0.0473346s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : Ideal of S[w ..w ]
    │ │ │                   0   2
    │ │ │ │ │ │ │ │ │
    i10 : time I2 = reesIdeal(i,i_0);
    │ │ │ - -- used 0.00778222s (cpu); 0.0084035s (thread); 0s (gc)
    │ │ │ + -- used 0.0528772s (cpu); 0.0100092s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 : Ideal of S[w ..w ]
    │ │ │                    0   2
    │ │ │ │ │ │ │ │ │
    i11 : transpose gens I1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -52,20 +52,20 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                  3    2
    │ │ │ │       - x x x , x  - x x )
    │ │ │ │          0 2 4   1    0 4
    │ │ │ │  
    │ │ │ │  o3 : Ideal of S
    │ │ │ │  i4 : time V1 = reesIdeal i;
    │ │ │ │ - -- used 0.0296671s (cpu); 0.026976s (thread); 0s (gc)
    │ │ │ │ + -- used 0.146548s (cpu); 0.0237621s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : Ideal of S[w ..w ]
    │ │ │ │                   0   6
    │ │ │ │  i5 : time V2 = reesIdeal(i,i_0);
    │ │ │ │ - -- used 0.120321s (cpu); 0.122344s (thread); 0s (gc)
    │ │ │ │ + -- used 0.188336s (cpu); 0.135312s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 : Ideal of S[w ..w ]
    │ │ │ │                   0   6
    │ │ │ │  The following example shows how we handle degrees
    │ │ │ │  i6 : S=kk[a,b,c]
    │ │ │ │  
    │ │ │ │  o6 = S
    │ │ │ │ @@ -82,20 +82,20 @@
    │ │ │ │  i8 : i=minors(2,m)
    │ │ │ │  
    │ │ │ │               2        2
    │ │ │ │  o8 = ideal (a , a*b, b )
    │ │ │ │  
    │ │ │ │  o8 : Ideal of S
    │ │ │ │  i9 : time I1 = reesIdeal i;
    │ │ │ │ - -- used 0.0194455s (cpu); 0.0184988s (thread); 0s (gc)
    │ │ │ │ + -- used 0.363757s (cpu); 0.0473346s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o9 : Ideal of S[w ..w ]
    │ │ │ │                   0   2
    │ │ │ │  i10 : time I2 = reesIdeal(i,i_0);
    │ │ │ │ - -- used 0.00778222s (cpu); 0.0084035s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0528772s (cpu); 0.0100092s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o10 : Ideal of S[w ..w ]
    │ │ │ │                    0   2
    │ │ │ │  i11 : transpose gens I1
    │ │ │ │  
    │ │ │ │  o11 = {-1, -3} | aw_1-bw_2    |
    │ │ │ │        {-1, -3} | aw_0-bw_1    |
    │ │ ├── ./usr/share/doc/Macaulay2/ReflexivePolytopesDB/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=7
    │ │ │  S1NFbnRyeQ==
    │ │ │  #:len=2433
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiYW4gZW50cnkgZnJvbSB0aGUgS3JldXpl
    │ │ │  ci1Ta2Fya2UgZGF0YWJhc2Ugb2YgZGltZW5zaW9uIDMgYW5kIDQgcmVmbGV4aXZlIHBvbHl0b3Bl
    │ │ ├── ./usr/share/doc/Macaulay2/Regularity/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=10
    │ │ │  UmVndWxhcml0eQ==
    │ │ │  #:len=797
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiY29tcHV0ZSBDYXN0ZWxudW92by1NdW1m
    │ │ │  b3JkIHJlZ3VsYXJpdHkgb2YgYSBob21vZ2VuZW91cyBpZGVhbCIsIERlc2NyaXB0aW9uID0+IChQ
    │ │ ├── ./usr/share/doc/Macaulay2/Regularity/example-output/_m__Regularity.out
    │ │ │ @@ -71,15 +71,15 @@
    │ │ │       x x x , x  + x x  - x x  - x x x , x  + x  - x x )
    │ │ │        0 1 3   0    0 1    1 2    0 2 5   0    2    0 5
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │  
    │ │ │  i8 : benchmark "mRegularity I1"
    │ │ │  
    │ │ │ -o8 = .2602446350000001
    │ │ │ +o8 = .2536823330000001
    │ │ │  
    │ │ │  o8 : RR (of precision 53)
    │ │ │  
    │ │ │  i9 : R = QQ[x_0..x_5]
    │ │ │  
    │ │ │  o9 = R
    │ │ │  
    │ │ │ @@ -87,17 +87,17 @@
    │ │ │  
    │ │ │  i10 : I2 = ideal ( x_0^2+x_5^2, x_0^2+x_0*x_3+x_4^2, x_0^2+x_0*x_5+x_2*x_5, x_0^2-x_0*x_3-x_3*x_5, x_0^2-x_3*x_4, x_0*x_3);
    │ │ │  
    │ │ │  o10 : Ideal of R
    │ │ │  
    │ │ │  i11 : benchmark " mRegularity I2"
    │ │ │  
    │ │ │ -o11 = .0691025631714286
    │ │ │ +o11 = .0762167599518072
    │ │ │  
    │ │ │  o11 : RR (of precision 53)
    │ │ │  
    │ │ │  i12 : time regularity I2  
    │ │ │ - -- used 0.00416868s (cpu); 0.00256224s (thread); 0s (gc)
    │ │ │ + -- used 0.00400005s (cpu); 0.00193564s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 = 4
    │ │ │  
    │ │ │  i13 :
    │ │ ├── ./usr/share/doc/Macaulay2/Regularity/html/_m__Regularity.html
    │ │ │ @@ -165,15 +165,15 @@
    │ │ │        0 1 3   0    0 1    1 2    0 2 5   0    2    0 5
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │ │ │ │ │ │ │
    i8 : benchmark "mRegularity I1"
    │ │ │  
    │ │ │ -o8 = .2602446350000001
    │ │ │ +o8 = .2536823330000001
    │ │ │  
    │ │ │  o8 : RR (of precision 53)
    │ │ │ │ │ │ │ │ │

    This is an example where regularity is faster than mRegularity.

    │ │ │ │ │ │ │ │ │ @@ -187,21 +187,21 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : I2 = ideal ( x_0^2+x_5^2, x_0^2+x_0*x_3+x_4^2, x_0^2+x_0*x_5+x_2*x_5, x_0^2-x_0*x_3-x_3*x_5, x_0^2-x_3*x_4, x_0*x_3);
    │ │ │  
    │ │ │  o10 : Ideal of R
    │ │ │
    i11 : benchmark " mRegularity I2"
    │ │ │  
    │ │ │ -o11 = .0691025631714286
    │ │ │ +o11 = .0762167599518072
    │ │ │  
    │ │ │  o11 : RR (of precision 53)
    │ │ │
    i12 : time regularity I2  
    │ │ │ - -- used 0.00416868s (cpu); 0.00256224s (thread); 0s (gc)
    │ │ │ + -- used 0.00400005s (cpu); 0.00193564s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 = 4
    │ │ │
    │ │ │

    This symbol is provided by the package Regularity.

    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -95,34 +95,34 @@ │ │ │ │ 3 2 2 3 3 2 │ │ │ │ x x x , x + x x - x x - x x x , x + x - x x ) │ │ │ │ 0 1 3 0 0 1 1 2 0 2 5 0 2 0 5 │ │ │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ i8 : benchmark "mRegularity I1" │ │ │ │ │ │ │ │ -o8 = .2602446350000001 │ │ │ │ +o8 = .2536823330000001 │ │ │ │ │ │ │ │ o8 : RR (of precision 53) │ │ │ │ This is an example where regularity is faster than mRegularity. │ │ │ │ i9 : R = QQ[x_0..x_5] │ │ │ │ │ │ │ │ o9 = R │ │ │ │ │ │ │ │ o9 : PolynomialRing │ │ │ │ i10 : I2 = ideal ( x_0^2+x_5^2, x_0^2+x_0*x_3+x_4^2, x_0^2+x_0*x_5+x_2*x_5, │ │ │ │ x_0^2-x_0*x_3-x_3*x_5, x_0^2-x_3*x_4, x_0*x_3); │ │ │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ i11 : benchmark " mRegularity I2" │ │ │ │ │ │ │ │ -o11 = .0691025631714286 │ │ │ │ +o11 = .0762167599518072 │ │ │ │ │ │ │ │ o11 : RR (of precision 53) │ │ │ │ i12 : time regularity I2 │ │ │ │ - -- used 0.00416868s (cpu); 0.00256224s (thread); 0s (gc) │ │ │ │ + -- used 0.00400005s (cpu); 0.00193564s (thread); 0s (gc) │ │ │ │ │ │ │ │ o12 = 4 │ │ │ │ This symbol is provided by the package Regularity. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_g_u_l_a_r_i_t_y -- compute the Castelnuovo-Mumford regularity │ │ │ │ ********** WWaayyss ttoo uussee mmRReegguullaarriittyy:: ********** │ │ │ │ * mRegularity(Ideal) │ │ ├── ./usr/share/doc/Macaulay2/RelativeCanonicalResolution/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=20 │ │ │ Y2Fub25pY2FsTXVsdGlwbGllcnM= │ │ │ #:len=1705 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiQ29tcHV0ZXMgdGhlIGNhbm9uaWNhbCBt │ │ │ dWx0aXBsaWVycyBvZiBhIHJhdGlvbmFsIGN1cnZlcyB3aXRoIG5vZGVzIiwgImxpbmVudW0iID0+ │ │ ├── ./usr/share/doc/Macaulay2/ResLengthThree/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=21 │ │ │ bXVsdFRhYmxlT25lVHdvKFJpbmcp │ │ │ #:len=273 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNjMwLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhtdWx0VGFibGVPbmVUd28sUmluZyksIm11bHRUYWJs │ │ ├── ./usr/share/doc/Macaulay2/ResidualIntersections/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=15 │ │ │ Z2VuZXJpY1Jlc2lkdWFs │ │ │ #:len=1739 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiQ29tcHV0ZXMgZ2VuZXJpYyByZXNpZHVh │ │ │ bCBpbnRlcnNlY3Rpb25zIG9mIGFuIGlkZWFsIiwgImxpbmVudW0iID0+IDg4NiwgSW5wdXRzID0+ │ │ ├── ./usr/share/doc/Macaulay2/ResolutionsOfStanleyReisnerRings/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=41 │ │ │ YmFyeWNlbnRyaWNTdWJkaXZpc2lvbihTaW1wbGljaWFsQ29tcGxleCk= │ │ │ #:len=381 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzI4LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhiYXJ5Y2VudHJpY1N1YmRpdmlzaW9uLFNpbXBsaWNp │ │ ├── ./usr/share/doc/Macaulay2/Resultants/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=35 │ │ │ aHVyd2l0ekZvcm0oLi4uLFNpbmd1bGFyTG9jdXM9Pi4uLik= │ │ │ #:len=277 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTMzMCwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHtbaHVyd2l0ekZvcm0sU2luZ3VsYXJMb2N1c10sImh1 │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_cayley__Trick.out │ │ │ @@ -5,18 +5,18 @@ │ │ │ o2 = ideal(x x - x x ) │ │ │ 0 1 2 3 │ │ │ │ │ │ o2 : Ideal of QQ[x ..x ] │ │ │ 0 3 │ │ │ │ │ │ i3 : time (P1xP1xP2,P1xP1xP2') = cayleyTrick(P1xP1,2); │ │ │ - -- used 0.142755s (cpu); 0.0805606s (thread); 0s (gc) │ │ │ + -- used 0.0902452s (cpu); 0.0472935s (thread); 0s (gc) │ │ │ │ │ │ i4 : time (P1xP1xP1,P1xP1xP1') = cayleyTrick(P1xP1,1) │ │ │ - -- used 0.05218s (cpu); 0.0522233s (thread); 0s (gc) │ │ │ + -- used 0.0737947s (cpu); 0.0747475s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ o4 = (ideal (x x - x x , x x - x x , x x - x x , │ │ │ 0,3 1,2 0,2 1,3 1,0 1,1 1,2 1,3 0,3 1,1 0,1 1,3 │ │ │ ------------------------------------------------------------------------ │ │ │ │ │ │ x x - x x , x x - x x , x x - x x , x x │ │ │ @@ -37,17 +37,17 @@ │ │ │ 2 2 │ │ │ 4x x x x - 2x x x x + x x )) │ │ │ 0,0 0,1 1,2 1,3 0,2 0,3 1,2 1,3 0,2 1,3 │ │ │ │ │ │ o4 : Sequence │ │ │ │ │ │ i5 : time cayleyTrick(P1xP1,1,Duality=>true); │ │ │ - -- used 0.149721s (cpu); 0.103387s (thread); 0s (gc) │ │ │ + -- used 0.152743s (cpu); 0.0736586s (thread); 0s (gc) │ │ │ │ │ │ i6 : assert(oo == (P1xP1xP1,P1xP1xP1')) │ │ │ │ │ │ i7 : time cayleyTrick(P1xP1,2,Duality=>true); │ │ │ - -- used 0.146483s (cpu); 0.0877464s (thread); 0s (gc) │ │ │ + -- used 0.182141s (cpu); 0.136407s (thread); 0s (gc) │ │ │ │ │ │ i8 : assert(oo == (P1xP1xP2,P1xP1xP2')) │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Equations.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ o2 = ideal (x + x + x + x , x x + x x + x x ) │ │ │ 0 1 2 3 0 1 1 2 2 3 │ │ │ │ │ │ o2 : Ideal of P3 │ │ │ │ │ │ i3 : -- Chow equations of C │ │ │ time eqsC = chowEquations chowForm C │ │ │ - -- used 0.106786s (cpu); 0.0541456s (thread); 0s (gc) │ │ │ + -- used 0.141058s (cpu); 0.0946273s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 2 2 4 2 2 2 2 │ │ │ o3 = ideal (x x + x x + x x + x , x x x x + x x x + x x , x x x + │ │ │ 0 3 1 3 2 3 3 0 1 2 3 1 2 3 2 3 0 2 3 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 3 2 2 3 3 2 2 2 2 │ │ │ x x x + x x - 2x x x - 2x x x - x x , x x + 2x x x - x x x + x x │ │ │ @@ -72,15 +72,15 @@ │ │ │ o5 = ideal (x - x x , x - x x x , x x - x x ) │ │ │ 1 0 2 2 0 1 3 1 2 0 3 │ │ │ │ │ │ o5 : Ideal of P3 │ │ │ │ │ │ i6 : -- Chow equations of D │ │ │ time eqsD = chowEquations chowForm D │ │ │ - -- used 0.0298427s (cpu); 0.0334105s (thread); 0s (gc) │ │ │ + -- used 0.0719996s (cpu); 0.0740332s (thread); 0s (gc) │ │ │ │ │ │ 4 3 2 3 2 2 3 2 2 2 2 2 2 │ │ │ o6 = ideal (x x - x x , x x x - x x x , x x x - x x x , x x x - x x x , │ │ │ 2 3 1 3 1 2 3 0 1 3 0 2 3 0 1 3 1 2 3 0 1 3 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 3 2 3 3 2 4 2 2 2 3 │ │ │ x x x x - x x , x x x - x x , x x - 4x x x x + 3x x x , x x x - │ │ │ @@ -117,24 +117,24 @@ │ │ │ o9 = ideal(x x + x x ) │ │ │ 0 1 2 3 │ │ │ │ │ │ o9 : Ideal of P3 │ │ │ │ │ │ i10 : -- tangential Chow forms of Q │ │ │ time (W0,W1,W2) = (tangentialChowForm(Q,0),tangentialChowForm(Q,1),tangentialChowForm(Q,2)) │ │ │ - -- used 0.144745s (cpu); 0.0765926s (thread); 0s (gc) │ │ │ + -- used 0.183428s (cpu); 0.131307s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o10 = (x x + x x , x - 4x x + 2x x + x , x x + │ │ │ 0 1 2 3 0,1 0,2 1,3 0,1 2,3 2,3 0,1,2 0,1,3 │ │ │ ----------------------------------------------------------------------- │ │ │ x x ) │ │ │ 0,2,3 1,2,3 │ │ │ │ │ │ o10 : Sequence │ │ │ │ │ │ i11 : time (Q,Q,Q) == (chowEquations(W0,0),chowEquations(W1,1),chowEquations(W2,2)) │ │ │ - -- used 0.126093s (cpu); 0.0638828s (thread); 0s (gc) │ │ │ + -- used 0.148884s (cpu); 0.0994172s (thread); 0s (gc) │ │ │ │ │ │ o11 = true │ │ │ │ │ │ i12 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Form.out │ │ │ @@ -16,15 +16,15 @@ │ │ │ │ │ │ ZZ │ │ │ o2 : Ideal of ----[x ..x ] │ │ │ 3331 0 5 │ │ │ │ │ │ i3 : -- Chow form of V in Grass(2,5) (performing internal computations on an affine chart of the Grassmannian) │ │ │ time ChowV = chowForm(V,AffineChartGrass=>{1,2,3}) │ │ │ - -- used 4.91471s (cpu); 4.47543s (thread); 0s (gc) │ │ │ + -- used 5.4004s (cpu); 5.08707s (thread); 0s (gc) │ │ │ │ │ │ 4 2 2 2 2 │ │ │ o3 = x + 2x x x + x x - 2x x x + │ │ │ 1,2,4 0,2,4 1,2,4 2,3,4 0,2,4 2,3,4 1,2,3 1,2,4 1,2,5 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 2 │ │ │ x x - x x x + x x x x + │ │ │ @@ -143,19 +143,19 @@ │ │ │ 3331 0,1,2 0,1,3 0,2,3 1,2,3 0,1,4 0,2,4 1,2,4 0,3,4 1,3,4 2,3,4 0,1,5 0,2,5 1,2,5 0,3,5 1,3,5 2,3,5 0,4,5 1,4,5 2,4,5 3,4,5 │ │ │ o3 : ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- │ │ │ (x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x - x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x + x x - x x + x x , x x - x x + x x , x x - x x + x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x - x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x ) │ │ │ 2,3,5 1,4,5 1,3,5 2,4,5 1,2,5 3,4,5 2,3,4 1,4,5 1,3,4 2,4,5 1,2,4 3,4,5 2,3,5 0,4,5 0,3,5 2,4,5 0,2,5 3,4,5 1,3,5 0,4,5 0,3,5 1,4,5 0,1,5 3,4,5 1,2,5 0,4,5 0,2,5 1,4,5 0,1,5 2,4,5 2,3,4 0,4,5 0,3,4 2,4,5 0,2,4 3,4,5 1,3,4 0,4,5 0,3,4 1,4,5 0,1,4 3,4,5 1,2,4 0,4,5 0,2,4 1,4,5 0,1,4 2,4,5 1,2,3 0,4,5 0,2,3 1,4,5 0,1,3 2,4,5 0,1,2 3,4,5 2,3,4 1,3,5 1,3,4 2,3,5 1,2,3 3,4,5 1,2,5 0,3,5 0,2,5 1,3,5 0,1,5 2,3,5 2,3,4 0,3,5 0,3,4 2,3,5 0,2,3 3,4,5 1,3,4 0,3,5 0,3,4 1,3,5 0,1,3 3,4,5 1,2,4 0,3,5 0,2,4 1,3,5 0,1,4 2,3,5 0,1,2 3,4,5 1,2,3 0,3,5 0,2,3 1,3,5 0,1,3 2,3,5 2,3,4 1,2,5 1,2,4 2,3,5 1,2,3 2,4,5 1,3,4 1,2,5 1,2,4 1,3,5 1,2,3 1,4,5 0,3,4 1,2,5 0,2,4 1,3,5 0,1,4 2,3,5 0,2,3 1,4,5 0,1,3 2,4,5 0,1,2 3,4,5 2,3,4 0,2,5 0,2,4 2,3,5 0,2,3 2,4,5 1,3,4 0,2,5 0,2,4 1,3,5 0,2,3 1,4,5 0,1,2 3,4,5 0,3,4 0,2,5 0,2,4 0,3,5 0,2,3 0,4,5 1,2,4 0,2,5 0,2,4 1,2,5 0,1,2 2,4,5 1,2,3 0,2,5 0,2,3 1,2,5 0,1,2 2,3,5 2,3,4 0,1,5 0,1,4 2,3,5 0,1,3 2,4,5 0,1,2 3,4,5 1,3,4 0,1,5 0,1,4 1,3,5 0,1,3 1,4,5 0,3,4 0,1,5 0,1,4 0,3,5 0,1,3 0,4,5 1,2,4 0,1,5 0,1,4 1,2,5 0,1,2 1,4,5 0,2,4 0,1,5 0,1,4 0,2,5 0,1,2 0,4,5 1,2,3 0,1,5 0,1,3 1,2,5 0,1,2 1,3,5 0,2,3 0,1,5 0,1,3 0,2,5 0,1,2 0,3,5 1,2,4 0,3,4 0,2,4 1,3,4 0,1,4 2,3,4 1,2,3 0,3,4 0,2,3 1,3,4 0,1,3 2,3,4 1,2,3 0,2,4 0,2,3 1,2,4 0,1,2 2,3,4 1,2,3 0,1,4 0,1,3 1,2,4 0,1,2 1,3,4 0,2,3 0,1,4 0,1,3 0,2,4 0,1,2 0,3,4 │ │ │ │ │ │ i4 : -- equivalently (but faster)... │ │ │ time assert(ChowV === chowForm f) │ │ │ - -- used 1.1541s (cpu); 1.04468s (thread); 0s (gc) │ │ │ + -- used 1.218s (cpu); 1.16436s (thread); 0s (gc) │ │ │ │ │ │ i5 : -- X-resultant of V │ │ │ time Xres = fromPluckerToStiefel dualize ChowV; │ │ │ - -- used 0.218349s (cpu); 0.168032s (thread); 0s (gc) │ │ │ + -- used 0.312455s (cpu); 0.189813s (thread); 0s (gc) │ │ │ │ │ │ i6 : -- three generic ternary quadrics │ │ │ F = genericPolynomials({2,2,2},ZZ/3331) │ │ │ │ │ │ 2 2 2 2 2 │ │ │ o6 = {a x + a x x + a x + a x x + a x x + a x , b x + b x x + b x + │ │ │ 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 │ │ │ @@ -164,12 +164,12 @@ │ │ │ b x x + b x x + b x , c x + c x x + c x + c x x + c x x + c x } │ │ │ 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : -- resultant of the three forms │ │ │ time resF = resultant F; │ │ │ - -- used 0.309447s (cpu); 0.186941s (thread); 0s (gc) │ │ │ + -- used 0.390298s (cpu); 0.156038s (thread); 0s (gc) │ │ │ │ │ │ i8 : assert(resF === sub(Xres,vars ring resF) and Xres === sub(resF,vars ring Xres)) │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_discriminant_lp__Ring__Element_rp.out │ │ │ @@ -4,30 +4,30 @@ │ │ │ │ │ │ 2 2 │ │ │ o2 = a*x + b*x*y + c*y │ │ │ │ │ │ o2 : ZZ[a..c][x..y] │ │ │ │ │ │ i3 : time discriminant F │ │ │ - -- used 0.0078513s (cpu); 0.00792964s (thread); 0s (gc) │ │ │ + -- used 0.011999s (cpu); 0.0130189s (thread); 0s (gc) │ │ │ │ │ │ 2 │ │ │ o3 = - b + 4a*c │ │ │ │ │ │ o3 : ZZ[a..c] │ │ │ │ │ │ i4 : ZZ[a,b,c,d][x,y]; F = a*x^3+b*x^2*y+c*x*y^2+d*y^3 │ │ │ │ │ │ 3 2 2 3 │ │ │ o5 = a*x + b*x y + c*x*y + d*y │ │ │ │ │ │ o5 : ZZ[a..d][x..y] │ │ │ │ │ │ i6 : time discriminant F │ │ │ - -- used 0.0840155s (cpu); 0.0312505s (thread); 0s (gc) │ │ │ + -- used 0.0737907s (cpu); 0.0236709s (thread); 0s (gc) │ │ │ │ │ │ 2 2 3 3 2 2 │ │ │ o6 = - b c + 4a*c + 4b d - 18a*b*c*d + 27a d │ │ │ │ │ │ o6 : ZZ[a..d] │ │ │ │ │ │ i7 : x=symbol x; R=ZZ/331[x_0..x_3] │ │ │ @@ -59,15 +59,15 @@ │ │ │ 4 3 4 4 3 4 │ │ │ o12 = (t + t )x - t x x + t x + (t - t )x + t x x + t x │ │ │ 0 1 0 1 0 1 0 1 0 1 2 1 2 3 0 3 │ │ │ │ │ │ o12 : R' │ │ │ │ │ │ i13 : time D=discriminant pencil │ │ │ - -- used 0.422412s (cpu); 0.42392s (thread); 0s (gc) │ │ │ + -- used 0.439326s (cpu); 0.437955s (thread); 0s (gc) │ │ │ │ │ │ 108 106 2 102 6 100 8 98 10 96 12 │ │ │ o13 = - 62t + 19t t + 160t t + 91t t + 129t t + 117t t + │ │ │ 0 0 1 0 1 0 1 0 1 0 1 │ │ │ ----------------------------------------------------------------------- │ │ │ 94 14 92 16 90 18 88 20 86 22 84 24 │ │ │ 161t t + 124t t - 82t t - 21t t - 49t t - 123t t + │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_dual__Variety.out │ │ │ @@ -9,25 +9,25 @@ │ │ │ x x ) │ │ │ 0 3 │ │ │ │ │ │ o1 : Ideal of QQ[x ..x ] │ │ │ 0 5 │ │ │ │ │ │ i2 : time V' = dualVariety V │ │ │ - -- used 0.180744s (cpu); 0.130805s (thread); 0s (gc) │ │ │ + -- used 0.294961s (cpu); 0.127308s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 │ │ │ o2 = ideal(x x - x x x + x x + x x - 4x x x ) │ │ │ 2 3 1 2 4 0 4 1 5 0 3 5 │ │ │ │ │ │ o2 : Ideal of QQ[x ..x ] │ │ │ 0 5 │ │ │ │ │ │ i3 : time V == dualVariety V' │ │ │ - -- used 0.199797s (cpu); 0.140703s (thread); 0s (gc) │ │ │ + -- used 0.249635s (cpu); 0.144745s (thread); 0s (gc) │ │ │ │ │ │ o3 = true │ │ │ │ │ │ i4 : F = first genericPolynomials({3,-1,-1},ZZ/3331) │ │ │ │ │ │ 3 2 2 3 2 2 2 │ │ │ o4 = a x + a x x + a x x + a x + a x x + a x x x + a x x + a x x + │ │ │ @@ -38,22 +38,22 @@ │ │ │ 8 1 2 9 2 │ │ │ │ │ │ ZZ │ │ │ o4 : ----[a ..a ][x ..x ] │ │ │ 3331 0 9 0 2 │ │ │ │ │ │ i5 : time discF = ideal discriminant F; │ │ │ - -- used 0.0624866s (cpu); 0.0609208s (thread); 0s (gc) │ │ │ + -- used 0.070908s (cpu); 0.0702981s (thread); 0s (gc) │ │ │ │ │ │ ZZ │ │ │ o5 : Ideal of ----[a ..a ] │ │ │ 3331 0 9 │ │ │ │ │ │ i6 : time Z = dualVariety(veronese(2,3,ZZ/3331),AssumeOrdinary=>true); │ │ │ - -- used 0.621853s (cpu); 0.55823s (thread); 0s (gc) │ │ │ + -- used 0.66942s (cpu); 0.626341s (thread); 0s (gc) │ │ │ │ │ │ ZZ │ │ │ o6 : Ideal of ----[x ..x ] │ │ │ 3331 0 9 │ │ │ │ │ │ i7 : discF == sub(Z,vars ring discF) and Z == sub(discF,vars ring Z) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_from__Plucker__To__Stiefel.out │ │ │ @@ -6,15 +6,15 @@ │ │ │ o1 = ideal (x - x x , x x - x x , x - x x ) │ │ │ 2 1 3 1 2 0 3 1 0 2 │ │ │ │ │ │ o1 : Ideal of QQ[x ..x ] │ │ │ 0 3 │ │ │ │ │ │ i2 : time fromPluckerToStiefel dualize chowForm C │ │ │ - -- used 0.114714s (cpu); 0.0536053s (thread); 0s (gc) │ │ │ + -- used 0.0875735s (cpu); 0.0457231s (thread); 0s (gc) │ │ │ │ │ │ 3 3 2 2 2 2 2 3 │ │ │ o2 = - x x + x x x x - x x x x + x x x - │ │ │ 0,3 1,0 0,2 0,3 1,0 1,1 0,1 0,3 1,0 1,1 0,0 0,3 1,1 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 2 2 │ │ │ x x x x + 2x x x x + x x x x x x - │ │ │ @@ -56,15 +56,15 @@ │ │ │ x x x x - 2x x x x - x x x x + x x │ │ │ 0,0 0,1 1,1 1,3 0,0 0,2 1,1 1,3 0,0 0,1 1,2 1,3 0,0 1,3 │ │ │ │ │ │ o2 : QQ[x ..x ] │ │ │ 0,0 1,3 │ │ │ │ │ │ i3 : time fromPluckerToStiefel(dualize chowForm C,AffineChartGrass=>{0,1}) │ │ │ - -- used 0.03594s (cpu); 0.0388574s (thread); 0s (gc) │ │ │ + -- used 0.0356639s (cpu); 0.035488s (thread); 0s (gc) │ │ │ │ │ │ 3 2 2 │ │ │ o3 = - x x + x x x - x x x + x x + 3x x x - │ │ │ 0,3 1,2 0,2 1,2 1,3 0,2 0,3 1,2 0,2 1,3 0,3 1,2 1,3 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 3 2 │ │ │ 2x x + x + x │ │ │ @@ -85,15 +85,15 @@ │ │ │ │ │ │ o4 : QQ[a ..a ] │ │ │ 0,0 1,1 │ │ │ │ │ │ i5 : w = chowForm C; │ │ │ │ │ │ i6 : time U = apply(subsets(4,2),s->ideal fromPluckerToStiefel(w,AffineChartGrass=>s)) │ │ │ - -- used 0.0871858s (cpu); 0.0336167s (thread); 0s (gc) │ │ │ + -- used 0.0679509s (cpu); 0.0242628s (thread); 0s (gc) │ │ │ │ │ │ 3 2 3 2 │ │ │ o6 = {ideal(- x x + x x x - x - 3x x x + 2x x + │ │ │ 0,3 1,2 0,2 1,2 1,3 0,2 0,2 0,3 1,2 0,2 1,3 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 2 3 2 │ │ │ x x x - x x + x ), ideal(x x - 2x x x x + │ │ │ @@ -130,14 +130,14 @@ │ │ │ 2 3 2 │ │ │ 2x x - x + x )} │ │ │ 0,0 1,1 1,1 1,0 │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : time apply(U,u->dim singularLocus u) │ │ │ - -- used 0.0154955s (cpu); 0.0148463s (thread); 0s (gc) │ │ │ + -- used 0.014661s (cpu); 0.013321s (thread); 0s (gc) │ │ │ │ │ │ o7 = {2, 2, 2, 2, 2, 2} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_hurwitz__Form.out │ │ │ @@ -10,15 +10,15 @@ │ │ │ --p + p p + -p p + -p p + -p p + 7p ) │ │ │ 10 3 0 4 4 1 4 2 2 4 3 3 4 4 │ │ │ │ │ │ o1 : Ideal of QQ[p ..p ] │ │ │ 0 4 │ │ │ │ │ │ i2 : time hurwitzForm Q │ │ │ - -- used 0.110524s (cpu); 0.0675797s (thread); 0s (gc) │ │ │ + -- used 0.092074s (cpu); 0.0461657s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o2 = 143100p + 267300p p + 96525p - 56700p p - 56100p p │ │ │ 0,1 0,1 0,2 0,2 0,1 1,2 0,2 1,2 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 │ │ │ + 900p + 140400p p + 111780p p + 133380p - 8100p p │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_is__Coisotropic.out │ │ │ @@ -22,15 +22,15 @@ │ │ │ QQ[p ..p , p , p , p , p ] │ │ │ 0,1 0,2 1,2 0,3 1,3 2,3 │ │ │ o1 : -------------------------------------- │ │ │ p p - p p + p p │ │ │ 1,2 0,3 0,2 1,3 0,1 2,3 │ │ │ │ │ │ i2 : time isCoisotropic w │ │ │ - -- used 0.00799966s (cpu); 0.00727879s (thread); 0s (gc) │ │ │ + -- used 0.0406609s (cpu); 0.0405998s (thread); 0s (gc) │ │ │ │ │ │ o2 = true │ │ │ │ │ │ i3 : -- random quadric in G(1,3) │ │ │ w' = random(2,Grass(1,3)) │ │ │ │ │ │ 7 2 2 3 2 5 │ │ │ @@ -52,12 +52,12 @@ │ │ │ QQ[p ..p , p , p , p , p ] │ │ │ 0,1 0,2 1,2 0,3 1,3 2,3 │ │ │ o3 : -------------------------------------- │ │ │ p p - p p + p p │ │ │ 1,2 0,3 0,2 1,3 0,1 2,3 │ │ │ │ │ │ i4 : time isCoisotropic w' │ │ │ - -- used 0.00400191s (cpu); 0.00650056s (thread); 0s (gc) │ │ │ + -- used 0.00798371s (cpu); 0.00829385s (thread); 0s (gc) │ │ │ │ │ │ o4 = false │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_is__In__Coisotropic.out │ │ │ @@ -31,12 +31,12 @@ │ │ │ 4 5 │ │ │ │ │ │ ZZ │ │ │ o3 : Ideal of -----[x ..x ] │ │ │ 33331 0 5 │ │ │ │ │ │ i4 : time isInCoisotropic(L,I) -- whether L belongs to Z_1(V(I)) │ │ │ - -- used 0.0228258s (cpu); 0.0201847s (thread); 0s (gc) │ │ │ + -- used 0.0479977s (cpu); 0.0478608s (thread); 0s (gc) │ │ │ │ │ │ o4 = true │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_macaulay__Formula.out │ │ │ @@ -13,15 +13,15 @@ │ │ │ 2 2 2 3 │ │ │ c x x x + c x x + c x x + c x x + c x } │ │ │ 4 0 1 2 7 1 2 5 0 2 8 1 2 9 2 │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : time (D,D') = macaulayFormula F │ │ │ - -- used 0.00215734s (cpu); 0.00350587s (thread); 0s (gc) │ │ │ + -- used 0.00400078s (cpu); 0.00300471s (thread); 0s (gc) │ │ │ │ │ │ o2 = (| a_0 a_1 a_2 a_3 a_4 a_5 0 0 0 0 0 0 0 0 0 0 0 │ │ │ | 0 a_0 0 a_1 a_2 0 a_3 a_4 a_5 0 0 0 0 0 0 0 0 │ │ │ | 0 0 a_0 0 a_1 a_2 0 a_3 a_4 a_5 0 0 0 0 0 0 0 │ │ │ | 0 0 0 a_0 0 0 a_1 a_2 0 0 a_3 a_4 a_5 0 0 0 0 │ │ │ | 0 0 0 0 a_0 0 0 a_1 a_2 0 0 a_3 a_4 a_5 0 0 0 │ │ │ | 0 0 0 0 0 a_0 0 0 a_1 a_2 0 0 a_3 a_4 a_5 0 0 │ │ │ @@ -78,15 +78,15 @@ │ │ │ 6 2 2 3 │ │ │ -p p + 2p p + 6p } │ │ │ 7 0 2 1 2 2 │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : time (D,D') = macaulayFormula F │ │ │ - -- used 0.00399943s (cpu); 0.00217211s (thread); 0s (gc) │ │ │ + -- used 0.00123595s (cpu); 0.00199651s (thread); 0s (gc) │ │ │ │ │ │ o4 = (| 9/2 1/2 9/4 1/2 1 3/4 0 0 0 0 0 0 0 0 0 │ │ │ | 0 9/2 0 1/2 9/4 0 1/2 1 3/4 0 0 0 0 0 0 │ │ │ | 0 0 9/2 0 1/2 9/4 0 1/2 1 3/4 0 0 0 0 0 │ │ │ | 0 0 0 9/2 0 0 1/2 9/4 0 0 1/2 1 3/4 0 0 │ │ │ | 0 0 0 0 9/2 0 0 1/2 9/4 0 0 1/2 1 3/4 0 │ │ │ | 0 0 0 0 0 9/2 0 0 1/2 9/4 0 0 1/2 1 3/4 │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_plucker.out │ │ │ @@ -9,29 +9,29 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ 664x ) │ │ │ 4 │ │ │ │ │ │ o3 : Ideal of P4 │ │ │ │ │ │ i4 : time p = plucker L │ │ │ - -- used 0.00396538s (cpu); 0.00437586s (thread); 0s (gc) │ │ │ + -- used 0.00400241s (cpu); 0.00584151s (thread); 0s (gc) │ │ │ │ │ │ o4 = ideal (x + 8480x , x - 6727x , x + 15777x , x + │ │ │ 2,4 3,4 1,4 3,4 0,4 3,4 2,3 │ │ │ ------------------------------------------------------------------------ │ │ │ 11656x , x - 14853x , x + 664x , x + 13522x , x + │ │ │ 3,4 1,3 3,4 0,3 3,4 1,2 3,4 0,2 │ │ │ ------------------------------------------------------------------------ │ │ │ 11804x , x + 14854x ) │ │ │ 3,4 0,1 3,4 │ │ │ │ │ │ o4 : Ideal of G'1'4 │ │ │ │ │ │ i5 : time L' = plucker p │ │ │ - -- used 0.0973721s (cpu); 0.039945s (thread); 0s (gc) │ │ │ + -- used 0.117661s (cpu); 0.0734802s (thread); 0s (gc) │ │ │ │ │ │ o5 = ideal (x + 8480x - 11656x , x - 6727x + 14853x , x + 15777x - │ │ │ 2 3 4 1 3 4 0 3 │ │ │ ------------------------------------------------------------------------ │ │ │ 664x ) │ │ │ 4 │ │ │ │ │ │ @@ -40,25 +40,25 @@ │ │ │ i6 : assert(L' == L) │ │ │ │ │ │ i7 : Y = ideal apply(5,i->random(1,G'1'4)); -- an elliptic curve │ │ │ │ │ │ o7 : Ideal of G'1'4 │ │ │ │ │ │ i8 : time W = plucker Y; -- surface swept out by the lines of Y │ │ │ - -- used 0.0280079s (cpu); 0.0301314s (thread); 0s (gc) │ │ │ + -- used 0.0839972s (cpu); 0.0834231s (thread); 0s (gc) │ │ │ │ │ │ o8 : Ideal of P4 │ │ │ │ │ │ i9 : (codim W,degree W) │ │ │ │ │ │ o9 = (2, 5) │ │ │ │ │ │ o9 : Sequence │ │ │ │ │ │ i10 : time Y' = plucker(W,1); -- variety of lines contained in W │ │ │ - -- used 0.147833s (cpu); 0.149666s (thread); 0s (gc) │ │ │ + -- used 0.3189s (cpu); 0.318989s (thread); 0s (gc) │ │ │ │ │ │ o10 : Ideal of G'1'4 │ │ │ │ │ │ i11 : assert(Y' == Y) │ │ │ │ │ │ i12 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp..._cm__Algorithm_eq_gt..._rp.out │ │ │ @@ -35,15 +35,15 @@ │ │ │ 3 2 9 7 2 9 3 1 8 4 │ │ │ -b)y*w + (-a + -b)z*w + (-a + 2b)w , 2x + -y + -z + -w} │ │ │ 4 8 8 7 4 3 5 │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : time resultant(F,Algorithm=>"Poisson2") │ │ │ - -- used 0.239497s (cpu); 0.149163s (thread); 0s (gc) │ │ │ + -- used 0.352888s (cpu); 0.249339s (thread); 0s (gc) │ │ │ │ │ │ 21002161660529014459938925799 5 2085933800619238998825958079203 4 │ │ │ o3 = - -----------------------------a - -------------------------------a b - │ │ │ 2222549728809984000000 12700284164628480000000 │ │ │ ------------------------------------------------------------------------ │ │ │ 348237304382147063838108483692249 3 2 │ │ │ ---------------------------------a b - │ │ │ @@ -56,15 +56,15 @@ │ │ │ 1146977327343523453866040839029 4 194441910898734675845094443 5 │ │ │ -------------------------------a*b - ---------------------------b │ │ │ 1119954511872000000000 895963609497600000 │ │ │ │ │ │ o3 : QQ[a..b] │ │ │ │ │ │ i4 : time resultant(F,Algorithm=>"Macaulay2") │ │ │ - -- used 0.128223s (cpu); 0.0770729s (thread); 0s (gc) │ │ │ + -- used 0.110133s (cpu); 0.0644408s (thread); 0s (gc) │ │ │ │ │ │ 21002161660529014459938925799 5 2085933800619238998825958079203 4 │ │ │ o4 = - -----------------------------a - -------------------------------a b - │ │ │ 2222549728809984000000 12700284164628480000000 │ │ │ ------------------------------------------------------------------------ │ │ │ 348237304382147063838108483692249 3 2 │ │ │ ---------------------------------a b - │ │ │ @@ -77,15 +77,15 @@ │ │ │ 1146977327343523453866040839029 4 194441910898734675845094443 5 │ │ │ -------------------------------a*b - ---------------------------b │ │ │ 1119954511872000000000 895963609497600000 │ │ │ │ │ │ o4 : QQ[a..b] │ │ │ │ │ │ i5 : time resultant(F,Algorithm=>"Poisson") │ │ │ - -- used 0.287256s (cpu); 0.289426s (thread); 0s (gc) │ │ │ + -- used 0.307491s (cpu); 0.309999s (thread); 0s (gc) │ │ │ │ │ │ 21002161660529014459938925799 5 2085933800619238998825958079203 4 │ │ │ o5 = - -----------------------------a - -------------------------------a b - │ │ │ 2222549728809984000000 12700284164628480000000 │ │ │ ------------------------------------------------------------------------ │ │ │ 348237304382147063838108483692249 3 2 │ │ │ ---------------------------------a b - │ │ │ @@ -98,15 +98,15 @@ │ │ │ 1146977327343523453866040839029 4 194441910898734675845094443 5 │ │ │ -------------------------------a*b - ---------------------------b │ │ │ 1119954511872000000000 895963609497600000 │ │ │ │ │ │ o5 : QQ[a..b] │ │ │ │ │ │ i6 : time resultant(F,Algorithm=>"Macaulay") │ │ │ - -- used 0.608867s (cpu); 0.559075s (thread); 0s (gc) │ │ │ + -- used 0.776348s (cpu); 0.725524s (thread); 0s (gc) │ │ │ │ │ │ 21002161660529014459938925799 5 2085933800619238998825958079203 4 │ │ │ o6 = - -----------------------------a - -------------------------------a b - │ │ │ 2222549728809984000000 12700284164628480000000 │ │ │ ------------------------------------------------------------------------ │ │ │ 348237304382147063838108483692249 3 2 │ │ │ ---------------------------------a b - │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp__Matrix_rp.out │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ │ │ 2 2 3 2 4 │ │ │ o2 = {x + 3t*y*z - u*z , (t + 3u - 1)x - y, - t*x*y + t*x y*z + u*z } │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : time resultant F │ │ │ - -- used 0.0344967s (cpu); 0.0339164s (thread); 0s (gc) │ │ │ + -- used 0.0479909s (cpu); 0.0495041s (thread); 0s (gc) │ │ │ │ │ │ 12 11 2 10 3 9 4 8 5 7 6 │ │ │ o3 = - 81t u - 1701t u - 15309t u - 76545t u - 229635t u - 413343t u │ │ │ ------------------------------------------------------------------------ │ │ │ 6 7 5 8 11 10 2 9 3 │ │ │ - 413343t u - 177147t u + 567t u + 10206t u + 76545t u + │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -64,15 +64,15 @@ │ │ │ 3 │ │ │ + c x } │ │ │ 9 2 │ │ │ │ │ │ o4 : List │ │ │ │ │ │ i5 : time resultant F │ │ │ - -- used 2.8419s (cpu); 2.11491s (thread); 0s (gc) │ │ │ + -- used 2.37705s (cpu); 1.88069s (thread); 0s (gc) │ │ │ │ │ │ 6 3 2 5 2 2 2 4 2 2 3 3 3 2 2 4 2 2 │ │ │ o5 = a b c - 3a a b b c + 3a a b b c - a a b c + 3a a b b c - │ │ │ 2 3 0 1 2 3 4 0 1 2 3 4 0 1 2 4 0 1 2 3 5 0 │ │ │ ------------------------------------------------------------------------ │ │ │ 3 3 2 4 2 2 2 4 2 2 2 5 2 2 6 3 2 │ │ │ 6a a b b b c + 3a a b b c + 3a a b b c - 3a a b b c + a b c - │ │ │ @@ -1690,12 +1690,12 @@ │ │ │ 2 2 2 2 │ │ │ b x x + b x x + b x , c x + c x x + c x + c x x + c x x + c x } │ │ │ 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : time # terms resultant F │ │ │ - -- used 0.503578s (cpu); 0.380091s (thread); 0s (gc) │ │ │ + -- used 0.439201s (cpu); 0.388865s (thread); 0s (gc) │ │ │ │ │ │ o7 = 21894 │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_tangential__Chow__Form.out │ │ │ @@ -8,15 +8,15 @@ │ │ │ 1 2 0 3 1 3 0 4 3 2 4 │ │ │ │ │ │ o2 : Ideal of QQ[p ..p ] │ │ │ 0 4 │ │ │ │ │ │ i3 : -- 0-th associated hypersurface of S in G(1,4) (Chow form) │ │ │ time tangentialChowForm(S,0) │ │ │ - -- used 0.0984014s (cpu); 0.0465418s (thread); 0s (gc) │ │ │ + -- used 0.0994219s (cpu); 0.0524418s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o3 = p p - p p p - p p p + p p p + p p + │ │ │ 1,3 2,3 1,2 1,3 2,4 0,3 1,3 2,4 0,2 1,4 2,4 1,2 3,4 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 │ │ │ p p - 2p p p - p p p │ │ │ @@ -26,15 +26,15 @@ │ │ │ 0,1 0,2 1,2 0,3 1,3 2,3 0,4 1,4 2,4 3,4 │ │ │ o3 : ---------------------------------------------------------------------------------------------------------------------------------------------------------------- │ │ │ (p p - p p + p p , p p - p p + p p , p p - p p + p p , p p - p p + p p , p p - p p + p p ) │ │ │ 2,3 1,4 1,3 2,4 1,2 3,4 2,3 0,4 0,3 2,4 0,2 3,4 1,3 0,4 0,3 1,4 0,1 3,4 1,2 0,4 0,2 1,4 0,1 2,4 1,2 0,3 0,2 1,3 0,1 2,3 │ │ │ │ │ │ i4 : -- 1-th associated hypersurface of S in G(2,4) │ │ │ time tangentialChowForm(S,1) │ │ │ - -- used 0.0522902s (cpu); 0.0514451s (thread); 0s (gc) │ │ │ + -- used 0.0705868s (cpu); 0.0724036s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 3 2 2 │ │ │ o4 = p p + p p - 2p p + p p - │ │ │ 1,2,3 1,2,4 0,2,4 1,2,4 0,2,3 1,2,4 0,2,4 0,3,4 │ │ │ ------------------------------------------------------------------------ │ │ │ 3 3 3 │ │ │ 4p p - 4p p - 2p p + │ │ │ @@ -68,32 +68,32 @@ │ │ │ 0,1,2 0,1,3 0,2,3 1,2,3 0,1,4 0,2,4 1,2,4 0,3,4 1,3,4 2,3,4 │ │ │ o4 : ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- │ │ │ (p p - p p + p p , p p - p p + p p , p p - p p + p p , p p - p p + p p , p p - p p + p p ) │ │ │ 1,2,4 0,3,4 0,2,4 1,3,4 0,1,4 2,3,4 1,2,3 0,3,4 0,2,3 1,3,4 0,1,3 2,3,4 1,2,3 0,2,4 0,2,3 1,2,4 0,1,2 2,3,4 1,2,3 0,1,4 0,1,3 1,2,4 0,1,2 1,3,4 0,2,3 0,1,4 0,1,3 0,2,4 0,1,2 0,3,4 │ │ │ │ │ │ i5 : -- 2-th associated hypersurface of S in G(3,4) (parameterizing tangent hyperplanes to S) │ │ │ time tangentialChowForm(S,2) │ │ │ - -- used 0.0332139s (cpu); 0.033128s (thread); 0s (gc) │ │ │ + -- used 0.0240011s (cpu); 0.0267962s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o5 = p p - p p p + p p │ │ │ 0,1,3,4 0,2,3,4 0,1,2,4 0,2,3,4 1,2,3,4 0,1,2,3 1,2,3,4 │ │ │ │ │ │ o5 : QQ[p ..p , p , p , p ] │ │ │ 0,1,2,3 0,1,2,4 0,1,3,4 0,2,3,4 1,2,3,4 │ │ │ │ │ │ i6 : -- we get the dual hypersurface of S in G(0,4) by dualizing │ │ │ time S' = ideal dualize tangentialChowForm(S,2) │ │ │ - -- used 0.111927s (cpu); 0.0524302s (thread); 0s (gc) │ │ │ + -- used 0.103348s (cpu); 0.0599139s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o6 = ideal(p p - p p p + p p ) │ │ │ 1 2 0 1 3 0 4 │ │ │ │ │ │ o6 : Ideal of QQ[p ..p ] │ │ │ 0 4 │ │ │ │ │ │ i7 : -- we then can recover S │ │ │ time assert(dualize tangentialChowForm(S',3) == S) │ │ │ - -- used 0.128042s (cpu); 0.0814872s (thread); 0s (gc) │ │ │ + -- used 0.279752s (cpu); 0.0764804s (thread); 0s (gc) │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_cayley__Trick.html │ │ │ @@ -87,22 +87,22 @@ │ │ │ 0 1 2 3 │ │ │ │ │ │ o2 : Ideal of QQ[x ..x ] │ │ │ 0 3 │ │ │ │ │ │ │ │ │
    i3 : time (P1xP1xP2,P1xP1xP2') = cayleyTrick(P1xP1,2);
    │ │ │ - -- used 0.142755s (cpu); 0.0805606s (thread); 0s (gc)
    │ │ │ + -- used 0.0902452s (cpu); 0.0472935s (thread); 0s (gc) │ │ │ │ │ │ │ │ │

    In the next example, we calculate the defining ideal of $\mathbb{P}^1\times\mathbb{P}^1\times\mathbb{P}^1\subset\mathbb{P}^7$ and that of its dual variety.

    │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time (P1xP1xP1,P1xP1xP1') = cayleyTrick(P1xP1,1)
    │ │ │ - -- used 0.05218s (cpu); 0.0522233s (thread); 0s (gc)
    │ │ │ + -- used 0.0737947s (cpu); 0.0747475s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                             
    │ │ │  o4 = (ideal (x   x    - x   x   , x   x    - x   x   , x   x    - x   x   ,
    │ │ │                0,3 1,2    0,2 1,3   1,0 1,1    1,2 1,3   0,3 1,1    0,1 1,3 
    │ │ │       ------------------------------------------------------------------------
    │ │ │                                                                              
    │ │ │       x   x    - x   x   , x   x    - x   x   , x   x    - x   x   , x   x   
    │ │ │ @@ -127,22 +127,22 @@
    │ │ │  o4 : Sequence
    │ │ │
    │ │ │

    If the option Duality is set to true, then the method applies the so-called "dual Cayley trick".

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time cayleyTrick(P1xP1,1,Duality=>true);
    │ │ │ - -- used 0.149721s (cpu); 0.103387s (thread); 0s (gc)
    │ │ │ + -- used 0.152743s (cpu); 0.0736586s (thread); 0s (gc) │ │ │
    i6 : assert(oo == (P1xP1xP1,P1xP1xP1'))
    │ │ │
    i7 : time cayleyTrick(P1xP1,2,Duality=>true);
    │ │ │ - -- used 0.146483s (cpu); 0.0877464s (thread); 0s (gc)
    │ │ │ + -- used 0.182141s (cpu); 0.136407s (thread); 0s (gc) │ │ │
    i8 : assert(oo == (P1xP1xP2,P1xP1xP2'))
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -39,20 +39,20 @@ │ │ │ │ │ │ │ │ o2 = ideal(x x - x x ) │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o2 : Ideal of QQ[x ..x ] │ │ │ │ 0 3 │ │ │ │ i3 : time (P1xP1xP2,P1xP1xP2') = cayleyTrick(P1xP1,2); │ │ │ │ - -- used 0.142755s (cpu); 0.0805606s (thread); 0s (gc) │ │ │ │ + -- used 0.0902452s (cpu); 0.0472935s (thread); 0s (gc) │ │ │ │ In the next example, we calculate the defining ideal of $\mathbb │ │ │ │ {P}^1\times\mathbb{P}^1\times\mathbb{P}^1\subset\mathbb{P}^7$ and that of its │ │ │ │ dual variety. │ │ │ │ i4 : time (P1xP1xP1,P1xP1xP1') = cayleyTrick(P1xP1,1) │ │ │ │ - -- used 0.05218s (cpu); 0.0522233s (thread); 0s (gc) │ │ │ │ + -- used 0.0737947s (cpu); 0.0747475s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ o4 = (ideal (x x - x x , x x - x x , x x - x x , │ │ │ │ 0,3 1,2 0,2 1,3 1,0 1,1 1,2 1,3 0,3 1,1 0,1 1,3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ │ │ │ │ x x - x x , x x - x x , x x - x x , x x │ │ │ │ @@ -74,18 +74,18 @@ │ │ │ │ 4x x x x - 2x x x x + x x )) │ │ │ │ 0,0 0,1 1,2 1,3 0,2 0,3 1,2 1,3 0,2 1,3 │ │ │ │ │ │ │ │ o4 : Sequence │ │ │ │ If the option Duality is set to true, then the method applies the so-called │ │ │ │ "dual Cayley trick". │ │ │ │ i5 : time cayleyTrick(P1xP1,1,Duality=>true); │ │ │ │ - -- used 0.149721s (cpu); 0.103387s (thread); 0s (gc) │ │ │ │ + -- used 0.152743s (cpu); 0.0736586s (thread); 0s (gc) │ │ │ │ i6 : assert(oo == (P1xP1xP1,P1xP1xP1')) │ │ │ │ i7 : time cayleyTrick(P1xP1,2,Duality=>true); │ │ │ │ - -- used 0.146483s (cpu); 0.0877464s (thread); 0s (gc) │ │ │ │ + -- used 0.182141s (cpu); 0.136407s (thread); 0s (gc) │ │ │ │ i8 : assert(oo == (P1xP1xP2,P1xP1xP2')) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_u_a_l_V_a_r_i_e_t_y -- projective dual variety │ │ │ │ ********** WWaayyss ttoo uussee ccaayylleeyyTTrriicckk:: ********** │ │ │ │ * cayleyTrick(Ideal,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _c_a_y_l_e_y_T_r_i_c_k is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_chow__Equations.html │ │ │ @@ -87,15 +87,15 @@ │ │ │ 0 1 2 3 0 1 1 2 2 3 │ │ │ │ │ │ o2 : Ideal of P3 │ │ │ │ │ │ │ │ │
    i3 : -- Chow equations of C
    │ │ │       time eqsC = chowEquations chowForm C
    │ │ │ - -- used 0.106786s (cpu); 0.0541456s (thread); 0s (gc)
    │ │ │ + -- used 0.141058s (cpu); 0.0946273s (thread); 0s (gc)
    │ │ │  
    │ │ │               2 2    2 2    2 2    4                2      2 2   2      
    │ │ │  o3 = ideal (x x  + x x  + x x  + x , x x x x  + x x x  + x x , x x x  +
    │ │ │               0 3    1 3    2 3    3   0 1 2 3    1 2 3    2 3   0 2 3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2        3           2         2      3   3         2          2    2 2
    │ │ │       x x x  + x x  - 2x x x  - 2x x x  - x x , x x  + 2x x x  - x x x  + x x 
    │ │ │ @@ -153,15 +153,15 @@
    │ │ │               1    0 2   2    0 1 3   1 2    0 3
    │ │ │  
    │ │ │  o5 : Ideal of P3
    │ │ │ │ │ │ │ │ │
    i6 : -- Chow equations of D
    │ │ │       time eqsD = chowEquations chowForm D
    │ │ │ - -- used 0.0298427s (cpu); 0.0334105s (thread); 0s (gc)
    │ │ │ + -- used 0.0719996s (cpu); 0.0740332s (thread); 0s (gc)
    │ │ │  
    │ │ │               4      3 2     3        2 2     3      2   2   2 2      2   2 
    │ │ │  o6 = ideal (x x  - x x , x x x  - x x x , x x x  - x x x , x x x  - x x x ,
    │ │ │               2 3    1 3   1 2 3    0 1 3   0 2 3    0 1 3   1 2 3    0 1 3 
    │ │ │       ------------------------------------------------------------------------
    │ │ │            2      3 2   3        3 2   4         2         2 2       3    
    │ │ │       x x x x  - x x , x x x  - x x , x x  - 4x x x x  + 3x x x , x x x  -
    │ │ │ @@ -205,28 +205,28 @@
    │ │ │              0 1    2 3
    │ │ │  
    │ │ │  o9 : Ideal of P3
    │ │ │ │ │ │ │ │ │
    i10 : -- tangential Chow forms of Q
    │ │ │        time (W0,W1,W2) = (tangentialChowForm(Q,0),tangentialChowForm(Q,1),tangentialChowForm(Q,2))
    │ │ │ - -- used 0.144745s (cpu); 0.0765926s (thread); 0s (gc)
    │ │ │ + -- used 0.183428s (cpu); 0.131307s (thread); 0s (gc)
    │ │ │  
    │ │ │                       2                              2
    │ │ │  o10 = (x x  + x x , x    - 4x   x    + 2x   x    + x   , x     x      +
    │ │ │          0 1    2 3   0,1     0,2 1,3     0,1 2,3    2,3   0,1,2 0,1,3  
    │ │ │        -----------------------------------------------------------------------
    │ │ │        x     x     )
    │ │ │         0,2,3 1,2,3
    │ │ │  
    │ │ │  o10 : Sequence
    │ │ │ │ │ │ │ │ │
    i11 : time (Q,Q,Q) == (chowEquations(W0,0),chowEquations(W1,1),chowEquations(W2,2))
    │ │ │ - -- used 0.126093s (cpu); 0.0638828s (thread); 0s (gc)
    │ │ │ + -- used 0.148884s (cpu); 0.0994172s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = true
    │ │ │ │ │ │ │ │ │

    Note that chowEquations(W,0) is not the same as chowEquations W.

    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ 2 2 2 2 │ │ │ │ o2 = ideal (x + x + x + x , x x + x x + x x ) │ │ │ │ 0 1 2 3 0 1 1 2 2 3 │ │ │ │ │ │ │ │ o2 : Ideal of P3 │ │ │ │ i3 : -- Chow equations of C │ │ │ │ time eqsC = chowEquations chowForm C │ │ │ │ - -- used 0.106786s (cpu); 0.0541456s (thread); 0s (gc) │ │ │ │ + -- used 0.141058s (cpu); 0.0946273s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 2 2 4 2 2 2 2 │ │ │ │ o3 = ideal (x x + x x + x x + x , x x x x + x x x + x x , x x x + │ │ │ │ 0 3 1 3 2 3 3 0 1 2 3 1 2 3 2 3 0 2 3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 2 3 3 2 2 2 2 │ │ │ │ x x x + x x - 2x x x - 2x x x - x x , x x + 2x x x - x x x + x x │ │ │ │ @@ -89,15 +89,15 @@ │ │ │ │ 2 3 2 2 │ │ │ │ o5 = ideal (x - x x , x - x x x , x x - x x ) │ │ │ │ 1 0 2 2 0 1 3 1 2 0 3 │ │ │ │ │ │ │ │ o5 : Ideal of P3 │ │ │ │ i6 : -- Chow equations of D │ │ │ │ time eqsD = chowEquations chowForm D │ │ │ │ - -- used 0.0298427s (cpu); 0.0334105s (thread); 0s (gc) │ │ │ │ + -- used 0.0719996s (cpu); 0.0740332s (thread); 0s (gc) │ │ │ │ │ │ │ │ 4 3 2 3 2 2 3 2 2 2 2 2 2 │ │ │ │ o6 = ideal (x x - x x , x x x - x x x , x x x - x x x , x x x - x x x , │ │ │ │ 2 3 1 3 1 2 3 0 1 3 0 2 3 0 1 3 1 2 3 0 1 3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 3 3 2 4 2 2 2 3 │ │ │ │ x x x x - x x , x x x - x x , x x - 4x x x x + 3x x x , x x x - │ │ │ │ @@ -136,27 +136,27 @@ │ │ │ │ o9 = ideal(x x + x x ) │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o9 : Ideal of P3 │ │ │ │ i10 : -- tangential Chow forms of Q │ │ │ │ time (W0,W1,W2) = (tangentialChowForm(Q,0),tangentialChowForm │ │ │ │ (Q,1),tangentialChowForm(Q,2)) │ │ │ │ - -- used 0.144745s (cpu); 0.0765926s (thread); 0s (gc) │ │ │ │ + -- used 0.183428s (cpu); 0.131307s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o10 = (x x + x x , x - 4x x + 2x x + x , x x + │ │ │ │ 0 1 2 3 0,1 0,2 1,3 0,1 2,3 2,3 0,1,2 0,1,3 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ x x ) │ │ │ │ 0,2,3 1,2,3 │ │ │ │ │ │ │ │ o10 : Sequence │ │ │ │ i11 : time (Q,Q,Q) == (chowEquations(W0,0),chowEquations(W1,1),chowEquations │ │ │ │ (W2,2)) │ │ │ │ - -- used 0.126093s (cpu); 0.0638828s (thread); 0s (gc) │ │ │ │ + -- used 0.148884s (cpu); 0.0994172s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 = true │ │ │ │ Note that chowEquations(W,0) is not the same as chowEquations W. │ │ │ │ ********** WWaayyss ttoo uussee cchhoowwEEqquuaattiioonnss:: ********** │ │ │ │ * chowEquations(RingElement) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _c_h_o_w_E_q_u_a_t_i_o_n_s is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_chow__Form.html │ │ │ @@ -99,15 +99,15 @@ │ │ │ ZZ │ │ │ o2 : Ideal of ----[x ..x ] │ │ │ 3331 0 5 │ │ │ │ │ │ │ │ │
    i3 : -- Chow form of V in Grass(2,5) (performing internal computations on an affine chart of the Grassmannian)
    │ │ │       time ChowV = chowForm(V,AffineChartGrass=>{1,2,3})
    │ │ │ - -- used 4.91471s (cpu); 4.47543s (thread); 0s (gc)
    │ │ │ + -- used 5.4004s (cpu); 5.08707s (thread); 0s (gc)
    │ │ │  
    │ │ │        4               2              2     2               2            
    │ │ │  o3 = x      + 2x     x     x      + x     x      - 2x     x     x      +
    │ │ │        1,2,4     0,2,4 1,2,4 2,3,4    0,2,4 2,3,4     1,2,3 1,2,4 1,2,5  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2     2              2                                       
    │ │ │       x     x      - x     x     x      + x     x     x     x      +
    │ │ │ @@ -227,20 +227,20 @@
    │ │ │  o3 : -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    │ │ │       (x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x      - x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x      + x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x      - x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     , x     x      - x     x      + x     x     )
    │ │ │         2,3,5 1,4,5    1,3,5 2,4,5    1,2,5 3,4,5   2,3,4 1,4,5    1,3,4 2,4,5    1,2,4 3,4,5   2,3,5 0,4,5    0,3,5 2,4,5    0,2,5 3,4,5   1,3,5 0,4,5    0,3,5 1,4,5    0,1,5 3,4,5   1,2,5 0,4,5    0,2,5 1,4,5    0,1,5 2,4,5   2,3,4 0,4,5    0,3,4 2,4,5    0,2,4 3,4,5   1,3,4 0,4,5    0,3,4 1,4,5    0,1,4 3,4,5   1,2,4 0,4,5    0,2,4 1,4,5    0,1,4 2,4,5   1,2,3 0,4,5    0,2,3 1,4,5    0,1,3 2,4,5    0,1,2 3,4,5   2,3,4 1,3,5    1,3,4 2,3,5    1,2,3 3,4,5   1,2,5 0,3,5    0,2,5 1,3,5    0,1,5 2,3,5   2,3,4 0,3,5    0,3,4 2,3,5    0,2,3 3,4,5   1,3,4 0,3,5    0,3,4 1,3,5    0,1,3 3,4,5   1,2,4 0,3,5    0,2,4 1,3,5    0,1,4 2,3,5    0,1,2 3,4,5   1,2,3 0,3,5    0,2,3 1,3,5    0,1,3 2,3,5   2,3,4 1,2,5    1,2,4 2,3,5    1,2,3 2,4,5   1,3,4 1,2,5    1,2,4 1,3,5    1,2,3 1,4,5   0,3,4 1,2,5    0,2,4 1,3,5    0,1,4 2,3,5    0,2,3 1,4,5    0,1,3 2,4,5    0,1,2 3,4,5   2,3,4 0,2,5    0,2,4 2,3,5    0,2,3 2,4,5   1,3,4 0,2,5    0,2,4 1,3,5    0,2,3 1,4,5    0,1,2 3,4,5   0,3,4 0,2,5    0,2,4 0,3,5    0,2,3 0,4,5   1,2,4 0,2,5    0,2,4 1,2,5    0,1,2 2,4,5   1,2,3 0,2,5    0,2,3 1,2,5    0,1,2 2,3,5   2,3,4 0,1,5    0,1,4 2,3,5    0,1,3 2,4,5    0,1,2 3,4,5   1,3,4 0,1,5    0,1,4 1,3,5    0,1,3 1,4,5   0,3,4 0,1,5    0,1,4 0,3,5    0,1,3 0,4,5   1,2,4 0,1,5    0,1,4 1,2,5    0,1,2 1,4,5   0,2,4 0,1,5    0,1,4 0,2,5    0,1,2 0,4,5   1,2,3 0,1,5    0,1,3 1,2,5    0,1,2 1,3,5   0,2,3 0,1,5    0,1,3 0,2,5    0,1,2 0,3,5   1,2,4 0,3,4    0,2,4 1,3,4    0,1,4 2,3,4   1,2,3 0,3,4    0,2,3 1,3,4    0,1,3 2,3,4   1,2,3 0,2,4    0,2,3 1,2,4    0,1,2 2,3,4   1,2,3 0,1,4    0,1,3 1,2,4    0,1,2 1,3,4   0,2,3 0,1,4    0,1,3 0,2,4    0,1,2 0,3,4
    │ │ │ │ │ │ │ │ │
    i4 : -- equivalently (but faster)...
    │ │ │       time assert(ChowV === chowForm f)
    │ │ │ - -- used 1.1541s (cpu); 1.04468s (thread); 0s (gc)
    │ │ │ + -- used 1.218s (cpu); 1.16436s (thread); 0s (gc) │ │ │ │ │ │ │ │ │
    i5 : -- X-resultant of V
    │ │ │       time Xres = fromPluckerToStiefel dualize ChowV;
    │ │ │ - -- used 0.218349s (cpu); 0.168032s (thread); 0s (gc)
    │ │ │ + -- used 0.312455s (cpu); 0.189813s (thread); 0s (gc) │ │ │ │ │ │ │ │ │
    i6 : -- three generic ternary quadrics
    │ │ │       F = genericPolynomials({2,2,2},ZZ/3331)
    │ │ │  
    │ │ │           2               2                        2     2               2  
    │ │ │  o6 = {a x  + a x x  + a x  + a x x  + a x x  + a x , b x  + b x x  + b x  +
    │ │ │ @@ -251,15 +251,15 @@
    │ │ │        2 0 2    4 1 2    5 2   0 0    1 0 1    3 1    2 0 2    4 1 2    5 2
    │ │ │  
    │ │ │  o6 : List
    │ │ │ │ │ │ │ │ │
    i7 : -- resultant of the three forms
    │ │ │       time resF = resultant F;
    │ │ │ - -- used 0.309447s (cpu); 0.186941s (thread); 0s (gc)
    │ │ │ + -- used 0.390298s (cpu); 0.156038s (thread); 0s (gc) │ │ │ │ │ │ │ │ │
    i8 : assert(resF === sub(Xres,vars ring resF) and Xres === sub(resF,vars ring Xres))
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -42,15 +42,15 @@ │ │ │ │ │ │ │ │ ZZ │ │ │ │ o2 : Ideal of ----[x ..x ] │ │ │ │ 3331 0 5 │ │ │ │ i3 : -- Chow form of V in Grass(2,5) (performing internal computations on an │ │ │ │ affine chart of the Grassmannian) │ │ │ │ time ChowV = chowForm(V,AffineChartGrass=>{1,2,3}) │ │ │ │ - -- used 4.91471s (cpu); 4.47543s (thread); 0s (gc) │ │ │ │ + -- used 5.4004s (cpu); 5.08707s (thread); 0s (gc) │ │ │ │ │ │ │ │ 4 2 2 2 2 │ │ │ │ o3 = x + 2x x x + x x - 2x x x + │ │ │ │ 1,2,4 0,2,4 1,2,4 2,3,4 0,2,4 2,3,4 1,2,3 1,2,4 1,2,5 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 2 │ │ │ │ x x - x x x + x x x x + │ │ │ │ @@ -235,33 +235,33 @@ │ │ │ │ 1,4,5 0,2,4 0,1,5 0,1,4 0,2,5 0,1,2 0,4,5 1,2,3 0,1,5 0,1,3 1,2,5 │ │ │ │ 0,1,2 1,3,5 0,2,3 0,1,5 0,1,3 0,2,5 0,1,2 0,3,5 1,2,4 0,3,4 0,2,4 │ │ │ │ 1,3,4 0,1,4 2,3,4 1,2,3 0,3,4 0,2,3 1,3,4 0,1,3 2,3,4 1,2,3 0,2,4 │ │ │ │ 0,2,3 1,2,4 0,1,2 2,3,4 1,2,3 0,1,4 0,1,3 1,2,4 0,1,2 1,3,4 0,2,3 │ │ │ │ 0,1,4 0,1,3 0,2,4 0,1,2 0,3,4 │ │ │ │ i4 : -- equivalently (but faster)... │ │ │ │ time assert(ChowV === chowForm f) │ │ │ │ - -- used 1.1541s (cpu); 1.04468s (thread); 0s (gc) │ │ │ │ + -- used 1.218s (cpu); 1.16436s (thread); 0s (gc) │ │ │ │ i5 : -- X-resultant of V │ │ │ │ time Xres = fromPluckerToStiefel dualize ChowV; │ │ │ │ - -- used 0.218349s (cpu); 0.168032s (thread); 0s (gc) │ │ │ │ + -- used 0.312455s (cpu); 0.189813s (thread); 0s (gc) │ │ │ │ i6 : -- three generic ternary quadrics │ │ │ │ F = genericPolynomials({2,2,2},ZZ/3331) │ │ │ │ │ │ │ │ 2 2 2 2 2 │ │ │ │ o6 = {a x + a x x + a x + a x x + a x x + a x , b x + b x x + b x + │ │ │ │ 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 2 2 │ │ │ │ b x x + b x x + b x , c x + c x x + c x + c x x + c x x + c x } │ │ │ │ 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : -- resultant of the three forms │ │ │ │ time resF = resultant F; │ │ │ │ - -- used 0.309447s (cpu); 0.186941s (thread); 0s (gc) │ │ │ │ + -- used 0.390298s (cpu); 0.156038s (thread); 0s (gc) │ │ │ │ i8 : assert(resF === sub(Xres,vars ring resF) and Xres === sub(resF,vars ring │ │ │ │ Xres)) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_a_n_g_e_n_t_i_a_l_C_h_o_w_F_o_r_m -- higher Chow forms of a projective variety │ │ │ │ * _h_u_r_w_i_t_z_F_o_r_m -- Hurwitz form of a projective variety │ │ │ │ ********** WWaayyss ttoo uussee cchhoowwFFoorrmm:: ********** │ │ │ │ * chowForm(Ideal) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_discriminant_lp__Ring__Element_rp.html │ │ │ @@ -83,15 +83,15 @@ │ │ │ 2 2 │ │ │ o2 = a*x + b*x*y + c*y │ │ │ │ │ │ o2 : ZZ[a..c][x..y] │ │ │ │ │ │ │ │ │
    i3 : time discriminant F
    │ │ │ - -- used 0.0078513s (cpu); 0.00792964s (thread); 0s (gc)
    │ │ │ + -- used 0.011999s (cpu); 0.0130189s (thread); 0s (gc)
    │ │ │  
    │ │ │          2
    │ │ │  o3 = - b  + 4a*c
    │ │ │  
    │ │ │  o3 : ZZ[a..c]
    │ │ │ │ │ │ │ │ │ @@ -100,15 +100,15 @@ │ │ │ 3 2 2 3 │ │ │ o5 = a*x + b*x y + c*x*y + d*y │ │ │ │ │ │ o5 : ZZ[a..d][x..y] │ │ │ │ │ │ │ │ │
    i6 : time discriminant F
    │ │ │ - -- used 0.0840155s (cpu); 0.0312505s (thread); 0s (gc)
    │ │ │ + -- used 0.0737907s (cpu); 0.0236709s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2       3     3                   2 2
    │ │ │  o6 = - b c  + 4a*c  + 4b d - 18a*b*c*d + 27a d
    │ │ │  
    │ │ │  o6 : ZZ[a..d]
    │ │ │ │ │ │ │ │ │ @@ -149,15 +149,15 @@ │ │ │ o12 = (t + t )x - t x x + t x + (t - t )x + t x x + t x │ │ │ 0 1 0 1 0 1 0 1 0 1 2 1 2 3 0 3 │ │ │ │ │ │ o12 : R' │ │ │ │ │ │ │ │ │
    i13 : time D=discriminant pencil
    │ │ │ - -- used 0.422412s (cpu); 0.42392s (thread); 0s (gc)
    │ │ │ + -- used 0.439326s (cpu); 0.437955s (thread); 0s (gc)
    │ │ │  
    │ │ │             108      106 2       102 6      100 8       98 10       96 12  
    │ │ │  o13 = - 62t    + 19t   t  + 160t   t  + 91t   t  + 129t  t   + 117t  t   +
    │ │ │             0        0   1       0   1      0   1       0  1        0  1   
    │ │ │        -----------------------------------------------------------------------
    │ │ │            94 14       92 16      90 18      88 20      86 22       84 24  
    │ │ │        161t  t   + 124t  t   - 82t  t   - 21t  t   - 49t  t   - 123t  t   +
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -24,28 +24,28 @@
    │ │ │ │  i1 : ZZ[a,b,c][x,y]; F = a*x^2+b*x*y+c*y^2
    │ │ │ │  
    │ │ │ │          2              2
    │ │ │ │  o2 = a*x  + b*x*y + c*y
    │ │ │ │  
    │ │ │ │  o2 : ZZ[a..c][x..y]
    │ │ │ │  i3 : time discriminant F
    │ │ │ │ - -- used 0.0078513s (cpu); 0.00792964s (thread); 0s (gc)
    │ │ │ │ + -- used 0.011999s (cpu); 0.0130189s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          2
    │ │ │ │  o3 = - b  + 4a*c
    │ │ │ │  
    │ │ │ │  o3 : ZZ[a..c]
    │ │ │ │  i4 : ZZ[a,b,c,d][x,y]; F = a*x^3+b*x^2*y+c*x*y^2+d*y^3
    │ │ │ │  
    │ │ │ │          3      2         2      3
    │ │ │ │  o5 = a*x  + b*x y + c*x*y  + d*y
    │ │ │ │  
    │ │ │ │  o5 : ZZ[a..d][x..y]
    │ │ │ │  i6 : time discriminant F
    │ │ │ │ - -- used 0.0840155s (cpu); 0.0312505s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0737907s (cpu); 0.0236709s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          2 2       3     3                   2 2
    │ │ │ │  o6 = - b c  + 4a*c  + 4b d - 18a*b*c*d + 27a d
    │ │ │ │  
    │ │ │ │  o6 : ZZ[a..d]
    │ │ │ │  The next example illustrates how computing the intersection of a pencil
    │ │ │ │  generated by two degree $d$ forms $F(x_0,\ldots,x_n), G(x_0,\ldots,x_n)$ with
    │ │ │ │ @@ -75,15 +75,15 @@
    │ │ │ │  
    │ │ │ │                  4        3      4             4        3      4
    │ │ │ │  o12 = (t  + t )x  - t x x  + t x  + (t  - t )x  + t x x  + t x
    │ │ │ │          0    1  0    1 0 1    0 1     0    1  2    1 2 3    0 3
    │ │ │ │  
    │ │ │ │  o12 : R'
    │ │ │ │  i13 : time D=discriminant pencil
    │ │ │ │ - -- used 0.422412s (cpu); 0.42392s (thread); 0s (gc)
    │ │ │ │ + -- used 0.439326s (cpu); 0.437955s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │             108      106 2       102 6      100 8       98 10       96 12
    │ │ │ │  o13 = - 62t    + 19t   t  + 160t   t  + 91t   t  + 129t  t   + 117t  t   +
    │ │ │ │             0        0   1       0   1      0   1       0  1        0  1
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │            94 14       92 16      90 18      88 20      86 22       84 24
    │ │ │ │        161t  t   + 124t  t   - 82t  t   - 21t  t   - 49t  t   - 123t  t   +
    │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_dual__Variety.html
    │ │ │ @@ -91,26 +91,26 @@
    │ │ │        0 3
    │ │ │  
    │ │ │  o1 : Ideal of QQ[x ..x ]
    │ │ │                    0   5
    │ │ │ │ │ │ │ │ │
    i2 : time V' = dualVariety V
    │ │ │ - -- used 0.180744s (cpu); 0.130805s (thread); 0s (gc)
    │ │ │ + -- used 0.294961s (cpu); 0.127308s (thread); 0s (gc)
    │ │ │  
    │ │ │              2                 2    2
    │ │ │  o2 = ideal(x x  - x x x  + x x  + x x  - 4x x x )
    │ │ │              2 3    1 2 4    0 4    1 5     0 3 5
    │ │ │  
    │ │ │  o2 : Ideal of QQ[x ..x ]
    │ │ │                    0   5
    │ │ │ │ │ │ │ │ │
    i3 : time V == dualVariety V'
    │ │ │ - -- used 0.199797s (cpu); 0.140703s (thread); 0s (gc)
    │ │ │ + -- used 0.249635s (cpu); 0.144745s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │ │ │ │ │ │ │

    In the next example, we verify that the discriminant of a generic ternary cubic form coincides with the dual variety of the 3-th Veronese embedding of the plane, which is a hypersurface of degree 12 in $\mathbb{P}^9$

    │ │ │ │ │ │ │ │ │ @@ -126,23 +126,23 @@ │ │ │ │ │ │ ZZ │ │ │ o4 : ----[a ..a ][x ..x ] │ │ │ 3331 0 9 0 2 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time discF = ideal discriminant F;
    │ │ │ - -- used 0.0624866s (cpu); 0.0609208s (thread); 0s (gc)
    │ │ │ + -- used 0.070908s (cpu); 0.0702981s (thread); 0s (gc)
    │ │ │  
    │ │ │                 ZZ
    │ │ │  o5 : Ideal of ----[a ..a ]
    │ │ │                3331  0   9
    │ │ │
    i6 : time Z = dualVariety(veronese(2,3,ZZ/3331),AssumeOrdinary=>true);
    │ │ │ - -- used 0.621853s (cpu); 0.55823s (thread); 0s (gc)
    │ │ │ + -- used 0.66942s (cpu); 0.626341s (thread); 0s (gc)
    │ │ │  
    │ │ │                 ZZ
    │ │ │  o6 : Ideal of ----[x ..x ]
    │ │ │                3331  0   9
    │ │ │
    i7 : discF == sub(Z,vars ring discF) and Z == sub(discF,vars ring Z)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -32,24 +32,24 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       x x )
    │ │ │ │        0 3
    │ │ │ │  
    │ │ │ │  o1 : Ideal of QQ[x ..x ]
    │ │ │ │                    0   5
    │ │ │ │  i2 : time V' = dualVariety V
    │ │ │ │ - -- used 0.180744s (cpu); 0.130805s (thread); 0s (gc)
    │ │ │ │ + -- used 0.294961s (cpu); 0.127308s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │              2                 2    2
    │ │ │ │  o2 = ideal(x x  - x x x  + x x  + x x  - 4x x x )
    │ │ │ │              2 3    1 2 4    0 4    1 5     0 3 5
    │ │ │ │  
    │ │ │ │  o2 : Ideal of QQ[x ..x ]
    │ │ │ │                    0   5
    │ │ │ │  i3 : time V == dualVariety V'
    │ │ │ │ - -- used 0.199797s (cpu); 0.140703s (thread); 0s (gc)
    │ │ │ │ + -- used 0.249635s (cpu); 0.144745s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = true
    │ │ │ │  In the next example, we verify that the discriminant of a generic ternary cubic
    │ │ │ │  form coincides with the dual variety of the 3-th Veronese embedding of the
    │ │ │ │  plane, which is a hypersurface of degree 12 in $\mathbb{P}^9$
    │ │ │ │  i4 : F = first genericPolynomials({3,-1,-1},ZZ/3331)
    │ │ │ │  
    │ │ │ │ @@ -61,21 +61,21 @@
    │ │ │ │       a x x  + a x
    │ │ │ │        8 1 2    9 2
    │ │ │ │  
    │ │ │ │        ZZ
    │ │ │ │  o4 : ----[a ..a ][x ..x ]
    │ │ │ │       3331  0   9   0   2
    │ │ │ │  i5 : time discF = ideal discriminant F;
    │ │ │ │ - -- used 0.0624866s (cpu); 0.0609208s (thread); 0s (gc)
    │ │ │ │ + -- used 0.070908s (cpu); 0.0702981s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                 ZZ
    │ │ │ │  o5 : Ideal of ----[a ..a ]
    │ │ │ │                3331  0   9
    │ │ │ │  i6 : time Z = dualVariety(veronese(2,3,ZZ/3331),AssumeOrdinary=>true);
    │ │ │ │ - -- used 0.621853s (cpu); 0.55823s (thread); 0s (gc)
    │ │ │ │ + -- used 0.66942s (cpu); 0.626341s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                 ZZ
    │ │ │ │  o6 : Ideal of ----[x ..x ]
    │ │ │ │                3331  0   9
    │ │ │ │  i7 : discF == sub(Z,vars ring discF) and Z == sub(discF,vars ring Z)
    │ │ │ │  
    │ │ │ │  o7 = true
    │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_from__Plucker__To__Stiefel.html
    │ │ │ @@ -85,15 +85,15 @@
    │ │ │               2    1 3   1 2    0 3   1    0 2
    │ │ │  
    │ │ │  o1 : Ideal of QQ[x ..x ]
    │ │ │                    0   3
    │ │ │
    i2 : time fromPluckerToStiefel dualize chowForm C
    │ │ │ - -- used 0.114714s (cpu); 0.0536053s (thread); 0s (gc)
    │ │ │ + -- used 0.0875735s (cpu); 0.0457231s (thread); 0s (gc)
    │ │ │  
    │ │ │          3   3          2   2              2       2          2   3    
    │ │ │  o2 = - x   x    + x   x   x   x    - x   x   x   x    + x   x   x    -
    │ │ │          0,3 1,0    0,2 0,3 1,0 1,1    0,1 0,3 1,0 1,1    0,0 0,3 1,1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2       2               2   2                                   
    │ │ │       x   x   x   x    + 2x   x   x   x    + x   x   x   x   x   x    -
    │ │ │ @@ -136,15 +136,15 @@
    │ │ │        0,0 0,1 1,1 1,3     0,0 0,2 1,1 1,3    0,0 0,1 1,2 1,3    0,0 1,3
    │ │ │  
    │ │ │  o2 : QQ[x   ..x   ]
    │ │ │           0,0   1,3
    │ │ │
    i3 : time fromPluckerToStiefel(dualize chowForm C,AffineChartGrass=>{0,1})
    │ │ │ - -- used 0.03594s (cpu); 0.0388574s (thread); 0s (gc)
    │ │ │ + -- used 0.0356639s (cpu); 0.035488s (thread); 0s (gc)
    │ │ │  
    │ │ │              3          2                         2                        
    │ │ │  o3 = - x   x    + x   x   x    - x   x   x    + x   x    + 3x   x   x    -
    │ │ │          0,3 1,2    0,2 1,2 1,3    0,2 0,3 1,2    0,2 1,3     0,3 1,2 1,3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2      3      2
    │ │ │       2x   x    + x    + x
    │ │ │ @@ -171,15 +171,15 @@
    │ │ │          

    As another application, we check that the singular locus of the Chow form of the twisted cubic has dimension 2 (on each standard chart).

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : w = chowForm C;
    │ │ │
    i6 : time U = apply(subsets(4,2),s->ideal fromPluckerToStiefel(w,AffineChartGrass=>s))
    │ │ │ - -- used 0.0871858s (cpu); 0.0336167s (thread); 0s (gc)
    │ │ │ + -- used 0.0679509s (cpu); 0.0242628s (thread); 0s (gc)
    │ │ │  
    │ │ │                     3          2          3                       2        
    │ │ │  o6 = {ideal(- x   x    + x   x   x    - x    - 3x   x   x    + 2x   x    +
    │ │ │                 0,3 1,2    0,2 1,2 1,3    0,2     0,2 0,3 1,2     0,2 1,3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │                           2      2            2   3               2        
    │ │ │       x   x   x    - x   x    + x   ), ideal(x   x    - 2x   x   x   x    +
    │ │ │ @@ -217,15 +217,15 @@
    │ │ │       2x   x    - x    + x   )}
    │ │ │         0,0 1,1    1,1    1,0
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    i7 : time apply(U,u->dim singularLocus u)
    │ │ │ - -- used 0.0154955s (cpu); 0.0148463s (thread); 0s (gc)
    │ │ │ + -- used 0.014661s (cpu); 0.013321s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {2, 2, 2, 2, 2, 2}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -27,15 +27,15 @@ │ │ │ │ 2 2 │ │ │ │ o1 = ideal (x - x x , x x - x x , x - x x ) │ │ │ │ 2 1 3 1 2 0 3 1 0 2 │ │ │ │ │ │ │ │ o1 : Ideal of QQ[x ..x ] │ │ │ │ 0 3 │ │ │ │ i2 : time fromPluckerToStiefel dualize chowForm C │ │ │ │ - -- used 0.114714s (cpu); 0.0536053s (thread); 0s (gc) │ │ │ │ + -- used 0.0875735s (cpu); 0.0457231s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 3 2 2 2 2 2 3 │ │ │ │ o2 = - x x + x x x x - x x x x + x x x - │ │ │ │ 0,3 1,0 0,2 0,3 1,0 1,1 0,1 0,3 1,0 1,1 0,0 0,3 1,1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 2 2 │ │ │ │ x x x x + 2x x x x + x x x x x x - │ │ │ │ @@ -76,15 +76,15 @@ │ │ │ │ 2 2 2 2 2 2 3 3 │ │ │ │ x x x x - 2x x x x - x x x x + x x │ │ │ │ 0,0 0,1 1,1 1,3 0,0 0,2 1,1 1,3 0,0 0,1 1,2 1,3 0,0 1,3 │ │ │ │ │ │ │ │ o2 : QQ[x ..x ] │ │ │ │ 0,0 1,3 │ │ │ │ i3 : time fromPluckerToStiefel(dualize chowForm C,AffineChartGrass=>{0,1}) │ │ │ │ - -- used 0.03594s (cpu); 0.0388574s (thread); 0s (gc) │ │ │ │ + -- used 0.0356639s (cpu); 0.035488s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 2 2 │ │ │ │ o3 = - x x + x x x - x x x + x x + 3x x x - │ │ │ │ 0,3 1,2 0,2 1,2 1,3 0,2 0,3 1,2 0,2 1,3 0,3 1,2 1,3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 │ │ │ │ 2x x + x + x │ │ │ │ @@ -106,15 +106,15 @@ │ │ │ │ o4 : QQ[a ..a ] │ │ │ │ 0,0 1,1 │ │ │ │ As another application, we check that the singular locus of the Chow form of │ │ │ │ the twisted cubic has dimension 2 (on each standard chart). │ │ │ │ i5 : w = chowForm C; │ │ │ │ i6 : time U = apply(subsets(4,2),s->ideal fromPluckerToStiefel │ │ │ │ (w,AffineChartGrass=>s)) │ │ │ │ - -- used 0.0871858s (cpu); 0.0336167s (thread); 0s (gc) │ │ │ │ + -- used 0.0679509s (cpu); 0.0242628s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 2 3 2 │ │ │ │ o6 = {ideal(- x x + x x x - x - 3x x x + 2x x + │ │ │ │ 0,3 1,2 0,2 1,2 1,3 0,2 0,2 0,3 1,2 0,2 1,3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 2 3 2 │ │ │ │ x x x - x x + x ), ideal(x x - 2x x x x + │ │ │ │ @@ -150,15 +150,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 │ │ │ │ 2x x - x + x )} │ │ │ │ 0,0 1,1 1,1 1,0 │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : time apply(U,u->dim singularLocus u) │ │ │ │ - -- used 0.0154955s (cpu); 0.0148463s (thread); 0s (gc) │ │ │ │ + -- used 0.014661s (cpu); 0.013321s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = {2, 2, 2, 2, 2, 2} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ ********** WWaayyss ttoo uussee ffrroommPPlluucckkeerrTTooSSttiieeffeell:: ********** │ │ │ │ * fromPluckerToStiefel(Ideal) │ │ │ │ * fromPluckerToStiefel(Matrix) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_hurwitz__Form.html │ │ │ @@ -95,15 +95,15 @@ │ │ │ 10 3 0 4 4 1 4 2 2 4 3 3 4 4 │ │ │ │ │ │ o1 : Ideal of QQ[p ..p ] │ │ │ 0 4
    │ │ │
    i2 : time hurwitzForm Q
    │ │ │ - -- used 0.110524s (cpu); 0.0675797s (thread); 0s (gc)
    │ │ │ + -- used 0.092074s (cpu); 0.0461657s (thread); 0s (gc)
    │ │ │  
    │ │ │              2                            2                                  
    │ │ │  o2 = 143100p    + 267300p   p    + 96525p    - 56700p   p    - 56100p   p   
    │ │ │              0,1          0,1 0,2         0,2         0,1 1,2         0,2 1,2
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2                                              2                 
    │ │ │       + 900p    + 140400p   p    + 111780p   p    + 133380p    - 8100p   p
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -35,15 +35,15 @@
    │ │ │ │        7 2          7       1       7         2
    │ │ │ │       --p  + p p  + -p p  + -p p  + -p p  + 7p )
    │ │ │ │       10 3    0 4   4 1 4   2 2 4   3 3 4     4
    │ │ │ │  
    │ │ │ │  o1 : Ideal of QQ[p ..p ]
    │ │ │ │                    0   4
    │ │ │ │  i2 : time hurwitzForm Q
    │ │ │ │ - -- used 0.110524s (cpu); 0.0675797s (thread); 0s (gc)
    │ │ │ │ + -- used 0.092074s (cpu); 0.0461657s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │              2                            2
    │ │ │ │  o2 = 143100p    + 267300p   p    + 96525p    - 56700p   p    - 56100p   p
    │ │ │ │              0,1          0,1 0,2         0,2         0,1 1,2         0,2 1,2
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │             2                                              2
    │ │ │ │       + 900p    + 140400p   p    + 111780p   p    + 133380p    - 8100p   p
    │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_is__Coisotropic.html
    │ │ │ @@ -99,15 +99,15 @@
    │ │ │           0,1   0,2   1,2   0,3   1,3   2,3
    │ │ │  o1 : --------------------------------------
    │ │ │           p   p    - p   p    + p   p
    │ │ │            1,2 0,3    0,2 1,3    0,1 2,3
    │ │ │
    i2 : time isCoisotropic w
    │ │ │ - -- used 0.00799966s (cpu); 0.00727879s (thread); 0s (gc)
    │ │ │ + -- used 0.0406609s (cpu); 0.0405998s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = true
    │ │ │
    i3 : -- random quadric in G(1,3)
    │ │ │       w' = random(2,Grass(1,3))
    │ │ │  
    │ │ │ @@ -131,15 +131,15 @@
    │ │ │           0,1   0,2   1,2   0,3   1,3   2,3
    │ │ │  o3 : --------------------------------------
    │ │ │           p   p    - p   p    + p   p
    │ │ │            1,2 0,3    0,2 1,3    0,1 2,3
    │ │ │
    i4 : time isCoisotropic w'
    │ │ │ - -- used 0.00400191s (cpu); 0.00650056s (thread); 0s (gc)
    │ │ │ + -- used 0.00798371s (cpu); 0.00829385s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = false
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use isCoisotropic:

    │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ │ │ │ │ QQ[p ..p , p , p , p , p ] │ │ │ │ 0,1 0,2 1,2 0,3 1,3 2,3 │ │ │ │ o1 : -------------------------------------- │ │ │ │ p p - p p + p p │ │ │ │ 1,2 0,3 0,2 1,3 0,1 2,3 │ │ │ │ i2 : time isCoisotropic w │ │ │ │ - -- used 0.00799966s (cpu); 0.00727879s (thread); 0s (gc) │ │ │ │ + -- used 0.0406609s (cpu); 0.0405998s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = true │ │ │ │ i3 : -- random quadric in G(1,3) │ │ │ │ w' = random(2,Grass(1,3)) │ │ │ │ │ │ │ │ 7 2 2 3 2 5 │ │ │ │ o3 = -p + 7p p + p + -p p + 2p p + 5p + -p p + │ │ │ │ @@ -69,14 +69,14 @@ │ │ │ │ │ │ │ │ QQ[p ..p , p , p , p , p ] │ │ │ │ 0,1 0,2 1,2 0,3 1,3 2,3 │ │ │ │ o3 : -------------------------------------- │ │ │ │ p p - p p + p p │ │ │ │ 1,2 0,3 0,2 1,3 0,1 2,3 │ │ │ │ i4 : time isCoisotropic w' │ │ │ │ - -- used 0.00400191s (cpu); 0.00650056s (thread); 0s (gc) │ │ │ │ + -- used 0.00798371s (cpu); 0.00829385s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = false │ │ │ │ ********** WWaayyss ttoo uussee iissCCooiissoottrrooppiicc:: ********** │ │ │ │ * isCoisotropic(RingElement) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _i_s_C_o_i_s_o_t_r_o_p_i_c is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_is__In__Coisotropic.html │ │ │ @@ -114,15 +114,15 @@ │ │ │ │ │ │ ZZ │ │ │ o3 : Ideal of -----[x ..x ] │ │ │ 33331 0 5 │ │ │ │ │ │ │ │ │
    i4 : time isInCoisotropic(L,I) -- whether L belongs to Z_1(V(I))
    │ │ │ - -- used 0.0228258s (cpu); 0.0201847s (thread); 0s (gc)
    │ │ │ + -- used 0.0479977s (cpu); 0.0478608s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = true
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -55,15 +55,15 @@ │ │ │ │ 2380x + 9482x ) │ │ │ │ 4 5 │ │ │ │ │ │ │ │ ZZ │ │ │ │ o3 : Ideal of -----[x ..x ] │ │ │ │ 33331 0 5 │ │ │ │ i4 : time isInCoisotropic(L,I) -- whether L belongs to Z_1(V(I)) │ │ │ │ - -- used 0.0228258s (cpu); 0.0201847s (thread); 0s (gc) │ │ │ │ + -- used 0.0479977s (cpu); 0.0478608s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_a_n_g_e_n_t_i_a_l_C_h_o_w_F_o_r_m -- higher Chow forms of a projective variety │ │ │ │ * _p_l_u_c_k_e_r -- get the Plücker coordinates of a linear subspace │ │ │ │ ********** WWaayyss ttoo uussee iissIInnCCooiissoottrrooppiicc:: ********** │ │ │ │ * isInCoisotropic(Ideal,Ideal) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_macaulay__Formula.html │ │ │ @@ -84,15 +84,15 @@ │ │ │ c x x x + c x x + c x x + c x x + c x } │ │ │ 4 0 1 2 7 1 2 5 0 2 8 1 2 9 2 │ │ │ │ │ │ o1 : List │ │ │ │ │ │ │ │ │
    i2 : time (D,D') = macaulayFormula F
    │ │ │ - -- used 0.00215734s (cpu); 0.00350587s (thread); 0s (gc)
    │ │ │ + -- used 0.00400078s (cpu); 0.00300471s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = (| a_0 a_1 a_2 a_3 a_4 a_5 0   0   0   0   0   0   0   0   0   0   0  
    │ │ │        | 0   a_0 0   a_1 a_2 0   a_3 a_4 a_5 0   0   0   0   0   0   0   0  
    │ │ │        | 0   0   a_0 0   a_1 a_2 0   a_3 a_4 a_5 0   0   0   0   0   0   0  
    │ │ │        | 0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0   0   0  
    │ │ │        | 0   0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0   0  
    │ │ │        | 0   0   0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0  
    │ │ │ @@ -151,15 +151,15 @@
    │ │ │       -p p  + 2p p  + 6p }
    │ │ │       7 0 2     1 2     2
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │
    i4 : time (D,D') = macaulayFormula F
    │ │ │ - -- used 0.00399943s (cpu); 0.00217211s (thread); 0s (gc)
    │ │ │ + -- used 0.00123595s (cpu); 0.00199651s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = (| 9/2 1/2  9/4  1/2 1    3/4  0   0   0   0   0   0    0    0    0  
    │ │ │        | 0   9/2  0    1/2 9/4  0    1/2 1   3/4 0   0   0    0    0    0  
    │ │ │        | 0   0    9/2  0   1/2  9/4  0   1/2 1   3/4 0   0    0    0    0  
    │ │ │        | 0   0    0    9/2 0    0    1/2 9/4 0   0   1/2 1    3/4  0    0  
    │ │ │        | 0   0    0    0   9/2  0    0   1/2 9/4 0   0   1/2  1    3/4  0  
    │ │ │        | 0   0    0    0   0    9/2  0   0   1/2 9/4 0   0    1/2  1    3/4
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -29,15 +29,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                     2          2        2      3
    │ │ │ │       c x x x  + c x x  + c x x  + c x x  + c x }
    │ │ │ │        4 0 1 2    7 1 2    5 0 2    8 1 2    9 2
    │ │ │ │  
    │ │ │ │  o1 : List
    │ │ │ │  i2 : time (D,D') = macaulayFormula F
    │ │ │ │ - -- used 0.00215734s (cpu); 0.00350587s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00400078s (cpu); 0.00300471s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = (| a_0 a_1 a_2 a_3 a_4 a_5 0   0   0   0   0   0   0   0   0   0   0
    │ │ │ │        | 0   a_0 0   a_1 a_2 0   a_3 a_4 a_5 0   0   0   0   0   0   0   0
    │ │ │ │        | 0   0   a_0 0   a_1 a_2 0   a_3 a_4 a_5 0   0   0   0   0   0   0
    │ │ │ │        | 0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0   0   0
    │ │ │ │        | 0   0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0   0
    │ │ │ │        | 0   0   0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0
    │ │ │ │ @@ -92,15 +92,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       6   2       2     3
    │ │ │ │       -p p  + 2p p  + 6p }
    │ │ │ │       7 0 2     1 2     2
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ │ │  i4 : time (D,D') = macaulayFormula F
    │ │ │ │ - -- used 0.00399943s (cpu); 0.00217211s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00123595s (cpu); 0.00199651s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = (| 9/2 1/2  9/4  1/2 1    3/4  0   0   0   0   0   0    0    0    0
    │ │ │ │        | 0   9/2  0    1/2 9/4  0    1/2 1   3/4 0   0   0    0    0    0
    │ │ │ │        | 0   0    9/2  0   1/2  9/4  0   1/2 1   3/4 0   0    0    0    0
    │ │ │ │        | 0   0    0    9/2 0    0    1/2 9/4 0   0   1/2 1    3/4  0    0
    │ │ │ │        | 0   0    0    0   9/2  0    0   1/2 9/4 0   0   1/2  1    3/4  0
    │ │ │ │        | 0   0    0    0   0    9/2  0   0   1/2 9/4 0   0    1/2  1    3/4
    │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_plucker.html
    │ │ │ @@ -91,30 +91,30 @@
    │ │ │       664x )
    │ │ │           4
    │ │ │  
    │ │ │  o3 : Ideal of P4
    │ │ │ │ │ │ │ │ │
    i4 : time p = plucker L
    │ │ │ - -- used 0.00396538s (cpu); 0.00437586s (thread); 0s (gc)
    │ │ │ + -- used 0.00400241s (cpu); 0.00584151s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = ideal (x    + 8480x   , x    - 6727x   , x    + 15777x   , x    +
    │ │ │               2,4        3,4   1,4        3,4   0,4         3,4   2,3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       11656x   , x    - 14853x   , x    + 664x   , x    + 13522x   , x    +
    │ │ │             3,4   1,3         3,4   0,3       3,4   1,2         3,4   0,2  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       11804x   , x    + 14854x   )
    │ │ │             3,4   0,1         3,4
    │ │ │  
    │ │ │  o4 : Ideal of G'1'4
    │ │ │ │ │ │ │ │ │
    i5 : time L' = plucker p
    │ │ │ - -- used 0.0973721s (cpu); 0.039945s (thread); 0s (gc)
    │ │ │ + -- used 0.117661s (cpu); 0.0734802s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = ideal (x  + 8480x  - 11656x , x  - 6727x  + 14853x , x  + 15777x  -
    │ │ │               2        3         4   1        3         4   0         3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       664x )
    │ │ │           4
    │ │ │  
    │ │ │ @@ -129,15 +129,15 @@
    │ │ │            
    │ │ │                
    i7 : Y = ideal apply(5,i->random(1,G'1'4)); -- an elliptic curve
    │ │ │  
    │ │ │  o7 : Ideal of G'1'4
    │ │ │ │ │ │ │ │ │
    i8 : time W = plucker Y; -- surface swept out by the lines of Y
    │ │ │ - -- used 0.0280079s (cpu); 0.0301314s (thread); 0s (gc)
    │ │ │ + -- used 0.0839972s (cpu); 0.0834231s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 : Ideal of P4
    │ │ │ │ │ │ │ │ │
    i9 : (codim W,degree W)
    │ │ │  
    │ │ │  o9 = (2, 5)
    │ │ │ @@ -145,15 +145,15 @@
    │ │ │  o9 : Sequence
    │ │ │ │ │ │ │ │ │

    In this example, we can recover the subvariety $Y\subset\mathbb{G}(k,\mathbb{P}^n)$ by computing the Fano variety of $k$-planes contained in $W$.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : time Y' = plucker(W,1); -- variety of lines contained in W
    │ │ │ - -- used 0.147833s (cpu); 0.149666s (thread); 0s (gc)
    │ │ │ + -- used 0.3189s (cpu); 0.318989s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 : Ideal of G'1'4
    │ │ │
    i11 : assert(Y' == Y)
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,28 +29,28 @@ │ │ │ │ 2 3 4 1 3 4 0 3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 664x ) │ │ │ │ 4 │ │ │ │ │ │ │ │ o3 : Ideal of P4 │ │ │ │ i4 : time p = plucker L │ │ │ │ - -- used 0.00396538s (cpu); 0.00437586s (thread); 0s (gc) │ │ │ │ + -- used 0.00400241s (cpu); 0.00584151s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = ideal (x + 8480x , x - 6727x , x + 15777x , x + │ │ │ │ 2,4 3,4 1,4 3,4 0,4 3,4 2,3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 11656x , x - 14853x , x + 664x , x + 13522x , x + │ │ │ │ 3,4 1,3 3,4 0,3 3,4 1,2 3,4 0,2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 11804x , x + 14854x ) │ │ │ │ 3,4 0,1 3,4 │ │ │ │ │ │ │ │ o4 : Ideal of G'1'4 │ │ │ │ i5 : time L' = plucker p │ │ │ │ - -- used 0.0973721s (cpu); 0.039945s (thread); 0s (gc) │ │ │ │ + -- used 0.117661s (cpu); 0.0734802s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = ideal (x + 8480x - 11656x , x - 6727x + 14853x , x + 15777x - │ │ │ │ 2 3 4 1 3 4 0 3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 664x ) │ │ │ │ 4 │ │ │ │ │ │ │ │ @@ -61,26 +61,26 @@ │ │ │ │ $W\subset\mathbb{P}^n$ swept out by the linear spaces corresponding to points │ │ │ │ of $Y$. As an example, we now compute a surface scroll $W\subset\mathbb{P}^4$ │ │ │ │ over an elliptic curve $Y\subset\mathbb{G}(1,\mathbb{P}^4)$. │ │ │ │ i7 : Y = ideal apply(5,i->random(1,G'1'4)); -- an elliptic curve │ │ │ │ │ │ │ │ o7 : Ideal of G'1'4 │ │ │ │ i8 : time W = plucker Y; -- surface swept out by the lines of Y │ │ │ │ - -- used 0.0280079s (cpu); 0.0301314s (thread); 0s (gc) │ │ │ │ + -- used 0.0839972s (cpu); 0.0834231s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 : Ideal of P4 │ │ │ │ i9 : (codim W,degree W) │ │ │ │ │ │ │ │ o9 = (2, 5) │ │ │ │ │ │ │ │ o9 : Sequence │ │ │ │ In this example, we can recover the subvariety $Y\subset\mathbb{G}(k,\mathbb │ │ │ │ {P}^n)$ by computing the Fano variety of $k$-planes contained in $W$. │ │ │ │ i10 : time Y' = plucker(W,1); -- variety of lines contained in W │ │ │ │ - -- used 0.147833s (cpu); 0.149666s (thread); 0s (gc) │ │ │ │ + -- used 0.3189s (cpu); 0.318989s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 : Ideal of G'1'4 │ │ │ │ i11 : assert(Y' == Y) │ │ │ │ WWaarrnniinngg: Notice that, by default, the computation is done on a randomly chosen │ │ │ │ affine chart on the Grassmannian. To change this behavior, you can use the │ │ │ │ _A_f_f_i_n_e_C_h_a_r_t_G_r_a_s_s option. │ │ │ │ ********** WWaayyss ttoo uussee pplluucckkeerr:: ********** │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp..._cm__Algorithm_eq_gt..._rp.html │ │ │ @@ -99,15 +99,15 @@ │ │ │ -b)y*w + (-a + -b)z*w + (-a + 2b)w , 2x + -y + -z + -w} │ │ │ 4 8 8 7 4 3 5 │ │ │ │ │ │ o2 : List
    │ │ │ │ │ │ │ │ │
    i3 : time resultant(F,Algorithm=>"Poisson2")
    │ │ │ - -- used 0.239497s (cpu); 0.149163s (thread); 0s (gc)
    │ │ │ + -- used 0.352888s (cpu); 0.249339s (thread); 0s (gc)
    │ │ │  
    │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4   
    │ │ │  o3 = - -----------------------------a  - -------------------------------a b -
    │ │ │             2222549728809984000000            12700284164628480000000         
    │ │ │       ------------------------------------------------------------------------
    │ │ │       348237304382147063838108483692249 3 2  
    │ │ │       ---------------------------------a b  -
    │ │ │ @@ -121,15 +121,15 @@
    │ │ │       -------------------------------a*b  - ---------------------------b
    │ │ │            1119954511872000000000                895963609497600000
    │ │ │  
    │ │ │  o3 : QQ[a..b]
    │ │ │ │ │ │ │ │ │
    i4 : time resultant(F,Algorithm=>"Macaulay2")
    │ │ │ - -- used 0.128223s (cpu); 0.0770729s (thread); 0s (gc)
    │ │ │ + -- used 0.110133s (cpu); 0.0644408s (thread); 0s (gc)
    │ │ │  
    │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4   
    │ │ │  o4 = - -----------------------------a  - -------------------------------a b -
    │ │ │             2222549728809984000000            12700284164628480000000         
    │ │ │       ------------------------------------------------------------------------
    │ │ │       348237304382147063838108483692249 3 2  
    │ │ │       ---------------------------------a b  -
    │ │ │ @@ -143,15 +143,15 @@
    │ │ │       -------------------------------a*b  - ---------------------------b
    │ │ │            1119954511872000000000                895963609497600000
    │ │ │  
    │ │ │  o4 : QQ[a..b]
    │ │ │ │ │ │ │ │ │
    i5 : time resultant(F,Algorithm=>"Poisson")
    │ │ │ - -- used 0.287256s (cpu); 0.289426s (thread); 0s (gc)
    │ │ │ + -- used 0.307491s (cpu); 0.309999s (thread); 0s (gc)
    │ │ │  
    │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4   
    │ │ │  o5 = - -----------------------------a  - -------------------------------a b -
    │ │ │             2222549728809984000000            12700284164628480000000         
    │ │ │       ------------------------------------------------------------------------
    │ │ │       348237304382147063838108483692249 3 2  
    │ │ │       ---------------------------------a b  -
    │ │ │ @@ -165,15 +165,15 @@
    │ │ │       -------------------------------a*b  - ---------------------------b
    │ │ │            1119954511872000000000                895963609497600000
    │ │ │  
    │ │ │  o5 : QQ[a..b]
    │ │ │ │ │ │ │ │ │
    i6 : time resultant(F,Algorithm=>"Macaulay")
    │ │ │ - -- used 0.608867s (cpu); 0.559075s (thread); 0s (gc)
    │ │ │ + -- used 0.776348s (cpu); 0.725524s (thread); 0s (gc)
    │ │ │  
    │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4   
    │ │ │  o6 = - -----------------------------a  - -------------------------------a b -
    │ │ │             2222549728809984000000            12700284164628480000000         
    │ │ │       ------------------------------------------------------------------------
    │ │ │       348237304382147063838108483692249 3 2  
    │ │ │       ---------------------------------a b  -
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -59,15 +59,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       3     2    9    7     2    9        3       1    8    4
    │ │ │ │       -b)y*w  + (-a + -b)z*w  + (-a + 2b)w , 2x + -y + -z + -w}
    │ │ │ │       4          8    8          7                4    3    5
    │ │ │ │  
    │ │ │ │  o2 : List
    │ │ │ │  i3 : time resultant(F,Algorithm=>"Poisson2")
    │ │ │ │ - -- used 0.239497s (cpu); 0.149163s (thread); 0s (gc)
    │ │ │ │ + -- used 0.352888s (cpu); 0.249339s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4
    │ │ │ │  o3 = - -----------------------------a  - -------------------------------a b -
    │ │ │ │             2222549728809984000000            12700284164628480000000
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       348237304382147063838108483692249 3 2
    │ │ │ │       ---------------------------------a b  -
    │ │ │ │ @@ -79,15 +79,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       1146977327343523453866040839029   4   194441910898734675845094443 5
    │ │ │ │       -------------------------------a*b  - ---------------------------b
    │ │ │ │            1119954511872000000000                895963609497600000
    │ │ │ │  
    │ │ │ │  o3 : QQ[a..b]
    │ │ │ │  i4 : time resultant(F,Algorithm=>"Macaulay2")
    │ │ │ │ - -- used 0.128223s (cpu); 0.0770729s (thread); 0s (gc)
    │ │ │ │ + -- used 0.110133s (cpu); 0.0644408s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4
    │ │ │ │  o4 = - -----------------------------a  - -------------------------------a b -
    │ │ │ │             2222549728809984000000            12700284164628480000000
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       348237304382147063838108483692249 3 2
    │ │ │ │       ---------------------------------a b  -
    │ │ │ │ @@ -99,15 +99,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       1146977327343523453866040839029   4   194441910898734675845094443 5
    │ │ │ │       -------------------------------a*b  - ---------------------------b
    │ │ │ │            1119954511872000000000                895963609497600000
    │ │ │ │  
    │ │ │ │  o4 : QQ[a..b]
    │ │ │ │  i5 : time resultant(F,Algorithm=>"Poisson")
    │ │ │ │ - -- used 0.287256s (cpu); 0.289426s (thread); 0s (gc)
    │ │ │ │ + -- used 0.307491s (cpu); 0.309999s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4
    │ │ │ │  o5 = - -----------------------------a  - -------------------------------a b -
    │ │ │ │             2222549728809984000000            12700284164628480000000
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       348237304382147063838108483692249 3 2
    │ │ │ │       ---------------------------------a b  -
    │ │ │ │ @@ -119,15 +119,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       1146977327343523453866040839029   4   194441910898734675845094443 5
    │ │ │ │       -------------------------------a*b  - ---------------------------b
    │ │ │ │            1119954511872000000000                895963609497600000
    │ │ │ │  
    │ │ │ │  o5 : QQ[a..b]
    │ │ │ │  i6 : time resultant(F,Algorithm=>"Macaulay")
    │ │ │ │ - -- used 0.608867s (cpu); 0.559075s (thread); 0s (gc)
    │ │ │ │ + -- used 0.776348s (cpu); 0.725524s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4
    │ │ │ │  o6 = - -----------------------------a  - -------------------------------a b -
    │ │ │ │             2222549728809984000000            12700284164628480000000
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       348237304382147063838108483692249 3 2
    │ │ │ │       ---------------------------------a b  -
    │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp__Matrix_rp.html
    │ │ │ @@ -90,15 +90,15 @@
    │ │ │         2               2                            3      2         4
    │ │ │  o2 = {x  + 3t*y*z - u*z , (t + 3u - 1)x - y, - t*x*y  + t*x y*z + u*z }
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │
    i3 : time resultant F
    │ │ │ - -- used 0.0344967s (cpu); 0.0339164s (thread); 0s (gc)
    │ │ │ + -- used 0.0479909s (cpu); 0.0495041s (thread); 0s (gc)
    │ │ │  
    │ │ │            12         11 2         10 3         9 4          8 5          7 6
    │ │ │  o3 = - 81t  u - 1701t  u  - 15309t  u  - 76545t u  - 229635t u  - 413343t u 
    │ │ │       ------------------------------------------------------------------------
    │ │ │                6 7          5 8       11          10 2         9 3  
    │ │ │       - 413343t u  - 177147t u  + 567t  u + 10206t  u  + 76545t u  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -149,15 +149,15 @@
    │ │ │       + c x }
    │ │ │          9 2
    │ │ │  
    │ │ │  o4 : List
    │ │ │ │ │ │ │ │ │
    i5 : time resultant F
    │ │ │ - -- used 2.8419s (cpu); 2.11491s (thread); 0s (gc)
    │ │ │ + -- used 2.37705s (cpu); 1.88069s (thread); 0s (gc)
    │ │ │  
    │ │ │        6 3 2       5 2   2     2 4   2 2    3 3 3 2     2 4 2   2  
    │ │ │  o5 = a b c  - 3a a b b c  + 3a a b b c  - a a b c  + 3a a b b c  -
    │ │ │        2 3 0     1 2 3 4 0     1 2 3 4 0    1 2 4 0     1 2 3 5 0  
    │ │ │       ------------------------------------------------------------------------
    │ │ │         3 3       2     4 2 2   2     4 2   2 2     5     2 2    6 3 2  
    │ │ │       6a a b b b c  + 3a a b b c  + 3a a b b c  - 3a a b b c  + a b c  -
    │ │ │ @@ -1780,15 +1780,15 @@
    │ │ │       b x x  + b x x  + b x , c x  + c x x  + c x  + c x x  + c x x  + c x }
    │ │ │        2 0 2    4 1 2    5 2   0 0    1 0 1    3 1    2 0 2    4 1 2    5 2
    │ │ │  
    │ │ │  o6 : List
    │ │ │ │ │ │ │ │ │
    i7 : time # terms resultant F
    │ │ │ - -- used 0.503578s (cpu); 0.380091s (thread); 0s (gc)
    │ │ │ + -- used 0.439201s (cpu); 0.388865s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = 21894
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -33,15 +33,15 @@ │ │ │ │ i2 : F = {x^2+3*t*y*z-u*z^2,(t+3*u-1)*x-y,-t*x*y^3+t*x^2*y*z+u*z^4} │ │ │ │ │ │ │ │ 2 2 3 2 4 │ │ │ │ o2 = {x + 3t*y*z - u*z , (t + 3u - 1)x - y, - t*x*y + t*x y*z + u*z } │ │ │ │ │ │ │ │ o2 : List │ │ │ │ i3 : time resultant F │ │ │ │ - -- used 0.0344967s (cpu); 0.0339164s (thread); 0s (gc) │ │ │ │ + -- used 0.0479909s (cpu); 0.0495041s (thread); 0s (gc) │ │ │ │ │ │ │ │ 12 11 2 10 3 9 4 8 5 7 6 │ │ │ │ o3 = - 81t u - 1701t u - 15309t u - 76545t u - 229635t u - 413343t u │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 6 7 5 8 11 10 2 9 3 │ │ │ │ - 413343t u - 177147t u + 567t u + 10206t u + 76545t u + │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ @@ -87,15 +87,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 │ │ │ │ + c x } │ │ │ │ 9 2 │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : time resultant F │ │ │ │ - -- used 2.8419s (cpu); 2.11491s (thread); 0s (gc) │ │ │ │ + -- used 2.37705s (cpu); 1.88069s (thread); 0s (gc) │ │ │ │ │ │ │ │ 6 3 2 5 2 2 2 4 2 2 3 3 3 2 2 4 2 2 │ │ │ │ o5 = a b c - 3a a b b c + 3a a b b c - a a b c + 3a a b b c - │ │ │ │ 2 3 0 1 2 3 4 0 1 2 3 4 0 1 2 4 0 1 2 3 5 0 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 3 2 4 2 2 2 4 2 2 2 5 2 2 6 3 2 │ │ │ │ 6a a b b b c + 3a a b b c + 3a a b b c - 3a a b b c + a b c - │ │ │ │ @@ -1713,15 +1713,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 2 2 │ │ │ │ b x x + b x x + b x , c x + c x x + c x + c x x + c x x + c x } │ │ │ │ 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : time # terms resultant F │ │ │ │ - -- used 0.503578s (cpu); 0.380091s (thread); 0s (gc) │ │ │ │ + -- used 0.439201s (cpu); 0.388865s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = 21894 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_h_o_w_F_o_r_m -- Chow form of a projective variety │ │ │ │ * _d_i_s_c_r_i_m_i_n_a_n_t_(_R_i_n_g_E_l_e_m_e_n_t_) │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * resultant(List) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_tangential__Chow__Form.html │ │ │ @@ -102,15 +102,15 @@ │ │ │ │ │ │ o2 : Ideal of QQ[p ..p ] │ │ │ 0 4 │ │ │ │ │ │ │ │ │
    i3 : -- 0-th associated hypersurface of S in G(1,4) (Chow form)
    │ │ │       time tangentialChowForm(S,0)
    │ │ │ - -- used 0.0984014s (cpu); 0.0465418s (thread); 0s (gc)
    │ │ │ + -- used 0.0994219s (cpu); 0.0524418s (thread); 0s (gc)
    │ │ │  
    │ │ │        2                                                       2        
    │ │ │  o3 = p   p    - p   p   p    - p   p   p    + p   p   p    + p   p    +
    │ │ │        1,3 2,3    1,2 1,3 2,4    0,3 1,3 2,4    0,2 1,4 2,4    1,2 3,4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2
    │ │ │       p   p    - 2p   p   p    - p   p   p
    │ │ │ @@ -121,15 +121,15 @@
    │ │ │  o3 : ----------------------------------------------------------------------------------------------------------------------------------------------------------------
    │ │ │       (p   p    - p   p    + p   p   , p   p    - p   p    + p   p   , p   p    - p   p    + p   p   , p   p    - p   p    + p   p   , p   p    - p   p    + p   p   )
    │ │ │         2,3 1,4    1,3 2,4    1,2 3,4   2,3 0,4    0,3 2,4    0,2 3,4   1,3 0,4    0,3 1,4    0,1 3,4   1,2 0,4    0,2 1,4    0,1 2,4   1,2 0,3    0,2 1,3    0,1 2,3
    │ │ │ │ │ │ │ │ │
    i4 : -- 1-th associated hypersurface of S in G(2,4)
    │ │ │       time tangentialChowForm(S,1)
    │ │ │ - -- used 0.0522902s (cpu); 0.0514451s (thread); 0s (gc)
    │ │ │ + -- used 0.0705868s (cpu); 0.0724036s (thread); 0s (gc)
    │ │ │  
    │ │ │        2     2        2     2               3        2     2      
    │ │ │  o4 = p     p      + p     p      - 2p     p      + p     p      -
    │ │ │        1,2,3 1,2,4    0,2,4 1,2,4     0,2,3 1,2,4    0,2,4 0,3,4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │               3         3               3            
    │ │ │       4p     p      - 4p     p      - 2p     p      +
    │ │ │ @@ -164,39 +164,39 @@
    │ │ │  o4 : ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    │ │ │       (p     p      - p     p      + p     p     , p     p      - p     p      + p     p     , p     p      - p     p      + p     p     , p     p      - p     p      + p     p     , p     p      - p     p      + p     p     )
    │ │ │         1,2,4 0,3,4    0,2,4 1,3,4    0,1,4 2,3,4   1,2,3 0,3,4    0,2,3 1,3,4    0,1,3 2,3,4   1,2,3 0,2,4    0,2,3 1,2,4    0,1,2 2,3,4   1,2,3 0,1,4    0,1,3 1,2,4    0,1,2 1,3,4   0,2,3 0,1,4    0,1,3 0,2,4    0,1,2 0,3,4
    │ │ │ │ │ │ │ │ │
    i5 : -- 2-th associated hypersurface of S in G(3,4) (parameterizing tangent hyperplanes to S)
    │ │ │       time tangentialChowForm(S,2)
    │ │ │ - -- used 0.0332139s (cpu); 0.033128s (thread); 0s (gc)
    │ │ │ + -- used 0.0240011s (cpu); 0.0267962s (thread); 0s (gc)
    │ │ │  
    │ │ │                2                                             2
    │ │ │  o5 = p       p        - p       p       p        + p       p
    │ │ │        0,1,3,4 0,2,3,4    0,1,2,4 0,2,3,4 1,2,3,4    0,1,2,3 1,2,3,4
    │ │ │  
    │ │ │  o5 : QQ[p       ..p       , p       , p       , p       ]
    │ │ │           0,1,2,3   0,1,2,4   0,1,3,4   0,2,3,4   1,2,3,4
    │ │ │ │ │ │ │ │ │
    i6 : -- we get the dual hypersurface of S in G(0,4) by dualizing
    │ │ │       time S' = ideal dualize tangentialChowForm(S,2)
    │ │ │ - -- used 0.111927s (cpu); 0.0524302s (thread); 0s (gc)
    │ │ │ + -- used 0.103348s (cpu); 0.0599139s (thread); 0s (gc)
    │ │ │  
    │ │ │              2               2
    │ │ │  o6 = ideal(p p  - p p p  + p p )
    │ │ │              1 2    0 1 3    0 4
    │ │ │  
    │ │ │  o6 : Ideal of QQ[p ..p ]
    │ │ │                    0   4
    │ │ │ │ │ │ │ │ │
    i7 : -- we then can recover S
    │ │ │       time assert(dualize tangentialChowForm(S',3) == S)
    │ │ │ - -- used 0.128042s (cpu); 0.0814872s (thread); 0s (gc)
    │ │ │ + -- used 0.279752s (cpu); 0.0764804s (thread); 0s (gc) │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │
    • │ │ │ ├── html2text {} │ │ │ │ @@ -64,15 +64,15 @@ │ │ │ │ o2 = ideal (- p p + p p , - p p + p p , - p + p p ) │ │ │ │ 1 2 0 3 1 3 0 4 3 2 4 │ │ │ │ │ │ │ │ o2 : Ideal of QQ[p ..p ] │ │ │ │ 0 4 │ │ │ │ i3 : -- 0-th associated hypersurface of S in G(1,4) (Chow form) │ │ │ │ time tangentialChowForm(S,0) │ │ │ │ - -- used 0.0984014s (cpu); 0.0465418s (thread); 0s (gc) │ │ │ │ + -- used 0.0994219s (cpu); 0.0524418s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o3 = p p - p p p - p p p + p p p + p p + │ │ │ │ 1,3 2,3 1,2 1,3 2,4 0,3 1,3 2,4 0,2 1,4 2,4 1,2 3,4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 │ │ │ │ p p - 2p p p - p p p │ │ │ │ @@ -89,15 +89,15 @@ │ │ │ │ - p p + p p , p p - p p + p p , p p - p p + p │ │ │ │ p ) │ │ │ │ 2,3 1,4 1,3 2,4 1,2 3,4 2,3 0,4 0,3 2,4 0,2 3,4 1,3 0,4 │ │ │ │ 0,3 1,4 0,1 3,4 1,2 0,4 0,2 1,4 0,1 2,4 1,2 0,3 0,2 1,3 0,1 │ │ │ │ 2,3 │ │ │ │ i4 : -- 1-th associated hypersurface of S in G(2,4) │ │ │ │ time tangentialChowForm(S,1) │ │ │ │ - -- used 0.0522902s (cpu); 0.0514451s (thread); 0s (gc) │ │ │ │ + -- used 0.0705868s (cpu); 0.0724036s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 3 2 2 │ │ │ │ o4 = p p + p p - 2p p + p p - │ │ │ │ 1,2,3 1,2,4 0,2,4 1,2,4 0,2,3 1,2,4 0,2,4 0,3,4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 3 3 │ │ │ │ 4p p - 4p p - 2p p + │ │ │ │ @@ -139,35 +139,35 @@ │ │ │ │ p + p p , p p - p p + p p ) │ │ │ │ 1,2,4 0,3,4 0,2,4 1,3,4 0,1,4 2,3,4 1,2,3 0,3,4 0,2,3 1,3,4 │ │ │ │ 0,1,3 2,3,4 1,2,3 0,2,4 0,2,3 1,2,4 0,1,2 2,3,4 1,2,3 0,1,4 0,1,3 │ │ │ │ 1,2,4 0,1,2 1,3,4 0,2,3 0,1,4 0,1,3 0,2,4 0,1,2 0,3,4 │ │ │ │ i5 : -- 2-th associated hypersurface of S in G(3,4) (parameterizing tangent │ │ │ │ hyperplanes to S) │ │ │ │ time tangentialChowForm(S,2) │ │ │ │ - -- used 0.0332139s (cpu); 0.033128s (thread); 0s (gc) │ │ │ │ + -- used 0.0240011s (cpu); 0.0267962s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o5 = p p - p p p + p p │ │ │ │ 0,1,3,4 0,2,3,4 0,1,2,4 0,2,3,4 1,2,3,4 0,1,2,3 1,2,3,4 │ │ │ │ │ │ │ │ o5 : QQ[p ..p , p , p , p ] │ │ │ │ 0,1,2,3 0,1,2,4 0,1,3,4 0,2,3,4 1,2,3,4 │ │ │ │ i6 : -- we get the dual hypersurface of S in G(0,4) by dualizing │ │ │ │ time S' = ideal dualize tangentialChowForm(S,2) │ │ │ │ - -- used 0.111927s (cpu); 0.0524302s (thread); 0s (gc) │ │ │ │ + -- used 0.103348s (cpu); 0.0599139s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o6 = ideal(p p - p p p + p p ) │ │ │ │ 1 2 0 1 3 0 4 │ │ │ │ │ │ │ │ o6 : Ideal of QQ[p ..p ] │ │ │ │ 0 4 │ │ │ │ i7 : -- we then can recover S │ │ │ │ time assert(dualize tangentialChowForm(S',3) == S) │ │ │ │ - -- used 0.128042s (cpu); 0.0814872s (thread); 0s (gc) │ │ │ │ + -- used 0.279752s (cpu); 0.0764804s (thread); 0s (gc) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_C_o_i_s_o_t_r_o_p_i_c -- whether a hypersurface of a Grassmannian is a tangential │ │ │ │ Chow form │ │ │ │ * _c_h_o_w_F_o_r_m -- Chow form of a projective variety │ │ │ │ ********** WWaayyss ttoo uussee ttaannggeennttiiaallCChhoowwFFoorrmm:: ********** │ │ │ │ * tangentialChowForm(Ideal,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/RunExternalM2/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=18 │ │ │ aXNFeHRlcm5hbE0yUGFyZW50 │ │ │ #:len=1043 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiaW5kaWNhdGUgaWYgdGhpcyBwcm9jZXNz │ │ │ IGlzIGEgcGFyZW50IHByb2Nlc3Mgb3Igbm90IiwgImxpbmVudW0iID0+IDg5NCwgImZpbGVuYW1l │ │ ├── ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_resource_splimits.out │ │ │ @@ -3,16 +3,16 @@ │ │ │ i1 : run("ulimit -a") │ │ │ time(seconds) 700 │ │ │ file(blocks) unlimited │ │ │ data(kbytes) unlimited │ │ │ stack(kbytes) 8192 │ │ │ coredump(blocks) unlimited │ │ │ memory(kbytes) 850000 │ │ │ -locked memory(kbytes) 2047000 │ │ │ -process 63802 │ │ │ +locked memory(kbytes) 8192 │ │ │ +process 256974 │ │ │ nofiles 512 │ │ │ vmemory(kbytes) unlimited │ │ │ locks unlimited │ │ │ rtprio 0 │ │ │ │ │ │ o1 = 0 │ │ ├── ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_run__External__M2.out │ │ │ @@ -1,23 +1,23 @@ │ │ │ -- -*- M2-comint -*- hash: 2927978066455787395 │ │ │ │ │ │ i1 : fn=temporaryFileName()|".m2" │ │ │ │ │ │ -o1 = /tmp/M2-76770-0/0.m2 │ │ │ +o1 = /tmp/M2-134173-0/0.m2 │ │ │ │ │ │ i2 : fn< (stderr<<"Running"< ( exit(27); ); ///< (stderr<<"Spinning!!"<"/tmp/M2-76770-0/1.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-134173-0/1.m2" >"/tmp/M2-134173-0/1.out" 2>&1 )) │ │ │ Finished running. │ │ │ │ │ │ i7 : h │ │ │ │ │ │ o7 = HashTable{"answer file" => null} │ │ │ "exit code" => 0 │ │ │ "output file" => null │ │ │ @@ -33,105 +33,105 @@ │ │ │ o8 = true │ │ │ │ │ │ i9 : h#"exit code"===0 │ │ │ │ │ │ o9 = true │ │ │ │ │ │ i10 : h=runExternalM2(fn,"justexit",()); │ │ │ -Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-76770-0/2.m2" >"/tmp/M2-76770-0/2.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-134173-0/2.m2" >"/tmp/M2-134173-0/2.out" 2>&1 )) │ │ │ Finished running. │ │ │ RunExternalM2: expected answer file does not exist │ │ │ │ │ │ i11 : h │ │ │ │ │ │ -o11 = HashTable{"answer file" => /tmp/M2-76770-0/2.ans} │ │ │ +o11 = HashTable{"answer file" => /tmp/M2-134173-0/2.ans} │ │ │ "exit code" => 27 │ │ │ - "output file" => /tmp/M2-76770-0/2.out │ │ │ + "output file" => /tmp/M2-134173-0/2.out │ │ │ "return code" => 6912 │ │ │ "statistics" => null │ │ │ - "time used" => 1 │ │ │ + "time used" => 2 │ │ │ value => null │ │ │ │ │ │ o11 : HashTable │ │ │ │ │ │ i12 : fileExists(h#"output file") │ │ │ │ │ │ o12 = true │ │ │ │ │ │ i13 : fileExists(h#"answer file") │ │ │ │ │ │ o13 = false │ │ │ │ │ │ i14 : h=runExternalM2(fn,"spin",10,PreRunScript=>"ulimit -t 2"); │ │ │ -Running (ulimit -t 2 && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-76770-0/3.m2" >"/tmp/M2-76770-0/3.out" 2>&1 )) │ │ │ +Running (ulimit -t 2 && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-134173-0/3.m2" >"/tmp/M2-134173-0/3.out" 2>&1 )) │ │ │ Killed │ │ │ Finished running. │ │ │ RunExternalM2: expected answer file does not exist │ │ │ │ │ │ i15 : h │ │ │ │ │ │ -o15 = HashTable{"answer file" => /tmp/M2-76770-0/3.ans} │ │ │ +o15 = HashTable{"answer file" => /tmp/M2-134173-0/3.ans} │ │ │ "exit code" => 0 │ │ │ - "output file" => /tmp/M2-76770-0/3.out │ │ │ + "output file" => /tmp/M2-134173-0/3.out │ │ │ "return code" => 9 │ │ │ "statistics" => null │ │ │ - "time used" => 3 │ │ │ + "time used" => 2 │ │ │ value => null │ │ │ │ │ │ o15 : HashTable │ │ │ │ │ │ i16 : if h#"output file" =!= null and fileExists(h#"output file") then get(h#"output file") │ │ │ │ │ │ o16 = │ │ │ - i1 : -- Script /tmp/M2-76770-0/3.m2 automatically generated by RunExternalM2 │ │ │ + i1 : -- Script /tmp/M2-134173-0/3.m2 automatically generated by RunExternalM2 │ │ │ needsPackage("RunExternalM2",Configuration=>{"isChild"=>true}); │ │ │ │ │ │ - i2 : load "/tmp/M2-76770-0/0.m2"; │ │ │ + i2 : load "/tmp/M2-134173-0/0.m2"; │ │ │ │ │ │ - i3 : runExternalM2ReturnAnswer("/tmp/M2-76770-0/3.ans",spin (10)); │ │ │ + i3 : runExternalM2ReturnAnswer("/tmp/M2-134173-0/3.ans",spin (10)); │ │ │ Spinning!! │ │ │ │ │ │ │ │ │ i17 : if h#"answer file" =!= null and fileExists(h#"answer file") then get(h#"answer file") │ │ │ │ │ │ i18 : h=runExternalM2(fn,"spin",3,KeepStatistics=>true); │ │ │ -Running (true && ( (/usr/bin/time --verbose sh -c '/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-76770-0/4.m2" >"/tmp/M2-76770-0/4.out" 2>&1') >"/tmp/M2-76770-0/4.stat" 2>&1 )) │ │ │ +Running (true && ( (/usr/bin/time --verbose sh -c '/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-134173-0/4.m2" >"/tmp/M2-134173-0/4.out" 2>&1') >"/tmp/M2-134173-0/4.stat" 2>&1 )) │ │ │ Finished running. │ │ │ │ │ │ i19 : h#"statistics" │ │ │ │ │ │ -o19 = Command being timed: "sh -c /usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-76770-0/4.m2" >"/tmp/M2-76770-0/4.out" 2>&1" │ │ │ - User time (seconds): 4.41 │ │ │ - System time (seconds): 0.09 │ │ │ - Percent of CPU this job got: 89% │ │ │ - Elapsed (wall clock) time (h:mm:ss or m:ss): 0:05.03 │ │ │ +o19 = Command being timed: "sh -c /usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-134173-0/4.m2" >"/tmp/M2-134173-0/4.out" 2>&1" │ │ │ + User time (seconds): 4.49 │ │ │ + System time (seconds): 0.26 │ │ │ + Percent of CPU this job got: 112% │ │ │ + Elapsed (wall clock) time (h:mm:ss or m:ss): 0:04.24 │ │ │ Average shared text size (kbytes): 0 │ │ │ Average unshared data size (kbytes): 0 │ │ │ Average stack size (kbytes): 0 │ │ │ Average total size (kbytes): 0 │ │ │ - Maximum resident set size (kbytes): 260880 │ │ │ + Maximum resident set size (kbytes): 336780 │ │ │ Average resident set size (kbytes): 0 │ │ │ Major (requiring I/O) page faults: 0 │ │ │ - Minor (reclaiming a frame) page faults: 9418 │ │ │ - Voluntary context switches: 2569 │ │ │ - Involuntary context switches: 2025 │ │ │ + Minor (reclaiming a frame) page faults: 11173 │ │ │ + Voluntary context switches: 8564 │ │ │ + Involuntary context switches: 773 │ │ │ Swaps: 0 │ │ │ File system inputs: 0 │ │ │ - File system outputs: 0 │ │ │ + File system outputs: 16 │ │ │ Socket messages sent: 0 │ │ │ Socket messages received: 0 │ │ │ Signals delivered: 0 │ │ │ Page size (bytes): 4096 │ │ │ Exit status: 0 │ │ │ │ │ │ │ │ │ i20 : v=/// A complicated string^%&C@#CERQVASDFQ#BQBSDH"' ewrjwklsf///; │ │ │ │ │ │ i21 : (runExternalM2(fn,identity,v))#value===v │ │ │ -Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-76770-0/6.m2" >"/tmp/M2-76770-0/6.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-134173-0/6.m2" >"/tmp/M2-134173-0/6.out" 2>&1 )) │ │ │ Finished running. │ │ │ │ │ │ o21 = true │ │ │ │ │ │ i22 : R=QQ[x,y]; │ │ │ │ │ │ i23 : v=coker random(R^2,R^{3:-1}) │ │ │ @@ -139,54 +139,54 @@ │ │ │ o23 = cokernel | 9/2x+1/2y x+3/4y 7/4x+7/9y | │ │ │ | 9/4x+1/2y 3/2x+3/4y 7/10x+1/2y | │ │ │ │ │ │ 2 │ │ │ o23 : R-module, quotient of R │ │ │ │ │ │ i24 : h=runExternalM2(fn,identity,v) │ │ │ -Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-76770-0/7.m2" >"/tmp/M2-76770-0/7.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-134173-0/7.m2" >"/tmp/M2-134173-0/7.out" 2>&1 )) │ │ │ Finished running. │ │ │ RunExternalM2: expected answer file does not exist │ │ │ │ │ │ -o24 = HashTable{"answer file" => /tmp/M2-76770-0/7.ans} │ │ │ +o24 = HashTable{"answer file" => /tmp/M2-134173-0/7.ans} │ │ │ "exit code" => 1 │ │ │ - "output file" => /tmp/M2-76770-0/7.out │ │ │ + "output file" => /tmp/M2-134173-0/7.out │ │ │ "return code" => 256 │ │ │ "statistics" => null │ │ │ "time used" => 1 │ │ │ value => null │ │ │ │ │ │ o24 : HashTable │ │ │ │ │ │ i25 : get(h#"output file") │ │ │ │ │ │ o25 = │ │ │ - i1 : -- Script /tmp/M2-76770-0/7.m2 automatically generated by RunExternalM2 │ │ │ + i1 : -- Script /tmp/M2-134173-0/7.m2 automatically generated by RunExternalM2 │ │ │ needsPackage("RunExternalM2",Configuration=>{"isChild"=>true}); │ │ │ │ │ │ - i2 : load "/tmp/M2-76770-0/0.m2"; │ │ │ + i2 : load "/tmp/M2-134173-0/0.m2"; │ │ │ │ │ │ - i3 : runExternalM2ReturnAnswer("/tmp/M2-76770-0/7.ans",identity (cokernel(map(R^2,R^{3:{-1}},{{(9/2)*x+(1/2)*y, x+(3/4)*y, (7/4)*x+(7/9)*y}, {(9/4)*x+(1/2)*y, (3/2)*x+(3/4)*y, (7/10)*x+(1/2)*y}})))); │ │ │ - stdio:4:74:(3):[1]: error: no method for binary operator ^ applied to objects: │ │ │ + i3 : runExternalM2ReturnAnswer("/tmp/M2-134173-0/7.ans",identity (cokernel(map(R^2,R^{3:{-1}},{{(9/2)*x+(1/2)*y, x+(3/4)*y, (7/4)*x+(7/9)*y}, {(9/4)*x+(1/2)*y, (3/2)*x+(3/4)*y, (7/10)*x+(1/2)*y}})))); │ │ │ + stdio:4:75:(3):[1]: error: no method for binary operator ^ applied to objects: │ │ │ R (of class Symbol) │ │ │ ^ 2 (of class ZZ) │ │ │ │ │ │ │ │ │ i26 : fn<"/tmp/M2-76770-0/8.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-134173-0/8.m2" >"/tmp/M2-134173-0/8.out" 2>&1 )) │ │ │ Finished running. │ │ │ │ │ │ o27 = true │ │ │ │ │ │ i28 : v=R; │ │ │ │ │ │ i29 : h=runExternalM2(fn,identity,v); │ │ │ -Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-76770-0/9.m2" >"/tmp/M2-76770-0/9.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-134173-0/9.m2" >"/tmp/M2-134173-0/9.out" 2>&1 )) │ │ │ Finished running. │ │ │ │ │ │ i30 : h#value │ │ │ │ │ │ o30 = QQ[x..y] │ │ │ │ │ │ o30 : PolynomialRing │ │ ├── ./usr/share/doc/Macaulay2/RunExternalM2/html/_resource_splimits.html │ │ │ @@ -66,16 +66,16 @@ │ │ │
      i1 : run("ulimit -a")
      │ │ │  time(seconds)        700
      │ │ │  file(blocks)         unlimited
      │ │ │  data(kbytes)         unlimited
      │ │ │  stack(kbytes)        8192
      │ │ │  coredump(blocks)     unlimited
      │ │ │  memory(kbytes)       850000
      │ │ │ -locked memory(kbytes) 2047000
      │ │ │ -process              63802
      │ │ │ +locked memory(kbytes) 8192
      │ │ │ +process              256974
      │ │ │  nofiles              512
      │ │ │  vmemory(kbytes)      unlimited
      │ │ │  locks                unlimited
      │ │ │  rtprio               0
      │ │ │  
      │ │ │  o1 = 0
      │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -34,16 +34,16 @@ │ │ │ │ i1 : run("ulimit -a") │ │ │ │ time(seconds) 700 │ │ │ │ file(blocks) unlimited │ │ │ │ data(kbytes) unlimited │ │ │ │ stack(kbytes) 8192 │ │ │ │ coredump(blocks) unlimited │ │ │ │ memory(kbytes) 850000 │ │ │ │ -locked memory(kbytes) 2047000 │ │ │ │ -process 63802 │ │ │ │ +locked memory(kbytes) 8192 │ │ │ │ +process 256974 │ │ │ │ nofiles 512 │ │ │ │ vmemory(kbytes) unlimited │ │ │ │ locks unlimited │ │ │ │ rtprio 0 │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ This starts a new shell and executes the command given, which in this case │ │ ├── ./usr/share/doc/Macaulay2/RunExternalM2/html/_run__External__M2.html │ │ │ @@ -91,15 +91,15 @@ │ │ │

      The hash table h stores the exit code of the created Macaulay2 process, the return code of the created Macaulay2 process (see run for details; this is usually 256 times the exit code, plus information about any signals received by the child), the wall-clock time used (as opposed to the CPU time), the name of the output file (unless it was deleted), the name of the answer file (unless it was deleted), any statistics recorded about the resource usage, and the value returned by the function func. If the child process terminates abnormally, then usually the exit code is nonzero and the value returned is null.

      │ │ │

      For example, we can write a few functions to a temporary file:

      │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -112,15 +112,15 @@ │ │ │
    i1 : fn=temporaryFileName()|".m2"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-76770-0/0.m2
    │ │ │ +o1 = /tmp/M2-134173-0/0.m2 │ │ │
    i2 : fn<</// square = (x) -> (stderr<<"Running"<<endl; sleep(1); x^2); ///<<endl;
    │ │ │
    i3 : fn<</// justexit = () -> ( exit(27); ); ///<<endl;
    │ │ │
    │ │ │
    │ │ │

    and then call them:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -309,35 +309,35 @@ │ │ │

    To view the error message:

    │ │ │ │ │ │
    i6 : h=runExternalM2(fn,"square",(4));
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-76770-0/1.m2" >"/tmp/M2-76770-0/1.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-134173-0/1.m2" >"/tmp/M2-134173-0/1.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │
    i7 : h
    │ │ │  
    │ │ │  o7 = HashTable{"answer file" => null}
    │ │ │                 "exit code" => 0
    │ │ │ @@ -146,27 +146,27 @@
    │ │ │          
    │ │ │

    │ │ │

    An abnormal program exit will have a nonzero exit code; also, the value will be null, the output file should exist, but the answer file may not exist unless the routine finished successfully.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : h=runExternalM2(fn,"justexit",());
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-76770-0/2.m2" >"/tmp/M2-76770-0/2.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-134173-0/2.m2" >"/tmp/M2-134173-0/2.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │
    i11 : h
    │ │ │  
    │ │ │ -o11 = HashTable{"answer file" => /tmp/M2-76770-0/2.ans}
    │ │ │ +o11 = HashTable{"answer file" => /tmp/M2-134173-0/2.ans}
    │ │ │                  "exit code" => 27
    │ │ │ -                "output file" => /tmp/M2-76770-0/2.out
    │ │ │ +                "output file" => /tmp/M2-134173-0/2.out
    │ │ │                  "return code" => 6912
    │ │ │                  "statistics" => null
    │ │ │ -                "time used" => 1
    │ │ │ +                "time used" => 2
    │ │ │                  value => null
    │ │ │  
    │ │ │  o11 : HashTable
    │ │ │
    i12 : fileExists(h#"output file")
    │ │ │  
    │ │ │ @@ -180,79 +180,79 @@
    │ │ │          
    │ │ │
    │ │ │

    Here, we use resource limits to limit the routine to 2 seconds of computational time, while the system is asked to use 10 seconds of computational time:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : h=runExternalM2(fn,"spin",10,PreRunScript=>"ulimit -t 2");
    │ │ │ -Running (ulimit -t 2 && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-76770-0/3.m2" >"/tmp/M2-76770-0/3.out" 2>&1 ))
    │ │ │ +Running (ulimit -t 2 && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-134173-0/3.m2" >"/tmp/M2-134173-0/3.out" 2>&1 ))
    │ │ │  Killed
    │ │ │  Finished running.
    │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │
    i15 : h
    │ │ │  
    │ │ │ -o15 = HashTable{"answer file" => /tmp/M2-76770-0/3.ans}
    │ │ │ +o15 = HashTable{"answer file" => /tmp/M2-134173-0/3.ans}
    │ │ │                  "exit code" => 0
    │ │ │ -                "output file" => /tmp/M2-76770-0/3.out
    │ │ │ +                "output file" => /tmp/M2-134173-0/3.out
    │ │ │                  "return code" => 9
    │ │ │                  "statistics" => null
    │ │ │ -                "time used" => 3
    │ │ │ +                "time used" => 2
    │ │ │                  value => null
    │ │ │  
    │ │ │  o15 : HashTable
    │ │ │
    i16 : if h#"output file" =!= null and fileExists(h#"output file") then get(h#"output file")
    │ │ │  
    │ │ │  o16 = 
    │ │ │ -      i1 : -- Script /tmp/M2-76770-0/3.m2 automatically generated by RunExternalM2
    │ │ │ +      i1 : -- Script /tmp/M2-134173-0/3.m2 automatically generated by RunExternalM2
    │ │ │             needsPackage("RunExternalM2",Configuration=>{"isChild"=>true});
    │ │ │  
    │ │ │ -      i2 : load "/tmp/M2-76770-0/0.m2";
    │ │ │ +      i2 : load "/tmp/M2-134173-0/0.m2";
    │ │ │  
    │ │ │ -      i3 : runExternalM2ReturnAnswer("/tmp/M2-76770-0/3.ans",spin (10));
    │ │ │ +      i3 : runExternalM2ReturnAnswer("/tmp/M2-134173-0/3.ans",spin (10));
    │ │ │        Spinning!!
    │ │ │
    i17 : if h#"answer file" =!= null and fileExists(h#"answer file") then get(h#"answer file")
    │ │ │
    │ │ │
    │ │ │

    │ │ │

    We can get quite a lot of detail on the resources used with the KeepStatistics command:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i18 : h=runExternalM2(fn,"spin",3,KeepStatistics=>true);
    │ │ │ -Running (true && ( (/usr/bin/time --verbose sh -c '/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-76770-0/4.m2" >"/tmp/M2-76770-0/4.out" 2>&1') >"/tmp/M2-76770-0/4.stat" 2>&1 ))
    │ │ │ +Running (true && ( (/usr/bin/time --verbose sh -c '/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-134173-0/4.m2" >"/tmp/M2-134173-0/4.out" 2>&1') >"/tmp/M2-134173-0/4.stat" 2>&1 ))
    │ │ │  Finished running.
    │ │ │
    i19 : h#"statistics"
    │ │ │  
    │ │ │ -o19 =         Command being timed: "sh -c /usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-76770-0/4.m2" >"/tmp/M2-76770-0/4.out" 2>&1"
    │ │ │ -              User time (seconds): 4.41
    │ │ │ -              System time (seconds): 0.09
    │ │ │ -              Percent of CPU this job got: 89%
    │ │ │ -              Elapsed (wall clock) time (h:mm:ss or m:ss): 0:05.03
    │ │ │ +o19 =         Command being timed: "sh -c /usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-134173-0/4.m2" >"/tmp/M2-134173-0/4.out" 2>&1"
    │ │ │ +              User time (seconds): 4.49
    │ │ │ +              System time (seconds): 0.26
    │ │ │ +              Percent of CPU this job got: 112%
    │ │ │ +              Elapsed (wall clock) time (h:mm:ss or m:ss): 0:04.24
    │ │ │                Average shared text size (kbytes): 0
    │ │ │                Average unshared data size (kbytes): 0
    │ │ │                Average stack size (kbytes): 0
    │ │ │                Average total size (kbytes): 0
    │ │ │ -              Maximum resident set size (kbytes): 260880
    │ │ │ +              Maximum resident set size (kbytes): 336780
    │ │ │                Average resident set size (kbytes): 0
    │ │ │                Major (requiring I/O) page faults: 0
    │ │ │ -              Minor (reclaiming a frame) page faults: 9418
    │ │ │ -              Voluntary context switches: 2569
    │ │ │ -              Involuntary context switches: 2025
    │ │ │ +              Minor (reclaiming a frame) page faults: 11173
    │ │ │ +              Voluntary context switches: 8564
    │ │ │ +              Involuntary context switches: 773
    │ │ │                Swaps: 0
    │ │ │                File system inputs: 0
    │ │ │ -              File system outputs: 0
    │ │ │ +              File system outputs: 16
    │ │ │                Socket messages sent: 0
    │ │ │                Socket messages received: 0
    │ │ │                Signals delivered: 0
    │ │ │                Page size (bytes): 4096
    │ │ │                Exit status: 0
    │ │ │
    │ │ │ @@ -262,15 +262,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i20 : v=/// A complicated string^%&C@#CERQVASDFQ#BQBSDH"' ewrjwklsf///;
    │ │ │
    i21 : (runExternalM2(fn,identity,v))#value===v
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-76770-0/6.m2" >"/tmp/M2-76770-0/6.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-134173-0/6.m2" >"/tmp/M2-134173-0/6.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │  
    │ │ │  o21 = true
    │ │ │
    │ │ │
    │ │ │

    Some care is required, however:

    │ │ │ @@ -286,21 +286,21 @@ │ │ │ | 9/4x+1/2y 3/2x+3/4y 7/10x+1/2y | │ │ │ │ │ │ 2 │ │ │ o23 : R-module, quotient of R
    │ │ │
    i24 : h=runExternalM2(fn,identity,v)
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-76770-0/7.m2" >"/tmp/M2-76770-0/7.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-134173-0/7.m2" >"/tmp/M2-134173-0/7.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │  
    │ │ │ -o24 = HashTable{"answer file" => /tmp/M2-76770-0/7.ans}
    │ │ │ +o24 = HashTable{"answer file" => /tmp/M2-134173-0/7.ans}
    │ │ │                  "exit code" => 1
    │ │ │ -                "output file" => /tmp/M2-76770-0/7.out
    │ │ │ +                "output file" => /tmp/M2-134173-0/7.out
    │ │ │                  "return code" => 256
    │ │ │                  "statistics" => null
    │ │ │                  "time used" => 1
    │ │ │                  value => null
    │ │ │  
    │ │ │  o24 : HashTable
    │ │ │
    │ │ │ │ │ │ │ │ │
    i25 : get(h#"output file")
    │ │ │  
    │ │ │  o25 = 
    │ │ │ -      i1 : -- Script /tmp/M2-76770-0/7.m2 automatically generated by RunExternalM2
    │ │ │ +      i1 : -- Script /tmp/M2-134173-0/7.m2 automatically generated by RunExternalM2
    │ │ │             needsPackage("RunExternalM2",Configuration=>{"isChild"=>true});
    │ │ │  
    │ │ │ -      i2 : load "/tmp/M2-76770-0/0.m2";
    │ │ │ +      i2 : load "/tmp/M2-134173-0/0.m2";
    │ │ │  
    │ │ │ -      i3 : runExternalM2ReturnAnswer("/tmp/M2-76770-0/7.ans",identity (cokernel(map(R^2,R^{3:{-1}},{{(9/2)*x+(1/2)*y, x+(3/4)*y, (7/4)*x+(7/9)*y}, {(9/4)*x+(1/2)*y, (3/2)*x+(3/4)*y, (7/10)*x+(1/2)*y}}))));
    │ │ │ -      stdio:4:74:(3):[1]: error: no method for binary operator ^ applied to objects:
    │ │ │ +      i3 : runExternalM2ReturnAnswer("/tmp/M2-134173-0/7.ans",identity (cokernel(map(R^2,R^{3:{-1}},{{(9/2)*x+(1/2)*y, x+(3/4)*y, (7/4)*x+(7/9)*y}, {(9/4)*x+(1/2)*y, (3/2)*x+(3/4)*y, (7/10)*x+(1/2)*y}}))));
    │ │ │ +      stdio:4:75:(3):[1]: error: no method for binary operator ^ applied to objects:
    │ │ │                    R (of class Symbol)
    │ │ │              ^     2 (of class ZZ)
    │ │ │
    │ │ │
    │ │ │

    Keep in mind that the object you are passing must make sense in the context of the file containing your function! For instance, here we need to define the ring:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i26 : fn<<///R=QQ[x,y];///<<endl<<flush;
    │ │ │
    i27 : (runExternalM2(fn,identity,v))#value===v
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-76770-0/8.m2" >"/tmp/M2-76770-0/8.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-134173-0/8.m2" >"/tmp/M2-134173-0/8.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │  
    │ │ │  o27 = true
    │ │ │
    │ │ │
    │ │ │

    This problem can be avoided by following some suggestions for using RunExternalM2.

    │ │ │ @@ -345,15 +345,15 @@ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i28 : v=R;
    │ │ │
    i29 : h=runExternalM2(fn,identity,v);
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-76770-0/9.m2" >"/tmp/M2-76770-0/9.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-134173-0/9.m2" >"/tmp/M2-134173-0/9.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │
    i30 : h#value
    │ │ │  
    │ │ │  o30 = QQ[x..y]
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -46,25 +46,25 @@
    │ │ │ │  the output file (unless it was deleted), the name of the answer file (unless it
    │ │ │ │  was deleted), any statistics recorded about the resource usage, and the value
    │ │ │ │  returned by the function func. If the child process terminates abnormally, then
    │ │ │ │  usually the exit code is nonzero and the value returned is _n_u_l_l.
    │ │ │ │  For example, we can write a few functions to a temporary file:
    │ │ │ │  i1 : fn=temporaryFileName()|".m2"
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-76770-0/0.m2
    │ │ │ │ +o1 = /tmp/M2-134173-0/0.m2
    │ │ │ │  i2 : fn< (stderr<<"Running"< ( exit(27); ); ///< (stderr<<"Spinning!!"<"/tmp/M2-76770-0/1.out" 2>&1 ))
    │ │ │ │ +M2-134173-0/1.m2" >"/tmp/M2-134173-0/1.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  i7 : h
    │ │ │ │  
    │ │ │ │  o7 = HashTable{"answer file" => null}
    │ │ │ │                 "exit code" => 0
    │ │ │ │                 "output file" => null
    │ │ │ │                 "return code" => 0
    │ │ │ │ @@ -80,167 +80,167 @@
    │ │ │ │  
    │ │ │ │  o9 = true
    │ │ │ │  An abnormal program exit will have a nonzero exit code; also, the value will be
    │ │ │ │  null, the output file should exist, but the answer file may not exist unless
    │ │ │ │  the routine finished successfully.
    │ │ │ │  i10 : h=runExternalM2(fn,"justexit",());
    │ │ │ │  Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/
    │ │ │ │ -M2-76770-0/2.m2" >"/tmp/M2-76770-0/2.out" 2>&1 ))
    │ │ │ │ +M2-134173-0/2.m2" >"/tmp/M2-134173-0/2.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │ │  i11 : h
    │ │ │ │  
    │ │ │ │ -o11 = HashTable{"answer file" => /tmp/M2-76770-0/2.ans}
    │ │ │ │ +o11 = HashTable{"answer file" => /tmp/M2-134173-0/2.ans}
    │ │ │ │                  "exit code" => 27
    │ │ │ │ -                "output file" => /tmp/M2-76770-0/2.out
    │ │ │ │ +                "output file" => /tmp/M2-134173-0/2.out
    │ │ │ │                  "return code" => 6912
    │ │ │ │                  "statistics" => null
    │ │ │ │ -                "time used" => 1
    │ │ │ │ +                "time used" => 2
    │ │ │ │                  value => null
    │ │ │ │  
    │ │ │ │  o11 : HashTable
    │ │ │ │  i12 : fileExists(h#"output file")
    │ │ │ │  
    │ │ │ │  o12 = true
    │ │ │ │  i13 : fileExists(h#"answer file")
    │ │ │ │  
    │ │ │ │  o13 = false
    │ │ │ │  Here, we use _r_e_s_o_u_r_c_e_ _l_i_m_i_t_s to limit the routine to 2 seconds of computational
    │ │ │ │  time, while the system is asked to use 10 seconds of computational time:
    │ │ │ │  i14 : h=runExternalM2(fn,"spin",10,PreRunScript=>"ulimit -t 2");
    │ │ │ │  Running (ulimit -t 2 && (/usr/bin/M2-binary  --stop --no-debug --silent  -
    │ │ │ │ -q  <"/tmp/M2-76770-0/3.m2" >"/tmp/M2-76770-0/3.out" 2>&1 ))
    │ │ │ │ +q  <"/tmp/M2-134173-0/3.m2" >"/tmp/M2-134173-0/3.out" 2>&1 ))
    │ │ │ │  Killed
    │ │ │ │  Finished running.
    │ │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │ │  i15 : h
    │ │ │ │  
    │ │ │ │ -o15 = HashTable{"answer file" => /tmp/M2-76770-0/3.ans}
    │ │ │ │ +o15 = HashTable{"answer file" => /tmp/M2-134173-0/3.ans}
    │ │ │ │                  "exit code" => 0
    │ │ │ │ -                "output file" => /tmp/M2-76770-0/3.out
    │ │ │ │ +                "output file" => /tmp/M2-134173-0/3.out
    │ │ │ │                  "return code" => 9
    │ │ │ │                  "statistics" => null
    │ │ │ │ -                "time used" => 3
    │ │ │ │ +                "time used" => 2
    │ │ │ │                  value => null
    │ │ │ │  
    │ │ │ │  o15 : HashTable
    │ │ │ │  i16 : if h#"output file" =!= null and fileExists(h#"output file") then get
    │ │ │ │  (h#"output file")
    │ │ │ │  
    │ │ │ │  o16 =
    │ │ │ │ -      i1 : -- Script /tmp/M2-76770-0/3.m2 automatically generated by
    │ │ │ │ +      i1 : -- Script /tmp/M2-134173-0/3.m2 automatically generated by
    │ │ │ │  RunExternalM2
    │ │ │ │             needsPackage("RunExternalM2",Configuration=>{"isChild"=>true});
    │ │ │ │  
    │ │ │ │ -      i2 : load "/tmp/M2-76770-0/0.m2";
    │ │ │ │ +      i2 : load "/tmp/M2-134173-0/0.m2";
    │ │ │ │  
    │ │ │ │ -      i3 : runExternalM2ReturnAnswer("/tmp/M2-76770-0/3.ans",spin (10));
    │ │ │ │ +      i3 : runExternalM2ReturnAnswer("/tmp/M2-134173-0/3.ans",spin (10));
    │ │ │ │        Spinning!!
    │ │ │ │  i17 : if h#"answer file" =!= null and fileExists(h#"answer file") then get
    │ │ │ │  (h#"answer file")
    │ │ │ │  We can get quite a lot of detail on the resources used with the _K_e_e_p_S_t_a_t_i_s_t_i_c_s
    │ │ │ │  command:
    │ │ │ │  i18 : h=runExternalM2(fn,"spin",3,KeepStatistics=>true);
    │ │ │ │  Running (true && ( (/usr/bin/time --verbose sh -c '/usr/bin/M2-binary  --stop -
    │ │ │ │ --no-debug --silent  -q  <"/tmp/M2-76770-0/4.m2" >"/tmp/M2-76770-0/4.out" 2>&1')
    │ │ │ │ ->"/tmp/M2-76770-0/4.stat" 2>&1 ))
    │ │ │ │ +-no-debug --silent  -q  <"/tmp/M2-134173-0/4.m2" >"/tmp/M2-134173-0/4.out"
    │ │ │ │ +2>&1') >"/tmp/M2-134173-0/4.stat" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  i19 : h#"statistics"
    │ │ │ │  
    │ │ │ │  o19 =         Command being timed: "sh -c /usr/bin/M2-binary  --stop --no-debug
    │ │ │ │ ---silent  -q  <"/tmp/M2-76770-0/4.m2" >"/tmp/M2-76770-0/4.out" 2>&1"
    │ │ │ │ -              User time (seconds): 4.41
    │ │ │ │ -              System time (seconds): 0.09
    │ │ │ │ -              Percent of CPU this job got: 89%
    │ │ │ │ -              Elapsed (wall clock) time (h:mm:ss or m:ss): 0:05.03
    │ │ │ │ +--silent  -q  <"/tmp/M2-134173-0/4.m2" >"/tmp/M2-134173-0/4.out" 2>&1"
    │ │ │ │ +              User time (seconds): 4.49
    │ │ │ │ +              System time (seconds): 0.26
    │ │ │ │ +              Percent of CPU this job got: 112%
    │ │ │ │ +              Elapsed (wall clock) time (h:mm:ss or m:ss): 0:04.24
    │ │ │ │                Average shared text size (kbytes): 0
    │ │ │ │                Average unshared data size (kbytes): 0
    │ │ │ │                Average stack size (kbytes): 0
    │ │ │ │                Average total size (kbytes): 0
    │ │ │ │ -              Maximum resident set size (kbytes): 260880
    │ │ │ │ +              Maximum resident set size (kbytes): 336780
    │ │ │ │                Average resident set size (kbytes): 0
    │ │ │ │                Major (requiring I/O) page faults: 0
    │ │ │ │ -              Minor (reclaiming a frame) page faults: 9418
    │ │ │ │ -              Voluntary context switches: 2569
    │ │ │ │ -              Involuntary context switches: 2025
    │ │ │ │ +              Minor (reclaiming a frame) page faults: 11173
    │ │ │ │ +              Voluntary context switches: 8564
    │ │ │ │ +              Involuntary context switches: 773
    │ │ │ │                Swaps: 0
    │ │ │ │                File system inputs: 0
    │ │ │ │ -              File system outputs: 0
    │ │ │ │ +              File system outputs: 16
    │ │ │ │                Socket messages sent: 0
    │ │ │ │                Socket messages received: 0
    │ │ │ │                Signals delivered: 0
    │ │ │ │                Page size (bytes): 4096
    │ │ │ │                Exit status: 0
    │ │ │ │  We can handle most kinds of objects as return values, although _M_u_t_a_b_l_e_M_a_t_r_i_x
    │ │ │ │  does not work. Here, we use the built-in _i_d_e_n_t_i_t_y function:
    │ │ │ │  i20 : v=/// A complicated string^%&C@#CERQVASDFQ#BQBSDH"' ewrjwklsf///;
    │ │ │ │  i21 : (runExternalM2(fn,identity,v))#value===v
    │ │ │ │  Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/
    │ │ │ │ -M2-76770-0/6.m2" >"/tmp/M2-76770-0/6.out" 2>&1 ))
    │ │ │ │ +M2-134173-0/6.m2" >"/tmp/M2-134173-0/6.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  
    │ │ │ │  o21 = true
    │ │ │ │  Some care is required, however:
    │ │ │ │  i22 : R=QQ[x,y];
    │ │ │ │  i23 : v=coker random(R^2,R^{3:-1})
    │ │ │ │  
    │ │ │ │  o23 = cokernel | 9/2x+1/2y x+3/4y    7/4x+7/9y  |
    │ │ │ │                 | 9/4x+1/2y 3/2x+3/4y 7/10x+1/2y |
    │ │ │ │  
    │ │ │ │                               2
    │ │ │ │  o23 : R-module, quotient of R
    │ │ │ │  i24 : h=runExternalM2(fn,identity,v)
    │ │ │ │  Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/
    │ │ │ │ -M2-76770-0/7.m2" >"/tmp/M2-76770-0/7.out" 2>&1 ))
    │ │ │ │ +M2-134173-0/7.m2" >"/tmp/M2-134173-0/7.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │ │  
    │ │ │ │ -o24 = HashTable{"answer file" => /tmp/M2-76770-0/7.ans}
    │ │ │ │ +o24 = HashTable{"answer file" => /tmp/M2-134173-0/7.ans}
    │ │ │ │                  "exit code" => 1
    │ │ │ │ -                "output file" => /tmp/M2-76770-0/7.out
    │ │ │ │ +                "output file" => /tmp/M2-134173-0/7.out
    │ │ │ │                  "return code" => 256
    │ │ │ │                  "statistics" => null
    │ │ │ │                  "time used" => 1
    │ │ │ │                  value => null
    │ │ │ │  
    │ │ │ │  o24 : HashTable
    │ │ │ │  To view the error message:
    │ │ │ │  i25 : get(h#"output file")
    │ │ │ │  
    │ │ │ │  o25 =
    │ │ │ │ -      i1 : -- Script /tmp/M2-76770-0/7.m2 automatically generated by
    │ │ │ │ +      i1 : -- Script /tmp/M2-134173-0/7.m2 automatically generated by
    │ │ │ │  RunExternalM2
    │ │ │ │             needsPackage("RunExternalM2",Configuration=>{"isChild"=>true});
    │ │ │ │  
    │ │ │ │ -      i2 : load "/tmp/M2-76770-0/0.m2";
    │ │ │ │ +      i2 : load "/tmp/M2-134173-0/0.m2";
    │ │ │ │  
    │ │ │ │ -      i3 : runExternalM2ReturnAnswer("/tmp/M2-76770-0/7.ans",identity (cokernel
    │ │ │ │ -(map(R^2,R^{3:{-1}},{{(9/2)*x+(1/2)*y, x+(3/4)*y, (7/4)*x+(7/9)*y}, {(9/4)*x+
    │ │ │ │ -(1/2)*y, (3/2)*x+(3/4)*y, (7/10)*x+(1/2)*y}}))));
    │ │ │ │ -      stdio:4:74:(3):[1]: error: no method for binary operator ^ applied to
    │ │ │ │ +      i3 : runExternalM2ReturnAnswer("/tmp/M2-134173-0/7.ans",identity
    │ │ │ │ +(cokernel(map(R^2,R^{3:{-1}},{{(9/2)*x+(1/2)*y, x+(3/4)*y, (7/4)*x+(7/9)*y}, {
    │ │ │ │ +(9/4)*x+(1/2)*y, (3/2)*x+(3/4)*y, (7/10)*x+(1/2)*y}}))));
    │ │ │ │ +      stdio:4:75:(3):[1]: error: no method for binary operator ^ applied to
    │ │ │ │  objects:
    │ │ │ │                    R (of class Symbol)
    │ │ │ │              ^     2 (of class ZZ)
    │ │ │ │  Keep in mind that the object you are passing must make sense in the context of
    │ │ │ │  the file containing your function! For instance, here we need to define the
    │ │ │ │  ring:
    │ │ │ │  i26 : fn<"/tmp/M2-76770-0/8.out" 2>&1 ))
    │ │ │ │ +M2-134173-0/8.m2" >"/tmp/M2-134173-0/8.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  
    │ │ │ │  o27 = true
    │ │ │ │  This problem can be avoided by following some _s_u_g_g_e_s_t_i_o_n_s_ _f_o_r_ _u_s_i_n_g
    │ │ │ │  _R_u_n_E_x_t_e_r_n_a_l_M_2.
    │ │ │ │  The objects may unavoidably lose some internal references, though:
    │ │ │ │  i28 : v=R;
    │ │ │ │  i29 : h=runExternalM2(fn,identity,v);
    │ │ │ │  Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/
    │ │ │ │ -M2-76770-0/9.m2" >"/tmp/M2-76770-0/9.out" 2>&1 ))
    │ │ │ │ +M2-134173-0/9.m2" >"/tmp/M2-134173-0/9.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  i30 : h#value
    │ │ │ │  
    │ │ │ │  o30 = QQ[x..y]
    │ │ │ │  
    │ │ │ │  o30 : PolynomialRing
    │ │ │ │  i31 : v===h#value
    │ │ ├── ./usr/share/doc/Macaulay2/SCMAlgebras/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=22
    │ │ │  Y2Fub25pY2FsTW9kdWxlKElkZWFsKQ==
    │ │ │  #:len=266
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzE1LCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhjYW5vbmljYWxNb2R1bGUsSWRlYWwpLCJjYW5vbmlj
    │ │ ├── ./usr/share/doc/Macaulay2/SCSCP/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=29
    │ │ │  UmVtb3RlT2JqZWN0IGFuZCBSZW1vdGVPYmplY3Q=
    │ │ │  #:len=217
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTMwLCAidW5kb2N1bWVudGVkIiA9PiB0
    │ │ │  cnVlLCBzeW1ib2wgRG9jdW1lbnRUYWcgPT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhzeW1ib2wg
    │ │ ├── ./usr/share/doc/Macaulay2/SLPexpressions/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=21
    │ │ │  dHJhbnNwb3NlKEdhdGVNYXRyaXgp
    │ │ │  #:len=299
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNTQ5LCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyh0cmFuc3Bvc2UsR2F0ZU1hdHJpeCksInRyYW5zcG9z
    │ │ ├── ./usr/share/doc/Macaulay2/SLPexpressions/example-output/___S__L__Pexpressions.out
    │ │ │ @@ -30,23 +30,23 @@
    │ │ │                                              )
    │ │ │  
    │ │ │                            "variable positions" => {-1}
    │ │ │  
    │ │ │  o5 : InterpretedSLProgram
    │ │ │  
    │ │ │  i6 : time A = evaluate(slp,matrix{{1}});
    │ │ │ - -- used 0.00272579s (cpu); 0.000187722s (thread); 0s (gc)
    │ │ │ + -- used 0.00178726s (cpu); 0.000166362s (thread); 0s (gc)
    │ │ │  
    │ │ │                1       1
    │ │ │  o6 : Matrix ZZ  <-- ZZ
    │ │ │  
    │ │ │  i7 : ZZ[y];
    │ │ │  
    │ │ │  i8 : time B = sub((y+1)^(2^n),{y=>1})
    │ │ │ - -- used 4.85636s (cpu); 3.34076s (thread); 0s (gc)
    │ │ │ + -- used 4.02758s (cpu); 2.91964s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = 104438888141315250669175271071662438257996424904738378038423348328395390
    │ │ │       797155745684882681193499755834089010671443926283798757343818579360726323
    │ │ │       608785136527794595697654370999834036159013438371831442807001185594622637
    │ │ │       631883939771274567233468434458661749680790870580370407128404874011860911
    │ │ │       446797778359802900668693897688178778594690563019026094059957945343282346
    │ │ │       930302669644305902501597239986771421554169383555988529148631823791443449
    │ │ ├── ./usr/share/doc/Macaulay2/SLPexpressions/html/index.html
    │ │ │ @@ -86,25 +86,25 @@
    │ │ │  
    │ │ │                            "variable positions" => {-1}
    │ │ │  
    │ │ │  o5 : InterpretedSLProgram
    │ │ │
    i6 : time A = evaluate(slp,matrix{{1}});
    │ │ │ - -- used 0.00272579s (cpu); 0.000187722s (thread); 0s (gc)
    │ │ │ + -- used 0.00178726s (cpu); 0.000166362s (thread); 0s (gc)
    │ │ │  
    │ │ │                1       1
    │ │ │  o6 : Matrix ZZ  <-- ZZ
    │ │ │
    i7 : ZZ[y];
    │ │ │
    i8 : time B = sub((y+1)^(2^n),{y=>1})
    │ │ │ - -- used 4.85636s (cpu); 3.34076s (thread); 0s (gc)
    │ │ │ + -- used 4.02758s (cpu); 2.91964s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = 104438888141315250669175271071662438257996424904738378038423348328395390
    │ │ │       797155745684882681193499755834089010671443926283798757343818579360726323
    │ │ │       608785136527794595697654370999834036159013438371831442807001185594622637
    │ │ │       631883939771274567233468434458661749680790870580370407128404874011860911
    │ │ │       446797778359802900668693897688178778594690563019026094059957945343282346
    │ │ │       930302669644305902501597239986771421554169383555988529148631823791443449
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -38,21 +38,21 @@
    │ │ │ │                                              output nodes: 1
    │ │ │ │                                              )
    │ │ │ │  
    │ │ │ │                            "variable positions" => {-1}
    │ │ │ │  
    │ │ │ │  o5 : InterpretedSLProgram
    │ │ │ │  i6 : time A = evaluate(slp,matrix{{1}});
    │ │ │ │ - -- used 0.00272579s (cpu); 0.000187722s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00178726s (cpu); 0.000166362s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                1       1
    │ │ │ │  o6 : Matrix ZZ  <-- ZZ
    │ │ │ │  i7 : ZZ[y];
    │ │ │ │  i8 : time B = sub((y+1)^(2^n),{y=>1})
    │ │ │ │ - -- used 4.85636s (cpu); 3.34076s (thread); 0s (gc)
    │ │ │ │ + -- used 4.02758s (cpu); 2.91964s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 = 104438888141315250669175271071662438257996424904738378038423348328395390
    │ │ │ │       797155745684882681193499755834089010671443926283798757343818579360726323
    │ │ │ │       608785136527794595697654370999834036159013438371831442807001185594622637
    │ │ │ │       631883939771274567233468434458661749680790870580370407128404874011860911
    │ │ │ │       446797778359802900668693897688178778594690563019026094059957945343282346
    │ │ │ │       930302669644305902501597239986771421554169383555988529148631823791443449
    │ │ ├── ./usr/share/doc/Macaulay2/SLnEquivariantMatrices/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=25
    │ │ │  c2xFcXVpdmFyaWFudFZlY3RvckJ1bmRsZQ==
    │ │ │  #:len=4962
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiY29tcHV0ZXMgYSBTTC1lcXVpdmFyaWFu
    │ │ │  dCB2ZWN0b3IgYnVuZGxlIG92ZXIgc29tZSBwcm9qZWN0aXZlIHNwYWNlIiwgImxpbmVudW0iID0+
    │ │ ├── ./usr/share/doc/Macaulay2/SRdeformations/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=31
    │ │ │  RXhhbXBsZSBmaXJzdCBvcmRlciBkZWZvcm1hdGlvbg==
    │ │ │  #:len=3174
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiRXhhbXBsZSBhY2Nlc3NpbmcgdGhlIGRh
    │ │ │  dGEgc3RvcmVkIGluIGEgZmlyc3Qgb3JkZXIgZGVmb3JtYXRpb24uIiwgImxpbmVudW0iID0+IDQy
    │ │ ├── ./usr/share/doc/Macaulay2/SRdeformations/example-output/___Co__Complex.out
    │ │ │ @@ -56,15 +56,15 @@
    │ │ │  
    │ │ │  o7 : co-complex of dim 2 embedded in dim 5 (printing facets)
    │ │ │       equidimensional, simplicial, F-vector {0, 0, 0, 8, 12, 6, 1}, Euler = 1
    │ │ │  
    │ │ │  i8 : cC=complement C
    │ │ │  
    │ │ │  o8 = 2: x x x  x x x  x x x  x x x  x x x  x x x  x x x  x x x  
    │ │ │ -         3 4 5  1 4 5  2 1 5  2 3 4  3 0 4  1 0 4  2 3 1  2 1 0
    │ │ │ +         4 5 3  1 4 5  1 5 2  4 2 3  0 4 3  1 0 4  1 2 3  1 0 2
    │ │ │  
    │ │ │  o8 : co-complex of dim 2 embedded in dim 5 (printing facets)
    │ │ │       equidimensional, simplicial, F-vector {0, 0, 0, 8, 12, 6, 1}, Euler = 1
    │ │ │  
    │ │ │  i9 : dualize cC
    │ │ │  
    │ │ │  o9 = 2: v v v  v v v  v v v  v v v  v v v  v v v  v v v  v v v
    │ │ ├── ./usr/share/doc/Macaulay2/SRdeformations/example-output/___Complex.out
    │ │ │ @@ -56,15 +56,15 @@
    │ │ │  
    │ │ │  o7 : co-complex of dim 2 embedded in dim 5 (printing facets)
    │ │ │       equidimensional, simplicial, F-vector {0, 0, 0, 8, 12, 6, 1}, Euler = 1
    │ │ │  
    │ │ │  i8 : complement C
    │ │ │  
    │ │ │  o8 = 2: x x x  x x x  x x x  x x x  x x x  x x x  x x x  x x x  
    │ │ │ -         3 4 5  1 4 5  2 1 5  2 3 4  3 0 4  1 0 4  2 3 1  2 1 0
    │ │ │ +         4 5 3  1 4 5  1 5 2  4 2 3  0 4 3  1 0 4  1 2 3  1 0 2
    │ │ │  
    │ │ │  o8 : co-complex of dim 2 embedded in dim 5 (printing facets)
    │ │ │       equidimensional, simplicial, F-vector {0, 0, 0, 8, 12, 6, 1}, Euler = 1
    │ │ │  
    │ │ │  i9 : R=QQ[x_0..x_5]
    │ │ │  
    │ │ │  o9 = R
    │ │ ├── ./usr/share/doc/Macaulay2/SRdeformations/html/___Co__Complex.html
    │ │ │ @@ -136,15 +136,15 @@
    │ │ │  o7 : co-complex of dim 2 embedded in dim 5 (printing facets)
    │ │ │       equidimensional, simplicial, F-vector {0, 0, 0, 8, 12, 6, 1}, Euler = 1
    │ │ │
    i8 : cC=complement C
    │ │ │  
    │ │ │  o8 = 2: x x x  x x x  x x x  x x x  x x x  x x x  x x x  x x x  
    │ │ │ -         3 4 5  1 4 5  2 1 5  2 3 4  3 0 4  1 0 4  2 3 1  2 1 0
    │ │ │ +         4 5 3  1 4 5  1 5 2  4 2 3  0 4 3  1 0 4  1 2 3  1 0 2
    │ │ │  
    │ │ │  o8 : co-complex of dim 2 embedded in dim 5 (printing facets)
    │ │ │       equidimensional, simplicial, F-vector {0, 0, 0, 8, 12, 6, 1}, Euler = 1
    │ │ │
    i9 : dualize cC
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -82,15 +82,15 @@
    │ │ │ │           0 1 2  0 1 4  0 3 4  1 2 3  1 2 5  1 4 5  2 3 4  3 4 5
    │ │ │ │  
    │ │ │ │  o7 : co-complex of dim 2 embedded in dim 5 (printing facets)
    │ │ │ │       equidimensional, simplicial, F-vector {0, 0, 0, 8, 12, 6, 1}, Euler = 1
    │ │ │ │  i8 : cC=complement C
    │ │ │ │  
    │ │ │ │  o8 = 2: x x x  x x x  x x x  x x x  x x x  x x x  x x x  x x x
    │ │ │ │ -         3 4 5  1 4 5  2 1 5  2 3 4  3 0 4  1 0 4  2 3 1  2 1 0
    │ │ │ │ +         4 5 3  1 4 5  1 5 2  4 2 3  0 4 3  1 0 4  1 2 3  1 0 2
    │ │ │ │  
    │ │ │ │  o8 : co-complex of dim 2 embedded in dim 5 (printing facets)
    │ │ │ │       equidimensional, simplicial, F-vector {0, 0, 0, 8, 12, 6, 1}, Euler = 1
    │ │ │ │  i9 : dualize cC
    │ │ │ │  
    │ │ │ │  o9 = 2: v v v  v v v  v v v  v v v  v v v  v v v  v v v  v v v
    │ │ │ │           3 4 5  2 3 5  1 2 5  0 4 5  0 3 4  0 2 3  0 1 5  0 1 2
    │ │ ├── ./usr/share/doc/Macaulay2/SRdeformations/html/___Complex.html
    │ │ │ @@ -146,15 +146,15 @@
    │ │ │  o7 : co-complex of dim 2 embedded in dim 5 (printing facets)
    │ │ │       equidimensional, simplicial, F-vector {0, 0, 0, 8, 12, 6, 1}, Euler = 1
    │ │ │
    i8 : complement C
    │ │ │  
    │ │ │  o8 = 2: x x x  x x x  x x x  x x x  x x x  x x x  x x x  x x x  
    │ │ │ -         3 4 5  1 4 5  2 1 5  2 3 4  3 0 4  1 0 4  2 3 1  2 1 0
    │ │ │ +         4 5 3  1 4 5  1 5 2  4 2 3  0 4 3  1 0 4  1 2 3  1 0 2
    │ │ │  
    │ │ │  o8 : co-complex of dim 2 embedded in dim 5 (printing facets)
    │ │ │       equidimensional, simplicial, F-vector {0, 0, 0, 8, 12, 6, 1}, Euler = 1
    │ │ │
    │ │ │
    │ │ │

    │ │ │ ├── html2text {} │ │ │ │ @@ -95,15 +95,15 @@ │ │ │ │ 0 1 2 0 1 4 0 3 4 1 2 3 1 2 5 1 4 5 2 3 4 3 4 5 │ │ │ │ │ │ │ │ o7 : co-complex of dim 2 embedded in dim 5 (printing facets) │ │ │ │ equidimensional, simplicial, F-vector {0, 0, 0, 8, 12, 6, 1}, Euler = 1 │ │ │ │ i8 : complement C │ │ │ │ │ │ │ │ o8 = 2: x x x x x x x x x x x x x x x x x x x x x x x x │ │ │ │ - 3 4 5 1 4 5 2 1 5 2 3 4 3 0 4 1 0 4 2 3 1 2 1 0 │ │ │ │ + 4 5 3 1 4 5 1 5 2 4 2 3 0 4 3 1 0 4 1 2 3 1 0 2 │ │ │ │ │ │ │ │ o8 : co-complex of dim 2 embedded in dim 5 (printing facets) │ │ │ │ equidimensional, simplicial, F-vector {0, 0, 0, 8, 12, 6, 1}, Euler = 1 │ │ │ │ i9 : R=QQ[x_0..x_5] │ │ │ │ │ │ │ │ o9 = R │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=10 │ │ │ U1ZEQ29tcGxleA== │ │ │ #:len=3135 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiQ29tcHV0ZSB0aGUgU1ZEIGRlY29tcG9z │ │ │ aXRpb24gb2YgYSBjaGFpbkNvbXBsZXggb3ZlciBSUiIsICJsaW5lbnVtIiA9PiAxMTAyLCBJbnB1 │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Complex.out │ │ │ @@ -15,15 +15,15 @@ │ │ │ i3 : r={5,11,3,2} │ │ │ │ │ │ o3 = {5, 11, 3, 2} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : elapsedTime C=randomChainComplex(h,r,Height=>4) │ │ │ - -- .00698521s elapsed │ │ │ + -- .00794349s elapsed │ │ │ │ │ │ 6 19 19 7 3 │ │ │ o4 = ZZ <-- ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ o4 : ChainComplex │ │ │ @@ -51,15 +51,15 @@ │ │ │ 53 53 53 53 53 │ │ │ │ │ │ -1 0 1 2 3 │ │ │ │ │ │ o6 : ChainComplex │ │ │ │ │ │ i7 : elapsedTime (h,U)=SVDComplex CR; │ │ │ - -- .00230115s elapsed │ │ │ + -- .00191398s elapsed │ │ │ │ │ │ i8 : h │ │ │ │ │ │ o8 = HashTable{-1 => 1} │ │ │ 0 => 3 │ │ │ 1 => 5 │ │ │ 2 => 2 │ │ │ @@ -95,15 +95,15 @@ │ │ │ i12 : maximalEntry chainComplex errors │ │ │ │ │ │ o12 = {8.43769e-15, 6.39488e-14, 1.06581e-13, 9.76996e-15} │ │ │ │ │ │ o12 : List │ │ │ │ │ │ i13 : elapsedTime (hL,U)=SVDComplex(CR,Strategy=>Laplacian); │ │ │ - -- .00467146s elapsed │ │ │ + -- .00458827s elapsed │ │ │ │ │ │ i14 : hL === h │ │ │ │ │ │ o14 = true │ │ │ │ │ │ i15 : SigmaL =source U; │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Homology.out │ │ │ @@ -15,15 +15,15 @@ │ │ │ i3 : r={4,3,3} │ │ │ │ │ │ o3 = {4, 3, 3} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true) │ │ │ - -- .00438766s elapsed │ │ │ + -- .00238951s elapsed │ │ │ │ │ │ 5 10 11 5 │ │ │ o4 = ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ o4 : ChainComplex │ │ │ @@ -47,25 +47,25 @@ │ │ │ 53 53 53 53 │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ o6 : ChainComplex │ │ │ │ │ │ i7 : elapsedTime (h,h1)=SVDHomology CR │ │ │ - -- .000909523s elapsed │ │ │ + -- .000527335s elapsed │ │ │ │ │ │ o7 = (HashTable{0 => 1}, HashTable{1 => (7.87842, 1.31052, ) }) │ │ │ 1 => 3 2 => (37.9214, 30.3707, 1.61954e-14) │ │ │ 2 => 5 3 => (14.972, 8.57847, 3.90646e-15) │ │ │ 3 => 2 │ │ │ │ │ │ o7 : Sequence │ │ │ │ │ │ i8 : elapsedTime (hL,hL1)=SVDHomology(CR,Strategy=>Laplacian) │ │ │ - -- .0020757s elapsed │ │ │ + -- .00113243s elapsed │ │ │ │ │ │ o8 = (HashTable{0 => 1}, HashTable{0 => (, 1.71747, -1.72291e-14) }) │ │ │ 1 => 3 1 => (1.71747, 922.381, 2.51496e-13) │ │ │ 2 => 5 2 => (922.381, 73.5901, 1.81323e-13) │ │ │ 3 => 2 3 => (73.5901, , 2.82914e-13) │ │ │ │ │ │ o8 : Sequence │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_common__Entries.out │ │ │ @@ -17,15 +17,15 @@ │ │ │ i4 : r={4,3,5} │ │ │ │ │ │ o4 = {4, 3, 5} │ │ │ │ │ │ o4 : List │ │ │ │ │ │ i5 : elapsedTime C=randomChainComplex(h,r,Height=>100,ZeroMean=>true) │ │ │ - -- .00344524s elapsed │ │ │ + -- .00417378s elapsed │ │ │ │ │ │ 6 10 13 8 │ │ │ o5 = ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ o5 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_euclidean__Distance.out │ │ │ @@ -17,15 +17,15 @@ │ │ │ i4 : r={4,3,3} │ │ │ │ │ │ o4 = {4, 3, 3} │ │ │ │ │ │ o4 : List │ │ │ │ │ │ i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true) │ │ │ - -- .00282751s elapsed │ │ │ + -- .00230848s elapsed │ │ │ │ │ │ 6 10 11 5 │ │ │ o5 = ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ o5 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_project__To__Complex.out │ │ │ @@ -17,15 +17,15 @@ │ │ │ i4 : r={4,3,3} │ │ │ │ │ │ o4 = {4, 3, 3} │ │ │ │ │ │ o4 : List │ │ │ │ │ │ i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true) │ │ │ - -- .00288191s elapsed │ │ │ + -- .00242931s elapsed │ │ │ │ │ │ 6 10 11 5 │ │ │ o5 = ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ o5 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/html/___S__V__D__Complex.html │ │ │ @@ -103,15 +103,15 @@ │ │ │ │ │ │ o3 = {5, 11, 3, 2} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ │ │ │
    i4 : elapsedTime C=randomChainComplex(h,r,Height=>4)
    │ │ │ - -- .00698521s elapsed
    │ │ │ + -- .00794349s elapsed
    │ │ │  
    │ │ │         6       19       19       7       3
    │ │ │  o4 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ  <-- ZZ
    │ │ │                                          
    │ │ │       0       1        2        3       4
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ │ @@ -142,15 +142,15 @@ │ │ │ │ │ │ -1 0 1 2 3 │ │ │ │ │ │ o6 : ChainComplex │ │ │ │ │ │ │ │ │
    i7 : elapsedTime (h,U)=SVDComplex CR;
    │ │ │ - -- .00230115s elapsed
    │ │ │ + -- .00191398s elapsed │ │ │ │ │ │ │ │ │
    i8 : h
    │ │ │  
    │ │ │  o8 = HashTable{-1 => 1}
    │ │ │                 0 => 3
    │ │ │                 1 => 5
    │ │ │ @@ -192,15 +192,15 @@
    │ │ │  
    │ │ │  o12 = {8.43769e-15, 6.39488e-14, 1.06581e-13, 9.76996e-15}
    │ │ │  
    │ │ │  o12 : List
    │ │ │ │ │ │ │ │ │
    i13 : elapsedTime (hL,U)=SVDComplex(CR,Strategy=>Laplacian);
    │ │ │ - -- .00467146s elapsed
    │ │ │ + -- .00458827s elapsed │ │ │ │ │ │ │ │ │
    i14 : hL === h
    │ │ │  
    │ │ │  o14 = true
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -38,15 +38,15 @@ │ │ │ │ o2 : List │ │ │ │ i3 : r={5,11,3,2} │ │ │ │ │ │ │ │ o3 = {5, 11, 3, 2} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : elapsedTime C=randomChainComplex(h,r,Height=>4) │ │ │ │ - -- .00698521s elapsed │ │ │ │ + -- .00794349s elapsed │ │ │ │ │ │ │ │ 6 19 19 7 3 │ │ │ │ o4 = ZZ <-- ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ │ │ o4 : ChainComplex │ │ │ │ @@ -71,15 +71,15 @@ │ │ │ │ o6 = RR <-- RR <-- RR <-- RR <-- RR │ │ │ │ 53 53 53 53 53 │ │ │ │ │ │ │ │ -1 0 1 2 3 │ │ │ │ │ │ │ │ o6 : ChainComplex │ │ │ │ i7 : elapsedTime (h,U)=SVDComplex CR; │ │ │ │ - -- .00230115s elapsed │ │ │ │ + -- .00191398s elapsed │ │ │ │ i8 : h │ │ │ │ │ │ │ │ o8 = HashTable{-1 => 1} │ │ │ │ 0 => 3 │ │ │ │ 1 => 5 │ │ │ │ 2 => 2 │ │ │ │ 3 => 1 │ │ │ │ @@ -110,15 +110,15 @@ │ │ │ │ 1)*Sigma.dd_ell*transpose U_ell); │ │ │ │ i12 : maximalEntry chainComplex errors │ │ │ │ │ │ │ │ o12 = {8.43769e-15, 6.39488e-14, 1.06581e-13, 9.76996e-15} │ │ │ │ │ │ │ │ o12 : List │ │ │ │ i13 : elapsedTime (hL,U)=SVDComplex(CR,Strategy=>Laplacian); │ │ │ │ - -- .00467146s elapsed │ │ │ │ + -- .00458827s elapsed │ │ │ │ i14 : hL === h │ │ │ │ │ │ │ │ o14 = true │ │ │ │ i15 : SigmaL =source U; │ │ │ │ i16 : for i from min CR+1 to max CR list maximalEntry(SigmaL.dd_i -Sigma.dd_i) │ │ │ │ │ │ │ │ o16 = {1.77636e-14, 6.39488e-14, 8.52651e-14, 3.55271e-15} │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/html/___S__V__D__Homology.html │ │ │ @@ -105,15 +105,15 @@ │ │ │ │ │ │ o3 = {4, 3, 3} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ │ │ │
    i4 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .00438766s elapsed
    │ │ │ + -- .00238951s elapsed
    │ │ │  
    │ │ │         5       10       11       5
    │ │ │  o4 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ │ @@ -140,26 +140,26 @@ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ o6 : ChainComplex │ │ │ │ │ │ │ │ │
    i7 : elapsedTime (h,h1)=SVDHomology CR
    │ │ │ - -- .000909523s elapsed
    │ │ │ + -- .000527335s elapsed
    │ │ │  
    │ │ │  o7 = (HashTable{0 => 1}, HashTable{1 => (7.87842, 1.31052, )           })
    │ │ │                  1 => 3             2 => (37.9214, 30.3707, 1.61954e-14)
    │ │ │                  2 => 5             3 => (14.972, 8.57847, 3.90646e-15)
    │ │ │                  3 => 2
    │ │ │  
    │ │ │  o7 : Sequence
    │ │ │ │ │ │ │ │ │
    i8 : elapsedTime (hL,hL1)=SVDHomology(CR,Strategy=>Laplacian)
    │ │ │ - -- .0020757s elapsed
    │ │ │ + -- .00113243s elapsed
    │ │ │  
    │ │ │  o8 = (HashTable{0 => 1}, HashTable{0 => (, 1.71747, -1.72291e-14)      })
    │ │ │                  1 => 3             1 => (1.71747, 922.381, 2.51496e-13)
    │ │ │                  2 => 5             2 => (922.381, 73.5901, 1.81323e-13)
    │ │ │                  3 => 2             3 => (73.5901, , 2.82914e-13)
    │ │ │  
    │ │ │  o8 : Sequence
    │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ o2 : List │ │ │ │ i3 : r={4,3,3} │ │ │ │ │ │ │ │ o3 = {4, 3, 3} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true) │ │ │ │ - -- .00438766s elapsed │ │ │ │ + -- .00238951s elapsed │ │ │ │ │ │ │ │ 5 10 11 5 │ │ │ │ o4 = ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o4 : ChainComplex │ │ │ │ @@ -70,24 +70,24 @@ │ │ │ │ o6 = RR <-- RR <-- RR <-- RR │ │ │ │ 53 53 53 53 │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o6 : ChainComplex │ │ │ │ i7 : elapsedTime (h,h1)=SVDHomology CR │ │ │ │ - -- .000909523s elapsed │ │ │ │ + -- .000527335s elapsed │ │ │ │ │ │ │ │ o7 = (HashTable{0 => 1}, HashTable{1 => (7.87842, 1.31052, ) }) │ │ │ │ 1 => 3 2 => (37.9214, 30.3707, 1.61954e-14) │ │ │ │ 2 => 5 3 => (14.972, 8.57847, 3.90646e-15) │ │ │ │ 3 => 2 │ │ │ │ │ │ │ │ o7 : Sequence │ │ │ │ i8 : elapsedTime (hL,hL1)=SVDHomology(CR,Strategy=>Laplacian) │ │ │ │ - -- .0020757s elapsed │ │ │ │ + -- .00113243s elapsed │ │ │ │ │ │ │ │ o8 = (HashTable{0 => 1}, HashTable{0 => (, 1.71747, -1.72291e-14) }) │ │ │ │ 1 => 3 1 => (1.71747, 922.381, 2.51496e-13) │ │ │ │ 2 => 5 2 => (922.381, 73.5901, 1.81323e-13) │ │ │ │ 3 => 2 3 => (73.5901, , 2.82914e-13) │ │ │ │ │ │ │ │ o8 : Sequence │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/html/_common__Entries.html │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ │ o4 = {4, 3, 5} │ │ │ │ │ │ o4 : List │ │ │ │ │ │ │ │ │
    i5 : elapsedTime C=randomChainComplex(h,r,Height=>100,ZeroMean=>true)
    │ │ │ - -- .00344524s elapsed
    │ │ │ + -- .00417378s elapsed
    │ │ │  
    │ │ │         6       10       13       8
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -34,15 +34,15 @@ │ │ │ │ o3 : List │ │ │ │ i4 : r={4,3,5} │ │ │ │ │ │ │ │ o4 = {4, 3, 5} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : elapsedTime C=randomChainComplex(h,r,Height=>100,ZeroMean=>true) │ │ │ │ - -- .00344524s elapsed │ │ │ │ + -- .00417378s elapsed │ │ │ │ │ │ │ │ 6 10 13 8 │ │ │ │ o5 = ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o5 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/html/_euclidean__Distance.html │ │ │ @@ -95,15 +95,15 @@ │ │ │ │ │ │ o4 = {4, 3, 3} │ │ │ │ │ │ o4 : List │ │ │ │ │ │ │ │ │
    i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .00282751s elapsed
    │ │ │ + -- .00230848s elapsed
    │ │ │  
    │ │ │         6       10       11       5
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ o3 : List │ │ │ │ i4 : r={4,3,3} │ │ │ │ │ │ │ │ o4 = {4, 3, 3} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true) │ │ │ │ - -- .00282751s elapsed │ │ │ │ + -- .00230848s elapsed │ │ │ │ │ │ │ │ 6 10 11 5 │ │ │ │ o5 = ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o5 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/html/_project__To__Complex.html │ │ │ @@ -95,15 +95,15 @@ │ │ │ │ │ │ o4 = {4, 3, 3} │ │ │ │ │ │ o4 : List │ │ │ │ │ │ │ │ │
    i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .00288191s elapsed
    │ │ │ + -- .00242931s elapsed
    │ │ │  
    │ │ │         6       10       11       5
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ o3 : List │ │ │ │ i4 : r={4,3,3} │ │ │ │ │ │ │ │ o4 = {4, 3, 3} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true) │ │ │ │ - -- .00288191s elapsed │ │ │ │ + -- .00242931s elapsed │ │ │ │ │ │ │ │ 6 10 11 5 │ │ │ │ o5 = ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o5 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/SagbiGbDetection/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=27 │ │ │ d2VpZ2h0VmVjdG9yc1JlYWxpemluZ1NBR0JJ │ │ │ #:len=1819 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiVGhlIG1haW4gZnVuY3Rpb24gZm9yIGRl │ │ │ dGVjdGluZyBTQUdCSSBiYXNlcyIsICJsaW5lbnVtIiA9PiAyMTUsIElucHV0cyA9PiB7U1BBTntU │ │ ├── ./usr/share/doc/Macaulay2/Saturation/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=20 │ │ │ c2F0dXJhdGUoSWRlYWwsTGlzdCk= │ │ │ #:len=207 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gOSwgInVuZG9jdW1lbnRlZCIgPT4gdHJ1 │ │ │ ZSwgc3ltYm9sIERvY3VtZW50VGFnID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoc2F0dXJhdGUs │ │ ├── ./usr/share/doc/Macaulay2/Saturation/example-output/_quotient_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ @@ -38,33 +38,33 @@ │ │ │ o5 : Ideal of S │ │ │ │ │ │ i6 : J = ideal(map(S^1, S^n, (p, q) -> S_q^5)); │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ │ │ i7 : time quotient(I^3, J^2, Strategy => Iterate); │ │ │ - -- used 0.289625s (cpu); 0.290581s (thread); 0s (gc) │ │ │ + -- used 0.368251s (cpu); 0.365743s (thread); 0s (gc) │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ │ │ i8 : time quotient(I^3, J^2, Strategy => Quotient); │ │ │ - -- used 0.82801s (cpu); 0.755559s (thread); 0s (gc) │ │ │ + -- used 0.616781s (cpu); 0.557287s (thread); 0s (gc) │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ │ │ i9 : S = ZZ/101[vars(0..4)]; │ │ │ │ │ │ i10 : I = ideal vars S; │ │ │ │ │ │ o10 : Ideal of S │ │ │ │ │ │ i11 : time quotient(I^5, I^3, Strategy => Iterate); │ │ │ - -- used 0.0265088s (cpu); 0.024945s (thread); 0s (gc) │ │ │ + -- used 0.016s (cpu); 0.0181278s (thread); 0s (gc) │ │ │ │ │ │ o11 : Ideal of S │ │ │ │ │ │ i12 : time quotient(I^5, I^3, Strategy => Quotient); │ │ │ - -- used 0.00796558s (cpu); 0.00809413s (thread); 0s (gc) │ │ │ + -- used 0.00520218s (cpu); 0.00662177s (thread); 0s (gc) │ │ │ │ │ │ o12 : Ideal of S │ │ │ │ │ │ i13 : │ │ ├── ./usr/share/doc/Macaulay2/Saturation/html/_quotient_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ @@ -106,21 +106,21 @@ │ │ │ │ │ │
    i6 : J = ideal(map(S^1, S^n, (p, q) -> S_q^5));
    │ │ │  
    │ │ │  o6 : Ideal of S
    │ │ │ │ │ │ │ │ │
    i7 : time quotient(I^3, J^2, Strategy => Iterate);
    │ │ │ - -- used 0.289625s (cpu); 0.290581s (thread); 0s (gc)
    │ │ │ + -- used 0.368251s (cpu); 0.365743s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of S
    │ │ │ │ │ │ │ │ │
    i8 : time quotient(I^3, J^2, Strategy => Quotient);
    │ │ │ - -- used 0.82801s (cpu); 0.755559s (thread); 0s (gc)
    │ │ │ + -- used 0.616781s (cpu); 0.557287s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 : Ideal of S
    │ │ │ │ │ │ │ │ │
    │ │ │

    Strategy => Quotient is faster in other cases:

    │ │ │
    │ │ │ @@ -131,21 +131,21 @@ │ │ │ │ │ │
    i10 : I = ideal vars S;
    │ │ │  
    │ │ │  o10 : Ideal of S
    │ │ │ │ │ │ │ │ │
    i11 : time quotient(I^5, I^3, Strategy => Iterate);
    │ │ │ - -- used 0.0265088s (cpu); 0.024945s (thread); 0s (gc)
    │ │ │ + -- used 0.016s (cpu); 0.0181278s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 : Ideal of S
    │ │ │ │ │ │ │ │ │
    i12 : time quotient(I^5, I^3, Strategy => Quotient);
    │ │ │ - -- used 0.00796558s (cpu); 0.00809413s (thread); 0s (gc)
    │ │ │ + -- used 0.00520218s (cpu); 0.00662177s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 : Ideal of S
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    Further information

    │ │ │ ├── html2text {} │ │ │ │ @@ -57,32 +57,32 @@ │ │ │ │ i5 : I = monomialCurveIdeal(S, 1..n-1); │ │ │ │ │ │ │ │ o5 : Ideal of S │ │ │ │ i6 : J = ideal(map(S^1, S^n, (p, q) -> S_q^5)); │ │ │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ i7 : time quotient(I^3, J^2, Strategy => Iterate); │ │ │ │ - -- used 0.289625s (cpu); 0.290581s (thread); 0s (gc) │ │ │ │ + -- used 0.368251s (cpu); 0.365743s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ i8 : time quotient(I^3, J^2, Strategy => Quotient); │ │ │ │ - -- used 0.82801s (cpu); 0.755559s (thread); 0s (gc) │ │ │ │ + -- used 0.616781s (cpu); 0.557287s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ Strategy => Quotient is faster in other cases: │ │ │ │ i9 : S = ZZ/101[vars(0..4)]; │ │ │ │ i10 : I = ideal vars S; │ │ │ │ │ │ │ │ o10 : Ideal of S │ │ │ │ i11 : time quotient(I^5, I^3, Strategy => Iterate); │ │ │ │ - -- used 0.0265088s (cpu); 0.024945s (thread); 0s (gc) │ │ │ │ + -- used 0.016s (cpu); 0.0181278s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 : Ideal of S │ │ │ │ i12 : time quotient(I^5, I^3, Strategy => Quotient); │ │ │ │ - -- used 0.00796558s (cpu); 0.00809413s (thread); 0s (gc) │ │ │ │ + -- used 0.00520218s (cpu); 0.00662177s (thread); 0s (gc) │ │ │ │ │ │ │ │ o12 : Ideal of S │ │ │ │ ********** FFuurrtthheerr iinnffoorrmmaattiioonn ********** │ │ │ │ * Default value: null │ │ │ │ * Function: _q_u_o_t_i_e_n_t -- quotient or division │ │ │ │ * Option key: _S_t_r_a_t_e_g_y -- an optional argument │ │ │ │ ********** RReeffeerreenncceess ********** │ │ ├── ./usr/share/doc/Macaulay2/Schubert2/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=32 │ │ │ aW5jbHVzaW9uKC4uLixTdWJEaW1lbnNpb249Pi4uLik= │ │ │ #:len=260 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTg1NSwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHtbaW5jbHVzaW9uLFN1YkRpbWVuc2lvbl0sImluY2x1 │ │ ├── ./usr/share/doc/Macaulay2/Schubert2/example-output/___Lines_spon_sphypersurfaces.out │ │ │ @@ -40,23 +40,23 @@ │ │ │ ) │ │ │ │ │ │ o6 = f │ │ │ │ │ │ o6 : FunctionClosure │ │ │ │ │ │ i7 : for n from 2 to 10 list time f n │ │ │ - -- used 0.00610602s (cpu); 0.0042014s (thread); 0s (gc) │ │ │ - -- used 0.00729864s (cpu); 0.00737338s (thread); 0s (gc) │ │ │ - -- used 0.00603282s (cpu); 0.00957053s (thread); 0s (gc) │ │ │ - -- used 0.0161226s (cpu); 0.017607s (thread); 0s (gc) │ │ │ - -- used 0.0304987s (cpu); 0.030588s (thread); 0s (gc) │ │ │ - -- used 0.0511511s (cpu); 0.0533558s (thread); 0s (gc) │ │ │ - -- used 0.0897187s (cpu); 0.0906512s (thread); 0s (gc) │ │ │ - -- used 0.145204s (cpu); 0.146137s (thread); 0s (gc) │ │ │ - -- used 0.316997s (cpu); 0.245415s (thread); 0s (gc) │ │ │ + -- used 0.00400207s (cpu); 0.00405974s (thread); 0s (gc) │ │ │ + -- used 0.00305747s (cpu); 0.00503857s (thread); 0s (gc) │ │ │ + -- used 0.00599153s (cpu); 0.00815647s (thread); 0s (gc) │ │ │ + -- used 0.013819s (cpu); 0.0145021s (thread); 0s (gc) │ │ │ + -- used 0.0752968s (cpu); 0.0758669s (thread); 0s (gc) │ │ │ + -- used 0.0953928s (cpu); 0.0980919s (thread); 0s (gc) │ │ │ + -- used 0.117275s (cpu); 0.121098s (thread); 0s (gc) │ │ │ + -- used 0.276155s (cpu); 0.277463s (thread); 0s (gc) │ │ │ + -- used 0.538407s (cpu); 0.423264s (thread); 0s (gc) │ │ │ │ │ │ o7 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775, │ │ │ ------------------------------------------------------------------------ │ │ │ 289139638632755625, 520764738758073845321} │ │ │ │ │ │ o7 : List │ │ ├── ./usr/share/doc/Macaulay2/Schubert2/html/___Lines_spon_sphypersurfaces.html │ │ │ @@ -106,23 +106,23 @@ │ │ │ │ │ │ o6 = f │ │ │ │ │ │ o6 : FunctionClosure │ │ │ │ │ │ │ │ │
    i7 : for n from 2 to 10 list time f n
    │ │ │ - -- used 0.00610602s (cpu); 0.0042014s (thread); 0s (gc)
    │ │ │ - -- used 0.00729864s (cpu); 0.00737338s (thread); 0s (gc)
    │ │ │ - -- used 0.00603282s (cpu); 0.00957053s (thread); 0s (gc)
    │ │ │ - -- used 0.0161226s (cpu); 0.017607s (thread); 0s (gc)
    │ │ │ - -- used 0.0304987s (cpu); 0.030588s (thread); 0s (gc)
    │ │ │ - -- used 0.0511511s (cpu); 0.0533558s (thread); 0s (gc)
    │ │ │ - -- used 0.0897187s (cpu); 0.0906512s (thread); 0s (gc)
    │ │ │ - -- used 0.145204s (cpu); 0.146137s (thread); 0s (gc)
    │ │ │ - -- used 0.316997s (cpu); 0.245415s (thread); 0s (gc)
    │ │ │ + -- used 0.00400207s (cpu); 0.00405974s (thread); 0s (gc)
    │ │ │ + -- used 0.00305747s (cpu); 0.00503857s (thread); 0s (gc)
    │ │ │ + -- used 0.00599153s (cpu); 0.00815647s (thread); 0s (gc)
    │ │ │ + -- used 0.013819s (cpu); 0.0145021s (thread); 0s (gc)
    │ │ │ + -- used 0.0752968s (cpu); 0.0758669s (thread); 0s (gc)
    │ │ │ + -- used 0.0953928s (cpu); 0.0980919s (thread); 0s (gc)
    │ │ │ + -- used 0.117275s (cpu); 0.121098s (thread); 0s (gc)
    │ │ │ + -- used 0.276155s (cpu); 0.277463s (thread); 0s (gc)
    │ │ │ + -- used 0.538407s (cpu); 0.423264s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       289139638632755625, 520764738758073845321}
    │ │ │  
    │ │ │  o7 : List
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -56,23 +56,23 @@ │ │ │ │ integral chern symmetricPower_(2*n-3) last bundles G │ │ │ │ ) │ │ │ │ │ │ │ │ o6 = f │ │ │ │ │ │ │ │ o6 : FunctionClosure │ │ │ │ i7 : for n from 2 to 10 list time f n │ │ │ │ - -- used 0.00610602s (cpu); 0.0042014s (thread); 0s (gc) │ │ │ │ - -- used 0.00729864s (cpu); 0.00737338s (thread); 0s (gc) │ │ │ │ - -- used 0.00603282s (cpu); 0.00957053s (thread); 0s (gc) │ │ │ │ - -- used 0.0161226s (cpu); 0.017607s (thread); 0s (gc) │ │ │ │ - -- used 0.0304987s (cpu); 0.030588s (thread); 0s (gc) │ │ │ │ - -- used 0.0511511s (cpu); 0.0533558s (thread); 0s (gc) │ │ │ │ - -- used 0.0897187s (cpu); 0.0906512s (thread); 0s (gc) │ │ │ │ - -- used 0.145204s (cpu); 0.146137s (thread); 0s (gc) │ │ │ │ - -- used 0.316997s (cpu); 0.245415s (thread); 0s (gc) │ │ │ │ + -- used 0.00400207s (cpu); 0.00405974s (thread); 0s (gc) │ │ │ │ + -- used 0.00305747s (cpu); 0.00503857s (thread); 0s (gc) │ │ │ │ + -- used 0.00599153s (cpu); 0.00815647s (thread); 0s (gc) │ │ │ │ + -- used 0.013819s (cpu); 0.0145021s (thread); 0s (gc) │ │ │ │ + -- used 0.0752968s (cpu); 0.0758669s (thread); 0s (gc) │ │ │ │ + -- used 0.0953928s (cpu); 0.0980919s (thread); 0s (gc) │ │ │ │ + -- used 0.117275s (cpu); 0.121098s (thread); 0s (gc) │ │ │ │ + -- used 0.276155s (cpu); 0.277463s (thread); 0s (gc) │ │ │ │ + -- used 0.538407s (cpu); 0.423264s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 289139638632755625, 520764738758073845321} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ Note: in characteristic zero, using Bertini's theorem, the numbers computed can │ │ ├── ./usr/share/doc/Macaulay2/SchurComplexes/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=12 │ │ │ c2NodXJDb21wbGV4 │ │ │ #:len=3101 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiU2NodXIgZnVuY3RvcnMgb2YgY2hhaW4g │ │ │ Y29tcGxleGVzIiwgImxpbmVudW0iID0+IDU1MiwgSW5wdXRzID0+IHtTUEFOe1RUeyJsYW1iZGEi │ │ ├── ./usr/share/doc/Macaulay2/SchurFunctors/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=14 │ │ │ c3BsaXRDaGFyYWN0ZXI= │ │ │ #:len=913 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiRGVjb21wb3NlcyBhIHN5bW1ldHJpYyBw │ │ │ b2x5bm9taWFsIGFzIGEgc3VtIG9mIFNjaHVyIGZ1bmN0aW9ucyIsICJsaW5lbnVtIiA9PiA0MDEs │ │ ├── ./usr/share/doc/Macaulay2/SchurRings/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=33 │ │ │ c2NodXJSZXNvbHV0aW9uKFJpbmdFbGVtZW50LExpc3Qp │ │ │ #:len=286 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjQ0OSwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoc2NodXJSZXNvbHV0aW9uLFJpbmdFbGVtZW50LExp │ │ ├── ./usr/share/doc/Macaulay2/SchurVeronese/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=14 │ │ │ bWFrZUJldHRpVGFsbHk= │ │ │ #:len=1334 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiY29udmVydHMgYSBoYXNoIHRhYmxlIHJl │ │ │ cHJlc2VudGluZyBhIEJldHRpIHRhYmxlIHRvIGEgQmV0dGkgdGFsbHkiLCAibGluZW51bSIgPT4g │ │ ├── ./usr/share/doc/Macaulay2/SectionRing/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=8 │ │ │ bVJlZ3VsYXI= │ │ │ #:len=1136 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAibVJlZ3VsYXIoRixHKSBjb21wdXRlcyB0 │ │ │ aGUgcmVndWxhcml0eSBvZiBGIHdpdGggcmVzcGVjdCB0byBHIChnbG9iYWxseSBnZW5lcmF0ZWQp │ │ ├── ./usr/share/doc/Macaulay2/SegreClasses/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=26 │ │ │ bWFrZVByb2R1Y3RSaW5nKFJpbmcsTGlzdCk= │ │ │ #:len=277 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gOTQxLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhtYWtlUHJvZHVjdFJpbmcsUmluZyxMaXN0KSwibWFr │ │ ├── ./usr/share/doc/Macaulay2/SegreClasses/example-output/_is__Component__Contained.out │ │ │ @@ -53,15 +53,15 @@ │ │ │ o9 : Ideal of R │ │ │ │ │ │ i10 : X=((W)*ideal(y)+ideal(f)); │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ │ │ i11 : time isComponentContained(X,Y) │ │ │ - -- used 4.6241s (cpu); 3.15815s (thread); 0s (gc) │ │ │ + -- used 13.2922s (cpu); 4.478s (thread); 0s (gc) │ │ │ │ │ │ o11 = true │ │ │ │ │ │ i12 : print "we could confirm this with the computation:" │ │ │ we could confirm this with the computation: │ │ │ │ │ │ i13 : B=ideal(x)*ideal(y)*ideal(z) │ │ │ @@ -71,12 +71,12 @@ │ │ │ b*d*g, b*d*h, b*d*i, b*e*g, b*e*h, b*e*i, b*f*g, b*f*h, b*f*i, c*d*g, │ │ │ ----------------------------------------------------------------------- │ │ │ c*d*h, c*d*i, c*e*g, c*e*h, c*e*i, c*f*g, c*f*h, c*f*i) │ │ │ │ │ │ o13 : Ideal of R │ │ │ │ │ │ i14 : time isSubset(saturate(Y,B),saturate(X,B)) │ │ │ - -- used 53.5862s (cpu); 49.5289s (thread); 0s (gc) │ │ │ + -- used 68.7848s (cpu); 61.9266s (thread); 0s (gc) │ │ │ │ │ │ o14 = true │ │ │ │ │ │ i15 : │ │ ├── ./usr/share/doc/Macaulay2/SegreClasses/example-output/_segre__Dim__X.out │ │ │ @@ -23,24 +23,24 @@ │ │ │ i5 : A = makeChowRing(R) │ │ │ │ │ │ o5 = A │ │ │ │ │ │ o5 : QuotientRing │ │ │ │ │ │ i6 : time s = segreDimX(X,Y,A) │ │ │ - -- used 0.233953s (cpu); 0.139307s (thread); 0s (gc) │ │ │ + -- used 0.953026s (cpu); 0.157082s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o6 = 2H + 4H H + 2H │ │ │ 1 1 2 2 │ │ │ │ │ │ o6 : A │ │ │ │ │ │ i7 : time segre(X,Y,A) │ │ │ - -- used 0.340288s (cpu); 0.0954096s (thread); 0s (gc) │ │ │ + -- used 0.591932s (cpu); 0.187423s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ o7 = 12H H - 6H H - 6H H + 2H + 4H H + 2H │ │ │ 1 2 1 2 1 2 1 1 2 2 │ │ │ │ │ │ o7 : A │ │ ├── ./usr/share/doc/Macaulay2/SegreClasses/html/_is__Component__Contained.html │ │ │ @@ -144,15 +144,15 @@ │ │ │ │ │ │
    i10 : X=((W)*ideal(y)+ideal(f));
    │ │ │  
    │ │ │  o10 : Ideal of R
    │ │ │ │ │ │ │ │ │
    i11 : time isComponentContained(X,Y)
    │ │ │ - -- used 4.6241s (cpu); 3.15815s (thread); 0s (gc)
    │ │ │ + -- used 13.2922s (cpu); 4.478s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = true
    │ │ │ │ │ │ │ │ │
    i12 : print "we could confirm this with the computation:"
    │ │ │  we could confirm this with the computation:
    │ │ │ │ │ │ @@ -165,15 +165,15 @@ │ │ │ ----------------------------------------------------------------------- │ │ │ c*d*h, c*d*i, c*e*g, c*e*h, c*e*i, c*f*g, c*f*h, c*f*i) │ │ │ │ │ │ o13 : Ideal of R │ │ │ │ │ │ │ │ │
    i14 : time isSubset(saturate(Y,B),saturate(X,B))
    │ │ │ - -- used 53.5862s (cpu); 49.5289s (thread); 0s (gc)
    │ │ │ + -- used 68.7848s (cpu); 61.9266s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = true
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    Ways to use isComponentContained:

    │ │ │ ├── html2text {} │ │ │ │ @@ -69,29 +69,29 @@ │ │ │ │ i9 : Y=ideal (z_0*W_0-z_1*W_1)+ideal(f); │ │ │ │ │ │ │ │ o9 : Ideal of R │ │ │ │ i10 : X=((W)*ideal(y)+ideal(f)); │ │ │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ i11 : time isComponentContained(X,Y) │ │ │ │ - -- used 4.6241s (cpu); 3.15815s (thread); 0s (gc) │ │ │ │ + -- used 13.2922s (cpu); 4.478s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 = true │ │ │ │ i12 : print "we could confirm this with the computation:" │ │ │ │ we could confirm this with the computation: │ │ │ │ i13 : B=ideal(x)*ideal(y)*ideal(z) │ │ │ │ │ │ │ │ o13 = ideal (a*d*g, a*d*h, a*d*i, a*e*g, a*e*h, a*e*i, a*f*g, a*f*h, a*f*i, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ b*d*g, b*d*h, b*d*i, b*e*g, b*e*h, b*e*i, b*f*g, b*f*h, b*f*i, c*d*g, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ c*d*h, c*d*i, c*e*g, c*e*h, c*e*i, c*f*g, c*f*h, c*f*i) │ │ │ │ │ │ │ │ o13 : Ideal of R │ │ │ │ i14 : time isSubset(saturate(Y,B),saturate(X,B)) │ │ │ │ - -- used 53.5862s (cpu); 49.5289s (thread); 0s (gc) │ │ │ │ + -- used 68.7848s (cpu); 61.9266s (thread); 0s (gc) │ │ │ │ │ │ │ │ o14 = true │ │ │ │ ********** WWaayyss ttoo uussee iissCCoommppoonneennttCCoonnttaaiinneedd:: ********** │ │ │ │ * isComponentContained(Ideal,Ideal) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _i_s_C_o_m_p_o_n_e_n_t_C_o_n_t_a_i_n_e_d is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ ├── ./usr/share/doc/Macaulay2/SegreClasses/html/_segre__Dim__X.html │ │ │ @@ -111,25 +111,25 @@ │ │ │ │ │ │ o5 = A │ │ │ │ │ │ o5 : QuotientRing │ │ │ │ │ │ │ │ │
    i6 : time s = segreDimX(X,Y,A)
    │ │ │ - -- used 0.233953s (cpu); 0.139307s (thread); 0s (gc)
    │ │ │ + -- used 0.953026s (cpu); 0.157082s (thread); 0s (gc)
    │ │ │  
    │ │ │         2             2
    │ │ │  o6 = 2H  + 4H H  + 2H
    │ │ │         1     1 2     2
    │ │ │  
    │ │ │  o6 : A
    │ │ │ │ │ │ │ │ │
    i7 : time segre(X,Y,A)
    │ │ │ - -- used 0.340288s (cpu); 0.0954096s (thread); 0s (gc)
    │ │ │ + -- used 0.591932s (cpu); 0.187423s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2     2         2     2             2
    │ │ │  o7 = 12H H  - 6H H  - 6H H  + 2H  + 4H H  + 2H
    │ │ │          1 2     1 2     1 2     1     1 2     2
    │ │ │  
    │ │ │  o7 : A
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -49,23 +49,23 @@ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : A = makeChowRing(R) │ │ │ │ │ │ │ │ o5 = A │ │ │ │ │ │ │ │ o5 : QuotientRing │ │ │ │ i6 : time s = segreDimX(X,Y,A) │ │ │ │ - -- used 0.233953s (cpu); 0.139307s (thread); 0s (gc) │ │ │ │ + -- used 0.953026s (cpu); 0.157082s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o6 = 2H + 4H H + 2H │ │ │ │ 1 1 2 2 │ │ │ │ │ │ │ │ o6 : A │ │ │ │ i7 : time segre(X,Y,A) │ │ │ │ - -- used 0.340288s (cpu); 0.0954096s (thread); 0s (gc) │ │ │ │ + -- used 0.591932s (cpu); 0.187423s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ │ o7 = 12H H - 6H H - 6H H + 2H + 4H H + 2H │ │ │ │ 1 2 1 2 1 2 1 1 2 2 │ │ │ │ │ │ │ │ o7 : A │ │ │ │ ********** WWaayyss ttoo uussee sseeggrreeDDiimmXX:: ********** │ │ ├── ./usr/share/doc/Macaulay2/SemidefiniteProgramming/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=28 │ │ │ b3B0aW1pemUoLi4uLFZlcmJvc2l0eT0+Li4uKQ== │ │ │ #:len=300 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzkyLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20ge1tvcHRpbWl6ZSxWZXJib3NpdHldLCJvcHRpbWl6ZSgu │ │ ├── ./usr/share/doc/Macaulay2/Seminormalization/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=22 │ │ │ YmV0dGVyTm9ybWFsaXphdGlvbk1hcA== │ │ │ #:len=1762 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAibm9ybWFsaXplcyBub24gZG9tYWlucyIs │ │ │ ICJsaW5lbnVtIiA9PiA4ODIsIElucHV0cyA9PiB7U1BBTntUVHsiUyJ9LCIsICIsU1BBTnsiYSAi │ │ ├── ./usr/share/doc/Macaulay2/Serialization/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=13 │ │ │ U2VyaWFsaXphdGlvbg== │ │ │ #:len=554 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAicmV2ZXJzaWJsZSBjb252ZXJzaW9uIG9m │ │ │ IGFsbCBNYWNhdWxheTIgb2JqZWN0cyB0byBzdHJpbmdzIiwgRGVzY3JpcHRpb24gPT4gMTooRElW │ │ ├── ./usr/share/doc/Macaulay2/SimpleDoc/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=20 │ │ │ YXJYaXYoU3RyaW5nLFN0cmluZyk= │ │ │ #:len=236 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjgwLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhhclhpdixTdHJpbmcsU3RyaW5nKSwiYXJYaXYoU3Ry │ │ ├── ./usr/share/doc/Macaulay2/SimpleDoc/example-output/_test__Example.out │ │ │ @@ -1,6 +1,6 @@ │ │ │ -- -*- M2-comint -*- hash: 1331702921222 │ │ │ │ │ │ i1 : check SimpleDoc │ │ │ - -- capturing check(0, "SimpleDoc") -- .14669s elapsed │ │ │ + -- capturing check(0, "SimpleDoc") -- .100602s elapsed │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/SimpleDoc/html/_test__Example.html │ │ │ @@ -69,15 +69,15 @@ │ │ │ │ │ │
    │ │ │

    The check method executes all package tests defined this way.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    i1 : check SimpleDoc
    │ │ │ - -- capturing check(0, "SimpleDoc")           -- .14669s elapsed
    │ │ │ + -- capturing check(0, "SimpleDoc") -- .100602s elapsed │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │
    • │ │ │ ├── html2text {} │ │ │ │ @@ -12,15 +12,15 @@ │ │ │ │ (String) (missing documentation) to write a test case. │ │ │ │ │ │ │ │ TEST /// -* test for simpleDocFrob *- │ │ │ │ assert(simpleDocFrob(2,matrix{{1,2}}) == matrix{{1,2,0,0},{0,0,1,2}}) │ │ │ │ /// │ │ │ │ The _c_h_e_c_k method executes all package tests defined this way. │ │ │ │ i1 : check SimpleDoc │ │ │ │ - -- capturing check(0, "SimpleDoc") -- .14669s elapsed │ │ │ │ + -- capturing check(0, "SimpleDoc") -- .100602s elapsed │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _T_E_S_T -- add a test for a package │ │ │ │ * _c_h_e_c_k -- perform tests of a package │ │ │ │ * _p_a_c_k_a_g_e_T_e_m_p_l_a_t_e -- a template for a package │ │ │ │ * _d_o_c_E_x_a_m_p_l_e -- an example of a documentation string │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _t_e_s_t_E_x_a_m_p_l_e is a _s_t_r_i_n_g. │ │ ├── ./usr/share/doc/Macaulay2/SimplicialComplexes/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=18 │ │ │ ZWxlbWVudGFyeUNvbGxhcHNl │ │ │ #:len=365 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNDU1Mywgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsiZWxlbWVudGFyeUNvbGxhcHNlIiwiZWxlbWVudGFy │ │ ├── ./usr/share/doc/Macaulay2/SimplicialDecomposability/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=30 │ │ │ c2hlbGxpbmdPcmRlciguLi4sUmFuZG9tPT4uLi4p │ │ │ #:len=311 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gODk0LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20ge1tzaGVsbGluZ09yZGVyLFJhbmRvbV0sInNoZWxsaW5n │ │ ├── ./usr/share/doc/Macaulay2/SimplicialPosets/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=9 │ │ │ aXNCb29sZWFu │ │ │ #:len=1246 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiRGV0ZXJtaW5lIGlmIGEgcG9zZXQgaXMg │ │ │ YSBib29sZWFuIGFsZ2VicmEuIiwgImxpbmVudW0iID0+IDMyNywgSW5wdXRzID0+IHtTUEFOe1RU │ │ ├── ./usr/share/doc/Macaulay2/SlackIdeals/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=14 │ │ │ dW5pdmVyc2FsSWRlYWw= │ │ │ #:len=2182 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiY29tcHV0ZXMgdGhlIHVuaXZlcnNhbCBy │ │ │ ZWFsaXphdGlvbiBpZGVhbCBvZiBhIG1hdHJvaWQiLCAibGluZW51bSIgPT4gMjE0MiwgSW5wdXRz │ │ ├── ./usr/share/doc/Macaulay2/SpaceCurves/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=16 │ │ │ aXNTbW9vdGhBQ01CZXR0aQ== │ │ │ #:len=902 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiY2hlY2tzIHdoZXRoZXIgYSBCZXR0aSB0 │ │ │ YWJsZSBpcyB0aGF0IG9mIGEgc21vb3RoIEFDTSBjdXJ2ZSIsICJsaW5lbnVtIiA9PiAxMjY5LCBJ │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=47 │ │ │ TXVsdGlkaW1lbnNpb25hbE1hdHJpeCAqIE11bHRpZGltZW5zaW9uYWxNYXRyaXg= │ │ │ #:len=1779 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAicHJvZHVjdCBvZiBtdWx0aWRpbWVuc2lv │ │ │ bmFsIG1hdHJpY2VzIiwgImxpbmVudW0iID0+IDE0MjYsIElucHV0cyA9PiB7U1BBTntUVHsiTSJ9 │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_degree__Determinant.out │ │ │ @@ -3,24 +3,24 @@ │ │ │ i1 : n = {2,3,2} │ │ │ │ │ │ o1 = {2, 3, 2} │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : time degreeDeterminant n │ │ │ - -- used 0.00162956s (cpu); 6.6033e-05s (thread); 0s (gc) │ │ │ + -- used 0.00278936s (cpu); 4.6277e-05s (thread); 0s (gc) │ │ │ │ │ │ o2 = 6 │ │ │ │ │ │ i3 : M = genericMultidimensionalMatrix n; │ │ │ │ │ │ o3 : 3-dimensional matrix of shape 2 x 3 x 2 over ZZ[a ..a ] │ │ │ 0,0,0 1,2,1 │ │ │ │ │ │ i4 : time degree determinant M │ │ │ - -- used 0.145443s (cpu); 0.0875454s (thread); 0s (gc) │ │ │ + -- used 0.506025s (cpu); 0.210314s (thread); 0s (gc) │ │ │ │ │ │ o4 = {6} │ │ │ │ │ │ o4 : List │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dense__Discriminant.out │ │ │ @@ -1,13 +1,13 @@ │ │ │ -- -*- M2-comint -*- hash: 17130321902108223178 │ │ │ │ │ │ i1 : (d,n) := (2,3); │ │ │ │ │ │ i2 : time Disc = denseDiscriminant(d,n) │ │ │ - -- used 0.293083s (cpu); 0.188819s (thread); 0s (gc) │ │ │ + -- used 0.593241s (cpu); 0.346695s (thread); 0s (gc) │ │ │ │ │ │ o2 = Disc │ │ │ │ │ │ o2 : SparseDiscriminant (sparse discriminant associated to | 0 0 0 0 0 0 1 1 1 2 |) │ │ │ | 0 0 0 1 1 2 0 0 1 0 | │ │ │ | 0 1 2 0 1 0 0 1 0 0 | │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dense__Resultant.out │ │ │ @@ -9,18 +9,18 @@ │ │ │ 2 │ │ │ c x x + c x + c x + c x + c ) │ │ │ 4 1 2 2 2 3 1 1 2 0 │ │ │ │ │ │ o1 : Sequence │ │ │ │ │ │ i2 : time denseResultant(f0,f1,f2); -- using Poisson formula │ │ │ - -- used 0.0838277s (cpu); 0.0863562s (thread); 0s (gc) │ │ │ + -- used 0.179961s (cpu); 0.178106s (thread); 0s (gc) │ │ │ │ │ │ i3 : time denseResultant(f0,f1,f2,Algorithm=>"Macaulay"); -- using Macaulay formula │ │ │ - -- used 0.289099s (cpu); 0.231488s (thread); 0s (gc) │ │ │ + -- used 0.758079s (cpu); 0.412225s (thread); 0s (gc) │ │ │ │ │ │ i4 : time (denseResultant(1,2,2)) (f0,f1,f2); -- using sparseResultant │ │ │ - -- used 0.366071s (cpu); 0.319698s (thread); 0s (gc) │ │ │ + -- used 0.569088s (cpu); 0.510561s (thread); 0s (gc) │ │ │ │ │ │ i5 : assert(o2 == o3 and o3 == o4) │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_determinant_lp__Multidimensional__Matrix_rp.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ o1 = {{{{8, 1}, {3, 7}}, {{8, 3}, {3, 7}}}, {{{8, 8}, {5, 7}}, {{8, 5}, {2, │ │ │ ------------------------------------------------------------------------ │ │ │ 3}}}} │ │ │ │ │ │ o1 : 4-dimensional matrix of shape 2 x 2 x 2 x 2 over ZZ │ │ │ │ │ │ i2 : time det M │ │ │ - -- used 0.156073s (cpu); 0.0871313s (thread); 0s (gc) │ │ │ + -- used 1.44933s (cpu); 0.264196s (thread); 0s (gc) │ │ │ │ │ │ o2 = 9698337990421512192 │ │ │ │ │ │ i3 : M = randomMultidimensionalMatrix(2,2,2,2,5) │ │ │ │ │ │ o3 = {{{{{6, 3, 6, 8, 6}, {9, 3, 7, 6, 9}}, {{6, 2, 6, 0, 2}, {6, 9, 3, 5, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -24,13 +24,13 @@ │ │ │ 7, 4, 5}}}, {{{4, 0, 1, 4, 4}, {2, 6, 1, 1, 4}}, {{5, 4, 9, 7, 4}, {6, │ │ │ ------------------------------------------------------------------------ │ │ │ 4, 8, 4, 2}}}}} │ │ │ │ │ │ o3 : 5-dimensional matrix of shape 2 x 2 x 2 x 2 x 5 over ZZ │ │ │ │ │ │ i4 : time det M │ │ │ - -- used 0.520079s (cpu); 0.398527s (thread); 0s (gc) │ │ │ + -- used 0.487605s (cpu); 0.438353s (thread); 0s (gc) │ │ │ │ │ │ o4 = 912984499996938980479447727885644530753184525786986940737407301278806287 │ │ │ 9257139493926586400187927813888 │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sparse__Discriminant.out │ │ │ @@ -11,15 +11,15 @@ │ │ │ a x y z + a x y z + a x y z │ │ │ 1,1,1 1 1 1 1,2,0 1 2 0 1,2,1 1 2 1 │ │ │ │ │ │ o1 : ZZ[a ..a ][x ..x , y ..y , z ..z ] │ │ │ 0,0,0 1,2,1 0 1 0 2 0 1 │ │ │ │ │ │ i2 : time sparseDiscriminant f │ │ │ - -- used 2.32213s (cpu); 1.95828s (thread); 0s (gc) │ │ │ + -- used 4.30239s (cpu); 3.93566s (thread); 0s (gc) │ │ │ │ │ │ 2 │ │ │ o2 = a a a a a a - a a a a a - │ │ │ 0,1,1 0,2,0 0,2,1 1,0,0 1,0,1 1,1,0 0,1,0 0,2,1 1,0,0 1,0,1 1,1,0 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 2 │ │ │ a a a a + a a a a a - │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sparse__Resultant.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 16228363821945730064 │ │ │ │ │ │ i1 : time Res = sparseResultant(matrix{{0,1,1,2},{0,0,1,1}},matrix{{0,1,2,2},{1,0,1,2}},matrix{{0,0,1,1},{0,1,0,1}}) │ │ │ - -- used 0.486545s (cpu); 0.422968s (thread); 0s (gc) │ │ │ + -- used 0.812636s (cpu); 0.775587s (thread); 0s (gc) │ │ │ │ │ │ o1 = Res │ │ │ │ │ │ o1 : SparseResultant (sparse mixed resultant associated to {| 0 1 1 2 |, | 0 1 2 2 |, | 0 0 1 1 |}) │ │ │ | 0 0 1 1 | | 1 0 1 2 | | 0 1 0 1 | │ │ │ │ │ │ i2 : QQ[c_(1,1)..c_(3,4)][x,y]; │ │ │ @@ -18,15 +18,15 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ c x*y + c x + c y + c ) │ │ │ 3,3 3,4 3,2 3,1 │ │ │ │ │ │ o3 : Sequence │ │ │ │ │ │ i4 : time Res(f,g,h) │ │ │ - -- used 0.0085602s (cpu); 0.0088889s (thread); 0s (gc) │ │ │ + -- used 0.126846s (cpu); 0.0831587s (thread); 0s (gc) │ │ │ │ │ │ 2 4 2 2 4 │ │ │ o4 = - c c c c c c c + c c c c c c + │ │ │ 1,2 1,3 1,4 2,1 2,2 2,3 3,1 1,2 1,3 2,1 2,2 2,4 3,1 │ │ │ ------------------------------------------------------------------------ │ │ │ 3 2 3 2 3 │ │ │ c c c c c c - 2c c c c c c c c + │ │ │ @@ -730,30 +730,30 @@ │ │ │ │ │ │ o4 : QQ[c ..c ] │ │ │ 1,1 3,4 │ │ │ │ │ │ i5 : assert(Res(f,g,h) == sparseResultant(f,g,h)) │ │ │ │ │ │ i6 : time Res = sparseResultant(matrix{{0,0,1,1},{0,1,0,1}},CoefficientRing=>ZZ/3331); │ │ │ - -- used 0.0283122s (cpu); 0.0283181s (thread); 0s (gc) │ │ │ + -- used 1.77925s (cpu); 0.279211s (thread); 0s (gc) │ │ │ │ │ │ o6 : SparseResultant (sparse unmixed resultant associated to | 0 0 1 1 | over ZZ/3331) │ │ │ | 0 1 0 1 | │ │ │ │ │ │ i7 : ZZ/3331[a_0..a_3,b_0..b_3,c_0..c_3][x,y]; │ │ │ │ │ │ i8 : (f,g,h) = (a_0 + a_1*x + a_2*y + a_3*x*y, b_0 + b_1*x + b_2*y + b_3*x*y, c_0 + c_1*x + c_2*y + c_3*x*y) │ │ │ │ │ │ o8 = (a x*y + a x + a y + a , b x*y + b x + b y + b , c x*y + c x + c y + c ) │ │ │ 3 1 2 0 3 1 2 0 3 1 2 0 │ │ │ │ │ │ o8 : Sequence │ │ │ │ │ │ i9 : time Res(f,g,h) │ │ │ - -- used 0.000612348s (cpu); 0.00298562s (thread); 0s (gc) │ │ │ + -- used 0.00400075s (cpu); 0.0029303s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 2 2 2 │ │ │ o9 = a b b c - a a b b c - a a b b c + a a b c - a b b c c - │ │ │ 3 1 2 0 2 3 1 3 0 1 3 2 3 0 1 2 3 0 3 0 2 0 1 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 │ │ │ a a b b c c + a a b c c + a a b b c c + a b b c c - a a b b c c + │ │ │ @@ -822,15 +822,15 @@ │ │ │ 2 │ │ │ c x x + c x + c x + c x + c ) │ │ │ 4 1 2 2 2 3 1 1 2 0 │ │ │ │ │ │ o11 : Sequence │ │ │ │ │ │ i12 : time (MixedRes,UnmixedRes) = (sparseResultant(f,g,h),sparseResultant(f,g,h,Unmixed=>true)); │ │ │ - -- used 0.522148s (cpu); 0.449632s (thread); 0s (gc) │ │ │ + -- used 2.43223s (cpu); 1.08352s (thread); 0s (gc) │ │ │ │ │ │ i13 : quotientRemainder(UnmixedRes,MixedRes) │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ o13 = (b c - b b c c + b b c + b c c - 2b b c c - b b c c + b c , 0) │ │ │ 5 2 4 5 2 4 2 5 4 4 2 5 2 5 2 5 2 4 4 5 2 5 │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_degree__Determinant.html │ │ │ @@ -73,27 +73,27 @@ │ │ │ │ │ │ o1 = {2, 3, 2} │ │ │ │ │ │ o1 : List │ │ │ │ │ │ │ │ │
      i2 : time degreeDeterminant n
      │ │ │ - -- used 0.00162956s (cpu); 6.6033e-05s (thread); 0s (gc)
      │ │ │ + -- used 0.00278936s (cpu); 4.6277e-05s (thread); 0s (gc)
      │ │ │  
      │ │ │  o2 = 6
      │ │ │ │ │ │ │ │ │
      i3 : M = genericMultidimensionalMatrix n;
      │ │ │  
      │ │ │  o3 : 3-dimensional matrix of shape 2 x 3 x 2 over ZZ[a     ..a     ]
      │ │ │                                                        0,0,0   1,2,1
      │ │ │ │ │ │ │ │ │
      i4 : time degree determinant M
      │ │ │ - -- used 0.145443s (cpu); 0.0875454s (thread); 0s (gc)
      │ │ │ + -- used 0.506025s (cpu); 0.210314s (thread); 0s (gc)
      │ │ │  
      │ │ │  o4 = {6}
      │ │ │  
      │ │ │  o4 : List
      │ │ │ │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -16,23 +16,23 @@ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : n = {2,3,2} │ │ │ │ │ │ │ │ o1 = {2, 3, 2} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : time degreeDeterminant n │ │ │ │ - -- used 0.00162956s (cpu); 6.6033e-05s (thread); 0s (gc) │ │ │ │ + -- used 0.00278936s (cpu); 4.6277e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 6 │ │ │ │ i3 : M = genericMultidimensionalMatrix n; │ │ │ │ │ │ │ │ o3 : 3-dimensional matrix of shape 2 x 3 x 2 over ZZ[a ..a ] │ │ │ │ 0,0,0 1,2,1 │ │ │ │ i4 : time degree determinant M │ │ │ │ - -- used 0.145443s (cpu); 0.0875454s (thread); 0s (gc) │ │ │ │ + -- used 0.506025s (cpu); 0.210314s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = {6} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_e_t_e_r_m_i_n_a_n_t_(_M_u_l_t_i_d_i_m_e_n_s_i_o_n_a_l_M_a_t_r_i_x_) -- hyperdeterminant of a │ │ │ │ multidimensional matrix │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_dense__Discriminant.html │ │ │ @@ -82,15 +82,15 @@ │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ * Outputs: │ │ │ │ o for (d,n), this is the same as _s_p_a_r_s_e_D_i_s_c_r_i_m_i_n_a_n_t _e_x_p_o_n_e_n_t_s_M_a_t_r_i_x │ │ │ │ ""ggeenneerriicc ppoollyynnoommiiaall ooff ddeeggrreeee dd iinn nn vvaarriiaabblleess"";; │ │ │ │ o for f, this is the same as _a_f_f_i_n_e_D_i_s_c_r_i_m_i_n_a_n_t(f). │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : (d,n) := (2,3); │ │ │ │ i2 : time Disc = denseDiscriminant(d,n) │ │ │ │ - -- used 0.293083s (cpu); 0.188819s (thread); 0s (gc) │ │ │ │ + -- used 0.593241s (cpu); 0.346695s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = Disc │ │ │ │ │ │ │ │ o2 : SparseDiscriminant (sparse discriminant associated to | 0 0 0 0 0 0 1 1 1 │ │ │ │ 2 |) │ │ │ │ | 0 0 0 1 1 2 0 0 1 │ │ │ │ 0 | │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_dense__Resultant.html │ │ │ @@ -92,23 +92,23 @@ │ │ │ c x x + c x + c x + c x + c ) │ │ │ 4 1 2 2 2 3 1 1 2 0 │ │ │ │ │ │ o1 : Sequence │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i1 : (d,n) := (2,3);
    │ │ │
    i2 : time Disc = denseDiscriminant(d,n)
    │ │ │ - -- used 0.293083s (cpu); 0.188819s (thread); 0s (gc)
    │ │ │ + -- used 0.593241s (cpu); 0.346695s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = Disc
    │ │ │  
    │ │ │  o2 : SparseDiscriminant (sparse discriminant associated to | 0 0 0 0 0 0 1 1 1 2 |)
    │ │ │                                                             | 0 0 0 1 1 2 0 0 1 0 |
    │ │ │                                                             | 0 1 2 0 1 0 0 1 0 0 |
    │ │ │
    i2 : time denseResultant(f0,f1,f2); -- using Poisson formula
    │ │ │ - -- used 0.0838277s (cpu); 0.0863562s (thread); 0s (gc)
    │ │ │ + -- used 0.179961s (cpu); 0.178106s (thread); 0s (gc) │ │ │
    i3 : time denseResultant(f0,f1,f2,Algorithm=>"Macaulay"); -- using Macaulay formula
    │ │ │ - -- used 0.289099s (cpu); 0.231488s (thread); 0s (gc)
    │ │ │ + -- used 0.758079s (cpu); 0.412225s (thread); 0s (gc) │ │ │
    i4 : time (denseResultant(1,2,2)) (f0,f1,f2); -- using sparseResultant
    │ │ │ - -- used 0.366071s (cpu); 0.319698s (thread); 0s (gc)
    │ │ │ + -- used 0.569088s (cpu); 0.510561s (thread); 0s (gc) │ │ │
    i5 : assert(o2 == o3 and o3 == o4)
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,20 +29,20 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 │ │ │ │ c x x + c x + c x + c x + c ) │ │ │ │ 4 1 2 2 2 3 1 1 2 0 │ │ │ │ │ │ │ │ o1 : Sequence │ │ │ │ i2 : time denseResultant(f0,f1,f2); -- using Poisson formula │ │ │ │ - -- used 0.0838277s (cpu); 0.0863562s (thread); 0s (gc) │ │ │ │ + -- used 0.179961s (cpu); 0.178106s (thread); 0s (gc) │ │ │ │ i3 : time denseResultant(f0,f1,f2,Algorithm=>"Macaulay"); -- using Macaulay │ │ │ │ formula │ │ │ │ - -- used 0.289099s (cpu); 0.231488s (thread); 0s (gc) │ │ │ │ + -- used 0.758079s (cpu); 0.412225s (thread); 0s (gc) │ │ │ │ i4 : time (denseResultant(1,2,2)) (f0,f1,f2); -- using sparseResultant │ │ │ │ - -- used 0.366071s (cpu); 0.319698s (thread); 0s (gc) │ │ │ │ + -- used 0.569088s (cpu); 0.510561s (thread); 0s (gc) │ │ │ │ i5 : assert(o2 == o3 and o3 == o4) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_p_a_r_s_e_R_e_s_u_l_t_a_n_t -- sparse resultant (A-resultant) │ │ │ │ * _a_f_f_i_n_e_R_e_s_u_l_t_a_n_t -- affine resultant │ │ │ │ * _d_e_n_s_e_D_i_s_c_r_i_m_i_n_a_n_t -- dense discriminant (classical discriminant) │ │ │ │ * _e_x_p_o_n_e_n_t_s_M_a_t_r_i_x -- exponents in one or more polynomials │ │ │ │ * _g_e_n_e_r_i_c_L_a_u_r_e_n_t_P_o_l_y_n_o_m_i_a_l_s -- generic (Laurent) polynomials │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_determinant_lp__Multidimensional__Matrix_rp.html │ │ │ @@ -84,15 +84,15 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ 3}}}} │ │ │ │ │ │ o1 : 4-dimensional matrix of shape 2 x 2 x 2 x 2 over ZZ │ │ │ │ │ │ │ │ │
    i2 : time det M
    │ │ │ - -- used 0.156073s (cpu); 0.0871313s (thread); 0s (gc)
    │ │ │ + -- used 1.44933s (cpu); 0.264196s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 9698337990421512192
    │ │ │ │ │ │ │ │ │
    i3 : M = randomMultidimensionalMatrix(2,2,2,2,5)
    │ │ │  
    │ │ │  o3 = {{{{{6, 3, 6, 8, 6}, {9, 3, 7, 6, 9}}, {{6, 2, 6, 0, 2}, {6, 9, 3, 5,
    │ │ │ @@ -105,15 +105,15 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │       4, 8, 4, 2}}}}}
    │ │ │  
    │ │ │  o3 : 5-dimensional matrix of shape 2 x 2 x 2 x 2 x 5 over ZZ
    │ │ │ │ │ │ │ │ │
    i4 : time det M
    │ │ │ - -- used 0.520079s (cpu); 0.398527s (thread); 0s (gc)
    │ │ │ + -- used 0.487605s (cpu); 0.438353s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 912984499996938980479447727885644530753184525786986940737407301278806287
    │ │ │       9257139493926586400187927813888
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -26,15 +26,15 @@ │ │ │ │ │ │ │ │ o1 = {{{{8, 1}, {3, 7}}, {{8, 3}, {3, 7}}}, {{{8, 8}, {5, 7}}, {{8, 5}, {2, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3}}}} │ │ │ │ │ │ │ │ o1 : 4-dimensional matrix of shape 2 x 2 x 2 x 2 over ZZ │ │ │ │ i2 : time det M │ │ │ │ - -- used 0.156073s (cpu); 0.0871313s (thread); 0s (gc) │ │ │ │ + -- used 1.44933s (cpu); 0.264196s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 9698337990421512192 │ │ │ │ i3 : M = randomMultidimensionalMatrix(2,2,2,2,5) │ │ │ │ │ │ │ │ o3 = {{{{{6, 3, 6, 8, 6}, {9, 3, 7, 6, 9}}, {{6, 2, 6, 0, 2}, {6, 9, 3, 5, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 6}}}, {{{3, 5, 7, 7, 9}, {4, 5, 0, 4, 3}}, {{1, 8, 9, 1, 2}, {9, 6, 6, │ │ │ │ @@ -43,15 +43,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 7, 4, 5}}}, {{{4, 0, 1, 4, 4}, {2, 6, 1, 1, 4}}, {{5, 4, 9, 7, 4}, {6, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 4, 8, 4, 2}}}}} │ │ │ │ │ │ │ │ o3 : 5-dimensional matrix of shape 2 x 2 x 2 x 2 x 5 over ZZ │ │ │ │ i4 : time det M │ │ │ │ - -- used 0.520079s (cpu); 0.398527s (thread); 0s (gc) │ │ │ │ + -- used 0.487605s (cpu); 0.438353s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 912984499996938980479447727885644530753184525786986940737407301278806287 │ │ │ │ 9257139493926586400187927813888 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _M_u_l_t_i_d_i_m_e_n_s_i_o_n_a_l_M_a_t_r_i_x -- the class of all multidimensional matrices │ │ │ │ * _d_e_g_r_e_e_D_e_t_e_r_m_i_n_a_n_t -- degree of the hyperdeterminant of a generic │ │ │ │ multidimensional matrix │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_sparse__Discriminant.html │ │ │ @@ -89,15 +89,15 @@ │ │ │ 1,1,1 1 1 1 1,2,0 1 2 0 1,2,1 1 2 1 │ │ │ │ │ │ o1 : ZZ[a ..a ][x ..x , y ..y , z ..z ] │ │ │ 0,0,0 1,2,1 0 1 0 2 0 1 │ │ │ │ │ │ │ │ │
    i2 : time sparseDiscriminant f
    │ │ │ - -- used 2.32213s (cpu); 1.95828s (thread); 0s (gc)
    │ │ │ + -- used 4.30239s (cpu); 3.93566s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                     2                        
    │ │ │  o2 = a     a     a     a     a     a      - a     a     a     a     a      -
    │ │ │        0,1,1 0,2,0 0,2,1 1,0,0 1,0,1 1,1,0    0,1,0 0,2,1 1,0,0 1,0,1 1,1,0  
    │ │ │       ------------------------------------------------------------------------
    │ │ │              2     2                                2            
    │ │ │       a     a     a     a      + a     a     a     a     a      -
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -38,15 +38,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       a     x y z  + a     x y z  + a     x y z
    │ │ │ │        1,1,1 1 1 1    1,2,0 1 2 0    1,2,1 1 2 1
    │ │ │ │  
    │ │ │ │  o1 : ZZ[a     ..a     ][x ..x , y ..y , z ..z ]
    │ │ │ │           0,0,0   1,2,1   0   1   0   2   0   1
    │ │ │ │  i2 : time sparseDiscriminant f
    │ │ │ │ - -- used 2.32213s (cpu); 1.95828s (thread); 0s (gc)
    │ │ │ │ + -- used 4.30239s (cpu); 3.93566s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                                                     2
    │ │ │ │  o2 = a     a     a     a     a     a      - a     a     a     a     a      -
    │ │ │ │        0,1,1 0,2,0 0,2,1 1,0,0 1,0,1 1,1,0    0,1,0 0,2,1 1,0,0 1,0,1 1,1,0
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │              2     2                                2
    │ │ │ │       a     a     a     a      + a     a     a     a     a      -
    │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_sparse__Resultant.html
    │ │ │ @@ -76,15 +76,15 @@
    │ │ │        
    │ │ │

    Description

    │ │ │

    Alternatively, one can apply the method directly to the list of Laurent polynomials $f_0,\ldots,f_n$. In this case, the matrices $A_0,\ldots,A_n$ are automatically determined by exponentsMatrix. If you want require that $A_0=\cdots=A_n$, then use the option Unmixed=>true (this could be faster). Below we consider some examples.

    │ │ │

    In the first example, we calculate the sparse (mixed) resultant associated to the three sets of monomials $(1,x y,x^2 y,x),(y,x^2 y^2,x^2 y,x),(1,y,x y,x)$. Then we evaluate it at the three polynomials $f = c_{(1,1)}+c_{(1,2)} x y+c_{(1,3)} x^2 y+c_{(1,4)} x, g = c_{(2,1)} y+c_{(2,2)} x^2 y^2+c_{(2,3)} x^2 y+c_{(2,4)} x, h = c_{(3,1)}+c_{(3,2)} y+c_{(3,3)} x y+c_{(3,4)} x$.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -100,15 +100,15 @@ │ │ │ c x*y + c x + c y + c ) │ │ │ 3,3 3,4 3,2 3,1 │ │ │ │ │ │ o3 : Sequence │ │ │ │ │ │ │ │ │ │ │ │
    i1 : time Res = sparseResultant(matrix{{0,1,1,2},{0,0,1,1}},matrix{{0,1,2,2},{1,0,1,2}},matrix{{0,0,1,1},{0,1,0,1}})
    │ │ │ - -- used 0.486545s (cpu); 0.422968s (thread); 0s (gc)
    │ │ │ + -- used 0.812636s (cpu); 0.775587s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = Res
    │ │ │  
    │ │ │  o1 : SparseResultant (sparse mixed resultant associated to {| 0 1 1 2 |, | 0 1 2 2 |, | 0 0 1 1 |})
    │ │ │                                                              | 0 0 1 1 |  | 1 0 1 2 |  | 0 1 0 1 |
    │ │ │
    i4 : time Res(f,g,h)
    │ │ │ - -- used 0.0085602s (cpu); 0.0088889s (thread); 0s (gc)
    │ │ │ + -- used 0.126846s (cpu); 0.0831587s (thread); 0s (gc)
    │ │ │  
    │ │ │          2                       4      2   2               4    
    │ │ │  o4 = - c   c   c   c   c   c   c    + c   c   c   c   c   c    +
    │ │ │          1,2 1,3 1,4 2,1 2,2 2,3 3,1    1,2 1,3 2,1 2,2 2,4 3,1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        3       2       3               2                   3        
    │ │ │       c   c   c   c   c   c    - 2c   c   c   c   c   c   c   c    +
    │ │ │ @@ -817,15 +817,15 @@
    │ │ │  
    i5 : assert(Res(f,g,h) == sparseResultant(f,g,h))
    │ │ │
    │ │ │

    In the second example, we calculate the sparse unmixed resultant associated to the set of monomials $(1,x,y,xy)$. Then we evaluate it at the three polynomials $f = a_0 + a_1 x + a_2 y + a_3 x y, g = b_0 + b_1 x + b_2 y + b_3 x y, h = c_0 + c_1 x + c_2 y + c_3 x y$. Moreover, we perform all the computation over $\mathbb{Z}/3331$.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -835,15 +835,15 @@ │ │ │ o8 = (a x*y + a x + a y + a , b x*y + b x + b y + b , c x*y + c x + c y + c ) │ │ │ 3 1 2 0 3 1 2 0 3 1 2 0 │ │ │ │ │ │ o8 : Sequence │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time Res = sparseResultant(matrix{{0,0,1,1},{0,1,0,1}},CoefficientRing=>ZZ/3331);
    │ │ │ - -- used 0.0283122s (cpu); 0.0283181s (thread); 0s (gc)
    │ │ │ + -- used 1.77925s (cpu); 0.279211s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : SparseResultant (sparse unmixed resultant associated to | 0 0 1 1 | over ZZ/3331)
    │ │ │                                                               | 0 1 0 1 |
    │ │ │
    i7 : ZZ/3331[a_0..a_3,b_0..b_3,c_0..c_3][x,y];
    │ │ │
    i9 : time Res(f,g,h)
    │ │ │ - -- used 0.000612348s (cpu); 0.00298562s (thread); 0s (gc)
    │ │ │ + -- used 0.00400075s (cpu); 0.0029303s (thread); 0s (gc)
    │ │ │  
    │ │ │        2     2            2            2        2 2    2          
    │ │ │  o9 = a b b c  - a a b b c  - a a b b c  + a a b c  - a b b c c  -
    │ │ │        3 1 2 0    2 3 1 3 0    1 3 2 3 0    1 2 3 0    3 0 2 0 1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │                           2                       2                         
    │ │ │       a a b b c c  + a a b c c  + a a b b c c  + a b b c c  - a a b b c c  +
    │ │ │ @@ -918,15 +918,15 @@
    │ │ │        c x x  + c x  + c x  + c x  + c )
    │ │ │         4 1 2    2 2    3 1    1 2    0
    │ │ │  
    │ │ │  o11 : Sequence
    │ │ │
    i12 : time (MixedRes,UnmixedRes) = (sparseResultant(f,g,h),sparseResultant(f,g,h,Unmixed=>true));
    │ │ │ - -- used 0.522148s (cpu); 0.449632s (thread); 0s (gc)
    │ │ │ + -- used 2.43223s (cpu); 1.08352s (thread); 0s (gc) │ │ │
    i13 : quotientRemainder(UnmixedRes,MixedRes)
    │ │ │  
    │ │ │          2 2                   2    2                               2 2
    │ │ │  o13 = (b c  - b b c c  + b b c  + b c c  - 2b b c c  - b b c c  + b c , 0)
    │ │ │          5 2    4 5 2 4    2 5 4    4 2 5     2 5 2 5    2 4 4 5    2 5
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -35,15 +35,15 @@
    │ │ │ │  In the first example, we calculate the sparse (mixed) resultant associated to
    │ │ │ │  the three sets of monomials $(1,x y,x^2 y,x),(y,x^2 y^2,x^2 y,x),(1,y,x y,x)$.
    │ │ │ │  Then we evaluate it at the three polynomials $f = c_{(1,1)}+c_{(1,2)} x y+c_{
    │ │ │ │  (1,3)} x^2 y+c_{(1,4)} x, g = c_{(2,1)} y+c_{(2,2)} x^2 y^2+c_{(2,3)} x^2 y+c_{
    │ │ │ │  (2,4)} x, h = c_{(3,1)}+c_{(3,2)} y+c_{(3,3)} x y+c_{(3,4)} x$.
    │ │ │ │  i1 : time Res = sparseResultant(matrix{{0,1,1,2},{0,0,1,1}},matrix{{0,1,2,2},
    │ │ │ │  {1,0,1,2}},matrix{{0,0,1,1},{0,1,0,1}})
    │ │ │ │ - -- used 0.486545s (cpu); 0.422968s (thread); 0s (gc)
    │ │ │ │ + -- used 0.812636s (cpu); 0.775587s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o1 = Res
    │ │ │ │  
    │ │ │ │  o1 : SparseResultant (sparse mixed resultant associated to {| 0 1 1 2 |, | 0 1
    │ │ │ │  2 2 |, | 0 0 1 1 |})
    │ │ │ │                                                              | 0 0 1 1 |  | 1 0
    │ │ │ │  1 2 |  | 0 1 0 1 |
    │ │ │ │ @@ -56,15 +56,15 @@
    │ │ │ │         1,3       1,2       1,4     1,1   2,2        2,3       2,4     2,1
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       c   x*y + c   x + c   y + c   )
    │ │ │ │        3,3       3,4     3,2     3,1
    │ │ │ │  
    │ │ │ │  o3 : Sequence
    │ │ │ │  i4 : time Res(f,g,h)
    │ │ │ │ - -- used 0.0085602s (cpu); 0.0088889s (thread); 0s (gc)
    │ │ │ │ + -- used 0.126846s (cpu); 0.0831587s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          2                       4      2   2               4
    │ │ │ │  o4 = - c   c   c   c   c   c   c    + c   c   c   c   c   c    +
    │ │ │ │          1,2 1,3 1,4 2,1 2,2 2,3 3,1    1,2 1,3 2,1 2,2 2,4 3,1
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        3       2       3               2                   3
    │ │ │ │       c   c   c   c   c   c    - 2c   c   c   c   c   c   c   c    +
    │ │ │ │ @@ -772,29 +772,29 @@
    │ │ │ │  In the second example, we calculate the sparse unmixed resultant associated to
    │ │ │ │  the set of monomials $(1,x,y,xy)$. Then we evaluate it at the three polynomials
    │ │ │ │  $f = a_0 + a_1 x + a_2 y + a_3 x y, g = b_0 + b_1 x + b_2 y + b_3 x y, h = c_0
    │ │ │ │  + c_1 x + c_2 y + c_3 x y$. Moreover, we perform all the computation over
    │ │ │ │  $\mathbb{Z}/3331$.
    │ │ │ │  i6 : time Res = sparseResultant(matrix{{0,0,1,1},
    │ │ │ │  {0,1,0,1}},CoefficientRing=>ZZ/3331);
    │ │ │ │ - -- used 0.0283122s (cpu); 0.0283181s (thread); 0s (gc)
    │ │ │ │ + -- used 1.77925s (cpu); 0.279211s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 : SparseResultant (sparse unmixed resultant associated to | 0 0 1 1 | over
    │ │ │ │  ZZ/3331)
    │ │ │ │                                                               | 0 1 0 1 |
    │ │ │ │  i7 : ZZ/3331[a_0..a_3,b_0..b_3,c_0..c_3][x,y];
    │ │ │ │  i8 : (f,g,h) = (a_0 + a_1*x + a_2*y + a_3*x*y, b_0 + b_1*x + b_2*y + b_3*x*y,
    │ │ │ │  c_0 + c_1*x + c_2*y + c_3*x*y)
    │ │ │ │  
    │ │ │ │  o8 = (a x*y + a x + a y + a , b x*y + b x + b y + b , c x*y + c x + c y + c )
    │ │ │ │         3       1     2     0   3       1     2     0   3       1     2     0
    │ │ │ │  
    │ │ │ │  o8 : Sequence
    │ │ │ │  i9 : time Res(f,g,h)
    │ │ │ │ - -- used 0.000612348s (cpu); 0.00298562s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00400075s (cpu); 0.0029303s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │        2     2            2            2        2 2    2
    │ │ │ │  o9 = a b b c  - a a b b c  - a a b b c  + a a b c  - a b b c c  -
    │ │ │ │        3 1 2 0    2 3 1 3 0    1 3 2 3 0    1 2 3 0    3 0 2 0 1
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                           2                       2
    │ │ │ │       a a b b c c  + a a b c c  + a a b b c c  + a b b c c  - a a b b c c  +
    │ │ │ │ @@ -864,15 +864,15 @@
    │ │ │ │                    2
    │ │ │ │        c x x  + c x  + c x  + c x  + c )
    │ │ │ │         4 1 2    2 2    3 1    1 2    0
    │ │ │ │  
    │ │ │ │  o11 : Sequence
    │ │ │ │  i12 : time (MixedRes,UnmixedRes) = (sparseResultant(f,g,h),sparseResultant
    │ │ │ │  (f,g,h,Unmixed=>true));
    │ │ │ │ - -- used 0.522148s (cpu); 0.449632s (thread); 0s (gc)
    │ │ │ │ + -- used 2.43223s (cpu); 1.08352s (thread); 0s (gc)
    │ │ │ │  i13 : quotientRemainder(UnmixedRes,MixedRes)
    │ │ │ │  
    │ │ │ │          2 2                   2    2                               2 2
    │ │ │ │  o13 = (b c  - b b c c  + b b c  + b c c  - 2b b c c  - b b c c  + b c , 0)
    │ │ │ │          5 2    4 5 2 4    2 5 4    4 2 5     2 5 2 5    2 4 4 5    2 5
    │ │ │ │  
    │ │ │ │  o13 : Sequence
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=38
    │ │ │  c2NodXJQb2x5bm9taWFsKC4uLixBc0V4cHJlc3Npb249Pi4uLik=
    │ │ │  #:len=287
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzMwNSwgc3ltYm9sIERvY3VtZW50VGFn
    │ │ │  ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHtbc2NodXJQb2x5bm9taWFsLEFzRXhwcmVzc2lvbl0s
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/example-output/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.out
    │ │ │ @@ -25,15 +25,15 @@
    │ │ │  o4 = | 0 1 |
    │ │ │       | 2 3 |
    │ │ │       | 4 |
    │ │ │  
    │ │ │  o4 : YoungTableau
    │ │ │  
    │ │ │  i5 : time higherSpechtPolynomial(S,T,R)
    │ │ │ - -- used 0.000884418s (cpu); 0.00130217s (thread); 0s (gc)
    │ │ │ + -- used 0.00128616s (cpu); 0.00104511s (thread); 0s (gc)
    │ │ │  
    │ │ │        3 2          2 3      3     2        3 2    3   2      2   3    
    │ │ │  o5 = x x x x  - x x x x  - x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │        0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 4    0 1 2 4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        3 2        3 2        2 3        2 3        3   2        3 2    
    │ │ │       x x x x  - x x x x  + x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │ @@ -46,15 +46,15 @@
    │ │ │          2   3    2     3    2     3      2   3        2 3        2 3
    │ │ │       x x x x  - x x x x  - x x x x  + x x x x  - x x x x  + x x x x
    │ │ │        0 1 3 4    0 2 3 4    1 2 3 4    0 2 3 4    0 1 3 4    1 2 3 4
    │ │ │  
    │ │ │  o5 : R
    │ │ │  
    │ │ │  i6 : time higherSpechtPolynomial(S,T,R, Robust => false)
    │ │ │ - -- used 0.0021735s (cpu); 0.00108661s (thread); 0s (gc)
    │ │ │ + -- used 0.00166903s (cpu); 0.000894327s (thread); 0s (gc)
    │ │ │  
    │ │ │        3 2          2 3      3     2        3 2    3   2      2   3    
    │ │ │  o6 = x x x x  - x x x x  - x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │        0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 4    0 1 2 4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        3 2        3 2        2 3        2 3        3   2        3 2    
    │ │ │       x x x x  - x x x x  + x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │ @@ -67,15 +67,15 @@
    │ │ │          2   3    2     3    2     3      2   3        2 3        2 3
    │ │ │       x x x x  - x x x x  - x x x x  + x x x x  - x x x x  + x x x x
    │ │ │        0 1 3 4    0 2 3 4    1 2 3 4    0 2 3 4    0 1 3 4    1 2 3 4
    │ │ │  
    │ │ │  o6 : R
    │ │ │  
    │ │ │  i7 : time higherSpechtPolynomial(S,T,R, Robust => false, AsExpression => true)
    │ │ │ - -- used 0.00181311s (cpu); 0.00189266s (thread); 0s (gc)
    │ │ │ + -- used 0.000860514s (cpu); 0.00173213s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = (- x  + x )(- x  + x )(- x  + x )(- x  + x )((x  + x  + x )(x )(x ) + (x )(x )(x ))
    │ │ │           0    2     0    4     2    4     1    3    0    2    4   3   1      4   2   0
    │ │ │  
    │ │ │  o7 : Expression of class Product
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/example-output/_representation__Multiplicity.out
    │ │ │ @@ -25,15 +25,15 @@
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 : tal := tally apply (H,h->conjugacyClass h);
    │ │ │  
    │ │ │  i4 : partis = partitions 6;
    │ │ │  
    │ │ │  i5 : time multi = hashTable apply (partis, p-> p=> representationMultiplicity(tal,p))
    │ │ │ - -- used 0.256962s (cpu); 0.201718s (thread); 0s (gc)
    │ │ │ + -- used 0.459066s (cpu); 0.420364s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = HashTable{Partition{1, 1, 1, 1, 1, 1} => 1}
    │ │ │                 Partition{2, 1, 1, 1, 1} => 0
    │ │ │                 Partition{2, 2, 1, 1} => 1
    │ │ │                 Partition{2, 2, 2} => 1
    │ │ │                 Partition{3, 1, 1, 1} => 0
    │ │ │                 Partition{3, 2, 1} => 0
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/example-output/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.out
    │ │ │ @@ -9,15 +9,15 @@
    │ │ │  i2 : genList = {{1,2,3,0,5,4},{0,4,2,5,1,3}}
    │ │ │  
    │ │ │  o2 = {{1, 2, 3, 0, 5, 4}, {0, 4, 2, 5, 1, 3}}
    │ │ │  
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 : time seco = secondaryInvariants(genList,R);
    │ │ │ - -- used 0.605979s (cpu); 0.435231s (thread); 0s (gc)
    │ │ │ + -- used 1.11655s (cpu); 0.992502s (thread); 0s (gc)
    │ │ │  (Partition{6}, Ambient_Dimension, 1, Rank, 1)
    │ │ │  (Partition{5, 1}, Ambient_Dimension, 5, Rank, 0)
    │ │ │  (Partition{4, 2}, Ambient_Dimension, 9, Rank, 1)
    │ │ │  (Partition{4, 1, 1}, Ambient_Dimension, 10, Rank, 0)
    │ │ │  (Partition{3, 3}, Ambient_Dimension, 5, Rank, 1)
    │ │ │  (Partition{3, 2, 1}, Ambient_Dimension, 16, Rank, 0)
    │ │ │  (Partition{3, 1, 1, 1}, Ambient_Dimension, 10, Rank, 0)
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/html/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.html
    │ │ │ @@ -122,15 +122,15 @@
    │ │ │       | 2 3 |
    │ │ │       | 4 |
    │ │ │  
    │ │ │  o4 : YoungTableau
    │ │ │
    i5 : time higherSpechtPolynomial(S,T,R)
    │ │ │ - -- used 0.000884418s (cpu); 0.00130217s (thread); 0s (gc)
    │ │ │ + -- used 0.00128616s (cpu); 0.00104511s (thread); 0s (gc)
    │ │ │  
    │ │ │        3 2          2 3      3     2        3 2    3   2      2   3    
    │ │ │  o5 = x x x x  - x x x x  - x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │        0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 4    0 1 2 4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        3 2        3 2        2 3        2 3        3   2        3 2    
    │ │ │       x x x x  - x x x x  + x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │ @@ -144,15 +144,15 @@
    │ │ │       x x x x  - x x x x  - x x x x  + x x x x  - x x x x  + x x x x
    │ │ │        0 1 3 4    0 2 3 4    1 2 3 4    0 2 3 4    0 1 3 4    1 2 3 4
    │ │ │  
    │ │ │  o5 : R
    │ │ │
    i6 : time higherSpechtPolynomial(S,T,R, Robust => false)
    │ │ │ - -- used 0.0021735s (cpu); 0.00108661s (thread); 0s (gc)
    │ │ │ + -- used 0.00166903s (cpu); 0.000894327s (thread); 0s (gc)
    │ │ │  
    │ │ │        3 2          2 3      3     2        3 2    3   2      2   3    
    │ │ │  o6 = x x x x  - x x x x  - x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │        0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 4    0 1 2 4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        3 2        3 2        2 3        2 3        3   2        3 2    
    │ │ │       x x x x  - x x x x  + x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │ @@ -166,15 +166,15 @@
    │ │ │       x x x x  - x x x x  - x x x x  + x x x x  - x x x x  + x x x x
    │ │ │        0 1 3 4    0 2 3 4    1 2 3 4    0 2 3 4    0 1 3 4    1 2 3 4
    │ │ │  
    │ │ │  o6 : R
    │ │ │
    i7 : time higherSpechtPolynomial(S,T,R, Robust => false, AsExpression => true)
    │ │ │ - -- used 0.00181311s (cpu); 0.00189266s (thread); 0s (gc)
    │ │ │ + -- used 0.000860514s (cpu); 0.00173213s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = (- x  + x )(- x  + x )(- x  + x )(- x  + x )((x  + x  + x )(x )(x ) + (x )(x )(x ))
    │ │ │           0    2     0    4     2    4     1    3    0    2    4   3   1      4   2   0
    │ │ │  
    │ │ │  o7 : Expression of class Product
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -69,15 +69,15 @@ │ │ │ │ │ │ │ │ o4 = | 0 1 | │ │ │ │ | 2 3 | │ │ │ │ | 4 | │ │ │ │ │ │ │ │ o4 : YoungTableau │ │ │ │ i5 : time higherSpechtPolynomial(S,T,R) │ │ │ │ - -- used 0.000884418s (cpu); 0.00130217s (thread); 0s (gc) │ │ │ │ + -- used 0.00128616s (cpu); 0.00104511s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 2 2 3 3 2 3 2 3 2 2 3 │ │ │ │ o5 = x x x x - x x x x - x x x x + x x x x + x x x x - x x x x - │ │ │ │ 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 4 0 1 2 4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 2 3 2 2 3 2 3 3 2 3 2 │ │ │ │ x x x x - x x x x + x x x x + x x x x + x x x x - x x x x - │ │ │ │ @@ -89,15 +89,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 3 2 3 2 3 2 3 2 3 │ │ │ │ x x x x - x x x x - x x x x + x x x x - x x x x + x x x x │ │ │ │ 0 1 3 4 0 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 1 2 3 4 │ │ │ │ │ │ │ │ o5 : R │ │ │ │ i6 : time higherSpechtPolynomial(S,T,R, Robust => false) │ │ │ │ - -- used 0.0021735s (cpu); 0.00108661s (thread); 0s (gc) │ │ │ │ + -- used 0.00166903s (cpu); 0.000894327s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 2 2 3 3 2 3 2 3 2 2 3 │ │ │ │ o6 = x x x x - x x x x - x x x x + x x x x + x x x x - x x x x - │ │ │ │ 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 4 0 1 2 4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 2 3 2 2 3 2 3 3 2 3 2 │ │ │ │ x x x x - x x x x + x x x x + x x x x + x x x x - x x x x - │ │ │ │ @@ -109,15 +109,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 3 2 3 2 3 2 3 2 3 │ │ │ │ x x x x - x x x x - x x x x + x x x x - x x x x + x x x x │ │ │ │ 0 1 3 4 0 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 1 2 3 4 │ │ │ │ │ │ │ │ o6 : R │ │ │ │ i7 : time higherSpechtPolynomial(S,T,R, Robust => false, AsExpression => true) │ │ │ │ - -- used 0.00181311s (cpu); 0.00189266s (thread); 0s (gc) │ │ │ │ + -- used 0.000860514s (cpu); 0.00173213s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = (- x + x )(- x + x )(- x + x )(- x + x )((x + x + x )(x )(x ) + (x ) │ │ │ │ (x )(x )) │ │ │ │ 0 2 0 4 2 4 1 3 0 2 4 3 1 4 │ │ │ │ 2 0 │ │ │ │ │ │ │ │ o7 : Expression of class Product │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/html/_representation__Multiplicity.html │ │ │ @@ -119,15 +119,15 @@ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -42,15 +42,15 @@ │ │ │ │ o2 = Complete intersection of 3 quadrics in PP^7 │ │ │ │ of discriminant 31 = det| 8 1 | │ │ │ │ | 1 4 | │ │ │ │ containing a surface of degree 1 and sectional genus 0 │ │ │ │ cut out by 5 hypersurfaces of degree 1 │ │ │ │ (This is a classical example of rational fourfold) │ │ │ │ i3 : time U' = associatedCastelnuovoSurface X; │ │ │ │ - -- used 2.59548s (cpu); 0.993183s (thread); 0s (gc) │ │ │ │ + -- used 7.19095s (cpu); 2.40393s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : ProjectiveVariety, Castelnuovo surface associated to X │ │ │ │ i4 : (mu,U,C,f) = building U'; │ │ │ │ i5 : ? mu │ │ │ │ │ │ │ │ o5 = multi-rational map consisting of one single rational map │ │ │ │ source variety: 5-dimensional subvariety of PP^7 cut out by 2 │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface_lp__Special__Cubic__Fourfold_rp.html │ │ │ @@ -109,15 +109,15 @@ │ │ │ │ │ │ o2 = Special cubic fourfold of discriminant 14 │ │ │ containing a (smooth) surface of degree 4 and sectional genus 0 │ │ │ cut out by 6 hypersurfaces of degree 2 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -42,15 +42,15 @@ │ │ │ │ sectional genus 0 │ │ │ │ i2 : describe X │ │ │ │ │ │ │ │ o2 = Special cubic fourfold of discriminant 14 │ │ │ │ containing a (smooth) surface of degree 4 and sectional genus 0 │ │ │ │ cut out by 6 hypersurfaces of degree 2 │ │ │ │ i3 : time U' = associatedK3surface X; │ │ │ │ - -- used 2.32728s (cpu); 1.00597s (thread); 0s (gc) │ │ │ │ + -- used 9.72896s (cpu); 2.39258s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : ProjectiveVariety, K3 surface associated to X │ │ │ │ i4 : (mu,U,C,f) = building U'; │ │ │ │ i5 : ? mu │ │ │ │ │ │ │ │ o5 = multi-rational map consisting of one single rational map │ │ │ │ source variety: PP^5 │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ @@ -112,15 +112,15 @@ │ │ │ cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2) │ │ │ and with class in G(1,4) given by s_(3,1)+s_(2,2) │ │ │ Type: ordinary │ │ │ (case 1 of Table 1 in arXiv:2002.07026) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -44,15 +44,15 @@ │ │ │ │ o2 = Special Gushel-Mukai fourfold of discriminant 10(') │ │ │ │ containing a surface in PP^8 of degree 2 and sectional genus 0 │ │ │ │ cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2) │ │ │ │ and with class in G(1,4) given by s_(3,1)+s_(2,2) │ │ │ │ Type: ordinary │ │ │ │ (case 1 of Table 1 in arXiv:2002.07026) │ │ │ │ i3 : time U' = associatedK3surface X; │ │ │ │ - -- used 8.32356s (cpu); 4.38639s (thread); 0s (gc) │ │ │ │ + -- used 17.1913s (cpu); 8.25251s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : ProjectiveVariety, K3 surface associated to X │ │ │ │ i4 : (mu,U,C,f) = building U'; │ │ │ │ i5 : ? mu │ │ │ │ │ │ │ │ o5 = multi-rational map consisting of one single rational map │ │ │ │ source variety: 5-dimensional subvariety of PP^8 cut out by 5 │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.html │ │ │ @@ -90,15 +90,15 @@ │ │ │ │ │ │ o2 = Special cubic fourfold of discriminant 26 │ │ │ containing a 3-nodal surface of degree 7 and sectional genus 0 │ │ │ cut out by 13 hypersurfaces of degree 3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -106,15 +106,15 @@ │ │ │ │ │ │ o4 = point of coordinates [15092, -9738, -3620, -15181, 12688, 1] │ │ │ │ │ │ o4 : ProjectiveVariety, a point in PP^5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : partis = partitions 6;
    │ │ │
    i5 : time multi = hashTable apply (partis, p-> p=> representationMultiplicity(tal,p))
    │ │ │ - -- used 0.256962s (cpu); 0.201718s (thread); 0s (gc)
    │ │ │ + -- used 0.459066s (cpu); 0.420364s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = HashTable{Partition{1, 1, 1, 1, 1, 1} => 1}
    │ │ │                 Partition{2, 1, 1, 1, 1} => 0
    │ │ │                 Partition{2, 2, 1, 1} => 1
    │ │ │                 Partition{2, 2, 2} => 1
    │ │ │                 Partition{3, 1, 1, 1} => 0
    │ │ │                 Partition{3, 2, 1} => 0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -64,15 +64,15 @@
    │ │ │ │  representations of $H$ in each irreducible representation of $S_6$. We take
    │ │ │ │  into account that there are multiple copies of each representation by
    │ │ │ │  multiplying the values with the number of copies which is given by the
    │ │ │ │  hookLengthFormula.
    │ │ │ │  i4 : partis = partitions 6;
    │ │ │ │  i5 : time multi = hashTable apply (partis, p-> p=> representationMultiplicity
    │ │ │ │  (tal,p))
    │ │ │ │ - -- used 0.256962s (cpu); 0.201718s (thread); 0s (gc)
    │ │ │ │ + -- used 0.459066s (cpu); 0.420364s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = HashTable{Partition{1, 1, 1, 1, 1, 1} => 1}
    │ │ │ │                 Partition{2, 1, 1, 1, 1} => 0
    │ │ │ │                 Partition{2, 2, 1, 1} => 1
    │ │ │ │                 Partition{2, 2, 2} => 1
    │ │ │ │                 Partition{3, 1, 1, 1} => 0
    │ │ │ │                 Partition{3, 2, 1} => 0
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/html/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.html
    │ │ │ @@ -98,15 +98,15 @@
    │ │ │  
    │ │ │  o2 = {{1, 2, 3, 0, 5, 4}, {0, 4, 2, 5, 1, 3}}
    │ │ │  
    │ │ │  o2 : List
    │ │ │
    i3 : time seco = secondaryInvariants(genList,R);
    │ │ │ - -- used 0.605979s (cpu); 0.435231s (thread); 0s (gc)
    │ │ │ + -- used 1.11655s (cpu); 0.992502s (thread); 0s (gc)
    │ │ │  (Partition{6}, Ambient_Dimension, 1, Rank, 1)
    │ │ │  (Partition{5, 1}, Ambient_Dimension, 5, Rank, 0)
    │ │ │  (Partition{4, 2}, Ambient_Dimension, 9, Rank, 1)
    │ │ │  (Partition{4, 1, 1}, Ambient_Dimension, 10, Rank, 0)
    │ │ │  (Partition{3, 3}, Ambient_Dimension, 5, Rank, 1)
    │ │ │  (Partition{3, 2, 1}, Ambient_Dimension, 16, Rank, 0)
    │ │ │  (Partition{3, 1, 1, 1}, Ambient_Dimension, 10, Rank, 0)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -46,15 +46,15 @@
    │ │ │ │  o1 : PolynomialRing
    │ │ │ │  i2 : genList = {{1,2,3,0,5,4},{0,4,2,5,1,3}}
    │ │ │ │  
    │ │ │ │  o2 = {{1, 2, 3, 0, 5, 4}, {0, 4, 2, 5, 1, 3}}
    │ │ │ │  
    │ │ │ │  o2 : List
    │ │ │ │  i3 : time seco = secondaryInvariants(genList,R);
    │ │ │ │ - -- used 0.605979s (cpu); 0.435231s (thread); 0s (gc)
    │ │ │ │ + -- used 1.11655s (cpu); 0.992502s (thread); 0s (gc)
    │ │ │ │  (Partition{6}, Ambient_Dimension, 1, Rank, 1)
    │ │ │ │  (Partition{5, 1}, Ambient_Dimension, 5, Rank, 0)
    │ │ │ │  (Partition{4, 2}, Ambient_Dimension, 9, Rank, 1)
    │ │ │ │  (Partition{4, 1, 1}, Ambient_Dimension, 10, Rank, 0)
    │ │ │ │  (Partition{3, 3}, Ambient_Dimension, 5, Rank, 1)
    │ │ │ │  (Partition{3, 2, 1}, Ambient_Dimension, 16, Rank, 0)
    │ │ │ │  (Partition{3, 1, 1, 1}, Ambient_Dimension, 10, Rank, 0)
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=31
    │ │ │  SW50ZXJzZWN0aW9uT2ZUaHJlZVF1YWRyaWNzSW5QNw==
    │ │ │  #:len=625
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAidGhlIGNsYXNzIG9mIGFsbCBzcGVjaWFs
    │ │ │  IGludGVyc2VjdGlvbiBvZiB0aHJlZSBxdWFkcmljcyBpbiBQXjciLCAibGluZW51bSIgPT4gMzY1
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__Castelnuovo__Surface.out
    │ │ │ @@ -10,15 +10,15 @@
    │ │ │       of discriminant 31 = det| 8 1 |
    │ │ │                               | 1 4 |
    │ │ │       containing a surface of degree 1 and sectional genus 0
    │ │ │       cut out by 5 hypersurfaces of degree 1
    │ │ │       (This is a classical example of rational fourfold)
    │ │ │  
    │ │ │  i3 : time U' = associatedCastelnuovoSurface X;
    │ │ │ - -- used 2.59548s (cpu); 0.993183s (thread); 0s (gc)
    │ │ │ + -- used 7.19095s (cpu); 2.40393s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, Castelnuovo surface associated to X
    │ │ │  
    │ │ │  i4 : (mu,U,C,f) = building U';
    │ │ │  
    │ │ │  i5 : ? mu
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__K3surface_lp__Special__Cubic__Fourfold_rp.out
    │ │ │ @@ -7,15 +7,15 @@
    │ │ │  i2 : describe X
    │ │ │  
    │ │ │  o2 = Special cubic fourfold of discriminant 14
    │ │ │       containing a (smooth) surface of degree 4 and sectional genus 0
    │ │ │       cut out by 6 hypersurfaces of degree 2
    │ │ │  
    │ │ │  i3 : time U' = associatedK3surface X;
    │ │ │ - -- used 2.32728s (cpu); 1.00597s (thread); 0s (gc)
    │ │ │ + -- used 9.72896s (cpu); 2.39258s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, K3 surface associated to X
    │ │ │  
    │ │ │  i4 : (mu,U,C,f) = building U';
    │ │ │  
    │ │ │  i5 : ? mu
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__K3surface_lp__Special__Gushel__Mukai__Fourfold_rp.out
    │ │ │ @@ -10,15 +10,15 @@
    │ │ │       containing a surface in PP^8 of degree 2 and sectional genus 0
    │ │ │       cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2)
    │ │ │       and with class in G(1,4) given by s_(3,1)+s_(2,2)
    │ │ │       Type: ordinary
    │ │ │       (case 1 of Table 1 in arXiv:2002.07026)
    │ │ │  
    │ │ │  i3 : time U' = associatedK3surface X;
    │ │ │ - -- used 8.32356s (cpu); 4.38639s (thread); 0s (gc)
    │ │ │ + -- used 17.1913s (cpu); 8.25251s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, K3 surface associated to X
    │ │ │  
    │ │ │  i4 : (mu,U,C,f) = building U';
    │ │ │  
    │ │ │  i5 : ? mu
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.out
    │ │ │ @@ -8,28 +8,28 @@
    │ │ │  i2 : describe X
    │ │ │  
    │ │ │  o2 = Special cubic fourfold of discriminant 26
    │ │ │       containing a 3-nodal surface of degree 7 and sectional genus 0
    │ │ │       cut out by 13 hypersurfaces of degree 3
    │ │ │  
    │ │ │  i3 : time f = detectCongruence(X,Verbose=>true);
    │ │ │ - -- used 4.72888s (cpu); 2.04389s (thread); 0s (gc)
    │ │ │ + -- used 7.15636s (cpu); 3.70662s (thread); 0s (gc)
    │ │ │  number lines contained in the image of the cubic map and passing through a general point: 8
    │ │ │  number 2-secant lines = 7
    │ │ │  number 5-secant conics = 1
    │ │ │  
    │ │ │  o3 : Congruence of 5-secant conics to surface in PP^5
    │ │ │  
    │ │ │  i4 : p := point ambient X -- random point on P^5
    │ │ │  
    │ │ │  o4 = point of coordinates [15092, -9738, -3620, -15181, 12688, 1]
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, a point in PP^5
    │ │ │  
    │ │ │  i5 : time C = f p; -- 5-secant conic to the surface
    │ │ │ - -- used 0.454906s (cpu); 0.271329s (thread); 0s (gc)
    │ │ │ + -- used 1.12874s (cpu); 0.605253s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, curve in PP^5
    │ │ │  
    │ │ │  i6 : assert(dim C == 1 and degree C == 2 and dim(C * surface X) == 0 and degree(C * surface X) == 5 and isSubset(p, C))
    │ │ │  
    │ │ │  i7 :
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.out
    │ │ │ @@ -11,15 +11,15 @@
    │ │ │       containing a surface in PP^8 of degree 9 and sectional genus 2
    │ │ │       cut out by 19 hypersurfaces of degree 2
    │ │ │       and with class in G(1,4) given by 6*s_(3,1)+3*s_(2,2)
    │ │ │       Type: ordinary
    │ │ │       (case 17 of Table 1 in arXiv:2002.07026)
    │ │ │  
    │ │ │  i3 : time f = detectCongruence(X,Verbose=>true);
    │ │ │ - -- used 16.7755s (cpu); 7.55644s (thread); 0s (gc)
    │ │ │ + -- used 24.7063s (cpu); 6.18577s (thread); 0s (gc)
    │ │ │  number lines contained in the image of the quadratic map and passing through a general point: 7
    │ │ │  number 1-secant lines = 6
    │ │ │  number 3-secant conics = 1
    │ │ │  
    │ │ │  o3 : Congruence of 3-secant conics to surface in a fivefold in PP^8
    │ │ │  
    │ │ │  i4 : Y = ambientFivefold X; -- del Pezzo fivefold containing X
    │ │ │ @@ -29,15 +29,15 @@
    │ │ │  i5 : p := point Y -- random point on Y
    │ │ │  
    │ │ │  o5 = point of coordinates [7214, -1460, 7057, -2440, 15907, -14345, -5937, 13402, 1]
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, a point in PP^8
    │ │ │  
    │ │ │  i6 : time C = f p; -- 3-secant conic to the surface
    │ │ │ - -- used 0.427032s (cpu); 0.240066s (thread); 0s (gc)
    │ │ │ + -- used 0.487928s (cpu); 0.207225s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : ProjectiveVariety, curve in PP^8 (subvariety of codimension 4 in Y)
    │ │ │  
    │ │ │  i7 : S = surface X;
    │ │ │  
    │ │ │  o7 : ProjectiveVariety, surface in PP^8 (subvariety of codimension 3 in Y)
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_discriminant_lp__Special__Cubic__Fourfold_rp.out
    │ │ │ @@ -1,12 +1,12 @@
    │ │ │  -- -*- M2-comint -*- hash: 1729890813579561111
    │ │ │  
    │ │ │  i1 : X = specialCubicFourfold "quintic del Pezzo surface";
    │ │ │  
    │ │ │  o1 : ProjectiveVariety, cubic fourfold containing a surface of degree 5 and sectional genus 1
    │ │ │  
    │ │ │  i2 : time discriminant X
    │ │ │ - -- used 0.331789s (cpu); 0.131229s (thread); 0s (gc)
    │ │ │ + -- used 0.568223s (cpu); 0.0817205s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 14
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_discriminant_lp__Special__Gushel__Mukai__Fourfold_rp.out
    │ │ │ @@ -1,12 +1,12 @@
    │ │ │  -- -*- M2-comint -*- hash: 1730220932418738713
    │ │ │  
    │ │ │  i1 : X = specialGushelMukaiFourfold "tau-quadric";
    │ │ │  
    │ │ │  o1 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0
    │ │ │  
    │ │ │  i2 : time discriminant X
    │ │ │ - -- used 1.14069s (cpu); 0.479565s (thread); 0s (gc)
    │ │ │ + -- used 5.08014s (cpu); 0.980607s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 10
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count.out
    │ │ │ @@ -5,15 +5,15 @@
    │ │ │  o2 : ProjectiveVariety, curve in PP^5
    │ │ │  
    │ │ │  i3 : X = random({{2},{2},{2}},S);
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, surface in PP^5
    │ │ │  
    │ │ │  i4 : time parameterCount(S,X,Verbose=>true)
    │ │ │ - -- used 0.38407s (cpu); 0.289966s (thread); 0s (gc)
    │ │ │ + -- used 0.405372s (cpu); 0.33203s (thread); 0s (gc)
    │ │ │  S: rational normal curve of degree 5 in PP^5
    │ │ │  X: smooth surface of degree 8 and sectional genus 5 in PP^5 cut out by 3 hypersurfaces of degree 2
    │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │  h^0(N_{S,P^5}) = 32
    │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,P^5}(2)) = 10 = h^0(O_(P^5)(2)) - \chi(O_S(2));
    │ │ │  in particular, h^0(I_{S,P^5}(2)) is minimal
    │ │ │  dim GG(2,9) = 21
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count_lp__Special__Cubic__Fourfold_rp.out
    │ │ │ @@ -5,15 +5,15 @@
    │ │ │  o2 : ProjectiveVariety, surface in PP^5
    │ │ │  
    │ │ │  i3 : X = specialCubicFourfold V;
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and sectional genus 0
    │ │ │  
    │ │ │  i4 : time parameterCount(X,Verbose=>true)
    │ │ │ - -- used 0.634373s (cpu); 0.352601s (thread); 0s (gc)
    │ │ │ + -- used 1.0125s (cpu); 0.633498s (thread); 0s (gc)
    │ │ │  S: Veronese surface in PP^5
    │ │ │  X: smooth cubic hypersurface in PP^5
    │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │  h^0(N_{S,P^5}) = 27
    │ │ │  h^1(O_S(3)) = 0, and h^0(I_{S,P^5}(3)) = 28 = h^0(O_(P^5)(3)) - \chi(O_S(3));
    │ │ │  in particular, h^0(I_{S,P^5}(3)) is minimal
    │ │ │  h^0(N_{S,P^5}) + 27 = 54
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count_lp__Special__Gushel__Mukai__Fourfold_rp.out
    │ │ │ @@ -11,15 +11,15 @@
    │ │ │  o2 : ProjectiveVariety, surface in PP^9 (subvariety of codimension 4 in G)
    │ │ │  
    │ │ │  i3 : X = specialGushelMukaiFourfold S;
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, GM fourfold containing a surface of degree 3 and sectional genus 0
    │ │ │  
    │ │ │  i4 : time parameterCount(X,Verbose=>true)
    │ │ │ - -- used 4.30052s (cpu); 2.70046s (thread); 0s (gc)
    │ │ │ + -- used 5.48569s (cpu); 3.90588s (thread); 0s (gc)
    │ │ │  S: cubic surface in PP^8 cut out by 7 hypersurfaces of degrees (1,1,1,1,2,2,2)
    │ │ │  X: GM fourfold containing S
    │ │ │  Y: del Pezzo fivefold containing X
    │ │ │  h^1(N_{S,Y}) = 0
    │ │ │  h^0(N_{S,Y}) = 11
    │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,Y}(2)) = 28 = h^0(O_Y(2)) - \chi(O_S(2));
    │ │ │  in particular, h^0(I_{S,Y}(2)) is minimal
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parametrize__Fano__Fourfold.out
    │ │ │ @@ -6,15 +6,15 @@
    │ │ │  
    │ │ │  i3 : ? X
    │ │ │  
    │ │ │  o3 = 4-dimensional subvariety of PP^9 cut out by 7 hypersurfaces of degrees
    │ │ │       1^2 2^5
    │ │ │  
    │ │ │  i4 : time parametrizeFanoFourfold X
    │ │ │ - -- used 1.72858s (cpu); 0.706037s (thread); 0s (gc)
    │ │ │ + -- used 2.74286s (cpu); 1.28565s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = multi-rational map consisting of one single rational map
    │ │ │       source variety: PP^4
    │ │ │       target variety: 4-dimensional subvariety of PP^9 cut out by 7 hypersurfaces of degrees 1^2 2^5 
    │ │ │       dominance: true
    │ │ │       degree: 1
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Cubic__Fourfold.out
    │ │ │ @@ -7,22 +7,22 @@
    │ │ │  o3 : ProjectiveVariety, surface in PP^5
    │ │ │  
    │ │ │  i4 : X = projectiveVariety ideal(x_1^2*x_3+x_0*x_2*x_3-6*x_1*x_2*x_3-x_0*x_3^2-4*x_1*x_3^2-3*x_2*x_3^2+2*x_0^2*x_4-10*x_0*x_1*x_4+13*x_1^2*x_4-x_0*x_2*x_4-3*x_1*x_2*x_4+3*x_2^2*x_4+14*x_0*x_3*x_4-8*x_1*x_3*x_4-4*x_3^2*x_4+x_0*x_4^2-7*x_1*x_4^2+4*x_2*x_4^2-2*x_3*x_4^2-2*x_4^3-x_0*x_1*x_5+x_1^2*x_5+2*x_1*x_2*x_5+3*x_0*x_3*x_5+3*x_1*x_3*x_5-x_3^2*x_5-x_0*x_4*x_5-4*x_1*x_4*x_5+3*x_2*x_4*x_5+2*x_3*x_4*x_5-x_1*x_5^2);
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, hypersurface in PP^5
    │ │ │  
    │ │ │  i5 : time F = specialCubicFourfold(S,X,NumNodes=>3);
    │ │ │ - -- used 0.00797778s (cpu); 0.00864695s (thread); 0s (gc)
    │ │ │ + -- used 0.00801837s (cpu); 0.00732559s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, cubic fourfold containing a surface of degree 7 and sectional genus 0
    │ │ │  
    │ │ │  i6 : time describe F
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 0.664875s (cpu); 0.18344s (thread); 0s (gc)
    │ │ │ + -- used 2.53079s (cpu); 0.353743s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = Special cubic fourfold of discriminant 26
    │ │ │       containing a 3-nodal surface of degree 7 and sectional genus 0
    │ │ │       cut out by 13 hypersurfaces of degree 3
    │ │ │  
    │ │ │  i7 : assert(F == X)
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold.out
    │ │ │ @@ -7,22 +7,22 @@
    │ │ │  o3 : ProjectiveVariety, surface in PP^8
    │ │ │  
    │ │ │  i4 : X = projectiveVariety ideal(x_4*x_6-x_3*x_7+x_1*x_8, x_4*x_5-x_2*x_7+x_0*x_8, x_3*x_5-x_2*x_6+x_0*x_8+x_1*x_8-x_5*x_8, x_1*x_5-x_0*x_6+x_0*x_7+x_1*x_7-x_5*x_7, x_1*x_2-x_0*x_3+x_0*x_4+x_1*x_4-x_2*x_7+x_0*x_8, x_0^2+x_0*x_1+x_1^2+x_0*x_2+2*x_0*x_3+x_1*x_3+x_2*x_3+x_3^2-x_0*x_4-x_1*x_4-2*x_2*x_4-x_3*x_4-2*x_4^2+x_0*x_5+x_2*x_5+x_5^2+2*x_0*x_6+x_1*x_6+2*x_2*x_6+x_3*x_6+x_5*x_6+x_6^2-3*x_4*x_7+2*x_5*x_7-x_7^2+x_1*x_8+x_3*x_8-3*x_4*x_8+2*x_5*x_8+x_6*x_8-x_7*x_8);
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, 4-dimensional subvariety of PP^8
    │ │ │  
    │ │ │  i5 : time F = specialGushelMukaiFourfold(S,X);
    │ │ │ - -- used 2.5216s (cpu); 1.68427s (thread); 0s (gc)
    │ │ │ + -- used 3.19895s (cpu); 2.50875s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0
    │ │ │  
    │ │ │  i6 : time describe F
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 5.45039s (cpu); 2.75319s (thread); 0s (gc)
    │ │ │ + -- used 15.6202s (cpu); 5.86826s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = Special Gushel-Mukai fourfold of discriminant 10(')
    │ │ │       containing a surface in PP^8 of degree 2 and sectional genus 0
    │ │ │       cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2)
    │ │ │       and with class in G(1,4) given by s_(3,1)+s_(2,2)
    │ │ │       Type: ordinary
    │ │ │       (case 1 of Table 1 in arXiv:2002.07026)
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_to__Grass.out
    │ │ │ @@ -5,15 +5,15 @@
    │ │ │  i2 : X = specialGushelMukaiFourfold(ideal(x_6-x_7, x_5, x_3-x_4, x_1, x_0-x_4, x_2*x_7-x_4*x_8), ideal(x_4*x_6-x_3*x_7+x_1*x_8, x_4*x_5-x_2*x_7+x_0*x_8, x_3*x_5-x_2*x_6+x_0*x_8+x_1*x_8-x_5*x_8, x_1*x_5-x_0*x_6+x_0*x_7+x_1*x_7-x_5*x_7, x_1*x_2-x_0*x_3+x_0*x_4+x_1*x_4-x_2*x_7+x_0*x_8, x_0^2+x_0*x_1+x_1^2+x_0*x_2+2*x_0*x_3+x_1*x_3+x_2*x_3+x_3^2-x_0*x_4-x_1*x_4-2*x_2*x_4-x_3*x_4-2*x_4^2+x_0*x_5+x_2*x_5+x_5^2+2*x_0*x_6+x_1*x_6+2*x_2*x_6+x_3*x_6+x_5*x_6+x_6^2-3*x_4*x_7+2*x_5*x_7-x_7^2+x_1*x_8+x_3*x_8-3*x_4*x_8+2*x_5*x_8+x_6*x_8-x_7*x_8));
    │ │ │  
    │ │ │  o2 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0
    │ │ │  
    │ │ │  i3 : time toGrass X
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 5.09444s (cpu); 2.47453s (thread); 0s (gc)
    │ │ │ + -- used 5.89382s (cpu); 2.07587s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = multi-rational map consisting of one single rational map
    │ │ │       source variety: 4-dimensional subvariety of PP^8 cut out by 6 hypersurfaces of degree 2
    │ │ │       target variety: GG(1,4) ⊂ PP^9
    │ │ │  
    │ │ │  o3 : MultirationalMap (rational map from X to GG(1,4))
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_to__Grass_lp__Embedded__Projective__Variety_rp.out
    │ │ │ @@ -5,15 +5,15 @@
    │ │ │  i2 : X = projectiveVariety ideal(x_4*x_6-x_3*x_7+x_1*x_8, x_4*x_5-x_2*x_7+x_0*x_8, x_3*x_5-x_2*x_6+x_0*x_8+x_1*x_8-x_5*x_8, x_1*x_5-x_0*x_6+x_0*x_7+x_1*x_7-x_5*x_7, x_1*x_2-x_0*x_3+x_0*x_4+x_1*x_4-x_2*x_7+x_0*x_8);
    │ │ │  
    │ │ │  o2 : ProjectiveVariety, 5-dimensional subvariety of PP^8
    │ │ │  
    │ │ │  i3 : time toGrass X
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 4.99465s (cpu); 2.69046s (thread); 0s (gc)
    │ │ │ + -- used 14.4182s (cpu); 4.91307s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = multi-rational map consisting of one single rational map
    │ │ │       source variety: 5-dimensional subvariety of PP^8 cut out by 5 hypersurfaces of degree 2
    │ │ │       target variety: GG(1,4) ⊂ PP^9
    │ │ │  
    │ │ │  o3 : MultirationalMap (rational map from X to GG(1,4))
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_unirational__Parametrization.out
    │ │ │ @@ -5,15 +5,15 @@
    │ │ │  o2 : ProjectiveVariety, surface in PP^5
    │ │ │  
    │ │ │  i3 : X = specialCubicFourfold S;
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and sectional genus 0
    │ │ │  
    │ │ │  i4 : time f = unirationalParametrization X;
    │ │ │ - -- used 1.00984s (cpu); 0.44616s (thread); 0s (gc)
    │ │ │ + -- used 2.53993s (cpu); 1.07614s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : MultirationalMap (rational map from PP^4 to X)
    │ │ │  
    │ │ │  i5 : degreeSequence f
    │ │ │  
    │ │ │  o5 = {[10]}
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__Castelnuovo__Surface.html
    │ │ │ @@ -110,15 +110,15 @@
    │ │ │                               | 1 4 |
    │ │ │       containing a surface of degree 1 and sectional genus 0
    │ │ │       cut out by 5 hypersurfaces of degree 1
    │ │ │       (This is a classical example of rational fourfold)
    │ │ │
    i3 : time U' = associatedCastelnuovoSurface X;
    │ │ │ - -- used 2.59548s (cpu); 0.993183s (thread); 0s (gc)
    │ │ │ + -- used 7.19095s (cpu); 2.40393s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, Castelnuovo surface associated to X
    │ │ │
    i4 : (mu,U,C,f) = building U';
    │ │ │
    i3 : time U' = associatedK3surface X;
    │ │ │ - -- used 2.32728s (cpu); 1.00597s (thread); 0s (gc)
    │ │ │ + -- used 9.72896s (cpu); 2.39258s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, K3 surface associated to X
    │ │ │
    i4 : (mu,U,C,f) = building U';
    │ │ │
    i3 : time U' = associatedK3surface X;
    │ │ │ - -- used 8.32356s (cpu); 4.38639s (thread); 0s (gc)
    │ │ │ + -- used 17.1913s (cpu); 8.25251s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, K3 surface associated to X
    │ │ │
    i4 : (mu,U,C,f) = building U';
    │ │ │
    i3 : time f = detectCongruence(X,Verbose=>true);
    │ │ │ - -- used 4.72888s (cpu); 2.04389s (thread); 0s (gc)
    │ │ │ + -- used 7.15636s (cpu); 3.70662s (thread); 0s (gc)
    │ │ │  number lines contained in the image of the cubic map and passing through a general point: 8
    │ │ │  number 2-secant lines = 7
    │ │ │  number 5-secant conics = 1
    │ │ │  
    │ │ │  o3 : Congruence of 5-secant conics to surface in PP^5
    │ │ │
    i5 : time C = f p; -- 5-secant conic to the surface
    │ │ │ - -- used 0.454906s (cpu); 0.271329s (thread); 0s (gc)
    │ │ │ + -- used 1.12874s (cpu); 0.605253s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, curve in PP^5
    │ │ │
    i6 : assert(dim C == 1 and degree C == 2 and dim(C * surface X) == 0 and degree(C * surface X) == 5 and isSubset(p, C))
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -31,28 +31,28 @@ │ │ │ │ sectional genus 0 │ │ │ │ i2 : describe X │ │ │ │ │ │ │ │ o2 = Special cubic fourfold of discriminant 26 │ │ │ │ containing a 3-nodal surface of degree 7 and sectional genus 0 │ │ │ │ cut out by 13 hypersurfaces of degree 3 │ │ │ │ i3 : time f = detectCongruence(X,Verbose=>true); │ │ │ │ - -- used 4.72888s (cpu); 2.04389s (thread); 0s (gc) │ │ │ │ + -- used 7.15636s (cpu); 3.70662s (thread); 0s (gc) │ │ │ │ number lines contained in the image of the cubic map and passing through a │ │ │ │ general point: 8 │ │ │ │ number 2-secant lines = 7 │ │ │ │ number 5-secant conics = 1 │ │ │ │ │ │ │ │ o3 : Congruence of 5-secant conics to surface in PP^5 │ │ │ │ i4 : p := point ambient X -- random point on P^5 │ │ │ │ │ │ │ │ o4 = point of coordinates [15092, -9738, -3620, -15181, 12688, 1] │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, a point in PP^5 │ │ │ │ i5 : time C = f p; -- 5-secant conic to the surface │ │ │ │ - -- used 0.454906s (cpu); 0.271329s (thread); 0s (gc) │ │ │ │ + -- used 1.12874s (cpu); 0.605253s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, curve in PP^5 │ │ │ │ i6 : assert(dim C == 1 and degree C == 2 and dim(C * surface X) == 0 and degree │ │ │ │ (C * surface X) == 5 and isSubset(p, C)) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_e_t_e_c_t_C_o_n_g_r_u_e_n_c_e_(_S_p_e_c_i_a_l_G_u_s_h_e_l_M_u_k_a_i_F_o_u_r_f_o_l_d_,_Z_Z_) -- detect and return a │ │ │ │ congruence of (2e-1)-secant curves of degree e inside a del Pezzo │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.html │ │ │ @@ -93,15 +93,15 @@ │ │ │ cut out by 19 hypersurfaces of degree 2 │ │ │ and with class in G(1,4) given by 6*s_(3,1)+3*s_(2,2) │ │ │ Type: ordinary │ │ │ (case 17 of Table 1 in arXiv:2002.07026)
    │ │ │ │ │ │ │ │ │
    i3 : time f = detectCongruence(X,Verbose=>true);
    │ │ │ - -- used 16.7755s (cpu); 7.55644s (thread); 0s (gc)
    │ │ │ + -- used 24.7063s (cpu); 6.18577s (thread); 0s (gc)
    │ │ │  number lines contained in the image of the quadratic map and passing through a general point: 7
    │ │ │  number 1-secant lines = 6
    │ │ │  number 3-secant conics = 1
    │ │ │  
    │ │ │  o3 : Congruence of 3-secant conics to surface in a fivefold in PP^8
    │ │ │ │ │ │ │ │ │ @@ -114,15 +114,15 @@ │ │ │ │ │ │ o5 = point of coordinates [7214, -1460, 7057, -2440, 15907, -14345, -5937, 13402, 1] │ │ │ │ │ │ o5 : ProjectiveVariety, a point in PP^8 │ │ │ │ │ │ │ │ │
    i6 : time C = f p; -- 3-secant conic to the surface
    │ │ │ - -- used 0.427032s (cpu); 0.240066s (thread); 0s (gc)
    │ │ │ + -- used 0.487928s (cpu); 0.207225s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : ProjectiveVariety, curve in PP^8 (subvariety of codimension 4 in Y)
    │ │ │ │ │ │ │ │ │
    i7 : S = surface X;
    │ │ │  
    │ │ │  o7 : ProjectiveVariety, surface in PP^8 (subvariety of codimension 3 in Y)
    │ │ │ ├── html2text {} │ │ │ │ @@ -37,15 +37,15 @@ │ │ │ │ o2 = Special Gushel-Mukai fourfold of discriminant 20 │ │ │ │ containing a surface in PP^8 of degree 9 and sectional genus 2 │ │ │ │ cut out by 19 hypersurfaces of degree 2 │ │ │ │ and with class in G(1,4) given by 6*s_(3,1)+3*s_(2,2) │ │ │ │ Type: ordinary │ │ │ │ (case 17 of Table 1 in arXiv:2002.07026) │ │ │ │ i3 : time f = detectCongruence(X,Verbose=>true); │ │ │ │ - -- used 16.7755s (cpu); 7.55644s (thread); 0s (gc) │ │ │ │ + -- used 24.7063s (cpu); 6.18577s (thread); 0s (gc) │ │ │ │ number lines contained in the image of the quadratic map and passing through a │ │ │ │ general point: 7 │ │ │ │ number 1-secant lines = 6 │ │ │ │ number 3-secant conics = 1 │ │ │ │ │ │ │ │ o3 : Congruence of 3-secant conics to surface in a fivefold in PP^8 │ │ │ │ i4 : Y = ambientFivefold X; -- del Pezzo fivefold containing X │ │ │ │ @@ -54,15 +54,15 @@ │ │ │ │ i5 : p := point Y -- random point on Y │ │ │ │ │ │ │ │ o5 = point of coordinates [7214, -1460, 7057, -2440, 15907, -14345, -5937, │ │ │ │ 13402, 1] │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, a point in PP^8 │ │ │ │ i6 : time C = f p; -- 3-secant conic to the surface │ │ │ │ - -- used 0.427032s (cpu); 0.240066s (thread); 0s (gc) │ │ │ │ + -- used 0.487928s (cpu); 0.207225s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 : ProjectiveVariety, curve in PP^8 (subvariety of codimension 4 in Y) │ │ │ │ i7 : S = surface X; │ │ │ │ │ │ │ │ o7 : ProjectiveVariety, surface in PP^8 (subvariety of codimension 3 in Y) │ │ │ │ i8 : assert(dim C == 1 and degree C == 2 and dim(C*S) == 0 and degree(C*S) == 3 │ │ │ │ and isSubset(p,C) and isSubset(C,Y)) │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_discriminant_lp__Special__Cubic__Fourfold_rp.html │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ │ │
    i1 : X = specialCubicFourfold "quintic del Pezzo surface";
    │ │ │  
    │ │ │  o1 : ProjectiveVariety, cubic fourfold containing a surface of degree 5 and sectional genus 1
    │ │ │ │ │ │ │ │ │
    i2 : time discriminant X
    │ │ │ - -- used 0.331789s (cpu); 0.131229s (thread); 0s (gc)
    │ │ │ + -- used 0.568223s (cpu); 0.0817205s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 14
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -21,15 +21,15 @@ │ │ │ │ thanks to the functions _E_u_l_e_r_C_h_a_r_a_c_t_e_r_i_s_t_i_c and _E_u_l_e_r (the option Algorithm │ │ │ │ allows you to select the method). │ │ │ │ i1 : X = specialCubicFourfold "quintic del Pezzo surface"; │ │ │ │ │ │ │ │ o1 : ProjectiveVariety, cubic fourfold containing a surface of degree 5 and │ │ │ │ sectional genus 1 │ │ │ │ i2 : time discriminant X │ │ │ │ - -- used 0.331789s (cpu); 0.131229s (thread); 0s (gc) │ │ │ │ + -- used 0.568223s (cpu); 0.0817205s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 14 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_i_s_c_r_i_m_i_n_a_n_t_(_S_p_e_c_i_a_l_G_u_s_h_e_l_M_u_k_a_i_F_o_u_r_f_o_l_d_) -- discriminant of a special │ │ │ │ Gushel-Mukai fourfold │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * discriminant(HodgeSpecialFourfold) │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_discriminant_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ │ │
    i1 : X = specialGushelMukaiFourfold "tau-quadric";
    │ │ │  
    │ │ │  o1 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0
    │ │ │ │ │ │ │ │ │
    i2 : time discriminant X
    │ │ │ - -- used 1.14069s (cpu); 0.479565s (thread); 0s (gc)
    │ │ │ + -- used 5.08014s (cpu); 0.980607s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 10
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -21,15 +21,15 @@ │ │ │ │ the functions _c_y_c_l_e_C_l_a_s_s, _E_u_l_e_r_C_h_a_r_a_c_t_e_r_i_s_t_i_c and _E_u_l_e_r (the option Algorithm │ │ │ │ allows you to select the method). │ │ │ │ i1 : X = specialGushelMukaiFourfold "tau-quadric"; │ │ │ │ │ │ │ │ o1 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and │ │ │ │ sectional genus 0 │ │ │ │ i2 : time discriminant X │ │ │ │ - -- used 1.14069s (cpu); 0.479565s (thread); 0s (gc) │ │ │ │ + -- used 5.08014s (cpu); 0.980607s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 10 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_i_s_c_r_i_m_i_n_a_n_t_(_S_p_e_c_i_a_l_C_u_b_i_c_F_o_u_r_f_o_l_d_) -- discriminant of a special cubic │ │ │ │ fourfold │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _d_i_s_c_r_i_m_i_n_a_n_t_(_S_p_e_c_i_a_l_G_u_s_h_e_l_M_u_k_a_i_F_o_u_r_f_o_l_d_) -- discriminant of a special │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count.html │ │ │ @@ -86,15 +86,15 @@ │ │ │ │ │ │
    i3 : X = random({{2},{2},{2}},S);
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, surface in PP^5
    │ │ │ │ │ │ │ │ │
    i4 : time parameterCount(S,X,Verbose=>true)
    │ │ │ - -- used 0.38407s (cpu); 0.289966s (thread); 0s (gc)
    │ │ │ + -- used 0.405372s (cpu); 0.33203s (thread); 0s (gc)
    │ │ │  S: rational normal curve of degree 5 in PP^5
    │ │ │  X: smooth surface of degree 8 and sectional genus 5 in PP^5 cut out by 3 hypersurfaces of degree 2
    │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │  h^0(N_{S,P^5}) = 32
    │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,P^5}(2)) = 10 = h^0(O_(P^5)(2)) - \chi(O_S(2));
    │ │ │  in particular, h^0(I_{S,P^5}(2)) is minimal
    │ │ │  dim GG(2,9) = 21
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -24,15 +24,15 @@
    │ │ │ │  i1 : K = ZZ/33331; S = PP_K^(1,5);
    │ │ │ │  
    │ │ │ │  o2 : ProjectiveVariety, curve in PP^5
    │ │ │ │  i3 : X = random({{2},{2},{2}},S);
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, surface in PP^5
    │ │ │ │  i4 : time parameterCount(S,X,Verbose=>true)
    │ │ │ │ - -- used 0.38407s (cpu); 0.289966s (thread); 0s (gc)
    │ │ │ │ + -- used 0.405372s (cpu); 0.33203s (thread); 0s (gc)
    │ │ │ │  S: rational normal curve of degree 5 in PP^5
    │ │ │ │  X: smooth surface of degree 8 and sectional genus 5 in PP^5 cut out by 3
    │ │ │ │  hypersurfaces of degree 2
    │ │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │ │  h^0(N_{S,P^5}) = 32
    │ │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,P^5}(2)) = 10 = h^0(O_(P^5)(2)) - \chi(O_S(2));
    │ │ │ │  in particular, h^0(I_{S,P^5}(2)) is minimal
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count_lp__Special__Cubic__Fourfold_rp.html
    │ │ │ @@ -88,15 +88,15 @@
    │ │ │            
    │ │ │                
    i3 : X = specialCubicFourfold V;
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and sectional genus 0
    │ │ │ │ │ │ │ │ │
    i4 : time parameterCount(X,Verbose=>true)
    │ │ │ - -- used 0.634373s (cpu); 0.352601s (thread); 0s (gc)
    │ │ │ + -- used 1.0125s (cpu); 0.633498s (thread); 0s (gc)
    │ │ │  S: Veronese surface in PP^5
    │ │ │  X: smooth cubic hypersurface in PP^5
    │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │  h^0(N_{S,P^5}) = 27
    │ │ │  h^1(O_S(3)) = 0, and h^0(I_{S,P^5}(3)) = 28 = h^0(O_(P^5)(3)) - \chi(O_S(3));
    │ │ │  in particular, h^0(I_{S,P^5}(3)) is minimal
    │ │ │  h^0(N_{S,P^5}) + 27 = 54
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -34,15 +34,15 @@
    │ │ │ │  
    │ │ │ │  o2 : ProjectiveVariety, surface in PP^5
    │ │ │ │  i3 : X = specialCubicFourfold V;
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and
    │ │ │ │  sectional genus 0
    │ │ │ │  i4 : time parameterCount(X,Verbose=>true)
    │ │ │ │ - -- used 0.634373s (cpu); 0.352601s (thread); 0s (gc)
    │ │ │ │ + -- used 1.0125s (cpu); 0.633498s (thread); 0s (gc)
    │ │ │ │  S: Veronese surface in PP^5
    │ │ │ │  X: smooth cubic hypersurface in PP^5
    │ │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │ │  h^0(N_{S,P^5}) = 27
    │ │ │ │  h^1(O_S(3)) = 0, and h^0(I_{S,P^5}(3)) = 28 = h^0(O_(P^5)(3)) - \chi(O_S(3));
    │ │ │ │  in particular, h^0(I_{S,P^5}(3)) is minimal
    │ │ │ │  h^0(N_{S,P^5}) + 27 = 54
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count_lp__Special__Gushel__Mukai__Fourfold_rp.html
    │ │ │ @@ -95,15 +95,15 @@
    │ │ │            
    │ │ │                
    i3 : X = specialGushelMukaiFourfold S;
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, GM fourfold containing a surface of degree 3 and sectional genus 0
    │ │ │ │ │ │ │ │ │
    i4 : time parameterCount(X,Verbose=>true)
    │ │ │ - -- used 4.30052s (cpu); 2.70046s (thread); 0s (gc)
    │ │ │ + -- used 5.48569s (cpu); 3.90588s (thread); 0s (gc)
    │ │ │  S: cubic surface in PP^8 cut out by 7 hypersurfaces of degrees (1,1,1,1,2,2,2)
    │ │ │  X: GM fourfold containing S
    │ │ │  Y: del Pezzo fivefold containing X
    │ │ │  h^1(N_{S,Y}) = 0
    │ │ │  h^0(N_{S,Y}) = 11
    │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,Y}(2)) = 28 = h^0(O_Y(2)) - \chi(O_S(2));
    │ │ │  in particular, h^0(I_{S,Y}(2)) is minimal
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -36,15 +36,15 @@
    │ │ │ │  
    │ │ │ │  o2 : ProjectiveVariety, surface in PP^9 (subvariety of codimension 4 in G)
    │ │ │ │  i3 : X = specialGushelMukaiFourfold S;
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, GM fourfold containing a surface of degree 3 and
    │ │ │ │  sectional genus 0
    │ │ │ │  i4 : time parameterCount(X,Verbose=>true)
    │ │ │ │ - -- used 4.30052s (cpu); 2.70046s (thread); 0s (gc)
    │ │ │ │ + -- used 5.48569s (cpu); 3.90588s (thread); 0s (gc)
    │ │ │ │  S: cubic surface in PP^8 cut out by 7 hypersurfaces of degrees (1,1,1,1,2,2,2)
    │ │ │ │  X: GM fourfold containing S
    │ │ │ │  Y: del Pezzo fivefold containing X
    │ │ │ │  h^1(N_{S,Y}) = 0
    │ │ │ │  h^0(N_{S,Y}) = 11
    │ │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,Y}(2)) = 28 = h^0(O_Y(2)) - \chi(O_S(2));
    │ │ │ │  in particular, h^0(I_{S,Y}(2)) is minimal
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parametrize__Fano__Fourfold.html
    │ │ │ @@ -85,15 +85,15 @@
    │ │ │                
    i3 : ? X
    │ │ │  
    │ │ │  o3 = 4-dimensional subvariety of PP^9 cut out by 7 hypersurfaces of degrees
    │ │ │       1^2 2^5
    │ │ │ │ │ │ │ │ │
    i4 : time parametrizeFanoFourfold X
    │ │ │ - -- used 1.72858s (cpu); 0.706037s (thread); 0s (gc)
    │ │ │ + -- used 2.74286s (cpu); 1.28565s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = multi-rational map consisting of one single rational map
    │ │ │       source variety: PP^4
    │ │ │       target variety: 4-dimensional subvariety of PP^9 cut out by 7 hypersurfaces of degrees 1^2 2^5 
    │ │ │       dominance: true
    │ │ │       degree: 1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -30,15 +30,15 @@
    │ │ │ │  
    │ │ │ │  o2 : ProjectiveVariety, 4-dimensional subvariety of PP^9
    │ │ │ │  i3 : ? X
    │ │ │ │  
    │ │ │ │  o3 = 4-dimensional subvariety of PP^9 cut out by 7 hypersurfaces of degrees
    │ │ │ │       1^2 2^5
    │ │ │ │  i4 : time parametrizeFanoFourfold X
    │ │ │ │ - -- used 1.72858s (cpu); 0.706037s (thread); 0s (gc)
    │ │ │ │ + -- used 2.74286s (cpu); 1.28565s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = multi-rational map consisting of one single rational map
    │ │ │ │       source variety: PP^4
    │ │ │ │       target variety: 4-dimensional subvariety of PP^9 cut out by 7
    │ │ │ │  hypersurfaces of degrees 1^2 2^5
    │ │ │ │       dominance: true
    │ │ │ │       degree: 1
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Cubic__Fourfold.html
    │ │ │ @@ -93,23 +93,23 @@
    │ │ │            
    │ │ │                
    i4 : X = projectiveVariety ideal(x_1^2*x_3+x_0*x_2*x_3-6*x_1*x_2*x_3-x_0*x_3^2-4*x_1*x_3^2-3*x_2*x_3^2+2*x_0^2*x_4-10*x_0*x_1*x_4+13*x_1^2*x_4-x_0*x_2*x_4-3*x_1*x_2*x_4+3*x_2^2*x_4+14*x_0*x_3*x_4-8*x_1*x_3*x_4-4*x_3^2*x_4+x_0*x_4^2-7*x_1*x_4^2+4*x_2*x_4^2-2*x_3*x_4^2-2*x_4^3-x_0*x_1*x_5+x_1^2*x_5+2*x_1*x_2*x_5+3*x_0*x_3*x_5+3*x_1*x_3*x_5-x_3^2*x_5-x_0*x_4*x_5-4*x_1*x_4*x_5+3*x_2*x_4*x_5+2*x_3*x_4*x_5-x_1*x_5^2);
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, hypersurface in PP^5
    │ │ │ │ │ │ │ │ │
    i5 : time F = specialCubicFourfold(S,X,NumNodes=>3);
    │ │ │ - -- used 0.00797778s (cpu); 0.00864695s (thread); 0s (gc)
    │ │ │ + -- used 0.00801837s (cpu); 0.00732559s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, cubic fourfold containing a surface of degree 7 and sectional genus 0
    │ │ │ │ │ │ │ │ │
    i6 : time describe F
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 0.664875s (cpu); 0.18344s (thread); 0s (gc)
    │ │ │ + -- used 2.53079s (cpu); 0.353743s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = Special cubic fourfold of discriminant 26
    │ │ │       containing a 3-nodal surface of degree 7 and sectional genus 0
    │ │ │       cut out by 13 hypersurfaces of degree 3
    │ │ │ │ │ │ │ │ │
    i7 : assert(F == X)
    │ │ │ ├── html2text {} │ │ │ │ @@ -116,24 +116,24 @@ │ │ │ │ 3*x_1*x_2*x_4+3*x_2^2*x_4+14*x_0*x_3*x_4-8*x_1*x_3*x_4-4*x_3^2*x_4+x_0*x_4^2- │ │ │ │ 7*x_1*x_4^2+4*x_2*x_4^2-2*x_3*x_4^2-2*x_4^3- │ │ │ │ x_0*x_1*x_5+x_1^2*x_5+2*x_1*x_2*x_5+3*x_0*x_3*x_5+3*x_1*x_3*x_5-x_3^2*x_5- │ │ │ │ x_0*x_4*x_5-4*x_1*x_4*x_5+3*x_2*x_4*x_5+2*x_3*x_4*x_5-x_1*x_5^2); │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, hypersurface in PP^5 │ │ │ │ i5 : time F = specialCubicFourfold(S,X,NumNodes=>3); │ │ │ │ - -- used 0.00797778s (cpu); 0.00864695s (thread); 0s (gc) │ │ │ │ + -- used 0.00801837s (cpu); 0.00732559s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, cubic fourfold containing a surface of degree 7 and │ │ │ │ sectional genus 0 │ │ │ │ i6 : time describe F │ │ │ │ warning: clearing value of symbol x to allow access to subscripted variables │ │ │ │ based on it │ │ │ │ : debug with expression debug 9868 or with command line option -- │ │ │ │ debug 9868 │ │ │ │ - -- used 0.664875s (cpu); 0.18344s (thread); 0s (gc) │ │ │ │ + -- used 2.53079s (cpu); 0.353743s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = Special cubic fourfold of discriminant 26 │ │ │ │ containing a 3-nodal surface of degree 7 and sectional genus 0 │ │ │ │ cut out by 13 hypersurfaces of degree 3 │ │ │ │ i7 : assert(F == X) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_p_e_c_i_a_l_C_u_b_i_c_F_o_u_r_f_o_l_d_(_E_m_b_e_d_d_e_d_P_r_o_j_e_c_t_i_v_e_V_a_r_i_e_t_y_) -- random special cubic │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold.html │ │ │ @@ -90,23 +90,23 @@ │ │ │ │ │ │
    i4 : X = projectiveVariety ideal(x_4*x_6-x_3*x_7+x_1*x_8, x_4*x_5-x_2*x_7+x_0*x_8, x_3*x_5-x_2*x_6+x_0*x_8+x_1*x_8-x_5*x_8, x_1*x_5-x_0*x_6+x_0*x_7+x_1*x_7-x_5*x_7, x_1*x_2-x_0*x_3+x_0*x_4+x_1*x_4-x_2*x_7+x_0*x_8, x_0^2+x_0*x_1+x_1^2+x_0*x_2+2*x_0*x_3+x_1*x_3+x_2*x_3+x_3^2-x_0*x_4-x_1*x_4-2*x_2*x_4-x_3*x_4-2*x_4^2+x_0*x_5+x_2*x_5+x_5^2+2*x_0*x_6+x_1*x_6+2*x_2*x_6+x_3*x_6+x_5*x_6+x_6^2-3*x_4*x_7+2*x_5*x_7-x_7^2+x_1*x_8+x_3*x_8-3*x_4*x_8+2*x_5*x_8+x_6*x_8-x_7*x_8);
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, 4-dimensional subvariety of PP^8
    │ │ │ │ │ │ │ │ │
    i5 : time F = specialGushelMukaiFourfold(S,X);
    │ │ │ - -- used 2.5216s (cpu); 1.68427s (thread); 0s (gc)
    │ │ │ + -- used 3.19895s (cpu); 2.50875s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0
    │ │ │ │ │ │ │ │ │
    i6 : time describe F
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 5.45039s (cpu); 2.75319s (thread); 0s (gc)
    │ │ │ + -- used 15.6202s (cpu); 5.86826s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = Special Gushel-Mukai fourfold of discriminant 10(')
    │ │ │       containing a surface in PP^8 of degree 2 and sectional genus 0
    │ │ │       cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2)
    │ │ │       and with class in G(1,4) given by s_(3,1)+s_(2,2)
    │ │ │       Type: ordinary
    │ │ │       (case 1 of Table 1 in arXiv:2002.07026)
    │ │ │ ├── html2text {} │ │ │ │ @@ -34,24 +34,24 @@ │ │ │ │ x_2*x_7+x_0*x_8, x_0^2+x_0*x_1+x_1^2+x_0*x_2+2*x_0*x_3+x_1*x_3+x_2*x_3+x_3^2- │ │ │ │ x_0*x_4-x_1*x_4-2*x_2*x_4-x_3*x_4- │ │ │ │ 2*x_4^2+x_0*x_5+x_2*x_5+x_5^2+2*x_0*x_6+x_1*x_6+2*x_2*x_6+x_3*x_6+x_5*x_6+x_6^2- │ │ │ │ 3*x_4*x_7+2*x_5*x_7-x_7^2+x_1*x_8+x_3*x_8-3*x_4*x_8+2*x_5*x_8+x_6*x_8-x_7*x_8); │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, 4-dimensional subvariety of PP^8 │ │ │ │ i5 : time F = specialGushelMukaiFourfold(S,X); │ │ │ │ - -- used 2.5216s (cpu); 1.68427s (thread); 0s (gc) │ │ │ │ + -- used 3.19895s (cpu); 2.50875s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and │ │ │ │ sectional genus 0 │ │ │ │ i6 : time describe F │ │ │ │ warning: clearing value of symbol x to allow access to subscripted variables │ │ │ │ based on it │ │ │ │ : debug with expression debug 9868 or with command line option -- │ │ │ │ debug 9868 │ │ │ │ - -- used 5.45039s (cpu); 2.75319s (thread); 0s (gc) │ │ │ │ + -- used 15.6202s (cpu); 5.86826s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = Special Gushel-Mukai fourfold of discriminant 10(') │ │ │ │ containing a surface in PP^8 of degree 2 and sectional genus 0 │ │ │ │ cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2) │ │ │ │ and with class in G(1,4) given by s_(3,1)+s_(2,2) │ │ │ │ Type: ordinary │ │ │ │ (case 1 of Table 1 in arXiv:2002.07026) │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_to__Grass.html │ │ │ @@ -76,15 +76,15 @@ │ │ │ │ │ │ o2 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0
    │ │ │ │ │ │ │ │ │
    i3 : time toGrass X
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 5.09444s (cpu); 2.47453s (thread); 0s (gc)
    │ │ │ + -- used 5.89382s (cpu); 2.07587s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = multi-rational map consisting of one single rational map
    │ │ │       source variety: 4-dimensional subvariety of PP^8 cut out by 6 hypersurfaces of degree 2
    │ │ │       target variety: GG(1,4) ⊂ PP^9
    │ │ │  
    │ │ │  o3 : MultirationalMap (rational map from X to GG(1,4))
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -27,15 +27,15 @@ │ │ │ │ o2 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and │ │ │ │ sectional genus 0 │ │ │ │ i3 : time toGrass X │ │ │ │ warning: clearing value of symbol x to allow access to subscripted variables │ │ │ │ based on it │ │ │ │ : debug with expression debug 9868 or with command line option -- │ │ │ │ debug 9868 │ │ │ │ - -- used 5.09444s (cpu); 2.47453s (thread); 0s (gc) │ │ │ │ + -- used 5.89382s (cpu); 2.07587s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = multi-rational map consisting of one single rational map │ │ │ │ source variety: 4-dimensional subvariety of PP^8 cut out by 6 hypersurfaces │ │ │ │ of degree 2 │ │ │ │ target variety: GG(1,4) ⊂ PP^9 │ │ │ │ │ │ │ │ o3 : MultirationalMap (rational map from X to GG(1,4)) │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_to__Grass_lp__Embedded__Projective__Variety_rp.html │ │ │ @@ -78,15 +78,15 @@ │ │ │ │ │ │ o2 : ProjectiveVariety, 5-dimensional subvariety of PP^8
    │ │ │ │ │ │ │ │ │
    i3 : time toGrass X
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 4.99465s (cpu); 2.69046s (thread); 0s (gc)
    │ │ │ + -- used 14.4182s (cpu); 4.91307s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = multi-rational map consisting of one single rational map
    │ │ │       source variety: 5-dimensional subvariety of PP^8 cut out by 5 hypersurfaces of degree 2
    │ │ │       target variety: GG(1,4) ⊂ PP^9
    │ │ │  
    │ │ │  o3 : MultirationalMap (rational map from X to GG(1,4))
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -26,15 +26,15 @@ │ │ │ │ │ │ │ │ o2 : ProjectiveVariety, 5-dimensional subvariety of PP^8 │ │ │ │ i3 : time toGrass X │ │ │ │ warning: clearing value of symbol x to allow access to subscripted variables │ │ │ │ based on it │ │ │ │ : debug with expression debug 9868 or with command line option -- │ │ │ │ debug 9868 │ │ │ │ - -- used 4.99465s (cpu); 2.69046s (thread); 0s (gc) │ │ │ │ + -- used 14.4182s (cpu); 4.91307s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = multi-rational map consisting of one single rational map │ │ │ │ source variety: 5-dimensional subvariety of PP^8 cut out by 5 │ │ │ │ hypersurfaces of degree 2 │ │ │ │ target variety: GG(1,4) ⊂ PP^9 │ │ │ │ │ │ │ │ o3 : MultirationalMap (rational map from X to GG(1,4)) │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_unirational__Parametrization.html │ │ │ @@ -77,15 +77,15 @@ │ │ │ │ │ │
    i3 : X = specialCubicFourfold S;
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and sectional genus 0
    │ │ │ │ │ │ │ │ │
    i4 : time f = unirationalParametrization X;
    │ │ │ - -- used 1.00984s (cpu); 0.44616s (thread); 0s (gc)
    │ │ │ + -- used 2.53993s (cpu); 1.07614s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : MultirationalMap (rational map from PP^4 to X)
    │ │ │ │ │ │ │ │ │
    i5 : degreeSequence f
    │ │ │  
    │ │ │  o5 = {[10]}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -19,15 +19,15 @@
    │ │ │ │  
    │ │ │ │  o2 : ProjectiveVariety, surface in PP^5
    │ │ │ │  i3 : X = specialCubicFourfold S;
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and
    │ │ │ │  sectional genus 0
    │ │ │ │  i4 : time f = unirationalParametrization X;
    │ │ │ │ - -- used 1.00984s (cpu); 0.44616s (thread); 0s (gc)
    │ │ │ │ + -- used 2.53993s (cpu); 1.07614s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : MultirationalMap (rational map from PP^4 to X)
    │ │ │ │  i5 : degreeSequence f
    │ │ │ │  
    │ │ │ │  o5 = {[10]}
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ ├── ./usr/share/doc/Macaulay2/SpectralSequences/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=33
    │ │ │  U3BlY3RyYWxTZXF1ZW5jZSBeIEluZmluaXRlTnVtYmVy
    │ │ │  #:len=967
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAidGhlIGluZmluaXR5IHBhZ2Ugb2YgYSBz
    │ │ │  cGVjdHJhbCBzZXF1ZW5jZSIsICJsaW5lbnVtIiA9PiAzNDk4LCBJbnB1dHMgPT4ge1NQQU57VFR7
    │ │ ├── ./usr/share/doc/Macaulay2/StatGraphs/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=19
    │ │ │  aXNMb29wbGVzcyhEaWdyYXBoKQ==
    │ │ │  #:len=247
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gODU0LCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhpc0xvb3BsZXNzLERpZ3JhcGgpLCJpc0xvb3BsZXNz
    │ │ ├── ./usr/share/doc/Macaulay2/StatGraphs/example-output/_graph_lp__Mixed__Graph_rp.out
    │ │ │ @@ -30,15 +30,15 @@
    │ │ │                                b => {a, c}
    │ │ │                                c => {b}
    │ │ │  
    │ │ │  o2 : HashTable
    │ │ │  
    │ │ │  i3 : keys (graph G)
    │ │ │  
    │ │ │ -o3 = {Bigraph, Graph, Digraph}
    │ │ │ +o3 = {Digraph, Bigraph, Graph}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : (graph G)#Bigraph === bigraph G
    │ │ │  
    │ │ │  o4 = true
    │ │ ├── ./usr/share/doc/Macaulay2/StatGraphs/example-output/_to__String_lp__Mixed__Graph_rp.out
    │ │ │ @@ -11,12 +11,12 @@
    │ │ │                  Graph => Graph{1 => {3}}
    │ │ │                                 3 => {1}
    │ │ │  
    │ │ │  o1 : MixedGraph
    │ │ │  
    │ │ │  i2 : toString G
    │ │ │  
    │ │ │ -o2 = new HashTable from {Digraph => digraph ({1, 2, 3}, {{1, 2}, {2, 3}}),
    │ │ │ -     Bigraph => bigraph ({3, 4, 2}, {{4, 3}, {4, 2}}), Graph => graph ({3,
    │ │ │ -     1}, {{1, 3}})}
    │ │ │ +o2 = new HashTable from {Bigraph => bigraph ({3, 4, 2}, {{4, 3}, {4, 2}}),
    │ │ │ +     Graph => graph ({3, 1}, {{1, 3}}), Digraph => digraph ({1, 2, 3}, {{1,
    │ │ │ +     2}, {2, 3}})}
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/StatGraphs/html/_graph_lp__Mixed__Graph_rp.html
    │ │ │ @@ -115,15 +115,15 @@
    │ │ │                                c => {b}
    │ │ │  
    │ │ │  o2 : HashTable
    │ │ │ │ │ │ │ │ │
    i3 : keys (graph G)
    │ │ │  
    │ │ │ -o3 = {Bigraph, Graph, Digraph}
    │ │ │ +o3 = {Digraph, Bigraph, Graph}
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │
    i4 : (graph G)#Bigraph === bigraph G
    │ │ │  
    │ │ │  o4 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -47,15 +47,15 @@ │ │ │ │ Graph => Graph{a => {b} } │ │ │ │ b => {a, c} │ │ │ │ c => {b} │ │ │ │ │ │ │ │ o2 : HashTable │ │ │ │ i3 : keys (graph G) │ │ │ │ │ │ │ │ -o3 = {Bigraph, Graph, Digraph} │ │ │ │ +o3 = {Digraph, Bigraph, Graph} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : (graph G)#Bigraph === bigraph G │ │ │ │ │ │ │ │ o4 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _M_i_x_e_d_G_r_a_p_h -- a graph that has undirected, directed and bidirected edges │ │ ├── ./usr/share/doc/Macaulay2/StatGraphs/html/_to__String_lp__Mixed__Graph_rp.html │ │ │ @@ -86,17 +86,17 @@ │ │ │ 3 => {1} │ │ │ │ │ │ o1 : MixedGraph
    │ │ │ │ │ │ │ │ │
    i2 : toString G
    │ │ │  
    │ │ │ -o2 = new HashTable from {Digraph => digraph ({1, 2, 3}, {{1, 2}, {2, 3}}),
    │ │ │ -     Bigraph => bigraph ({3, 4, 2}, {{4, 3}, {4, 2}}), Graph => graph ({3,
    │ │ │ -     1}, {{1, 3}})}
    │ │ │ +o2 = new HashTable from {Bigraph => bigraph ({3, 4, 2}, {{4, 3}, {4, 2}}), │ │ │ + Graph => graph ({3, 1}, {{1, 3}}), Digraph => digraph ({1, 2, 3}, {{1, │ │ │ + 2}, {2, 3}})}
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │
    • │ │ │ ├── html2text {} │ │ │ │ @@ -24,16 +24,16 @@ │ │ │ │ 3 => {} │ │ │ │ Graph => Graph{1 => {3}} │ │ │ │ 3 => {1} │ │ │ │ │ │ │ │ o1 : MixedGraph │ │ │ │ i2 : toString G │ │ │ │ │ │ │ │ -o2 = new HashTable from {Digraph => digraph ({1, 2, 3}, {{1, 2}, {2, 3}}), │ │ │ │ - Bigraph => bigraph ({3, 4, 2}, {{4, 3}, {4, 2}}), Graph => graph ({3, │ │ │ │ - 1}, {{1, 3}})} │ │ │ │ +o2 = new HashTable from {Bigraph => bigraph ({3, 4, 2}, {{4, 3}, {4, 2}}), │ │ │ │ + Graph => graph ({3, 1}, {{1, 3}}), Digraph => digraph ({1, 2, 3}, {{1, │ │ │ │ + 2}, {2, 3}})} │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _M_i_x_e_d_G_r_a_p_h -- a graph that has undirected, directed and bidirected edges │ │ │ │ * _n_e_t_(_M_i_x_e_d_G_r_a_p_h_) -- print a mixed graph as a net │ │ │ │ * _S_t_r_i_n_g -- the class of all strings │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _t_o_S_t_r_i_n_g_(_M_i_x_e_d_G_r_a_p_h_) -- print a mixed graph as a string │ │ ├── ./usr/share/doc/Macaulay2/StatePolytope/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=13 │ │ │ aW5pdGlhbElkZWFscw== │ │ │ #:len=950 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiY2FsbHMgZ2ZhbiBhbmQgcmV0dXJucyB0 │ │ │ aGUgbGlzdCBvZiBpbml0aWFsIGlkZWFscyIsICJsaW5lbnVtIiA9PiAxNDAsIElucHV0cyA9PiB7 │ │ ├── ./usr/share/doc/Macaulay2/StronglyStableIdeals/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=34 │ │ │ bWFjYXVsYXlEZWNvbXBvc2l0aW9uKFJpbmdFbGVtZW50KQ== │ │ │ #:len=329 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNzkzLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhtYWNhdWxheURlY29tcG9zaXRpb24sUmluZ0VsZW1l │ │ ├── ./usr/share/doc/Macaulay2/Style/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=5 │ │ │ U3R5bGU= │ │ │ #:len=344 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAic3R5bGUgc2hlZXRzIGFuZCBpbWFnZXMg │ │ │ Zm9yIHRoZSBkb2N1bWVudGF0aW9uIiwgRGVzY3JpcHRpb24gPT4gMTooIlRoaXMgcGFja2FnZSBp │ │ ├── ./usr/share/doc/Macaulay2/SubalgebraBases/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=24 │ │ │ c2FnYmkoLi4uLFN0cmF0ZWd5PT4uLi4p │ │ │ #:len=300 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjU3OSwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHtbc2FnYmksU3RyYXRlZ3ldLCJzYWdiaSguLi4sU3Ry │ │ ├── ./usr/share/doc/Macaulay2/SumsOfSquares/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=30 │ │ │ bG93ZXJCb3VuZCguLi4sVmVyYm9zaXR5PT4uLi4p │ │ │ #:len=302 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gODg4LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20ge1tsb3dlckJvdW5kLFZlcmJvc2l0eV0sImxvd2VyQm91 │ │ ├── ./usr/share/doc/Macaulay2/SuperLinearAlgebra/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=6 │ │ │ cGFyaXR5 │ │ │ #:len=1717 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAicGFyaXR5IG9mIGFuIGVsZW1lbnQgb2Yg │ │ │ YSBzdXBlciByaW5nLiIsICJsaW5lbnVtIiA9PiA2MTAsIElucHV0cyA9PiB7U1BBTntUVHsiZiJ9 │ │ ├── ./usr/share/doc/Macaulay2/SwitchingFields/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=33 │ │ │ ZmllbGRCYXNlQ2hhbmdlKFJpbmcsR2Fsb2lzRmllbGQp │ │ │ #:len=300 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTk4LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhmaWVsZEJhc2VDaGFuZ2UsUmluZyxHYWxvaXNGaWVs │ │ ├── ./usr/share/doc/Macaulay2/SymbolicPowers/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=15 │ │ │ bm9QYWNrZWRBbGxTdWJz │ │ │ #:len=1151 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiZmluZHMgYWxsIHN1YnN0aXR1dGlvbnMg │ │ │ b2YgdmFyaWFibGVzIGJ5IDEgYW5kL29yIDAgZm9yIHdoaWNoIGlkZWFsIGlzIG5vdCBLb25pZy4i │ │ ├── ./usr/share/doc/Macaulay2/SymbolicPowers/example-output/_symbolic__Power.out │ │ │ @@ -31,15 +31,15 @@ │ │ │ o5 : Ideal of QQ[x..z] │ │ │ │ │ │ i6 : isHomogeneous P │ │ │ │ │ │ o6 = false │ │ │ │ │ │ i7 : time symbolicPower(P,4); │ │ │ - -- used 0.268743s (cpu); 0.210039s (thread); 0s (gc) │ │ │ + -- used 0.264144s (cpu); 0.216232s (thread); 0s (gc) │ │ │ │ │ │ o7 : Ideal of QQ[x..z] │ │ │ │ │ │ i8 : Q = ker map(QQ[t],QQ[x,y,z, Degrees => {3,4,5}],{t^3,t^4,t^5}) │ │ │ │ │ │ 2 3 2 2 │ │ │ o8 = ideal (y - x*z, x - y*z, x y - z ) │ │ │ @@ -47,12 +47,12 @@ │ │ │ o8 : Ideal of QQ[x..z] │ │ │ │ │ │ i9 : isHomogeneous Q │ │ │ │ │ │ o9 = true │ │ │ │ │ │ i10 : time symbolicPower(Q,4); │ │ │ - -- used 0.128023s (cpu); 0.0677668s (thread); 0s (gc) │ │ │ + -- used 0.0784835s (cpu); 0.037094s (thread); 0s (gc) │ │ │ │ │ │ o10 : Ideal of QQ[x..z] │ │ │ │ │ │ i11 : │ │ ├── ./usr/share/doc/Macaulay2/SymbolicPowers/html/_symbolic__Power.html │ │ │ @@ -132,15 +132,15 @@ │ │ │ │ │ │
      i6 : isHomogeneous P
      │ │ │  
      │ │ │  o6 = false
      │ │ │ │ │ │ │ │ │
      i7 : time symbolicPower(P,4);
      │ │ │ - -- used 0.268743s (cpu); 0.210039s (thread); 0s (gc)
      │ │ │ + -- used 0.264144s (cpu); 0.216232s (thread); 0s (gc)
      │ │ │  
      │ │ │  o7 : Ideal of QQ[x..z]
      │ │ │ │ │ │ │ │ │
      i8 : Q = ker map(QQ[t],QQ[x,y,z, Degrees => {3,4,5}],{t^3,t^4,t^5})
      │ │ │  
      │ │ │               2         3         2     2
      │ │ │ @@ -151,15 +151,15 @@
      │ │ │            
      │ │ │                
      i9 : isHomogeneous Q
      │ │ │  
      │ │ │  o9 = true
      │ │ │ │ │ │ │ │ │
      i10 : time symbolicPower(Q,4);
      │ │ │ - -- used 0.128023s (cpu); 0.0677668s (thread); 0s (gc)
      │ │ │ + -- used 0.0784835s (cpu); 0.037094s (thread); 0s (gc)
      │ │ │  
      │ │ │  o10 : Ideal of QQ[x..z]
      │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │ ├── html2text {} │ │ │ │ @@ -60,28 +60,28 @@ │ │ │ │ o5 = ideal (y - x*z, x y - z , x - y*z) │ │ │ │ │ │ │ │ o5 : Ideal of QQ[x..z] │ │ │ │ i6 : isHomogeneous P │ │ │ │ │ │ │ │ o6 = false │ │ │ │ i7 : time symbolicPower(P,4); │ │ │ │ - -- used 0.268743s (cpu); 0.210039s (thread); 0s (gc) │ │ │ │ + -- used 0.264144s (cpu); 0.216232s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : Ideal of QQ[x..z] │ │ │ │ i8 : Q = ker map(QQ[t],QQ[x,y,z, Degrees => {3,4,5}],{t^3,t^4,t^5}) │ │ │ │ │ │ │ │ 2 3 2 2 │ │ │ │ o8 = ideal (y - x*z, x - y*z, x y - z ) │ │ │ │ │ │ │ │ o8 : Ideal of QQ[x..z] │ │ │ │ i9 : isHomogeneous Q │ │ │ │ │ │ │ │ o9 = true │ │ │ │ i10 : time symbolicPower(Q,4); │ │ │ │ - -- used 0.128023s (cpu); 0.0677668s (thread); 0s (gc) │ │ │ │ + -- used 0.0784835s (cpu); 0.037094s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 : Ideal of QQ[x..z] │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_y_m_b_P_o_w_e_r_P_r_i_m_e_P_o_s_C_h_a_r │ │ │ │ ********** WWaayyss ttoo uussee ssyymmbboolliiccPPoowweerr:: ********** │ │ │ │ * symbolicPower(Ideal,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/SymmetricPolynomials/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ -# GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:38 2025 │ │ │ +# GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=32 │ │ │ YnVpbGRTeW1tZXRyaWNHQihQb2x5bm9taWFsUmluZyk= │ │ │ #:len=936 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiR3JvZWJuZXIgYmFzaXMgb2YgZWxlbWVu │ │ │ dGFyeSBzeW1tZXRyaWMgcG9seW5vbWlhbHMgYWxnZWJyYSIsICJsaW5lbnVtIiA9PiAxNzAsIElu │ │ ├── ./usr/share/doc/Macaulay2/TSpreadIdeals/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=31 │ │ │ Y291bnRUTGV4TW9uKC4uLixGaXhlZE1heD0+Li4uKQ== │ │ │ #:len=268 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTM4Miwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHtbY291bnRUTGV4TW9uLEZpeGVkTWF4XSwiY291bnRU │ │ ├── ./usr/share/doc/Macaulay2/TangentCone/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=11 │ │ │ VGFuZ2VudENvbmU= │ │ │ #:len=312 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAidGFuZ2VudCBjb25lcyIsIERlc2NyaXB0 │ │ │ aW9uID0+IDE6KCJUaGlzIHBhY2thZ2UgcHJvdmlkZXMgYSBzaW5nbGUgZnVuY3Rpb24gdGhhdCBj │ │ ├── ./usr/share/doc/Macaulay2/TateOnProducts/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=39 │ │ │ YWN0aW9uT25EaXJlY3RJbWFnZShJZGVhbCxDaGFpbkNvbXBsZXgp │ │ │ #:len=318 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNjA2Mywgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoYWN0aW9uT25EaXJlY3RJbWFnZSxJZGVhbCxDaGFp │ │ ├── ./usr/share/doc/Macaulay2/TateOnProducts/example-output/_beilinson__Window.out │ │ │ @@ -10,15 +10,15 @@ │ │ │ o3 = 0 <-- E <-- 0 │ │ │ │ │ │ -1 0 1 │ │ │ │ │ │ o3 : ChainComplex │ │ │ │ │ │ i4 : time T=tateExtension W; │ │ │ - -- used 0.403151s (cpu); 0.208015s (thread); 0s (gc) │ │ │ + -- used 0.439062s (cpu); 0.153183s (thread); 0s (gc) │ │ │ │ │ │ i5 : cohomologyMatrix(T,-{3,3},{3,3}) │ │ │ │ │ │ o5 = | 8h 4h 0 4 8 12 16 | │ │ │ | 6h 3h 0 3 6 9 12 | │ │ │ | 4h 2h 0 2 4 6 8 | │ │ │ | 2h h 0 1 2 3 4 | │ │ ├── ./usr/share/doc/Macaulay2/TateOnProducts/html/_beilinson__Window.html │ │ │ @@ -85,15 +85,15 @@ │ │ │ │ │ │ -1 0 1 │ │ │ │ │ │ o3 : ChainComplex
    │ │ │ │ │ │ │ │ │
    i4 : time T=tateExtension W;
    │ │ │ - -- used 0.403151s (cpu); 0.208015s (thread); 0s (gc)
    │ │ │ + -- used 0.439062s (cpu); 0.153183s (thread); 0s (gc) │ │ │ │ │ │ │ │ │
    i5 : cohomologyMatrix(T,-{3,3},{3,3})
    │ │ │  
    │ │ │  o5 = | 8h  4h  0 4  8  12 16 |
    │ │ │       | 6h  3h  0 3  6  9  12 |
    │ │ │       | 4h  2h  0 2  4  6  8  |
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -24,15 +24,15 @@
    │ │ │ │               1
    │ │ │ │  o3 = 0  <-- E  <-- 0
    │ │ │ │  
    │ │ │ │       -1     0      1
    │ │ │ │  
    │ │ │ │  o3 : ChainComplex
    │ │ │ │  i4 : time T=tateExtension W;
    │ │ │ │ - -- used 0.403151s (cpu); 0.208015s (thread); 0s (gc)
    │ │ │ │ + -- used 0.439062s (cpu); 0.153183s (thread); 0s (gc)
    │ │ │ │  i5 : cohomologyMatrix(T,-{3,3},{3,3})
    │ │ │ │  
    │ │ │ │  o5 = | 8h  4h  0 4  8  12 16 |
    │ │ │ │       | 6h  3h  0 3  6  9  12 |
    │ │ │ │       | 4h  2h  0 2  4  6  8  |
    │ │ │ │       | 2h  h   0 1  2  3  4  |
    │ │ │ │       | 0   0   0 0  0  0  0  |
    │ │ ├── ./usr/share/doc/Macaulay2/TensorComplexes/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=31
    │ │ │  bWlub3JzTWFwKE1hdHJpeCxMYWJlbGVkTW9kdWxlKQ==
    │ │ │  #:len=285
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTkzNywgc3ltYm9sIERvY3VtZW50VGFn
    │ │ │  ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsobWlub3JzTWFwLE1hdHJpeCxMYWJlbGVkTW9kdWxl
    │ │ ├── ./usr/share/doc/Macaulay2/TerraciniLoci/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=26
    │ │ │  dGVycmFjaW5pTG9jdXMoWlosUmluZ01hcCk=
    │ │ │  #:len=278
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTkyLCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyh0ZXJyYWNpbmlMb2N1cyxaWixSaW5nTWFwKSwidGVy
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=17
    │ │ │  ZnJvYmVuaXVzUHJlaW1hZ2U=
    │ │ │  #:len=934
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiZmluZHMgdGhlIGlkZWFsIG9mIGVsZW1l
    │ │ │  bnRzIG1hcHBlZCBpbnRvIGEgZ2l2ZW4gaWRlYWwsIHVuZGVyIGFsbCAkcF57LWV9JC1saW5lYXIg
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Root.out
    │ │ │ @@ -63,20 +63,20 @@
    │ │ │  o15 : Ideal of R
    │ │ │  
    │ │ │  i16 : I3 = ideal(x^50*y^50*z^50);
    │ │ │  
    │ │ │  o16 : Ideal of R
    │ │ │  
    │ │ │  i17 : time J1 = frobeniusRoot(1, {8, 10, 12}, {I1, I2, I3});
    │ │ │ - -- used 0.77346s (cpu); 0.598028s (thread); 0s (gc)
    │ │ │ + -- used 0.882524s (cpu); 0.735583s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 : Ideal of R
    │ │ │  
    │ │ │  i18 : time J2 = frobeniusRoot(1, I1^8*I2^10*I3^12);
    │ │ │ - -- used 2.43564s (cpu); 1.98855s (thread); 0s (gc)
    │ │ │ + -- used 2.71356s (cpu); 2.40552s (thread); 0s (gc)
    │ │ │  
    │ │ │  o18 : Ideal of R
    │ │ │  
    │ │ │  i19 : J1 == J2
    │ │ │  
    │ │ │  o19 = true
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__Cohen__Macaulay.out
    │ │ │ @@ -7,20 +7,20 @@
    │ │ │  i3 : g = map(T, S, {x^3, x^2*y, x*y^2, y^3});
    │ │ │  
    │ │ │  o3 : RingMap T <-- S
    │ │ │  
    │ │ │  i4 : R = S/(ker g);
    │ │ │  
    │ │ │  i5 : time isCohenMacaulay(R)
    │ │ │ - -- used 0.00181995s (cpu); 0.00172336s (thread); 0s (gc)
    │ │ │ + -- used 0.00148371s (cpu); 0.00154069s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = true
    │ │ │  
    │ │ │  i6 : time isCohenMacaulay(R, AtOrigin => true)
    │ │ │ - -- used 0.00365471s (cpu); 0.00378473s (thread); 0s (gc)
    │ │ │ + -- used 0.000971581s (cpu); 0.00353922s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = true
    │ │ │  
    │ │ │  i7 : R = QQ[x,y,u,v]/(x*u, x*v, y*u, y*v);
    │ │ │  
    │ │ │  i8 : isCohenMacaulay(R)
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Injective.out
    │ │ │ @@ -60,49 +60,49 @@
    │ │ │  i19 : R = ZZ/5[x,y,z]/(y^2*z + x*y*z-x^3)
    │ │ │  
    │ │ │  o19 = R
    │ │ │  
    │ │ │  o19 : QuotientRing
    │ │ │  
    │ │ │  i20 : time isFInjective(R)
    │ │ │ - -- used 0.0239992s (cpu); 0.0237627s (thread); 0s (gc)
    │ │ │ + -- used 0.0838948s (cpu); 0.0814579s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 = true
    │ │ │  
    │ │ │  i21 : time isFInjective(R, CanonicalStrategy => null)
    │ │ │ - -- used 2.15989s (cpu); 1.16923s (thread); 0s (gc)
    │ │ │ + -- used 2.93272s (cpu); 1.82411s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = true
    │ │ │  
    │ │ │  i22 : R = ZZ/7[x,y,z]/((x-1)^5 + (y+1)^5 + z^5);
    │ │ │  
    │ │ │  i23 : time isFInjective(R)
    │ │ │ - -- used 0.155409s (cpu); 0.0979975s (thread); 0s (gc)
    │ │ │ + -- used 0.161113s (cpu); 0.107699s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = false
    │ │ │  
    │ │ │  i24 : time isFInjective(R, AtOrigin => true)
    │ │ │ - -- used 0.0700561s (cpu); 0.0715188s (thread); 0s (gc)
    │ │ │ + -- used 0.0969768s (cpu); 0.100488s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = true
    │ │ │  
    │ │ │  i25 : S = ZZ/3[xs, ys, zs, xt, yt, zt];
    │ │ │  
    │ │ │  i26 : EP1 = ZZ/3[x,y,z,s,t]/(x^3 + y^2*z - x*z^2);
    │ │ │  
    │ │ │  i27 : f = map(EP1, S, {x*s, y*s, z*s, x*t, y*t, z*t});
    │ │ │  
    │ │ │  o27 : RingMap EP1 <-- S
    │ │ │  
    │ │ │  i28 : R = S/(ker f);
    │ │ │  
    │ │ │  i29 : time isFInjective(R)
    │ │ │ - -- used 0.847953s (cpu); 0.66496s (thread); 0s (gc)
    │ │ │ + -- used 1.43316s (cpu); 1.00401s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = false
    │ │ │  
    │ │ │  i30 : time isFInjective(R, AssumeCM => true)
    │ │ │ - -- used 0.352773s (cpu); 0.235218s (thread); 0s (gc)
    │ │ │ + -- used 0.401099s (cpu); 0.30867s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = true
    │ │ │  
    │ │ │  i31 :
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Regular.out
    │ │ │ @@ -79,20 +79,20 @@
    │ │ │  i25 : I = minors(2, matrix {{x, y, z}, {u, v, w}});
    │ │ │  
    │ │ │  o25 : Ideal of S
    │ │ │  
    │ │ │  i26 : debugLevel = 1;
    │ │ │  
    │ │ │  i27 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 1)
    │ │ │ - -- used 0.120933s (cpu); 0.0586845s (thread); 0s (gc)
    │ │ │ + -- used 0.0954204s (cpu); 0.0466078s (thread); 0s (gc)
    │ │ │  isFRegular: This ring does not appear to be F-regular.  Increasing DepthOfSearch will let the function search more deeply.
    │ │ │  
    │ │ │  o27 = false
    │ │ │  
    │ │ │  i28 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 2)
    │ │ │ - -- used 0.220328s (cpu); 0.153633s (thread); 0s (gc)
    │ │ │ + -- used 0.309374s (cpu); 0.265214s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = true
    │ │ │  
    │ │ │  i29 : debugLevel = 0;
    │ │ │  
    │ │ │  i30 :
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/example-output/_test__Ideal.out
    │ │ │ @@ -81,21 +81,21 @@
    │ │ │  i22 : testIdeal({3/4, 2/3, 3/5}, L)
    │ │ │  
    │ │ │  o22 = ideal (y, x)
    │ │ │  
    │ │ │  o22 : Ideal of R
    │ │ │  
    │ │ │  i23 : time testIdeal({3/4, 2/3, 3/5}, L)
    │ │ │ - -- used 0.266662s (cpu); 0.138587s (thread); 0s (gc)
    │ │ │ + -- used 0.420843s (cpu); 0.270252s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = ideal (y, x)
    │ │ │  
    │ │ │  o23 : Ideal of R
    │ │ │  
    │ │ │  i24 : time testIdeal(1/60, x^45*y^40*(x + y)^36)
    │ │ │ - -- used 0.39027s (cpu); 0.214669s (thread); 0s (gc)
    │ │ │ + -- used 0.538261s (cpu); 0.402858s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = ideal (y, x)
    │ │ │  
    │ │ │  o24 : Ideal of R
    │ │ │  
    │ │ │  i25 :
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Root.html
    │ │ │ @@ -205,21 +205,21 @@
    │ │ │            
    │ │ │                
    i16 : I3 = ideal(x^50*y^50*z^50);
    │ │ │  
    │ │ │  o16 : Ideal of R
    │ │ │ │ │ │ │ │ │
    i17 : time J1 = frobeniusRoot(1, {8, 10, 12}, {I1, I2, I3});
    │ │ │ - -- used 0.77346s (cpu); 0.598028s (thread); 0s (gc)
    │ │ │ + -- used 0.882524s (cpu); 0.735583s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 : Ideal of R
    │ │ │ │ │ │ │ │ │
    i18 : time J2 = frobeniusRoot(1, I1^8*I2^10*I3^12);
    │ │ │ - -- used 2.43564s (cpu); 1.98855s (thread); 0s (gc)
    │ │ │ + -- used 2.71356s (cpu); 2.40552s (thread); 0s (gc)
    │ │ │  
    │ │ │  o18 : Ideal of R
    │ │ │ │ │ │ │ │ │
    i19 : J1 == J2
    │ │ │  
    │ │ │  o19 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -107,19 +107,19 @@ │ │ │ │ i15 : I2 = ideal(x^20*y^100, x + z^100); │ │ │ │ │ │ │ │ o15 : Ideal of R │ │ │ │ i16 : I3 = ideal(x^50*y^50*z^50); │ │ │ │ │ │ │ │ o16 : Ideal of R │ │ │ │ i17 : time J1 = frobeniusRoot(1, {8, 10, 12}, {I1, I2, I3}); │ │ │ │ - -- used 0.77346s (cpu); 0.598028s (thread); 0s (gc) │ │ │ │ + -- used 0.882524s (cpu); 0.735583s (thread); 0s (gc) │ │ │ │ │ │ │ │ o17 : Ideal of R │ │ │ │ i18 : time J2 = frobeniusRoot(1, I1^8*I2^10*I3^12); │ │ │ │ - -- used 2.43564s (cpu); 1.98855s (thread); 0s (gc) │ │ │ │ + -- used 2.71356s (cpu); 2.40552s (thread); 0s (gc) │ │ │ │ │ │ │ │ o18 : Ideal of R │ │ │ │ i19 : J1 == J2 │ │ │ │ │ │ │ │ o19 = true │ │ │ │ For legacy reasons, the last ideal in the list can be specified separately, │ │ │ │ using frobeniusRoot(e, \{a_1,\ldots,a_n\}, \{I_1,\ldots,I_n\}, I). The last │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/html/_is__Cohen__Macaulay.html │ │ │ @@ -89,21 +89,21 @@ │ │ │ o3 : RingMap T <-- S
    │ │ │ │ │ │ │ │ │
    i4 : R = S/(ker g);
    │ │ │ │ │ │ │ │ │
    i5 : time isCohenMacaulay(R)
    │ │ │ - -- used 0.00181995s (cpu); 0.00172336s (thread); 0s (gc)
    │ │ │ + -- used 0.00148371s (cpu); 0.00154069s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = true
    │ │ │ │ │ │ │ │ │
    i6 : time isCohenMacaulay(R, AtOrigin => true)
    │ │ │ - -- used 0.00365471s (cpu); 0.00378473s (thread); 0s (gc)
    │ │ │ + -- used 0.000971581s (cpu); 0.00353922s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : R = QQ[x,y,u,v]/(x*u, x*v, y*u, y*v);
    │ │ │ ├── html2text {} │ │ │ │ @@ -24,19 +24,19 @@ │ │ │ │ i1 : T = ZZ/5[x,y]; │ │ │ │ i2 : S = ZZ/5[a,b,c,d]; │ │ │ │ i3 : g = map(T, S, {x^3, x^2*y, x*y^2, y^3}); │ │ │ │ │ │ │ │ o3 : RingMap T <-- S │ │ │ │ i4 : R = S/(ker g); │ │ │ │ i5 : time isCohenMacaulay(R) │ │ │ │ - -- used 0.00181995s (cpu); 0.00172336s (thread); 0s (gc) │ │ │ │ + -- used 0.00148371s (cpu); 0.00154069s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = true │ │ │ │ i6 : time isCohenMacaulay(R, AtOrigin => true) │ │ │ │ - -- used 0.00365471s (cpu); 0.00378473s (thread); 0s (gc) │ │ │ │ + -- used 0.000971581s (cpu); 0.00353922s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = true │ │ │ │ i7 : R = QQ[x,y,u,v]/(x*u, x*v, y*u, y*v); │ │ │ │ i8 : isCohenMacaulay(R) │ │ │ │ │ │ │ │ o8 = false │ │ │ │ The function isCohenMacaulay considers $R$ as a quotient of a polynomial ring, │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Injective.html │ │ │ @@ -182,41 +182,41 @@ │ │ │ │ │ │ o19 = R │ │ │ │ │ │ o19 : QuotientRing │ │ │
    i20 : time isFInjective(R)
    │ │ │ - -- used 0.0239992s (cpu); 0.0237627s (thread); 0s (gc)
    │ │ │ + -- used 0.0838948s (cpu); 0.0814579s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 = true
    │ │ │
    i21 : time isFInjective(R, CanonicalStrategy => null)
    │ │ │ - -- used 2.15989s (cpu); 1.16923s (thread); 0s (gc)
    │ │ │ + -- used 2.93272s (cpu); 1.82411s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = true
    │ │ │
    │ │ │
    │ │ │

    If the option AtOrigin (default value false) is set to true, isFInjective will only check $F$-injectivity at the origin. Otherwise, it will check $F$-injectivity globally. Note that checking $F$-injectivity at the origin can be slower than checking it globally. Consider the following example of a non-$F$-injective ring.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i22 : R = ZZ/7[x,y,z]/((x-1)^5 + (y+1)^5 + z^5);
    │ │ │
    i23 : time isFInjective(R)
    │ │ │ - -- used 0.155409s (cpu); 0.0979975s (thread); 0s (gc)
    │ │ │ + -- used 0.161113s (cpu); 0.107699s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = false
    │ │ │
    i24 : time isFInjective(R, AtOrigin => true)
    │ │ │ - -- used 0.0700561s (cpu); 0.0715188s (thread); 0s (gc)
    │ │ │ + -- used 0.0969768s (cpu); 0.100488s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = true
    │ │ │
    │ │ │
    │ │ │

    If the option AssumeCM (default value false) is set to true, then isFInjective only checks the Frobenius action on top cohomology (which is typically much faster). Note that it can give an incorrect answer if the non-injective Frobenius occurs in a lower degree. Consider the example of the cone over a supersingular elliptic curve times $\mathbb{P}^1$.

    │ │ │
    │ │ │ @@ -233,21 +233,21 @@ │ │ │ o27 : RingMap EP1 <-- S │ │ │ │ │ │ │ │ │
    i28 : R = S/(ker f);
    │ │ │ │ │ │ │ │ │
    i29 : time isFInjective(R)
    │ │ │ - -- used 0.847953s (cpu); 0.66496s (thread); 0s (gc)
    │ │ │ + -- used 1.43316s (cpu); 1.00401s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = false
    │ │ │ │ │ │ │ │ │
    i30 : time isFInjective(R, AssumeCM => true)
    │ │ │ - -- used 0.352773s (cpu); 0.235218s (thread); 0s (gc)
    │ │ │ + -- used 0.401099s (cpu); 0.30867s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = true
    │ │ │ │ │ │ │ │ │
    │ │ │

    If the option AssumedReduced is set to true (its default behavior), then the bottom local cohomology is avoided (this means the Frobenius action on the top potentially nonzero Ext is not computed).

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -82,52 +82,52 @@ │ │ │ │ much faster. │ │ │ │ i19 : R = ZZ/5[x,y,z]/(y^2*z + x*y*z-x^3) │ │ │ │ │ │ │ │ o19 = R │ │ │ │ │ │ │ │ o19 : QuotientRing │ │ │ │ i20 : time isFInjective(R) │ │ │ │ - -- used 0.0239992s (cpu); 0.0237627s (thread); 0s (gc) │ │ │ │ + -- used 0.0838948s (cpu); 0.0814579s (thread); 0s (gc) │ │ │ │ │ │ │ │ o20 = true │ │ │ │ i21 : time isFInjective(R, CanonicalStrategy => null) │ │ │ │ - -- used 2.15989s (cpu); 1.16923s (thread); 0s (gc) │ │ │ │ + -- used 2.93272s (cpu); 1.82411s (thread); 0s (gc) │ │ │ │ │ │ │ │ o21 = true │ │ │ │ If the option AtOrigin (default value false) is set to true, isFInjective will │ │ │ │ only check $F$-injectivity at the origin. Otherwise, it will check $F$- │ │ │ │ injectivity globally. Note that checking $F$-injectivity at the origin can be │ │ │ │ slower than checking it globally. Consider the following example of a non-$F$- │ │ │ │ injective ring. │ │ │ │ i22 : R = ZZ/7[x,y,z]/((x-1)^5 + (y+1)^5 + z^5); │ │ │ │ i23 : time isFInjective(R) │ │ │ │ - -- used 0.155409s (cpu); 0.0979975s (thread); 0s (gc) │ │ │ │ + -- used 0.161113s (cpu); 0.107699s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 = false │ │ │ │ i24 : time isFInjective(R, AtOrigin => true) │ │ │ │ - -- used 0.0700561s (cpu); 0.0715188s (thread); 0s (gc) │ │ │ │ + -- used 0.0969768s (cpu); 0.100488s (thread); 0s (gc) │ │ │ │ │ │ │ │ o24 = true │ │ │ │ If the option AssumeCM (default value false) is set to true, then isFInjective │ │ │ │ only checks the Frobenius action on top cohomology (which is typically much │ │ │ │ faster). Note that it can give an incorrect answer if the non-injective │ │ │ │ Frobenius occurs in a lower degree. Consider the example of the cone over a │ │ │ │ supersingular elliptic curve times $\mathbb{P}^1$. │ │ │ │ i25 : S = ZZ/3[xs, ys, zs, xt, yt, zt]; │ │ │ │ i26 : EP1 = ZZ/3[x,y,z,s,t]/(x^3 + y^2*z - x*z^2); │ │ │ │ i27 : f = map(EP1, S, {x*s, y*s, z*s, x*t, y*t, z*t}); │ │ │ │ │ │ │ │ o27 : RingMap EP1 <-- S │ │ │ │ i28 : R = S/(ker f); │ │ │ │ i29 : time isFInjective(R) │ │ │ │ - -- used 0.847953s (cpu); 0.66496s (thread); 0s (gc) │ │ │ │ + -- used 1.43316s (cpu); 1.00401s (thread); 0s (gc) │ │ │ │ │ │ │ │ o29 = false │ │ │ │ i30 : time isFInjective(R, AssumeCM => true) │ │ │ │ - -- used 0.352773s (cpu); 0.235218s (thread); 0s (gc) │ │ │ │ + -- used 0.401099s (cpu); 0.30867s (thread); 0s (gc) │ │ │ │ │ │ │ │ o30 = true │ │ │ │ If the option AssumedReduced is set to true (its default behavior), then the │ │ │ │ bottom local cohomology is avoided (this means the Frobenius action on the top │ │ │ │ potentially nonzero Ext is not computed). │ │ │ │ If the option AssumeNormal (default value false) is set to true, then the │ │ │ │ bottom two local cohomology modules (or, rather, their duals) need not be │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Regular.html │ │ │ @@ -230,22 +230,22 @@ │ │ │ o25 : Ideal of S │ │ │ │ │ │ │ │ │
    i26 : debugLevel = 1;
    │ │ │ │ │ │ │ │ │
    i27 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 1)
    │ │ │ - -- used 0.120933s (cpu); 0.0586845s (thread); 0s (gc)
    │ │ │ + -- used 0.0954204s (cpu); 0.0466078s (thread); 0s (gc)
    │ │ │  isFRegular: This ring does not appear to be F-regular.  Increasing DepthOfSearch will let the function search more deeply.
    │ │ │  
    │ │ │  o27 = false
    │ │ │ │ │ │ │ │ │
    i28 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 2)
    │ │ │ - -- used 0.220328s (cpu); 0.153633s (thread); 0s (gc)
    │ │ │ + -- used 0.309374s (cpu); 0.265214s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = true
    │ │ │ │ │ │ │ │ │
    i29 : debugLevel = 0;
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -113,21 +113,21 @@ │ │ │ │ also use the option DepthOfSearch to increase the depth of search. │ │ │ │ i24 : S = ZZ/7[x,y,z,u,v,w]; │ │ │ │ i25 : I = minors(2, matrix {{x, y, z}, {u, v, w}}); │ │ │ │ │ │ │ │ o25 : Ideal of S │ │ │ │ i26 : debugLevel = 1; │ │ │ │ i27 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 1) │ │ │ │ - -- used 0.120933s (cpu); 0.0586845s (thread); 0s (gc) │ │ │ │ + -- used 0.0954204s (cpu); 0.0466078s (thread); 0s (gc) │ │ │ │ isFRegular: This ring does not appear to be F-regular. Increasing │ │ │ │ DepthOfSearch will let the function search more deeply. │ │ │ │ │ │ │ │ o27 = false │ │ │ │ i28 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 2) │ │ │ │ - -- used 0.220328s (cpu); 0.153633s (thread); 0s (gc) │ │ │ │ + -- used 0.309374s (cpu); 0.265214s (thread); 0s (gc) │ │ │ │ │ │ │ │ o28 = true │ │ │ │ i29 : debugLevel = 0; │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_e_s_t_I_d_e_a_l -- compute a test ideal in a Q-Gorenstein ring │ │ │ │ * _i_s_F_R_a_t_i_o_n_a_l -- whether a ring is F-rational │ │ │ │ ********** WWaayyss ttoo uussee iissFFRReegguullaarr:: ********** │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/html/_test__Ideal.html │ │ │ @@ -219,23 +219,23 @@ │ │ │ │ │ │
    │ │ │

    It is often more efficient to pass a list, as opposed to finding a common denominator and passing a single element, since testIdeal can do things in a more intelligent way for such a list.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i23 : time testIdeal({3/4, 2/3, 3/5}, L)
    │ │ │ - -- used 0.266662s (cpu); 0.138587s (thread); 0s (gc)
    │ │ │ + -- used 0.420843s (cpu); 0.270252s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = ideal (y, x)
    │ │ │  
    │ │ │  o23 : Ideal of R
    │ │ │
    i24 : time testIdeal(1/60, x^45*y^40*(x + y)^36)
    │ │ │ - -- used 0.39027s (cpu); 0.214669s (thread); 0s (gc)
    │ │ │ + -- used 0.538261s (cpu); 0.402858s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = ideal (y, x)
    │ │ │  
    │ │ │  o24 : Ideal of R
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -101,21 +101,21 @@ │ │ │ │ o22 = ideal (y, x) │ │ │ │ │ │ │ │ o22 : Ideal of R │ │ │ │ It is often more efficient to pass a list, as opposed to finding a common │ │ │ │ denominator and passing a single element, since testIdeal can do things in a │ │ │ │ more intelligent way for such a list. │ │ │ │ i23 : time testIdeal({3/4, 2/3, 3/5}, L) │ │ │ │ - -- used 0.266662s (cpu); 0.138587s (thread); 0s (gc) │ │ │ │ + -- used 0.420843s (cpu); 0.270252s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 = ideal (y, x) │ │ │ │ │ │ │ │ o23 : Ideal of R │ │ │ │ i24 : time testIdeal(1/60, x^45*y^40*(x + y)^36) │ │ │ │ - -- used 0.39027s (cpu); 0.214669s (thread); 0s (gc) │ │ │ │ + -- used 0.538261s (cpu); 0.402858s (thread); 0s (gc) │ │ │ │ │ │ │ │ o24 = ideal (y, x) │ │ │ │ │ │ │ │ o24 : Ideal of R │ │ │ │ The option AssumeDomain (default value false) is used when finding a test │ │ │ │ element. The option FrobeniusRootStrategy (default value Substitution) is │ │ │ │ passed to internal _f_r_o_b_e_n_i_u_s_R_o_o_t calls. │ │ ├── ./usr/share/doc/Macaulay2/Text/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=18 │ │ │ bmV3IFRPSCBmcm9tIFRoaW5n │ │ │ #:len=219 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gODQxLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhOZXdGcm9tTWV0aG9kLFRPSCxUaGluZyksIm5ldyBU │ │ ├── ./usr/share/doc/Macaulay2/ThinSincereQuivers/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=20 │ │ │ aXNUaWdodChUb3JpY1F1aXZlcik= │ │ │ #:len=268 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzA1OSwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoaXNUaWdodCxUb3JpY1F1aXZlciksImlzVGlnaHQo │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=9 │ │ │ dGdiKExpc3Qp │ │ │ #:len=213 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNDY4LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyh0Z2IsTGlzdCksInRnYihMaXN0KSIsIlRocmVhZGVk │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/example-output/___Minimal.out │ │ │ @@ -3,30 +3,33 @@ │ │ │ i1 : S = ZZ/101[a,b,c]; │ │ │ │ │ │ i2 : allowableThreads= 2; │ │ │ │ │ │ i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2", Minimal=>true) │ │ │ │ │ │ o3 = LineageTable{((0, 2), 0) => null} │ │ │ + ((0, 2), 1) => null │ │ │ 2 │ │ │ ((1, 2), 0) => c │ │ │ (0, 1) => null │ │ │ (0, 2) => null │ │ │ (1, 2) => a*c │ │ │ 0 => null │ │ │ 1 => null │ │ │ 2 │ │ │ 2 => b │ │ │ │ │ │ o3 : LineageTable │ │ │ │ │ │ i4 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2") │ │ │ │ │ │ - 3 │ │ │ -o4 = LineageTable{((0, 2), 0) => -c } │ │ │ + 3 │ │ │ +o4 = LineageTable{(((0, 1), 0), 0) => -c } │ │ │ + 2 │ │ │ + ((0, 1), 0) => -a*c │ │ │ 2 │ │ │ ((1, 2), 0) => -c │ │ │ 2 │ │ │ (0, 1) => a c │ │ │ 2 │ │ │ (0, 2) => b*c │ │ │ (1, 2) => -a*c │ │ │ @@ -37,15 +40,16 @@ │ │ │ 2 │ │ │ 2 => b │ │ │ │ │ │ o4 : LineageTable │ │ │ │ │ │ i5 : minimize T │ │ │ │ │ │ -o5 = LineageTable{((0, 2), 0) => null} │ │ │ +o5 = LineageTable{(((0, 1), 0), 0) => null} │ │ │ + ((0, 1), 0) => null │ │ │ 2 │ │ │ ((1, 2), 0) => c │ │ │ (0, 1) => null │ │ │ (0, 2) => null │ │ │ (1, 2) => a*c │ │ │ 0 => null │ │ │ 1 => null │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/example-output/___Threaded__G__B.out │ │ │ @@ -22,46 +22,28 @@ │ │ │ │ │ │ i3 : allowableThreads = 4 │ │ │ │ │ │ o3 = 4 │ │ │ │ │ │ i4 : g = tgb(rnc) │ │ │ │ │ │ - 5 2 2 5 │ │ │ -o4 = LineageTable{(((((1, 2), 1), 1), 6), 6) => x x - x x } │ │ │ - 0 5 0 2 │ │ │ - 4 2 3 │ │ │ - ((((1, 2), 1), 1), 6) => x x x - x x x │ │ │ - 0 5 4 0 3 2 │ │ │ - 3 2 4 │ │ │ - (((1, 2), 1), 1) => x x - x x │ │ │ - 0 4 0 2 │ │ │ - 2 2 │ │ │ - ((1, 2), 1) => x x x - x x x │ │ │ - 0 5 2 0 3 2 │ │ │ - 2 3 │ │ │ - ((1, 2), 8) => x x x - x x │ │ │ - 0 5 2 3 2 │ │ │ + 2 │ │ │ +o4 = LineageTable{((2, 3), 6) => x x - x x x } │ │ │ + 0 5 0 3 2 │ │ │ 3 │ │ │ (1, 2) => - x x x + x │ │ │ 0 4 2 2 │ │ │ 2 │ │ │ (1, 4) => - x x x + x x │ │ │ 0 5 2 3 2 │ │ │ - 2 2 │ │ │ - (1, 7) => - x x + x x │ │ │ - 0 4 4 2 │ │ │ 2 │ │ │ (2, 3) => x x - x │ │ │ 0 4 2 │ │ │ (4, 6) => x x - x x │ │ │ 0 5 3 2 │ │ │ - 2 2 │ │ │ - (6, 7) => - x x + x x │ │ │ - 0 5 4 2 │ │ │ 2 3 │ │ │ (8, 9) => - x x + x │ │ │ 5 2 4 │ │ │ 2 │ │ │ 0 => - x + x x │ │ │ 1 0 2 │ │ │ 1 => - x x + x x │ │ │ @@ -112,28 +94,22 @@ │ │ │ 0 4 2 2 │ │ │ │ │ │ o7 : QQ[x , x , x , x , x , x ] │ │ │ 1 0 3 5 4 2 │ │ │ │ │ │ i8 : minimize g │ │ │ │ │ │ -o8 = LineageTable{(((((1, 2), 1), 1), 6), 6) => null} │ │ │ - ((((1, 2), 1), 1), 6) => null │ │ │ - (((1, 2), 1), 1) => null │ │ │ - ((1, 2), 1) => null │ │ │ - ((1, 2), 8) => null │ │ │ +o8 = LineageTable{((2, 3), 6) => null } │ │ │ (1, 2) => null │ │ │ (1, 4) => null │ │ │ - (1, 7) => null │ │ │ 2 │ │ │ (2, 3) => x x - x │ │ │ 0 4 2 │ │ │ (4, 6) => x x - x x │ │ │ 0 5 3 2 │ │ │ - (6, 7) => null │ │ │ 2 3 │ │ │ (8, 9) => x x - x │ │ │ 5 2 4 │ │ │ 2 │ │ │ 0 => x - x x │ │ │ 1 0 2 │ │ │ 1 => x x - x x │ │ │ @@ -155,28 +131,22 @@ │ │ │ 9 => x x - x │ │ │ 3 5 4 │ │ │ │ │ │ o8 : LineageTable │ │ │ │ │ │ i9 : gRed = reduce g │ │ │ │ │ │ -o9 = LineageTable{(((((1, 2), 1), 1), 6), 6) => null} │ │ │ - ((((1, 2), 1), 1), 6) => null │ │ │ - (((1, 2), 1), 1) => null │ │ │ - ((1, 2), 1) => null │ │ │ - ((1, 2), 8) => null │ │ │ +o9 = LineageTable{((2, 3), 6) => null } │ │ │ (1, 2) => null │ │ │ (1, 4) => null │ │ │ - (1, 7) => null │ │ │ 2 │ │ │ (2, 3) => x x - x │ │ │ 0 4 2 │ │ │ (4, 6) => x x - x x │ │ │ 0 5 3 2 │ │ │ - (6, 7) => null │ │ │ 2 3 │ │ │ (8, 9) => x x - x │ │ │ 5 2 4 │ │ │ 2 │ │ │ 0 => x - x x │ │ │ 1 0 2 │ │ │ 1 => x x - x x │ │ │ @@ -228,25 +198,30 @@ │ │ │ │ │ │ i13 : allowableThreads = 2; │ │ │ │ │ │ i14 : T = tgb(I,Verbose=>true) │ │ │ Scheduling a task for lineage (0,1) │ │ │ Scheduling a task for lineage (0,2) │ │ │ Scheduling a task for lineage (1,2) │ │ │ -Scheduling task for lineage ((0,1),0) │ │ │ -Scheduling task for lineage ((0,1),1) │ │ │ -Scheduling task for lineage ((0,1),2) │ │ │ -Adding the following remainder to GB: Adding the following remainder to GB: -1 from lineage (1,2) │ │ │ --a^3*b-a*b^2*d+c^2 from lineage (0,1) │ │ │ Scheduling task for lineage ((0,2),0) │ │ │ Scheduling task for lineage ((0,2),1) │ │ │ -Scheduling task for lineage ((0,2),(0,1)) │ │ │ Scheduling task for lineage ((0,2),2) │ │ │ -Scheduling task for lineage ((0,2),(1,2)) │ │ │ Adding the following remainder to GB: -a^3*b-a*b^2*d from lineage (0,2) │ │ │ +Scheduling task for lineage ((0,1),0) │ │ │ +Scheduling task for lineage ((0,1),1) │ │ │ +Scheduling task for lineage ((0,1),2) │ │ │ +Scheduling task for lineage ((0,1),(0,2)) │ │ │ +Adding the following remainder to GB: c^2 from lineage (0,1) │ │ │ +Adding the following remainder to GB: -1 from lineage (1,2) │ │ │ +/usr/share/Macaulay2/Core/methods.m2:170:23:(1):[3]: error: no method found for applying leadTerm to: │ │ │ + argument 1 : 1 (of class ZZ) │ │ │ + argument 2 : 2 (of class ZZ) │ │ │ +/usr/share/Macaulay2/ThreadedGB.m2:308:46:(2):[2]: --back trace-- │ │ │ +/usr/share/Macaulay2/ThreadedGB.m2:271:104:(2):[1]: --back trace-- │ │ │ +/usr/share/Macaulay2/ThreadedGB.m2:270:10:(2): --back trace-- │ │ │ Found a unit in the Groebner basis; reducing now. │ │ │ │ │ │ o14 = LineageTable{(0, 1) => null} │ │ │ (0, 2) => null │ │ │ (1, 2) => 1 │ │ │ 0 => null │ │ │ 1 => null │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_matrix_lp__Lineage__Table_rp.out │ │ │ @@ -2,17 +2,16 @@ │ │ │ │ │ │ i1 : R = ZZ/101[a,b,c]; │ │ │ │ │ │ i2 : allowableThreads= 2; │ │ │ │ │ │ i3 : T = reduce tgb( ideal "abc+c2,ab2-b3c+ac,b2") │ │ │ │ │ │ -o3 = LineageTable{((0, 2), 0) => null} │ │ │ 2 │ │ │ - ((1, 2), 0) => c │ │ │ +o3 = LineageTable{((1, 2), 0) => c } │ │ │ (0, 1) => null │ │ │ (0, 2) => null │ │ │ (1, 2) => a*c │ │ │ 0 => null │ │ │ 1 => null │ │ │ 2 │ │ │ 2 => b │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_minimize.out │ │ │ @@ -2,18 +2,18 @@ │ │ │ │ │ │ i1 : R = ZZ/101[a,b,c]; │ │ │ │ │ │ i2 : allowableThreads= 2; │ │ │ │ │ │ i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2") │ │ │ │ │ │ + 2 │ │ │ +o3 = LineageTable{((0, 1), 0) => -a*c } │ │ │ 3 │ │ │ -o3 = LineageTable{((0, 2), 0) => -c } │ │ │ - 2 │ │ │ - ((0, 2), 1) => a*c │ │ │ + ((0, 2), 0) => -c │ │ │ 2 │ │ │ ((1, 2), 0) => -c │ │ │ 2 │ │ │ (0, 1) => a c │ │ │ 2 │ │ │ (0, 2) => b*c │ │ │ (1, 2) => -a*c │ │ │ @@ -24,16 +24,16 @@ │ │ │ 2 │ │ │ 2 => b │ │ │ │ │ │ o3 : LineageTable │ │ │ │ │ │ i4 : minimize T │ │ │ │ │ │ -o4 = LineageTable{((0, 2), 0) => null} │ │ │ - ((0, 2), 1) => null │ │ │ +o4 = LineageTable{((0, 1), 0) => null} │ │ │ + ((0, 2), 0) => null │ │ │ 2 │ │ │ ((1, 2), 0) => c │ │ │ (0, 1) => null │ │ │ (0, 2) => null │ │ │ (1, 2) => a*c │ │ │ 0 => null │ │ │ 1 => null │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_reduce.out │ │ │ @@ -2,16 +2,18 @@ │ │ │ │ │ │ i1 : R = ZZ/101[a,b,c]; │ │ │ │ │ │ i2 : allowableThreads= 2; │ │ │ │ │ │ i3 : T = tgb ideal "abc+c2,ab2-b3c+ac,b2" │ │ │ │ │ │ - 3 │ │ │ -o3 = LineageTable{((0, 2), 0) => -c } │ │ │ + 3 │ │ │ +o3 = LineageTable{(((0, 1), 0), 0) => -c } │ │ │ + 2 │ │ │ + ((0, 1), 0) => -a*c │ │ │ 2 │ │ │ ((1, 2), 0) => -c │ │ │ 2 │ │ │ (0, 1) => a c │ │ │ 2 │ │ │ (0, 2) => b*c │ │ │ (1, 2) => -a*c │ │ │ @@ -22,15 +24,16 @@ │ │ │ 2 │ │ │ 2 => b │ │ │ │ │ │ o3 : LineageTable │ │ │ │ │ │ i4 : reduce T │ │ │ │ │ │ -o4 = LineageTable{((0, 2), 0) => null} │ │ │ +o4 = LineageTable{(((0, 1), 0), 0) => null} │ │ │ + ((0, 1), 0) => null │ │ │ 2 │ │ │ ((1, 2), 0) => c │ │ │ (0, 1) => null │ │ │ (0, 2) => null │ │ │ (1, 2) => a*c │ │ │ 0 => null │ │ │ 1 => null │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_tgb.out │ │ │ @@ -6,44 +6,32 @@ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : allowableThreads = 4; │ │ │ │ │ │ i4 : H = tgb I │ │ │ │ │ │ - 2 5 │ │ │ -o4 = LineageTable{(((0, 3), 2), (0, 2)) => -22y z } │ │ │ - 3 5 │ │ │ - (((0, 3), 2), (0, 3)) => 39y z │ │ │ - 3 8 │ │ │ - (((0, 3), 2), 1) => 8y z │ │ │ - 3 6 │ │ │ - (((0, 3), 2), 2) => 9y z │ │ │ + 2 9 │ │ │ +o4 = LineageTable{(((0, 1), 3), 2) => 9y z } │ │ │ 4 4 3 7 │ │ │ ((0, 1), 2) => 9y z - 6y z │ │ │ - 3 9 3 8 │ │ │ - ((0, 1), 3) => - 14y z - 38y z │ │ │ - 3 9 │ │ │ - ((0, 2), 1) => -47y z │ │ │ - 3 9 3 8 │ │ │ - ((0, 2), 3) => - 38y z - 6y z │ │ │ - 3 10 3 9 │ │ │ - ((0, 3), 1) => 43y z - 42y z │ │ │ - 4 4 3 6 │ │ │ - ((0, 3), 2) => 9y z - 27y z │ │ │ - 2 4 │ │ │ - ((2, 3), ((0, 1), 2)) => -47y z │ │ │ - 2 4 │ │ │ - ((2, 3), ((0, 3), 2)) => -47y z │ │ │ + 3 7 3 6 │ │ │ + ((0, 1), 3) => - 6y z + 27y z │ │ │ + 2 5 2 4 │ │ │ + ((0, 3), (0, 1)) => 36y z + 40y z │ │ │ + 2 4 │ │ │ + ((1, 2), (0, 3)) => -10y z │ │ │ + 2 8 │ │ │ + ((1, 2), 2) => 9y z │ │ │ 5 2 3 4 │ │ │ (0, 1) => - 25y z - 19y z │ │ │ - 5 3 2 4 │ │ │ - (0, 2) => 5y z + 9y z │ │ │ - 5 2 5 │ │ │ - (0, 3) => 5y z + 28y z │ │ │ + 5 3 4 │ │ │ + (0, 3) => 28y z - 24y z │ │ │ + 3 6 │ │ │ + (1, 2) => -19y z │ │ │ 3 4 2 4 │ │ │ (2, 3) => 7y z - 9y z │ │ │ 2 │ │ │ 0 => 2x + 10y z │ │ │ 2 3 │ │ │ 1 => 8x y + 10x*y*z │ │ │ 3 2 3 │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/html/___Minimal.html │ │ │ @@ -65,14 +65,15 @@ │ │ │ │ │ │
    i2 : allowableThreads= 2;
    │ │ │ │ │ │ │ │ │
    i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2", Minimal=>true)
    │ │ │  
    │ │ │  o3 = LineageTable{((0, 2), 0) => null}
    │ │ │ +                  ((0, 2), 1) => null
    │ │ │                                    2
    │ │ │                    ((1, 2), 0) => c
    │ │ │                    (0, 1) => null
    │ │ │                    (0, 2) => null
    │ │ │                    (1, 2) => a*c
    │ │ │                    0 => null
    │ │ │                    1 => null
    │ │ │ @@ -85,16 +86,18 @@
    │ │ │          
    │ │ │

    By default, the option is false. The basis can also be minimized after the distributed computation is finished:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ - │ │ │ - │ │ │ + │ │ │ + │ │ │ - │ │ │ - │ │ │ + │ │ │ + │ │ │ - │ │ │ - │ │ │ + │ │ │ + │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2")
    │ │ │  
    │ │ │ -                                   3
    │ │ │ -o4 = LineageTable{((0, 2), 0) => -c      }
    │ │ │ +                                        3
    │ │ │ +o4 = LineageTable{(((0, 1), 0), 0) => -c }
    │ │ │ +                                     2
    │ │ │ +                  ((0, 1), 0) => -a*c
    │ │ │                                     2
    │ │ │                    ((1, 2), 0) => -c
    │ │ │                               2
    │ │ │                    (0, 1) => a c
    │ │ │                                 2
    │ │ │                    (0, 2) => b*c
    │ │ │                    (1, 2) => -a*c
    │ │ │ @@ -106,15 +109,16 @@
    │ │ │                    2 => b
    │ │ │  
    │ │ │  o4 : LineageTable
    │ │ │
    i5 : minimize T
    │ │ │  
    │ │ │ -o5 = LineageTable{((0, 2), 0) => null}
    │ │ │ +o5 = LineageTable{(((0, 1), 0), 0) => null}
    │ │ │ +                  ((0, 1), 0) => null
    │ │ │                                    2
    │ │ │                    ((1, 2), 0) => c
    │ │ │                    (0, 1) => null
    │ │ │                    (0, 2) => null
    │ │ │                    (1, 2) => a*c
    │ │ │                    0 => null
    │ │ │                    1 => null
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -14,14 +14,15 @@
    │ │ │ │  that were added to the basis during the distributed computation are saved, with
    │ │ │ │  the corresponding entry in the table being null.
    │ │ │ │  i1 : S = ZZ/101[a,b,c];
    │ │ │ │  i2 : allowableThreads= 2;
    │ │ │ │  i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2", Minimal=>true)
    │ │ │ │  
    │ │ │ │  o3 = LineageTable{((0, 2), 0) => null}
    │ │ │ │ +                  ((0, 2), 1) => null
    │ │ │ │                                    2
    │ │ │ │                    ((1, 2), 0) => c
    │ │ │ │                    (0, 1) => null
    │ │ │ │                    (0, 2) => null
    │ │ │ │                    (1, 2) => a*c
    │ │ │ │                    0 => null
    │ │ │ │                    1 => null
    │ │ │ │ @@ -29,16 +30,18 @@
    │ │ │ │                    2 => b
    │ │ │ │  
    │ │ │ │  o3 : LineageTable
    │ │ │ │  By default, the option is false. The basis can also be minimized after the
    │ │ │ │  distributed computation is finished:
    │ │ │ │  i4 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2")
    │ │ │ │  
    │ │ │ │ -                                   3
    │ │ │ │ -o4 = LineageTable{((0, 2), 0) => -c      }
    │ │ │ │ +                                        3
    │ │ │ │ +o4 = LineageTable{(((0, 1), 0), 0) => -c }
    │ │ │ │ +                                     2
    │ │ │ │ +                  ((0, 1), 0) => -a*c
    │ │ │ │                                     2
    │ │ │ │                    ((1, 2), 0) => -c
    │ │ │ │                               2
    │ │ │ │                    (0, 1) => a c
    │ │ │ │                                 2
    │ │ │ │                    (0, 2) => b*c
    │ │ │ │                    (1, 2) => -a*c
    │ │ │ │ @@ -48,15 +51,16 @@
    │ │ │ │                    1 => - b c + a*b  + a*c
    │ │ │ │                          2
    │ │ │ │                    2 => b
    │ │ │ │  
    │ │ │ │  o4 : LineageTable
    │ │ │ │  i5 : minimize T
    │ │ │ │  
    │ │ │ │ -o5 = LineageTable{((0, 2), 0) => null}
    │ │ │ │ +o5 = LineageTable{(((0, 1), 0), 0) => null}
    │ │ │ │ +                  ((0, 1), 0) => null
    │ │ │ │                                    2
    │ │ │ │                    ((1, 2), 0) => c
    │ │ │ │                    (0, 1) => null
    │ │ │ │                    (0, 2) => null
    │ │ │ │                    (1, 2) => a*c
    │ │ │ │                    0 => null
    │ │ │ │                    1 => null
    │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/html/_matrix_lp__Lineage__Table_rp.html
    │ │ │ @@ -84,17 +84,16 @@
    │ │ │  
    i2 : allowableThreads= 2;
    │ │ │
    i3 : T = reduce tgb( ideal "abc+c2,ab2-b3c+ac,b2")
    │ │ │  
    │ │ │ -o3 = LineageTable{((0, 2), 0) => null}
    │ │ │                                    2
    │ │ │ -                  ((1, 2), 0) => c
    │ │ │ +o3 = LineageTable{((1, 2), 0) => c }
    │ │ │                    (0, 1) => null
    │ │ │                    (0, 2) => null
    │ │ │                    (1, 2) => a*c
    │ │ │                    0 => null
    │ │ │                    1 => null
    │ │ │                          2
    │ │ │                    2 => b
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -20,17 +20,16 @@
    │ │ │ │  This simple function just returns the Gr\"obner basis computed with threaded
    │ │ │ │  Gr\"obner basis function _t_g_b in the expected Macaulay2 format, so that further
    │ │ │ │  computation are one step easier to set up.
    │ │ │ │  i1 : R = ZZ/101[a,b,c];
    │ │ │ │  i2 : allowableThreads= 2;
    │ │ │ │  i3 : T = reduce tgb( ideal "abc+c2,ab2-b3c+ac,b2")
    │ │ │ │  
    │ │ │ │ -o3 = LineageTable{((0, 2), 0) => null}
    │ │ │ │                                    2
    │ │ │ │ -                  ((1, 2), 0) => c
    │ │ │ │ +o3 = LineageTable{((1, 2), 0) => c }
    │ │ │ │                    (0, 1) => null
    │ │ │ │                    (0, 2) => null
    │ │ │ │                    (1, 2) => a*c
    │ │ │ │                    0 => null
    │ │ │ │                    1 => null
    │ │ │ │                          2
    │ │ │ │                    2 => b
    │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/html/_minimize.html
    │ │ │ @@ -76,18 +76,18 @@
    │ │ │  
    i2 : allowableThreads= 2;
    │ │ │
    i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2")
    │ │ │  
    │ │ │ +                                     2
    │ │ │ +o3 = LineageTable{((0, 1), 0) => -a*c    }
    │ │ │                                     3
    │ │ │ -o3 = LineageTable{((0, 2), 0) => -c      }
    │ │ │ -                                    2
    │ │ │ -                  ((0, 2), 1) => a*c
    │ │ │ +                  ((0, 2), 0) => -c
    │ │ │                                     2
    │ │ │                    ((1, 2), 0) => -c
    │ │ │                               2
    │ │ │                    (0, 1) => a c
    │ │ │                                 2
    │ │ │                    (0, 2) => b*c
    │ │ │                    (1, 2) => -a*c
    │ │ │ @@ -99,16 +99,16 @@
    │ │ │                    2 => b
    │ │ │  
    │ │ │  o3 : LineageTable
    │ │ │
    i4 : minimize T
    │ │ │  
    │ │ │ -o4 = LineageTable{((0, 2), 0) => null}
    │ │ │ -                  ((0, 2), 1) => null
    │ │ │ +o4 = LineageTable{((0, 1), 0) => null}
    │ │ │ +                  ((0, 2), 0) => null
    │ │ │                                    2
    │ │ │                    ((1, 2), 0) => c
    │ │ │                    (0, 1) => null
    │ │ │                    (0, 2) => null
    │ │ │                    (1, 2) => a*c
    │ │ │                    0 => null
    │ │ │                    1 => null
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -19,18 +19,18 @@
    │ │ │ │  minimal generators of the ideal generated by the leading terms of the values of
    │ │ │ │  H. If the values of H constitute a Gr\"obner basis of the ideal they generate,
    │ │ │ │  this method returns a minimal Gr\"obner basis.
    │ │ │ │  i1 : R = ZZ/101[a,b,c];
    │ │ │ │  i2 : allowableThreads= 2;
    │ │ │ │  i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2")
    │ │ │ │  
    │ │ │ │ +                                     2
    │ │ │ │ +o3 = LineageTable{((0, 1), 0) => -a*c    }
    │ │ │ │                                     3
    │ │ │ │ -o3 = LineageTable{((0, 2), 0) => -c      }
    │ │ │ │ -                                    2
    │ │ │ │ -                  ((0, 2), 1) => a*c
    │ │ │ │ +                  ((0, 2), 0) => -c
    │ │ │ │                                     2
    │ │ │ │                    ((1, 2), 0) => -c
    │ │ │ │                               2
    │ │ │ │                    (0, 1) => a c
    │ │ │ │                                 2
    │ │ │ │                    (0, 2) => b*c
    │ │ │ │                    (1, 2) => -a*c
    │ │ │ │ @@ -40,16 +40,16 @@
    │ │ │ │                    1 => - b c + a*b  + a*c
    │ │ │ │                          2
    │ │ │ │                    2 => b
    │ │ │ │  
    │ │ │ │  o3 : LineageTable
    │ │ │ │  i4 : minimize T
    │ │ │ │  
    │ │ │ │ -o4 = LineageTable{((0, 2), 0) => null}
    │ │ │ │ -                  ((0, 2), 1) => null
    │ │ │ │ +o4 = LineageTable{((0, 1), 0) => null}
    │ │ │ │ +                  ((0, 2), 0) => null
    │ │ │ │                                    2
    │ │ │ │                    ((1, 2), 0) => c
    │ │ │ │                    (0, 1) => null
    │ │ │ │                    (0, 2) => null
    │ │ │ │                    (1, 2) => a*c
    │ │ │ │                    0 => null
    │ │ │ │                    1 => null
    │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/html/_reduce.html
    │ │ │ @@ -77,16 +77,18 @@
    │ │ │  
    i2 : allowableThreads= 2;
    │ │ │
    i3 : T = tgb ideal "abc+c2,ab2-b3c+ac,b2"
    │ │ │  
    │ │ │ -                                   3
    │ │ │ -o3 = LineageTable{((0, 2), 0) => -c      }
    │ │ │ +                                        3
    │ │ │ +o3 = LineageTable{(((0, 1), 0), 0) => -c }
    │ │ │ +                                     2
    │ │ │ +                  ((0, 1), 0) => -a*c
    │ │ │                                     2
    │ │ │                    ((1, 2), 0) => -c
    │ │ │                               2
    │ │ │                    (0, 1) => a c
    │ │ │                                 2
    │ │ │                    (0, 2) => b*c
    │ │ │                    (1, 2) => -a*c
    │ │ │ @@ -98,15 +100,16 @@
    │ │ │                    2 => b
    │ │ │  
    │ │ │  o3 : LineageTable
    │ │ │
    i4 : reduce T
    │ │ │  
    │ │ │ -o4 = LineageTable{((0, 2), 0) => null}
    │ │ │ +o4 = LineageTable{(((0, 1), 0), 0) => null}
    │ │ │ +                  ((0, 1), 0) => null
    │ │ │                                    2
    │ │ │                    ((1, 2), 0) => c
    │ │ │                    (0, 1) => null
    │ │ │                    (0, 2) => null
    │ │ │                    (1, 2) => a*c
    │ │ │                    0 => null
    │ │ │                    1 => null
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -21,16 +21,18 @@
    │ │ │ │  remainder on the division by the remaining values H.
    │ │ │ │  If values H constitute a Gr\"obner basis of the ideal they generate, this
    │ │ │ │  method returns a reduced Gr\"obner basis.
    │ │ │ │  i1 : R = ZZ/101[a,b,c];
    │ │ │ │  i2 : allowableThreads= 2;
    │ │ │ │  i3 : T = tgb ideal "abc+c2,ab2-b3c+ac,b2"
    │ │ │ │  
    │ │ │ │ -                                   3
    │ │ │ │ -o3 = LineageTable{((0, 2), 0) => -c      }
    │ │ │ │ +                                        3
    │ │ │ │ +o3 = LineageTable{(((0, 1), 0), 0) => -c }
    │ │ │ │ +                                     2
    │ │ │ │ +                  ((0, 1), 0) => -a*c
    │ │ │ │                                     2
    │ │ │ │                    ((1, 2), 0) => -c
    │ │ │ │                               2
    │ │ │ │                    (0, 1) => a c
    │ │ │ │                                 2
    │ │ │ │                    (0, 2) => b*c
    │ │ │ │                    (1, 2) => -a*c
    │ │ │ │ @@ -40,15 +42,16 @@
    │ │ │ │                    1 => - b c + a*b  + a*c
    │ │ │ │                          2
    │ │ │ │                    2 => b
    │ │ │ │  
    │ │ │ │  o3 : LineageTable
    │ │ │ │  i4 : reduce T
    │ │ │ │  
    │ │ │ │ -o4 = LineageTable{((0, 2), 0) => null}
    │ │ │ │ +o4 = LineageTable{(((0, 1), 0), 0) => null}
    │ │ │ │ +                  ((0, 1), 0) => null
    │ │ │ │                                    2
    │ │ │ │                    ((1, 2), 0) => c
    │ │ │ │                    (0, 1) => null
    │ │ │ │                    (0, 2) => null
    │ │ │ │                    (1, 2) => a*c
    │ │ │ │                    0 => null
    │ │ │ │                    1 => null
    │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/html/_tgb.html
    │ │ │ @@ -92,44 +92,32 @@
    │ │ │  
    i3 : allowableThreads  = 4;
    │ │ │
    i4 : H = tgb I
    │ │ │  
    │ │ │ -                                               2 5
    │ │ │ -o4 = LineageTable{(((0, 3), 2), (0, 2)) => -22y z }
    │ │ │ -                                              3 5
    │ │ │ -                  (((0, 3), 2), (0, 3)) => 39y z
    │ │ │ -                                        3 8
    │ │ │ -                  (((0, 3), 2), 1) => 8y z
    │ │ │ -                                        3 6
    │ │ │ -                  (((0, 3), 2), 2) => 9y z
    │ │ │ +                                        2 9
    │ │ │ +o4 = LineageTable{(((0, 1), 3), 2) => 9y z           }
    │ │ │                                     4 4     3 7
    │ │ │                    ((0, 1), 2) => 9y z  - 6y z
    │ │ │ -                                      3 9      3 8
    │ │ │ -                  ((0, 1), 3) => - 14y z  - 38y z
    │ │ │ -                                     3 9
    │ │ │ -                  ((0, 2), 1) => -47y z
    │ │ │ -                                      3 9     3 8
    │ │ │ -                  ((0, 2), 3) => - 38y z  - 6y z
    │ │ │ -                                    3 10      3 9
    │ │ │ -                  ((0, 3), 1) => 43y z   - 42y z
    │ │ │ -                                   4 4      3 6
    │ │ │ -                  ((0, 3), 2) => 9y z  - 27y z
    │ │ │ -                                               2 4
    │ │ │ -                  ((2, 3), ((0, 1), 2)) => -47y z
    │ │ │ -                                               2 4
    │ │ │ -                  ((2, 3), ((0, 3), 2)) => -47y z
    │ │ │ +                                     3 7      3 6
    │ │ │ +                  ((0, 1), 3) => - 6y z  + 27y z
    │ │ │ +                                         2 5      2 4
    │ │ │ +                  ((0, 3), (0, 1)) => 36y z  + 40y z
    │ │ │ +                                          2 4
    │ │ │ +                  ((1, 2), (0, 3)) => -10y z
    │ │ │ +                                   2 8
    │ │ │ +                  ((1, 2), 2) => 9y z
    │ │ │                                   5 2      3 4
    │ │ │                    (0, 1) => - 25y z  - 19y z
    │ │ │ -                              5 3     2 4
    │ │ │ -                  (0, 2) => 5y z  + 9y z
    │ │ │ -                              5 2      5
    │ │ │ -                  (0, 3) => 5y z  + 28y z
    │ │ │ +                               5       3 4
    │ │ │ +                  (0, 3) => 28y z - 24y z
    │ │ │ +                                3 6
    │ │ │ +                  (1, 2) => -19y z
    │ │ │                                3 4     2 4
    │ │ │                    (2, 3) => 7y z  - 9y z
    │ │ │                                 2
    │ │ │                    0 => 2x + 10y z
    │ │ │                           2           3
    │ │ │                    1 => 8x y + 10x*y*z
    │ │ │                             3 2       3
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -27,44 +27,32 @@
    │ │ │ │  i2 : I = ideal {2*x + 10*y^2*z, 8*x^2*y + 10*x*y*z^3, 5*x*y^3*z^2 + 9*x*z^3,
    │ │ │ │  9*x*y^3*z + 10*x*y^3};
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : allowableThreads  = 4;
    │ │ │ │  i4 : H = tgb I
    │ │ │ │  
    │ │ │ │ -                                               2 5
    │ │ │ │ -o4 = LineageTable{(((0, 3), 2), (0, 2)) => -22y z }
    │ │ │ │ -                                              3 5
    │ │ │ │ -                  (((0, 3), 2), (0, 3)) => 39y z
    │ │ │ │ -                                        3 8
    │ │ │ │ -                  (((0, 3), 2), 1) => 8y z
    │ │ │ │ -                                        3 6
    │ │ │ │ -                  (((0, 3), 2), 2) => 9y z
    │ │ │ │ +                                        2 9
    │ │ │ │ +o4 = LineageTable{(((0, 1), 3), 2) => 9y z           }
    │ │ │ │                                     4 4     3 7
    │ │ │ │                    ((0, 1), 2) => 9y z  - 6y z
    │ │ │ │ -                                      3 9      3 8
    │ │ │ │ -                  ((0, 1), 3) => - 14y z  - 38y z
    │ │ │ │ -                                     3 9
    │ │ │ │ -                  ((0, 2), 1) => -47y z
    │ │ │ │ -                                      3 9     3 8
    │ │ │ │ -                  ((0, 2), 3) => - 38y z  - 6y z
    │ │ │ │ -                                    3 10      3 9
    │ │ │ │ -                  ((0, 3), 1) => 43y z   - 42y z
    │ │ │ │ -                                   4 4      3 6
    │ │ │ │ -                  ((0, 3), 2) => 9y z  - 27y z
    │ │ │ │ -                                               2 4
    │ │ │ │ -                  ((2, 3), ((0, 1), 2)) => -47y z
    │ │ │ │ -                                               2 4
    │ │ │ │ -                  ((2, 3), ((0, 3), 2)) => -47y z
    │ │ │ │ +                                     3 7      3 6
    │ │ │ │ +                  ((0, 1), 3) => - 6y z  + 27y z
    │ │ │ │ +                                         2 5      2 4
    │ │ │ │ +                  ((0, 3), (0, 1)) => 36y z  + 40y z
    │ │ │ │ +                                          2 4
    │ │ │ │ +                  ((1, 2), (0, 3)) => -10y z
    │ │ │ │ +                                   2 8
    │ │ │ │ +                  ((1, 2), 2) => 9y z
    │ │ │ │                                   5 2      3 4
    │ │ │ │                    (0, 1) => - 25y z  - 19y z
    │ │ │ │ -                              5 3     2 4
    │ │ │ │ -                  (0, 2) => 5y z  + 9y z
    │ │ │ │ -                              5 2      5
    │ │ │ │ -                  (0, 3) => 5y z  + 28y z
    │ │ │ │ +                               5       3 4
    │ │ │ │ +                  (0, 3) => 28y z - 24y z
    │ │ │ │ +                                3 6
    │ │ │ │ +                  (1, 2) => -19y z
    │ │ │ │                                3 4     2 4
    │ │ │ │                    (2, 3) => 7y z  - 9y z
    │ │ │ │                                 2
    │ │ │ │                    0 => 2x + 10y z
    │ │ │ │                           2           3
    │ │ │ │                    1 => 8x y + 10x*y*z
    │ │ │ │                             3 2       3
    │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/html/index.html
    │ │ │ @@ -75,46 +75,28 @@
    │ │ │  
    i3 : allowableThreads  =  4
    │ │ │  
    │ │ │  o3 = 4
    │ │ │
    i4 : g = tgb(rnc)
    │ │ │  
    │ │ │ -                                                 5 2    2 5
    │ │ │ -o4 = LineageTable{(((((1, 2), 1), 1), 6), 6) => x x  - x x }
    │ │ │ -                                                 0 5    0 2
    │ │ │ -                                            4        2   3
    │ │ │ -                  ((((1, 2), 1), 1), 6) => x x x  - x x x
    │ │ │ -                                            0 5 4    0 3 2
    │ │ │ -                                       3 2      4
    │ │ │ -                  (((1, 2), 1), 1) => x x  - x x
    │ │ │ -                                       0 4    0 2
    │ │ │ -                                  2            2
    │ │ │ -                  ((1, 2), 1) => x x x  - x x x
    │ │ │ -                                  0 5 2    0 3 2
    │ │ │ -                                      2      3
    │ │ │ -                  ((1, 2), 8) => x x x  - x x
    │ │ │ -                                  0 5 2    3 2
    │ │ │ +                                  2
    │ │ │ +o4 = LineageTable{((2, 3), 6) => x x  - x x x }
    │ │ │ +                                  0 5    0 3 2
    │ │ │                                          3
    │ │ │                    (1, 2) => - x x x  + x
    │ │ │                                 0 4 2    2
    │ │ │                                            2
    │ │ │                    (1, 4) => - x x x  + x x
    │ │ │                                 0 5 2    3 2
    │ │ │ -                                 2      2
    │ │ │ -                  (1, 7) => - x x  + x x
    │ │ │ -                               0 4    4 2
    │ │ │                                      2
    │ │ │                    (2, 3) => x x  - x
    │ │ │                               0 4    2
    │ │ │                    (4, 6) => x x  - x x
    │ │ │                               0 5    3 2
    │ │ │ -                                 2    2
    │ │ │ -                  (6, 7) => - x x  + x x
    │ │ │ -                               0 5    4 2
    │ │ │                                 2      3
    │ │ │                    (8, 9) => - x x  + x
    │ │ │                                 5 2    4
    │ │ │                            2
    │ │ │                    0 => - x  + x x
    │ │ │                            1    0 2
    │ │ │                    1 => - x x  + x x
    │ │ │ @@ -187,28 +169,22 @@
    │ │ │            

    As the algorithm continues, keys are concatenated, so that for example the remainder of S(0,S(1,2)) will have lineage (0,(1,2)), and so on. For more complicated lineage examples, see tgb.

    │ │ │

    Naturally, one can obtain a minimal basis or the reduced one as follows. In the output below, elements that are reduced are replaced by null, but their lineage keys are retained for informative purposes.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : minimize g
    │ │ │  
    │ │ │ -o8 = LineageTable{(((((1, 2), 1), 1), 6), 6) => null}
    │ │ │ -                  ((((1, 2), 1), 1), 6) => null
    │ │ │ -                  (((1, 2), 1), 1) => null
    │ │ │ -                  ((1, 2), 1) => null
    │ │ │ -                  ((1, 2), 8) => null
    │ │ │ +o8 = LineageTable{((2, 3), 6) => null  }
    │ │ │                    (1, 2) => null
    │ │ │                    (1, 4) => null
    │ │ │ -                  (1, 7) => null
    │ │ │                                      2
    │ │ │                    (2, 3) => x x  - x
    │ │ │                               0 4    2
    │ │ │                    (4, 6) => x x  - x x
    │ │ │                               0 5    3 2
    │ │ │ -                  (6, 7) => null
    │ │ │                               2      3
    │ │ │                    (8, 9) => x x  - x
    │ │ │                               5 2    4
    │ │ │                          2
    │ │ │                    0 => x  - x x
    │ │ │                          1    0 2
    │ │ │                    1 => x x  - x x
    │ │ │ @@ -231,28 +207,22 @@
    │ │ │                          3 5    4
    │ │ │  
    │ │ │  o8 : LineageTable
    │ │ │
    i9 : gRed = reduce g
    │ │ │  
    │ │ │ -o9 = LineageTable{(((((1, 2), 1), 1), 6), 6) => null}
    │ │ │ -                  ((((1, 2), 1), 1), 6) => null
    │ │ │ -                  (((1, 2), 1), 1) => null
    │ │ │ -                  ((1, 2), 1) => null
    │ │ │ -                  ((1, 2), 8) => null
    │ │ │ +o9 = LineageTable{((2, 3), 6) => null  }
    │ │ │                    (1, 2) => null
    │ │ │                    (1, 4) => null
    │ │ │ -                  (1, 7) => null
    │ │ │                                      2
    │ │ │                    (2, 3) => x x  - x
    │ │ │                               0 4    2
    │ │ │                    (4, 6) => x x  - x x
    │ │ │                               0 5    3 2
    │ │ │ -                  (6, 7) => null
    │ │ │                               2      3
    │ │ │                    (8, 9) => x x  - x
    │ │ │                               5 2    4
    │ │ │                          2
    │ │ │                    0 => x  - x x
    │ │ │                          1    0 2
    │ │ │                    1 => x x  - x x
    │ │ │ @@ -320,25 +290,30 @@
    │ │ │  
    i13 : allowableThreads =  2;
    │ │ │
    i14 : T = tgb(I,Verbose=>true)
    │ │ │  Scheduling a task for lineage (0,1)
    │ │ │  Scheduling a task for lineage (0,2)
    │ │ │  Scheduling a task for lineage (1,2)
    │ │ │ -Scheduling task for lineage ((0,1),0)
    │ │ │ -Scheduling task for lineage ((0,1),1)
    │ │ │ -Scheduling task for lineage ((0,1),2)
    │ │ │ -Adding the following remainder to GB: Adding the following remainder to GB: -1 from lineage (1,2)
    │ │ │ --a^3*b-a*b^2*d+c^2 from lineage (0,1)
    │ │ │  Scheduling task for lineage ((0,2),0)
    │ │ │  Scheduling task for lineage ((0,2),1)
    │ │ │ -Scheduling task for lineage ((0,2),(0,1))
    │ │ │  Scheduling task for lineage ((0,2),2)
    │ │ │ -Scheduling task for lineage ((0,2),(1,2))
    │ │ │  Adding the following remainder to GB: -a^3*b-a*b^2*d from lineage (0,2)
    │ │ │ +Scheduling task for lineage ((0,1),0)
    │ │ │ +Scheduling task for lineage ((0,1),1)
    │ │ │ +Scheduling task for lineage ((0,1),2)
    │ │ │ +Scheduling task for lineage ((0,1),(0,2))
    │ │ │ +Adding the following remainder to GB: c^2 from lineage (0,1)
    │ │ │ +Adding the following remainder to GB: -1 from lineage (1,2)
    │ │ │ +/usr/share/Macaulay2/Core/methods.m2:170:23:(1):[3]: error: no method found for applying leadTerm to:
    │ │ │ +     argument 1 :  1 (of class ZZ)
    │ │ │ +     argument 2 :  2 (of class ZZ)
    │ │ │ +/usr/share/Macaulay2/ThreadedGB.m2:308:46:(2):[2]: --back trace--
    │ │ │ +/usr/share/Macaulay2/ThreadedGB.m2:271:104:(2):[1]: --back trace--
    │ │ │ +/usr/share/Macaulay2/ThreadedGB.m2:270:10:(2): --back trace--
    │ │ │  Found a unit in the Groebner basis; reducing now.
    │ │ │  
    │ │ │  o14 = LineageTable{(0, 1) => null}
    │ │ │                     (0, 2) => null
    │ │ │                     (1, 2) => 1
    │ │ │                     0 => null
    │ │ │                     1 => null
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -39,46 +39,28 @@
    │ │ │ │  o2 : Ideal of QQ[x , x , x , x , x , x ]
    │ │ │ │                    1   0   3   5   4   2
    │ │ │ │  i3 : allowableThreads  =  4
    │ │ │ │  
    │ │ │ │  o3 = 4
    │ │ │ │  i4 : g = tgb(rnc)
    │ │ │ │  
    │ │ │ │ -                                                 5 2    2 5
    │ │ │ │ -o4 = LineageTable{(((((1, 2), 1), 1), 6), 6) => x x  - x x }
    │ │ │ │ -                                                 0 5    0 2
    │ │ │ │ -                                            4        2   3
    │ │ │ │ -                  ((((1, 2), 1), 1), 6) => x x x  - x x x
    │ │ │ │ -                                            0 5 4    0 3 2
    │ │ │ │ -                                       3 2      4
    │ │ │ │ -                  (((1, 2), 1), 1) => x x  - x x
    │ │ │ │ -                                       0 4    0 2
    │ │ │ │ -                                  2            2
    │ │ │ │ -                  ((1, 2), 1) => x x x  - x x x
    │ │ │ │ -                                  0 5 2    0 3 2
    │ │ │ │ -                                      2      3
    │ │ │ │ -                  ((1, 2), 8) => x x x  - x x
    │ │ │ │ -                                  0 5 2    3 2
    │ │ │ │ +                                  2
    │ │ │ │ +o4 = LineageTable{((2, 3), 6) => x x  - x x x }
    │ │ │ │ +                                  0 5    0 3 2
    │ │ │ │                                          3
    │ │ │ │                    (1, 2) => - x x x  + x
    │ │ │ │                                 0 4 2    2
    │ │ │ │                                            2
    │ │ │ │                    (1, 4) => - x x x  + x x
    │ │ │ │                                 0 5 2    3 2
    │ │ │ │ -                                 2      2
    │ │ │ │ -                  (1, 7) => - x x  + x x
    │ │ │ │ -                               0 4    4 2
    │ │ │ │                                      2
    │ │ │ │                    (2, 3) => x x  - x
    │ │ │ │                               0 4    2
    │ │ │ │                    (4, 6) => x x  - x x
    │ │ │ │                               0 5    3 2
    │ │ │ │ -                                 2    2
    │ │ │ │ -                  (6, 7) => - x x  + x x
    │ │ │ │ -                               0 5    4 2
    │ │ │ │                                 2      3
    │ │ │ │                    (8, 9) => - x x  + x
    │ │ │ │                                 5 2    4
    │ │ │ │                            2
    │ │ │ │                    0 => - x  + x x
    │ │ │ │                            1    0 2
    │ │ │ │                    1 => - x x  + x x
    │ │ │ │ @@ -140,28 +122,22 @@
    │ │ │ │  remainder of S(0,S(1,2)) will have lineage (0,(1,2)), and so on. For more
    │ │ │ │  complicated lineage examples, see _t_g_b.
    │ │ │ │  Naturally, one can obtain a minimal basis or the reduced one as follows. In the
    │ │ │ │  output below, elements that are reduced are replaced by null, but their lineage
    │ │ │ │  keys are retained for informative purposes.
    │ │ │ │  i8 : minimize g
    │ │ │ │  
    │ │ │ │ -o8 = LineageTable{(((((1, 2), 1), 1), 6), 6) => null}
    │ │ │ │ -                  ((((1, 2), 1), 1), 6) => null
    │ │ │ │ -                  (((1, 2), 1), 1) => null
    │ │ │ │ -                  ((1, 2), 1) => null
    │ │ │ │ -                  ((1, 2), 8) => null
    │ │ │ │ +o8 = LineageTable{((2, 3), 6) => null  }
    │ │ │ │                    (1, 2) => null
    │ │ │ │                    (1, 4) => null
    │ │ │ │ -                  (1, 7) => null
    │ │ │ │                                      2
    │ │ │ │                    (2, 3) => x x  - x
    │ │ │ │                               0 4    2
    │ │ │ │                    (4, 6) => x x  - x x
    │ │ │ │                               0 5    3 2
    │ │ │ │ -                  (6, 7) => null
    │ │ │ │                               2      3
    │ │ │ │                    (8, 9) => x x  - x
    │ │ │ │                               5 2    4
    │ │ │ │                          2
    │ │ │ │                    0 => x  - x x
    │ │ │ │                          1    0 2
    │ │ │ │                    1 => x x  - x x
    │ │ │ │ @@ -182,28 +158,22 @@
    │ │ │ │                                 2
    │ │ │ │                    9 => x x  - x
    │ │ │ │                          3 5    4
    │ │ │ │  
    │ │ │ │  o8 : LineageTable
    │ │ │ │  i9 : gRed = reduce g
    │ │ │ │  
    │ │ │ │ -o9 = LineageTable{(((((1, 2), 1), 1), 6), 6) => null}
    │ │ │ │ -                  ((((1, 2), 1), 1), 6) => null
    │ │ │ │ -                  (((1, 2), 1), 1) => null
    │ │ │ │ -                  ((1, 2), 1) => null
    │ │ │ │ -                  ((1, 2), 8) => null
    │ │ │ │ +o9 = LineageTable{((2, 3), 6) => null  }
    │ │ │ │                    (1, 2) => null
    │ │ │ │                    (1, 4) => null
    │ │ │ │ -                  (1, 7) => null
    │ │ │ │                                      2
    │ │ │ │                    (2, 3) => x x  - x
    │ │ │ │                               0 4    2
    │ │ │ │                    (4, 6) => x x  - x x
    │ │ │ │                               0 5    3 2
    │ │ │ │ -                  (6, 7) => null
    │ │ │ │                               2      3
    │ │ │ │                    (8, 9) => x x  - x
    │ │ │ │                               5 2    4
    │ │ │ │                          2
    │ │ │ │                    0 => x  - x x
    │ │ │ │                          1    0 2
    │ │ │ │                    1 => x x  - x x
    │ │ │ │ @@ -259,26 +229,31 @@
    │ │ │ │  
    │ │ │ │  o12 : Ideal of QQ[a..d]
    │ │ │ │  i13 : allowableThreads =  2;
    │ │ │ │  i14 : T = tgb(I,Verbose=>true)
    │ │ │ │  Scheduling a task for lineage (0,1)
    │ │ │ │  Scheduling a task for lineage (0,2)
    │ │ │ │  Scheduling a task for lineage (1,2)
    │ │ │ │ -Scheduling task for lineage ((0,1),0)
    │ │ │ │ -Scheduling task for lineage ((0,1),1)
    │ │ │ │ -Scheduling task for lineage ((0,1),2)
    │ │ │ │ -Adding the following remainder to GB: Adding the following remainder to GB: -
    │ │ │ │ -1 from lineage (1,2)
    │ │ │ │ --a^3*b-a*b^2*d+c^2 from lineage (0,1)
    │ │ │ │  Scheduling task for lineage ((0,2),0)
    │ │ │ │  Scheduling task for lineage ((0,2),1)
    │ │ │ │ -Scheduling task for lineage ((0,2),(0,1))
    │ │ │ │  Scheduling task for lineage ((0,2),2)
    │ │ │ │ -Scheduling task for lineage ((0,2),(1,2))
    │ │ │ │  Adding the following remainder to GB: -a^3*b-a*b^2*d from lineage (0,2)
    │ │ │ │ +Scheduling task for lineage ((0,1),0)
    │ │ │ │ +Scheduling task for lineage ((0,1),1)
    │ │ │ │ +Scheduling task for lineage ((0,1),2)
    │ │ │ │ +Scheduling task for lineage ((0,1),(0,2))
    │ │ │ │ +Adding the following remainder to GB: c^2 from lineage (0,1)
    │ │ │ │ +Adding the following remainder to GB: -1 from lineage (1,2)
    │ │ │ │ +/usr/share/Macaulay2/Core/methods.m2:170:23:(1):[3]: error: no method found for
    │ │ │ │ +applying leadTerm to:
    │ │ │ │ +     argument 1 :  1 (of class ZZ)
    │ │ │ │ +     argument 2 :  2 (of class ZZ)
    │ │ │ │ +/usr/share/Macaulay2/ThreadedGB.m2:308:46:(2):[2]: --back trace--
    │ │ │ │ +/usr/share/Macaulay2/ThreadedGB.m2:271:104:(2):[1]: --back trace--
    │ │ │ │ +/usr/share/Macaulay2/ThreadedGB.m2:270:10:(2): --back trace--
    │ │ │ │  Found a unit in the Groebner basis; reducing now.
    │ │ │ │  
    │ │ │ │  o14 = LineageTable{(0, 1) => null}
    │ │ │ │                     (0, 2) => null
    │ │ │ │                     (1, 2) => 1
    │ │ │ │                     0 => null
    │ │ │ │                     1 => null
    │ │ ├── ./usr/share/doc/Macaulay2/Topcom/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=15
    │ │ │  Y2hpcm90b3BlU3RyaW5n
    │ │ │  #:len=253
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNzI2LCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyJjaGlyb3RvcGVTdHJpbmciLCJjaGlyb3RvcGVTdHJp
    │ │ ├── ./usr/share/doc/Macaulay2/TorAlgebra/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=12
    │ │ │  aXNHb3JlbnN0ZWlu
    │ │ │  #:len=1402
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAid2hldGhlciB0aGUgcmluZyBpcyBHb3Jl
    │ │ │  bnN0ZWluIiwgImxpbmVudW0iID0+IDEyNDMsIElucHV0cyA9PiB7U1BBTntUVHsiUiJ9LCIsICIs
    │ │ ├── ./usr/share/doc/Macaulay2/ToricInvariants/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=5
    │ │ │  ZWREZWc=
    │ │ │  #:len=2501
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiQ29tcHV0ZXMgdGhlIChnZW5lcmljKSBF
    │ │ │  dWNsaWRlYW4gZGlzdGFuY2UgZGVncmVlIG9mIGEgcHJvamVjdGl2ZSB0b3JpYyB2YXJpZXR5Iiwg
    │ │ ├── ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_ed__Deg.out
    │ │ │ @@ -31,15 +31,15 @@
    │ │ │       | 0 1 2 0 2 0 |
    │ │ │       | 1 1 1 1 1 1 |
    │ │ │  
    │ │ │                4       6
    │ │ │  o3 : Matrix ZZ  <-- ZZ
    │ │ │  
    │ │ │  i4 : time edDeg(A)
    │ │ │ - -- used 1.20987s (cpu); 0.750962s (thread); 0s (gc)
    │ │ │ + -- used 1.3227s (cpu); 0.932002s (thread); 0s (gc)
    │ │ │  
    │ │ │  The toric variety has degree = 28
    │ │ │  The dual variety has degree = 45, and codimension = 1
    │ │ │  Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28}
    │ │ │  Polar Degrees: {45, 98, 81, 28}
    │ │ │  ED Degree = 252
    │ │ │  
    │ │ │ @@ -47,15 +47,15 @@
    │ │ │  Chern-Mather Class: 20h  + 23h  + 31h  + 28h
    │ │ │  
    │ │ │  o4 = 252
    │ │ │  
    │ │ │  o4 : QQ
    │ │ │  
    │ │ │  i5 : time edDeg(A,ForceAmat=>true)
    │ │ │ - -- used 4.36073s (cpu); 2.65103s (thread); 0s (gc)
    │ │ │ + -- used 5.16812s (cpu); 3.43873s (thread); 0s (gc)
    │ │ │  
    │ │ │  The toric variety has degree = 28
    │ │ │  The dual variety has degree = 45, and codimension = 1
    │ │ │  Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28}
    │ │ │  Polar Degrees: {45, 98, 81, 28}
    │ │ │  ED Degree = 252
    │ │ ├── ./usr/share/doc/Macaulay2/ToricInvariants/html/_ed__Deg.html
    │ │ │ @@ -119,15 +119,15 @@
    │ │ │       | 1 1 1 1 1 1 |
    │ │ │  
    │ │ │                4       6
    │ │ │  o3 : Matrix ZZ  <-- ZZ
    │ │ │
    i4 : time edDeg(A)
    │ │ │ - -- used 1.20987s (cpu); 0.750962s (thread); 0s (gc)
    │ │ │ + -- used 1.3227s (cpu); 0.932002s (thread); 0s (gc)
    │ │ │  
    │ │ │  The toric variety has degree = 28
    │ │ │  The dual variety has degree = 45, and codimension = 1
    │ │ │  Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28}
    │ │ │  Polar Degrees: {45, 98, 81, 28}
    │ │ │  ED Degree = 252
    │ │ │  
    │ │ │ @@ -136,15 +136,15 @@
    │ │ │  
    │ │ │  o4 = 252
    │ │ │  
    │ │ │  o4 : QQ
    │ │ │
    i5 : time edDeg(A,ForceAmat=>true)
    │ │ │ - -- used 4.36073s (cpu); 2.65103s (thread); 0s (gc)
    │ │ │ + -- used 5.16812s (cpu); 3.43873s (thread); 0s (gc)
    │ │ │  
    │ │ │  The toric variety has degree = 28
    │ │ │  The dual variety has degree = 45, and codimension = 1
    │ │ │  Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28}
    │ │ │  Polar Degrees: {45, 98, 81, 28}
    │ │ │  ED Degree = 252
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -58,30 +58,30 @@
    │ │ │ │       | 3 5 0 2 1 3 |
    │ │ │ │       | 0 1 2 0 2 0 |
    │ │ │ │       | 1 1 1 1 1 1 |
    │ │ │ │  
    │ │ │ │                4       6
    │ │ │ │  o3 : Matrix ZZ  <-- ZZ
    │ │ │ │  i4 : time edDeg(A)
    │ │ │ │ - -- used 1.20987s (cpu); 0.750962s (thread); 0s (gc)
    │ │ │ │ + -- used 1.3227s (cpu); 0.932002s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  The toric variety has degree = 28
    │ │ │ │  The dual variety has degree = 45, and codimension = 1
    │ │ │ │  Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28}
    │ │ │ │  Polar Degrees: {45, 98, 81, 28}
    │ │ │ │  ED Degree = 252
    │ │ │ │  
    │ │ │ │                         5      4      3      2
    │ │ │ │  Chern-Mather Class: 20h  + 23h  + 31h  + 28h
    │ │ │ │  
    │ │ │ │  o4 = 252
    │ │ │ │  
    │ │ │ │  o4 : QQ
    │ │ │ │  i5 : time edDeg(A,ForceAmat=>true)
    │ │ │ │ - -- used 4.36073s (cpu); 2.65103s (thread); 0s (gc)
    │ │ │ │ + -- used 5.16812s (cpu); 3.43873s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  The toric variety has degree = 28
    │ │ │ │  The dual variety has degree = 45, and codimension = 1
    │ │ │ │  Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28}
    │ │ │ │  Polar Degrees: {45, 98, 81, 28}
    │ │ │ │  ED Degree = 252
    │ │ ├── ./usr/share/doc/Macaulay2/ToricTopology/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=17
    │ │ │  aGVzc2VuYmVyZ1ZhcmlldHk=
    │ │ │  #:len=736
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiSGVzc2VuYmVyZyB2YXJpZXR5IGFzc2Nv
    │ │ │  aWF0ZWQgdG8gdGhlIG4tcGVybXV0YWhlZHJvbiIsICJsaW5lbnVtIiA9PiA2MzksIElucHV0cyA9
    │ │ ├── ./usr/share/doc/Macaulay2/ToricVectorBundles/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=23
    │ │ │  ZHVhbChUb3JpY1ZlY3RvckJ1bmRsZSk=
    │ │ │  #:len=1504
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiIHRoZSBkdWFsIGJ1bmRsZSBvZiBhIHRv
    │ │ │  cmljIHZlY3RvciBidW5kbGUiLCAibGluZW51bSIgPT4gMjgyMywgSW5wdXRzID0+IHtTUEFOe1RU
    │ │ ├── ./usr/share/doc/Macaulay2/TriangularSets/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=14
    │ │ │  Y2hlY2tJbnRlcmZhY2U=
    │ │ │  #:len=792
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAid2hldGhlciB0aGUgTWFwbGUgaW50ZXJm
    │ │ │  YWNlIGlzIHdvcmtpbmcgKGZvciBkZXZlbG9wZXJzKSIsICJsaW5lbnVtIiA9PiAzMzUsIElucHV0
    │ │ ├── ./usr/share/doc/Macaulay2/TriangularSets/example-output/___Triangular__Sets.out
    │ │ │ @@ -4,16 +4,16 @@
    │ │ │  
    │ │ │  i2 : I = ideal {a*d - b*c, c*f - d*e, e*h - f*g};
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : triangularize I
    │ │ │  
    │ │ │ -o3 = {{c, d, e, f}, {a*d - b*c, e, f} / d, {a*d - b*c, c*f - d*e, g, h} / {d,
    │ │ │ +o3 = {{c, d, f, h}, {b, d, e, f}, {c, d, e, f}, {a*d - b*c, e, f} / d, {a*d -
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     f}, {a*d - b*c, c*f - d*e, e*h - f*g} / {d, f, h}, {b, d, f, h}, {c, d,
    │ │ │ +     b*c, c*f - d*e, g, h} / {d, f}, {a*d - b*c, c*f - d*e, e*h - f*g} / {d,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     e*h - f*g} / h, {c, d, g, h}, {c, d, f, h}, {b, d, e, f}}
    │ │ │ +     f, h}, {b, d, f, h}, {c, d, e*h - f*g} / h, {c, d, g, h}}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/TriangularSets/html/index.html
    │ │ │ @@ -52,19 +52,19 @@
    │ │ │  
    i2 : I = ideal {a*d - b*c, c*f - d*e, e*h - f*g};
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │
    i3 : triangularize I
    │ │ │  
    │ │ │ -o3 = {{c, d, e, f}, {a*d - b*c, e, f} / d, {a*d - b*c, c*f - d*e, g, h} / {d,
    │ │ │ +o3 = {{c, d, f, h}, {b, d, e, f}, {c, d, e, f}, {a*d - b*c, e, f} / d, {a*d -
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     f}, {a*d - b*c, c*f - d*e, e*h - f*g} / {d, f, h}, {b, d, f, h}, {c, d,
    │ │ │ +     b*c, c*f - d*e, g, h} / {d, f}, {a*d - b*c, c*f - d*e, e*h - f*g} / {d,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     e*h - f*g} / h, {c, d, g, h}, {c, d, f, h}, {b, d, e, f}}
    │ │ │ +     f, h}, {b, d, f, h}, {c, d, e*h - f*g} / h, {c, d, g, h}}
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    │ │ │
    The method triangularize is implemented in M2 only for monomial and binomial ideals. For the general case we interface to Maple.

    This package also provides methods for manipulating triangular sets:
      │ │ │
    • │ │ │ dim(TriaSystem) -- dimension of a triangular set
    • │ │ │ ├── html2text {} │ │ │ │ @@ -8,19 +8,19 @@ │ │ │ │ This package allows to decompose polynomial ideals into _t_r_i_a_n_g_u_l_a_r_ _s_e_t_s │ │ │ │ i1 : R = QQ[a..h, MonomialOrder=>Lex]; │ │ │ │ i2 : I = ideal {a*d - b*c, c*f - d*e, e*h - f*g}; │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : triangularize I │ │ │ │ │ │ │ │ -o3 = {{c, d, e, f}, {a*d - b*c, e, f} / d, {a*d - b*c, c*f - d*e, g, h} / {d, │ │ │ │ +o3 = {{c, d, f, h}, {b, d, e, f}, {c, d, e, f}, {a*d - b*c, e, f} / d, {a*d - │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - f}, {a*d - b*c, c*f - d*e, e*h - f*g} / {d, f, h}, {b, d, f, h}, {c, d, │ │ │ │ + b*c, c*f - d*e, g, h} / {d, f}, {a*d - b*c, c*f - d*e, e*h - f*g} / {d, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - e*h - f*g} / h, {c, d, g, h}, {c, d, f, h}, {b, d, e, f}} │ │ │ │ + f, h}, {b, d, f, h}, {c, d, e*h - f*g} / h, {c, d, g, h}} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ │ │ │ │ The method _t_r_i_a_n_g_u_l_a_r_i_z_e is implemented in M2 only for monomial and binomial │ │ │ │ ideals. For the general case we interface to Maple. │ │ │ │ │ │ │ │ This package also provides methods for manipulating triangular sets: │ │ ├── ./usr/share/doc/Macaulay2/Triangulations/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=17 │ │ │ YWxsVHJpYW5ndWxhdGlvbnM= │ │ │ #:len=285 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNzcyLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyJhbGxUcmlhbmd1bGF0aW9ucyIsImFsbFRyaWFuZ3Vs │ │ ├── ./usr/share/doc/Macaulay2/Triangulations/example-output/___Triangulations.out │ │ │ @@ -17,15 +17,15 @@ │ │ │ | -1 1 2 -1 -1 1 -1 1 0 0 | │ │ │ | 1 0 -1 0 0 0 0 0 0 0 | │ │ │ │ │ │ 4 10 │ │ │ o2 : Matrix ZZ <-- ZZ │ │ │ │ │ │ i3 : elapsedTime Ts = allTriangulations(A, Fine => true); │ │ │ - -- .108538s elapsed │ │ │ + -- .156496s elapsed │ │ │ │ │ │ i4 : select(Ts, T -> isStar T) │ │ │ │ │ │ o4 = {triangulation {{0, 1, 2, 3, 9}, {0, 1, 2, 6, 9}, {0, 1, 3, 7, 9}, {0, │ │ │ ------------------------------------------------------------------------ │ │ │ 1, 6, 7, 9}, {0, 2, 3, 6, 9}, {0, 3, 4, 6, 9}, {0, 3, 4, 8, 9}, {0, 3, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -50,14 +50,14 @@ │ │ │ i7 : T = regularFineTriangulation A │ │ │ │ │ │ o7 = triangulation {{0, 1, 2, 3, 9}, {0, 1, 2, 6, 9}, {0, 1, 3, 7, 9}, {0, 1, 6, 7, 9}, {0, 2, 3, 4, 6}, {0, 2, 3, 4, 9}, {0, 2, 4, 6, 9}, {0, 3, 4, 7, 8}, {0, 3, 4, 7, 9}, {0, 3, 5, 7, 8}, {0, 4, 6, 7, 8}, {0, 4, 6, 7, 9}, {0, 5, 6, 7, 8}, {1, 2, 3, 7, 9}, {1, 2, 6, 7, 9}, {2, 3, 4, 7, 8}, {2, 3, 4, 7, 9}, {2, 3, 5, 7, 8}, {2, 4, 6, 7, 8}, {2, 4, 6, 7, 9}, {2, 5, 6, 7, 8}} │ │ │ │ │ │ o7 : Triangulation │ │ │ │ │ │ i8 : elapsedTime Ts2 = generateTriangulations T; │ │ │ - -- 1.20095s elapsed │ │ │ + -- 1.09493s elapsed │ │ │ │ │ │ i9 : #Ts2 == #Ts │ │ │ │ │ │ o9 = true │ │ │ │ │ │ i10 : │ │ ├── ./usr/share/doc/Macaulay2/Triangulations/example-output/_generate__Triangulations.out │ │ │ @@ -21,57 +21,15 @@ │ │ │ │ │ │ o3 = triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}} │ │ │ │ │ │ o3 : Triangulation │ │ │ │ │ │ i4 : Ts1 = generateTriangulations A -- list of Triangulation's. │ │ │ │ │ │ -o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 3, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {2, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ +o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -227,57 +185,63 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 6, 7}}} │ │ │ - │ │ │ -o4 : List │ │ │ - │ │ │ -i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets │ │ │ - │ │ │ -o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}, │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, │ │ │ + {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, │ │ │ + {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4}, │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, │ │ │ + {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, │ │ │ + {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5}, │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6}, │ │ │ + {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, │ │ │ + {3, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ + {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, │ │ │ + {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, │ │ │ + {{0, 1, 2, 6}, {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 5, 6, 7}}} │ │ │ + │ │ │ +o4 : List │ │ │ + │ │ │ +i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets │ │ │ + │ │ │ +o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -409,63 +373,57 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {2, 4, 6, 7}}} │ │ │ - │ │ │ -o5 : List │ │ │ - │ │ │ -i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations │ │ │ - │ │ │ -o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ + {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ + {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ + {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, │ │ │ + {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ + {3, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ + {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ + {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ + {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {2, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ + {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, │ │ │ + {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, │ │ │ + {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation │ │ │ + {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, │ │ │ + {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ + {1, 3, 6, 7}, {1, 5, 6, 7}}} │ │ │ + │ │ │ +o5 : List │ │ │ + │ │ │ +i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations │ │ │ + │ │ │ +o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -621,63 +579,63 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 6, 7}}} │ │ │ - │ │ │ -o6 : List │ │ │ - │ │ │ -i7 : Ts4 = generateTriangulations tri -- list of Triangulations │ │ │ - │ │ │ -o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ + {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ + {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ + {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ + {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, │ │ │ + {3, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, │ │ │ + {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation │ │ │ + {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, │ │ │ + {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 6}, │ │ │ + {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, │ │ │ + {{0, 1, 2, 6}, {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ + {1, 5, 6, 7}}} │ │ │ + │ │ │ +o6 : List │ │ │ + │ │ │ +i7 : Ts4 = generateTriangulations tri -- list of Triangulations │ │ │ + │ │ │ +o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -833,15 +791,57 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 6, 7}}} │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, triangulation │ │ │ + ------------------------------------------------------------------------ │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ + ------------------------------------------------------------------------ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {3, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ + ------------------------------------------------------------------------ │ │ │ + {{0, 1, 2, 6}, {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 5, 6, 7}}} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : all(Ts4, isFine) │ │ │ │ │ │ o8 = true │ │ │ │ │ │ @@ -858,133 +858,133 @@ │ │ │ o11 = Tally{false => 66} │ │ │ true => 8 │ │ │ │ │ │ o11 : Tally │ │ │ │ │ │ i12 : Ts4/gkzVector │ │ │ │ │ │ - 20 4 4 20 8 4 4 16 16 8 4 │ │ │ -o12 = {{--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4, --, --}, {-, 8, 4, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 16 16 4 16 16 4 8 4 20 8 8 8 │ │ │ - 4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4, 4, --, 8, -, -, -}, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 8 8 20 4 4 8 8 20 8 4 16 4 │ │ │ - {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --, -}, {-, 8, --, -, 4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 16 4 20 8 8 8 16 4 4 16 8 16 │ │ │ - -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -, 8, --, 4, 4, -}, {--, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 16 4 16 4 8 20 8 4 8 8 8 8 20 │ │ │ - 4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4, -}, {-, -, 8, -, 4, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 4 16 4 16 4 16 20 8 8 4 8 20 │ │ │ - -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -, -, -, 4, 8, -}, {--, 4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 8 8 8 8 8 8 4 20 16 16 4 4 8 │ │ │ - 4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, {--, --, 4, -, 4, -, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 4 8 8 20 20 4 4 20 20 4 │ │ │ - 8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, 4, --, 4}, {--, -, 4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 20 4 20 20 4 8 8 20 4 8 │ │ │ - 4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, 4, -, --, 8, -, -, 4}, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 4 16 8 4 4 16 16 8 4 4 8 │ │ │ - {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, -, 4}, {4, -, -, 8, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 16 4 4 20 20 4 8 8 8 8 8 8 │ │ │ - --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, -, 8, 8, -, -, -}, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 20 8 8 4 16 8 4 16 4 4 8 16 │ │ │ - {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, -}, {-, 8, 4, -, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 16 16 4 16 4 16 4 4 16 4 16 4 16 │ │ │ - -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, -, --, -, 4, --}, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 8 8 8 8 8 20 8 8 8 4 4 8 4 │ │ │ - {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, {8, -, -, 4, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 16 20 4 4 20 4 4 16 4 16 16 │ │ │ - --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, -, --, --, 4}, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 16 4 16 4 8 8 20 8 4 4 8 20 │ │ │ - {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, {4, -, -, 8, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 8 8 4 16 16 4 8 8 20 8 4 4 │ │ │ - 4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, 8, 4, -}, {-, 4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 20 8 8 8 8 8 8 8 8 4 16 16 4 4 │ │ │ - 8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, --, 4, 8, -, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 20 4 8 8 8 8 4 8 20 8 16 16 │ │ │ - --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, 4}, {--, 4, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 8 4 20 8 8 4 8 4 8 8 8 20 │ │ │ - -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, 4, -, --}, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 16 4 16 4 4 8 4 16 4 16 20 4 │ │ │ - {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, 4, --, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 20 16 8 16 4 4 20 4 4 20 │ │ │ - -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -, --, 4}, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 16 4 4 8 4 4 16 8 16 16 4 16 │ │ │ - {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -, --, 4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 8 4 16 4 16 8 8 8 8 8 8 8 │ │ │ - -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -, -}, {4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 4 20 8 8 16 4 4 16 16 4 4 16 16 8 │ │ │ - -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --, --, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 4 20 20 4 4 20 20 4 4 │ │ │ - 8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4, -}, {-, │ │ │ - 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 16 16 4 4 20 20 4 4 20 20 │ │ │ - 4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -, --, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 8 16 4 4 16 8 4 8 8 20 8 │ │ │ - -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --, 4}, {-, 8, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 8 4 20 20 4 4 20 4 20 20 4 4 20 20 4 20 4 │ │ │ - -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --, --, -, --, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 20 │ │ │ - -, --}} │ │ │ - 3 3 │ │ │ + 20 4 8 8 8 8 8 8 4 20 16 16 4 │ │ │ +o12 = {{--, 4, 4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, {--, --, 4, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 8 8 4 8 8 20 20 4 4 20 │ │ │ + 4, -, -, 8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, 4, --, 4}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 20 4 4 20 4 20 20 4 8 8 20 │ │ │ + {--, -, 4, 4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, 4, -, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 8 16 4 16 8 4 4 16 16 8 4 │ │ │ + 8, -, -, 4}, {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, -, 4}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 8 16 16 4 4 20 20 4 8 8 8 │ │ │ + {4, -, -, 8, --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, -, 8, 8, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 8 8 8 20 8 8 4 16 8 4 16 4 4 │ │ │ + -, -, -}, {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, -}, {-, 8, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 16 4 16 16 4 16 4 16 4 4 16 4 16 4 │ │ │ + 4, -, --, -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, -, --, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 8 8 8 8 8 8 20 8 8 8 4 4 8 │ │ │ + 4, --}, {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, {8, -, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 16 16 20 4 4 20 4 4 16 4 16 16 │ │ │ + 4, -, --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, -, --, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 16 4 16 4 8 8 20 8 4 4 8 │ │ │ + 4}, {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, {4, -, -, 8, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 20 8 8 8 4 16 16 4 8 8 20 8 4 │ │ │ + --, 4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, 8, 4, -}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 8 20 8 8 8 8 8 8 8 8 4 16 16 │ │ │ + {-, 4, 8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, --, 4, 8, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 4 16 20 4 8 8 8 8 4 8 20 8 16 │ │ │ + -, -, --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, 4}, {--, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 4 8 4 20 8 8 4 8 4 8 8 8 │ │ │ + 4, --, -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, 4, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 20 16 16 4 16 4 4 8 4 16 4 16 │ │ │ + --}, {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, 4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 20 4 4 20 16 8 16 4 4 20 4 4 │ │ │ + --, -, -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 20 16 16 4 4 8 4 4 16 8 16 16 4 │ │ │ + --, 4}, {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 4 8 4 16 4 16 8 8 8 8 8 8 │ │ │ + --, 4, -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 8 4 20 8 8 16 4 4 16 16 4 4 16 │ │ │ + -}, {4, -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 8 4 4 20 20 4 4 20 20 │ │ │ + --, -, 8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 4 8 16 16 4 4 20 20 4 4 │ │ │ + -}, {-, 4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 20 20 4 8 16 4 4 16 8 4 8 8 20 │ │ │ + --, --, -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 8 8 4 20 20 4 4 20 4 20 20 4 4 20 │ │ │ + 4}, {-, 8, -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 20 4 20 4 4 20 20 4 4 20 8 4 4 │ │ │ + --, -, --, -, -, --}, {--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 16 8 4 4 16 16 4 16 16 4 8 4 │ │ │ + --, --}, {-, 8, 4, -, 4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 20 8 8 8 8 8 8 20 4 4 8 8 20 │ │ │ + 4, --, 8, -, -, -}, {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 4 16 4 8 16 4 20 8 8 8 16 4 4 │ │ │ + -}, {-, 8, --, -, 4, -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 8 16 4 16 4 16 4 8 20 8 4 │ │ │ + 8, --, 4, 4, -}, {--, 4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 8 8 8 20 4 4 16 4 16 4 16 20 8 │ │ │ + -}, {-, -, 8, -, 4, --, -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 4 8 │ │ │ + -, -, 4, 8, -}} │ │ │ + 3 3 3 │ │ │ │ │ │ o12 : List │ │ │ │ │ │ i13 : volume convexHull A -- 8 │ │ │ │ │ │ o13 = 8 │ │ ├── ./usr/share/doc/Macaulay2/Triangulations/html/_generate__Triangulations.html │ │ │ @@ -116,57 +116,15 @@ │ │ │ o3 = triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}} │ │ │ │ │ │ o3 : Triangulation
    │ │ │
    i4 : Ts1 = generateTriangulations A -- list of Triangulation's.
    │ │ │  
    │ │ │ -o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, {1, 4, 5, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │ +o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -322,58 +280,64 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 6, 7}}}
    │ │ │ -
    │ │ │ -o4 : List
    │ │ │ -
    i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets
    │ │ │ -
    │ │ │ -o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7},
    │ │ │ +     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7},
    │ │ │ +     {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7},
    │ │ │ +     {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4},
    │ │ │ +     triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4},
    │ │ │ +     {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │ +     {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │ +     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7},
    │ │ │ +     {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6},
    │ │ │ +     {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5},
    │ │ │ +     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5},
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6},
    │ │ │ +     {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5},
    │ │ │ +     {3, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7},
    │ │ │ +     {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6},
    │ │ │ +     {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}},
    │ │ │ +     triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7},
    │ │ │ +     {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {{0, 1, 2, 6}, {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 5, 6, 7}}}
    │ │ │ +
    │ │ │ +o4 : List
    │ │ │ +
    i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets
    │ │ │ +
    │ │ │ +o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -505,64 +469,58 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {2, 4, 6, 7}}}
    │ │ │ -
    │ │ │ -o5 : List
    │ │ │ -
    i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations
    │ │ │ -
    │ │ │ -o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │ +     {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │ +     {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7},
    │ │ │ +     {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7},
    │ │ │ +     {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │ +     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │ +     {3, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6},
    │ │ │ +     {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6},
    │ │ │ +     {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation
    │ │ │ +     {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, {1, 4, 5, 6},
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {2, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │ +     {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6},
    │ │ │ +     {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6},
    │ │ │ +     {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation
    │ │ │ +     {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 7},
    │ │ │ +     {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5},
    │ │ │ +     {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │ +     {1, 3, 6, 7}, {1, 5, 6, 7}}}
    │ │ │ +
    │ │ │ +o5 : List
    │ │ │ +
    i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations
    │ │ │ +
    │ │ │ +o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -718,64 +676,64 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 6, 7}}}
    │ │ │ -
    │ │ │ -o6 : List
    │ │ │ -
    i7 : Ts4 = generateTriangulations tri -- list of Triangulations
    │ │ │ -
    │ │ │ -o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │ +     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │ +     {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │ +     {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7},
    │ │ │ +     triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7},
    │ │ │ +     {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │ +     {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │ +     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6},
    │ │ │ +     {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6},
    │ │ │ +     {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation
    │ │ │ +     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, {1, 4, 5, 6},
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5},
    │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6},
    │ │ │ +     {3, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6},
    │ │ │ +     {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation
    │ │ │ +     {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 7},
    │ │ │ +     triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5},
    │ │ │ +     {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 6},
    │ │ │ +     {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}},
    │ │ │ +     {{0, 1, 2, 6}, {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │ +     {1, 5, 6, 7}}}
    │ │ │ +
    │ │ │ +o6 : List
    │ │ │ +
    i7 : Ts4 = generateTriangulations tri -- list of Triangulations
    │ │ │ +
    │ │ │ +o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -931,15 +889,57 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 6, 7}}}
    │ │ │ +     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 4},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, triangulation
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {3, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 5},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {{0, 1, 2, 6}, {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 5, 6, 7}}}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    i8 : all(Ts4, isFine)
    │ │ │  
    │ │ │  o8 = true
    │ │ │ @@ -961,133 +961,133 @@ │ │ │ true => 8 │ │ │ │ │ │ o11 : Tally │ │ │
    i12 : Ts4/gkzVector
    │ │ │  
    │ │ │ -        20        4  4        20       8  4     4     16  16    8        4 
    │ │ │ -o12 = {{--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4, --, --}, {-, 8, 4, -,
    │ │ │ -         3        3  3         3       3  3     3      3   3    3        3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         4  16  16    4  16     16     4  8       4        20     8  8  8  
    │ │ │ -      4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4, 4, --, 8, -, -, -},
    │ │ │ -         3   3   3    3   3      3     3  3       3         3     3  3  3  
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -       8  8  8     20        4    4        8     8  20  8    4     16  4    
    │ │ │ -      {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --, -}, {-, 8, --, -, 4,
    │ │ │ -       3  3  3      3        3    3        3     3   3  3    3      3  3    
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      8  16          4  20     8     8  8    16  4  4     16        8    16 
    │ │ │ -      -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -, 8, --, 4, 4, -}, {--,
    │ │ │ -      3   3          3   3     3     3  3     3  3  3      3        3     3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         4  16  4  16     4       8  20  8  4        8    8  8     8     20 
    │ │ │ -      4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4, -}, {-, -, 8, -, 4, --,
    │ │ │ -         3   3  3   3     3       3   3  3  3        3    3  3     3      3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4       4  16     4  16     4  16       20  8  8  4        8    20    
    │ │ │ -      -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -, -, -, 4, 8, -}, {--, 4,
    │ │ │ -      3       3   3     3   3     3   3        3  3  3  3        3     3    
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         4  8  8  8          8  8  8  4        20    16  16     4     4  8 
    │ │ │ -      4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, {--, --, 4, -, 4, -, -,
    │ │ │ -         3  3  3  3          3  3  3  3         3     3   3     3     3  3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -              8  4     8  8     20       20     4  4     20       20  4    
    │ │ │ -      8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, 4, --, 4}, {--, -, 4,
    │ │ │ -              3  3     3  3      3        3     3  3      3        3  3    
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -               4  20       4  20        20  4       8     8  20     4  8     
    │ │ │ -      4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, 4, -, --, 8, -, -, 4},
    │ │ │ -               3   3       3   3         3  3       3     3   3     3  3     
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -          16  4  16  8        4    4     16  16     8  4          4  8    
    │ │ │ -      {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, -, 4}, {4, -, -, 8,
    │ │ │ -           3  3   3  3        3    3      3   3     3  3          3  3    
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      16  16     4    4     20        20     4    8  8  8        8  8  8  
    │ │ │ -      --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, -, 8, 8, -, -, -},
    │ │ │ -       3   3     3    3      3         3     3    3  3  3        3  3  3  
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -       8  20  8     8        4       16  8     4  16     4    4        8  16 
    │ │ │ -      {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, -}, {-, 8, 4, -, --,
    │ │ │ -       3   3  3     3        3        3  3     3   3     3    3        3   3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4  16       16  4     16  4     16  4    4     16  4  16  4     16  
    │ │ │ -      -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, -, --, -, 4, --},
    │ │ │ -      3   3        3  3      3  3      3  3    3      3  3   3  3      3  
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -          8  8  8  8  8  8       20  8     8     8  4          4  8     4 
    │ │ │ -      {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, {8, -, -, 4, -,
    │ │ │ -          3  3  3  3  3  3        3  3     3     3  3          3  3     3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      16     16    20     4        4     20       4  4  16  4  16  16     
    │ │ │ -      --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, -, --, --, 4},
    │ │ │ -       3      3     3     3        3      3       3  3   3  3   3   3     
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -          8  16     4     16  4    8  8     20     8  4          4  8     20 
    │ │ │ -      {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, {4, -, -, 8, --,
    │ │ │ -          3   3     3      3  3    3  3      3     3  3          3  3      3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         8  8       8  4     16     16  4    8  8  20     8        4    4    
    │ │ │ -      4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, 8, 4, -}, {-, 4,
    │ │ │ -         3  3       3  3      3      3  3    3  3   3     3        3    3    
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         8     20  8  8    8     8  8  8  8     8    4  16  16        4  4 
    │ │ │ -      8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, --, 4, 8, -, -,
    │ │ │ -         3      3  3  3    3     3  3  3  3     3    3   3   3        3  3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      16       20  4     8  8     8    8        4  8  20  8       16     16 
    │ │ │ -      --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, 4}, {--, 4, --,
    │ │ │ -       3        3  3     3  3     3    3        3  3   3  3        3      3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4     8  4       20     8  8     4  8          4  8     8     8  20  
    │ │ │ -      -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, 4, -, --},
    │ │ │ -      3     3  3        3     3  3     3  3          3  3     3     3   3  
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -          16  16  4  16  4  4       8        4     16  4  16          20  4 
    │ │ │ -      {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, 4, --, -,
    │ │ │ -           3   3  3   3  3  3       3        3      3  3   3           3  3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4  20          16        8  16  4  4          20  4        4  20     
    │ │ │ -      -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -, --, 4},
    │ │ │ -      3   3           3        3   3  3  3           3  3        3   3     
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -       16  16  4     4        8       4  4  16  8        16    16  4  16    
    │ │ │ -      {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -, --, 4,
    │ │ │ -        3   3  3     3        3       3  3   3  3         3     3  3   3    
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4        8    4  16     4     16  8       8  8     8  8     8  8      
    │ │ │ -      -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -, -}, {4,
    │ │ │ -      3        3    3   3     3      3  3       3  3     3  3     3  3      
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      8  4     20  8     8    16  4  4        16  16  4       4  16  16  8 
    │ │ │ -      -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --, --, -,
    │ │ │ -      3  3      3  3     3     3  3  3         3   3  3       3   3   3  3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -            4    4  20              20  4    4        20  20        4    4 
    │ │ │ -      8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4, -}, {-,
    │ │ │ -            3    3   3               3  3    3         3   3        3    3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -            8  16  16  4          4     20  20     4             4  20  20 
    │ │ │ -      4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -, --, --,
    │ │ │ -            3   3   3  3          3      3   3     3             3   3   3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4          8        16     4  4  16    8        4  8  8  20       8    
    │ │ │ -      -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --, 4}, {-, 8,
    │ │ │ -      3          3         3     3  3   3    3        3  3  3   3       3    
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      8  8     4  20       20  4  4  20  4  20  20  4    4  20  20  4  20  4 
    │ │ │ -      -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --, --, -, --, -,
    │ │ │ -      3  3     3   3        3  3  3   3  3   3   3  3    3   3   3  3   3  3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4  20
    │ │ │ -      -, --}}
    │ │ │ -      3   3
    │ │ │ +        20        4  8  8  8          8  8  8  4        20    16  16     4 
    │ │ │ +o12 = {{--, 4, 4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, {--, --, 4, -,
    │ │ │ +         3        3  3  3  3          3  3  3  3         3     3   3     3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         4  8          8  4     8  8     20       20     4  4     20     
    │ │ │ +      4, -, -, 8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, 4, --, 4},
    │ │ │ +         3  3          3  3     3  3      3        3     3  3      3     
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +       20  4              4  20       4  20        20  4       8     8  20 
    │ │ │ +      {--, -, 4, 4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, 4, -, --,
    │ │ │ +        3  3              3   3       3   3         3  3       3     3   3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         4  8          16  4  16  8        4    4     16  16     8  4     
    │ │ │ +      8, -, -, 4}, {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, -, 4},
    │ │ │ +         3  3           3  3   3  3        3    3      3   3     3  3     
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +          4  8     16  16     4    4     20        20     4    8  8  8       
    │ │ │ +      {4, -, -, 8, --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, -, 8, 8,
    │ │ │ +          3  3      3   3     3    3      3         3     3    3  3  3       
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      8  8  8    8  20  8     8        4       16  8     4  16     4    4    
    │ │ │ +      -, -, -}, {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, -}, {-, 8,
    │ │ │ +      3  3  3    3   3  3     3        3        3  3     3   3     3    3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         8  16  4  16       16  4     16  4     16  4    4     16  4  16  4 
    │ │ │ +      4, -, --, -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, -, --, -,
    │ │ │ +         3   3  3   3        3  3      3  3      3  3    3      3  3   3  3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         16       8  8  8  8  8  8       20  8     8     8  4          4  8 
    │ │ │ +      4, --}, {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, {8, -, -,
    │ │ │ +          3       3  3  3  3  3  3        3  3     3     3  3          3  3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         4  16     16    20     4        4     20       4  4  16  4  16  16 
    │ │ │ +      4, -, --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, -, --, --,
    │ │ │ +         3   3      3     3     3        3      3       3  3   3  3   3   3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +              8  16     4     16  4    8  8     20     8  4          4  8    
    │ │ │ +      4}, {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, {4, -, -, 8,
    │ │ │ +              3   3     3      3  3    3  3      3     3  3          3  3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      20     8  8       8  4     16     16  4    8  8  20     8        4  
    │ │ │ +      --, 4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, 8, 4, -},
    │ │ │ +       3     3  3       3  3      3      3  3    3  3   3     3        3  
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +       4        8     20  8  8    8     8  8  8  8     8    4  16  16       
    │ │ │ +      {-, 4, 8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, --, 4, 8,
    │ │ │ +       3        3      3  3  3    3     3  3  3  3     3    3   3   3       
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4  4  16       20  4     8  8     8    8        4  8  20  8       16 
    │ │ │ +      -, -, --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, 4}, {--,
    │ │ │ +      3  3   3        3  3     3  3     3    3        3  3   3  3        3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         16  4     8  4       20     8  8     4  8          4  8     8     8 
    │ │ │ +      4, --, -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, 4, -,
    │ │ │ +          3  3     3  3        3     3  3     3  3          3  3     3     3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      20       16  16  4  16  4  4       8        4     16  4  16         
    │ │ │ +      --}, {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, 4,
    │ │ │ +       3        3   3  3   3  3  3       3        3      3  3   3         
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      20  4  4  20          16        8  16  4  4          20  4        4 
    │ │ │ +      --, -, -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -,
    │ │ │ +       3  3  3   3           3        3   3  3  3           3  3        3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      20       16  16  4     4        8       4  4  16  8        16    16  4 
    │ │ │ +      --, 4}, {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -,
    │ │ │ +       3        3   3  3     3        3       3  3   3  3         3     3  3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      16     4        8    4  16     4     16  8       8  8     8  8     8 
    │ │ │ +      --, 4, -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -,
    │ │ │ +       3     3        3    3   3     3      3  3       3  3     3  3     3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      8       8  4     20  8     8    16  4  4        16  16  4       4  16 
    │ │ │ +      -}, {4, -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --,
    │ │ │ +      3       3  3      3  3     3     3  3  3         3   3  3       3   3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      16  8        4    4  20              20  4    4        20  20       
    │ │ │ +      --, -, 8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4,
    │ │ │ +       3  3        3    3   3               3  3    3         3   3       
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4    4        8  16  16  4          4     20  20     4             4 
    │ │ │ +      -}, {-, 4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -,
    │ │ │ +      3    3        3   3   3  3          3      3   3     3             3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      20  20  4          8        16     4  4  16    8        4  8  8  20 
    │ │ │ +      --, --, -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --,
    │ │ │ +       3   3  3          3         3     3  3   3    3        3  3  3   3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +           8     8  8     4  20       20  4  4  20  4  20  20  4    4  20 
    │ │ │ +      4}, {-, 8, -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --,
    │ │ │ +           3     3  3     3   3        3  3  3   3  3   3   3  3    3   3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      20  4  20  4  4  20    20        4  4        20       8  4     4    
    │ │ │ +      --, -, --, -, -, --}, {--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4,
    │ │ │ +       3  3   3  3  3   3     3        3  3         3       3  3     3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      16  16    8        4     4  16  16    4  16     16     4  8       4    
    │ │ │ +      --, --}, {-, 8, 4, -, 4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4,
    │ │ │ +       3   3    3        3     3   3   3    3   3      3     3  3       3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         20     8  8  8    8  8  8     20        4    4        8     8  20 
    │ │ │ +      4, --, 8, -, -, -}, {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --,
    │ │ │ +          3     3  3  3    3  3  3      3        3    3        3     3   3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      8    4     16  4     8  16          4  20     8     8  8    16  4  4 
    │ │ │ +      -}, {-, 8, --, -, 4, -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -,
    │ │ │ +      3    3      3  3     3   3          3   3     3     3  3     3  3  3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         16        8    16     4  16  4  16     4       8  20  8  4       
    │ │ │ +      8, --, 4, 4, -}, {--, 4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4,
    │ │ │ +          3        3     3     3   3  3   3     3       3   3  3  3       
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      8    8  8     8     20  4       4  16     4  16     4  16       20  8 
    │ │ │ +      -}, {-, -, 8, -, 4, --, -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -,
    │ │ │ +      3    3  3     3      3  3       3   3     3   3     3   3        3  3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      8  4        8
    │ │ │ +      -, -, 4, 8, -}}
    │ │ │ +      3  3        3
    │ │ │  
    │ │ │  o12 : List
    │ │ │
    i13 : volume convexHull A -- 8
    │ │ │  
    │ │ │  o13 = 8
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -58,57 +58,15 @@
    │ │ │ │  
    │ │ │ │  o3 = triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3,
    │ │ │ │  4, 5, 6}, {3, 5, 6, 7}}
    │ │ │ │  
    │ │ │ │  o3 : Triangulation
    │ │ │ │  i4 : Ts1 = generateTriangulations A -- list of Triangulation's.
    │ │ │ │  
    │ │ │ │ -o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     {1, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, {1, 4, 5, 6},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     {1, 3, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 7},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 6},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │ │ +o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -264,56 +222,62 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {2, 4, 6, 7}}}
    │ │ │ │ -
    │ │ │ │ -o4 : List
    │ │ │ │ -i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets
    │ │ │ │ -
    │ │ │ │ -o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7},
    │ │ │ │ +     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7},
    │ │ │ │ +     {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7},
    │ │ │ │ +     {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4},
    │ │ │ │ +     triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7},
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 4},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4},
    │ │ │ │ +     {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, triangulation
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │ │ +     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │ │ +     {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7},
    │ │ │ │ +     {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6},
    │ │ │ │ +     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5},
    │ │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5},
    │ │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │ │ +     {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6},
    │ │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5},
    │ │ │ │ +     {3, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5},
    │ │ │ │ +     {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 5},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7},
    │ │ │ │ +     {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6},
    │ │ │ │ +     triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}},
    │ │ │ │ +     {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7},
    │ │ │ │ +     {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {{0, 1, 2, 6}, {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {1, 5, 6, 7}}}
    │ │ │ │ +
    │ │ │ │ +o4 : List
    │ │ │ │ +i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets
    │ │ │ │ +
    │ │ │ │ +o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -445,62 +409,56 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 4, 5, 7}, {2, 4, 6, 7}}}
    │ │ │ │ -
    │ │ │ │ -o5 : List
    │ │ │ │ -i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations
    │ │ │ │ -
    │ │ │ │ -o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │ │ +     {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │ │ +     {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7},
    │ │ │ │ +     {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 6},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7},
    │ │ │ │ +     {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │ │ +     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │ │ +     {3, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6},
    │ │ │ │ +     {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6},
    │ │ │ │ +     {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation
    │ │ │ │ +     {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, {1, 4, 5, 6},
    │ │ │ │ +     {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5},
    │ │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ │ +     {2, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │ │ +     {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6},
    │ │ │ │ +     {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 3, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6},
    │ │ │ │ +     {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 5},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation
    │ │ │ │ +     {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 7},
    │ │ │ │ +     {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5},
    │ │ │ │ +     {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 6},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}},
    │ │ │ │ -     ------------------------------------------------------------------------
    │ │ │ │ -     triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │ │ +     {1, 3, 6, 7}, {1, 5, 6, 7}}}
    │ │ │ │ +
    │ │ │ │ +o5 : List
    │ │ │ │ +i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations
    │ │ │ │ +
    │ │ │ │ +o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -656,62 +614,62 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {2, 4, 6, 7}}}
    │ │ │ │ -
    │ │ │ │ -o6 : List
    │ │ │ │ -i7 : Ts4 = generateTriangulations tri -- list of Triangulations
    │ │ │ │ -
    │ │ │ │ -o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │ │ +     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │ │ +     {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │ │ +     {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7},
    │ │ │ │ +     triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7},
    │ │ │ │ +     {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 4},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │ │ +     {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, triangulation
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │ │ +     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6},
    │ │ │ │ +     {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6},
    │ │ │ │ +     {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation
    │ │ │ │ +     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, {1, 4, 5, 6},
    │ │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5},
    │ │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ │ +     {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6},
    │ │ │ │ +     {3, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 3, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6},
    │ │ │ │ +     {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 5},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation
    │ │ │ │ +     {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 7},
    │ │ │ │ +     triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5},
    │ │ │ │ +     {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 6},
    │ │ │ │ +     {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}},
    │ │ │ │ +     {{0, 1, 2, 6}, {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │ │ +     {1, 5, 6, 7}}}
    │ │ │ │ +
    │ │ │ │ +o6 : List
    │ │ │ │ +i7 : Ts4 = generateTriangulations tri -- list of Triangulations
    │ │ │ │ +
    │ │ │ │ +o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -867,15 +825,57 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     {2, 4, 6, 7}}}
    │ │ │ │ +     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7},
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}},
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7},
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 4},
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, triangulation
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7},
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5},
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}},
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7},
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5},
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7},
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {3, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6},
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 5},
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 5, 6, 7}},
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7},
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {{0, 1, 2, 6}, {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │ │ +     ------------------------------------------------------------------------
    │ │ │ │ +     {1, 5, 6, 7}}}
    │ │ │ │  
    │ │ │ │  o7 : List
    │ │ │ │  i8 : all(Ts4, isFine)
    │ │ │ │  
    │ │ │ │  o8 = true
    │ │ │ │  i9 : all(Ts4, isStar)
    │ │ │ │  
    │ │ │ │ @@ -887,133 +887,133 @@
    │ │ │ │  
    │ │ │ │  o11 = Tally{false => 66}
    │ │ │ │              true => 8
    │ │ │ │  
    │ │ │ │  o11 : Tally
    │ │ │ │  i12 : Ts4/gkzVector
    │ │ │ │  
    │ │ │ │ -        20        4  4        20       8  4     4     16  16    8        4
    │ │ │ │ -o12 = {{--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4, --, --}, {-, 8, 4, -,
    │ │ │ │ -         3        3  3         3       3  3     3      3   3    3        3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -         4  16  16    4  16     16     4  8       4        20     8  8  8
    │ │ │ │ -      4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4, 4, --, 8, -, -, -},
    │ │ │ │ -         3   3   3    3   3      3     3  3       3         3     3  3  3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -       8  8  8     20        4    4        8     8  20  8    4     16  4
    │ │ │ │ -      {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --, -}, {-, 8, --, -, 4,
    │ │ │ │ -       3  3  3      3        3    3        3     3   3  3    3      3  3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -      8  16          4  20     8     8  8    16  4  4     16        8    16
    │ │ │ │ -      -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -, 8, --, 4, 4, -}, {--,
    │ │ │ │ -      3   3          3   3     3     3  3     3  3  3      3        3     3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -         4  16  4  16     4       8  20  8  4        8    8  8     8     20
    │ │ │ │ -      4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4, -}, {-, -, 8, -, 4, --,
    │ │ │ │ -         3   3  3   3     3       3   3  3  3        3    3  3     3      3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -      4       4  16     4  16     4  16       20  8  8  4        8    20
    │ │ │ │ -      -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -, -, -, 4, 8, -}, {--, 4,
    │ │ │ │ -      3       3   3     3   3     3   3        3  3  3  3        3     3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -         4  8  8  8          8  8  8  4        20    16  16     4     4  8
    │ │ │ │ -      4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, {--, --, 4, -, 4, -, -,
    │ │ │ │ -         3  3  3  3          3  3  3  3         3     3   3     3     3  3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -              8  4     8  8     20       20     4  4     20       20  4
    │ │ │ │ -      8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, 4, --, 4}, {--, -, 4,
    │ │ │ │ -              3  3     3  3      3        3     3  3      3        3  3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -               4  20       4  20        20  4       8     8  20     4  8
    │ │ │ │ -      4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, 4, -, --, 8, -, -, 4},
    │ │ │ │ -               3   3       3   3         3  3       3     3   3     3  3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -          16  4  16  8        4    4     16  16     8  4          4  8
    │ │ │ │ -      {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, -, 4}, {4, -, -, 8,
    │ │ │ │ -           3  3   3  3        3    3      3   3     3  3          3  3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -      16  16     4    4     20        20     4    8  8  8        8  8  8
    │ │ │ │ -      --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, -, 8, 8, -, -, -},
    │ │ │ │ -       3   3     3    3      3         3     3    3  3  3        3  3  3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -       8  20  8     8        4       16  8     4  16     4    4        8  16
    │ │ │ │ -      {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, -}, {-, 8, 4, -, --,
    │ │ │ │ -       3   3  3     3        3        3  3     3   3     3    3        3   3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -      4  16       16  4     16  4     16  4    4     16  4  16  4     16
    │ │ │ │ -      -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, -, --, -, 4, --},
    │ │ │ │ -      3   3        3  3      3  3      3  3    3      3  3   3  3      3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -          8  8  8  8  8  8       20  8     8     8  4          4  8     4
    │ │ │ │ -      {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, {8, -, -, 4, -,
    │ │ │ │ -          3  3  3  3  3  3        3  3     3     3  3          3  3     3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -      16     16    20     4        4     20       4  4  16  4  16  16
    │ │ │ │ -      --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, -, --, --, 4},
    │ │ │ │ -       3      3     3     3        3      3       3  3   3  3   3   3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -          8  16     4     16  4    8  8     20     8  4          4  8     20
    │ │ │ │ -      {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, {4, -, -, 8, --,
    │ │ │ │ -          3   3     3      3  3    3  3      3     3  3          3  3      3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -         8  8       8  4     16     16  4    8  8  20     8        4    4
    │ │ │ │ -      4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, 8, 4, -}, {-, 4,
    │ │ │ │ -         3  3       3  3      3      3  3    3  3   3     3        3    3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -         8     20  8  8    8     8  8  8  8     8    4  16  16        4  4
    │ │ │ │ -      8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, --, 4, 8, -, -,
    │ │ │ │ -         3      3  3  3    3     3  3  3  3     3    3   3   3        3  3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -      16       20  4     8  8     8    8        4  8  20  8       16     16
    │ │ │ │ -      --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, 4}, {--, 4, --,
    │ │ │ │ -       3        3  3     3  3     3    3        3  3   3  3        3      3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -      4     8  4       20     8  8     4  8          4  8     8     8  20
    │ │ │ │ -      -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, 4, -, --},
    │ │ │ │ -      3     3  3        3     3  3     3  3          3  3     3     3   3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -          16  16  4  16  4  4       8        4     16  4  16          20  4
    │ │ │ │ -      {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, 4, --, -,
    │ │ │ │ -           3   3  3   3  3  3       3        3      3  3   3           3  3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -      4  20          16        8  16  4  4          20  4        4  20
    │ │ │ │ -      -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -, --, 4},
    │ │ │ │ -      3   3           3        3   3  3  3           3  3        3   3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -       16  16  4     4        8       4  4  16  8        16    16  4  16
    │ │ │ │ -      {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -, --, 4,
    │ │ │ │ -        3   3  3     3        3       3  3   3  3         3     3  3   3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -      4        8    4  16     4     16  8       8  8     8  8     8  8
    │ │ │ │ -      -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -, -}, {4,
    │ │ │ │ -      3        3    3   3     3      3  3       3  3     3  3     3  3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -      8  4     20  8     8    16  4  4        16  16  4       4  16  16  8
    │ │ │ │ -      -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --, --, -,
    │ │ │ │ -      3  3      3  3     3     3  3  3         3   3  3       3   3   3  3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -            4    4  20              20  4    4        20  20        4    4
    │ │ │ │ -      8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4, -}, {-,
    │ │ │ │ -            3    3   3               3  3    3         3   3        3    3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -            8  16  16  4          4     20  20     4             4  20  20
    │ │ │ │ -      4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -, --, --,
    │ │ │ │ -            3   3   3  3          3      3   3     3             3   3   3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -      4          8        16     4  4  16    8        4  8  8  20       8
    │ │ │ │ -      -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --, 4}, {-, 8,
    │ │ │ │ -      3          3         3     3  3   3    3        3  3  3   3       3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -      8  8     4  20       20  4  4  20  4  20  20  4    4  20  20  4  20  4
    │ │ │ │ -      -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --, --, -, --, -,
    │ │ │ │ -      3  3     3   3        3  3  3   3  3   3   3  3    3   3   3  3   3  3
    │ │ │ │ -      -----------------------------------------------------------------------
    │ │ │ │ -      4  20
    │ │ │ │ -      -, --}}
    │ │ │ │ -      3   3
    │ │ │ │ +        20        4  8  8  8          8  8  8  4        20    16  16     4
    │ │ │ │ +o12 = {{--, 4, 4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, {--, --, 4, -,
    │ │ │ │ +         3        3  3  3  3          3  3  3  3         3     3   3     3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +         4  8          8  4     8  8     20       20     4  4     20
    │ │ │ │ +      4, -, -, 8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, 4, --, 4},
    │ │ │ │ +         3  3          3  3     3  3      3        3     3  3      3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +       20  4              4  20       4  20        20  4       8     8  20
    │ │ │ │ +      {--, -, 4, 4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, 4, -, --,
    │ │ │ │ +        3  3              3   3       3   3         3  3       3     3   3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +         4  8          16  4  16  8        4    4     16  16     8  4
    │ │ │ │ +      8, -, -, 4}, {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, -, 4},
    │ │ │ │ +         3  3           3  3   3  3        3    3      3   3     3  3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +          4  8     16  16     4    4     20        20     4    8  8  8
    │ │ │ │ +      {4, -, -, 8, --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, -, 8, 8,
    │ │ │ │ +          3  3      3   3     3    3      3         3     3    3  3  3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +      8  8  8    8  20  8     8        4       16  8     4  16     4    4
    │ │ │ │ +      -, -, -}, {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, -}, {-, 8,
    │ │ │ │ +      3  3  3    3   3  3     3        3        3  3     3   3     3    3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +         8  16  4  16       16  4     16  4     16  4    4     16  4  16  4
    │ │ │ │ +      4, -, --, -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, -, --, -,
    │ │ │ │ +         3   3  3   3        3  3      3  3      3  3    3      3  3   3  3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +         16       8  8  8  8  8  8       20  8     8     8  4          4  8
    │ │ │ │ +      4, --}, {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, {8, -, -,
    │ │ │ │ +          3       3  3  3  3  3  3        3  3     3     3  3          3  3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +         4  16     16    20     4        4     20       4  4  16  4  16  16
    │ │ │ │ +      4, -, --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, -, --, --,
    │ │ │ │ +         3   3      3     3     3        3      3       3  3   3  3   3   3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +              8  16     4     16  4    8  8     20     8  4          4  8
    │ │ │ │ +      4}, {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, {4, -, -, 8,
    │ │ │ │ +              3   3     3      3  3    3  3      3     3  3          3  3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +      20     8  8       8  4     16     16  4    8  8  20     8        4
    │ │ │ │ +      --, 4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, 8, 4, -},
    │ │ │ │ +       3     3  3       3  3      3      3  3    3  3   3     3        3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +       4        8     20  8  8    8     8  8  8  8     8    4  16  16
    │ │ │ │ +      {-, 4, 8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, --, 4, 8,
    │ │ │ │ +       3        3      3  3  3    3     3  3  3  3     3    3   3   3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +      4  4  16       20  4     8  8     8    8        4  8  20  8       16
    │ │ │ │ +      -, -, --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, 4}, {--,
    │ │ │ │ +      3  3   3        3  3     3  3     3    3        3  3   3  3        3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +         16  4     8  4       20     8  8     4  8          4  8     8     8
    │ │ │ │ +      4, --, -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, 4, -,
    │ │ │ │ +          3  3     3  3        3     3  3     3  3          3  3     3     3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +      20       16  16  4  16  4  4       8        4     16  4  16
    │ │ │ │ +      --}, {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, 4,
    │ │ │ │ +       3        3   3  3   3  3  3       3        3      3  3   3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +      20  4  4  20          16        8  16  4  4          20  4        4
    │ │ │ │ +      --, -, -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -,
    │ │ │ │ +       3  3  3   3           3        3   3  3  3           3  3        3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +      20       16  16  4     4        8       4  4  16  8        16    16  4
    │ │ │ │ +      --, 4}, {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -,
    │ │ │ │ +       3        3   3  3     3        3       3  3   3  3         3     3  3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +      16     4        8    4  16     4     16  8       8  8     8  8     8
    │ │ │ │ +      --, 4, -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -,
    │ │ │ │ +       3     3        3    3   3     3      3  3       3  3     3  3     3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +      8       8  4     20  8     8    16  4  4        16  16  4       4  16
    │ │ │ │ +      -}, {4, -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --,
    │ │ │ │ +      3       3  3      3  3     3     3  3  3         3   3  3       3   3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +      16  8        4    4  20              20  4    4        20  20
    │ │ │ │ +      --, -, 8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4,
    │ │ │ │ +       3  3        3    3   3               3  3    3         3   3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +      4    4        8  16  16  4          4     20  20     4             4
    │ │ │ │ +      -}, {-, 4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -,
    │ │ │ │ +      3    3        3   3   3  3          3      3   3     3             3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +      20  20  4          8        16     4  4  16    8        4  8  8  20
    │ │ │ │ +      --, --, -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --,
    │ │ │ │ +       3   3  3          3         3     3  3   3    3        3  3  3   3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +           8     8  8     4  20       20  4  4  20  4  20  20  4    4  20
    │ │ │ │ +      4}, {-, 8, -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --,
    │ │ │ │ +           3     3  3     3   3        3  3  3   3  3   3   3  3    3   3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +      20  4  20  4  4  20    20        4  4        20       8  4     4
    │ │ │ │ +      --, -, --, -, -, --}, {--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4,
    │ │ │ │ +       3  3   3  3  3   3     3        3  3         3       3  3     3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +      16  16    8        4     4  16  16    4  16     16     4  8       4
    │ │ │ │ +      --, --}, {-, 8, 4, -, 4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4,
    │ │ │ │ +       3   3    3        3     3   3   3    3   3      3     3  3       3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +         20     8  8  8    8  8  8     20        4    4        8     8  20
    │ │ │ │ +      4, --, 8, -, -, -}, {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --,
    │ │ │ │ +          3     3  3  3    3  3  3      3        3    3        3     3   3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +      8    4     16  4     8  16          4  20     8     8  8    16  4  4
    │ │ │ │ +      -}, {-, 8, --, -, 4, -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -,
    │ │ │ │ +      3    3      3  3     3   3          3   3     3     3  3     3  3  3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +         16        8    16     4  16  4  16     4       8  20  8  4
    │ │ │ │ +      8, --, 4, 4, -}, {--, 4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4,
    │ │ │ │ +          3        3     3     3   3  3   3     3       3   3  3  3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +      8    8  8     8     20  4       4  16     4  16     4  16       20  8
    │ │ │ │ +      -}, {-, -, 8, -, 4, --, -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -,
    │ │ │ │ +      3    3  3     3      3  3       3   3     3   3     3   3        3  3
    │ │ │ │ +      -----------------------------------------------------------------------
    │ │ │ │ +      8  4        8
    │ │ │ │ +      -, -, 4, 8, -}}
    │ │ │ │ +      3  3        3
    │ │ │ │  
    │ │ │ │  o12 : List
    │ │ │ │  i13 : volume convexHull A -- 8
    │ │ │ │  
    │ │ │ │  o13 = 8
    │ │ │ │  
    │ │ │ │  o13 : QQ
    │ │ ├── ./usr/share/doc/Macaulay2/Triangulations/html/index.html
    │ │ │ @@ -158,15 +158,15 @@
    │ │ │       | 1  0  -1 0  0  0 0  0 0 0 |
    │ │ │  
    │ │ │                4       10
    │ │ │  o2 : Matrix ZZ  <-- ZZ
    │ │ │
    i3 : elapsedTime Ts = allTriangulations(A, Fine => true);
    │ │ │ - -- .108538s elapsed
    │ │ │ + -- .156496s elapsed │ │ │
    i4 : select(Ts, T -> isStar T)
    │ │ │  
    │ │ │  o4 = {triangulation {{0, 1, 2, 3, 9}, {0, 1, 2, 6, 9}, {0, 1, 3, 7, 9}, {0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       1, 6, 7, 9}, {0, 2, 3, 6, 9}, {0, 3, 4, 6, 9}, {0, 3, 4, 8, 9}, {0, 3,
    │ │ │ @@ -196,15 +196,15 @@
    │ │ │  
    │ │ │  o7 = triangulation {{0, 1, 2, 3, 9}, {0, 1, 2, 6, 9}, {0, 1, 3, 7, 9}, {0, 1, 6, 7, 9}, {0, 2, 3, 4, 6}, {0, 2, 3, 4, 9}, {0, 2, 4, 6, 9}, {0, 3, 4, 7, 8}, {0, 3, 4, 7, 9}, {0, 3, 5, 7, 8}, {0, 4, 6, 7, 8}, {0, 4, 6, 7, 9}, {0, 5, 6, 7, 8}, {1, 2, 3, 7, 9}, {1, 2, 6, 7, 9}, {2, 3, 4, 7, 8}, {2, 3, 4, 7, 9}, {2, 3, 5, 7, 8}, {2, 4, 6, 7, 8}, {2, 4, 6, 7, 9}, {2, 5, 6, 7, 8}}
    │ │ │  
    │ │ │  o7 : Triangulation
    │ │ │
    i8 : elapsedTime Ts2 = generateTriangulations T;
    │ │ │ - -- 1.20095s elapsed
    │ │ │ + -- 1.09493s elapsed │ │ │
    i9 : #Ts2 == #Ts
    │ │ │  
    │ │ │  o9 = true
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -54,15 +54,15 @@ │ │ │ │ | 0 0 0 1 0 0 -1 0 0 0 | │ │ │ │ | -1 1 2 -1 -1 1 -1 1 0 0 | │ │ │ │ | 1 0 -1 0 0 0 0 0 0 0 | │ │ │ │ │ │ │ │ 4 10 │ │ │ │ o2 : Matrix ZZ <-- ZZ │ │ │ │ i3 : elapsedTime Ts = allTriangulations(A, Fine => true); │ │ │ │ - -- .108538s elapsed │ │ │ │ + -- .156496s elapsed │ │ │ │ i4 : select(Ts, T -> isStar T) │ │ │ │ │ │ │ │ o4 = {triangulation {{0, 1, 2, 3, 9}, {0, 1, 2, 6, 9}, {0, 1, 3, 7, 9}, {0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 1, 6, 7, 9}, {0, 2, 3, 6, 9}, {0, 3, 4, 6, 9}, {0, 3, 4, 8, 9}, {0, 3, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 5, 7, 9}, {0, 3, 5, 8, 9}, {0, 4, 6, 8, 9}, {0, 5, 6, 7, 9}, {0, 5, 6, │ │ │ │ @@ -86,15 +86,15 @@ │ │ │ │ 6, 7, 9}, {0, 2, 3, 4, 6}, {0, 2, 3, 4, 9}, {0, 2, 4, 6, 9}, {0, 3, 4, 7, 8}, │ │ │ │ {0, 3, 4, 7, 9}, {0, 3, 5, 7, 8}, {0, 4, 6, 7, 8}, {0, 4, 6, 7, 9}, {0, 5, 6, │ │ │ │ 7, 8}, {1, 2, 3, 7, 9}, {1, 2, 6, 7, 9}, {2, 3, 4, 7, 8}, {2, 3, 4, 7, 9}, {2, │ │ │ │ 3, 5, 7, 8}, {2, 4, 6, 7, 8}, {2, 4, 6, 7, 9}, {2, 5, 6, 7, 8}} │ │ │ │ │ │ │ │ o7 : Triangulation │ │ │ │ i8 : elapsedTime Ts2 = generateTriangulations T; │ │ │ │ - -- 1.20095s elapsed │ │ │ │ + -- 1.09493s elapsed │ │ │ │ i9 : #Ts2 == #Ts │ │ │ │ │ │ │ │ o9 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _P_o_l_y_h_e_d_r_a -- for computations with convex polyhedra, cones, and fans │ │ │ │ * _T_o_p_c_o_m -- interface to selected functions from topcom package │ │ │ │ * _R_e_f_l_e_x_i_v_e_P_o_l_y_t_o_p_e_s_D_B -- simple access to Kreuzer-Skarke database of │ │ ├── ./usr/share/doc/Macaulay2/Triplets/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=7 │ │ │ cm90Rm9ydw== │ │ │ #:len=229 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gODI4LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyJyb3RGb3J3Iiwicm90Rm9ydyIsIlRyaXBsZXRzIn0s │ │ ├── ./usr/share/doc/Macaulay2/Tropical/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=10 │ │ │ aXNCYWxhbmNlZA== │ │ │ #:len=1097 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiY2hlY2tzIHdoZXRoZXIgYSB0cm9waWNh │ │ │ bCBjeWNsZSBpcyBiYWxhbmNlZCIsICJsaW5lbnVtIiA9PiA5NTEsIElucHV0cyA9PiB7U1BBTntU │ │ ├── ./usr/share/doc/Macaulay2/TropicalToric/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=43 │ │ │ Y2xhc3NGcm9tVHJvcGljYWwoTm9ybWFsVG9yaWNWYXJpZXR5LElkZWFsKQ== │ │ │ #:len=335 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTM1LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhjbGFzc0Zyb21Ucm9waWNhbCxOb3JtYWxUb3JpY1Zh │ │ ├── ./usr/share/doc/Macaulay2/Truncations/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=19 │ │ │ dHJ1bmNhdGUoWlosTWF0cml4KQ== │ │ │ #:len=276 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjAwLCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyh0cnVuY2F0ZSxaWixNYXRyaXgpLCJ0cnVuY2F0ZSha │ │ ├── ./usr/share/doc/Macaulay2/Units/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=5 │ │ │ VW5pdHM= │ │ │ #:len=298 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAidW5pdHMgY29udmVyc2lvbiBhbmQgcGh5 │ │ │ c2ljYWwgY29uc3RhbnRzIiwgRGVzY3JpcHRpb24gPT4gMTooRElWe1BBUkF7VEVYeyJUaGlzIHBh │ │ ├── ./usr/share/doc/Macaulay2/VNumber/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=9 │ │ │ c3RhYmxlTWF4 │ │ │ #:len=1353 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiY29tcHV0ZSB0aGUgc2V0IG9mIHN0YWJs │ │ │ ZSBwcmltZXMgb2YgYSBtb25vbWlhbCBpZGVhbCB0aGF0IGFyZSBtYXhpbWFsIHdpdGggcmVzcGVj │ │ ├── ./usr/share/doc/Macaulay2/Valuations/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=9 │ │ │ VmFsdWF0aW9u │ │ │ #:len=1226 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiVGhlIHR5cGUgb2YgYWxsIHZhbHVhdGlv │ │ │ bnMiLCAibGluZW51bSIgPT4gNzk5LCBTZWVBbHNvID0+IERJVntIRUFERVIyeyJTZWUgYWxzbyJ9 │ │ ├── ./usr/share/doc/Macaulay2/Varieties/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=16 │ │ │ PiBJbmZpbml0ZU51bWJlcg== │ │ │ #:len=253 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMjI1LCBzeW1ib2wgRG9jdW1lbnRUYWcg │ │ │ PT4gbmV3IERvY3VtZW50VGFnIGZyb20geyhzeW1ib2wgPixJbmZpbml0ZU51bWJlciksIj4gSW5m │ │ ├── ./usr/share/doc/Macaulay2/VectorFields/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=10 │ │ │ Y29tbXV0YXRvcg== │ │ │ #:len=3282 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAidGhlIGNvbW11dGF0b3Igb2YgYSBjb2xs │ │ │ ZWN0aW9uIG9mIHZlY3RvciBmaWVsZHMiLCAibGluZW51bSIgPT4gMjE1NSwgSW5wdXRzID0+IHtT │ │ ├── ./usr/share/doc/Macaulay2/VectorGraphics/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=8 │ │ │ dGV4KFNWRyk= │ │ │ #:len=181 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMTg4MywgInVuZG9jdW1lbnRlZCIgPT4g │ │ │ dHJ1ZSwgc3ltYm9sIERvY3VtZW50VGFnID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsodGV4LFNW │ │ ├── ./usr/share/doc/Macaulay2/VersalDeformations/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=33 │ │ │ bGlmdERlZm9ybWF0aW9uKC4uLixWZXJib3NlPT4uLi4p │ │ │ #:len=588 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiY29udHJvbCB0aGUgdmVyYm9zaXR5IG9m │ │ │ IG91dHB1dCIsIERlc2NyaXB0aW9uID0+IDE6KFBBUkF7VFR7IlZlcmJvc2UifSwiIGlzIHRoZSBu │ │ ├── ./usr/share/doc/Macaulay2/VersalDeformations/example-output/___Smart__Lift.out │ │ │ @@ -6,30 +6,30 @@ │ │ │ │ │ │ o2 = | xz yz z2 x3 | │ │ │ │ │ │ 1 4 │ │ │ o2 : Matrix S <-- S │ │ │ │ │ │ i3 : time (F,R,G,C)=localHilbertScheme(F0); │ │ │ - -- used 1.07659s (cpu); 0.666446s (thread); 0s (gc) │ │ │ + -- used 1.50264s (cpu); 1.04548s (thread); 0s (gc) │ │ │ │ │ │ i4 : T=ring first G; │ │ │ │ │ │ i5 : sum G │ │ │ │ │ │ o5 = | t_1t_16 | │ │ │ | t_9t_16 | │ │ │ | -t_4t_16 | │ │ │ | -2t_14t_16+t_15t_16 | │ │ │ │ │ │ 4 1 │ │ │ o5 : Matrix T <-- T │ │ │ │ │ │ i6 : time (F,R,G,C)=localHilbertScheme(F0,SmartLift=>false); │ │ │ - -- used 0.73081s (cpu); 0.444914s (thread); 0s (gc) │ │ │ + -- used 0.80307s (cpu); 0.574068s (thread); 0s (gc) │ │ │ │ │ │ i7 : sum G │ │ │ │ │ │ o7 = | t_1t_16 │ │ │ | 2t_5t_10t_11t_16+t_7t_11^2t_16-2t_6t_10t_16+3t_10^2t_16-t_8t_11t_16+ │ │ │ | -t_5t_10^2t_16-2t_7t_10t_11t_16-3t_2t_11^2t_16+t_8t_10t_16+2t_3t_11t │ │ │ | 2t_5t_10t_16^2+2t_7t_11t_16^2+4t_10t_12t_16+2t_11t_13t_16-t_8t_16^2- │ │ ├── ./usr/share/doc/Macaulay2/VersalDeformations/html/___Smart__Lift.html │ │ │ @@ -59,15 +59,15 @@ │ │ │ o2 : Matrix S <-- S
    │ │ │ │ │ │ │ │ │

    With the default setting SmartLift=>true we get very nice equations for the base space:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time (F,R,G,C)=localHilbertScheme(F0);
    │ │ │ - -- used 1.07659s (cpu); 0.666446s (thread); 0s (gc)
    │ │ │ + -- used 1.50264s (cpu); 1.04548s (thread); 0s (gc) │ │ │
    i4 : T=ring first G;
    │ │ │
    i5 : sum G
    │ │ │  
    │ │ │ @@ -80,15 +80,15 @@
    │ │ │  o5 : Matrix T  <-- T
    │ │ │
    │ │ │

    With the setting SmartLift=>false the calculation is faster, but the equations are no longer homogeneous:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time (F,R,G,C)=localHilbertScheme(F0,SmartLift=>false);
    │ │ │ - -- used 0.73081s (cpu); 0.444914s (thread); 0s (gc)
    │ │ │ + -- used 0.80307s (cpu); 0.574068s (thread); 0s (gc) │ │ │
    i7 : sum G
    │ │ │  
    │ │ │  o7 = | t_1t_16                                                             
    │ │ │       | 2t_5t_10t_11t_16+t_7t_11^2t_16-2t_6t_10t_16+3t_10^2t_16-t_8t_11t_16+
    │ │ │       | -t_5t_10^2t_16-2t_7t_10t_11t_16-3t_2t_11^2t_16+t_8t_10t_16+2t_3t_11t
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -18,29 +18,29 @@
    │ │ │ │  o2 = | xz yz z2 x3 |
    │ │ │ │  
    │ │ │ │               1      4
    │ │ │ │  o2 : Matrix S  <-- S
    │ │ │ │  With the default setting SmartLift=>true we get very nice equations for the
    │ │ │ │  base space:
    │ │ │ │  i3 : time (F,R,G,C)=localHilbertScheme(F0);
    │ │ │ │ - -- used 1.07659s (cpu); 0.666446s (thread); 0s (gc)
    │ │ │ │ + -- used 1.50264s (cpu); 1.04548s (thread); 0s (gc)
    │ │ │ │  i4 : T=ring first G;
    │ │ │ │  i5 : sum G
    │ │ │ │  
    │ │ │ │  o5 = | t_1t_16             |
    │ │ │ │       | t_9t_16             |
    │ │ │ │       | -t_4t_16            |
    │ │ │ │       | -2t_14t_16+t_15t_16 |
    │ │ │ │  
    │ │ │ │               4      1
    │ │ │ │  o5 : Matrix T  <-- T
    │ │ │ │  With the setting SmartLift=>false the calculation is faster, but the equations
    │ │ │ │  are no longer homogeneous:
    │ │ │ │  i6 : time (F,R,G,C)=localHilbertScheme(F0,SmartLift=>false);
    │ │ │ │ - -- used 0.73081s (cpu); 0.444914s (thread); 0s (gc)
    │ │ │ │ + -- used 0.80307s (cpu); 0.574068s (thread); 0s (gc)
    │ │ │ │  i7 : sum G
    │ │ │ │  
    │ │ │ │  o7 = | t_1t_16
    │ │ │ │       | 2t_5t_10t_11t_16+t_7t_11^2t_16-2t_6t_10t_16+3t_10^2t_16-t_8t_11t_16+
    │ │ │ │       | -t_5t_10^2t_16-2t_7t_10t_11t_16-3t_2t_11^2t_16+t_8t_10t_16+2t_3t_11t
    │ │ │ │       | 2t_5t_10t_16^2+2t_7t_11t_16^2+4t_10t_12t_16+2t_11t_13t_16-t_8t_16^2-
    │ │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/VirtualResolutions/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=42
    │ │ │  bXVsdGlncmFkZWRSZWd1bGFyaXR5KC4uLixMb3dlckxpbWl0PT4uLi4p
    │ │ │  #:len=334
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gNTgyLCBzeW1ib2wgRG9jdW1lbnRUYWcg
    │ │ │  PT4gbmV3IERvY3VtZW50VGFnIGZyb20ge1ttdWx0aWdyYWRlZFJlZ3VsYXJpdHksTG93ZXJMaW1p
    │ │ ├── ./usr/share/doc/Macaulay2/Visualize/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=29
    │ │ │  dmlzdWFsaXplKEdyYXBoLFZlcmJvc2U9Pi4uLik=
    │ │ │  #:len=1329
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiYW4gdG8gdmlldyBjb21tdW5pY2F0aW9u
    │ │ │  IGJldHdlZW4gTWFjYXVsYXkyIHNlcnZlciBhbmQgYnJvd3NlciAiLCAibGluZW51bSIgPT4gMjA3
    │ │ ├── ./usr/share/doc/Macaulay2/WeylAlgebras/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=18
    │ │ │  ZXh0cmFjdFZhcnNBbGdlYnJh
    │ │ │  #:len=1106
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAidW5kZXJseWluZyBwb2x5bm9taWFsIHJp
    │ │ │  bmcgaW4gdGhlIG9yZGluYXJ5IHZhcmlhYmxlcyBvZiBhIFdleWwgYWxnZWJyYSIsICJsaW5lbnVt
    │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=23
    │ │ │  V2V5bEdyb3VwRWxlbWVudCAqIFJvb3Q=
    │ │ │  #:len=994
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiYXBwbHkgYW4gZWxlbWVudCBvZiBhIFdl
    │ │ │  eWwgZ3JvdXAgdG8gYSByb290IiwgImxpbmVudW0iID0+IDI5NjMsIElucHV0cyA9PiB7U1BBTntU
    │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/example-output/_interval__Bruhat_lp__Weyl__Group__Left__Coset_cm__Weyl__Group__Left__Coset_rp.out
    │ │ │ @@ -26,30 +26,30 @@
    │ │ │                                             | -2 |
    │ │ │                                             |  1 |
    │ │ │  
    │ │ │  o4 : WeylGroupElement
    │ │ │  
    │ │ │  i5 : myInterval=intervalBruhat(w1 % P,w2 % P)
    │ │ │  
    │ │ │ -o5 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, | 1 |}, {1, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, |  1 |}, {2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {2, |  2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {}}}}
    │ │ │ -                                                          | -3 |        | 0 |       |  1 |                                              |  3 |        |  1 |       |  1 |                                            | -1 |        |  2 |       | -1 |                                              | -2 |        | -1 |                                            |  1 |        |  1 |                                            |  1 |        |  1 |                                              | -1 |
    │ │ │ -                                                          |  1 |        | 1 |       |  1 |                                              | -2 |        | -1 |       |  1 |                                            |  3 |        | -1 |       |  0 |                                              |  3 |        |  0 |                                            | -2 |        |  1 |                                            |  2 |        | -1 |                                              |  2 |
    │ │ │ +o5 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, | 1 |}, {1, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  1 |}, {1, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{1, |  2 |}, {2, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  1 |}}}, {WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {}}}}
    │ │ │ +                                                          | -3 |        | 0 |       |  1 |                                              |  3 |        |  1 |       |  1 |                                            | -1 |        | -1 |       |  2 |                                              |  1 |        |  1 |                                            |  1 |        |  1 |                                            | -2 |        | -1 |                                              | -1 |
    │ │ │ +                                                          |  1 |        | 1 |       |  1 |                                              | -2 |        | -1 |       |  1 |                                            |  3 |        |  0 |       | -1 |                                              | -2 |        |  1 |                                            |  2 |        | -1 |                                            |  3 |        |  0 |                                              |  2 |
    │ │ │  
    │ │ │  o5 : HasseDiagram
    │ │ │  
    │ │ │  i6 : myInterval#1
    │ │ │  
    │ │ │ -o6 = {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, |  1 |}, {2, | -1
    │ │ │ +o6 = {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  1 |}, {1, | -1
    │ │ │                                               |  3 |        |  1 |       |  1
    │ │ │                                               | -2 |        | -1 |       |  1
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {2,
    │ │ │ -     |                                            | -1 |        |  2 |      
    │ │ │ -     |                                            |  3 |        | -1 |      
    │ │ │ +     |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{1, |  2 |}, {2,
    │ │ │ +     |                                            | -1 |        | -1 |      
    │ │ │ +     |                                            |  3 |        |  0 |      
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     |  2 |}}}}
    │ │ │ +     | -1 |}}}}
    │ │ │ +     |  2 |
    │ │ │       | -1 |
    │ │ │ -     |  0 |
    │ │ │  
    │ │ │  o6 : List
    │ │ │  
    │ │ │  i7 :
    │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/example-output/_list__Weyl__Group__Elements_lp__Root__System_cm__Z__Z_rp.out
    │ │ │ @@ -1,13 +1,13 @@
    │ │ │  -- -*- M2-comint -*- hash: 1330776363660
    │ │ │  
    │ │ │  i1 : listWeylGroupElements(rootSystemG2,4)
    │ │ │  
    │ │ │ -o1 = {WeylGroupElement{RootSystem{...8...}, |  4 |},
    │ │ │ -                                            | -3 |  
    │ │ │ +o1 = {WeylGroupElement{RootSystem{...8...}, | -5 |},
    │ │ │ +                                            |  2 |  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     WeylGroupElement{RootSystem{...8...}, | -5 |}}
    │ │ │ -                                           |  2 |
    │ │ │ +     WeylGroupElement{RootSystem{...8...}, |  4 |}}
    │ │ │ +                                           | -3 |
    │ │ │  
    │ │ │  o1 : List
    │ │ │  
    │ │ │  i2 :
    │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/example-output/_positive__Roots_lp__Root__System_cm__Parabolic_rp.out
    │ │ │ @@ -10,15 +10,15 @@
    │ │ │  
    │ │ │  o2 = set {1, 2}
    │ │ │  
    │ │ │  o2 : Parabolic
    │ │ │  
    │ │ │  i3 : positiveRoots(R,P)
    │ │ │  
    │ │ │ -o3 = set {|  1 |, |  2 |, | -1 |}
    │ │ │ -          |  1 |  | -1 |  |  2 |
    │ │ │ -          | -1 |  |  0 |  | -1 |
    │ │ │ +o3 = set {| -1 |, |  1 |, |  2 |}
    │ │ │ +          |  2 |  |  1 |  | -1 |
    │ │ │ +          | -1 |  | -1 |  |  0 |
    │ │ │            |  0 |  |  0 |  |  0 |
    │ │ │  
    │ │ │  o3 : Set
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/html/_interval__Bruhat_lp__Weyl__Group__Left__Coset_cm__Weyl__Group__Left__Coset_rp.html
    │ │ │ @@ -103,39 +103,39 @@
    │ │ │                                             |  1 |
    │ │ │  
    │ │ │  o4 : WeylGroupElement
    │ │ │
    i5 : myInterval=intervalBruhat(w1 % P,w2 % P)
    │ │ │  
    │ │ │ -o5 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, | 1 |}, {1, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, |  1 |}, {2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {2, |  2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  2 |}}}, {WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {}}}}
    │ │ │ -                                                          | -3 |        | 0 |       |  1 |                                              |  3 |        |  1 |       |  1 |                                            | -1 |        |  2 |       | -1 |                                              | -2 |        | -1 |                                            |  1 |        |  1 |                                            |  1 |        |  1 |                                              | -1 |
    │ │ │ -                                                          |  1 |        | 1 |       |  1 |                                              | -2 |        | -1 |       |  1 |                                            |  3 |        | -1 |       |  0 |                                              |  3 |        |  0 |                                            | -2 |        |  1 |                                            |  2 |        | -1 |                                              |  2 |
    │ │ │ +o5 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, | 1 |}, {1, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  1 |}, {1, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{1, |  2 |}, {2, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {{0, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  1 |}}}, {WeylGroupElement{RootSystem{...8...}, |  1 |}, {{0, |  2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, |  2 |}, {}}}}
    │ │ │ +                                                          | -3 |        | 0 |       |  1 |                                              |  3 |        |  1 |       |  1 |                                            | -1 |        | -1 |       |  2 |                                              |  1 |        |  1 |                                            |  1 |        |  1 |                                            | -2 |        | -1 |                                              | -1 |
    │ │ │ +                                                          |  1 |        | 1 |       |  1 |                                              | -2 |        | -1 |       |  1 |                                            |  3 |        |  0 |       | -1 |                                              | -2 |        |  1 |                                            |  2 |        | -1 |                                            |  3 |        |  0 |                                              |  2 |
    │ │ │  
    │ │ │  o5 : HasseDiagram
    │ │ │
    │ │ │
    │ │ │

    Each row of the Hasse diagram contains the elements of a certain length together with their links to the next row.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    i6 : myInterval#1
    │ │ │  
    │ │ │ -o6 = {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, |  1 |}, {2, | -1
    │ │ │ +o6 = {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, |  1 |}, {1, | -1
    │ │ │                                               |  3 |        |  1 |       |  1
    │ │ │                                               | -2 |        | -1 |       |  1
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {2,
    │ │ │ -     |                                            | -1 |        |  2 |      
    │ │ │ -     |                                            |  3 |        | -1 |      
    │ │ │ +     |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{1, |  2 |}, {2,
    │ │ │ +     |                                            | -1 |        | -1 |      
    │ │ │ +     |                                            |  3 |        |  0 |      
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     |  2 |}}}}
    │ │ │ +     | -1 |}}}}
    │ │ │ +     |  2 |
    │ │ │       | -1 |
    │ │ │ -     |  0 |
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use this method:

    │ │ │ ├── html2text {} │ │ │ │ @@ -42,47 +42,47 @@ │ │ │ │ | -2 | │ │ │ │ | 1 | │ │ │ │ │ │ │ │ o4 : WeylGroupElement │ │ │ │ i5 : myInterval=intervalBruhat(w1 % P,w2 % P) │ │ │ │ │ │ │ │ o5 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, | 1 |}, {{0, | 1 |}, │ │ │ │ -{1, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, | 1 |}, │ │ │ │ -{2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, │ │ │ │ -{2, | 2 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | 1 |}, {{0, | 2 │ │ │ │ -|}}}, {WeylGroupElement{RootSystem{...8...}, | 2 |}, {{0, | -1 |}}}, │ │ │ │ -{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | 1 |}}}}, { │ │ │ │ +{1, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | 1 |}, │ │ │ │ +{1, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{1, | 2 |}, │ │ │ │ +{2, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | 2 |}, {{0, | - │ │ │ │ +1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | 1 |}}}, │ │ │ │ +{WeylGroupElement{RootSystem{...8...}, | 1 |}, {{0, | 2 |}}}}, { │ │ │ │ {WeylGroupElement{RootSystem{...8...}, | 2 |}, {}}}} │ │ │ │ | -3 | | 0 | │ │ │ │ | 1 | | 3 | | 1 | │ │ │ │ -| 1 | | -1 | | 2 | | │ │ │ │ --1 | | -2 | | -1 | │ │ │ │ -| 1 | | 1 | | 1 | | │ │ │ │ -1 | | -1 | │ │ │ │ +| 1 | | -1 | | -1 | | │ │ │ │ +2 | | 1 | | 1 | │ │ │ │ +| 1 | | 1 | | -2 | | │ │ │ │ +-1 | | -1 | │ │ │ │ | 1 | | 1 | │ │ │ │ | 1 | | -2 | | -1 | │ │ │ │ -| 1 | | 3 | | -1 | | │ │ │ │ -0 | | 3 | | 0 | │ │ │ │ -| -2 | | 1 | | 2 | | │ │ │ │ --1 | | 2 | │ │ │ │ +| 1 | | 3 | | 0 | | │ │ │ │ +-1 | | -2 | | 1 | │ │ │ │ +| 2 | | -1 | | 3 | | │ │ │ │ +0 | | 2 | │ │ │ │ │ │ │ │ o5 : HasseDiagram │ │ │ │ Each row of the Hasse diagram contains the elements of a certain length │ │ │ │ together with their links to the next row. │ │ │ │ i6 : myInterval#1 │ │ │ │ │ │ │ │ -o6 = {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, | 1 |}, {2, | -1 │ │ │ │ +o6 = {{WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | 1 |}, {1, | -1 │ │ │ │ | 3 | | 1 | | 1 │ │ │ │ | -2 | | -1 | | 1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {2, │ │ │ │ - | | -1 | | 2 | │ │ │ │ - | | 3 | | -1 | │ │ │ │ + |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{1, | 2 |}, {2, │ │ │ │ + | | -1 | | -1 | │ │ │ │ + | | 3 | | 0 | │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - | 2 |}}}} │ │ │ │ + | -1 |}}}} │ │ │ │ + | 2 | │ │ │ │ | -1 | │ │ │ │ - | 0 | │ │ │ │ │ │ │ │ o6 : List │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _i_n_t_e_r_v_a_l_B_r_u_h_a_t_(_W_e_y_l_G_r_o_u_p_L_e_f_t_C_o_s_e_t_,_W_e_y_l_G_r_o_u_p_L_e_f_t_C_o_s_e_t_) -- elements between │ │ │ │ two given ones for the Bruhat order on a quotient of a Weyl group │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/html/_list__Weyl__Group__Elements_lp__Root__System_cm__Z__Z_rp.html │ │ │ @@ -71,19 +71,19 @@ │ │ │
    │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │
    i1 : listWeylGroupElements(rootSystemG2,4)
    │ │ │  
    │ │ │ -o1 = {WeylGroupElement{RootSystem{...8...}, |  4 |},
    │ │ │ -                                            | -3 |  
    │ │ │ +o1 = {WeylGroupElement{RootSystem{...8...}, | -5 |},
    │ │ │ +                                            |  2 |  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     WeylGroupElement{RootSystem{...8...}, | -5 |}}
    │ │ │ -                                           |  2 |
    │ │ │ +     WeylGroupElement{RootSystem{...8...}, |  4 |}}
    │ │ │ +                                           | -3 |
    │ │ │  
    │ │ │  o1 : List
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use this method:

    │ │ │ ├── html2text {} │ │ │ │ @@ -13,17 +13,17 @@ │ │ │ │ o R, an instance of the type _R_o_o_t_S_y_s_t_e_m, │ │ │ │ o k, an _i_n_t_e_g_e_r, │ │ │ │ * Outputs: │ │ │ │ o a _l_i_s_t, of all elements of length k in the Weyl group of R │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : listWeylGroupElements(rootSystemG2,4) │ │ │ │ │ │ │ │ -o1 = {WeylGroupElement{RootSystem{...8...}, | 4 |}, │ │ │ │ - | -3 | │ │ │ │ +o1 = {WeylGroupElement{RootSystem{...8...}, | -5 |}, │ │ │ │ + | 2 | │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - WeylGroupElement{RootSystem{...8...}, | -5 |}} │ │ │ │ - | 2 | │ │ │ │ + WeylGroupElement{RootSystem{...8...}, | 4 |}} │ │ │ │ + | -3 | │ │ │ │ │ │ │ │ o1 : List │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _l_i_s_t_W_e_y_l_G_r_o_u_p_E_l_e_m_e_n_t_s_(_R_o_o_t_S_y_s_t_e_m_,_Z_Z_) -- list all elements of a given │ │ │ │ length in a Weyl group │ │ ├── ./usr/share/doc/Macaulay2/WeylGroups/html/_positive__Roots_lp__Root__System_cm__Parabolic_rp.html │ │ │ @@ -85,17 +85,17 @@ │ │ │ o2 = set {1, 2} │ │ │ │ │ │ o2 : Parabolic │ │ │ │ │ │ │ │ │
    i3 : positiveRoots(R,P)
    │ │ │  
    │ │ │ -o3 = set {|  1 |, |  2 |, | -1 |}
    │ │ │ -          |  1 |  | -1 |  |  2 |
    │ │ │ -          | -1 |  |  0 |  | -1 |
    │ │ │ +o3 = set {| -1 |, |  1 |, |  2 |}
    │ │ │ +          |  2 |  |  1 |  | -1 |
    │ │ │ +          | -1 |  | -1 |  |  0 |
    │ │ │            |  0 |  |  0 |  |  0 |
    │ │ │  
    │ │ │  o3 : Set
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -24,16 +24,16 @@ │ │ │ │ i2 : P=parabolic(R,set{1,2}) │ │ │ │ │ │ │ │ o2 = set {1, 2} │ │ │ │ │ │ │ │ o2 : Parabolic │ │ │ │ i3 : positiveRoots(R,P) │ │ │ │ │ │ │ │ -o3 = set {| 1 |, | 2 |, | -1 |} │ │ │ │ - | 1 | | -1 | | 2 | │ │ │ │ - | -1 | | 0 | | -1 | │ │ │ │ +o3 = set {| -1 |, | 1 |, | 2 |} │ │ │ │ + | 2 | | 1 | | -1 | │ │ │ │ + | -1 | | -1 | | 0 | │ │ │ │ | 0 | | 0 | | 0 | │ │ │ │ │ │ │ │ o3 : Set │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _p_o_s_i_t_i_v_e_R_o_o_t_s_(_R_o_o_t_S_y_s_t_e_m_,_P_a_r_a_b_o_l_i_c_) -- the set of all positive roots in a │ │ │ │ parabolic sugroups │ │ ├── ./usr/share/doc/Macaulay2/WhitneyStratifications/dump/rawdocumentation.dump │ │ │ @@ -1,11 +1,11 @@ │ │ │ # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb 9 22:54:37 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644 │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=8 │ │ │ Y29ub3JtYWw= │ │ │ #:len=1037 │ │ │ bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiQ29tcHV0ZXMgdGhlIGNvbm9ybWFsIHZh │ │ │ cmlldHkiLCAibGluZW51bSIgPT4gNjc2LCBJbnB1dHMgPT4ge1NQQU57VFR7IkkifSwiLCAiLFNQ │ │ ├── ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/_map__Stratify.out │ │ │ @@ -90,41 +90,41 @@ │ │ │ i22 : peek last ms │ │ │ │ │ │ o22 = MutableHashTable{0 => {ideal (P, M1)} } │ │ │ 1 => {ideal P, ideal M1, ideal(4M1 - P)} │ │ │ 2 => {ideal 0} │ │ │ │ │ │ i23 : time ms=mapStratify(F,Xh,ideal(0_S),StratsToFind=>"singularOnly") │ │ │ - -- used 1.80747s (cpu); 0.99033s (thread); 0s (gc) │ │ │ + -- used 1.61258s (cpu); 0.838479s (thread); 0s (gc) │ │ │ │ │ │ o23 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o23 : List │ │ │ │ │ │ i24 : peek last ms │ │ │ │ │ │ o24 = MutableHashTable{0 => {ideal (P, M1)} } │ │ │ 1 => {ideal P, ideal M1, ideal(4M1 - P)} │ │ │ 2 => {ideal 0} │ │ │ │ │ │ i25 : time ms=mapStratify(F,Xh,ideal(0_S),StratsToFind=>"most") │ │ │ - -- used 4.58985s (cpu); 2.45092s (thread); 0s (gc) │ │ │ + -- used 7.92286s (cpu); 2.37432s (thread); 0s (gc) │ │ │ │ │ │ o25 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o25 : List │ │ │ │ │ │ i26 : peek last ms │ │ │ │ │ │ o26 = MutableHashTable{0 => {ideal (P, M1)} } │ │ │ 1 => {ideal P, ideal M1, ideal(4M1 - P)} │ │ │ 2 => {ideal 0} │ │ │ │ │ │ i27 : time ms=mapStratify(F,Xh,ideal(0_S),StratsToFind=>"all") │ │ │ - -- used 5.53629s (cpu); 2.97634s (thread); 0s (gc) │ │ │ + -- used 9.38742s (cpu); 3.00015s (thread); 0s (gc) │ │ │ │ │ │ o27 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o27 : List │ │ │ │ │ │ i28 : peek last ms │ │ ├── ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_map__Stratify.html │ │ │ @@ -222,45 +222,45 @@ │ │ │ │ │ │
    │ │ │

    Finally we remark that the option: StratsToFind, may be used with this function, but should only be used with care. The default setting is StratsToFind=>"all", and this is the only value of the option which is guaranteed to compute the complete stratification, the other options may fail to find all strata but are provided to allow the user to obtain partial information on larger examples which may take too long to run on the default "all" setting. The other possible values are StratsToFind=>"singularOnly", and StratsToFind=>"most". The option StratsToFind=>"singularOnly" is the fastest, but also the most likely to return incomplete answers, and hence the output of this command should be treated as a partial answer only. The option StratsToFind=>"most" will most often get the full answer, but can miss strata, so again the output should be treated as a partial answer. In the example below all options return the complete answer, but only the output with StratsToFind=>"all" should be considered complete; StratsToFind=>"all" is run when no option is given.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i23 : time ms=mapStratify(F,Xh,ideal(0_S),StratsToFind=>"singularOnly")
    │ │ │ - -- used 1.80747s (cpu); 0.99033s (thread); 0s (gc)
    │ │ │ + -- used 1.61258s (cpu); 0.838479s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = {MutableHashTable{...5...}, MutableHashTable{...3...}}
    │ │ │  
    │ │ │  o23 : List
    │ │ │
    i24 : peek last ms
    │ │ │  
    │ │ │  o24 = MutableHashTable{0 => {ideal (P, M1)}                    }
    │ │ │                         1 => {ideal P, ideal M1, ideal(4M1 - P)}
    │ │ │                         2 => {ideal 0}
    │ │ │
    i25 : time ms=mapStratify(F,Xh,ideal(0_S),StratsToFind=>"most")
    │ │ │ - -- used 4.58985s (cpu); 2.45092s (thread); 0s (gc)
    │ │ │ + -- used 7.92286s (cpu); 2.37432s (thread); 0s (gc)
    │ │ │  
    │ │ │  o25 = {MutableHashTable{...5...}, MutableHashTable{...3...}}
    │ │ │  
    │ │ │  o25 : List
    │ │ │
    i26 : peek last ms
    │ │ │  
    │ │ │  o26 = MutableHashTable{0 => {ideal (P, M1)}                    }
    │ │ │                         1 => {ideal P, ideal M1, ideal(4M1 - P)}
    │ │ │                         2 => {ideal 0}
    │ │ │
    i27 : time ms=mapStratify(F,Xh,ideal(0_S),StratsToFind=>"all")
    │ │ │ - -- used 5.53629s (cpu); 2.97634s (thread); 0s (gc)
    │ │ │ + -- used 9.38742s (cpu); 3.00015s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = {MutableHashTable{...5...}, MutableHashTable{...3...}}
    │ │ │  
    │ │ │  o27 : List
    │ │ │
    i28 : peek last ms
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -149,37 +149,37 @@
    │ │ │ │  this command should be treated as a partial answer only. The option
    │ │ │ │  StratsToFind=>"most" will most often get the full answer, but can miss strata,
    │ │ │ │  so again the output should be treated as a partial answer. In the example below
    │ │ │ │  all options return the complete answer, but only the output with
    │ │ │ │  StratsToFind=>"all" should be considered complete; StratsToFind=>"all" is run
    │ │ │ │  when no option is given.
    │ │ │ │  i23 : time ms=mapStratify(F,Xh,ideal(0_S),StratsToFind=>"singularOnly")
    │ │ │ │ - -- used 1.80747s (cpu); 0.99033s (thread); 0s (gc)
    │ │ │ │ + -- used 1.61258s (cpu); 0.838479s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o23 = {MutableHashTable{...5...}, MutableHashTable{...3...}}
    │ │ │ │  
    │ │ │ │  o23 : List
    │ │ │ │  i24 : peek last ms
    │ │ │ │  
    │ │ │ │  o24 = MutableHashTable{0 => {ideal (P, M1)}                    }
    │ │ │ │                         1 => {ideal P, ideal M1, ideal(4M1 - P)}
    │ │ │ │                         2 => {ideal 0}
    │ │ │ │  i25 : time ms=mapStratify(F,Xh,ideal(0_S),StratsToFind=>"most")
    │ │ │ │ - -- used 4.58985s (cpu); 2.45092s (thread); 0s (gc)
    │ │ │ │ + -- used 7.92286s (cpu); 2.37432s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o25 = {MutableHashTable{...5...}, MutableHashTable{...3...}}
    │ │ │ │  
    │ │ │ │  o25 : List
    │ │ │ │  i26 : peek last ms
    │ │ │ │  
    │ │ │ │  o26 = MutableHashTable{0 => {ideal (P, M1)}                    }
    │ │ │ │                         1 => {ideal P, ideal M1, ideal(4M1 - P)}
    │ │ │ │                         2 => {ideal 0}
    │ │ │ │  i27 : time ms=mapStratify(F,Xh,ideal(0_S),StratsToFind=>"all")
    │ │ │ │ - -- used 5.53629s (cpu); 2.97634s (thread); 0s (gc)
    │ │ │ │ + -- used 9.38742s (cpu); 3.00015s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o27 = {MutableHashTable{...5...}, MutableHashTable{...3...}}
    │ │ │ │  
    │ │ │ │  o27 : List
    │ │ │ │  i28 : peek last ms
    │ │ │ │  
    │ │ │ │  o28 = MutableHashTable{0 => {ideal (P, M1)}                    }
    │ │ ├── ./usr/share/doc/Macaulay2/XML/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=25
    │ │ │  Z2V0QXR0cmlidXRlcyhMaWJ4bWxOb2RlKQ==
    │ │ │  #:len=465
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHtIZWFkbGluZSA9PiAiZ2V0IHRoZSBsaXN0IG9mIGF0dHJpYnV0
    │ │ │  ZXMgb2YgYW4gWE1MIG5vZGUiLCBEZXNjcmlwdGlvbiA9PiAxOihUQUJMRXsiY2xhc3MiID0+ICJl
    │ │ ├── ./usr/share/doc/Macaulay2/gfanInterface/dump/rawdocumentation.dump
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  # GDBM dump file created by GDBM version 1.24. 02/07/2024 on Sun Feb  9 22:54:37 2025
    │ │ │  #:version=1.1
    │ │ │  #:file=rawdocumentation-dcba-8.db
    │ │ │ -#:uid=998,user=buildd,gid=999,group=sbuild,mode=644
    │ │ │ +#:uid=999,user=sbuild,gid=999,group=sbuild,mode=644
    │ │ │  #:format=standard
    │ │ │  # End of header
    │ │ │  #:len=33
    │ │ │  Z2ZhblBvbHlub21pYWxTZXRVbmlvbihMaXN0LExpc3Qp
    │ │ │  #:len=309
    │ │ │  bmV3IEhhc2hUYWJsZSBmcm9tIHsibGluZW51bSIgPT4gMzY0Miwgc3ltYm9sIERvY3VtZW50VGFn
    │ │ │  ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsoZ2ZhblBvbHlub21pYWxTZXRVbmlvbixMaXN0LExp
    │ │ ├── ./usr/share/doc/Macaulay2/gfanInterface/example-output/___Installation_spand_sp__Configuration_spof_spgfan__Interface.out
    │ │ │ @@ -17,15 +17,15 @@
    │ │ │  
    │ │ │  i4 : prefixDirectory | currentLayout#"programs"
    │ │ │  
    │ │ │  o4 = /usr/x86_64-Linux-
    │ │ │       Debian-trixie/libexec/Macaulay2/bin/
    │ │ │  
    │ │ │  i5 : loadPackage("gfanInterface", Configuration => { "keepfiles" => true, "verbose" => true}, Reload => true);
    │ │ │ - -- running: /usr/bin/gfan gfan --help < /tmp/M2-37469-0/172
    │ │ │ + -- running: /usr/bin/gfan gfan --help < /tmp/M2-59381-0/172
    │ │ │  This is a program for computing all reduced Groebner bases of a polynomial ideal. It takes the ring and a generating set for the ideal as input. By default the enumeration is done by an almost memoryless reverse search. If the ideal is symmetric the symmetry option is useful and enumeration will be done up to symmetry using a breadth first search. The program needs a starting Groebner basis to do its computations. If the -g option is not specified it will compute one using Buchberger's algorithm.
    │ │ │  Options:
    │ │ │  -g:
    │ │ │   Tells the program that the input is already a Groebner basis (with the initial term of each polynomial being the first ones listed). Use this option if it takes too much time to compute the starting (standard degree lexicographic) Groebner basis and the input is already a Groebner basis.
    │ │ │  
    │ │ │  --symmetry:
    │ │ │   Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ideal. The program checks that the ideal stays fixed when permuting the variables with respect to elements in the group. The program uses breadth first search to compute the set of reduced Groebner bases up to symmetry with respect to the specified subgroup.
    │ │ │ @@ -36,16 +36,16 @@
    │ │ │  --disableSymmetryTest:
    │ │ │   When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal.
    │ │ │  
    │ │ │  --parameters value:
    │ │ │   With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters.
    │ │ │  --interrupt value:
    │ │ │   Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans).
    │ │ │ -using temporary file /tmp/M2-37469-0/172
    │ │ │ - -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-37469-0/174
    │ │ │ +using temporary file /tmp/M2-59381-0/172
    │ │ │ + -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-59381-0/174
    │ │ │  This program computes a reduced lexicographic Groebner basis of the polynomial ideal given as input. The default behavior is to use Buchberger's algorithm. The ordering of the variables is $a>b>c...$ (assuming that the ring is Q[a,b,c,...]).
    │ │ │  Options:
    │ │ │  -w:
    │ │ │   Compute a Groebner basis with respect to a degree lexicographic order with $a>b>c...$ instead. The degrees are given by a weight vector which is read from the input after the generating set has been read.
    │ │ │  
    │ │ │  -r:
    │ │ │   Use the reverse lexicographic order (or the reverse lexicographic order as a tie breaker if -w is used). The input must be homogeneous if the pure reverse lexicographic order is chosen. Ignored if -W is used.
    │ │ │ @@ -54,69 +54,69 @@
    │ │ │   Do a Groebner walk. The input must be a minimal Groebner basis. If -W is used -w is ignored.
    │ │ │  
    │ │ │  -g:
    │ │ │   Do a generic Groebner walk. The input must be homogeneous and must be a minimal Groebner basis with respect to the reverse lexicographic term order. The target term order is always lexicographic. The -W option must be used.
    │ │ │  
    │ │ │  --parameters value:
    │ │ │   With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters.
    │ │ │ -using temporary file /tmp/M2-37469-0/174
    │ │ │ - -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-37469-0/176
    │ │ │ +using temporary file /tmp/M2-59381-0/174
    │ │ │ + -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-59381-0/176
    │ │ │  This program takes a marked Groebner basis of an ideal I and a set of polynomials on its input and tests if the polynomial set is contained in I by applying the division algorithm for each element. The output is 1 for true and 0 for false.
    │ │ │  Options:
    │ │ │  --remainder:
    │ │ │   Tell the program to output the remainders of the divisions rather than outputting 0 or 1.
    │ │ │  --multiplier:
    │ │ │   Reads in a polynomial that will be multiplied to the polynomial to be divided before doing the division.
    │ │ │ -using temporary file /tmp/M2-37469-0/176
    │ │ │ - -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-37469-0/178
    │ │ │ +using temporary file /tmp/M2-59381-0/176
    │ │ │ + -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-59381-0/178
    │ │ │  This program takes two polyhedral fans and computes their common refinement.
    │ │ │  Options:
    │ │ │  -i1 value:
    │ │ │   Specify the name of the first input file.
    │ │ │  -i2 value:
    │ │ │   Specify the name of the second input file.
    │ │ │  --stable:
    │ │ │   Compute the stable intersection.
    │ │ │ -using temporary file /tmp/M2-37469-0/178
    │ │ │ - -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-37469-0/180
    │ │ │ +using temporary file /tmp/M2-59381-0/178
    │ │ │ + -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-59381-0/180
    │ │ │  This program takes a polyhedral fan and a vector and computes the link of the polyhedral fan around that vertex. The link will have lineality space dimension equal to the dimension of the relative open polyhedral cone of the original fan containing the vector.
    │ │ │  Options:
    │ │ │  -i value:
    │ │ │   Specify the name of the input file.
    │ │ │  --symmetry:
    │ │ │   Reads in a fan stored with symmetry. The generators of the symmetry group must be given on the standard input.
    │ │ │  
    │ │ │  --star:
    │ │ │   Computes the star instead. The star is defined as the smallest polyhedral fan containing all cones of the original fan containing the vector.
    │ │ │ -using temporary file /tmp/M2-37469-0/180
    │ │ │ - -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-37469-0/182
    │ │ │ +using temporary file /tmp/M2-59381-0/180
    │ │ │ + -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-59381-0/182
    │ │ │  This program takes two polyhedral fans and computes their product.
    │ │ │  Options:
    │ │ │  -i1 value:
    │ │ │   Specify the name of the first input file.
    │ │ │  -i2 value:
    │ │ │   Specify the name of the second input file.
    │ │ │ -using temporary file /tmp/M2-37469-0/182
    │ │ │ - -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-37469-0/184
    │ │ │ +using temporary file /tmp/M2-59381-0/182
    │ │ │ + -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-59381-0/184
    │ │ │  This program computes a Groebner cone. Three different cases are handled. The input may be a marked reduced Groebner basis in which case its Groebner cone is computed. The input may be just a marked minimal basis in which case the cone computed is not a Groebner cone in the usual sense but smaller. (These cones are described in [Fukuda, Jensen, Lauritzen, Thomas]). The third possible case is that the Groebner cone is possibly lower dimensional and given by a pair of Groebner bases as it is useful to do for tropical varieties, see option --pair. The facets of the cone can be read off in section FACETS and the equations in section IMPLIED_EQUATIONS.
    │ │ │  Options:
    │ │ │  --restrict:
    │ │ │   Add an inequality for each coordinate, so that the the cone is restricted to the non-negative orthant.
    │ │ │  --pair:
    │ │ │   The Groebner cone is given by a pair of compatible Groebner bases. The first basis is for the initial ideal and the second for the ideal itself. See the tropical section of the manual.
    │ │ │  --asfan:
    │ │ │   Writes the cone as a polyhedral fan with all its faces instead. In this way the extreme rays of the cone are also computed.
    │ │ │  --vectorinput:
    │ │ │   Compute a cone given list of inequalities rather than a Groebner cone. The input is an integer which specifies the dimension of the ambient space, a list of inequalities given as vectors and a list of equations.
    │ │ │ -using temporary file /tmp/M2-37469-0/184
    │ │ │ - -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-37469-0/186
    │ │ │ +using temporary file /tmp/M2-59381-0/184
    │ │ │ + -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-59381-0/186
    │ │ │  This program computes the homogeneity space of a list of polynomials - as a cone. Thus generators for the homogeneity space are found in the section LINEALITY_SPACE. If you wish the homogeneity space of an ideal you should first compute a set of homogeneous generators and call the program on these. A reduced Groebner basis will always suffice for this purpose.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-37469-0/186
    │ │ │ - -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-37469-0/188
    │ │ │ +using temporary file /tmp/M2-59381-0/186
    │ │ │ + -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-59381-0/188
    │ │ │  This program homogenises a list of polynomials by introducing an extra variable. The name of the variable to be introduced is read from the input after the list of polynomials. Without the -w option the homogenisation is done with respect to total degree.
    │ │ │  Example:
    │ │ │  Input:
    │ │ │  Q[x,y]{y-1}
    │ │ │  z
    │ │ │  Output:
    │ │ │  Q[x,y,z]{y-z}
    │ │ │ @@ -124,30 +124,30 @@
    │ │ │  -i:
    │ │ │   Treat input as an ideal. This will make the program compute the homogenisation of the input ideal. This is done by computing a degree Groebner basis and homogenising it.
    │ │ │  -w:
    │ │ │   Specify a homogenisation vector. The length of the vector must be the same as the number of variables in the ring. The vector is read from the input after the list of polynomials.
    │ │ │  
    │ │ │  -H:
    │ │ │   Let the name of the new variable be H rather than reading in a name from the input.
    │ │ │ -using temporary file /tmp/M2-37469-0/188
    │ │ │ - -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-37469-0/190
    │ │ │ +using temporary file /tmp/M2-59381-0/188
    │ │ │ + -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-59381-0/190
    │ │ │  This program converts a list of polynomials to a list of their initial forms with respect to the vector given after the list.
    │ │ │  Options:
    │ │ │  --ideal:
    │ │ │   Treat input as an ideal. This will make the program compute the initial ideal of the ideal generated by the input polynomials. The computation is done by computing a Groebner basis with respect to the given vector. The vector must be positive or the input polynomials must be homogeneous in a positive grading. None of these conditions are checked by the program.
    │ │ │  
    │ │ │  --pair:
    │ │ │   Produce a pair of polynomial lists. Used together with --ideal this option will also write a compatible reduced Groebner basis for the input ideal to the output. This is useful for finding the Groebner cone of a non-monomial initial ideal.
    │ │ │  
    │ │ │  --mark:
    │ │ │   If the --pair option is and the --ideal option is not used this option will still make sure that the second output basis is marked consistently with the vector.
    │ │ │  --list:
    │ │ │   Read in a list of vectors instead of a single vector and produce a list of polynomial sets as output.
    │ │ │ -using temporary file /tmp/M2-37469-0/190
    │ │ │ - -- running: /usr/bin/gfan _interactive --help < /tmp/M2-37469-0/192
    │ │ │ +using temporary file /tmp/M2-59381-0/190
    │ │ │ + -- running: /usr/bin/gfan _interactive --help < /tmp/M2-59381-0/192
    │ │ │  This is a program for doing interactive walks in the Groebner fan of an ideal. The input is a Groebner basis defining the starting Groebner cone of the walk. The program will list all flippable facets of the Groebner cone and ask the user to choose one. The user types in the index (number) of the facet in the list. The program will walk through the selected facet and display the new Groebner basis and a list of new facet normals for the user to choose from. Since the program reads the user's choices through the the standard input it is recommended not to redirect the standard input for this program.
    │ │ │  Options:
    │ │ │  -L:
    │ │ │   Latex mode. The program will try to show the current Groebner basis in a readable form by invoking LaTeX and xdvi.
    │ │ │  
    │ │ │  -x:
    │ │ │   Exit immediately.
    │ │ │ @@ -162,57 +162,57 @@
    │ │ │   Tell the program to list the defining set of inequalities of the non-restricted Groebner cone as a set of vectors after having listed the current Groebner basis.
    │ │ │  
    │ │ │  -W:
    │ │ │   Print weight vector. This will make the program print an interior vector of the current Groebner cone and a relative interior point for each flippable facet of the current Groebner cone.
    │ │ │  
    │ │ │  --tropical:
    │ │ │   Traverse a tropical variety interactively.
    │ │ │ -using temporary file /tmp/M2-37469-0/192
    │ │ │ - -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-37469-0/194
    │ │ │ +using temporary file /tmp/M2-59381-0/192
    │ │ │ + -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-59381-0/194
    │ │ │  This program checks if a set of marked polynomials is a Groebner basis with respect to its marking. First it is checked if the markings are consistent with respect to a positive vector. Then Buchberger's S-criterion is checked. The output is boolean value.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-37469-0/194
    │ │ │ - -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-37469-0/196
    │ │ │ +using temporary file /tmp/M2-59381-0/194
    │ │ │ + -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-59381-0/196
    │ │ │  Takes an ideal $I$ and computes the Krull dimension of R/I where R is the polynomial ring. This is done by first computing a Groebner basis.
    │ │ │  Options:
    │ │ │  -g:
    │ │ │   Tell the program that the input is already a reduced Groebner basis.
    │ │ │ -using temporary file /tmp/M2-37469-0/196
    │ │ │ - -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-37469-0/198
    │ │ │ +using temporary file /tmp/M2-59381-0/196
    │ │ │ + -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-59381-0/198
    │ │ │  This program computes the lattice ideal of a lattice. The input is a list of generators for the lattice.
    │ │ │  Options:
    │ │ │  -t:
    │ │ │   Compute the toric ideal of the matrix whose rows are given on the input instead.
    │ │ │  --convert:
    │ │ │   Does not do any computation, but just converts the vectors to binomials.
    │ │ │ -using temporary file /tmp/M2-37469-0/198
    │ │ │ - -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-37469-0/200
    │ │ │ +using temporary file /tmp/M2-59381-0/198
    │ │ │ + -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-59381-0/200
    │ │ │  This program converts a list of polynomials to a list of their leading terms.
    │ │ │  Options:
    │ │ │  -m:
    │ │ │   Do the same thing for a list of polynomial sets. That is, output the set of sets of leading terms.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-37469-0/200
    │ │ │ - -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-37469-0/202
    │ │ │ +using temporary file /tmp/M2-59381-0/200
    │ │ │ + -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-59381-0/202
    │ │ │  This program marks a set of polynomials with respect to the vector given at the end of the input, meaning that the largest terms are moved to the front. In case of a tie the lexicographic term order with $a>b>c...$ is used to break it.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-37469-0/202
    │ │ │ - -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-37469-0/204
    │ │ │ +using temporary file /tmp/M2-59381-0/202
    │ │ │ + -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-59381-0/204
    │ │ │  This is a program for computing the normal fan of the Minkowski sum of the Newton polytopes of a list of polynomials.
    │ │ │  Options:
    │ │ │  --symmetry:
    │ │ │   Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ideal. The program checks that the ideal stays fixed when permuting the variables with respect to elements in the group. The program uses breadth first search to compute the set of reduced Groebner bases up to symmetry with respect to the specified subgroup.
    │ │ │  
    │ │ │  --disableSymmetryTest:
    │ │ │   When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal.
    │ │ │  
    │ │ │  --nocones:
    │ │ │   Tell the program to not list cones in the output.
    │ │ │ -using temporary file /tmp/M2-37469-0/204
    │ │ │ - -- running: /usr/bin/gfan _minors --help < /tmp/M2-37469-0/206
    │ │ │ +using temporary file /tmp/M2-59381-0/204
    │ │ │ + -- running: /usr/bin/gfan _minors --help < /tmp/M2-59381-0/206
    │ │ │  This program will generate the r*r minors of a d*n matrix of indeterminates.
    │ │ │  Options:
    │ │ │  -r value:
    │ │ │   Specify r.
    │ │ │  -d value:
    │ │ │   Specify d.
    │ │ │  -n value:
    │ │ │ @@ -227,16 +227,16 @@
    │ │ │   Do nothing but produce symmetry generators for the Pluecker ideal.
    │ │ │  --symmetry:
    │ │ │   Produces a list of generators for the group of symmetries keeping the set of minors fixed. (Only without --names).
    │ │ │  --parametrize:
    │ │ │   Parametrize the set of d times n matrices of Barvinok rank less than or equal to r-1 by a list of tropical polynomials.
    │ │ │  --ultrametric:
    │ │ │   Produce tropical equations cutting out the ultrametrics.
    │ │ │ -using temporary file /tmp/M2-37469-0/206
    │ │ │ - -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-37469-0/208
    │ │ │ +using temporary file /tmp/M2-59381-0/206
    │ │ │ + -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-59381-0/208
    │ │ │  This program computes the mixed volume of the Newton polytopes of a list of polynomials. The ring is specified on the input. After this follows the list of polynomials.
    │ │ │  Options:
    │ │ │  --vectorinput:
    │ │ │   Read in a list of point configurations instead of a polynomial ring and a list of polynomials.
    │ │ │  --cyclic value:
    │ │ │   Use cyclic-n example instead of reading input.
    │ │ │  --noon value:
    │ │ │ @@ -247,44 +247,44 @@
    │ │ │   Use Katsura-n example instead of reading input.
    │ │ │  --gaukwa value:
    │ │ │   Use Gaukwa-n example instead of reading input.
    │ │ │  --eco value:
    │ │ │   Use Eco-n example instead of reading input.
    │ │ │  -j value:
    │ │ │   Number of threads
    │ │ │ -using temporary file /tmp/M2-37469-0/208
    │ │ │ - -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-37469-0/210
    │ │ │ +using temporary file /tmp/M2-59381-0/208
    │ │ │ + -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-59381-0/210
    │ │ │  This program computes the union of a list of polynomial sets given as input. The polynomials must all belong to the same ring. The ring is specified on the input. After this follows the list of polynomial sets.
    │ │ │  Options:
    │ │ │  -s:
    │ │ │   Sort output by degree.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-37469-0/210
    │ │ │ - -- running: /usr/bin/gfan _render --help < /tmp/M2-37469-0/212
    │ │ │ +using temporary file /tmp/M2-59381-0/210
    │ │ │ + -- running: /usr/bin/gfan _render --help < /tmp/M2-59381-0/212
    │ │ │  This program renders a Groebner fan as an xfig file. To be more precise, the input is the list of all reduced Groebner bases of an ideal. The output is a drawing of the Groebner fan intersected with a triangle. The corners of the triangle are (1,0,0) to the right, (0,1,0) to the left and (0,0,1) at the top. If there are more than three variables in the ring these coordinates are extended with zeros. It is possible to shift the 1 entry cyclic with the option --shiftVariables.
    │ │ │  Options:
    │ │ │  -L:
    │ │ │   Make the triangle larger so that the shape of the Groebner region appears.
    │ │ │  --shiftVariables value:
    │ │ │   Shift the positions of the variables in the drawing. For example with the value equal to 1 the corners will be right: (0,1,0,0,...), left: (0,0,1,0,...) and top: (0,0,0,1,...). The shifting is done modulo the number of variables in the polynomial ring. The default value is 0.
    │ │ │ -using temporary file /tmp/M2-37469-0/212
    │ │ │ - -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-37469-0/214
    │ │ │ +using temporary file /tmp/M2-59381-0/212
    │ │ │ + -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-59381-0/214
    │ │ │  This program renders a staircase diagram of a monomial initial ideal to an xfig file. The input is a Groebner basis of a (not necessarily monomial) polynomial ideal. The initial ideal is given by the leading terms in the Groebner basis. Using the -m option it is possible to render more than one staircase diagram. The program only works for ideals in a polynomial ring with three variables.
    │ │ │  Options:
    │ │ │  -m:
    │ │ │   Read multiple ideals from the input. The ideals are given as a list of lists of polynomials. For each polynomial list in the list a staircase diagram is drawn.
    │ │ │  
    │ │ │  -d value:
    │ │ │   Specifies the number of boxes being shown along each axis. Be sure that this number is large enough to give a correct picture of the standard monomials. The default value is 8.
    │ │ │  
    │ │ │  -w value:
    │ │ │   Width. Specifies the number of staircase diagrams per row in the xfig file. The default value is 5.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-37469-0/214
    │ │ │ - -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-37469-0/216
    │ │ │ +using temporary file /tmp/M2-59381-0/214
    │ │ │ + -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-59381-0/216
    │ │ │  This program computes the resultant fan as defined in "Computing Tropical Resultants" by Jensen and Yu. The input is a polynomial ring followed by polynomials, whose coefficients are ignored. The output is the fan of coefficients such that the input system has a tropical solution.
    │ │ │  Options:
    │ │ │  --codimension:
    │ │ │   Compute only the codimension of the resultant fan and return.
    │ │ │  
    │ │ │  --symmetry:
    │ │ │   Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the vector configuration. The program DOES NOT checks that the configuration stays fixed when permuting the variables with respect to elements in the group. The output is grouped according to the symmetry.
    │ │ │ @@ -297,25 +297,25 @@
    │ │ │  
    │ │ │  --vectorinput:
    │ │ │   Read in a list of point configurations instead of a polynomial ring and a list of polynomials.
    │ │ │  
    │ │ │  --projection:
    │ │ │   Use the projection method to compute the resultant fan. This works only if the resultant fan is a hypersurface. If this option is combined with --special, then the output fan lives in the subspace of the non-specialized coordinates.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-37469-0/216
    │ │ │ - -- running: /usr/bin/gfan _saturation --help < /tmp/M2-37469-0/218
    │ │ │ +using temporary file /tmp/M2-59381-0/216
    │ │ │ + -- running: /usr/bin/gfan _saturation --help < /tmp/M2-59381-0/218
    │ │ │  This program computes the saturation of the input ideal with the product of the variables x_1,...,x_n. The ideal does not have to be homogeneous.
    │ │ │  Options:
    │ │ │  -h:
    │ │ │   Tell the program that the input is a homogeneous ideal (with homogeneous generators).
    │ │ │  
    │ │ │  --noideal:
    │ │ │   Do not treat input as an ideal but just factor out common monomial factors of the input polynomials.
    │ │ │ -using temporary file /tmp/M2-37469-0/218
    │ │ │ - -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-37469-0/220
    │ │ │ +using temporary file /tmp/M2-59381-0/218
    │ │ │ + -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-59381-0/220
    │ │ │  This program computes the secondary fan of a vector configuration. The configuration is given as an ordered list of vectors. In order to compute the secondary fan of a point configuration an additional coordinate of ones must be added. For example {(1,0),(1,1),(1,2),(1,3)}.
    │ │ │  Options:
    │ │ │  --unimodular:
    │ │ │   Use heuristics to search for unimodular triangulation rather than computing the complete secondary fan
    │ │ │  --scale value:
    │ │ │   Assuming that the first coordinate of each vector is 1, this option will take the polytope in the 1 plane and scale it. The point configuration will be all lattice points in that scaled polytope. The polytope must have maximal dimension. When this option is used the vector configuration must have full rank. This option may be removed in the future.
    │ │ │  --restrictingfan value:
    │ │ │ @@ -324,70 +324,70 @@
    │ │ │  --symmetry:
    │ │ │   Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the vector configuration. The program checks that the configuration stays fixed when permuting the variables with respect to elements in the group. The output is grouped according to the symmetry.
    │ │ │  
    │ │ │  --nocones:
    │ │ │   Tells the program not to output the CONES and MAXIMAL_CONES sections, but still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is used.
    │ │ │  --interrupt value:
    │ │ │   Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans).
    │ │ │ -using temporary file /tmp/M2-37469-0/220
    │ │ │ - -- running: /usr/bin/gfan _stats --help < /tmp/M2-37469-0/222
    │ │ │ +using temporary file /tmp/M2-59381-0/220
    │ │ │ + -- running: /usr/bin/gfan _stats --help < /tmp/M2-59381-0/222
    │ │ │  This program takes a list of reduced Groebner bases for the same ideal and computes various statistics. The following information is listed: the number of bases in the input, the number of variables, the dimension of the homogeneity space, the maximal total degree of any polynomial in the input and the minimal total degree of any basis in the input, the maximal number of polynomials and terms in a basis in the input.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-37469-0/222
    │ │ │ - -- running: /usr/bin/gfan _substitute --help < /tmp/M2-37469-0/224
    │ │ │ +using temporary file /tmp/M2-59381-0/222
    │ │ │ + -- running: /usr/bin/gfan _substitute --help < /tmp/M2-59381-0/224
    │ │ │  This program changes the variable names of a polynomial ring. The input is a polynomial ring, a polynomial set in the ring and a new polynomial ring with the same coefficient field but different variable names. The output is the polynomial set written with the variable names of the second polynomial ring.
    │ │ │  Example:
    │ │ │  Input:
    │ │ │  Q[a,b,c,d]{2a-3b,c+d}Q[b,a,c,x]
    │ │ │  Output:
    │ │ │  Q[b,a,c,x]{2*b-3*a,c+x}
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-37469-0/224
    │ │ │ - -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-37469-0/226
    │ │ │ +using temporary file /tmp/M2-59381-0/224
    │ │ │ + -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-59381-0/226
    │ │ │  This program converts ASCII math to TeX math. The data-type is specified by the options.
    │ │ │  Options:
    │ │ │  -h:
    │ │ │   Add a header to the output. Using this option the output will be LaTeXable right away.
    │ │ │  --polynomialset_:
    │ │ │   The data to be converted is a list of polynomials.
    │ │ │  --polynomialsetlist_:
    │ │ │   The data to be converted is a list of lists of polynomials.
    │ │ │ -using temporary file /tmp/M2-37469-0/226
    │ │ │ - -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-37469-0/228
    │ │ │ +using temporary file /tmp/M2-59381-0/226
    │ │ │ + -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-59381-0/228
    │ │ │  This program takes a list of reduced Groebner bases and produces the fan of all faces of these. In this way by giving the complete list of reduced Groebner bases, the Groebner fan can be computed as a polyhedral complex. The option --restrict lets the user choose between computing the Groebner fan or the restricted Groebner fan.
    │ │ │  Options:
    │ │ │  --restrict:
    │ │ │   Add an inequality for each coordinate, so that the the cones are restricted to the non-negative orthant.
    │ │ │  --symmetry:
    │ │ │   Tell the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ring. The output is grouped according to these symmetries. Only one representative for each orbit is needed on the input.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-37469-0/228
    │ │ │ - -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-37469-0/230
    │ │ │ +using temporary file /tmp/M2-59381-0/228
    │ │ │ + -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-59381-0/230
    │ │ │  This program computes a tropical basis for an ideal defining a tropical curve. Defining a tropical curve means that the Krull dimension of R/I is at most 1 + the dimension of the homogeneity space of I where R is the polynomial ring. The input is a generating set for the ideal. If the input is not homogeneous option -h must be used.
    │ │ │  Options:
    │ │ │  -h:
    │ │ │   Homogenise the input before computing a tropical basis and dehomogenise the output. This is needed if the input generators are not already homogeneous.
    │ │ │ -using temporary file /tmp/M2-37469-0/230
    │ │ │ - -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-37469-0/232
    │ │ │ +using temporary file /tmp/M2-59381-0/230
    │ │ │ + -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-59381-0/232
    │ │ │  This program takes a marked reduced Groebner basis for a homogeneous ideal and computes the tropical variety of the ideal as a subfan of the Groebner fan. The program is slow but works for any homogeneous ideal. If you know that your ideal is prime over the complex numbers or you simply know that its tropical variety is pure and connected in codimension one then use gfan_tropicalstartingcone and gfan_tropicaltraverse instead.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-37469-0/232
    │ │ │ - -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-37469-0/234
    │ │ │ +using temporary file /tmp/M2-59381-0/232
    │ │ │ + -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-59381-0/234
    │ │ │  This program evaluates a tropical polynomial function in a given set of points.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-37469-0/234
    │ │ │ - -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-37469-0/236
    │ │ │ +using temporary file /tmp/M2-59381-0/234
    │ │ │ + -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-59381-0/236
    │ │ │  This program takes a polynomial and tropicalizes it. The output is piecewise linear function represented by a fan whose cones are the linear regions. Each ray of the fan gets the value of the tropical function assigned to it. In other words this program computes the normal fan of the Newton polytope of the input polynomial with additional information.Options:
    │ │ │  --exponents:
    │ │ │   Tell program to read a list of exponent vectors instead.
    │ │ │ -using temporary file /tmp/M2-37469-0/236
    │ │ │ - -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-37469-0/238
    │ │ │ +using temporary file /tmp/M2-59381-0/236
    │ │ │ + -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-59381-0/238
    │ │ │  This program computes the tropical hypersurface defined by a principal ideal. The input is the polynomial ring followed by a set containing just a generator of the ideal.Options:
    │ │ │ -using temporary file /tmp/M2-37469-0/238
    │ │ │ - -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-37469-0/240
    │ │ │ +using temporary file /tmp/M2-59381-0/238
    │ │ │ + -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-59381-0/240
    │ │ │  This program computes the set theoretical intersection of a set of tropical hypersurfaces (or to be precise, their common refinement as a fan). The input is a list of polynomials with each polynomial defining a hypersurface. Considering tropical hypersurfaces as fans, the intersection can be computed as the common refinement of these. Thus the output is a fan whose support is the intersection of the tropical hypersurfaces.
    │ │ │  Options:
    │ │ │  --tropicalbasistest:
    │ │ │   This option will test that the input polynomials for a tropical basis of the ideal they generate by computing the tropical prevariety of the input polynomials and then refine each cone with the Groebner fan and testing whether each cone in the refinement has an associated monomial free initial ideal. If so, then we have a tropical basis and 1 is written as output. If not, then a zero is written to the output together with a vector in the tropical prevariety but not in the variety. The actual check is done on a homogenization of the input ideal, but this does not affect the result. (This option replaces the -t option from earlier gfan versions.)
    │ │ │  
    │ │ │  --tplane:
    │ │ │   This option intersects the resulting fan with the plane x_0=-1, where x_0 is the first variable. To simplify the implementation the output is actually the common refinement with the non-negative half space. This means that "stuff at infinity" (where x_0=0) is not removed.
    │ │ │ @@ -399,16 +399,16 @@
    │ │ │   Tells the program not to output the CONES and MAXIMAL_CONES sections, but still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is used.
    │ │ │  --restrict:
    │ │ │   Restrict the computation to a full-dimensional cone given by a list of marked polynomials. The cone is the closure of all weight vectors choosing these marked terms.
    │ │ │  --stable:
    │ │ │   Find the stable intersection of the input polynomials using tropical intersection theory. This can be slow. Most other options are ignored.
    │ │ │  --parameters value:
    │ │ │   With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters.
    │ │ │ -using temporary file /tmp/M2-37469-0/240
    │ │ │ - -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-37469-0/242
    │ │ │ +using temporary file /tmp/M2-59381-0/240
    │ │ │ + -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-59381-0/242
    │ │ │  This program is part of the Puiseux lifting algorithm implemented in Gfan and Singular. The Singular part of the implementation can be found in:
    │ │ │  
    │ │ │  Anders Nedergaard Jensen, Hannah Markwig, Thomas Markwig:
    │ │ │   tropical.lib. A SINGULAR 3.0 library for computations in tropical geometry, 2007 
    │ │ │  
    │ │ │  See also
    │ │ │  
    │ │ │ @@ -433,48 +433,48 @@
    │ │ │  Options:
    │ │ │  --noMult:
    │ │ │   Disable the multiplicity computation.
    │ │ │  -n value:
    │ │ │   Number of variables that should have negative weight.
    │ │ │  -c:
    │ │ │   Only output a list of vectors being the possible choices.
    │ │ │ -using temporary file /tmp/M2-37469-0/242
    │ │ │ - -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-37469-0/244
    │ │ │ +using temporary file /tmp/M2-59381-0/242
    │ │ │ + -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-59381-0/244
    │ │ │  This program generates tropical equations for a tropical linear space in the Speyer sense given the tropical Pluecker coordinates as input.
    │ │ │  Options:
    │ │ │  -d value:
    │ │ │   Specify d.
    │ │ │  -n value:
    │ │ │   Specify n.
    │ │ │  --trees:
    │ │ │   list the boundary trees (assumes d=3)
    │ │ │ -using temporary file /tmp/M2-37469-0/244
    │ │ │ - -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-37469-0/246
    │ │ │ +using temporary file /tmp/M2-59381-0/244
    │ │ │ + -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-59381-0/246
    │ │ │  This program computes the multiplicity of a tropical cone given a marked reduced Groebner basis for its initial ideal.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-37469-0/246
    │ │ │ - -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-37469-0/248
    │ │ │ +using temporary file /tmp/M2-59381-0/246
    │ │ │ + -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-59381-0/248
    │ │ │  This program will compute the tropical rank of matrix given as input. Tropical addition is MAXIMUM.
    │ │ │  Options:
    │ │ │  --kapranov:
    │ │ │   Compute Kapranov rank instead of tropical rank.
    │ │ │  --determinant:
    │ │ │   Compute the tropical determinant instead.
    │ │ │ -using temporary file /tmp/M2-37469-0/248
    │ │ │ - -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-37469-0/250
    │ │ │ +using temporary file /tmp/M2-59381-0/248
    │ │ │ + -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-59381-0/250
    │ │ │  This program computes a starting pair of marked reduced Groebner bases to be used as input for gfan_tropicaltraverse. The input is a homogeneous ideal whose tropical variety is a pure d-dimensional polyhedral complex.
    │ │ │  Options:
    │ │ │  -g:
    │ │ │   Tell the program that the input is already a reduced Groebner basis.
    │ │ │  -d:
    │ │ │   Output dimension information to standard error.
    │ │ │  --stable:
    │ │ │   Find starting cone in the stable intersection or, equivalently, pretend that the coefficients are genereric.
    │ │ │ -using temporary file /tmp/M2-37469-0/250
    │ │ │ - -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-37469-0/252
    │ │ │ +using temporary file /tmp/M2-59381-0/250
    │ │ │ + -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-59381-0/252
    │ │ │  This program computes a polyhedral fan representation of the tropical variety of a homogeneous prime ideal $I$. Let $d$ be the Krull dimension of $I$ and let $\omega$ be a relative interior point of $d$-dimensional Groebner cone contained in the tropical variety. The input for this program is a pair of marked reduced Groebner bases with respect to the term order represented by $\omega$, tie-broken in some way. The first one is for the initial ideal $in_\omega(I)$ the second one for $I$ itself. The pair is the starting point for a traversal of the $d$-dimensional Groebner cones contained in the tropical variety. If the ideal is not prime but with the tropical variety still being pure $d$-dimensional the program will only compute a codimension $1$ connected component of the tropical variety.
    │ │ │  Options:
    │ │ │  --symmetry:
    │ │ │   Do computations up to symmetry and group the output accordingly. If this option is used the program will read in a list of generators for a symmetry group after the pair of Groebner bases have been read. Two advantages of using this option is that the output is nicely grouped and that the computation can be done faster.
    │ │ │  --symsigns:
    │ │ │   Specify for each generator of the symmetry group an element of ${-1,+1}^n$ which by its multiplication on the variables together with the permutation will keep the ideal fixed. The vectors are given as the rows of a matrix.
    │ │ │  --nocones:
    │ │ │ @@ -482,24 +482,24 @@
    │ │ │  --disableSymmetryTest:
    │ │ │   When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal.
    │ │ │  
    │ │ │  --stable:
    │ │ │   Traverse the stable intersection or, equivalently, pretend that the coefficients are genereric.
    │ │ │  --interrupt value:
    │ │ │   Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans).
    │ │ │ -using temporary file /tmp/M2-37469-0/252
    │ │ │ - -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-37469-0/254
    │ │ │ +using temporary file /tmp/M2-59381-0/252
    │ │ │ + -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-59381-0/254
    │ │ │  This program computes the tropical Weil divisor of piecewise linear (or tropical rational) function on a tropical k-cycle. See the Gfan manual for more information.
    │ │ │  Options:
    │ │ │  -i1 value:
    │ │ │   Specify the name of the Polymake input file containing the k-cycle.
    │ │ │  -i2 value:
    │ │ │   Specify the name of the Polymake input file containing the piecewise linear function.
    │ │ │ -using temporary file /tmp/M2-37469-0/254
    │ │ │ - -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-37469-0/256
    │ │ │ +using temporary file /tmp/M2-59381-0/254
    │ │ │ + -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-59381-0/256
    │ │ │  This program is an experimental implementation of Groebner bases for ideals in Z[x_1,...,x_n].
    │ │ │  Several operations are supported by specifying the appropriate option:
    │ │ │   (1) computation of the reduced Groebner basis with respect to a given vector (tiebroken lexicographically),
    │ │ │   (2) computation of an initial ideal,
    │ │ │   (3) computation of the Groebner fan,
    │ │ │   (4) computation of a single Groebner cone.
    │ │ │  Since Gfan only knows polynomial rings with coefficients being elements of a field, the ideal is specified by giving a set of polynomials in the polynomial ring Q[x_1,...,x_n]. That is, by using Q instead of Z when specifying the ring. The ideal MUST BE HOMOGENEOUS (in a positive grading) for computation of the Groebner fan. Non-homogeneous ideals are allowed for the other computations if the specified weight vectors are positive.
    │ │ │ @@ -519,21 +519,21 @@
    │ │ │  --groebnerCone:
    │ │ │   Asks the program to compute a single Groebner cone containing the specified vector in its relative interior. The output is stored as a fan. The input order is: Ring ideal vector.
    │ │ │  -m:
    │ │ │   For the operations taking a vector as input, read in a list of vectors instead, and perform the operation for each vector in the list.
    │ │ │  -g:
    │ │ │   Tells the program that the input is already a Groebner basis (with the initial term of each polynomial being the first ones listed). Use this option if the usual --groebnerFan is too slow.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-37469-0/256
    │ │ │ +using temporary file /tmp/M2-59381-0/256
    │ │ │  
    │ │ │  i6 : QQ[x,y];
    │ │ │  
    │ │ │  i7 : gfan {x,y};
    │ │ │ - -- running: /usr/bin/gfan _bases < /tmp/M2-37469-0/258
    │ │ │ + -- running: /usr/bin/gfan _bases < /tmp/M2-59381-0/258
    │ │ │  Q[x1,x2]
    │ │ │  {{
    │ │ │  x2,
    │ │ │  x1}
    │ │ │  }
    │ │ │ -using temporary file /tmp/M2-37469-0/258
    │ │ │ +using temporary file /tmp/M2-59381-0/258
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/gfanInterface/html/___Installation_spand_sp__Configuration_spof_spgfan__Interface.html
    │ │ │ @@ -91,15 +91,15 @@
    │ │ │          
    │ │ │

    If you would like to see the input and output files used to communicate with gfan you can set the "keepfiles" configuration option to true. If "verbose" is set to true, gfanInterface will output the names of the temporary files used.

    │ │ │

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : loadPackage("gfanInterface", Configuration => { "keepfiles" => true, "verbose" => true}, Reload => true);
    │ │ │ - -- running: /usr/bin/gfan gfan --help < /tmp/M2-37469-0/172
    │ │ │ + -- running: /usr/bin/gfan gfan --help < /tmp/M2-59381-0/172
    │ │ │  This is a program for computing all reduced Groebner bases of a polynomial ideal. It takes the ring and a generating set for the ideal as input. By default the enumeration is done by an almost memoryless reverse search. If the ideal is symmetric the symmetry option is useful and enumeration will be done up to symmetry using a breadth first search. The program needs a starting Groebner basis to do its computations. If the -g option is not specified it will compute one using Buchberger's algorithm.
    │ │ │  Options:
    │ │ │  -g:
    │ │ │   Tells the program that the input is already a Groebner basis (with the initial term of each polynomial being the first ones listed). Use this option if it takes too much time to compute the starting (standard degree lexicographic) Groebner basis and the input is already a Groebner basis.
    │ │ │  
    │ │ │  --symmetry:
    │ │ │   Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ideal. The program checks that the ideal stays fixed when permuting the variables with respect to elements in the group. The program uses breadth first search to compute the set of reduced Groebner bases up to symmetry with respect to the specified subgroup.
    │ │ │ @@ -110,16 +110,16 @@
    │ │ │  --disableSymmetryTest:
    │ │ │   When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal.
    │ │ │  
    │ │ │  --parameters value:
    │ │ │   With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters.
    │ │ │  --interrupt value:
    │ │ │   Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans).
    │ │ │ -using temporary file /tmp/M2-37469-0/172
    │ │ │ - -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-37469-0/174
    │ │ │ +using temporary file /tmp/M2-59381-0/172
    │ │ │ + -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-59381-0/174
    │ │ │  This program computes a reduced lexicographic Groebner basis of the polynomial ideal given as input. The default behavior is to use Buchberger's algorithm. The ordering of the variables is $a>b>c...$ (assuming that the ring is Q[a,b,c,...]).
    │ │ │  Options:
    │ │ │  -w:
    │ │ │   Compute a Groebner basis with respect to a degree lexicographic order with $a>b>c...$ instead. The degrees are given by a weight vector which is read from the input after the generating set has been read.
    │ │ │  
    │ │ │  -r:
    │ │ │   Use the reverse lexicographic order (or the reverse lexicographic order as a tie breaker if -w is used). The input must be homogeneous if the pure reverse lexicographic order is chosen. Ignored if -W is used.
    │ │ │ @@ -128,69 +128,69 @@
    │ │ │   Do a Groebner walk. The input must be a minimal Groebner basis. If -W is used -w is ignored.
    │ │ │  
    │ │ │  -g:
    │ │ │   Do a generic Groebner walk. The input must be homogeneous and must be a minimal Groebner basis with respect to the reverse lexicographic term order. The target term order is always lexicographic. The -W option must be used.
    │ │ │  
    │ │ │  --parameters value:
    │ │ │   With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters.
    │ │ │ -using temporary file /tmp/M2-37469-0/174
    │ │ │ - -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-37469-0/176
    │ │ │ +using temporary file /tmp/M2-59381-0/174
    │ │ │ + -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-59381-0/176
    │ │ │  This program takes a marked Groebner basis of an ideal I and a set of polynomials on its input and tests if the polynomial set is contained in I by applying the division algorithm for each element. The output is 1 for true and 0 for false.
    │ │ │  Options:
    │ │ │  --remainder:
    │ │ │   Tell the program to output the remainders of the divisions rather than outputting 0 or 1.
    │ │ │  --multiplier:
    │ │ │   Reads in a polynomial that will be multiplied to the polynomial to be divided before doing the division.
    │ │ │ -using temporary file /tmp/M2-37469-0/176
    │ │ │ - -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-37469-0/178
    │ │ │ +using temporary file /tmp/M2-59381-0/176
    │ │ │ + -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-59381-0/178
    │ │ │  This program takes two polyhedral fans and computes their common refinement.
    │ │ │  Options:
    │ │ │  -i1 value:
    │ │ │   Specify the name of the first input file.
    │ │ │  -i2 value:
    │ │ │   Specify the name of the second input file.
    │ │ │  --stable:
    │ │ │   Compute the stable intersection.
    │ │ │ -using temporary file /tmp/M2-37469-0/178
    │ │ │ - -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-37469-0/180
    │ │ │ +using temporary file /tmp/M2-59381-0/178
    │ │ │ + -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-59381-0/180
    │ │ │  This program takes a polyhedral fan and a vector and computes the link of the polyhedral fan around that vertex. The link will have lineality space dimension equal to the dimension of the relative open polyhedral cone of the original fan containing the vector.
    │ │ │  Options:
    │ │ │  -i value:
    │ │ │   Specify the name of the input file.
    │ │ │  --symmetry:
    │ │ │   Reads in a fan stored with symmetry. The generators of the symmetry group must be given on the standard input.
    │ │ │  
    │ │ │  --star:
    │ │ │   Computes the star instead. The star is defined as the smallest polyhedral fan containing all cones of the original fan containing the vector.
    │ │ │ -using temporary file /tmp/M2-37469-0/180
    │ │ │ - -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-37469-0/182
    │ │ │ +using temporary file /tmp/M2-59381-0/180
    │ │ │ + -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-59381-0/182
    │ │ │  This program takes two polyhedral fans and computes their product.
    │ │ │  Options:
    │ │ │  -i1 value:
    │ │ │   Specify the name of the first input file.
    │ │ │  -i2 value:
    │ │ │   Specify the name of the second input file.
    │ │ │ -using temporary file /tmp/M2-37469-0/182
    │ │ │ - -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-37469-0/184
    │ │ │ +using temporary file /tmp/M2-59381-0/182
    │ │ │ + -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-59381-0/184
    │ │ │  This program computes a Groebner cone. Three different cases are handled. The input may be a marked reduced Groebner basis in which case its Groebner cone is computed. The input may be just a marked minimal basis in which case the cone computed is not a Groebner cone in the usual sense but smaller. (These cones are described in [Fukuda, Jensen, Lauritzen, Thomas]). The third possible case is that the Groebner cone is possibly lower dimensional and given by a pair of Groebner bases as it is useful to do for tropical varieties, see option --pair. The facets of the cone can be read off in section FACETS and the equations in section IMPLIED_EQUATIONS.
    │ │ │  Options:
    │ │ │  --restrict:
    │ │ │   Add an inequality for each coordinate, so that the the cone is restricted to the non-negative orthant.
    │ │ │  --pair:
    │ │ │   The Groebner cone is given by a pair of compatible Groebner bases. The first basis is for the initial ideal and the second for the ideal itself. See the tropical section of the manual.
    │ │ │  --asfan:
    │ │ │   Writes the cone as a polyhedral fan with all its faces instead. In this way the extreme rays of the cone are also computed.
    │ │ │  --vectorinput:
    │ │ │   Compute a cone given list of inequalities rather than a Groebner cone. The input is an integer which specifies the dimension of the ambient space, a list of inequalities given as vectors and a list of equations.
    │ │ │ -using temporary file /tmp/M2-37469-0/184
    │ │ │ - -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-37469-0/186
    │ │ │ +using temporary file /tmp/M2-59381-0/184
    │ │ │ + -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-59381-0/186
    │ │ │  This program computes the homogeneity space of a list of polynomials - as a cone. Thus generators for the homogeneity space are found in the section LINEALITY_SPACE. If you wish the homogeneity space of an ideal you should first compute a set of homogeneous generators and call the program on these. A reduced Groebner basis will always suffice for this purpose.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-37469-0/186
    │ │ │ - -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-37469-0/188
    │ │ │ +using temporary file /tmp/M2-59381-0/186
    │ │ │ + -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-59381-0/188
    │ │ │  This program homogenises a list of polynomials by introducing an extra variable. The name of the variable to be introduced is read from the input after the list of polynomials. Without the -w option the homogenisation is done with respect to total degree.
    │ │ │  Example:
    │ │ │  Input:
    │ │ │  Q[x,y]{y-1}
    │ │ │  z
    │ │ │  Output:
    │ │ │  Q[x,y,z]{y-z}
    │ │ │ @@ -198,30 +198,30 @@
    │ │ │  -i:
    │ │ │   Treat input as an ideal. This will make the program compute the homogenisation of the input ideal. This is done by computing a degree Groebner basis and homogenising it.
    │ │ │  -w:
    │ │ │   Specify a homogenisation vector. The length of the vector must be the same as the number of variables in the ring. The vector is read from the input after the list of polynomials.
    │ │ │  
    │ │ │  -H:
    │ │ │   Let the name of the new variable be H rather than reading in a name from the input.
    │ │ │ -using temporary file /tmp/M2-37469-0/188
    │ │ │ - -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-37469-0/190
    │ │ │ +using temporary file /tmp/M2-59381-0/188
    │ │ │ + -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-59381-0/190
    │ │ │  This program converts a list of polynomials to a list of their initial forms with respect to the vector given after the list.
    │ │ │  Options:
    │ │ │  --ideal:
    │ │ │   Treat input as an ideal. This will make the program compute the initial ideal of the ideal generated by the input polynomials. The computation is done by computing a Groebner basis with respect to the given vector. The vector must be positive or the input polynomials must be homogeneous in a positive grading. None of these conditions are checked by the program.
    │ │ │  
    │ │ │  --pair:
    │ │ │   Produce a pair of polynomial lists. Used together with --ideal this option will also write a compatible reduced Groebner basis for the input ideal to the output. This is useful for finding the Groebner cone of a non-monomial initial ideal.
    │ │ │  
    │ │ │  --mark:
    │ │ │   If the --pair option is and the --ideal option is not used this option will still make sure that the second output basis is marked consistently with the vector.
    │ │ │  --list:
    │ │ │   Read in a list of vectors instead of a single vector and produce a list of polynomial sets as output.
    │ │ │ -using temporary file /tmp/M2-37469-0/190
    │ │ │ - -- running: /usr/bin/gfan _interactive --help < /tmp/M2-37469-0/192
    │ │ │ +using temporary file /tmp/M2-59381-0/190
    │ │ │ + -- running: /usr/bin/gfan _interactive --help < /tmp/M2-59381-0/192
    │ │ │  This is a program for doing interactive walks in the Groebner fan of an ideal. The input is a Groebner basis defining the starting Groebner cone of the walk. The program will list all flippable facets of the Groebner cone and ask the user to choose one. The user types in the index (number) of the facet in the list. The program will walk through the selected facet and display the new Groebner basis and a list of new facet normals for the user to choose from. Since the program reads the user's choices through the the standard input it is recommended not to redirect the standard input for this program.
    │ │ │  Options:
    │ │ │  -L:
    │ │ │   Latex mode. The program will try to show the current Groebner basis in a readable form by invoking LaTeX and xdvi.
    │ │ │  
    │ │ │  -x:
    │ │ │   Exit immediately.
    │ │ │ @@ -236,57 +236,57 @@
    │ │ │   Tell the program to list the defining set of inequalities of the non-restricted Groebner cone as a set of vectors after having listed the current Groebner basis.
    │ │ │  
    │ │ │  -W:
    │ │ │   Print weight vector. This will make the program print an interior vector of the current Groebner cone and a relative interior point for each flippable facet of the current Groebner cone.
    │ │ │  
    │ │ │  --tropical:
    │ │ │   Traverse a tropical variety interactively.
    │ │ │ -using temporary file /tmp/M2-37469-0/192
    │ │ │ - -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-37469-0/194
    │ │ │ +using temporary file /tmp/M2-59381-0/192
    │ │ │ + -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-59381-0/194
    │ │ │  This program checks if a set of marked polynomials is a Groebner basis with respect to its marking. First it is checked if the markings are consistent with respect to a positive vector. Then Buchberger's S-criterion is checked. The output is boolean value.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-37469-0/194
    │ │ │ - -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-37469-0/196
    │ │ │ +using temporary file /tmp/M2-59381-0/194
    │ │ │ + -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-59381-0/196
    │ │ │  Takes an ideal $I$ and computes the Krull dimension of R/I where R is the polynomial ring. This is done by first computing a Groebner basis.
    │ │ │  Options:
    │ │ │  -g:
    │ │ │   Tell the program that the input is already a reduced Groebner basis.
    │ │ │ -using temporary file /tmp/M2-37469-0/196
    │ │ │ - -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-37469-0/198
    │ │ │ +using temporary file /tmp/M2-59381-0/196
    │ │ │ + -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-59381-0/198
    │ │ │  This program computes the lattice ideal of a lattice. The input is a list of generators for the lattice.
    │ │ │  Options:
    │ │ │  -t:
    │ │ │   Compute the toric ideal of the matrix whose rows are given on the input instead.
    │ │ │  --convert:
    │ │ │   Does not do any computation, but just converts the vectors to binomials.
    │ │ │ -using temporary file /tmp/M2-37469-0/198
    │ │ │ - -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-37469-0/200
    │ │ │ +using temporary file /tmp/M2-59381-0/198
    │ │ │ + -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-59381-0/200
    │ │ │  This program converts a list of polynomials to a list of their leading terms.
    │ │ │  Options:
    │ │ │  -m:
    │ │ │   Do the same thing for a list of polynomial sets. That is, output the set of sets of leading terms.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-37469-0/200
    │ │ │ - -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-37469-0/202
    │ │ │ +using temporary file /tmp/M2-59381-0/200
    │ │ │ + -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-59381-0/202
    │ │ │  This program marks a set of polynomials with respect to the vector given at the end of the input, meaning that the largest terms are moved to the front. In case of a tie the lexicographic term order with $a>b>c...$ is used to break it.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-37469-0/202
    │ │ │ - -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-37469-0/204
    │ │ │ +using temporary file /tmp/M2-59381-0/202
    │ │ │ + -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-59381-0/204
    │ │ │  This is a program for computing the normal fan of the Minkowski sum of the Newton polytopes of a list of polynomials.
    │ │ │  Options:
    │ │ │  --symmetry:
    │ │ │   Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ideal. The program checks that the ideal stays fixed when permuting the variables with respect to elements in the group. The program uses breadth first search to compute the set of reduced Groebner bases up to symmetry with respect to the specified subgroup.
    │ │ │  
    │ │ │  --disableSymmetryTest:
    │ │ │   When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal.
    │ │ │  
    │ │ │  --nocones:
    │ │ │   Tell the program to not list cones in the output.
    │ │ │ -using temporary file /tmp/M2-37469-0/204
    │ │ │ - -- running: /usr/bin/gfan _minors --help < /tmp/M2-37469-0/206
    │ │ │ +using temporary file /tmp/M2-59381-0/204
    │ │ │ + -- running: /usr/bin/gfan _minors --help < /tmp/M2-59381-0/206
    │ │ │  This program will generate the r*r minors of a d*n matrix of indeterminates.
    │ │ │  Options:
    │ │ │  -r value:
    │ │ │   Specify r.
    │ │ │  -d value:
    │ │ │   Specify d.
    │ │ │  -n value:
    │ │ │ @@ -301,16 +301,16 @@
    │ │ │   Do nothing but produce symmetry generators for the Pluecker ideal.
    │ │ │  --symmetry:
    │ │ │   Produces a list of generators for the group of symmetries keeping the set of minors fixed. (Only without --names).
    │ │ │  --parametrize:
    │ │ │   Parametrize the set of d times n matrices of Barvinok rank less than or equal to r-1 by a list of tropical polynomials.
    │ │ │  --ultrametric:
    │ │ │   Produce tropical equations cutting out the ultrametrics.
    │ │ │ -using temporary file /tmp/M2-37469-0/206
    │ │ │ - -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-37469-0/208
    │ │ │ +using temporary file /tmp/M2-59381-0/206
    │ │ │ + -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-59381-0/208
    │ │ │  This program computes the mixed volume of the Newton polytopes of a list of polynomials. The ring is specified on the input. After this follows the list of polynomials.
    │ │ │  Options:
    │ │ │  --vectorinput:
    │ │ │   Read in a list of point configurations instead of a polynomial ring and a list of polynomials.
    │ │ │  --cyclic value:
    │ │ │   Use cyclic-n example instead of reading input.
    │ │ │  --noon value:
    │ │ │ @@ -321,44 +321,44 @@
    │ │ │   Use Katsura-n example instead of reading input.
    │ │ │  --gaukwa value:
    │ │ │   Use Gaukwa-n example instead of reading input.
    │ │ │  --eco value:
    │ │ │   Use Eco-n example instead of reading input.
    │ │ │  -j value:
    │ │ │   Number of threads
    │ │ │ -using temporary file /tmp/M2-37469-0/208
    │ │ │ - -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-37469-0/210
    │ │ │ +using temporary file /tmp/M2-59381-0/208
    │ │ │ + -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-59381-0/210
    │ │ │  This program computes the union of a list of polynomial sets given as input. The polynomials must all belong to the same ring. The ring is specified on the input. After this follows the list of polynomial sets.
    │ │ │  Options:
    │ │ │  -s:
    │ │ │   Sort output by degree.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-37469-0/210
    │ │ │ - -- running: /usr/bin/gfan _render --help < /tmp/M2-37469-0/212
    │ │ │ +using temporary file /tmp/M2-59381-0/210
    │ │ │ + -- running: /usr/bin/gfan _render --help < /tmp/M2-59381-0/212
    │ │ │  This program renders a Groebner fan as an xfig file. To be more precise, the input is the list of all reduced Groebner bases of an ideal. The output is a drawing of the Groebner fan intersected with a triangle. The corners of the triangle are (1,0,0) to the right, (0,1,0) to the left and (0,0,1) at the top. If there are more than three variables in the ring these coordinates are extended with zeros. It is possible to shift the 1 entry cyclic with the option --shiftVariables.
    │ │ │  Options:
    │ │ │  -L:
    │ │ │   Make the triangle larger so that the shape of the Groebner region appears.
    │ │ │  --shiftVariables value:
    │ │ │   Shift the positions of the variables in the drawing. For example with the value equal to 1 the corners will be right: (0,1,0,0,...), left: (0,0,1,0,...) and top: (0,0,0,1,...). The shifting is done modulo the number of variables in the polynomial ring. The default value is 0.
    │ │ │ -using temporary file /tmp/M2-37469-0/212
    │ │ │ - -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-37469-0/214
    │ │ │ +using temporary file /tmp/M2-59381-0/212
    │ │ │ + -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-59381-0/214
    │ │ │  This program renders a staircase diagram of a monomial initial ideal to an xfig file. The input is a Groebner basis of a (not necessarily monomial) polynomial ideal. The initial ideal is given by the leading terms in the Groebner basis. Using the -m option it is possible to render more than one staircase diagram. The program only works for ideals in a polynomial ring with three variables.
    │ │ │  Options:
    │ │ │  -m:
    │ │ │   Read multiple ideals from the input. The ideals are given as a list of lists of polynomials. For each polynomial list in the list a staircase diagram is drawn.
    │ │ │  
    │ │ │  -d value:
    │ │ │   Specifies the number of boxes being shown along each axis. Be sure that this number is large enough to give a correct picture of the standard monomials. The default value is 8.
    │ │ │  
    │ │ │  -w value:
    │ │ │   Width. Specifies the number of staircase diagrams per row in the xfig file. The default value is 5.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-37469-0/214
    │ │ │ - -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-37469-0/216
    │ │ │ +using temporary file /tmp/M2-59381-0/214
    │ │ │ + -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-59381-0/216
    │ │ │  This program computes the resultant fan as defined in "Computing Tropical Resultants" by Jensen and Yu. The input is a polynomial ring followed by polynomials, whose coefficients are ignored. The output is the fan of coefficients such that the input system has a tropical solution.
    │ │ │  Options:
    │ │ │  --codimension:
    │ │ │   Compute only the codimension of the resultant fan and return.
    │ │ │  
    │ │ │  --symmetry:
    │ │ │   Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the vector configuration. The program DOES NOT checks that the configuration stays fixed when permuting the variables with respect to elements in the group. The output is grouped according to the symmetry.
    │ │ │ @@ -371,25 +371,25 @@
    │ │ │  
    │ │ │  --vectorinput:
    │ │ │   Read in a list of point configurations instead of a polynomial ring and a list of polynomials.
    │ │ │  
    │ │ │  --projection:
    │ │ │   Use the projection method to compute the resultant fan. This works only if the resultant fan is a hypersurface. If this option is combined with --special, then the output fan lives in the subspace of the non-specialized coordinates.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-37469-0/216
    │ │ │ - -- running: /usr/bin/gfan _saturation --help < /tmp/M2-37469-0/218
    │ │ │ +using temporary file /tmp/M2-59381-0/216
    │ │ │ + -- running: /usr/bin/gfan _saturation --help < /tmp/M2-59381-0/218
    │ │ │  This program computes the saturation of the input ideal with the product of the variables x_1,...,x_n. The ideal does not have to be homogeneous.
    │ │ │  Options:
    │ │ │  -h:
    │ │ │   Tell the program that the input is a homogeneous ideal (with homogeneous generators).
    │ │ │  
    │ │ │  --noideal:
    │ │ │   Do not treat input as an ideal but just factor out common monomial factors of the input polynomials.
    │ │ │ -using temporary file /tmp/M2-37469-0/218
    │ │ │ - -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-37469-0/220
    │ │ │ +using temporary file /tmp/M2-59381-0/218
    │ │ │ + -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-59381-0/220
    │ │ │  This program computes the secondary fan of a vector configuration. The configuration is given as an ordered list of vectors. In order to compute the secondary fan of a point configuration an additional coordinate of ones must be added. For example {(1,0),(1,1),(1,2),(1,3)}.
    │ │ │  Options:
    │ │ │  --unimodular:
    │ │ │   Use heuristics to search for unimodular triangulation rather than computing the complete secondary fan
    │ │ │  --scale value:
    │ │ │   Assuming that the first coordinate of each vector is 1, this option will take the polytope in the 1 plane and scale it. The point configuration will be all lattice points in that scaled polytope. The polytope must have maximal dimension. When this option is used the vector configuration must have full rank. This option may be removed in the future.
    │ │ │  --restrictingfan value:
    │ │ │ @@ -398,70 +398,70 @@
    │ │ │  --symmetry:
    │ │ │   Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the vector configuration. The program checks that the configuration stays fixed when permuting the variables with respect to elements in the group. The output is grouped according to the symmetry.
    │ │ │  
    │ │ │  --nocones:
    │ │ │   Tells the program not to output the CONES and MAXIMAL_CONES sections, but still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is used.
    │ │ │  --interrupt value:
    │ │ │   Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans).
    │ │ │ -using temporary file /tmp/M2-37469-0/220
    │ │ │ - -- running: /usr/bin/gfan _stats --help < /tmp/M2-37469-0/222
    │ │ │ +using temporary file /tmp/M2-59381-0/220
    │ │ │ + -- running: /usr/bin/gfan _stats --help < /tmp/M2-59381-0/222
    │ │ │  This program takes a list of reduced Groebner bases for the same ideal and computes various statistics. The following information is listed: the number of bases in the input, the number of variables, the dimension of the homogeneity space, the maximal total degree of any polynomial in the input and the minimal total degree of any basis in the input, the maximal number of polynomials and terms in a basis in the input.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-37469-0/222
    │ │ │ - -- running: /usr/bin/gfan _substitute --help < /tmp/M2-37469-0/224
    │ │ │ +using temporary file /tmp/M2-59381-0/222
    │ │ │ + -- running: /usr/bin/gfan _substitute --help < /tmp/M2-59381-0/224
    │ │ │  This program changes the variable names of a polynomial ring. The input is a polynomial ring, a polynomial set in the ring and a new polynomial ring with the same coefficient field but different variable names. The output is the polynomial set written with the variable names of the second polynomial ring.
    │ │ │  Example:
    │ │ │  Input:
    │ │ │  Q[a,b,c,d]{2a-3b,c+d}Q[b,a,c,x]
    │ │ │  Output:
    │ │ │  Q[b,a,c,x]{2*b-3*a,c+x}
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-37469-0/224
    │ │ │ - -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-37469-0/226
    │ │ │ +using temporary file /tmp/M2-59381-0/224
    │ │ │ + -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-59381-0/226
    │ │ │  This program converts ASCII math to TeX math. The data-type is specified by the options.
    │ │ │  Options:
    │ │ │  -h:
    │ │ │   Add a header to the output. Using this option the output will be LaTeXable right away.
    │ │ │  --polynomialset_:
    │ │ │   The data to be converted is a list of polynomials.
    │ │ │  --polynomialsetlist_:
    │ │ │   The data to be converted is a list of lists of polynomials.
    │ │ │ -using temporary file /tmp/M2-37469-0/226
    │ │ │ - -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-37469-0/228
    │ │ │ +using temporary file /tmp/M2-59381-0/226
    │ │ │ + -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-59381-0/228
    │ │ │  This program takes a list of reduced Groebner bases and produces the fan of all faces of these. In this way by giving the complete list of reduced Groebner bases, the Groebner fan can be computed as a polyhedral complex. The option --restrict lets the user choose between computing the Groebner fan or the restricted Groebner fan.
    │ │ │  Options:
    │ │ │  --restrict:
    │ │ │   Add an inequality for each coordinate, so that the the cones are restricted to the non-negative orthant.
    │ │ │  --symmetry:
    │ │ │   Tell the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ring. The output is grouped according to these symmetries. Only one representative for each orbit is needed on the input.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-37469-0/228
    │ │ │ - -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-37469-0/230
    │ │ │ +using temporary file /tmp/M2-59381-0/228
    │ │ │ + -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-59381-0/230
    │ │ │  This program computes a tropical basis for an ideal defining a tropical curve. Defining a tropical curve means that the Krull dimension of R/I is at most 1 + the dimension of the homogeneity space of I where R is the polynomial ring. The input is a generating set for the ideal. If the input is not homogeneous option -h must be used.
    │ │ │  Options:
    │ │ │  -h:
    │ │ │   Homogenise the input before computing a tropical basis and dehomogenise the output. This is needed if the input generators are not already homogeneous.
    │ │ │ -using temporary file /tmp/M2-37469-0/230
    │ │ │ - -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-37469-0/232
    │ │ │ +using temporary file /tmp/M2-59381-0/230
    │ │ │ + -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-59381-0/232
    │ │ │  This program takes a marked reduced Groebner basis for a homogeneous ideal and computes the tropical variety of the ideal as a subfan of the Groebner fan. The program is slow but works for any homogeneous ideal. If you know that your ideal is prime over the complex numbers or you simply know that its tropical variety is pure and connected in codimension one then use gfan_tropicalstartingcone and gfan_tropicaltraverse instead.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-37469-0/232
    │ │ │ - -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-37469-0/234
    │ │ │ +using temporary file /tmp/M2-59381-0/232
    │ │ │ + -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-59381-0/234
    │ │ │  This program evaluates a tropical polynomial function in a given set of points.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-37469-0/234
    │ │ │ - -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-37469-0/236
    │ │ │ +using temporary file /tmp/M2-59381-0/234
    │ │ │ + -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-59381-0/236
    │ │ │  This program takes a polynomial and tropicalizes it. The output is piecewise linear function represented by a fan whose cones are the linear regions. Each ray of the fan gets the value of the tropical function assigned to it. In other words this program computes the normal fan of the Newton polytope of the input polynomial with additional information.Options:
    │ │ │  --exponents:
    │ │ │   Tell program to read a list of exponent vectors instead.
    │ │ │ -using temporary file /tmp/M2-37469-0/236
    │ │ │ - -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-37469-0/238
    │ │ │ +using temporary file /tmp/M2-59381-0/236
    │ │ │ + -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-59381-0/238
    │ │ │  This program computes the tropical hypersurface defined by a principal ideal. The input is the polynomial ring followed by a set containing just a generator of the ideal.Options:
    │ │ │ -using temporary file /tmp/M2-37469-0/238
    │ │ │ - -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-37469-0/240
    │ │ │ +using temporary file /tmp/M2-59381-0/238
    │ │ │ + -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-59381-0/240
    │ │ │  This program computes the set theoretical intersection of a set of tropical hypersurfaces (or to be precise, their common refinement as a fan). The input is a list of polynomials with each polynomial defining a hypersurface. Considering tropical hypersurfaces as fans, the intersection can be computed as the common refinement of these. Thus the output is a fan whose support is the intersection of the tropical hypersurfaces.
    │ │ │  Options:
    │ │ │  --tropicalbasistest:
    │ │ │   This option will test that the input polynomials for a tropical basis of the ideal they generate by computing the tropical prevariety of the input polynomials and then refine each cone with the Groebner fan and testing whether each cone in the refinement has an associated monomial free initial ideal. If so, then we have a tropical basis and 1 is written as output. If not, then a zero is written to the output together with a vector in the tropical prevariety but not in the variety. The actual check is done on a homogenization of the input ideal, but this does not affect the result. (This option replaces the -t option from earlier gfan versions.)
    │ │ │  
    │ │ │  --tplane:
    │ │ │   This option intersects the resulting fan with the plane x_0=-1, where x_0 is the first variable. To simplify the implementation the output is actually the common refinement with the non-negative half space. This means that "stuff at infinity" (where x_0=0) is not removed.
    │ │ │ @@ -473,16 +473,16 @@
    │ │ │   Tells the program not to output the CONES and MAXIMAL_CONES sections, but still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is used.
    │ │ │  --restrict:
    │ │ │   Restrict the computation to a full-dimensional cone given by a list of marked polynomials. The cone is the closure of all weight vectors choosing these marked terms.
    │ │ │  --stable:
    │ │ │   Find the stable intersection of the input polynomials using tropical intersection theory. This can be slow. Most other options are ignored.
    │ │ │  --parameters value:
    │ │ │   With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters.
    │ │ │ -using temporary file /tmp/M2-37469-0/240
    │ │ │ - -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-37469-0/242
    │ │ │ +using temporary file /tmp/M2-59381-0/240
    │ │ │ + -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-59381-0/242
    │ │ │  This program is part of the Puiseux lifting algorithm implemented in Gfan and Singular. The Singular part of the implementation can be found in:
    │ │ │  
    │ │ │  Anders Nedergaard Jensen, Hannah Markwig, Thomas Markwig:
    │ │ │   tropical.lib. A SINGULAR 3.0 library for computations in tropical geometry, 2007 
    │ │ │  
    │ │ │  See also
    │ │ │  
    │ │ │ @@ -507,48 +507,48 @@
    │ │ │  Options:
    │ │ │  --noMult:
    │ │ │   Disable the multiplicity computation.
    │ │ │  -n value:
    │ │ │   Number of variables that should have negative weight.
    │ │ │  -c:
    │ │ │   Only output a list of vectors being the possible choices.
    │ │ │ -using temporary file /tmp/M2-37469-0/242
    │ │ │ - -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-37469-0/244
    │ │ │ +using temporary file /tmp/M2-59381-0/242
    │ │ │ + -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-59381-0/244
    │ │ │  This program generates tropical equations for a tropical linear space in the Speyer sense given the tropical Pluecker coordinates as input.
    │ │ │  Options:
    │ │ │  -d value:
    │ │ │   Specify d.
    │ │ │  -n value:
    │ │ │   Specify n.
    │ │ │  --trees:
    │ │ │   list the boundary trees (assumes d=3)
    │ │ │ -using temporary file /tmp/M2-37469-0/244
    │ │ │ - -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-37469-0/246
    │ │ │ +using temporary file /tmp/M2-59381-0/244
    │ │ │ + -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-59381-0/246
    │ │ │  This program computes the multiplicity of a tropical cone given a marked reduced Groebner basis for its initial ideal.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-37469-0/246
    │ │ │ - -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-37469-0/248
    │ │ │ +using temporary file /tmp/M2-59381-0/246
    │ │ │ + -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-59381-0/248
    │ │ │  This program will compute the tropical rank of matrix given as input. Tropical addition is MAXIMUM.
    │ │ │  Options:
    │ │ │  --kapranov:
    │ │ │   Compute Kapranov rank instead of tropical rank.
    │ │ │  --determinant:
    │ │ │   Compute the tropical determinant instead.
    │ │ │ -using temporary file /tmp/M2-37469-0/248
    │ │ │ - -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-37469-0/250
    │ │ │ +using temporary file /tmp/M2-59381-0/248
    │ │ │ + -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-59381-0/250
    │ │ │  This program computes a starting pair of marked reduced Groebner bases to be used as input for gfan_tropicaltraverse. The input is a homogeneous ideal whose tropical variety is a pure d-dimensional polyhedral complex.
    │ │ │  Options:
    │ │ │  -g:
    │ │ │   Tell the program that the input is already a reduced Groebner basis.
    │ │ │  -d:
    │ │ │   Output dimension information to standard error.
    │ │ │  --stable:
    │ │ │   Find starting cone in the stable intersection or, equivalently, pretend that the coefficients are genereric.
    │ │ │ -using temporary file /tmp/M2-37469-0/250
    │ │ │ - -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-37469-0/252
    │ │ │ +using temporary file /tmp/M2-59381-0/250
    │ │ │ + -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-59381-0/252
    │ │ │  This program computes a polyhedral fan representation of the tropical variety of a homogeneous prime ideal $I$. Let $d$ be the Krull dimension of $I$ and let $\omega$ be a relative interior point of $d$-dimensional Groebner cone contained in the tropical variety. The input for this program is a pair of marked reduced Groebner bases with respect to the term order represented by $\omega$, tie-broken in some way. The first one is for the initial ideal $in_\omega(I)$ the second one for $I$ itself. The pair is the starting point for a traversal of the $d$-dimensional Groebner cones contained in the tropical variety. If the ideal is not prime but with the tropical variety still being pure $d$-dimensional the program will only compute a codimension $1$ connected component of the tropical variety.
    │ │ │  Options:
    │ │ │  --symmetry:
    │ │ │   Do computations up to symmetry and group the output accordingly. If this option is used the program will read in a list of generators for a symmetry group after the pair of Groebner bases have been read. Two advantages of using this option is that the output is nicely grouped and that the computation can be done faster.
    │ │ │  --symsigns:
    │ │ │   Specify for each generator of the symmetry group an element of ${-1,+1}^n$ which by its multiplication on the variables together with the permutation will keep the ideal fixed. The vectors are given as the rows of a matrix.
    │ │ │  --nocones:
    │ │ │ @@ -556,24 +556,24 @@
    │ │ │  --disableSymmetryTest:
    │ │ │   When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal.
    │ │ │  
    │ │ │  --stable:
    │ │ │   Traverse the stable intersection or, equivalently, pretend that the coefficients are genereric.
    │ │ │  --interrupt value:
    │ │ │   Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans).
    │ │ │ -using temporary file /tmp/M2-37469-0/252
    │ │ │ - -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-37469-0/254
    │ │ │ +using temporary file /tmp/M2-59381-0/252
    │ │ │ + -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-59381-0/254
    │ │ │  This program computes the tropical Weil divisor of piecewise linear (or tropical rational) function on a tropical k-cycle. See the Gfan manual for more information.
    │ │ │  Options:
    │ │ │  -i1 value:
    │ │ │   Specify the name of the Polymake input file containing the k-cycle.
    │ │ │  -i2 value:
    │ │ │   Specify the name of the Polymake input file containing the piecewise linear function.
    │ │ │ -using temporary file /tmp/M2-37469-0/254
    │ │ │ - -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-37469-0/256
    │ │ │ +using temporary file /tmp/M2-59381-0/254
    │ │ │ + -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-59381-0/256
    │ │ │  This program is an experimental implementation of Groebner bases for ideals in Z[x_1,...,x_n].
    │ │ │  Several operations are supported by specifying the appropriate option:
    │ │ │   (1) computation of the reduced Groebner basis with respect to a given vector (tiebroken lexicographically),
    │ │ │   (2) computation of an initial ideal,
    │ │ │   (3) computation of the Groebner fan,
    │ │ │   (4) computation of a single Groebner cone.
    │ │ │  Since Gfan only knows polynomial rings with coefficients being elements of a field, the ideal is specified by giving a set of polynomials in the polynomial ring Q[x_1,...,x_n]. That is, by using Q instead of Z when specifying the ring. The ideal MUST BE HOMOGENEOUS (in a positive grading) for computation of the Groebner fan. Non-homogeneous ideals are allowed for the other computations if the specified weight vectors are positive.
    │ │ │ @@ -593,28 +593,28 @@
    │ │ │  --groebnerCone:
    │ │ │   Asks the program to compute a single Groebner cone containing the specified vector in its relative interior. The output is stored as a fan. The input order is: Ring ideal vector.
    │ │ │  -m:
    │ │ │   For the operations taking a vector as input, read in a list of vectors instead, and perform the operation for each vector in the list.
    │ │ │  -g:
    │ │ │   Tells the program that the input is already a Groebner basis (with the initial term of each polynomial being the first ones listed). Use this option if the usual --groebnerFan is too slow.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-37469-0/256
    │ │ │ +using temporary file /tmp/M2-59381-0/256 │ │ │
    i6 : QQ[x,y];
    │ │ │
    i7 : gfan {x,y};
    │ │ │ - -- running: /usr/bin/gfan _bases < /tmp/M2-37469-0/258
    │ │ │ + -- running: /usr/bin/gfan _bases < /tmp/M2-59381-0/258
    │ │ │  Q[x1,x2]
    │ │ │  {{
    │ │ │  x2,
    │ │ │  x1}
    │ │ │  }
    │ │ │ -using temporary file /tmp/M2-37469-0/258
    │ │ │ +using temporary file /tmp/M2-59381-0/258 │ │ │
    │ │ │
    │ │ │

    Finally, if you want to be able to render Groebner fans and monomial staircases to .png files, you should install fig2dev. If it is installed in a non-standard location, then you may specify its path using programPaths.

    │ │ │
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -39,15 +39,15 @@ │ │ │ │ o4 = /usr/x86_64-Linux- │ │ │ │ Debian-trixie/libexec/Macaulay2/bin/ │ │ │ │ If you would like to see the input and output files used to communicate with │ │ │ │ gfan you can set the "keepfiles" configuration option to true. If "verbose" is │ │ │ │ set to true, gfanInterface will output the names of the temporary files used. │ │ │ │ i5 : loadPackage("gfanInterface", Configuration => { "keepfiles" => true, │ │ │ │ "verbose" => true}, Reload => true); │ │ │ │ - -- running: /usr/bin/gfan gfan --help < /tmp/M2-37469-0/172 │ │ │ │ + -- running: /usr/bin/gfan gfan --help < /tmp/M2-59381-0/172 │ │ │ │ This is a program for computing all reduced Groebner bases of a polynomial │ │ │ │ ideal. It takes the ring and a generating set for the ideal as input. By │ │ │ │ default the enumeration is done by an almost memoryless reverse search. If the │ │ │ │ ideal is symmetric the symmetry option is useful and enumeration will be done │ │ │ │ up to symmetry using a breadth first search. The program needs a starting │ │ │ │ Groebner basis to do its computations. If the -g option is not specified it │ │ │ │ will compute one using Buchberger's algorithm. │ │ │ │ @@ -77,16 +77,16 @@ │ │ │ │ With this option you can specify how many variables to treat as parameters │ │ │ │ instead of variables. This makes it possible to do computations where the │ │ │ │ coefficient field is the field of rational functions in the parameters. │ │ │ │ --interrupt value: │ │ │ │ Interrupt the enumeration after a specified number of facets have been │ │ │ │ computed (works for usual symmetric traversals, but may not work in general for │ │ │ │ non-symmetric traversals or for traversals restricted to fans). │ │ │ │ -using temporary file /tmp/M2-37469-0/172 │ │ │ │ - -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-37469-0/174 │ │ │ │ +using temporary file /tmp/M2-59381-0/172 │ │ │ │ + -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-59381-0/174 │ │ │ │ This program computes a reduced lexicographic Groebner basis of the polynomial │ │ │ │ ideal given as input. The default behavior is to use Buchberger's algorithm. │ │ │ │ The ordering of the variables is $a>b>c...$ (assuming that the ring is Q │ │ │ │ [a,b,c,...]). │ │ │ │ Options: │ │ │ │ -w: │ │ │ │ Compute a Groebner basis with respect to a degree lexicographic order with │ │ │ │ @@ -107,63 +107,63 @@ │ │ │ │ minimal Groebner basis with respect to the reverse lexicographic term order. │ │ │ │ The target term order is always lexicographic. The -W option must be used. │ │ │ │ │ │ │ │ --parameters value: │ │ │ │ With this option you can specify how many variables to treat as parameters │ │ │ │ instead of variables. This makes it possible to do computations where the │ │ │ │ coefficient field is the field of rational functions in the parameters. │ │ │ │ -using temporary file /tmp/M2-37469-0/174 │ │ │ │ - -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-37469-0/176 │ │ │ │ +using temporary file /tmp/M2-59381-0/174 │ │ │ │ + -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-59381-0/176 │ │ │ │ This program takes a marked Groebner basis of an ideal I and a set of │ │ │ │ polynomials on its input and tests if the polynomial set is contained in I by │ │ │ │ applying the division algorithm for each element. The output is 1 for true and │ │ │ │ 0 for false. │ │ │ │ Options: │ │ │ │ --remainder: │ │ │ │ Tell the program to output the remainders of the divisions rather than │ │ │ │ outputting 0 or 1. │ │ │ │ --multiplier: │ │ │ │ Reads in a polynomial that will be multiplied to the polynomial to be divided │ │ │ │ before doing the division. │ │ │ │ -using temporary file /tmp/M2-37469-0/176 │ │ │ │ - -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-37469-0/178 │ │ │ │ +using temporary file /tmp/M2-59381-0/176 │ │ │ │ + -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-59381-0/178 │ │ │ │ This program takes two polyhedral fans and computes their common refinement. │ │ │ │ Options: │ │ │ │ -i1 value: │ │ │ │ Specify the name of the first input file. │ │ │ │ -i2 value: │ │ │ │ Specify the name of the second input file. │ │ │ │ --stable: │ │ │ │ Compute the stable intersection. │ │ │ │ -using temporary file /tmp/M2-37469-0/178 │ │ │ │ - -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-37469-0/180 │ │ │ │ +using temporary file /tmp/M2-59381-0/178 │ │ │ │ + -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-59381-0/180 │ │ │ │ This program takes a polyhedral fan and a vector and computes the link of the │ │ │ │ polyhedral fan around that vertex. The link will have lineality space dimension │ │ │ │ equal to the dimension of the relative open polyhedral cone of the original fan │ │ │ │ containing the vector. │ │ │ │ Options: │ │ │ │ -i value: │ │ │ │ Specify the name of the input file. │ │ │ │ --symmetry: │ │ │ │ Reads in a fan stored with symmetry. The generators of the symmetry group must │ │ │ │ be given on the standard input. │ │ │ │ │ │ │ │ --star: │ │ │ │ Computes the star instead. The star is defined as the smallest polyhedral fan │ │ │ │ containing all cones of the original fan containing the vector. │ │ │ │ -using temporary file /tmp/M2-37469-0/180 │ │ │ │ - -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-37469-0/182 │ │ │ │ +using temporary file /tmp/M2-59381-0/180 │ │ │ │ + -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-59381-0/182 │ │ │ │ This program takes two polyhedral fans and computes their product. │ │ │ │ Options: │ │ │ │ -i1 value: │ │ │ │ Specify the name of the first input file. │ │ │ │ -i2 value: │ │ │ │ Specify the name of the second input file. │ │ │ │ -using temporary file /tmp/M2-37469-0/182 │ │ │ │ - -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-37469-0/184 │ │ │ │ +using temporary file /tmp/M2-59381-0/182 │ │ │ │ + -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-59381-0/184 │ │ │ │ This program computes a Groebner cone. Three different cases are handled. The │ │ │ │ input may be a marked reduced Groebner basis in which case its Groebner cone is │ │ │ │ computed. The input may be just a marked minimal basis in which case the cone │ │ │ │ computed is not a Groebner cone in the usual sense but smaller. (These cones │ │ │ │ are described in [Fukuda, Jensen, Lauritzen, Thomas]). The third possible case │ │ │ │ is that the Groebner cone is possibly lower dimensional and given by a pair of │ │ │ │ Groebner bases as it is useful to do for tropical varieties, see option --pair. │ │ │ │ @@ -180,24 +180,24 @@ │ │ │ │ --asfan: │ │ │ │ Writes the cone as a polyhedral fan with all its faces instead. In this way │ │ │ │ the extreme rays of the cone are also computed. │ │ │ │ --vectorinput: │ │ │ │ Compute a cone given list of inequalities rather than a Groebner cone. The │ │ │ │ input is an integer which specifies the dimension of the ambient space, a list │ │ │ │ of inequalities given as vectors and a list of equations. │ │ │ │ -using temporary file /tmp/M2-37469-0/184 │ │ │ │ - -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-37469-0/186 │ │ │ │ +using temporary file /tmp/M2-59381-0/184 │ │ │ │ + -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-59381-0/186 │ │ │ │ This program computes the homogeneity space of a list of polynomials - as a │ │ │ │ cone. Thus generators for the homogeneity space are found in the section │ │ │ │ LINEALITY_SPACE. If you wish the homogeneity space of an ideal you should first │ │ │ │ compute a set of homogeneous generators and call the program on these. A │ │ │ │ reduced Groebner basis will always suffice for this purpose. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-37469-0/186 │ │ │ │ - -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-37469-0/188 │ │ │ │ +using temporary file /tmp/M2-59381-0/186 │ │ │ │ + -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-59381-0/188 │ │ │ │ This program homogenises a list of polynomials by introducing an extra │ │ │ │ variable. The name of the variable to be introduced is read from the input │ │ │ │ after the list of polynomials. Without the -w option the homogenisation is done │ │ │ │ with respect to total degree. │ │ │ │ Example: │ │ │ │ Input: │ │ │ │ Q[x,y]{y-1} │ │ │ │ @@ -213,16 +213,16 @@ │ │ │ │ Specify a homogenisation vector. The length of the vector must be the same as │ │ │ │ the number of variables in the ring. The vector is read from the input after │ │ │ │ the list of polynomials. │ │ │ │ │ │ │ │ -H: │ │ │ │ Let the name of the new variable be H rather than reading in a name from the │ │ │ │ input. │ │ │ │ -using temporary file /tmp/M2-37469-0/188 │ │ │ │ - -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-37469-0/190 │ │ │ │ +using temporary file /tmp/M2-59381-0/188 │ │ │ │ + -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-59381-0/190 │ │ │ │ This program converts a list of polynomials to a list of their initial forms │ │ │ │ with respect to the vector given after the list. │ │ │ │ Options: │ │ │ │ --ideal: │ │ │ │ Treat input as an ideal. This will make the program compute the initial ideal │ │ │ │ of the ideal generated by the input polynomials. The computation is done by │ │ │ │ computing a Groebner basis with respect to the given vector. The vector must be │ │ │ │ @@ -238,16 +238,16 @@ │ │ │ │ --mark: │ │ │ │ If the --pair option is and the --ideal option is not used this option will │ │ │ │ still make sure that the second output basis is marked consistently with the │ │ │ │ vector. │ │ │ │ --list: │ │ │ │ Read in a list of vectors instead of a single vector and produce a list of │ │ │ │ polynomial sets as output. │ │ │ │ -using temporary file /tmp/M2-37469-0/190 │ │ │ │ - -- running: /usr/bin/gfan _interactive --help < /tmp/M2-37469-0/192 │ │ │ │ +using temporary file /tmp/M2-59381-0/190 │ │ │ │ + -- running: /usr/bin/gfan _interactive --help < /tmp/M2-59381-0/192 │ │ │ │ This is a program for doing interactive walks in the Groebner fan of an ideal. │ │ │ │ The input is a Groebner basis defining the starting Groebner cone of the walk. │ │ │ │ The program will list all flippable facets of the Groebner cone and ask the │ │ │ │ user to choose one. The user types in the index (number) of the facet in the │ │ │ │ list. The program will walk through the selected facet and display the new │ │ │ │ Groebner basis and a list of new facet normals for the user to choose from. │ │ │ │ Since the program reads the user's choices through the the standard input it is │ │ │ │ @@ -277,54 +277,54 @@ │ │ │ │ -W: │ │ │ │ Print weight vector. This will make the program print an interior vector of │ │ │ │ the current Groebner cone and a relative interior point for each flippable │ │ │ │ facet of the current Groebner cone. │ │ │ │ │ │ │ │ --tropical: │ │ │ │ Traverse a tropical variety interactively. │ │ │ │ -using temporary file /tmp/M2-37469-0/192 │ │ │ │ - -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-37469-0/194 │ │ │ │ +using temporary file /tmp/M2-59381-0/192 │ │ │ │ + -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-59381-0/194 │ │ │ │ This program checks if a set of marked polynomials is a Groebner basis with │ │ │ │ respect to its marking. First it is checked if the markings are consistent with │ │ │ │ respect to a positive vector. Then Buchberger's S-criterion is checked. The │ │ │ │ output is boolean value. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-37469-0/194 │ │ │ │ - -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-37469-0/196 │ │ │ │ +using temporary file /tmp/M2-59381-0/194 │ │ │ │ + -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-59381-0/196 │ │ │ │ Takes an ideal $I$ and computes the Krull dimension of R/I where R is the │ │ │ │ polynomial ring. This is done by first computing a Groebner basis. │ │ │ │ Options: │ │ │ │ -g: │ │ │ │ Tell the program that the input is already a reduced Groebner basis. │ │ │ │ -using temporary file /tmp/M2-37469-0/196 │ │ │ │ - -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-37469-0/198 │ │ │ │ +using temporary file /tmp/M2-59381-0/196 │ │ │ │ + -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-59381-0/198 │ │ │ │ This program computes the lattice ideal of a lattice. The input is a list of │ │ │ │ generators for the lattice. │ │ │ │ Options: │ │ │ │ -t: │ │ │ │ Compute the toric ideal of the matrix whose rows are given on the input │ │ │ │ instead. │ │ │ │ --convert: │ │ │ │ Does not do any computation, but just converts the vectors to binomials. │ │ │ │ -using temporary file /tmp/M2-37469-0/198 │ │ │ │ - -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-37469-0/200 │ │ │ │ +using temporary file /tmp/M2-59381-0/198 │ │ │ │ + -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-59381-0/200 │ │ │ │ This program converts a list of polynomials to a list of their leading terms. │ │ │ │ Options: │ │ │ │ -m: │ │ │ │ Do the same thing for a list of polynomial sets. That is, output the set of │ │ │ │ sets of leading terms. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-37469-0/200 │ │ │ │ - -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-37469-0/202 │ │ │ │ +using temporary file /tmp/M2-59381-0/200 │ │ │ │ + -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-59381-0/202 │ │ │ │ This program marks a set of polynomials with respect to the vector given at the │ │ │ │ end of the input, meaning that the largest terms are moved to the front. In │ │ │ │ case of a tie the lexicographic term order with $a>b>c...$ is used to break it. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-37469-0/202 │ │ │ │ - -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-37469-0/204 │ │ │ │ +using temporary file /tmp/M2-59381-0/202 │ │ │ │ + -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-59381-0/204 │ │ │ │ This is a program for computing the normal fan of the Minkowski sum of the │ │ │ │ Newton polytopes of a list of polynomials. │ │ │ │ Options: │ │ │ │ --symmetry: │ │ │ │ Tells the program to read in generators for a group of symmetries (subgroup of │ │ │ │ $S_n$) after having read in the ideal. The program checks that the ideal stays │ │ │ │ fixed when permuting the variables with respect to elements in the group. The │ │ │ │ @@ -334,16 +334,16 @@ │ │ │ │ --disableSymmetryTest: │ │ │ │ When using --symmetry this option will disable the check that the group read │ │ │ │ off from the input actually is a symmetry group with respect to the input │ │ │ │ ideal. │ │ │ │ │ │ │ │ --nocones: │ │ │ │ Tell the program to not list cones in the output. │ │ │ │ -using temporary file /tmp/M2-37469-0/204 │ │ │ │ - -- running: /usr/bin/gfan _minors --help < /tmp/M2-37469-0/206 │ │ │ │ +using temporary file /tmp/M2-59381-0/204 │ │ │ │ + -- running: /usr/bin/gfan _minors --help < /tmp/M2-59381-0/206 │ │ │ │ This program will generate the r*r minors of a d*n matrix of indeterminates. │ │ │ │ Options: │ │ │ │ -r value: │ │ │ │ Specify r. │ │ │ │ -d value: │ │ │ │ Specify d. │ │ │ │ -n value: │ │ │ │ @@ -361,16 +361,16 @@ │ │ │ │ Produces a list of generators for the group of symmetries keeping the set of │ │ │ │ minors fixed. (Only without --names). │ │ │ │ --parametrize: │ │ │ │ Parametrize the set of d times n matrices of Barvinok rank less than or equal │ │ │ │ to r-1 by a list of tropical polynomials. │ │ │ │ --ultrametric: │ │ │ │ Produce tropical equations cutting out the ultrametrics. │ │ │ │ -using temporary file /tmp/M2-37469-0/206 │ │ │ │ - -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-37469-0/208 │ │ │ │ +using temporary file /tmp/M2-59381-0/206 │ │ │ │ + -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-59381-0/208 │ │ │ │ This program computes the mixed volume of the Newton polytopes of a list of │ │ │ │ polynomials. The ring is specified on the input. After this follows the list of │ │ │ │ polynomials. │ │ │ │ Options: │ │ │ │ --vectorinput: │ │ │ │ Read in a list of point configurations instead of a polynomial ring and a list │ │ │ │ of polynomials. │ │ │ │ @@ -384,25 +384,25 @@ │ │ │ │ Use Katsura-n example instead of reading input. │ │ │ │ --gaukwa value: │ │ │ │ Use Gaukwa-n example instead of reading input. │ │ │ │ --eco value: │ │ │ │ Use Eco-n example instead of reading input. │ │ │ │ -j value: │ │ │ │ Number of threads │ │ │ │ -using temporary file /tmp/M2-37469-0/208 │ │ │ │ - -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-37469-0/210 │ │ │ │ +using temporary file /tmp/M2-59381-0/208 │ │ │ │ + -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-59381-0/210 │ │ │ │ This program computes the union of a list of polynomial sets given as input. │ │ │ │ The polynomials must all belong to the same ring. The ring is specified on the │ │ │ │ input. After this follows the list of polynomial sets. │ │ │ │ Options: │ │ │ │ -s: │ │ │ │ Sort output by degree. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-37469-0/210 │ │ │ │ - -- running: /usr/bin/gfan _render --help < /tmp/M2-37469-0/212 │ │ │ │ +using temporary file /tmp/M2-59381-0/210 │ │ │ │ + -- running: /usr/bin/gfan _render --help < /tmp/M2-59381-0/212 │ │ │ │ This program renders a Groebner fan as an xfig file. To be more precise, the │ │ │ │ input is the list of all reduced Groebner bases of an ideal. The output is a │ │ │ │ drawing of the Groebner fan intersected with a triangle. The corners of the │ │ │ │ triangle are (1,0,0) to the right, (0,1,0) to the left and (0,0,1) at the top. │ │ │ │ If there are more than three variables in the ring these coordinates are │ │ │ │ extended with zeros. It is possible to shift the 1 entry cyclic with the option │ │ │ │ --shiftVariables. │ │ │ │ @@ -410,16 +410,16 @@ │ │ │ │ -L: │ │ │ │ Make the triangle larger so that the shape of the Groebner region appears. │ │ │ │ --shiftVariables value: │ │ │ │ Shift the positions of the variables in the drawing. For example with the │ │ │ │ value equal to 1 the corners will be right: (0,1,0,0,...), left: (0,0,1,0,...) │ │ │ │ and top: (0,0,0,1,...). The shifting is done modulo the number of variables in │ │ │ │ the polynomial ring. The default value is 0. │ │ │ │ -using temporary file /tmp/M2-37469-0/212 │ │ │ │ - -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-37469-0/214 │ │ │ │ +using temporary file /tmp/M2-59381-0/212 │ │ │ │ + -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-59381-0/214 │ │ │ │ This program renders a staircase diagram of a monomial initial ideal to an xfig │ │ │ │ file. The input is a Groebner basis of a (not necessarily monomial) polynomial │ │ │ │ ideal. The initial ideal is given by the leading terms in the Groebner basis. │ │ │ │ Using the -m option it is possible to render more than one staircase diagram. │ │ │ │ The program only works for ideals in a polynomial ring with three variables. │ │ │ │ Options: │ │ │ │ -m: │ │ │ │ @@ -432,16 +432,16 @@ │ │ │ │ number is large enough to give a correct picture of the standard monomials. The │ │ │ │ default value is 8. │ │ │ │ │ │ │ │ -w value: │ │ │ │ Width. Specifies the number of staircase diagrams per row in the xfig file. │ │ │ │ The default value is 5. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-37469-0/214 │ │ │ │ - -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-37469-0/216 │ │ │ │ +using temporary file /tmp/M2-59381-0/214 │ │ │ │ + -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-59381-0/216 │ │ │ │ This program computes the resultant fan as defined in "Computing Tropical │ │ │ │ Resultants" by Jensen and Yu. The input is a polynomial ring followed by │ │ │ │ polynomials, whose coefficients are ignored. The output is the fan of │ │ │ │ coefficients such that the input system has a tropical solution. │ │ │ │ Options: │ │ │ │ --codimension: │ │ │ │ Compute only the codimension of the resultant fan and return. │ │ │ │ @@ -469,28 +469,28 @@ │ │ │ │ of polynomials. │ │ │ │ │ │ │ │ --projection: │ │ │ │ Use the projection method to compute the resultant fan. This works only if the │ │ │ │ resultant fan is a hypersurface. If this option is combined with --special, │ │ │ │ then the output fan lives in the subspace of the non-specialized coordinates. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-37469-0/216 │ │ │ │ - -- running: /usr/bin/gfan _saturation --help < /tmp/M2-37469-0/218 │ │ │ │ +using temporary file /tmp/M2-59381-0/216 │ │ │ │ + -- running: /usr/bin/gfan _saturation --help < /tmp/M2-59381-0/218 │ │ │ │ This program computes the saturation of the input ideal with the product of the │ │ │ │ variables x_1,...,x_n. The ideal does not have to be homogeneous. │ │ │ │ Options: │ │ │ │ -h: │ │ │ │ Tell the program that the input is a homogeneous ideal (with homogeneous │ │ │ │ generators). │ │ │ │ │ │ │ │ --noideal: │ │ │ │ Do not treat input as an ideal but just factor out common monomial factors of │ │ │ │ the input polynomials. │ │ │ │ -using temporary file /tmp/M2-37469-0/218 │ │ │ │ - -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-37469-0/220 │ │ │ │ +using temporary file /tmp/M2-59381-0/218 │ │ │ │ + -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-59381-0/220 │ │ │ │ This program computes the secondary fan of a vector configuration. The │ │ │ │ configuration is given as an ordered list of vectors. In order to compute the │ │ │ │ secondary fan of a point configuration an additional coordinate of ones must be │ │ │ │ added. For example {(1,0),(1,1),(1,2),(1,3)}. │ │ │ │ Options: │ │ │ │ --unimodular: │ │ │ │ Use heuristics to search for unimodular triangulation rather than computing │ │ │ │ @@ -519,103 +519,103 @@ │ │ │ │ Tells the program not to output the CONES and MAXIMAL_CONES sections, but │ │ │ │ still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is │ │ │ │ used. │ │ │ │ --interrupt value: │ │ │ │ Interrupt the enumeration after a specified number of facets have been │ │ │ │ computed (works for usual symmetric traversals, but may not work in general for │ │ │ │ non-symmetric traversals or for traversals restricted to fans). │ │ │ │ -using temporary file /tmp/M2-37469-0/220 │ │ │ │ - -- running: /usr/bin/gfan _stats --help < /tmp/M2-37469-0/222 │ │ │ │ +using temporary file /tmp/M2-59381-0/220 │ │ │ │ + -- running: /usr/bin/gfan _stats --help < /tmp/M2-59381-0/222 │ │ │ │ This program takes a list of reduced Groebner bases for the same ideal and │ │ │ │ computes various statistics. The following information is listed: the number of │ │ │ │ bases in the input, the number of variables, the dimension of the homogeneity │ │ │ │ space, the maximal total degree of any polynomial in the input and the minimal │ │ │ │ total degree of any basis in the input, the maximal number of polynomials and │ │ │ │ terms in a basis in the input. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-37469-0/222 │ │ │ │ - -- running: /usr/bin/gfan _substitute --help < /tmp/M2-37469-0/224 │ │ │ │ +using temporary file /tmp/M2-59381-0/222 │ │ │ │ + -- running: /usr/bin/gfan _substitute --help < /tmp/M2-59381-0/224 │ │ │ │ This program changes the variable names of a polynomial ring. The input is a │ │ │ │ polynomial ring, a polynomial set in the ring and a new polynomial ring with │ │ │ │ the same coefficient field but different variable names. The output is the │ │ │ │ polynomial set written with the variable names of the second polynomial ring. │ │ │ │ Example: │ │ │ │ Input: │ │ │ │ Q[a,b,c,d]{2a-3b,c+d}Q[b,a,c,x] │ │ │ │ Output: │ │ │ │ Q[b,a,c,x]{2*b-3*a,c+x} │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-37469-0/224 │ │ │ │ - -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-37469-0/226 │ │ │ │ +using temporary file /tmp/M2-59381-0/224 │ │ │ │ + -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-59381-0/226 │ │ │ │ This program converts ASCII math to TeX math. The data-type is specified by the │ │ │ │ options. │ │ │ │ Options: │ │ │ │ -h: │ │ │ │ Add a header to the output. Using this option the output will be LaTeXable │ │ │ │ right away. │ │ │ │ --polynomialset_: │ │ │ │ The data to be converted is a list of polynomials. │ │ │ │ --polynomialsetlist_: │ │ │ │ The data to be converted is a list of lists of polynomials. │ │ │ │ -using temporary file /tmp/M2-37469-0/226 │ │ │ │ - -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-37469-0/228 │ │ │ │ +using temporary file /tmp/M2-59381-0/226 │ │ │ │ + -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-59381-0/228 │ │ │ │ This program takes a list of reduced Groebner bases and produces the fan of all │ │ │ │ faces of these. In this way by giving the complete list of reduced Groebner │ │ │ │ bases, the Groebner fan can be computed as a polyhedral complex. The option -- │ │ │ │ restrict lets the user choose between computing the Groebner fan or the │ │ │ │ restricted Groebner fan. │ │ │ │ Options: │ │ │ │ --restrict: │ │ │ │ Add an inequality for each coordinate, so that the the cones are restricted to │ │ │ │ the non-negative orthant. │ │ │ │ --symmetry: │ │ │ │ Tell the program to read in generators for a group of symmetries (subgroup of │ │ │ │ $S_n$) after having read in the ring. The output is grouped according to these │ │ │ │ symmetries. Only one representative for each orbit is needed on the input. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-37469-0/228 │ │ │ │ - -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-37469-0/230 │ │ │ │ +using temporary file /tmp/M2-59381-0/228 │ │ │ │ + -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-59381-0/230 │ │ │ │ This program computes a tropical basis for an ideal defining a tropical curve. │ │ │ │ Defining a tropical curve means that the Krull dimension of R/I is at most 1 + │ │ │ │ the dimension of the homogeneity space of I where R is the polynomial ring. The │ │ │ │ input is a generating set for the ideal. If the input is not homogeneous option │ │ │ │ -h must be used. │ │ │ │ Options: │ │ │ │ -h: │ │ │ │ Homogenise the input before computing a tropical basis and dehomogenise the │ │ │ │ output. This is needed if the input generators are not already homogeneous. │ │ │ │ -using temporary file /tmp/M2-37469-0/230 │ │ │ │ - -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-37469-0/232 │ │ │ │ +using temporary file /tmp/M2-59381-0/230 │ │ │ │ + -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-59381-0/232 │ │ │ │ This program takes a marked reduced Groebner basis for a homogeneous ideal and │ │ │ │ computes the tropical variety of the ideal as a subfan of the Groebner fan. The │ │ │ │ program is slow but works for any homogeneous ideal. If you know that your │ │ │ │ ideal is prime over the complex numbers or you simply know that its tropical │ │ │ │ variety is pure and connected in codimension one then use │ │ │ │ gfan_tropicalstartingcone and gfan_tropicaltraverse instead. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-37469-0/232 │ │ │ │ - -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-37469-0/234 │ │ │ │ +using temporary file /tmp/M2-59381-0/232 │ │ │ │ + -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-59381-0/234 │ │ │ │ This program evaluates a tropical polynomial function in a given set of points. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-37469-0/234 │ │ │ │ - -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-37469-0/236 │ │ │ │ +using temporary file /tmp/M2-59381-0/234 │ │ │ │ + -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-59381-0/236 │ │ │ │ This program takes a polynomial and tropicalizes it. The output is piecewise │ │ │ │ linear function represented by a fan whose cones are the linear regions. Each │ │ │ │ ray of the fan gets the value of the tropical function assigned to it. In other │ │ │ │ words this program computes the normal fan of the Newton polytope of the input │ │ │ │ polynomial with additional information.Options: │ │ │ │ --exponents: │ │ │ │ Tell program to read a list of exponent vectors instead. │ │ │ │ -using temporary file /tmp/M2-37469-0/236 │ │ │ │ - -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-37469-0/238 │ │ │ │ +using temporary file /tmp/M2-59381-0/236 │ │ │ │ + -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-59381-0/238 │ │ │ │ This program computes the tropical hypersurface defined by a principal ideal. │ │ │ │ The input is the polynomial ring followed by a set containing just a generator │ │ │ │ of the ideal.Options: │ │ │ │ -using temporary file /tmp/M2-37469-0/238 │ │ │ │ - -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-37469-0/240 │ │ │ │ +using temporary file /tmp/M2-59381-0/238 │ │ │ │ + -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-59381-0/240 │ │ │ │ This program computes the set theoretical intersection of a set of tropical │ │ │ │ hypersurfaces (or to be precise, their common refinement as a fan). The input │ │ │ │ is a list of polynomials with each polynomial defining a hypersurface. │ │ │ │ Considering tropical hypersurfaces as fans, the intersection can be computed as │ │ │ │ the common refinement of these. Thus the output is a fan whose support is the │ │ │ │ intersection of the tropical hypersurfaces. │ │ │ │ Options: │ │ │ │ @@ -652,16 +652,16 @@ │ │ │ │ --stable: │ │ │ │ Find the stable intersection of the input polynomials using tropical │ │ │ │ intersection theory. This can be slow. Most other options are ignored. │ │ │ │ --parameters value: │ │ │ │ With this option you can specify how many variables to treat as parameters │ │ │ │ instead of variables. This makes it possible to do computations where the │ │ │ │ coefficient field is the field of rational functions in the parameters. │ │ │ │ -using temporary file /tmp/M2-37469-0/240 │ │ │ │ - -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-37469-0/242 │ │ │ │ +using temporary file /tmp/M2-59381-0/240 │ │ │ │ + -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-59381-0/242 │ │ │ │ This program is part of the Puiseux lifting algorithm implemented in Gfan and │ │ │ │ Singular. The Singular part of the implementation can be found in: │ │ │ │ │ │ │ │ Anders Nedergaard Jensen, Hannah Markwig, Thomas Markwig: │ │ │ │ tropical.lib. A SINGULAR 3.0 library for computations in tropical geometry, │ │ │ │ 2007 │ │ │ │ │ │ │ │ @@ -689,54 +689,54 @@ │ │ │ │ Options: │ │ │ │ --noMult: │ │ │ │ Disable the multiplicity computation. │ │ │ │ -n value: │ │ │ │ Number of variables that should have negative weight. │ │ │ │ -c: │ │ │ │ Only output a list of vectors being the possible choices. │ │ │ │ -using temporary file /tmp/M2-37469-0/242 │ │ │ │ - -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-37469-0/244 │ │ │ │ +using temporary file /tmp/M2-59381-0/242 │ │ │ │ + -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-59381-0/244 │ │ │ │ This program generates tropical equations for a tropical linear space in the │ │ │ │ Speyer sense given the tropical Pluecker coordinates as input. │ │ │ │ Options: │ │ │ │ -d value: │ │ │ │ Specify d. │ │ │ │ -n value: │ │ │ │ Specify n. │ │ │ │ --trees: │ │ │ │ list the boundary trees (assumes d=3) │ │ │ │ -using temporary file /tmp/M2-37469-0/244 │ │ │ │ - -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-37469-0/246 │ │ │ │ +using temporary file /tmp/M2-59381-0/244 │ │ │ │ + -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-59381-0/246 │ │ │ │ This program computes the multiplicity of a tropical cone given a marked │ │ │ │ reduced Groebner basis for its initial ideal. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-37469-0/246 │ │ │ │ - -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-37469-0/248 │ │ │ │ +using temporary file /tmp/M2-59381-0/246 │ │ │ │ + -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-59381-0/248 │ │ │ │ This program will compute the tropical rank of matrix given as input. Tropical │ │ │ │ addition is MAXIMUM. │ │ │ │ Options: │ │ │ │ --kapranov: │ │ │ │ Compute Kapranov rank instead of tropical rank. │ │ │ │ --determinant: │ │ │ │ Compute the tropical determinant instead. │ │ │ │ -using temporary file /tmp/M2-37469-0/248 │ │ │ │ - -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-37469-0/250 │ │ │ │ +using temporary file /tmp/M2-59381-0/248 │ │ │ │ + -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-59381-0/250 │ │ │ │ This program computes a starting pair of marked reduced Groebner bases to be │ │ │ │ used as input for gfan_tropicaltraverse. The input is a homogeneous ideal whose │ │ │ │ tropical variety is a pure d-dimensional polyhedral complex. │ │ │ │ Options: │ │ │ │ -g: │ │ │ │ Tell the program that the input is already a reduced Groebner basis. │ │ │ │ -d: │ │ │ │ Output dimension information to standard error. │ │ │ │ --stable: │ │ │ │ Find starting cone in the stable intersection or, equivalently, pretend that │ │ │ │ the coefficients are genereric. │ │ │ │ -using temporary file /tmp/M2-37469-0/250 │ │ │ │ - -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-37469-0/252 │ │ │ │ +using temporary file /tmp/M2-59381-0/250 │ │ │ │ + -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-59381-0/252 │ │ │ │ This program computes a polyhedral fan representation of the tropical variety │ │ │ │ of a homogeneous prime ideal $I$. Let $d$ be the Krull dimension of $I$ and let │ │ │ │ $\omega$ be a relative interior point of $d$-dimensional Groebner cone │ │ │ │ contained in the tropical variety. The input for this program is a pair of │ │ │ │ marked reduced Groebner bases with respect to the term order represented by │ │ │ │ $\omega$, tie-broken in some way. The first one is for the initial ideal │ │ │ │ $in_\omega(I)$ the second one for $I$ itself. The pair is the starting point │ │ │ │ @@ -766,27 +766,27 @@ │ │ │ │ --stable: │ │ │ │ Traverse the stable intersection or, equivalently, pretend that the │ │ │ │ coefficients are genereric. │ │ │ │ --interrupt value: │ │ │ │ Interrupt the enumeration after a specified number of facets have been │ │ │ │ computed (works for usual symmetric traversals, but may not work in general for │ │ │ │ non-symmetric traversals or for traversals restricted to fans). │ │ │ │ -using temporary file /tmp/M2-37469-0/252 │ │ │ │ - -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-37469-0/254 │ │ │ │ +using temporary file /tmp/M2-59381-0/252 │ │ │ │ + -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-59381-0/254 │ │ │ │ This program computes the tropical Weil divisor of piecewise linear (or │ │ │ │ tropical rational) function on a tropical k-cycle. See the Gfan manual for more │ │ │ │ information. │ │ │ │ Options: │ │ │ │ -i1 value: │ │ │ │ Specify the name of the Polymake input file containing the k-cycle. │ │ │ │ -i2 value: │ │ │ │ Specify the name of the Polymake input file containing the piecewise linear │ │ │ │ function. │ │ │ │ -using temporary file /tmp/M2-37469-0/254 │ │ │ │ - -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-37469-0/256 │ │ │ │ +using temporary file /tmp/M2-59381-0/254 │ │ │ │ + -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-59381-0/256 │ │ │ │ This program is an experimental implementation of Groebner bases for ideals in │ │ │ │ Z[x_1,...,x_n]. │ │ │ │ Several operations are supported by specifying the appropriate option: │ │ │ │ (1) computation of the reduced Groebner basis with respect to a given vector │ │ │ │ (tiebroken lexicographically), │ │ │ │ (2) computation of an initial ideal, │ │ │ │ (3) computation of the Groebner fan, │ │ │ │ @@ -821,20 +821,20 @@ │ │ │ │ For the operations taking a vector as input, read in a list of vectors │ │ │ │ instead, and perform the operation for each vector in the list. │ │ │ │ -g: │ │ │ │ Tells the program that the input is already a Groebner basis (with the initial │ │ │ │ term of each polynomial being the first ones listed). Use this option if the │ │ │ │ usual --groebnerFan is too slow. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-37469-0/256 │ │ │ │ +using temporary file /tmp/M2-59381-0/256 │ │ │ │ i6 : QQ[x,y]; │ │ │ │ i7 : gfan {x,y}; │ │ │ │ - -- running: /usr/bin/gfan _bases < /tmp/M2-37469-0/258 │ │ │ │ + -- running: /usr/bin/gfan _bases < /tmp/M2-59381-0/258 │ │ │ │ Q[x1,x2] │ │ │ │ {{ │ │ │ │ x2, │ │ │ │ x1} │ │ │ │ } │ │ │ │ -using temporary file /tmp/M2-37469-0/258 │ │ │ │ +using temporary file /tmp/M2-59381-0/258 │ │ │ │ Finally, if you want to be able to render Groebner fans and monomial staircases │ │ │ │ to .png files, you should install fig2dev. If it is installed in a non-standard │ │ │ │ location, then you may specify its path using _p_r_o_g_r_a_m_P_a_t_h_s. │ │ ├── ./usr/share/info/AInfinity.info.gz │ │ │ ├── AInfinity.info │ │ │ │ @@ -6047,15 +6047,15 @@ │ │ │ │ 000179e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000179f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00017a10: 3320 3a20 656c 6170 7365 6454 696d 6520 3 : elapsedTime │ │ │ │ 00017a20: 6275 726b 6552 6573 6f6c 7574 696f 6e28 burkeResolution( │ │ │ │ 00017a30: 4d2c 2037 2c20 4368 6563 6b20 3d3e 2066 M, 7, Check => f │ │ │ │ 00017a40: 616c 7365 2920 2020 2020 2020 2020 2020 alse) │ │ │ │ -00017a50: 7c0a 7c20 2d2d 2031 2e36 3332 3132 7320 |.| -- 1.63212s │ │ │ │ +00017a50: 7c0a 7c20 2d2d 2032 2e37 3135 3537 7320 |.| -- 2.71557s │ │ │ │ 00017a60: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ 00017a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00017aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -6089,16 +6089,16 @@ │ │ │ │ 00017c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017cb0: 2d2d 2d2d 2b0a 7c69 3420 3a20 656c 6170 ----+.|i4 : elap │ │ │ │ 00017cc0: 7365 6454 696d 6520 6275 726b 6552 6573 sedTime burkeRes │ │ │ │ 00017cd0: 6f6c 7574 696f 6e28 4d2c 2037 2c20 4368 olution(M, 7, Ch │ │ │ │ 00017ce0: 6563 6b20 3d3e 2074 7275 6529 2020 2020 eck => true) │ │ │ │ -00017cf0: 2020 2020 2020 2020 7c0a 7c20 2d2d 2031 |.| -- 1 │ │ │ │ -00017d00: 2e39 3337 3832 7320 656c 6170 7365 6420 .93782s elapsed │ │ │ │ +00017cf0: 2020 2020 2020 2020 7c0a 7c20 2d2d 2033 |.| -- 3 │ │ │ │ +00017d00: 2e33 3838 3936 7320 656c 6170 7365 6420 .38896s elapsed │ │ │ │ 00017d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00017d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/AbstractSimplicialComplexes.info.gz │ │ │ ├── AbstractSimplicialComplexes.info │ │ │ │ @@ -1782,19 +1782,19 @@ │ │ │ │ 00006f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006f70: 2020 2020 7c0a 7c6f 3220 3d20 4162 7374 |.|o2 = Abst │ │ │ │ 00006f80: 7261 6374 5369 6d70 6c69 6369 616c 436f ractSimplicialCo │ │ │ │ 00006f90: 6d70 6c65 787b 2d31 203d 3e20 7b7b 7d7d mplex{-1 => {{}} │ │ │ │ 00006fa0: 2020 2020 207d 7c0a 7c20 2020 2020 2020 }|.| │ │ │ │ 00006fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006fc0: 2020 2020 2020 2020 3020 3d3e 207b 7b32 0 => {{2 │ │ │ │ -00006fd0: 7d2c 207b 337d 7d20 7c0a 7c20 2020 2020 }, {3}} |.| │ │ │ │ +00006fc0: 2020 2020 2020 2020 3020 3d3e 207b 7b33 0 => {{3 │ │ │ │ +00006fd0: 7d2c 207b 347d 7d20 7c0a 7c20 2020 2020 }, {4}} |.| │ │ │ │ 00006fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006ff0: 2020 2020 2020 2020 2020 3120 3d3e 207b 1 => { │ │ │ │ -00007000: 7b32 2c20 337d 7d20 2020 7c0a 7c20 2020 {2, 3}} |.| │ │ │ │ +00007000: 7b33 2c20 347d 7d20 2020 7c0a 7c20 2020 {3, 4}} |.| │ │ │ │ 00007010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007030: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ 00007040: 3220 3a20 4162 7374 7261 6374 5369 6d70 2 : AbstractSimp │ │ │ │ 00007050: 6c69 6369 616c 436f 6d70 6c65 7820 2020 licialComplex │ │ │ │ 00007060: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00007070: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ @@ -1832,3601 +1832,3633 @@ │ │ │ │ 00007270: 6e64 6f6d 2073 696d 706c 6963 6961 6c20 ndom simplicial │ │ │ │ 00007280: 636f 6d70 6c65 7820 6f6e 205b 6e5d 2077 complex on [n] w │ │ │ │ 00007290: 6974 6820 6469 6d65 6e73 696f 6e20 6174 ith dimension at │ │ │ │ 000072a0: 206d 6f73 7420 6571 7561 6c20 746f 2072 most equal to r │ │ │ │ 000072b0: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ 000072c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000072d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000072e0: 2d2d 2d2b 0a7c 6934 203a 2073 6574 5261 ---+.|i4 : setRa │ │ │ │ -000072f0: 6e64 6f6d 5365 6564 2863 7572 7265 6e74 ndomSeed(current │ │ │ │ -00007300: 5469 6d65 2829 293b 2020 2020 2020 2020 Time()); │ │ │ │ -00007310: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00007320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007340: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 204c -------+.|i5 : L │ │ │ │ -00007350: 203d 2072 616e 646f 6d41 6273 7472 6163 = randomAbstrac │ │ │ │ -00007360: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ -00007370: 6578 2836 2c33 2920 207c 0a7c 2020 2020 ex(6,3) |.| │ │ │ │ -00007380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000073a0: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ -000073b0: 203d 2041 6273 7472 6163 7453 696d 706c = AbstractSimpl │ │ │ │ -000073c0: 6963 6961 6c43 6f6d 706c 6578 7b2d 3120 icialComplex{-1 │ │ │ │ -000073d0: 3d3e 207b 7b7d 7d20 2020 2020 7d7c 0a7c => {{}} }|.| │ │ │ │ +000072e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000072f0: 2d2b 0a7c 6934 203a 2073 6574 5261 6e64 -+.|i4 : setRand │ │ │ │ +00007300: 6f6d 5365 6564 2863 7572 7265 6e74 5469 omSeed(currentTi │ │ │ │ +00007310: 6d65 2829 293b 2020 2020 2020 2020 2020 me()); │ │ │ │ +00007320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007330: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00007340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007370: 2d2b 0a7c 6935 203a 204c 203d 2072 616e -+.|i5 : L = ran │ │ │ │ +00007380: 646f 6d41 6273 7472 6163 7453 696d 706c domAbstractSimpl │ │ │ │ +00007390: 6963 6961 6c43 6f6d 706c 6578 2836 2c33 icialComplex(6,3 │ │ │ │ +000073a0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +000073b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000073c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000073d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000073e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000073f0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00007400: 203d 3e20 7b7b 337d 2c20 7b36 7d7d 207c => {{3}, {6}} | │ │ │ │ -00007410: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000073f0: 207c 0a7c 6f35 203d 2041 6273 7472 6163 |.|o5 = Abstrac │ │ │ │ +00007400: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ +00007410: 6578 7b2d 3120 3d3e 207b 7b7d 7d20 2020 ex{-1 => {{}} │ │ │ │ 00007420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007430: 2031 203d 3e20 7b7b 332c 2036 7d7d 2020 1 => {{3, 6}} │ │ │ │ -00007440: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00007450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007470: 2020 207c 0a7c 6f35 203a 2041 6273 7472 |.|o5 : Abstr │ │ │ │ -00007480: 6163 7453 696d 706c 6963 6961 6c43 6f6d actSimplicialCom │ │ │ │ -00007490: 706c 6578 2020 2020 2020 2020 2020 2020 plex │ │ │ │ -000074a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -000074b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000074c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000074d0: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2070 -------+.|i6 : p │ │ │ │ -000074e0: 7275 6e65 2048 4820 7369 6d70 6c69 6369 rune HH simplici │ │ │ │ -000074f0: 616c 4368 6169 6e43 6f6d 706c 6578 204c alChainComplex L │ │ │ │ -00007500: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00007430: 7d7c 0a7c 2020 2020 2020 2020 2020 2020 }|.| │ │ │ │ +00007440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007450: 2020 2030 203d 3e20 7b7b 327d 2c20 7b33 0 => {{2}, {3 │ │ │ │ +00007460: 7d2c 207b 367d 7d20 2020 2020 2020 2020 }, {6}} │ │ │ │ +00007470: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00007480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007490: 2020 2031 203d 3e20 7b7b 322c 2033 7d2c 1 => {{2, 3}, │ │ │ │ +000074a0: 207b 322c 2036 7d2c 207b 332c 2036 7d7d {2, 6}, {3, 6}} │ │ │ │ +000074b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000074c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000074d0: 2020 2032 203d 3e20 7b7b 322c 2033 2c20 2 => {{2, 3, │ │ │ │ +000074e0: 367d 7d20 2020 2020 2020 2020 2020 2020 6}} │ │ │ │ +000074f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00007500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007530: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00007540: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ -00007550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007560: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00007570: 6f36 203d 205a 5a20 2020 2020 2020 2020 o6 = ZZ │ │ │ │ -00007580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007590: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000075a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000075b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000075c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000075d0: 207c 0a7c 2020 2020 2030 2020 2020 2020 |.| 0 │ │ │ │ +00007530: 207c 0a7c 6f35 203a 2041 6273 7472 6163 |.|o5 : Abstrac │ │ │ │ +00007540: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ +00007550: 6578 2020 2020 2020 2020 2020 2020 2020 ex │ │ │ │ +00007560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007570: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00007580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000075a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000075b0: 2d2b 0a7c 6936 203a 2070 7275 6e65 2048 -+.|i6 : prune H │ │ │ │ +000075c0: 4820 7369 6d70 6c69 6369 616c 4368 6169 H simplicialChai │ │ │ │ +000075d0: 6e43 6f6d 706c 6578 204c 2020 2020 2020 nComplex L │ │ │ │ 000075e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000075f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007600: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000075f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00007600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007630: 2020 2020 207c 0a7c 6f36 203a 2043 6f6d |.|o6 : Com │ │ │ │ -00007640: 706c 6578 2020 2020 2020 2020 2020 2020 plex │ │ │ │ +00007630: 207c 0a7c 2020 2020 2020 2031 2020 2020 |.| 1 │ │ │ │ +00007640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007660: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -00007670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007690: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4372 6561 ---------+..Crea │ │ │ │ -000076a0: 7465 2074 6865 2072 616e 646f 6d20 636f te the random co │ │ │ │ -000076b0: 6d70 6c65 7820 595f 6428 6e2c 6d29 2077 mplex Y_d(n,m) w │ │ │ │ -000076c0: 6869 6368 2068 6173 2076 6572 7465 7820 hich has vertex │ │ │ │ -000076d0: 7365 7420 5b6e 5d20 616e 6420 636f 6d70 set [n] and comp │ │ │ │ -000076e0: 6c65 7465 2028 6420 e288 920a 3129 2d73 lete (d ....1)-s │ │ │ │ -000076f0: 6b65 6c65 746f 6e2c 2061 6e64 2068 6173 keleton, and has │ │ │ │ -00007700: 2065 7861 6374 6c79 206d 2064 696d 656e exactly m dimen │ │ │ │ -00007710: 7369 6f6e 2064 2066 6163 6573 2c20 6368 sion d faces, ch │ │ │ │ -00007720: 6f73 656e 2061 7420 7261 6e64 6f6d 2066 osen at random f │ │ │ │ -00007730: 726f 6d20 616c 6c0a 6269 6e6f 6d69 616c rom all.binomial │ │ │ │ -00007740: 2862 696e 6f6d 6961 6c28 6e2c 642b 3129 (binomial(n,d+1) │ │ │ │ -00007750: 2c6d 2920 706f 7373 6962 696c 6974 6965 ,m) possibilitie │ │ │ │ -00007760: 732e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d s...+----------- │ │ │ │ -00007770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000077a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000077b0: 2d2d 2b0a 7c69 3720 3a20 7365 7452 616e --+.|i7 : setRan │ │ │ │ -000077c0: 646f 6d53 6565 6428 6375 7272 656e 7454 domSeed(currentT │ │ │ │ -000077d0: 696d 6528 2929 3b20 2020 2020 2020 2020 ime()); │ │ │ │ -000077e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000077f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007800: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00007810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007850: 2d2d 2b0a 7c69 3820 3a20 4d20 3d20 7261 --+.|i8 : M = ra │ │ │ │ -00007860: 6e64 6f6d 4162 7374 7261 6374 5369 6d70 ndomAbstractSimp │ │ │ │ -00007870: 6c69 6369 616c 436f 6d70 6c65 7828 362c licialComplex(6, │ │ │ │ -00007880: 332c 3229 2020 2020 2020 2020 2020 2020 3,2) │ │ │ │ -00007890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000078a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000078b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000078c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000078d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000078e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000078f0: 2020 7c0a 7c6f 3820 3d20 4162 7374 7261 |.|o8 = Abstra │ │ │ │ -00007900: 6374 5369 6d70 6c69 6369 616c 436f 6d70 ctSimplicialComp │ │ │ │ -00007910: 6c65 787b 2d31 203d 3e20 7b7b 7d7d 2020 lex{-1 => {{}} │ │ │ │ -00007920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007670: 207c 0a7c 6f36 203d 205a 5a20 2020 2020 |.|o6 = ZZ │ │ │ │ +00007680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000076a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000076b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000076c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000076d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000076e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000076f0: 207c 0a7c 2020 2020 2030 2020 2020 2020 |.| 0 │ │ │ │ +00007700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007730: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00007740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007770: 207c 0a7c 6f36 203a 2043 6f6d 706c 6578 |.|o6 : Complex │ │ │ │ +00007780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000077a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000077b0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000077c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000077d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000077e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000077f0: 2d2b 0a0a 4372 6561 7465 2074 6865 2072 -+..Create the r │ │ │ │ +00007800: 616e 646f 6d20 636f 6d70 6c65 7820 595f andom complex Y_ │ │ │ │ +00007810: 6428 6e2c 6d29 2077 6869 6368 2068 6173 d(n,m) which has │ │ │ │ +00007820: 2076 6572 7465 7820 7365 7420 5b6e 5d20 vertex set [n] │ │ │ │ +00007830: 616e 6420 636f 6d70 6c65 7465 2028 6420 and complete (d │ │ │ │ +00007840: e288 920a 3129 2d73 6b65 6c65 746f 6e2c ....1)-skeleton, │ │ │ │ +00007850: 2061 6e64 2068 6173 2065 7861 6374 6c79 and has exactly │ │ │ │ +00007860: 206d 2064 696d 656e 7369 6f6e 2064 2066 m dimension d f │ │ │ │ +00007870: 6163 6573 2c20 6368 6f73 656e 2061 7420 aces, chosen at │ │ │ │ +00007880: 7261 6e64 6f6d 2066 726f 6d20 616c 6c0a random from all. │ │ │ │ +00007890: 6269 6e6f 6d69 616c 2862 696e 6f6d 6961 binomial(binomia │ │ │ │ +000078a0: 6c28 6e2c 642b 3129 2c6d 2920 706f 7373 l(n,d+1),m) poss │ │ │ │ +000078b0: 6962 696c 6974 6965 732e 0a0a 2b2d 2d2d ibilities...+--- │ │ │ │ +000078c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000078d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000078e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000078f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007900: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 ----------+.|i7 │ │ │ │ +00007910: 3a20 7365 7452 616e 646f 6d53 6565 6428 : setRandomSeed( │ │ │ │ +00007920: 6375 7272 656e 7454 696d 6528 2929 3b20 currentTime()); │ │ │ │ 00007930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007940: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00007950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007960: 2020 2020 3020 3d3e 207b 7b31 7d2c 207b 0 => {{1}, { │ │ │ │ -00007970: 327d 2c20 7b33 7d2c 207b 347d 2c20 7b35 2}, {3}, {4}, {5 │ │ │ │ -00007980: 7d2c 207b 367d 7d20 2020 2020 2020 2020 }, {6}} │ │ │ │ -00007990: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000079a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000079b0: 2020 2020 3120 3d3e 207b 7b31 2c20 327d 1 => {{1, 2} │ │ │ │ -000079c0: 2c20 7b31 2c20 357d 2c20 7b32 2c20 337d , {1, 5}, {2, 3} │ │ │ │ -000079d0: 2c20 7b32 2c20 347d 2c20 7b32 2c20 357d , {2, 4}, {2, 5} │ │ │ │ -000079e0: 2c20 7c0a 7c20 2020 2020 2020 2020 2020 , |.| │ │ │ │ -000079f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007a00: 2020 2020 3220 3d3e 207b 7b31 2c20 322c 2 => {{1, 2, │ │ │ │ -00007a10: 2035 7d2c 207b 322c 2033 2c20 347d 2c20 5}, {2, 3, 4}, │ │ │ │ -00007a20: 7b33 2c20 352c 2036 7d7d 2020 2020 2020 {3, 5, 6}} │ │ │ │ -00007a30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00007a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007a80: 2020 7c0a 7c6f 3820 3a20 4162 7374 7261 |.|o8 : Abstra │ │ │ │ -00007a90: 6374 5369 6d70 6c69 6369 616c 436f 6d70 ctSimplicialComp │ │ │ │ -00007aa0: 6c65 7820 2020 2020 2020 2020 2020 2020 lex │ │ │ │ -00007ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007ad0: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ -00007ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007b20: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00007b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007b40: 2020 2020 7d20 2020 2020 2020 2020 2020 } │ │ │ │ -00007b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007b70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00007b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007950: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00007960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000079a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 ----------+.|i8 │ │ │ │ +000079b0: 3a20 4d20 3d20 7261 6e64 6f6d 4162 7374 : M = randomAbst │ │ │ │ +000079c0: 7261 6374 5369 6d70 6c69 6369 616c 436f ractSimplicialCo │ │ │ │ +000079d0: 6d70 6c65 7828 362c 332c 3229 2020 2020 mplex(6,3,2) │ │ │ │ +000079e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000079f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00007a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007a40: 2020 2020 2020 2020 2020 7c0a 7c6f 3820 |.|o8 │ │ │ │ +00007a50: 3d20 4162 7374 7261 6374 5369 6d70 6c69 = AbstractSimpli │ │ │ │ +00007a60: 6369 616c 436f 6d70 6c65 787b 2d31 203d cialComplex{-1 = │ │ │ │ +00007a70: 3e20 7b7b 7d7d 2020 2020 2020 2020 2020 > {{}} │ │ │ │ +00007a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007a90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00007aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007ab0: 2020 2020 2020 2020 2020 2020 3020 3d3e 0 => │ │ │ │ +00007ac0: 207b 7b31 7d2c 207b 327d 2c20 7b33 7d2c {{1}, {2}, {3}, │ │ │ │ +00007ad0: 207b 347d 2c20 7b35 7d2c 207b 367d 7d20 {4}, {5}, {6}} │ │ │ │ +00007ae0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00007af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007b00: 2020 2020 2020 2020 2020 2020 3120 3d3e 1 => │ │ │ │ +00007b10: 207b 7b31 2c20 337d 2c20 7b31 2c20 347d {{1, 3}, {1, 4} │ │ │ │ +00007b20: 2c20 7b31 2c20 357d 2c20 7b32 2c20 357d , {1, 5}, {2, 5} │ │ │ │ +00007b30: 2c20 7b32 2c20 367d 2c20 7c0a 7c20 2020 , {2, 6}, |.| │ │ │ │ +00007b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007b50: 2020 2020 2020 2020 2020 2020 3220 3d3e 2 => │ │ │ │ +00007b60: 207b 7b31 2c20 332c 2034 7d2c 207b 312c {{1, 3, 4}, {1, │ │ │ │ +00007b70: 2034 2c20 357d 2c20 7b32 2c20 352c 2036 4, 5}, {2, 5, 6 │ │ │ │ +00007b80: 7d7d 2020 2020 2020 2020 7c0a 7c20 2020 }} |.| │ │ │ │ 00007b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007bc0: 2020 7c0a 7c7b 332c 2034 7d2c 207b 332c |.|{3, 4}, {3, │ │ │ │ -00007bd0: 2035 7d2c 207b 332c 2036 7d2c 207b 352c 5}, {3, 6}, {5, │ │ │ │ -00007be0: 2036 7d7d 2020 2020 2020 2020 2020 2020 6}} │ │ │ │ -00007bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007bd0: 2020 2020 2020 2020 2020 7c0a 7c6f 3820 |.|o8 │ │ │ │ +00007be0: 3a20 4162 7374 7261 6374 5369 6d70 6c69 : AbstractSimpli │ │ │ │ +00007bf0: 6369 616c 436f 6d70 6c65 7820 2020 2020 cialComplex │ │ │ │ 00007c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007c10: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00007c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007c20: 2020 2020 2020 2020 2020 7c0a 7c2d 2d2d |.|--- │ │ │ │ 00007c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00007c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00007c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007c60: 2d2d 2b0a 7c69 3920 3a20 7072 756e 6520 --+.|i9 : prune │ │ │ │ -00007c70: 4848 2073 696d 706c 6963 6961 6c43 6861 HH simplicialCha │ │ │ │ -00007c80: 696e 436f 6d70 6c65 7820 4d20 2020 2020 inComplex M │ │ │ │ -00007c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007c70: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 ----------|.| │ │ │ │ +00007c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007c90: 2020 2020 7d20 2020 2020 2020 2020 2020 } │ │ │ │ 00007ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007cb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00007cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007cc0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00007cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007d00: 2020 7c0a 7c20 2020 2020 2020 3120 2020 |.| 1 │ │ │ │ -00007d10: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ -00007d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007d10: 2020 2020 2020 2020 2020 7c0a 7c7b 332c |.|{3, │ │ │ │ +00007d20: 2034 7d2c 207b 342c 2035 7d2c 207b 352c 4}, {4, 5}, {5, │ │ │ │ +00007d30: 2036 7d7d 2020 2020 2020 2020 2020 2020 6}} │ │ │ │ 00007d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007d50: 2020 7c0a 7c6f 3920 3d20 5a5a 2020 3c2d |.|o9 = ZZ <- │ │ │ │ -00007d60: 2d20 5a5a 2020 2020 2020 2020 2020 2020 - ZZ │ │ │ │ -00007d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007da0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00007db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007df0: 2020 7c0a 7c20 2020 2020 3020 2020 2020 |.| 0 │ │ │ │ -00007e00: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00007d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007d60: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00007d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3920 ----------+.|i9 │ │ │ │ +00007dc0: 3a20 7072 756e 6520 4848 2073 696d 706c : prune HH simpl │ │ │ │ +00007dd0: 6963 6961 6c43 6861 696e 436f 6d70 6c65 icialChainComple │ │ │ │ +00007de0: 7820 4d20 2020 2020 2020 2020 2020 2020 x M │ │ │ │ +00007df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007e00: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00007e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007e40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00007e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007e50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00007e60: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ 00007e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007e90: 2020 7c0a 7c6f 3920 3a20 436f 6d70 6c65 |.|o9 : Comple │ │ │ │ -00007ea0: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ -00007eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007ea0: 2020 2020 2020 2020 2020 7c0a 7c6f 3920 |.|o9 │ │ │ │ +00007eb0: 3d20 5a5a 2020 2020 2020 2020 2020 2020 = ZZ │ │ │ │ 00007ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007ee0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00007ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007f30: 2d2d 2b0a 0a43 7265 6174 6573 2061 2072 --+..Creates a r │ │ │ │ -00007f40: 616e 646f 6d20 7375 622d 7369 6d70 6c69 andom sub-simpli │ │ │ │ -00007f50: 6369 616c 2063 6f6d 706c 6578 206f 6620 cial complex of │ │ │ │ -00007f60: 6120 6769 7665 6e20 7369 6d70 6c69 6369 a given simplici │ │ │ │ -00007f70: 616c 2063 6f6d 706c 6578 2e0a 0a2b 2d2d al complex...+-- │ │ │ │ -00007f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00007fb0: 7c69 3130 203a 2073 6574 5261 6e64 6f6d |i10 : setRandom │ │ │ │ -00007fc0: 5365 6564 2863 7572 7265 6e74 5469 6d65 Seed(currentTime │ │ │ │ -00007fd0: 2829 293b 2020 2020 2020 2020 2020 2020 ()); │ │ │ │ -00007fe0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00007ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008010: 2d2d 2d2d 2b0a 7c69 3131 203a 204b 203d ----+.|i11 : K = │ │ │ │ -00008020: 2072 616e 646f 6d41 6273 7472 6163 7453 randomAbstractS │ │ │ │ -00008030: 696d 706c 6963 6961 6c43 6f6d 706c 6578 implicialComplex │ │ │ │ -00008040: 2834 2920 2020 207c 0a7c 2020 2020 2020 (4) |.| │ │ │ │ -00008050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008070: 2020 2020 2020 2020 2020 7c0a 7c6f 3131 |.|o11 │ │ │ │ -00008080: 203d 2041 6273 7472 6163 7453 696d 706c = AbstractSimpl │ │ │ │ -00008090: 6963 6961 6c43 6f6d 706c 6578 7b2d 3120 icialComplex{-1 │ │ │ │ -000080a0: 3d3e 207b 7b7d 7d20 2020 2020 7d7c 0a7c => {{}} }|.| │ │ │ │ -000080b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000080c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000080d0: 3020 3d3e 207b 7b32 7d2c 207b 337d 7d20 0 => {{2}, {3}} │ │ │ │ -000080e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000080f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008100: 2020 2031 203d 3e20 7b7b 322c 2033 7d7d 1 => {{2, 3}} │ │ │ │ -00008110: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00008120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008140: 2020 2020 2020 7c0a 7c6f 3131 203a 2041 |.|o11 : A │ │ │ │ -00008150: 6273 7472 6163 7453 696d 706c 6963 6961 bstractSimplicia │ │ │ │ -00008160: 6c43 6f6d 706c 6578 2020 2020 2020 2020 lComplex │ │ │ │ -00008170: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -00008180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000081a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000081b0: 3132 203a 204a 203d 2072 616e 646f 6d53 12 : J = randomS │ │ │ │ -000081c0: 7562 5369 6d70 6c69 6369 616c 436f 6d70 ubSimplicialComp │ │ │ │ -000081d0: 6c65 7828 4b29 2020 2020 2020 2020 207c lex(K) | │ │ │ │ -000081e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000081f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008210: 2020 7c0a 7c6f 3132 203d 2041 6273 7472 |.|o12 = Abstr │ │ │ │ -00008220: 6163 7453 696d 706c 6963 6961 6c43 6f6d actSimplicialCom │ │ │ │ -00008230: 706c 6578 7b2d 3120 3d3e 207b 7b7d 7d7d plex{-1 => {{}}} │ │ │ │ -00008240: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00008250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008260: 2020 2020 2020 2020 3020 3d3e 207b 7b32 0 => {{2 │ │ │ │ -00008270: 7d7d 2020 2020 2020 7c0a 7c20 2020 2020 }} |.| │ │ │ │ +00007ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007ef0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00007f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007f40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00007f50: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00007f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007f90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00007fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007fe0: 2020 2020 2020 2020 2020 7c0a 7c6f 3920 |.|o9 │ │ │ │ +00007ff0: 3a20 436f 6d70 6c65 7820 2020 2020 2020 : Complex │ │ │ │ +00008000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008030: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00008040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008080: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a43 7265 ----------+..Cre │ │ │ │ +00008090: 6174 6573 2061 2072 616e 646f 6d20 7375 ates a random su │ │ │ │ +000080a0: 622d 7369 6d70 6c69 6369 616c 2063 6f6d b-simplicial com │ │ │ │ +000080b0: 706c 6578 206f 6620 6120 6769 7665 6e20 plex of a given │ │ │ │ +000080c0: 7369 6d70 6c69 6369 616c 2063 6f6d 706c simplicial compl │ │ │ │ +000080d0: 6578 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d ex...+---------- │ │ │ │ +000080e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000080f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008100: 2d2d 2d2d 2d2d 2b0a 7c69 3130 203a 2073 ------+.|i10 : s │ │ │ │ +00008110: 6574 5261 6e64 6f6d 5365 6564 2863 7572 etRandomSeed(cur │ │ │ │ +00008120: 7265 6e74 5469 6d65 2829 293b 2020 2020 rentTime()); │ │ │ │ +00008130: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00008140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00008170: 3131 203a 204b 203d 2072 616e 646f 6d41 11 : K = randomA │ │ │ │ +00008180: 6273 7472 6163 7453 696d 706c 6963 6961 bstractSimplicia │ │ │ │ +00008190: 6c43 6f6d 706c 6578 2834 2920 2020 207c lComplex(4) | │ │ │ │ +000081a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000081b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000081c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000081d0: 2020 7c0a 7c6f 3131 203d 2041 6273 7472 |.|o11 = Abstr │ │ │ │ +000081e0: 6163 7453 696d 706c 6963 6961 6c43 6f6d actSimplicialCom │ │ │ │ +000081f0: 706c 6578 7b2d 3120 3d3e 207b 7b7d 7d20 plex{-1 => {{}} │ │ │ │ +00008200: 2020 2020 7d7c 0a7c 2020 2020 2020 2020 }|.| │ │ │ │ +00008210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008220: 2020 2020 2020 2020 3020 3d3e 207b 7b33 0 => {{3 │ │ │ │ +00008230: 7d2c 207b 347d 7d20 7c0a 7c20 2020 2020 }, {4}} |.| │ │ │ │ +00008240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008250: 2020 2020 2020 2020 2020 2031 203d 3e20 1 => │ │ │ │ +00008260: 7b7b 332c 2034 7d7d 2020 207c 0a7c 2020 {{3, 4}} |.| │ │ │ │ +00008270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000082a0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -000082b0: 3220 3a20 4162 7374 7261 6374 5369 6d70 2 : AbstractSimp │ │ │ │ -000082c0: 6c69 6369 616c 436f 6d70 6c65 7820 2020 licialComplex │ │ │ │ -000082d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000082e0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00008290: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000082a0: 7c6f 3131 203a 2041 6273 7472 6163 7453 |o11 : AbstractS │ │ │ │ +000082b0: 696d 706c 6963 6961 6c43 6f6d 706c 6578 implicialComplex │ │ │ │ +000082c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000082d0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000082e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000082f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008310: 2d2b 0a7c 6931 3320 3a20 696e 6475 6365 -+.|i13 : induce │ │ │ │ -00008320: 6453 696d 706c 6963 6961 6c43 6861 696e dSimplicialChain │ │ │ │ -00008330: 436f 6d70 6c65 784d 6170 284b 2c4a 2920 ComplexMap(K,J) │ │ │ │ -00008340: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00008300: 2d2d 2d2d 2b0a 7c69 3132 203a 204a 203d ----+.|i12 : J = │ │ │ │ +00008310: 2072 616e 646f 6d53 7562 5369 6d70 6c69 randomSubSimpli │ │ │ │ +00008320: 6369 616c 436f 6d70 6c65 7828 4b29 2020 cialComplex(K) │ │ │ │ +00008330: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00008340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008370: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00008380: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00008390: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ -000083a0: 2020 2020 2020 2020 2020 7c0a 7c6f 3133 |.|o13 │ │ │ │ -000083b0: 203d 2030 203a 205a 5a20 203c 2d2d 2d2d = 0 : ZZ <---- │ │ │ │ -000083c0: 2d2d 2d2d 2d20 5a5a 2020 3a20 3020 2020 ----- ZZ : 0 │ │ │ │ -000083d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00008360: 2020 2020 2020 2020 2020 7c0a 7c6f 3132 |.|o12 │ │ │ │ +00008370: 203d 2041 6273 7472 6163 7453 696d 706c = AbstractSimpl │ │ │ │ +00008380: 6963 6961 6c43 6f6d 706c 6578 7b2d 3120 icialComplex{-1 │ │ │ │ +00008390: 3d3e 207b 7b7d 7d7d 2020 2020 207c 0a7c => {{}}} |.| │ │ │ │ +000083a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000083b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000083c0: 3020 3d3e 207b 7b34 7d7d 2020 2020 2020 0 => {{4}} │ │ │ │ +000083d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000083e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000083f0: 207c 2031 207c 2020 2020 2020 2020 2020 | 1 | │ │ │ │ -00008400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008410: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00008420: 2020 2020 7c20 3020 7c20 2020 2020 2020 | 0 | │ │ │ │ -00008430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008440: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00008450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008470: 2020 2020 2020 7c0a 7c6f 3133 203a 2043 |.|o13 : C │ │ │ │ -00008480: 6f6d 706c 6578 4d61 7020 2020 2020 2020 omplexMap │ │ │ │ -00008490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000084a0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -000084b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000084c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000084d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 1f0a ------------+... │ │ │ │ -000084e0: 4669 6c65 3a20 4162 7374 7261 6374 5369 File: AbstractSi │ │ │ │ -000084f0: 6d70 6c69 6369 616c 436f 6d70 6c65 7865 mplicialComplexe │ │ │ │ -00008500: 732e 696e 666f 2c20 4e6f 6465 3a20 6465 s.info, Node: de │ │ │ │ -00008510: 7363 7269 6265 5f6c 7041 6273 7472 6163 scribe_lpAbstrac │ │ │ │ -00008520: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ -00008530: 6578 5f72 702c 204e 6578 743a 2064 696d ex_rp, Next: dim │ │ │ │ -00008540: 5f6c 7041 6273 7472 6163 7453 696d 706c _lpAbstractSimpl │ │ │ │ -00008550: 6963 6961 6c43 6f6d 706c 6578 5f72 702c icialComplex_rp, │ │ │ │ -00008560: 2050 7265 763a 2043 616c 6375 6c61 7469 Prev: Calculati │ │ │ │ -00008570: 6f6e 7320 7769 7468 2072 616e 646f 6d20 ons with random │ │ │ │ -00008580: 7369 6d70 6c69 6369 616c 2063 6f6d 706c simplicial compl │ │ │ │ -00008590: 6578 6573 2c20 5570 3a20 546f 700a 0a64 exes, Up: Top..d │ │ │ │ -000085a0: 6573 6372 6962 6528 4162 7374 7261 6374 escribe(Abstract │ │ │ │ -000085b0: 5369 6d70 6c69 6369 616c 436f 6d70 6c65 SimplicialComple │ │ │ │ -000085c0: 7829 202d 2d20 7265 616c 2064 6573 6372 x) -- real descr │ │ │ │ -000085d0: 6970 7469 6f6e 0a2a 2a2a 2a2a 2a2a 2a2a iption.********* │ │ │ │ -000085e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000085f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00008600: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -00008610: 5379 6e6f 7073 6973 0a3d 3d3d 3d3d 3d3d Synopsis.======= │ │ │ │ -00008620: 3d0a 0a20 202a 2046 756e 6374 696f 6e3a =.. * Function: │ │ │ │ -00008630: 202a 6e6f 7465 2064 6573 6372 6962 653a *note describe: │ │ │ │ -00008640: 2028 4d61 6361 756c 6179 3244 6f63 2964 (Macaulay2Doc)d │ │ │ │ -00008650: 6573 6372 6962 652c 0a20 202a 2055 7361 escribe,. * Usa │ │ │ │ -00008660: 6765 3a20 0a20 2020 2020 2020 2064 6573 ge: . des │ │ │ │ -00008670: 6372 6962 6520 530a 2020 2a20 496e 7075 cribe S. * Inpu │ │ │ │ -00008680: 7473 3a0a 2020 2020 2020 2a20 616e 202a ts:. * an * │ │ │ │ -00008690: 6e6f 7465 2061 6273 7472 6163 7420 7369 note abstract si │ │ │ │ -000086a0: 6d70 6c69 6369 616c 2063 6f6d 706c 6578 mplicial complex │ │ │ │ -000086b0: 3a20 4162 7374 7261 6374 5369 6d70 6c69 : AbstractSimpli │ │ │ │ -000086c0: 6369 616c 436f 6d70 6c65 782c 0a0a 4465 cialComplex,..De │ │ │ │ -000086d0: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ -000086e0: 3d3d 3d3d 3d0a 0a73 6565 2064 6573 6372 =====..see descr │ │ │ │ -000086f0: 6962 650a 0a53 6565 2061 6c73 6f0a 3d3d ibe..See also.== │ │ │ │ -00008700: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ -00008710: 6520 6465 7363 7269 6265 3a20 284d 6163 e describe: (Mac │ │ │ │ -00008720: 6175 6c61 7932 446f 6329 6465 7363 7269 aulay2Doc)descri │ │ │ │ -00008730: 6265 2c20 2d2d 2072 6561 6c20 6465 7363 be, -- real desc │ │ │ │ -00008740: 7269 7074 696f 6e0a 0a57 6179 7320 746f ription..Ways to │ │ │ │ -00008750: 2075 7365 2074 6869 7320 6d65 7468 6f64 use this method │ │ │ │ -00008760: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -00008770: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -00008780: 2a6e 6f74 6520 6465 7363 7269 6265 2841 *note describe(A │ │ │ │ -00008790: 6273 7472 6163 7453 696d 706c 6963 6961 bstractSimplicia │ │ │ │ -000087a0: 6c43 6f6d 706c 6578 293a 0a20 2020 2064 lComplex):. d │ │ │ │ -000087b0: 6573 6372 6962 655f 6c70 4162 7374 7261 escribe_lpAbstra │ │ │ │ -000087c0: 6374 5369 6d70 6c69 6369 616c 436f 6d70 ctSimplicialComp │ │ │ │ -000087d0: 6c65 785f 7270 2c20 2d2d 2072 6561 6c20 lex_rp, -- real │ │ │ │ -000087e0: 6465 7363 7269 7074 696f 6e0a 1f0a 4669 description...Fi │ │ │ │ -000087f0: 6c65 3a20 4162 7374 7261 6374 5369 6d70 le: AbstractSimp │ │ │ │ -00008800: 6c69 6369 616c 436f 6d70 6c65 7865 732e licialComplexes. │ │ │ │ -00008810: 696e 666f 2c20 4e6f 6465 3a20 6469 6d5f info, Node: dim_ │ │ │ │ -00008820: 6c70 4162 7374 7261 6374 5369 6d70 6c69 lpAbstractSimpli │ │ │ │ -00008830: 6369 616c 436f 6d70 6c65 785f 7270 2c20 cialComplex_rp, │ │ │ │ -00008840: 4e65 7874 3a20 486f 7720 746f 206d 616b Next: How to mak │ │ │ │ -00008850: 6520 6162 7374 7261 6374 2073 696d 706c e abstract simpl │ │ │ │ -00008860: 6963 6961 6c20 636f 6d70 6c65 7865 732c icial complexes, │ │ │ │ -00008870: 2050 7265 763a 2064 6573 6372 6962 655f Prev: describe_ │ │ │ │ -00008880: 6c70 4162 7374 7261 6374 5369 6d70 6c69 lpAbstractSimpli │ │ │ │ -00008890: 6369 616c 436f 6d70 6c65 785f 7270 2c20 cialComplex_rp, │ │ │ │ -000088a0: 5570 3a20 546f 700a 0a64 696d 2841 6273 Up: Top..dim(Abs │ │ │ │ -000088b0: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ -000088c0: 6f6d 706c 6578 2920 2d2d 2054 6865 2064 omplex) -- The d │ │ │ │ -000088d0: 696d 656e 7369 6f6e 206f 6620 6120 7369 imension of a si │ │ │ │ -000088e0: 6d70 6c69 6369 616c 2063 6f6d 706c 6578 mplicial complex │ │ │ │ -000088f0: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ -00008900: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00008910: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00008920: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00008930: 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 ********..Synops │ │ │ │ -00008940: 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a is.========.. * │ │ │ │ -00008950: 2046 756e 6374 696f 6e3a 202a 6e6f 7465 Function: *note │ │ │ │ -00008960: 2064 696d 3a20 284d 6163 6175 6c61 7932 dim: (Macaulay2 │ │ │ │ -00008970: 446f 6329 6469 6d2c 0a0a 4465 7363 7269 Doc)dim,..Descri │ │ │ │ -00008980: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -00008990: 3d0a 0a54 6869 7320 6d65 7468 6f64 2072 =..This method r │ │ │ │ -000089a0: 6574 7572 6e73 2074 6865 2064 696d 656e eturns the dimen │ │ │ │ -000089b0: 7369 6f6e 2061 2067 6976 656e 2041 6273 sion a given Abs │ │ │ │ -000089c0: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ -000089d0: 6f6d 706c 6578 2e0a 0a2b 2d2d 2d2d 2d2d omplex...+------ │ │ │ │ -000089e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000089f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008a10: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 204b -------+.|i1 : K │ │ │ │ -00008a20: 203d 2061 6273 7472 6163 7453 696d 706c = abstractSimpl │ │ │ │ -00008a30: 6963 6961 6c43 6f6d 706c 6578 2833 2920 icialComplex(3) │ │ │ │ -00008a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008a50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00008a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008a90: 2020 2020 2020 207c 0a7c 6f31 203d 2041 |.|o1 = A │ │ │ │ -00008aa0: 6273 7472 6163 7453 696d 706c 6963 6961 bstractSimplicia │ │ │ │ -00008ab0: 6c43 6f6d 706c 6578 7b2d 3120 3d3e 207b lComplex{-1 => { │ │ │ │ -00008ac0: 7b7d 7d20 2020 2020 2020 2020 2020 2020 {}} │ │ │ │ -00008ad0: 2020 2020 2020 7d7c 0a7c 2020 2020 2020 }|.| │ │ │ │ -00008ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008af0: 2020 2020 2020 2020 2030 203d 3e20 7b7b 0 => {{ │ │ │ │ -00008b00: 317d 2c20 7b32 7d2c 207b 337d 7d20 2020 1}, {2}, {3}} │ │ │ │ -00008b10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00008b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008b30: 2020 2020 2020 2020 2031 203d 3e20 7b7b 1 => {{ │ │ │ │ -00008b40: 312c 2032 7d2c 207b 312c 2033 7d2c 207b 1, 2}, {1, 3}, { │ │ │ │ -00008b50: 322c 2033 7d7d 207c 0a7c 2020 2020 2020 2, 3}} |.| │ │ │ │ -00008b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008b70: 2020 2020 2020 2020 2032 203d 3e20 7b7b 2 => {{ │ │ │ │ -00008b80: 312c 2032 2c20 337d 7d20 2020 2020 2020 1, 2, 3}} │ │ │ │ -00008b90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00008ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000083f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008400: 2020 207c 0a7c 6f31 3220 3a20 4162 7374 |.|o12 : Abst │ │ │ │ +00008410: 7261 6374 5369 6d70 6c69 6369 616c 436f ractSimplicialCo │ │ │ │ +00008420: 6d70 6c65 7820 2020 2020 2020 2020 2020 mplex │ │ │ │ +00008430: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00008440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008460: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3320 ---------+.|i13 │ │ │ │ +00008470: 3a20 696e 6475 6365 6453 696d 706c 6963 : inducedSimplic │ │ │ │ +00008480: 6961 6c43 6861 696e 436f 6d70 6c65 784d ialChainComplexM │ │ │ │ +00008490: 6170 284b 2c4a 2920 2020 2020 7c0a 7c20 ap(K,J) |.| │ │ │ │ +000084a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000084b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000084c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000084d0: 0a7c 2020 2020 2020 2020 2020 2020 3220 .| 2 │ │ │ │ +000084e0: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +000084f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008500: 2020 7c0a 7c6f 3133 203d 2030 203a 205a |.|o13 = 0 : Z │ │ │ │ +00008510: 5a20 203c 2d2d 2d2d 2d2d 2d2d 2d20 5a5a Z <--------- ZZ │ │ │ │ +00008520: 2020 3a20 3020 2020 2020 2020 2020 2020 : 0 │ │ │ │ +00008530: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00008540: 2020 2020 2020 2020 207c 2030 207c 2020 | 0 | │ │ │ │ +00008550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008560: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00008570: 2020 2020 2020 2020 2020 2020 7c20 3120 | 1 │ │ │ │ +00008580: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00008590: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000085a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000085b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000085c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000085d0: 7c6f 3133 203a 2043 6f6d 706c 6578 4d61 |o13 : ComplexMa │ │ │ │ +000085e0: 7020 2020 2020 2020 2020 2020 2020 2020 p │ │ │ │ +000085f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008600: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00008610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008630: 2d2d 2d2d 2b0a 1f0a 4669 6c65 3a20 4162 ----+...File: Ab │ │ │ │ +00008640: 7374 7261 6374 5369 6d70 6c69 6369 616c stractSimplicial │ │ │ │ +00008650: 436f 6d70 6c65 7865 732e 696e 666f 2c20 Complexes.info, │ │ │ │ +00008660: 4e6f 6465 3a20 6465 7363 7269 6265 5f6c Node: describe_l │ │ │ │ +00008670: 7041 6273 7472 6163 7453 696d 706c 6963 pAbstractSimplic │ │ │ │ +00008680: 6961 6c43 6f6d 706c 6578 5f72 702c 204e ialComplex_rp, N │ │ │ │ +00008690: 6578 743a 2064 696d 5f6c 7041 6273 7472 ext: dim_lpAbstr │ │ │ │ +000086a0: 6163 7453 696d 706c 6963 6961 6c43 6f6d actSimplicialCom │ │ │ │ +000086b0: 706c 6578 5f72 702c 2050 7265 763a 2043 plex_rp, Prev: C │ │ │ │ +000086c0: 616c 6375 6c61 7469 6f6e 7320 7769 7468 alculations with │ │ │ │ +000086d0: 2072 616e 646f 6d20 7369 6d70 6c69 6369 random simplici │ │ │ │ +000086e0: 616c 2063 6f6d 706c 6578 6573 2c20 5570 al complexes, Up │ │ │ │ +000086f0: 3a20 546f 700a 0a64 6573 6372 6962 6528 : Top..describe( │ │ │ │ +00008700: 4162 7374 7261 6374 5369 6d70 6c69 6369 AbstractSimplici │ │ │ │ +00008710: 616c 436f 6d70 6c65 7829 202d 2d20 7265 alComplex) -- re │ │ │ │ +00008720: 616c 2064 6573 6372 6970 7469 6f6e 0a2a al description.* │ │ │ │ +00008730: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00008740: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00008750: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00008760: 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 ******..Synopsis │ │ │ │ +00008770: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2046 .========.. * F │ │ │ │ +00008780: 756e 6374 696f 6e3a 202a 6e6f 7465 2064 unction: *note d │ │ │ │ +00008790: 6573 6372 6962 653a 2028 4d61 6361 756c escribe: (Macaul │ │ │ │ +000087a0: 6179 3244 6f63 2964 6573 6372 6962 652c ay2Doc)describe, │ │ │ │ +000087b0: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +000087c0: 2020 2020 2064 6573 6372 6962 6520 530a describe S. │ │ │ │ +000087d0: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +000087e0: 2020 2a20 616e 202a 6e6f 7465 2061 6273 * an *note abs │ │ │ │ +000087f0: 7472 6163 7420 7369 6d70 6c69 6369 616c tract simplicial │ │ │ │ +00008800: 2063 6f6d 706c 6578 3a20 4162 7374 7261 complex: Abstra │ │ │ │ +00008810: 6374 5369 6d70 6c69 6369 616c 436f 6d70 ctSimplicialComp │ │ │ │ +00008820: 6c65 782c 0a0a 4465 7363 7269 7074 696f lex,..Descriptio │ │ │ │ +00008830: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a73 n.===========..s │ │ │ │ +00008840: 6565 2064 6573 6372 6962 650a 0a53 6565 ee describe..See │ │ │ │ +00008850: 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a also.========.. │ │ │ │ +00008860: 2020 2a20 2a6e 6f74 6520 6465 7363 7269 * *note descri │ │ │ │ +00008870: 6265 3a20 284d 6163 6175 6c61 7932 446f be: (Macaulay2Do │ │ │ │ +00008880: 6329 6465 7363 7269 6265 2c20 2d2d 2072 c)describe, -- r │ │ │ │ +00008890: 6561 6c20 6465 7363 7269 7074 696f 6e0a eal description. │ │ │ │ +000088a0: 0a57 6179 7320 746f 2075 7365 2074 6869 .Ways to use thi │ │ │ │ +000088b0: 7320 6d65 7468 6f64 3a0a 3d3d 3d3d 3d3d s method:.====== │ │ │ │ +000088c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000088d0: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 6465 ==.. * *note de │ │ │ │ +000088e0: 7363 7269 6265 2841 6273 7472 6163 7453 scribe(AbstractS │ │ │ │ +000088f0: 696d 706c 6963 6961 6c43 6f6d 706c 6578 implicialComplex │ │ │ │ +00008900: 293a 0a20 2020 2064 6573 6372 6962 655f ):. describe_ │ │ │ │ +00008910: 6c70 4162 7374 7261 6374 5369 6d70 6c69 lpAbstractSimpli │ │ │ │ +00008920: 6369 616c 436f 6d70 6c65 785f 7270 2c20 cialComplex_rp, │ │ │ │ +00008930: 2d2d 2072 6561 6c20 6465 7363 7269 7074 -- real descript │ │ │ │ +00008940: 696f 6e0a 1f0a 4669 6c65 3a20 4162 7374 ion...File: Abst │ │ │ │ +00008950: 7261 6374 5369 6d70 6c69 6369 616c 436f ractSimplicialCo │ │ │ │ +00008960: 6d70 6c65 7865 732e 696e 666f 2c20 4e6f mplexes.info, No │ │ │ │ +00008970: 6465 3a20 6469 6d5f 6c70 4162 7374 7261 de: dim_lpAbstra │ │ │ │ +00008980: 6374 5369 6d70 6c69 6369 616c 436f 6d70 ctSimplicialComp │ │ │ │ +00008990: 6c65 785f 7270 2c20 4e65 7874 3a20 486f lex_rp, Next: Ho │ │ │ │ +000089a0: 7720 746f 206d 616b 6520 6162 7374 7261 w to make abstra │ │ │ │ +000089b0: 6374 2073 696d 706c 6963 6961 6c20 636f ct simplicial co │ │ │ │ +000089c0: 6d70 6c65 7865 732c 2050 7265 763a 2064 mplexes, Prev: d │ │ │ │ +000089d0: 6573 6372 6962 655f 6c70 4162 7374 7261 escribe_lpAbstra │ │ │ │ +000089e0: 6374 5369 6d70 6c69 6369 616c 436f 6d70 ctSimplicialComp │ │ │ │ +000089f0: 6c65 785f 7270 2c20 5570 3a20 546f 700a lex_rp, Up: Top. │ │ │ │ +00008a00: 0a64 696d 2841 6273 7472 6163 7453 696d .dim(AbstractSim │ │ │ │ +00008a10: 706c 6963 6961 6c43 6f6d 706c 6578 2920 plicialComplex) │ │ │ │ +00008a20: 2d2d 2054 6865 2064 696d 656e 7369 6f6e -- The dimension │ │ │ │ +00008a30: 206f 6620 6120 7369 6d70 6c69 6369 616c of a simplicial │ │ │ │ +00008a40: 2063 6f6d 706c 6578 0a2a 2a2a 2a2a 2a2a complex.******* │ │ │ │ +00008a50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00008a60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00008a70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00008a80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00008a90: 0a0a 5379 6e6f 7073 6973 0a3d 3d3d 3d3d ..Synopsis.===== │ │ │ │ +00008aa0: 3d3d 3d0a 0a20 202a 2046 756e 6374 696f ===.. * Functio │ │ │ │ +00008ab0: 6e3a 202a 6e6f 7465 2064 696d 3a20 284d n: *note dim: (M │ │ │ │ +00008ac0: 6163 6175 6c61 7932 446f 6329 6469 6d2c acaulay2Doc)dim, │ │ │ │ +00008ad0: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +00008ae0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 7320 =========..This │ │ │ │ +00008af0: 6d65 7468 6f64 2072 6574 7572 6e73 2074 method returns t │ │ │ │ +00008b00: 6865 2064 696d 656e 7369 6f6e 2061 2067 he dimension a g │ │ │ │ +00008b10: 6976 656e 2041 6273 7472 6163 7453 696d iven AbstractSim │ │ │ │ +00008b20: 706c 6963 6961 6c43 6f6d 706c 6578 2e0a plicialComplex.. │ │ │ │ +00008b30: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00008b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00008b70: 0a7c 6931 203a 204b 203d 2061 6273 7472 .|i1 : K = abstr │ │ │ │ +00008b80: 6163 7453 696d 706c 6963 6961 6c43 6f6d actSimplicialCom │ │ │ │ +00008b90: 706c 6578 2833 2920 2020 2020 2020 2020 plex(3) │ │ │ │ +00008ba0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00008bb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00008bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008bd0: 2020 2020 2020 207c 0a7c 6f31 203a 2041 |.|o1 : A │ │ │ │ -00008be0: 6273 7472 6163 7453 696d 706c 6963 6961 bstractSimplicia │ │ │ │ -00008bf0: 6c43 6f6d 706c 6578 2020 2020 2020 2020 lComplex │ │ │ │ -00008c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008c10: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -00008c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008c50: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2064 -------+.|i2 : d │ │ │ │ -00008c60: 696d 204b 2020 2020 2020 2020 2020 2020 im K │ │ │ │ -00008c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008be0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00008bf0: 0a7c 6f31 203d 2041 6273 7472 6163 7453 .|o1 = AbstractS │ │ │ │ +00008c00: 696d 706c 6963 6961 6c43 6f6d 706c 6578 implicialComplex │ │ │ │ +00008c10: 7b2d 3120 3d3e 207b 7b7d 7d20 2020 2020 {-1 => {{}} │ │ │ │ +00008c20: 2020 2020 2020 2020 2020 2020 2020 7d7c }| │ │ │ │ +00008c30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00008c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008c50: 2030 203d 3e20 7b7b 317d 2c20 7b32 7d2c 0 => {{1}, {2}, │ │ │ │ +00008c60: 207b 337d 7d20 2020 2020 2020 2020 207c {3}} | │ │ │ │ +00008c70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00008c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008c90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00008ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008c90: 2031 203d 3e20 7b7b 312c 2032 7d2c 207b 1 => {{1, 2}, { │ │ │ │ +00008ca0: 312c 2033 7d2c 207b 322c 2033 7d7d 207c 1, 3}, {2, 3}} | │ │ │ │ +00008cb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00008cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008cd0: 2020 2020 2020 207c 0a7c 6f32 203d 2032 |.|o2 = 2 │ │ │ │ -00008ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008cd0: 2032 203d 3e20 7b7b 312c 2032 2c20 337d 2 => {{1, 2, 3} │ │ │ │ +00008ce0: 7d20 2020 2020 2020 2020 2020 2020 207c } | │ │ │ │ +00008cf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00008d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008d10: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -00008d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008d50: 2d2d 2d2d 2d2d 2d2b 0a0a 5761 7973 2074 -------+..Ways t │ │ │ │ -00008d60: 6f20 7573 6520 7468 6973 206d 6574 686f o use this metho │ │ │ │ -00008d70: 643a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d d:.============= │ │ │ │ -00008d80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -00008d90: 202a 6e6f 7465 2064 696d 2841 6273 7472 *note dim(Abstr │ │ │ │ -00008da0: 6163 7453 696d 706c 6963 6961 6c43 6f6d actSimplicialCom │ │ │ │ -00008db0: 706c 6578 293a 2064 696d 5f6c 7041 6273 plex): dim_lpAbs │ │ │ │ -00008dc0: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ -00008dd0: 6f6d 706c 6578 5f72 702c 0a20 2020 202d omplex_rp,. - │ │ │ │ -00008de0: 2d20 5468 6520 6469 6d65 6e73 696f 6e20 - The dimension │ │ │ │ -00008df0: 6f66 2061 2073 696d 706c 6963 6961 6c20 of a simplicial │ │ │ │ -00008e00: 636f 6d70 6c65 780a 1f0a 4669 6c65 3a20 complex...File: │ │ │ │ -00008e10: 4162 7374 7261 6374 5369 6d70 6c69 6369 AbstractSimplici │ │ │ │ -00008e20: 616c 436f 6d70 6c65 7865 732e 696e 666f alComplexes.info │ │ │ │ -00008e30: 2c20 4e6f 6465 3a20 486f 7720 746f 206d , Node: How to m │ │ │ │ -00008e40: 616b 6520 6162 7374 7261 6374 2073 696d ake abstract sim │ │ │ │ -00008e50: 706c 6963 6961 6c20 636f 6d70 6c65 7865 plicial complexe │ │ │ │ -00008e60: 732c 204e 6578 743a 2048 6f77 2074 6f20 s, Next: How to │ │ │ │ -00008e70: 6d61 6b65 2072 6564 7563 6564 2061 6e64 make reduced and │ │ │ │ -00008e80: 206e 6f6e 2d72 6564 7563 6564 2073 696d non-reduced sim │ │ │ │ -00008e90: 706c 6963 6961 6c20 6368 6169 6e20 636f plicial chain co │ │ │ │ -00008ea0: 6d70 6c65 7865 732c 2050 7265 763a 2064 mplexes, Prev: d │ │ │ │ -00008eb0: 696d 5f6c 7041 6273 7472 6163 7453 696d im_lpAbstractSim │ │ │ │ -00008ec0: 706c 6963 6961 6c43 6f6d 706c 6578 5f72 plicialComplex_r │ │ │ │ -00008ed0: 702c 2055 703a 2054 6f70 0a0a 486f 7720 p, Up: Top..How │ │ │ │ -00008ee0: 746f 206d 616b 6520 6162 7374 7261 6374 to make abstract │ │ │ │ -00008ef0: 2073 696d 706c 6963 6961 6c20 636f 6d70 simplicial comp │ │ │ │ -00008f00: 6c65 7865 7320 2d2d 2055 7369 6e67 2074 lexes -- Using t │ │ │ │ -00008f10: 6865 2074 7970 6520 4162 7374 7261 6374 he type Abstract │ │ │ │ -00008f20: 5369 6d70 6c69 6369 616c 436f 6d70 6c65 SimplicialComple │ │ │ │ -00008f30: 7873 2074 6f20 7265 7072 6573 656e 7420 xs to represent │ │ │ │ -00008f40: 6162 7374 7261 6374 2073 696d 706c 6963 abstract simplic │ │ │ │ -00008f50: 6961 6c20 636f 6d70 6c65 7865 730a 2a2a ial complexes.** │ │ │ │ -00008f60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00008f70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00008f80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00008f90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00008fa0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00008fb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00008fc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00008fd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -00008fe0: 0a54 6865 2074 7970 6520 4162 7374 7261 .The type Abstra │ │ │ │ -00008ff0: 6374 5369 6d70 6c69 6369 616c 436f 6d70 ctSimplicialComp │ │ │ │ -00009000: 6c65 7820 6973 2061 2064 6174 6120 7479 lex is a data ty │ │ │ │ -00009010: 7065 2066 6f72 2077 6f72 6b69 6e67 2077 pe for working w │ │ │ │ -00009020: 6974 6820 6162 7374 7261 6374 0a73 696d ith abstract.sim │ │ │ │ -00009030: 706c 6963 6961 6c20 636f 6d70 6c65 7865 plicial complexe │ │ │ │ -00009040: 7320 7769 7468 2076 6572 7469 6365 7320 s with vertices │ │ │ │ -00009050: 7375 7070 6f72 7465 6420 6f6e 205b 6e5d supported on [n] │ │ │ │ -00009060: 203d 207b 312c 2e2e 2e2c 6e7d 2e20 4865 = {1,...,n}. He │ │ │ │ -00009070: 7265 2077 650a 696c 6c75 7374 7261 7465 re we.illustrate │ │ │ │ -00009080: 2073 6f6d 6520 6f66 2074 6865 206d 6f73 some of the mos │ │ │ │ -00009090: 7420 6261 7369 6320 7761 7973 2074 6f20 t basic ways to │ │ │ │ -000090a0: 696e 7465 7261 6374 2077 6974 6820 7468 interact with th │ │ │ │ -000090b0: 6973 2064 6174 6120 7479 7065 2e0a 0a54 is data type...T │ │ │ │ -000090c0: 6865 2073 696d 706c 6963 6961 6c20 636f he simplicial co │ │ │ │ -000090d0: 6d70 6c65 7820 7468 6174 2069 7320 6765 mplex that is ge │ │ │ │ -000090e0: 6e65 7261 7465 6420 6279 207b 312c 322c nerated by {1,2, │ │ │ │ -000090f0: 332c 347d 2c20 7b32 2c33 2c35 7d20 616e 3,4}, {2,3,5} an │ │ │ │ -00009100: 6420 7b31 2c35 7d20 6361 6e20 6265 0a63 d {1,5} can be.c │ │ │ │ -00009110: 6f6e 7374 7275 6374 6564 2069 6e20 7468 onstructed in th │ │ │ │ -00009120: 6520 666f 6c6c 6f77 696e 6720 7761 792e e following way. │ │ │ │ -00009130: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ -00009140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009180: 2b0a 7c69 3120 3a20 4b20 3d20 6162 7374 +.|i1 : K = abst │ │ │ │ -00009190: 7261 6374 5369 6d70 6c69 6369 616c 436f ractSimplicialCo │ │ │ │ -000091a0: 6d70 6c65 7828 7b7b 312c 322c 332c 347d mplex({{1,2,3,4} │ │ │ │ -000091b0: 2c20 7b32 2c33 2c35 7d2c 7b31 2c35 7d7d , {2,3,5},{1,5}} │ │ │ │ -000091c0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -000091d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000091e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000091f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009220: 7c0a 7c6f 3120 3d20 4162 7374 7261 6374 |.|o1 = Abstract │ │ │ │ -00009230: 5369 6d70 6c69 6369 616c 436f 6d70 6c65 SimplicialComple │ │ │ │ -00009240: 787b 2d31 203d 3e20 7b7b 7d7d 2020 2020 x{-1 => {{}} │ │ │ │ -00009250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009270: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00009280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009290: 2020 3020 3d3e 207b 7b31 7d2c 207b 327d 0 => {{1}, {2} │ │ │ │ -000092a0: 2c20 7b33 7d2c 207b 347d 2c20 7b35 7d7d , {3}, {4}, {5}} │ │ │ │ -000092b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000092c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000092d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000092e0: 2020 3120 3d3e 207b 7b31 2c20 327d 2c20 1 => {{1, 2}, │ │ │ │ -000092f0: 7b31 2c20 337d 2c20 7b31 2c20 347d 2c20 {1, 3}, {1, 4}, │ │ │ │ -00009300: 7b31 2c20 357d 2c20 7b32 2c20 337d 2c20 {1, 5}, {2, 3}, │ │ │ │ -00009310: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00009320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009330: 2020 3220 3d3e 207b 7b31 2c20 322c 2033 2 => {{1, 2, 3 │ │ │ │ -00009340: 7d2c 207b 312c 2032 2c20 347d 2c20 7b31 }, {1, 2, 4}, {1 │ │ │ │ -00009350: 2c20 332c 2034 7d2c 207b 322c 2033 2c20 , 3, 4}, {2, 3, │ │ │ │ -00009360: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00009370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009380: 2020 3320 3d3e 207b 7b31 2c20 322c 2033 3 => {{1, 2, 3 │ │ │ │ -00009390: 2c20 347d 7d20 2020 2020 2020 2020 2020 , 4}} │ │ │ │ -000093a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000093b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000093c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008d20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00008d30: 0a7c 6f31 203a 2041 6273 7472 6163 7453 .|o1 : AbstractS │ │ │ │ +00008d40: 696d 706c 6963 6961 6c43 6f6d 706c 6578 implicialComplex │ │ │ │ +00008d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008d60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00008d70: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00008d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00008db0: 0a7c 6932 203a 2064 696d 204b 2020 2020 .|i2 : dim K │ │ │ │ +00008dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008de0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00008df0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00008e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008e20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00008e30: 0a7c 6f32 203d 2032 2020 2020 2020 2020 .|o2 = 2 │ │ │ │ +00008e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008e60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00008e70: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00008e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00008eb0: 0a0a 5761 7973 2074 6f20 7573 6520 7468 ..Ways to use th │ │ │ │ +00008ec0: 6973 206d 6574 686f 643a 0a3d 3d3d 3d3d is method:.===== │ │ │ │ +00008ed0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00008ee0: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2064 ===.. * *note d │ │ │ │ +00008ef0: 696d 2841 6273 7472 6163 7453 696d 706c im(AbstractSimpl │ │ │ │ +00008f00: 6963 6961 6c43 6f6d 706c 6578 293a 2064 icialComplex): d │ │ │ │ +00008f10: 696d 5f6c 7041 6273 7472 6163 7453 696d im_lpAbstractSim │ │ │ │ +00008f20: 706c 6963 6961 6c43 6f6d 706c 6578 5f72 plicialComplex_r │ │ │ │ +00008f30: 702c 0a20 2020 202d 2d20 5468 6520 6469 p,. -- The di │ │ │ │ +00008f40: 6d65 6e73 696f 6e20 6f66 2061 2073 696d mension of a sim │ │ │ │ +00008f50: 706c 6963 6961 6c20 636f 6d70 6c65 780a plicial complex. │ │ │ │ +00008f60: 1f0a 4669 6c65 3a20 4162 7374 7261 6374 ..File: Abstract │ │ │ │ +00008f70: 5369 6d70 6c69 6369 616c 436f 6d70 6c65 SimplicialComple │ │ │ │ +00008f80: 7865 732e 696e 666f 2c20 4e6f 6465 3a20 xes.info, Node: │ │ │ │ +00008f90: 486f 7720 746f 206d 616b 6520 6162 7374 How to make abst │ │ │ │ +00008fa0: 7261 6374 2073 696d 706c 6963 6961 6c20 ract simplicial │ │ │ │ +00008fb0: 636f 6d70 6c65 7865 732c 204e 6578 743a complexes, Next: │ │ │ │ +00008fc0: 2048 6f77 2074 6f20 6d61 6b65 2072 6564 How to make red │ │ │ │ +00008fd0: 7563 6564 2061 6e64 206e 6f6e 2d72 6564 uced and non-red │ │ │ │ +00008fe0: 7563 6564 2073 696d 706c 6963 6961 6c20 uced simplicial │ │ │ │ +00008ff0: 6368 6169 6e20 636f 6d70 6c65 7865 732c chain complexes, │ │ │ │ +00009000: 2050 7265 763a 2064 696d 5f6c 7041 6273 Prev: dim_lpAbs │ │ │ │ +00009010: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +00009020: 6f6d 706c 6578 5f72 702c 2055 703a 2054 omplex_rp, Up: T │ │ │ │ +00009030: 6f70 0a0a 486f 7720 746f 206d 616b 6520 op..How to make │ │ │ │ +00009040: 6162 7374 7261 6374 2073 696d 706c 6963 abstract simplic │ │ │ │ +00009050: 6961 6c20 636f 6d70 6c65 7865 7320 2d2d ial complexes -- │ │ │ │ +00009060: 2055 7369 6e67 2074 6865 2074 7970 6520 Using the type │ │ │ │ +00009070: 4162 7374 7261 6374 5369 6d70 6c69 6369 AbstractSimplici │ │ │ │ +00009080: 616c 436f 6d70 6c65 7873 2074 6f20 7265 alComplexs to re │ │ │ │ +00009090: 7072 6573 656e 7420 6162 7374 7261 6374 present abstract │ │ │ │ +000090a0: 2073 696d 706c 6963 6961 6c20 636f 6d70 simplicial comp │ │ │ │ +000090b0: 6c65 7865 730a 2a2a 2a2a 2a2a 2a2a 2a2a lexes.********** │ │ │ │ +000090c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000090d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000090e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000090f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00009100: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00009110: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00009120: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00009130: 2a2a 2a2a 2a2a 2a0a 0a54 6865 2074 7970 *******..The typ │ │ │ │ +00009140: 6520 4162 7374 7261 6374 5369 6d70 6c69 e AbstractSimpli │ │ │ │ +00009150: 6369 616c 436f 6d70 6c65 7820 6973 2061 cialComplex is a │ │ │ │ +00009160: 2064 6174 6120 7479 7065 2066 6f72 2077 data type for w │ │ │ │ +00009170: 6f72 6b69 6e67 2077 6974 6820 6162 7374 orking with abst │ │ │ │ +00009180: 7261 6374 0a73 696d 706c 6963 6961 6c20 ract.simplicial │ │ │ │ +00009190: 636f 6d70 6c65 7865 7320 7769 7468 2076 complexes with v │ │ │ │ +000091a0: 6572 7469 6365 7320 7375 7070 6f72 7465 ertices supporte │ │ │ │ +000091b0: 6420 6f6e 205b 6e5d 203d 207b 312c 2e2e d on [n] = {1,.. │ │ │ │ +000091c0: 2e2c 6e7d 2e20 4865 7265 2077 650a 696c .,n}. Here we.il │ │ │ │ +000091d0: 6c75 7374 7261 7465 2073 6f6d 6520 6f66 lustrate some of │ │ │ │ +000091e0: 2074 6865 206d 6f73 7420 6261 7369 6320 the most basic │ │ │ │ +000091f0: 7761 7973 2074 6f20 696e 7465 7261 6374 ways to interact │ │ │ │ +00009200: 2077 6974 6820 7468 6973 2064 6174 6120 with this data │ │ │ │ +00009210: 7479 7065 2e0a 0a54 6865 2073 696d 706c type...The simpl │ │ │ │ +00009220: 6963 6961 6c20 636f 6d70 6c65 7820 7468 icial complex th │ │ │ │ +00009230: 6174 2069 7320 6765 6e65 7261 7465 6420 at is generated │ │ │ │ +00009240: 6279 207b 312c 322c 332c 347d 2c20 7b32 by {1,2,3,4}, {2 │ │ │ │ +00009250: 2c33 2c35 7d20 616e 6420 7b31 2c35 7d20 ,3,5} and {1,5} │ │ │ │ +00009260: 6361 6e20 6265 0a63 6f6e 7374 7275 6374 can be.construct │ │ │ │ +00009270: 6564 2069 6e20 7468 6520 666f 6c6c 6f77 ed in the follow │ │ │ │ +00009280: 696e 6720 7761 792e 0a0a 2b2d 2d2d 2d2d ing way...+----- │ │ │ │ +00009290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000092a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000092b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000092c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000092d0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ +000092e0: 4b20 3d20 6162 7374 7261 6374 5369 6d70 K = abstractSimp │ │ │ │ +000092f0: 6c69 6369 616c 436f 6d70 6c65 7828 7b7b licialComplex({{ │ │ │ │ +00009300: 312c 322c 332c 347d 2c20 7b32 2c33 2c35 1,2,3,4}, {2,3,5 │ │ │ │ +00009310: 7d2c 7b31 2c35 7d7d 2920 2020 2020 2020 },{1,5}}) │ │ │ │ +00009320: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00009330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009370: 2020 2020 2020 2020 7c0a 7c6f 3120 3d20 |.|o1 = │ │ │ │ +00009380: 4162 7374 7261 6374 5369 6d70 6c69 6369 AbstractSimplici │ │ │ │ +00009390: 616c 436f 6d70 6c65 787b 2d31 203d 3e20 alComplex{-1 => │ │ │ │ +000093a0: 7b7b 7d7d 2020 2020 2020 2020 2020 2020 {{}} │ │ │ │ +000093b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000093c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 000093d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000093e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000093f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009400: 7c0a 7c6f 3120 3a20 4162 7374 7261 6374 |.|o1 : Abstract │ │ │ │ -00009410: 5369 6d70 6c69 6369 616c 436f 6d70 6c65 SimplicialComple │ │ │ │ -00009420: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ -00009430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009450: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ -00009460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000094a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000094b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000094c0: 2020 7d20 2020 2020 2020 2020 2020 2020 } │ │ │ │ -000094d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000094e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000094f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00009500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000093e0: 2020 2020 2020 2020 2020 3020 3d3e 207b 0 => { │ │ │ │ +000093f0: 7b31 7d2c 207b 327d 2c20 7b33 7d2c 207b {1}, {2}, {3}, { │ │ │ │ +00009400: 347d 2c20 7b35 7d7d 2020 2020 2020 2020 4}, {5}} │ │ │ │ +00009410: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00009420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009430: 2020 2020 2020 2020 2020 3120 3d3e 207b 1 => { │ │ │ │ +00009440: 7b31 2c20 327d 2c20 7b31 2c20 337d 2c20 {1, 2}, {1, 3}, │ │ │ │ +00009450: 7b31 2c20 347d 2c20 7b31 2c20 357d 2c20 {1, 4}, {1, 5}, │ │ │ │ +00009460: 7b32 2c20 337d 2c20 7c0a 7c20 2020 2020 {2, 3}, |.| │ │ │ │ +00009470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009480: 2020 2020 2020 2020 2020 3220 3d3e 207b 2 => { │ │ │ │ +00009490: 7b31 2c20 322c 2033 7d2c 207b 312c 2032 {1, 2, 3}, {1, 2 │ │ │ │ +000094a0: 2c20 347d 2c20 7b31 2c20 332c 2034 7d2c , 4}, {1, 3, 4}, │ │ │ │ +000094b0: 207b 322c 2033 2c20 7c0a 7c20 2020 2020 {2, 3, |.| │ │ │ │ +000094c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000094d0: 2020 2020 2020 2020 2020 3320 3d3e 207b 3 => { │ │ │ │ +000094e0: 7b31 2c20 322c 2033 2c20 347d 7d20 2020 {1, 2, 3, 4}} │ │ │ │ +000094f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009500: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00009510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009540: 7c0a 7c7b 322c 2034 7d2c 207b 322c 2035 |.|{2, 4}, {2, 5 │ │ │ │ -00009550: 7d2c 207b 332c 2034 7d2c 207b 332c 2035 }, {3, 4}, {3, 5 │ │ │ │ -00009560: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ -00009570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009550: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ +00009560: 4162 7374 7261 6374 5369 6d70 6c69 6369 AbstractSimplici │ │ │ │ +00009570: 616c 436f 6d70 6c65 7820 2020 2020 2020 alComplex │ │ │ │ 00009580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009590: 7c0a 7c34 7d2c 207b 322c 2033 2c20 357d |.|4}, {2, 3, 5} │ │ │ │ -000095a0: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ -000095b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000095c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000095d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000095e0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -000095f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009630: 2b0a 0a54 6865 2073 696d 706c 6578 206f +..The simplex o │ │ │ │ -00009640: 6e20 7468 6520 7665 7274 6578 2073 6574 n the vertex set │ │ │ │ -00009650: 205b 345d 2063 616e 2062 6520 636f 6e73 [4] can be cons │ │ │ │ -00009660: 7472 7563 7465 6420 6173 0a0a 2b2d 2d2d tructed as..+--- │ │ │ │ -00009670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000096a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000096b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ -000096c0: 3a20 4c20 3d20 6162 7374 7261 6374 5369 : L = abstractSi │ │ │ │ -000096d0: 6d70 6c69 6369 616c 436f 6d70 6c65 7828 mplicialComplex( │ │ │ │ -000096e0: 3429 2020 2020 2020 2020 2020 2020 2020 4) │ │ │ │ -000096f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009700: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00009590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000095a0: 2020 2020 2020 2020 7c0a 7c2d 2d2d 2d2d |.|----- │ │ │ │ +000095b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000095c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000095d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000095e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000095f0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +00009600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009610: 2020 2020 2020 2020 2020 7d20 2020 2020 } │ │ │ │ +00009620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009640: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00009650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009690: 2020 2020 2020 2020 7c0a 7c7b 322c 2034 |.|{2, 4 │ │ │ │ +000096a0: 7d2c 207b 322c 2035 7d2c 207b 332c 2034 }, {2, 5}, {3, 4 │ │ │ │ +000096b0: 7d2c 207b 332c 2035 7d7d 2020 2020 2020 }, {3, 5}} │ │ │ │ +000096c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000096d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000096e0: 2020 2020 2020 2020 7c0a 7c34 7d2c 207b |.|4}, { │ │ │ │ +000096f0: 322c 2033 2c20 357d 7d20 2020 2020 2020 2, 3, 5}} │ │ │ │ +00009700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009750: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -00009760: 3d20 4162 7374 7261 6374 5369 6d70 6c69 = AbstractSimpli │ │ │ │ -00009770: 6369 616c 436f 6d70 6c65 787b 2d31 203d cialComplex{-1 = │ │ │ │ -00009780: 3e20 7b7b 7d7d 2020 2020 2020 2020 2020 > {{}} │ │ │ │ -00009790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000097a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000097b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000097c0: 2020 2020 2020 2020 2020 2020 3020 3d3e 0 => │ │ │ │ -000097d0: 207b 7b31 7d2c 207b 327d 2c20 7b33 7d2c {{1}, {2}, {3}, │ │ │ │ -000097e0: 207b 347d 7d20 2020 2020 2020 2020 2020 {4}} │ │ │ │ -000097f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00009800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009810: 2020 2020 2020 2020 2020 2020 3120 3d3e 1 => │ │ │ │ -00009820: 207b 7b31 2c20 327d 2c20 7b31 2c20 337d {{1, 2}, {1, 3} │ │ │ │ -00009830: 2c20 7b31 2c20 347d 2c20 7b32 2c20 337d , {1, 4}, {2, 3} │ │ │ │ -00009840: 2c20 7b32 2c20 347d 2c20 7c0a 7c20 2020 , {2, 4}, |.| │ │ │ │ +00009730: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00009740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009780: 2d2d 2d2d 2d2d 2d2d 2b0a 0a54 6865 2073 --------+..The s │ │ │ │ +00009790: 696d 706c 6578 206f 6e20 7468 6520 7665 implex on the ve │ │ │ │ +000097a0: 7274 6578 2073 6574 205b 345d 2063 616e rtex set [4] can │ │ │ │ +000097b0: 2062 6520 636f 6e73 7472 7563 7465 6420 be constructed │ │ │ │ +000097c0: 6173 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d as..+----------- │ │ │ │ +000097d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000097e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000097f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009810: 2d2d 2b0a 7c69 3220 3a20 4c20 3d20 6162 --+.|i2 : L = ab │ │ │ │ +00009820: 7374 7261 6374 5369 6d70 6c69 6369 616c stractSimplicial │ │ │ │ +00009830: 436f 6d70 6c65 7828 3429 2020 2020 2020 Complex(4) │ │ │ │ +00009840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009860: 2020 2020 2020 2020 2020 2020 3220 3d3e 2 => │ │ │ │ -00009870: 207b 7b31 2c20 322c 2033 7d2c 207b 312c {{1, 2, 3}, {1, │ │ │ │ -00009880: 2032 2c20 347d 2c20 7b31 2c20 332c 2034 2, 4}, {1, 3, 4 │ │ │ │ -00009890: 7d2c 207b 322c 2033 2c20 7c0a 7c20 2020 }, {2, 3, |.| │ │ │ │ +00009860: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00009870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000098a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000098b0: 2020 2020 2020 2020 2020 2020 3320 3d3e 3 => │ │ │ │ -000098c0: 207b 7b31 2c20 322c 2033 2c20 347d 7d20 {{1, 2, 3, 4}} │ │ │ │ -000098d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000098e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000098b0: 2020 7c0a 7c6f 3220 3d20 4162 7374 7261 |.|o2 = Abstra │ │ │ │ +000098c0: 6374 5369 6d70 6c69 6369 616c 436f 6d70 ctSimplicialComp │ │ │ │ +000098d0: 6c65 787b 2d31 203d 3e20 7b7b 7d7d 2020 lex{-1 => {{}} │ │ │ │ +000098e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000098f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009900: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00009910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009930: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -00009940: 3a20 4162 7374 7261 6374 5369 6d70 6c69 : AbstractSimpli │ │ │ │ -00009950: 6369 616c 436f 6d70 6c65 7820 2020 2020 cialComplex │ │ │ │ +00009920: 2020 2020 3020 3d3e 207b 7b31 7d2c 207b 0 => {{1}, { │ │ │ │ +00009930: 327d 2c20 7b33 7d2c 207b 347d 7d20 2020 2}, {3}, {4}} │ │ │ │ +00009940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009950: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00009960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009980: 2020 2020 2020 2020 2020 7c0a 7c2d 2d2d |.|--- │ │ │ │ -00009990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000099a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000099b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000099c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000099d0: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 ----------|.| │ │ │ │ -000099e0: 2020 2020 7d20 2020 2020 2020 2020 2020 } │ │ │ │ -000099f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009970: 2020 2020 3120 3d3e 207b 7b31 2c20 327d 1 => {{1, 2} │ │ │ │ +00009980: 2c20 7b31 2c20 337d 2c20 7b31 2c20 347d , {1, 3}, {1, 4} │ │ │ │ +00009990: 2c20 7b32 2c20 337d 2c20 7b32 2c20 347d , {2, 3}, {2, 4} │ │ │ │ +000099a0: 2c20 7c0a 7c20 2020 2020 2020 2020 2020 , |.| │ │ │ │ +000099b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000099c0: 2020 2020 3220 3d3e 207b 7b31 2c20 322c 2 => {{1, 2, │ │ │ │ +000099d0: 2033 7d2c 207b 312c 2032 2c20 347d 2c20 3}, {1, 2, 4}, │ │ │ │ +000099e0: 7b31 2c20 332c 2034 7d2c 207b 322c 2033 {1, 3, 4}, {2, 3 │ │ │ │ +000099f0: 2c20 7c0a 7c20 2020 2020 2020 2020 2020 , |.| │ │ │ │ 00009a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009a20: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00009a10: 2020 2020 3320 3d3e 207b 7b31 2c20 322c 3 => {{1, 2, │ │ │ │ +00009a20: 2033 2c20 347d 7d20 2020 2020 2020 2020 3, 4}} │ │ │ │ 00009a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009a40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00009a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009a70: 2020 2020 2020 2020 2020 7c0a 7c7b 332c |.|{3, │ │ │ │ -00009a80: 2034 7d7d 2020 2020 2020 2020 2020 2020 4}} │ │ │ │ -00009a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009ac0: 2020 2020 2020 2020 2020 7c0a 7c34 7d7d |.|4}} │ │ │ │ +00009a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009a90: 2020 7c0a 7c6f 3220 3a20 4162 7374 7261 |.|o2 : Abstra │ │ │ │ +00009aa0: 6374 5369 6d70 6c69 6369 616c 436f 6d70 ctSimplicialComp │ │ │ │ +00009ab0: 6c65 7820 2020 2020 2020 2020 2020 2020 lex │ │ │ │ +00009ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009b10: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00009ae0: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ +00009af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a54 6865 ----------+..The │ │ │ │ -00009b70: 2066 6163 6573 2061 6e64 2066 6163 6574 faces and facet │ │ │ │ -00009b80: 7320 6f66 2073 7563 6820 7369 6d70 6c69 s of such simpli │ │ │ │ -00009b90: 6369 616c 2063 6f6d 706c 6578 6573 2063 cial complexes c │ │ │ │ -00009ba0: 616e 2062 6520 6163 6365 7373 6564 2061 an be accessed a │ │ │ │ -00009bb0: 730a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d s..+------------ │ │ │ │ -00009bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009c00: 2d2b 0a7c 6933 203a 204b 5f28 2d31 2920 -+.|i3 : K_(-1) │ │ │ │ +00009b30: 2d2d 7c0a 7c20 2020 2020 2020 7d20 2020 --|.| } │ │ │ │ +00009b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009b80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00009b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009bd0: 2020 7c0a 7c7b 332c 2034 7d7d 2020 2020 |.|{3, 4}} │ │ │ │ +00009be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009c20: 2020 7c0a 7c34 7d7d 2020 2020 2020 2020 |.|4}} │ │ │ │ 00009c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009c50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00009c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009ca0: 207c 0a7c 6f33 203d 207b 7b7d 7d20 2020 |.|o3 = {{}} │ │ │ │ -00009cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009cf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00009d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009d40: 207c 0a7c 6f33 203a 204c 6973 7420 2020 |.|o3 : List │ │ │ │ -00009d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009c70: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00009c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009cc0: 2d2d 2b0a 0a54 6865 2066 6163 6573 2061 --+..The faces a │ │ │ │ +00009cd0: 6e64 2066 6163 6574 7320 6f66 2073 7563 nd facets of suc │ │ │ │ +00009ce0: 6820 7369 6d70 6c69 6369 616c 2063 6f6d h simplicial com │ │ │ │ +00009cf0: 706c 6578 6573 2063 616e 2062 6520 6163 plexes can be ac │ │ │ │ +00009d00: 6365 7373 6564 2061 730a 0a2b 2d2d 2d2d cessed as..+---- │ │ │ │ +00009d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009d50: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ +00009d60: 204b 5f28 2d31 2920 2020 2020 2020 2020 K_(-1) │ │ │ │ 00009d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009d90: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00009da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009de0: 2d2b 0a7c 6934 203a 204b 5f30 2020 2020 -+.|i4 : K_0 │ │ │ │ -00009df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009da0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00009db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009df0: 2020 2020 2020 2020 207c 0a7c 6f33 203d |.|o3 = │ │ │ │ +00009e00: 207b 7b7d 7d20 2020 2020 2020 2020 2020 {{}} │ │ │ │ 00009e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009e30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00009e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009e40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00009e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009e80: 207c 0a7c 6f34 203d 207b 7b31 7d2c 207b |.|o4 = {{1}, { │ │ │ │ -00009e90: 327d 2c20 7b33 7d2c 207b 347d 2c20 7b35 2}, {3}, {4}, {5 │ │ │ │ -00009ea0: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ +00009e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009e90: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ +00009ea0: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ 00009eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009ed0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00009ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009f20: 207c 0a7c 6f34 203a 204c 6973 7420 2020 |.|o4 : List │ │ │ │ -00009f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009ee0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00009ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009f30: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ +00009f40: 204b 5f30 2020 2020 2020 2020 2020 2020 K_0 │ │ │ │ 00009f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009f70: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00009f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009fc0: 2d2b 0a7c 6935 203a 204b 5f31 2020 2020 -+.|i5 : K_1 │ │ │ │ -00009fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009f80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00009f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009fd0: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ +00009fe0: 207b 7b31 7d2c 207b 327d 2c20 7b33 7d2c {{1}, {2}, {3}, │ │ │ │ +00009ff0: 207b 347d 2c20 7b35 7d7d 2020 2020 2020 {4}, {5}} │ │ │ │ 0000a000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a010: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0000a020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a020: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0000a030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a060: 207c 0a7c 6f35 203d 207b 7b31 2c20 327d |.|o5 = {{1, 2} │ │ │ │ -0000a070: 2c20 7b31 2c20 337d 2c20 7b31 2c20 347d , {1, 3}, {1, 4} │ │ │ │ -0000a080: 2c20 7b31 2c20 357d 2c20 7b32 2c20 337d , {1, 5}, {2, 3} │ │ │ │ -0000a090: 2c20 7b32 2c20 347d 2c20 7b32 2c20 357d , {2, 4}, {2, 5} │ │ │ │ -0000a0a0: 2c20 7b33 2c20 347d 2c20 7b33 2c20 357d , {3, 4}, {3, 5} │ │ │ │ -0000a0b0: 7d7c 0a7c 2020 2020 2020 2020 2020 2020 }|.| │ │ │ │ -0000a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a100: 207c 0a7c 6f35 203a 204c 6973 7420 2020 |.|o5 : List │ │ │ │ -0000a110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a070: 2020 2020 2020 2020 207c 0a7c 6f34 203a |.|o4 : │ │ │ │ +0000a080: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ +0000a090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a0c0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0000a0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a110: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ +0000a120: 204b 5f31 2020 2020 2020 2020 2020 2020 K_1 │ │ │ │ 0000a130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a150: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0000a160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a1a0: 2d2b 0a7c 6936 203a 204b 5f32 2020 2020 -+.|i6 : K_2 │ │ │ │ -0000a1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a1f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0000a200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a160: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000a170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a1b0: 2020 2020 2020 2020 207c 0a7c 6f35 203d |.|o5 = │ │ │ │ +0000a1c0: 207b 7b31 2c20 327d 2c20 7b31 2c20 337d {{1, 2}, {1, 3} │ │ │ │ +0000a1d0: 2c20 7b31 2c20 347d 2c20 7b31 2c20 357d , {1, 4}, {1, 5} │ │ │ │ +0000a1e0: 2c20 7b32 2c20 337d 2c20 7b32 2c20 347d , {2, 3}, {2, 4} │ │ │ │ +0000a1f0: 2c20 7b32 2c20 357d 2c20 7b33 2c20 347d , {2, 5}, {3, 4} │ │ │ │ +0000a200: 2c20 7b33 2c20 357d 7d7c 0a7c 2020 2020 , {3, 5}}|.| │ │ │ │ 0000a210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a240: 207c 0a7c 6f36 203d 207b 7b31 2c20 322c |.|o6 = {{1, 2, │ │ │ │ -0000a250: 2033 7d2c 207b 312c 2032 2c20 347d 2c20 3}, {1, 2, 4}, │ │ │ │ -0000a260: 7b31 2c20 332c 2034 7d2c 207b 322c 2033 {1, 3, 4}, {2, 3 │ │ │ │ -0000a270: 2c20 347d 2c20 7b32 2c20 332c 2035 7d7d , 4}, {2, 3, 5}} │ │ │ │ +0000a240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a250: 2020 2020 2020 2020 207c 0a7c 6f35 203a |.|o5 : │ │ │ │ +0000a260: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ +0000a270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a290: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0000a2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a2e0: 207c 0a7c 6f36 203a 204c 6973 7420 2020 |.|o6 : List │ │ │ │ -0000a2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a2a0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0000a2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a2f0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a ---------+.|i6 : │ │ │ │ +0000a300: 204b 5f32 2020 2020 2020 2020 2020 2020 K_2 │ │ │ │ 0000a310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a330: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0000a340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a380: 2d2b 0a7c 6937 203a 2061 6273 7472 6163 -+.|i7 : abstrac │ │ │ │ -0000a390: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ -0000a3a0: 6578 4661 6365 7473 204b 2020 2020 2020 exFacets K │ │ │ │ -0000a3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a3d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0000a3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a340: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000a350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a390: 2020 2020 2020 2020 207c 0a7c 6f36 203d |.|o6 = │ │ │ │ +0000a3a0: 207b 7b31 2c20 322c 2033 7d2c 207b 312c {{1, 2, 3}, {1, │ │ │ │ +0000a3b0: 2032 2c20 347d 2c20 7b31 2c20 332c 2034 2, 4}, {1, 3, 4 │ │ │ │ +0000a3c0: 7d2c 207b 322c 2033 2c20 347d 2c20 7b32 }, {2, 3, 4}, {2 │ │ │ │ +0000a3d0: 2c20 332c 2035 7d7d 2020 2020 2020 2020 , 3, 5}} │ │ │ │ +0000a3e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0000a3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a420: 207c 0a7c 6f37 203d 207b 7b31 2c20 357d |.|o7 = {{1, 5} │ │ │ │ -0000a430: 2c20 7b32 2c20 332c 2035 7d2c 207b 312c , {2, 3, 5}, {1, │ │ │ │ -0000a440: 2032 2c20 332c 2034 7d7d 2020 2020 2020 2, 3, 4}} │ │ │ │ +0000a420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a430: 2020 2020 2020 2020 207c 0a7c 6f36 203a |.|o6 : │ │ │ │ +0000a440: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ 0000a450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a470: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0000a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a4c0: 207c 0a7c 6f37 203a 204c 6973 7420 2020 |.|o7 : List │ │ │ │ -0000a4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a510: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0000a520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a560: 2d2b 0a7c 6938 203a 204c 5f28 2d31 2920 -+.|i8 : L_(-1) │ │ │ │ -0000a570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a5b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0000a5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a480: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0000a490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a4a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a4d0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a ---------+.|i7 : │ │ │ │ +0000a4e0: 2061 6273 7472 6163 7453 696d 706c 6963 abstractSimplic │ │ │ │ +0000a4f0: 6961 6c43 6f6d 706c 6578 4661 6365 7473 ialComplexFacets │ │ │ │ +0000a500: 204b 2020 2020 2020 2020 2020 2020 2020 K │ │ │ │ +0000a510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a520: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000a530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a570: 2020 2020 2020 2020 207c 0a7c 6f37 203d |.|o7 = │ │ │ │ +0000a580: 207b 7b31 2c20 357d 2c20 7b32 2c20 332c {{1, 5}, {2, 3, │ │ │ │ +0000a590: 2035 7d2c 207b 312c 2032 2c20 332c 2034 5}, {1, 2, 3, 4 │ │ │ │ +0000a5a0: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ +0000a5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a5c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0000a5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a600: 207c 0a7c 6f38 203d 207b 7b7d 7d20 2020 |.|o8 = {{}} │ │ │ │ -0000a610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a610: 2020 2020 2020 2020 207c 0a7c 6f37 203a |.|o7 : │ │ │ │ +0000a620: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ 0000a630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a650: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0000a660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a6a0: 207c 0a7c 6f38 203a 204c 6973 7420 2020 |.|o8 : List │ │ │ │ -0000a6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a660: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0000a670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a6b0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a ---------+.|i8 : │ │ │ │ +0000a6c0: 204c 5f28 2d31 2920 2020 2020 2020 2020 L_(-1) │ │ │ │ 0000a6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a6f0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0000a700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a740: 2d2b 0a7c 6939 203a 204c 5f30 2020 2020 -+.|i9 : L_0 │ │ │ │ -0000a750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a700: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000a710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a750: 2020 2020 2020 2020 207c 0a7c 6f38 203d |.|o8 = │ │ │ │ +0000a760: 207b 7b7d 7d20 2020 2020 2020 2020 2020 {{}} │ │ │ │ 0000a770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a790: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0000a7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a7a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0000a7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a7e0: 207c 0a7c 6f39 203d 207b 7b31 7d2c 207b |.|o9 = {{1}, { │ │ │ │ -0000a7f0: 327d 2c20 7b33 7d2c 207b 347d 7d20 2020 2}, {3}, {4}} │ │ │ │ -0000a800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a7f0: 2020 2020 2020 2020 207c 0a7c 6f38 203a |.|o8 : │ │ │ │ +0000a800: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ 0000a810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a830: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0000a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a880: 207c 0a7c 6f39 203a 204c 6973 7420 2020 |.|o9 : List │ │ │ │ -0000a890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a840: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0000a850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a890: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a ---------+.|i9 : │ │ │ │ +0000a8a0: 204c 5f30 2020 2020 2020 2020 2020 2020 L_0 │ │ │ │ 0000a8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a8d0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0000a8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a920: 2d2b 0a7c 6931 3020 3a20 4c5f 3120 2020 -+.|i10 : L_1 │ │ │ │ -0000a930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a8e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000a8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a930: 2020 2020 2020 2020 207c 0a7c 6f39 203d |.|o9 = │ │ │ │ +0000a940: 207b 7b31 7d2c 207b 327d 2c20 7b33 7d2c {{1}, {2}, {3}, │ │ │ │ +0000a950: 207b 347d 7d20 2020 2020 2020 2020 2020 {4}} │ │ │ │ 0000a960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a970: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0000a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a980: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0000a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a9c0: 207c 0a7c 6f31 3020 3d20 7b7b 312c 2032 |.|o10 = {{1, 2 │ │ │ │ -0000a9d0: 7d2c 207b 312c 2033 7d2c 207b 312c 2034 }, {1, 3}, {1, 4 │ │ │ │ -0000a9e0: 7d2c 207b 322c 2033 7d2c 207b 322c 2034 }, {2, 3}, {2, 4 │ │ │ │ -0000a9f0: 7d2c 207b 332c 2034 7d7d 2020 2020 2020 }, {3, 4}} │ │ │ │ +0000a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a9d0: 2020 2020 2020 2020 207c 0a7c 6f39 203a |.|o9 : │ │ │ │ +0000a9e0: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ +0000a9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000aa10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0000aa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000aa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000aa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000aa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000aa60: 207c 0a7c 6f31 3020 3a20 4c69 7374 2020 |.|o10 : List │ │ │ │ -0000aa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000aa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000aa20: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0000aa30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000aa40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000aa50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000aa60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000aa70: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 ---------+.|i10 │ │ │ │ +0000aa80: 3a20 4c5f 3120 2020 2020 2020 2020 2020 : L_1 │ │ │ │ 0000aa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000aab0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0000aac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000aad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000aae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000aaf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000ab00: 2d2b 0a7c 6931 3120 3a20 4c5f 3220 2020 -+.|i11 : L_2 │ │ │ │ -0000ab10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ab20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ab30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ab40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ab50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0000ab60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000aab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000aac0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000aae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000aaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ab10: 2020 2020 2020 2020 207c 0a7c 6f31 3020 |.|o10 │ │ │ │ +0000ab20: 3d20 7b7b 312c 2032 7d2c 207b 312c 2033 = {{1, 2}, {1, 3 │ │ │ │ +0000ab30: 7d2c 207b 312c 2034 7d2c 207b 322c 2033 }, {1, 4}, {2, 3 │ │ │ │ +0000ab40: 7d2c 207b 322c 2034 7d2c 207b 332c 2034 }, {2, 4}, {3, 4 │ │ │ │ +0000ab50: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ +0000ab60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0000ab70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ab80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ab90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000aba0: 207c 0a7c 6f31 3120 3d20 7b7b 312c 2032 |.|o11 = {{1, 2 │ │ │ │ -0000abb0: 2c20 337d 2c20 7b31 2c20 322c 2034 7d2c , 3}, {1, 2, 4}, │ │ │ │ -0000abc0: 207b 312c 2033 2c20 347d 2c20 7b32 2c20 {1, 3, 4}, {2, │ │ │ │ -0000abd0: 332c 2034 7d7d 2020 2020 2020 2020 2020 3, 4}} │ │ │ │ +0000aba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000abb0: 2020 2020 2020 2020 207c 0a7c 6f31 3020 |.|o10 │ │ │ │ +0000abc0: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ +0000abd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000abe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000abf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0000ac00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ac10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ac20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ac30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ac40: 207c 0a7c 6f31 3120 3a20 4c69 7374 2020 |.|o11 : List │ │ │ │ -0000ac50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ac60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000abf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ac00: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0000ac10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000ac20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000ac30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000ac40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000ac50: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 ---------+.|i11 │ │ │ │ +0000ac60: 3a20 4c5f 3220 2020 2020 2020 2020 2020 : L_2 │ │ │ │ 0000ac70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ac80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ac90: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0000aca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000acb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000acc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000acd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000ace0: 2d2b 0a7c 6931 3220 3a20 4c5f 3320 2020 -+.|i12 : L_3 │ │ │ │ -0000acf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ad00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ad10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ad20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ad30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0000ad40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ac90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000aca0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000acb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000acc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000acd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ace0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000acf0: 2020 2020 2020 2020 207c 0a7c 6f31 3120 |.|o11 │ │ │ │ +0000ad00: 3d20 7b7b 312c 2032 2c20 337d 2c20 7b31 = {{1, 2, 3}, {1 │ │ │ │ +0000ad10: 2c20 322c 2034 7d2c 207b 312c 2033 2c20 , 2, 4}, {1, 3, │ │ │ │ +0000ad20: 347d 2c20 7b32 2c20 332c 2034 7d7d 2020 4}, {2, 3, 4}} │ │ │ │ +0000ad30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ad40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0000ad50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ad60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ad70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ad80: 207c 0a7c 6f31 3220 3d20 7b7b 312c 2032 |.|o12 = {{1, 2 │ │ │ │ -0000ad90: 2c20 332c 2034 7d7d 2020 2020 2020 2020 , 3, 4}} │ │ │ │ -0000ada0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ad80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ad90: 2020 2020 2020 2020 207c 0a7c 6f31 3120 |.|o11 │ │ │ │ +0000ada0: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ 0000adb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000adc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000add0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0000ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000adf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ae00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ae10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ae20: 207c 0a7c 6f31 3220 3a20 4c69 7374 2020 |.|o12 : List │ │ │ │ -0000ae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ade0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0000adf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000ae00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000ae10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000ae20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000ae30: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3220 ---------+.|i12 │ │ │ │ +0000ae40: 3a20 4c5f 3320 2020 2020 2020 2020 2020 : L_3 │ │ │ │ 0000ae50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ae70: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0000ae80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000ae90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000aea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000aeb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000aec0: 2d2b 0a7c 6931 3320 3a20 6162 7374 7261 -+.|i13 : abstra │ │ │ │ -0000aed0: 6374 5369 6d70 6c69 6369 616c 436f 6d70 ctSimplicialComp │ │ │ │ -0000aee0: 6c65 7846 6163 6574 7320 4c20 2020 2020 lexFacets L │ │ │ │ +0000ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ae80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000ae90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000aea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000aeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000aec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000aed0: 2020 2020 2020 2020 207c 0a7c 6f31 3220 |.|o12 │ │ │ │ +0000aee0: 3d20 7b7b 312c 2032 2c20 332c 2034 7d7d = {{1, 2, 3, 4}} │ │ │ │ 0000aef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000af00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000af10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0000af20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000af10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000af20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0000af30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000af40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000af50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000af60: 207c 0a7c 6f31 3320 3d20 7b7b 312c 2032 |.|o13 = {{1, 2 │ │ │ │ -0000af70: 2c20 332c 2034 7d7d 2020 2020 2020 2020 , 3, 4}} │ │ │ │ -0000af80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000af60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000af70: 2020 2020 2020 2020 207c 0a7c 6f31 3220 |.|o12 │ │ │ │ +0000af80: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ 0000af90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000afa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000afb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0000afc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000afd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000aff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b000: 207c 0a7c 6f31 3320 3a20 4c69 7374 2020 |.|o13 : List │ │ │ │ -0000b010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b050: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0000b060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000b070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000b080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000b090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000b0a0: 2d2b 0a1f 0a46 696c 653a 2041 6273 7472 -+...File: Abstr │ │ │ │ -0000b0b0: 6163 7453 696d 706c 6963 6961 6c43 6f6d actSimplicialCom │ │ │ │ -0000b0c0: 706c 6578 6573 2e69 6e66 6f2c 204e 6f64 plexes.info, Nod │ │ │ │ -0000b0d0: 653a 2048 6f77 2074 6f20 6d61 6b65 2072 e: How to make r │ │ │ │ -0000b0e0: 6564 7563 6564 2061 6e64 206e 6f6e 2d72 educed and non-r │ │ │ │ -0000b0f0: 6564 7563 6564 2073 696d 706c 6963 6961 educed simplicia │ │ │ │ -0000b100: 6c20 6368 6169 6e20 636f 6d70 6c65 7865 l chain complexe │ │ │ │ -0000b110: 732c 204e 6578 743a 2048 6f77 2074 6f20 s, Next: How to │ │ │ │ -0000b120: 6d61 6b65 2073 7562 7369 6d70 6c69 6361 make subsimplica │ │ │ │ -0000b130: 6c20 636f 6d70 6c65 7865 7320 616e 6420 l complexes and │ │ │ │ -0000b140: 696e 6475 6365 6420 7369 6d70 6c69 6369 induced simplici │ │ │ │ -0000b150: 616c 2063 6861 696e 2063 6f6d 706c 6578 al chain complex │ │ │ │ -0000b160: 206d 6170 732c 2050 7265 763a 2048 6f77 maps, Prev: How │ │ │ │ -0000b170: 2074 6f20 6d61 6b65 2061 6273 7472 6163 to make abstrac │ │ │ │ -0000b180: 7420 7369 6d70 6c69 6369 616c 2063 6f6d t simplicial com │ │ │ │ -0000b190: 706c 6578 6573 2c20 5570 3a20 546f 700a plexes, Up: Top. │ │ │ │ -0000b1a0: 0a48 6f77 2074 6f20 6d61 6b65 2072 6564 .How to make red │ │ │ │ -0000b1b0: 7563 6564 2061 6e64 206e 6f6e 2d72 6564 uced and non-red │ │ │ │ -0000b1c0: 7563 6564 2073 696d 706c 6963 6961 6c20 uced simplicial │ │ │ │ -0000b1d0: 6368 6169 6e20 636f 6d70 6c65 7865 7320 chain complexes │ │ │ │ -0000b1e0: 2d2d 2053 696d 706c 6963 6961 6c20 686f -- Simplicial ho │ │ │ │ -0000b1f0: 6d6f 6c6f 6769 6361 6c20 636f 6e73 7472 mological constr │ │ │ │ -0000b200: 7563 746f 7273 0a2a 2a2a 2a2a 2a2a 2a2a uctors.********* │ │ │ │ -0000b210: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000b220: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000b230: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000b240: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000b250: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000b260: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4e6f ************..No │ │ │ │ -0000b270: 6e2d 7265 6475 6365 6420 616e 6420 7265 n-reduced and re │ │ │ │ -0000b280: 6475 6365 6420 7369 6d70 6c69 6369 616c duced simplicial │ │ │ │ -0000b290: 2063 6861 696e 2063 6f6d 706c 6578 6573 chain complexes │ │ │ │ -0000b2a0: 2063 616e 2062 6520 636f 6e73 7472 7563 can be construc │ │ │ │ -0000b2b0: 7465 6420 696e 2074 6865 0a66 6f6c 6c6f ted in the.follo │ │ │ │ -0000b2c0: 7769 6e67 2077 6179 2e0a 0a2b 2d2d 2d2d wing way...+---- │ │ │ │ -0000b2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000b2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000b2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000b300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000b310: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ -0000b320: 204b 203d 2061 6273 7472 6163 7453 696d K = abstractSim │ │ │ │ -0000b330: 706c 6963 6961 6c43 6f6d 706c 6578 287b plicialComplex({ │ │ │ │ -0000b340: 7b31 2c32 2c33 2c34 7d2c 207b 322c 332c {1,2,3,4}, {2,3, │ │ │ │ -0000b350: 357d 2c7b 312c 357d 7d29 2020 2020 2020 5},{1,5}}) │ │ │ │ -0000b360: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000b370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b3b0: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ -0000b3c0: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ -0000b3d0: 6961 6c43 6f6d 706c 6578 7b2d 3120 3d3e ialComplex{-1 => │ │ │ │ -0000b3e0: 207b 7b7d 7d20 2020 2020 2020 2020 2020 {{}} │ │ │ │ -0000b3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b400: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000b410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b420: 2020 2020 2020 2020 2020 2030 203d 3e20 0 => │ │ │ │ -0000b430: 7b7b 317d 2c20 7b32 7d2c 207b 337d 2c20 {{1}, {2}, {3}, │ │ │ │ -0000b440: 7b34 7d2c 207b 357d 7d20 2020 2020 2020 {4}, {5}} │ │ │ │ -0000b450: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b470: 2020 2020 2020 2020 2020 2031 203d 3e20 1 => │ │ │ │ -0000b480: 7b7b 312c 2032 7d2c 207b 312c 2033 7d2c {{1, 2}, {1, 3}, │ │ │ │ -0000b490: 207b 312c 2034 7d2c 207b 312c 2035 7d2c {1, 4}, {1, 5}, │ │ │ │ -0000b4a0: 207b 322c 2033 7d2c 207c 0a7c 2020 2020 {2, 3}, |.| │ │ │ │ -0000b4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b4c0: 2020 2020 2020 2020 2020 2032 203d 3e20 2 => │ │ │ │ -0000b4d0: 7b7b 312c 2032 2c20 337d 2c20 7b31 2c20 {{1, 2, 3}, {1, │ │ │ │ -0000b4e0: 322c 2034 7d2c 207b 312c 2033 2c20 347d 2, 4}, {1, 3, 4} │ │ │ │ -0000b4f0: 2c20 7b32 2c20 332c 207c 0a7c 2020 2020 , {2, 3, |.| │ │ │ │ +0000afb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000afc0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0000afd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000afe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000aff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000b000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000b010: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3320 ---------+.|i13 │ │ │ │ +0000b020: 3a20 6162 7374 7261 6374 5369 6d70 6c69 : abstractSimpli │ │ │ │ +0000b030: 6369 616c 436f 6d70 6c65 7846 6163 6574 cialComplexFacet │ │ │ │ +0000b040: 7320 4c20 2020 2020 2020 2020 2020 2020 s L │ │ │ │ +0000b050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b060: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000b070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b0b0: 2020 2020 2020 2020 207c 0a7c 6f31 3320 |.|o13 │ │ │ │ +0000b0c0: 3d20 7b7b 312c 2032 2c20 332c 2034 7d7d = {{1, 2, 3, 4}} │ │ │ │ +0000b0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b100: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000b110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b150: 2020 2020 2020 2020 207c 0a7c 6f31 3320 |.|o13 │ │ │ │ +0000b160: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ +0000b170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b1a0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0000b1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000b1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000b1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000b1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000b1f0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a1f 0a46 696c ---------+...Fil │ │ │ │ +0000b200: 653a 2041 6273 7472 6163 7453 696d 706c e: AbstractSimpl │ │ │ │ +0000b210: 6963 6961 6c43 6f6d 706c 6578 6573 2e69 icialComplexes.i │ │ │ │ +0000b220: 6e66 6f2c 204e 6f64 653a 2048 6f77 2074 nfo, Node: How t │ │ │ │ +0000b230: 6f20 6d61 6b65 2072 6564 7563 6564 2061 o make reduced a │ │ │ │ +0000b240: 6e64 206e 6f6e 2d72 6564 7563 6564 2073 nd non-reduced s │ │ │ │ +0000b250: 696d 706c 6963 6961 6c20 6368 6169 6e20 implicial chain │ │ │ │ +0000b260: 636f 6d70 6c65 7865 732c 204e 6578 743a complexes, Next: │ │ │ │ +0000b270: 2048 6f77 2074 6f20 6d61 6b65 2073 7562 How to make sub │ │ │ │ +0000b280: 7369 6d70 6c69 6361 6c20 636f 6d70 6c65 simplical comple │ │ │ │ +0000b290: 7865 7320 616e 6420 696e 6475 6365 6420 xes and induced │ │ │ │ +0000b2a0: 7369 6d70 6c69 6369 616c 2063 6861 696e simplicial chain │ │ │ │ +0000b2b0: 2063 6f6d 706c 6578 206d 6170 732c 2050 complex maps, P │ │ │ │ +0000b2c0: 7265 763a 2048 6f77 2074 6f20 6d61 6b65 rev: How to make │ │ │ │ +0000b2d0: 2061 6273 7472 6163 7420 7369 6d70 6c69 abstract simpli │ │ │ │ +0000b2e0: 6369 616c 2063 6f6d 706c 6578 6573 2c20 cial complexes, │ │ │ │ +0000b2f0: 5570 3a20 546f 700a 0a48 6f77 2074 6f20 Up: Top..How to │ │ │ │ +0000b300: 6d61 6b65 2072 6564 7563 6564 2061 6e64 make reduced and │ │ │ │ +0000b310: 206e 6f6e 2d72 6564 7563 6564 2073 696d non-reduced sim │ │ │ │ +0000b320: 706c 6963 6961 6c20 6368 6169 6e20 636f plicial chain co │ │ │ │ +0000b330: 6d70 6c65 7865 7320 2d2d 2053 696d 706c mplexes -- Simpl │ │ │ │ +0000b340: 6963 6961 6c20 686f 6d6f 6c6f 6769 6361 icial homologica │ │ │ │ +0000b350: 6c20 636f 6e73 7472 7563 746f 7273 0a2a l constructors.* │ │ │ │ +0000b360: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000b370: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000b380: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000b390: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000b3a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000b3b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000b3c0: 2a2a 2a2a 0a0a 4e6f 6e2d 7265 6475 6365 ****..Non-reduce │ │ │ │ +0000b3d0: 6420 616e 6420 7265 6475 6365 6420 7369 d and reduced si │ │ │ │ +0000b3e0: 6d70 6c69 6369 616c 2063 6861 696e 2063 mplicial chain c │ │ │ │ +0000b3f0: 6f6d 706c 6578 6573 2063 616e 2062 6520 omplexes can be │ │ │ │ +0000b400: 636f 6e73 7472 7563 7465 6420 696e 2074 constructed in t │ │ │ │ +0000b410: 6865 0a66 6f6c 6c6f 7769 6e67 2077 6179 he.following way │ │ │ │ +0000b420: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ +0000b430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000b440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000b450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000b460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000b470: 2d2b 0a7c 6931 203a 204b 203d 2061 6273 -+.|i1 : K = abs │ │ │ │ +0000b480: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +0000b490: 6f6d 706c 6578 287b 7b31 2c32 2c33 2c34 omplex({{1,2,3,4 │ │ │ │ +0000b4a0: 7d2c 207b 322c 332c 357d 2c7b 312c 357d }, {2,3,5},{1,5} │ │ │ │ +0000b4b0: 7d29 2020 2020 2020 2020 2020 2020 2020 }) │ │ │ │ +0000b4c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000b4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b510: 2020 2020 2020 2020 2020 2033 203d 3e20 3 => │ │ │ │ -0000b520: 7b7b 312c 2032 2c20 332c 2034 7d7d 2020 {{1, 2, 3, 4}} │ │ │ │ -0000b530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b540: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000b510: 207c 0a7c 6f31 203d 2041 6273 7472 6163 |.|o1 = Abstrac │ │ │ │ +0000b520: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ +0000b530: 6578 7b2d 3120 3d3e 207b 7b7d 7d20 2020 ex{-1 => {{}} │ │ │ │ +0000b540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b560: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000b570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b590: 2020 2020 2020 2020 207c 0a7c 6f31 203a |.|o1 : │ │ │ │ -0000b5a0: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ -0000b5b0: 6961 6c43 6f6d 706c 6578 2020 2020 2020 ialComplex │ │ │ │ +0000b580: 2020 2030 203d 3e20 7b7b 317d 2c20 7b32 0 => {{1}, {2 │ │ │ │ +0000b590: 7d2c 207b 337d 2c20 7b34 7d2c 207b 357d }, {3}, {4}, {5} │ │ │ │ +0000b5a0: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +0000b5b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000b5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b5e0: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ -0000b5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000b600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000b610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000b620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000b630: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ -0000b640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b650: 2020 2020 2020 2020 2020 207d 2020 2020 } │ │ │ │ +0000b5d0: 2020 2031 203d 3e20 7b7b 312c 2032 7d2c 1 => {{1, 2}, │ │ │ │ +0000b5e0: 207b 312c 2033 7d2c 207b 312c 2034 7d2c {1, 3}, {1, 4}, │ │ │ │ +0000b5f0: 207b 312c 2035 7d2c 207b 322c 2033 7d2c {1, 5}, {2, 3}, │ │ │ │ +0000b600: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000b610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b620: 2020 2032 203d 3e20 7b7b 312c 2032 2c20 2 => {{1, 2, │ │ │ │ +0000b630: 337d 2c20 7b31 2c20 322c 2034 7d2c 207b 3}, {1, 2, 4}, { │ │ │ │ +0000b640: 312c 2033 2c20 347d 2c20 7b32 2c20 332c 1, 3, 4}, {2, 3, │ │ │ │ +0000b650: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000b660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b680: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000b670: 2020 2033 203d 3e20 7b7b 312c 2032 2c20 3 => {{1, 2, │ │ │ │ +0000b680: 332c 2034 7d7d 2020 2020 2020 2020 2020 3, 4}} │ │ │ │ 0000b690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b6a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000b6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b6d0: 2020 2020 2020 2020 207c 0a7c 7b32 2c20 |.|{2, │ │ │ │ -0000b6e0: 347d 2c20 7b32 2c20 357d 2c20 7b33 2c20 4}, {2, 5}, {3, │ │ │ │ -0000b6f0: 347d 2c20 7b33 2c20 357d 7d20 2020 2020 4}, {3, 5}} │ │ │ │ -0000b700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b720: 2020 2020 2020 2020 207c 0a7c 347d 2c20 |.|4}, │ │ │ │ -0000b730: 7b32 2c20 332c 2035 7d7d 2020 2020 2020 {2, 3, 5}} │ │ │ │ -0000b740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b770: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0000b6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b6f0: 207c 0a7c 6f31 203a 2041 6273 7472 6163 |.|o1 : Abstrac │ │ │ │ +0000b700: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ +0000b710: 6578 2020 2020 2020 2020 2020 2020 2020 ex │ │ │ │ +0000b720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b740: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0000b750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000b760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000b770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000b790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000b7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000b7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000b7c0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ -0000b7d0: 206b 203d 2073 696d 706c 6963 6961 6c43 k = simplicialC │ │ │ │ -0000b7e0: 6861 696e 436f 6d70 6c65 7820 4b20 2020 hainComplex K │ │ │ │ +0000b790: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0000b7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b7b0: 2020 207d 2020 2020 2020 2020 2020 2020 } │ │ │ │ +0000b7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b7e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000b7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b810: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000b810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b860: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000b870: 2020 2035 2020 2020 2020 2039 2020 2020 5 9 │ │ │ │ -0000b880: 2020 2035 2020 2020 2020 2031 2020 2020 5 1 │ │ │ │ -0000b890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b830: 207c 0a7c 7b32 2c20 347d 2c20 7b32 2c20 |.|{2, 4}, {2, │ │ │ │ +0000b840: 357d 2c20 7b33 2c20 347d 2c20 7b33 2c20 5}, {3, 4}, {3, │ │ │ │ +0000b850: 357d 7d20 2020 2020 2020 2020 2020 2020 5}} │ │ │ │ +0000b860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b880: 207c 0a7c 347d 2c20 7b32 2c20 332c 2035 |.|4}, {2, 3, 5 │ │ │ │ +0000b890: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ 0000b8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b8b0: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ -0000b8c0: 205a 5a20 203c 2d2d 205a 5a20 203c 2d2d ZZ <-- ZZ <-- │ │ │ │ -0000b8d0: 205a 5a20 203c 2d2d 205a 5a20 2020 2020 ZZ <-- ZZ │ │ │ │ -0000b8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b900: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000b910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b950: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000b960: 2030 2020 2020 2020 2031 2020 2020 2020 0 1 │ │ │ │ -0000b970: 2032 2020 2020 2020 2033 2020 2020 2020 2 3 │ │ │ │ +0000b8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b8d0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0000b8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000b8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000b900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000b910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000b920: 2d2b 0a7c 6932 203a 206b 203d 2073 696d -+.|i2 : k = sim │ │ │ │ +0000b930: 706c 6963 6961 6c43 6861 696e 436f 6d70 plicialChainComp │ │ │ │ +0000b940: 6c65 7820 4b20 2020 2020 2020 2020 2020 lex K │ │ │ │ +0000b950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b970: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000b980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b9a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b9f0: 2020 2020 2020 2020 207c 0a7c 6f32 203a |.|o2 : │ │ │ │ -0000ba00: 2043 6f6d 706c 6578 2020 2020 2020 2020 Complex │ │ │ │ -0000ba10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ba20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ba30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ba40: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0000ba50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000ba60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000ba70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000ba80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000ba90: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ -0000baa0: 206b 2e64 6420 2020 2020 2020 2020 2020 k.dd │ │ │ │ -0000bab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bae0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000b9c0: 207c 0a7c 2020 2020 2020 2035 2020 2020 |.| 5 │ │ │ │ +0000b9d0: 2020 2039 2020 2020 2020 2035 2020 2020 9 5 │ │ │ │ +0000b9e0: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0000b9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ba00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ba10: 207c 0a7c 6f32 203d 205a 5a20 203c 2d2d |.|o2 = ZZ <-- │ │ │ │ +0000ba20: 205a 5a20 203c 2d2d 205a 5a20 203c 2d2d ZZ <-- ZZ <-- │ │ │ │ +0000ba30: 205a 5a20 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +0000ba40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ba50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ba60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000ba70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ba80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000baa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bab0: 207c 0a7c 2020 2020 2030 2020 2020 2020 |.| 0 │ │ │ │ +0000bac0: 2031 2020 2020 2020 2032 2020 2020 2020 1 2 │ │ │ │ +0000bad0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0000bae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000baf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bb00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000bb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bb30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000bb40: 2020 2020 2020 2035 2020 2020 2020 2020 5 │ │ │ │ -0000bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bb60: 2020 2020 2020 2020 2020 2020 2020 2039 9 │ │ │ │ +0000bb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bb50: 207c 0a7c 6f32 203a 2043 6f6d 706c 6578 |.|o2 : Complex │ │ │ │ +0000bb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bb80: 2020 2020 2020 2020 207c 0a7c 6f33 203d |.|o3 = │ │ │ │ -0000bb90: 2030 203a 205a 5a20 203c 2d2d 2d2d 2d2d 0 : ZZ <------ │ │ │ │ -0000bba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000bbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 205a 5a20 ------------ ZZ │ │ │ │ -0000bbc0: 203a 2031 2020 2020 2020 2020 2020 2020 : 1 │ │ │ │ -0000bbd0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000bbe0: 2020 2020 2020 2020 2020 2020 7c20 2d31 | -1 │ │ │ │ -0000bbf0: 202d 3120 2d31 202d 3120 3020 2030 2020 -1 -1 -1 0 0 │ │ │ │ -0000bc00: 3020 2030 2020 3020 207c 2020 2020 2020 0 0 0 | │ │ │ │ +0000bb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bba0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0000bbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000bbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000bbd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000bbe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000bbf0: 2d2b 0a7c 6933 203a 206b 2e64 6420 2020 -+.|i3 : k.dd │ │ │ │ +0000bc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bc20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000bc30: 2020 2020 2020 2020 2020 2020 7c20 3120 | 1 │ │ │ │ -0000bc40: 2030 2020 3020 2030 2020 2d31 202d 3120 0 0 0 -1 -1 │ │ │ │ -0000bc50: 2d31 2030 2020 3020 207c 2020 2020 2020 -1 0 0 | │ │ │ │ +0000bc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bc40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000bc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bc70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000bc80: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000bc90: 2031 2020 3020 2030 2020 3120 2030 2020 1 0 0 1 0 │ │ │ │ -0000bca0: 3020 202d 3120 2d31 207c 2020 2020 2020 0 -1 -1 | │ │ │ │ +0000bc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bc90: 207c 0a7c 2020 2020 2020 2020 2020 2035 |.| 5 │ │ │ │ +0000bca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bcc0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000bcd0: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000bce0: 2030 2020 3120 2030 2020 3020 2031 2020 0 1 0 0 1 │ │ │ │ -0000bcf0: 3020 2031 2020 3020 207c 2020 2020 2020 0 1 0 | │ │ │ │ -0000bd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bd10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000bd20: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000bd30: 2030 2020 3020 2031 2020 3020 2030 2020 0 0 1 0 0 │ │ │ │ -0000bd40: 3120 2030 2020 3120 207c 2020 2020 2020 1 0 1 | │ │ │ │ -0000bd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bd60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000bcc0: 2020 2020 2020 2039 2020 2020 2020 2020 9 │ │ │ │ +0000bcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bce0: 207c 0a7c 6f33 203d 2030 203a 205a 5a20 |.|o3 = 0 : ZZ │ │ │ │ +0000bcf0: 203c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d <-------------- │ │ │ │ +0000bd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000bd10: 2d2d 2d2d 205a 5a20 203a 2031 2020 2020 ---- ZZ : 1 │ │ │ │ +0000bd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bd30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000bd40: 2020 2020 7c20 2d31 202d 3120 2d31 202d | -1 -1 -1 - │ │ │ │ +0000bd50: 3120 3020 2030 2020 3020 2030 2020 3020 1 0 0 0 0 0 │ │ │ │ +0000bd60: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0000bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bdb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000bdc0: 2020 2020 2020 2039 2020 2020 2020 2020 9 │ │ │ │ -0000bdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bde0: 2020 2035 2020 2020 2020 2020 2020 2020 5 │ │ │ │ -0000bdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000be00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000be10: 2031 203a 205a 5a20 203c 2d2d 2d2d 2d2d 1 : ZZ <------ │ │ │ │ -0000be20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000be30: 205a 5a20 203a 2032 2020 2020 2020 2020 ZZ : 2 │ │ │ │ -0000be40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000be50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000be60: 2020 2020 2020 2020 2020 2020 7c20 3120 | 1 │ │ │ │ -0000be70: 2031 2020 3020 2030 2020 3020 207c 2020 1 0 0 0 | │ │ │ │ -0000be80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bea0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000beb0: 2020 2020 2020 2020 2020 2020 7c20 2d31 | -1 │ │ │ │ -0000bec0: 2030 2020 3120 2030 2020 3020 207c 2020 0 1 0 0 | │ │ │ │ +0000bd80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000bd90: 2020 2020 7c20 3120 2030 2020 3020 2030 | 1 0 0 0 │ │ │ │ +0000bda0: 2020 2d31 202d 3120 2d31 2030 2020 3020 -1 -1 -1 0 0 │ │ │ │ +0000bdb0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000bdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bdd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000bde0: 2020 2020 7c20 3020 2031 2020 3020 2030 | 0 1 0 0 │ │ │ │ +0000bdf0: 2020 3120 2030 2020 3020 202d 3120 2d31 1 0 0 -1 -1 │ │ │ │ +0000be00: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000be10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000be20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000be30: 2020 2020 7c20 3020 2030 2020 3120 2030 | 0 0 1 0 │ │ │ │ +0000be40: 2020 3020 2031 2020 3020 2031 2020 3020 0 1 0 1 0 │ │ │ │ +0000be50: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000be60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000be70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000be80: 2020 2020 7c20 3020 2030 2020 3020 2031 | 0 0 0 1 │ │ │ │ +0000be90: 2020 3020 2030 2020 3120 2030 2020 3120 0 0 1 0 1 │ │ │ │ +0000bea0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bec0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000bed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bef0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000bf00: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000bf10: 202d 3120 2d31 2030 2020 3020 207c 2020 -1 -1 0 0 | │ │ │ │ +0000bef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bf10: 207c 0a7c 2020 2020 2020 2020 2020 2039 |.| 9 │ │ │ │ 0000bf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bf40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000bf50: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000bf60: 2030 2020 3020 2030 2020 3020 207c 2020 0 0 0 0 | │ │ │ │ -0000bf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bf90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000bfa0: 2020 2020 2020 2020 2020 2020 7c20 3120 | 1 │ │ │ │ -0000bfb0: 2030 2020 3020 2031 2020 3120 207c 2020 0 0 1 1 | │ │ │ │ -0000bfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bfe0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000bff0: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000c000: 2031 2020 3020 202d 3120 3020 207c 2020 1 0 -1 0 | │ │ │ │ -0000c010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c030: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000c040: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000c050: 2030 2020 3020 2030 2020 2d31 207c 2020 0 0 0 -1 | │ │ │ │ -0000c060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c080: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000c090: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000c0a0: 2030 2020 3120 2031 2020 3020 207c 2020 0 1 1 0 | │ │ │ │ -0000c0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c0d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000c0e0: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000c0f0: 2030 2020 3020 2030 2020 3120 207c 2020 0 0 0 1 | │ │ │ │ -0000c100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c120: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000bf30: 2020 2020 2020 2020 2020 2035 2020 2020 5 │ │ │ │ +0000bf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bf60: 207c 0a7c 2020 2020 2031 203a 205a 5a20 |.| 1 : ZZ │ │ │ │ +0000bf70: 203c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d <-------------- │ │ │ │ +0000bf80: 2d2d 2d2d 2d2d 2d2d 205a 5a20 203a 2032 -------- ZZ : 2 │ │ │ │ +0000bf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bfb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000bfc0: 2020 2020 7c20 3120 2031 2020 3020 2030 | 1 1 0 0 │ │ │ │ +0000bfd0: 2020 3020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +0000bfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000bff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c000: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000c010: 2020 2020 7c20 2d31 2030 2020 3120 2030 | -1 0 1 0 │ │ │ │ +0000c020: 2020 3020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +0000c030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c050: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000c060: 2020 2020 7c20 3020 202d 3120 2d31 2030 | 0 -1 -1 0 │ │ │ │ +0000c070: 2020 3020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +0000c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c0a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000c0b0: 2020 2020 7c20 3020 2030 2020 3020 2030 | 0 0 0 0 │ │ │ │ +0000c0c0: 2020 3020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +0000c0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c0f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000c100: 2020 2020 7c20 3120 2030 2020 3020 2031 | 1 0 0 1 │ │ │ │ +0000c110: 2020 3120 207c 2020 2020 2020 2020 2020 1 | │ │ │ │ +0000c120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c170: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000c180: 2020 2020 2020 2035 2020 2020 2020 2020 5 │ │ │ │ -0000c190: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ -0000c1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c1c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000c1d0: 2032 203a 205a 5a20 203c 2d2d 2d2d 2d2d 2 : ZZ <------ │ │ │ │ -0000c1e0: 2d2d 2d2d 205a 5a20 203a 2033 2020 2020 ---- ZZ : 3 │ │ │ │ -0000c1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c210: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000c220: 2020 2020 2020 2020 2020 2020 7c20 2d31 | -1 │ │ │ │ -0000c230: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000c240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c260: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000c270: 2020 2020 2020 2020 2020 2020 7c20 3120 | 1 │ │ │ │ -0000c280: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000c140: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000c150: 2020 2020 7c20 3020 2031 2020 3020 202d | 0 1 0 - │ │ │ │ +0000c160: 3120 3020 207c 2020 2020 2020 2020 2020 1 0 | │ │ │ │ +0000c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c190: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000c1a0: 2020 2020 7c20 3020 2030 2020 3020 2030 | 0 0 0 0 │ │ │ │ +0000c1b0: 2020 2d31 207c 2020 2020 2020 2020 2020 -1 | │ │ │ │ +0000c1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c1e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000c1f0: 2020 2020 7c20 3020 2030 2020 3120 2031 | 0 0 1 1 │ │ │ │ +0000c200: 2020 3020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +0000c210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c230: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000c240: 2020 2020 7c20 3020 2030 2020 3020 2030 | 0 0 0 0 │ │ │ │ +0000c250: 2020 3120 207c 2020 2020 2020 2020 2020 1 | │ │ │ │ +0000c260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c280: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000c290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c2b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000c2c0: 2020 2020 2020 2020 2020 2020 7c20 2d31 | -1 │ │ │ │ -0000c2d0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000c2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c2d0: 207c 0a7c 2020 2020 2020 2020 2020 2035 |.| 5 │ │ │ │ +0000c2e0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ 0000c2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c300: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000c310: 2020 2020 2020 2020 2020 2020 7c20 3120 | 1 │ │ │ │ -0000c320: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000c330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c350: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000c360: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000c370: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000c380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c320: 207c 0a7c 2020 2020 2032 203a 205a 5a20 |.| 2 : ZZ │ │ │ │ +0000c330: 203c 2d2d 2d2d 2d2d 2d2d 2d2d 205a 5a20 <---------- ZZ │ │ │ │ +0000c340: 203a 2033 2020 2020 2020 2020 2020 2020 : 3 │ │ │ │ +0000c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c370: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000c380: 2020 2020 7c20 2d31 207c 2020 2020 2020 | -1 | │ │ │ │ 0000c390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c3a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000c3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c3c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000c3d0: 2020 2020 7c20 3120 207c 2020 2020 2020 | 1 | │ │ │ │ 0000c3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c3f0: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ -0000c400: 2043 6f6d 706c 6578 4d61 7020 2020 2020 ComplexMap │ │ │ │ -0000c410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c410: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000c420: 2020 2020 7c20 2d31 207c 2020 2020 2020 | -1 | │ │ │ │ 0000c430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c440: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0000c450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000c460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000c470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000c480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000c490: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ -0000c4a0: 206b 5265 6420 3d20 7265 6475 6365 6453 kRed = reducedS │ │ │ │ -0000c4b0: 696d 706c 6963 6961 6c43 6861 696e 436f implicialChainCo │ │ │ │ -0000c4c0: 6d70 6c65 7820 4b20 2020 2020 2020 2020 mplex K │ │ │ │ +0000c440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c460: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000c470: 2020 2020 7c20 3120 207c 2020 2020 2020 | 1 | │ │ │ │ +0000c480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c4b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000c4c0: 2020 2020 7c20 3020 207c 2020 2020 2020 | 0 | │ │ │ │ 0000c4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c4e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000c4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c500: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000c510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c530: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000c540: 2020 2031 2020 2020 2020 2035 2020 2020 1 5 │ │ │ │ -0000c550: 2020 2039 2020 2020 2020 2035 2020 2020 9 5 │ │ │ │ -0000c560: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0000c530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c550: 207c 0a7c 6f33 203a 2043 6f6d 706c 6578 |.|o3 : Complex │ │ │ │ +0000c560: 4d61 7020 2020 2020 2020 2020 2020 2020 Map │ │ │ │ 0000c570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c580: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ -0000c590: 205a 5a20 203c 2d2d 205a 5a20 203c 2d2d ZZ <-- ZZ <-- │ │ │ │ -0000c5a0: 205a 5a20 203c 2d2d 205a 5a20 203c 2d2d ZZ <-- ZZ <-- │ │ │ │ -0000c5b0: 205a 5a20 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ -0000c5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c5d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000c5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c620: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000c630: 202d 3120 2020 2020 2030 2020 2020 2020 -1 0 │ │ │ │ -0000c640: 2031 2020 2020 2020 2032 2020 2020 2020 1 2 │ │ │ │ -0000c650: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0000c580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c5a0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0000c5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000c5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000c5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000c5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000c5f0: 2d2b 0a7c 6934 203a 206b 5265 6420 3d20 -+.|i4 : kRed = │ │ │ │ +0000c600: 7265 6475 6365 6453 696d 706c 6963 6961 reducedSimplicia │ │ │ │ +0000c610: 6c43 6861 696e 436f 6d70 6c65 7820 4b20 lChainComplex K │ │ │ │ +0000c620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c640: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000c650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c670: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000c670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c6c0: 2020 2020 2020 2020 207c 0a7c 6f34 203a |.|o4 : │ │ │ │ -0000c6d0: 2043 6f6d 706c 6578 2020 2020 2020 2020 Complex │ │ │ │ -0000c6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c710: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0000c720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000c730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000c740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000c750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000c760: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ -0000c770: 206b 5265 642e 6464 2020 2020 2020 2020 kRed.dd │ │ │ │ -0000c780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c7b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000c690: 207c 0a7c 2020 2020 2020 2031 2020 2020 |.| 1 │ │ │ │ +0000c6a0: 2020 2035 2020 2020 2020 2039 2020 2020 5 9 │ │ │ │ +0000c6b0: 2020 2035 2020 2020 2020 2031 2020 2020 5 1 │ │ │ │ +0000c6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c6e0: 207c 0a7c 6f34 203d 205a 5a20 203c 2d2d |.|o4 = ZZ <-- │ │ │ │ +0000c6f0: 205a 5a20 203c 2d2d 205a 5a20 203c 2d2d ZZ <-- ZZ <-- │ │ │ │ +0000c700: 205a 5a20 203c 2d2d 205a 5a20 2020 2020 ZZ <-- ZZ │ │ │ │ +0000c710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c730: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000c740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c780: 207c 0a7c 2020 2020 202d 3120 2020 2020 |.| -1 │ │ │ │ +0000c790: 2030 2020 2020 2020 2031 2020 2020 2020 0 1 │ │ │ │ +0000c7a0: 2032 2020 2020 2020 2033 2020 2020 2020 2 3 │ │ │ │ +0000c7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c7d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000c7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c800: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000c810: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ -0000c820: 2020 2020 2020 2020 2020 2020 2020 2035 5 │ │ │ │ +0000c800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c820: 207c 0a7c 6f34 203a 2043 6f6d 706c 6578 |.|o4 : Complex │ │ │ │ 0000c830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c850: 2020 2020 2020 2020 207c 0a7c 6f35 203d |.|o5 = │ │ │ │ -0000c860: 202d 3120 3a20 5a5a 2020 3c2d 2d2d 2d2d -1 : ZZ <----- │ │ │ │ -0000c870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 205a 5a20 ------------ ZZ │ │ │ │ -0000c880: 203a 2030 2020 2020 2020 2020 2020 2020 : 0 │ │ │ │ -0000c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c8a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000c8b0: 2020 2020 2020 2020 2020 2020 207c 2031 | 1 │ │ │ │ -0000c8c0: 2031 2031 2031 2031 207c 2020 2020 2020 1 1 1 1 | │ │ │ │ +0000c850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c870: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0000c880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000c890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000c8a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000c8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000c8c0: 2d2b 0a7c 6935 203a 206b 5265 642e 6464 -+.|i5 : kRed.dd │ │ │ │ 0000c8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c8f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000c8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c910: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000c920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c940: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000c950: 2020 2020 2020 2035 2020 2020 2020 2020 5 │ │ │ │ -0000c960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c970: 2020 2020 2020 2020 2020 2020 2020 2039 9 │ │ │ │ -0000c980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c990: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000c9a0: 2030 203a 205a 5a20 203c 2d2d 2d2d 2d2d 0 : ZZ <------ │ │ │ │ -0000c9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000c9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 205a 5a20 ------------ ZZ │ │ │ │ -0000c9d0: 203a 2031 2020 2020 2020 2020 2020 2020 : 1 │ │ │ │ -0000c9e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000c9f0: 2020 2020 2020 2020 2020 2020 7c20 2d31 | -1 │ │ │ │ -0000ca00: 202d 3120 2d31 202d 3120 3020 2030 2020 -1 -1 -1 0 0 │ │ │ │ -0000ca10: 3020 2030 2020 3020 207c 2020 2020 2020 0 0 0 | │ │ │ │ -0000ca20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ca30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000ca40: 2020 2020 2020 2020 2020 2020 7c20 3120 | 1 │ │ │ │ -0000ca50: 2030 2020 3020 2030 2020 2d31 202d 3120 0 0 0 -1 -1 │ │ │ │ -0000ca60: 2d31 2030 2020 3020 207c 2020 2020 2020 -1 0 0 | │ │ │ │ +0000c940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c960: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000c970: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0000c980: 2020 2020 2020 2035 2020 2020 2020 2020 5 │ │ │ │ +0000c990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c9b0: 207c 0a7c 6f35 203d 202d 3120 3a20 5a5a |.|o5 = -1 : ZZ │ │ │ │ +0000c9c0: 2020 3c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d <------------- │ │ │ │ +0000c9d0: 2d2d 2d2d 205a 5a20 203a 2030 2020 2020 ---- ZZ : 0 │ │ │ │ +0000c9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000c9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ca00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000ca10: 2020 2020 207c 2031 2031 2031 2031 2031 | 1 1 1 1 1 │ │ │ │ +0000ca20: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000ca30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ca50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000ca60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ca70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ca80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000ca90: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000caa0: 2031 2020 3020 2030 2020 3120 2030 2020 1 0 0 1 0 │ │ │ │ -0000cab0: 3020 202d 3120 2d31 207c 2020 2020 2020 0 -1 -1 | │ │ │ │ +0000ca80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ca90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000caa0: 207c 0a7c 2020 2020 2020 2020 2020 2035 |.| 5 │ │ │ │ +0000cab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000cac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cad0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000cae0: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000caf0: 2030 2020 3120 2030 2020 3020 2031 2020 0 1 0 0 1 │ │ │ │ -0000cb00: 3020 2031 2020 3020 207c 2020 2020 2020 0 1 0 | │ │ │ │ -0000cb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cb20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000cb30: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000cb40: 2030 2020 3020 2031 2020 3020 2030 2020 0 0 1 0 0 │ │ │ │ -0000cb50: 3120 2030 2020 3120 207c 2020 2020 2020 1 0 1 | │ │ │ │ -0000cb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cb70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000cad0: 2020 2020 2020 2039 2020 2020 2020 2020 9 │ │ │ │ +0000cae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000caf0: 207c 0a7c 2020 2020 2030 203a 205a 5a20 |.| 0 : ZZ │ │ │ │ +0000cb00: 203c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d <-------------- │ │ │ │ +0000cb10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000cb20: 2d2d 2d2d 205a 5a20 203a 2031 2020 2020 ---- ZZ : 1 │ │ │ │ +0000cb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000cb40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000cb50: 2020 2020 7c20 2d31 202d 3120 2d31 202d | -1 -1 -1 - │ │ │ │ +0000cb60: 3120 3020 2030 2020 3020 2030 2020 3020 1 0 0 0 0 0 │ │ │ │ +0000cb70: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0000cb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cbc0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000cbd0: 2020 2020 2020 2039 2020 2020 2020 2020 9 │ │ │ │ -0000cbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cbf0: 2020 2035 2020 2020 2020 2020 2020 2020 5 │ │ │ │ -0000cc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cc10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000cc20: 2031 203a 205a 5a20 203c 2d2d 2d2d 2d2d 1 : ZZ <------ │ │ │ │ -0000cc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000cc40: 205a 5a20 203a 2032 2020 2020 2020 2020 ZZ : 2 │ │ │ │ -0000cc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cc60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000cc70: 2020 2020 2020 2020 2020 2020 7c20 3120 | 1 │ │ │ │ -0000cc80: 2031 2020 3020 2030 2020 3020 207c 2020 1 0 0 0 | │ │ │ │ -0000cc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ccb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000ccc0: 2020 2020 2020 2020 2020 2020 7c20 2d31 | -1 │ │ │ │ -0000ccd0: 2030 2020 3120 2030 2020 3020 207c 2020 0 1 0 0 | │ │ │ │ +0000cb90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000cba0: 2020 2020 7c20 3120 2030 2020 3020 2030 | 1 0 0 0 │ │ │ │ +0000cbb0: 2020 2d31 202d 3120 2d31 2030 2020 3020 -1 -1 -1 0 0 │ │ │ │ +0000cbc0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000cbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000cbe0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000cbf0: 2020 2020 7c20 3020 2031 2020 3020 2030 | 0 1 0 0 │ │ │ │ +0000cc00: 2020 3120 2030 2020 3020 202d 3120 2d31 1 0 0 -1 -1 │ │ │ │ +0000cc10: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000cc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000cc30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000cc40: 2020 2020 7c20 3020 2030 2020 3120 2030 | 0 0 1 0 │ │ │ │ +0000cc50: 2020 3020 2031 2020 3020 2031 2020 3020 0 1 0 1 0 │ │ │ │ +0000cc60: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000cc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000cc80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000cc90: 2020 2020 7c20 3020 2030 2020 3020 2031 | 0 0 0 1 │ │ │ │ +0000cca0: 2020 3020 2030 2020 3120 2030 2020 3120 0 0 1 0 1 │ │ │ │ +0000ccb0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000ccc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ccd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000cce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ccf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cd00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000cd10: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000cd20: 202d 3120 2d31 2030 2020 3020 207c 2020 -1 -1 0 0 | │ │ │ │ +0000cd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000cd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000cd20: 207c 0a7c 2020 2020 2020 2020 2020 2039 |.| 9 │ │ │ │ 0000cd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cd50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000cd60: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000cd70: 2030 2020 3020 2030 2020 3020 207c 2020 0 0 0 0 | │ │ │ │ -0000cd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cda0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000cdb0: 2020 2020 2020 2020 2020 2020 7c20 3120 | 1 │ │ │ │ -0000cdc0: 2030 2020 3020 2031 2020 3120 207c 2020 0 0 1 1 | │ │ │ │ -0000cdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cdf0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000ce00: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000ce10: 2031 2020 3020 202d 3120 3020 207c 2020 1 0 -1 0 | │ │ │ │ -0000ce20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ce30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ce40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000ce50: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000ce60: 2030 2020 3020 2030 2020 2d31 207c 2020 0 0 0 -1 | │ │ │ │ -0000ce70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ce80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ce90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000cea0: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000ceb0: 2030 2020 3120 2031 2020 3020 207c 2020 0 1 1 0 | │ │ │ │ -0000cec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ced0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cee0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000cef0: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000cf00: 2030 2020 3020 2030 2020 3120 207c 2020 0 0 0 1 | │ │ │ │ -0000cf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cf30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000cd40: 2020 2020 2020 2020 2020 2035 2020 2020 5 │ │ │ │ +0000cd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000cd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000cd70: 207c 0a7c 2020 2020 2031 203a 205a 5a20 |.| 1 : ZZ │ │ │ │ +0000cd80: 203c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d <-------------- │ │ │ │ +0000cd90: 2d2d 2d2d 2d2d 2d2d 205a 5a20 203a 2032 -------- ZZ : 2 │ │ │ │ +0000cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000cdc0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000cdd0: 2020 2020 7c20 3120 2031 2020 3020 2030 | 1 1 0 0 │ │ │ │ +0000cde0: 2020 3020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +0000cdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ce00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ce10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000ce20: 2020 2020 7c20 2d31 2030 2020 3120 2030 | -1 0 1 0 │ │ │ │ +0000ce30: 2020 3020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +0000ce40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ce50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ce60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000ce70: 2020 2020 7c20 3020 202d 3120 2d31 2030 | 0 -1 -1 0 │ │ │ │ +0000ce80: 2020 3020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +0000ce90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000cea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ceb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000cec0: 2020 2020 7c20 3020 2030 2020 3020 2030 | 0 0 0 0 │ │ │ │ +0000ced0: 2020 3020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +0000cee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000cef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000cf00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000cf10: 2020 2020 7c20 3120 2030 2020 3020 2031 | 1 0 0 1 │ │ │ │ +0000cf20: 2020 3120 207c 2020 2020 2020 2020 2020 1 | │ │ │ │ +0000cf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000cf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cf80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000cf90: 2020 2020 2020 2035 2020 2020 2020 2020 5 │ │ │ │ -0000cfa0: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ -0000cfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cfd0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000cfe0: 2032 203a 205a 5a20 203c 2d2d 2d2d 2d2d 2 : ZZ <------ │ │ │ │ -0000cff0: 2d2d 2d2d 205a 5a20 203a 2033 2020 2020 ---- ZZ : 3 │ │ │ │ -0000d000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d020: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000d030: 2020 2020 2020 2020 2020 2020 7c20 2d31 | -1 │ │ │ │ -0000d040: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000d050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d070: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000d080: 2020 2020 2020 2020 2020 2020 7c20 3120 | 1 │ │ │ │ -0000d090: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000cf50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000cf60: 2020 2020 7c20 3020 2031 2020 3020 202d | 0 1 0 - │ │ │ │ +0000cf70: 3120 3020 207c 2020 2020 2020 2020 2020 1 0 | │ │ │ │ +0000cf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000cf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000cfa0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000cfb0: 2020 2020 7c20 3020 2030 2020 3020 2030 | 0 0 0 0 │ │ │ │ +0000cfc0: 2020 2d31 207c 2020 2020 2020 2020 2020 -1 | │ │ │ │ +0000cfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000cfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000cff0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000d000: 2020 2020 7c20 3020 2030 2020 3120 2031 | 0 0 1 1 │ │ │ │ +0000d010: 2020 3020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +0000d020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d040: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000d050: 2020 2020 7c20 3020 2030 2020 3020 2030 | 0 0 0 0 │ │ │ │ +0000d060: 2020 3120 207c 2020 2020 2020 2020 2020 1 | │ │ │ │ +0000d070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d090: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000d0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000d0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d0c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000d0d0: 2020 2020 2020 2020 2020 2020 7c20 2d31 | -1 │ │ │ │ -0000d0e0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000d0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d0e0: 207c 0a7c 2020 2020 2020 2020 2020 2035 |.| 5 │ │ │ │ +0000d0f0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ 0000d100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d110: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000d120: 2020 2020 2020 2020 2020 2020 7c20 3120 | 1 │ │ │ │ -0000d130: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000d140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d160: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000d170: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000d180: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000d190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d130: 207c 0a7c 2020 2020 2032 203a 205a 5a20 |.| 2 : ZZ │ │ │ │ +0000d140: 203c 2d2d 2d2d 2d2d 2d2d 2d2d 205a 5a20 <---------- ZZ │ │ │ │ +0000d150: 203a 2033 2020 2020 2020 2020 2020 2020 : 3 │ │ │ │ +0000d160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d180: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000d190: 2020 2020 7c20 2d31 207c 2020 2020 2020 | -1 | │ │ │ │ 0000d1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d1b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000d1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000d1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d1d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000d1e0: 2020 2020 7c20 3120 207c 2020 2020 2020 | 1 | │ │ │ │ 0000d1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d200: 2020 2020 2020 2020 207c 0a7c 6f35 203a |.|o5 : │ │ │ │ -0000d210: 2043 6f6d 706c 6578 4d61 7020 2020 2020 ComplexMap │ │ │ │ -0000d220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d220: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000d230: 2020 2020 7c20 2d31 207c 2020 2020 2020 | -1 | │ │ │ │ 0000d240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d250: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0000d260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000d270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000d280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000d290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000d2a0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a1f 0a46 696c ---------+...Fil │ │ │ │ -0000d2b0: 653a 2041 6273 7472 6163 7453 696d 706c e: AbstractSimpl │ │ │ │ -0000d2c0: 6963 6961 6c43 6f6d 706c 6578 6573 2e69 icialComplexes.i │ │ │ │ -0000d2d0: 6e66 6f2c 204e 6f64 653a 2048 6f77 2074 nfo, Node: How t │ │ │ │ -0000d2e0: 6f20 6d61 6b65 2073 7562 7369 6d70 6c69 o make subsimpli │ │ │ │ -0000d2f0: 6361 6c20 636f 6d70 6c65 7865 7320 616e cal complexes an │ │ │ │ -0000d300: 6420 696e 6475 6365 6420 7369 6d70 6c69 d induced simpli │ │ │ │ -0000d310: 6369 616c 2063 6861 696e 2063 6f6d 706c cial chain compl │ │ │ │ -0000d320: 6578 206d 6170 732c 204e 6578 743a 2069 ex maps, Next: i │ │ │ │ -0000d330: 6e64 7563 6564 5265 6475 6365 6453 696d nducedReducedSim │ │ │ │ -0000d340: 706c 6963 6961 6c43 6861 696e 436f 6d70 plicialChainComp │ │ │ │ -0000d350: 6c65 784d 6170 2c20 5072 6576 3a20 486f lexMap, Prev: Ho │ │ │ │ -0000d360: 7720 746f 206d 616b 6520 7265 6475 6365 w to make reduce │ │ │ │ -0000d370: 6420 616e 6420 6e6f 6e2d 7265 6475 6365 d and non-reduce │ │ │ │ -0000d380: 6420 7369 6d70 6c69 6369 616c 2063 6861 d simplicial cha │ │ │ │ -0000d390: 696e 2063 6f6d 706c 6578 6573 2c20 5570 in complexes, Up │ │ │ │ -0000d3a0: 3a20 546f 700a 0a48 6f77 2074 6f20 6d61 : Top..How to ma │ │ │ │ -0000d3b0: 6b65 2073 7562 7369 6d70 6c69 6361 6c20 ke subsimplical │ │ │ │ -0000d3c0: 636f 6d70 6c65 7865 7320 616e 6420 696e complexes and in │ │ │ │ -0000d3d0: 6475 6365 6420 7369 6d70 6c69 6369 616c duced simplicial │ │ │ │ -0000d3e0: 2063 6861 696e 2063 6f6d 706c 6578 206d chain complex m │ │ │ │ -0000d3f0: 6170 7320 2d2d 2049 6e64 7563 6564 2073 aps -- Induced s │ │ │ │ -0000d400: 696d 706c 6963 6961 6c20 6368 6169 6e20 implicial chain │ │ │ │ -0000d410: 636f 6d70 6c65 7820 6d61 7073 2076 6961 complex maps via │ │ │ │ -0000d420: 2073 7562 7369 6d70 6c69 6369 616c 2063 subsimplicial c │ │ │ │ -0000d430: 6f6d 706c 6578 6573 0a2a 2a2a 2a2a 2a2a omplexes.******* │ │ │ │ -0000d440: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000d450: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000d460: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000d470: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000d480: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000d490: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000d4a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000d4b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000d4c0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4769 7665 **********..Give │ │ │ │ -0000d4d0: 6e20 6120 7375 6273 696d 706c 6963 6961 n a subsimplicia │ │ │ │ -0000d4e0: 6c20 636f 6d70 6c65 7820 7468 6572 6520 l complex there │ │ │ │ -0000d4f0: 6172 6520 696e 6475 6365 6420 7369 6d70 are induced simp │ │ │ │ -0000d500: 6c69 6369 616c 2063 6861 696e 2063 6f6d licial chain com │ │ │ │ -0000d510: 706c 6578 206d 6170 732e 0a54 6869 7320 plex maps..This │ │ │ │ -0000d520: 6973 2069 6c6c 7573 7472 6174 6564 2069 is illustrated i │ │ │ │ -0000d530: 6e20 7468 6520 666f 6c6c 6f77 696e 6720 n the following │ │ │ │ -0000d540: 7761 792e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d way...+--------- │ │ │ │ -0000d550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000d560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000d570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000d580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000d590: 2d2d 2d2d 2b0a 7c69 3120 3a20 4b20 3d20 ----+.|i1 : K = │ │ │ │ -0000d5a0: 6162 7374 7261 6374 5369 6d70 6c69 6369 abstractSimplici │ │ │ │ -0000d5b0: 616c 436f 6d70 6c65 7828 342c 3329 2020 alComplex(4,3) │ │ │ │ -0000d5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d5e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000d5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d630: 2020 2020 7c0a 7c6f 3120 3d20 4162 7374 |.|o1 = Abst │ │ │ │ -0000d640: 7261 6374 5369 6d70 6c69 6369 616c 436f ractSimplicialCo │ │ │ │ -0000d650: 6d70 6c65 787b 2d31 203d 3e20 7b7b 7d7d mplex{-1 => {{}} │ │ │ │ -0000d660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d680: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000d690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d6a0: 2020 2020 2020 3020 3d3e 207b 7b31 7d2c 0 => {{1}, │ │ │ │ -0000d6b0: 207b 327d 2c20 7b33 7d2c 207b 347d 7d20 {2}, {3}, {4}} │ │ │ │ -0000d6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d6d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000d6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d6f0: 2020 2020 2020 3120 3d3e 207b 7b31 2c20 1 => {{1, │ │ │ │ -0000d700: 327d 2c20 7b31 2c20 337d 2c20 7b31 2c20 2}, {1, 3}, {1, │ │ │ │ -0000d710: 347d 2c20 7b32 2c20 337d 2c20 7b32 2c20 4}, {2, 3}, {2, │ │ │ │ -0000d720: 347d 2c20 7c0a 7c20 2020 2020 2020 2020 4}, |.| │ │ │ │ -0000d730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d740: 2020 2020 2020 3220 3d3e 207b 7b31 2c20 2 => {{1, │ │ │ │ -0000d750: 322c 2033 7d2c 207b 312c 2032 2c20 347d 2, 3}, {1, 2, 4} │ │ │ │ -0000d760: 2c20 7b31 2c20 332c 2034 7d2c 207b 322c , {1, 3, 4}, {2, │ │ │ │ -0000d770: 2033 2c20 7c0a 7c20 2020 2020 2020 2020 3, |.| │ │ │ │ -0000d780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d7c0: 2020 2020 7c0a 7c6f 3120 3a20 4162 7374 |.|o1 : Abst │ │ │ │ -0000d7d0: 7261 6374 5369 6d70 6c69 6369 616c 436f ractSimplicialCo │ │ │ │ -0000d7e0: 6d70 6c65 7820 2020 2020 2020 2020 2020 mplex │ │ │ │ -0000d7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d810: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ -0000d820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000d830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000d840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000d850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000d860: 2d2d 2d2d 7c0a 7c20 2020 2020 2020 7d20 ----|.| } │ │ │ │ -0000d870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d270: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000d280: 2020 2020 7c20 3120 207c 2020 2020 2020 | 1 | │ │ │ │ +0000d290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d2c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000d2d0: 2020 2020 7c20 3020 207c 2020 2020 2020 | 0 | │ │ │ │ +0000d2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d310: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000d320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d360: 207c 0a7c 6f35 203a 2043 6f6d 706c 6578 |.|o5 : Complex │ │ │ │ +0000d370: 4d61 7020 2020 2020 2020 2020 2020 2020 Map │ │ │ │ +0000d380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d3b0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0000d3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000d3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000d3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000d3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000d400: 2d2b 0a1f 0a46 696c 653a 2041 6273 7472 -+...File: Abstr │ │ │ │ +0000d410: 6163 7453 696d 706c 6963 6961 6c43 6f6d actSimplicialCom │ │ │ │ +0000d420: 706c 6578 6573 2e69 6e66 6f2c 204e 6f64 plexes.info, Nod │ │ │ │ +0000d430: 653a 2048 6f77 2074 6f20 6d61 6b65 2073 e: How to make s │ │ │ │ +0000d440: 7562 7369 6d70 6c69 6361 6c20 636f 6d70 ubsimplical comp │ │ │ │ +0000d450: 6c65 7865 7320 616e 6420 696e 6475 6365 lexes and induce │ │ │ │ +0000d460: 6420 7369 6d70 6c69 6369 616c 2063 6861 d simplicial cha │ │ │ │ +0000d470: 696e 2063 6f6d 706c 6578 206d 6170 732c in complex maps, │ │ │ │ +0000d480: 204e 6578 743a 2069 6e64 7563 6564 5265 Next: inducedRe │ │ │ │ +0000d490: 6475 6365 6453 696d 706c 6963 6961 6c43 ducedSimplicialC │ │ │ │ +0000d4a0: 6861 696e 436f 6d70 6c65 784d 6170 2c20 hainComplexMap, │ │ │ │ +0000d4b0: 5072 6576 3a20 486f 7720 746f 206d 616b Prev: How to mak │ │ │ │ +0000d4c0: 6520 7265 6475 6365 6420 616e 6420 6e6f e reduced and no │ │ │ │ +0000d4d0: 6e2d 7265 6475 6365 6420 7369 6d70 6c69 n-reduced simpli │ │ │ │ +0000d4e0: 6369 616c 2063 6861 696e 2063 6f6d 706c cial chain compl │ │ │ │ +0000d4f0: 6578 6573 2c20 5570 3a20 546f 700a 0a48 exes, Up: Top..H │ │ │ │ +0000d500: 6f77 2074 6f20 6d61 6b65 2073 7562 7369 ow to make subsi │ │ │ │ +0000d510: 6d70 6c69 6361 6c20 636f 6d70 6c65 7865 mplical complexe │ │ │ │ +0000d520: 7320 616e 6420 696e 6475 6365 6420 7369 s and induced si │ │ │ │ +0000d530: 6d70 6c69 6369 616c 2063 6861 696e 2063 mplicial chain c │ │ │ │ +0000d540: 6f6d 706c 6578 206d 6170 7320 2d2d 2049 omplex maps -- I │ │ │ │ +0000d550: 6e64 7563 6564 2073 696d 706c 6963 6961 nduced simplicia │ │ │ │ +0000d560: 6c20 6368 6169 6e20 636f 6d70 6c65 7820 l chain complex │ │ │ │ +0000d570: 6d61 7073 2076 6961 2073 7562 7369 6d70 maps via subsimp │ │ │ │ +0000d580: 6c69 6369 616c 2063 6f6d 706c 6578 6573 licial complexes │ │ │ │ +0000d590: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ +0000d5a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000d5b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000d5c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000d5d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000d5e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000d5f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000d600: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000d610: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000d620: 2a2a 0a0a 4769 7665 6e20 6120 7375 6273 **..Given a subs │ │ │ │ +0000d630: 696d 706c 6963 6961 6c20 636f 6d70 6c65 implicial comple │ │ │ │ +0000d640: 7820 7468 6572 6520 6172 6520 696e 6475 x there are indu │ │ │ │ +0000d650: 6365 6420 7369 6d70 6c69 6369 616c 2063 ced simplicial c │ │ │ │ +0000d660: 6861 696e 2063 6f6d 706c 6578 206d 6170 hain complex map │ │ │ │ +0000d670: 732e 0a54 6869 7320 6973 2069 6c6c 7573 s..This is illus │ │ │ │ +0000d680: 7472 6174 6564 2069 6e20 7468 6520 666f trated in the fo │ │ │ │ +0000d690: 6c6c 6f77 696e 6720 7761 792e 0a0a 2b2d llowing way...+- │ │ │ │ +0000d6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000d6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000d6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000d6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000d6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0000d6f0: 3120 3a20 4b20 3d20 6162 7374 7261 6374 1 : K = abstract │ │ │ │ +0000d700: 5369 6d70 6c69 6369 616c 436f 6d70 6c65 SimplicialComple │ │ │ │ +0000d710: 7828 342c 3329 2020 2020 2020 2020 2020 x(4,3) │ │ │ │ +0000d720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d730: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000d740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d780: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0000d790: 3120 3d20 4162 7374 7261 6374 5369 6d70 1 = AbstractSimp │ │ │ │ +0000d7a0: 6c69 6369 616c 436f 6d70 6c65 787b 2d31 licialComplex{-1 │ │ │ │ +0000d7b0: 203d 3e20 7b7b 7d7d 2020 2020 2020 2020 => {{}} │ │ │ │ +0000d7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d7d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000d7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d7f0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +0000d800: 3d3e 207b 7b31 7d2c 207b 327d 2c20 7b33 => {{1}, {2}, {3 │ │ │ │ +0000d810: 7d2c 207b 347d 7d20 2020 2020 2020 2020 }, {4}} │ │ │ │ +0000d820: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000d830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d840: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +0000d850: 3d3e 207b 7b31 2c20 327d 2c20 7b31 2c20 => {{1, 2}, {1, │ │ │ │ +0000d860: 337d 2c20 7b31 2c20 347d 2c20 7b32 2c20 3}, {1, 4}, {2, │ │ │ │ +0000d870: 337d 2c20 7b32 2c20 347d 2c20 7c0a 7c20 3}, {2, 4}, |.| │ │ │ │ 0000d880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d8b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000d8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d890: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0000d8a0: 3d3e 207b 7b31 2c20 322c 2033 7d2c 207b => {{1, 2, 3}, { │ │ │ │ +0000d8b0: 312c 2032 2c20 347d 2c20 7b31 2c20 332c 1, 2, 4}, {1, 3, │ │ │ │ +0000d8c0: 2034 7d2c 207b 322c 2033 2c20 7c0a 7c20 4}, {2, 3, |.| │ │ │ │ 0000d8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000d8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d900: 2020 2020 7c0a 7c7b 332c 2034 7d7d 2020 |.|{3, 4}} │ │ │ │ -0000d910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d910: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0000d920: 3120 3a20 4162 7374 7261 6374 5369 6d70 1 : AbstractSimp │ │ │ │ +0000d930: 6c69 6369 616c 436f 6d70 6c65 7820 2020 licialComplex │ │ │ │ 0000d940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d950: 2020 2020 7c0a 7c34 7d7d 2020 2020 2020 |.|4}} │ │ │ │ -0000d960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d9a0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0000d9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000d9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000d9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000d9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000d9f0: 2d2d 2d2d 2b0a 7c69 3220 3a20 4c20 3d20 ----+.|i2 : L = │ │ │ │ -0000da00: 6162 7374 7261 6374 5369 6d70 6c69 6369 abstractSimplici │ │ │ │ -0000da10: 616c 436f 6d70 6c65 7828 342c 3229 2020 alComplex(4,2) │ │ │ │ +0000d950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d960: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ +0000d970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000d980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000d990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000d9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000d9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +0000d9c0: 2020 2020 2020 7d20 2020 2020 2020 2020 } │ │ │ │ +0000d9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000d9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000da00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000da10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000da20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000da30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000da40: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000da50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000da60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000da40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000da50: 2020 2020 2020 2020 2020 2020 7c0a 7c7b |.|{ │ │ │ │ +0000da60: 332c 2034 7d7d 2020 2020 2020 2020 2020 3, 4}} │ │ │ │ 0000da70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000da80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000da90: 2020 2020 7c0a 7c6f 3220 3d20 4162 7374 |.|o2 = Abst │ │ │ │ -0000daa0: 7261 6374 5369 6d70 6c69 6369 616c 436f ractSimplicialCo │ │ │ │ -0000dab0: 6d70 6c65 787b 2d31 203d 3e20 7b7b 7d7d mplex{-1 => {{}} │ │ │ │ +0000da90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000daa0: 2020 2020 2020 2020 2020 2020 7c0a 7c34 |.|4 │ │ │ │ +0000dab0: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ 0000dac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000dad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000dae0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000daf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000db00: 2020 2020 2020 3020 3d3e 207b 7b31 7d2c 0 => {{1}, │ │ │ │ -0000db10: 207b 327d 2c20 7b33 7d2c 207b 347d 7d20 {2}, {3}, {4}} │ │ │ │ -0000db20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000db30: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000db40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000db50: 2020 2020 2020 3120 3d3e 207b 7b31 2c20 1 => {{1, │ │ │ │ -0000db60: 327d 2c20 7b31 2c20 337d 2c20 7b31 2c20 2}, {1, 3}, {1, │ │ │ │ -0000db70: 347d 2c20 7b32 2c20 337d 2c20 7b32 2c20 4}, {2, 3}, {2, │ │ │ │ -0000db80: 347d 2c20 7c0a 7c20 2020 2020 2020 2020 4}, |.| │ │ │ │ -0000db90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000dae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000daf0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0000db00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000db10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000db20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000db30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000db40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0000db50: 3220 3a20 4c20 3d20 6162 7374 7261 6374 2 : L = abstract │ │ │ │ +0000db60: 5369 6d70 6c69 6369 616c 436f 6d70 6c65 SimplicialComple │ │ │ │ +0000db70: 7828 342c 3229 2020 2020 2020 2020 2020 x(4,2) │ │ │ │ +0000db80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000db90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0000dba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000dbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000dbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000dbd0: 2020 2020 7c0a 7c6f 3220 3a20 4162 7374 |.|o2 : Abst │ │ │ │ -0000dbe0: 7261 6374 5369 6d70 6c69 6369 616c 436f ractSimplicialCo │ │ │ │ -0000dbf0: 6d70 6c65 7820 2020 2020 2020 2020 2020 mplex │ │ │ │ -0000dc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000dc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000dc20: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ -0000dc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000dc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000dc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000dc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000dc70: 2d2d 2d2d 7c0a 7c20 2020 2020 2020 7d20 ----|.| } │ │ │ │ -0000dc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000dbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000dbe0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0000dbf0: 3220 3d20 4162 7374 7261 6374 5369 6d70 2 = AbstractSimp │ │ │ │ +0000dc00: 6c69 6369 616c 436f 6d70 6c65 787b 2d31 licialComplex{-1 │ │ │ │ +0000dc10: 203d 3e20 7b7b 7d7d 2020 2020 2020 2020 => {{}} │ │ │ │ +0000dc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000dc30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000dc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000dc50: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +0000dc60: 3d3e 207b 7b31 7d2c 207b 327d 2c20 7b33 => {{1}, {2}, {3 │ │ │ │ +0000dc70: 7d2c 207b 347d 7d20 2020 2020 2020 2020 }, {4}} │ │ │ │ +0000dc80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0000dc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000dcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000dcc0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000dcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000dca0: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +0000dcb0: 3d3e 207b 7b31 2c20 327d 2c20 7b31 2c20 => {{1, 2}, {1, │ │ │ │ +0000dcc0: 337d 2c20 7b31 2c20 347d 2c20 7b32 2c20 3}, {1, 4}, {2, │ │ │ │ +0000dcd0: 337d 2c20 7b32 2c20 347d 2c20 7c0a 7c20 3}, {2, 4}, |.| │ │ │ │ 0000dce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000dcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000dd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000dd10: 2020 2020 7c0a 7c7b 332c 2034 7d7d 2020 |.|{3, 4}} │ │ │ │ -0000dd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000dd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000dd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000dd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000dd20: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0000dd30: 3220 3a20 4162 7374 7261 6374 5369 6d70 2 : AbstractSimp │ │ │ │ +0000dd40: 6c69 6369 616c 436f 6d70 6c65 7820 2020 licialComplex │ │ │ │ 0000dd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000dd60: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0000dd70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000dd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000dd70: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ 0000dd80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000dd90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000dda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000ddb0: 2d2d 2d2d 2b0a 7c69 3320 3a20 6620 3d20 ----+.|i3 : f = │ │ │ │ -0000ddc0: 696e 6475 6365 6453 696d 706c 6963 6961 inducedSimplicia │ │ │ │ -0000ddd0: 6c43 6861 696e 436f 6d70 6c65 784d 6170 lChainComplexMap │ │ │ │ -0000dde0: 284b 2c4c 2920 2020 2020 2020 2020 2020 (K,L) │ │ │ │ +0000ddb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000ddc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +0000ddd0: 2020 2020 2020 7d20 2020 2020 2020 2020 } │ │ │ │ +0000dde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ddf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000de00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000de10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000de00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000de10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0000de20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000de30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000de40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000de50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000de60: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0000de70: 2020 2020 2020 2034 2020 2020 2020 2020 4 │ │ │ │ +0000de50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000de60: 2020 2020 2020 2020 2020 2020 7c0a 7c7b |.|{ │ │ │ │ +0000de70: 332c 2034 7d7d 2020 2020 2020 2020 2020 3, 4}} │ │ │ │ 0000de80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000de90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000dea0: 2020 2020 7c0a 7c6f 3320 3d20 3020 3a20 |.|o3 = 0 : │ │ │ │ -0000deb0: 5a5a 2020 3c2d 2d2d 2d2d 2d2d 2d2d 2d2d ZZ <----------- │ │ │ │ -0000dec0: 2d2d 2d2d 205a 5a20 203a 2030 2020 2020 ---- ZZ : 0 │ │ │ │ -0000ded0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000dee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000def0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000df00: 2020 2020 2020 207c 2031 2030 2030 2030 | 1 0 0 0 │ │ │ │ -0000df10: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000df20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000df30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000df40: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000df50: 2020 2020 2020 207c 2030 2031 2030 2030 | 0 1 0 0 │ │ │ │ -0000df60: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000dea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000deb0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0000dec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000ded0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000dee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000def0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000df00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0000df10: 3320 3a20 6620 3d20 696e 6475 6365 6453 3 : f = inducedS │ │ │ │ +0000df20: 696d 706c 6963 6961 6c43 6861 696e 436f implicialChainCo │ │ │ │ +0000df30: 6d70 6c65 784d 6170 284b 2c4c 2920 2020 mplexMap(K,L) │ │ │ │ +0000df40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000df50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000df60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000df70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000df80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000df90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000dfa0: 2020 2020 2020 207c 2030 2030 2031 2030 | 0 0 1 0 │ │ │ │ -0000dfb0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000dfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000df90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000dfa0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000dfb0: 2020 2020 2020 2020 2020 3420 2020 2020 4 │ │ │ │ +0000dfc0: 2020 2020 2020 2020 2020 2020 2020 2034 4 │ │ │ │ 0000dfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000dfe0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000dff0: 2020 2020 2020 207c 2030 2030 2030 2031 | 0 0 0 1 │ │ │ │ -0000e000: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000e010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e030: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000dfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000dff0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0000e000: 3320 3d20 3020 3a20 5a5a 2020 3c2d 2d2d 3 = 0 : ZZ <--- │ │ │ │ +0000e010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 205a 5a20 ------------ ZZ │ │ │ │ +0000e020: 203a 2030 2020 2020 2020 2020 2020 2020 : 0 │ │ │ │ +0000e030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e040: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e050: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000e060: 2031 2030 2030 2030 207c 2020 2020 2020 1 0 0 0 | │ │ │ │ 0000e070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e080: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e090: 2020 3620 2020 2020 2020 2020 2020 2020 6 │ │ │ │ -0000e0a0: 2020 2020 2020 2020 2020 2036 2020 2020 6 │ │ │ │ -0000e0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e090: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e0a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000e0b0: 2030 2031 2030 2030 207c 2020 2020 2020 0 1 0 0 | │ │ │ │ 0000e0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e0d0: 2020 2020 7c0a 7c20 2020 2020 3120 3a20 |.| 1 : │ │ │ │ -0000e0e0: 5a5a 2020 3c2d 2d2d 2d2d 2d2d 2d2d 2d2d ZZ <----------- │ │ │ │ -0000e0f0: 2d2d 2d2d 2d2d 2d2d 205a 5a20 203a 2031 -------- ZZ : 1 │ │ │ │ -0000e100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e0e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e0f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000e100: 2030 2030 2031 2030 207c 2020 2020 2020 0 0 1 0 | │ │ │ │ 0000e110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e120: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e130: 2020 2020 2020 207c 2031 2030 2030 2030 | 1 0 0 0 │ │ │ │ -0000e140: 2030 2030 207c 2020 2020 2020 2020 2020 0 0 | │ │ │ │ -0000e150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e130: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e140: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000e150: 2030 2030 2030 2031 207c 2020 2020 2020 0 0 0 1 | │ │ │ │ 0000e160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e170: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e180: 2020 2020 2020 207c 2030 2031 2030 2030 | 0 1 0 0 │ │ │ │ -0000e190: 2030 2030 207c 2020 2020 2020 2020 2020 0 0 | │ │ │ │ +0000e170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e180: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e1c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e1d0: 2020 2020 2020 207c 2030 2030 2031 2030 | 0 0 1 0 │ │ │ │ -0000e1e0: 2030 2030 207c 2020 2020 2020 2020 2020 0 0 | │ │ │ │ +0000e1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e1d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e1e0: 2020 2020 2020 2020 2020 3620 2020 2020 6 │ │ │ │ 0000e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e210: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e220: 2020 2020 2020 207c 2030 2030 2030 2031 | 0 0 0 1 │ │ │ │ -0000e230: 2030 2030 207c 2020 2020 2020 2020 2020 0 0 | │ │ │ │ -0000e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e260: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e270: 2020 2020 2020 207c 2030 2030 2030 2030 | 0 0 0 0 │ │ │ │ -0000e280: 2031 2030 207c 2020 2020 2020 2020 2020 1 0 | │ │ │ │ -0000e290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e200: 2020 2036 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +0000e210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e220: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e230: 2020 2020 3120 3a20 5a5a 2020 3c2d 2d2d 1 : ZZ <--- │ │ │ │ +0000e240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000e250: 205a 5a20 203a 2031 2020 2020 2020 2020 ZZ : 1 │ │ │ │ +0000e260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e270: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e280: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000e290: 2031 2030 2030 2030 2030 2030 207c 2020 1 0 0 0 0 0 | │ │ │ │ 0000e2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e2b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e2c0: 2020 2020 2020 207c 2030 2030 2030 2030 | 0 0 0 0 │ │ │ │ -0000e2d0: 2030 2031 207c 2020 2020 2020 2020 2020 0 1 | │ │ │ │ -0000e2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e2c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e2d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000e2e0: 2030 2031 2030 2030 2030 2030 207c 2020 0 1 0 0 0 0 | │ │ │ │ 0000e2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e300: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e310: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e320: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000e330: 2030 2030 2031 2030 2030 2030 207c 2020 0 0 1 0 0 0 | │ │ │ │ 0000e340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e350: 2020 2020 7c0a 7c6f 3320 3a20 436f 6d70 |.|o3 : Comp │ │ │ │ -0000e360: 6c65 784d 6170 2020 2020 2020 2020 2020 lexMap │ │ │ │ -0000e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e360: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e370: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000e380: 2030 2030 2030 2031 2030 2030 207c 2020 0 0 0 1 0 0 | │ │ │ │ 0000e390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e3a0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0000e3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000e3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000e3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000e3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000e3f0: 2d2d 2d2d 2b0a 7c69 3420 3a20 6973 5765 ----+.|i4 : isWe │ │ │ │ -0000e400: 6c6c 4465 6669 6e65 6420 6620 2020 2020 llDefined f │ │ │ │ -0000e410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e3b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e3c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000e3d0: 2030 2030 2030 2030 2031 2030 207c 2020 0 0 0 0 1 0 | │ │ │ │ +0000e3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e400: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e410: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000e420: 2030 2030 2030 2030 2030 2031 207c 2020 0 0 0 0 0 1 | │ │ │ │ 0000e430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e440: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e450: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0000e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e490: 2020 2020 7c0a 7c6f 3420 3d20 7472 7565 |.|o4 = true │ │ │ │ -0000e4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e4a0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0000e4b0: 3320 3a20 436f 6d70 6c65 784d 6170 2020 3 : ComplexMap │ │ │ │ 0000e4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e4e0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0000e4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000e4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e4f0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 0000e500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000e510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000e520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000e530: 2d2d 2d2d 2b0a 7c69 3520 3a20 6652 6564 ----+.|i5 : fRed │ │ │ │ -0000e540: 203d 2069 6e64 7563 6564 5265 6475 6365 = inducedReduce │ │ │ │ -0000e550: 6453 696d 706c 6963 6961 6c43 6861 696e dSimplicialChain │ │ │ │ -0000e560: 436f 6d70 6c65 784d 6170 284b 2c4c 2920 ComplexMap(K,L) │ │ │ │ +0000e530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000e540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0000e550: 3420 3a20 6973 5765 6c6c 4465 6669 6e65 4 : isWellDefine │ │ │ │ +0000e560: 6420 6620 2020 2020 2020 2020 2020 2020 d f │ │ │ │ 0000e570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e580: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e590: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0000e5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e5d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e5e0: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -0000e5f0: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0000e5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e5e0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0000e5f0: 3420 3d20 7472 7565 2020 2020 2020 2020 4 = true │ │ │ │ 0000e600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e620: 2020 2020 7c0a 7c6f 3520 3d20 2d31 203a |.|o5 = -1 : │ │ │ │ -0000e630: 205a 5a20 203c 2d2d 2d2d 2d2d 2d2d 2d20 ZZ <--------- │ │ │ │ -0000e640: 5a5a 2020 3a20 2d31 2020 2020 2020 2020 ZZ : -1 │ │ │ │ -0000e650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e670: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e680: 2020 2020 2020 2020 7c20 3120 7c20 2020 | 1 | │ │ │ │ -0000e690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e6c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e630: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0000e640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000e650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000e660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000e670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000e680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0000e690: 3520 3a20 6652 6564 203d 2069 6e64 7563 5 : fRed = induc │ │ │ │ +0000e6a0: 6564 5265 6475 6365 6453 696d 706c 6963 edReducedSimplic │ │ │ │ +0000e6b0: 6961 6c43 6861 696e 436f 6d70 6c65 784d ialChainComplexM │ │ │ │ +0000e6c0: 6170 284b 2c4c 2920 2020 2020 2020 2020 ap(K,L) │ │ │ │ +0000e6d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0000e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e710: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e720: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0000e730: 2020 2020 2020 2034 2020 2020 2020 2020 4 │ │ │ │ -0000e740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e720: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e730: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ +0000e740: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ 0000e750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e760: 2020 2020 7c0a 7c20 2020 2020 3020 3a20 |.| 0 : │ │ │ │ -0000e770: 5a5a 2020 3c2d 2d2d 2d2d 2d2d 2d2d 2d2d ZZ <----------- │ │ │ │ -0000e780: 2d2d 2d2d 205a 5a20 203a 2030 2020 2020 ---- ZZ : 0 │ │ │ │ -0000e790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e770: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0000e780: 3520 3d20 2d31 203a 205a 5a20 203c 2d2d 5 = -1 : ZZ <-- │ │ │ │ +0000e790: 2d2d 2d2d 2d2d 2d20 5a5a 2020 3a20 2d31 ------- ZZ : -1 │ │ │ │ 0000e7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e7b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e7c0: 2020 2020 2020 207c 2031 2030 2030 2030 | 1 0 0 0 │ │ │ │ -0000e7d0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000e7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e7c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e7e0: 7c20 3120 7c20 2020 2020 2020 2020 2020 | 1 | │ │ │ │ 0000e7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e800: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e810: 2020 2020 2020 207c 2030 2031 2030 2030 | 0 1 0 0 │ │ │ │ -0000e820: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000e800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e810: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e850: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e860: 2020 2020 2020 207c 2030 2030 2031 2030 | 0 0 1 0 │ │ │ │ -0000e870: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000e880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e860: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e870: 2020 2020 2020 2020 2020 3420 2020 2020 4 │ │ │ │ +0000e880: 2020 2020 2020 2020 2020 2020 2020 2034 4 │ │ │ │ 0000e890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e8a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e8b0: 2020 2020 2020 207c 2030 2030 2030 2031 | 0 0 0 1 │ │ │ │ -0000e8c0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000e8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e8f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e8b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e8c0: 2020 2020 3020 3a20 5a5a 2020 3c2d 2d2d 0 : ZZ <--- │ │ │ │ +0000e8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 205a 5a20 ------------ ZZ │ │ │ │ +0000e8e0: 203a 2030 2020 2020 2020 2020 2020 2020 : 0 │ │ │ │ +0000e8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e900: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e910: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000e920: 2031 2030 2030 2030 207c 2020 2020 2020 1 0 0 0 | │ │ │ │ 0000e930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e940: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e950: 2020 3620 2020 2020 2020 2020 2020 2020 6 │ │ │ │ -0000e960: 2020 2020 2020 2020 2020 2036 2020 2020 6 │ │ │ │ -0000e970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e950: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e960: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000e970: 2030 2031 2030 2030 207c 2020 2020 2020 0 1 0 0 | │ │ │ │ 0000e980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e990: 2020 2020 7c0a 7c20 2020 2020 3120 3a20 |.| 1 : │ │ │ │ -0000e9a0: 5a5a 2020 3c2d 2d2d 2d2d 2d2d 2d2d 2d2d ZZ <----------- │ │ │ │ -0000e9b0: 2d2d 2d2d 2d2d 2d2d 205a 5a20 203a 2031 -------- ZZ : 1 │ │ │ │ -0000e9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e9a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000e9b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000e9c0: 2030 2030 2031 2030 207c 2020 2020 2020 0 0 1 0 | │ │ │ │ 0000e9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e9e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000e9f0: 2020 2020 2020 207c 2031 2030 2030 2030 | 1 0 0 0 │ │ │ │ -0000ea00: 2030 2030 207c 2020 2020 2020 2020 2020 0 0 | │ │ │ │ -0000ea10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e9f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000ea00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000ea10: 2030 2030 2030 2031 207c 2020 2020 2020 0 0 0 1 | │ │ │ │ 0000ea20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ea30: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000ea40: 2020 2020 2020 207c 2030 2031 2030 2030 | 0 1 0 0 │ │ │ │ -0000ea50: 2030 2030 207c 2020 2020 2020 2020 2020 0 0 | │ │ │ │ +0000ea30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ea40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000ea50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ea60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ea70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ea80: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000ea90: 2020 2020 2020 207c 2030 2030 2031 2030 | 0 0 1 0 │ │ │ │ -0000eaa0: 2030 2030 207c 2020 2020 2020 2020 2020 0 0 | │ │ │ │ +0000ea80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ea90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000eaa0: 2020 2020 2020 2020 2020 3620 2020 2020 6 │ │ │ │ 0000eab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000eac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ead0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000eae0: 2020 2020 2020 207c 2030 2030 2030 2031 | 0 0 0 1 │ │ │ │ -0000eaf0: 2030 2030 207c 2020 2020 2020 2020 2020 0 0 | │ │ │ │ -0000eb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000eb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000eb20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000eb30: 2020 2020 2020 207c 2030 2030 2030 2030 | 0 0 0 0 │ │ │ │ -0000eb40: 2031 2030 207c 2020 2020 2020 2020 2020 1 0 | │ │ │ │ -0000eb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000eac0: 2020 2036 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +0000ead0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000eae0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000eaf0: 2020 2020 3120 3a20 5a5a 2020 3c2d 2d2d 1 : ZZ <--- │ │ │ │ +0000eb00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000eb10: 205a 5a20 203a 2031 2020 2020 2020 2020 ZZ : 1 │ │ │ │ +0000eb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000eb30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000eb40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000eb50: 2031 2030 2030 2030 2030 2030 207c 2020 1 0 0 0 0 0 | │ │ │ │ 0000eb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000eb70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000eb80: 2020 2020 2020 207c 2030 2030 2030 2030 | 0 0 0 0 │ │ │ │ -0000eb90: 2030 2031 207c 2020 2020 2020 2020 2020 0 1 | │ │ │ │ -0000eba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000eb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000eb80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000eb90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000eba0: 2030 2031 2030 2030 2030 2030 207c 2020 0 1 0 0 0 0 | │ │ │ │ 0000ebb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ebc0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000ebd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ebe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ebf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ebc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ebd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000ebe0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000ebf0: 2030 2030 2031 2030 2030 2030 207c 2020 0 0 1 0 0 0 | │ │ │ │ 0000ec00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ec10: 2020 2020 7c0a 7c6f 3520 3a20 436f 6d70 |.|o5 : Comp │ │ │ │ -0000ec20: 6c65 784d 6170 2020 2020 2020 2020 2020 lexMap │ │ │ │ -0000ec30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ec40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ec10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ec20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000ec30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000ec40: 2030 2030 2030 2031 2030 2030 207c 2020 0 0 0 1 0 0 | │ │ │ │ 0000ec50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ec60: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0000ec70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000ec80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000ec90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000eca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000ecb0: 2d2d 2d2d 2b0a 7c69 3620 3a20 6973 5765 ----+.|i6 : isWe │ │ │ │ -0000ecc0: 6c6c 4465 6669 6e65 6420 6652 6564 2020 llDefined fRed │ │ │ │ -0000ecd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ece0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ec60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ec70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000ec80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000ec90: 2030 2030 2030 2030 2031 2030 207c 2020 0 0 0 0 1 0 | │ │ │ │ +0000eca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ecb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ecc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000ecd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000ece0: 2030 2030 2030 2030 2030 2031 207c 2020 0 0 0 0 0 1 | │ │ │ │ 0000ecf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ed00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0000ed10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ed00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ed10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0000ed20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ed30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ed40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ed50: 2020 2020 7c0a 7c6f 3620 3d20 7472 7565 |.|o6 = true │ │ │ │ -0000ed60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ed70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ed50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ed60: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0000ed70: 3520 3a20 436f 6d70 6c65 784d 6170 2020 5 : ComplexMap │ │ │ │ 0000ed80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ed90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000eda0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0000edb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000eda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000edb0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 0000edc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000edd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ede0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000edf0: 2d2d 2d2d 2b0a 1f0a 4669 6c65 3a20 4162 ----+...File: Ab │ │ │ │ -0000ee00: 7374 7261 6374 5369 6d70 6c69 6369 616c stractSimplicial │ │ │ │ -0000ee10: 436f 6d70 6c65 7865 732e 696e 666f 2c20 Complexes.info, │ │ │ │ -0000ee20: 4e6f 6465 3a20 696e 6475 6365 6452 6564 Node: inducedRed │ │ │ │ -0000ee30: 7563 6564 5369 6d70 6c69 6369 616c 4368 ucedSimplicialCh │ │ │ │ -0000ee40: 6169 6e43 6f6d 706c 6578 4d61 702c 204e ainComplexMap, N │ │ │ │ -0000ee50: 6578 743a 2069 6e64 7563 6564 5369 6d70 ext: inducedSimp │ │ │ │ -0000ee60: 6c69 6369 616c 4368 6169 6e43 6f6d 706c licialChainCompl │ │ │ │ -0000ee70: 6578 4d61 702c 2050 7265 763a 2048 6f77 exMap, Prev: How │ │ │ │ -0000ee80: 2074 6f20 6d61 6b65 2073 7562 7369 6d70 to make subsimp │ │ │ │ -0000ee90: 6c69 6361 6c20 636f 6d70 6c65 7865 7320 lical complexes │ │ │ │ -0000eea0: 616e 6420 696e 6475 6365 6420 7369 6d70 and induced simp │ │ │ │ -0000eeb0: 6c69 6369 616c 2063 6861 696e 2063 6f6d licial chain com │ │ │ │ -0000eec0: 706c 6578 206d 6170 732c 2055 703a 2054 plex maps, Up: T │ │ │ │ -0000eed0: 6f70 0a0a 696e 6475 6365 6452 6564 7563 op..inducedReduc │ │ │ │ -0000eee0: 6564 5369 6d70 6c69 6369 616c 4368 6169 edSimplicialChai │ │ │ │ -0000eef0: 6e43 6f6d 706c 6578 4d61 7020 2d2d 2049 nComplexMap -- I │ │ │ │ -0000ef00: 6e64 7563 6564 206d 6170 7320 7468 6174 nduced maps that │ │ │ │ -0000ef10: 2061 7269 7365 2076 6961 2069 6e63 6c75 arise via inclu │ │ │ │ -0000ef20: 7369 6f6e 7320 6f66 2061 6273 7472 6163 sions of abstrac │ │ │ │ -0000ef30: 7420 7369 6d70 6c69 6369 616c 2063 6f6d t simplicial com │ │ │ │ -0000ef40: 706c 6578 6573 0a2a 2a2a 2a2a 2a2a 2a2a plexes.********* │ │ │ │ -0000ef50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000ef60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000ef70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000ef80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000ef90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000efa0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000efb0: 2a2a 2a2a 2a2a 2a2a 2a0a 0a44 6573 6372 *********..Descr │ │ │ │ -0000efc0: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ -0000efd0: 3d3d 0a0a 4966 2061 6e20 6162 7374 7261 ==..If an abstra │ │ │ │ -0000efe0: 6374 2073 696d 706c 6963 6961 6c20 636f ct simplicial co │ │ │ │ -0000eff0: 6d70 6c65 7820 6361 6e20 6265 2072 6567 mplex can be reg │ │ │ │ -0000f000: 6172 6465 6420 6173 2061 2073 7562 7369 arded as a subsi │ │ │ │ -0000f010: 6d70 6c69 6369 616c 2063 6f6d 706c 6578 mplicial complex │ │ │ │ -0000f020: 206f 660a 616e 6f74 6865 7220 6162 7374 of.another abst │ │ │ │ -0000f030: 7261 6374 2073 696d 706c 6963 6961 6c20 ract simplicial │ │ │ │ -0000f040: 636f 6d70 6c65 782c 2074 6865 6e20 6974 complex, then it │ │ │ │ -0000f050: 2069 7320 7573 6566 756c 2074 6f20 6361 is useful to ca │ │ │ │ -0000f060: 6c63 756c 6174 6520 7468 6520 696e 6475 lculate the indu │ │ │ │ -0000f070: 6365 640a 6d61 7020 6174 2074 6865 206c ced.map at the l │ │ │ │ -0000f080: 6576 656c 206f 6620 5265 6475 6365 6420 evel of Reduced │ │ │ │ -0000f090: 5369 6d70 6c69 6369 616c 2043 6861 696e Simplicial Chain │ │ │ │ -0000f0a0: 2043 6f6d 706c 6578 6573 2e20 2054 6869 Complexes. Thi │ │ │ │ -0000f0b0: 7320 6973 206d 6164 6520 706f 7373 6962 s is made possib │ │ │ │ -0000f0c0: 6c65 0a62 7920 7468 6520 6d65 7468 6f64 le.by the method │ │ │ │ -0000f0d0: 2069 6e64 7563 6564 5265 6475 6365 6453 inducedReducedS │ │ │ │ -0000f0e0: 696d 706c 6963 6961 6c43 6861 696e 436f implicialChainCo │ │ │ │ -0000f0f0: 6d70 6c65 784d 6170 2e0a 0a2b 2d2d 2d2d mplexMap...+---- │ │ │ │ -0000f100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000f110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000f120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000f130: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ -0000f140: 204b 203d 2061 6273 7472 6163 7453 696d K = abstractSim │ │ │ │ -0000f150: 706c 6963 6961 6c43 6f6d 706c 6578 287b plicialComplex({ │ │ │ │ -0000f160: 7b31 2c32 7d2c 7b33 7d7d 2920 2020 2020 {1,2},{3}}) │ │ │ │ -0000f170: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000f180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f1b0: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ -0000f1c0: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ -0000f1d0: 6961 6c43 6f6d 706c 6578 7b2d 3120 3d3e ialComplex{-1 => │ │ │ │ -0000f1e0: 207b 7b7d 7d20 2020 2020 2020 2020 207d {{}} } │ │ │ │ -0000f1f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000f200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f210: 2020 2020 2020 2020 2020 2030 203d 3e20 0 => │ │ │ │ -0000f220: 7b7b 317d 2c20 7b32 7d2c 207b 337d 7d20 {{1}, {2}, {3}} │ │ │ │ -0000f230: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000f240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f250: 2020 2020 2020 2020 2020 2031 203d 3e20 1 => │ │ │ │ -0000f260: 7b7b 312c 2032 7d7d 2020 2020 2020 2020 {{1, 2}} │ │ │ │ -0000f270: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f2b0: 2020 2020 2020 2020 207c 0a7c 6f31 203a |.|o1 : │ │ │ │ -0000f2c0: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ -0000f2d0: 6961 6c43 6f6d 706c 6578 2020 2020 2020 ialComplex │ │ │ │ +0000edf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000ee00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0000ee10: 3620 3a20 6973 5765 6c6c 4465 6669 6e65 6 : isWellDefine │ │ │ │ +0000ee20: 6420 6652 6564 2020 2020 2020 2020 2020 d fRed │ │ │ │ +0000ee30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ee40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ee50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0000ee60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ee70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ee80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ee90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000eea0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0000eeb0: 3620 3d20 7472 7565 2020 2020 2020 2020 6 = true │ │ │ │ +0000eec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000eed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000eee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000eef0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0000ef00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000ef10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000ef20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000ef30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000ef40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 1f0a ------------+... │ │ │ │ +0000ef50: 4669 6c65 3a20 4162 7374 7261 6374 5369 File: AbstractSi │ │ │ │ +0000ef60: 6d70 6c69 6369 616c 436f 6d70 6c65 7865 mplicialComplexe │ │ │ │ +0000ef70: 732e 696e 666f 2c20 4e6f 6465 3a20 696e s.info, Node: in │ │ │ │ +0000ef80: 6475 6365 6452 6564 7563 6564 5369 6d70 ducedReducedSimp │ │ │ │ +0000ef90: 6c69 6369 616c 4368 6169 6e43 6f6d 706c licialChainCompl │ │ │ │ +0000efa0: 6578 4d61 702c 204e 6578 743a 2069 6e64 exMap, Next: ind │ │ │ │ +0000efb0: 7563 6564 5369 6d70 6c69 6369 616c 4368 ucedSimplicialCh │ │ │ │ +0000efc0: 6169 6e43 6f6d 706c 6578 4d61 702c 2050 ainComplexMap, P │ │ │ │ +0000efd0: 7265 763a 2048 6f77 2074 6f20 6d61 6b65 rev: How to make │ │ │ │ +0000efe0: 2073 7562 7369 6d70 6c69 6361 6c20 636f subsimplical co │ │ │ │ +0000eff0: 6d70 6c65 7865 7320 616e 6420 696e 6475 mplexes and indu │ │ │ │ +0000f000: 6365 6420 7369 6d70 6c69 6369 616c 2063 ced simplicial c │ │ │ │ +0000f010: 6861 696e 2063 6f6d 706c 6578 206d 6170 hain complex map │ │ │ │ +0000f020: 732c 2055 703a 2054 6f70 0a0a 696e 6475 s, Up: Top..indu │ │ │ │ +0000f030: 6365 6452 6564 7563 6564 5369 6d70 6c69 cedReducedSimpli │ │ │ │ +0000f040: 6369 616c 4368 6169 6e43 6f6d 706c 6578 cialChainComplex │ │ │ │ +0000f050: 4d61 7020 2d2d 2049 6e64 7563 6564 206d Map -- Induced m │ │ │ │ +0000f060: 6170 7320 7468 6174 2061 7269 7365 2076 aps that arise v │ │ │ │ +0000f070: 6961 2069 6e63 6c75 7369 6f6e 7320 6f66 ia inclusions of │ │ │ │ +0000f080: 2061 6273 7472 6163 7420 7369 6d70 6c69 abstract simpli │ │ │ │ +0000f090: 6369 616c 2063 6f6d 706c 6578 6573 0a2a cial complexes.* │ │ │ │ +0000f0a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000f0b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000f0c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000f0d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000f0e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000f0f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000f100: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000f110: 2a0a 0a44 6573 6372 6970 7469 6f6e 0a3d *..Description.= │ │ │ │ +0000f120: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 4966 2061 ==========..If a │ │ │ │ +0000f130: 6e20 6162 7374 7261 6374 2073 696d 706c n abstract simpl │ │ │ │ +0000f140: 6963 6961 6c20 636f 6d70 6c65 7820 6361 icial complex ca │ │ │ │ +0000f150: 6e20 6265 2072 6567 6172 6465 6420 6173 n be regarded as │ │ │ │ +0000f160: 2061 2073 7562 7369 6d70 6c69 6369 616c a subsimplicial │ │ │ │ +0000f170: 2063 6f6d 706c 6578 206f 660a 616e 6f74 complex of.anot │ │ │ │ +0000f180: 6865 7220 6162 7374 7261 6374 2073 696d her abstract sim │ │ │ │ +0000f190: 706c 6963 6961 6c20 636f 6d70 6c65 782c plicial complex, │ │ │ │ +0000f1a0: 2074 6865 6e20 6974 2069 7320 7573 6566 then it is usef │ │ │ │ +0000f1b0: 756c 2074 6f20 6361 6c63 756c 6174 6520 ul to calculate │ │ │ │ +0000f1c0: 7468 6520 696e 6475 6365 640a 6d61 7020 the induced.map │ │ │ │ +0000f1d0: 6174 2074 6865 206c 6576 656c 206f 6620 at the level of │ │ │ │ +0000f1e0: 5265 6475 6365 6420 5369 6d70 6c69 6369 Reduced Simplici │ │ │ │ +0000f1f0: 616c 2043 6861 696e 2043 6f6d 706c 6578 al Chain Complex │ │ │ │ +0000f200: 6573 2e20 2054 6869 7320 6973 206d 6164 es. This is mad │ │ │ │ +0000f210: 6520 706f 7373 6962 6c65 0a62 7920 7468 e possible.by th │ │ │ │ +0000f220: 6520 6d65 7468 6f64 2069 6e64 7563 6564 e method induced │ │ │ │ +0000f230: 5265 6475 6365 6453 696d 706c 6963 6961 ReducedSimplicia │ │ │ │ +0000f240: 6c43 6861 696e 436f 6d70 6c65 784d 6170 lChainComplexMap │ │ │ │ +0000f250: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ +0000f260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000f270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000f280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000f290: 2d2b 0a7c 6931 203a 204b 203d 2061 6273 -+.|i1 : K = abs │ │ │ │ +0000f2a0: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +0000f2b0: 6f6d 706c 6578 287b 7b31 2c32 7d2c 7b33 omplex({{1,2},{3 │ │ │ │ +0000f2c0: 7d7d 2920 2020 2020 2020 2020 2020 2020 }}) │ │ │ │ +0000f2d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000f2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f2f0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0000f300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000f310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000f320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000f330: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ -0000f340: 204a 203d 2061 6d62 6965 6e74 4162 7374 J = ambientAbst │ │ │ │ -0000f350: 7261 6374 5369 6d70 6c69 6369 616c 436f ractSimplicialCo │ │ │ │ -0000f360: 6d70 6c65 7828 4b29 2020 2020 2020 2020 mplex(K) │ │ │ │ -0000f370: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000f380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f310: 207c 0a7c 6f31 203d 2041 6273 7472 6163 |.|o1 = Abstrac │ │ │ │ +0000f320: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ +0000f330: 6578 7b2d 3120 3d3e 207b 7b7d 7d20 2020 ex{-1 => {{}} │ │ │ │ +0000f340: 2020 2020 2020 207d 2020 2020 2020 2020 } │ │ │ │ +0000f350: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000f360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f370: 2020 2030 203d 3e20 7b7b 317d 2c20 7b32 0 => {{1}, {2 │ │ │ │ +0000f380: 7d2c 207b 337d 7d20 2020 2020 2020 2020 }, {3}} │ │ │ │ +0000f390: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000f3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f3b0: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ -0000f3c0: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ -0000f3d0: 6961 6c43 6f6d 706c 6578 7b2d 3120 3d3e ialComplex{-1 => │ │ │ │ -0000f3e0: 207b 7b7d 7d20 2020 2020 2020 2020 2020 {{}} │ │ │ │ -0000f3f0: 2020 2020 2020 2020 7d7c 0a7c 2020 2020 }|.| │ │ │ │ +0000f3b0: 2020 2031 203d 3e20 7b7b 312c 2032 7d7d 1 => {{1, 2}} │ │ │ │ +0000f3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f3d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000f3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f410: 2020 2020 2020 2020 2020 2030 203d 3e20 0 => │ │ │ │ -0000f420: 7b7b 317d 2c20 7b32 7d2c 207b 337d 7d20 {{1}, {2}, {3}} │ │ │ │ -0000f430: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000f410: 207c 0a7c 6f31 203a 2041 6273 7472 6163 |.|o1 : Abstrac │ │ │ │ +0000f420: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ +0000f430: 6578 2020 2020 2020 2020 2020 2020 2020 ex │ │ │ │ 0000f440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f450: 2020 2020 2020 2020 2020 2031 203d 3e20 1 => │ │ │ │ -0000f460: 7b7b 312c 2032 7d2c 207b 312c 2033 7d2c {{1, 2}, {1, 3}, │ │ │ │ -0000f470: 207b 322c 2033 7d7d 207c 0a7c 2020 2020 {2, 3}} |.| │ │ │ │ -0000f480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f490: 2020 2020 2020 2020 2020 2032 203d 3e20 2 => │ │ │ │ -0000f4a0: 7b7b 312c 2032 2c20 337d 7d20 2020 2020 {{1, 2, 3}} │ │ │ │ -0000f4b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000f450: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0000f460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000f470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000f480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000f490: 2d2b 0a7c 6932 203a 204a 203d 2061 6d62 -+.|i2 : J = amb │ │ │ │ +0000f4a0: 6965 6e74 4162 7374 7261 6374 5369 6d70 ientAbstractSimp │ │ │ │ +0000f4b0: 6c69 6369 616c 436f 6d70 6c65 7828 4b29 licialComplex(K) │ │ │ │ 0000f4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f4d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000f4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f4f0: 2020 2020 2020 2020 207c 0a7c 6f32 203a |.|o2 : │ │ │ │ -0000f500: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ -0000f510: 6961 6c43 6f6d 706c 6578 2020 2020 2020 ialComplex │ │ │ │ -0000f520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f530: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0000f540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000f550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000f560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000f570: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ -0000f580: 2069 6e64 7563 6564 5265 6475 6365 6453 inducedReducedS │ │ │ │ -0000f590: 696d 706c 6963 6961 6c43 6861 696e 436f implicialChainCo │ │ │ │ -0000f5a0: 6d70 6c65 784d 6170 284a 2c4b 2920 2020 mplexMap(J,K) │ │ │ │ -0000f5b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000f5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f510: 207c 0a7c 6f32 203d 2041 6273 7472 6163 |.|o2 = Abstrac │ │ │ │ +0000f520: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ +0000f530: 6578 7b2d 3120 3d3e 207b 7b7d 7d20 2020 ex{-1 => {{}} │ │ │ │ +0000f540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f550: 7d7c 0a7c 2020 2020 2020 2020 2020 2020 }|.| │ │ │ │ +0000f560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f570: 2020 2030 203d 3e20 7b7b 317d 2c20 7b32 0 => {{1}, {2 │ │ │ │ +0000f580: 7d2c 207b 337d 7d20 2020 2020 2020 2020 }, {3}} │ │ │ │ +0000f590: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000f5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f5b0: 2020 2031 203d 3e20 7b7b 312c 2032 7d2c 1 => {{1, 2}, │ │ │ │ +0000f5c0: 207b 312c 2033 7d2c 207b 322c 2033 7d7d {1, 3}, {2, 3}} │ │ │ │ +0000f5d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000f5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f5f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000f600: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ -0000f610: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ +0000f5f0: 2020 2032 203d 3e20 7b7b 312c 2032 2c20 2 => {{1, 2, │ │ │ │ +0000f600: 337d 7d20 2020 2020 2020 2020 2020 2020 3}} │ │ │ │ +0000f610: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000f620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f630: 2020 2020 2020 2020 207c 0a7c 6f33 203d |.|o3 = │ │ │ │ -0000f640: 202d 3120 3a20 5a5a 2020 3c2d 2d2d 2d2d -1 : ZZ <----- │ │ │ │ -0000f650: 2d2d 2d2d 205a 5a20 203a 202d 3120 2020 ---- ZZ : -1 │ │ │ │ -0000f660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f670: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000f680: 2020 2020 2020 2020 2020 2020 207c 2031 | 1 │ │ │ │ -0000f690: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000f6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f6b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000f6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f6f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000f700: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ -0000f710: 2020 2020 2020 2020 2020 3320 2020 2020 3 │ │ │ │ +0000f630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f650: 207c 0a7c 6f32 203a 2041 6273 7472 6163 |.|o2 : Abstrac │ │ │ │ +0000f660: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ +0000f670: 6578 2020 2020 2020 2020 2020 2020 2020 ex │ │ │ │ +0000f680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f690: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0000f6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000f6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000f6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000f6d0: 2d2b 0a7c 6933 203a 2069 6e64 7563 6564 -+.|i3 : induced │ │ │ │ +0000f6e0: 5265 6475 6365 6453 696d 706c 6963 6961 ReducedSimplicia │ │ │ │ +0000f6f0: 6c43 6861 696e 436f 6d70 6c65 784d 6170 lChainComplexMap │ │ │ │ +0000f700: 284a 2c4b 2920 2020 2020 2020 2020 2020 (J,K) │ │ │ │ +0000f710: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000f720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f730: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000f740: 2030 203a 205a 5a20 203c 2d2d 2d2d 2d2d 0 : ZZ <------ │ │ │ │ -0000f750: 2d2d 2d2d 2d2d 2d20 5a5a 2020 3a20 3020 ------- ZZ : 0 │ │ │ │ -0000f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f770: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000f780: 2020 2020 2020 2020 2020 2020 7c20 3120 | 1 │ │ │ │ -0000f790: 3020 3020 7c20 2020 2020 2020 2020 2020 0 0 | │ │ │ │ -0000f7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f7b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000f7c0: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000f7d0: 3120 3020 7c20 2020 2020 2020 2020 2020 1 0 | │ │ │ │ -0000f7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f7f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000f800: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000f810: 3020 3120 7c20 2020 2020 2020 2020 2020 0 1 | │ │ │ │ +0000f730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f750: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000f760: 3120 2020 2020 2020 2020 2020 2020 2031 1 1 │ │ │ │ +0000f770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f790: 207c 0a7c 6f33 203d 202d 3120 3a20 5a5a |.|o3 = -1 : ZZ │ │ │ │ +0000f7a0: 2020 3c2d 2d2d 2d2d 2d2d 2d2d 205a 5a20 <--------- ZZ │ │ │ │ +0000f7b0: 203a 202d 3120 2020 2020 2020 2020 2020 : -1 │ │ │ │ +0000f7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f7d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000f7e0: 2020 2020 207c 2031 207c 2020 2020 2020 | 1 | │ │ │ │ +0000f7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f810: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000f820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f830: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000f830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f850: 207c 0a7c 2020 2020 2020 2020 2020 2033 |.| 3 │ │ │ │ 0000f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f870: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000f880: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ -0000f890: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ -0000f8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f8b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000f8c0: 2031 203a 205a 5a20 203c 2d2d 2d2d 2d2d 1 : ZZ <------ │ │ │ │ -0000f8d0: 2d2d 2d20 5a5a 2020 3a20 3120 2020 2020 --- ZZ : 1 │ │ │ │ -0000f8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f8f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000f900: 2020 2020 2020 2020 2020 2020 7c20 3120 | 1 │ │ │ │ -0000f910: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000f920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f930: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000f940: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000f950: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000f960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f970: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000f980: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -0000f990: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000f870: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0000f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f890: 207c 0a7c 2020 2020 2030 203a 205a 5a20 |.| 0 : ZZ │ │ │ │ +0000f8a0: 203c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d20 <------------- │ │ │ │ +0000f8b0: 5a5a 2020 3a20 3020 2020 2020 2020 2020 ZZ : 0 │ │ │ │ +0000f8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f8d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000f8e0: 2020 2020 7c20 3120 3020 3020 7c20 2020 | 1 0 0 | │ │ │ │ +0000f8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f910: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000f920: 2020 2020 7c20 3020 3120 3020 7c20 2020 | 0 1 0 | │ │ │ │ +0000f930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f950: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000f960: 2020 2020 7c20 3020 3020 3120 7c20 2020 | 0 0 1 | │ │ │ │ +0000f970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f990: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000f9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f9b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000f9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f9f0: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ -0000fa00: 2043 6f6d 706c 6578 4d61 7020 2020 2020 ComplexMap │ │ │ │ -0000fa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fa30: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0000fa40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000fa50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000fa60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000fa70: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ -0000fa80: 204c 203d 2061 6273 7472 6163 7453 696d L = abstractSim │ │ │ │ -0000fa90: 706c 6963 6961 6c43 6f6d 706c 6578 207b plicialComplex { │ │ │ │ -0000faa0: 7b7d 7d20 2020 2020 2020 2020 2020 2020 {}} │ │ │ │ -0000fab0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000f9d0: 207c 0a7c 2020 2020 2020 2020 2020 2033 |.| 3 │ │ │ │ +0000f9e0: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +0000f9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fa10: 207c 0a7c 2020 2020 2031 203a 205a 5a20 |.| 1 : ZZ │ │ │ │ +0000fa20: 203c 2d2d 2d2d 2d2d 2d2d 2d20 5a5a 2020 <--------- ZZ │ │ │ │ +0000fa30: 3a20 3120 2020 2020 2020 2020 2020 2020 : 1 │ │ │ │ +0000fa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fa50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000fa60: 2020 2020 7c20 3120 7c20 2020 2020 2020 | 1 | │ │ │ │ +0000fa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fa90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000faa0: 2020 2020 7c20 3020 7c20 2020 2020 2020 | 0 | │ │ │ │ +0000fab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000faf0: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ -0000fb00: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ -0000fb10: 6961 6c43 6f6d 706c 6578 7b2d 3120 3d3e ialComplex{-1 => │ │ │ │ -0000fb20: 207b 7b7d 7d7d 2020 2020 2020 2020 2020 {{}}} │ │ │ │ -0000fb30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000fad0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000fae0: 2020 2020 7c20 3020 7c20 2020 2020 2020 | 0 | │ │ │ │ +0000faf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fb10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000fb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fb70: 2020 2020 2020 2020 207c 0a7c 6f34 203a |.|o4 : │ │ │ │ -0000fb80: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ -0000fb90: 6961 6c43 6f6d 706c 6578 2020 2020 2020 ialComplex │ │ │ │ -0000fba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fbb0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0000fb50: 207c 0a7c 6f33 203a 2043 6f6d 706c 6578 |.|o3 : Complex │ │ │ │ +0000fb60: 4d61 7020 2020 2020 2020 2020 2020 2020 Map │ │ │ │ +0000fb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fb90: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0000fba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000fbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000fbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000fbd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000fbe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000fbf0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ -0000fc00: 2069 6e64 7563 6564 5265 6475 6365 6453 inducedReducedS │ │ │ │ -0000fc10: 696d 706c 6963 6961 6c43 6861 696e 436f implicialChainCo │ │ │ │ -0000fc20: 6d70 6c65 784d 6170 284c 2c4c 2920 2020 mplexMap(L,L) │ │ │ │ -0000fc30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000fbd0: 2d2b 0a7c 6934 203a 204c 203d 2061 6273 -+.|i4 : L = abs │ │ │ │ +0000fbe0: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +0000fbf0: 6f6d 706c 6578 207b 7b7d 7d20 2020 2020 omplex {{}} │ │ │ │ +0000fc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fc10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000fc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fc70: 2020 2020 2020 2020 207c 0a7c 6f35 203d |.|o5 = │ │ │ │ -0000fc80: 202d 3220 3a20 3020 3c2d 2d2d 2d2d 2030 -2 : 0 <----- 0 │ │ │ │ -0000fc90: 203a 202d 3220 2020 2020 2020 2020 2020 : -2 │ │ │ │ +0000fc50: 207c 0a7c 6f34 203d 2041 6273 7472 6163 |.|o4 = Abstrac │ │ │ │ +0000fc60: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ +0000fc70: 6578 7b2d 3120 3d3e 207b 7b7d 7d7d 2020 ex{-1 => {{}}} │ │ │ │ +0000fc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fc90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000fca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fcb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000fcc0: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ -0000fcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fcf0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000fcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fcd0: 207c 0a7c 6f34 203a 2041 6273 7472 6163 |.|o4 : Abstrac │ │ │ │ +0000fce0: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ +0000fcf0: 6578 2020 2020 2020 2020 2020 2020 2020 ex │ │ │ │ 0000fd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fd30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000fd40: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ -0000fd50: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ -0000fd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fd70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000fd80: 202d 3120 3a20 5a5a 2020 3c2d 2d2d 2d2d -1 : ZZ <----- │ │ │ │ -0000fd90: 2d2d 2d2d 205a 5a20 203a 202d 3120 2020 ---- ZZ : -1 │ │ │ │ +0000fd10: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0000fd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000fd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000fd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000fd50: 2d2b 0a7c 6935 203a 2069 6e64 7563 6564 -+.|i5 : induced │ │ │ │ +0000fd60: 5265 6475 6365 6453 696d 706c 6963 6961 ReducedSimplicia │ │ │ │ +0000fd70: 6c43 6861 696e 436f 6d70 6c65 784d 6170 lChainComplexMap │ │ │ │ +0000fd80: 284c 2c4c 2920 2020 2020 2020 2020 2020 (L,L) │ │ │ │ +0000fd90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000fda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fdb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0000fdc0: 2020 2020 2020 2020 2020 2020 207c 2031 | 1 │ │ │ │ -0000fdd0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000fde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fdf0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000fdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fdd0: 207c 0a7c 6f35 203d 202d 3220 3a20 3020 |.|o5 = -2 : 0 │ │ │ │ +0000fde0: 3c2d 2d2d 2d2d 2030 203a 202d 3220 2020 <----- 0 : -2 │ │ │ │ +0000fdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fe00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fe10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fe20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fe30: 2020 2020 2020 2020 207c 0a7c 6f35 203a |.|o5 : │ │ │ │ -0000fe40: 2043 6f6d 706c 6578 4d61 7020 2020 2020 ComplexMap │ │ │ │ -0000fe50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fe10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000fe20: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +0000fe30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fe40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fe50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000fe60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fe70: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0000fe80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000fe90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000fea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000feb0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a ---------+.|i6 : │ │ │ │ -0000fec0: 204d 203d 2061 6273 7472 6163 7453 696d M = abstractSim │ │ │ │ -0000fed0: 706c 6963 6961 6c43 6f6d 706c 6578 207b plicialComplex { │ │ │ │ -0000fee0: 7b31 7d7d 2020 2020 2020 2020 2020 2020 {1}} │ │ │ │ -0000fef0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000fe70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fe80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fe90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000fea0: 3120 2020 2020 2020 2020 2020 2020 2031 1 1 │ │ │ │ +0000feb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000fed0: 207c 0a7c 2020 2020 202d 3120 3a20 5a5a |.| -1 : ZZ │ │ │ │ +0000fee0: 2020 3c2d 2d2d 2d2d 2d2d 2d2d 205a 5a20 <--------- ZZ │ │ │ │ +0000fef0: 203a 202d 3120 2020 2020 2020 2020 2020 : -1 │ │ │ │ 0000ff00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ff10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ff20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ff30: 2020 2020 2020 2020 207c 0a7c 6f36 203d |.|o6 = │ │ │ │ -0000ff40: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ -0000ff50: 6961 6c43 6f6d 706c 6578 7b2d 3120 3d3e ialComplex{-1 => │ │ │ │ -0000ff60: 207b 7b7d 7d7d 2020 2020 2020 2020 2020 {{}}} │ │ │ │ -0000ff70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000ff10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000ff20: 2020 2020 207c 2031 207c 2020 2020 2020 | 1 | │ │ │ │ +0000ff30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ff40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ff50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000ff60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ff70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ff80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ff90: 2020 2020 2020 2020 2020 2030 203d 3e20 0 => │ │ │ │ -0000ffa0: 7b7b 317d 7d20 2020 2020 2020 2020 2020 {{1}} │ │ │ │ -0000ffb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000ff90: 207c 0a7c 6f35 203a 2043 6f6d 706c 6578 |.|o5 : Complex │ │ │ │ +0000ffa0: 4d61 7020 2020 2020 2020 2020 2020 2020 Map │ │ │ │ +0000ffb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ffc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ffd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ffe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fff0: 2020 2020 2020 2020 207c 0a7c 6f36 203a |.|o6 : │ │ │ │ -00010000: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ -00010010: 6961 6c43 6f6d 706c 6578 2020 2020 2020 ialComplex │ │ │ │ -00010020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010030: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -00010040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010070: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a ---------+.|i7 : │ │ │ │ -00010080: 204c 203d 2061 6273 7472 6163 7453 696d L = abstractSim │ │ │ │ -00010090: 706c 6963 6961 6c43 6f6d 706c 6578 207b plicialComplex { │ │ │ │ -000100a0: 7b7d 7d20 2020 2020 2020 2020 2020 2020 {}} │ │ │ │ -000100b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0000ffd0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0000ffe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000fff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010010: 2d2b 0a7c 6936 203a 204d 203d 2061 6273 -+.|i6 : M = abs │ │ │ │ +00010020: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +00010030: 6f6d 706c 6578 207b 7b31 7d7d 2020 2020 omplex {{1}} │ │ │ │ +00010040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010050: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00010060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010090: 207c 0a7c 6f36 203d 2041 6273 7472 6163 |.|o6 = Abstrac │ │ │ │ +000100a0: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ +000100b0: 6578 7b2d 3120 3d3e 207b 7b7d 7d7d 2020 ex{-1 => {{}}} │ │ │ │ 000100c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000100d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000100d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000100e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000100f0: 2020 2020 2020 2020 207c 0a7c 6f37 203d |.|o7 = │ │ │ │ -00010100: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ -00010110: 6961 6c43 6f6d 706c 6578 7b2d 3120 3d3e ialComplex{-1 => │ │ │ │ -00010120: 207b 7b7d 7d7d 2020 2020 2020 2020 2020 {{}}} │ │ │ │ -00010130: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000100f0: 2020 2030 203d 3e20 7b7b 317d 7d20 2020 0 => {{1}} │ │ │ │ +00010100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010110: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00010120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010170: 2020 2020 2020 2020 207c 0a7c 6f37 203a |.|o7 : │ │ │ │ -00010180: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ -00010190: 6961 6c43 6f6d 706c 6578 2020 2020 2020 ialComplex │ │ │ │ -000101a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000101b0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00010150: 207c 0a7c 6f36 203a 2041 6273 7472 6163 |.|o6 : Abstrac │ │ │ │ +00010160: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ +00010170: 6578 2020 2020 2020 2020 2020 2020 2020 ex │ │ │ │ +00010180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010190: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000101a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000101b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000101c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000101d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000101e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000101f0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a ---------+.|i8 : │ │ │ │ -00010200: 2069 6e64 7563 6564 5265 6475 6365 6453 inducedReducedS │ │ │ │ -00010210: 696d 706c 6963 6961 6c43 6861 696e 436f implicialChainCo │ │ │ │ -00010220: 6d70 6c65 784d 6170 284d 2c4c 2920 2020 mplexMap(M,L) │ │ │ │ -00010230: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000101d0: 2d2b 0a7c 6937 203a 204c 203d 2061 6273 -+.|i7 : L = abs │ │ │ │ +000101e0: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +000101f0: 6f6d 706c 6578 207b 7b7d 7d20 2020 2020 omplex {{}} │ │ │ │ +00010200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010210: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00010220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010270: 2020 2020 2020 2020 207c 0a7c 6f38 203d |.|o8 = │ │ │ │ -00010280: 202d 3220 3a20 3020 3c2d 2d2d 2d2d 2030 -2 : 0 <----- 0 │ │ │ │ -00010290: 203a 202d 3220 2020 2020 2020 2020 2020 : -2 │ │ │ │ +00010250: 207c 0a7c 6f37 203d 2041 6273 7472 6163 |.|o7 = Abstrac │ │ │ │ +00010260: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ +00010270: 6578 7b2d 3120 3d3e 207b 7b7d 7d7d 2020 ex{-1 => {{}}} │ │ │ │ +00010280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010290: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000102a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000102b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000102c0: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ -000102d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000102e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000102f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000102b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000102c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000102d0: 207c 0a7c 6f37 203a 2041 6273 7472 6163 |.|o7 : Abstrac │ │ │ │ +000102e0: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ +000102f0: 6578 2020 2020 2020 2020 2020 2020 2020 ex │ │ │ │ 00010300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010330: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00010340: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ -00010350: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ -00010360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010370: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00010380: 202d 3120 3a20 5a5a 2020 3c2d 2d2d 2d2d -1 : ZZ <----- │ │ │ │ -00010390: 2d2d 2d2d 205a 5a20 203a 202d 3120 2020 ---- ZZ : -1 │ │ │ │ +00010310: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00010320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010350: 2d2b 0a7c 6938 203a 2069 6e64 7563 6564 -+.|i8 : induced │ │ │ │ +00010360: 5265 6475 6365 6453 696d 706c 6963 6961 ReducedSimplicia │ │ │ │ +00010370: 6c43 6861 696e 436f 6d70 6c65 784d 6170 lChainComplexMap │ │ │ │ +00010380: 284d 2c4c 2920 2020 2020 2020 2020 2020 (M,L) │ │ │ │ +00010390: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000103a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000103b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000103c0: 2020 2020 2020 2020 2020 2020 207c 2031 | 1 │ │ │ │ -000103d0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000103e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000103f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000103b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000103c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000103d0: 207c 0a7c 6f38 203d 202d 3220 3a20 3020 |.|o8 = -2 : 0 │ │ │ │ +000103e0: 3c2d 2d2d 2d2d 2030 203a 202d 3220 2020 <----- 0 : -2 │ │ │ │ +000103f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010430: 2020 2020 2020 2020 207c 0a7c 6f38 203a |.|o8 : │ │ │ │ -00010440: 2043 6f6d 706c 6578 4d61 7020 2020 2020 ComplexMap │ │ │ │ -00010450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010410: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00010420: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00010430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010450: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00010460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010470: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -00010480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000104a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000104b0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 ---------+..See │ │ │ │ -000104c0: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ -000104d0: 202a 202a 6e6f 7465 2069 6e64 7563 6564 * *note induced │ │ │ │ -000104e0: 5369 6d70 6c69 6369 616c 4368 6169 6e43 SimplicialChainC │ │ │ │ -000104f0: 6f6d 706c 6578 4d61 703a 2069 6e64 7563 omplexMap: induc │ │ │ │ -00010500: 6564 5369 6d70 6c69 6369 616c 4368 6169 edSimplicialChai │ │ │ │ -00010510: 6e43 6f6d 706c 6578 4d61 702c 0a20 2020 nComplexMap,. │ │ │ │ -00010520: 202d 2d20 496e 6475 6365 6420 6d61 7073 -- Induced maps │ │ │ │ -00010530: 2074 6861 7420 6172 6973 6520 7669 6120 that arise via │ │ │ │ -00010540: 696e 636c 7573 696f 6e73 206f 6620 6162 inclusions of ab │ │ │ │ -00010550: 7374 7261 6374 2073 696d 706c 6963 6961 stract simplicia │ │ │ │ -00010560: 6c20 636f 6d70 6c65 7865 730a 0a57 6179 l complexes..Way │ │ │ │ -00010570: 7320 746f 2075 7365 2069 6e64 7563 6564 s to use induced │ │ │ │ -00010580: 5265 6475 6365 6453 696d 706c 6963 6961 ReducedSimplicia │ │ │ │ -00010590: 6c43 6861 696e 436f 6d70 6c65 784d 6170 lChainComplexMap │ │ │ │ -000105a0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -000105b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000105c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000105d0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2269 6e64 ======.. * "ind │ │ │ │ -000105e0: 7563 6564 5265 6475 6365 6453 696d 706c ucedReducedSimpl │ │ │ │ -000105f0: 6963 6961 6c43 6861 696e 436f 6d70 6c65 icialChainComple │ │ │ │ -00010600: 784d 6170 2841 6273 7472 6163 7453 696d xMap(AbstractSim │ │ │ │ -00010610: 706c 6963 6961 6c43 6f6d 706c 6578 2c0a plicialComplex,. │ │ │ │ -00010620: 2020 2020 4162 7374 7261 6374 5369 6d70 AbstractSimp │ │ │ │ -00010630: 6c69 6369 616c 436f 6d70 6c65 7829 220a licialComplex)". │ │ │ │ -00010640: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ -00010650: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ -00010660: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ -00010670: 6374 202a 6e6f 7465 2069 6e64 7563 6564 ct *note induced │ │ │ │ -00010680: 5265 6475 6365 6453 696d 706c 6963 6961 ReducedSimplicia │ │ │ │ -00010690: 6c43 6861 696e 436f 6d70 6c65 784d 6170 lChainComplexMap │ │ │ │ -000106a0: 3a0a 696e 6475 6365 6452 6564 7563 6564 :.inducedReduced │ │ │ │ -000106b0: 5369 6d70 6c69 6369 616c 4368 6169 6e43 SimplicialChainC │ │ │ │ -000106c0: 6f6d 706c 6578 4d61 702c 2069 7320 6120 omplexMap, is a │ │ │ │ -000106d0: 2a6e 6f74 6520 6d65 7468 6f64 2066 756e *note method fun │ │ │ │ -000106e0: 6374 696f 6e3a 0a28 4d61 6361 756c 6179 ction:.(Macaulay │ │ │ │ -000106f0: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ -00010700: 696f 6e2c 2e0a 1f0a 4669 6c65 3a20 4162 ion,....File: Ab │ │ │ │ -00010710: 7374 7261 6374 5369 6d70 6c69 6369 616c stractSimplicial │ │ │ │ -00010720: 436f 6d70 6c65 7865 732e 696e 666f 2c20 Complexes.info, │ │ │ │ -00010730: 4e6f 6465 3a20 696e 6475 6365 6453 696d Node: inducedSim │ │ │ │ -00010740: 706c 6963 6961 6c43 6861 696e 436f 6d70 plicialChainComp │ │ │ │ -00010750: 6c65 784d 6170 2c20 4e65 7874 3a20 6e65 lexMap, Next: ne │ │ │ │ -00010760: 7720 4162 7374 7261 6374 5369 6d70 6c69 w AbstractSimpli │ │ │ │ -00010770: 6369 616c 436f 6d70 6c65 782c 2050 7265 cialComplex, Pre │ │ │ │ -00010780: 763a 2069 6e64 7563 6564 5265 6475 6365 v: inducedReduce │ │ │ │ -00010790: 6453 696d 706c 6963 6961 6c43 6861 696e dSimplicialChain │ │ │ │ -000107a0: 436f 6d70 6c65 784d 6170 2c20 5570 3a20 ComplexMap, Up: │ │ │ │ -000107b0: 546f 700a 0a69 6e64 7563 6564 5369 6d70 Top..inducedSimp │ │ │ │ -000107c0: 6c69 6369 616c 4368 6169 6e43 6f6d 706c licialChainCompl │ │ │ │ -000107d0: 6578 4d61 7020 2d2d 2049 6e64 7563 6564 exMap -- Induced │ │ │ │ -000107e0: 206d 6170 7320 7468 6174 2061 7269 7365 maps that arise │ │ │ │ -000107f0: 2076 6961 2069 6e63 6c75 7369 6f6e 7320 via inclusions │ │ │ │ -00010800: 6f66 2061 6273 7472 6163 7420 7369 6d70 of abstract simp │ │ │ │ -00010810: 6c69 6369 616c 2063 6f6d 706c 6578 6573 licial complexes │ │ │ │ -00010820: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ -00010830: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00010840: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00010850: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00010860: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00010870: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00010880: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 ************..De │ │ │ │ -00010890: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ -000108a0: 3d3d 3d3d 3d0a 0a49 6620 616e 2061 6273 =====..If an abs │ │ │ │ -000108b0: 7472 6163 7420 7369 6d70 6c69 6369 616c tract simplicial │ │ │ │ -000108c0: 2063 6f6d 706c 6578 2063 616e 2062 6520 complex can be │ │ │ │ -000108d0: 7265 6761 7264 6564 2061 7320 6120 7375 regarded as a su │ │ │ │ -000108e0: 6273 696d 706c 6963 6961 6c20 636f 6d70 bsimplicial comp │ │ │ │ -000108f0: 6c65 7820 6f66 0a61 6e6f 7468 6572 2061 lex of.another a │ │ │ │ -00010900: 6273 7472 6163 7420 7369 6d70 6c69 6369 bstract simplici │ │ │ │ -00010910: 616c 2063 6f6d 706c 6578 2c20 7468 656e al complex, then │ │ │ │ -00010920: 2069 7420 6973 2075 7365 6675 6c20 746f it is useful to │ │ │ │ -00010930: 2063 616c 6375 6c61 7465 2074 6865 2069 calculate the i │ │ │ │ -00010940: 6e64 7563 6564 0a6d 6170 2061 7420 7468 nduced.map at th │ │ │ │ -00010950: 6520 6c65 7665 6c20 6f66 2053 696d 706c e level of Simpl │ │ │ │ -00010960: 6963 6961 6c20 4368 6169 6e20 436f 6d70 icial Chain Comp │ │ │ │ -00010970: 6c65 7865 732e 2020 5468 6973 2069 7320 lexes. This is │ │ │ │ -00010980: 6d61 6465 2070 6f73 7369 626c 6520 6279 made possible by │ │ │ │ -00010990: 2074 6865 0a6d 6574 686f 6420 696e 6475 the.method indu │ │ │ │ -000109a0: 6365 6453 696d 706c 6963 6961 6c43 6861 cedSimplicialCha │ │ │ │ -000109b0: 696e 436f 6d70 6c65 784d 6170 2e0a 0a2b inComplexMap...+ │ │ │ │ -000109c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000109d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000109e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000109f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00010a00: 6931 203a 204b 203d 2061 6273 7472 6163 i1 : K = abstrac │ │ │ │ -00010a10: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ -00010a20: 6578 287b 7b31 2c32 7d2c 7b33 7d7d 2920 ex({{1,2},{3}}) │ │ │ │ -00010a30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00010a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010a70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00010a80: 6f31 203d 2041 6273 7472 6163 7453 696d o1 = AbstractSim │ │ │ │ -00010a90: 706c 6963 6961 6c43 6f6d 706c 6578 7b2d plicialComplex{- │ │ │ │ -00010aa0: 3120 3d3e 207b 7b7d 7d20 2020 2020 2020 1 => {{}} │ │ │ │ -00010ab0: 2020 207d 2020 2020 2020 2020 207c 0a7c } |.| │ │ │ │ -00010ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010ad0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00010ae0: 203d 3e20 7b7b 317d 2c20 7b32 7d2c 207b => {{1}, {2}, { │ │ │ │ -00010af0: 337d 7d20 2020 2020 2020 2020 207c 0a7c 3}} |.| │ │ │ │ -00010b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010b10: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -00010b20: 203d 3e20 7b7b 312c 2032 7d7d 2020 2020 => {{1, 2}} │ │ │ │ -00010b30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00010b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010b70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00010b80: 6f31 203a 2041 6273 7472 6163 7453 696d o1 : AbstractSim │ │ │ │ -00010b90: 706c 6963 6961 6c43 6f6d 706c 6578 2020 plicialComplex │ │ │ │ +00010470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010490: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000104a0: 3120 2020 2020 2020 2020 2020 2020 2031 1 1 │ │ │ │ +000104b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000104c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000104d0: 207c 0a7c 2020 2020 202d 3120 3a20 5a5a |.| -1 : ZZ │ │ │ │ +000104e0: 2020 3c2d 2d2d 2d2d 2d2d 2d2d 205a 5a20 <--------- ZZ │ │ │ │ +000104f0: 203a 202d 3120 2020 2020 2020 2020 2020 : -1 │ │ │ │ +00010500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010510: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00010520: 2020 2020 207c 2031 207c 2020 2020 2020 | 1 | │ │ │ │ +00010530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010550: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00010560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010590: 207c 0a7c 6f38 203a 2043 6f6d 706c 6578 |.|o8 : Complex │ │ │ │ +000105a0: 4d61 7020 2020 2020 2020 2020 2020 2020 Map │ │ │ │ +000105b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000105c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000105d0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000105e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000105f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010610: 2d2b 0a0a 5365 6520 616c 736f 0a3d 3d3d -+..See also.=== │ │ │ │ +00010620: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ +00010630: 2069 6e64 7563 6564 5369 6d70 6c69 6369 inducedSimplici │ │ │ │ +00010640: 616c 4368 6169 6e43 6f6d 706c 6578 4d61 alChainComplexMa │ │ │ │ +00010650: 703a 2069 6e64 7563 6564 5369 6d70 6c69 p: inducedSimpli │ │ │ │ +00010660: 6369 616c 4368 6169 6e43 6f6d 706c 6578 cialChainComplex │ │ │ │ +00010670: 4d61 702c 0a20 2020 202d 2d20 496e 6475 Map,. -- Indu │ │ │ │ +00010680: 6365 6420 6d61 7073 2074 6861 7420 6172 ced maps that ar │ │ │ │ +00010690: 6973 6520 7669 6120 696e 636c 7573 696f ise via inclusio │ │ │ │ +000106a0: 6e73 206f 6620 6162 7374 7261 6374 2073 ns of abstract s │ │ │ │ +000106b0: 696d 706c 6963 6961 6c20 636f 6d70 6c65 implicial comple │ │ │ │ +000106c0: 7865 730a 0a57 6179 7320 746f 2075 7365 xes..Ways to use │ │ │ │ +000106d0: 2069 6e64 7563 6564 5265 6475 6365 6453 inducedReducedS │ │ │ │ +000106e0: 696d 706c 6963 6961 6c43 6861 696e 436f implicialChainCo │ │ │ │ +000106f0: 6d70 6c65 784d 6170 3a0a 3d3d 3d3d 3d3d mplexMap:.====== │ │ │ │ +00010700: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00010710: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00010720: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +00010730: 2020 2a20 2269 6e64 7563 6564 5265 6475 * "inducedRedu │ │ │ │ +00010740: 6365 6453 696d 706c 6963 6961 6c43 6861 cedSimplicialCha │ │ │ │ +00010750: 696e 436f 6d70 6c65 784d 6170 2841 6273 inComplexMap(Abs │ │ │ │ +00010760: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +00010770: 6f6d 706c 6578 2c0a 2020 2020 4162 7374 omplex,. Abst │ │ │ │ +00010780: 7261 6374 5369 6d70 6c69 6369 616c 436f ractSimplicialCo │ │ │ │ +00010790: 6d70 6c65 7829 220a 0a46 6f72 2074 6865 mplex)"..For the │ │ │ │ +000107a0: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ +000107b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +000107c0: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ +000107d0: 2069 6e64 7563 6564 5265 6475 6365 6453 inducedReducedS │ │ │ │ +000107e0: 696d 706c 6963 6961 6c43 6861 696e 436f implicialChainCo │ │ │ │ +000107f0: 6d70 6c65 784d 6170 3a0a 696e 6475 6365 mplexMap:.induce │ │ │ │ +00010800: 6452 6564 7563 6564 5369 6d70 6c69 6369 dReducedSimplici │ │ │ │ +00010810: 616c 4368 6169 6e43 6f6d 706c 6578 4d61 alChainComplexMa │ │ │ │ +00010820: 702c 2069 7320 6120 2a6e 6f74 6520 6d65 p, is a *note me │ │ │ │ +00010830: 7468 6f64 2066 756e 6374 696f 6e3a 0a28 thod function:.( │ │ │ │ +00010840: 4d61 6361 756c 6179 3244 6f63 294d 6574 Macaulay2Doc)Met │ │ │ │ +00010850: 686f 6446 756e 6374 696f 6e2c 2e0a 1f0a hodFunction,.... │ │ │ │ +00010860: 4669 6c65 3a20 4162 7374 7261 6374 5369 File: AbstractSi │ │ │ │ +00010870: 6d70 6c69 6369 616c 436f 6d70 6c65 7865 mplicialComplexe │ │ │ │ +00010880: 732e 696e 666f 2c20 4e6f 6465 3a20 696e s.info, Node: in │ │ │ │ +00010890: 6475 6365 6453 696d 706c 6963 6961 6c43 ducedSimplicialC │ │ │ │ +000108a0: 6861 696e 436f 6d70 6c65 784d 6170 2c20 hainComplexMap, │ │ │ │ +000108b0: 4e65 7874 3a20 6e65 7720 4162 7374 7261 Next: new Abstra │ │ │ │ +000108c0: 6374 5369 6d70 6c69 6369 616c 436f 6d70 ctSimplicialComp │ │ │ │ +000108d0: 6c65 782c 2050 7265 763a 2069 6e64 7563 lex, Prev: induc │ │ │ │ +000108e0: 6564 5265 6475 6365 6453 696d 706c 6963 edReducedSimplic │ │ │ │ +000108f0: 6961 6c43 6861 696e 436f 6d70 6c65 784d ialChainComplexM │ │ │ │ +00010900: 6170 2c20 5570 3a20 546f 700a 0a69 6e64 ap, Up: Top..ind │ │ │ │ +00010910: 7563 6564 5369 6d70 6c69 6369 616c 4368 ucedSimplicialCh │ │ │ │ +00010920: 6169 6e43 6f6d 706c 6578 4d61 7020 2d2d ainComplexMap -- │ │ │ │ +00010930: 2049 6e64 7563 6564 206d 6170 7320 7468 Induced maps th │ │ │ │ +00010940: 6174 2061 7269 7365 2076 6961 2069 6e63 at arise via inc │ │ │ │ +00010950: 6c75 7369 6f6e 7320 6f66 2061 6273 7472 lusions of abstr │ │ │ │ +00010960: 6163 7420 7369 6d70 6c69 6369 616c 2063 act simplicial c │ │ │ │ +00010970: 6f6d 706c 6578 6573 0a2a 2a2a 2a2a 2a2a omplexes.******* │ │ │ │ +00010980: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00010990: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000109a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000109b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000109c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000109d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000109e0: 2a2a 2a2a 0a0a 4465 7363 7269 7074 696f ****..Descriptio │ │ │ │ +000109f0: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a49 n.===========..I │ │ │ │ +00010a00: 6620 616e 2061 6273 7472 6163 7420 7369 f an abstract si │ │ │ │ +00010a10: 6d70 6c69 6369 616c 2063 6f6d 706c 6578 mplicial complex │ │ │ │ +00010a20: 2063 616e 2062 6520 7265 6761 7264 6564 can be regarded │ │ │ │ +00010a30: 2061 7320 6120 7375 6273 696d 706c 6963 as a subsimplic │ │ │ │ +00010a40: 6961 6c20 636f 6d70 6c65 7820 6f66 0a61 ial complex of.a │ │ │ │ +00010a50: 6e6f 7468 6572 2061 6273 7472 6163 7420 nother abstract │ │ │ │ +00010a60: 7369 6d70 6c69 6369 616c 2063 6f6d 706c simplicial compl │ │ │ │ +00010a70: 6578 2c20 7468 656e 2069 7420 6973 2075 ex, then it is u │ │ │ │ +00010a80: 7365 6675 6c20 746f 2063 616c 6375 6c61 seful to calcula │ │ │ │ +00010a90: 7465 2074 6865 2069 6e64 7563 6564 0a6d te the induced.m │ │ │ │ +00010aa0: 6170 2061 7420 7468 6520 6c65 7665 6c20 ap at the level │ │ │ │ +00010ab0: 6f66 2053 696d 706c 6963 6961 6c20 4368 of Simplicial Ch │ │ │ │ +00010ac0: 6169 6e20 436f 6d70 6c65 7865 732e 2020 ain Complexes. │ │ │ │ +00010ad0: 5468 6973 2069 7320 6d61 6465 2070 6f73 This is made pos │ │ │ │ +00010ae0: 7369 626c 6520 6279 2074 6865 0a6d 6574 sible by the.met │ │ │ │ +00010af0: 686f 6420 696e 6475 6365 6453 696d 706c hod inducedSimpl │ │ │ │ +00010b00: 6963 6961 6c43 6861 696e 436f 6d70 6c65 icialChainComple │ │ │ │ +00010b10: 784d 6170 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d xMap...+-------- │ │ │ │ +00010b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010b50: 2d2d 2d2d 2d2b 0a7c 6931 203a 204b 203d -----+.|i1 : K = │ │ │ │ +00010b60: 2061 6273 7472 6163 7453 696d 706c 6963 abstractSimplic │ │ │ │ +00010b70: 6961 6c43 6f6d 706c 6578 287b 7b31 2c32 ialComplex({{1,2 │ │ │ │ +00010b80: 7d2c 7b33 7d7d 2920 2020 2020 2020 2020 },{3}}) │ │ │ │ +00010b90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00010ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010bb0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00010bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00010c00: 6932 203a 204a 203d 2061 6d62 6965 6e74 i2 : J = ambient │ │ │ │ -00010c10: 4162 7374 7261 6374 5369 6d70 6c69 6369 AbstractSimplici │ │ │ │ -00010c20: 616c 436f 6d70 6c65 7828 4b29 2020 2020 alComplex(K) │ │ │ │ -00010c30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00010c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010bd0: 2020 2020 207c 0a7c 6f31 203d 2041 6273 |.|o1 = Abs │ │ │ │ +00010be0: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +00010bf0: 6f6d 706c 6578 7b2d 3120 3d3e 207b 7b7d omplex{-1 => {{} │ │ │ │ +00010c00: 7d20 2020 2020 2020 2020 207d 2020 2020 } } │ │ │ │ +00010c10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00010c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010c30: 2020 2020 2020 2030 203d 3e20 7b7b 317d 0 => {{1} │ │ │ │ +00010c40: 2c20 7b32 7d2c 207b 337d 7d20 2020 2020 , {2}, {3}} │ │ │ │ +00010c50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00010c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010c70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00010c80: 6f32 203d 2041 6273 7472 6163 7453 696d o2 = AbstractSim │ │ │ │ -00010c90: 706c 6963 6961 6c43 6f6d 706c 6578 7b2d plicialComplex{- │ │ │ │ -00010ca0: 3120 3d3e 207b 7b7d 7d20 2020 2020 2020 1 => {{}} │ │ │ │ -00010cb0: 2020 2020 2020 2020 2020 2020 7d7c 0a7c }|.| │ │ │ │ +00010c70: 2020 2020 2020 2031 203d 3e20 7b7b 312c 1 => {{1, │ │ │ │ +00010c80: 2032 7d7d 2020 2020 2020 2020 2020 2020 2}} │ │ │ │ +00010c90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00010ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010cd0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00010ce0: 203d 3e20 7b7b 317d 2c20 7b32 7d2c 207b => {{1}, {2}, { │ │ │ │ -00010cf0: 337d 7d20 2020 2020 2020 2020 207c 0a7c 3}} |.| │ │ │ │ +00010cd0: 2020 2020 207c 0a7c 6f31 203a 2041 6273 |.|o1 : Abs │ │ │ │ +00010ce0: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +00010cf0: 6f6d 706c 6578 2020 2020 2020 2020 2020 omplex │ │ │ │ 00010d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010d10: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -00010d20: 203d 3e20 7b7b 312c 2032 7d2c 207b 312c => {{1, 2}, {1, │ │ │ │ -00010d30: 2033 7d2c 207b 322c 2033 7d7d 207c 0a7c 3}, {2, 3}} |.| │ │ │ │ -00010d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010d50: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00010d60: 203d 3e20 7b7b 312c 2032 2c20 337d 7d20 => {{1, 2, 3}} │ │ │ │ -00010d70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00010d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010d10: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00010d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010d50: 2d2d 2d2d 2d2b 0a7c 6932 203a 204a 203d -----+.|i2 : J = │ │ │ │ +00010d60: 2061 6d62 6965 6e74 4162 7374 7261 6374 ambientAbstract │ │ │ │ +00010d70: 5369 6d70 6c69 6369 616c 436f 6d70 6c65 SimplicialComple │ │ │ │ +00010d80: 7828 4b29 2020 2020 2020 2020 2020 2020 x(K) │ │ │ │ +00010d90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00010da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010db0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00010dc0: 6f32 203a 2041 6273 7472 6163 7453 696d o2 : AbstractSim │ │ │ │ -00010dd0: 706c 6963 6961 6c43 6f6d 706c 6578 2020 plicialComplex │ │ │ │ -00010de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010df0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00010e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00010e40: 6933 203a 2069 6e64 7563 6564 5369 6d70 i3 : inducedSimp │ │ │ │ -00010e50: 6c69 6369 616c 4368 6169 6e43 6f6d 706c licialChainCompl │ │ │ │ -00010e60: 6578 4d61 7028 4a2c 4b29 2020 2020 2020 exMap(J,K) │ │ │ │ -00010e70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00010e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010dd0: 2020 2020 207c 0a7c 6f32 203d 2041 6273 |.|o2 = Abs │ │ │ │ +00010de0: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +00010df0: 6f6d 706c 6578 7b2d 3120 3d3e 207b 7b7d omplex{-1 => {{} │ │ │ │ +00010e00: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +00010e10: 2020 2020 7d7c 0a7c 2020 2020 2020 2020 }|.| │ │ │ │ +00010e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010e30: 2020 2020 2020 2030 203d 3e20 7b7b 317d 0 => {{1} │ │ │ │ +00010e40: 2c20 7b32 7d2c 207b 337d 7d20 2020 2020 , {2}, {3}} │ │ │ │ +00010e50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00010e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010e70: 2020 2020 2020 2031 203d 3e20 7b7b 312c 1 => {{1, │ │ │ │ +00010e80: 2032 7d2c 207b 312c 2033 7d2c 207b 322c 2}, {1, 3}, {2, │ │ │ │ +00010e90: 2033 7d7d 207c 0a7c 2020 2020 2020 2020 3}} |.| │ │ │ │ 00010ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010eb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00010ec0: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ -00010ed0: 2020 2020 2020 2020 2020 2020 2020 3320 3 │ │ │ │ +00010eb0: 2020 2020 2020 2032 203d 3e20 7b7b 312c 2 => {{1, │ │ │ │ +00010ec0: 2032 2c20 337d 7d20 2020 2020 2020 2020 2, 3}} │ │ │ │ +00010ed0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00010ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010ef0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00010f00: 6f33 203d 2030 203a 205a 5a20 203c 2d2d o3 = 0 : ZZ <-- │ │ │ │ -00010f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d20 5a5a 2020 ----------- ZZ │ │ │ │ -00010f20: 3a20 3020 2020 2020 2020 2020 2020 2020 : 0 │ │ │ │ -00010f30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00010ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010f10: 2020 2020 207c 0a7c 6f32 203a 2041 6273 |.|o2 : Abs │ │ │ │ +00010f20: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +00010f30: 6f6d 706c 6578 2020 2020 2020 2020 2020 omplex │ │ │ │ 00010f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010f50: 7c20 3120 3020 3020 7c20 2020 2020 2020 | 1 0 0 | │ │ │ │ -00010f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010f70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00010f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010f90: 7c20 3020 3120 3020 7c20 2020 2020 2020 | 0 1 0 | │ │ │ │ -00010fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010fb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00010fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010fd0: 7c20 3020 3020 3120 7c20 2020 2020 2020 | 0 0 1 | │ │ │ │ +00010f50: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00010f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010f90: 2d2d 2d2d 2d2b 0a7c 6933 203a 2069 6e64 -----+.|i3 : ind │ │ │ │ +00010fa0: 7563 6564 5369 6d70 6c69 6369 616c 4368 ucedSimplicialCh │ │ │ │ +00010fb0: 6169 6e43 6f6d 706c 6578 4d61 7028 4a2c ainComplexMap(J, │ │ │ │ +00010fc0: 4b29 2020 2020 2020 2020 2020 2020 2020 K) │ │ │ │ +00010fd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00010fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010ff0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00010ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011030: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00011040: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ -00011050: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ -00011060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011070: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00011080: 2020 2020 2031 203a 205a 5a20 203c 2d2d 1 : ZZ <-- │ │ │ │ -00011090: 2d2d 2d2d 2d2d 2d20 5a5a 2020 3a20 3120 ------- ZZ : 1 │ │ │ │ -000110a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000110b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00011010: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00011020: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00011030: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ +00011040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011050: 2020 2020 207c 0a7c 6f33 203d 2030 203a |.|o3 = 0 : │ │ │ │ +00011060: 205a 5a20 203c 2d2d 2d2d 2d2d 2d2d 2d2d ZZ <---------- │ │ │ │ +00011070: 2d2d 2d20 5a5a 2020 3a20 3020 2020 2020 --- ZZ : 0 │ │ │ │ +00011080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011090: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000110a0: 2020 2020 2020 2020 7c20 3120 3020 3020 | 1 0 0 │ │ │ │ +000110b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000110c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000110d0: 7c20 3120 7c20 2020 2020 2020 2020 2020 | 1 | │ │ │ │ -000110e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000110f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000110d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000110e0: 2020 2020 2020 2020 7c20 3020 3120 3020 | 0 1 0 │ │ │ │ +000110f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00011100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011110: 7c20 3020 7c20 2020 2020 2020 2020 2020 | 0 | │ │ │ │ -00011120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011130: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00011110: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00011120: 2020 2020 2020 2020 7c20 3020 3020 3120 | 0 0 1 │ │ │ │ +00011130: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00011140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011150: 7c20 3020 7c20 2020 2020 2020 2020 2020 | 0 | │ │ │ │ +00011150: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00011160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011170: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00011170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000111a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000111b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000111c0: 6f33 203a 2043 6f6d 706c 6578 4d61 7020 o3 : ComplexMap │ │ │ │ -000111d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000111e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000111f0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00011200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00011240: 6934 203a 204c 203d 2061 6273 7472 6163 i4 : L = abstrac │ │ │ │ -00011250: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ -00011260: 6578 207b 7b7d 7d20 2020 2020 2020 2020 ex {{}} │ │ │ │ -00011270: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00011190: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000111a0: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +000111b0: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +000111c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000111d0: 2020 2020 207c 0a7c 2020 2020 2031 203a |.| 1 : │ │ │ │ +000111e0: 205a 5a20 203c 2d2d 2d2d 2d2d 2d2d 2d20 ZZ <--------- │ │ │ │ +000111f0: 5a5a 2020 3a20 3120 2020 2020 2020 2020 ZZ : 1 │ │ │ │ +00011200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011210: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00011220: 2020 2020 2020 2020 7c20 3120 7c20 2020 | 1 | │ │ │ │ +00011230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011250: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00011260: 2020 2020 2020 2020 7c20 3020 7c20 2020 | 0 | │ │ │ │ +00011270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000112a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000112b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000112c0: 6f34 203d 2041 6273 7472 6163 7453 696d o4 = AbstractSim │ │ │ │ -000112d0: 706c 6963 6961 6c43 6f6d 706c 6578 7b2d plicialComplex{- │ │ │ │ -000112e0: 3120 3d3e 207b 7b7d 7d7d 2020 2020 2020 1 => {{}}} │ │ │ │ -000112f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00011290: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000112a0: 2020 2020 2020 2020 7c20 3020 7c20 2020 | 0 | │ │ │ │ +000112b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000112c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000112d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000112e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000112f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011330: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00011340: 6f34 203a 2041 6273 7472 6163 7453 696d o4 : AbstractSim │ │ │ │ -00011350: 706c 6963 6961 6c43 6f6d 706c 6578 2020 plicialComplex │ │ │ │ -00011360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011370: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00011310: 2020 2020 207c 0a7c 6f33 203a 2043 6f6d |.|o3 : Com │ │ │ │ +00011320: 706c 6578 4d61 7020 2020 2020 2020 2020 plexMap │ │ │ │ +00011330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011350: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00011360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000113a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000113b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000113c0: 6935 203a 2069 6e64 7563 6564 5369 6d70 i5 : inducedSimp │ │ │ │ -000113d0: 6c69 6369 616c 4368 6169 6e43 6f6d 706c licialChainCompl │ │ │ │ -000113e0: 6578 4d61 7028 4c2c 4c29 2020 2020 2020 exMap(L,L) │ │ │ │ -000113f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00011390: 2d2d 2d2d 2d2b 0a7c 6934 203a 204c 203d -----+.|i4 : L = │ │ │ │ +000113a0: 2061 6273 7472 6163 7453 696d 706c 6963 abstractSimplic │ │ │ │ +000113b0: 6961 6c43 6f6d 706c 6578 207b 7b7d 7d20 ialComplex {{}} │ │ │ │ +000113c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000113d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000113e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000113f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011430: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00011440: 6f35 203d 2030 2020 2020 2020 2020 2020 o5 = 0 │ │ │ │ -00011450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011410: 2020 2020 207c 0a7c 6f34 203d 2041 6273 |.|o4 = Abs │ │ │ │ +00011420: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +00011430: 6f6d 706c 6578 7b2d 3120 3d3e 207b 7b7d omplex{-1 => {{} │ │ │ │ +00011440: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ +00011450: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00011460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011470: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00011470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000114a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000114b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000114c0: 6f35 203a 2043 6f6d 706c 6578 4d61 7020 o5 : ComplexMap │ │ │ │ -000114d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000114e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000114f0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00011490: 2020 2020 207c 0a7c 6f34 203a 2041 6273 |.|o4 : Abs │ │ │ │ +000114a0: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +000114b0: 6f6d 706c 6578 2020 2020 2020 2020 2020 omplex │ │ │ │ +000114c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000114d0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000114e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000114f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00011540: 6936 203a 204d 203d 2061 6273 7472 6163 i6 : M = abstrac │ │ │ │ -00011550: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ -00011560: 6578 207b 7b31 7d7d 2020 2020 2020 2020 ex {{1}} │ │ │ │ -00011570: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00011510: 2d2d 2d2d 2d2b 0a7c 6935 203a 2069 6e64 -----+.|i5 : ind │ │ │ │ +00011520: 7563 6564 5369 6d70 6c69 6369 616c 4368 ucedSimplicialCh │ │ │ │ +00011530: 6169 6e43 6f6d 706c 6578 4d61 7028 4c2c ainComplexMap(L, │ │ │ │ +00011540: 4c29 2020 2020 2020 2020 2020 2020 2020 L) │ │ │ │ +00011550: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00011560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011590: 2020 2020 207c 0a7c 6f35 203d 2030 2020 |.|o5 = 0 │ │ │ │ 000115a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000115b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000115c0: 6f36 203d 2041 6273 7472 6163 7453 696d o6 = AbstractSim │ │ │ │ -000115d0: 706c 6963 6961 6c43 6f6d 706c 6578 7b2d plicialComplex{- │ │ │ │ -000115e0: 3120 3d3e 207b 7b7d 7d7d 2020 2020 2020 1 => {{}}} │ │ │ │ -000115f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000115b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000115c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000115d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000115e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000115f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011610: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00011620: 203d 3e20 7b7b 317d 7d20 2020 2020 2020 => {{1}} │ │ │ │ -00011630: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00011610: 2020 2020 207c 0a7c 6f35 203a 2043 6f6d |.|o5 : Com │ │ │ │ +00011620: 706c 6578 4d61 7020 2020 2020 2020 2020 plexMap │ │ │ │ +00011630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011670: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00011680: 6f36 203a 2041 6273 7472 6163 7453 696d o6 : AbstractSim │ │ │ │ -00011690: 706c 6963 6961 6c43 6f6d 706c 6578 2020 plicialComplex │ │ │ │ -000116a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000116b0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -000116c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000116d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000116e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000116f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00011700: 6937 203a 204c 203d 2061 6273 7472 6163 i7 : L = abstrac │ │ │ │ -00011710: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ -00011720: 6578 207b 7b7d 7d20 2020 2020 2020 2020 ex {{}} │ │ │ │ -00011730: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00011740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011650: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00011660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011690: 2d2d 2d2d 2d2b 0a7c 6936 203a 204d 203d -----+.|i6 : M = │ │ │ │ +000116a0: 2061 6273 7472 6163 7453 696d 706c 6963 abstractSimplic │ │ │ │ +000116b0: 6961 6c43 6f6d 706c 6578 207b 7b31 7d7d ialComplex {{1}} │ │ │ │ +000116c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000116d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000116e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000116f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011710: 2020 2020 207c 0a7c 6f36 203d 2041 6273 |.|o6 = Abs │ │ │ │ +00011720: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +00011730: 6f6d 706c 6578 7b2d 3120 3d3e 207b 7b7d omplex{-1 => {{} │ │ │ │ +00011740: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ +00011750: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00011760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011770: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00011780: 6f37 203d 2041 6273 7472 6163 7453 696d o7 = AbstractSim │ │ │ │ -00011790: 706c 6963 6961 6c43 6f6d 706c 6578 7b2d plicialComplex{- │ │ │ │ -000117a0: 3120 3d3e 207b 7b7d 7d7d 2020 2020 2020 1 => {{}}} │ │ │ │ -000117b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00011770: 2020 2020 2020 2030 203d 3e20 7b7b 317d 0 => {{1} │ │ │ │ +00011780: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +00011790: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000117a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000117b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000117c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000117d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000117e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000117f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00011800: 6f37 203a 2041 6273 7472 6163 7453 696d o7 : AbstractSim │ │ │ │ -00011810: 706c 6963 6961 6c43 6f6d 706c 6578 2020 plicialComplex │ │ │ │ -00011820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011830: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000117d0: 2020 2020 207c 0a7c 6f36 203a 2041 6273 |.|o6 : Abs │ │ │ │ +000117e0: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +000117f0: 6f6d 706c 6578 2020 2020 2020 2020 2020 omplex │ │ │ │ +00011800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011810: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00011820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00011880: 6938 203a 2069 6e64 7563 6564 5369 6d70 i8 : inducedSimp │ │ │ │ -00011890: 6c69 6369 616c 4368 6169 6e43 6f6d 706c licialChainCompl │ │ │ │ -000118a0: 6578 4d61 7028 4d2c 4c29 2020 2020 2020 exMap(M,L) │ │ │ │ -000118b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00011850: 2d2d 2d2d 2d2b 0a7c 6937 203a 204c 203d -----+.|i7 : L = │ │ │ │ +00011860: 2061 6273 7472 6163 7453 696d 706c 6963 abstractSimplic │ │ │ │ +00011870: 6961 6c43 6f6d 706c 6578 207b 7b7d 7d20 ialComplex {{}} │ │ │ │ +00011880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011890: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000118a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000118b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000118c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000118d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000118e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000118f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00011900: 6f38 203d 2030 2020 2020 2020 2020 2020 o8 = 0 │ │ │ │ -00011910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000118d0: 2020 2020 207c 0a7c 6f37 203d 2041 6273 |.|o7 = Abs │ │ │ │ +000118e0: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +000118f0: 6f6d 706c 6578 7b2d 3120 3d3e 207b 7b7d omplex{-1 => {{} │ │ │ │ +00011900: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ +00011910: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00011920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011930: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00011930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011970: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00011980: 6f38 203a 2043 6f6d 706c 6578 4d61 7020 o8 : ComplexMap │ │ │ │ -00011990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000119a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000119b0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00011950: 2020 2020 207c 0a7c 6f37 203a 2041 6273 |.|o7 : Abs │ │ │ │ +00011960: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +00011970: 6f6d 706c 6578 2020 2020 2020 2020 2020 omplex │ │ │ │ +00011980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011990: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000119a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000119b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000119c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000119d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000119e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000119f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -00011a00: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ -00011a10: 3d0a 0a20 202a 202a 6e6f 7465 2069 6e64 =.. * *note ind │ │ │ │ -00011a20: 7563 6564 5265 6475 6365 6453 696d 706c ucedReducedSimpl │ │ │ │ -00011a30: 6963 6961 6c43 6861 696e 436f 6d70 6c65 icialChainComple │ │ │ │ -00011a40: 784d 6170 3a0a 2020 2020 696e 6475 6365 xMap:. induce │ │ │ │ -00011a50: 6452 6564 7563 6564 5369 6d70 6c69 6369 dReducedSimplici │ │ │ │ -00011a60: 616c 4368 6169 6e43 6f6d 706c 6578 4d61 alChainComplexMa │ │ │ │ -00011a70: 702c 202d 2d20 496e 6475 6365 6420 6d61 p, -- Induced ma │ │ │ │ -00011a80: 7073 2074 6861 7420 6172 6973 6520 7669 ps that arise vi │ │ │ │ -00011a90: 610a 2020 2020 696e 636c 7573 696f 6e73 a. inclusions │ │ │ │ -00011aa0: 206f 6620 6162 7374 7261 6374 2073 696d of abstract sim │ │ │ │ -00011ab0: 706c 6963 6961 6c20 636f 6d70 6c65 7865 plicial complexe │ │ │ │ -00011ac0: 730a 0a57 6179 7320 746f 2075 7365 2069 s..Ways to use i │ │ │ │ -00011ad0: 6e64 7563 6564 5369 6d70 6c69 6369 616c nducedSimplicial │ │ │ │ -00011ae0: 4368 6169 6e43 6f6d 706c 6578 4d61 703a ChainComplexMap: │ │ │ │ -00011af0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -00011b00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00011b10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00011b20: 2020 2a20 2269 6e64 7563 6564 5369 6d70 * "inducedSimp │ │ │ │ -00011b30: 6c69 6369 616c 4368 6169 6e43 6f6d 706c licialChainCompl │ │ │ │ -00011b40: 6578 4d61 7028 4162 7374 7261 6374 5369 exMap(AbstractSi │ │ │ │ -00011b50: 6d70 6c69 6369 616c 436f 6d70 6c65 782c mplicialComplex, │ │ │ │ -00011b60: 0a20 2020 2041 6273 7472 6163 7453 696d . AbstractSim │ │ │ │ -00011b70: 706c 6963 6961 6c43 6f6d 706c 6578 2922 plicialComplex)" │ │ │ │ -00011b80: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ -00011b90: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ -00011ba0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ -00011bb0: 6563 7420 2a6e 6f74 6520 696e 6475 6365 ect *note induce │ │ │ │ -00011bc0: 6453 696d 706c 6963 6961 6c43 6861 696e dSimplicialChain │ │ │ │ -00011bd0: 436f 6d70 6c65 784d 6170 3a0a 696e 6475 ComplexMap:.indu │ │ │ │ -00011be0: 6365 6453 696d 706c 6963 6961 6c43 6861 cedSimplicialCha │ │ │ │ -00011bf0: 696e 436f 6d70 6c65 784d 6170 2c20 6973 inComplexMap, is │ │ │ │ -00011c00: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ -00011c10: 6675 6e63 7469 6f6e 3a0a 284d 6163 6175 function:.(Macau │ │ │ │ -00011c20: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ -00011c30: 6e63 7469 6f6e 2c2e 0a1f 0a46 696c 653a nction,....File: │ │ │ │ -00011c40: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ -00011c50: 6961 6c43 6f6d 706c 6578 6573 2e69 6e66 ialComplexes.inf │ │ │ │ -00011c60: 6f2c 204e 6f64 653a 206e 6577 2041 6273 o, Node: new Abs │ │ │ │ -00011c70: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ -00011c80: 6f6d 706c 6578 2c20 4e65 7874 3a20 7261 omplex, Next: ra │ │ │ │ -00011c90: 6e64 6f6d 4162 7374 7261 6374 5369 6d70 ndomAbstractSimp │ │ │ │ -00011ca0: 6c69 6369 616c 436f 6d70 6c65 782c 2050 licialComplex, P │ │ │ │ -00011cb0: 7265 763a 2069 6e64 7563 6564 5369 6d70 rev: inducedSimp │ │ │ │ -00011cc0: 6c69 6369 616c 4368 6169 6e43 6f6d 706c licialChainCompl │ │ │ │ -00011cd0: 6578 4d61 702c 2055 703a 2054 6f70 0a0a exMap, Up: Top.. │ │ │ │ -00011ce0: 6e65 7720 4162 7374 7261 6374 5369 6d70 new AbstractSimp │ │ │ │ -00011cf0: 6c69 6369 616c 436f 6d70 6c65 780a 2a2a licialComplex.** │ │ │ │ -00011d00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00011d10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a57 6179 ***********..Way │ │ │ │ -00011d20: 7320 746f 2075 7365 2074 6869 7320 6d65 s to use this me │ │ │ │ -00011d30: 7468 6f64 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d thod:.========== │ │ │ │ -00011d40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00011d50: 2020 2a20 2a6e 6f74 6520 6e65 7720 4162 * *note new Ab │ │ │ │ -00011d60: 7374 7261 6374 5369 6d70 6c69 6369 616c stractSimplicial │ │ │ │ -00011d70: 436f 6d70 6c65 783a 206e 6577 2041 6273 Complex: new Abs │ │ │ │ -00011d80: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ -00011d90: 6f6d 706c 6578 2c0a 1f0a 4669 6c65 3a20 omplex,...File: │ │ │ │ -00011da0: 4162 7374 7261 6374 5369 6d70 6c69 6369 AbstractSimplici │ │ │ │ -00011db0: 616c 436f 6d70 6c65 7865 732e 696e 666f alComplexes.info │ │ │ │ -00011dc0: 2c20 4e6f 6465 3a20 7261 6e64 6f6d 4162 , Node: randomAb │ │ │ │ -00011dd0: 7374 7261 6374 5369 6d70 6c69 6369 616c stractSimplicial │ │ │ │ -00011de0: 436f 6d70 6c65 782c 204e 6578 743a 2072 Complex, Next: r │ │ │ │ -00011df0: 616e 646f 6d53 7562 5369 6d70 6c69 6369 andomSubSimplici │ │ │ │ -00011e00: 616c 436f 6d70 6c65 782c 2050 7265 763a alComplex, Prev: │ │ │ │ -00011e10: 206e 6577 2041 6273 7472 6163 7453 696d new AbstractSim │ │ │ │ -00011e20: 706c 6963 6961 6c43 6f6d 706c 6578 2c20 plicialComplex, │ │ │ │ -00011e30: 5570 3a20 546f 700a 0a72 616e 646f 6d41 Up: Top..randomA │ │ │ │ -00011e40: 6273 7472 6163 7453 696d 706c 6963 6961 bstractSimplicia │ │ │ │ -00011e50: 6c43 6f6d 706c 6578 202d 2d20 4372 6561 lComplex -- Crea │ │ │ │ -00011e60: 7465 2061 2072 616e 646f 6d20 7369 6d70 te a random simp │ │ │ │ -00011e70: 6c69 6369 616c 2073 6574 0a2a 2a2a 2a2a licial set.***** │ │ │ │ -00011e80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00011e90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00011ea0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00011eb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 ************..De │ │ │ │ -00011ec0: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ -00011ed0: 3d3d 3d3d 3d0a 0a43 7265 6174 6520 6120 =====..Create a │ │ │ │ -00011ee0: 7261 6e64 6f6d 2061 6273 7472 6163 7420 random abstract │ │ │ │ -00011ef0: 7369 6d70 6c69 6369 616c 2063 6f6d 706c simplicial compl │ │ │ │ -00011f00: 6578 2077 6974 6820 7665 7274 6963 6573 ex with vertices │ │ │ │ -00011f10: 2073 7570 706f 7274 6564 206f 6e20 6120 supported on a │ │ │ │ -00011f20: 7375 6273 6574 0a6f 6620 5b6e 5d20 3d20 subset.of [n] = │ │ │ │ -00011f30: 7b31 2c2e 2e2e 2c6e 7d2e 0a0a 2b2d 2d2d {1,...,n}...+--- │ │ │ │ -00011f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ -00011f80: 3a20 7365 7452 616e 646f 6d53 6565 6428 : setRandomSeed( │ │ │ │ -00011f90: 6375 7272 656e 7454 696d 6528 2929 3b20 currentTime()); │ │ │ │ -00011fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011fb0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -00011fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ -00012000: 3a20 4b20 3d20 7261 6e64 6f6d 4162 7374 : K = randomAbst │ │ │ │ -00012010: 7261 6374 5369 6d70 6c69 6369 616c 436f ractSimplicialCo │ │ │ │ -00012020: 6d70 6c65 7828 3429 2020 2020 2020 2020 mplex(4) │ │ │ │ -00012030: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00012040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012070: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -00012080: 3d20 4162 7374 7261 6374 5369 6d70 6c69 = AbstractSimpli │ │ │ │ -00012090: 6369 616c 436f 6d70 6c65 787b 2d31 203d cialComplex{-1 = │ │ │ │ -000120a0: 3e20 7b7b 7d7d 2020 2020 2020 2020 2020 > {{}} │ │ │ │ -000120b0: 2020 2020 2020 2020 207d 7c0a 7c20 2020 }|.| │ │ │ │ -000120c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000120d0: 2020 2020 2020 2020 2020 2020 3020 3d3e 0 => │ │ │ │ -000120e0: 207b 7b31 7d2c 207b 327d 2c20 7b34 7d7d {{1}, {2}, {4}} │ │ │ │ -000120f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00012100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012110: 2020 2020 2020 2020 2020 2020 3120 3d3e 1 => │ │ │ │ -00012120: 207b 7b31 2c20 327d 2c20 7b31 2c20 347d {{1, 2}, {1, 4} │ │ │ │ -00012130: 2c20 7b32 2c20 347d 7d20 7c0a 7c20 2020 , {2, 4}} |.| │ │ │ │ -00012140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012150: 2020 2020 2020 2020 2020 2020 3220 3d3e 2 => │ │ │ │ -00012160: 207b 7b31 2c20 322c 2034 7d7d 2020 2020 {{1, 2, 4}} │ │ │ │ -00012170: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00012180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000121a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000121b0: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -000121c0: 3a20 4162 7374 7261 6374 5369 6d70 6c69 : AbstractSimpli │ │ │ │ -000121d0: 6369 616c 436f 6d70 6c65 7820 2020 2020 cialComplex │ │ │ │ -000121e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000121f0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -00012200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012230: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a43 7265 ----------+..Cre │ │ │ │ -00012240: 6174 6520 6120 7261 6e64 6f6d 2073 696d ate a random sim │ │ │ │ -00012250: 706c 6963 6961 6c20 636f 6d70 6c65 7820 plicial complex │ │ │ │ -00012260: 6f6e 205b 6e5d 2077 6974 6820 6469 6d65 on [n] with dime │ │ │ │ -00012270: 6e73 696f 6e20 6174 206d 6f73 7420 6571 nsion at most eq │ │ │ │ -00012280: 7561 6c20 746f 2072 2e0a 0a2b 2d2d 2d2d ual to r...+---- │ │ │ │ +000119d0: 2d2d 2d2d 2d2b 0a7c 6938 203a 2069 6e64 -----+.|i8 : ind │ │ │ │ +000119e0: 7563 6564 5369 6d70 6c69 6369 616c 4368 ucedSimplicialCh │ │ │ │ +000119f0: 6169 6e43 6f6d 706c 6578 4d61 7028 4d2c ainComplexMap(M, │ │ │ │ +00011a00: 4c29 2020 2020 2020 2020 2020 2020 2020 L) │ │ │ │ +00011a10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00011a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011a50: 2020 2020 207c 0a7c 6f38 203d 2030 2020 |.|o8 = 0 │ │ │ │ +00011a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011a90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00011aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011ad0: 2020 2020 207c 0a7c 6f38 203a 2043 6f6d |.|o8 : Com │ │ │ │ +00011ae0: 706c 6578 4d61 7020 2020 2020 2020 2020 plexMap │ │ │ │ +00011af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011b10: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00011b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011b50: 2d2d 2d2d 2d2b 0a0a 5365 6520 616c 736f -----+..See also │ │ │ │ +00011b60: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ +00011b70: 6e6f 7465 2069 6e64 7563 6564 5265 6475 note inducedRedu │ │ │ │ +00011b80: 6365 6453 696d 706c 6963 6961 6c43 6861 cedSimplicialCha │ │ │ │ +00011b90: 696e 436f 6d70 6c65 784d 6170 3a0a 2020 inComplexMap:. │ │ │ │ +00011ba0: 2020 696e 6475 6365 6452 6564 7563 6564 inducedReduced │ │ │ │ +00011bb0: 5369 6d70 6c69 6369 616c 4368 6169 6e43 SimplicialChainC │ │ │ │ +00011bc0: 6f6d 706c 6578 4d61 702c 202d 2d20 496e omplexMap, -- In │ │ │ │ +00011bd0: 6475 6365 6420 6d61 7073 2074 6861 7420 duced maps that │ │ │ │ +00011be0: 6172 6973 6520 7669 610a 2020 2020 696e arise via. in │ │ │ │ +00011bf0: 636c 7573 696f 6e73 206f 6620 6162 7374 clusions of abst │ │ │ │ +00011c00: 7261 6374 2073 696d 706c 6963 6961 6c20 ract simplicial │ │ │ │ +00011c10: 636f 6d70 6c65 7865 730a 0a57 6179 7320 complexes..Ways │ │ │ │ +00011c20: 746f 2075 7365 2069 6e64 7563 6564 5369 to use inducedSi │ │ │ │ +00011c30: 6d70 6c69 6369 616c 4368 6169 6e43 6f6d mplicialChainCom │ │ │ │ +00011c40: 706c 6578 4d61 703a 0a3d 3d3d 3d3d 3d3d plexMap:.======= │ │ │ │ +00011c50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00011c60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00011c70: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2269 6e64 ======.. * "ind │ │ │ │ +00011c80: 7563 6564 5369 6d70 6c69 6369 616c 4368 ucedSimplicialCh │ │ │ │ +00011c90: 6169 6e43 6f6d 706c 6578 4d61 7028 4162 ainComplexMap(Ab │ │ │ │ +00011ca0: 7374 7261 6374 5369 6d70 6c69 6369 616c stractSimplicial │ │ │ │ +00011cb0: 436f 6d70 6c65 782c 0a20 2020 2041 6273 Complex,. Abs │ │ │ │ +00011cc0: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +00011cd0: 6f6d 706c 6578 2922 0a0a 466f 7220 7468 omplex)"..For th │ │ │ │ +00011ce0: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +00011cf0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00011d00: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +00011d10: 6520 696e 6475 6365 6453 696d 706c 6963 e inducedSimplic │ │ │ │ +00011d20: 6961 6c43 6861 696e 436f 6d70 6c65 784d ialChainComplexM │ │ │ │ +00011d30: 6170 3a0a 696e 6475 6365 6453 696d 706c ap:.inducedSimpl │ │ │ │ +00011d40: 6963 6961 6c43 6861 696e 436f 6d70 6c65 icialChainComple │ │ │ │ +00011d50: 784d 6170 2c20 6973 2061 202a 6e6f 7465 xMap, is a *note │ │ │ │ +00011d60: 206d 6574 686f 6420 6675 6e63 7469 6f6e method function │ │ │ │ +00011d70: 3a0a 284d 6163 6175 6c61 7932 446f 6329 :.(Macaulay2Doc) │ │ │ │ +00011d80: 4d65 7468 6f64 4675 6e63 7469 6f6e 2c2e MethodFunction,. │ │ │ │ +00011d90: 0a1f 0a46 696c 653a 2041 6273 7472 6163 ...File: Abstrac │ │ │ │ +00011da0: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ +00011db0: 6578 6573 2e69 6e66 6f2c 204e 6f64 653a exes.info, Node: │ │ │ │ +00011dc0: 206e 6577 2041 6273 7472 6163 7453 696d new AbstractSim │ │ │ │ +00011dd0: 706c 6963 6961 6c43 6f6d 706c 6578 2c20 plicialComplex, │ │ │ │ +00011de0: 4e65 7874 3a20 7261 6e64 6f6d 4162 7374 Next: randomAbst │ │ │ │ +00011df0: 7261 6374 5369 6d70 6c69 6369 616c 436f ractSimplicialCo │ │ │ │ +00011e00: 6d70 6c65 782c 2050 7265 763a 2069 6e64 mplex, Prev: ind │ │ │ │ +00011e10: 7563 6564 5369 6d70 6c69 6369 616c 4368 ucedSimplicialCh │ │ │ │ +00011e20: 6169 6e43 6f6d 706c 6578 4d61 702c 2055 ainComplexMap, U │ │ │ │ +00011e30: 703a 2054 6f70 0a0a 6e65 7720 4162 7374 p: Top..new Abst │ │ │ │ +00011e40: 7261 6374 5369 6d70 6c69 6369 616c 436f ractSimplicialCo │ │ │ │ +00011e50: 6d70 6c65 780a 2a2a 2a2a 2a2a 2a2a 2a2a mplex.********** │ │ │ │ +00011e60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00011e70: 2a2a 2a0a 0a57 6179 7320 746f 2075 7365 ***..Ways to use │ │ │ │ +00011e80: 2074 6869 7320 6d65 7468 6f64 3a0a 3d3d this method:.== │ │ │ │ +00011e90: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00011ea0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ +00011eb0: 6520 6e65 7720 4162 7374 7261 6374 5369 e new AbstractSi │ │ │ │ +00011ec0: 6d70 6c69 6369 616c 436f 6d70 6c65 783a mplicialComplex: │ │ │ │ +00011ed0: 206e 6577 2041 6273 7472 6163 7453 696d new AbstractSim │ │ │ │ +00011ee0: 706c 6963 6961 6c43 6f6d 706c 6578 2c0a plicialComplex,. │ │ │ │ +00011ef0: 1f0a 4669 6c65 3a20 4162 7374 7261 6374 ..File: Abstract │ │ │ │ +00011f00: 5369 6d70 6c69 6369 616c 436f 6d70 6c65 SimplicialComple │ │ │ │ +00011f10: 7865 732e 696e 666f 2c20 4e6f 6465 3a20 xes.info, Node: │ │ │ │ +00011f20: 7261 6e64 6f6d 4162 7374 7261 6374 5369 randomAbstractSi │ │ │ │ +00011f30: 6d70 6c69 6369 616c 436f 6d70 6c65 782c mplicialComplex, │ │ │ │ +00011f40: 204e 6578 743a 2072 616e 646f 6d53 7562 Next: randomSub │ │ │ │ +00011f50: 5369 6d70 6c69 6369 616c 436f 6d70 6c65 SimplicialComple │ │ │ │ +00011f60: 782c 2050 7265 763a 206e 6577 2041 6273 x, Prev: new Abs │ │ │ │ +00011f70: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +00011f80: 6f6d 706c 6578 2c20 5570 3a20 546f 700a omplex, Up: Top. │ │ │ │ +00011f90: 0a72 616e 646f 6d41 6273 7472 6163 7453 .randomAbstractS │ │ │ │ +00011fa0: 696d 706c 6963 6961 6c43 6f6d 706c 6578 implicialComplex │ │ │ │ +00011fb0: 202d 2d20 4372 6561 7465 2061 2072 616e -- Create a ran │ │ │ │ +00011fc0: 646f 6d20 7369 6d70 6c69 6369 616c 2073 dom simplicial s │ │ │ │ +00011fd0: 6574 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a et.************* │ │ │ │ +00011fe0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00011ff0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00012000: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00012010: 2a2a 2a2a 0a0a 4465 7363 7269 7074 696f ****..Descriptio │ │ │ │ +00012020: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a43 n.===========..C │ │ │ │ +00012030: 7265 6174 6520 6120 7261 6e64 6f6d 2061 reate a random a │ │ │ │ +00012040: 6273 7472 6163 7420 7369 6d70 6c69 6369 bstract simplici │ │ │ │ +00012050: 616c 2063 6f6d 706c 6578 2077 6974 6820 al complex with │ │ │ │ +00012060: 7665 7274 6963 6573 2073 7570 706f 7274 vertices support │ │ │ │ +00012070: 6564 206f 6e20 6120 7375 6273 6574 0a6f ed on a subset.o │ │ │ │ +00012080: 6620 5b6e 5d20 3d20 7b31 2c2e 2e2e 2c6e f [n] = {1,...,n │ │ │ │ +00012090: 7d2e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d }...+----------- │ │ │ │ +000120a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000120b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000120c0: 2d2d 2d2d 2b0a 7c69 3120 3a20 7365 7452 ----+.|i1 : setR │ │ │ │ +000120d0: 616e 646f 6d53 6565 6428 6375 7272 656e andomSeed(curren │ │ │ │ +000120e0: 7454 696d 6528 2929 3b20 2020 2020 2020 tTime()); │ │ │ │ +000120f0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00012100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012120: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ +00012130: 4b20 3d20 7261 6e64 6f6d 4162 7374 7261 K = randomAbstra │ │ │ │ +00012140: 6374 5369 6d70 6c69 6369 616c 436f 6d70 ctSimplicialComp │ │ │ │ +00012150: 6c65 7828 3429 2020 2020 7c0a 7c20 2020 lex(4) |.| │ │ │ │ +00012160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012180: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00012190: 3220 3d20 4162 7374 7261 6374 5369 6d70 2 = AbstractSimp │ │ │ │ +000121a0: 6c69 6369 616c 436f 6d70 6c65 787b 2d31 licialComplex{-1 │ │ │ │ +000121b0: 203d 3e20 7b7b 7d7d 2020 2020 207d 7c0a => {{}} }|. │ │ │ │ +000121c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000121d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000121e0: 3020 3d3e 207b 7b31 7d2c 207b 337d 7d20 0 => {{1}, {3}} │ │ │ │ +000121f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00012200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012210: 2020 3120 3d3e 207b 7b31 2c20 337d 7d20 1 => {{1, 3}} │ │ │ │ +00012220: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00012230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012250: 2020 2020 7c0a 7c6f 3220 3a20 4162 7374 |.|o2 : Abst │ │ │ │ +00012260: 7261 6374 5369 6d70 6c69 6369 616c 436f ractSimplicialCo │ │ │ │ +00012270: 6d70 6c65 7820 2020 2020 2020 2020 2020 mplex │ │ │ │ +00012280: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 00012290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000122a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000122b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000122c0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ -000122d0: 2073 6574 5261 6e64 6f6d 5365 6564 2863 setRandomSeed(c │ │ │ │ -000122e0: 7572 7265 6e74 5469 6d65 2829 293b 2020 urrentTime()); │ │ │ │ -000122f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012300: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000122b0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a43 7265 6174 --------+..Creat │ │ │ │ +000122c0: 6520 6120 7261 6e64 6f6d 2073 696d 706c e a random simpl │ │ │ │ +000122d0: 6963 6961 6c20 636f 6d70 6c65 7820 6f6e icial complex on │ │ │ │ +000122e0: 205b 6e5d 2077 6974 6820 6469 6d65 6e73 [n] with dimens │ │ │ │ +000122f0: 696f 6e20 6174 206d 6f73 7420 6571 7561 ion at most equa │ │ │ │ +00012300: 6c20 746f 2072 2e0a 0a2b 2d2d 2d2d 2d2d l to r...+------ │ │ │ │ 00012310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012340: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ -00012350: 204c 203d 2072 616e 646f 6d41 6273 7472 L = randomAbstr │ │ │ │ -00012360: 6163 7453 696d 706c 6963 6961 6c43 6f6d actSimplicialCom │ │ │ │ -00012370: 706c 6578 2836 2c33 2920 2020 2020 2020 plex(6,3) │ │ │ │ -00012380: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00012390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000123a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000123b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000123c0: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ -000123d0: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ -000123e0: 6961 6c43 6f6d 706c 6578 7b2d 3120 3d3e ialComplex{-1 => │ │ │ │ -000123f0: 207b 7b7d 7d20 2020 2020 2020 2020 2020 {{}} │ │ │ │ -00012400: 2020 2020 2020 2020 7d7c 0a7c 2020 2020 }|.| │ │ │ │ -00012410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012420: 2020 2020 2020 2020 2020 2030 203d 3e20 0 => │ │ │ │ -00012430: 7b7b 317d 2c20 7b34 7d2c 207b 367d 7d20 {{1}, {4}, {6}} │ │ │ │ -00012440: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00012450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012460: 2020 2020 2020 2020 2020 2031 203d 3e20 1 => │ │ │ │ -00012470: 7b7b 312c 2034 7d2c 207b 312c 2036 7d2c {{1, 4}, {1, 6}, │ │ │ │ -00012480: 207b 342c 2036 7d7d 207c 0a7c 2020 2020 {4, 6}} |.| │ │ │ │ -00012490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000124a0: 2020 2020 2020 2020 2020 2032 203d 3e20 2 => │ │ │ │ -000124b0: 7b7b 312c 2034 2c20 367d 7d20 2020 2020 {{1, 4, 6}} │ │ │ │ -000124c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000124d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000124e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000124f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012500: 2020 2020 2020 2020 207c 0a7c 6f34 203a |.|o4 : │ │ │ │ -00012510: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ -00012520: 6961 6c43 6f6d 706c 6578 2020 2020 2020 ialComplex │ │ │ │ -00012530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012540: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -00012550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012580: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4372 6561 ---------+..Crea │ │ │ │ -00012590: 7465 2074 6865 2072 616e 646f 6d20 636f te the random co │ │ │ │ -000125a0: 6d70 6c65 7820 595f 6428 6e2c 6d29 2077 mplex Y_d(n,m) w │ │ │ │ -000125b0: 6869 6368 2068 6173 2076 6572 7465 7820 hich has vertex │ │ │ │ -000125c0: 7365 7420 5b6e 5d20 616e 6420 636f 6d70 set [n] and comp │ │ │ │ -000125d0: 6c65 7465 2028 6420 e288 920a 3129 2d73 lete (d ....1)-s │ │ │ │ -000125e0: 6b65 6c65 746f 6e2c 2061 6e64 2068 6173 keleton, and has │ │ │ │ -000125f0: 2065 7861 6374 6c79 206d 2064 2d64 696d exactly m d-dim │ │ │ │ -00012600: 656e 7369 6f6e 616c 2066 6163 6573 2c20 ensional faces, │ │ │ │ -00012610: 6368 6f73 656e 2061 7420 7261 6e64 6f6d chosen at random │ │ │ │ -00012620: 2066 726f 6d20 616c 6c0a 6269 6e6f 6d69 from all.binomi │ │ │ │ -00012630: 616c 2862 696e 6f6d 6961 6c28 6e2c 642b al(binomial(n,d+ │ │ │ │ -00012640: 3129 2c6d 2920 706f 7373 6962 696c 6974 1),m) possibilit │ │ │ │ -00012650: 6965 732e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ies...+--------- │ │ │ │ -00012660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000126a0: 2d2d 2d2d 2b0a 7c69 3520 3a20 7365 7452 ----+.|i5 : setR │ │ │ │ -000126b0: 616e 646f 6d53 6565 6428 6375 7272 656e andomSeed(curren │ │ │ │ -000126c0: 7454 696d 6528 2929 3b20 2020 2020 2020 tTime()); │ │ │ │ -000126d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000126e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000126f0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00012700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012740: 2d2d 2d2d 2b0a 7c69 3620 3a20 4d20 3d20 ----+.|i6 : M = │ │ │ │ -00012750: 7261 6e64 6f6d 4162 7374 7261 6374 5369 randomAbstractSi │ │ │ │ -00012760: 6d70 6c69 6369 616c 436f 6d70 6c65 7828 mplicialComplex( │ │ │ │ -00012770: 362c 332c 3229 2020 2020 2020 2020 2020 6,3,2) │ │ │ │ -00012780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012790: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000127a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000127b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012330: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ +00012340: 2073 6574 5261 6e64 6f6d 5365 6564 2863 setRandomSeed(c │ │ │ │ +00012350: 7572 7265 6e74 5469 6d65 2829 293b 2020 urrentTime()); │ │ │ │ +00012360: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00012370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000123a0: 6934 203a 204c 203d 2072 616e 646f 6d41 i4 : L = randomA │ │ │ │ +000123b0: 6273 7472 6163 7453 696d 706c 6963 6961 bstractSimplicia │ │ │ │ +000123c0: 6c43 6f6d 706c 6578 2836 2c33 2920 207c lComplex(6,3) | │ │ │ │ +000123d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000123e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000123f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012400: 207c 0a7c 6f34 203d 2041 6273 7472 6163 |.|o4 = Abstrac │ │ │ │ +00012410: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ +00012420: 6578 7b2d 3120 3d3e 207b 7b7d 7d20 2020 ex{-1 => {{}} │ │ │ │ +00012430: 2020 7d7c 0a7c 2020 2020 2020 2020 2020 }|.| │ │ │ │ +00012440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012450: 2020 2020 2030 203d 3e20 7b7b 317d 2c20 0 => {{1}, │ │ │ │ +00012460: 7b33 7d7d 207c 0a7c 2020 2020 2020 2020 {3}} |.| │ │ │ │ +00012470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012480: 2020 2020 2020 2031 203d 3e20 7b7b 312c 1 => {{1, │ │ │ │ +00012490: 2033 7d7d 2020 207c 0a7c 2020 2020 2020 3}} |.| │ │ │ │ +000124a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000124b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000124c0: 2020 2020 2020 2020 207c 0a7c 6f34 203a |.|o4 : │ │ │ │ +000124d0: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ +000124e0: 6961 6c43 6f6d 706c 6578 2020 2020 2020 ialComplex │ │ │ │ +000124f0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00012500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +00012530: 4372 6561 7465 2074 6865 2072 616e 646f Create the rando │ │ │ │ +00012540: 6d20 636f 6d70 6c65 7820 595f 6428 6e2c m complex Y_d(n, │ │ │ │ +00012550: 6d29 2077 6869 6368 2068 6173 2076 6572 m) which has ver │ │ │ │ +00012560: 7465 7820 7365 7420 5b6e 5d20 616e 6420 tex set [n] and │ │ │ │ +00012570: 636f 6d70 6c65 7465 2028 6420 e288 920a complete (d .... │ │ │ │ +00012580: 3129 2d73 6b65 6c65 746f 6e2c 2061 6e64 1)-skeleton, and │ │ │ │ +00012590: 2068 6173 2065 7861 6374 6c79 206d 2064 has exactly m d │ │ │ │ +000125a0: 2d64 696d 656e 7369 6f6e 616c 2066 6163 -dimensional fac │ │ │ │ +000125b0: 6573 2c20 6368 6f73 656e 2061 7420 7261 es, chosen at ra │ │ │ │ +000125c0: 6e64 6f6d 2066 726f 6d20 616c 6c0a 6269 ndom from all.bi │ │ │ │ +000125d0: 6e6f 6d69 616c 2862 696e 6f6d 6961 6c28 nomial(binomial( │ │ │ │ +000125e0: 6e2c 642b 3129 2c6d 2920 706f 7373 6962 n,d+1),m) possib │ │ │ │ +000125f0: 696c 6974 6965 732e 0a0a 2b2d 2d2d 2d2d ilities...+----- │ │ │ │ +00012600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012640: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 --------+.|i5 : │ │ │ │ +00012650: 7365 7452 616e 646f 6d53 6565 6428 6375 setRandomSeed(cu │ │ │ │ +00012660: 7272 656e 7454 696d 6528 2929 3b20 2020 rrentTime()); │ │ │ │ +00012670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012690: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000126a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000126b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000126c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000126d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000126e0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ +000126f0: 4d20 3d20 7261 6e64 6f6d 4162 7374 7261 M = randomAbstra │ │ │ │ +00012700: 6374 5369 6d70 6c69 6369 616c 436f 6d70 ctSimplicialComp │ │ │ │ +00012710: 6c65 7828 362c 332c 3229 2020 2020 2020 lex(6,3,2) │ │ │ │ +00012720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012730: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00012740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012780: 2020 2020 2020 2020 7c0a 7c6f 3620 3d20 |.|o6 = │ │ │ │ +00012790: 4162 7374 7261 6374 5369 6d70 6c69 6369 AbstractSimplici │ │ │ │ +000127a0: 616c 436f 6d70 6c65 787b 2d31 203d 3e20 alComplex{-1 => │ │ │ │ +000127b0: 7b7b 7d7d 2020 2020 2020 2020 2020 2020 {{}} │ │ │ │ 000127c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000127d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000127e0: 2020 2020 7c0a 7c6f 3620 3d20 4162 7374 |.|o6 = Abst │ │ │ │ -000127f0: 7261 6374 5369 6d70 6c69 6369 616c 436f ractSimplicialCo │ │ │ │ -00012800: 6d70 6c65 787b 2d31 203d 3e20 7b7b 7d7d mplex{-1 => {{}} │ │ │ │ -00012810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012830: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00012840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012850: 2020 2020 2020 3020 3d3e 207b 7b31 7d2c 0 => {{1}, │ │ │ │ -00012860: 207b 327d 2c20 7b33 7d2c 207b 347d 2c20 {2}, {3}, {4}, │ │ │ │ -00012870: 7b35 7d2c 207b 367d 7d20 2020 2020 2020 {5}, {6}} │ │ │ │ -00012880: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00012890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000128a0: 2020 2020 2020 3120 3d3e 207b 7b31 2c20 1 => {{1, │ │ │ │ -000128b0: 337d 2c20 7b31 2c20 357d 2c20 7b32 2c20 3}, {1, 5}, {2, │ │ │ │ -000128c0: 347d 2c20 7b32 2c20 357d 2c20 7b33 2c20 4}, {2, 5}, {3, │ │ │ │ -000128d0: 357d 2c20 7c0a 7c20 2020 2020 2020 2020 5}, |.| │ │ │ │ +000127d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000127e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000127f0: 2020 2020 2020 2020 2020 3020 3d3e 207b 0 => { │ │ │ │ +00012800: 7b31 7d2c 207b 327d 2c20 7b33 7d2c 207b {1}, {2}, {3}, { │ │ │ │ +00012810: 347d 2c20 7b35 7d7d 2020 2020 2020 2020 4}, {5}} │ │ │ │ +00012820: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00012830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012840: 2020 2020 2020 2020 2020 3120 3d3e 207b 1 => { │ │ │ │ +00012850: 7b31 2c20 337d 2c20 7b31 2c20 347d 2c20 {1, 3}, {1, 4}, │ │ │ │ +00012860: 7b31 2c20 357d 2c20 7b32 2c20 337d 2c20 {1, 5}, {2, 3}, │ │ │ │ +00012870: 7b32 2c20 357d 2c20 7c0a 7c20 2020 2020 {2, 5}, |.| │ │ │ │ +00012880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012890: 2020 2020 2020 2020 2020 3220 3d3e 207b 2 => { │ │ │ │ +000128a0: 7b31 2c20 332c 2034 7d2c 207b 312c 2033 {1, 3, 4}, {1, 3 │ │ │ │ +000128b0: 2c20 357d 2c20 7b32 2c20 332c 2035 7d7d , 5}, {2, 3, 5}} │ │ │ │ +000128c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000128d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000128e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000128f0: 2020 2020 2020 3220 3d3e 207b 7b31 2c20 2 => {{1, │ │ │ │ -00012900: 332c 2035 7d2c 207b 322c 2034 2c20 357d 3, 5}, {2, 4, 5} │ │ │ │ -00012910: 2c20 7b34 2c20 352c 2036 7d7d 2020 2020 , {4, 5, 6}} │ │ │ │ -00012920: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00012930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000128f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012910: 2020 2020 2020 2020 7c0a 7c6f 3620 3a20 |.|o6 : │ │ │ │ +00012920: 4162 7374 7261 6374 5369 6d70 6c69 6369 AbstractSimplici │ │ │ │ +00012930: 616c 436f 6d70 6c65 7820 2020 2020 2020 alComplex │ │ │ │ 00012940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012970: 2020 2020 7c0a 7c6f 3620 3a20 4162 7374 |.|o6 : Abst │ │ │ │ -00012980: 7261 6374 5369 6d70 6c69 6369 616c 436f ractSimplicialCo │ │ │ │ -00012990: 6d70 6c65 7820 2020 2020 2020 2020 2020 mplex │ │ │ │ -000129a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000129b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000129c0: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ -000129d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000129e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000129f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012a10: 2d2d 2d2d 7c0a 7c20 2020 2020 2020 2020 ----|.| │ │ │ │ -00012a20: 2020 2020 2020 2020 2020 2020 2020 7d20 } │ │ │ │ +00012960: 2020 2020 2020 2020 7c0a 7c2d 2d2d 2d2d |.|----- │ │ │ │ +00012970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000129a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000129b0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +000129c0: 2020 2020 2020 2020 2020 7d20 2020 2020 } │ │ │ │ +000129d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000129e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000129f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012a00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00012a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012a60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00012a50: 2020 2020 2020 2020 7c0a 7c7b 332c 2034 |.|{3, 4 │ │ │ │ +00012a60: 7d2c 207b 332c 2035 7d7d 2020 2020 2020 }, {3, 5}} │ │ │ │ 00012a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012ab0: 2020 2020 7c0a 7c7b 342c 2035 7d2c 207b |.|{4, 5}, { │ │ │ │ -00012ac0: 342c 2036 7d2c 207b 352c 2036 7d7d 2020 4, 6}, {5, 6}} │ │ │ │ -00012ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012b00: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00012b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012b50: 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 6f0a ----+..See also. │ │ │ │ -00012b60: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ -00012b70: 6f74 6520 7261 6e64 6f6d 3a20 284d 6163 ote random: (Mac │ │ │ │ -00012b80: 6175 6c61 7932 446f 6329 7261 6e64 6f6d aulay2Doc)random │ │ │ │ -00012b90: 2c20 2d2d 2067 6574 2061 2072 616e 646f , -- get a rando │ │ │ │ -00012ba0: 6d20 6f62 6a65 6374 0a20 202a 2072 616e m object. * ran │ │ │ │ -00012bb0: 646f 6d53 7175 6172 6546 7265 654d 6f6e domSquareFreeMon │ │ │ │ -00012bc0: 6f6d 6961 6c49 6465 616c 2028 6d69 7373 omialIdeal (miss │ │ │ │ -00012bd0: 696e 6720 646f 6375 6d65 6e74 6174 696f ing documentatio │ │ │ │ -00012be0: 6e29 0a0a 5761 7973 2074 6f20 7573 6520 n)..Ways to use │ │ │ │ -00012bf0: 7261 6e64 6f6d 4162 7374 7261 6374 5369 randomAbstractSi │ │ │ │ -00012c00: 6d70 6c69 6369 616c 436f 6d70 6c65 783a mplicialComplex: │ │ │ │ -00012c10: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -00012c20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00012c30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ -00012c40: 202a 2022 7261 6e64 6f6d 4162 7374 7261 * "randomAbstra │ │ │ │ -00012c50: 6374 5369 6d70 6c69 6369 616c 436f 6d70 ctSimplicialComp │ │ │ │ -00012c60: 6c65 7828 5a5a 2922 0a20 202a 2022 7261 lex(ZZ)". * "ra │ │ │ │ -00012c70: 6e64 6f6d 4162 7374 7261 6374 5369 6d70 ndomAbstractSimp │ │ │ │ -00012c80: 6c69 6369 616c 436f 6d70 6c65 7828 5a5a licialComplex(ZZ │ │ │ │ -00012c90: 2c5a 5a29 220a 2020 2a20 2272 616e 646f ,ZZ)". * "rando │ │ │ │ -00012ca0: 6d41 6273 7472 6163 7453 696d 706c 6963 mAbstractSimplic │ │ │ │ -00012cb0: 6961 6c43 6f6d 706c 6578 285a 5a2c 5a5a ialComplex(ZZ,ZZ │ │ │ │ -00012cc0: 2c5a 5a29 220a 0a46 6f72 2074 6865 2070 ,ZZ)"..For the p │ │ │ │ -00012cd0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -00012ce0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -00012cf0: 6520 6f62 6a65 6374 202a 6e6f 7465 2072 e object *note r │ │ │ │ -00012d00: 616e 646f 6d41 6273 7472 6163 7453 696d andomAbstractSim │ │ │ │ -00012d10: 706c 6963 6961 6c43 6f6d 706c 6578 3a0a plicialComplex:. │ │ │ │ -00012d20: 7261 6e64 6f6d 4162 7374 7261 6374 5369 randomAbstractSi │ │ │ │ -00012d30: 6d70 6c69 6369 616c 436f 6d70 6c65 782c mplicialComplex, │ │ │ │ -00012d40: 2069 7320 6120 2a6e 6f74 6520 6d65 7468 is a *note meth │ │ │ │ -00012d50: 6f64 2066 756e 6374 696f 6e3a 0a28 4d61 od function:.(Ma │ │ │ │ -00012d60: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ -00012d70: 6446 756e 6374 696f 6e2c 2e0a 1f0a 4669 dFunction,....Fi │ │ │ │ -00012d80: 6c65 3a20 4162 7374 7261 6374 5369 6d70 le: AbstractSimp │ │ │ │ -00012d90: 6c69 6369 616c 436f 6d70 6c65 7865 732e licialComplexes. │ │ │ │ -00012da0: 696e 666f 2c20 4e6f 6465 3a20 7261 6e64 info, Node: rand │ │ │ │ -00012db0: 6f6d 5375 6253 696d 706c 6963 6961 6c43 omSubSimplicialC │ │ │ │ -00012dc0: 6f6d 706c 6578 2c20 4e65 7874 3a20 7265 omplex, Next: re │ │ │ │ -00012dd0: 6475 6365 6453 696d 706c 6963 6961 6c43 ducedSimplicialC │ │ │ │ -00012de0: 6861 696e 436f 6d70 6c65 782c 2050 7265 hainComplex, Pre │ │ │ │ -00012df0: 763a 2072 616e 646f 6d41 6273 7472 6163 v: randomAbstrac │ │ │ │ -00012e00: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ -00012e10: 6578 2c20 5570 3a20 546f 700a 0a72 616e ex, Up: Top..ran │ │ │ │ -00012e20: 646f 6d53 7562 5369 6d70 6c69 6369 616c domSubSimplicial │ │ │ │ -00012e30: 436f 6d70 6c65 7820 2d2d 2043 7265 6174 Complex -- Creat │ │ │ │ -00012e40: 6520 6120 7261 6e64 6f6d 2073 7562 2d73 e a random sub-s │ │ │ │ -00012e50: 696d 706c 6963 6961 6c20 636f 6d70 6c65 implicial comple │ │ │ │ -00012e60: 780a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a x.************** │ │ │ │ -00012e70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00012e80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00012e90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00012ea0: 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 7074 ******..Descript │ │ │ │ -00012eb0: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -00012ec0: 0a43 7265 6174 6573 2061 2072 616e 646f .Creates a rando │ │ │ │ -00012ed0: 6d20 7375 622d 7369 6d70 6c69 6369 616c m sub-simplicial │ │ │ │ -00012ee0: 2063 6f6d 706c 6578 206f 6620 6120 6769 complex of a gi │ │ │ │ -00012ef0: 7665 6e20 7369 6d70 6c69 6369 616c 2063 ven simplicial c │ │ │ │ -00012f00: 6f6d 706c 6578 2e0a 0a2b 2d2d 2d2d 2d2d omplex...+------ │ │ │ │ -00012f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012f30: 2d2d 2d2d 2d2b 0a7c 6931 203a 2073 6574 -----+.|i1 : set │ │ │ │ -00012f40: 5261 6e64 6f6d 5365 6564 2863 7572 7265 RandomSeed(curre │ │ │ │ -00012f50: 6e74 5469 6d65 2829 293b 2020 2020 2020 ntTime()); │ │ │ │ -00012f60: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -00012f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012f90: 2d2b 0a7c 6932 203a 204b 203d 2072 616e -+.|i2 : K = ran │ │ │ │ -00012fa0: 646f 6d41 6273 7472 6163 7453 696d 706c domAbstractSimpl │ │ │ │ -00012fb0: 6963 6961 6c43 6f6d 706c 6578 2834 297c icialComplex(4)| │ │ │ │ -00012fc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00012aa0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00012ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012af0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ +00012b00: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ +00012b10: 2a20 2a6e 6f74 6520 7261 6e64 6f6d 3a20 * *note random: │ │ │ │ +00012b20: 284d 6163 6175 6c61 7932 446f 6329 7261 (Macaulay2Doc)ra │ │ │ │ +00012b30: 6e64 6f6d 2c20 2d2d 2067 6574 2061 2072 ndom, -- get a r │ │ │ │ +00012b40: 616e 646f 6d20 6f62 6a65 6374 0a20 202a andom object. * │ │ │ │ +00012b50: 2072 616e 646f 6d53 7175 6172 6546 7265 randomSquareFre │ │ │ │ +00012b60: 654d 6f6e 6f6d 6961 6c49 6465 616c 2028 eMonomialIdeal ( │ │ │ │ +00012b70: 6d69 7373 696e 6720 646f 6375 6d65 6e74 missing document │ │ │ │ +00012b80: 6174 696f 6e29 0a0a 5761 7973 2074 6f20 ation)..Ways to │ │ │ │ +00012b90: 7573 6520 7261 6e64 6f6d 4162 7374 7261 use randomAbstra │ │ │ │ +00012ba0: 6374 5369 6d70 6c69 6369 616c 436f 6d70 ctSimplicialComp │ │ │ │ +00012bb0: 6c65 783a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d lex:.=========== │ │ │ │ +00012bc0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00012bd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00012be0: 3d0a 0a20 202a 2022 7261 6e64 6f6d 4162 =.. * "randomAb │ │ │ │ +00012bf0: 7374 7261 6374 5369 6d70 6c69 6369 616c stractSimplicial │ │ │ │ +00012c00: 436f 6d70 6c65 7828 5a5a 2922 0a20 202a Complex(ZZ)". * │ │ │ │ +00012c10: 2022 7261 6e64 6f6d 4162 7374 7261 6374 "randomAbstract │ │ │ │ +00012c20: 5369 6d70 6c69 6369 616c 436f 6d70 6c65 SimplicialComple │ │ │ │ +00012c30: 7828 5a5a 2c5a 5a29 220a 2020 2a20 2272 x(ZZ,ZZ)". * "r │ │ │ │ +00012c40: 616e 646f 6d41 6273 7472 6163 7453 696d andomAbstractSim │ │ │ │ +00012c50: 706c 6963 6961 6c43 6f6d 706c 6578 285a plicialComplex(Z │ │ │ │ +00012c60: 5a2c 5a5a 2c5a 5a29 220a 0a46 6f72 2074 Z,ZZ,ZZ)"..For t │ │ │ │ +00012c70: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +00012c80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00012c90: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ +00012ca0: 7465 2072 616e 646f 6d41 6273 7472 6163 te randomAbstrac │ │ │ │ +00012cb0: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ +00012cc0: 6578 3a0a 7261 6e64 6f6d 4162 7374 7261 ex:.randomAbstra │ │ │ │ +00012cd0: 6374 5369 6d70 6c69 6369 616c 436f 6d70 ctSimplicialComp │ │ │ │ +00012ce0: 6c65 782c 2069 7320 6120 2a6e 6f74 6520 lex, is a *note │ │ │ │ +00012cf0: 6d65 7468 6f64 2066 756e 6374 696f 6e3a method function: │ │ │ │ +00012d00: 0a28 4d61 6361 756c 6179 3244 6f63 294d .(Macaulay2Doc)M │ │ │ │ +00012d10: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ +00012d20: 1f0a 4669 6c65 3a20 4162 7374 7261 6374 ..File: Abstract │ │ │ │ +00012d30: 5369 6d70 6c69 6369 616c 436f 6d70 6c65 SimplicialComple │ │ │ │ +00012d40: 7865 732e 696e 666f 2c20 4e6f 6465 3a20 xes.info, Node: │ │ │ │ +00012d50: 7261 6e64 6f6d 5375 6253 696d 706c 6963 randomSubSimplic │ │ │ │ +00012d60: 6961 6c43 6f6d 706c 6578 2c20 4e65 7874 ialComplex, Next │ │ │ │ +00012d70: 3a20 7265 6475 6365 6453 696d 706c 6963 : reducedSimplic │ │ │ │ +00012d80: 6961 6c43 6861 696e 436f 6d70 6c65 782c ialChainComplex, │ │ │ │ +00012d90: 2050 7265 763a 2072 616e 646f 6d41 6273 Prev: randomAbs │ │ │ │ +00012da0: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +00012db0: 6f6d 706c 6578 2c20 5570 3a20 546f 700a omplex, Up: Top. │ │ │ │ +00012dc0: 0a72 616e 646f 6d53 7562 5369 6d70 6c69 .randomSubSimpli │ │ │ │ +00012dd0: 6369 616c 436f 6d70 6c65 7820 2d2d 2043 cialComplex -- C │ │ │ │ +00012de0: 7265 6174 6520 6120 7261 6e64 6f6d 2073 reate a random s │ │ │ │ +00012df0: 7562 2d73 696d 706c 6963 6961 6c20 636f ub-simplicial co │ │ │ │ +00012e00: 6d70 6c65 780a 2a2a 2a2a 2a2a 2a2a 2a2a mplex.********** │ │ │ │ +00012e10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00012e20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00012e30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00012e40: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 **********..Desc │ │ │ │ +00012e50: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +00012e60: 3d3d 3d0a 0a43 7265 6174 6573 2061 2072 ===..Creates a r │ │ │ │ +00012e70: 616e 646f 6d20 7375 622d 7369 6d70 6c69 andom sub-simpli │ │ │ │ +00012e80: 6369 616c 2063 6f6d 706c 6578 206f 6620 cial complex of │ │ │ │ +00012e90: 6120 6769 7665 6e20 7369 6d70 6c69 6369 a given simplici │ │ │ │ +00012ea0: 616c 2063 6f6d 706c 6578 2e0a 0a2b 2d2d al complex...+-- │ │ │ │ +00012eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00012ef0: 203a 2073 6574 5261 6e64 6f6d 5365 6564 : setRandomSeed │ │ │ │ +00012f00: 2863 7572 7265 6e74 5469 6d65 2829 293b (currentTime()); │ │ │ │ +00012f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012f20: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00012f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +00012f70: 203a 204b 203d 2072 616e 646f 6d41 6273 : K = randomAbs │ │ │ │ +00012f80: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ +00012f90: 6f6d 706c 6578 2834 2920 2020 2020 2020 omplex(4) │ │ │ │ +00012fa0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00012fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012fe0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00012ff0: 6f32 203d 2041 6273 7472 6163 7453 696d o2 = AbstractSim │ │ │ │ -00013000: 706c 6963 6961 6c43 6f6d 706c 6578 7b2d plicialComplex{- │ │ │ │ -00013010: 3120 3d3e 207b 7b7d 7d7d 207c 0a7c 2020 1 => {{}}} |.| │ │ │ │ -00013020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013030: 2020 2020 2020 2020 2020 2020 2030 203d 0 = │ │ │ │ -00013040: 3e20 7b7b 317d 7d20 207c 0a7c 2020 2020 > {{1}} |.| │ │ │ │ -00013050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013070: 2020 2020 2020 207c 0a7c 6f32 203a 2041 |.|o2 : A │ │ │ │ -00013080: 6273 7472 6163 7453 696d 706c 6963 6961 bstractSimplicia │ │ │ │ -00013090: 6c43 6f6d 706c 6578 2020 2020 2020 2020 lComplex │ │ │ │ -000130a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -000130b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000130c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000130d0: 2d2d 2d2b 0a7c 6933 203a 204a 203d 2072 ---+.|i3 : J = r │ │ │ │ -000130e0: 616e 646f 6d53 7562 5369 6d70 6c69 6369 andomSubSimplici │ │ │ │ -000130f0: 616c 436f 6d70 6c65 7828 4b29 2020 2020 alComplex(K) │ │ │ │ -00013100: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00012fe0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00012ff0: 203d 2041 6273 7472 6163 7453 696d 706c = AbstractSimpl │ │ │ │ +00013000: 6963 6961 6c43 6f6d 706c 6578 7b2d 3120 icialComplex{-1 │ │ │ │ +00013010: 3d3e 207b 7b7d 7d20 2020 2020 2020 2020 => {{}} │ │ │ │ +00013020: 2020 2020 2020 2020 2020 7d7c 0a7c 2020 }|.| │ │ │ │ +00013030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013040: 2020 2020 2020 2020 2020 2020 2030 203d 0 = │ │ │ │ +00013050: 3e20 7b7b 327d 2c20 7b33 7d2c 207b 347d > {{2}, {3}, {4} │ │ │ │ +00013060: 7d20 2020 2020 2020 2020 207c 0a7c 2020 } |.| │ │ │ │ +00013070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013080: 2020 2020 2020 2020 2020 2020 2031 203d 1 = │ │ │ │ +00013090: 3e20 7b7b 322c 2033 7d2c 207b 322c 2034 > {{2, 3}, {2, 4 │ │ │ │ +000130a0: 7d2c 207b 332c 2034 7d7d 207c 0a7c 2020 }, {3, 4}} |.| │ │ │ │ +000130b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000130c0: 2020 2020 2020 2020 2020 2020 2032 203d 2 = │ │ │ │ +000130d0: 3e20 7b7b 322c 2033 2c20 347d 7d20 2020 > {{2, 3, 4}} │ │ │ │ +000130e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000130f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013120: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00013130: 0a7c 6f33 203d 2041 6273 7472 6163 7453 .|o3 = AbstractS │ │ │ │ -00013140: 696d 706c 6963 6961 6c43 6f6d 706c 6578 implicialComplex │ │ │ │ -00013150: 7b2d 3120 3d3e 207b 7b7d 7d7d 207c 0a7c {-1 => {{}}} |.| │ │ │ │ -00013160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013180: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ -00013190: 203a 2041 6273 7472 6163 7453 696d 706c : AbstractSimpl │ │ │ │ -000131a0: 6963 6961 6c43 6f6d 706c 6578 2020 2020 icialComplex │ │ │ │ -000131b0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -000131c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000131d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000131e0: 2d2d 2d2d 2d2d 2d2b 0a0a 5761 7973 2074 -------+..Ways t │ │ │ │ -000131f0: 6f20 7573 6520 7261 6e64 6f6d 5375 6253 o use randomSubS │ │ │ │ -00013200: 696d 706c 6963 6961 6c43 6f6d 706c 6578 implicialComplex │ │ │ │ -00013210: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -00013220: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00013230: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ -00013240: 7261 6e64 6f6d 5375 6253 696d 706c 6963 randomSubSimplic │ │ │ │ -00013250: 6961 6c43 6f6d 706c 6578 2841 6273 7472 ialComplex(Abstr │ │ │ │ -00013260: 6163 7453 696d 706c 6963 6961 6c43 6f6d actSimplicialCom │ │ │ │ -00013270: 706c 6578 2922 0a0a 466f 7220 7468 6520 plex)"..For the │ │ │ │ -00013280: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -00013290: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -000132a0: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -000132b0: 7261 6e64 6f6d 5375 6253 696d 706c 6963 randomSubSimplic │ │ │ │ -000132c0: 6961 6c43 6f6d 706c 6578 3a20 7261 6e64 ialComplex: rand │ │ │ │ -000132d0: 6f6d 5375 6253 696d 706c 6963 6961 6c43 omSubSimplicialC │ │ │ │ -000132e0: 6f6d 706c 6578 2c20 6973 2061 0a2a 6e6f omplex, is a.*no │ │ │ │ -000132f0: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ -00013300: 6f6e 3a20 284d 6163 6175 6c61 7932 446f on: (Macaulay2Do │ │ │ │ -00013310: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ -00013320: 2c2e 0a1f 0a46 696c 653a 2041 6273 7472 ,....File: Abstr │ │ │ │ -00013330: 6163 7453 696d 706c 6963 6961 6c43 6f6d actSimplicialCom │ │ │ │ -00013340: 706c 6578 6573 2e69 6e66 6f2c 204e 6f64 plexes.info, Nod │ │ │ │ -00013350: 653a 2072 6564 7563 6564 5369 6d70 6c69 e: reducedSimpli │ │ │ │ -00013360: 6369 616c 4368 6169 6e43 6f6d 706c 6578 cialChainComplex │ │ │ │ -00013370: 2c20 4e65 7874 3a20 7369 6d70 6c69 6369 , Next: simplici │ │ │ │ -00013380: 616c 4368 6169 6e43 6f6d 706c 6578 2c20 alChainComplex, │ │ │ │ -00013390: 5072 6576 3a20 7261 6e64 6f6d 5375 6253 Prev: randomSubS │ │ │ │ -000133a0: 696d 706c 6963 6961 6c43 6f6d 706c 6578 implicialComplex │ │ │ │ -000133b0: 2c20 5570 3a20 546f 700a 0a72 6564 7563 , Up: Top..reduc │ │ │ │ -000133c0: 6564 5369 6d70 6c69 6369 616c 4368 6169 edSimplicialChai │ │ │ │ -000133d0: 6e43 6f6d 706c 6578 202d 2d20 5468 6520 nComplex -- The │ │ │ │ -000133e0: 7265 6475 6365 6420 686f 6d6f 6c6f 6769 reduced homologi │ │ │ │ -000133f0: 6361 6c20 6368 6169 6e20 636f 6d70 6c65 cal chain comple │ │ │ │ -00013400: 7820 7468 6174 2069 7320 6465 7465 726d x that is determ │ │ │ │ -00013410: 696e 6564 2062 7920 616e 2061 6273 7472 ined by an abstr │ │ │ │ -00013420: 6163 7420 7369 6d70 6c69 6369 616c 2063 act simplicial c │ │ │ │ -00013430: 6f6d 706c 6578 0a2a 2a2a 2a2a 2a2a 2a2a omplex.********* │ │ │ │ -00013440: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00013450: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00013460: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00013470: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00013480: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00013490: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000134a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000134b0: 2a2a 0a0a 4465 7363 7269 7074 696f 6e0a **..Description. │ │ │ │ -000134c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 ===========..Thi │ │ │ │ -000134d0: 7320 6d65 7468 6f64 2072 6574 7572 6e73 s method returns │ │ │ │ -000134e0: 2074 6865 2072 6564 7563 6564 2068 6f6d the reduced hom │ │ │ │ -000134f0: 6f6c 6f67 6963 616c 2063 6861 696e 2063 ological chain c │ │ │ │ -00013500: 6f6d 706c 6578 2028 692e 652e 2c20 7468 omplex (i.e., th │ │ │ │ -00013510: 6572 6520 6973 2061 0a6e 6f6e 7a65 726f ere is a.nonzero │ │ │ │ -00013520: 2074 6572 6d20 696e 2068 6f6d 6f6c 6f67 term in homolog │ │ │ │ -00013530: 6963 616c 2064 6567 7265 6520 2d31 2074 ical degree -1 t │ │ │ │ -00013540: 6861 7420 636f 7272 6573 706f 6e64 7320 hat corresponds │ │ │ │ -00013550: 746f 2074 6865 2065 6d70 7479 2066 6163 to the empty fac │ │ │ │ -00013560: 6529 2074 6861 740a 6973 2061 7373 6f63 e) that.is assoc │ │ │ │ -00013570: 6961 7465 6420 746f 2061 6e20 6162 7374 iated to an abst │ │ │ │ -00013580: 7261 6374 2073 696d 706c 6963 6961 6c20 ract simplicial │ │ │ │ -00013590: 636f 6d70 6c65 782e 2020 5468 6520 6368 complex. The ch │ │ │ │ -000135a0: 6169 6e20 636f 6d70 6c65 7820 6973 2064 ain complex is d │ │ │ │ -000135b0: 6566 696e 6564 0a6f 7665 7220 7468 6520 efined.over the │ │ │ │ -000135c0: 696e 7465 6765 7273 2e0a 0a2b 2d2d 2d2d integers...+---- │ │ │ │ -000135d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000135e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000135f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013610: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ -00013620: 204b 203d 2061 6273 7472 6163 7453 696d K = abstractSim │ │ │ │ -00013630: 706c 6963 6961 6c43 6f6d 706c 6578 287b plicialComplex({ │ │ │ │ -00013640: 7b31 2c32 2c33 7d2c 7b32 2c34 2c39 7d2c {1,2,3},{2,4,9}, │ │ │ │ -00013650: 7b31 2c32 2c33 2c35 2c37 2c38 7d2c 7b33 {1,2,3,5,7,8},{3 │ │ │ │ -00013660: 2c34 7d7d 2920 2020 207c 0a7c 2020 2020 ,4}}) |.| │ │ │ │ -00013670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000136a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000136b0: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ -000136c0: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ -000136d0: 6961 6c43 6f6d 706c 6578 7b2d 3120 3d3e ialComplex{-1 => │ │ │ │ -000136e0: 207b 7b7d 7d20 2020 2020 2020 2020 2020 {{}} │ │ │ │ -000136f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013700: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00013710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013720: 2020 2020 2020 2020 2020 2030 203d 3e20 0 => │ │ │ │ -00013730: 7b7b 317d 2c20 7b32 7d2c 207b 337d 2c20 {{1}, {2}, {3}, │ │ │ │ -00013740: 7b34 7d2c 207b 357d 2c20 7b37 7d2c 207b {4}, {5}, {7}, { │ │ │ │ -00013750: 387d 2c20 7b39 7d7d 207c 0a7c 2020 2020 8}, {9}} |.| │ │ │ │ -00013760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013770: 2020 2020 2020 2020 2020 2031 203d 3e20 1 => │ │ │ │ -00013780: 7b7b 312c 2032 7d2c 207b 312c 2033 7d2c {{1, 2}, {1, 3}, │ │ │ │ -00013790: 207b 312c 2035 7d2c 207b 312c 2037 7d2c {1, 5}, {1, 7}, │ │ │ │ -000137a0: 207b 312c 2038 7d2c 207c 0a7c 2020 2020 {1, 8}, |.| │ │ │ │ -000137b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000137c0: 2020 2020 2020 2020 2020 2032 203d 3e20 2 => │ │ │ │ -000137d0: 7b7b 312c 2032 2c20 337d 2c20 7b31 2c20 {{1, 2, 3}, {1, │ │ │ │ -000137e0: 322c 2035 7d2c 207b 312c 2032 2c20 377d 2, 5}, {1, 2, 7} │ │ │ │ -000137f0: 2c20 7b31 2c20 322c 207c 0a7c 2020 2020 , {1, 2, |.| │ │ │ │ -00013800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013810: 2020 2020 2020 2020 2020 2033 203d 3e20 3 => │ │ │ │ -00013820: 7b7b 312c 2032 2c20 332c 2035 7d2c 207b {{1, 2, 3, 5}, { │ │ │ │ -00013830: 312c 2032 2c20 332c 2037 7d2c 207b 312c 1, 2, 3, 7}, {1, │ │ │ │ -00013840: 2032 2c20 332c 2038 207c 0a7c 2020 2020 2, 3, 8 |.| │ │ │ │ -00013850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013860: 2020 2020 2020 2020 2020 2034 203d 3e20 4 => │ │ │ │ -00013870: 7b7b 312c 2032 2c20 332c 2035 2c20 377d {{1, 2, 3, 5, 7} │ │ │ │ -00013880: 2c20 7b31 2c20 322c 2033 2c20 352c 2038 , {1, 2, 3, 5, 8 │ │ │ │ -00013890: 7d2c 207b 312c 2032 207c 0a7c 2020 2020 }, {1, 2 |.| │ │ │ │ +00013120: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00013130: 203a 2041 6273 7472 6163 7453 696d 706c : AbstractSimpl │ │ │ │ +00013140: 6963 6961 6c43 6f6d 706c 6578 2020 2020 icialComplex │ │ │ │ +00013150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013160: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00013170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000131a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ +000131b0: 203a 204a 203d 2072 616e 646f 6d53 7562 : J = randomSub │ │ │ │ +000131c0: 5369 6d70 6c69 6369 616c 436f 6d70 6c65 SimplicialComple │ │ │ │ +000131d0: 7828 4b29 2020 2020 2020 2020 2020 2020 x(K) │ │ │ │ +000131e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000131f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013220: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ +00013230: 203d 2041 6273 7472 6163 7453 696d 706c = AbstractSimpl │ │ │ │ +00013240: 6963 6961 6c43 6f6d 706c 6578 7b2d 3120 icialComplex{-1 │ │ │ │ +00013250: 3d3e 207b 7b7d 7d20 2020 2020 2020 2020 => {{}} │ │ │ │ +00013260: 2020 2020 2020 2020 2020 7d7c 0a7c 2020 }|.| │ │ │ │ +00013270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013280: 2020 2020 2020 2020 2020 2020 2030 203d 0 = │ │ │ │ +00013290: 3e20 7b7b 327d 2c20 7b33 7d2c 207b 347d > {{2}, {3}, {4} │ │ │ │ +000132a0: 7d20 2020 2020 2020 2020 207c 0a7c 2020 } |.| │ │ │ │ +000132b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000132c0: 2020 2020 2020 2020 2020 2020 2031 203d 1 = │ │ │ │ +000132d0: 3e20 7b7b 322c 2033 7d2c 207b 322c 2034 > {{2, 3}, {2, 4 │ │ │ │ +000132e0: 7d2c 207b 332c 2034 7d7d 207c 0a7c 2020 }, {3, 4}} |.| │ │ │ │ +000132f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013300: 2020 2020 2020 2020 2020 2020 2032 203d 2 = │ │ │ │ +00013310: 3e20 7b7b 322c 2033 2c20 347d 7d20 2020 > {{2, 3, 4}} │ │ │ │ +00013320: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00013330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013360: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ +00013370: 203a 2041 6273 7472 6163 7453 696d 706c : AbstractSimpl │ │ │ │ +00013380: 6963 6961 6c43 6f6d 706c 6578 2020 2020 icialComplex │ │ │ │ +00013390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000133a0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000133b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000133c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000133d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000133e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5761 -----------+..Wa │ │ │ │ +000133f0: 7973 2074 6f20 7573 6520 7261 6e64 6f6d ys to use random │ │ │ │ +00013400: 5375 6253 696d 706c 6963 6961 6c43 6f6d SubSimplicialCom │ │ │ │ +00013410: 706c 6578 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d plex:.========== │ │ │ │ +00013420: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00013430: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +00013440: 202a 2022 7261 6e64 6f6d 5375 6253 696d * "randomSubSim │ │ │ │ +00013450: 706c 6963 6961 6c43 6f6d 706c 6578 2841 plicialComplex(A │ │ │ │ +00013460: 6273 7472 6163 7453 696d 706c 6963 6961 bstractSimplicia │ │ │ │ +00013470: 6c43 6f6d 706c 6578 2922 0a0a 466f 7220 lComplex)"..For │ │ │ │ +00013480: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ +00013490: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000134a0: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ +000134b0: 6f74 6520 7261 6e64 6f6d 5375 6253 696d ote randomSubSim │ │ │ │ +000134c0: 706c 6963 6961 6c43 6f6d 706c 6578 3a20 plicialComplex: │ │ │ │ +000134d0: 7261 6e64 6f6d 5375 6253 696d 706c 6963 randomSubSimplic │ │ │ │ +000134e0: 6961 6c43 6f6d 706c 6578 2c20 6973 2061 ialComplex, is a │ │ │ │ +000134f0: 0a2a 6e6f 7465 206d 6574 686f 6420 6675 .*note method fu │ │ │ │ +00013500: 6e63 7469 6f6e 3a20 284d 6163 6175 6c61 nction: (Macaula │ │ │ │ +00013510: 7932 446f 6329 4d65 7468 6f64 4675 6e63 y2Doc)MethodFunc │ │ │ │ +00013520: 7469 6f6e 2c2e 0a1f 0a46 696c 653a 2041 tion,....File: A │ │ │ │ +00013530: 6273 7472 6163 7453 696d 706c 6963 6961 bstractSimplicia │ │ │ │ +00013540: 6c43 6f6d 706c 6578 6573 2e69 6e66 6f2c lComplexes.info, │ │ │ │ +00013550: 204e 6f64 653a 2072 6564 7563 6564 5369 Node: reducedSi │ │ │ │ +00013560: 6d70 6c69 6369 616c 4368 6169 6e43 6f6d mplicialChainCom │ │ │ │ +00013570: 706c 6578 2c20 4e65 7874 3a20 7369 6d70 plex, Next: simp │ │ │ │ +00013580: 6c69 6369 616c 4368 6169 6e43 6f6d 706c licialChainCompl │ │ │ │ +00013590: 6578 2c20 5072 6576 3a20 7261 6e64 6f6d ex, Prev: random │ │ │ │ +000135a0: 5375 6253 696d 706c 6963 6961 6c43 6f6d SubSimplicialCom │ │ │ │ +000135b0: 706c 6578 2c20 5570 3a20 546f 700a 0a72 plex, Up: Top..r │ │ │ │ +000135c0: 6564 7563 6564 5369 6d70 6c69 6369 616c educedSimplicial │ │ │ │ +000135d0: 4368 6169 6e43 6f6d 706c 6578 202d 2d20 ChainComplex -- │ │ │ │ +000135e0: 5468 6520 7265 6475 6365 6420 686f 6d6f The reduced homo │ │ │ │ +000135f0: 6c6f 6769 6361 6c20 6368 6169 6e20 636f logical chain co │ │ │ │ +00013600: 6d70 6c65 7820 7468 6174 2069 7320 6465 mplex that is de │ │ │ │ +00013610: 7465 726d 696e 6564 2062 7920 616e 2061 termined by an a │ │ │ │ +00013620: 6273 7472 6163 7420 7369 6d70 6c69 6369 bstract simplici │ │ │ │ +00013630: 616c 2063 6f6d 706c 6578 0a2a 2a2a 2a2a al complex.***** │ │ │ │ +00013640: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00013650: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00013660: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00013670: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00013680: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00013690: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000136a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000136b0: 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 7074 ******..Descript │ │ │ │ +000136c0: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ +000136d0: 0a54 6869 7320 6d65 7468 6f64 2072 6574 .This method ret │ │ │ │ +000136e0: 7572 6e73 2074 6865 2072 6564 7563 6564 urns the reduced │ │ │ │ +000136f0: 2068 6f6d 6f6c 6f67 6963 616c 2063 6861 homological cha │ │ │ │ +00013700: 696e 2063 6f6d 706c 6578 2028 692e 652e in complex (i.e. │ │ │ │ +00013710: 2c20 7468 6572 6520 6973 2061 0a6e 6f6e , there is a.non │ │ │ │ +00013720: 7a65 726f 2074 6572 6d20 696e 2068 6f6d zero term in hom │ │ │ │ +00013730: 6f6c 6f67 6963 616c 2064 6567 7265 6520 ological degree │ │ │ │ +00013740: 2d31 2074 6861 7420 636f 7272 6573 706f -1 that correspo │ │ │ │ +00013750: 6e64 7320 746f 2074 6865 2065 6d70 7479 nds to the empty │ │ │ │ +00013760: 2066 6163 6529 2074 6861 740a 6973 2061 face) that.is a │ │ │ │ +00013770: 7373 6f63 6961 7465 6420 746f 2061 6e20 ssociated to an │ │ │ │ +00013780: 6162 7374 7261 6374 2073 696d 706c 6963 abstract simplic │ │ │ │ +00013790: 6961 6c20 636f 6d70 6c65 782e 2020 5468 ial complex. Th │ │ │ │ +000137a0: 6520 6368 6169 6e20 636f 6d70 6c65 7820 e chain complex │ │ │ │ +000137b0: 6973 2064 6566 696e 6564 0a6f 7665 7220 is defined.over │ │ │ │ +000137c0: 7468 6520 696e 7465 6765 7273 2e0a 0a2b the integers...+ │ │ │ │ +000137d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000137e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000137f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00013820: 6931 203a 204b 203d 2061 6273 7472 6163 i1 : K = abstrac │ │ │ │ +00013830: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ +00013840: 6578 287b 7b31 2c32 2c33 7d2c 7b32 2c34 ex({{1,2,3},{2,4 │ │ │ │ +00013850: 2c39 7d2c 7b31 2c32 2c33 2c35 2c37 2c38 ,9},{1,2,3,5,7,8 │ │ │ │ +00013860: 7d2c 7b33 2c34 7d7d 2920 2020 207c 0a7c },{3,4}}) |.| │ │ │ │ +00013870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000138a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000138b0: 2020 2020 2020 2020 2020 2035 203d 3e20 5 => │ │ │ │ -000138c0: 7b7b 312c 2032 2c20 332c 2035 2c20 372c {{1, 2, 3, 5, 7, │ │ │ │ -000138d0: 2038 7d7d 2020 2020 2020 2020 2020 2020 8}} │ │ │ │ -000138e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000138b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000138c0: 6f31 203d 2041 6273 7472 6163 7453 696d o1 = AbstractSim │ │ │ │ +000138d0: 706c 6963 6961 6c43 6f6d 706c 6578 7b2d plicialComplex{- │ │ │ │ +000138e0: 3120 3d3e 207b 7b7d 7d20 2020 2020 2020 1 => {{}} │ │ │ │ 000138f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013900: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00013910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013930: 2020 2020 2020 2020 207c 0a7c 6f31 203a |.|o1 : │ │ │ │ -00013940: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ -00013950: 6961 6c43 6f6d 706c 6578 2020 2020 2020 ialComplex │ │ │ │ +00013920: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +00013930: 203d 3e20 7b7b 317d 2c20 7b32 7d2c 207b => {{1}, {2}, { │ │ │ │ +00013940: 337d 2c20 7b34 7d2c 207b 357d 2c20 7b37 3}, {4}, {5}, {7 │ │ │ │ +00013950: 7d2c 207b 387d 2c20 7b39 7d7d 207c 0a7c }, {8}, {9}} |.| │ │ │ │ 00013960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013980: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ -00013990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000139a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000139b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000139c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000139d0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ -000139e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000139f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013970: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +00013980: 203d 3e20 7b7b 312c 2032 7d2c 207b 312c => {{1, 2}, {1, │ │ │ │ +00013990: 2033 7d2c 207b 312c 2035 7d2c 207b 312c 3}, {1, 5}, {1, │ │ │ │ +000139a0: 2037 7d2c 207b 312c 2038 7d2c 207c 0a7c 7}, {1, 8}, |.| │ │ │ │ +000139b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000139c0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +000139d0: 203d 3e20 7b7b 312c 2032 2c20 337d 2c20 => {{1, 2, 3}, │ │ │ │ +000139e0: 7b31 2c20 322c 2035 7d2c 207b 312c 2032 {1, 2, 5}, {1, 2 │ │ │ │ +000139f0: 2c20 377d 2c20 7b31 2c20 322c 207c 0a7c , 7}, {1, 2, |.| │ │ │ │ 00013a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013a20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00013a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013a10: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ +00013a20: 203d 3e20 7b7b 312c 2032 2c20 332c 2035 => {{1, 2, 3, 5 │ │ │ │ +00013a30: 7d2c 207b 312c 2032 2c20 332c 2037 7d2c }, {1, 2, 3, 7}, │ │ │ │ +00013a40: 207b 312c 2032 2c20 332c 2038 207c 0a7c {1, 2, 3, 8 |.| │ │ │ │ 00013a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013a70: 2020 2020 2020 2020 207c 0a7c 207b 322c |.| {2, │ │ │ │ -00013a80: 2033 7d2c 207b 322c 2034 7d2c 207b 322c 3}, {2, 4}, {2, │ │ │ │ -00013a90: 2035 7d2c 207b 322c 2037 7d2c 207b 322c 5}, {2, 7}, {2, │ │ │ │ -00013aa0: 2038 7d2c 207b 322c 2039 7d2c 207b 332c 8}, {2, 9}, {3, │ │ │ │ -00013ab0: 2034 7d2c 207b 332c 2035 7d2c 207b 332c 4}, {3, 5}, {3, │ │ │ │ -00013ac0: 2037 7d2c 207b 332c 207c 0a7c 2038 7d2c 7}, {3, |.| 8}, │ │ │ │ -00013ad0: 207b 312c 2033 2c20 357d 2c20 7b31 2c20 {1, 3, 5}, {1, │ │ │ │ -00013ae0: 332c 2037 7d2c 207b 312c 2033 2c20 387d 3, 7}, {1, 3, 8} │ │ │ │ -00013af0: 2c20 7b31 2c20 352c 2037 7d2c 207b 312c , {1, 5, 7}, {1, │ │ │ │ -00013b00: 2035 2c20 387d 2c20 7b31 2c20 372c 2038 5, 8}, {1, 7, 8 │ │ │ │ -00013b10: 7d2c 207b 322c 2033 2c7c 0a7c 7d2c 207b }, {2, 3,|.|}, { │ │ │ │ -00013b20: 312c 2032 2c20 352c 2037 7d2c 207b 312c 1, 2, 5, 7}, {1, │ │ │ │ -00013b30: 2032 2c20 352c 2038 7d2c 207b 312c 2032 2, 5, 8}, {1, 2 │ │ │ │ -00013b40: 2c20 372c 2038 7d2c 207b 312c 2033 2c20 , 7, 8}, {1, 3, │ │ │ │ -00013b50: 352c 2037 7d2c 207b 312c 2033 2c20 352c 5, 7}, {1, 3, 5, │ │ │ │ -00013b60: 2038 7d2c 207b 312c 207c 0a7c 2c20 332c 8}, {1, |.|, 3, │ │ │ │ -00013b70: 2037 2c20 387d 2c20 7b31 2c20 322c 2035 7, 8}, {1, 2, 5 │ │ │ │ -00013b80: 2c20 372c 2038 7d2c 207b 312c 2033 2c20 , 7, 8}, {1, 3, │ │ │ │ -00013b90: 352c 2037 2c20 387d 2c20 7b32 2c20 332c 5, 7, 8}, {2, 3, │ │ │ │ -00013ba0: 2035 2c20 372c 2038 7d7d 2020 2020 2020 5, 7, 8}} │ │ │ │ -00013bb0: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ +00013a60: 2020 2020 2020 2020 2020 2020 2020 2034 4 │ │ │ │ +00013a70: 203d 3e20 7b7b 312c 2032 2c20 332c 2035 => {{1, 2, 3, 5 │ │ │ │ +00013a80: 2c20 377d 2c20 7b31 2c20 322c 2033 2c20 , 7}, {1, 2, 3, │ │ │ │ +00013a90: 352c 2038 7d2c 207b 312c 2032 207c 0a7c 5, 8}, {1, 2 |.| │ │ │ │ +00013aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013ab0: 2020 2020 2020 2020 2020 2020 2020 2035 5 │ │ │ │ +00013ac0: 203d 3e20 7b7b 312c 2032 2c20 332c 2035 => {{1, 2, 3, 5 │ │ │ │ +00013ad0: 2c20 372c 2038 7d7d 2020 2020 2020 2020 , 7, 8}} │ │ │ │ +00013ae0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00013af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013b30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00013b40: 6f31 203a 2041 6273 7472 6163 7453 696d o1 : AbstractSim │ │ │ │ +00013b50: 706c 6963 6961 6c43 6f6d 706c 6578 2020 plicialComplex │ │ │ │ +00013b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013b80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00013b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013c00: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ +00013bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00013be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013c20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00013c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013c50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00013c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013ca0: 2020 2020 2020 2020 207c 0a7c 387d 2c20 |.|8}, │ │ │ │ -00013cb0: 7b34 2c20 397d 2c20 7b35 2c20 377d 2c20 {4, 9}, {5, 7}, │ │ │ │ -00013cc0: 7b35 2c20 387d 2c20 7b37 2c20 387d 7d20 {5, 8}, {7, 8}} │ │ │ │ -00013cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013cf0: 2020 2020 2020 2020 207c 0a7c 2035 7d2c |.| 5}, │ │ │ │ -00013d00: 207b 322c 2033 2c20 377d 2c20 7b32 2c20 {2, 3, 7}, {2, │ │ │ │ -00013d10: 332c 2038 7d2c 207b 322c 2034 2c20 397d 3, 8}, {2, 4, 9} │ │ │ │ -00013d20: 2c20 7b32 2c20 352c 2037 7d2c 207b 322c , {2, 5, 7}, {2, │ │ │ │ -00013d30: 2035 2c20 2020 2020 2020 2020 2020 2020 5, │ │ │ │ -00013d40: 2020 2020 2020 2020 207c 0a7c 332c 2037 |.|3, 7 │ │ │ │ -00013d50: 2c20 387d 2c20 7b31 2c20 352c 2037 2c20 , 8}, {1, 5, 7, │ │ │ │ -00013d60: 387d 2c20 7b32 2c20 332c 2035 2c20 377d 8}, {2, 3, 5, 7} │ │ │ │ -00013d70: 2c20 7b32 2c20 332c 2035 2c20 387d 2c20 , {2, 3, 5, 8}, │ │ │ │ -00013d80: 7b32 2c20 2020 2020 2020 2020 2020 2020 {2, │ │ │ │ -00013d90: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ -00013da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013c70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00013c80: 207b 322c 2033 7d2c 207b 322c 2034 7d2c {2, 3}, {2, 4}, │ │ │ │ +00013c90: 207b 322c 2035 7d2c 207b 322c 2037 7d2c {2, 5}, {2, 7}, │ │ │ │ +00013ca0: 207b 322c 2038 7d2c 207b 322c 2039 7d2c {2, 8}, {2, 9}, │ │ │ │ +00013cb0: 207b 332c 2034 7d2c 207b 332c 2035 7d2c {3, 4}, {3, 5}, │ │ │ │ +00013cc0: 207b 332c 2037 7d2c 207b 332c 207c 0a7c {3, 7}, {3, |.| │ │ │ │ +00013cd0: 2038 7d2c 207b 312c 2033 2c20 357d 2c20 8}, {1, 3, 5}, │ │ │ │ +00013ce0: 7b31 2c20 332c 2037 7d2c 207b 312c 2033 {1, 3, 7}, {1, 3 │ │ │ │ +00013cf0: 2c20 387d 2c20 7b31 2c20 352c 2037 7d2c , 8}, {1, 5, 7}, │ │ │ │ +00013d00: 207b 312c 2035 2c20 387d 2c20 7b31 2c20 {1, 5, 8}, {1, │ │ │ │ +00013d10: 372c 2038 7d2c 207b 322c 2033 2c7c 0a7c 7, 8}, {2, 3,|.| │ │ │ │ +00013d20: 7d2c 207b 312c 2032 2c20 352c 2037 7d2c }, {1, 2, 5, 7}, │ │ │ │ +00013d30: 207b 312c 2032 2c20 352c 2038 7d2c 207b {1, 2, 5, 8}, { │ │ │ │ +00013d40: 312c 2032 2c20 372c 2038 7d2c 207b 312c 1, 2, 7, 8}, {1, │ │ │ │ +00013d50: 2033 2c20 352c 2037 7d2c 207b 312c 2033 3, 5, 7}, {1, 3 │ │ │ │ +00013d60: 2c20 352c 2038 7d2c 207b 312c 207c 0a7c , 5, 8}, {1, |.| │ │ │ │ +00013d70: 2c20 332c 2037 2c20 387d 2c20 7b31 2c20 , 3, 7, 8}, {1, │ │ │ │ +00013d80: 322c 2035 2c20 372c 2038 7d2c 207b 312c 2, 5, 7, 8}, {1, │ │ │ │ +00013d90: 2033 2c20 352c 2037 2c20 387d 2c20 7b32 3, 5, 7, 8}, {2 │ │ │ │ +00013da0: 2c20 332c 2035 2c20 372c 2038 7d7d 2020 , 3, 5, 7, 8}} │ │ │ │ +00013db0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00013dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013de0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ -00013df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ 00013e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013e20: 2020 2020 2020 7d20 2020 2020 2020 2020 } │ │ │ │ -00013e30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00013e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013e50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00013e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013e80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00013e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013ed0: 2020 2020 2020 2020 207c 0a7c 387d 2c20 |.|8}, │ │ │ │ -00013ee0: 7b32 2c20 372c 2038 7d2c 207b 332c 2035 {2, 7, 8}, {3, 5 │ │ │ │ -00013ef0: 2c20 377d 2c20 7b33 2c20 352c 2038 7d2c , 7}, {3, 5, 8}, │ │ │ │ -00013f00: 207b 332c 2037 2c20 387d 2c20 7b35 2c20 {3, 7, 8}, {5, │ │ │ │ -00013f10: 372c 2038 7d7d 2020 2020 2020 2020 2020 7, 8}} │ │ │ │ -00013f20: 2020 2020 2020 2020 207c 0a7c 332c 2037 |.|3, 7 │ │ │ │ -00013f30: 2c20 387d 2c20 7b32 2c20 352c 2037 2c20 , 8}, {2, 5, 7, │ │ │ │ -00013f40: 387d 2c20 7b33 2c20 352c 2037 2c20 387d 8}, {3, 5, 7, 8} │ │ │ │ -00013f50: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ -00013f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013f70: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -00013f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013ea0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00013eb0: 387d 2c20 7b34 2c20 397d 2c20 7b35 2c20 8}, {4, 9}, {5, │ │ │ │ +00013ec0: 377d 2c20 7b35 2c20 387d 2c20 7b37 2c20 7}, {5, 8}, {7, │ │ │ │ +00013ed0: 387d 7d20 2020 2020 2020 2020 2020 2020 8}} │ │ │ │ +00013ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013ef0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00013f00: 2035 7d2c 207b 322c 2033 2c20 377d 2c20 5}, {2, 3, 7}, │ │ │ │ +00013f10: 7b32 2c20 332c 2038 7d2c 207b 322c 2034 {2, 3, 8}, {2, 4 │ │ │ │ +00013f20: 2c20 397d 2c20 7b32 2c20 352c 2037 7d2c , 9}, {2, 5, 7}, │ │ │ │ +00013f30: 207b 322c 2035 2c20 2020 2020 2020 2020 {2, 5, │ │ │ │ +00013f40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00013f50: 332c 2037 2c20 387d 2c20 7b31 2c20 352c 3, 7, 8}, {1, 5, │ │ │ │ +00013f60: 2037 2c20 387d 2c20 7b32 2c20 332c 2035 7, 8}, {2, 3, 5 │ │ │ │ +00013f70: 2c20 377d 2c20 7b32 2c20 332c 2035 2c20 , 7}, {2, 3, 5, │ │ │ │ +00013f80: 387d 2c20 7b32 2c20 2020 2020 2020 2020 8}, {2, │ │ │ │ +00013f90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00013fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013fc0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ -00013fd0: 2072 6564 7563 6564 5369 6d70 6c69 6369 reducedSimplici │ │ │ │ -00013fe0: 616c 4368 6169 6e43 6f6d 706c 6578 284b alChainComplex(K │ │ │ │ -00013ff0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00013fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00013ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014010: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014020: 2020 2020 2020 2020 2020 7d20 2020 2020 } │ │ │ │ +00014030: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00014040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014060: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014070: 2020 2031 2020 2020 2020 2038 2020 2020 1 8 │ │ │ │ -00014080: 2020 2031 3920 2020 2020 2020 3231 2020 19 21 │ │ │ │ -00014090: 2020 2020 2031 3520 2020 2020 2020 3620 15 6 │ │ │ │ -000140a0: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ -000140b0: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ -000140c0: 205a 5a20 203c 2d2d 205a 5a20 203c 2d2d ZZ <-- ZZ <-- │ │ │ │ -000140d0: 205a 5a20 2020 3c2d 2d20 5a5a 2020 203c ZZ <-- ZZ < │ │ │ │ -000140e0: 2d2d 205a 5a20 2020 3c2d 2d20 5a5a 2020 -- ZZ <-- ZZ │ │ │ │ -000140f0: 3c2d 2d20 5a5a 2020 2020 2020 2020 2020 <-- ZZ │ │ │ │ -00014100: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014150: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014160: 202d 3120 2020 2020 2030 2020 2020 2020 -1 0 │ │ │ │ -00014170: 2031 2020 2020 2020 2020 3220 2020 2020 1 2 │ │ │ │ -00014180: 2020 2033 2020 2020 2020 2020 3420 2020 3 4 │ │ │ │ -00014190: 2020 2020 3520 2020 2020 2020 2020 2020 5 │ │ │ │ -000141a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000141b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000141c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000141d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000141e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000141f0: 2020 2020 2020 2020 207c 0a7c 6f32 203a |.|o2 : │ │ │ │ -00014200: 2043 6f6d 706c 6578 2020 2020 2020 2020 Complex │ │ │ │ -00014210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014080: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00014090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000140a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000140b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000140c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000140d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000140e0: 387d 2c20 7b32 2c20 372c 2038 7d2c 207b 8}, {2, 7, 8}, { │ │ │ │ +000140f0: 332c 2035 2c20 377d 2c20 7b33 2c20 352c 3, 5, 7}, {3, 5, │ │ │ │ +00014100: 2038 7d2c 207b 332c 2037 2c20 387d 2c20 8}, {3, 7, 8}, │ │ │ │ +00014110: 7b35 2c20 372c 2038 7d7d 2020 2020 2020 {5, 7, 8}} │ │ │ │ +00014120: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00014130: 332c 2037 2c20 387d 2c20 7b32 2c20 352c 3, 7, 8}, {2, 5, │ │ │ │ +00014140: 2037 2c20 387d 2c20 7b33 2c20 352c 2037 7, 8}, {3, 5, 7 │ │ │ │ +00014150: 2c20 387d 7d20 2020 2020 2020 2020 2020 , 8}} │ │ │ │ +00014160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014170: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00014180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000141a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000141b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000141c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000141d0: 6932 203a 2072 6564 7563 6564 5369 6d70 i2 : reducedSimp │ │ │ │ +000141e0: 6c69 6369 616c 4368 6169 6e43 6f6d 706c licialChainCompl │ │ │ │ +000141f0: 6578 284b 2920 2020 2020 2020 2020 2020 ex(K) │ │ │ │ +00014200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014210: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00014220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014240: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -00014250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014290: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5761 7973 ---------+..Ways │ │ │ │ -000142a0: 2074 6f20 7573 6520 7265 6475 6365 6453 to use reducedS │ │ │ │ -000142b0: 696d 706c 6963 6961 6c43 6861 696e 436f implicialChainCo │ │ │ │ -000142c0: 6d70 6c65 783a 0a3d 3d3d 3d3d 3d3d 3d3d mplex:.========= │ │ │ │ -000142d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000142e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000142f0: 3d0a 0a20 202a 2022 7265 6475 6365 6453 =.. * "reducedS │ │ │ │ -00014300: 696d 706c 6963 6961 6c43 6861 696e 436f implicialChainCo │ │ │ │ -00014310: 6d70 6c65 7828 4162 7374 7261 6374 5369 mplex(AbstractSi │ │ │ │ -00014320: 6d70 6c69 6369 616c 436f 6d70 6c65 7829 mplicialComplex) │ │ │ │ -00014330: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ -00014340: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ -00014350: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ -00014360: 6a65 6374 202a 6e6f 7465 2072 6564 7563 ject *note reduc │ │ │ │ -00014370: 6564 5369 6d70 6c69 6369 616c 4368 6169 edSimplicialChai │ │ │ │ -00014380: 6e43 6f6d 706c 6578 3a20 7265 6475 6365 nComplex: reduce │ │ │ │ -00014390: 6453 696d 706c 6963 6961 6c43 6861 696e dSimplicialChain │ │ │ │ -000143a0: 436f 6d70 6c65 782c 0a69 7320 6120 2a6e Complex,.is a *n │ │ │ │ -000143b0: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ -000143c0: 696f 6e3a 2028 4d61 6361 756c 6179 3244 ion: (Macaulay2D │ │ │ │ -000143d0: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ -000143e0: 6e2c 2e0a 1f0a 4669 6c65 3a20 4162 7374 n,....File: Abst │ │ │ │ -000143f0: 7261 6374 5369 6d70 6c69 6369 616c 436f ractSimplicialCo │ │ │ │ -00014400: 6d70 6c65 7865 732e 696e 666f 2c20 4e6f mplexes.info, No │ │ │ │ -00014410: 6465 3a20 7369 6d70 6c69 6369 616c 4368 de: simplicialCh │ │ │ │ -00014420: 6169 6e43 6f6d 706c 6578 2c20 5072 6576 ainComplex, Prev │ │ │ │ -00014430: 3a20 7265 6475 6365 6453 696d 706c 6963 : reducedSimplic │ │ │ │ -00014440: 6961 6c43 6861 696e 436f 6d70 6c65 782c ialChainComplex, │ │ │ │ -00014450: 2055 703a 2054 6f70 0a0a 7369 6d70 6c69 Up: Top..simpli │ │ │ │ -00014460: 6369 616c 4368 6169 6e43 6f6d 706c 6578 cialChainComplex │ │ │ │ -00014470: 202d 2d20 5468 6520 6e6f 6e2d 7265 6475 -- The non-redu │ │ │ │ -00014480: 6365 6420 686f 6d6f 6c6f 6769 6361 6c20 ced homological │ │ │ │ -00014490: 6368 6169 6e20 636f 6d70 6c65 7820 7468 chain complex th │ │ │ │ -000144a0: 6174 2069 7320 6465 7465 726d 696e 6564 at is determined │ │ │ │ -000144b0: 2062 7920 616e 2061 6273 7472 6163 7420 by an abstract │ │ │ │ -000144c0: 7369 6d70 6c69 6369 616c 2063 6f6d 706c simplicial compl │ │ │ │ -000144d0: 6578 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ex.************* │ │ │ │ -000144e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000144f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00014500: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00014510: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00014520: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00014530: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00014540: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a44 6573 ***********..Des │ │ │ │ -00014550: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -00014560: 3d3d 3d3d 0a0a 5468 6973 206d 6574 686f ====..This metho │ │ │ │ -00014570: 6420 7265 7475 726e 7320 7468 6520 286e d returns the (n │ │ │ │ -00014580: 6f6e 2d72 6564 7563 6564 2920 686f 6d6f on-reduced) homo │ │ │ │ -00014590: 6c6f 6769 6361 6c20 6368 6169 6e20 636f logical chain co │ │ │ │ -000145a0: 6d70 6c65 7820 2869 2e65 2e2c 2074 6865 mplex (i.e., the │ │ │ │ -000145b0: 7265 2069 730a 6e6f 206e 6f6e 7a65 726f re is.no nonzero │ │ │ │ -000145c0: 2074 6572 6d20 696e 2068 6f6d 6f6c 6f67 term in homolog │ │ │ │ -000145d0: 6963 616c 2064 6567 7265 6520 2d31 2074 ical degree -1 t │ │ │ │ -000145e0: 6861 7420 636f 7272 6573 706f 6e64 7320 hat corresponds │ │ │ │ -000145f0: 746f 2074 6865 2065 6d70 7479 2066 6163 to the empty fac │ │ │ │ -00014600: 6529 0a74 6861 7420 6973 2061 7373 6f63 e).that is assoc │ │ │ │ -00014610: 6961 7465 6420 746f 2061 6e20 6162 7374 iated to an abst │ │ │ │ -00014620: 7261 6374 2073 696d 706c 6963 6961 6c20 ract simplicial │ │ │ │ -00014630: 636f 6d70 6c65 782e 2020 5468 6520 6368 complex. The ch │ │ │ │ -00014640: 6169 6e20 636f 6d70 6c65 7820 6973 0a64 ain complex is.d │ │ │ │ -00014650: 6566 696e 6564 206f 7665 7220 7468 6520 efined over the │ │ │ │ -00014660: 696e 7465 6765 7273 2e0a 0a2b 2d2d 2d2d integers...+---- │ │ │ │ -00014670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000146a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000146b0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ -000146c0: 204b 203d 2061 6273 7472 6163 7453 696d K = abstractSim │ │ │ │ -000146d0: 706c 6963 6961 6c43 6f6d 706c 6578 287b plicialComplex({ │ │ │ │ -000146e0: 7b31 2c32 2c33 7d2c 7b31 2c34 2c35 7d2c {1,2,3},{1,4,5}, │ │ │ │ -000146f0: 7b32 2c34 2c35 2c37 7d7d 2920 2020 2020 {2,4,5,7}}) │ │ │ │ -00014700: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014750: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ -00014760: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ -00014770: 6961 6c43 6f6d 706c 6578 7b2d 3120 3d3e ialComplex{-1 => │ │ │ │ -00014780: 207b 7b7d 7d20 2020 2020 2020 2020 2020 {{}} │ │ │ │ -00014790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000147a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000147b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000147c0: 2020 2020 2020 2020 2020 2030 203d 3e20 0 => │ │ │ │ -000147d0: 7b7b 317d 2c20 7b32 7d2c 207b 337d 2c20 {{1}, {2}, {3}, │ │ │ │ -000147e0: 7b34 7d2c 207b 357d 2c20 7b37 7d7d 2020 {4}, {5}, {7}} │ │ │ │ -000147f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014810: 2020 2020 2020 2020 2020 2031 203d 3e20 1 => │ │ │ │ -00014820: 7b7b 312c 2032 7d2c 207b 312c 2033 7d2c {{1, 2}, {1, 3}, │ │ │ │ -00014830: 207b 312c 2034 7d2c 207b 312c 2035 7d2c {1, 4}, {1, 5}, │ │ │ │ -00014840: 207b 322c 2033 7d2c 207c 0a7c 2020 2020 {2, 3}, |.| │ │ │ │ -00014850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014860: 2020 2020 2020 2020 2020 2032 203d 3e20 2 => │ │ │ │ -00014870: 7b7b 312c 2032 2c20 337d 2c20 7b31 2c20 {{1, 2, 3}, {1, │ │ │ │ -00014880: 342c 2035 7d2c 207b 322c 2034 2c20 357d 4, 5}, {2, 4, 5} │ │ │ │ -00014890: 2c20 7b32 2c20 342c 207c 0a7c 2020 2020 , {2, 4, |.| │ │ │ │ -000148a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000148b0: 2020 2020 2020 2020 2020 2033 203d 3e20 3 => │ │ │ │ -000148c0: 7b7b 322c 2034 2c20 352c 2037 7d7d 2020 {{2, 4, 5, 7}} │ │ │ │ -000148d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000148e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000148f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014260: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00014270: 2020 2020 2020 2031 2020 2020 2020 2038 1 8 │ │ │ │ +00014280: 2020 2020 2020 2031 3920 2020 2020 2020 19 │ │ │ │ +00014290: 3231 2020 2020 2020 2031 3520 2020 2020 21 15 │ │ │ │ +000142a0: 2020 3620 2020 2020 2020 3120 2020 2020 6 1 │ │ │ │ +000142b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000142c0: 6f32 203d 205a 5a20 203c 2d2d 205a 5a20 o2 = ZZ <-- ZZ │ │ │ │ +000142d0: 203c 2d2d 205a 5a20 2020 3c2d 2d20 5a5a <-- ZZ <-- ZZ │ │ │ │ +000142e0: 2020 203c 2d2d 205a 5a20 2020 3c2d 2d20 <-- ZZ <-- │ │ │ │ +000142f0: 5a5a 2020 3c2d 2d20 5a5a 2020 2020 2020 ZZ <-- ZZ │ │ │ │ +00014300: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00014310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014350: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00014360: 2020 2020 202d 3120 2020 2020 2030 2020 -1 0 │ │ │ │ +00014370: 2020 2020 2031 2020 2020 2020 2020 3220 1 2 │ │ │ │ +00014380: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ +00014390: 3420 2020 2020 2020 3520 2020 2020 2020 4 5 │ │ │ │ +000143a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000143b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000143c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000143d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000143e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000143f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00014400: 6f32 203a 2043 6f6d 706c 6578 2020 2020 o2 : Complex │ │ │ │ +00014410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014440: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00014450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +000144a0: 5761 7973 2074 6f20 7573 6520 7265 6475 Ways to use redu │ │ │ │ +000144b0: 6365 6453 696d 706c 6963 6961 6c43 6861 cedSimplicialCha │ │ │ │ +000144c0: 696e 436f 6d70 6c65 783a 0a3d 3d3d 3d3d inComplex:.===== │ │ │ │ +000144d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000144e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000144f0: 3d3d 3d3d 3d0a 0a20 202a 2022 7265 6475 =====.. * "redu │ │ │ │ +00014500: 6365 6453 696d 706c 6963 6961 6c43 6861 cedSimplicialCha │ │ │ │ +00014510: 696e 436f 6d70 6c65 7828 4162 7374 7261 inComplex(Abstra │ │ │ │ +00014520: 6374 5369 6d70 6c69 6369 616c 436f 6d70 ctSimplicialComp │ │ │ │ +00014530: 6c65 7829 220a 0a46 6f72 2074 6865 2070 lex)"..For the p │ │ │ │ +00014540: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +00014550: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +00014560: 6520 6f62 6a65 6374 202a 6e6f 7465 2072 e object *note r │ │ │ │ +00014570: 6564 7563 6564 5369 6d70 6c69 6369 616c educedSimplicial │ │ │ │ +00014580: 4368 6169 6e43 6f6d 706c 6578 3a20 7265 ChainComplex: re │ │ │ │ +00014590: 6475 6365 6453 696d 706c 6963 6961 6c43 ducedSimplicialC │ │ │ │ +000145a0: 6861 696e 436f 6d70 6c65 782c 0a69 7320 hainComplex,.is │ │ │ │ +000145b0: 6120 2a6e 6f74 6520 6d65 7468 6f64 2066 a *note method f │ │ │ │ +000145c0: 756e 6374 696f 6e3a 2028 4d61 6361 756c unction: (Macaul │ │ │ │ +000145d0: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ +000145e0: 6374 696f 6e2c 2e0a 1f0a 4669 6c65 3a20 ction,....File: │ │ │ │ +000145f0: 4162 7374 7261 6374 5369 6d70 6c69 6369 AbstractSimplici │ │ │ │ +00014600: 616c 436f 6d70 6c65 7865 732e 696e 666f alComplexes.info │ │ │ │ +00014610: 2c20 4e6f 6465 3a20 7369 6d70 6c69 6369 , Node: simplici │ │ │ │ +00014620: 616c 4368 6169 6e43 6f6d 706c 6578 2c20 alChainComplex, │ │ │ │ +00014630: 5072 6576 3a20 7265 6475 6365 6453 696d Prev: reducedSim │ │ │ │ +00014640: 706c 6963 6961 6c43 6861 696e 436f 6d70 plicialChainComp │ │ │ │ +00014650: 6c65 782c 2055 703a 2054 6f70 0a0a 7369 lex, Up: Top..si │ │ │ │ +00014660: 6d70 6c69 6369 616c 4368 6169 6e43 6f6d mplicialChainCom │ │ │ │ +00014670: 706c 6578 202d 2d20 5468 6520 6e6f 6e2d plex -- The non- │ │ │ │ +00014680: 7265 6475 6365 6420 686f 6d6f 6c6f 6769 reduced homologi │ │ │ │ +00014690: 6361 6c20 6368 6169 6e20 636f 6d70 6c65 cal chain comple │ │ │ │ +000146a0: 7820 7468 6174 2069 7320 6465 7465 726d x that is determ │ │ │ │ +000146b0: 696e 6564 2062 7920 616e 2061 6273 7472 ined by an abstr │ │ │ │ +000146c0: 6163 7420 7369 6d70 6c69 6369 616c 2063 act simplicial c │ │ │ │ +000146d0: 6f6d 706c 6578 0a2a 2a2a 2a2a 2a2a 2a2a omplex.********* │ │ │ │ +000146e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000146f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00014700: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00014710: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00014720: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00014730: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00014740: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +00014750: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +00014760: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 206d ========..This m │ │ │ │ +00014770: 6574 686f 6420 7265 7475 726e 7320 7468 ethod returns th │ │ │ │ +00014780: 6520 286e 6f6e 2d72 6564 7563 6564 2920 e (non-reduced) │ │ │ │ +00014790: 686f 6d6f 6c6f 6769 6361 6c20 6368 6169 homological chai │ │ │ │ +000147a0: 6e20 636f 6d70 6c65 7820 2869 2e65 2e2c n complex (i.e., │ │ │ │ +000147b0: 2074 6865 7265 2069 730a 6e6f 206e 6f6e there is.no non │ │ │ │ +000147c0: 7a65 726f 2074 6572 6d20 696e 2068 6f6d zero term in hom │ │ │ │ +000147d0: 6f6c 6f67 6963 616c 2064 6567 7265 6520 ological degree │ │ │ │ +000147e0: 2d31 2074 6861 7420 636f 7272 6573 706f -1 that correspo │ │ │ │ +000147f0: 6e64 7320 746f 2074 6865 2065 6d70 7479 nds to the empty │ │ │ │ +00014800: 2066 6163 6529 0a74 6861 7420 6973 2061 face).that is a │ │ │ │ +00014810: 7373 6f63 6961 7465 6420 746f 2061 6e20 ssociated to an │ │ │ │ +00014820: 6162 7374 7261 6374 2073 696d 706c 6963 abstract simplic │ │ │ │ +00014830: 6961 6c20 636f 6d70 6c65 782e 2020 5468 ial complex. Th │ │ │ │ +00014840: 6520 6368 6169 6e20 636f 6d70 6c65 7820 e chain complex │ │ │ │ +00014850: 6973 0a64 6566 696e 6564 206f 7665 7220 is.defined over │ │ │ │ +00014860: 7468 6520 696e 7465 6765 7273 2e0a 0a2b the integers...+ │ │ │ │ +00014870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000148a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000148b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000148c0: 6931 203a 204b 203d 2061 6273 7472 6163 i1 : K = abstrac │ │ │ │ +000148d0: 7453 696d 706c 6963 6961 6c43 6f6d 706c tSimplicialCompl │ │ │ │ +000148e0: 6578 287b 7b31 2c32 2c33 7d2c 7b31 2c34 ex({{1,2,3},{1,4 │ │ │ │ +000148f0: 2c35 7d2c 7b32 2c34 2c35 2c37 7d7d 2920 ,5},{2,4,5,7}}) │ │ │ │ +00014900: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00014910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014930: 2020 2020 2020 2020 207c 0a7c 6f31 203a |.|o1 : │ │ │ │ -00014940: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ -00014950: 6961 6c43 6f6d 706c 6578 2020 2020 2020 ialComplex │ │ │ │ -00014960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014980: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ -00014990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000149a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000149b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000149c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000149d0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ -000149e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000149f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014a00: 2020 2020 2020 2020 2020 207d 2020 2020 } │ │ │ │ -00014a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014a20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014950: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00014960: 6f31 203d 2041 6273 7472 6163 7453 696d o1 = AbstractSim │ │ │ │ +00014970: 706c 6963 6961 6c43 6f6d 706c 6578 7b2d plicialComplex{- │ │ │ │ +00014980: 3120 3d3e 207b 7b7d 7d20 2020 2020 2020 1 => {{}} │ │ │ │ +00014990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000149a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000149b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000149c0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +000149d0: 203d 3e20 7b7b 317d 2c20 7b32 7d2c 207b => {{1}, {2}, { │ │ │ │ +000149e0: 337d 2c20 7b34 7d2c 207b 357d 2c20 7b37 3}, {4}, {5}, {7 │ │ │ │ +000149f0: 7d7d 2020 2020 2020 2020 2020 207c 0a7c }} |.| │ │ │ │ +00014a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014a10: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +00014a20: 203d 3e20 7b7b 312c 2032 7d2c 207b 312c => {{1, 2}, {1, │ │ │ │ +00014a30: 2033 7d2c 207b 312c 2034 7d2c 207b 312c 3}, {1, 4}, {1, │ │ │ │ +00014a40: 2035 7d2c 207b 322c 2033 7d2c 207c 0a7c 5}, {2, 3}, |.| │ │ │ │ 00014a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014a70: 2020 2020 2020 2020 207c 0a7c 7b32 2c20 |.|{2, │ │ │ │ -00014a80: 347d 2c20 7b32 2c20 357d 2c20 7b32 2c20 4}, {2, 5}, {2, │ │ │ │ -00014a90: 377d 2c20 7b34 2c20 357d 2c20 7b34 2c20 7}, {4, 5}, {4, │ │ │ │ -00014aa0: 377d 2c20 7b35 2c20 377d 7d20 2020 2020 7}, {5, 7}} │ │ │ │ -00014ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014ac0: 2020 2020 2020 2020 207c 0a7c 377d 2c20 |.|7}, │ │ │ │ -00014ad0: 7b32 2c20 352c 2037 7d2c 207b 342c 2035 {2, 5, 7}, {4, 5 │ │ │ │ -00014ae0: 2c20 377d 7d20 2020 2020 2020 2020 2020 , 7}} │ │ │ │ +00014a60: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00014a70: 203d 3e20 7b7b 312c 2032 2c20 337d 2c20 => {{1, 2, 3}, │ │ │ │ +00014a80: 7b31 2c20 342c 2035 7d2c 207b 322c 2034 {1, 4, 5}, {2, 4 │ │ │ │ +00014a90: 2c20 357d 2c20 7b32 2c20 342c 207c 0a7c , 5}, {2, 4, |.| │ │ │ │ +00014aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014ab0: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ +00014ac0: 203d 3e20 7b7b 322c 2034 2c20 352c 2037 => {{2, 4, 5, 7 │ │ │ │ +00014ad0: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ +00014ae0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00014af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014b10: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -00014b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014b60: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ -00014b70: 2043 203d 2073 696d 706c 6963 6961 6c43 C = simplicialC │ │ │ │ -00014b80: 6861 696e 436f 6d70 6c65 7828 4b29 2020 hainComplex(K) │ │ │ │ -00014b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014bb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014b30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00014b40: 6f31 203a 2041 6273 7472 6163 7453 696d o1 : AbstractSim │ │ │ │ +00014b50: 706c 6963 6961 6c43 6f6d 706c 6578 2020 plicialComplex │ │ │ │ +00014b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014b80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00014b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ 00014be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014c00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014c10: 2020 2036 2020 2020 2020 2031 3120 2020 6 11 │ │ │ │ -00014c20: 2020 2020 3620 2020 2020 2020 3120 2020 6 1 │ │ │ │ +00014c00: 2020 2020 2020 2020 2020 2020 2020 207d } │ │ │ │ +00014c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014c20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00014c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014c50: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ -00014c60: 205a 5a20 203c 2d2d 205a 5a20 2020 3c2d ZZ <-- ZZ <- │ │ │ │ -00014c70: 2d20 5a5a 2020 3c2d 2d20 5a5a 2020 2020 - ZZ <-- ZZ │ │ │ │ -00014c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014ca0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00014c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014c70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00014c80: 7b32 2c20 347d 2c20 7b32 2c20 357d 2c20 {2, 4}, {2, 5}, │ │ │ │ +00014c90: 7b32 2c20 377d 2c20 7b34 2c20 357d 2c20 {2, 7}, {4, 5}, │ │ │ │ +00014ca0: 7b34 2c20 377d 2c20 7b35 2c20 377d 7d20 {4, 7}, {5, 7}} │ │ │ │ 00014cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014cf0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014d00: 2030 2020 2020 2020 2031 2020 2020 2020 0 1 │ │ │ │ -00014d10: 2020 3220 2020 2020 2020 3320 2020 2020 2 3 │ │ │ │ -00014d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014d40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014d90: 2020 2020 2020 2020 207c 0a7c 6f32 203a |.|o2 : │ │ │ │ -00014da0: 2043 6f6d 706c 6578 2020 2020 2020 2020 Complex │ │ │ │ -00014db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014cc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00014cd0: 377d 2c20 7b32 2c20 352c 2037 7d2c 207b 7}, {2, 5, 7}, { │ │ │ │ +00014ce0: 342c 2035 2c20 377d 7d20 2020 2020 2020 4, 5, 7}} │ │ │ │ +00014cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014d10: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00014d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00014d70: 6932 203a 2043 203d 2073 696d 706c 6963 i2 : C = simplic │ │ │ │ +00014d80: 6961 6c43 6861 696e 436f 6d70 6c65 7828 ialChainComplex( │ │ │ │ +00014d90: 4b29 2020 2020 2020 2020 2020 2020 2020 K) │ │ │ │ +00014da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014db0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00014dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014de0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -00014df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014e30: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5761 7973 ---------+..Ways │ │ │ │ -00014e40: 2074 6f20 7573 6520 7369 6d70 6c69 6369 to use simplici │ │ │ │ -00014e50: 616c 4368 6169 6e43 6f6d 706c 6578 3a0a alChainComplex:. │ │ │ │ -00014e60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00014e70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00014e80: 3d3d 3d0a 0a20 202a 2022 7369 6d70 6c69 ===.. * "simpli │ │ │ │ -00014e90: 6369 616c 4368 6169 6e43 6f6d 706c 6578 cialChainComplex │ │ │ │ -00014ea0: 2841 6273 7472 6163 7453 696d 706c 6963 (AbstractSimplic │ │ │ │ -00014eb0: 6961 6c43 6f6d 706c 6578 2922 0a0a 466f ialComplex)"..Fo │ │ │ │ -00014ec0: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -00014ed0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -00014ee0: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -00014ef0: 2a6e 6f74 6520 7369 6d70 6c69 6369 616c *note simplicial │ │ │ │ -00014f00: 4368 6169 6e43 6f6d 706c 6578 3a20 7369 ChainComplex: si │ │ │ │ -00014f10: 6d70 6c69 6369 616c 4368 6169 6e43 6f6d mplicialChainCom │ │ │ │ -00014f20: 706c 6578 2c20 6973 2061 202a 6e6f 7465 plex, is a *note │ │ │ │ -00014f30: 0a6d 6574 686f 6420 6675 6e63 7469 6f6e .method function │ │ │ │ -00014f40: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00014f50: 4d65 7468 6f64 4675 6e63 7469 6f6e 2c2e MethodFunction,. │ │ │ │ -00014f60: 0a1f 0a54 6167 2054 6162 6c65 3a0a 4e6f ...Tag Table:.No │ │ │ │ -00014f70: 6465 3a20 546f 707f 3238 330a 4e6f 6465 de: Top.283.Node │ │ │ │ -00014f80: 3a20 4162 7374 7261 6374 5369 6d70 6c69 : AbstractSimpli │ │ │ │ -00014f90: 6369 616c 436f 6d70 6c65 787f 3737 3736 cialComplex.7776 │ │ │ │ -00014fa0: 0a4e 6f64 653a 2061 6273 7472 6163 7453 .Node: abstractS │ │ │ │ -00014fb0: 696d 706c 6963 6961 6c43 6f6d 706c 6578 implicialComplex │ │ │ │ -00014fc0: 7f31 3139 3930 0a4e 6f64 653a 2041 6273 .11990.Node: Abs │ │ │ │ -00014fd0: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ -00014fe0: 6f6d 706c 6578 203d 3d20 4162 7374 7261 omplex == Abstra │ │ │ │ -00014ff0: 6374 5369 6d70 6c69 6369 616c 436f 6d70 ctSimplicialComp │ │ │ │ -00015000: 6c65 787f 3137 3934 330a 4e6f 6465 3a20 lex.17943.Node: │ │ │ │ -00015010: 4162 7374 7261 6374 5369 6d70 6c69 6369 AbstractSimplici │ │ │ │ -00015020: 616c 436f 6d70 6c65 7820 5f75 7320 5a5a alComplex _us ZZ │ │ │ │ -00015030: 7f31 3931 3031 0a4e 6f64 653a 2061 6273 .19101.Node: abs │ │ │ │ -00015040: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ -00015050: 6f6d 706c 6578 4661 6365 7473 7f32 3230 omplexFacets.220 │ │ │ │ -00015060: 3831 0a4e 6f64 653a 2061 6d62 6965 6e74 81.Node: ambient │ │ │ │ -00015070: 4162 7374 7261 6374 5369 6d70 6c69 6369 AbstractSimplici │ │ │ │ -00015080: 616c 436f 6d70 6c65 787f 3233 3836 340a alComplex.23864. │ │ │ │ -00015090: 4e6f 6465 3a20 616d 6269 656e 7441 6273 Node: ambientAbs │ │ │ │ -000150a0: 7472 6163 7453 696d 706c 6963 6961 6c43 tractSimplicialC │ │ │ │ -000150b0: 6f6d 706c 6578 5369 7a65 7f32 3539 3538 omplexSize.25958 │ │ │ │ -000150c0: 0a4e 6f64 653a 2043 616c 6375 6c61 7469 .Node: Calculati │ │ │ │ -000150d0: 6f6e 7320 7769 7468 2072 616e 646f 6d20 ons with random │ │ │ │ -000150e0: 7369 6d70 6c69 6369 616c 2063 6f6d 706c simplicial compl │ │ │ │ -000150f0: 6578 6573 7f32 3736 3531 0a4e 6f64 653a exes.27651.Node: │ │ │ │ -00015100: 2064 6573 6372 6962 655f 6c70 4162 7374 describe_lpAbst │ │ │ │ -00015110: 7261 6374 5369 6d70 6c69 6369 616c 436f ractSimplicialCo │ │ │ │ -00015120: 6d70 6c65 785f 7270 7f33 3430 3134 0a4e mplex_rp.34014.N │ │ │ │ -00015130: 6f64 653a 2064 696d 5f6c 7041 6273 7472 ode: dim_lpAbstr │ │ │ │ -00015140: 6163 7453 696d 706c 6963 6961 6c43 6f6d actSimplicialCom │ │ │ │ -00015150: 706c 6578 5f72 707f 3334 3739 360a 4e6f plex_rp.34796.No │ │ │ │ -00015160: 6465 3a20 486f 7720 746f 206d 616b 6520 de: How to make │ │ │ │ -00015170: 6162 7374 7261 6374 2073 696d 706c 6963 abstract simplic │ │ │ │ -00015180: 6961 6c20 636f 6d70 6c65 7865 737f 3336 ial complexes.36 │ │ │ │ -00015190: 3336 300a 4e6f 6465 3a20 486f 7720 746f 360.Node: How to │ │ │ │ -000151a0: 206d 616b 6520 7265 6475 6365 6420 616e make reduced an │ │ │ │ -000151b0: 6420 6e6f 6e2d 7265 6475 6365 6420 7369 d non-reduced si │ │ │ │ -000151c0: 6d70 6c69 6369 616c 2063 6861 696e 2063 mplicial chain c │ │ │ │ -000151d0: 6f6d 706c 6578 6573 7f34 3532 3139 0a4e omplexes.45219.N │ │ │ │ -000151e0: 6f64 653a 2048 6f77 2074 6f20 6d61 6b65 ode: How to make │ │ │ │ -000151f0: 2073 7562 7369 6d70 6c69 6361 6c20 636f subsimplical co │ │ │ │ -00015200: 6d70 6c65 7865 7320 616e 6420 696e 6475 mplexes and indu │ │ │ │ -00015210: 6365 6420 7369 6d70 6c69 6369 616c 2063 ced simplicial c │ │ │ │ -00015220: 6861 696e 2063 6f6d 706c 6578 206d 6170 hain complex map │ │ │ │ -00015230: 737f 3533 3933 310a 4e6f 6465 3a20 696e s.53931.Node: in │ │ │ │ -00015240: 6475 6365 6452 6564 7563 6564 5369 6d70 ducedReducedSimp │ │ │ │ -00015250: 6c69 6369 616c 4368 6169 6e43 6f6d 706c licialChainCompl │ │ │ │ -00015260: 6578 4d61 707f 3630 3931 380a 4e6f 6465 exMap.60918.Node │ │ │ │ -00015270: 3a20 696e 6475 6365 6453 696d 706c 6963 : inducedSimplic │ │ │ │ -00015280: 6961 6c43 6861 696e 436f 6d70 6c65 784d ialChainComplexM │ │ │ │ -00015290: 6170 7f36 3733 3334 0a4e 6f64 653a 206e ap.67334.Node: n │ │ │ │ -000152a0: 6577 2041 6273 7472 6163 7453 696d 706c ew AbstractSimpl │ │ │ │ -000152b0: 6963 6961 6c43 6f6d 706c 6578 7f37 3237 icialComplex.727 │ │ │ │ -000152c0: 3631 0a4e 6f64 653a 2072 616e 646f 6d41 61.Node: randomA │ │ │ │ -000152d0: 6273 7472 6163 7453 696d 706c 6963 6961 bstractSimplicia │ │ │ │ -000152e0: 6c43 6f6d 706c 6578 7f37 3331 3132 0a4e lComplex.73112.N │ │ │ │ -000152f0: 6f64 653a 2072 616e 646f 6d53 7562 5369 ode: randomSubSi │ │ │ │ -00015300: 6d70 6c69 6369 616c 436f 6d70 6c65 787f mplicialComplex. │ │ │ │ -00015310: 3737 3138 300a 4e6f 6465 3a20 7265 6475 77180.Node: redu │ │ │ │ -00015320: 6365 6453 696d 706c 6963 6961 6c43 6861 cedSimplicialCha │ │ │ │ -00015330: 696e 436f 6d70 6c65 787f 3738 3632 370a inComplex.78627. │ │ │ │ -00015340: 4e6f 6465 3a20 7369 6d70 6c69 6369 616c Node: simplicial │ │ │ │ -00015350: 4368 6169 6e43 6f6d 706c 6578 7f38 3239 ChainComplex.829 │ │ │ │ -00015360: 3136 0a1f 0a45 6e64 2054 6167 2054 6162 16...End Tag Tab │ │ │ │ -00015370: 6c65 0a le. │ │ │ │ +00014de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014e00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00014e10: 2020 2020 2020 2036 2020 2020 2020 2031 6 1 │ │ │ │ +00014e20: 3120 2020 2020 2020 3620 2020 2020 2020 1 6 │ │ │ │ +00014e30: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00014e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014e50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00014e60: 6f32 203d 205a 5a20 203c 2d2d 205a 5a20 o2 = ZZ <-- ZZ │ │ │ │ +00014e70: 2020 3c2d 2d20 5a5a 2020 3c2d 2d20 5a5a <-- ZZ <-- ZZ │ │ │ │ +00014e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014ea0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00014eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014ef0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00014f00: 2020 2020 2030 2020 2020 2020 2031 2020 0 1 │ │ │ │ +00014f10: 2020 2020 2020 3220 2020 2020 2020 3320 2 3 │ │ │ │ +00014f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014f40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00014f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014f90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00014fa0: 6f32 203a 2043 6f6d 706c 6578 2020 2020 o2 : Complex │ │ │ │ +00014fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014fe0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00014ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +00015040: 5761 7973 2074 6f20 7573 6520 7369 6d70 Ways to use simp │ │ │ │ +00015050: 6c69 6369 616c 4368 6169 6e43 6f6d 706c licialChainCompl │ │ │ │ +00015060: 6578 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ex:.============ │ │ │ │ +00015070: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00015080: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 7369 =======.. * "si │ │ │ │ +00015090: 6d70 6c69 6369 616c 4368 6169 6e43 6f6d mplicialChainCom │ │ │ │ +000150a0: 706c 6578 2841 6273 7472 6163 7453 696d plex(AbstractSim │ │ │ │ +000150b0: 706c 6963 6961 6c43 6f6d 706c 6578 2922 plicialComplex)" │ │ │ │ +000150c0: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +000150d0: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +000150e0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +000150f0: 6563 7420 2a6e 6f74 6520 7369 6d70 6c69 ect *note simpli │ │ │ │ +00015100: 6369 616c 4368 6169 6e43 6f6d 706c 6578 cialChainComplex │ │ │ │ +00015110: 3a20 7369 6d70 6c69 6369 616c 4368 6169 : simplicialChai │ │ │ │ +00015120: 6e43 6f6d 706c 6578 2c20 6973 2061 202a nComplex, is a * │ │ │ │ +00015130: 6e6f 7465 0a6d 6574 686f 6420 6675 6e63 note.method func │ │ │ │ +00015140: 7469 6f6e 3a20 284d 6163 6175 6c61 7932 tion: (Macaulay2 │ │ │ │ +00015150: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ +00015160: 6f6e 2c2e 0a1f 0a54 6167 2054 6162 6c65 on,....Tag Table │ │ │ │ +00015170: 3a0a 4e6f 6465 3a20 546f 707f 3238 330a :.Node: Top.283. │ │ │ │ +00015180: 4e6f 6465 3a20 4162 7374 7261 6374 5369 Node: AbstractSi │ │ │ │ +00015190: 6d70 6c69 6369 616c 436f 6d70 6c65 787f mplicialComplex. │ │ │ │ +000151a0: 3737 3736 0a4e 6f64 653a 2061 6273 7472 7776.Node: abstr │ │ │ │ +000151b0: 6163 7453 696d 706c 6963 6961 6c43 6f6d actSimplicialCom │ │ │ │ +000151c0: 706c 6578 7f31 3139 3930 0a4e 6f64 653a plex.11990.Node: │ │ │ │ +000151d0: 2041 6273 7472 6163 7453 696d 706c 6963 AbstractSimplic │ │ │ │ +000151e0: 6961 6c43 6f6d 706c 6578 203d 3d20 4162 ialComplex == Ab │ │ │ │ +000151f0: 7374 7261 6374 5369 6d70 6c69 6369 616c stractSimplicial │ │ │ │ +00015200: 436f 6d70 6c65 787f 3137 3934 330a 4e6f Complex.17943.No │ │ │ │ +00015210: 6465 3a20 4162 7374 7261 6374 5369 6d70 de: AbstractSimp │ │ │ │ +00015220: 6c69 6369 616c 436f 6d70 6c65 7820 5f75 licialComplex _u │ │ │ │ +00015230: 7320 5a5a 7f31 3931 3031 0a4e 6f64 653a s ZZ.19101.Node: │ │ │ │ +00015240: 2061 6273 7472 6163 7453 696d 706c 6963 abstractSimplic │ │ │ │ +00015250: 6961 6c43 6f6d 706c 6578 4661 6365 7473 ialComplexFacets │ │ │ │ +00015260: 7f32 3230 3831 0a4e 6f64 653a 2061 6d62 .22081.Node: amb │ │ │ │ +00015270: 6965 6e74 4162 7374 7261 6374 5369 6d70 ientAbstractSimp │ │ │ │ +00015280: 6c69 6369 616c 436f 6d70 6c65 787f 3233 licialComplex.23 │ │ │ │ +00015290: 3836 340a 4e6f 6465 3a20 616d 6269 656e 864.Node: ambien │ │ │ │ +000152a0: 7441 6273 7472 6163 7453 696d 706c 6963 tAbstractSimplic │ │ │ │ +000152b0: 6961 6c43 6f6d 706c 6578 5369 7a65 7f32 ialComplexSize.2 │ │ │ │ +000152c0: 3539 3538 0a4e 6f64 653a 2043 616c 6375 5958.Node: Calcu │ │ │ │ +000152d0: 6c61 7469 6f6e 7320 7769 7468 2072 616e lations with ran │ │ │ │ +000152e0: 646f 6d20 7369 6d70 6c69 6369 616c 2063 dom simplicial c │ │ │ │ +000152f0: 6f6d 706c 6578 6573 7f32 3736 3531 0a4e omplexes.27651.N │ │ │ │ +00015300: 6f64 653a 2064 6573 6372 6962 655f 6c70 ode: describe_lp │ │ │ │ +00015310: 4162 7374 7261 6374 5369 6d70 6c69 6369 AbstractSimplici │ │ │ │ +00015320: 616c 436f 6d70 6c65 785f 7270 7f33 3433 alComplex_rp.343 │ │ │ │ +00015330: 3538 0a4e 6f64 653a 2064 696d 5f6c 7041 58.Node: dim_lpA │ │ │ │ +00015340: 6273 7472 6163 7453 696d 706c 6963 6961 bstractSimplicia │ │ │ │ +00015350: 6c43 6f6d 706c 6578 5f72 707f 3335 3134 lComplex_rp.3514 │ │ │ │ +00015360: 300a 4e6f 6465 3a20 486f 7720 746f 206d 0.Node: How to m │ │ │ │ +00015370: 616b 6520 6162 7374 7261 6374 2073 696d ake abstract sim │ │ │ │ +00015380: 706c 6963 6961 6c20 636f 6d70 6c65 7865 plicial complexe │ │ │ │ +00015390: 737f 3336 3730 340a 4e6f 6465 3a20 486f s.36704.Node: Ho │ │ │ │ +000153a0: 7720 746f 206d 616b 6520 7265 6475 6365 w to make reduce │ │ │ │ +000153b0: 6420 616e 6420 6e6f 6e2d 7265 6475 6365 d and non-reduce │ │ │ │ +000153c0: 6420 7369 6d70 6c69 6369 616c 2063 6861 d simplicial cha │ │ │ │ +000153d0: 696e 2063 6f6d 706c 6578 6573 7f34 3535 in complexes.455 │ │ │ │ +000153e0: 3633 0a4e 6f64 653a 2048 6f77 2074 6f20 63.Node: How to │ │ │ │ +000153f0: 6d61 6b65 2073 7562 7369 6d70 6c69 6361 make subsimplica │ │ │ │ +00015400: 6c20 636f 6d70 6c65 7865 7320 616e 6420 l complexes and │ │ │ │ +00015410: 696e 6475 6365 6420 7369 6d70 6c69 6369 induced simplici │ │ │ │ +00015420: 616c 2063 6861 696e 2063 6f6d 706c 6578 al chain complex │ │ │ │ +00015430: 206d 6170 737f 3534 3237 350a 4e6f 6465 maps.54275.Node │ │ │ │ +00015440: 3a20 696e 6475 6365 6452 6564 7563 6564 : inducedReduced │ │ │ │ +00015450: 5369 6d70 6c69 6369 616c 4368 6169 6e43 SimplicialChainC │ │ │ │ +00015460: 6f6d 706c 6578 4d61 707f 3631 3236 320a omplexMap.61262. │ │ │ │ +00015470: 4e6f 6465 3a20 696e 6475 6365 6453 696d Node: inducedSim │ │ │ │ +00015480: 706c 6963 6961 6c43 6861 696e 436f 6d70 plicialChainComp │ │ │ │ +00015490: 6c65 784d 6170 7f36 3736 3738 0a4e 6f64 lexMap.67678.Nod │ │ │ │ +000154a0: 653a 206e 6577 2041 6273 7472 6163 7453 e: new AbstractS │ │ │ │ +000154b0: 696d 706c 6963 6961 6c43 6f6d 706c 6578 implicialComplex │ │ │ │ +000154c0: 7f37 3331 3035 0a4e 6f64 653a 2072 616e .73105.Node: ran │ │ │ │ +000154d0: 646f 6d41 6273 7472 6163 7453 696d 706c domAbstractSimpl │ │ │ │ +000154e0: 6963 6961 6c43 6f6d 706c 6578 7f37 3334 icialComplex.734 │ │ │ │ +000154f0: 3536 0a4e 6f64 653a 2072 616e 646f 6d53 56.Node: randomS │ │ │ │ +00015500: 7562 5369 6d70 6c69 6369 616c 436f 6d70 ubSimplicialComp │ │ │ │ +00015510: 6c65 787f 3737 3038 380a 4e6f 6465 3a20 lex.77088.Node: │ │ │ │ +00015520: 7265 6475 6365 6453 696d 706c 6963 6961 reducedSimplicia │ │ │ │ +00015530: 6c43 6861 696e 436f 6d70 6c65 787f 3739 lChainComplex.79 │ │ │ │ +00015540: 3134 330a 4e6f 6465 3a20 7369 6d70 6c69 143.Node: simpli │ │ │ │ +00015550: 6369 616c 4368 6169 6e43 6f6d 706c 6578 cialChainComplex │ │ │ │ +00015560: 7f38 3334 3332 0a1f 0a45 6e64 2054 6167 .83432...End Tag │ │ │ │ +00015570: 2054 6162 6c65 0a Table. │ │ ├── ./usr/share/info/AdjunctionForSurfaces.info.gz │ │ │ ├── AdjunctionForSurfaces.info │ │ │ │ @@ -685,16 +685,16 @@ │ │ │ │ 00002ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ 00002af0: 3020 3a20 656c 6170 7365 6454 696d 6520 0 : elapsedTime │ │ │ │ 00002b00: 6649 3d72 6573 2049 2020 2020 2020 2020 fI=res I │ │ │ │ 00002b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002b30: 7c0a 7c20 2d2d 202e 3037 3938 3536 7320 |.| -- .079856s │ │ │ │ -00002b40: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ +00002b30: 7c0a 7c20 2d2d 202e 3038 3834 3831 3573 |.| -- .0884815s │ │ │ │ +00002b40: 2065 6c61 7073 6564 2020 2020 2020 2020 elapsed │ │ │ │ 00002b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002b70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00002b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002bb0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ @@ -1527,15 +1527,15 @@ │ │ │ │ 00005f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00005f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00005f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00005f90: 2d2d 2d2d 2d2b 0a7c 6931 3520 3a20 656c -----+.|i15 : el │ │ │ │ 00005fa0: 6170 7365 6454 696d 6520 6265 7474 6928 apsedTime betti( │ │ │ │ 00005fb0: 4927 3d74 7269 6d20 6b65 7220 7068 6929 I'=trim ker phi) │ │ │ │ 00005fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005fd0: 7c0a 7c20 2d2d 202e 3639 3934 3834 7320 |.| -- .699484s │ │ │ │ +00005fd0: 7c0a 7c20 2d2d 202e 3931 3339 3139 7320 |.| -- .913919s │ │ │ │ 00005fe0: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ 00005ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006000: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00006010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006040: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ @@ -1582,16 +1582,16 @@ │ │ │ │ 000062d0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 000062e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000062f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00006300: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3137 ----------+.|i17 │ │ │ │ 00006310: 203a 2065 6c61 7073 6564 5469 6d65 2062 : elapsedTime b │ │ │ │ 00006320: 6173 6550 7473 3d70 7269 6d61 7279 4465 asePts=primaryDe │ │ │ │ 00006330: 636f 6d70 6f73 6974 696f 6e20 6964 6561 composition idea │ │ │ │ -00006340: 6c20 483b 207c 0a7c 202d 2d20 372e 3237 l H; |.| -- 7.27 │ │ │ │ -00006350: 3731 3373 2065 6c61 7073 6564 2020 2020 713s elapsed │ │ │ │ +00006340: 6c20 483b 207c 0a7c 202d 2d20 3131 2e36 l H; |.| -- 11.6 │ │ │ │ +00006350: 3039 3573 2065 6c61 7073 6564 2020 2020 095s elapsed │ │ │ │ 00006360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006380: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00006390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000063a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000063b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ 000063c0: 3820 3a20 7461 6c6c 7920 6170 706c 7928 8 : tally apply( │ │ │ │ @@ -2502,15 +2502,15 @@ │ │ │ │ 00009c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009c80: 2d2b 0a7c 6931 3420 3a20 656c 6170 7365 -+.|i14 : elapse │ │ │ │ 00009c90: 6454 696d 6520 7375 6228 492c 4829 2020 dTime sub(I,H) │ │ │ │ 00009ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009cb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00009cc0: 2d2d 202e 3035 3437 3832 3973 2065 6c61 -- .0547829s ela │ │ │ │ +00009cc0: 2d2d 202e 3037 3030 3636 3473 2065 6c61 -- .0700664s ela │ │ │ │ 00009cd0: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 00009ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009cf0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00009d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009d30: 2020 7c0a 7c6f 3134 203d 2069 6465 616c |.|o14 = ideal │ │ │ │ @@ -2542,16 +2542,16 @@ │ │ │ │ 00009ed0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00009ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3136 ----------+.|i16 │ │ │ │ 00009f10: 203a 2065 6c61 7073 6564 5469 6d65 2062 : elapsedTime b │ │ │ │ 00009f20: 6574 7469 2849 273d 7472 696d 206b 6572 etti(I'=trim ker │ │ │ │ 00009f30: 2070 6869 2920 2020 2020 2020 2020 2020 phi) │ │ │ │ -00009f40: 2020 2020 207c 0a7c 202d 2d20 2e31 3932 |.| -- .192 │ │ │ │ -00009f50: 3735 3673 2065 6c61 7073 6564 2020 2020 756s elapsed │ │ │ │ +00009f40: 2020 2020 207c 0a7c 202d 2d20 2e31 3034 |.| -- .104 │ │ │ │ +00009f50: 3632 3173 2065 6c61 7073 6564 2020 2020 621s elapsed │ │ │ │ 00009f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009f80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00009f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009fb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00009fc0: 2020 2020 2020 2020 2020 2030 2020 3120 0 1 │ │ │ │ @@ -2594,15 +2594,15 @@ │ │ │ │ 0000a210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a240: 2d2d 2d2d 2b0a 7c69 3138 203a 2065 6c61 ----+.|i18 : ela │ │ │ │ 0000a250: 7073 6564 5469 6d65 2062 6173 6550 7473 psedTime basePts │ │ │ │ 0000a260: 3d70 7269 6d61 7279 4465 636f 6d70 6f73 =primaryDecompos │ │ │ │ 0000a270: 6974 696f 6e20 6964 6561 6c20 483b 207c ition ideal H; | │ │ │ │ -0000a280: 0a7c 202d 2d20 322e 3230 3436 3473 2065 .| -- 2.20464s e │ │ │ │ +0000a280: 0a7c 202d 2d20 332e 3430 3032 3173 2065 .| -- 3.40021s e │ │ │ │ 0000a290: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ 0000a2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a2b0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ 0000a2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a2f0: 2d2d 2d2d 2d2b 0a7c 6931 3920 3a20 7461 -----+.|i19 : ta │ │ ├── ./usr/share/info/BGG.info.gz │ │ │ ├── BGG.info │ │ │ │ @@ -4214,17 +4214,17 @@ │ │ │ │ 00010750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010780: 2d2d 2d2d 2d2b 0a7c 6931 3420 3a20 7469 -----+.|i14 : ti │ │ │ │ 00010790: 6d65 2062 6574 7469 2028 4620 3d20 7075 me betti (F = pu │ │ │ │ 000107a0: 7265 5265 736f 6c75 7469 6f6e 284d 2c7b reResolution(M,{ │ │ │ │ 000107b0: 302c 322c 347d 2929 2020 2020 207c 0a7c 0,2,4})) |.| │ │ │ │ -000107c0: 202d 2d20 7573 6564 2030 2e36 3931 3935 -- used 0.69195 │ │ │ │ -000107d0: 3273 2028 6370 7529 3b20 302e 3437 3633 2s (cpu); 0.4763 │ │ │ │ -000107e0: 3732 7320 2874 6872 6561 6429 3b20 3073 72s (thread); 0s │ │ │ │ +000107c0: 202d 2d20 7573 6564 2030 2e38 3439 3438 -- used 0.84948 │ │ │ │ +000107d0: 3273 2028 6370 7529 3b20 302e 3532 3530 2s (cpu); 0.5250 │ │ │ │ +000107e0: 3132 7320 2874 6872 6561 6429 3b20 3073 12s (thread); 0s │ │ │ │ 000107f0: 2028 6763 297c 0a7c 2020 2020 2020 2020 (gc)|.| │ │ │ │ 00010800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010820: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00010830: 2020 2020 2020 2020 2020 2020 2030 2031 0 1 │ │ │ │ 00010840: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00010850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4275,894 +4275,896 @@ │ │ │ │ 00010b20: 6961 626c 6573 2069 6e0a 4120 7468 6973 iables in.A this │ │ │ │ 00010b30: 2072 756e 7320 6d75 6368 2066 6173 7465 runs much faste │ │ │ │ 00010b40: 7220 7468 616e 2074 616b 696e 6720 6120 r than taking a │ │ │ │ 00010b50: 7261 6e64 6f6d 206d 6174 7269 7820 4d2e random matrix M. │ │ │ │ 00010b60: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ 00010b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010b90: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3520 3a20 -------+.|i15 : │ │ │ │ -00010ba0: 7469 6d65 2062 6574 7469 2028 4620 3d20 time betti (F = │ │ │ │ -00010bb0: 7075 7265 5265 736f 6c75 7469 6f6e 2831 pureResolution(1 │ │ │ │ -00010bc0: 312c 342c 7b30 2c32 2c34 7d29 2920 7c0a 1,4,{0,2,4})) |. │ │ │ │ -00010bd0: 7c20 2d2d 2075 7365 6420 302e 3739 3633 | -- used 0.7963 │ │ │ │ -00010be0: 3738 7320 2863 7075 293b 2030 2e35 3735 78s (cpu); 0.575 │ │ │ │ -00010bf0: 3334 7320 2874 6872 6561 6429 3b20 3073 34s (thread); 0s │ │ │ │ -00010c00: 2028 6763 297c 0a7c 2020 2020 2020 2020 (gc)|.| │ │ │ │ +00010b90: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3135 203a --------+.|i15 : │ │ │ │ +00010ba0: 2074 696d 6520 6265 7474 6920 2846 203d time betti (F = │ │ │ │ +00010bb0: 2070 7572 6552 6573 6f6c 7574 696f 6e28 pureResolution( │ │ │ │ +00010bc0: 3131 2c34 2c7b 302c 322c 347d 2929 2020 11,4,{0,2,4})) │ │ │ │ +00010bd0: 7c0a 7c20 2d2d 2075 7365 6420 302e 3730 |.| -- used 0.70 │ │ │ │ +00010be0: 3637 3931 7320 2863 7075 293b 2030 2e35 6791s (cpu); 0.5 │ │ │ │ +00010bf0: 3435 3237 3473 2028 7468 7265 6164 293b 45274s (thread); │ │ │ │ +00010c00: 2030 7320 2867 6329 7c0a 7c20 2020 2020 0s (gc)|.| │ │ │ │ 00010c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010c30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00010c40: 2020 2020 2020 2020 2020 2020 3020 3120 0 1 │ │ │ │ -00010c50: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00010c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010c40: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00010c50: 3020 3120 3220 2020 2020 2020 2020 2020 0 1 2 │ │ │ │ 00010c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010c70: 2020 207c 0a7c 6f31 3520 3d20 746f 7461 |.|o15 = tota │ │ │ │ -00010c80: 6c3a 2033 2036 2033 2020 2020 2020 2020 l: 3 6 3 │ │ │ │ +00010c70: 2020 2020 2020 2020 7c0a 7c6f 3135 203d |.|o15 = │ │ │ │ +00010c80: 2074 6f74 616c 3a20 3320 3620 3320 2020 total: 3 6 3 │ │ │ │ 00010c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010ca0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00010cb0: 2020 2020 2020 2030 3a20 3320 2e20 2e20 0: 3 . . │ │ │ │ -00010cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010cb0: 7c0a 7c20 2020 2020 2020 2020 2030 3a20 |.| 0: │ │ │ │ +00010cc0: 3320 2e20 2e20 2020 2020 2020 2020 2020 3 . . │ │ │ │ 00010cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010ce0: 207c 0a7c 2020 2020 2020 2020 2020 313a |.| 1: │ │ │ │ -00010cf0: 202e 2036 202e 2020 2020 2020 2020 2020 . 6 . │ │ │ │ +00010ce0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00010cf0: 2020 2020 2031 3a20 2e20 3620 2e20 2020 1: . 6 . │ │ │ │ 00010d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010d10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00010d20: 2020 2020 2032 3a20 2e20 2e20 3320 2020 2: . . 3 │ │ │ │ -00010d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010d40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00010d50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00010d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010d20: 7c0a 7c20 2020 2020 2020 2020 2032 3a20 |.| 2: │ │ │ │ +00010d30: 2e20 2e20 3320 2020 2020 2020 2020 2020 . . 3 │ │ │ │ +00010d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010d50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00010d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010d80: 2020 2020 2020 7c0a 7c6f 3135 203a 2042 |.|o15 : B │ │ │ │ -00010d90: 6574 7469 5461 6c6c 7920 2020 2020 2020 ettiTally │ │ │ │ -00010da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010db0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00010dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010d90: 7c0a 7c6f 3135 203a 2042 6574 7469 5461 |.|o15 : BettiTa │ │ │ │ +00010da0: 6c6c 7920 2020 2020 2020 2020 2020 2020 lly │ │ │ │ +00010db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010dc0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ 00010dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010df0: 2d2d 2d2d 2b0a 7c69 3136 203a 2072 696e ----+.|i16 : rin │ │ │ │ -00010e00: 6720 4620 2020 2020 2020 2020 2020 2020 g F │ │ │ │ +00010df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010e00: 2b0a 7c69 3136 203a 2072 696e 6720 4620 +.|i16 : ring F │ │ │ │ 00010e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010e20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00010e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010e30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00010e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010e60: 2020 7c0a 7c20 2020 2020 205a 5a20 2020 |.| ZZ │ │ │ │ -00010e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010e70: 7c0a 7c20 2020 2020 205a 5a20 2020 2020 |.| ZZ │ │ │ │ 00010e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010e90: 2020 2020 2020 2020 207c 0a7c 6f31 3620 |.|o16 │ │ │ │ -00010ea0: 3d20 2d2d 5b61 202e 2e61 2020 5d20 2020 = --[a ..a ] │ │ │ │ -00010eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010ea0: 2020 2020 2020 2020 7c0a 7c6f 3136 203d |.|o16 = │ │ │ │ +00010eb0: 202d 2d5b 6120 2e2e 6120 205d 2020 2020 --[a ..a ] │ │ │ │ 00010ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010ed0: 7c0a 7c20 2020 2020 2031 3120 2030 2020 |.| 11 0 │ │ │ │ -00010ee0: 2031 3520 2020 2020 2020 2020 2020 2020 15 │ │ │ │ -00010ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010f00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00010f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010ee0: 7c0a 7c20 2020 2020 2031 3120 2030 2020 |.| 11 0 │ │ │ │ +00010ef0: 2031 3520 2020 2020 2020 2020 2020 2020 15 │ │ │ │ +00010f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010f10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00010f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010f30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00010f40: 7c6f 3136 203a 2050 6f6c 796e 6f6d 6961 |o16 : Polynomia │ │ │ │ -00010f50: 6c52 696e 6720 2020 2020 2020 2020 2020 lRing │ │ │ │ -00010f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010f70: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00010f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010f50: 7c0a 7c6f 3136 203a 2050 6f6c 796e 6f6d |.|o16 : Polynom │ │ │ │ +00010f60: 6961 6c52 696e 6720 2020 2020 2020 2020 ialRing │ │ │ │ +00010f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010f80: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ 00010f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 ------------+..S │ │ │ │ -00010fb0: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ -00010fc0: 0a0a 2020 2a20 2a6e 6f74 6520 6469 7265 .. * *note dire │ │ │ │ -00010fd0: 6374 496d 6167 6543 6f6d 706c 6578 3a20 ctImageComplex: │ │ │ │ +00010fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00010fc0: 2b0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d +..See also.==== │ │ │ │ +00010fd0: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ 00010fe0: 6469 7265 6374 496d 6167 6543 6f6d 706c directImageCompl │ │ │ │ -00010ff0: 6578 2c20 2d2d 2064 6972 6563 7420 696d ex, -- direct im │ │ │ │ -00011000: 6167 6520 636f 6d70 6c65 780a 2020 2a20 age complex. * │ │ │ │ -00011010: 2a6e 6f74 6520 756e 6976 6572 7361 6c45 *note universalE │ │ │ │ -00011020: 7874 656e 7369 6f6e 3a20 756e 6976 6572 xtension: univer │ │ │ │ -00011030: 7361 6c45 7874 656e 7369 6f6e 2c20 2d2d salExtension, -- │ │ │ │ -00011040: 2055 6e69 7665 7273 616c 2065 7874 656e Universal exten │ │ │ │ -00011050: 7369 6f6e 206f 660a 2020 2020 7665 6374 sion of. vect │ │ │ │ -00011060: 6f72 2062 756e 646c 6573 206f 6e20 505e or bundles on P^ │ │ │ │ -00011070: 310a 0a57 6179 7320 746f 2075 7365 2070 1..Ways to use p │ │ │ │ -00011080: 7572 6552 6573 6f6c 7574 696f 6e3a 0a3d ureResolution:.= │ │ │ │ -00011090: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000110a0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -000110b0: 2270 7572 6552 6573 6f6c 7574 696f 6e28 "pureResolution( │ │ │ │ -000110c0: 4d61 7472 6978 2c4c 6973 7429 220a 2020 Matrix,List)". │ │ │ │ -000110d0: 2a20 2270 7572 6552 6573 6f6c 7574 696f * "pureResolutio │ │ │ │ -000110e0: 6e28 5269 6e67 2c4c 6973 7429 220a 2020 n(Ring,List)". │ │ │ │ -000110f0: 2a20 2270 7572 6552 6573 6f6c 7574 696f * "pureResolutio │ │ │ │ -00011100: 6e28 5a5a 2c4c 6973 7429 220a 2020 2a20 n(ZZ,List)". * │ │ │ │ -00011110: 2270 7572 6552 6573 6f6c 7574 696f 6e28 "pureResolution( │ │ │ │ -00011120: 5a5a 2c5a 5a2c 4c69 7374 2922 0a0a 466f ZZ,ZZ,List)"..Fo │ │ │ │ -00011130: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -00011140: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -00011150: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -00011160: 2a6e 6f74 6520 7075 7265 5265 736f 6c75 *note pureResolu │ │ │ │ -00011170: 7469 6f6e 3a20 7075 7265 5265 736f 6c75 tion: pureResolu │ │ │ │ -00011180: 7469 6f6e 2c20 6973 2061 202a 6e6f 7465 tion, is a *note │ │ │ │ -00011190: 206d 6574 686f 6420 6675 6e63 7469 6f6e method function │ │ │ │ -000111a0: 3a0a 284d 6163 6175 6c61 7932 446f 6329 :.(Macaulay2Doc) │ │ │ │ -000111b0: 4d65 7468 6f64 4675 6e63 7469 6f6e 2c2e MethodFunction,. │ │ │ │ -000111c0: 0a1f 0a46 696c 653a 2042 4747 2e69 6e66 ...File: BGG.inf │ │ │ │ -000111d0: 6f2c 204e 6f64 653a 2052 6567 756c 6172 o, Node: Regular │ │ │ │ -000111e0: 6974 792c 204e 6578 743a 2073 796d 4578 ity, Next: symEx │ │ │ │ -000111f0: 742c 2050 7265 763a 2070 7572 6552 6573 t, Prev: pureRes │ │ │ │ -00011200: 6f6c 7574 696f 6e2c 2055 703a 2054 6f70 olution, Up: Top │ │ │ │ -00011210: 0a0a 5265 6775 6c61 7269 7479 202d 2d20 ..Regularity -- │ │ │ │ -00011220: 4f70 7469 6f6e 2066 6f72 2064 6972 6563 Option for direc │ │ │ │ -00011230: 7449 6d61 6765 436f 6d70 6c65 780a 2a2a tImageComplex.** │ │ │ │ -00011240: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00011250: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00011260: 2a2a 2a2a 2a2a 2a2a 2a0a 0a43 6176 6561 *********..Cavea │ │ │ │ -00011270: 740a 3d3d 3d3d 3d3d 0a0a 4375 7272 656e t.======..Curren │ │ │ │ -00011280: 746c 7920 6e6f 7420 7375 7070 6f72 7465 tly not supporte │ │ │ │ -00011290: 640a 0a46 756e 6374 696f 6e73 2077 6974 d..Functions wit │ │ │ │ -000112a0: 6820 6f70 7469 6f6e 616c 2061 7267 756d h optional argum │ │ │ │ -000112b0: 656e 7420 6e61 6d65 6420 5265 6775 6c61 ent named Regula │ │ │ │ -000112c0: 7269 7479 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d rity:.========== │ │ │ │ -000112d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00010ff0: 6578 3a20 6469 7265 6374 496d 6167 6543 ex: directImageC │ │ │ │ +00011000: 6f6d 706c 6578 2c20 2d2d 2064 6972 6563 omplex, -- direc │ │ │ │ +00011010: 7420 696d 6167 6520 636f 6d70 6c65 780a t image complex. │ │ │ │ +00011020: 2020 2a20 2a6e 6f74 6520 756e 6976 6572 * *note univer │ │ │ │ +00011030: 7361 6c45 7874 656e 7369 6f6e 3a20 756e salExtension: un │ │ │ │ +00011040: 6976 6572 7361 6c45 7874 656e 7369 6f6e iversalExtension │ │ │ │ +00011050: 2c20 2d2d 2055 6e69 7665 7273 616c 2065 , -- Universal e │ │ │ │ +00011060: 7874 656e 7369 6f6e 206f 660a 2020 2020 xtension of. │ │ │ │ +00011070: 7665 6374 6f72 2062 756e 646c 6573 206f vector bundles o │ │ │ │ +00011080: 6e20 505e 310a 0a57 6179 7320 746f 2075 n P^1..Ways to u │ │ │ │ +00011090: 7365 2070 7572 6552 6573 6f6c 7574 696f se pureResolutio │ │ │ │ +000110a0: 6e3a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d n:.============= │ │ │ │ +000110b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +000110c0: 2020 2a20 2270 7572 6552 6573 6f6c 7574 * "pureResolut │ │ │ │ +000110d0: 696f 6e28 4d61 7472 6978 2c4c 6973 7429 ion(Matrix,List) │ │ │ │ +000110e0: 220a 2020 2a20 2270 7572 6552 6573 6f6c ". * "pureResol │ │ │ │ +000110f0: 7574 696f 6e28 5269 6e67 2c4c 6973 7429 ution(Ring,List) │ │ │ │ +00011100: 220a 2020 2a20 2270 7572 6552 6573 6f6c ". * "pureResol │ │ │ │ +00011110: 7574 696f 6e28 5a5a 2c4c 6973 7429 220a ution(ZZ,List)". │ │ │ │ +00011120: 2020 2a20 2270 7572 6552 6573 6f6c 7574 * "pureResolut │ │ │ │ +00011130: 696f 6e28 5a5a 2c5a 5a2c 4c69 7374 2922 ion(ZZ,ZZ,List)" │ │ │ │ +00011140: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +00011150: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +00011160: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +00011170: 6563 7420 2a6e 6f74 6520 7075 7265 5265 ect *note pureRe │ │ │ │ +00011180: 736f 6c75 7469 6f6e 3a20 7075 7265 5265 solution: pureRe │ │ │ │ +00011190: 736f 6c75 7469 6f6e 2c20 6973 2061 202a solution, is a * │ │ │ │ +000111a0: 6e6f 7465 206d 6574 686f 6420 6675 6e63 note method func │ │ │ │ +000111b0: 7469 6f6e 3a0a 284d 6163 6175 6c61 7932 tion:.(Macaulay2 │ │ │ │ +000111c0: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ +000111d0: 6f6e 2c2e 0a1f 0a46 696c 653a 2042 4747 on,....File: BGG │ │ │ │ +000111e0: 2e69 6e66 6f2c 204e 6f64 653a 2052 6567 .info, Node: Reg │ │ │ │ +000111f0: 756c 6172 6974 792c 204e 6578 743a 2073 ularity, Next: s │ │ │ │ +00011200: 796d 4578 742c 2050 7265 763a 2070 7572 ymExt, Prev: pur │ │ │ │ +00011210: 6552 6573 6f6c 7574 696f 6e2c 2055 703a eResolution, Up: │ │ │ │ +00011220: 2054 6f70 0a0a 5265 6775 6c61 7269 7479 Top..Regularity │ │ │ │ +00011230: 202d 2d20 4f70 7469 6f6e 2066 6f72 2064 -- Option for d │ │ │ │ +00011240: 6972 6563 7449 6d61 6765 436f 6d70 6c65 irectImageComple │ │ │ │ +00011250: 780a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a x.************** │ │ │ │ +00011260: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00011270: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a43 *************..C │ │ │ │ +00011280: 6176 6561 740a 3d3d 3d3d 3d3d 0a0a 4375 aveat.======..Cu │ │ │ │ +00011290: 7272 656e 746c 7920 6e6f 7420 7375 7070 rrently not supp │ │ │ │ +000112a0: 6f72 7465 640a 0a46 756e 6374 696f 6e73 orted..Functions │ │ │ │ +000112b0: 2077 6974 6820 6f70 7469 6f6e 616c 2061 with optional a │ │ │ │ +000112c0: 7267 756d 656e 7420 6e61 6d65 6420 5265 rgument named Re │ │ │ │ +000112d0: 6775 6c61 7269 7479 3a0a 3d3d 3d3d 3d3d gularity:.====== │ │ │ │ 000112e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000112f0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2264 ========.. * "d │ │ │ │ -00011300: 6972 6563 7449 6d61 6765 436f 6d70 6c65 irectImageComple │ │ │ │ -00011310: 7828 2e2e 2e2c 5265 6775 6c61 7269 7479 x(...,Regularity │ │ │ │ -00011320: 3d3e 2e2e 2e29 2220 2d2d 2073 6565 202a =>...)" -- see * │ │ │ │ -00011330: 6e6f 7465 2064 6972 6563 7449 6d61 6765 note directImage │ │ │ │ -00011340: 436f 6d70 6c65 783a 0a20 2020 2064 6972 Complex:. dir │ │ │ │ -00011350: 6563 7449 6d61 6765 436f 6d70 6c65 782c ectImageComplex, │ │ │ │ -00011360: 202d 2d20 6469 7265 6374 2069 6d61 6765 -- direct image │ │ │ │ -00011370: 2063 6f6d 706c 6578 0a0a 466f 7220 7468 complex..For th │ │ │ │ -00011380: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -00011390: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -000113a0: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -000113b0: 6520 5265 6775 6c61 7269 7479 3a20 2852 e Regularity: (R │ │ │ │ -000113c0: 6567 756c 6172 6974 7929 546f 702c 2069 egularity)Top, i │ │ │ │ -000113d0: 7320 6120 2a6e 6f74 6520 7379 6d62 6f6c s a *note symbol │ │ │ │ -000113e0: 3a0a 284d 6163 6175 6c61 7932 446f 6329 :.(Macaulay2Doc) │ │ │ │ -000113f0: 5379 6d62 6f6c 2c2e 0a1f 0a46 696c 653a Symbol,....File: │ │ │ │ -00011400: 2042 4747 2e69 6e66 6f2c 204e 6f64 653a BGG.info, Node: │ │ │ │ -00011410: 2073 796d 4578 742c 204e 6578 743a 2074 symExt, Next: t │ │ │ │ -00011420: 6174 6552 6573 6f6c 7574 696f 6e2c 2050 ateResolution, P │ │ │ │ -00011430: 7265 763a 2052 6567 756c 6172 6974 792c rev: Regularity, │ │ │ │ -00011440: 2055 703a 2054 6f70 0a0a 7379 6d45 7874 Up: Top..symExt │ │ │ │ -00011450: 202d 2d20 7468 6520 6669 7273 7420 6469 -- the first di │ │ │ │ -00011460: 6666 6572 656e 7469 616c 206f 6620 7468 fferential of th │ │ │ │ -00011470: 6520 636f 6d70 6c65 7820 5228 4d29 0a2a e complex R(M).* │ │ │ │ -00011480: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00011490: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000112f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00011300: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ +00011310: 2a20 2264 6972 6563 7449 6d61 6765 436f * "directImageCo │ │ │ │ +00011320: 6d70 6c65 7828 2e2e 2e2c 5265 6775 6c61 mplex(...,Regula │ │ │ │ +00011330: 7269 7479 3d3e 2e2e 2e29 2220 2d2d 2073 rity=>...)" -- s │ │ │ │ +00011340: 6565 202a 6e6f 7465 2064 6972 6563 7449 ee *note directI │ │ │ │ +00011350: 6d61 6765 436f 6d70 6c65 783a 0a20 2020 mageComplex:. │ │ │ │ +00011360: 2064 6972 6563 7449 6d61 6765 436f 6d70 directImageComp │ │ │ │ +00011370: 6c65 782c 202d 2d20 6469 7265 6374 2069 lex, -- direct i │ │ │ │ +00011380: 6d61 6765 2063 6f6d 706c 6578 0a0a 466f mage complex..Fo │ │ │ │ +00011390: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +000113a0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +000113b0: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +000113c0: 2a6e 6f74 6520 5265 6775 6c61 7269 7479 *note Regularity │ │ │ │ +000113d0: 3a20 2852 6567 756c 6172 6974 7929 546f : (Regularity)To │ │ │ │ +000113e0: 702c 2069 7320 6120 2a6e 6f74 6520 7379 p, is a *note sy │ │ │ │ +000113f0: 6d62 6f6c 3a0a 284d 6163 6175 6c61 7932 mbol:.(Macaulay2 │ │ │ │ +00011400: 446f 6329 5379 6d62 6f6c 2c2e 0a1f 0a46 Doc)Symbol,....F │ │ │ │ +00011410: 696c 653a 2042 4747 2e69 6e66 6f2c 204e ile: BGG.info, N │ │ │ │ +00011420: 6f64 653a 2073 796d 4578 742c 204e 6578 ode: symExt, Nex │ │ │ │ +00011430: 743a 2074 6174 6552 6573 6f6c 7574 696f t: tateResolutio │ │ │ │ +00011440: 6e2c 2050 7265 763a 2052 6567 756c 6172 n, Prev: Regular │ │ │ │ +00011450: 6974 792c 2055 703a 2054 6f70 0a0a 7379 ity, Up: Top..sy │ │ │ │ +00011460: 6d45 7874 202d 2d20 7468 6520 6669 7273 mExt -- the firs │ │ │ │ +00011470: 7420 6469 6666 6572 656e 7469 616c 206f t differential o │ │ │ │ +00011480: 6620 7468 6520 636f 6d70 6c65 7820 5228 f the complex R( │ │ │ │ +00011490: 4d29 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a M).************* │ │ │ │ 000114a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000114b0: 2a2a 2a0a 0a53 796e 6f70 7369 730a 3d3d ***..Synopsis.== │ │ │ │ -000114c0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 5573 6167 ======.. * Usag │ │ │ │ -000114d0: 653a 200a 2020 2020 2020 2020 7379 6d45 e: . symE │ │ │ │ -000114e0: 7874 286d 2c45 290a 2020 2a20 496e 7075 xt(m,E). * Inpu │ │ │ │ -000114f0: 7473 3a0a 2020 2020 2020 2a20 6d2c 2061 ts:. * m, a │ │ │ │ -00011500: 202a 6e6f 7465 206d 6174 7269 783a 2028 *note matrix: ( │ │ │ │ -00011510: 4d61 6361 756c 6179 3244 6f63 294d 6174 Macaulay2Doc)Mat │ │ │ │ -00011520: 7269 782c 2c20 6120 7072 6573 656e 7461 rix,, a presenta │ │ │ │ -00011530: 7469 6f6e 206d 6174 7269 7820 666f 7220 tion matrix for │ │ │ │ -00011540: 610a 2020 2020 2020 2020 706f 7369 7469 a. positi │ │ │ │ -00011550: 7665 6c79 2067 7261 6465 6420 6d6f 6475 vely graded modu │ │ │ │ -00011560: 6c65 204d 206f 7665 7220 6120 706f 6c79 le M over a poly │ │ │ │ -00011570: 6e6f 6d69 616c 2072 696e 670a 2020 2020 nomial ring. │ │ │ │ -00011580: 2020 2a20 452c 2061 202a 6e6f 7465 2070 * E, a *note p │ │ │ │ -00011590: 6f6c 796e 6f6d 6961 6c20 7269 6e67 3a20 olynomial ring: │ │ │ │ -000115a0: 284d 6163 6175 6c61 7932 446f 6329 506f (Macaulay2Doc)Po │ │ │ │ -000115b0: 6c79 6e6f 6d69 616c 5269 6e67 2c2c 2065 lynomialRing,, e │ │ │ │ -000115c0: 7874 6572 696f 720a 2020 2020 2020 2020 xterior. │ │ │ │ -000115d0: 616c 6765 6272 610a 2020 2a20 4f75 7470 algebra. * Outp │ │ │ │ -000115e0: 7574 733a 0a20 2020 2020 202a 2061 202a uts:. * a * │ │ │ │ -000115f0: 6e6f 7465 206d 6174 7269 783a 2028 4d61 note matrix: (Ma │ │ │ │ -00011600: 6361 756c 6179 3244 6f63 294d 6174 7269 caulay2Doc)Matri │ │ │ │ -00011610: 782c 2c20 6120 6d61 7472 6978 2072 6570 x,, a matrix rep │ │ │ │ -00011620: 7265 7365 6e74 696e 6720 7468 6520 6d61 resenting the ma │ │ │ │ -00011630: 700a 2020 2020 2020 2020 4d5f 3120 2a2a p. M_1 ** │ │ │ │ -00011640: 206f 6d65 6761 5f45 203c 2d2d 204d 5f30 omega_E <-- M_0 │ │ │ │ -00011650: 202a 2a20 6f6d 6567 615f 450a 0a44 6573 ** omega_E..Des │ │ │ │ -00011660: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -00011670: 3d3d 3d3d 0a0a 5468 6973 2066 756e 6374 ====..This funct │ │ │ │ -00011680: 696f 6e20 7461 6b65 7320 6173 2069 6e70 ion takes as inp │ │ │ │ -00011690: 7574 2061 206d 6174 7269 7820 6d20 7769 ut a matrix m wi │ │ │ │ -000116a0: 7468 206c 696e 6561 7220 656e 7472 6965 th linear entrie │ │ │ │ -000116b0: 732c 2077 6869 6368 2077 6520 7468 696e s, which we thin │ │ │ │ -000116c0: 6b20 6f66 0a61 7320 6120 7072 6573 656e k of.as a presen │ │ │ │ -000116d0: 7461 7469 6f6e 206d 6174 7269 7820 666f tation matrix fo │ │ │ │ -000116e0: 7220 6120 706f 7369 7469 7665 6c79 2067 r a positively g │ │ │ │ -000116f0: 7261 6465 6420 532d 6d6f 6475 6c65 204d raded S-module M │ │ │ │ -00011700: 206d 6174 7269 7820 7265 7072 6573 656e matrix represen │ │ │ │ -00011710: 7469 6e67 0a74 6865 206d 6170 204d 5f31 ting.the map M_1 │ │ │ │ -00011720: 202a 2a20 6f6d 6567 615f 4520 3c2d 2d20 ** omega_E <-- │ │ │ │ -00011730: 4d5f 3020 2a2a 206f 6d65 6761 5f45 2077 M_0 ** omega_E w │ │ │ │ -00011740: 6869 6368 2069 7320 7468 6520 6669 7273 hich is the firs │ │ │ │ -00011750: 7420 6469 6666 6572 656e 7469 616c 206f t differential o │ │ │ │ -00011760: 660a 7468 6520 636f 6d70 6c65 7820 5228 f.the complex R( │ │ │ │ -00011770: 4d29 2e0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d M)..+----------- │ │ │ │ -00011780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000114b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000114c0: 2a2a 2a2a 2a2a 2a0a 0a53 796e 6f70 7369 *******..Synopsi │ │ │ │ +000114d0: 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 s.========.. * │ │ │ │ +000114e0: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +000114f0: 7379 6d45 7874 286d 2c45 290a 2020 2a20 symExt(m,E). * │ │ │ │ +00011500: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ +00011510: 6d2c 2061 202a 6e6f 7465 206d 6174 7269 m, a *note matri │ │ │ │ +00011520: 783a 2028 4d61 6361 756c 6179 3244 6f63 x: (Macaulay2Doc │ │ │ │ +00011530: 294d 6174 7269 782c 2c20 6120 7072 6573 )Matrix,, a pres │ │ │ │ +00011540: 656e 7461 7469 6f6e 206d 6174 7269 7820 entation matrix │ │ │ │ +00011550: 666f 7220 610a 2020 2020 2020 2020 706f for a. po │ │ │ │ +00011560: 7369 7469 7665 6c79 2067 7261 6465 6420 sitively graded │ │ │ │ +00011570: 6d6f 6475 6c65 204d 206f 7665 7220 6120 module M over a │ │ │ │ +00011580: 706f 6c79 6e6f 6d69 616c 2072 696e 670a polynomial ring. │ │ │ │ +00011590: 2020 2020 2020 2a20 452c 2061 202a 6e6f * E, a *no │ │ │ │ +000115a0: 7465 2070 6f6c 796e 6f6d 6961 6c20 7269 te polynomial ri │ │ │ │ +000115b0: 6e67 3a20 284d 6163 6175 6c61 7932 446f ng: (Macaulay2Do │ │ │ │ +000115c0: 6329 506f 6c79 6e6f 6d69 616c 5269 6e67 c)PolynomialRing │ │ │ │ +000115d0: 2c2c 2065 7874 6572 696f 720a 2020 2020 ,, exterior. │ │ │ │ +000115e0: 2020 2020 616c 6765 6272 610a 2020 2a20 algebra. * │ │ │ │ +000115f0: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ +00011600: 2061 202a 6e6f 7465 206d 6174 7269 783a a *note matrix: │ │ │ │ +00011610: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +00011620: 6174 7269 782c 2c20 6120 6d61 7472 6978 atrix,, a matrix │ │ │ │ +00011630: 2072 6570 7265 7365 6e74 696e 6720 7468 representing th │ │ │ │ +00011640: 6520 6d61 700a 2020 2020 2020 2020 4d5f e map. M_ │ │ │ │ +00011650: 3120 2a2a 206f 6d65 6761 5f45 203c 2d2d 1 ** omega_E <-- │ │ │ │ +00011660: 204d 5f30 202a 2a20 6f6d 6567 615f 450a M_0 ** omega_E. │ │ │ │ +00011670: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +00011680: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 2066 ========..This f │ │ │ │ +00011690: 756e 6374 696f 6e20 7461 6b65 7320 6173 unction takes as │ │ │ │ +000116a0: 2069 6e70 7574 2061 206d 6174 7269 7820 input a matrix │ │ │ │ +000116b0: 6d20 7769 7468 206c 696e 6561 7220 656e m with linear en │ │ │ │ +000116c0: 7472 6965 732c 2077 6869 6368 2077 6520 tries, which we │ │ │ │ +000116d0: 7468 696e 6b20 6f66 0a61 7320 6120 7072 think of.as a pr │ │ │ │ +000116e0: 6573 656e 7461 7469 6f6e 206d 6174 7269 esentation matri │ │ │ │ +000116f0: 7820 666f 7220 6120 706f 7369 7469 7665 x for a positive │ │ │ │ +00011700: 6c79 2067 7261 6465 6420 532d 6d6f 6475 ly graded S-modu │ │ │ │ +00011710: 6c65 204d 206d 6174 7269 7820 7265 7072 le M matrix repr │ │ │ │ +00011720: 6573 656e 7469 6e67 0a74 6865 206d 6170 esenting.the map │ │ │ │ +00011730: 204d 5f31 202a 2a20 6f6d 6567 615f 4520 M_1 ** omega_E │ │ │ │ +00011740: 3c2d 2d20 4d5f 3020 2a2a 206f 6d65 6761 <-- M_0 ** omega │ │ │ │ +00011750: 5f45 2077 6869 6368 2069 7320 7468 6520 _E which is the │ │ │ │ +00011760: 6669 7273 7420 6469 6666 6572 656e 7469 first differenti │ │ │ │ +00011770: 616c 206f 660a 7468 6520 636f 6d70 6c65 al of.the comple │ │ │ │ +00011780: 7820 5228 4d29 2e0a 2b2d 2d2d 2d2d 2d2d x R(M)..+------- │ │ │ │ 00011790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000117a0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -000117b0: 5320 3d20 5a5a 2f33 3230 3033 5b78 5f30 S = ZZ/32003[x_0 │ │ │ │ -000117c0: 2e2e 785f 325d 3b20 2020 2020 2020 2020 ..x_2]; │ │ │ │ -000117d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000117e0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -000117f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000117a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000117b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000117c0: 3120 3a20 5320 3d20 5a5a 2f33 3230 3033 1 : S = ZZ/32003 │ │ │ │ +000117d0: 5b78 5f30 2e2e 785f 325d 3b20 2020 2020 [x_0..x_2]; │ │ │ │ +000117e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000117f0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00011800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011810: 2d2d 2d2d 2b0a 7c69 3220 3a20 4520 3d20 ----+.|i2 : E = │ │ │ │ -00011820: 5a5a 2f33 3230 3033 5b65 5f30 2e2e 655f ZZ/32003[e_0..e_ │ │ │ │ -00011830: 322c 2053 6b65 7743 6f6d 6d75 7461 7469 2, SkewCommutati │ │ │ │ -00011840: 7665 3d3e 7472 7565 5d3b 7c0a 2b2d 2d2d ve=>true];|.+--- │ │ │ │ -00011850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011820: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ +00011830: 4520 3d20 5a5a 2f33 3230 3033 5b65 5f30 E = ZZ/32003[e_0 │ │ │ │ +00011840: 2e2e 655f 322c 2053 6b65 7743 6f6d 6d75 ..e_2, SkewCommu │ │ │ │ +00011850: 7461 7469 7665 3d3e 7472 7565 5d3b 7c0a tative=>true];|. │ │ │ │ +00011860: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00011870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011880: 2b0a 7c69 3320 3a20 4d20 3d20 636f 6b65 +.|i3 : M = coke │ │ │ │ -00011890: 7220 6d61 7472 6978 207b 7b78 5f30 5e32 r matrix {{x_0^2 │ │ │ │ -000118a0: 2c20 785f 315e 327d 7d3b 2020 2020 2020 , x_1^2}}; │ │ │ │ -000118b0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -000118c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011890: 2d2d 2d2d 2b0a 7c69 3320 3a20 4d20 3d20 ----+.|i3 : M = │ │ │ │ +000118a0: 636f 6b65 7220 6d61 7472 6978 207b 7b78 coker matrix {{x │ │ │ │ +000118b0: 5f30 5e32 2c20 785f 315e 327d 7d3b 2020 _0^2, x_1^2}}; │ │ │ │ +000118c0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ 000118d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000118e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000118f0: 3420 3a20 6d20 3d20 7072 6573 656e 7461 4 : m = presenta │ │ │ │ -00011900: 7469 6f6e 2074 7275 6e63 6174 6528 7265 tion truncate(re │ │ │ │ -00011910: 6775 6c61 7269 7479 204d 2c4d 293b 2020 gularity M,M); │ │ │ │ -00011920: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00011930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000118e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000118f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011900: 2b0a 7c69 3420 3a20 6d20 3d20 7072 6573 +.|i4 : m = pres │ │ │ │ +00011910: 656e 7461 7469 6f6e 2074 7275 6e63 6174 entation truncat │ │ │ │ +00011920: 6528 7265 6775 6c61 7269 7479 204d 2c4d e(regularity M,M │ │ │ │ +00011930: 293b 2020 2020 7c0a 7c20 2020 2020 2020 ); |.| │ │ │ │ 00011940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011950: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00011960: 2020 2020 2020 2020 3420 2020 2020 2038 4 8 │ │ │ │ -00011970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011980: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00011990: 7c6f 3420 3a20 4d61 7472 6978 2053 2020 |o4 : Matrix S │ │ │ │ -000119a0: 3c2d 2d20 5320 2020 2020 2020 2020 2020 <-- S │ │ │ │ -000119b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000119c0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -000119d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011960: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00011970: 2020 2020 2020 2020 2020 2020 3420 2020 4 │ │ │ │ +00011980: 2020 2038 2020 2020 2020 2020 2020 2020 8 │ │ │ │ +00011990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000119a0: 2020 7c0a 7c6f 3420 3a20 4d61 7472 6978 |.|o4 : Matrix │ │ │ │ +000119b0: 2053 2020 3c2d 2d20 5320 2020 2020 2020 S <-- S │ │ │ │ +000119c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000119d0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ 000119e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000119f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ -00011a00: 3a20 7379 6d45 7874 286d 2c45 2920 2020 : symExt(m,E) │ │ │ │ -00011a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011a30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00011a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000119f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00011a10: 7c69 3520 3a20 7379 6d45 7874 286d 2c45 |i5 : symExt(m,E │ │ │ │ +00011a20: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00011a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011a40: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00011a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011a60: 2020 2020 2020 7c0a 7c6f 3520 3d20 7b2d |.|o5 = {- │ │ │ │ -00011a70: 317d 207c 2065 5f32 2030 2020 2030 2020 1} | e_2 0 0 │ │ │ │ -00011a80: 2030 2020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ -00011a90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00011aa0: 2020 2020 7b2d 317d 207c 2065 5f31 2065 {-1} | e_1 e │ │ │ │ -00011ab0: 5f32 2030 2020 2030 2020 207c 2020 2020 _2 0 0 | │ │ │ │ -00011ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011ad0: 2020 7c0a 7c20 2020 2020 7b2d 317d 207c |.| {-1} | │ │ │ │ -00011ae0: 2065 5f30 2030 2020 2065 5f32 2030 2020 e_0 0 e_2 0 │ │ │ │ -00011af0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00011b00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00011b10: 7b2d 317d 207c 2030 2020 2065 5f30 2065 {-1} | 0 e_0 e │ │ │ │ -00011b20: 5f31 2065 5f32 207c 2020 2020 2020 2020 _1 e_2 | │ │ │ │ -00011b30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00011b40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00011b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011a70: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ +00011a80: 3d20 7b2d 317d 207c 2065 5f32 2030 2020 = {-1} | e_2 0 │ │ │ │ +00011a90: 2030 2020 2030 2020 207c 2020 2020 2020 0 0 | │ │ │ │ +00011aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011ab0: 7c0a 7c20 2020 2020 7b2d 317d 207c 2065 |.| {-1} | e │ │ │ │ +00011ac0: 5f31 2065 5f32 2030 2020 2030 2020 207c _1 e_2 0 0 | │ │ │ │ +00011ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011ae0: 2020 2020 2020 7c0a 7c20 2020 2020 7b2d |.| {- │ │ │ │ +00011af0: 317d 207c 2065 5f30 2030 2020 2065 5f32 1} | e_0 0 e_2 │ │ │ │ +00011b00: 2030 2020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +00011b10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00011b20: 2020 2020 7b2d 317d 207c 2030 2020 2065 {-1} | 0 e │ │ │ │ +00011b30: 5f30 2065 5f31 2065 5f32 207c 2020 2020 _0 e_1 e_2 | │ │ │ │ +00011b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011b50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00011b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011b70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00011b80: 2020 2020 3420 2020 2020 2034 2020 2020 4 4 │ │ │ │ -00011b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011ba0: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ -00011bb0: 3a20 4d61 7472 6978 2045 2020 3c2d 2d20 : Matrix E <-- │ │ │ │ -00011bc0: 4520 2020 2020 2020 2020 2020 2020 2020 E │ │ │ │ -00011bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011be0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -00011bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011b80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00011b90: 2020 2020 2020 2020 3420 2020 2020 2034 4 4 │ │ │ │ +00011ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011bb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00011bc0: 7c6f 3520 3a20 4d61 7472 6978 2045 2020 |o5 : Matrix E │ │ │ │ +00011bd0: 3c2d 2d20 4520 2020 2020 2020 2020 2020 <-- E │ │ │ │ +00011be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011bf0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00011c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011c10: 2d2d 2d2d 2d2d 2b0a 0a43 6176 6561 740a ------+..Caveat. │ │ │ │ -00011c20: 3d3d 3d3d 3d3d 0a0a 5468 6973 2066 756e ======..This fun │ │ │ │ -00011c30: 6374 696f 6e20 6973 2061 2071 7569 636b ction is a quick │ │ │ │ -00011c40: 2d61 6e64 2d64 6972 7479 2074 6f6f 6c20 -and-dirty tool │ │ │ │ -00011c50: 7768 6963 6820 7265 7175 6972 6573 206c which requires l │ │ │ │ -00011c60: 6974 746c 6520 636f 6d70 7574 6174 696f ittle computatio │ │ │ │ -00011c70: 6e2e 0a48 6f77 6576 6572 2069 6620 6974 n..However if it │ │ │ │ -00011c80: 2069 7320 6361 6c6c 6564 206f 6e20 7477 is called on tw │ │ │ │ -00011c90: 6f20 7375 6363 6573 7369 7665 2074 7275 o successive tru │ │ │ │ -00011ca0: 6e63 6174 696f 6e73 206f 6620 6120 6d6f ncations of a mo │ │ │ │ -00011cb0: 6475 6c65 2c20 7468 656e 2074 6865 0a6d dule, then the.m │ │ │ │ -00011cc0: 6170 7320 6974 2070 726f 6475 6365 7320 aps it produces │ │ │ │ -00011cd0: 6d61 7920 4e4f 5420 636f 6d70 6f73 6520 may NOT compose │ │ │ │ -00011ce0: 746f 207a 6572 6f20 6265 6361 7573 6520 to zero because │ │ │ │ -00011cf0: 7468 6520 6368 6f69 6365 206f 6620 6261 the choice of ba │ │ │ │ -00011d00: 7365 7320 6973 206e 6f74 0a63 6f6e 7369 ses is not.consi │ │ │ │ -00011d10: 7374 656e 742e 0a0a 5365 6520 616c 736f stent...See also │ │ │ │ -00011d20: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ -00011d30: 6e6f 7465 2062 6767 3a20 6267 672c 202d note bgg: bgg, - │ │ │ │ -00011d40: 2d20 7468 6520 6974 6820 6469 6666 6572 - the ith differ │ │ │ │ -00011d50: 656e 7469 616c 206f 6620 7468 6520 636f ential of the co │ │ │ │ -00011d60: 6d70 6c65 7820 5228 4d29 0a0a 5761 7973 mplex R(M)..Ways │ │ │ │ -00011d70: 2074 6f20 7573 6520 7379 6d45 7874 3a0a to use symExt:. │ │ │ │ -00011d80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00011d90: 3d3d 3d0a 0a20 202a 2022 7379 6d45 7874 ===.. * "symExt │ │ │ │ -00011da0: 284d 6174 7269 782c 506f 6c79 6e6f 6d69 (Matrix,Polynomi │ │ │ │ -00011db0: 616c 5269 6e67 2922 0a0a 466f 7220 7468 alRing)"..For th │ │ │ │ -00011dc0: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -00011dd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -00011de0: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -00011df0: 6520 7379 6d45 7874 3a20 7379 6d45 7874 e symExt: symExt │ │ │ │ -00011e00: 2c20 6973 2061 202a 6e6f 7465 206d 6574 , is a *note met │ │ │ │ -00011e10: 686f 6420 6675 6e63 7469 6f6e 3a0a 284d hod function:.(M │ │ │ │ -00011e20: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ -00011e30: 6f64 4675 6e63 7469 6f6e 2c2e 0a1f 0a46 odFunction,....F │ │ │ │ -00011e40: 696c 653a 2042 4747 2e69 6e66 6f2c 204e ile: BGG.info, N │ │ │ │ -00011e50: 6f64 653a 2074 6174 6552 6573 6f6c 7574 ode: tateResolut │ │ │ │ -00011e60: 696f 6e2c 204e 6578 743a 2075 6e69 7665 ion, Next: unive │ │ │ │ -00011e70: 7273 616c 4578 7465 6e73 696f 6e2c 2050 rsalExtension, P │ │ │ │ -00011e80: 7265 763a 2073 796d 4578 742c 2055 703a rev: symExt, Up: │ │ │ │ -00011e90: 2054 6f70 0a0a 7461 7465 5265 736f 6c75 Top..tateResolu │ │ │ │ -00011ea0: 7469 6f6e 202d 2d20 6669 6e69 7465 2070 tion -- finite p │ │ │ │ -00011eb0: 6965 6365 206f 6620 7468 6520 5461 7465 iece of the Tate │ │ │ │ -00011ec0: 2072 6573 6f6c 7574 696f 6e0a 2a2a 2a2a resolution.**** │ │ │ │ -00011ed0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00011c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a43 6176 ----------+..Cav │ │ │ │ +00011c30: 6561 740a 3d3d 3d3d 3d3d 0a0a 5468 6973 eat.======..This │ │ │ │ +00011c40: 2066 756e 6374 696f 6e20 6973 2061 2071 function is a q │ │ │ │ +00011c50: 7569 636b 2d61 6e64 2d64 6972 7479 2074 uick-and-dirty t │ │ │ │ +00011c60: 6f6f 6c20 7768 6963 6820 7265 7175 6972 ool which requir │ │ │ │ +00011c70: 6573 206c 6974 746c 6520 636f 6d70 7574 es little comput │ │ │ │ +00011c80: 6174 696f 6e2e 0a48 6f77 6576 6572 2069 ation..However i │ │ │ │ +00011c90: 6620 6974 2069 7320 6361 6c6c 6564 206f f it is called o │ │ │ │ +00011ca0: 6e20 7477 6f20 7375 6363 6573 7369 7665 n two successive │ │ │ │ +00011cb0: 2074 7275 6e63 6174 696f 6e73 206f 6620 truncations of │ │ │ │ +00011cc0: 6120 6d6f 6475 6c65 2c20 7468 656e 2074 a module, then t │ │ │ │ +00011cd0: 6865 0a6d 6170 7320 6974 2070 726f 6475 he.maps it produ │ │ │ │ +00011ce0: 6365 7320 6d61 7920 4e4f 5420 636f 6d70 ces may NOT comp │ │ │ │ +00011cf0: 6f73 6520 746f 207a 6572 6f20 6265 6361 ose to zero beca │ │ │ │ +00011d00: 7573 6520 7468 6520 6368 6f69 6365 206f use the choice o │ │ │ │ +00011d10: 6620 6261 7365 7320 6973 206e 6f74 0a63 f bases is not.c │ │ │ │ +00011d20: 6f6e 7369 7374 656e 742e 0a0a 5365 6520 onsistent...See │ │ │ │ +00011d30: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ +00011d40: 202a 202a 6e6f 7465 2062 6767 3a20 6267 * *note bgg: bg │ │ │ │ +00011d50: 672c 202d 2d20 7468 6520 6974 6820 6469 g, -- the ith di │ │ │ │ +00011d60: 6666 6572 656e 7469 616c 206f 6620 7468 fferential of th │ │ │ │ +00011d70: 6520 636f 6d70 6c65 7820 5228 4d29 0a0a e complex R(M).. │ │ │ │ +00011d80: 5761 7973 2074 6f20 7573 6520 7379 6d45 Ways to use symE │ │ │ │ +00011d90: 7874 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d xt:.============ │ │ │ │ +00011da0: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 7379 =======.. * "sy │ │ │ │ +00011db0: 6d45 7874 284d 6174 7269 782c 506f 6c79 mExt(Matrix,Poly │ │ │ │ +00011dc0: 6e6f 6d69 616c 5269 6e67 2922 0a0a 466f nomialRing)"..Fo │ │ │ │ +00011dd0: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +00011de0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +00011df0: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +00011e00: 2a6e 6f74 6520 7379 6d45 7874 3a20 7379 *note symExt: sy │ │ │ │ +00011e10: 6d45 7874 2c20 6973 2061 202a 6e6f 7465 mExt, is a *note │ │ │ │ +00011e20: 206d 6574 686f 6420 6675 6e63 7469 6f6e method function │ │ │ │ +00011e30: 3a0a 284d 6163 6175 6c61 7932 446f 6329 :.(Macaulay2Doc) │ │ │ │ +00011e40: 4d65 7468 6f64 4675 6e63 7469 6f6e 2c2e MethodFunction,. │ │ │ │ +00011e50: 0a1f 0a46 696c 653a 2042 4747 2e69 6e66 ...File: BGG.inf │ │ │ │ +00011e60: 6f2c 204e 6f64 653a 2074 6174 6552 6573 o, Node: tateRes │ │ │ │ +00011e70: 6f6c 7574 696f 6e2c 204e 6578 743a 2075 olution, Next: u │ │ │ │ +00011e80: 6e69 7665 7273 616c 4578 7465 6e73 696f niversalExtensio │ │ │ │ +00011e90: 6e2c 2050 7265 763a 2073 796d 4578 742c n, Prev: symExt, │ │ │ │ +00011ea0: 2055 703a 2054 6f70 0a0a 7461 7465 5265 Up: Top..tateRe │ │ │ │ +00011eb0: 736f 6c75 7469 6f6e 202d 2d20 6669 6e69 solution -- fini │ │ │ │ +00011ec0: 7465 2070 6965 6365 206f 6620 7468 6520 te piece of the │ │ │ │ +00011ed0: 5461 7465 2072 6573 6f6c 7574 696f 6e0a Tate resolution. │ │ │ │ 00011ee0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00011ef0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00011f00: 2a0a 0a53 796e 6f70 7369 730a 3d3d 3d3d *..Synopsis.==== │ │ │ │ -00011f10: 3d3d 3d3d 0a0a 2020 2a20 5573 6167 653a ====.. * Usage: │ │ │ │ -00011f20: 200a 2020 2020 2020 2020 7461 7465 5265 . tateRe │ │ │ │ -00011f30: 736f 6c75 7469 6f6e 286d 2c45 2c6c 2c68 solution(m,E,l,h │ │ │ │ -00011f40: 290a 2020 2a20 496e 7075 7473 3a0a 2020 ). * Inputs:. │ │ │ │ -00011f50: 2020 2020 2a20 6d2c 2061 202a 6e6f 7465 * m, a *note │ │ │ │ -00011f60: 206d 6174 7269 783a 2028 4d61 6361 756c matrix: (Macaul │ │ │ │ -00011f70: 6179 3244 6f63 294d 6174 7269 782c 2c20 ay2Doc)Matrix,, │ │ │ │ -00011f80: 6120 7072 6573 656e 7461 7469 6f6e 206d a presentation m │ │ │ │ -00011f90: 6174 7269 7820 666f 7220 610a 2020 2020 atrix for a. │ │ │ │ -00011fa0: 2020 2020 6d6f 6475 6c65 0a20 2020 2020 module. │ │ │ │ -00011fb0: 202a 2045 2c20 6120 2a6e 6f74 6520 706f * E, a *note po │ │ │ │ -00011fc0: 6c79 6e6f 6d69 616c 2072 696e 673a 2028 lynomial ring: ( │ │ │ │ -00011fd0: 4d61 6361 756c 6179 3244 6f63 2950 6f6c Macaulay2Doc)Pol │ │ │ │ -00011fe0: 796e 6f6d 6961 6c52 696e 672c 2c20 6578 ynomialRing,, ex │ │ │ │ -00011ff0: 7465 7269 6f72 0a20 2020 2020 2020 2061 terior. a │ │ │ │ -00012000: 6c67 6562 7261 0a20 2020 2020 202a 206c lgebra. * l │ │ │ │ -00012010: 2c20 616e 202a 6e6f 7465 2069 6e74 6567 , an *note integ │ │ │ │ -00012020: 6572 3a20 284d 6163 6175 6c61 7932 446f er: (Macaulay2Do │ │ │ │ -00012030: 6329 5a5a 2c2c 206c 6f77 6572 2063 6f68 c)ZZ,, lower coh │ │ │ │ -00012040: 6f6d 6f6c 6f67 6963 616c 2064 6567 7265 omological degre │ │ │ │ -00012050: 650a 2020 2020 2020 2a20 682c 2061 6e20 e. * h, an │ │ │ │ -00012060: 2a6e 6f74 6520 696e 7465 6765 723a 2028 *note integer: ( │ │ │ │ -00012070: 4d61 6361 756c 6179 3244 6f63 295a 5a2c Macaulay2Doc)ZZ, │ │ │ │ -00012080: 2c20 7570 7065 7220 626f 756e 6420 6f6e , upper bound on │ │ │ │ -00012090: 2074 6865 0a20 2020 2020 2020 2063 6f68 the. coh │ │ │ │ -000120a0: 6f6d 6f6c 6f67 6963 616c 2064 6567 7265 omological degre │ │ │ │ -000120b0: 650a 2020 2a20 4f75 7470 7574 733a 0a20 e. * Outputs:. │ │ │ │ -000120c0: 2020 2020 202a 2061 202a 6e6f 7465 2063 * a *note c │ │ │ │ -000120d0: 6861 696e 2063 6f6d 706c 6578 3a20 284d hain complex: (M │ │ │ │ -000120e0: 6163 6175 6c61 7932 446f 6329 4368 6169 acaulay2Doc)Chai │ │ │ │ -000120f0: 6e43 6f6d 706c 6578 2c2c 2061 2066 696e nComplex,, a fin │ │ │ │ -00012100: 6974 6520 7069 6563 6520 6f66 0a20 2020 ite piece of. │ │ │ │ -00012110: 2020 2020 2074 6865 2054 6174 6520 7265 the Tate re │ │ │ │ -00012120: 736f 6c75 7469 6f6e 0a0a 4465 7363 7269 solution..Descri │ │ │ │ -00012130: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -00012140: 3d0a 0a54 6869 7320 6675 6e63 7469 6f6e =..This function │ │ │ │ -00012150: 2074 616b 6573 2061 7320 696e 7075 7420 takes as input │ │ │ │ -00012160: 6120 7072 6573 656e 7461 7469 6f6e 206d a presentation m │ │ │ │ -00012170: 6174 7269 7820 6d20 6f66 2061 2066 696e atrix m of a fin │ │ │ │ -00012180: 6974 656c 7920 6765 6e65 7261 7465 640a itely generated. │ │ │ │ -00012190: 6772 6164 6564 2053 2d6d 6f64 756c 6520 graded S-module │ │ │ │ -000121a0: 4d20 616e 2065 7874 6572 696f 7220 616c M an exterior al │ │ │ │ -000121b0: 6765 6272 6120 4520 616e 6420 7477 6f20 gebra E and two │ │ │ │ -000121c0: 696e 7465 6765 7273 206c 2061 6e64 2068 integers l and h │ │ │ │ -000121d0: 2e20 4966 2072 2069 7320 7468 650a 7265 . If r is the.re │ │ │ │ -000121e0: 6775 6c61 7269 7479 206f 6620 4d2c 2074 gularity of M, t │ │ │ │ -000121f0: 6865 6e20 7468 6973 2066 756e 6374 696f hen this functio │ │ │ │ -00012200: 6e20 636f 6d70 7574 6573 2074 6865 2070 n computes the p │ │ │ │ -00012210: 6965 6365 206f 6620 7468 6520 5461 7465 iece of the Tate │ │ │ │ -00012220: 2072 6573 6f6c 7574 696f 6e0a 6672 6f6d resolution.from │ │ │ │ -00012230: 2063 6f68 6f6d 6f6c 6f67 6963 616c 2064 cohomological d │ │ │ │ -00012240: 6567 7265 6520 6c20 746f 2063 6f68 6f6d egree l to cohom │ │ │ │ -00012250: 6f6c 6f67 6963 616c 2064 6567 7265 6520 ological degree │ │ │ │ -00012260: 6d61 7828 722b 322c 6829 2e20 466f 7220 max(r+2,h). For │ │ │ │ -00012270: 696e 7374 616e 6365 2c0a 666f 7220 7468 instance,.for th │ │ │ │ -00012280: 6520 686f 6d6f 6765 6e65 6f75 7320 636f e homogeneous co │ │ │ │ -00012290: 6f72 6469 6e61 7465 2072 696e 6720 6f66 ordinate ring of │ │ │ │ -000122a0: 2061 2070 6f69 6e74 2069 6e20 7468 6520 a point in the │ │ │ │ -000122b0: 7072 6f6a 6563 7469 7665 2070 6c61 6e65 projective plane │ │ │ │ -000122c0: 3a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d :.+------------- │ │ │ │ -000122d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011f00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00011f10: 2a2a 2a2a 2a0a 0a53 796e 6f70 7369 730a *****..Synopsis. │ │ │ │ +00011f20: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 5573 ========.. * Us │ │ │ │ +00011f30: 6167 653a 200a 2020 2020 2020 2020 7461 age: . ta │ │ │ │ +00011f40: 7465 5265 736f 6c75 7469 6f6e 286d 2c45 teResolution(m,E │ │ │ │ +00011f50: 2c6c 2c68 290a 2020 2a20 496e 7075 7473 ,l,h). * Inputs │ │ │ │ +00011f60: 3a0a 2020 2020 2020 2a20 6d2c 2061 202a :. * m, a * │ │ │ │ +00011f70: 6e6f 7465 206d 6174 7269 783a 2028 4d61 note matrix: (Ma │ │ │ │ +00011f80: 6361 756c 6179 3244 6f63 294d 6174 7269 caulay2Doc)Matri │ │ │ │ +00011f90: 782c 2c20 6120 7072 6573 656e 7461 7469 x,, a presentati │ │ │ │ +00011fa0: 6f6e 206d 6174 7269 7820 666f 7220 610a on matrix for a. │ │ │ │ +00011fb0: 2020 2020 2020 2020 6d6f 6475 6c65 0a20 module. │ │ │ │ +00011fc0: 2020 2020 202a 2045 2c20 6120 2a6e 6f74 * E, a *not │ │ │ │ +00011fd0: 6520 706f 6c79 6e6f 6d69 616c 2072 696e e polynomial rin │ │ │ │ +00011fe0: 673a 2028 4d61 6361 756c 6179 3244 6f63 g: (Macaulay2Doc │ │ │ │ +00011ff0: 2950 6f6c 796e 6f6d 6961 6c52 696e 672c )PolynomialRing, │ │ │ │ +00012000: 2c20 6578 7465 7269 6f72 0a20 2020 2020 , exterior. │ │ │ │ +00012010: 2020 2061 6c67 6562 7261 0a20 2020 2020 algebra. │ │ │ │ +00012020: 202a 206c 2c20 616e 202a 6e6f 7465 2069 * l, an *note i │ │ │ │ +00012030: 6e74 6567 6572 3a20 284d 6163 6175 6c61 nteger: (Macaula │ │ │ │ +00012040: 7932 446f 6329 5a5a 2c2c 206c 6f77 6572 y2Doc)ZZ,, lower │ │ │ │ +00012050: 2063 6f68 6f6d 6f6c 6f67 6963 616c 2064 cohomological d │ │ │ │ +00012060: 6567 7265 650a 2020 2020 2020 2a20 682c egree. * h, │ │ │ │ +00012070: 2061 6e20 2a6e 6f74 6520 696e 7465 6765 an *note intege │ │ │ │ +00012080: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ +00012090: 295a 5a2c 2c20 7570 7065 7220 626f 756e )ZZ,, upper boun │ │ │ │ +000120a0: 6420 6f6e 2074 6865 0a20 2020 2020 2020 d on the. │ │ │ │ +000120b0: 2063 6f68 6f6d 6f6c 6f67 6963 616c 2064 cohomological d │ │ │ │ +000120c0: 6567 7265 650a 2020 2a20 4f75 7470 7574 egree. * Output │ │ │ │ +000120d0: 733a 0a20 2020 2020 202a 2061 202a 6e6f s:. * a *no │ │ │ │ +000120e0: 7465 2063 6861 696e 2063 6f6d 706c 6578 te chain complex │ │ │ │ +000120f0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00012100: 4368 6169 6e43 6f6d 706c 6578 2c2c 2061 ChainComplex,, a │ │ │ │ +00012110: 2066 696e 6974 6520 7069 6563 6520 6f66 finite piece of │ │ │ │ +00012120: 0a20 2020 2020 2020 2074 6865 2054 6174 . the Tat │ │ │ │ +00012130: 6520 7265 736f 6c75 7469 6f6e 0a0a 4465 e resolution..De │ │ │ │ +00012140: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +00012150: 3d3d 3d3d 3d0a 0a54 6869 7320 6675 6e63 =====..This func │ │ │ │ +00012160: 7469 6f6e 2074 616b 6573 2061 7320 696e tion takes as in │ │ │ │ +00012170: 7075 7420 6120 7072 6573 656e 7461 7469 put a presentati │ │ │ │ +00012180: 6f6e 206d 6174 7269 7820 6d20 6f66 2061 on matrix m of a │ │ │ │ +00012190: 2066 696e 6974 656c 7920 6765 6e65 7261 finitely genera │ │ │ │ +000121a0: 7465 640a 6772 6164 6564 2053 2d6d 6f64 ted.graded S-mod │ │ │ │ +000121b0: 756c 6520 4d20 616e 2065 7874 6572 696f ule M an exterio │ │ │ │ +000121c0: 7220 616c 6765 6272 6120 4520 616e 6420 r algebra E and │ │ │ │ +000121d0: 7477 6f20 696e 7465 6765 7273 206c 2061 two integers l a │ │ │ │ +000121e0: 6e64 2068 2e20 4966 2072 2069 7320 7468 nd h. If r is th │ │ │ │ +000121f0: 650a 7265 6775 6c61 7269 7479 206f 6620 e.regularity of │ │ │ │ +00012200: 4d2c 2074 6865 6e20 7468 6973 2066 756e M, then this fun │ │ │ │ +00012210: 6374 696f 6e20 636f 6d70 7574 6573 2074 ction computes t │ │ │ │ +00012220: 6865 2070 6965 6365 206f 6620 7468 6520 he piece of the │ │ │ │ +00012230: 5461 7465 2072 6573 6f6c 7574 696f 6e0a Tate resolution. │ │ │ │ +00012240: 6672 6f6d 2063 6f68 6f6d 6f6c 6f67 6963 from cohomologic │ │ │ │ +00012250: 616c 2064 6567 7265 6520 6c20 746f 2063 al degree l to c │ │ │ │ +00012260: 6f68 6f6d 6f6c 6f67 6963 616c 2064 6567 ohomological deg │ │ │ │ +00012270: 7265 6520 6d61 7828 722b 322c 6829 2e20 ree max(r+2,h). │ │ │ │ +00012280: 466f 7220 696e 7374 616e 6365 2c0a 666f For instance,.fo │ │ │ │ +00012290: 7220 7468 6520 686f 6d6f 6765 6e65 6f75 r the homogeneou │ │ │ │ +000122a0: 7320 636f 6f72 6469 6e61 7465 2072 696e s coordinate rin │ │ │ │ +000122b0: 6720 6f66 2061 2070 6f69 6e74 2069 6e20 g of a point in │ │ │ │ +000122c0: 7468 6520 7072 6f6a 6563 7469 7665 2070 the projective p │ │ │ │ +000122d0: 6c61 6e65 3a0a 2b2d 2d2d 2d2d 2d2d 2d2d lane:.+--------- │ │ │ │ 000122e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000122f0: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 5320 ------+.|i1 : S │ │ │ │ -00012300: 3d20 5a5a 2f33 3230 3033 5b78 5f30 2e2e = ZZ/32003[x_0.. │ │ │ │ -00012310: 785f 325d 3b20 2020 2020 2020 2020 2020 x_2]; │ │ │ │ -00012320: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00012330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000122f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012300: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ +00012310: 3a20 5320 3d20 5a5a 2f33 3230 3033 5b78 : S = ZZ/32003[x │ │ │ │ +00012320: 5f30 2e2e 785f 325d 3b20 2020 2020 2020 _0..x_2]; │ │ │ │ +00012330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012340: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00012350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012360: 2d2d 2b0a 7c69 3220 3a20 4520 3d20 5a5a --+.|i2 : E = ZZ │ │ │ │ -00012370: 2f33 3230 3033 5b65 5f30 2e2e 655f 322c /32003[e_0..e_2, │ │ │ │ -00012380: 2053 6b65 7743 6f6d 6d75 7461 7469 7665 SkewCommutative │ │ │ │ -00012390: 3d3e 7472 7565 5d3b 7c0a 2b2d 2d2d 2d2d =>true];|.+----- │ │ │ │ -000123a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012370: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 4520 ------+.|i2 : E │ │ │ │ +00012380: 3d20 5a5a 2f33 3230 3033 5b65 5f30 2e2e = ZZ/32003[e_0.. │ │ │ │ +00012390: 655f 322c 2053 6b65 7743 6f6d 6d75 7461 e_2, SkewCommuta │ │ │ │ +000123a0: 7469 7665 3d3e 7472 7565 5d3b 7c0a 2b2d tive=>true];|.+- │ │ │ │ 000123b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000123c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000123d0: 7c69 3320 3a20 6d20 3d20 6d61 7472 6978 |i3 : m = matrix │ │ │ │ -000123e0: 7b7b 785f 302c 785f 317d 7d3b 2020 2020 {{x_0,x_1}}; │ │ │ │ -000123f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012400: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00012410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000123c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000123d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000123e0: 2d2d 2b0a 7c69 3320 3a20 6d20 3d20 6d61 --+.|i3 : m = ma │ │ │ │ +000123f0: 7472 6978 7b7b 785f 302c 785f 317d 7d3b trix{{x_0,x_1}}; │ │ │ │ +00012400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012410: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00012420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012430: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00012440: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ -00012450: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00012460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012470: 7c0a 7c6f 3320 3a20 4d61 7472 6978 2053 |.|o3 : Matrix S │ │ │ │ -00012480: 2020 3c2d 2d20 5320 2020 2020 2020 2020 <-- S │ │ │ │ -00012490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000124a0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -000124b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012440: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00012450: 7c20 2020 2020 2020 2020 2020 2020 3120 | 1 │ │ │ │ +00012460: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00012470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012480: 2020 2020 7c0a 7c6f 3320 3a20 4d61 7472 |.|o3 : Matr │ │ │ │ +00012490: 6978 2053 2020 3c2d 2d20 5320 2020 2020 ix S <-- S │ │ │ │ +000124a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000124b0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ 000124c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000124d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000124e0: 3420 3a20 7265 6775 6c61 7269 7479 2063 4 : regularity c │ │ │ │ -000124f0: 6f6b 6572 206d 2020 2020 2020 2020 2020 oker m │ │ │ │ -00012500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012510: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00012520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000124d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000124e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000124f0: 2b0a 7c69 3420 3a20 7265 6775 6c61 7269 +.|i4 : regulari │ │ │ │ +00012500: 7479 2063 6f6b 6572 206d 2020 2020 2020 ty coker m │ │ │ │ +00012510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012520: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00012530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012540: 2020 2020 2020 2020 7c0a 7c6f 3420 3d20 |.|o4 = │ │ │ │ -00012550: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00012560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012570: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00012580: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00012590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012550: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00012560: 3420 3d20 3020 2020 2020 2020 2020 2020 4 = 0 │ │ │ │ +00012570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012590: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 000125a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000125b0: 2d2d 2d2d 2b0a 7c69 3520 3a20 5420 3d20 ----+.|i5 : T = │ │ │ │ -000125c0: 7461 7465 5265 736f 6c75 7469 6f6e 286d tateResolution(m │ │ │ │ -000125d0: 2c45 2c2d 322c 3429 2020 2020 2020 2020 ,E,-2,4) │ │ │ │ -000125e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000125f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000125b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000125c0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 --------+.|i5 : │ │ │ │ +000125d0: 5420 3d20 7461 7465 5265 736f 6c75 7469 T = tateResoluti │ │ │ │ +000125e0: 6f6e 286d 2c45 2c2d 322c 3429 2020 2020 on(m,E,-2,4) │ │ │ │ +000125f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00012600: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00012610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012620: 7c0a 7c20 2020 2020 2031 2020 2020 2020 |.| 1 │ │ │ │ -00012630: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ -00012640: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ -00012650: 2020 2031 2020 7c0a 7c6f 3520 3d20 4520 1 |.|o5 = E │ │ │ │ -00012660: 203c 2d2d 2045 2020 3c2d 2d20 4520 203c <-- E <-- E < │ │ │ │ -00012670: 2d2d 2045 2020 3c2d 2d20 4520 203c 2d2d -- E <-- E <-- │ │ │ │ -00012680: 2045 2020 3c2d 2d20 4520 2020 7c0a 7c20 E <-- E |.| │ │ │ │ -00012690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000126a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012630: 2020 2020 7c0a 7c20 2020 2020 2031 2020 |.| 1 │ │ │ │ +00012640: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00012650: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ +00012660: 3120 2020 2020 2031 2020 7c0a 7c6f 3520 1 1 |.|o5 │ │ │ │ +00012670: 3d20 4520 203c 2d2d 2045 2020 3c2d 2d20 = E <-- E <-- │ │ │ │ +00012680: 4520 203c 2d2d 2045 2020 3c2d 2d20 4520 E <-- E <-- E │ │ │ │ +00012690: 203c 2d2d 2045 2020 3c2d 2d20 4520 2020 <-- E <-- E │ │ │ │ +000126a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000126b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000126c0: 2020 7c0a 7c20 2020 2020 3020 2020 2020 |.| 0 │ │ │ │ -000126d0: 2031 2020 2020 2020 3220 2020 2020 2033 1 2 3 │ │ │ │ -000126e0: 2020 2020 2020 3420 2020 2020 2035 2020 4 5 │ │ │ │ -000126f0: 2020 2020 3620 2020 7c0a 7c20 2020 2020 6 |.| │ │ │ │ -00012700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000126c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000126d0: 2020 2020 2020 7c0a 7c20 2020 2020 3020 |.| 0 │ │ │ │ +000126e0: 2020 2020 2031 2020 2020 2020 3220 2020 1 2 │ │ │ │ +000126f0: 2020 2033 2020 2020 2020 3420 2020 2020 3 4 │ │ │ │ +00012700: 2035 2020 2020 2020 3620 2020 7c0a 7c20 5 6 |.| │ │ │ │ 00012710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012720: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00012730: 7c6f 3520 3a20 4368 6169 6e43 6f6d 706c |o5 : ChainCompl │ │ │ │ -00012740: 6578 2020 2020 2020 2020 2020 2020 2020 ex │ │ │ │ -00012750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012760: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00012770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012740: 2020 7c0a 7c6f 3520 3a20 4368 6169 6e43 |.|o5 : ChainC │ │ │ │ +00012750: 6f6d 706c 6578 2020 2020 2020 2020 2020 omplex │ │ │ │ +00012760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012770: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ 00012780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012790: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 ----------+.|i6 │ │ │ │ -000127a0: 3a20 6265 7474 6920 5420 2020 2020 2020 : betti T │ │ │ │ -000127b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000127a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000127b0: 7c69 3620 3a20 6265 7474 6920 5420 2020 |i6 : betti T │ │ │ │ 000127c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000127d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000127e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000127d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000127e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000127f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012800: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00012810: 2020 2020 2030 2031 2032 2033 2034 2035 0 1 2 3 4 5 │ │ │ │ -00012820: 2036 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ -00012830: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00012840: 3620 3d20 746f 7461 6c3a 2031 2031 2031 6 = total: 1 1 1 │ │ │ │ -00012850: 2031 2031 2031 2031 2020 2020 2020 2020 1 1 1 1 │ │ │ │ -00012860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012870: 2020 7c0a 7c20 2020 2020 2020 202d 343a |.| -4: │ │ │ │ -00012880: 2031 2031 2031 2031 2031 2031 2031 2020 1 1 1 1 1 1 1 │ │ │ │ -00012890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000128a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000128b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012810: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00012820: 2020 2020 2020 2020 2030 2031 2032 2033 0 1 2 3 │ │ │ │ +00012830: 2034 2035 2036 2020 2020 2020 2020 2020 4 5 6 │ │ │ │ +00012840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012850: 7c0a 7c6f 3620 3d20 746f 7461 6c3a 2031 |.|o6 = total: 1 │ │ │ │ +00012860: 2031 2031 2031 2031 2031 2031 2020 2020 1 1 1 1 1 1 │ │ │ │ +00012870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012880: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00012890: 202d 343a 2031 2031 2031 2031 2031 2031 -4: 1 1 1 1 1 1 │ │ │ │ +000128a0: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +000128b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 000128c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000128d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000128e0: 7c6f 3620 3a20 4265 7474 6954 616c 6c79 |o6 : BettiTally │ │ │ │ -000128f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012910: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00012920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000128d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000128e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000128f0: 2020 7c0a 7c6f 3620 3a20 4265 7474 6954 |.|o6 : BettiT │ │ │ │ +00012900: 616c 6c79 2020 2020 2020 2020 2020 2020 ally │ │ │ │ +00012910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012920: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ 00012930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012940: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 ----------+.|i7 │ │ │ │ -00012950: 3a20 542e 6464 5f31 2020 2020 2020 2020 : T.dd_1 │ │ │ │ -00012960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00012960: 7c69 3720 3a20 542e 6464 5f31 2020 2020 |i7 : T.dd_1 │ │ │ │ 00012970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012980: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00012990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012990: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000129a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000129b0: 2020 2020 2020 7c0a 7c6f 3720 3d20 7b2d |.|o7 = {- │ │ │ │ -000129c0: 347d 207c 2065 5f32 207c 2020 2020 2020 4} | e_2 | │ │ │ │ -000129d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000129e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000129b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000129c0: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ +000129d0: 3d20 7b2d 347d 207c 2065 5f32 207c 2020 = {-4} | e_2 | │ │ │ │ +000129e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000129f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012a00: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00012a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012a20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00012a30: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -00012a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012a50: 2020 2020 2020 2020 7c0a 7c6f 3720 3a20 |.|o7 : │ │ │ │ -00012a60: 4d61 7472 6978 2045 2020 3c2d 2d20 4520 Matrix E <-- E │ │ │ │ -00012a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012a80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00012a90: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00012aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012a30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00012a40: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ +00012a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012a60: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00012a70: 3720 3a20 4d61 7472 6978 2045 2020 3c2d 7 : Matrix E <- │ │ │ │ +00012a80: 2d20 4520 2020 2020 2020 2020 2020 2020 - E │ │ │ │ +00012a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012aa0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00012ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012ac0: 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 6f0a ----+..See also. │ │ │ │ -00012ad0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ -00012ae0: 6f74 6520 7379 6d45 7874 3a20 7379 6d45 ote symExt: symE │ │ │ │ -00012af0: 7874 2c20 2d2d 2074 6865 2066 6972 7374 xt, -- the first │ │ │ │ -00012b00: 2064 6966 6665 7265 6e74 6961 6c20 6f66 differential of │ │ │ │ -00012b10: 2074 6865 2063 6f6d 706c 6578 2052 284d the complex R(M │ │ │ │ -00012b20: 290a 0a57 6179 7320 746f 2075 7365 2074 )..Ways to use t │ │ │ │ -00012b30: 6174 6552 6573 6f6c 7574 696f 6e3a 0a3d ateResolution:.= │ │ │ │ -00012b40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00012b50: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -00012b60: 2274 6174 6552 6573 6f6c 7574 696f 6e28 "tateResolution( │ │ │ │ -00012b70: 4d61 7472 6978 2c50 6f6c 796e 6f6d 6961 Matrix,Polynomia │ │ │ │ -00012b80: 6c52 696e 672c 5a5a 2c5a 5a29 220a 0a46 lRing,ZZ,ZZ)"..F │ │ │ │ -00012b90: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -00012ba0: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -00012bb0: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -00012bc0: 202a 6e6f 7465 2074 6174 6552 6573 6f6c *note tateResol │ │ │ │ -00012bd0: 7574 696f 6e3a 2074 6174 6552 6573 6f6c ution: tateResol │ │ │ │ -00012be0: 7574 696f 6e2c 2069 7320 6120 2a6e 6f74 ution, is a *not │ │ │ │ -00012bf0: 6520 6d65 7468 6f64 2066 756e 6374 696f e method functio │ │ │ │ -00012c00: 6e3a 0a28 4d61 6361 756c 6179 3244 6f63 n:.(Macaulay2Doc │ │ │ │ -00012c10: 294d 6574 686f 6446 756e 6374 696f 6e2c )MethodFunction, │ │ │ │ -00012c20: 2e0a 1f0a 4669 6c65 3a20 4247 472e 696e ....File: BGG.in │ │ │ │ -00012c30: 666f 2c20 4e6f 6465 3a20 756e 6976 6572 fo, Node: univer │ │ │ │ -00012c40: 7361 6c45 7874 656e 7369 6f6e 2c20 5072 salExtension, Pr │ │ │ │ -00012c50: 6576 3a20 7461 7465 5265 736f 6c75 7469 ev: tateResoluti │ │ │ │ -00012c60: 6f6e 2c20 5570 3a20 546f 700a 0a75 6e69 on, Up: Top..uni │ │ │ │ -00012c70: 7665 7273 616c 4578 7465 6e73 696f 6e20 versalExtension │ │ │ │ -00012c80: 2d2d 2055 6e69 7665 7273 616c 2065 7874 -- Universal ext │ │ │ │ -00012c90: 656e 7369 6f6e 206f 6620 7665 6374 6f72 ension of vector │ │ │ │ -00012ca0: 2062 756e 646c 6573 206f 6e20 505e 310a bundles on P^1. │ │ │ │ -00012cb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00012cc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00012ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012ad0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ +00012ae0: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ +00012af0: 2a20 2a6e 6f74 6520 7379 6d45 7874 3a20 * *note symExt: │ │ │ │ +00012b00: 7379 6d45 7874 2c20 2d2d 2074 6865 2066 symExt, -- the f │ │ │ │ +00012b10: 6972 7374 2064 6966 6665 7265 6e74 6961 irst differentia │ │ │ │ +00012b20: 6c20 6f66 2074 6865 2063 6f6d 706c 6578 l of the complex │ │ │ │ +00012b30: 2052 284d 290a 0a57 6179 7320 746f 2075 R(M)..Ways to u │ │ │ │ +00012b40: 7365 2074 6174 6552 6573 6f6c 7574 696f se tateResolutio │ │ │ │ +00012b50: 6e3a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d n:.============= │ │ │ │ +00012b60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +00012b70: 2020 2a20 2274 6174 6552 6573 6f6c 7574 * "tateResolut │ │ │ │ +00012b80: 696f 6e28 4d61 7472 6978 2c50 6f6c 796e ion(Matrix,Polyn │ │ │ │ +00012b90: 6f6d 6961 6c52 696e 672c 5a5a 2c5a 5a29 omialRing,ZZ,ZZ) │ │ │ │ +00012ba0: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ +00012bb0: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +00012bc0: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +00012bd0: 6a65 6374 202a 6e6f 7465 2074 6174 6552 ject *note tateR │ │ │ │ +00012be0: 6573 6f6c 7574 696f 6e3a 2074 6174 6552 esolution: tateR │ │ │ │ +00012bf0: 6573 6f6c 7574 696f 6e2c 2069 7320 6120 esolution, is a │ │ │ │ +00012c00: 2a6e 6f74 6520 6d65 7468 6f64 2066 756e *note method fun │ │ │ │ +00012c10: 6374 696f 6e3a 0a28 4d61 6361 756c 6179 ction:.(Macaulay │ │ │ │ +00012c20: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ +00012c30: 696f 6e2c 2e0a 1f0a 4669 6c65 3a20 4247 ion,....File: BG │ │ │ │ +00012c40: 472e 696e 666f 2c20 4e6f 6465 3a20 756e G.info, Node: un │ │ │ │ +00012c50: 6976 6572 7361 6c45 7874 656e 7369 6f6e iversalExtension │ │ │ │ +00012c60: 2c20 5072 6576 3a20 7461 7465 5265 736f , Prev: tateReso │ │ │ │ +00012c70: 6c75 7469 6f6e 2c20 5570 3a20 546f 700a lution, Up: Top. │ │ │ │ +00012c80: 0a75 6e69 7665 7273 616c 4578 7465 6e73 .universalExtens │ │ │ │ +00012c90: 696f 6e20 2d2d 2055 6e69 7665 7273 616c ion -- Universal │ │ │ │ +00012ca0: 2065 7874 656e 7369 6f6e 206f 6620 7665 extension of ve │ │ │ │ +00012cb0: 6374 6f72 2062 756e 646c 6573 206f 6e20 ctor bundles on │ │ │ │ +00012cc0: 505e 310a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a P^1.************ │ │ │ │ 00012cd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00012ce0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00012cf0: 2a2a 0a0a 5379 6e6f 7073 6973 0a3d 3d3d **..Synopsis.=== │ │ │ │ -00012d00: 3d3d 3d3d 3d0a 0a20 202a 2055 7361 6765 =====.. * Usage │ │ │ │ -00012d10: 3a20 0a20 2020 2020 2020 2045 203d 2075 : . E = u │ │ │ │ -00012d20: 6e69 7665 7273 616c 4578 7465 6e73 696f niversalExtensio │ │ │ │ -00012d30: 6e28 4c61 2c20 4c62 290a 2020 2a20 496e n(La, Lb). * In │ │ │ │ -00012d40: 7075 7473 3a0a 2020 2020 2020 2a20 4c61 puts:. * La │ │ │ │ -00012d50: 2c20 6120 2a6e 6f74 6520 6c69 7374 3a20 , a *note list: │ │ │ │ -00012d60: 284d 6163 6175 6c61 7932 446f 6329 4c69 (Macaulay2Doc)Li │ │ │ │ -00012d70: 7374 2c2c 206f 6620 696e 7465 6765 7273 st,, of integers │ │ │ │ -00012d80: 0a20 2020 2020 202a 204c 622c 2061 202a . * Lb, a * │ │ │ │ -00012d90: 6e6f 7465 206c 6973 743a 2028 4d61 6361 note list: (Maca │ │ │ │ -00012da0: 756c 6179 3244 6f63 294c 6973 742c 2c20 ulay2Doc)List,, │ │ │ │ -00012db0: 6f66 2069 6e74 6567 6572 730a 2020 2a20 of integers. * │ │ │ │ -00012dc0: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ -00012dd0: 2045 2c20 6120 2a6e 6f74 6520 6d6f 6475 E, a *note modu │ │ │ │ -00012de0: 6c65 3a20 284d 6163 6175 6c61 7932 446f le: (Macaulay2Do │ │ │ │ -00012df0: 6329 4d6f 6475 6c65 2c2c 2072 6570 7265 c)Module,, repre │ │ │ │ -00012e00: 7365 6e74 696e 6720 7468 6520 6578 7465 senting the exte │ │ │ │ -00012e10: 6e73 696f 6e0a 0a44 6573 6372 6970 7469 nsion..Descripti │ │ │ │ -00012e20: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -00012e30: 4576 6572 7920 7665 6374 6f72 2062 756e Every vector bun │ │ │ │ -00012e40: 646c 6520 4520 6f6e 2024 5c50 505e 3124 dle E on $\PP^1$ │ │ │ │ -00012e50: 2073 706c 6974 7320 6173 2061 2073 756d splits as a sum │ │ │ │ -00012e60: 206f 6620 6c69 6e65 2062 756e 646c 6573 of line bundles │ │ │ │ -00012e70: 204f 4f28 615f 6929 2e20 4966 204c 610a OO(a_i). If La. │ │ │ │ -00012e80: 6973 2061 206c 6973 7420 6f66 2069 6e74 is a list of int │ │ │ │ -00012e90: 6567 6572 732c 2077 6520 7772 6974 6520 egers, we write │ │ │ │ -00012ea0: 4528 4c61 2920 666f 7220 7468 6520 6469 E(La) for the di │ │ │ │ -00012eb0: 7265 6374 2073 756d 206f 6620 7468 6520 rect sum of the │ │ │ │ -00012ec0: 6c69 6e65 2062 756e 646c 650a 4f4f 284c line bundle.OO(L │ │ │ │ -00012ed0: 615f 6929 2e20 2047 6976 656e 2074 776f a_i). Given two │ │ │ │ -00012ee0: 2073 7563 6820 6275 6e64 6c65 7320 7370 such bundles sp │ │ │ │ -00012ef0: 6563 6966 6965 6420 6279 2074 6865 206c ecified by the l │ │ │ │ -00012f00: 6973 7473 204c 6120 616e 6420 4c62 2074 ists La and Lb t │ │ │ │ -00012f10: 6869 7320 7363 7269 7074 0a63 6f6e 7374 his script.const │ │ │ │ -00012f20: 7275 6374 7320 6120 6d6f 6475 6c65 2072 ructs a module r │ │ │ │ -00012f30: 6570 7265 7365 6e74 696e 6720 7468 6520 epresenting the │ │ │ │ -00012f40: 756e 6976 6572 7361 6c20 6578 7465 6e73 universal extens │ │ │ │ -00012f50: 696f 6e20 6f66 2045 284c 6229 2062 7920 ion of E(Lb) by │ │ │ │ -00012f60: 4528 4c61 292e 2049 740a 6973 2064 6566 E(La). It.is def │ │ │ │ -00012f70: 696e 6564 206f 6e20 7468 6520 7072 6f64 ined on the prod │ │ │ │ -00012f80: 7563 7420 7661 7269 6574 7920 4578 745e uct variety Ext^ │ │ │ │ -00012f90: 3128 4528 4c61 292c 2045 284c 6229 2920 1(E(La), E(Lb)) │ │ │ │ -00012fa0: 7820 245c 5050 5e31 242c 2061 6e64 0a72 x $\PP^1$, and.r │ │ │ │ -00012fb0: 6570 7265 7365 6e74 6564 2068 6572 6520 epresented here │ │ │ │ -00012fc0: 6279 2061 2067 7261 6465 6420 6d6f 6475 by a graded modu │ │ │ │ -00012fd0: 6c65 206f 7665 7220 7468 6520 636f 6f72 le over the coor │ │ │ │ -00012fe0: 6469 6e61 7465 2072 696e 6720 5320 3d20 dinate ring S = │ │ │ │ -00012ff0: 415b 795f 302c 795f 315d 206f 660a 7468 A[y_0,y_1] of.th │ │ │ │ -00013000: 6973 2076 6172 6965 7479 3b20 6865 7265 is variety; here │ │ │ │ -00013010: 2041 2069 7320 7468 6520 636f 6f72 6469 A is the coordi │ │ │ │ -00013020: 6e61 7465 2072 696e 6720 6f66 2045 7874 nate ring of Ext │ │ │ │ -00013030: 5e31 2845 284c 6129 2c20 4528 4c62 2929 ^1(E(La), E(Lb)) │ │ │ │ -00013040: 2c20 7768 6963 6820 6973 2061 0a70 6f6c , which is a.pol │ │ │ │ -00013050: 796e 6f6d 6961 6c20 7269 6e67 2e0a 0a2b ynomial ring...+ │ │ │ │ -00013060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012cf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00012d00: 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 ******..Synopsis │ │ │ │ +00012d10: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 .========.. * U │ │ │ │ +00012d20: 7361 6765 3a20 0a20 2020 2020 2020 2045 sage: . E │ │ │ │ +00012d30: 203d 2075 6e69 7665 7273 616c 4578 7465 = universalExte │ │ │ │ +00012d40: 6e73 696f 6e28 4c61 2c20 4c62 290a 2020 nsion(La, Lb). │ │ │ │ +00012d50: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ +00012d60: 2a20 4c61 2c20 6120 2a6e 6f74 6520 6c69 * La, a *note li │ │ │ │ +00012d70: 7374 3a20 284d 6163 6175 6c61 7932 446f st: (Macaulay2Do │ │ │ │ +00012d80: 6329 4c69 7374 2c2c 206f 6620 696e 7465 c)List,, of inte │ │ │ │ +00012d90: 6765 7273 0a20 2020 2020 202a 204c 622c gers. * Lb, │ │ │ │ +00012da0: 2061 202a 6e6f 7465 206c 6973 743a 2028 a *note list: ( │ │ │ │ +00012db0: 4d61 6361 756c 6179 3244 6f63 294c 6973 Macaulay2Doc)Lis │ │ │ │ +00012dc0: 742c 2c20 6f66 2069 6e74 6567 6572 730a t,, of integers. │ │ │ │ +00012dd0: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ +00012de0: 2020 202a 2045 2c20 6120 2a6e 6f74 6520 * E, a *note │ │ │ │ +00012df0: 6d6f 6475 6c65 3a20 284d 6163 6175 6c61 module: (Macaula │ │ │ │ +00012e00: 7932 446f 6329 4d6f 6475 6c65 2c2c 2072 y2Doc)Module,, r │ │ │ │ +00012e10: 6570 7265 7365 6e74 696e 6720 7468 6520 epresenting the │ │ │ │ +00012e20: 6578 7465 6e73 696f 6e0a 0a44 6573 6372 extension..Descr │ │ │ │ +00012e30: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ +00012e40: 3d3d 0a0a 4576 6572 7920 7665 6374 6f72 ==..Every vector │ │ │ │ +00012e50: 2062 756e 646c 6520 4520 6f6e 2024 5c50 bundle E on $\P │ │ │ │ +00012e60: 505e 3124 2073 706c 6974 7320 6173 2061 P^1$ splits as a │ │ │ │ +00012e70: 2073 756d 206f 6620 6c69 6e65 2062 756e sum of line bun │ │ │ │ +00012e80: 646c 6573 204f 4f28 615f 6929 2e20 4966 dles OO(a_i). If │ │ │ │ +00012e90: 204c 610a 6973 2061 206c 6973 7420 6f66 La.is a list of │ │ │ │ +00012ea0: 2069 6e74 6567 6572 732c 2077 6520 7772 integers, we wr │ │ │ │ +00012eb0: 6974 6520 4528 4c61 2920 666f 7220 7468 ite E(La) for th │ │ │ │ +00012ec0: 6520 6469 7265 6374 2073 756d 206f 6620 e direct sum of │ │ │ │ +00012ed0: 7468 6520 6c69 6e65 2062 756e 646c 650a the line bundle. │ │ │ │ +00012ee0: 4f4f 284c 615f 6929 2e20 2047 6976 656e OO(La_i). Given │ │ │ │ +00012ef0: 2074 776f 2073 7563 6820 6275 6e64 6c65 two such bundle │ │ │ │ +00012f00: 7320 7370 6563 6966 6965 6420 6279 2074 s specified by t │ │ │ │ +00012f10: 6865 206c 6973 7473 204c 6120 616e 6420 he lists La and │ │ │ │ +00012f20: 4c62 2074 6869 7320 7363 7269 7074 0a63 Lb this script.c │ │ │ │ +00012f30: 6f6e 7374 7275 6374 7320 6120 6d6f 6475 onstructs a modu │ │ │ │ +00012f40: 6c65 2072 6570 7265 7365 6e74 696e 6720 le representing │ │ │ │ +00012f50: 7468 6520 756e 6976 6572 7361 6c20 6578 the universal ex │ │ │ │ +00012f60: 7465 6e73 696f 6e20 6f66 2045 284c 6229 tension of E(Lb) │ │ │ │ +00012f70: 2062 7920 4528 4c61 292e 2049 740a 6973 by E(La). It.is │ │ │ │ +00012f80: 2064 6566 696e 6564 206f 6e20 7468 6520 defined on the │ │ │ │ +00012f90: 7072 6f64 7563 7420 7661 7269 6574 7920 product variety │ │ │ │ +00012fa0: 4578 745e 3128 4528 4c61 292c 2045 284c Ext^1(E(La), E(L │ │ │ │ +00012fb0: 6229 2920 7820 245c 5050 5e31 242c 2061 b)) x $\PP^1$, a │ │ │ │ +00012fc0: 6e64 0a72 6570 7265 7365 6e74 6564 2068 nd.represented h │ │ │ │ +00012fd0: 6572 6520 6279 2061 2067 7261 6465 6420 ere by a graded │ │ │ │ +00012fe0: 6d6f 6475 6c65 206f 7665 7220 7468 6520 module over the │ │ │ │ +00012ff0: 636f 6f72 6469 6e61 7465 2072 696e 6720 coordinate ring │ │ │ │ +00013000: 5320 3d20 415b 795f 302c 795f 315d 206f S = A[y_0,y_1] o │ │ │ │ +00013010: 660a 7468 6973 2076 6172 6965 7479 3b20 f.this variety; │ │ │ │ +00013020: 6865 7265 2041 2069 7320 7468 6520 636f here A is the co │ │ │ │ +00013030: 6f72 6469 6e61 7465 2072 696e 6720 6f66 ordinate ring of │ │ │ │ +00013040: 2045 7874 5e31 2845 284c 6129 2c20 4528 Ext^1(E(La), E( │ │ │ │ +00013050: 4c62 2929 2c20 7768 6963 6820 6973 2061 Lb)), which is a │ │ │ │ +00013060: 0a70 6f6c 796e 6f6d 6961 6c20 7269 6e67 .polynomial ring │ │ │ │ +00013070: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ 00013080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000130a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000130b0: 6931 203a 204d 203d 2075 6e69 7665 7273 i1 : M = univers │ │ │ │ -000130c0: 616c 4578 7465 6e73 696f 6e28 7b2d 327d alExtension({-2} │ │ │ │ -000130d0: 2c20 7b32 7d29 2020 2020 2020 2020 2020 , {2}) │ │ │ │ -000130e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000130f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000130a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000130b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000130c0: 2d2b 0a7c 6931 203a 204d 203d 2075 6e69 -+.|i1 : M = uni │ │ │ │ +000130d0: 7665 7273 616c 4578 7465 6e73 696f 6e28 versalExtension( │ │ │ │ +000130e0: 7b2d 327d 2c20 7b32 7d29 2020 2020 2020 {-2}, {2}) │ │ │ │ +000130f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013110: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00013120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013140: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00013150: 6f31 203d 2063 6f6b 6572 6e65 6c20 7b32 o1 = cokernel {2 │ │ │ │ -00013160: 2c20 307d 207c 2078 5f30 2078 5f31 2078 , 0} | x_0 x_1 x │ │ │ │ -00013170: 5f32 207c 2020 2020 2020 2020 2020 2020 _2 | │ │ │ │ -00013180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013190: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000131a0: 2020 2020 2020 2020 2020 2020 2020 7b31 {1 │ │ │ │ -000131b0: 2c20 317d 207c 2079 5f30 2030 2020 2030 , 1} | y_0 0 0 │ │ │ │ -000131c0: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000131d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000131e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000131f0: 2020 2020 2020 2020 2020 2020 2020 7b31 {1 │ │ │ │ -00013200: 2c20 317d 207c 2079 5f31 2079 5f30 2030 , 1} | y_1 y_0 0 │ │ │ │ -00013210: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00013220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013230: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00013240: 2020 2020 2020 2020 2020 2020 2020 7b31 {1 │ │ │ │ -00013250: 2c20 317d 207c 2030 2020 2079 5f31 2079 , 1} | 0 y_1 y │ │ │ │ -00013260: 5f30 207c 2020 2020 2020 2020 2020 2020 _0 | │ │ │ │ -00013270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013280: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00013290: 2020 2020 2020 2020 2020 2020 2020 7b31 {1 │ │ │ │ -000132a0: 2c20 317d 207c 2030 2020 2030 2020 2079 , 1} | 0 0 y │ │ │ │ -000132b0: 5f31 207c 2020 2020 2020 2020 2020 2020 _1 | │ │ │ │ -000132c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000132d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00013140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013160: 207c 0a7c 6f31 203d 2063 6f6b 6572 6e65 |.|o1 = cokerne │ │ │ │ +00013170: 6c20 7b32 2c20 307d 207c 2078 5f30 2078 l {2, 0} | x_0 x │ │ │ │ +00013180: 5f31 2078 5f32 207c 2020 2020 2020 2020 _1 x_2 | │ │ │ │ +00013190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000131a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000131b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000131c0: 2020 7b31 2c20 317d 207c 2079 5f30 2030 {1, 1} | y_0 0 │ │ │ │ +000131d0: 2020 2030 2020 207c 2020 2020 2020 2020 0 | │ │ │ │ +000131e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000131f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013200: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013210: 2020 7b31 2c20 317d 207c 2079 5f31 2079 {1, 1} | y_1 y │ │ │ │ +00013220: 5f30 2030 2020 207c 2020 2020 2020 2020 _0 0 | │ │ │ │ +00013230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013250: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013260: 2020 7b31 2c20 317d 207c 2030 2020 2079 {1, 1} | 0 y │ │ │ │ +00013270: 5f31 2079 5f30 207c 2020 2020 2020 2020 _1 y_0 | │ │ │ │ +00013280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000132a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000132b0: 2020 7b31 2c20 317d 207c 2030 2020 2030 {1, 1} | 0 0 │ │ │ │ +000132c0: 2020 2079 5f31 207c 2020 2020 2020 2020 y_1 | │ │ │ │ +000132d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000132e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000132f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000132f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00013300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013320: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00013330: 2020 2020 2020 5a5a 2020 2020 2020 2020 ZZ │ │ │ │ -00013340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013350: 2020 2020 2020 2020 2020 2020 2020 205a Z │ │ │ │ -00013360: 5a20 2020 2020 2020 2020 2020 2020 2020 Z │ │ │ │ -00013370: 2020 3520 2020 2020 2020 2020 207c 0a7c 5 |.| │ │ │ │ -00013380: 6f31 203a 202d 2d2d 5b78 202e 2e78 205d o1 : ---[x ..x ] │ │ │ │ -00013390: 5b79 202e 2e79 205d 2d6d 6f64 756c 652c [y ..y ]-module, │ │ │ │ -000133a0: 2071 756f 7469 656e 7420 6f66 2028 2d2d quotient of (-- │ │ │ │ -000133b0: 2d5b 7820 2e2e 7820 5d5b 7920 2e2e 7920 -[x ..x ][y ..y │ │ │ │ -000133c0: 5d29 2020 2020 2020 2020 2020 207c 0a7c ]) |.| │ │ │ │ -000133d0: 2020 2020 2031 3031 2020 3020 2020 3220 101 0 2 │ │ │ │ -000133e0: 2020 3020 2020 3120 2020 2020 2020 2020 0 1 │ │ │ │ -000133f0: 2020 2020 2020 2020 2020 2020 2020 3130 10 │ │ │ │ -00013400: 3120 2030 2020 2032 2020 2030 2020 2031 1 0 2 0 1 │ │ │ │ -00013410: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00013420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013340: 207c 0a7c 2020 2020 2020 5a5a 2020 2020 |.| ZZ │ │ │ │ +00013350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013370: 2020 205a 5a20 2020 2020 2020 2020 2020 ZZ │ │ │ │ +00013380: 2020 2020 2020 3520 2020 2020 2020 2020 5 │ │ │ │ +00013390: 207c 0a7c 6f31 203a 202d 2d2d 5b78 202e |.|o1 : ---[x . │ │ │ │ +000133a0: 2e78 205d 5b79 202e 2e79 205d 2d6d 6f64 .x ][y ..y ]-mod │ │ │ │ +000133b0: 756c 652c 2071 756f 7469 656e 7420 6f66 ule, quotient of │ │ │ │ +000133c0: 2028 2d2d 2d5b 7820 2e2e 7820 5d5b 7920 (---[x ..x ][y │ │ │ │ +000133d0: 2e2e 7920 5d29 2020 2020 2020 2020 2020 ..y ]) │ │ │ │ +000133e0: 207c 0a7c 2020 2020 2031 3031 2020 3020 |.| 101 0 │ │ │ │ +000133f0: 2020 3220 2020 3020 2020 3120 2020 2020 2 0 1 │ │ │ │ +00013400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013410: 2020 3130 3120 2030 2020 2032 2020 2030 101 0 2 0 │ │ │ │ +00013420: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00013430: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00013440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00013470: 6932 203a 204d 203d 2075 6e69 7665 7273 i2 : M = univers │ │ │ │ -00013480: 616c 4578 7465 6e73 696f 6e28 7b2d 322c alExtension({-2, │ │ │ │ -00013490: 2d33 7d2c 207b 322c 337d 2920 2020 2020 -3}, {2,3}) │ │ │ │ -000134a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000134b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00013460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013480: 2d2b 0a7c 6932 203a 204d 203d 2075 6e69 -+.|i2 : M = uni │ │ │ │ +00013490: 7665 7273 616c 4578 7465 6e73 696f 6e28 versalExtension( │ │ │ │ +000134a0: 7b2d 322c 2d33 7d2c 207b 322c 337d 2920 {-2,-3}, {2,3}) │ │ │ │ +000134b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000134c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000134d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000134d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000134e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000134f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013500: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00013510: 6f32 203d 2063 6f6b 6572 6e65 6c20 7b32 o2 = cokernel {2 │ │ │ │ -00013520: 2c20 307d 207c 2078 5f30 795f 3120 785f , 0} | x_0y_1 x_ │ │ │ │ -00013530: 3179 5f31 2078 5f32 795f 3120 785f 3379 1y_1 x_2y_1 x_3y │ │ │ │ -00013540: 5f31 2078 5f34 795f 3120 785f 3579 5f31 _1 x_4y_1 x_5y_1 │ │ │ │ -00013550: 2078 5f36 795f 3120 2020 2020 207c 0a7c x_6y_1 |.| │ │ │ │ -00013560: 2020 2020 2020 2020 2020 2020 2020 7b33 {3 │ │ │ │ -00013570: 2c20 307d 207c 2078 5f39 2020 2020 785f , 0} | x_9 x_ │ │ │ │ -00013580: 3130 2020 2078 5f31 3120 2020 785f 3132 10 x_11 x_12 │ │ │ │ -00013590: 2020 2078 5f31 3320 2020 785f 3134 2020 x_13 x_14 │ │ │ │ -000135a0: 2078 5f31 3520 2020 2020 2020 207c 0a7c x_15 |.| │ │ │ │ -000135b0: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ -000135c0: 2c20 317d 207c 2079 5f30 2020 2020 3020 , 1} | y_0 0 │ │ │ │ -000135d0: 2020 2020 2030 2020 2020 2020 3020 2020 0 0 │ │ │ │ -000135e0: 2020 2030 2020 2020 2020 3020 2020 2020 0 0 │ │ │ │ -000135f0: 2030 2020 2020 2020 2020 2020 207c 0a7c 0 |.| │ │ │ │ -00013600: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ -00013610: 2c20 317d 207c 2079 5f31 2020 2020 795f , 1} | y_1 y_ │ │ │ │ -00013620: 3020 2020 2030 2020 2020 2020 3020 2020 0 0 0 │ │ │ │ -00013630: 2020 2030 2020 2020 2020 3020 2020 2020 0 0 │ │ │ │ -00013640: 2030 2020 2020 2020 2020 2020 207c 0a7c 0 |.| │ │ │ │ -00013650: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ -00013660: 2c20 317d 207c 2030 2020 2020 2020 795f , 1} | 0 y_ │ │ │ │ -00013670: 3120 2020 2079 5f30 2020 2020 3020 2020 1 y_0 0 │ │ │ │ -00013680: 2020 2030 2020 2020 2020 3020 2020 2020 0 0 │ │ │ │ -00013690: 2030 2020 2020 2020 2020 2020 207c 0a7c 0 |.| │ │ │ │ -000136a0: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ -000136b0: 2c20 317d 207c 2030 2020 2020 2020 3020 , 1} | 0 0 │ │ │ │ -000136c0: 2020 2020 2079 5f31 2020 2020 795f 3020 y_1 y_0 │ │ │ │ -000136d0: 2020 2030 2020 2020 2020 3020 2020 2020 0 0 │ │ │ │ -000136e0: 2030 2020 2020 2020 2020 2020 207c 0a7c 0 |.| │ │ │ │ -000136f0: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ -00013700: 2c20 317d 207c 2030 2020 2020 2020 3020 , 1} | 0 0 │ │ │ │ -00013710: 2020 2020 2030 2020 2020 2020 795f 3120 0 y_1 │ │ │ │ -00013720: 2020 2030 2020 2020 2020 3020 2020 2020 0 0 │ │ │ │ -00013730: 2030 2020 2020 2020 2020 2020 207c 0a7c 0 |.| │ │ │ │ -00013740: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ -00013750: 2c20 317d 207c 2030 2020 2020 2020 3020 , 1} | 0 0 │ │ │ │ -00013760: 2020 2020 2030 2020 2020 2020 3020 2020 0 0 │ │ │ │ -00013770: 2020 2079 5f30 2020 2020 3020 2020 2020 y_0 0 │ │ │ │ -00013780: 2030 2020 2020 2020 2020 2020 207c 0a7c 0 |.| │ │ │ │ -00013790: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ -000137a0: 2c20 317d 207c 2030 2020 2020 2020 3020 , 1} | 0 0 │ │ │ │ -000137b0: 2020 2020 2030 2020 2020 2020 3020 2020 0 0 │ │ │ │ -000137c0: 2020 2079 5f31 2020 2020 795f 3020 2020 y_1 y_0 │ │ │ │ -000137d0: 2030 2020 2020 2020 2020 2020 207c 0a7c 0 |.| │ │ │ │ -000137e0: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ -000137f0: 2c20 317d 207c 2030 2020 2020 2020 3020 , 1} | 0 0 │ │ │ │ -00013800: 2020 2020 2030 2020 2020 2020 3020 2020 0 0 │ │ │ │ -00013810: 2020 2030 2020 2020 2020 795f 3120 2020 0 y_1 │ │ │ │ -00013820: 2079 5f30 2020 2020 2020 2020 207c 0a7c y_0 |.| │ │ │ │ -00013830: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ -00013840: 2c20 317d 207c 2030 2020 2020 2020 3020 , 1} | 0 0 │ │ │ │ -00013850: 2020 2020 2030 2020 2020 2020 3020 2020 0 0 │ │ │ │ -00013860: 2020 2030 2020 2020 2020 3020 2020 2020 0 0 │ │ │ │ -00013870: 2079 5f31 2020 2020 2020 2020 207c 0a7c y_1 |.| │ │ │ │ -00013880: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ -00013890: 2c20 317d 207c 2030 2020 2020 2020 3020 , 1} | 0 0 │ │ │ │ -000138a0: 2020 2020 2030 2020 2020 2020 3020 2020 0 0 │ │ │ │ -000138b0: 2020 2030 2020 2020 2020 3020 2020 2020 0 0 │ │ │ │ -000138c0: 2030 2020 2020 2020 2020 2020 207c 0a7c 0 |.| │ │ │ │ -000138d0: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ -000138e0: 2c20 317d 207c 2030 2020 2020 2020 3020 , 1} | 0 0 │ │ │ │ -000138f0: 2020 2020 2030 2020 2020 2020 3020 2020 0 0 │ │ │ │ -00013900: 2020 2030 2020 2020 2020 3020 2020 2020 0 0 │ │ │ │ -00013910: 2030 2020 2020 2020 2020 2020 207c 0a7c 0 |.| │ │ │ │ -00013920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013520: 207c 0a7c 6f32 203d 2063 6f6b 6572 6e65 |.|o2 = cokerne │ │ │ │ +00013530: 6c20 7b32 2c20 307d 207c 2078 5f30 795f l {2, 0} | x_0y_ │ │ │ │ +00013540: 3120 785f 3179 5f31 2078 5f32 795f 3120 1 x_1y_1 x_2y_1 │ │ │ │ +00013550: 785f 3379 5f31 2078 5f34 795f 3120 785f x_3y_1 x_4y_1 x_ │ │ │ │ +00013560: 3579 5f31 2078 5f36 795f 3120 2020 2020 5y_1 x_6y_1 │ │ │ │ +00013570: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013580: 2020 7b33 2c20 307d 207c 2078 5f39 2020 {3, 0} | x_9 │ │ │ │ +00013590: 2020 785f 3130 2020 2078 5f31 3120 2020 x_10 x_11 │ │ │ │ +000135a0: 785f 3132 2020 2078 5f31 3320 2020 785f x_12 x_13 x_ │ │ │ │ +000135b0: 3134 2020 2078 5f31 3520 2020 2020 2020 14 x_15 │ │ │ │ +000135c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000135d0: 2020 7b32 2c20 317d 207c 2079 5f30 2020 {2, 1} | y_0 │ │ │ │ +000135e0: 2020 3020 2020 2020 2030 2020 2020 2020 0 0 │ │ │ │ +000135f0: 3020 2020 2020 2030 2020 2020 2020 3020 0 0 0 │ │ │ │ +00013600: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ +00013610: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013620: 2020 7b32 2c20 317d 207c 2079 5f31 2020 {2, 1} | y_1 │ │ │ │ +00013630: 2020 795f 3020 2020 2030 2020 2020 2020 y_0 0 │ │ │ │ +00013640: 3020 2020 2020 2030 2020 2020 2020 3020 0 0 0 │ │ │ │ +00013650: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ +00013660: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013670: 2020 7b32 2c20 317d 207c 2030 2020 2020 {2, 1} | 0 │ │ │ │ +00013680: 2020 795f 3120 2020 2079 5f30 2020 2020 y_1 y_0 │ │ │ │ +00013690: 3020 2020 2020 2030 2020 2020 2020 3020 0 0 0 │ │ │ │ +000136a0: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ +000136b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000136c0: 2020 7b32 2c20 317d 207c 2030 2020 2020 {2, 1} | 0 │ │ │ │ +000136d0: 2020 3020 2020 2020 2079 5f31 2020 2020 0 y_1 │ │ │ │ +000136e0: 795f 3020 2020 2030 2020 2020 2020 3020 y_0 0 0 │ │ │ │ +000136f0: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ +00013700: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013710: 2020 7b32 2c20 317d 207c 2030 2020 2020 {2, 1} | 0 │ │ │ │ +00013720: 2020 3020 2020 2020 2030 2020 2020 2020 0 0 │ │ │ │ +00013730: 795f 3120 2020 2030 2020 2020 2020 3020 y_1 0 0 │ │ │ │ +00013740: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ +00013750: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013760: 2020 7b32 2c20 317d 207c 2030 2020 2020 {2, 1} | 0 │ │ │ │ +00013770: 2020 3020 2020 2020 2030 2020 2020 2020 0 0 │ │ │ │ +00013780: 3020 2020 2020 2079 5f30 2020 2020 3020 0 y_0 0 │ │ │ │ +00013790: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ +000137a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000137b0: 2020 7b32 2c20 317d 207c 2030 2020 2020 {2, 1} | 0 │ │ │ │ +000137c0: 2020 3020 2020 2020 2030 2020 2020 2020 0 0 │ │ │ │ +000137d0: 3020 2020 2020 2079 5f31 2020 2020 795f 0 y_1 y_ │ │ │ │ +000137e0: 3020 2020 2030 2020 2020 2020 2020 2020 0 0 │ │ │ │ +000137f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013800: 2020 7b32 2c20 317d 207c 2030 2020 2020 {2, 1} | 0 │ │ │ │ +00013810: 2020 3020 2020 2020 2030 2020 2020 2020 0 0 │ │ │ │ +00013820: 3020 2020 2020 2030 2020 2020 2020 795f 0 0 y_ │ │ │ │ +00013830: 3120 2020 2079 5f30 2020 2020 2020 2020 1 y_0 │ │ │ │ +00013840: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013850: 2020 7b32 2c20 317d 207c 2030 2020 2020 {2, 1} | 0 │ │ │ │ +00013860: 2020 3020 2020 2020 2030 2020 2020 2020 0 0 │ │ │ │ +00013870: 3020 2020 2020 2030 2020 2020 2020 3020 0 0 0 │ │ │ │ +00013880: 2020 2020 2079 5f31 2020 2020 2020 2020 y_1 │ │ │ │ +00013890: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000138a0: 2020 7b32 2c20 317d 207c 2030 2020 2020 {2, 1} | 0 │ │ │ │ +000138b0: 2020 3020 2020 2020 2030 2020 2020 2020 0 0 │ │ │ │ +000138c0: 3020 2020 2020 2030 2020 2020 2020 3020 0 0 0 │ │ │ │ +000138d0: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ +000138e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000138f0: 2020 7b32 2c20 317d 207c 2030 2020 2020 {2, 1} | 0 │ │ │ │ +00013900: 2020 3020 2020 2020 2030 2020 2020 2020 0 0 │ │ │ │ +00013910: 3020 2020 2020 2030 2020 2020 2020 3020 0 0 0 │ │ │ │ +00013920: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ +00013930: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00013940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013960: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00013970: 2020 2020 2020 5a5a 2020 2020 2020 2020 ZZ │ │ │ │ -00013980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013980: 207c 0a7c 2020 2020 2020 5a5a 2020 2020 |.| ZZ │ │ │ │ 00013990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000139a0: 5a5a 2020 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ -000139b0: 2020 2020 3133 2020 2020 2020 207c 0a7c 13 |.| │ │ │ │ -000139c0: 6f32 203a 202d 2d2d 5b78 202e 2e78 2020 o2 : ---[x ..x │ │ │ │ -000139d0: 5d5b 7920 2e2e 7920 5d2d 6d6f 6475 6c65 ][y ..y ]-module │ │ │ │ -000139e0: 2c20 7175 6f74 6965 6e74 206f 6620 282d , quotient of (- │ │ │ │ -000139f0: 2d2d 5b78 202e 2e78 2020 5d5b 7920 2e2e --[x ..x ][y .. │ │ │ │ -00013a00: 7920 5d29 2020 2020 2020 2020 207c 0a7c y ]) |.| │ │ │ │ -00013a10: 2020 2020 2031 3031 2020 3020 2020 3137 101 0 17 │ │ │ │ -00013a20: 2020 2030 2020 2031 2020 2020 2020 2020 0 1 │ │ │ │ -00013a30: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -00013a40: 3031 2020 3020 2020 3137 2020 2030 2020 01 0 17 0 │ │ │ │ -00013a50: 2031 2020 2020 2020 2020 2020 207c 0a7c 1 |.| │ │ │ │ -00013a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000139a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000139b0: 2020 2020 5a5a 2020 2020 2020 2020 2020 ZZ │ │ │ │ +000139c0: 2020 2020 2020 2020 3133 2020 2020 2020 13 │ │ │ │ +000139d0: 207c 0a7c 6f32 203a 202d 2d2d 5b78 202e |.|o2 : ---[x . │ │ │ │ +000139e0: 2e78 2020 5d5b 7920 2e2e 7920 5d2d 6d6f .x ][y ..y ]-mo │ │ │ │ +000139f0: 6475 6c65 2c20 7175 6f74 6965 6e74 206f dule, quotient o │ │ │ │ +00013a00: 6620 282d 2d2d 5b78 202e 2e78 2020 5d5b f (---[x ..x ][ │ │ │ │ +00013a10: 7920 2e2e 7920 5d29 2020 2020 2020 2020 y ..y ]) │ │ │ │ +00013a20: 207c 0a7c 2020 2020 2031 3031 2020 3020 |.| 101 0 │ │ │ │ +00013a30: 2020 3137 2020 2030 2020 2031 2020 2020 17 0 1 │ │ │ │ +00013a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013a50: 2020 2031 3031 2020 3020 2020 3137 2020 101 0 17 │ │ │ │ +00013a60: 2030 2020 2031 2020 2020 2020 2020 2020 0 1 │ │ │ │ +00013a70: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00013a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ -00013ab0: 785f 3779 5f31 2078 5f38 795f 3120 7c20 x_7y_1 x_8y_1 | │ │ │ │ -00013ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013ac0: 2d7c 0a7c 785f 3779 5f31 2078 5f38 795f -|.|x_7y_1 x_8y_ │ │ │ │ +00013ad0: 3120 7c20 2020 2020 2020 2020 2020 2020 1 | │ │ │ │ 00013ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013af0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00013b00: 785f 3136 2020 2078 5f31 3720 2020 7c20 x_16 x_17 | │ │ │ │ -00013b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013b10: 207c 0a7c 785f 3136 2020 2078 5f31 3720 |.|x_16 x_17 │ │ │ │ +00013b20: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013b40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00013b50: 3020 2020 2020 2030 2020 2020 2020 7c20 0 0 | │ │ │ │ -00013b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013b60: 207c 0a7c 3020 2020 2020 2030 2020 2020 |.|0 0 │ │ │ │ +00013b70: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013b90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00013ba0: 3020 2020 2020 2030 2020 2020 2020 7c20 0 0 | │ │ │ │ -00013bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013bb0: 207c 0a7c 3020 2020 2020 2030 2020 2020 |.|0 0 │ │ │ │ +00013bc0: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013be0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00013bf0: 3020 2020 2020 2030 2020 2020 2020 7c20 0 0 | │ │ │ │ -00013c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013c00: 207c 0a7c 3020 2020 2020 2030 2020 2020 |.|0 0 │ │ │ │ +00013c10: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013c30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00013c40: 3020 2020 2020 2030 2020 2020 2020 7c20 0 0 | │ │ │ │ -00013c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013c50: 207c 0a7c 3020 2020 2020 2030 2020 2020 |.|0 0 │ │ │ │ +00013c60: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013c80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00013c90: 3020 2020 2020 2030 2020 2020 2020 7c20 0 0 | │ │ │ │ -00013ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013ca0: 207c 0a7c 3020 2020 2020 2030 2020 2020 |.|0 0 │ │ │ │ +00013cb0: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013cd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00013ce0: 3020 2020 2020 2030 2020 2020 2020 7c20 0 0 | │ │ │ │ -00013cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013cf0: 207c 0a7c 3020 2020 2020 2030 2020 2020 |.|0 0 │ │ │ │ +00013d00: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013d20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00013d30: 3020 2020 2020 2030 2020 2020 2020 7c20 0 0 | │ │ │ │ -00013d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013d40: 207c 0a7c 3020 2020 2020 2030 2020 2020 |.|0 0 │ │ │ │ +00013d50: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013d70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00013d80: 3020 2020 2020 2030 2020 2020 2020 7c20 0 0 | │ │ │ │ -00013d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013d90: 207c 0a7c 3020 2020 2020 2030 2020 2020 |.|0 0 │ │ │ │ +00013da0: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013dc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00013dd0: 795f 3020 2020 2030 2020 2020 2020 7c20 y_0 0 | │ │ │ │ -00013de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013de0: 207c 0a7c 795f 3020 2020 2030 2020 2020 |.|y_0 0 │ │ │ │ +00013df0: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013e10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00013e20: 795f 3120 2020 2079 5f30 2020 2020 7c20 y_1 y_0 | │ │ │ │ -00013e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013e30: 207c 0a7c 795f 3120 2020 2079 5f30 2020 |.|y_1 y_0 │ │ │ │ +00013e40: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013e60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00013e70: 3020 2020 2020 2079 5f31 2020 2020 7c20 0 y_1 | │ │ │ │ -00013e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013e80: 207c 0a7c 3020 2020 2020 2079 5f31 2020 |.|0 y_1 │ │ │ │ +00013e90: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013eb0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00013ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013ed0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00013ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -00013f10: 4974 2069 7320 696e 7465 7265 7374 696e It is interestin │ │ │ │ -00013f20: 6720 746f 2063 6f6e 7369 6465 7220 7468 g to consider th │ │ │ │ -00013f30: 6520 6c6f 6369 2069 6e20 4578 7420 7768 e loci in Ext wh │ │ │ │ -00013f40: 6572 6520 7468 6520 6578 7465 6e73 696f ere the extensio │ │ │ │ -00013f50: 6e20 6861 7320 610a 7061 7274 6963 756c n has a.particul │ │ │ │ -00013f60: 6172 2073 706c 6974 7469 6e67 2074 7970 ar splitting typ │ │ │ │ -00013f70: 652e 2053 6565 2074 6865 2064 6f63 756d e. See the docum │ │ │ │ -00013f80: 656e 7461 7469 6f6e 2066 6f72 2064 6972 entation for dir │ │ │ │ -00013f90: 6563 7449 6d61 6765 436f 6d70 6c65 7820 ectImageComplex │ │ │ │ -00013fa0: 666f 7220 610a 636f 6e6a 6563 7475 7265 for a.conjecture │ │ │ │ -00013fb0: 2061 626f 7574 2074 6865 2065 7175 6174 about the equat │ │ │ │ -00013fc0: 696f 6e73 206f 6620 7468 6573 6520 7661 ions of these va │ │ │ │ -00013fd0: 7269 6574 6965 732e 0a0a 5365 6520 616c rieties...See al │ │ │ │ -00013fe0: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ -00013ff0: 202a 6e6f 7465 2064 6972 6563 7449 6d61 *note directIma │ │ │ │ -00014000: 6765 436f 6d70 6c65 783a 2064 6972 6563 geComplex: direc │ │ │ │ -00014010: 7449 6d61 6765 436f 6d70 6c65 782c 202d tImageComplex, - │ │ │ │ -00014020: 2d20 6469 7265 6374 2069 6d61 6765 2063 - direct image c │ │ │ │ -00014030: 6f6d 706c 6578 0a0a 5761 7973 2074 6f20 omplex..Ways to │ │ │ │ -00014040: 7573 6520 756e 6976 6572 7361 6c45 7874 use universalExt │ │ │ │ -00014050: 656e 7369 6f6e 3a0a 3d3d 3d3d 3d3d 3d3d ension:.======== │ │ │ │ -00014060: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00014070: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 756e =======.. * "un │ │ │ │ -00014080: 6976 6572 7361 6c45 7874 656e 7369 6f6e iversalExtension │ │ │ │ -00014090: 284c 6973 742c 4c69 7374 2922 0a0a 466f (List,List)"..Fo │ │ │ │ -000140a0: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -000140b0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -000140c0: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -000140d0: 2a6e 6f74 6520 756e 6976 6572 7361 6c45 *note universalE │ │ │ │ -000140e0: 7874 656e 7369 6f6e 3a20 756e 6976 6572 xtension: univer │ │ │ │ -000140f0: 7361 6c45 7874 656e 7369 6f6e 2c20 6973 salExtension, is │ │ │ │ -00014100: 2061 202a 6e6f 7465 206d 6574 686f 640a a *note method. │ │ │ │ -00014110: 6675 6e63 7469 6f6e 3a20 284d 6163 6175 function: (Macau │ │ │ │ -00014120: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ -00014130: 6e63 7469 6f6e 2c2e 0a1f 0a54 6167 2054 nction,....Tag T │ │ │ │ -00014140: 6162 6c65 3a0a 4e6f 6465 3a20 546f 707f able:.Node: Top. │ │ │ │ -00014150: 3233 390a 4e6f 6465 3a20 6265 696c 696e 239.Node: beilin │ │ │ │ -00014160: 736f 6e7f 3530 3137 0a4e 6f64 653a 2062 son.5017.Node: b │ │ │ │ -00014170: 6767 7f31 3731 3139 0a4e 6f64 653a 2063 gg.17119.Node: c │ │ │ │ -00014180: 6f68 6f6d 6f6c 6f67 7954 6162 6c65 7f31 ohomologyTable.1 │ │ │ │ -00014190: 3934 3435 0a4e 6f64 653a 2064 6972 6563 9445.Node: direc │ │ │ │ -000141a0: 7449 6d61 6765 436f 6d70 6c65 787f 3238 tImageComplex.28 │ │ │ │ -000141b0: 3331 310a 4e6f 6465 3a20 6469 7265 6374 311.Node: direct │ │ │ │ -000141c0: 496d 6167 6543 6f6d 706c 6578 5f6c 7043 ImageComplex_lpC │ │ │ │ -000141d0: 6861 696e 436f 6d70 6c65 785f 7270 7f32 hainComplex_rp.2 │ │ │ │ -000141e0: 3935 3432 0a4e 6f64 653a 2064 6972 6563 9542.Node: direc │ │ │ │ -000141f0: 7449 6d61 6765 436f 6d70 6c65 785f 6c70 tImageComplex_lp │ │ │ │ -00014200: 4d61 7472 6978 5f72 707f 3335 3930 330a Matrix_rp.35903. │ │ │ │ -00014210: 4e6f 6465 3a20 6469 7265 6374 496d 6167 Node: directImag │ │ │ │ -00014220: 6543 6f6d 706c 6578 5f6c 704d 6f64 756c eComplex_lpModul │ │ │ │ -00014230: 655f 7270 7f34 3238 3838 0a4e 6f64 653a e_rp.42888.Node: │ │ │ │ -00014240: 2045 7874 6572 696f 727f 3535 3934 370a Exterior.55947. │ │ │ │ -00014250: 4e6f 6465 3a20 7072 6f6a 6563 7469 7665 Node: projective │ │ │ │ -00014260: 5072 6f64 7563 747f 3536 3338 340a 4e6f Product.56384.No │ │ │ │ -00014270: 6465 3a20 7075 7265 5265 736f 6c75 7469 de: pureResoluti │ │ │ │ -00014280: 6f6e 7f35 3737 3337 0a4e 6f64 653a 2052 on.57737.Node: R │ │ │ │ -00014290: 6567 756c 6172 6974 797f 3730 3038 310a egularity.70081. │ │ │ │ -000142a0: 4e6f 6465 3a20 7379 6d45 7874 7f37 3036 Node: symExt.706 │ │ │ │ -000142b0: 3439 0a4e 6f64 653a 2074 6174 6552 6573 49.Node: tateRes │ │ │ │ -000142c0: 6f6c 7574 696f 6e7f 3733 3237 370a 4e6f olution.73277.No │ │ │ │ -000142d0: 6465 3a20 756e 6976 6572 7361 6c45 7874 de: universalExt │ │ │ │ -000142e0: 656e 7369 6f6e 7f37 3638 3334 0a1f 0a45 ension.76834...E │ │ │ │ -000142f0: 6e64 2054 6167 2054 6162 6c65 0a nd Tag Table. │ │ │ │ +00013f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013f20: 2d2b 0a0a 4974 2069 7320 696e 7465 7265 -+..It is intere │ │ │ │ +00013f30: 7374 696e 6720 746f 2063 6f6e 7369 6465 sting to conside │ │ │ │ +00013f40: 7220 7468 6520 6c6f 6369 2069 6e20 4578 r the loci in Ex │ │ │ │ +00013f50: 7420 7768 6572 6520 7468 6520 6578 7465 t where the exte │ │ │ │ +00013f60: 6e73 696f 6e20 6861 7320 610a 7061 7274 nsion has a.part │ │ │ │ +00013f70: 6963 756c 6172 2073 706c 6974 7469 6e67 icular splitting │ │ │ │ +00013f80: 2074 7970 652e 2053 6565 2074 6865 2064 type. See the d │ │ │ │ +00013f90: 6f63 756d 656e 7461 7469 6f6e 2066 6f72 ocumentation for │ │ │ │ +00013fa0: 2064 6972 6563 7449 6d61 6765 436f 6d70 directImageComp │ │ │ │ +00013fb0: 6c65 7820 666f 7220 610a 636f 6e6a 6563 lex for a.conjec │ │ │ │ +00013fc0: 7475 7265 2061 626f 7574 2074 6865 2065 ture about the e │ │ │ │ +00013fd0: 7175 6174 696f 6e73 206f 6620 7468 6573 quations of thes │ │ │ │ +00013fe0: 6520 7661 7269 6574 6965 732e 0a0a 5365 e varieties...Se │ │ │ │ +00013ff0: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +00014000: 0a20 202a 202a 6e6f 7465 2064 6972 6563 . * *note direc │ │ │ │ +00014010: 7449 6d61 6765 436f 6d70 6c65 783a 2064 tImageComplex: d │ │ │ │ +00014020: 6972 6563 7449 6d61 6765 436f 6d70 6c65 irectImageComple │ │ │ │ +00014030: 782c 202d 2d20 6469 7265 6374 2069 6d61 x, -- direct ima │ │ │ │ +00014040: 6765 2063 6f6d 706c 6578 0a0a 5761 7973 ge complex..Ways │ │ │ │ +00014050: 2074 6f20 7573 6520 756e 6976 6572 7361 to use universa │ │ │ │ +00014060: 6c45 7874 656e 7369 6f6e 3a0a 3d3d 3d3d lExtension:.==== │ │ │ │ +00014070: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00014080: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +00014090: 2022 756e 6976 6572 7361 6c45 7874 656e "universalExten │ │ │ │ +000140a0: 7369 6f6e 284c 6973 742c 4c69 7374 2922 sion(List,List)" │ │ │ │ +000140b0: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +000140c0: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +000140d0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +000140e0: 6563 7420 2a6e 6f74 6520 756e 6976 6572 ect *note univer │ │ │ │ +000140f0: 7361 6c45 7874 656e 7369 6f6e 3a20 756e salExtension: un │ │ │ │ +00014100: 6976 6572 7361 6c45 7874 656e 7369 6f6e iversalExtension │ │ │ │ +00014110: 2c20 6973 2061 202a 6e6f 7465 206d 6574 , is a *note met │ │ │ │ +00014120: 686f 640a 6675 6e63 7469 6f6e 3a20 284d hod.function: (M │ │ │ │ +00014130: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ +00014140: 6f64 4675 6e63 7469 6f6e 2c2e 0a1f 0a54 odFunction,....T │ │ │ │ +00014150: 6167 2054 6162 6c65 3a0a 4e6f 6465 3a20 ag Table:.Node: │ │ │ │ +00014160: 546f 707f 3233 390a 4e6f 6465 3a20 6265 Top.239.Node: be │ │ │ │ +00014170: 696c 696e 736f 6e7f 3530 3137 0a4e 6f64 ilinson.5017.Nod │ │ │ │ +00014180: 653a 2062 6767 7f31 3731 3139 0a4e 6f64 e: bgg.17119.Nod │ │ │ │ +00014190: 653a 2063 6f68 6f6d 6f6c 6f67 7954 6162 e: cohomologyTab │ │ │ │ +000141a0: 6c65 7f31 3934 3435 0a4e 6f64 653a 2064 le.19445.Node: d │ │ │ │ +000141b0: 6972 6563 7449 6d61 6765 436f 6d70 6c65 irectImageComple │ │ │ │ +000141c0: 787f 3238 3331 310a 4e6f 6465 3a20 6469 x.28311.Node: di │ │ │ │ +000141d0: 7265 6374 496d 6167 6543 6f6d 706c 6578 rectImageComplex │ │ │ │ +000141e0: 5f6c 7043 6861 696e 436f 6d70 6c65 785f _lpChainComplex_ │ │ │ │ +000141f0: 7270 7f32 3935 3432 0a4e 6f64 653a 2064 rp.29542.Node: d │ │ │ │ +00014200: 6972 6563 7449 6d61 6765 436f 6d70 6c65 irectImageComple │ │ │ │ +00014210: 785f 6c70 4d61 7472 6978 5f72 707f 3335 x_lpMatrix_rp.35 │ │ │ │ +00014220: 3930 330a 4e6f 6465 3a20 6469 7265 6374 903.Node: direct │ │ │ │ +00014230: 496d 6167 6543 6f6d 706c 6578 5f6c 704d ImageComplex_lpM │ │ │ │ +00014240: 6f64 756c 655f 7270 7f34 3238 3838 0a4e odule_rp.42888.N │ │ │ │ +00014250: 6f64 653a 2045 7874 6572 696f 727f 3535 ode: Exterior.55 │ │ │ │ +00014260: 3934 370a 4e6f 6465 3a20 7072 6f6a 6563 947.Node: projec │ │ │ │ +00014270: 7469 7665 5072 6f64 7563 747f 3536 3338 tiveProduct.5638 │ │ │ │ +00014280: 340a 4e6f 6465 3a20 7075 7265 5265 736f 4.Node: pureReso │ │ │ │ +00014290: 6c75 7469 6f6e 7f35 3737 3337 0a4e 6f64 lution.57737.Nod │ │ │ │ +000142a0: 653a 2052 6567 756c 6172 6974 797f 3730 e: Regularity.70 │ │ │ │ +000142b0: 3130 310a 4e6f 6465 3a20 7379 6d45 7874 101.Node: symExt │ │ │ │ +000142c0: 7f37 3036 3639 0a4e 6f64 653a 2074 6174 .70669.Node: tat │ │ │ │ +000142d0: 6552 6573 6f6c 7574 696f 6e7f 3733 3239 eResolution.7329 │ │ │ │ +000142e0: 370a 4e6f 6465 3a20 756e 6976 6572 7361 7.Node: universa │ │ │ │ +000142f0: 6c45 7874 656e 7369 6f6e 7f37 3638 3534 lExtension.76854 │ │ │ │ +00014300: 0a1f 0a45 6e64 2054 6167 2054 6162 6c65 ...End Tag Table │ │ │ │ +00014310: 0a . │ │ ├── ./usr/share/info/Benchmark.info.gz │ │ │ ├── Benchmark.info │ │ │ │ @@ -146,46 +146,46 @@ │ │ │ │ 00000910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00000920: 7c69 3120 3a20 7275 6e42 656e 6368 6d61 |i1 : runBenchma │ │ │ │ 00000930: 726b 7320 2272 6573 3339 2220 2020 2020 rks "res39" │ │ │ │ 00000940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000960: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00000970: 7c2d 2d20 6265 6769 6e6e 696e 6720 636f |-- beginning co │ │ │ │ -00000980: 6d70 7574 6174 696f 6e20 5375 6e20 4665 mputation Sun Fe │ │ │ │ -00000990: 6220 2039 2032 333a 3539 3a35 3120 5554 b 9 23:59:51 UT │ │ │ │ +00000980: 6d70 7574 6174 696f 6e20 5361 7420 4a75 mputation Sat Ju │ │ │ │ +00000990: 6c20 3139 2030 333a 3435 3a31 3620 5554 l 19 03:45:16 UT │ │ │ │ 000009a0: 4320 3230 3235 2020 2020 2020 2020 2020 C 2025 │ │ │ │ 000009b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 000009c0: 7c2d 2d20 4c69 6e75 7820 7362 7569 6c64 |-- Linux sbuild │ │ │ │ -000009d0: 2036 2e31 2e30 2d33 312d 616d 6436 3420 6.1.0-31-amd64 │ │ │ │ -000009e0: 2331 2053 4d50 2050 5245 454d 5054 5f44 #1 SMP PREEMPT_D │ │ │ │ -000009f0: 594e 414d 4943 2044 6562 6961 6e20 362e YNAMIC Debian 6. │ │ │ │ -00000a00: 312e 3132 382d 3120 2020 2020 2020 7c0a 1.128-1 |. │ │ │ │ -00000a10: 7c2d 2d20 414d 4420 4550 5943 2037 3730 |-- AMD EPYC 770 │ │ │ │ -00000a20: 3250 2036 342d 436f 7265 2050 726f 6365 2P 64-Core Proce │ │ │ │ -00000a30: 7373 6f72 2020 4175 7468 656e 7469 6341 ssor AuthenticA │ │ │ │ -00000a40: 4d44 2020 6370 7520 4d48 7a20 3139 3936 MD cpu MHz 1996 │ │ │ │ -00000a50: 2e32 3530 2020 2020 2020 2020 2020 7c0a .250 |. │ │ │ │ +000009d0: 2036 2e31 322e 3335 2b64 6562 3133 2d63 6.12.35+deb13-c │ │ │ │ +000009e0: 6c6f 7564 2d61 6d64 3634 2023 3120 534d loud-amd64 #1 SM │ │ │ │ +000009f0: 5020 5052 4545 4d50 545f 4459 4e41 4d49 P PREEMPT_DYNAMI │ │ │ │ +00000a00: 4320 4465 6269 616e 2020 2020 2020 7c0a C Debian |. │ │ │ │ +00000a10: 7c2d 2d20 414d 4420 4550 5943 2d4d 696c |-- AMD EPYC-Mil │ │ │ │ +00000a20: 616e 2050 726f 6365 7373 6f72 2020 4175 an Processor Au │ │ │ │ +00000a30: 7468 656e 7469 6341 4d44 2020 6370 7520 thenticAMD cpu │ │ │ │ +00000a40: 4d48 7a20 3139 3936 2e32 3530 2020 2020 MHz 1996.250 │ │ │ │ +00000a50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00000a60: 7c2d 2d20 4d61 6361 756c 6179 3220 312e |-- Macaulay2 1. │ │ │ │ 00000a70: 3234 2e31 312c 2063 6f6d 7069 6c65 6420 24.11, compiled │ │ │ │ 00000a80: 7769 7468 2067 6363 2031 342e 322e 3020 with gcc 14.2.0 │ │ │ │ 00000a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000aa0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00000ab0: 7c2d 2d20 7265 7333 393a 2072 6573 206f |-- res39: res o │ │ │ │ 00000ac0: 6620 6120 6765 6e65 7269 6320 3320 6279 f a generic 3 by │ │ │ │ 00000ad0: 2039 206d 6174 7269 7820 6f76 6572 205a 9 matrix over Z │ │ │ │ -00000ae0: 5a2f 3130 313a 202e 3131 3335 3837 2073 Z/101: .113587 s │ │ │ │ +00000ae0: 5a2f 3130 313a 202e 3133 3034 3832 2073 Z/101: .130482 s │ │ │ │ 00000af0: 6563 6f6e 6473 2020 2020 2020 2020 7c0a econds |. │ │ │ │ 00000b00: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ 00000b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00000b50: 7c28 3230 3235 2d30 322d 3037 2920 7838 |(2025-02-07) x8 │ │ │ │ -00000b60: 365f 3634 2047 4e55 2f4c 696e 7578 2020 6_64 GNU/Linux │ │ │ │ -00000b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00000b50: 7c36 2e31 322e 3335 2d31 2028 3230 3235 |6.12.35-1 (2025 │ │ │ │ +00000b60: 2d30 372d 3033 2920 7838 365f 3634 2047 -07-03) x86_64 G │ │ │ │ +00000b70: 4e55 2f4c 696e 7578 2020 2020 2020 2020 NU/Linux │ │ │ │ 00000b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000b90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00000ba0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00000bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ ├── ./usr/share/info/Bertini.info.gz │ │ │ ├── Bertini.info │ │ │ │ @@ -2113,7845 +2113,7845 @@ │ │ │ │ 00008400: 6e75 6d62 6572 0a20 2020 2020 2020 206f number. o │ │ │ │ 00008410: 7220 7261 6e64 6f6d 2063 6f6d 706c 6578 r random complex │ │ │ │ 00008420: 206e 756d 6265 720a 2020 2020 2020 2a20 number. * │ │ │ │ 00008430: 2a6e 6f74 6520 546f 7044 6972 6563 746f *note TopDirecto │ │ │ │ 00008440: 7279 3a20 546f 7044 6972 6563 746f 7279 ry: TopDirectory │ │ │ │ 00008450: 2c20 3d3e 202e 2e2e 2c20 6465 6661 756c , => ..., defaul │ │ │ │ 00008460: 7420 7661 6c75 650a 2020 2020 2020 2020 t value. │ │ │ │ -00008470: 222f 746d 702f 4d32 2d37 3134 3831 2d30 "/tmp/M2-71481-0 │ │ │ │ -00008480: 2f30 222c 204f 7074 696f 6e20 746f 2063 /0", Option to c │ │ │ │ -00008490: 6861 6e67 6520 6469 7265 6374 6f72 7920 hange directory │ │ │ │ -000084a0: 666f 7220 6669 6c65 2073 746f 7261 6765 for file storage │ │ │ │ -000084b0: 2e0a 2020 2020 2020 2a20 2a6e 6f74 6520 .. * *note │ │ │ │ -000084c0: 5665 7262 6f73 653a 2062 6572 7469 6e69 Verbose: bertini │ │ │ │ -000084d0: 5472 6163 6b48 6f6d 6f74 6f70 795f 6c70 TrackHomotopy_lp │ │ │ │ -000084e0: 5f70 645f 7064 5f70 645f 636d 5665 7262 _pd_pd_pd_cmVerb │ │ │ │ -000084f0: 6f73 653d 3e5f 7064 5f70 645f 7064 5f72 ose=>_pd_pd_pd_r │ │ │ │ -00008500: 700a 2020 2020 2020 2020 2c20 3d3e 202e p. , => . │ │ │ │ -00008510: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ -00008520: 6520 6661 6c73 652c 204f 7074 696f 6e20 e false, Option │ │ │ │ -00008530: 746f 2073 696c 656e 6365 2061 6464 6974 to silence addit │ │ │ │ -00008540: 696f 6e61 6c20 6f75 7470 7574 0a20 202a ional output. * │ │ │ │ -00008550: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ -00008560: 2a20 532c 2061 202a 6e6f 7465 206c 6973 * S, a *note lis │ │ │ │ -00008570: 743a 2028 4d61 6361 756c 6179 3244 6f63 t: (Macaulay2Doc │ │ │ │ -00008580: 294c 6973 742c 2c20 6120 6c69 7374 2077 )List,, a list w │ │ │ │ -00008590: 686f 7365 2065 6e74 7269 6573 2061 7265 hose entries are │ │ │ │ -000085a0: 206c 6973 7473 206f 660a 2020 2020 2020 lists of. │ │ │ │ -000085b0: 2020 736f 6c75 7469 6f6e 7320 666f 7220 solutions for │ │ │ │ -000085c0: 6561 6368 2074 6172 6765 7420 7379 7374 each target syst │ │ │ │ -000085d0: 656d 0a0a 4465 7363 7269 7074 696f 6e0a em..Description. │ │ │ │ -000085e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 ===========..Thi │ │ │ │ -000085f0: 7320 6d65 7468 6f64 206e 756d 6572 6963 s method numeric │ │ │ │ -00008600: 616c 6c79 2073 6f6c 7665 7320 7365 7665 ally solves seve │ │ │ │ -00008610: 7261 6c20 706f 6c79 6e6f 6d69 616c 2073 ral polynomial s │ │ │ │ -00008620: 7973 7465 6d73 2066 726f 6d20 6120 7061 ystems from a pa │ │ │ │ -00008630: 7261 6d65 7465 7269 7a65 640a 6661 6d69 rameterized.fami │ │ │ │ -00008640: 6c79 2061 7420 6f6e 6365 2e20 2054 6865 ly at once. The │ │ │ │ -00008650: 206c 6973 7420 4620 6973 2061 2073 7973 list F is a sys │ │ │ │ -00008660: 7465 6d20 6f66 2070 6f6c 796e 6f6d 6961 tem of polynomia │ │ │ │ -00008670: 6c73 2069 6e20 7269 6e67 2076 6172 6961 ls in ring varia │ │ │ │ -00008680: 626c 6573 2061 6e64 0a74 6865 2070 6172 bles and.the par │ │ │ │ -00008690: 616d 6574 6572 7320 6c69 7374 6564 2069 ameters listed i │ │ │ │ -000086a0: 6e20 502e 2020 5468 6520 6c69 7374 2054 n P. The list T │ │ │ │ -000086b0: 2069 7320 7468 6520 7365 7420 6f66 2070 is the set of p │ │ │ │ -000086c0: 6172 616d 6574 6572 2076 616c 7565 7320 arameter values │ │ │ │ -000086d0: 666f 720a 7768 6963 6820 736f 6c75 7469 for.which soluti │ │ │ │ -000086e0: 6f6e 7320 746f 2046 2061 7265 2064 6573 ons to F are des │ │ │ │ -000086f0: 6972 6564 2e20 2042 6f74 6820 7374 6167 ired. Both stag │ │ │ │ -00008700: 6573 206f 6620 4265 7274 696e 6927 7320 es of Bertini's │ │ │ │ -00008710: 7061 7261 6d65 7465 7220 686f 6d6f 746f parameter homoto │ │ │ │ -00008720: 7079 0a6d 6574 686f 6420 6172 6520 6361 py.method are ca │ │ │ │ -00008730: 6c6c 6564 2077 6974 6820 6265 7274 696e lled with bertin │ │ │ │ -00008740: 6950 6172 616d 6574 6572 486f 6d6f 746f iParameterHomoto │ │ │ │ -00008750: 7079 2e20 4669 7273 742c 2042 6572 7469 py. First, Berti │ │ │ │ -00008760: 6e69 2061 7373 6967 6e73 2061 0a72 616e ni assigns a.ran │ │ │ │ -00008770: 646f 6d20 636f 6d70 6c65 7820 6e75 6d62 dom complex numb │ │ │ │ -00008780: 6572 2074 6f20 6561 6368 2070 6172 616d er to each param │ │ │ │ -00008790: 6574 6572 2061 6e64 2073 6f6c 7665 7320 eter and solves │ │ │ │ -000087a0: 7468 6520 7265 7375 6c74 696e 6720 7379 the resulting sy │ │ │ │ -000087b0: 7374 656d 2c20 7468 656e 2c0a 6166 7465 stem, then,.afte │ │ │ │ -000087c0: 7220 7468 6973 2069 6e69 7469 616c 2070 r this initial p │ │ │ │ -000087d0: 6861 7365 2c20 4265 7274 696e 6920 636f hase, Bertini co │ │ │ │ -000087e0: 6d70 7574 6573 2073 6f6c 7574 696f 6e73 mputes solutions │ │ │ │ -000087f0: 2066 6f72 2065 7665 7279 2067 6976 656e for every given │ │ │ │ -00008800: 2063 686f 6963 6520 6f66 0a70 6172 616d choice of.param │ │ │ │ -00008810: 6574 6572 7320 7573 696e 6720 6120 6e75 eters using a nu │ │ │ │ -00008820: 6d62 6572 206f 6620 7061 7468 7320 6571 mber of paths eq │ │ │ │ -00008830: 7561 6c20 746f 2074 6865 2065 7861 6374 ual to the exact │ │ │ │ -00008840: 2072 6f6f 7420 636f 756e 7420 696e 2074 root count in t │ │ │ │ -00008850: 6865 2066 6972 7374 0a73 7461 6765 2e0a he first.stage.. │ │ │ │ -00008860: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00008470: 222f 746d 702f 4d32 2d31 3234 3033 342d "/tmp/M2-124034- │ │ │ │ +00008480: 302f 3022 2c20 4f70 7469 6f6e 2074 6f20 0/0", Option to │ │ │ │ +00008490: 6368 616e 6765 2064 6972 6563 746f 7279 change directory │ │ │ │ +000084a0: 2066 6f72 2066 696c 6520 7374 6f72 6167 for file storag │ │ │ │ +000084b0: 652e 0a20 2020 2020 202a 202a 6e6f 7465 e.. * *note │ │ │ │ +000084c0: 2056 6572 626f 7365 3a20 6265 7274 696e Verbose: bertin │ │ │ │ +000084d0: 6954 7261 636b 486f 6d6f 746f 7079 5f6c iTrackHomotopy_l │ │ │ │ +000084e0: 705f 7064 5f70 645f 7064 5f63 6d56 6572 p_pd_pd_pd_cmVer │ │ │ │ +000084f0: 626f 7365 3d3e 5f70 645f 7064 5f70 645f bose=>_pd_pd_pd_ │ │ │ │ +00008500: 7270 0a20 2020 2020 2020 202c 203d 3e20 rp. , => │ │ │ │ +00008510: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ +00008520: 7565 2066 616c 7365 2c20 4f70 7469 6f6e ue false, Option │ │ │ │ +00008530: 2074 6f20 7369 6c65 6e63 6520 6164 6469 to silence addi │ │ │ │ +00008540: 7469 6f6e 616c 206f 7574 7075 740a 2020 tional output. │ │ │ │ +00008550: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ +00008560: 202a 2053 2c20 6120 2a6e 6f74 6520 6c69 * S, a *note li │ │ │ │ +00008570: 7374 3a20 284d 6163 6175 6c61 7932 446f st: (Macaulay2Do │ │ │ │ +00008580: 6329 4c69 7374 2c2c 2061 206c 6973 7420 c)List,, a list │ │ │ │ +00008590: 7768 6f73 6520 656e 7472 6965 7320 6172 whose entries ar │ │ │ │ +000085a0: 6520 6c69 7374 7320 6f66 0a20 2020 2020 e lists of. │ │ │ │ +000085b0: 2020 2073 6f6c 7574 696f 6e73 2066 6f72 solutions for │ │ │ │ +000085c0: 2065 6163 6820 7461 7267 6574 2073 7973 each target sys │ │ │ │ +000085d0: 7465 6d0a 0a44 6573 6372 6970 7469 6f6e tem..Description │ │ │ │ +000085e0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 .===========..Th │ │ │ │ +000085f0: 6973 206d 6574 686f 6420 6e75 6d65 7269 is method numeri │ │ │ │ +00008600: 6361 6c6c 7920 736f 6c76 6573 2073 6576 cally solves sev │ │ │ │ +00008610: 6572 616c 2070 6f6c 796e 6f6d 6961 6c20 eral polynomial │ │ │ │ +00008620: 7379 7374 656d 7320 6672 6f6d 2061 2070 systems from a p │ │ │ │ +00008630: 6172 616d 6574 6572 697a 6564 0a66 616d arameterized.fam │ │ │ │ +00008640: 696c 7920 6174 206f 6e63 652e 2020 5468 ily at once. Th │ │ │ │ +00008650: 6520 6c69 7374 2046 2069 7320 6120 7379 e list F is a sy │ │ │ │ +00008660: 7374 656d 206f 6620 706f 6c79 6e6f 6d69 stem of polynomi │ │ │ │ +00008670: 616c 7320 696e 2072 696e 6720 7661 7269 als in ring vari │ │ │ │ +00008680: 6162 6c65 7320 616e 640a 7468 6520 7061 ables and.the pa │ │ │ │ +00008690: 7261 6d65 7465 7273 206c 6973 7465 6420 rameters listed │ │ │ │ +000086a0: 696e 2050 2e20 2054 6865 206c 6973 7420 in P. The list │ │ │ │ +000086b0: 5420 6973 2074 6865 2073 6574 206f 6620 T is the set of │ │ │ │ +000086c0: 7061 7261 6d65 7465 7220 7661 6c75 6573 parameter values │ │ │ │ +000086d0: 2066 6f72 0a77 6869 6368 2073 6f6c 7574 for.which solut │ │ │ │ +000086e0: 696f 6e73 2074 6f20 4620 6172 6520 6465 ions to F are de │ │ │ │ +000086f0: 7369 7265 642e 2020 426f 7468 2073 7461 sired. Both sta │ │ │ │ +00008700: 6765 7320 6f66 2042 6572 7469 6e69 2773 ges of Bertini's │ │ │ │ +00008710: 2070 6172 616d 6574 6572 2068 6f6d 6f74 parameter homot │ │ │ │ +00008720: 6f70 790a 6d65 7468 6f64 2061 7265 2063 opy.method are c │ │ │ │ +00008730: 616c 6c65 6420 7769 7468 2062 6572 7469 alled with berti │ │ │ │ +00008740: 6e69 5061 7261 6d65 7465 7248 6f6d 6f74 niParameterHomot │ │ │ │ +00008750: 6f70 792e 2046 6972 7374 2c20 4265 7274 opy. First, Bert │ │ │ │ +00008760: 696e 6920 6173 7369 676e 7320 610a 7261 ini assigns a.ra │ │ │ │ +00008770: 6e64 6f6d 2063 6f6d 706c 6578 206e 756d ndom complex num │ │ │ │ +00008780: 6265 7220 746f 2065 6163 6820 7061 7261 ber to each para │ │ │ │ +00008790: 6d65 7465 7220 616e 6420 736f 6c76 6573 meter and solves │ │ │ │ +000087a0: 2074 6865 2072 6573 756c 7469 6e67 2073 the resulting s │ │ │ │ +000087b0: 7973 7465 6d2c 2074 6865 6e2c 0a61 6674 ystem, then,.aft │ │ │ │ +000087c0: 6572 2074 6869 7320 696e 6974 6961 6c20 er this initial │ │ │ │ +000087d0: 7068 6173 652c 2042 6572 7469 6e69 2063 phase, Bertini c │ │ │ │ +000087e0: 6f6d 7075 7465 7320 736f 6c75 7469 6f6e omputes solution │ │ │ │ +000087f0: 7320 666f 7220 6576 6572 7920 6769 7665 s for every give │ │ │ │ +00008800: 6e20 6368 6f69 6365 206f 660a 7061 7261 n choice of.para │ │ │ │ +00008810: 6d65 7465 7273 2075 7369 6e67 2061 206e meters using a n │ │ │ │ +00008820: 756d 6265 7220 6f66 2070 6174 6873 2065 umber of paths e │ │ │ │ +00008830: 7175 616c 2074 6f20 7468 6520 6578 6163 qual to the exac │ │ │ │ +00008840: 7420 726f 6f74 2063 6f75 6e74 2069 6e20 t root count in │ │ │ │ +00008850: 7468 6520 6669 7273 740a 7374 6167 652e the first.stage. │ │ │ │ +00008860: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ 00008870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000088a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000088b0: 0a7c 6931 203a 2052 3d43 435b 7531 2c75 .|i1 : R=CC[u1,u │ │ │ │ -000088c0: 322c 7533 2c78 2c79 5d3b 2020 2020 2020 2,u3,x,y]; │ │ │ │ +000088a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000088b0: 2b0a 7c69 3120 3a20 523d 4343 5b75 312c +.|i1 : R=CC[u1, │ │ │ │ +000088c0: 7532 2c75 332c 782c 795d 3b20 2020 2020 u2,u3,x,y]; │ │ │ │ 000088d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000088e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000088f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00008900: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000088f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008900: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00008910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00008950: 0a7c 6932 203a 2066 313d 7531 2a28 792d .|i2 : f1=u1*(y- │ │ │ │ -00008960: 3129 2b75 322a 2879 2d32 292b 7533 2a28 1)+u2*(y-2)+u3*( │ │ │ │ -00008970: 792d 3329 3b20 2d2d 7061 7261 6d65 7465 y-3); --paramete │ │ │ │ -00008980: 7273 2061 7265 2075 312c 2075 322c 2061 rs are u1, u2, a │ │ │ │ -00008990: 6e64 2075 3320 2020 2020 2020 2020 207c nd u3 | │ │ │ │ -000089a0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00008940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008950: 2b0a 7c69 3220 3a20 6631 3d75 312a 2879 +.|i2 : f1=u1*(y │ │ │ │ +00008960: 2d31 292b 7532 2a28 792d 3229 2b75 332a -1)+u2*(y-2)+u3* │ │ │ │ +00008970: 2879 2d33 293b 202d 2d70 6172 616d 6574 (y-3); --paramet │ │ │ │ +00008980: 6572 7320 6172 6520 7531 2c20 7532 2c20 ers are u1, u2, │ │ │ │ +00008990: 616e 6420 7533 2020 2020 2020 2020 2020 and u3 │ │ │ │ +000089a0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 000089b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000089c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000089d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000089e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000089f0: 0a7c 6933 203a 2066 323d 2878 2d31 3129 .|i3 : f2=(x-11) │ │ │ │ -00008a00: 2a28 782d 3132 292a 2878 2d31 3329 2d75 *(x-12)*(x-13)-u │ │ │ │ -00008a10: 313b 2020 2020 2020 2020 2020 2020 2020 1; │ │ │ │ +000089e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000089f0: 2b0a 7c69 3320 3a20 6632 3d28 782d 3131 +.|i3 : f2=(x-11 │ │ │ │ +00008a00: 292a 2878 2d31 3229 2a28 782d 3133 292d )*(x-12)*(x-13)- │ │ │ │ +00008a10: 7531 3b20 2020 2020 2020 2020 2020 2020 u1; │ │ │ │ 00008a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008a30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00008a40: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00008a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008a40: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00008a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00008a90: 0a7c 6934 203a 2070 6172 616d 5661 6c75 .|i4 : paramValu │ │ │ │ -00008aa0: 6573 303d 7b31 2c30 2c30 7d3b 2020 2020 es0={1,0,0}; │ │ │ │ +00008a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008a90: 2b0a 7c69 3420 3a20 7061 7261 6d56 616c +.|i4 : paramVal │ │ │ │ +00008aa0: 7565 7330 3d7b 312c 302c 307d 3b20 2020 ues0={1,0,0}; │ │ │ │ 00008ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008ad0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00008ae0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00008ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008ae0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00008af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00008b30: 0a7c 6935 203a 2070 6172 616d 5661 6c75 .|i5 : paramValu │ │ │ │ -00008b40: 6573 313d 7b30 2c31 2b32 2a69 692c 307d es1={0,1+2*ii,0} │ │ │ │ -00008b50: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +00008b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008b30: 2b0a 7c69 3520 3a20 7061 7261 6d56 616c +.|i5 : paramVal │ │ │ │ +00008b40: 7565 7331 3d7b 302c 312b 322a 6969 2c30 ues1={0,1+2*ii,0 │ │ │ │ +00008b50: 7d3b 2020 2020 2020 2020 2020 2020 2020 }; │ │ │ │ 00008b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008b70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00008b80: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00008b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008b80: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00008b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00008bd0: 0a7c 6936 203a 2062 5048 3d62 6572 7469 .|i6 : bPH=berti │ │ │ │ -00008be0: 6e69 5061 7261 6d65 7465 7248 6f6d 6f74 niParameterHomot │ │ │ │ -00008bf0: 6f70 7928 207b 6631 2c66 327d 2c20 7b75 opy( {f1,f2}, {u │ │ │ │ -00008c00: 312c 7532 2c75 337d 2c7b 7061 7261 6d56 1,u2,u3},{paramV │ │ │ │ -00008c10: 616c 7565 7330 202c 7061 7261 6d56 617c alues0 ,paramVa| │ │ │ │ -00008c20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00008bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008bd0: 2b0a 7c69 3620 3a20 6250 483d 6265 7274 +.|i6 : bPH=bert │ │ │ │ +00008be0: 696e 6950 6172 616d 6574 6572 486f 6d6f iniParameterHomo │ │ │ │ +00008bf0: 746f 7079 2820 7b66 312c 6632 7d2c 207b topy( {f1,f2}, { │ │ │ │ +00008c00: 7531 2c75 322c 7533 7d2c 7b70 6172 616d u1,u2,u3},{param │ │ │ │ +00008c10: 5661 6c75 6573 3020 2c70 6172 616d 5661 Values0 ,paramVa │ │ │ │ +00008c20: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00008c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008c60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00008c70: 0a7c 6f36 203d 207b 7b7b 3131 2e33 3337 .|o6 = {{{11.337 │ │ │ │ -00008c80: 362d 2e35 3632 3238 2a69 692c 2031 7d2c 6-.56228*ii, 1}, │ │ │ │ -00008c90: 207b 3131 2e33 3337 362b 2e35 3632 3238 {11.3376+.56228 │ │ │ │ -00008ca0: 2a69 692c 2031 7d2c 207b 3133 2e33 3234 *ii, 1}, {13.324 │ │ │ │ -00008cb0: 372c 2031 7d7d 2c20 7b7b 3131 2c20 207c 7, 1}}, {{11, | │ │ │ │ -00008cc0: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +00008c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008c70: 7c0a 7c6f 3620 3d20 7b7b 7b31 312e 3333 |.|o6 = {{{11.33 │ │ │ │ +00008c80: 3736 2d2e 3536 3232 382a 6969 2c20 317d 76-.56228*ii, 1} │ │ │ │ +00008c90: 2c20 7b31 312e 3333 3736 2b2e 3536 3232 , {11.3376+.5622 │ │ │ │ +00008ca0: 382a 6969 2c20 317d 2c20 7b31 332e 3332 8*ii, 1}, {13.32 │ │ │ │ +00008cb0: 3437 2c20 317d 7d2c 207b 7b31 312c 2020 47, 1}}, {{11, │ │ │ │ +00008cc0: 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d |.| -------- │ │ │ │ 00008cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00008d10: 0a7c 2020 2020 2032 7d2c 207b 3132 2c20 .| 2}, {12, │ │ │ │ -00008d20: 327d 2c20 7b31 332c 2032 7d7d 7d20 2020 2}, {13, 2}}} │ │ │ │ +00008d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008d10: 7c0a 7c20 2020 2020 327d 2c20 7b31 322c |.| 2}, {12, │ │ │ │ +00008d20: 2032 7d2c 207b 3133 2c20 327d 7d7d 2020 2}, {13, 2}}} │ │ │ │ 00008d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008d50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00008d60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00008d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008d60: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00008d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00008db0: 0a7c 6f36 203a 204c 6973 7420 2020 2020 .|o6 : List │ │ │ │ +00008da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008db0: 7c0a 7c6f 3620 3a20 4c69 7374 2020 2020 |.|o6 : List │ │ │ │ 00008dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008df0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00008e00: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00008df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008e00: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ 00008e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00008e50: 0a7c 6c75 6573 3120 7d29 2020 2020 2020 .|lues1 }) │ │ │ │ +00008e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008e50: 7c0a 7c6c 7565 7331 207d 2920 2020 2020 |.|lues1 }) │ │ │ │ 00008e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008e90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00008ea0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00008e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008ea0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00008eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00008ef0: 0a7c 6937 203a 2062 5048 5f30 2d2d 7468 .|i7 : bPH_0--th │ │ │ │ -00008f00: 6520 736f 6c75 7469 6f6e 7320 746f 2074 e solutions to t │ │ │ │ -00008f10: 6865 2073 7973 7465 6d20 7769 7468 2070 he system with p │ │ │ │ -00008f20: 6172 616d 6574 6572 7320 7365 7420 6571 arameters set eq │ │ │ │ -00008f30: 7561 6c20 746f 2020 2020 2020 2020 207c ual to | │ │ │ │ -00008f40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00008ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00008ef0: 2b0a 7c69 3720 3a20 6250 485f 302d 2d74 +.|i7 : bPH_0--t │ │ │ │ +00008f00: 6865 2073 6f6c 7574 696f 6e73 2074 6f20 he solutions to │ │ │ │ +00008f10: 7468 6520 7379 7374 656d 2077 6974 6820 the system with │ │ │ │ +00008f20: 7061 7261 6d65 7465 7273 2073 6574 2065 parameters set e │ │ │ │ +00008f30: 7175 616c 2074 6f20 2020 2020 2020 2020 qual to │ │ │ │ +00008f40: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00008f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00008f80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00008f90: 0a7c 6f37 203d 207b 7b31 312e 3333 3736 .|o7 = {{11.3376 │ │ │ │ -00008fa0: 2d2e 3536 3232 382a 6969 2c20 317d 2c20 -.56228*ii, 1}, │ │ │ │ -00008fb0: 7b31 312e 3333 3736 2b2e 3536 3232 382a {11.3376+.56228* │ │ │ │ -00008fc0: 6969 2c20 317d 2c20 7b31 332e 3332 3437 ii, 1}, {13.3247 │ │ │ │ -00008fd0: 2c20 317d 7d20 2020 2020 2020 2020 207c , 1}} | │ │ │ │ -00008fe0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00008f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00008f90: 7c0a 7c6f 3720 3d20 7b7b 3131 2e33 3337 |.|o7 = {{11.337 │ │ │ │ +00008fa0: 362d 2e35 3632 3238 2a69 692c 2031 7d2c 6-.56228*ii, 1}, │ │ │ │ +00008fb0: 207b 3131 2e33 3337 362b 2e35 3632 3238 {11.3376+.56228 │ │ │ │ +00008fc0: 2a69 692c 2031 7d2c 207b 3133 2e33 3234 *ii, 1}, {13.324 │ │ │ │ +00008fd0: 372c 2031 7d7d 2020 2020 2020 2020 2020 7, 1}} │ │ │ │ +00008fe0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00008ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009020: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009030: 0a7c 6f37 203a 204c 6973 7420 2020 2020 .|o7 : List │ │ │ │ +00009020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009030: 7c0a 7c6f 3720 3a20 4c69 7374 2020 2020 |.|o7 : List │ │ │ │ 00009040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009070: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009080: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00009070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009080: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ 00009090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000090a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000090b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000090c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000090d0: 0a7c 7061 7261 6d56 616c 7565 7330 2020 .|paramValues0 │ │ │ │ +000090c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000090d0: 7c0a 7c70 6172 616d 5661 6c75 6573 3020 |.|paramValues0 │ │ │ │ 000090e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000090f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009110: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009120: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00009110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009120: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00009130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00009170: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00009160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009170: 2b0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +.+------------- │ │ │ │ 00009180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000091a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000091b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000091c0: 0a7c 6938 203a 2052 3d43 435b 782c 792c .|i8 : R=CC[x,y, │ │ │ │ -000091d0: 7a2c 7531 2c75 325d 2020 2020 2020 2020 z,u1,u2] │ │ │ │ +000091b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000091c0: 2b0a 7c69 3820 3a20 523d 4343 5b78 2c79 +.|i8 : R=CC[x,y │ │ │ │ +000091d0: 2c7a 2c75 312c 7532 5d20 2020 2020 2020 ,z,u1,u2] │ │ │ │ 000091e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000091f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009200: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009210: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00009200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009210: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00009220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009250: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009260: 0a7c 6f38 203d 2052 2020 2020 2020 2020 .|o8 = R │ │ │ │ +00009250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009260: 7c0a 7c6f 3820 3d20 5220 2020 2020 2020 |.|o8 = R │ │ │ │ 00009270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000092a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000092b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000092a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000092b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000092c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000092d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000092e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000092f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009300: 0a7c 6f38 203a 2050 6f6c 796e 6f6d 6961 .|o8 : Polynomia │ │ │ │ -00009310: 6c52 696e 6720 2020 2020 2020 2020 2020 lRing │ │ │ │ +000092f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009300: 7c0a 7c6f 3820 3a20 506f 6c79 6e6f 6d69 |.|o8 : Polynomi │ │ │ │ +00009310: 616c 5269 6e67 2020 2020 2020 2020 2020 alRing │ │ │ │ 00009320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009340: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009350: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00009340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009350: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00009360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000093a0: 0a7c 6939 203a 2066 313d 785e 322b 795e .|i9 : f1=x^2+y^ │ │ │ │ -000093b0: 322d 7a5e 3220 2020 2020 2020 2020 2020 2-z^2 │ │ │ │ +00009390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000093a0: 2b0a 7c69 3920 3a20 6631 3d78 5e32 2b79 +.|i9 : f1=x^2+y │ │ │ │ +000093b0: 5e32 2d7a 5e32 2020 2020 2020 2020 2020 ^2-z^2 │ │ │ │ 000093c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000093d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000093e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000093f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000093e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000093f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00009400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009430: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009440: 0a7c 2020 2020 2020 3220 2020 2032 2020 .| 2 2 │ │ │ │ -00009450: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00009430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009440: 7c0a 7c20 2020 2020 2032 2020 2020 3220 |.| 2 2 │ │ │ │ +00009450: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00009460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009480: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009490: 0a7c 6f39 203d 2078 2020 2b20 7920 202d .|o9 = x + y - │ │ │ │ -000094a0: 207a 2020 2020 2020 2020 2020 2020 2020 z │ │ │ │ +00009480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009490: 7c0a 7c6f 3920 3d20 7820 202b 2079 2020 |.|o9 = x + y │ │ │ │ +000094a0: 2d20 7a20 2020 2020 2020 2020 2020 2020 - z │ │ │ │ 000094b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000094c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000094d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000094e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000094d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000094e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000094f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009520: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009530: 0a7c 6f39 203a 2052 2020 2020 2020 2020 .|o9 : R │ │ │ │ +00009520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009530: 7c0a 7c6f 3920 3a20 5220 2020 2020 2020 |.|o9 : R │ │ │ │ 00009540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009570: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009580: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00009570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009580: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00009590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000095a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000095b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000095c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000095d0: 0a7c 6931 3020 3a20 6632 3d75 312a 782b .|i10 : f2=u1*x+ │ │ │ │ -000095e0: 7532 2a79 2020 2020 2020 2020 2020 2020 u2*y │ │ │ │ +000095c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000095d0: 2b0a 7c69 3130 203a 2066 323d 7531 2a78 +.|i10 : f2=u1*x │ │ │ │ +000095e0: 2b75 322a 7920 2020 2020 2020 2020 2020 +u2*y │ │ │ │ 000095f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009610: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009620: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00009610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009620: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00009630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009660: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009670: 0a7c 6f31 3020 3d20 782a 7531 202b 2079 .|o10 = x*u1 + y │ │ │ │ -00009680: 2a75 3220 2020 2020 2020 2020 2020 2020 *u2 │ │ │ │ +00009660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009670: 7c0a 7c6f 3130 203d 2078 2a75 3120 2b20 |.|o10 = x*u1 + │ │ │ │ +00009680: 792a 7532 2020 2020 2020 2020 2020 2020 y*u2 │ │ │ │ 00009690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000096a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000096b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000096c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000096b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000096c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000096d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000096e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000096f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009700: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009710: 0a7c 6f31 3020 3a20 5220 2020 2020 2020 .|o10 : R │ │ │ │ +00009700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009710: 7c0a 7c6f 3130 203a 2052 2020 2020 2020 |.|o10 : R │ │ │ │ 00009720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009750: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009760: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00009750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009760: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00009770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000097a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000097b0: 0a7c 6931 3120 3a20 6669 6e61 6c50 6172 .|i11 : finalPar │ │ │ │ -000097c0: 616d 6574 6572 7330 3d7b 302c 317d 2020 ameters0={0,1} │ │ │ │ +000097a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000097b0: 2b0a 7c69 3131 203a 2066 696e 616c 5061 +.|i11 : finalPa │ │ │ │ +000097c0: 7261 6d65 7465 7273 303d 7b30 2c31 7d20 rameters0={0,1} │ │ │ │ 000097d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000097e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000097f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009800: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000097f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009800: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00009810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009840: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009850: 0a7c 6f31 3120 3d20 7b30 2c20 317d 2020 .|o11 = {0, 1} │ │ │ │ +00009840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009850: 7c0a 7c6f 3131 203d 207b 302c 2031 7d20 |.|o11 = {0, 1} │ │ │ │ 00009860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009890: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000098a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00009890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000098a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000098b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000098c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000098d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000098e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000098f0: 0a7c 6f31 3120 3a20 4c69 7374 2020 2020 .|o11 : List │ │ │ │ +000098e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000098f0: 7c0a 7c6f 3131 203a 204c 6973 7420 2020 |.|o11 : List │ │ │ │ 00009900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009930: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009940: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00009930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009940: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00009950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00009990: 0a7c 6931 3220 3a20 6669 6e61 6c50 6172 .|i12 : finalPar │ │ │ │ -000099a0: 616d 6574 6572 7331 3d7b 312c 307d 2020 ameters1={1,0} │ │ │ │ +00009980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009990: 2b0a 7c69 3132 203a 2066 696e 616c 5061 +.|i12 : finalPa │ │ │ │ +000099a0: 7261 6d65 7465 7273 313d 7b31 2c30 7d20 rameters1={1,0} │ │ │ │ 000099b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000099c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000099d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000099e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000099d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000099e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000099f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009a20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009a30: 0a7c 6f31 3220 3d20 7b31 2c20 307d 2020 .|o12 = {1, 0} │ │ │ │ +00009a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009a30: 7c0a 7c6f 3132 203d 207b 312c 2030 7d20 |.|o12 = {1, 0} │ │ │ │ 00009a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009a70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009a80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00009a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009a80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00009a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009ac0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009ad0: 0a7c 6f31 3220 3a20 4c69 7374 2020 2020 .|o12 : List │ │ │ │ +00009ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009ad0: 7c0a 7c6f 3132 203a 204c 6973 7420 2020 |.|o12 : List │ │ │ │ 00009ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009b10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009b20: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00009b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009b20: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00009b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00009b70: 0a7c 6931 3320 3a20 6250 483d 6265 7274 .|i13 : bPH=bert │ │ │ │ -00009b80: 696e 6950 6172 616d 6574 6572 486f 6d6f iniParameterHomo │ │ │ │ -00009b90: 746f 7079 2820 7b66 312c 6632 7d2c 207b topy( {f1,f2}, { │ │ │ │ -00009ba0: 7531 2c75 327d 2c7b 6669 6e61 6c50 6172 u1,u2},{finalPar │ │ │ │ -00009bb0: 616d 6574 6572 7330 202c 6669 6e61 6c7c ameters0 ,final| │ │ │ │ -00009bc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00009b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009b70: 2b0a 7c69 3133 203a 2062 5048 3d62 6572 +.|i13 : bPH=ber │ │ │ │ +00009b80: 7469 6e69 5061 7261 6d65 7465 7248 6f6d tiniParameterHom │ │ │ │ +00009b90: 6f74 6f70 7928 207b 6631 2c66 327d 2c20 otopy( {f1,f2}, │ │ │ │ +00009ba0: 7b75 312c 7532 7d2c 7b66 696e 616c 5061 {u1,u2},{finalPa │ │ │ │ +00009bb0: 7261 6d65 7465 7273 3020 2c66 696e 616c rameters0 ,final │ │ │ │ +00009bc0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00009bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009c00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009c10: 0a7c 6f31 3320 3d20 7b7b 7b31 2c20 312e .|o13 = {{{1, 1. │ │ │ │ -00009c20: 3034 3633 3465 2d31 372d 312e 3031 3434 04634e-17-1.0144 │ │ │ │ -00009c30: 3865 2d31 372a 6969 2c20 2d31 7d2c 207b 8e-17*ii, -1}, { │ │ │ │ -00009c40: 312c 2031 2e33 3231 3131 652d 3137 2b36 1, 1.32111e-17+6 │ │ │ │ -00009c50: 2e34 3138 652d 3230 2a69 692c 2020 207c .418e-20*ii, | │ │ │ │ -00009c60: 0a7c 2020 2020 2020 2d2d 2d2d 2d2d 2d2d .| -------- │ │ │ │ +00009c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009c10: 7c0a 7c6f 3133 203d 207b 7b7b 312c 2031 |.|o13 = {{{1, 1 │ │ │ │ +00009c20: 2e30 3436 3334 652d 3137 2d31 2e30 3134 .04634e-17-1.014 │ │ │ │ +00009c30: 3438 652d 3137 2a69 692c 202d 317d 2c20 48e-17*ii, -1}, │ │ │ │ +00009c40: 7b31 2c20 312e 3332 3131 3165 2d31 372b {1, 1.32111e-17+ │ │ │ │ +00009c50: 362e 3431 3865 2d32 302a 6969 2c20 2020 6.418e-20*ii, │ │ │ │ +00009c60: 7c0a 7c20 2020 2020 202d 2d2d 2d2d 2d2d |.| ------- │ │ │ │ 00009c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00009cb0: 0a7c 2020 2020 2020 317d 7d2c 207b 7b39 .| 1}}, {{9 │ │ │ │ -00009cc0: 2e39 3738 3333 652d 3139 2b31 2e30 3931 .97833e-19+1.091 │ │ │ │ -00009cd0: 3835 652d 3138 2a69 692c 2031 2c20 317d 85e-18*ii, 1, 1} │ │ │ │ -00009ce0: 2c20 7b2d 352e 3431 3838 3465 2d31 362b , {-5.41884e-16+ │ │ │ │ -00009cf0: 312e 3431 3230 3165 2d31 362a 6969 2c7c 1.41201e-16*ii,| │ │ │ │ -00009d00: 0a7c 2020 2020 2020 2d2d 2d2d 2d2d 2d2d .| -------- │ │ │ │ +00009ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009cb0: 7c0a 7c20 2020 2020 2031 7d7d 2c20 7b7b |.| 1}}, {{ │ │ │ │ +00009cc0: 392e 3937 3833 3365 2d31 392b 312e 3039 9.97833e-19+1.09 │ │ │ │ +00009cd0: 3138 3565 2d31 382a 6969 2c20 312c 2031 185e-18*ii, 1, 1 │ │ │ │ +00009ce0: 7d2c 207b 2d35 2e34 3138 3834 652d 3136 }, {-5.41884e-16 │ │ │ │ +00009cf0: 2b31 2e34 3132 3031 652d 3136 2a69 692c +1.41201e-16*ii, │ │ │ │ +00009d00: 7c0a 7c20 2020 2020 202d 2d2d 2d2d 2d2d |.| ------- │ │ │ │ 00009d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00009d50: 0a7c 2020 2020 2020 312c 202d 317d 7d7d .| 1, -1}}} │ │ │ │ -00009d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009d50: 7c0a 7c20 2020 2020 2031 2c20 2d31 7d7d |.| 1, -1}} │ │ │ │ +00009d60: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 00009d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009d90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009da0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00009d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009da0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00009db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009de0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009df0: 0a7c 6f31 3320 3a20 4c69 7374 2020 2020 .|o13 : List │ │ │ │ +00009de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009df0: 7c0a 7c6f 3133 203a 204c 6973 7420 2020 |.|o13 : List │ │ │ │ 00009e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009e30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009e40: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00009e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009e40: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ 00009e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00009e90: 0a7c 5061 7261 6d65 7465 7273 3120 7d2c .|Parameters1 }, │ │ │ │ -00009ea0: 486f 6d56 6172 6961 626c 6547 726f 7570 HomVariableGroup │ │ │ │ -00009eb0: 3d3e 7b78 2c79 2c7a 7d29 2020 2020 2020 =>{x,y,z}) │ │ │ │ +00009e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009e90: 7c0a 7c50 6172 616d 6574 6572 7331 207d |.|Parameters1 } │ │ │ │ +00009ea0: 2c48 6f6d 5661 7269 6162 6c65 4772 6f75 ,HomVariableGrou │ │ │ │ +00009eb0: 703d 3e7b 782c 792c 7a7d 2920 2020 2020 p=>{x,y,z}) │ │ │ │ 00009ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009ed0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009ee0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00009ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009ee0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00009ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00009f30: 0a7c 6931 3420 3a20 6250 485f 302d 2d54 .|i14 : bPH_0--T │ │ │ │ -00009f40: 6865 2074 776f 2073 6f6c 7574 696f 6e73 he two solutions │ │ │ │ -00009f50: 2066 6f72 2066 696e 616c 5061 7261 6d65 for finalParame │ │ │ │ -00009f60: 7465 7273 3020 2020 2020 2020 2020 2020 ters0 │ │ │ │ -00009f70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009f80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00009f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00009f30: 2b0a 7c69 3134 203a 2062 5048 5f30 2d2d +.|i14 : bPH_0-- │ │ │ │ +00009f40: 5468 6520 7477 6f20 736f 6c75 7469 6f6e The two solution │ │ │ │ +00009f50: 7320 666f 7220 6669 6e61 6c50 6172 616d s for finalParam │ │ │ │ +00009f60: 6574 6572 7330 2020 2020 2020 2020 2020 eters0 │ │ │ │ +00009f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009f80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00009f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009fc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00009fd0: 0a7c 6f31 3420 3d20 7b7b 312c 2031 2e30 .|o14 = {{1, 1.0 │ │ │ │ -00009fe0: 3436 3334 652d 3137 2d31 2e30 3134 3438 4634e-17-1.01448 │ │ │ │ -00009ff0: 652d 3137 2a69 692c 202d 317d 2c20 7b31 e-17*ii, -1}, {1 │ │ │ │ -0000a000: 2c20 312e 3332 3131 3165 2d31 372b 362e , 1.32111e-17+6. │ │ │ │ -0000a010: 3431 3865 2d32 302a 6969 2c20 317d 7d7c 418e-20*ii, 1}}| │ │ │ │ -0000a020: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00009fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00009fd0: 7c0a 7c6f 3134 203d 207b 7b31 2c20 312e |.|o14 = {{1, 1. │ │ │ │ +00009fe0: 3034 3633 3465 2d31 372d 312e 3031 3434 04634e-17-1.0144 │ │ │ │ +00009ff0: 3865 2d31 372a 6969 2c20 2d31 7d2c 207b 8e-17*ii, -1}, { │ │ │ │ +0000a000: 312c 2031 2e33 3231 3131 652d 3137 2b36 1, 1.32111e-17+6 │ │ │ │ +0000a010: 2e34 3138 652d 3230 2a69 692c 2031 7d7d .418e-20*ii, 1}} │ │ │ │ +0000a020: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000a030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a060: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a070: 0a7c 6f31 3420 3a20 4c69 7374 2020 2020 .|o14 : List │ │ │ │ +0000a060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a070: 7c0a 7c6f 3134 203a 204c 6973 7420 2020 |.|o14 : List │ │ │ │ 0000a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a0b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a0c0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0000a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a0c0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0000a0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0000a110: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0000a100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a110: 2b0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +.+------------- │ │ │ │ 0000a120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0000a160: 0a7c 6931 3520 3a20 6669 6e50 6172 616d .|i15 : finParam │ │ │ │ -0000a170: 5661 6c75 6573 3d7b 7b31 7d2c 7b32 7d7d Values={{1},{2}} │ │ │ │ -0000a180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a160: 2b0a 7c69 3135 203a 2066 696e 5061 7261 +.|i15 : finPara │ │ │ │ +0000a170: 6d56 616c 7565 733d 7b7b 317d 2c7b 327d mValues={{1},{2} │ │ │ │ +0000a180: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 0000a190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a1a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a1b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0000a1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a1b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000a1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a1f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a200: 0a7c 6f31 3520 3d20 7b7b 317d 2c20 7b32 .|o15 = {{1}, {2 │ │ │ │ -0000a210: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ +0000a1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a200: 7c0a 7c6f 3135 203d 207b 7b31 7d2c 207b |.|o15 = {{1}, { │ │ │ │ +0000a210: 327d 7d20 2020 2020 2020 2020 2020 2020 2}} │ │ │ │ 0000a220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a240: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a250: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0000a240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a250: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000a260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a290: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a2a0: 0a7c 6f31 3520 3a20 4c69 7374 2020 2020 .|o15 : List │ │ │ │ +0000a290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a2a0: 7c0a 7c6f 3135 203a 204c 6973 7420 2020 |.|o15 : List │ │ │ │ 0000a2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a2e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a2f0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0000a2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a2f0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0000a300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0000a340: 0a7c 6931 3620 3a20 6250 4831 3d62 6572 .|i16 : bPH1=ber │ │ │ │ -0000a350: 7469 6e69 5061 7261 6d65 7465 7248 6f6d tiniParameterHom │ │ │ │ -0000a360: 6f74 6f70 7928 207b 2278 5e32 2d75 3122 otopy( {"x^2-u1" │ │ │ │ -0000a370: 7d2c 2020 2020 2020 2020 2020 2020 2020 }, │ │ │ │ -0000a380: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a390: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0000a330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a340: 2b0a 7c69 3136 203a 2062 5048 313d 6265 +.|i16 : bPH1=be │ │ │ │ +0000a350: 7274 696e 6950 6172 616d 6574 6572 486f rtiniParameterHo │ │ │ │ +0000a360: 6d6f 746f 7079 2820 7b22 785e 322d 7531 motopy( {"x^2-u1 │ │ │ │ +0000a370: 227d 2c20 2020 2020 2020 2020 2020 2020 "}, │ │ │ │ +0000a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a390: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000a3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a3d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a3e0: 0a7c 6f31 3620 3d20 7b7b 7b2d 317d 2c20 .|o16 = {{{-1}, │ │ │ │ -0000a3f0: 7b31 7d7d 2c20 7b7b 2d31 2e34 3134 3231 {1}}, {{-1.41421 │ │ │ │ -0000a400: 7d2c 207b 312e 3431 3432 317d 7d7d 2020 }, {1.41421}}} │ │ │ │ +0000a3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a3e0: 7c0a 7c6f 3136 203d 207b 7b7b 2d31 7d2c |.|o16 = {{{-1}, │ │ │ │ +0000a3f0: 207b 317d 7d2c 207b 7b2d 312e 3431 3432 {1}}, {{-1.4142 │ │ │ │ +0000a400: 317d 2c20 7b31 2e34 3134 3231 7d7d 7d20 1}, {1.41421}}} │ │ │ │ 0000a410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a420: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a430: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0000a420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a430: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000a440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a470: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a480: 0a7c 6f31 3620 3a20 4c69 7374 2020 2020 .|o16 : List │ │ │ │ +0000a470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a480: 7c0a 7c6f 3136 203a 204c 6973 7420 2020 |.|o16 : List │ │ │ │ 0000a490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a4c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a4d0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +0000a4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a4d0: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ 0000a4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -0000a520: 0a7c 7b75 317d 2c66 696e 5061 7261 6d56 .|{u1},finParamV │ │ │ │ -0000a530: 616c 7565 732c 4166 6656 6172 6961 626c alues,AffVariabl │ │ │ │ -0000a540: 6547 726f 7570 3d3e 7b78 7d29 2020 2020 eGroup=>{x}) │ │ │ │ +0000a510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a520: 7c0a 7c7b 7531 7d2c 6669 6e50 6172 616d |.|{u1},finParam │ │ │ │ +0000a530: 5661 6c75 6573 2c41 6666 5661 7269 6162 Values,AffVariab │ │ │ │ +0000a540: 6c65 4772 6f75 703d 3e7b 787d 2920 2020 leGroup=>{x}) │ │ │ │ 0000a550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a560: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a570: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0000a560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a570: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0000a580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0000a5c0: 0a7c 6931 3720 3a20 6250 4832 3d62 6572 .|i17 : bPH2=ber │ │ │ │ -0000a5d0: 7469 6e69 5061 7261 6d65 7465 7248 6f6d tiniParameterHom │ │ │ │ -0000a5e0: 6f74 6f70 7928 207b 2278 5e32 2d75 3122 otopy( {"x^2-u1" │ │ │ │ -0000a5f0: 7d2c 2020 2020 2020 2020 2020 2020 2020 }, │ │ │ │ -0000a600: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a610: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0000a5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a5c0: 2b0a 7c69 3137 203a 2062 5048 323d 6265 +.|i17 : bPH2=be │ │ │ │ +0000a5d0: 7274 696e 6950 6172 616d 6574 6572 486f rtiniParameterHo │ │ │ │ +0000a5e0: 6d6f 746f 7079 2820 7b22 785e 322d 7531 motopy( {"x^2-u1 │ │ │ │ +0000a5f0: 227d 2c20 2020 2020 2020 2020 2020 2020 "}, │ │ │ │ +0000a600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a610: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000a620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a650: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a660: 0a7c 6f31 3720 3d20 7b7b 7b2d 317d 2c20 .|o17 = {{{-1}, │ │ │ │ -0000a670: 7b31 7d7d 2c20 7b7b 2d31 2e34 3134 3231 {1}}, {{-1.41421 │ │ │ │ -0000a680: 7d2c 207b 312e 3431 3432 317d 7d7d 2020 }, {1.41421}}} │ │ │ │ +0000a650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a660: 7c0a 7c6f 3137 203d 207b 7b7b 2d31 7d2c |.|o17 = {{{-1}, │ │ │ │ +0000a670: 207b 317d 7d2c 207b 7b2d 312e 3431 3432 {1}}, {{-1.4142 │ │ │ │ +0000a680: 317d 2c20 7b31 2e34 3134 3231 7d7d 7d20 1}, {1.41421}}} │ │ │ │ 0000a690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a6a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a6b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0000a6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a6b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000a6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a6f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a700: 0a7c 6f31 3720 3a20 4c69 7374 2020 2020 .|o17 : List │ │ │ │ +0000a6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a700: 7c0a 7c6f 3137 203a 204c 6973 7420 2020 |.|o17 : List │ │ │ │ 0000a710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a740: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a750: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +0000a740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a750: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ 0000a760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -0000a7a0: 0a7c 7b75 317d 2c66 696e 5061 7261 6d56 .|{u1},finParamV │ │ │ │ -0000a7b0: 616c 7565 732c 4166 6656 6172 6961 626c alues,AffVariabl │ │ │ │ -0000a7c0: 6547 726f 7570 3d3e 7b78 7d2c 4f75 7470 eGroup=>{x},Outp │ │ │ │ -0000a7d0: 7574 5374 796c 653d 3e22 4f75 7453 6f6c utStyle=>"OutSol │ │ │ │ -0000a7e0: 7574 696f 6e73 2229 2020 2020 2020 207c utions") | │ │ │ │ -0000a7f0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0000a790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a7a0: 7c0a 7c7b 7531 7d2c 6669 6e50 6172 616d |.|{u1},finParam │ │ │ │ +0000a7b0: 5661 6c75 6573 2c41 6666 5661 7269 6162 Values,AffVariab │ │ │ │ +0000a7c0: 6c65 4772 6f75 703d 3e7b 787d 2c4f 7574 leGroup=>{x},Out │ │ │ │ +0000a7d0: 7075 7453 7479 6c65 3d3e 224f 7574 536f putStyle=>"OutSo │ │ │ │ +0000a7e0: 6c75 7469 6f6e 7322 2920 2020 2020 2020 lutions") │ │ │ │ +0000a7f0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0000a800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000a830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0000a840: 0a7c 6931 3820 3a20 636c 6173 7320 6250 .|i18 : class bP │ │ │ │ -0000a850: 4831 5f30 5f30 2020 2020 2020 2020 2020 H1_0_0 │ │ │ │ +0000a830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000a840: 2b0a 7c69 3138 203a 2063 6c61 7373 2062 +.|i18 : class b │ │ │ │ +0000a850: 5048 315f 305f 3020 2020 2020 2020 2020 PH1_0_0 │ │ │ │ 0000a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a880: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a890: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0000a880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a890: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a8d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a8e0: 0a7c 6f31 3820 3d20 506f 696e 7420 2020 .|o18 = Point │ │ │ │ +0000a8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a8e0: 7c0a 7c6f 3138 203d 2050 6f69 6e74 2020 |.|o18 = Point │ │ │ │ 0000a8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a920: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a930: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0000a920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a930: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a970: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a980: 0a7c 6f31 3820 3a20 5479 7065 2020 2020 .|o18 : Type │ │ │ │ +0000a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a980: 7c0a 7c6f 3138 203a 2054 7970 6520 2020 |.|o18 : Type │ │ │ │ 0000a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a9c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a9d0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0000a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000a9d0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0000a9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000aa00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000aa10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0000aa20: 0a7c 6931 3920 3a20 636c 6173 7320 6250 .|i19 : class bP │ │ │ │ -0000aa30: 4832 5f30 5f30 2020 2020 2020 2020 2020 H2_0_0 │ │ │ │ +0000aa10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000aa20: 2b0a 7c69 3139 203a 2063 6c61 7373 2062 +.|i19 : class b │ │ │ │ +0000aa30: 5048 325f 305f 3020 2020 2020 2020 2020 PH2_0_0 │ │ │ │ 0000aa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000aa60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000aa70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0000aa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000aa70: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000aa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000aab0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000aac0: 0a7c 6f31 3920 3d20 4c69 7374 2020 2020 .|o19 = List │ │ │ │ +0000aab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000aac0: 7c0a 7c6f 3139 203d 204c 6973 7420 2020 |.|o19 = List │ │ │ │ 0000aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ab00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000ab10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0000ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ab10: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000ab20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ab30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ab40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ab50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000ab60: 0a7c 6f31 3920 3a20 5479 7065 2020 2020 .|o19 : Type │ │ │ │ +0000ab50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ab60: 7c0a 7c6f 3139 203a 2054 7970 6520 2020 |.|o19 : Type │ │ │ │ 0000ab70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ab80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ab90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000aba0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000abb0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0000aba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000abb0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0000abc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000abd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000abe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000abf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0000ac00: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0000abf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000ac00: 2b0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +.+------------- │ │ │ │ 0000ac10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ac20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ac30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000ac40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0000ac50: 0a7c 6932 3020 3a20 6469 7231 203a 3d20 .|i20 : dir1 := │ │ │ │ -0000ac60: 7465 6d70 6f72 6172 7946 696c 654e 616d temporaryFileNam │ │ │ │ -0000ac70: 6528 293b 202d 2d20 6275 696c 6420 6120 e(); -- build a │ │ │ │ -0000ac80: 6469 7265 6374 6f72 7920 746f 2073 746f directory to sto │ │ │ │ -0000ac90: 7265 2074 656d 706f 7261 7279 2020 207c re temporary | │ │ │ │ -0000aca0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +0000ac40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000ac50: 2b0a 7c69 3230 203a 2064 6972 3120 3a3d +.|i20 : dir1 := │ │ │ │ +0000ac60: 2074 656d 706f 7261 7279 4669 6c65 4e61 temporaryFileNa │ │ │ │ +0000ac70: 6d65 2829 3b20 2d2d 2062 7569 6c64 2061 me(); -- build a │ │ │ │ +0000ac80: 2064 6972 6563 746f 7279 2074 6f20 7374 directory to st │ │ │ │ +0000ac90: 6f72 6520 7465 6d70 6f72 6172 7920 2020 ore temporary │ │ │ │ +0000aca0: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ 0000acb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000acc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000acd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000ace0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -0000acf0: 0a7c 6461 7461 2020 2020 2020 2020 2020 .|data │ │ │ │ +0000ace0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000acf0: 7c0a 7c64 6174 6120 2020 2020 2020 2020 |.|data │ │ │ │ 0000ad00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ad10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ad20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ad30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000ad40: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0000ad30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ad40: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0000ad50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ad60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ad70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000ad80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0000ad90: 0a7c 6932 3120 3a20 6d61 6b65 4469 7265 .|i21 : makeDire │ │ │ │ -0000ada0: 6374 6f72 7920 6469 7231 3b20 2020 2020 ctory dir1; │ │ │ │ +0000ad80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000ad90: 2b0a 7c69 3231 203a 206d 616b 6544 6972 +.|i21 : makeDir │ │ │ │ +0000ada0: 6563 746f 7279 2064 6972 313b 2020 2020 ectory dir1; │ │ │ │ 0000adb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000adc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000add0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000ade0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0000add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ade0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0000adf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ae00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ae10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000ae20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0000ae30: 0a7c 6932 3220 3a20 6250 4835 3d62 6572 .|i22 : bPH5=ber │ │ │ │ -0000ae40: 7469 6e69 5061 7261 6d65 7465 7248 6f6d tiniParameterHom │ │ │ │ -0000ae50: 6f74 6f70 7928 207b 2278 5e32 2d75 3122 otopy( {"x^2-u1" │ │ │ │ -0000ae60: 7d2c 2020 2020 2020 2020 2020 2020 2020 }, │ │ │ │ -0000ae70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000ae80: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +0000ae20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000ae30: 2b0a 7c69 3232 203a 2062 5048 353d 6265 +.|i22 : bPH5=be │ │ │ │ +0000ae40: 7274 696e 6950 6172 616d 6574 6572 486f rtiniParameterHo │ │ │ │ +0000ae50: 6d6f 746f 7079 2820 7b22 785e 322d 7531 motopy( {"x^2-u1 │ │ │ │ +0000ae60: 227d 2c20 2020 2020 2020 2020 2020 2020 "}, │ │ │ │ +0000ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000ae80: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ 0000ae90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000aea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000aeb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000aec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -0000aed0: 0a7c 7b75 317d 2c7b 7b31 7d2c 7b32 7d7d .|{u1},{{1},{2}} │ │ │ │ -0000aee0: 2c41 6666 5661 7269 6162 6c65 4772 6f75 ,AffVariableGrou │ │ │ │ -0000aef0: 703d 3e7b 787d 2c4f 7574 7075 7453 7479 p=>{x},OutputSty │ │ │ │ -0000af00: 6c65 3d3e 224f 7574 4e6f 6e65 222c 546f le=>"OutNone",To │ │ │ │ -0000af10: 7044 6972 6563 746f 7279 3d3e 2020 207c pDirectory=> | │ │ │ │ -0000af20: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +0000aec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000aed0: 7c0a 7c7b 7531 7d2c 7b7b 317d 2c7b 327d |.|{u1},{{1},{2} │ │ │ │ +0000aee0: 7d2c 4166 6656 6172 6961 626c 6547 726f },AffVariableGro │ │ │ │ +0000aef0: 7570 3d3e 7b78 7d2c 4f75 7470 7574 5374 up=>{x},OutputSt │ │ │ │ +0000af00: 796c 653d 3e22 4f75 744e 6f6e 6522 2c54 yle=>"OutNone",T │ │ │ │ +0000af10: 6f70 4469 7265 6374 6f72 793d 3e20 2020 opDirectory=> │ │ │ │ +0000af20: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ 0000af30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000af40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000af50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000af60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -0000af70: 0a7c 6469 7231 2920 2020 2020 2020 2020 .|dir1) │ │ │ │ +0000af60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000af70: 7c0a 7c64 6972 3129 2020 2020 2020 2020 |.|dir1) │ │ │ │ 0000af80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000af90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000afa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000afb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000afc0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0000afb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000afc0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0000afd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000afe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000aff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000b000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0000b010: 0a7c 6932 3320 3a20 4230 3d69 6d70 6f72 .|i23 : B0=impor │ │ │ │ -0000b020: 7453 6f6c 7574 696f 6e73 4669 6c65 2864 tSolutionsFile(d │ │ │ │ -0000b030: 6972 312c 4e61 6d65 536f 6c75 7469 6f6e ir1,NameSolution │ │ │ │ -0000b040: 7346 696c 653d 3e22 7068 5f6a 6164 655f sFile=>"ph_jade_ │ │ │ │ -0000b050: 3022 2920 2020 2020 2020 2020 2020 207c 0") | │ │ │ │ -0000b060: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0000b000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000b010: 2b0a 7c69 3233 203a 2042 303d 696d 706f +.|i23 : B0=impo │ │ │ │ +0000b020: 7274 536f 6c75 7469 6f6e 7346 696c 6528 rtSolutionsFile( │ │ │ │ +0000b030: 6469 7231 2c4e 616d 6553 6f6c 7574 696f dir1,NameSolutio │ │ │ │ +0000b040: 6e73 4669 6c65 3d3e 2270 685f 6a61 6465 nsFile=>"ph_jade │ │ │ │ +0000b050: 5f30 2229 2020 2020 2020 2020 2020 2020 _0") │ │ │ │ +0000b060: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000b070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b0a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000b0b0: 0a7c 6f32 3320 3d20 7b7b 2d31 7d2c 207b .|o23 = {{-1}, { │ │ │ │ -0000b0c0: 317d 7d20 2020 2020 2020 2020 2020 2020 1}} │ │ │ │ +0000b0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b0b0: 7c0a 7c6f 3233 203d 207b 7b2d 317d 2c20 |.|o23 = {{-1}, │ │ │ │ +0000b0c0: 7b31 7d7d 2020 2020 2020 2020 2020 2020 {1}} │ │ │ │ 0000b0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b0f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000b100: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0000b0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b100: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000b110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b140: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000b150: 0a7c 6f32 3320 3a20 4c69 7374 2020 2020 .|o23 : List │ │ │ │ +0000b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b150: 7c0a 7c6f 3233 203a 204c 6973 7420 2020 |.|o23 : List │ │ │ │ 0000b160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b190: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000b1a0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0000b190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b1a0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0000b1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000b1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0000b1f0: 0a7c 6932 3420 3a20 4231 3d69 6d70 6f72 .|i24 : B1=impor │ │ │ │ -0000b200: 7453 6f6c 7574 696f 6e73 4669 6c65 2864 tSolutionsFile(d │ │ │ │ -0000b210: 6972 312c 4e61 6d65 536f 6c75 7469 6f6e ir1,NameSolution │ │ │ │ -0000b220: 7346 696c 653d 3e22 7068 5f6a 6164 655f sFile=>"ph_jade_ │ │ │ │ -0000b230: 3122 2920 2020 2020 2020 2020 2020 207c 1") | │ │ │ │ -0000b240: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0000b1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000b1f0: 2b0a 7c69 3234 203a 2042 313d 696d 706f +.|i24 : B1=impo │ │ │ │ +0000b200: 7274 536f 6c75 7469 6f6e 7346 696c 6528 rtSolutionsFile( │ │ │ │ +0000b210: 6469 7231 2c4e 616d 6553 6f6c 7574 696f dir1,NameSolutio │ │ │ │ +0000b220: 6e73 4669 6c65 3d3e 2270 685f 6a61 6465 nsFile=>"ph_jade │ │ │ │ +0000b230: 5f31 2229 2020 2020 2020 2020 2020 2020 _1") │ │ │ │ +0000b240: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000b250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b280: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000b290: 0a7c 6f32 3420 3d20 7b7b 2d31 2e34 3134 .|o24 = {{-1.414 │ │ │ │ -0000b2a0: 3231 7d2c 207b 312e 3431 3432 317d 7d20 21}, {1.41421}} │ │ │ │ +0000b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b290: 7c0a 7c6f 3234 203d 207b 7b2d 312e 3431 |.|o24 = {{-1.41 │ │ │ │ +0000b2a0: 3432 317d 2c20 7b31 2e34 3134 3231 7d7d 421}, {1.41421}} │ │ │ │ 0000b2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b2d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000b2e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0000b2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b2e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000b2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b320: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000b330: 0a7c 6f32 3420 3a20 4c69 7374 2020 2020 .|o24 : List │ │ │ │ +0000b320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b330: 7c0a 7c6f 3234 203a 204c 6973 7420 2020 |.|o24 : List │ │ │ │ 0000b340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000b370: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000b380: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0000b370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000b380: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0000b390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000b3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0000b3d0: 0a0a 5761 7973 2074 6f20 7573 6520 6265 ..Ways to use be │ │ │ │ -0000b3e0: 7274 696e 6950 6172 616d 6574 6572 486f rtiniParameterHo │ │ │ │ -0000b3f0: 6d6f 746f 7079 3a0a 3d3d 3d3d 3d3d 3d3d motopy:.======== │ │ │ │ +0000b3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000b3d0: 2b0a 0a57 6179 7320 746f 2075 7365 2062 +..Ways to use b │ │ │ │ +0000b3e0: 6572 7469 6e69 5061 7261 6d65 7465 7248 ertiniParameterH │ │ │ │ +0000b3f0: 6f6d 6f74 6f70 793a 0a3d 3d3d 3d3d 3d3d omotopy:.======= │ │ │ │ 0000b400: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0000b410: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ -0000b420: 202a 2022 6265 7274 696e 6950 6172 616d * "bertiniParam │ │ │ │ -0000b430: 6574 6572 486f 6d6f 746f 7079 284c 6973 eterHomotopy(Lis │ │ │ │ -0000b440: 742c 4c69 7374 2c4c 6973 7429 220a 0a46 t,List,List)"..F │ │ │ │ -0000b450: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -0000b460: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -0000b470: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -0000b480: 202a 6e6f 7465 2062 6572 7469 6e69 5061 *note bertiniPa │ │ │ │ -0000b490: 7261 6d65 7465 7248 6f6d 6f74 6f70 793a rameterHomotopy: │ │ │ │ -0000b4a0: 2062 6572 7469 6e69 5061 7261 6d65 7465 bertiniParamete │ │ │ │ -0000b4b0: 7248 6f6d 6f74 6f70 792c 2069 7320 6120 rHomotopy, is a │ │ │ │ -0000b4c0: 2a6e 6f74 650a 6d65 7468 6f64 2066 756e *note.method fun │ │ │ │ -0000b4d0: 6374 696f 6e20 7769 7468 206f 7074 696f ction with optio │ │ │ │ -0000b4e0: 6e73 3a20 284d 6163 6175 6c61 7932 446f ns: (Macaulay2Do │ │ │ │ -0000b4f0: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ -0000b500: 5769 7468 4f70 7469 6f6e 732c 2e0a 1f0a WithOptions,.... │ │ │ │ -0000b510: 4669 6c65 3a20 4265 7274 696e 692e 696e File: Bertini.in │ │ │ │ -0000b520: 666f 2c20 4e6f 6465 3a20 6265 7274 696e fo, Node: bertin │ │ │ │ -0000b530: 6950 6f73 4469 6d53 6f6c 7665 2c20 4e65 iPosDimSolve, Ne │ │ │ │ -0000b540: 7874 3a20 6265 7274 696e 6952 6566 696e xt: bertiniRefin │ │ │ │ -0000b550: 6553 6f6c 732c 2050 7265 763a 2062 6572 eSols, Prev: ber │ │ │ │ -0000b560: 7469 6e69 5061 7261 6d65 7465 7248 6f6d tiniParameterHom │ │ │ │ -0000b570: 6f74 6f70 792c 2055 703a 2054 6f70 0a0a otopy, Up: Top.. │ │ │ │ -0000b580: 6265 7274 696e 6950 6f73 4469 6d53 6f6c bertiniPosDimSol │ │ │ │ -0000b590: 7665 202d 2d20 6120 6d61 696e 206d 6574 ve -- a main met │ │ │ │ -0000b5a0: 686f 6420 7468 6174 2069 7320 7573 6564 hod that is used │ │ │ │ -0000b5b0: 2074 6f20 7072 6f64 7563 6520 7769 746e to produce witn │ │ │ │ -0000b5c0: 6573 7320 7365 7473 0a2a 2a2a 2a2a 2a2a ess sets.******* │ │ │ │ +0000b410: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +0000b420: 2020 2a20 2262 6572 7469 6e69 5061 7261 * "bertiniPara │ │ │ │ +0000b430: 6d65 7465 7248 6f6d 6f74 6f70 7928 4c69 meterHomotopy(Li │ │ │ │ +0000b440: 7374 2c4c 6973 742c 4c69 7374 2922 0a0a st,List,List)".. │ │ │ │ +0000b450: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +0000b460: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +0000b470: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +0000b480: 7420 2a6e 6f74 6520 6265 7274 696e 6950 t *note bertiniP │ │ │ │ +0000b490: 6172 616d 6574 6572 486f 6d6f 746f 7079 arameterHomotopy │ │ │ │ +0000b4a0: 3a20 6265 7274 696e 6950 6172 616d 6574 : bertiniParamet │ │ │ │ +0000b4b0: 6572 486f 6d6f 746f 7079 2c20 6973 2061 erHomotopy, is a │ │ │ │ +0000b4c0: 202a 6e6f 7465 0a6d 6574 686f 6420 6675 *note.method fu │ │ │ │ +0000b4d0: 6e63 7469 6f6e 2077 6974 6820 6f70 7469 nction with opti │ │ │ │ +0000b4e0: 6f6e 733a 2028 4d61 6361 756c 6179 3244 ons: (Macaulay2D │ │ │ │ +0000b4f0: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ +0000b500: 6e57 6974 684f 7074 696f 6e73 2c2e 0a1f nWithOptions,... │ │ │ │ +0000b510: 0a46 696c 653a 2042 6572 7469 6e69 2e69 .File: Bertini.i │ │ │ │ +0000b520: 6e66 6f2c 204e 6f64 653a 2062 6572 7469 nfo, Node: berti │ │ │ │ +0000b530: 6e69 506f 7344 696d 536f 6c76 652c 204e niPosDimSolve, N │ │ │ │ +0000b540: 6578 743a 2062 6572 7469 6e69 5265 6669 ext: bertiniRefi │ │ │ │ +0000b550: 6e65 536f 6c73 2c20 5072 6576 3a20 6265 neSols, Prev: be │ │ │ │ +0000b560: 7274 696e 6950 6172 616d 6574 6572 486f rtiniParameterHo │ │ │ │ +0000b570: 6d6f 746f 7079 2c20 5570 3a20 546f 700a motopy, Up: Top. │ │ │ │ +0000b580: 0a62 6572 7469 6e69 506f 7344 696d 536f .bertiniPosDimSo │ │ │ │ +0000b590: 6c76 6520 2d2d 2061 206d 6169 6e20 6d65 lve -- a main me │ │ │ │ +0000b5a0: 7468 6f64 2074 6861 7420 6973 2075 7365 thod that is use │ │ │ │ +0000b5b0: 6420 746f 2070 726f 6475 6365 2077 6974 d to produce wit │ │ │ │ +0000b5c0: 6e65 7373 2073 6574 730a 2a2a 2a2a 2a2a ness sets.****** │ │ │ │ 0000b5d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0000b5e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0000b5f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0000b600: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000b610: 2a0a 0a53 796e 6f70 7369 730a 3d3d 3d3d *..Synopsis.==== │ │ │ │ -0000b620: 3d3d 3d3d 0a0a 2020 2a20 5573 6167 653a ====.. * Usage: │ │ │ │ -0000b630: 200a 2020 2020 2020 2020 5620 3d20 6265 . V = be │ │ │ │ -0000b640: 7274 696e 6950 6f73 4469 6d53 6f6c 7665 rtiniPosDimSolve │ │ │ │ -0000b650: 2049 0a20 2020 2020 2020 2056 203d 2062 I. V = b │ │ │ │ -0000b660: 6572 7469 6e69 506f 7344 696d 536f 6c76 ertiniPosDimSolv │ │ │ │ -0000b670: 6520 460a 2020 2a20 496e 7075 7473 3a0a e F. * Inputs:. │ │ │ │ -0000b680: 2020 2020 2020 2a20 462c 2061 202a 6e6f * F, a *no │ │ │ │ -0000b690: 7465 206c 6973 743a 2028 4d61 6361 756c te list: (Macaul │ │ │ │ -0000b6a0: 6179 3244 6f63 294c 6973 742c 2c20 6120 ay2Doc)List,, a │ │ │ │ -0000b6b0: 6c69 7374 206f 6620 7269 6e67 2065 6c65 list of ring ele │ │ │ │ -0000b6c0: 6d65 6e74 7320 6465 6669 6e69 6e67 0a20 ments defining. │ │ │ │ -0000b6d0: 2020 2020 2020 2061 2076 6172 6965 7479 a variety │ │ │ │ -0000b6e0: 0a20 202a 202a 6e6f 7465 204f 7074 696f . * *note Optio │ │ │ │ -0000b6f0: 6e61 6c20 696e 7075 7473 3a20 284d 6163 nal inputs: (Mac │ │ │ │ -0000b700: 6175 6c61 7932 446f 6329 7573 696e 6720 aulay2Doc)using │ │ │ │ -0000b710: 6675 6e63 7469 6f6e 7320 7769 7468 206f functions with o │ │ │ │ -0000b720: 7074 696f 6e61 6c20 696e 7075 7473 2c3a ptional inputs,: │ │ │ │ -0000b730: 0a20 2020 2020 202a 2042 6572 7469 6e69 . * Bertini │ │ │ │ -0000b740: 496e 7075 7443 6f6e 6669 6775 7261 7469 InputConfigurati │ │ │ │ -0000b750: 6f6e 2028 6d69 7373 696e 6720 646f 6375 on (missing docu │ │ │ │ -0000b760: 6d65 6e74 6174 696f 6e29 203d 3e20 2e2e mentation) => .. │ │ │ │ -0000b770: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ -0000b780: 0a20 2020 2020 2020 207b 7d2c 0a20 2020 . {},. │ │ │ │ -0000b790: 2020 202a 202a 6e6f 7465 2049 7350 726f * *note IsPro │ │ │ │ -0000b7a0: 6a65 6374 6976 653a 2049 7350 726f 6a65 jective: IsProje │ │ │ │ -0000b7b0: 6374 6976 652c 203d 3e20 2e2e 2e2c 2064 ctive, => ..., d │ │ │ │ -0000b7c0: 6566 6175 6c74 2076 616c 7565 202d 312c efault value -1, │ │ │ │ -0000b7d0: 206f 7074 696f 6e61 6c0a 2020 2020 2020 optional. │ │ │ │ -0000b7e0: 2020 6172 6775 6d65 6e74 2074 6f20 7370 argument to sp │ │ │ │ -0000b7f0: 6563 6966 7920 7768 6574 6865 7220 746f ecify whether to │ │ │ │ -0000b800: 2075 7365 2068 6f6d 6f67 656e 656f 7573 use homogeneous │ │ │ │ -0000b810: 2063 6f6f 7264 696e 6174 6573 0a20 2020 coordinates. │ │ │ │ -0000b820: 2020 202a 202a 6e6f 7465 2056 6572 626f * *note Verbo │ │ │ │ -0000b830: 7365 3a20 6265 7274 696e 6954 7261 636b se: bertiniTrack │ │ │ │ -0000b840: 486f 6d6f 746f 7079 5f6c 705f 7064 5f70 Homotopy_lp_pd_p │ │ │ │ -0000b850: 645f 7064 5f63 6d56 6572 626f 7365 3d3e d_pd_cmVerbose=> │ │ │ │ -0000b860: 5f70 645f 7064 5f70 645f 7270 0a20 2020 _pd_pd_pd_rp. │ │ │ │ -0000b870: 2020 2020 202c 203d 3e20 2e2e 2e2c 2064 , => ..., d │ │ │ │ -0000b880: 6566 6175 6c74 2076 616c 7565 2066 616c efault value fal │ │ │ │ -0000b890: 7365 2c20 4f70 7469 6f6e 2074 6f20 7369 se, Option to si │ │ │ │ -0000b8a0: 6c65 6e63 6520 6164 6469 7469 6f6e 616c lence additional │ │ │ │ -0000b8b0: 206f 7574 7075 740a 2020 2a20 4f75 7470 output. * Outp │ │ │ │ -0000b8c0: 7574 733a 0a20 2020 2020 202a 2056 2c20 uts:. * V, │ │ │ │ -0000b8d0: 6120 2a6e 6f74 6520 6e75 6d65 7269 6361 a *note numerica │ │ │ │ -0000b8e0: 6c20 7661 7269 6574 793a 2028 4e41 4774 l variety: (NAGt │ │ │ │ -0000b8f0: 7970 6573 294e 756d 6572 6963 616c 5661 ypes)NumericalVa │ │ │ │ -0000b900: 7269 6574 792c 2c20 6120 6e75 6d65 7269 riety,, a numeri │ │ │ │ -0000b910: 6361 6c0a 2020 2020 2020 2020 6972 7265 cal. irre │ │ │ │ -0000b920: 6475 6369 626c 6520 6465 636f 6d70 6f73 ducible decompos │ │ │ │ -0000b930: 6974 696f 6e20 6f66 2074 6865 2076 6172 ition of the var │ │ │ │ -0000b940: 6965 7479 2064 6566 696e 6564 2062 7920 iety defined by │ │ │ │ -0000b950: 460a 0a44 6573 6372 6970 7469 6f6e 0a3d F..Description.= │ │ │ │ -0000b960: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -0000b970: 6d65 7468 6f64 2062 6572 7469 6e69 506f method bertiniPo │ │ │ │ -0000b980: 7344 696d 536f 6c76 6520 6361 6c6c 7320 sDimSolve calls │ │ │ │ -0000b990: 2042 6572 7469 6e69 2074 6f20 6669 6e64 Bertini to find │ │ │ │ -0000b9a0: 2061 206e 756d 6572 6963 616c 2069 7272 a numerical irr │ │ │ │ -0000b9b0: 6564 7563 6962 6c65 0a64 6563 6f6d 706f educible.decompo │ │ │ │ -0000b9c0: 7369 7469 6f6e 206f 6620 7468 6520 7a65 sition of the ze │ │ │ │ -0000b9d0: 726f 2d73 6574 206f 6620 462e 2020 5468 ro-set of F. Th │ │ │ │ -0000b9e0: 6520 6465 636f 6d70 6f73 6974 696f 6e20 e decomposition │ │ │ │ -0000b9f0: 6973 2072 6574 7572 6e65 6420 6173 2074 is returned as t │ │ │ │ -0000ba00: 6865 202a 6e6f 7465 0a4e 756d 6572 6963 he *note.Numeric │ │ │ │ -0000ba10: 616c 5661 7269 6574 793a 2028 4e41 4774 alVariety: (NAGt │ │ │ │ -0000ba20: 7970 6573 294e 756d 6572 6963 616c 5661 ypes)NumericalVa │ │ │ │ -0000ba30: 7269 6574 792c 204e 562e 2020 5769 746e riety, NV. Witn │ │ │ │ -0000ba40: 6573 7320 7365 7473 206f 6620 4e56 2063 ess sets of NV c │ │ │ │ -0000ba50: 6f6e 7461 696e 0a61 7070 726f 7869 6d61 ontain.approxima │ │ │ │ -0000ba60: 7469 6f6e 7320 746f 2073 6f6c 7574 696f tions to solutio │ │ │ │ -0000ba70: 6e73 206f 6620 7468 6520 7379 7374 656d ns of the system │ │ │ │ -0000ba80: 2046 3d30 2e20 4265 7274 696e 6920 2831 F=0. Bertini (1 │ │ │ │ -0000ba90: 2920 7772 6974 6573 2074 6865 2073 7973 ) writes the sys │ │ │ │ -0000baa0: 7465 6d20 746f 0a74 656d 706f 7261 7279 tem to.temporary │ │ │ │ -0000bab0: 2066 696c 6573 2c20 2832 2920 696e 766f files, (2) invo │ │ │ │ -0000bac0: 6b65 7320 4265 7274 696e 6927 7320 736f kes Bertini's so │ │ │ │ -0000bad0: 6c76 6572 2077 6974 6820 5472 6163 6b54 lver with TrackT │ │ │ │ -0000bae0: 7970 6520 3d3e 2031 2c20 2833 2920 4265 ype => 1, (3) Be │ │ │ │ -0000baf0: 7274 696e 690a 7573 6573 2061 2063 6173 rtini.uses a cas │ │ │ │ -0000bb00: 6361 6465 2068 6f6d 6f74 6f70 7920 746f cade homotopy to │ │ │ │ -0000bb10: 2066 696e 6420 7769 746e 6573 7320 7375 find witness su │ │ │ │ -0000bb20: 7065 7273 6574 7320 696e 2065 6163 6820 persets in each │ │ │ │ -0000bb30: 6469 6d65 6e73 696f 6e2c 2028 3429 0a72 dimension, (4).r │ │ │ │ -0000bb40: 656d 6f76 6573 2065 7874 7261 2070 6f69 emoves extra poi │ │ │ │ -0000bb50: 6e74 7320 7573 696e 6720 6120 6d65 6d62 nts using a memb │ │ │ │ -0000bb60: 6572 7368 6970 2074 6573 7420 6f72 206c ership test or l │ │ │ │ -0000bb70: 6f63 616c 2064 696d 656e 7369 6f6e 2074 ocal dimension t │ │ │ │ -0000bb80: 6573 742c 2028 3529 0a64 6566 6c61 7465 est, (5).deflate │ │ │ │ -0000bb90: 7320 7369 6e67 756c 6172 2077 6974 6e65 s singular witne │ │ │ │ -0000bba0: 7373 2070 6f69 6e74 732c 2061 6e64 2066 ss points, and f │ │ │ │ -0000bbb0: 696e 616c 6c79 2028 3629 2064 6563 6f6d inally (6) decom │ │ │ │ -0000bbc0: 706f 7365 7320 7573 696e 6720 610a 636f poses using a.co │ │ │ │ -0000bbd0: 6d62 696e 6174 696f 6e20 6f66 206d 6f6e mbination of mon │ │ │ │ -0000bbe0: 6f64 726f 6d79 2061 6e64 2061 206c 696e odromy and a lin │ │ │ │ -0000bbf0: 6561 7220 7472 6163 6520 7465 7374 0a0a ear trace test.. │ │ │ │ -0000bc00: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0000b610: 2a2a 0a0a 5379 6e6f 7073 6973 0a3d 3d3d **..Synopsis.=== │ │ │ │ +0000b620: 3d3d 3d3d 3d0a 0a20 202a 2055 7361 6765 =====.. * Usage │ │ │ │ +0000b630: 3a20 0a20 2020 2020 2020 2056 203d 2062 : . V = b │ │ │ │ +0000b640: 6572 7469 6e69 506f 7344 696d 536f 6c76 ertiniPosDimSolv │ │ │ │ +0000b650: 6520 490a 2020 2020 2020 2020 5620 3d20 e I. V = │ │ │ │ +0000b660: 6265 7274 696e 6950 6f73 4469 6d53 6f6c bertiniPosDimSol │ │ │ │ +0000b670: 7665 2046 0a20 202a 2049 6e70 7574 733a ve F. * Inputs: │ │ │ │ +0000b680: 0a20 2020 2020 202a 2046 2c20 6120 2a6e . * F, a *n │ │ │ │ +0000b690: 6f74 6520 6c69 7374 3a20 284d 6163 6175 ote list: (Macau │ │ │ │ +0000b6a0: 6c61 7932 446f 6329 4c69 7374 2c2c 2061 lay2Doc)List,, a │ │ │ │ +0000b6b0: 206c 6973 7420 6f66 2072 696e 6720 656c list of ring el │ │ │ │ +0000b6c0: 656d 656e 7473 2064 6566 696e 696e 670a ements defining. │ │ │ │ +0000b6d0: 2020 2020 2020 2020 6120 7661 7269 6574 a variet │ │ │ │ +0000b6e0: 790a 2020 2a20 2a6e 6f74 6520 4f70 7469 y. * *note Opti │ │ │ │ +0000b6f0: 6f6e 616c 2069 6e70 7574 733a 2028 4d61 onal inputs: (Ma │ │ │ │ +0000b700: 6361 756c 6179 3244 6f63 2975 7369 6e67 caulay2Doc)using │ │ │ │ +0000b710: 2066 756e 6374 696f 6e73 2077 6974 6820 functions with │ │ │ │ +0000b720: 6f70 7469 6f6e 616c 2069 6e70 7574 732c optional inputs, │ │ │ │ +0000b730: 3a0a 2020 2020 2020 2a20 4265 7274 696e :. * Bertin │ │ │ │ +0000b740: 6949 6e70 7574 436f 6e66 6967 7572 6174 iInputConfigurat │ │ │ │ +0000b750: 696f 6e20 286d 6973 7369 6e67 2064 6f63 ion (missing doc │ │ │ │ +0000b760: 756d 656e 7461 7469 6f6e 2920 3d3e 202e umentation) => . │ │ │ │ +0000b770: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ +0000b780: 650a 2020 2020 2020 2020 7b7d 2c0a 2020 e. {},. │ │ │ │ +0000b790: 2020 2020 2a20 2a6e 6f74 6520 4973 5072 * *note IsPr │ │ │ │ +0000b7a0: 6f6a 6563 7469 7665 3a20 4973 5072 6f6a ojective: IsProj │ │ │ │ +0000b7b0: 6563 7469 7665 2c20 3d3e 202e 2e2e 2c20 ective, => ..., │ │ │ │ +0000b7c0: 6465 6661 756c 7420 7661 6c75 6520 2d31 default value -1 │ │ │ │ +0000b7d0: 2c20 6f70 7469 6f6e 616c 0a20 2020 2020 , optional. │ │ │ │ +0000b7e0: 2020 2061 7267 756d 656e 7420 746f 2073 argument to s │ │ │ │ +0000b7f0: 7065 6369 6679 2077 6865 7468 6572 2074 pecify whether t │ │ │ │ +0000b800: 6f20 7573 6520 686f 6d6f 6765 6e65 6f75 o use homogeneou │ │ │ │ +0000b810: 7320 636f 6f72 6469 6e61 7465 730a 2020 s coordinates. │ │ │ │ +0000b820: 2020 2020 2a20 2a6e 6f74 6520 5665 7262 * *note Verb │ │ │ │ +0000b830: 6f73 653a 2062 6572 7469 6e69 5472 6163 ose: bertiniTrac │ │ │ │ +0000b840: 6b48 6f6d 6f74 6f70 795f 6c70 5f70 645f kHomotopy_lp_pd_ │ │ │ │ +0000b850: 7064 5f70 645f 636d 5665 7262 6f73 653d pd_pd_cmVerbose= │ │ │ │ +0000b860: 3e5f 7064 5f70 645f 7064 5f72 700a 2020 >_pd_pd_pd_rp. │ │ │ │ +0000b870: 2020 2020 2020 2c20 3d3e 202e 2e2e 2c20 , => ..., │ │ │ │ +0000b880: 6465 6661 756c 7420 7661 6c75 6520 6661 default value fa │ │ │ │ +0000b890: 6c73 652c 204f 7074 696f 6e20 746f 2073 lse, Option to s │ │ │ │ +0000b8a0: 696c 656e 6365 2061 6464 6974 696f 6e61 ilence additiona │ │ │ │ +0000b8b0: 6c20 6f75 7470 7574 0a20 202a 204f 7574 l output. * Out │ │ │ │ +0000b8c0: 7075 7473 3a0a 2020 2020 2020 2a20 562c puts:. * V, │ │ │ │ +0000b8d0: 2061 202a 6e6f 7465 206e 756d 6572 6963 a *note numeric │ │ │ │ +0000b8e0: 616c 2076 6172 6965 7479 3a20 284e 4147 al variety: (NAG │ │ │ │ +0000b8f0: 7479 7065 7329 4e75 6d65 7269 6361 6c56 types)NumericalV │ │ │ │ +0000b900: 6172 6965 7479 2c2c 2061 206e 756d 6572 ariety,, a numer │ │ │ │ +0000b910: 6963 616c 0a20 2020 2020 2020 2069 7272 ical. irr │ │ │ │ +0000b920: 6564 7563 6962 6c65 2064 6563 6f6d 706f educible decompo │ │ │ │ +0000b930: 7369 7469 6f6e 206f 6620 7468 6520 7661 sition of the va │ │ │ │ +0000b940: 7269 6574 7920 6465 6669 6e65 6420 6279 riety defined by │ │ │ │ +0000b950: 2046 0a0a 4465 7363 7269 7074 696f 6e0a F..Description. │ │ │ │ +0000b960: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ +0000b970: 206d 6574 686f 6420 6265 7274 696e 6950 method bertiniP │ │ │ │ +0000b980: 6f73 4469 6d53 6f6c 7665 2063 616c 6c73 osDimSolve calls │ │ │ │ +0000b990: 2020 4265 7274 696e 6920 746f 2066 696e Bertini to fin │ │ │ │ +0000b9a0: 6420 6120 6e75 6d65 7269 6361 6c20 6972 d a numerical ir │ │ │ │ +0000b9b0: 7265 6475 6369 626c 650a 6465 636f 6d70 reducible.decomp │ │ │ │ +0000b9c0: 6f73 6974 696f 6e20 6f66 2074 6865 207a osition of the z │ │ │ │ +0000b9d0: 6572 6f2d 7365 7420 6f66 2046 2e20 2054 ero-set of F. T │ │ │ │ +0000b9e0: 6865 2064 6563 6f6d 706f 7369 7469 6f6e he decomposition │ │ │ │ +0000b9f0: 2069 7320 7265 7475 726e 6564 2061 7320 is returned as │ │ │ │ +0000ba00: 7468 6520 2a6e 6f74 650a 4e75 6d65 7269 the *note.Numeri │ │ │ │ +0000ba10: 6361 6c56 6172 6965 7479 3a20 284e 4147 calVariety: (NAG │ │ │ │ +0000ba20: 7479 7065 7329 4e75 6d65 7269 6361 6c56 types)NumericalV │ │ │ │ +0000ba30: 6172 6965 7479 2c20 4e56 2e20 2057 6974 ariety, NV. Wit │ │ │ │ +0000ba40: 6e65 7373 2073 6574 7320 6f66 204e 5620 ness sets of NV │ │ │ │ +0000ba50: 636f 6e74 6169 6e0a 6170 7072 6f78 696d contain.approxim │ │ │ │ +0000ba60: 6174 696f 6e73 2074 6f20 736f 6c75 7469 ations to soluti │ │ │ │ +0000ba70: 6f6e 7320 6f66 2074 6865 2073 7973 7465 ons of the syste │ │ │ │ +0000ba80: 6d20 463d 302e 2042 6572 7469 6e69 2028 m F=0. Bertini ( │ │ │ │ +0000ba90: 3129 2077 7269 7465 7320 7468 6520 7379 1) writes the sy │ │ │ │ +0000baa0: 7374 656d 2074 6f0a 7465 6d70 6f72 6172 stem to.temporar │ │ │ │ +0000bab0: 7920 6669 6c65 732c 2028 3229 2069 6e76 y files, (2) inv │ │ │ │ +0000bac0: 6f6b 6573 2042 6572 7469 6e69 2773 2073 okes Bertini's s │ │ │ │ +0000bad0: 6f6c 7665 7220 7769 7468 2054 7261 636b olver with Track │ │ │ │ +0000bae0: 5479 7065 203d 3e20 312c 2028 3329 2042 Type => 1, (3) B │ │ │ │ +0000baf0: 6572 7469 6e69 0a75 7365 7320 6120 6361 ertini.uses a ca │ │ │ │ +0000bb00: 7363 6164 6520 686f 6d6f 746f 7079 2074 scade homotopy t │ │ │ │ +0000bb10: 6f20 6669 6e64 2077 6974 6e65 7373 2073 o find witness s │ │ │ │ +0000bb20: 7570 6572 7365 7473 2069 6e20 6561 6368 upersets in each │ │ │ │ +0000bb30: 2064 696d 656e 7369 6f6e 2c20 2834 290a dimension, (4). │ │ │ │ +0000bb40: 7265 6d6f 7665 7320 6578 7472 6120 706f removes extra po │ │ │ │ +0000bb50: 696e 7473 2075 7369 6e67 2061 206d 656d ints using a mem │ │ │ │ +0000bb60: 6265 7273 6869 7020 7465 7374 206f 7220 bership test or │ │ │ │ +0000bb70: 6c6f 6361 6c20 6469 6d65 6e73 696f 6e20 local dimension │ │ │ │ +0000bb80: 7465 7374 2c20 2835 290a 6465 666c 6174 test, (5).deflat │ │ │ │ +0000bb90: 6573 2073 696e 6775 6c61 7220 7769 746e es singular witn │ │ │ │ +0000bba0: 6573 7320 706f 696e 7473 2c20 616e 6420 ess points, and │ │ │ │ +0000bbb0: 6669 6e61 6c6c 7920 2836 2920 6465 636f finally (6) deco │ │ │ │ +0000bbc0: 6d70 6f73 6573 2075 7369 6e67 2061 0a63 mposes using a.c │ │ │ │ +0000bbd0: 6f6d 6269 6e61 7469 6f6e 206f 6620 6d6f ombination of mo │ │ │ │ +0000bbe0: 6e6f 6472 6f6d 7920 616e 6420 6120 6c69 nodromy and a li │ │ │ │ +0000bbf0: 6e65 6172 2074 7261 6365 2074 6573 740a near trace test. │ │ │ │ +0000bc00: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0000bc10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000bc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0000bc50: 7c69 3120 3a20 5220 3d20 5151 5b78 2c79 |i1 : R = QQ[x,y │ │ │ │ -0000bc60: 2c7a 5d20 2020 2020 2020 2020 2020 2020 ,z] │ │ │ │ +0000bc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0000bc50: 0a7c 6931 203a 2052 203d 2051 515b 782c .|i1 : R = QQ[x, │ │ │ │ +0000bc60: 792c 7a5d 2020 2020 2020 2020 2020 2020 y,z] │ │ │ │ 0000bc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bc90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000bca0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000bc90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000bca0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000bcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bce0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000bcf0: 7c6f 3120 3d20 5220 2020 2020 2020 2020 |o1 = R │ │ │ │ +0000bce0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000bcf0: 0a7c 6f31 203d 2052 2020 2020 2020 2020 .|o1 = R │ │ │ │ 0000bd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bd30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000bd40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000bd30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000bd40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000bd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bd80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000bd90: 7c6f 3120 3a20 506f 6c79 6e6f 6d69 616c |o1 : Polynomial │ │ │ │ -0000bda0: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ +0000bd80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000bd90: 0a7c 6f31 203a 2050 6f6c 796e 6f6d 6961 .|o1 : Polynomia │ │ │ │ +0000bda0: 6c52 696e 6720 2020 2020 2020 2020 2020 lRing │ │ │ │ 0000bdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bdd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000bde0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0000bdd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000bde0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0000bdf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000be00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000be10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000be20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0000be30: 7c69 3220 3a20 4620 3d20 7b28 795e 322b |i2 : F = {(y^2+ │ │ │ │ -0000be40: 785e 322b 7a5e 322d 3129 2a78 2c28 795e x^2+z^2-1)*x,(y^ │ │ │ │ -0000be50: 322b 785e 322b 7a5e 322d 3129 2a79 7d20 2+x^2+z^2-1)*y} │ │ │ │ +0000be20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0000be30: 0a7c 6932 203a 2046 203d 207b 2879 5e32 .|i2 : F = {(y^2 │ │ │ │ +0000be40: 2b78 5e32 2b7a 5e32 2d31 292a 782c 2879 +x^2+z^2-1)*x,(y │ │ │ │ +0000be50: 5e32 2b78 5e32 2b7a 5e32 2d31 292a 797d ^2+x^2+z^2-1)*y} │ │ │ │ 0000be60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000be70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000be80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000be70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000be80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bec0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000bed0: 7c20 2020 2020 2020 3320 2020 2020 2032 | 3 2 │ │ │ │ -0000bee0: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -0000bef0: 2020 2020 3320 2020 2020 2032 2020 2020 3 2 │ │ │ │ +0000bec0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000bed0: 0a7c 2020 2020 2020 2033 2020 2020 2020 .| 3 │ │ │ │ +0000bee0: 3220 2020 2020 2032 2020 2020 2020 2032 2 2 2 │ │ │ │ +0000bef0: 2020 2020 2033 2020 2020 2020 3220 2020 3 2 │ │ │ │ 0000bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bf10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000bf20: 7c6f 3220 3d20 7b78 2020 2b20 782a 7920 |o2 = {x + x*y │ │ │ │ -0000bf30: 202b 2078 2a7a 2020 2d20 782c 2078 2079 + x*z - x, x y │ │ │ │ -0000bf40: 202b 2079 2020 2b20 792a 7a20 202d 2079 + y + y*z - y │ │ │ │ -0000bf50: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ -0000bf60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000bf70: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000bf10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000bf20: 0a7c 6f32 203d 207b 7820 202b 2078 2a79 .|o2 = {x + x*y │ │ │ │ +0000bf30: 2020 2b20 782a 7a20 202d 2078 2c20 7820 + x*z - x, x │ │ │ │ +0000bf40: 7920 2b20 7920 202b 2079 2a7a 2020 2d20 y + y + y*z - │ │ │ │ +0000bf50: 797d 2020 2020 2020 2020 2020 2020 2020 y} │ │ │ │ +0000bf60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000bf70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000bf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bfb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000bfc0: 7c6f 3220 3a20 4c69 7374 2020 2020 2020 |o2 : List │ │ │ │ +0000bfb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000bfc0: 0a7c 6f32 203a 204c 6973 7420 2020 2020 .|o2 : List │ │ │ │ 0000bfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c000: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c010: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0000c000: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c010: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0000c020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000c030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000c040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000c050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0000c060: 7c69 3320 3a20 5320 3d20 6265 7274 696e |i3 : S = bertin │ │ │ │ -0000c070: 6950 6f73 4469 6d53 6f6c 7665 2046 2020 iPosDimSolve F │ │ │ │ +0000c050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0000c060: 0a7c 6933 203a 2053 203d 2062 6572 7469 .|i3 : S = berti │ │ │ │ +0000c070: 6e69 506f 7344 696d 536f 6c76 6520 4620 niPosDimSolve F │ │ │ │ 0000c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c0a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c0b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000c0a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c0b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000c0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c0f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c100: 7c6f 3320 3d20 5320 2020 2020 2020 2020 |o3 = S │ │ │ │ +0000c0f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c100: 0a7c 6f33 203d 2053 2020 2020 2020 2020 .|o3 = S │ │ │ │ 0000c110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c140: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c150: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000c140: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c150: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000c160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c190: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c1a0: 7c6f 3320 3a20 4e75 6d65 7269 6361 6c56 |o3 : NumericalV │ │ │ │ -0000c1b0: 6172 6965 7479 2020 2020 2020 2020 2020 ariety │ │ │ │ +0000c190: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c1a0: 0a7c 6f33 203a 204e 756d 6572 6963 616c .|o3 : Numerical │ │ │ │ +0000c1b0: 5661 7269 6574 7920 2020 2020 2020 2020 Variety │ │ │ │ 0000c1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c1e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c1f0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0000c1e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c1f0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0000c200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000c210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000c220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000c230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0000c240: 7c69 3420 3a20 5323 315f 3023 506f 696e |i4 : S#1_0#Poin │ │ │ │ -0000c250: 7473 202d 2d20 315f 3020 6368 6f6f 7365 ts -- 1_0 choose │ │ │ │ -0000c260: 7320 7468 6520 6669 7273 7420 7769 746e s the first witn │ │ │ │ -0000c270: 6573 7320 7365 7420 696e 2064 696d 656e ess set in dimen │ │ │ │ -0000c280: 7369 6f6e 2031 2020 2020 2020 2020 7c0a sion 1 |. │ │ │ │ -0000c290: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000c230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0000c240: 0a7c 6934 203a 2053 2331 5f30 2350 6f69 .|i4 : S#1_0#Poi │ │ │ │ +0000c250: 6e74 7320 2d2d 2031 5f30 2063 686f 6f73 nts -- 1_0 choos │ │ │ │ +0000c260: 6573 2074 6865 2066 6972 7374 2077 6974 es the first wit │ │ │ │ +0000c270: 6e65 7373 2073 6574 2069 6e20 6469 6d65 ness set in dime │ │ │ │ +0000c280: 6e73 696f 6e20 3120 2020 2020 2020 207c nsion 1 | │ │ │ │ +0000c290: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000c2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c2d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c2e0: 7c6f 3420 3d20 7b7b 322e 3634 3436 3865 |o4 = {{2.64468e │ │ │ │ -0000c2f0: 2d35 392b 312e 3833 3934 3965 2d35 392a -59+1.83949e-59* │ │ │ │ -0000c300: 6969 2c20 2d31 2e30 3837 3765 2d36 302b ii, -1.0877e-60+ │ │ │ │ -0000c310: 332e 3337 3538 3365 2d35 392a 6969 2c20 3.37583e-59*ii, │ │ │ │ -0000c320: 2e32 3631 3234 3620 2020 2020 2020 7c0a .261246 |. │ │ │ │ -0000c330: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000c2d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c2e0: 0a7c 6f34 203d 207b 7b32 2e36 3434 3638 .|o4 = {{2.64468 │ │ │ │ +0000c2f0: 652d 3539 2b31 2e38 3339 3439 652d 3539 e-59+1.83949e-59 │ │ │ │ +0000c300: 2a69 692c 202d 312e 3038 3737 652d 3630 *ii, -1.0877e-60 │ │ │ │ +0000c310: 2b33 2e33 3735 3833 652d 3539 2a69 692c +3.37583e-59*ii, │ │ │ │ +0000c320: 202e 3236 3132 3436 2020 2020 2020 207c .261246 | │ │ │ │ +0000c330: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000c340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c370: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c380: 7c6f 3420 3a20 5665 7274 6963 616c 4c69 |o4 : VerticalLi │ │ │ │ -0000c390: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ +0000c370: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c380: 0a7c 6f34 203a 2056 6572 7469 6361 6c4c .|o4 : VerticalL │ │ │ │ +0000c390: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ 0000c3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c3c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c3d0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +0000c3c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c3d0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0000c3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000c3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000c400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000c410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0000c420: 7c2b 2e31 3436 3031 382a 6969 7d7d 2020 |+.146018*ii}} │ │ │ │ +0000c410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0000c420: 0a7c 2b2e 3134 3630 3138 2a69 697d 7d20 .|+.146018*ii}} │ │ │ │ 0000c430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c460: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c470: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0000c460: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c470: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0000c480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000c490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000c4a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000c4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0000c4c0: 0a45 6163 6820 2a6e 6f74 6520 5769 746e .Each *note Witn │ │ │ │ -0000c4d0: 6573 7353 6574 3a20 284e 4147 7479 7065 essSet: (NAGtype │ │ │ │ -0000c4e0: 7329 5769 746e 6573 7353 6574 2c20 6973 s)WitnessSet, is │ │ │ │ -0000c4f0: 2061 6363 6573 7365 6420 6279 2064 696d accessed by dim │ │ │ │ -0000c500: 656e 7369 6f6e 2061 6e64 2074 6865 6e0a ension and then. │ │ │ │ -0000c510: 6c69 7374 2070 6f73 6974 696f 6e2e 0a0a list position... │ │ │ │ -0000c520: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0000c4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0000c4c0: 0a0a 4561 6368 202a 6e6f 7465 2057 6974 ..Each *note Wit │ │ │ │ +0000c4d0: 6e65 7373 5365 743a 2028 4e41 4774 7970 nessSet: (NAGtyp │ │ │ │ +0000c4e0: 6573 2957 6974 6e65 7373 5365 742c 2069 es)WitnessSet, i │ │ │ │ +0000c4f0: 7320 6163 6365 7373 6564 2062 7920 6469 s accessed by di │ │ │ │ +0000c500: 6d65 6e73 696f 6e20 616e 6420 7468 656e mension and then │ │ │ │ +0000c510: 0a6c 6973 7420 706f 7369 7469 6f6e 2e0a .list position.. │ │ │ │ +0000c520: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0000c530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000c540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000c550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000c560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0000c570: 7c69 3520 3a20 5323 3120 2d2d 6669 7273 |i5 : S#1 --firs │ │ │ │ -0000c580: 7420 7370 6563 6966 7920 6469 6d65 6e73 t specify dimens │ │ │ │ -0000c590: 696f 6e20 2020 2020 2020 2020 2020 2020 ion │ │ │ │ +0000c560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0000c570: 0a7c 6935 203a 2053 2331 202d 2d66 6972 .|i5 : S#1 --fir │ │ │ │ +0000c580: 7374 2073 7065 6369 6679 2064 696d 656e st specify dimen │ │ │ │ +0000c590: 7369 6f6e 2020 2020 2020 2020 2020 2020 sion │ │ │ │ 0000c5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c5b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c5c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000c5b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c5c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000c5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c600: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c610: 7c6f 3520 3d20 7b28 6469 6d3d 312c 6465 |o5 = {(dim=1,de │ │ │ │ -0000c620: 673d 3129 7d20 2020 2020 2020 2020 2020 g=1)} │ │ │ │ +0000c600: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c610: 0a7c 6f35 203d 207b 2864 696d 3d31 2c64 .|o5 = {(dim=1,d │ │ │ │ +0000c620: 6567 3d31 297d 2020 2020 2020 2020 2020 eg=1)} │ │ │ │ 0000c630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c650: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c660: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000c650: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c660: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000c670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c6a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c6b0: 7c6f 3520 3a20 4c69 7374 2020 2020 2020 |o5 : List │ │ │ │ +0000c6a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c6b0: 0a7c 6f35 203a 204c 6973 7420 2020 2020 .|o5 : List │ │ │ │ 0000c6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c6f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c700: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0000c6f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c700: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0000c710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000c720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000c730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000c740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0000c750: 7c69 3620 3a20 7065 656b 206f 6f5f 3020 |i6 : peek oo_0 │ │ │ │ -0000c760: 2d2d 7468 656e 206c 6973 7420 706f 7369 --then list posi │ │ │ │ -0000c770: 7469 6f6e 2020 2020 2020 2020 2020 2020 tion │ │ │ │ +0000c740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0000c750: 0a7c 6936 203a 2070 6565 6b20 6f6f 5f30 .|i6 : peek oo_0 │ │ │ │ +0000c760: 202d 2d74 6865 6e20 6c69 7374 2070 6f73 --then list pos │ │ │ │ +0000c770: 6974 696f 6e20 2020 2020 2020 2020 2020 ition │ │ │ │ 0000c780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c790: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c7a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000c790: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c7a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000c7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c7e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c7f0: 7c6f 3620 3d20 5769 746e 6573 7353 6574 |o6 = WitnessSet │ │ │ │ -0000c800: 7b63 6163 6865 203d 3e20 4361 6368 6554 {cache => CacheT │ │ │ │ -0000c810: 6162 6c65 7b2e 2e2e 332e 2e2e 7d20 2020 able{...3...} │ │ │ │ +0000c7e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c7f0: 0a7c 6f36 203d 2057 6974 6e65 7373 5365 .|o6 = WitnessSe │ │ │ │ +0000c800: 747b 6361 6368 6520 3d3e 2043 6163 6865 t{cache => Cache │ │ │ │ +0000c810: 5461 626c 657b 2e2e 2e33 2e2e 2e7d 2020 Table{...3...} │ │ │ │ 0000c820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000c830: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c840: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000c850: 2045 7175 6174 696f 6e73 203d 3e20 7b2d Equations => {- │ │ │ │ -0000c860: 337d 207c 2078 332b 7879 322b 787a 322d 3} | x3+xy2+xz2- │ │ │ │ -0000c870: 7820 7c20 2020 2020 2020 2020 2020 2020 x | │ │ │ │ -0000c880: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c890: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000c8a0: 2020 2020 2020 2020 2020 2020 2020 7b2d {- │ │ │ │ -0000c8b0: 337d 207c 2078 3279 2b79 332b 797a 322d 3} | x2y+y3+yz2- │ │ │ │ -0000c8c0: 7920 7c20 2020 2020 2020 2020 2020 2020 y | │ │ │ │ -0000c8d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c8e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000c8f0: 2050 6f69 6e74 7320 3d3e 207b 7b32 2e36 Points => {{2.6 │ │ │ │ -0000c900: 3434 3638 652d 3539 2b31 2e38 3339 3439 4468e-59+1.83949 │ │ │ │ -0000c910: 652d 3539 2020 2020 2020 2020 2020 2020 e-59 │ │ │ │ -0000c920: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c930: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0000c940: 2053 6c69 6365 203d 3e20 7c20 2e30 3733 Slice => | .073 │ │ │ │ -0000c950: 3838 332b 312e 3531 3332 3969 6920 312e 883+1.51329ii 1. │ │ │ │ -0000c960: 3338 3336 2020 2020 2020 2020 2020 2020 3836 │ │ │ │ -0000c970: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000c980: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +0000c830: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c840: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0000c850: 2020 4571 7561 7469 6f6e 7320 3d3e 207b Equations => { │ │ │ │ +0000c860: 2d33 7d20 7c20 7833 2b78 7932 2b78 7a32 -3} | x3+xy2+xz2 │ │ │ │ +0000c870: 2d78 207c 2020 2020 2020 2020 2020 2020 -x | │ │ │ │ +0000c880: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c890: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0000c8a0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ +0000c8b0: 2d33 7d20 7c20 7832 792b 7933 2b79 7a32 -3} | x2y+y3+yz2 │ │ │ │ +0000c8c0: 2d79 207c 2020 2020 2020 2020 2020 2020 -y | │ │ │ │ +0000c8d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c8e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0000c8f0: 2020 506f 696e 7473 203d 3e20 7b7b 322e Points => {{2. │ │ │ │ +0000c900: 3634 3436 3865 2d35 392b 312e 3833 3934 64468e-59+1.8394 │ │ │ │ +0000c910: 3965 2d35 3920 2020 2020 2020 2020 2020 9e-59 │ │ │ │ +0000c920: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c930: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0000c940: 2020 536c 6963 6520 3d3e 207c 202e 3037 Slice => | .07 │ │ │ │ +0000c950: 3338 3833 2b31 2e35 3133 3239 6969 2031 3883+1.51329ii 1 │ │ │ │ +0000c960: 2e33 3833 3620 2020 2020 2020 2020 2020 .3836 │ │ │ │ +0000c970: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000c980: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0000c990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000c9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000c9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000c9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0000c9d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000c9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0000c9d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000c9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000c9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ca00: 2020 2020 2020 7d20 2020 2020 2020 2020 } │ │ │ │ -0000ca10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000ca20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000ca00: 2020 2020 2020 207d 2020 2020 2020 2020 } │ │ │ │ +0000ca10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000ca20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000ca30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ca50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ca60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000ca70: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000ca60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000ca70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000ca80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ca90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000caa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cab0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000cac0: 7c2a 6969 2c20 2d31 2e30 3837 3765 2d36 |*ii, -1.0877e-6 │ │ │ │ -0000cad0: 302b 332e 3337 3538 3365 2d35 392a 6969 0+3.37583e-59*ii │ │ │ │ -0000cae0: 2c20 2e32 3631 3234 362b 2e31 3436 3031 , .261246+.14601 │ │ │ │ -0000caf0: 382a 6969 7d7d 2020 2020 2020 2020 2020 8*ii}} │ │ │ │ -0000cb00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000cb10: 7c2b 2e31 3836 3538 3869 6920 2d32 2e30 |+.186588ii -2.0 │ │ │ │ -0000cb20: 3231 3933 2b2e 3735 3736 3736 6969 202e 2193+.757676ii . │ │ │ │ -0000cb30: 3633 3838 3535 2b2e 3039 3732 3939 3169 638855+.0972991i │ │ │ │ -0000cb40: 6920 7c20 2020 2020 2020 2020 2020 2020 i | │ │ │ │ -0000cb50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000cb60: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0000cab0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000cac0: 0a7c 2a69 692c 202d 312e 3038 3737 652d .|*ii, -1.0877e- │ │ │ │ +0000cad0: 3630 2b33 2e33 3735 3833 652d 3539 2a69 60+3.37583e-59*i │ │ │ │ +0000cae0: 692c 202e 3236 3132 3436 2b2e 3134 3630 i, .261246+.1460 │ │ │ │ +0000caf0: 3138 2a69 697d 7d20 2020 2020 2020 2020 18*ii}} │ │ │ │ +0000cb00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000cb10: 0a7c 2b2e 3138 3635 3838 6969 202d 322e .|+.186588ii -2. │ │ │ │ +0000cb20: 3032 3139 332b 2e37 3537 3637 3669 6920 02193+.757676ii │ │ │ │ +0000cb30: 2e36 3338 3835 352b 2e30 3937 3239 3931 .638855+.0972991 │ │ │ │ +0000cb40: 6969 207c 2020 2020 2020 2020 2020 2020 ii | │ │ │ │ +0000cb50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000cb60: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0000cb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000cb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000cb90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000cba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0000cbb0: 0a49 6e20 7468 6520 6578 616d 706c 652c .In the example, │ │ │ │ -0000cbc0: 2077 6520 6669 6e64 2074 776f 2063 6f6d we find two com │ │ │ │ -0000cbd0: 706f 6e65 6e74 732c 206f 6e65 2063 6f6d ponents, one com │ │ │ │ -0000cbe0: 706f 6e65 6e74 2068 6173 2064 696d 656e ponent has dimen │ │ │ │ -0000cbf0: 7369 6f6e 2031 2061 6e64 0a64 6567 7265 sion 1 and.degre │ │ │ │ -0000cc00: 6520 3120 616e 6420 7468 6520 6f74 6865 e 1 and the othe │ │ │ │ -0000cc10: 7220 6861 7320 6469 6d65 6e73 696f 6e20 r has dimension │ │ │ │ -0000cc20: 3220 616e 6420 6465 6772 6565 2032 2e20 2 and degree 2. │ │ │ │ -0000cc30: 2057 6520 6765 7420 7468 6520 7361 6d65 We get the same │ │ │ │ -0000cc40: 2072 6573 756c 7473 0a75 7369 6e67 2073 results.using s │ │ │ │ -0000cc50: 796d 626f 6c69 6320 6d65 7468 6f64 732e ymbolic methods. │ │ │ │ -0000cc60: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ +0000cba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0000cbb0: 0a0a 496e 2074 6865 2065 7861 6d70 6c65 ..In the example │ │ │ │ +0000cbc0: 2c20 7765 2066 696e 6420 7477 6f20 636f , we find two co │ │ │ │ +0000cbd0: 6d70 6f6e 656e 7473 2c20 6f6e 6520 636f mponents, one co │ │ │ │ +0000cbe0: 6d70 6f6e 656e 7420 6861 7320 6469 6d65 mponent has dime │ │ │ │ +0000cbf0: 6e73 696f 6e20 3120 616e 640a 6465 6772 nsion 1 and.degr │ │ │ │ +0000cc00: 6565 2031 2061 6e64 2074 6865 206f 7468 ee 1 and the oth │ │ │ │ +0000cc10: 6572 2068 6173 2064 696d 656e 7369 6f6e er has dimension │ │ │ │ +0000cc20: 2032 2061 6e64 2064 6567 7265 6520 322e 2 and degree 2. │ │ │ │ +0000cc30: 2020 5765 2067 6574 2074 6865 2073 616d We get the sam │ │ │ │ +0000cc40: 6520 7265 7375 6c74 730a 7573 696e 6720 e results.using │ │ │ │ +0000cc50: 7379 6d62 6f6c 6963 206d 6574 686f 6473 symbolic methods │ │ │ │ +0000cc60: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ 0000cc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000cc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0000cc90: 0a7c 6937 203a 2050 443d 7072 696d 6172 .|i7 : PD=primar │ │ │ │ -0000cca0: 7944 6563 6f6d 706f 7369 7469 6f6e 2820 yDecomposition( │ │ │ │ -0000ccb0: 6964 6561 6c20 4629 2020 2020 2020 7c0a ideal F) |. │ │ │ │ -0000ccc0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0000cc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000cc90: 2b0a 7c69 3720 3a20 5044 3d70 7269 6d61 +.|i7 : PD=prima │ │ │ │ +0000cca0: 7279 4465 636f 6d70 6f73 6974 696f 6e28 ryDecomposition( │ │ │ │ +0000ccb0: 2069 6465 616c 2046 2920 2020 2020 207c ideal F) | │ │ │ │ +0000ccc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000ccd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cce0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0000ccf0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -0000cd00: 2020 3220 2020 2032 2020 2020 2020 2020 2 2 │ │ │ │ -0000cd10: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0000cd20: 3720 3d20 7b69 6465 616c 2878 2020 2b20 7 = {ideal(x + │ │ │ │ -0000cd30: 7920 202b 207a 2020 2d20 3129 2c20 6964 y + z - 1), id │ │ │ │ -0000cd40: 6561 6c20 2879 2c20 7829 7d7c 0a7c 2020 eal (y, x)}|.| │ │ │ │ +0000cce0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0000ccf0: 7c20 2020 2020 2020 2020 2020 2020 3220 | 2 │ │ │ │ +0000cd00: 2020 2032 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ +0000cd10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0000cd20: 6f37 203d 207b 6964 6561 6c28 7820 202b o7 = {ideal(x + │ │ │ │ +0000cd30: 2079 2020 2b20 7a20 202d 2031 292c 2069 y + z - 1), i │ │ │ │ +0000cd40: 6465 616c 2028 792c 2078 297d 7c0a 7c20 deal (y, x)}|.| │ │ │ │ 0000cd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000cd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cd70: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ -0000cd80: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ +0000cd70: 2020 2020 2020 2020 2020 207c 0a7c 6f37 |.|o7 │ │ │ │ +0000cd80: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ 0000cd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cda0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0000cda0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ 0000cdb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000cdc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000cdd0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 3a20 --------+.|i8 : │ │ │ │ -0000cde0: 6469 6d20 5044 5f30 2020 2020 2020 2020 dim PD_0 │ │ │ │ +0000cdd0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a ---------+.|i8 : │ │ │ │ +0000cde0: 2064 696d 2050 445f 3020 2020 2020 2020 dim PD_0 │ │ │ │ 0000cdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ce00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0000ce00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 0000ce10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ce20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ce30: 2020 2020 2020 7c0a 7c6f 3820 3d20 3220 |.|o8 = 2 │ │ │ │ +0000ce30: 2020 2020 2020 207c 0a7c 6f38 203d 2032 |.|o8 = 2 │ │ │ │ 0000ce40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ce50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ce60: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0000ce60: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 0000ce70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ce80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000ce90: 2d2d 2d2d 2b0a 7c69 3920 3a20 6465 6772 ----+.|i9 : degr │ │ │ │ -0000cea0: 6565 2050 445f 3020 2020 2020 2020 2020 ee PD_0 │ │ │ │ +0000ce90: 2d2d 2d2d 2d2b 0a7c 6939 203a 2064 6567 -----+.|i9 : deg │ │ │ │ +0000cea0: 7265 6520 5044 5f30 2020 2020 2020 2020 ree PD_0 │ │ │ │ 0000ceb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cec0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0000cec0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 0000ced0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000cee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cef0: 2020 7c0a 7c6f 3920 3d20 3220 2020 2020 |.|o9 = 2 │ │ │ │ +0000cef0: 2020 207c 0a7c 6f39 203d 2032 2020 2020 |.|o9 = 2 │ │ │ │ 0000cf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000cf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cf20: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0000cf20: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 0000cf30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000cf40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000cf50: 2b0a 7c69 3130 203a 2064 696d 2050 445f +.|i10 : dim PD_ │ │ │ │ -0000cf60: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -0000cf70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000cf80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0000cf50: 2d2b 0a7c 6931 3020 3a20 6469 6d20 5044 -+.|i10 : dim PD │ │ │ │ +0000cf60: 5f31 2020 2020 2020 2020 2020 2020 2020 _1 │ │ │ │ +0000cf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000cf80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000cf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cfa0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000cfb0: 7c6f 3130 203d 2031 2020 2020 2020 2020 |o10 = 1 │ │ │ │ +0000cfa0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0000cfb0: 0a7c 6f31 3020 3d20 3120 2020 2020 2020 .|o10 = 1 │ │ │ │ 0000cfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000cfd0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -0000cfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0000cfd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0000cfe0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0000cff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000d000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0000d010: 3131 203a 2064 6567 7265 6520 5044 5f31 11 : degree PD_1 │ │ │ │ -0000d020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d030: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0000d000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0000d010: 6931 3120 3a20 6465 6772 6565 2050 445f i11 : degree PD_ │ │ │ │ +0000d020: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0000d030: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0000d040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000d050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d060: 2020 2020 2020 2020 2020 7c0a 7c6f 3131 |.|o11 │ │ │ │ -0000d070: 203d 2031 2020 2020 2020 2020 2020 2020 = 1 │ │ │ │ +0000d060: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0000d070: 3120 3d20 3120 2020 2020 2020 2020 2020 1 = 1 │ │ │ │ 0000d080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d090: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0000d090: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ 0000d0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000d0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000d0c0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 6179 7320 --------+..Ways │ │ │ │ -0000d0d0: 746f 2075 7365 2062 6572 7469 6e69 506f to use bertiniPo │ │ │ │ -0000d0e0: 7344 696d 536f 6c76 653a 0a3d 3d3d 3d3d sDimSolve:.===== │ │ │ │ +0000d0c0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5761 7973 ---------+..Ways │ │ │ │ +0000d0d0: 2074 6f20 7573 6520 6265 7274 696e 6950 to use bertiniP │ │ │ │ +0000d0e0: 6f73 4469 6d53 6f6c 7665 3a0a 3d3d 3d3d osDimSolve:.==== │ │ │ │ 0000d0f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0000d100: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -0000d110: 2262 6572 7469 6e69 506f 7344 696d 536f "bertiniPosDimSo │ │ │ │ -0000d120: 6c76 6528 4964 6561 6c29 220a 2020 2a20 lve(Ideal)". * │ │ │ │ -0000d130: 2262 6572 7469 6e69 506f 7344 696d 536f "bertiniPosDimSo │ │ │ │ -0000d140: 6c76 6528 4c69 7374 2922 0a0a 466f 7220 lve(List)"..For │ │ │ │ -0000d150: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ +0000d100: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +0000d110: 2022 6265 7274 696e 6950 6f73 4469 6d53 "bertiniPosDimS │ │ │ │ +0000d120: 6f6c 7665 2849 6465 616c 2922 0a20 202a olve(Ideal)". * │ │ │ │ +0000d130: 2022 6265 7274 696e 6950 6f73 4469 6d53 "bertiniPosDimS │ │ │ │ +0000d140: 6f6c 7665 284c 6973 7429 220a 0a46 6f72 olve(List)"..For │ │ │ │ +0000d150: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ 0000d160: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0000d170: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -0000d180: 6f74 6520 6265 7274 696e 6950 6f73 4469 ote bertiniPosDi │ │ │ │ -0000d190: 6d53 6f6c 7665 3a20 6265 7274 696e 6950 mSolve: bertiniP │ │ │ │ -0000d1a0: 6f73 4469 6d53 6f6c 7665 2c20 6973 2061 osDimSolve, is a │ │ │ │ -0000d1b0: 202a 6e6f 7465 206d 6574 686f 640a 6675 *note method.fu │ │ │ │ -0000d1c0: 6e63 7469 6f6e 2077 6974 6820 6f70 7469 nction with opti │ │ │ │ -0000d1d0: 6f6e 733a 2028 4d61 6361 756c 6179 3244 ons: (Macaulay2D │ │ │ │ -0000d1e0: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ -0000d1f0: 6e57 6974 684f 7074 696f 6e73 2c2e 0a1f nWithOptions,... │ │ │ │ -0000d200: 0a46 696c 653a 2042 6572 7469 6e69 2e69 .File: Bertini.i │ │ │ │ -0000d210: 6e66 6f2c 204e 6f64 653a 2062 6572 7469 nfo, Node: berti │ │ │ │ -0000d220: 6e69 5265 6669 6e65 536f 6c73 2c20 4e65 niRefineSols, Ne │ │ │ │ -0000d230: 7874 3a20 6265 7274 696e 6953 616d 706c xt: bertiniSampl │ │ │ │ -0000d240: 652c 2050 7265 763a 2062 6572 7469 6e69 e, Prev: bertini │ │ │ │ -0000d250: 506f 7344 696d 536f 6c76 652c 2055 703a PosDimSolve, Up: │ │ │ │ -0000d260: 2054 6f70 0a0a 6265 7274 696e 6952 6566 Top..bertiniRef │ │ │ │ -0000d270: 696e 6553 6f6c 7320 2d2d 2073 6861 7270 ineSols -- sharp │ │ │ │ -0000d280: 656e 2073 6f6c 7574 696f 6e73 2074 6f20 en solutions to │ │ │ │ -0000d290: 6120 7072 6573 6372 6962 6564 206e 756d a prescribed num │ │ │ │ -0000d2a0: 6265 7220 6f66 2064 6967 6974 730a 2a2a ber of digits.** │ │ │ │ +0000d170: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ +0000d180: 6e6f 7465 2062 6572 7469 6e69 506f 7344 note bertiniPosD │ │ │ │ +0000d190: 696d 536f 6c76 653a 2062 6572 7469 6e69 imSolve: bertini │ │ │ │ +0000d1a0: 506f 7344 696d 536f 6c76 652c 2069 7320 PosDimSolve, is │ │ │ │ +0000d1b0: 6120 2a6e 6f74 6520 6d65 7468 6f64 0a66 a *note method.f │ │ │ │ +0000d1c0: 756e 6374 696f 6e20 7769 7468 206f 7074 unction with opt │ │ │ │ +0000d1d0: 696f 6e73 3a20 284d 6163 6175 6c61 7932 ions: (Macaulay2 │ │ │ │ +0000d1e0: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ +0000d1f0: 6f6e 5769 7468 4f70 7469 6f6e 732c 2e0a onWithOptions,.. │ │ │ │ +0000d200: 1f0a 4669 6c65 3a20 4265 7274 696e 692e ..File: Bertini. │ │ │ │ +0000d210: 696e 666f 2c20 4e6f 6465 3a20 6265 7274 info, Node: bert │ │ │ │ +0000d220: 696e 6952 6566 696e 6553 6f6c 732c 204e iniRefineSols, N │ │ │ │ +0000d230: 6578 743a 2062 6572 7469 6e69 5361 6d70 ext: bertiniSamp │ │ │ │ +0000d240: 6c65 2c20 5072 6576 3a20 6265 7274 696e le, Prev: bertin │ │ │ │ +0000d250: 6950 6f73 4469 6d53 6f6c 7665 2c20 5570 iPosDimSolve, Up │ │ │ │ +0000d260: 3a20 546f 700a 0a62 6572 7469 6e69 5265 : Top..bertiniRe │ │ │ │ +0000d270: 6669 6e65 536f 6c73 202d 2d20 7368 6172 fineSols -- shar │ │ │ │ +0000d280: 7065 6e20 736f 6c75 7469 6f6e 7320 746f pen solutions to │ │ │ │ +0000d290: 2061 2070 7265 7363 7269 6265 6420 6e75 a prescribed nu │ │ │ │ +0000d2a0: 6d62 6572 206f 6620 6469 6769 7473 0a2a mber of digits.* │ │ │ │ 0000d2b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0000d2c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0000d2d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0000d2e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000d2f0: 2a2a 2a2a 2a0a 0a53 796e 6f70 7369 730a *****..Synopsis. │ │ │ │ -0000d300: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 5573 ========.. * Us │ │ │ │ -0000d310: 6167 653a 200a 2020 2020 2020 2020 5320 age: . S │ │ │ │ -0000d320: 3d20 6265 7274 696e 6952 6566 696e 6553 = bertiniRefineS │ │ │ │ -0000d330: 6f6c 7328 4946 442c 2064 2c20 572c 204f ols(IFD, d, W, O │ │ │ │ -0000d340: 4644 290a 2020 2020 2020 2020 5320 3d20 FD). S = │ │ │ │ -0000d350: 6265 7274 696e 6952 6566 696e 6553 6f6c bertiniRefineSol │ │ │ │ -0000d360: 7328 642c 2057 2c20 4f46 4429 0a20 2020 s(d, W, OFD). │ │ │ │ -0000d370: 2020 2020 2053 203d 2062 6572 7469 6e69 S = bertini │ │ │ │ -0000d380: 5265 6669 6e65 536f 6c73 2864 2c20 5729 RefineSols(d, W) │ │ │ │ -0000d390: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ -0000d3a0: 2020 202a 2049 4644 2c20 6120 2a6e 6f74 * IFD, a *not │ │ │ │ -0000d3b0: 6520 7374 7269 6e67 3a20 284d 6163 6175 e string: (Macau │ │ │ │ -0000d3c0: 6c61 7932 446f 6329 5374 7269 6e67 2c2c lay2Doc)String,, │ │ │ │ -0000d3d0: 2061 2064 6972 6563 746f 7279 2077 6865 a directory whe │ │ │ │ -0000d3e0: 7265 2074 6865 2069 6e70 7574 0a20 2020 re the input. │ │ │ │ -0000d3f0: 2020 2020 2066 696c 6520 6f66 2061 2062 file of a b │ │ │ │ -0000d400: 6572 7469 6e69 5a65 726f 4469 6d20 736f ertiniZeroDim so │ │ │ │ -0000d410: 6c76 6520 6973 2073 746f 7265 6420 616c lve is stored al │ │ │ │ -0000d420: 6f6e 6720 7769 7468 2074 6861 7420 7275 ong with that ru │ │ │ │ -0000d430: 6e73 206f 7574 7075 740a 2020 2020 2020 ns output. │ │ │ │ -0000d440: 2020 6669 6c65 730a 2020 2020 2020 2a20 files. * │ │ │ │ -0000d450: 642c 2061 6e20 2a6e 6f74 6520 696e 7465 d, an *note inte │ │ │ │ -0000d460: 6765 723a 2028 4d61 6361 756c 6179 3244 ger: (Macaulay2D │ │ │ │ -0000d470: 6f63 295a 5a2c 2c20 616e 2069 6e74 6567 oc)ZZ,, an integ │ │ │ │ -0000d480: 6572 2073 7065 6369 6679 696e 6720 7468 er specifying th │ │ │ │ -0000d490: 650a 2020 2020 2020 2020 6e75 6d62 6572 e. number │ │ │ │ -0000d4a0: 206f 6620 6469 6769 7473 206f 6620 7072 of digits of pr │ │ │ │ -0000d4b0: 6563 6973 696f 6e0a 2020 2020 2020 2a20 ecision. * │ │ │ │ -0000d4c0: 572c 2061 202a 6e6f 7465 206c 6973 743a W, a *note list: │ │ │ │ -0000d4d0: 2028 4d61 6361 756c 6179 3244 6f63 294c (Macaulay2Doc)L │ │ │ │ -0000d4e0: 6973 742c 2c20 6120 6c69 7374 206f 6620 ist,, a list of │ │ │ │ -0000d4f0: 706f 696e 7473 2074 6f20 6265 2073 6861 points to be sha │ │ │ │ -0000d500: 7270 656e 6564 0a20 2020 2020 202a 204f rpened. * O │ │ │ │ -0000d510: 4644 2c20 6120 2a6e 6f74 6520 7374 7269 FD, a *note stri │ │ │ │ -0000d520: 6e67 3a20 284d 6163 6175 6c61 7932 446f ng: (Macaulay2Do │ │ │ │ -0000d530: 6329 5374 7269 6e67 2c2c 2061 2064 6972 c)String,, a dir │ │ │ │ -0000d540: 6563 746f 7279 2077 6865 7265 2074 6865 ectory where the │ │ │ │ -0000d550: 0a20 2020 2020 2020 206f 7574 7075 7420 . output │ │ │ │ -0000d560: 6669 6c65 7320 6f66 2074 6865 2072 6566 files of the ref │ │ │ │ -0000d570: 696e 656d 656e 7420 6172 6520 7374 6f72 inement are stor │ │ │ │ -0000d580: 6564 0a20 202a 202a 6e6f 7465 204f 7074 ed. * *note Opt │ │ │ │ -0000d590: 696f 6e61 6c20 696e 7075 7473 3a20 284d ional inputs: (M │ │ │ │ -0000d5a0: 6163 6175 6c61 7932 446f 6329 7573 696e acaulay2Doc)usin │ │ │ │ -0000d5b0: 6720 6675 6e63 7469 6f6e 7320 7769 7468 g functions with │ │ │ │ -0000d5c0: 206f 7074 696f 6e61 6c20 696e 7075 7473 optional inputs │ │ │ │ -0000d5d0: 2c3a 0a20 2020 2020 202a 2041 6464 6974 ,:. * Addit │ │ │ │ -0000d5e0: 696f 6e61 6c46 696c 6573 2028 6d69 7373 ionalFiles (miss │ │ │ │ -0000d5f0: 696e 6720 646f 6375 6d65 6e74 6174 696f ing documentatio │ │ │ │ -0000d600: 6e29 203d 3e20 2e2e 2e2c 2064 6566 6175 n) => ..., defau │ │ │ │ -0000d610: 6c74 2076 616c 7565 207b 7d2c 200a 2020 lt value {}, . │ │ │ │ -0000d620: 2020 2020 2a20 2a6e 6f74 6520 4973 5072 * *note IsPr │ │ │ │ -0000d630: 6f6a 6563 7469 7665 3a20 4973 5072 6f6a ojective: IsProj │ │ │ │ -0000d640: 6563 7469 7665 2c20 3d3e 202e 2e2e 2c20 ective, => ..., │ │ │ │ -0000d650: 6465 6661 756c 7420 7661 6c75 6520 2d31 default value -1 │ │ │ │ -0000d660: 2c20 6f70 7469 6f6e 616c 0a20 2020 2020 , optional. │ │ │ │ -0000d670: 2020 2061 7267 756d 656e 7420 746f 2073 argument to s │ │ │ │ -0000d680: 7065 6369 6679 2077 6865 7468 6572 2074 pecify whether t │ │ │ │ -0000d690: 6f20 7573 6520 686f 6d6f 6765 6e65 6f75 o use homogeneou │ │ │ │ -0000d6a0: 7320 636f 6f72 6469 6e61 7465 730a 2020 s coordinates. │ │ │ │ -0000d6b0: 2020 2020 2a20 4e61 6d65 4227 496e 7075 * NameB'Inpu │ │ │ │ -0000d6c0: 7446 696c 6520 286d 6973 7369 6e67 2064 tFile (missing d │ │ │ │ -0000d6d0: 6f63 756d 656e 7461 7469 6f6e 2920 3d3e ocumentation) => │ │ │ │ -0000d6e0: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ -0000d6f0: 6c75 6520 2269 6e70 7574 222c 200a 2020 lue "input", . │ │ │ │ -0000d700: 2020 2020 2a20 2a6e 6f74 6520 5665 7262 * *note Verb │ │ │ │ -0000d710: 6f73 653a 2062 6572 7469 6e69 5472 6163 ose: bertiniTrac │ │ │ │ -0000d720: 6b48 6f6d 6f74 6f70 795f 6c70 5f70 645f kHomotopy_lp_pd_ │ │ │ │ -0000d730: 7064 5f70 645f 636d 5665 7262 6f73 653d pd_pd_cmVerbose= │ │ │ │ -0000d740: 3e5f 7064 5f70 645f 7064 5f72 700a 2020 >_pd_pd_pd_rp. │ │ │ │ -0000d750: 2020 2020 2020 2c20 3d3e 202e 2e2e 2c20 , => ..., │ │ │ │ -0000d760: 6465 6661 756c 7420 7661 6c75 6520 6661 default value fa │ │ │ │ -0000d770: 6c73 652c 204f 7074 696f 6e20 746f 2073 lse, Option to s │ │ │ │ -0000d780: 696c 656e 6365 2061 6464 6974 696f 6e61 ilence additiona │ │ │ │ -0000d790: 6c20 6f75 7470 7574 0a20 202a 204f 7574 l output. * Out │ │ │ │ -0000d7a0: 7075 7473 3a0a 2020 2020 2020 2a20 532c puts:. * S, │ │ │ │ -0000d7b0: 2061 202a 6e6f 7465 206c 6973 743a 2028 a *note list: ( │ │ │ │ -0000d7c0: 4d61 6361 756c 6179 3244 6f63 294c 6973 Macaulay2Doc)Lis │ │ │ │ -0000d7d0: 742c 2c20 6120 6c69 7374 206f 6620 736f t,, a list of so │ │ │ │ -0000d7e0: 6c75 7469 6f6e 7320 6f66 2074 7970 6520 lutions of type │ │ │ │ -0000d7f0: 506f 696e 740a 0a44 6573 6372 6970 7469 Point..Descripti │ │ │ │ -0000d800: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -0000d810: 5468 6973 206d 6574 686f 6420 7461 6b65 This method take │ │ │ │ -0000d820: 7320 7468 6520 6c69 7374 2057 206f 6620 s the list W of │ │ │ │ -0000d830: 736f 6c75 7469 6f6e 7320 6672 6f6d 2061 solutions from a │ │ │ │ -0000d840: 2062 6572 7469 6e69 5a65 726f 4469 6d53 bertiniZeroDimS │ │ │ │ -0000d850: 6f6c 7665 2061 6e64 0a73 6861 7270 656e olve and.sharpen │ │ │ │ -0000d860: 7320 7468 656d 2074 6f20 6420 6469 6769 s them to d digi │ │ │ │ -0000d870: 7473 2075 7369 6e67 2074 6865 2073 6861 ts using the sha │ │ │ │ -0000d880: 7270 656e 696e 6720 6d6f 6475 6c65 206f rpening module o │ │ │ │ -0000d890: 6620 4265 7274 696e 692e 2057 6865 6e20 f Bertini. When │ │ │ │ -0000d8a0: 4946 4420 6973 0a6f 6d69 7474 6564 2074 IFD is.omitted t │ │ │ │ -0000d8b0: 6865 2069 6e66 6f72 6d61 7469 6f6e 2069 he information i │ │ │ │ -0000d8c0: 7320 7075 6c6c 6564 2066 726f 6d20 7468 s pulled from th │ │ │ │ -0000d8d0: 6520 6361 6368 6520 6f66 2074 6865 2066 e cache of the f │ │ │ │ -0000d8e0: 6972 7374 2070 6f69 6e74 2069 6e20 572e irst point in W. │ │ │ │ -0000d8f0: 2057 6865 6e0a 4f46 4420 6973 206f 6d69 When.OFD is omi │ │ │ │ -0000d900: 7474 6564 2061 2074 656d 706f 7261 7279 tted a temporary │ │ │ │ -0000d910: 2064 6972 6563 746f 7279 2069 7320 6372 directory is cr │ │ │ │ -0000d920: 6561 7465 642e 0a0a 2b2d 2d2d 2d2d 2d2d eated...+------- │ │ │ │ +0000d2f0: 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 ******..Synopsis │ │ │ │ +0000d300: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 .========.. * U │ │ │ │ +0000d310: 7361 6765 3a20 0a20 2020 2020 2020 2053 sage: . S │ │ │ │ +0000d320: 203d 2062 6572 7469 6e69 5265 6669 6e65 = bertiniRefine │ │ │ │ +0000d330: 536f 6c73 2849 4644 2c20 642c 2057 2c20 Sols(IFD, d, W, │ │ │ │ +0000d340: 4f46 4429 0a20 2020 2020 2020 2053 203d OFD). S = │ │ │ │ +0000d350: 2062 6572 7469 6e69 5265 6669 6e65 536f bertiniRefineSo │ │ │ │ +0000d360: 6c73 2864 2c20 572c 204f 4644 290a 2020 ls(d, W, OFD). │ │ │ │ +0000d370: 2020 2020 2020 5320 3d20 6265 7274 696e S = bertin │ │ │ │ +0000d380: 6952 6566 696e 6553 6f6c 7328 642c 2057 iRefineSols(d, W │ │ │ │ +0000d390: 290a 2020 2a20 496e 7075 7473 3a0a 2020 ). * Inputs:. │ │ │ │ +0000d3a0: 2020 2020 2a20 4946 442c 2061 202a 6e6f * IFD, a *no │ │ │ │ +0000d3b0: 7465 2073 7472 696e 673a 2028 4d61 6361 te string: (Maca │ │ │ │ +0000d3c0: 756c 6179 3244 6f63 2953 7472 696e 672c ulay2Doc)String, │ │ │ │ +0000d3d0: 2c20 6120 6469 7265 6374 6f72 7920 7768 , a directory wh │ │ │ │ +0000d3e0: 6572 6520 7468 6520 696e 7075 740a 2020 ere the input. │ │ │ │ +0000d3f0: 2020 2020 2020 6669 6c65 206f 6620 6120 file of a │ │ │ │ +0000d400: 6265 7274 696e 695a 6572 6f44 696d 2073 bertiniZeroDim s │ │ │ │ +0000d410: 6f6c 7665 2069 7320 7374 6f72 6564 2061 olve is stored a │ │ │ │ +0000d420: 6c6f 6e67 2077 6974 6820 7468 6174 2072 long with that r │ │ │ │ +0000d430: 756e 7320 6f75 7470 7574 0a20 2020 2020 uns output. │ │ │ │ +0000d440: 2020 2066 696c 6573 0a20 2020 2020 202a files. * │ │ │ │ +0000d450: 2064 2c20 616e 202a 6e6f 7465 2069 6e74 d, an *note int │ │ │ │ +0000d460: 6567 6572 3a20 284d 6163 6175 6c61 7932 eger: (Macaulay2 │ │ │ │ +0000d470: 446f 6329 5a5a 2c2c 2061 6e20 696e 7465 Doc)ZZ,, an inte │ │ │ │ +0000d480: 6765 7220 7370 6563 6966 7969 6e67 2074 ger specifying t │ │ │ │ +0000d490: 6865 0a20 2020 2020 2020 206e 756d 6265 he. numbe │ │ │ │ +0000d4a0: 7220 6f66 2064 6967 6974 7320 6f66 2070 r of digits of p │ │ │ │ +0000d4b0: 7265 6369 7369 6f6e 0a20 2020 2020 202a recision. * │ │ │ │ +0000d4c0: 2057 2c20 6120 2a6e 6f74 6520 6c69 7374 W, a *note list │ │ │ │ +0000d4d0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0000d4e0: 4c69 7374 2c2c 2061 206c 6973 7420 6f66 List,, a list of │ │ │ │ +0000d4f0: 2070 6f69 6e74 7320 746f 2062 6520 7368 points to be sh │ │ │ │ +0000d500: 6172 7065 6e65 640a 2020 2020 2020 2a20 arpened. * │ │ │ │ +0000d510: 4f46 442c 2061 202a 6e6f 7465 2073 7472 OFD, a *note str │ │ │ │ +0000d520: 696e 673a 2028 4d61 6361 756c 6179 3244 ing: (Macaulay2D │ │ │ │ +0000d530: 6f63 2953 7472 696e 672c 2c20 6120 6469 oc)String,, a di │ │ │ │ +0000d540: 7265 6374 6f72 7920 7768 6572 6520 7468 rectory where th │ │ │ │ +0000d550: 650a 2020 2020 2020 2020 6f75 7470 7574 e. output │ │ │ │ +0000d560: 2066 696c 6573 206f 6620 7468 6520 7265 files of the re │ │ │ │ +0000d570: 6669 6e65 6d65 6e74 2061 7265 2073 746f finement are sto │ │ │ │ +0000d580: 7265 640a 2020 2a20 2a6e 6f74 6520 4f70 red. * *note Op │ │ │ │ +0000d590: 7469 6f6e 616c 2069 6e70 7574 733a 2028 tional inputs: ( │ │ │ │ +0000d5a0: 4d61 6361 756c 6179 3244 6f63 2975 7369 Macaulay2Doc)usi │ │ │ │ +0000d5b0: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ +0000d5c0: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ +0000d5d0: 732c 3a0a 2020 2020 2020 2a20 4164 6469 s,:. * Addi │ │ │ │ +0000d5e0: 7469 6f6e 616c 4669 6c65 7320 286d 6973 tionalFiles (mis │ │ │ │ +0000d5f0: 7369 6e67 2064 6f63 756d 656e 7461 7469 sing documentati │ │ │ │ +0000d600: 6f6e 2920 3d3e 202e 2e2e 2c20 6465 6661 on) => ..., defa │ │ │ │ +0000d610: 756c 7420 7661 6c75 6520 7b7d 2c20 0a20 ult value {}, . │ │ │ │ +0000d620: 2020 2020 202a 202a 6e6f 7465 2049 7350 * *note IsP │ │ │ │ +0000d630: 726f 6a65 6374 6976 653a 2049 7350 726f rojective: IsPro │ │ │ │ +0000d640: 6a65 6374 6976 652c 203d 3e20 2e2e 2e2c jective, => ..., │ │ │ │ +0000d650: 2064 6566 6175 6c74 2076 616c 7565 202d default value - │ │ │ │ +0000d660: 312c 206f 7074 696f 6e61 6c0a 2020 2020 1, optional. │ │ │ │ +0000d670: 2020 2020 6172 6775 6d65 6e74 2074 6f20 argument to │ │ │ │ +0000d680: 7370 6563 6966 7920 7768 6574 6865 7220 specify whether │ │ │ │ +0000d690: 746f 2075 7365 2068 6f6d 6f67 656e 656f to use homogeneo │ │ │ │ +0000d6a0: 7573 2063 6f6f 7264 696e 6174 6573 0a20 us coordinates. │ │ │ │ +0000d6b0: 2020 2020 202a 204e 616d 6542 2749 6e70 * NameB'Inp │ │ │ │ +0000d6c0: 7574 4669 6c65 2028 6d69 7373 696e 6720 utFile (missing │ │ │ │ +0000d6d0: 646f 6375 6d65 6e74 6174 696f 6e29 203d documentation) = │ │ │ │ +0000d6e0: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ +0000d6f0: 616c 7565 2022 696e 7075 7422 2c20 0a20 alue "input", . │ │ │ │ +0000d700: 2020 2020 202a 202a 6e6f 7465 2056 6572 * *note Ver │ │ │ │ +0000d710: 626f 7365 3a20 6265 7274 696e 6954 7261 bose: bertiniTra │ │ │ │ +0000d720: 636b 486f 6d6f 746f 7079 5f6c 705f 7064 ckHomotopy_lp_pd │ │ │ │ +0000d730: 5f70 645f 7064 5f63 6d56 6572 626f 7365 _pd_pd_cmVerbose │ │ │ │ +0000d740: 3d3e 5f70 645f 7064 5f70 645f 7270 0a20 =>_pd_pd_pd_rp. │ │ │ │ +0000d750: 2020 2020 2020 202c 203d 3e20 2e2e 2e2c , => ..., │ │ │ │ +0000d760: 2064 6566 6175 6c74 2076 616c 7565 2066 default value f │ │ │ │ +0000d770: 616c 7365 2c20 4f70 7469 6f6e 2074 6f20 alse, Option to │ │ │ │ +0000d780: 7369 6c65 6e63 6520 6164 6469 7469 6f6e silence addition │ │ │ │ +0000d790: 616c 206f 7574 7075 740a 2020 2a20 4f75 al output. * Ou │ │ │ │ +0000d7a0: 7470 7574 733a 0a20 2020 2020 202a 2053 tputs:. * S │ │ │ │ +0000d7b0: 2c20 6120 2a6e 6f74 6520 6c69 7374 3a20 , a *note list: │ │ │ │ +0000d7c0: 284d 6163 6175 6c61 7932 446f 6329 4c69 (Macaulay2Doc)Li │ │ │ │ +0000d7d0: 7374 2c2c 2061 206c 6973 7420 6f66 2073 st,, a list of s │ │ │ │ +0000d7e0: 6f6c 7574 696f 6e73 206f 6620 7479 7065 olutions of type │ │ │ │ +0000d7f0: 2050 6f69 6e74 0a0a 4465 7363 7269 7074 Point..Descript │ │ │ │ +0000d800: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ +0000d810: 0a54 6869 7320 6d65 7468 6f64 2074 616b .This method tak │ │ │ │ +0000d820: 6573 2074 6865 206c 6973 7420 5720 6f66 es the list W of │ │ │ │ +0000d830: 2073 6f6c 7574 696f 6e73 2066 726f 6d20 solutions from │ │ │ │ +0000d840: 6120 6265 7274 696e 695a 6572 6f44 696d a bertiniZeroDim │ │ │ │ +0000d850: 536f 6c76 6520 616e 640a 7368 6172 7065 Solve and.sharpe │ │ │ │ +0000d860: 6e73 2074 6865 6d20 746f 2064 2064 6967 ns them to d dig │ │ │ │ +0000d870: 6974 7320 7573 696e 6720 7468 6520 7368 its using the sh │ │ │ │ +0000d880: 6172 7065 6e69 6e67 206d 6f64 756c 6520 arpening module │ │ │ │ +0000d890: 6f66 2042 6572 7469 6e69 2e20 5768 656e of Bertini. When │ │ │ │ +0000d8a0: 2049 4644 2069 730a 6f6d 6974 7465 6420 IFD is.omitted │ │ │ │ +0000d8b0: 7468 6520 696e 666f 726d 6174 696f 6e20 the information │ │ │ │ +0000d8c0: 6973 2070 756c 6c65 6420 6672 6f6d 2074 is pulled from t │ │ │ │ +0000d8d0: 6865 2063 6163 6865 206f 6620 7468 6520 he cache of the │ │ │ │ +0000d8e0: 6669 7273 7420 706f 696e 7420 696e 2057 first point in W │ │ │ │ +0000d8f0: 2e20 5768 656e 0a4f 4644 2069 7320 6f6d . When.OFD is om │ │ │ │ +0000d900: 6974 7465 6420 6120 7465 6d70 6f72 6172 itted a temporar │ │ │ │ +0000d910: 7920 6469 7265 6374 6f72 7920 6973 2063 y directory is c │ │ │ │ +0000d920: 7265 6174 6564 2e0a 0a2b 2d2d 2d2d 2d2d reated...+------ │ │ │ │ 0000d930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000d940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000d950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000d960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000d970: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 5220 ------+.|i1 : R │ │ │ │ -0000d980: 3d20 4343 5b78 2c79 5d3b 2020 2020 2020 = CC[x,y]; │ │ │ │ +0000d970: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 -------+.|i1 : R │ │ │ │ +0000d980: 203d 2043 435b 782c 795d 3b20 2020 2020 = CC[x,y]; │ │ │ │ 0000d990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000d9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000d9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d9c0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0000d9c0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 0000d9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000d9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000d9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000da00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000da10: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 4620 ------+.|i2 : F │ │ │ │ -0000da20: 3d20 7b78 5e32 2d32 2c79 5e32 2d32 7d3b = {x^2-2,y^2-2}; │ │ │ │ -0000da30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000da10: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2046 -------+.|i2 : F │ │ │ │ +0000da20: 203d 207b 785e 322d 322c 795e 322d 327d = {x^2-2,y^2-2} │ │ │ │ +0000da30: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ 0000da40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000da50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000da60: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0000da60: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 0000da70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000da80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000da90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000daa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000dab0: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 5720 ------+.|i3 : W │ │ │ │ -0000dac0: 3d20 6265 7274 696e 695a 6572 6f44 696d = bertiniZeroDim │ │ │ │ -0000dad0: 536f 6c76 6520 2846 2920 2020 2020 2020 Solve (F) │ │ │ │ +0000dab0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2057 -------+.|i3 : W │ │ │ │ +0000dac0: 203d 2062 6572 7469 6e69 5a65 726f 4469 = bertiniZeroDi │ │ │ │ +0000dad0: 6d53 6f6c 7665 2028 4629 2020 2020 2020 mSolve (F) │ │ │ │ 0000dae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000daf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000db00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0000db00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0000db10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000db20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000db30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000db40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000db50: 2020 2020 2020 7c0a 7c6f 3320 3d20 7b7b |.|o3 = {{ │ │ │ │ -0000db60: 312e 3431 3432 312c 2031 2e34 3134 3231 1.41421, 1.41421 │ │ │ │ -0000db70: 7d2c 207b 312e 3431 3432 312c 202d 312e }, {1.41421, -1. │ │ │ │ -0000db80: 3431 3432 317d 2c20 7b2d 312e 3431 3432 41421}, {-1.4142 │ │ │ │ -0000db90: 312c 2031 2e34 3134 3231 7d2c 2020 2020 1, 1.41421}, │ │ │ │ -0000dba0: 2020 2020 2020 7c0a 7c20 2020 2020 2d2d |.| -- │ │ │ │ +0000db50: 2020 2020 2020 207c 0a7c 6f33 203d 207b |.|o3 = { │ │ │ │ +0000db60: 7b31 2e34 3134 3231 2c20 312e 3431 3432 {1.41421, 1.4142 │ │ │ │ +0000db70: 317d 2c20 7b31 2e34 3134 3231 2c20 2d31 1}, {1.41421, -1 │ │ │ │ +0000db80: 2e34 3134 3231 7d2c 207b 2d31 2e34 3134 .41421}, {-1.414 │ │ │ │ +0000db90: 3231 2c20 312e 3431 3432 317d 2c20 2020 21, 1.41421}, │ │ │ │ +0000dba0: 2020 2020 2020 207c 0a7c 2020 2020 202d |.| - │ │ │ │ 0000dbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000dbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000dbd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000dbe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000dbf0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 7b2d ------|.| {- │ │ │ │ -0000dc00: 312e 3431 3432 312c 202d 312e 3431 3432 1.41421, -1.4142 │ │ │ │ -0000dc10: 317d 7d20 2020 2020 2020 2020 2020 2020 1}} │ │ │ │ +0000dbf0: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 207b -------|.| { │ │ │ │ +0000dc00: 2d31 2e34 3134 3231 2c20 2d31 2e34 3134 -1.41421, -1.414 │ │ │ │ +0000dc10: 3231 7d7d 2020 2020 2020 2020 2020 2020 21}} │ │ │ │ 0000dc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000dc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000dc40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0000dc40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0000dc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000dc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000dc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000dc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000dc90: 2020 2020 2020 7c0a 7c6f 3320 3a20 4c69 |.|o3 : Li │ │ │ │ -0000dca0: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ +0000dc90: 2020 2020 2020 207c 0a7c 6f33 203a 204c |.|o3 : L │ │ │ │ +0000dca0: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ 0000dcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000dcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000dcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000dce0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0000dce0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 0000dcf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000dd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000dd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000dd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000dd30: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 5320 ------+.|i4 : S │ │ │ │ -0000dd40: 3d20 6265 7274 696e 6952 6566 696e 6553 = bertiniRefineS │ │ │ │ -0000dd50: 6f6c 7320 2831 3030 2c57 2920 2020 2020 ols (100,W) │ │ │ │ +0000dd30: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2053 -------+.|i4 : S │ │ │ │ +0000dd40: 203d 2062 6572 7469 6e69 5265 6669 6e65 = bertiniRefine │ │ │ │ +0000dd50: 536f 6c73 2028 3130 302c 5729 2020 2020 Sols (100,W) │ │ │ │ 0000dd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000dd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000dd80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0000dd80: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0000dd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000dda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ddb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ddc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ddd0: 2020 2020 2020 7c0a 7c6f 3420 3d20 7b7b |.|o4 = {{ │ │ │ │ -0000dde0: 312e 3431 3432 312c 2031 2e34 3134 3231 1.41421, 1.41421 │ │ │ │ -0000ddf0: 7d2c 207b 312e 3431 3432 312c 202d 312e }, {1.41421, -1. │ │ │ │ -0000de00: 3431 3432 317d 2c20 7b2d 312e 3431 3432 41421}, {-1.4142 │ │ │ │ -0000de10: 312c 2031 2e34 3134 3231 7d2c 2020 2020 1, 1.41421}, │ │ │ │ -0000de20: 2020 2020 2020 7c0a 7c20 2020 2020 2d2d |.| -- │ │ │ │ +0000ddd0: 2020 2020 2020 207c 0a7c 6f34 203d 207b |.|o4 = { │ │ │ │ +0000dde0: 7b31 2e34 3134 3231 2c20 312e 3431 3432 {1.41421, 1.4142 │ │ │ │ +0000ddf0: 317d 2c20 7b31 2e34 3134 3231 2c20 2d31 1}, {1.41421, -1 │ │ │ │ +0000de00: 2e34 3134 3231 7d2c 207b 2d31 2e34 3134 .41421}, {-1.414 │ │ │ │ +0000de10: 3231 2c20 312e 3431 3432 317d 2c20 2020 21, 1.41421}, │ │ │ │ +0000de20: 2020 2020 2020 207c 0a7c 2020 2020 202d |.| - │ │ │ │ 0000de30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000de40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000de50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000de60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000de70: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 7b2d ------|.| {- │ │ │ │ -0000de80: 312e 3431 3432 312c 202d 312e 3431 3432 1.41421, -1.4142 │ │ │ │ -0000de90: 317d 7d20 2020 2020 2020 2020 2020 2020 1}} │ │ │ │ +0000de70: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 207b -------|.| { │ │ │ │ +0000de80: 2d31 2e34 3134 3231 2c20 2d31 2e34 3134 -1.41421, -1.414 │ │ │ │ +0000de90: 3231 7d7d 2020 2020 2020 2020 2020 2020 21}} │ │ │ │ 0000dea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000deb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000dec0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0000dec0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0000ded0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000dee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000def0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000df00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000df10: 2020 2020 2020 7c0a 7c6f 3420 3a20 4c69 |.|o4 : Li │ │ │ │ -0000df20: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ +0000df10: 2020 2020 2020 207c 0a7c 6f34 203a 204c |.|o4 : L │ │ │ │ +0000df20: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ 0000df30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000df40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000df50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000df60: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0000df60: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 0000df70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000df80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000df90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000dfa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000dfb0: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 636f ------+.|i5 : co │ │ │ │ -0000dfc0: 6f72 6473 203d 2063 6f6f 7264 696e 6174 ords = coordinat │ │ │ │ -0000dfd0: 6573 2053 5f30 2020 2020 2020 2020 2020 es S_0 │ │ │ │ +0000dfb0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2063 -------+.|i5 : c │ │ │ │ +0000dfc0: 6f6f 7264 7320 3d20 636f 6f72 6469 6e61 oords = coordina │ │ │ │ +0000dfd0: 7465 7320 535f 3020 2020 2020 2020 2020 tes S_0 │ │ │ │ 0000dfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000dff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e000: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0000e000: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0000e010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e050: 2020 2020 2020 7c0a 7c6f 3520 3d20 7b31 |.|o5 = {1 │ │ │ │ -0000e060: 2e34 3134 3231 2c20 312e 3431 3432 317d .41421, 1.41421} │ │ │ │ -0000e070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000e050: 2020 2020 2020 207c 0a7c 6f35 203d 207b |.|o5 = { │ │ │ │ +0000e060: 312e 3431 3432 312c 2031 2e34 3134 3231 1.41421, 1.41421 │ │ │ │ +0000e070: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 0000e080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e0a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0000e0a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0000e0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e0f0: 2020 2020 2020 7c0a 7c6f 3520 3a20 4c69 |.|o5 : Li │ │ │ │ -0000e100: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ +0000e0f0: 2020 2020 2020 207c 0a7c 6f35 203a 204c |.|o5 : L │ │ │ │ +0000e100: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ 0000e110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e140: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0000e140: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 0000e150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000e160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000e170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000e180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000e190: 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 636f ------+.|i6 : co │ │ │ │ -0000e1a0: 6f72 6473 5f30 2020 2020 2020 2020 2020 ords_0 │ │ │ │ +0000e190: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2063 -------+.|i6 : c │ │ │ │ +0000e1a0: 6f6f 7264 735f 3020 2020 2020 2020 2020 oords_0 │ │ │ │ 0000e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e1e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0000e1e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0000e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e230: 2020 2020 2020 7c0a 7c6f 3620 3d20 312e |.|o6 = 1. │ │ │ │ -0000e240: 3431 3432 3133 3536 3233 3733 3039 3530 4142135623730950 │ │ │ │ -0000e250: 3438 3830 3136 3838 3732 3432 3039 3639 4880168872420969 │ │ │ │ -0000e260: 3830 3738 3536 3936 3731 3837 3533 3736 8078569671875376 │ │ │ │ -0000e270: 3934 3830 3733 3137 3636 3739 3733 3739 9480731766797379 │ │ │ │ -0000e280: 3930 3733 3234 7c0a 7c20 2020 2020 3738 907324|.| 78 │ │ │ │ -0000e290: 3436 3231 3037 3033 3838 3530 3338 3735 4621070388503875 │ │ │ │ -0000e2a0: 3334 3332 3736 3431 3537 3320 2020 2020 34327641573 │ │ │ │ +0000e230: 2020 2020 2020 207c 0a7c 6f36 203d 2031 |.|o6 = 1 │ │ │ │ +0000e240: 2e34 3134 3231 3335 3632 3337 3330 3935 .414213562373095 │ │ │ │ +0000e250: 3034 3838 3031 3638 3837 3234 3230 3936 0488016887242096 │ │ │ │ +0000e260: 3938 3037 3835 3639 3637 3138 3735 3337 9807856967187537 │ │ │ │ +0000e270: 3639 3438 3037 3331 3736 3637 3937 3337 6948073176679737 │ │ │ │ +0000e280: 3939 3037 3332 347c 0a7c 2020 2020 2037 9907324|.| 7 │ │ │ │ +0000e290: 3834 3632 3130 3730 3338 3835 3033 3837 8462107038850387 │ │ │ │ +0000e2a0: 3533 3433 3237 3634 3135 3733 2020 2020 534327641573 │ │ │ │ 0000e2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e2d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0000e2d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0000e2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e320: 2020 2020 2020 7c0a 7c6f 3620 3a20 4343 |.|o6 : CC │ │ │ │ -0000e330: 2028 6f66 2070 7265 6369 7369 6f6e 2033 (of precision 3 │ │ │ │ -0000e340: 3333 2920 2020 2020 2020 2020 2020 2020 33) │ │ │ │ +0000e320: 2020 2020 2020 207c 0a7c 6f36 203a 2043 |.|o6 : C │ │ │ │ +0000e330: 4320 286f 6620 7072 6563 6973 696f 6e20 C (of precision │ │ │ │ +0000e340: 3333 3329 2020 2020 2020 2020 2020 2020 333) │ │ │ │ 0000e350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e370: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0000e370: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 0000e380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000e390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000e3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000e3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000e3c0: 2d2d 2d2d 2d2d 2b0a 0a2a 6e6f 7465 2062 ------+..*note b │ │ │ │ -0000e3d0: 6572 7469 6e69 5265 6669 6e65 536f 6c73 ertiniRefineSols │ │ │ │ -0000e3e0: 3a20 6265 7274 696e 6952 6566 696e 6553 : bertiniRefineS │ │ │ │ -0000e3f0: 6f6c 732c 2077 696c 6c20 6f6e 6c79 2072 ols, will only r │ │ │ │ -0000e400: 6566 696e 6520 6e6f 6e2d 7369 6e67 756c efine non-singul │ │ │ │ -0000e410: 6172 0a73 6f6c 7574 696f 6e73 2061 6e64 ar.solutions and │ │ │ │ -0000e420: 2064 6f65 7320 6e6f 7420 6375 7272 656e does not curren │ │ │ │ -0000e430: 746c 7920 776f 726b 2066 6f72 2068 6f6d tly work for hom │ │ │ │ -0000e440: 6f67 656e 656f 7573 2073 7973 7465 6d73 ogeneous systems │ │ │ │ -0000e450: 2e0a 0a57 6179 7320 746f 2075 7365 2062 ...Ways to use b │ │ │ │ -0000e460: 6572 7469 6e69 5265 6669 6e65 536f 6c73 ertiniRefineSols │ │ │ │ -0000e470: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +0000e3c0: 2d2d 2d2d 2d2d 2d2b 0a0a 2a6e 6f74 6520 -------+..*note │ │ │ │ +0000e3d0: 6265 7274 696e 6952 6566 696e 6553 6f6c bertiniRefineSol │ │ │ │ +0000e3e0: 733a 2062 6572 7469 6e69 5265 6669 6e65 s: bertiniRefine │ │ │ │ +0000e3f0: 536f 6c73 2c20 7769 6c6c 206f 6e6c 7920 Sols, will only │ │ │ │ +0000e400: 7265 6669 6e65 206e 6f6e 2d73 696e 6775 refine non-singu │ │ │ │ +0000e410: 6c61 720a 736f 6c75 7469 6f6e 7320 616e lar.solutions an │ │ │ │ +0000e420: 6420 646f 6573 206e 6f74 2063 7572 7265 d does not curre │ │ │ │ +0000e430: 6e74 6c79 2077 6f72 6b20 666f 7220 686f ntly work for ho │ │ │ │ +0000e440: 6d6f 6765 6e65 6f75 7320 7379 7374 656d mogeneous system │ │ │ │ +0000e450: 732e 0a0a 5761 7973 2074 6f20 7573 6520 s...Ways to use │ │ │ │ +0000e460: 6265 7274 696e 6952 6566 696e 6553 6f6c bertiniRefineSol │ │ │ │ +0000e470: 733a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d s:.============= │ │ │ │ 0000e480: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0000e490: 0a0a 2020 2a20 2262 6572 7469 6e69 5265 .. * "bertiniRe │ │ │ │ -0000e4a0: 6669 6e65 536f 6c73 2853 7472 696e 672c fineSols(String, │ │ │ │ -0000e4b0: 5a5a 2c4c 6973 742c 5374 7269 6e67 2922 ZZ,List,String)" │ │ │ │ -0000e4c0: 0a20 202a 2022 6265 7274 696e 6952 6566 . * "bertiniRef │ │ │ │ -0000e4d0: 696e 6553 6f6c 7328 5a5a 2c4c 6973 7429 ineSols(ZZ,List) │ │ │ │ -0000e4e0: 220a 2020 2a20 2262 6572 7469 6e69 5265 ". * "bertiniRe │ │ │ │ -0000e4f0: 6669 6e65 536f 6c73 285a 5a2c 4c69 7374 fineSols(ZZ,List │ │ │ │ -0000e500: 2c53 7472 696e 6729 220a 0a46 6f72 2074 ,String)"..For t │ │ │ │ -0000e510: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +0000e490: 3d0a 0a20 202a 2022 6265 7274 696e 6952 =.. * "bertiniR │ │ │ │ +0000e4a0: 6566 696e 6553 6f6c 7328 5374 7269 6e67 efineSols(String │ │ │ │ +0000e4b0: 2c5a 5a2c 4c69 7374 2c53 7472 696e 6729 ,ZZ,List,String) │ │ │ │ +0000e4c0: 220a 2020 2a20 2262 6572 7469 6e69 5265 ". * "bertiniRe │ │ │ │ +0000e4d0: 6669 6e65 536f 6c73 285a 5a2c 4c69 7374 fineSols(ZZ,List │ │ │ │ +0000e4e0: 2922 0a20 202a 2022 6265 7274 696e 6952 )". * "bertiniR │ │ │ │ +0000e4f0: 6566 696e 6553 6f6c 7328 5a5a 2c4c 6973 efineSols(ZZ,Lis │ │ │ │ +0000e500: 742c 5374 7269 6e67 2922 0a0a 466f 7220 t,String)"..For │ │ │ │ +0000e510: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ 0000e520: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0000e530: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ -0000e540: 7465 2062 6572 7469 6e69 5265 6669 6e65 te bertiniRefine │ │ │ │ -0000e550: 536f 6c73 3a20 6265 7274 696e 6952 6566 Sols: bertiniRef │ │ │ │ -0000e560: 696e 6553 6f6c 732c 2069 7320 6120 2a6e ineSols, is a *n │ │ │ │ -0000e570: 6f74 6520 6d65 7468 6f64 0a66 756e 6374 ote method.funct │ │ │ │ -0000e580: 696f 6e20 7769 7468 206f 7074 696f 6e73 ion with options │ │ │ │ -0000e590: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -0000e5a0: 4d65 7468 6f64 4675 6e63 7469 6f6e 5769 MethodFunctionWi │ │ │ │ -0000e5b0: 7468 4f70 7469 6f6e 732c 2e0a 1f0a 4669 thOptions,....Fi │ │ │ │ -0000e5c0: 6c65 3a20 4265 7274 696e 692e 696e 666f le: Bertini.info │ │ │ │ -0000e5d0: 2c20 4e6f 6465 3a20 6265 7274 696e 6953 , Node: bertiniS │ │ │ │ -0000e5e0: 616d 706c 652c 204e 6578 743a 2062 6572 ample, Next: ber │ │ │ │ -0000e5f0: 7469 6e69 5472 6163 6b48 6f6d 6f74 6f70 tiniTrackHomotop │ │ │ │ -0000e600: 792c 2050 7265 763a 2062 6572 7469 6e69 y, Prev: bertini │ │ │ │ -0000e610: 5265 6669 6e65 536f 6c73 2c20 5570 3a20 RefineSols, Up: │ │ │ │ -0000e620: 546f 700a 0a62 6572 7469 6e69 5361 6d70 Top..bertiniSamp │ │ │ │ -0000e630: 6c65 202d 2d20 6120 6d61 696e 206d 6574 le -- a main met │ │ │ │ -0000e640: 686f 6420 746f 2073 616d 706c 6520 706f hod to sample po │ │ │ │ -0000e650: 696e 7473 2066 726f 6d20 616e 2069 7272 ints from an irr │ │ │ │ -0000e660: 6564 7563 6962 6c65 2063 6f6d 706f 6e65 educible compone │ │ │ │ -0000e670: 6e74 206f 6620 6120 7661 7269 6574 790a nt of a variety. │ │ │ │ -0000e680: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0000e530: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ +0000e540: 6f74 6520 6265 7274 696e 6952 6566 696e ote bertiniRefin │ │ │ │ +0000e550: 6553 6f6c 733a 2062 6572 7469 6e69 5265 eSols: bertiniRe │ │ │ │ +0000e560: 6669 6e65 536f 6c73 2c20 6973 2061 202a fineSols, is a * │ │ │ │ +0000e570: 6e6f 7465 206d 6574 686f 640a 6675 6e63 note method.func │ │ │ │ +0000e580: 7469 6f6e 2077 6974 6820 6f70 7469 6f6e tion with option │ │ │ │ +0000e590: 733a 2028 4d61 6361 756c 6179 3244 6f63 s: (Macaulay2Doc │ │ │ │ +0000e5a0: 294d 6574 686f 6446 756e 6374 696f 6e57 )MethodFunctionW │ │ │ │ +0000e5b0: 6974 684f 7074 696f 6e73 2c2e 0a1f 0a46 ithOptions,....F │ │ │ │ +0000e5c0: 696c 653a 2042 6572 7469 6e69 2e69 6e66 ile: Bertini.inf │ │ │ │ +0000e5d0: 6f2c 204e 6f64 653a 2062 6572 7469 6e69 o, Node: bertini │ │ │ │ +0000e5e0: 5361 6d70 6c65 2c20 4e65 7874 3a20 6265 Sample, Next: be │ │ │ │ +0000e5f0: 7274 696e 6954 7261 636b 486f 6d6f 746f rtiniTrackHomoto │ │ │ │ +0000e600: 7079 2c20 5072 6576 3a20 6265 7274 696e py, Prev: bertin │ │ │ │ +0000e610: 6952 6566 696e 6553 6f6c 732c 2055 703a iRefineSols, Up: │ │ │ │ +0000e620: 2054 6f70 0a0a 6265 7274 696e 6953 616d Top..bertiniSam │ │ │ │ +0000e630: 706c 6520 2d2d 2061 206d 6169 6e20 6d65 ple -- a main me │ │ │ │ +0000e640: 7468 6f64 2074 6f20 7361 6d70 6c65 2070 thod to sample p │ │ │ │ +0000e650: 6f69 6e74 7320 6672 6f6d 2061 6e20 6972 oints from an ir │ │ │ │ +0000e660: 7265 6475 6369 626c 6520 636f 6d70 6f6e reducible compon │ │ │ │ +0000e670: 656e 7420 6f66 2061 2076 6172 6965 7479 ent of a variety │ │ │ │ +0000e680: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ 0000e690: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0000e6a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0000e6b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0000e6c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000e6d0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f **********..Syno │ │ │ │ -0000e6e0: 7073 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 psis.========.. │ │ │ │ -0000e6f0: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ -0000e700: 2020 2056 203d 2062 6572 7469 6e69 5361 V = bertiniSa │ │ │ │ -0000e710: 6d70 6c65 2028 6e2c 2057 290a 2020 2a20 mple (n, W). * │ │ │ │ -0000e720: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -0000e730: 6e2c 2061 6e20 2a6e 6f74 6520 696e 7465 n, an *note inte │ │ │ │ -0000e740: 6765 723a 2028 4d61 6361 756c 6179 3244 ger: (Macaulay2D │ │ │ │ -0000e750: 6f63 295a 5a2c 2c20 616e 2069 6e74 6567 oc)ZZ,, an integ │ │ │ │ -0000e760: 6572 2073 7065 6369 6679 696e 6720 7468 er specifying th │ │ │ │ -0000e770: 650a 2020 2020 2020 2020 6e75 6d62 6572 e. number │ │ │ │ -0000e780: 206f 6620 6465 7369 7265 6420 7361 6d70 of desired samp │ │ │ │ -0000e790: 6c65 2070 6f69 6e74 730a 2020 2020 2020 le points. │ │ │ │ -0000e7a0: 2a20 572c 2061 202a 6e6f 7465 2077 6974 * W, a *note wit │ │ │ │ -0000e7b0: 6e65 7373 2073 6574 3a20 284e 4147 7479 ness set: (NAGty │ │ │ │ -0000e7c0: 7065 7329 5769 746e 6573 7353 6574 2c2c pes)WitnessSet,, │ │ │ │ -0000e7d0: 2061 2077 6974 6e65 7373 2073 6574 2066 a witness set f │ │ │ │ -0000e7e0: 6f72 2061 6e0a 2020 2020 2020 2020 6972 or an. ir │ │ │ │ -0000e7f0: 7265 6475 6369 626c 6520 636f 6d70 6f6e reducible compon │ │ │ │ -0000e800: 656e 740a 2020 2a20 2a6e 6f74 6520 4f70 ent. * *note Op │ │ │ │ -0000e810: 7469 6f6e 616c 2069 6e70 7574 733a 2028 tional inputs: ( │ │ │ │ -0000e820: 4d61 6361 756c 6179 3244 6f63 2975 7369 Macaulay2Doc)usi │ │ │ │ -0000e830: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ -0000e840: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ -0000e850: 732c 3a0a 2020 2020 2020 2a20 4265 7274 s,:. * Bert │ │ │ │ -0000e860: 696e 6949 6e70 7574 436f 6e66 6967 7572 iniInputConfigur │ │ │ │ -0000e870: 6174 696f 6e20 286d 6973 7369 6e67 2064 ation (missing d │ │ │ │ -0000e880: 6f63 756d 656e 7461 7469 6f6e 2920 3d3e ocumentation) => │ │ │ │ -0000e890: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ -0000e8a0: 6c75 650a 2020 2020 2020 2020 7b7d 2c0a lue. {},. │ │ │ │ -0000e8b0: 2020 2020 2020 2a20 2a6e 6f74 6520 4973 * *note Is │ │ │ │ -0000e8c0: 5072 6f6a 6563 7469 7665 3a20 4973 5072 Projective: IsPr │ │ │ │ -0000e8d0: 6f6a 6563 7469 7665 2c20 3d3e 202e 2e2e ojective, => ... │ │ │ │ -0000e8e0: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -0000e8f0: 2d31 2c20 6f70 7469 6f6e 616c 0a20 2020 -1, optional. │ │ │ │ -0000e900: 2020 2020 2061 7267 756d 656e 7420 746f argument to │ │ │ │ -0000e910: 2073 7065 6369 6679 2077 6865 7468 6572 specify whether │ │ │ │ -0000e920: 2074 6f20 7573 6520 686f 6d6f 6765 6e65 to use homogene │ │ │ │ -0000e930: 6f75 7320 636f 6f72 6469 6e61 7465 730a ous coordinates. │ │ │ │ -0000e940: 2020 2020 2020 2a20 2a6e 6f74 6520 5665 * *note Ve │ │ │ │ -0000e950: 7262 6f73 653a 2062 6572 7469 6e69 5472 rbose: bertiniTr │ │ │ │ -0000e960: 6163 6b48 6f6d 6f74 6f70 795f 6c70 5f70 ackHomotopy_lp_p │ │ │ │ -0000e970: 645f 7064 5f70 645f 636d 5665 7262 6f73 d_pd_pd_cmVerbos │ │ │ │ -0000e980: 653d 3e5f 7064 5f70 645f 7064 5f72 700a e=>_pd_pd_pd_rp. │ │ │ │ -0000e990: 2020 2020 2020 2020 2c20 3d3e 202e 2e2e , => ... │ │ │ │ -0000e9a0: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -0000e9b0: 6661 6c73 652c 204f 7074 696f 6e20 746f false, Option to │ │ │ │ -0000e9c0: 2073 696c 656e 6365 2061 6464 6974 696f silence additio │ │ │ │ -0000e9d0: 6e61 6c20 6f75 7470 7574 0a20 202a 204f nal output. * O │ │ │ │ -0000e9e0: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ -0000e9f0: 4c2c 2061 202a 6e6f 7465 206c 6973 743a L, a *note list: │ │ │ │ -0000ea00: 2028 4d61 6361 756c 6179 3244 6f63 294c (Macaulay2Doc)L │ │ │ │ -0000ea10: 6973 742c 2c20 6120 6c69 7374 206f 6620 ist,, a list of │ │ │ │ -0000ea20: 7361 6d70 6c65 2070 6f69 6e74 730a 0a44 sample points..D │ │ │ │ -0000ea30: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -0000ea40: 3d3d 3d3d 3d3d 0a0a 5361 6d70 6c65 7320 ======..Samples │ │ │ │ -0000ea50: 706f 696e 7473 2066 726f 6d20 616e 2069 points from an i │ │ │ │ -0000ea60: 7272 6564 7563 6962 6c65 2063 6f6d 706f rreducible compo │ │ │ │ -0000ea70: 6e65 6e74 206f 6620 6120 7661 7269 6574 nent of a variet │ │ │ │ -0000ea80: 7920 7573 696e 6720 4265 7274 696e 692e y using Bertini. │ │ │ │ -0000ea90: 2020 5468 650a 6972 7265 6475 6369 626c The.irreducibl │ │ │ │ -0000eaa0: 6520 636f 6d70 6f6e 656e 7420 6e65 6564 e component need │ │ │ │ -0000eab0: 7320 746f 2062 6520 696e 2069 7473 206e s to be in its n │ │ │ │ -0000eac0: 756d 6572 6963 616c 2066 6f72 6d20 6173 umerical form as │ │ │ │ -0000ead0: 2061 202a 6e6f 7465 2057 6974 6e65 7373 a *note Witness │ │ │ │ -0000eae0: 5365 743a 0a28 4e41 4774 7970 6573 2957 Set:.(NAGtypes)W │ │ │ │ -0000eaf0: 6974 6e65 7373 5365 742c 2e20 2054 6865 itnessSet,. The │ │ │ │ -0000eb00: 206d 6574 686f 6420 2a6e 6f74 6520 6265 method *note be │ │ │ │ -0000eb10: 7274 696e 6950 6f73 4469 6d53 6f6c 7665 rtiniPosDimSolve │ │ │ │ -0000eb20: 3a0a 6265 7274 696e 6950 6f73 4469 6d53 :.bertiniPosDimS │ │ │ │ -0000eb30: 6f6c 7665 2c20 6361 6e20 6265 2075 7365 olve, can be use │ │ │ │ -0000eb40: 6420 746f 2067 656e 6572 6174 6520 6120 d to generate a │ │ │ │ -0000eb50: 7769 746e 6573 7320 7365 7420 666f 7220 witness set for │ │ │ │ -0000eb60: 7468 6520 636f 6d70 6f6e 656e 742e 0a42 the component..B │ │ │ │ -0000eb70: 6572 7469 6e69 2028 3129 2077 7269 7465 ertini (1) write │ │ │ │ -0000eb80: 7320 7468 6520 7769 746e 6573 7320 7365 s the witness se │ │ │ │ -0000eb90: 7420 746f 2061 2074 656d 706f 7261 7279 t to a temporary │ │ │ │ -0000eba0: 2066 696c 652c 2028 3229 2069 6e76 6f6b file, (2) invok │ │ │ │ -0000ebb0: 6573 2042 6572 7469 6e69 2773 0a73 6f6c es Bertini's.sol │ │ │ │ -0000ebc0: 7665 7220 7769 7468 206f 7074 696f 6e20 ver with option │ │ │ │ -0000ebd0: 5472 6163 6b54 7970 6520 3d3e 2032 2c20 TrackType => 2, │ │ │ │ -0000ebe0: 616e 6420 2833 206d 6f76 6573 2074 6865 and (3 moves the │ │ │ │ -0000ebf0: 2068 7970 6572 706c 616e 6573 2064 6566 hyperplanes def │ │ │ │ -0000ec00: 696e 6564 2069 6e20 7468 650a 2a6e 6f74 ined in the.*not │ │ │ │ -0000ec10: 6520 5769 746e 6573 7353 6574 3a20 284e e WitnessSet: (N │ │ │ │ -0000ec20: 4147 7479 7065 7329 5769 746e 6573 7353 AGtypes)WitnessS │ │ │ │ -0000ec30: 6574 2c20 5720 7769 7468 696e 2074 6865 et, W within the │ │ │ │ -0000ec40: 2073 7061 6365 2075 6e74 696c 2074 6865 space until the │ │ │ │ -0000ec50: 2064 6573 6972 6564 0a70 6f69 6e74 7320 desired.points │ │ │ │ -0000ec60: 6172 6520 7361 6d70 6c65 642c 2028 3429 are sampled, (4) │ │ │ │ -0000ec70: 2073 746f 7265 7320 7468 6520 6f75 7470 stores the outp │ │ │ │ -0000ec80: 7574 206f 6620 4265 7274 696e 6920 696e ut of Bertini in │ │ │ │ -0000ec90: 2061 2074 656d 706f 7261 7279 2066 696c a temporary fil │ │ │ │ -0000eca0: 652c 2061 6e64 0a66 696e 616c 6c79 2028 e, and.finally ( │ │ │ │ -0000ecb0: 3529 2070 6172 7365 7320 616e 6420 6f75 5) parses and ou │ │ │ │ -0000ecc0: 7470 7574 7320 7468 6520 736f 6c75 7469 tputs the soluti │ │ │ │ -0000ecd0: 6f6e 732e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ons...+--------- │ │ │ │ +0000e6d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 796e ***********..Syn │ │ │ │ +0000e6e0: 6f70 7369 730a 3d3d 3d3d 3d3d 3d3d 0a0a opsis.========.. │ │ │ │ +0000e6f0: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ +0000e700: 2020 2020 5620 3d20 6265 7274 696e 6953 V = bertiniS │ │ │ │ +0000e710: 616d 706c 6520 286e 2c20 5729 0a20 202a ample (n, W). * │ │ │ │ +0000e720: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +0000e730: 206e 2c20 616e 202a 6e6f 7465 2069 6e74 n, an *note int │ │ │ │ +0000e740: 6567 6572 3a20 284d 6163 6175 6c61 7932 eger: (Macaulay2 │ │ │ │ +0000e750: 446f 6329 5a5a 2c2c 2061 6e20 696e 7465 Doc)ZZ,, an inte │ │ │ │ +0000e760: 6765 7220 7370 6563 6966 7969 6e67 2074 ger specifying t │ │ │ │ +0000e770: 6865 0a20 2020 2020 2020 206e 756d 6265 he. numbe │ │ │ │ +0000e780: 7220 6f66 2064 6573 6972 6564 2073 616d r of desired sam │ │ │ │ +0000e790: 706c 6520 706f 696e 7473 0a20 2020 2020 ple points. │ │ │ │ +0000e7a0: 202a 2057 2c20 6120 2a6e 6f74 6520 7769 * W, a *note wi │ │ │ │ +0000e7b0: 746e 6573 7320 7365 743a 2028 4e41 4774 tness set: (NAGt │ │ │ │ +0000e7c0: 7970 6573 2957 6974 6e65 7373 5365 742c ypes)WitnessSet, │ │ │ │ +0000e7d0: 2c20 6120 7769 746e 6573 7320 7365 7420 , a witness set │ │ │ │ +0000e7e0: 666f 7220 616e 0a20 2020 2020 2020 2069 for an. i │ │ │ │ +0000e7f0: 7272 6564 7563 6962 6c65 2063 6f6d 706f rreducible compo │ │ │ │ +0000e800: 6e65 6e74 0a20 202a 202a 6e6f 7465 204f nent. * *note O │ │ │ │ +0000e810: 7074 696f 6e61 6c20 696e 7075 7473 3a20 ptional inputs: │ │ │ │ +0000e820: 284d 6163 6175 6c61 7932 446f 6329 7573 (Macaulay2Doc)us │ │ │ │ +0000e830: 696e 6720 6675 6e63 7469 6f6e 7320 7769 ing functions wi │ │ │ │ +0000e840: 7468 206f 7074 696f 6e61 6c20 696e 7075 th optional inpu │ │ │ │ +0000e850: 7473 2c3a 0a20 2020 2020 202a 2042 6572 ts,:. * Ber │ │ │ │ +0000e860: 7469 6e69 496e 7075 7443 6f6e 6669 6775 tiniInputConfigu │ │ │ │ +0000e870: 7261 7469 6f6e 2028 6d69 7373 696e 6720 ration (missing │ │ │ │ +0000e880: 646f 6375 6d65 6e74 6174 696f 6e29 203d documentation) = │ │ │ │ +0000e890: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ +0000e8a0: 616c 7565 0a20 2020 2020 2020 207b 7d2c alue. {}, │ │ │ │ +0000e8b0: 0a20 2020 2020 202a 202a 6e6f 7465 2049 . * *note I │ │ │ │ +0000e8c0: 7350 726f 6a65 6374 6976 653a 2049 7350 sProjective: IsP │ │ │ │ +0000e8d0: 726f 6a65 6374 6976 652c 203d 3e20 2e2e rojective, => .. │ │ │ │ +0000e8e0: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ +0000e8f0: 202d 312c 206f 7074 696f 6e61 6c0a 2020 -1, optional. │ │ │ │ +0000e900: 2020 2020 2020 6172 6775 6d65 6e74 2074 argument t │ │ │ │ +0000e910: 6f20 7370 6563 6966 7920 7768 6574 6865 o specify whethe │ │ │ │ +0000e920: 7220 746f 2075 7365 2068 6f6d 6f67 656e r to use homogen │ │ │ │ +0000e930: 656f 7573 2063 6f6f 7264 696e 6174 6573 eous coordinates │ │ │ │ +0000e940: 0a20 2020 2020 202a 202a 6e6f 7465 2056 . * *note V │ │ │ │ +0000e950: 6572 626f 7365 3a20 6265 7274 696e 6954 erbose: bertiniT │ │ │ │ +0000e960: 7261 636b 486f 6d6f 746f 7079 5f6c 705f rackHomotopy_lp_ │ │ │ │ +0000e970: 7064 5f70 645f 7064 5f63 6d56 6572 626f pd_pd_pd_cmVerbo │ │ │ │ +0000e980: 7365 3d3e 5f70 645f 7064 5f70 645f 7270 se=>_pd_pd_pd_rp │ │ │ │ +0000e990: 0a20 2020 2020 2020 202c 203d 3e20 2e2e . , => .. │ │ │ │ +0000e9a0: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ +0000e9b0: 2066 616c 7365 2c20 4f70 7469 6f6e 2074 false, Option t │ │ │ │ +0000e9c0: 6f20 7369 6c65 6e63 6520 6164 6469 7469 o silence additi │ │ │ │ +0000e9d0: 6f6e 616c 206f 7574 7075 740a 2020 2a20 onal output. * │ │ │ │ +0000e9e0: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ +0000e9f0: 204c 2c20 6120 2a6e 6f74 6520 6c69 7374 L, a *note list │ │ │ │ +0000ea00: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0000ea10: 4c69 7374 2c2c 2061 206c 6973 7420 6f66 List,, a list of │ │ │ │ +0000ea20: 2073 616d 706c 6520 706f 696e 7473 0a0a sample points.. │ │ │ │ +0000ea30: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +0000ea40: 3d3d 3d3d 3d3d 3d0a 0a53 616d 706c 6573 =======..Samples │ │ │ │ +0000ea50: 2070 6f69 6e74 7320 6672 6f6d 2061 6e20 points from an │ │ │ │ +0000ea60: 6972 7265 6475 6369 626c 6520 636f 6d70 irreducible comp │ │ │ │ +0000ea70: 6f6e 656e 7420 6f66 2061 2076 6172 6965 onent of a varie │ │ │ │ +0000ea80: 7479 2075 7369 6e67 2042 6572 7469 6e69 ty using Bertini │ │ │ │ +0000ea90: 2e20 2054 6865 0a69 7272 6564 7563 6962 . The.irreducib │ │ │ │ +0000eaa0: 6c65 2063 6f6d 706f 6e65 6e74 206e 6565 le component nee │ │ │ │ +0000eab0: 6473 2074 6f20 6265 2069 6e20 6974 7320 ds to be in its │ │ │ │ +0000eac0: 6e75 6d65 7269 6361 6c20 666f 726d 2061 numerical form a │ │ │ │ +0000ead0: 7320 6120 2a6e 6f74 6520 5769 746e 6573 s a *note Witnes │ │ │ │ +0000eae0: 7353 6574 3a0a 284e 4147 7479 7065 7329 sSet:.(NAGtypes) │ │ │ │ +0000eaf0: 5769 746e 6573 7353 6574 2c2e 2020 5468 WitnessSet,. Th │ │ │ │ +0000eb00: 6520 6d65 7468 6f64 202a 6e6f 7465 2062 e method *note b │ │ │ │ +0000eb10: 6572 7469 6e69 506f 7344 696d 536f 6c76 ertiniPosDimSolv │ │ │ │ +0000eb20: 653a 0a62 6572 7469 6e69 506f 7344 696d e:.bertiniPosDim │ │ │ │ +0000eb30: 536f 6c76 652c 2063 616e 2062 6520 7573 Solve, can be us │ │ │ │ +0000eb40: 6564 2074 6f20 6765 6e65 7261 7465 2061 ed to generate a │ │ │ │ +0000eb50: 2077 6974 6e65 7373 2073 6574 2066 6f72 witness set for │ │ │ │ +0000eb60: 2074 6865 2063 6f6d 706f 6e65 6e74 2e0a the component.. │ │ │ │ +0000eb70: 4265 7274 696e 6920 2831 2920 7772 6974 Bertini (1) writ │ │ │ │ +0000eb80: 6573 2074 6865 2077 6974 6e65 7373 2073 es the witness s │ │ │ │ +0000eb90: 6574 2074 6f20 6120 7465 6d70 6f72 6172 et to a temporar │ │ │ │ +0000eba0: 7920 6669 6c65 2c20 2832 2920 696e 766f y file, (2) invo │ │ │ │ +0000ebb0: 6b65 7320 4265 7274 696e 6927 730a 736f kes Bertini's.so │ │ │ │ +0000ebc0: 6c76 6572 2077 6974 6820 6f70 7469 6f6e lver with option │ │ │ │ +0000ebd0: 2054 7261 636b 5479 7065 203d 3e20 322c TrackType => 2, │ │ │ │ +0000ebe0: 2061 6e64 2028 3320 6d6f 7665 7320 7468 and (3 moves th │ │ │ │ +0000ebf0: 6520 6879 7065 7270 6c61 6e65 7320 6465 e hyperplanes de │ │ │ │ +0000ec00: 6669 6e65 6420 696e 2074 6865 0a2a 6e6f fined in the.*no │ │ │ │ +0000ec10: 7465 2057 6974 6e65 7373 5365 743a 2028 te WitnessSet: ( │ │ │ │ +0000ec20: 4e41 4774 7970 6573 2957 6974 6e65 7373 NAGtypes)Witness │ │ │ │ +0000ec30: 5365 742c 2057 2077 6974 6869 6e20 7468 Set, W within th │ │ │ │ +0000ec40: 6520 7370 6163 6520 756e 7469 6c20 7468 e space until th │ │ │ │ +0000ec50: 6520 6465 7369 7265 640a 706f 696e 7473 e desired.points │ │ │ │ +0000ec60: 2061 7265 2073 616d 706c 6564 2c20 2834 are sampled, (4 │ │ │ │ +0000ec70: 2920 7374 6f72 6573 2074 6865 206f 7574 ) stores the out │ │ │ │ +0000ec80: 7075 7420 6f66 2042 6572 7469 6e69 2069 put of Bertini i │ │ │ │ +0000ec90: 6e20 6120 7465 6d70 6f72 6172 7920 6669 n a temporary fi │ │ │ │ +0000eca0: 6c65 2c20 616e 640a 6669 6e61 6c6c 7920 le, and.finally │ │ │ │ +0000ecb0: 2835 2920 7061 7273 6573 2061 6e64 206f (5) parses and o │ │ │ │ +0000ecc0: 7574 7075 7473 2074 6865 2073 6f6c 7574 utputs the solut │ │ │ │ +0000ecd0: 696f 6e73 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d ions...+-------- │ │ │ │ 0000ece0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ecf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ed00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ed10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000ed20: 2d2d 2d2d 2b0a 7c69 3120 3a20 5220 3d20 ----+.|i1 : R = │ │ │ │ -0000ed30: 4343 5b78 2c79 2c7a 5d20 2020 2020 2020 CC[x,y,z] │ │ │ │ +0000ed20: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ +0000ed30: 2043 435b 782c 792c 7a5d 2020 2020 2020 CC[x,y,z] │ │ │ │ 0000ed40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ed50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ed60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ed70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0000ed70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0000ed80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ed90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000eda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000edb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000edc0: 2020 2020 7c0a 7c6f 3120 3d20 5220 2020 |.|o1 = R │ │ │ │ +0000edc0: 2020 2020 207c 0a7c 6f31 203d 2052 2020 |.|o1 = R │ │ │ │ 0000edd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ede0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000edf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ee00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ee10: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0000ee10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0000ee20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ee30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ee40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ee50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ee60: 2020 2020 7c0a 7c6f 3120 3a20 506f 6c79 |.|o1 : Poly │ │ │ │ -0000ee70: 6e6f 6d69 616c 5269 6e67 2020 2020 2020 nomialRing │ │ │ │ +0000ee60: 2020 2020 207c 0a7c 6f31 203a 2050 6f6c |.|o1 : Pol │ │ │ │ +0000ee70: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ 0000ee80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ee90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000eea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000eeb0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0000eeb0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0000eec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000eed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000eee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000eef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000ef00: 2d2d 2d2d 2b0a 7c69 3220 3a20 4620 3d20 ----+.|i2 : F = │ │ │ │ -0000ef10: 7b20 2879 5e32 2b78 5e32 2b7a 5e32 2d31 { (y^2+x^2+z^2-1 │ │ │ │ -0000ef20: 292a 782c 2028 795e 322b 785e 322b 7a5e )*x, (y^2+x^2+z^ │ │ │ │ -0000ef30: 322d 3129 2a79 207d 2020 2020 2020 2020 2-1)*y } │ │ │ │ +0000ef00: 2d2d 2d2d 2d2b 0a7c 6932 203a 2046 203d -----+.|i2 : F = │ │ │ │ +0000ef10: 207b 2028 795e 322b 785e 322b 7a5e 322d { (y^2+x^2+z^2- │ │ │ │ +0000ef20: 3129 2a78 2c20 2879 5e32 2b78 5e32 2b7a 1)*x, (y^2+x^2+z │ │ │ │ +0000ef30: 5e32 2d31 292a 7920 7d20 2020 2020 2020 ^2-1)*y } │ │ │ │ 0000ef40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ef50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0000ef50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0000ef60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ef70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ef80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ef90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000efa0: 2020 2020 7c0a 7c20 2020 2020 2020 3320 |.| 3 │ │ │ │ -0000efb0: 2020 2020 2032 2020 2020 2020 3220 2020 2 2 │ │ │ │ -0000efc0: 2020 2020 3220 2020 2020 3320 2020 2020 2 3 │ │ │ │ -0000efd0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0000efa0: 2020 2020 207c 0a7c 2020 2020 2020 2033 |.| 3 │ │ │ │ +0000efb0: 2020 2020 2020 3220 2020 2020 2032 2020 2 2 │ │ │ │ +0000efc0: 2020 2020 2032 2020 2020 2033 2020 2020 2 3 │ │ │ │ +0000efd0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0000efe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000eff0: 2020 2020 7c0a 7c6f 3220 3d20 7b78 2020 |.|o2 = {x │ │ │ │ -0000f000: 2b20 782a 7920 202b 2078 2a7a 2020 2d20 + x*y + x*z - │ │ │ │ -0000f010: 782c 2078 2079 202b 2079 2020 2b20 792a x, x y + y + y* │ │ │ │ -0000f020: 7a20 202d 2079 7d20 2020 2020 2020 2020 z - y} │ │ │ │ +0000eff0: 2020 2020 207c 0a7c 6f32 203d 207b 7820 |.|o2 = {x │ │ │ │ +0000f000: 202b 2078 2a79 2020 2b20 782a 7a20 202d + x*y + x*z - │ │ │ │ +0000f010: 2078 2c20 7820 7920 2b20 7920 202b 2079 x, x y + y + y │ │ │ │ +0000f020: 2a7a 2020 2d20 797d 2020 2020 2020 2020 *z - y} │ │ │ │ 0000f030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f040: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0000f040: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0000f050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f090: 2020 2020 7c0a 7c6f 3220 3a20 4c69 7374 |.|o2 : List │ │ │ │ -0000f0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f090: 2020 2020 207c 0a7c 6f32 203a 204c 6973 |.|o2 : Lis │ │ │ │ +0000f0a0: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ 0000f0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f0e0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0000f0e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0000f0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000f130: 2d2d 2d2d 2b0a 7c69 3320 3a20 4e56 203d ----+.|i3 : NV = │ │ │ │ -0000f140: 2062 6572 7469 6e69 506f 7344 696d 536f bertiniPosDimSo │ │ │ │ -0000f150: 6c76 6528 4629 2020 2020 2020 2020 2020 lve(F) │ │ │ │ +0000f130: 2d2d 2d2d 2d2b 0a7c 6933 203a 204e 5620 -----+.|i3 : NV │ │ │ │ +0000f140: 3d20 6265 7274 696e 6950 6f73 4469 6d53 = bertiniPosDimS │ │ │ │ +0000f150: 6f6c 7665 2846 2920 2020 2020 2020 2020 olve(F) │ │ │ │ 0000f160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f180: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0000f180: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0000f190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f1d0: 2020 2020 7c0a 7c6f 3320 3d20 4e56 2020 |.|o3 = NV │ │ │ │ +0000f1d0: 2020 2020 207c 0a7c 6f33 203d 204e 5620 |.|o3 = NV │ │ │ │ 0000f1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f220: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0000f220: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0000f230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f270: 2020 2020 7c0a 7c6f 3320 3a20 4e75 6d65 |.|o3 : Nume │ │ │ │ -0000f280: 7269 6361 6c56 6172 6965 7479 2020 2020 ricalVariety │ │ │ │ +0000f270: 2020 2020 207c 0a7c 6f33 203a 204e 756d |.|o3 : Num │ │ │ │ +0000f280: 6572 6963 616c 5661 7269 6574 7920 2020 ericalVariety │ │ │ │ 0000f290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f2c0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0000f2c0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0000f2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000f310: 2d2d 2d2d 2b0a 7c69 3420 3a20 5720 3d20 ----+.|i4 : W = │ │ │ │ -0000f320: 4e56 2331 5f30 202d 2d7a 2d61 7869 7320 NV#1_0 --z-axis │ │ │ │ +0000f310: 2d2d 2d2d 2d2b 0a7c 6934 203a 2057 203d -----+.|i4 : W = │ │ │ │ +0000f320: 204e 5623 315f 3020 2d2d 7a2d 6178 6973 NV#1_0 --z-axis │ │ │ │ 0000f330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f360: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0000f360: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0000f370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f3b0: 2020 2020 7c0a 7c6f 3420 3d20 5720 2020 |.|o4 = W │ │ │ │ +0000f3b0: 2020 2020 207c 0a7c 6f34 203d 2057 2020 |.|o4 = W │ │ │ │ 0000f3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f400: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0000f400: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0000f410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f450: 2020 2020 7c0a 7c6f 3420 3a20 5769 746e |.|o4 : Witn │ │ │ │ -0000f460: 6573 7353 6574 2020 2020 2020 2020 2020 essSet │ │ │ │ +0000f450: 2020 2020 207c 0a7c 6f34 203a 2057 6974 |.|o4 : Wit │ │ │ │ +0000f460: 6e65 7373 5365 7420 2020 2020 2020 2020 nessSet │ │ │ │ 0000f470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f4a0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0000f4a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0000f4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000f4f0: 2d2d 2d2d 2b0a 7c69 3520 3a20 6265 7274 ----+.|i5 : bert │ │ │ │ -0000f500: 696e 6953 616d 706c 6528 342c 2057 2920 iniSample(4, W) │ │ │ │ +0000f4f0: 2d2d 2d2d 2d2b 0a7c 6935 203a 2062 6572 -----+.|i5 : ber │ │ │ │ +0000f500: 7469 6e69 5361 6d70 6c65 2834 2c20 5729 tiniSample(4, W) │ │ │ │ 0000f510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f540: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0000f540: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0000f550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f590: 2020 2020 7c0a 7c6f 3520 3d20 7b7b 2d33 |.|o5 = {{-3 │ │ │ │ -0000f5a0: 2e39 3838 3935 652d 3231 2d32 2e36 3639 .98895e-21-2.669 │ │ │ │ -0000f5b0: 3033 652d 3231 2a69 692c 202d 312e 3039 03e-21*ii, -1.09 │ │ │ │ -0000f5c0: 3034 3965 2d32 302b 322e 3339 3035 3765 049e-20+2.39057e │ │ │ │ -0000f5d0: 2d32 312a 6969 2c20 2020 2020 2020 2020 -21*ii, │ │ │ │ -0000f5e0: 2020 2020 7c0a 7c20 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ +0000f590: 2020 2020 207c 0a7c 6f35 203d 207b 7b2d |.|o5 = {{- │ │ │ │ +0000f5a0: 332e 3938 3839 3565 2d32 312d 322e 3636 3.98895e-21-2.66 │ │ │ │ +0000f5b0: 3930 3365 2d32 312a 6969 2c20 2d31 2e30 903e-21*ii, -1.0 │ │ │ │ +0000f5c0: 3930 3439 652d 3230 2b32 2e33 3930 3537 9049e-20+2.39057 │ │ │ │ +0000f5d0: 652d 3231 2a69 692c 2020 2020 2020 2020 e-21*ii, │ │ │ │ +0000f5e0: 2020 2020 207c 0a7c 2020 2020 202d 2d2d |.| --- │ │ │ │ 0000f5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000f630: 2d2d 2d2d 7c0a 7c20 2020 2020 2e33 3335 ----|.| .335 │ │ │ │ -0000f640: 3439 372b 2e30 3837 3736 3734 2a69 697d 497+.0877674*ii} │ │ │ │ -0000f650: 2c20 7b2d 322e 3338 3835 3165 2d32 312b , {-2.38851e-21+ │ │ │ │ -0000f660: 372e 3433 3036 3665 2d32 312a 6969 2c20 7.43066e-21*ii, │ │ │ │ +0000f630: 2d2d 2d2d 2d7c 0a7c 2020 2020 202e 3333 -----|.| .33 │ │ │ │ +0000f640: 3534 3937 2b2e 3038 3737 3637 342a 6969 5497+.0877674*ii │ │ │ │ +0000f650: 7d2c 207b 2d32 2e33 3838 3531 652d 3231 }, {-2.38851e-21 │ │ │ │ +0000f660: 2b37 2e34 3330 3636 652d 3231 2a69 692c +7.43066e-21*ii, │ │ │ │ 0000f670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f680: 2020 2020 7c0a 7c20 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ +0000f680: 2020 2020 207c 0a7c 2020 2020 202d 2d2d |.| --- │ │ │ │ 0000f690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000f6d0: 2d2d 2d2d 7c0a 7c20 2020 2020 372e 3034 ----|.| 7.04 │ │ │ │ -0000f6e0: 3838 3565 2d32 312d 332e 3331 3433 3565 885e-21-3.31435e │ │ │ │ -0000f6f0: 2d32 312a 6969 2c20 2e32 3335 3136 342b -21*ii, .235164+ │ │ │ │ -0000f700: 2e30 3637 3933 3136 2a69 697d 2c20 2020 .0679316*ii}, │ │ │ │ +0000f6d0: 2d2d 2d2d 2d7c 0a7c 2020 2020 2037 2e30 -----|.| 7.0 │ │ │ │ +0000f6e0: 3438 3835 652d 3231 2d33 2e33 3134 3335 4885e-21-3.31435 │ │ │ │ +0000f6f0: 652d 3231 2a69 692c 202e 3233 3531 3634 e-21*ii, .235164 │ │ │ │ +0000f700: 2b2e 3036 3739 3331 362a 6969 7d2c 2020 +.0679316*ii}, │ │ │ │ 0000f710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f720: 2020 2020 7c0a 7c20 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ +0000f720: 2020 2020 207c 0a7c 2020 2020 202d 2d2d |.| --- │ │ │ │ 0000f730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000f770: 2d2d 2d2d 7c0a 7c20 2020 2020 7b2d 372e ----|.| {-7. │ │ │ │ -0000f780: 3136 3431 3865 2d32 312b 332e 3430 3739 16418e-21+3.4079 │ │ │ │ -0000f790: 3365 2d32 312a 6969 2c20 382e 3638 3636 3e-21*ii, 8.6866 │ │ │ │ -0000f7a0: 3565 2d32 312b 312e 3335 3435 3465 2d32 5e-21+1.35454e-2 │ │ │ │ -0000f7b0: 302a 6969 2c20 2020 2020 2020 2020 2020 0*ii, │ │ │ │ -0000f7c0: 2020 2020 7c0a 7c20 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ +0000f770: 2d2d 2d2d 2d7c 0a7c 2020 2020 207b 2d37 -----|.| {-7 │ │ │ │ +0000f780: 2e31 3634 3138 652d 3231 2b33 2e34 3037 .16418e-21+3.407 │ │ │ │ +0000f790: 3933 652d 3231 2a69 692c 2038 2e36 3836 93e-21*ii, 8.686 │ │ │ │ +0000f7a0: 3635 652d 3231 2b31 2e33 3534 3534 652d 65e-21+1.35454e- │ │ │ │ +0000f7b0: 3230 2a69 692c 2020 2020 2020 2020 2020 20*ii, │ │ │ │ +0000f7c0: 2020 2020 207c 0a7c 2020 2020 202d 2d2d |.| --- │ │ │ │ 0000f7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000f810: 2d2d 2d2d 7c0a 7c20 2020 2020 2e33 3736 ----|.| .376 │ │ │ │ -0000f820: 3339 362b 2e31 3630 3138 382a 6969 7d2c 396+.160188*ii}, │ │ │ │ -0000f830: 207b 372e 3234 3538 3365 2d32 312b 322e {7.24583e-21+2. │ │ │ │ -0000f840: 3232 3631 3665 2d32 312a 6969 2c20 2020 22616e-21*ii, │ │ │ │ +0000f810: 2d2d 2d2d 2d7c 0a7c 2020 2020 202e 3337 -----|.| .37 │ │ │ │ +0000f820: 3633 3936 2b2e 3136 3031 3838 2a69 697d 6396+.160188*ii} │ │ │ │ +0000f830: 2c20 7b37 2e32 3435 3833 652d 3231 2b32 , {7.24583e-21+2 │ │ │ │ +0000f840: 2e32 3236 3136 652d 3231 2a69 692c 2020 .22616e-21*ii, │ │ │ │ 0000f850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f860: 2020 2020 7c0a 7c20 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ +0000f860: 2020 2020 207c 0a7c 2020 2020 202d 2d2d |.| --- │ │ │ │ 0000f870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f8a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000f8b0: 2d2d 2d2d 7c0a 7c20 2020 2020 352e 3234 ----|.| 5.24 │ │ │ │ -0000f8c0: 3038 3365 2d32 312b 352e 3830 3839 3965 083e-21+5.80899e │ │ │ │ -0000f8d0: 2d32 312a 6969 2c20 2e33 3330 3038 332b -21*ii, .330083+ │ │ │ │ -0000f8e0: 2e32 3635 3632 342a 6969 7d7d 2020 2020 .265624*ii}} │ │ │ │ +0000f8b0: 2d2d 2d2d 2d7c 0a7c 2020 2020 2035 2e32 -----|.| 5.2 │ │ │ │ +0000f8c0: 3430 3833 652d 3231 2b35 2e38 3038 3939 4083e-21+5.80899 │ │ │ │ +0000f8d0: 652d 3231 2a69 692c 202e 3333 3030 3833 e-21*ii, .330083 │ │ │ │ +0000f8e0: 2b2e 3236 3536 3234 2a69 697d 7d20 2020 +.265624*ii}} │ │ │ │ 0000f8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f900: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0000f900: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0000f910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f950: 2020 2020 7c0a 7c6f 3520 3a20 4c69 7374 |.|o5 : List │ │ │ │ -0000f960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0000f950: 2020 2020 207c 0a7c 6f35 203a 204c 6973 |.|o5 : Lis │ │ │ │ +0000f960: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ 0000f970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f9a0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0000f9a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0000f9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0000f9f0: 2d2d 2d2d 2b0a 0a57 6179 7320 746f 2075 ----+..Ways to u │ │ │ │ -0000fa00: 7365 2062 6572 7469 6e69 5361 6d70 6c65 se bertiniSample │ │ │ │ -0000fa10: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -0000fa20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ -0000fa30: 2a20 2262 6572 7469 6e69 5361 6d70 6c65 * "bertiniSample │ │ │ │ -0000fa40: 285a 5a2c 5769 746e 6573 7353 6574 2922 (ZZ,WitnessSet)" │ │ │ │ -0000fa50: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ -0000fa60: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ -0000fa70: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ -0000fa80: 6563 7420 2a6e 6f74 6520 6265 7274 696e ect *note bertin │ │ │ │ -0000fa90: 6953 616d 706c 653a 2062 6572 7469 6e69 iSample: bertini │ │ │ │ -0000faa0: 5361 6d70 6c65 2c20 6973 2061 202a 6e6f Sample, is a *no │ │ │ │ -0000fab0: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ -0000fac0: 6f6e 2077 6974 680a 6f70 7469 6f6e 733a on with.options: │ │ │ │ -0000fad0: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ -0000fae0: 6574 686f 6446 756e 6374 696f 6e57 6974 ethodFunctionWit │ │ │ │ -0000faf0: 684f 7074 696f 6e73 2c2e 0a1f 0a46 696c hOptions,....Fil │ │ │ │ -0000fb00: 653a 2042 6572 7469 6e69 2e69 6e66 6f2c e: Bertini.info, │ │ │ │ -0000fb10: 204e 6f64 653a 2062 6572 7469 6e69 5472 Node: bertiniTr │ │ │ │ -0000fb20: 6163 6b48 6f6d 6f74 6f70 792c 204e 6578 ackHomotopy, Nex │ │ │ │ -0000fb30: 743a 2062 6572 7469 6e69 5472 6163 6b48 t: bertiniTrackH │ │ │ │ -0000fb40: 6f6d 6f74 6f70 795f 6c70 5f70 645f 7064 omotopy_lp_pd_pd │ │ │ │ -0000fb50: 5f70 645f 636d 5665 7262 6f73 653d 3e5f _pd_cmVerbose=>_ │ │ │ │ -0000fb60: 7064 5f70 645f 7064 5f72 702c 2050 7265 pd_pd_pd_rp, Pre │ │ │ │ -0000fb70: 763a 2062 6572 7469 6e69 5361 6d70 6c65 v: bertiniSample │ │ │ │ -0000fb80: 2c20 5570 3a20 546f 700a 0a62 6572 7469 , Up: Top..berti │ │ │ │ -0000fb90: 6e69 5472 6163 6b48 6f6d 6f74 6f70 7920 niTrackHomotopy │ │ │ │ -0000fba0: 2d2d 2061 206d 6169 6e20 6d65 7468 6f64 -- a main method │ │ │ │ -0000fbb0: 2074 6f20 7472 6163 6b20 7573 696e 6720 to track using │ │ │ │ -0000fbc0: 6120 7573 6572 2d64 6566 696e 6564 2068 a user-defined h │ │ │ │ -0000fbd0: 6f6d 6f74 6f70 790a 2a2a 2a2a 2a2a 2a2a omotopy.******** │ │ │ │ +0000f9f0: 2d2d 2d2d 2d2b 0a0a 5761 7973 2074 6f20 -----+..Ways to │ │ │ │ +0000fa00: 7573 6520 6265 7274 696e 6953 616d 706c use bertiniSampl │ │ │ │ +0000fa10: 653a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d e:.============= │ │ │ │ +0000fa20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +0000fa30: 202a 2022 6265 7274 696e 6953 616d 706c * "bertiniSampl │ │ │ │ +0000fa40: 6528 5a5a 2c57 6974 6e65 7373 5365 7429 e(ZZ,WitnessSet) │ │ │ │ +0000fa50: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ +0000fa60: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +0000fa70: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +0000fa80: 6a65 6374 202a 6e6f 7465 2062 6572 7469 ject *note berti │ │ │ │ +0000fa90: 6e69 5361 6d70 6c65 3a20 6265 7274 696e niSample: bertin │ │ │ │ +0000faa0: 6953 616d 706c 652c 2069 7320 6120 2a6e iSample, is a *n │ │ │ │ +0000fab0: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ +0000fac0: 696f 6e20 7769 7468 0a6f 7074 696f 6e73 ion with.options │ │ │ │ +0000fad0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0000fae0: 4d65 7468 6f64 4675 6e63 7469 6f6e 5769 MethodFunctionWi │ │ │ │ +0000faf0: 7468 4f70 7469 6f6e 732c 2e0a 1f0a 4669 thOptions,....Fi │ │ │ │ +0000fb00: 6c65 3a20 4265 7274 696e 692e 696e 666f le: Bertini.info │ │ │ │ +0000fb10: 2c20 4e6f 6465 3a20 6265 7274 696e 6954 , Node: bertiniT │ │ │ │ +0000fb20: 7261 636b 486f 6d6f 746f 7079 2c20 4e65 rackHomotopy, Ne │ │ │ │ +0000fb30: 7874 3a20 6265 7274 696e 6954 7261 636b xt: bertiniTrack │ │ │ │ +0000fb40: 486f 6d6f 746f 7079 5f6c 705f 7064 5f70 Homotopy_lp_pd_p │ │ │ │ +0000fb50: 645f 7064 5f63 6d56 6572 626f 7365 3d3e d_pd_cmVerbose=> │ │ │ │ +0000fb60: 5f70 645f 7064 5f70 645f 7270 2c20 5072 _pd_pd_pd_rp, Pr │ │ │ │ +0000fb70: 6576 3a20 6265 7274 696e 6953 616d 706c ev: bertiniSampl │ │ │ │ +0000fb80: 652c 2055 703a 2054 6f70 0a0a 6265 7274 e, Up: Top..bert │ │ │ │ +0000fb90: 696e 6954 7261 636b 486f 6d6f 746f 7079 iniTrackHomotopy │ │ │ │ +0000fba0: 202d 2d20 6120 6d61 696e 206d 6574 686f -- a main metho │ │ │ │ +0000fbb0: 6420 746f 2074 7261 636b 2075 7369 6e67 d to track using │ │ │ │ +0000fbc0: 2061 2075 7365 722d 6465 6669 6e65 6420 a user-defined │ │ │ │ +0000fbd0: 686f 6d6f 746f 7079 0a2a 2a2a 2a2a 2a2a homotopy.******* │ │ │ │ 0000fbe0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0000fbf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0000fc00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0000fc10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0000fc20: 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 0a3d ****..Synopsis.= │ │ │ │ -0000fc30: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 7361 =======.. * Usa │ │ │ │ -0000fc40: 6765 3a20 0a20 2020 2020 2020 2053 303d ge: . S0= │ │ │ │ -0000fc50: 6265 7274 696e 6954 7261 636b 486f 6d6f bertiniTrackHomo │ │ │ │ -0000fc60: 746f 7079 2874 2c20 482c 2053 3129 0a20 topy(t, H, S1). │ │ │ │ -0000fc70: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ -0000fc80: 202a 2074 2c20 6120 2a6e 6f74 6520 7269 * t, a *note ri │ │ │ │ -0000fc90: 6e67 2065 6c65 6d65 6e74 3a20 284d 6163 ng element: (Mac │ │ │ │ -0000fca0: 6175 6c61 7932 446f 6329 5269 6e67 456c aulay2Doc)RingEl │ │ │ │ -0000fcb0: 656d 656e 742c 2c20 6120 7061 7468 2076 ement,, a path v │ │ │ │ -0000fcc0: 6172 6961 626c 650a 2020 2020 2020 2a20 ariable. * │ │ │ │ -0000fcd0: 482c 2061 202a 6e6f 7465 206c 6973 743a H, a *note list: │ │ │ │ -0000fce0: 2028 4d61 6361 756c 6179 3244 6f63 294c (Macaulay2Doc)L │ │ │ │ -0000fcf0: 6973 742c 2c20 6120 6c69 7374 2070 6f6c ist,, a list pol │ │ │ │ -0000fd00: 796e 6f6d 6961 6c73 2074 6861 7420 6465 ynomials that de │ │ │ │ -0000fd10: 6669 6e65 0a20 2020 2020 2020 2074 6865 fine. the │ │ │ │ -0000fd20: 2068 6f6d 6f74 6f70 7920 7769 7468 2072 homotopy with r │ │ │ │ -0000fd30: 6573 7065 6374 2074 6f20 7468 6520 7061 espect to the pa │ │ │ │ -0000fd40: 7468 2076 6172 6961 626c 650a 2020 2020 th variable. │ │ │ │ -0000fd50: 2020 2a20 5331 2c20 6120 2a6e 6f74 6520 * S1, a *note │ │ │ │ -0000fd60: 6c69 7374 3a20 284d 6163 6175 6c61 7932 list: (Macaulay2 │ │ │ │ -0000fd70: 446f 6329 4c69 7374 2c2c 2061 206c 6973 Doc)List,, a lis │ │ │ │ -0000fd80: 7420 6f66 2073 6f6c 7574 696f 6e73 2074 t of solutions t │ │ │ │ -0000fd90: 6f20 7468 6520 7374 6172 740a 2020 2020 o the start. │ │ │ │ -0000fda0: 2020 2020 7379 7374 656d 0a20 202a 202a system. * * │ │ │ │ -0000fdb0: 6e6f 7465 204f 7074 696f 6e61 6c20 696e note Optional in │ │ │ │ -0000fdc0: 7075 7473 3a20 284d 6163 6175 6c61 7932 puts: (Macaulay2 │ │ │ │ -0000fdd0: 446f 6329 7573 696e 6720 6675 6e63 7469 Doc)using functi │ │ │ │ -0000fde0: 6f6e 7320 7769 7468 206f 7074 696f 6e61 ons with optiona │ │ │ │ -0000fdf0: 6c20 696e 7075 7473 2c3a 0a20 2020 2020 l inputs,:. │ │ │ │ -0000fe00: 202a 2042 6572 7469 6e69 496e 7075 7443 * BertiniInputC │ │ │ │ -0000fe10: 6f6e 6669 6775 7261 7469 6f6e 2028 6d69 onfiguration (mi │ │ │ │ -0000fe20: 7373 696e 6720 646f 6375 6d65 6e74 6174 ssing documentat │ │ │ │ -0000fe30: 696f 6e29 203d 3e20 2e2e 2e2c 2064 6566 ion) => ..., def │ │ │ │ -0000fe40: 6175 6c74 2076 616c 7565 0a20 2020 2020 ault value. │ │ │ │ -0000fe50: 2020 207b 7d2c 0a20 2020 2020 202a 202a {},. * * │ │ │ │ -0000fe60: 6e6f 7465 2049 7350 726f 6a65 6374 6976 note IsProjectiv │ │ │ │ -0000fe70: 653a 2049 7350 726f 6a65 6374 6976 652c e: IsProjective, │ │ │ │ -0000fe80: 203d 3e20 2e2e 2e2c 2064 6566 6175 6c74 => ..., default │ │ │ │ -0000fe90: 2076 616c 7565 202d 312c 206f 7074 696f value -1, optio │ │ │ │ -0000fea0: 6e61 6c0a 2020 2020 2020 2020 6172 6775 nal. argu │ │ │ │ -0000feb0: 6d65 6e74 2074 6f20 7370 6563 6966 7920 ment to specify │ │ │ │ -0000fec0: 7768 6574 6865 7220 746f 2075 7365 2068 whether to use h │ │ │ │ -0000fed0: 6f6d 6f67 656e 656f 7573 2063 6f6f 7264 omogeneous coord │ │ │ │ -0000fee0: 696e 6174 6573 0a20 2020 2020 202a 202a inates. * * │ │ │ │ -0000fef0: 6e6f 7465 2056 6572 626f 7365 3a20 6265 note Verbose: be │ │ │ │ -0000ff00: 7274 696e 6954 7261 636b 486f 6d6f 746f rtiniTrackHomoto │ │ │ │ -0000ff10: 7079 5f6c 705f 7064 5f70 645f 7064 5f63 py_lp_pd_pd_pd_c │ │ │ │ -0000ff20: 6d56 6572 626f 7365 3d3e 5f70 645f 7064 mVerbose=>_pd_pd │ │ │ │ -0000ff30: 5f70 645f 7270 0a20 2020 2020 2020 202c _pd_rp. , │ │ │ │ -0000ff40: 203d 3e20 2e2e 2e2c 2064 6566 6175 6c74 => ..., default │ │ │ │ -0000ff50: 2076 616c 7565 2066 616c 7365 2c20 4f70 value false, Op │ │ │ │ -0000ff60: 7469 6f6e 2074 6f20 7369 6c65 6e63 6520 tion to silence │ │ │ │ -0000ff70: 6164 6469 7469 6f6e 616c 206f 7574 7075 additional outpu │ │ │ │ -0000ff80: 740a 2020 2a20 4f75 7470 7574 733a 0a20 t. * Outputs:. │ │ │ │ -0000ff90: 2020 2020 202a 2053 302c 2061 202a 6e6f * S0, a *no │ │ │ │ -0000ffa0: 7465 206c 6973 743a 2028 4d61 6361 756c te list: (Macaul │ │ │ │ -0000ffb0: 6179 3244 6f63 294c 6973 742c 2c20 6120 ay2Doc)List,, a │ │ │ │ -0000ffc0: 6c69 7374 206f 6620 736f 6c75 7469 6f6e list of solution │ │ │ │ -0000ffd0: 7320 746f 2074 6865 0a20 2020 2020 2020 s to the. │ │ │ │ -0000ffe0: 2074 6172 6765 7420 7379 7374 656d 0a0a target system.. │ │ │ │ -0000fff0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -00010000: 3d3d 3d3d 3d3d 3d0a 0a54 6869 7320 6d65 =======..This me │ │ │ │ -00010010: 7468 6f64 2063 616c 6c73 2042 6572 7469 thod calls Berti │ │ │ │ -00010020: 6e69 2074 6f20 7472 6163 6b20 6120 7573 ni to track a us │ │ │ │ -00010030: 6572 2d64 6566 696e 6564 2068 6f6d 6f74 er-defined homot │ │ │ │ -00010040: 6f70 792e 2020 5468 6520 7573 6572 206e opy. The user n │ │ │ │ -00010050: 6565 6473 2074 6f0a 7370 6563 6966 7920 eeds to.specify │ │ │ │ -00010060: 7468 6520 686f 6d6f 746f 7079 2048 2c20 the homotopy H, │ │ │ │ -00010070: 7468 6520 7061 7468 2076 6172 6961 626c the path variabl │ │ │ │ -00010080: 6520 742c 2061 6e64 2061 206c 6973 7420 e t, and a list │ │ │ │ -00010090: 6f66 2073 7461 7274 2073 6f6c 7574 696f of start solutio │ │ │ │ -000100a0: 6e73 2053 312e 0a42 6572 7469 6e69 2028 ns S1..Bertini ( │ │ │ │ -000100b0: 3129 2077 7269 7465 7320 7468 6520 686f 1) writes the ho │ │ │ │ -000100c0: 6d6f 746f 7079 2061 6e64 2073 7461 7274 motopy and start │ │ │ │ -000100d0: 2073 6f6c 7574 696f 6e73 2074 6f20 7465 solutions to te │ │ │ │ -000100e0: 6d70 6f72 6172 7920 6669 6c65 732c 2028 mporary files, ( │ │ │ │ -000100f0: 3229 0a69 6e76 6f6b 6573 2042 6572 7469 2).invokes Berti │ │ │ │ -00010100: 6e69 2773 2073 6f6c 7665 7220 7769 7468 ni's solver with │ │ │ │ -00010110: 2063 6f6e 6669 6775 7261 7469 6f6e 206b configuration k │ │ │ │ -00010120: 6579 776f 7264 2055 7365 7248 6f6d 6f74 eyword UserHomot │ │ │ │ -00010130: 6f70 7920 3d3e 2031 2069 6e20 7468 650a opy => 1 in the. │ │ │ │ -00010140: 6166 6669 6e65 2063 6173 6520 616e 6420 affine case and │ │ │ │ -00010150: 5573 6572 486f 6d6f 746f 7079 203d 3e20 UserHomotopy => │ │ │ │ -00010160: 3220 696e 2074 6865 2070 726f 6a65 6374 2 in the project │ │ │ │ -00010170: 6976 6520 7369 7475 6174 696f 6e2c 2028 ive situation, ( │ │ │ │ -00010180: 3329 2073 746f 7265 7320 7468 650a 6f75 3) stores the.ou │ │ │ │ -00010190: 7470 7574 206f 6620 4265 7274 696e 6920 tput of Bertini │ │ │ │ -000101a0: 696e 2061 2074 656d 706f 7261 7279 2066 in a temporary f │ │ │ │ -000101b0: 696c 652c 2061 6e64 2028 3429 2070 6172 ile, and (4) par │ │ │ │ -000101c0: 7365 7320 6120 6d61 6368 696e 6520 7265 ses a machine re │ │ │ │ -000101d0: 6164 6162 6c65 2066 696c 650a 746f 206f adable file.to o │ │ │ │ -000101e0: 7574 7075 7420 6120 6c69 7374 206f 6620 utput a list of │ │ │ │ -000101f0: 736f 6c75 7469 6f6e 732e 0a0a 2b2d 2d2d solutions...+--- │ │ │ │ +0000fc20: 2a2a 2a2a 2a0a 0a53 796e 6f70 7369 730a *****..Synopsis. │ │ │ │ +0000fc30: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 5573 ========.. * Us │ │ │ │ +0000fc40: 6167 653a 200a 2020 2020 2020 2020 5330 age: . S0 │ │ │ │ +0000fc50: 3d62 6572 7469 6e69 5472 6163 6b48 6f6d =bertiniTrackHom │ │ │ │ +0000fc60: 6f74 6f70 7928 742c 2048 2c20 5331 290a otopy(t, H, S1). │ │ │ │ +0000fc70: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +0000fc80: 2020 2a20 742c 2061 202a 6e6f 7465 2072 * t, a *note r │ │ │ │ +0000fc90: 696e 6720 656c 656d 656e 743a 2028 4d61 ing element: (Ma │ │ │ │ +0000fca0: 6361 756c 6179 3244 6f63 2952 696e 6745 caulay2Doc)RingE │ │ │ │ +0000fcb0: 6c65 6d65 6e74 2c2c 2061 2070 6174 6820 lement,, a path │ │ │ │ +0000fcc0: 7661 7269 6162 6c65 0a20 2020 2020 202a variable. * │ │ │ │ +0000fcd0: 2048 2c20 6120 2a6e 6f74 6520 6c69 7374 H, a *note list │ │ │ │ +0000fce0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0000fcf0: 4c69 7374 2c2c 2061 206c 6973 7420 706f List,, a list po │ │ │ │ +0000fd00: 6c79 6e6f 6d69 616c 7320 7468 6174 2064 lynomials that d │ │ │ │ +0000fd10: 6566 696e 650a 2020 2020 2020 2020 7468 efine. th │ │ │ │ +0000fd20: 6520 686f 6d6f 746f 7079 2077 6974 6820 e homotopy with │ │ │ │ +0000fd30: 7265 7370 6563 7420 746f 2074 6865 2070 respect to the p │ │ │ │ +0000fd40: 6174 6820 7661 7269 6162 6c65 0a20 2020 ath variable. │ │ │ │ +0000fd50: 2020 202a 2053 312c 2061 202a 6e6f 7465 * S1, a *note │ │ │ │ +0000fd60: 206c 6973 743a 2028 4d61 6361 756c 6179 list: (Macaulay │ │ │ │ +0000fd70: 3244 6f63 294c 6973 742c 2c20 6120 6c69 2Doc)List,, a li │ │ │ │ +0000fd80: 7374 206f 6620 736f 6c75 7469 6f6e 7320 st of solutions │ │ │ │ +0000fd90: 746f 2074 6865 2073 7461 7274 0a20 2020 to the start. │ │ │ │ +0000fda0: 2020 2020 2073 7973 7465 6d0a 2020 2a20 system. * │ │ │ │ +0000fdb0: 2a6e 6f74 6520 4f70 7469 6f6e 616c 2069 *note Optional i │ │ │ │ +0000fdc0: 6e70 7574 733a 2028 4d61 6361 756c 6179 nputs: (Macaulay │ │ │ │ +0000fdd0: 3244 6f63 2975 7369 6e67 2066 756e 6374 2Doc)using funct │ │ │ │ +0000fde0: 696f 6e73 2077 6974 6820 6f70 7469 6f6e ions with option │ │ │ │ +0000fdf0: 616c 2069 6e70 7574 732c 3a0a 2020 2020 al inputs,:. │ │ │ │ +0000fe00: 2020 2a20 4265 7274 696e 6949 6e70 7574 * BertiniInput │ │ │ │ +0000fe10: 436f 6e66 6967 7572 6174 696f 6e20 286d Configuration (m │ │ │ │ +0000fe20: 6973 7369 6e67 2064 6f63 756d 656e 7461 issing documenta │ │ │ │ +0000fe30: 7469 6f6e 2920 3d3e 202e 2e2e 2c20 6465 tion) => ..., de │ │ │ │ +0000fe40: 6661 756c 7420 7661 6c75 650a 2020 2020 fault value. │ │ │ │ +0000fe50: 2020 2020 7b7d 2c0a 2020 2020 2020 2a20 {},. * │ │ │ │ +0000fe60: 2a6e 6f74 6520 4973 5072 6f6a 6563 7469 *note IsProjecti │ │ │ │ +0000fe70: 7665 3a20 4973 5072 6f6a 6563 7469 7665 ve: IsProjective │ │ │ │ +0000fe80: 2c20 3d3e 202e 2e2e 2c20 6465 6661 756c , => ..., defaul │ │ │ │ +0000fe90: 7420 7661 6c75 6520 2d31 2c20 6f70 7469 t value -1, opti │ │ │ │ +0000fea0: 6f6e 616c 0a20 2020 2020 2020 2061 7267 onal. arg │ │ │ │ +0000feb0: 756d 656e 7420 746f 2073 7065 6369 6679 ument to specify │ │ │ │ +0000fec0: 2077 6865 7468 6572 2074 6f20 7573 6520 whether to use │ │ │ │ +0000fed0: 686f 6d6f 6765 6e65 6f75 7320 636f 6f72 homogeneous coor │ │ │ │ +0000fee0: 6469 6e61 7465 730a 2020 2020 2020 2a20 dinates. * │ │ │ │ +0000fef0: 2a6e 6f74 6520 5665 7262 6f73 653a 2062 *note Verbose: b │ │ │ │ +0000ff00: 6572 7469 6e69 5472 6163 6b48 6f6d 6f74 ertiniTrackHomot │ │ │ │ +0000ff10: 6f70 795f 6c70 5f70 645f 7064 5f70 645f opy_lp_pd_pd_pd_ │ │ │ │ +0000ff20: 636d 5665 7262 6f73 653d 3e5f 7064 5f70 cmVerbose=>_pd_p │ │ │ │ +0000ff30: 645f 7064 5f72 700a 2020 2020 2020 2020 d_pd_rp. │ │ │ │ +0000ff40: 2c20 3d3e 202e 2e2e 2c20 6465 6661 756c , => ..., defaul │ │ │ │ +0000ff50: 7420 7661 6c75 6520 6661 6c73 652c 204f t value false, O │ │ │ │ +0000ff60: 7074 696f 6e20 746f 2073 696c 656e 6365 ption to silence │ │ │ │ +0000ff70: 2061 6464 6974 696f 6e61 6c20 6f75 7470 additional outp │ │ │ │ +0000ff80: 7574 0a20 202a 204f 7574 7075 7473 3a0a ut. * Outputs:. │ │ │ │ +0000ff90: 2020 2020 2020 2a20 5330 2c20 6120 2a6e * S0, a *n │ │ │ │ +0000ffa0: 6f74 6520 6c69 7374 3a20 284d 6163 6175 ote list: (Macau │ │ │ │ +0000ffb0: 6c61 7932 446f 6329 4c69 7374 2c2c 2061 lay2Doc)List,, a │ │ │ │ +0000ffc0: 206c 6973 7420 6f66 2073 6f6c 7574 696f list of solutio │ │ │ │ +0000ffd0: 6e73 2074 6f20 7468 650a 2020 2020 2020 ns to the. │ │ │ │ +0000ffe0: 2020 7461 7267 6574 2073 7973 7465 6d0a target system. │ │ │ │ +0000fff0: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +00010000: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 206d ========..This m │ │ │ │ +00010010: 6574 686f 6420 6361 6c6c 7320 4265 7274 ethod calls Bert │ │ │ │ +00010020: 696e 6920 746f 2074 7261 636b 2061 2075 ini to track a u │ │ │ │ +00010030: 7365 722d 6465 6669 6e65 6420 686f 6d6f ser-defined homo │ │ │ │ +00010040: 746f 7079 2e20 2054 6865 2075 7365 7220 topy. The user │ │ │ │ +00010050: 6e65 6564 7320 746f 0a73 7065 6369 6679 needs to.specify │ │ │ │ +00010060: 2074 6865 2068 6f6d 6f74 6f70 7920 482c the homotopy H, │ │ │ │ +00010070: 2074 6865 2070 6174 6820 7661 7269 6162 the path variab │ │ │ │ +00010080: 6c65 2074 2c20 616e 6420 6120 6c69 7374 le t, and a list │ │ │ │ +00010090: 206f 6620 7374 6172 7420 736f 6c75 7469 of start soluti │ │ │ │ +000100a0: 6f6e 7320 5331 2e0a 4265 7274 696e 6920 ons S1..Bertini │ │ │ │ +000100b0: 2831 2920 7772 6974 6573 2074 6865 2068 (1) writes the h │ │ │ │ +000100c0: 6f6d 6f74 6f70 7920 616e 6420 7374 6172 omotopy and star │ │ │ │ +000100d0: 7420 736f 6c75 7469 6f6e 7320 746f 2074 t solutions to t │ │ │ │ +000100e0: 656d 706f 7261 7279 2066 696c 6573 2c20 emporary files, │ │ │ │ +000100f0: 2832 290a 696e 766f 6b65 7320 4265 7274 (2).invokes Bert │ │ │ │ +00010100: 696e 6927 7320 736f 6c76 6572 2077 6974 ini's solver wit │ │ │ │ +00010110: 6820 636f 6e66 6967 7572 6174 696f 6e20 h configuration │ │ │ │ +00010120: 6b65 7977 6f72 6420 5573 6572 486f 6d6f keyword UserHomo │ │ │ │ +00010130: 746f 7079 203d 3e20 3120 696e 2074 6865 topy => 1 in the │ │ │ │ +00010140: 0a61 6666 696e 6520 6361 7365 2061 6e64 .affine case and │ │ │ │ +00010150: 2055 7365 7248 6f6d 6f74 6f70 7920 3d3e UserHomotopy => │ │ │ │ +00010160: 2032 2069 6e20 7468 6520 7072 6f6a 6563 2 in the projec │ │ │ │ +00010170: 7469 7665 2073 6974 7561 7469 6f6e 2c20 tive situation, │ │ │ │ +00010180: 2833 2920 7374 6f72 6573 2074 6865 0a6f (3) stores the.o │ │ │ │ +00010190: 7574 7075 7420 6f66 2042 6572 7469 6e69 utput of Bertini │ │ │ │ +000101a0: 2069 6e20 6120 7465 6d70 6f72 6172 7920 in a temporary │ │ │ │ +000101b0: 6669 6c65 2c20 616e 6420 2834 2920 7061 file, and (4) pa │ │ │ │ +000101c0: 7273 6573 2061 206d 6163 6869 6e65 2072 rses a machine r │ │ │ │ +000101d0: 6561 6461 626c 6520 6669 6c65 0a74 6f20 eadable file.to │ │ │ │ +000101e0: 6f75 7470 7574 2061 206c 6973 7420 6f66 output a list of │ │ │ │ +000101f0: 2073 6f6c 7574 696f 6e73 2e0a 0a2b 2d2d solutions...+-- │ │ │ │ 00010200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010240: 2b0a 7c69 3120 3a20 5220 3d20 4343 5b78 +.|i1 : R = CC[x │ │ │ │ -00010250: 2c74 5d3b 202d 2d20 696e 636c 7564 6520 ,t]; -- include │ │ │ │ -00010260: 7468 6520 7061 7468 2076 6172 6961 626c the path variabl │ │ │ │ -00010270: 6520 696e 2074 6865 2072 696e 6720 2020 e in the ring │ │ │ │ -00010280: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00010240: 2d2b 0a7c 6931 203a 2052 203d 2043 435b -+.|i1 : R = CC[ │ │ │ │ +00010250: 782c 745d 3b20 2d2d 2069 6e63 6c75 6465 x,t]; -- include │ │ │ │ +00010260: 2074 6865 2070 6174 6820 7661 7269 6162 the path variab │ │ │ │ +00010270: 6c65 2069 6e20 7468 6520 7269 6e67 2020 le in the ring │ │ │ │ +00010280: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 00010290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000102a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000102b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000102c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000102d0: 3220 3a20 4820 3d20 7b20 2878 5e32 2d31 2 : H = { (x^2-1 │ │ │ │ -000102e0: 292a 7420 2b20 2878 5e32 2d32 292a 2831 )*t + (x^2-2)*(1 │ │ │ │ -000102f0: 2d74 297d 3b20 2020 2020 2020 2020 2020 -t)}; │ │ │ │ +000102c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000102d0: 6932 203a 2048 203d 207b 2028 785e 322d i2 : H = { (x^2- │ │ │ │ +000102e0: 3129 2a74 202b 2028 785e 322d 3229 2a28 1)*t + (x^2-2)*( │ │ │ │ +000102f0: 312d 7429 7d3b 2020 2020 2020 2020 2020 1-t)}; │ │ │ │ 00010300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010310: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00010310: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00010320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010350: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ -00010360: 736f 6c31 203d 2070 6f69 6e74 207b 7b31 sol1 = point {{1 │ │ │ │ -00010370: 7d7d 3b20 2020 2020 2020 2020 2020 2020 }}; │ │ │ │ +00010350: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ +00010360: 2073 6f6c 3120 3d20 706f 696e 7420 7b7b sol1 = point {{ │ │ │ │ +00010370: 317d 7d3b 2020 2020 2020 2020 2020 2020 1}}; │ │ │ │ 00010380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010390: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000103a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00010390: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000103a0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 000103b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000103c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000103d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000103e0: 2d2d 2d2d 2b0a 7c69 3420 3a20 736f 6c32 ----+.|i4 : sol2 │ │ │ │ -000103f0: 203d 2070 6f69 6e74 207b 7b2d 317d 7d3b = point {{-1}}; │ │ │ │ -00010400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000103e0: 2d2d 2d2d 2d2b 0a7c 6934 203a 2073 6f6c -----+.|i4 : sol │ │ │ │ +000103f0: 3220 3d20 706f 696e 7420 7b7b 2d31 7d7d 2 = point {{-1}} │ │ │ │ +00010400: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ 00010410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010420: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00010420: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 00010430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010470: 2b0a 7c69 3520 3a20 5331 3d20 7b20 736f +.|i5 : S1= { so │ │ │ │ -00010480: 6c31 2c20 736f 6c32 2020 7d3b 2d2d 736f l1, sol2 };--so │ │ │ │ -00010490: 6c75 7469 6f6e 7320 746f 2048 2077 6865 lutions to H whe │ │ │ │ -000104a0: 6e20 743d 3120 2020 2020 2020 2020 2020 n t=1 │ │ │ │ -000104b0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00010470: 2d2b 0a7c 6935 203a 2053 313d 207b 2073 -+.|i5 : S1= { s │ │ │ │ +00010480: 6f6c 312c 2073 6f6c 3220 207d 3b2d 2d73 ol1, sol2 };--s │ │ │ │ +00010490: 6f6c 7574 696f 6e73 2074 6f20 4820 7768 olutions to H wh │ │ │ │ +000104a0: 656e 2074 3d31 2020 2020 2020 2020 2020 en t=1 │ │ │ │ +000104b0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 000104c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000104d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000104e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000104f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00010500: 3620 3a20 5330 203d 2062 6572 7469 6e69 6 : S0 = bertini │ │ │ │ -00010510: 5472 6163 6b48 6f6d 6f74 6f70 7920 2874 TrackHomotopy (t │ │ │ │ -00010520: 2c20 482c 2053 3129 202d 2d73 6f6c 7574 , H, S1) --solut │ │ │ │ -00010530: 696f 6e73 2074 6f20 4820 7768 656e 2074 ions to H when t │ │ │ │ -00010540: 3d30 7c0a 7c20 2020 2020 2020 2020 2020 =0|.| │ │ │ │ +000104f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00010500: 6936 203a 2053 3020 3d20 6265 7274 696e i6 : S0 = bertin │ │ │ │ +00010510: 6954 7261 636b 486f 6d6f 746f 7079 2028 iTrackHomotopy ( │ │ │ │ +00010520: 742c 2048 2c20 5331 2920 2d2d 736f 6c75 t, H, S1) --solu │ │ │ │ +00010530: 7469 6f6e 7320 746f 2048 2077 6865 6e20 tions to H when │ │ │ │ +00010540: 743d 307c 0a7c 2020 2020 2020 2020 2020 t=0|.| │ │ │ │ 00010550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010580: 2020 2020 2020 2020 7c0a 7c6f 3620 3d20 |.|o6 = │ │ │ │ -00010590: 7b7b 2d31 2e34 3134 3231 7d2c 207b 312e {{-1.41421}, {1. │ │ │ │ -000105a0: 3431 3432 317d 7d20 2020 2020 2020 2020 41421}} │ │ │ │ +00010580: 2020 2020 2020 2020 207c 0a7c 6f36 203d |.|o6 = │ │ │ │ +00010590: 207b 7b2d 312e 3431 3432 317d 2c20 7b31 {{-1.41421}, {1 │ │ │ │ +000105a0: 2e34 3134 3231 7d7d 2020 2020 2020 2020 .41421}} │ │ │ │ 000105b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000105c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000105d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000105c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000105d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000105e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000105f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010610: 2020 2020 7c0a 7c6f 3620 3a20 4c69 7374 |.|o6 : List │ │ │ │ -00010620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010610: 2020 2020 207c 0a7c 6f36 203a 204c 6973 |.|o6 : Lis │ │ │ │ +00010620: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ 00010630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010650: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00010650: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 00010660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000106a0: 2b0a 7c69 3720 3a20 7065 656b 2053 305f +.|i7 : peek S0_ │ │ │ │ -000106b0: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000106a0: 2d2b 0a7c 6937 203a 2070 6565 6b20 5330 -+.|i7 : peek S0 │ │ │ │ +000106b0: 5f30 2020 2020 2020 2020 2020 2020 2020 _0 │ │ │ │ 000106c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000106d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000106e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000106e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000106f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010720: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00010730: 3720 3d20 506f 696e 747b 6361 6368 6520 7 = Point{cache │ │ │ │ -00010740: 3d3e 2043 6163 6865 5461 626c 657b 2e2e => CacheTable{.. │ │ │ │ -00010750: 2e39 2e2e 2e7d 7d20 2020 2020 2020 2020 .9...}} │ │ │ │ +00010720: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00010730: 6f37 203d 2050 6f69 6e74 7b63 6163 6865 o7 = Point{cache │ │ │ │ +00010740: 203d 3e20 4361 6368 6554 6162 6c65 7b2e => CacheTable{. │ │ │ │ +00010750: 2e2e 392e 2e2e 7d7d 2020 2020 2020 2020 ..9...}} │ │ │ │ 00010760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010770: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00010780: 436f 6f72 6469 6e61 7465 7320 3d3e 207b Coordinates => { │ │ │ │ -00010790: 2d31 2e34 3134 3231 7d20 2020 2020 2020 -1.41421} │ │ │ │ +00010770: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00010780: 2043 6f6f 7264 696e 6174 6573 203d 3e20 Coordinates => │ │ │ │ +00010790: 7b2d 312e 3431 3432 317d 2020 2020 2020 {-1.41421} │ │ │ │ 000107a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000107b0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000107b0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 000107c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000107d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000107e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000107f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00010800: 0a49 6e20 7468 6520 7072 6576 696f 7573 .In the previous │ │ │ │ -00010810: 2065 7861 6d70 6c65 2c20 7765 2073 6f6c example, we sol │ │ │ │ -00010820: 7665 6420 2478 5e32 2d32 2420 6279 206d ved $x^2-2$ by m │ │ │ │ -00010830: 6f76 696e 6720 6672 6f6d 2024 785e 322d oving from $x^2- │ │ │ │ -00010840: 3124 2077 6974 6820 6120 6c69 6e65 6172 1$ with a linear │ │ │ │ -00010850: 0a68 6f6d 6f74 6f70 792e 2042 6572 7469 .homotopy. Berti │ │ │ │ -00010860: 6e69 2074 7261 636b 7320 686f 6d6f 746f ni tracks homoto │ │ │ │ -00010870: 7069 6573 2073 7461 7274 696e 6720 6174 pies starting at │ │ │ │ -00010880: 2024 743d 3124 2061 6e64 2065 6e64 696e $t=1$ and endin │ │ │ │ -00010890: 6720 6174 2024 743d 3024 2e0a 4669 6e61 g at $t=0$..Fina │ │ │ │ -000108a0: 6c20 736f 6c75 7469 6f6e 7320 6172 6520 l solutions are │ │ │ │ -000108b0: 6f66 2074 6865 2074 7970 6520 506f 696e of the type Poin │ │ │ │ -000108c0: 742e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d t...+----------- │ │ │ │ +000107f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00010800: 0a0a 496e 2074 6865 2070 7265 7669 6f75 ..In the previou │ │ │ │ +00010810: 7320 6578 616d 706c 652c 2077 6520 736f s example, we so │ │ │ │ +00010820: 6c76 6564 2024 785e 322d 3224 2062 7920 lved $x^2-2$ by │ │ │ │ +00010830: 6d6f 7669 6e67 2066 726f 6d20 2478 5e32 moving from $x^2 │ │ │ │ +00010840: 2d31 2420 7769 7468 2061 206c 696e 6561 -1$ with a linea │ │ │ │ +00010850: 720a 686f 6d6f 746f 7079 2e20 4265 7274 r.homotopy. Bert │ │ │ │ +00010860: 696e 6920 7472 6163 6b73 2068 6f6d 6f74 ini tracks homot │ │ │ │ +00010870: 6f70 6965 7320 7374 6172 7469 6e67 2061 opies starting a │ │ │ │ +00010880: 7420 2474 3d31 2420 616e 6420 656e 6469 t $t=1$ and endi │ │ │ │ +00010890: 6e67 2061 7420 2474 3d30 242e 0a46 696e ng at $t=0$..Fin │ │ │ │ +000108a0: 616c 2073 6f6c 7574 696f 6e73 2061 7265 al solutions are │ │ │ │ +000108b0: 206f 6620 7468 6520 7479 7065 2050 6f69 of the type Poi │ │ │ │ +000108c0: 6e74 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d nt...+---------- │ │ │ │ 000108d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000108e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000108f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010910: 2d2d 2b0a 7c69 3820 3a20 523d 4343 5b78 --+.|i8 : R=CC[x │ │ │ │ -00010920: 2c79 2c74 5d3b 202d 2d20 696e 636c 7564 ,y,t]; -- includ │ │ │ │ -00010930: 6520 7468 6520 7061 7468 2076 6172 6961 e the path varia │ │ │ │ -00010940: 626c 6520 696e 2074 6865 2072 696e 6720 ble in the ring │ │ │ │ +00010910: 2d2d 2d2b 0a7c 6938 203a 2052 3d43 435b ---+.|i8 : R=CC[ │ │ │ │ +00010920: 782c 792c 745d 3b20 2d2d 2069 6e63 6c75 x,y,t]; -- inclu │ │ │ │ +00010930: 6465 2074 6865 2070 6174 6820 7661 7269 de the path vari │ │ │ │ +00010940: 6162 6c65 2069 6e20 7468 6520 7269 6e67 able in the ring │ │ │ │ 00010950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010960: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00010960: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00010970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000109a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000109b0: 2d2d 2b0a 7c69 3920 3a20 6631 3d28 785e --+.|i9 : f1=(x^ │ │ │ │ -000109c0: 322d 795e 3229 3b20 2020 2020 2020 2020 2-y^2); │ │ │ │ +000109b0: 2d2d 2d2b 0a7c 6939 203a 2066 313d 2878 ---+.|i9 : f1=(x │ │ │ │ +000109c0: 5e32 2d79 5e32 293b 2020 2020 2020 2020 ^2-y^2); │ │ │ │ 000109d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000109e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000109f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010a00: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00010a00: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00010a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010a50: 2d2d 2b0a 7c69 3130 203a 2066 323d 2832 --+.|i10 : f2=(2 │ │ │ │ -00010a60: 2a78 5e32 2d33 2a78 2a79 2b35 2a79 5e32 *x^2-3*x*y+5*y^2 │ │ │ │ -00010a70: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ +00010a50: 2d2d 2d2b 0a7c 6931 3020 3a20 6632 3d28 ---+.|i10 : f2=( │ │ │ │ +00010a60: 322a 785e 322d 332a 782a 792b 352a 795e 2*x^2-3*x*y+5*y^ │ │ │ │ +00010a70: 3229 3b20 2020 2020 2020 2020 2020 2020 2); │ │ │ │ 00010a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010aa0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00010aa0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00010ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010af0: 2d2d 2b0a 7c69 3131 203a 2048 203d 207b --+.|i11 : H = { │ │ │ │ -00010b00: 2066 312a 7420 2b20 6632 2a28 312d 7429 f1*t + f2*(1-t) │ │ │ │ -00010b10: 7d3b 202d 2d48 2069 7320 6120 6c69 7374 }; --H is a list │ │ │ │ -00010b20: 206f 6620 706f 6c79 6e6f 6d69 616c 7320 of polynomials │ │ │ │ -00010b30: 696e 2078 2c79 2c74 2020 2020 2020 2020 in x,y,t │ │ │ │ -00010b40: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00010af0: 2d2d 2d2b 0a7c 6931 3120 3a20 4820 3d20 ---+.|i11 : H = │ │ │ │ +00010b00: 7b20 6631 2a74 202b 2066 322a 2831 2d74 { f1*t + f2*(1-t │ │ │ │ +00010b10: 297d 3b20 2d2d 4820 6973 2061 206c 6973 )}; --H is a lis │ │ │ │ +00010b20: 7420 6f66 2070 6f6c 796e 6f6d 6961 6c73 t of polynomials │ │ │ │ +00010b30: 2069 6e20 782c 792c 7420 2020 2020 2020 in x,y,t │ │ │ │ +00010b40: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00010b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010b90: 2d2d 2b0a 7c69 3132 203a 2073 6f6c 313d --+.|i12 : sol1= │ │ │ │ -00010ba0: 2020 2020 706f 696e 747b 7b31 2c31 7d7d point{{1,1}} │ │ │ │ -00010bb0: 2d2d 7b7b 782c 797d 7d20 636f 6f72 6469 --{{x,y}} coordi │ │ │ │ -00010bc0: 6e61 7465 7320 2020 2020 2020 2020 2020 nates │ │ │ │ +00010b90: 2d2d 2d2b 0a7c 6931 3220 3a20 736f 6c31 ---+.|i12 : sol1 │ │ │ │ +00010ba0: 3d20 2020 2070 6f69 6e74 7b7b 312c 317d = point{{1,1} │ │ │ │ +00010bb0: 7d2d 2d7b 7b78 2c79 7d7d 2063 6f6f 7264 }--{{x,y}} coord │ │ │ │ +00010bc0: 696e 6174 6573 2020 2020 2020 2020 2020 inates │ │ │ │ 00010bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010be0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00010be0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00010bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010c30: 2020 7c0a 7c6f 3132 203d 2073 6f6c 3120 |.|o12 = sol1 │ │ │ │ +00010c30: 2020 207c 0a7c 6f31 3220 3d20 736f 6c31 |.|o12 = sol1 │ │ │ │ 00010c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010c80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00010c80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00010c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010cd0: 2020 7c0a 7c6f 3132 203a 2050 6f69 6e74 |.|o12 : Point │ │ │ │ -00010ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010cd0: 2020 207c 0a7c 6f31 3220 3a20 506f 696e |.|o12 : Poin │ │ │ │ +00010ce0: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ 00010cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010d20: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00010d20: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00010d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010d70: 2d2d 2b0a 7c69 3133 203a 2073 6f6c 323d --+.|i13 : sol2= │ │ │ │ -00010d80: 2020 2020 706f 696e 747b 7b20 2d31 2c31 point{{ -1,1 │ │ │ │ -00010d90: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ +00010d70: 2d2d 2d2b 0a7c 6931 3320 3a20 736f 6c32 ---+.|i13 : sol2 │ │ │ │ +00010d80: 3d20 2020 2070 6f69 6e74 7b7b 202d 312c = point{{ -1, │ │ │ │ +00010d90: 317d 7d20 2020 2020 2020 2020 2020 2020 1}} │ │ │ │ 00010da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010dc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00010dc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00010dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010e10: 2020 7c0a 7c6f 3133 203d 2073 6f6c 3220 |.|o13 = sol2 │ │ │ │ +00010e10: 2020 207c 0a7c 6f31 3320 3d20 736f 6c32 |.|o13 = sol2 │ │ │ │ 00010e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010e60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00010e60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00010e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010eb0: 2020 7c0a 7c6f 3133 203a 2050 6f69 6e74 |.|o13 : Point │ │ │ │ -00010ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00010eb0: 2020 207c 0a7c 6f31 3320 3a20 506f 696e |.|o13 : Poin │ │ │ │ +00010ec0: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ 00010ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010f00: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00010f00: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00010f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00010f50: 2d2d 2b0a 7c69 3134 203a 2053 313d 7b73 --+.|i14 : S1={s │ │ │ │ -00010f60: 6f6c 312c 736f 6c32 7d2d 2d73 6f6c 7574 ol1,sol2}--solut │ │ │ │ -00010f70: 696f 6e73 2074 6f20 4820 7768 656e 2074 ions to H when t │ │ │ │ -00010f80: 3d31 2020 2020 2020 2020 2020 2020 2020 =1 │ │ │ │ +00010f50: 2d2d 2d2b 0a7c 6931 3420 3a20 5331 3d7b ---+.|i14 : S1={ │ │ │ │ +00010f60: 736f 6c31 2c73 6f6c 327d 2d2d 736f 6c75 sol1,sol2}--solu │ │ │ │ +00010f70: 7469 6f6e 7320 746f 2048 2077 6865 6e20 tions to H when │ │ │ │ +00010f80: 743d 3120 2020 2020 2020 2020 2020 2020 t=1 │ │ │ │ 00010f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010fa0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00010fa0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00010fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010ff0: 2020 7c0a 7c6f 3134 203d 207b 736f 6c31 |.|o14 = {sol1 │ │ │ │ -00011000: 2c20 736f 6c32 7d20 2020 2020 2020 2020 , sol2} │ │ │ │ +00010ff0: 2020 207c 0a7c 6f31 3420 3d20 7b73 6f6c |.|o14 = {sol │ │ │ │ +00011000: 312c 2073 6f6c 327d 2020 2020 2020 2020 1, sol2} │ │ │ │ 00011010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011040: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00011040: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00011050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011090: 2020 7c0a 7c6f 3134 203a 204c 6973 7420 |.|o14 : List │ │ │ │ +00011090: 2020 207c 0a7c 6f31 3420 3a20 4c69 7374 |.|o14 : List │ │ │ │ 000110a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000110b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000110c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000110d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000110e0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000110e0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 000110f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011130: 2d2d 2b0a 7c69 3135 203a 2053 303d 6265 --+.|i15 : S0=be │ │ │ │ -00011140: 7274 696e 6954 7261 636b 486f 6d6f 746f rtiniTrackHomoto │ │ │ │ -00011150: 7079 2874 2c20 482c 2053 312c 2049 7350 py(t, H, S1, IsP │ │ │ │ -00011160: 726f 6a65 6374 6976 653d 3e31 2920 2d2d rojective=>1) -- │ │ │ │ -00011170: 736f 6c75 7469 6f6e 7320 746f 2048 2077 solutions to H w │ │ │ │ -00011180: 6865 7c0a 7c20 2020 2020 2020 2020 2020 he|.| │ │ │ │ +00011130: 2d2d 2d2b 0a7c 6931 3520 3a20 5330 3d62 ---+.|i15 : S0=b │ │ │ │ +00011140: 6572 7469 6e69 5472 6163 6b48 6f6d 6f74 ertiniTrackHomot │ │ │ │ +00011150: 6f70 7928 742c 2048 2c20 5331 2c20 4973 opy(t, H, S1, Is │ │ │ │ +00011160: 5072 6f6a 6563 7469 7665 3d3e 3129 202d Projective=>1) - │ │ │ │ +00011170: 2d73 6f6c 7574 696f 6e73 2074 6f20 4820 -solutions to H │ │ │ │ +00011180: 7768 657c 0a7c 2020 2020 2020 2020 2020 whe|.| │ │ │ │ 00011190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000111a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000111b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000111c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000111d0: 2020 7c0a 7c6f 3135 203d 207b 7b2d 2e34 |.|o15 = {{-.4 │ │ │ │ -000111e0: 3832 3131 342d 2e36 3436 3030 392a 6969 82114-.646009*ii │ │ │ │ -000111f0: 2c20 2e32 3135 3034 382d 2e34 3632 3233 , .215048-.46223 │ │ │ │ -00011200: 332a 6969 7d2c 207b 342e 3133 3938 2d34 3*ii}, {4.1398-4 │ │ │ │ -00011210: 2e37 3235 332a 6969 2c20 2020 2020 2020 .7253*ii, │ │ │ │ -00011220: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ +000111d0: 2020 207c 0a7c 6f31 3520 3d20 7b7b 2d2e |.|o15 = {{-. │ │ │ │ +000111e0: 3438 3231 3134 2d2e 3634 3630 3039 2a69 482114-.646009*i │ │ │ │ +000111f0: 692c 202e 3231 3530 3438 2d2e 3436 3232 i, .215048-.4622 │ │ │ │ +00011200: 3333 2a69 697d 2c20 7b34 2e31 3339 382d 33*ii}, {4.1398- │ │ │ │ +00011210: 342e 3732 3533 2a69 692c 2020 2020 2020 4.7253*ii, │ │ │ │ +00011220: 2020 207c 0a7c 2020 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ 00011230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011270: 2d2d 7c0a 7c20 2020 2020 202d 312e 3338 --|.| -1.38 │ │ │ │ -00011280: 392d 332e 3732 3235 332a 6969 7d7d 2020 9-3.72253*ii}} │ │ │ │ +00011270: 2d2d 2d7c 0a7c 2020 2020 2020 2d31 2e33 ---|.| -1.3 │ │ │ │ +00011280: 3839 2d33 2e37 3232 3533 2a69 697d 7d20 89-3.72253*ii}} │ │ │ │ 00011290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000112a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000112b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000112c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000112c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 000112d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000112e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000112f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011310: 2020 7c0a 7c6f 3135 203a 204c 6973 7420 |.|o15 : List │ │ │ │ +00011310: 2020 207c 0a7c 6f31 3520 3a20 4c69 7374 |.|o15 : List │ │ │ │ 00011320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011360: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ +00011360: 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d |.|---------- │ │ │ │ 00011370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000113a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000113b0: 2d2d 7c0a 7c6e 2074 3d30 2020 2020 2020 --|.|n t=0 │ │ │ │ +000113b0: 2d2d 2d7c 0a7c 6e20 743d 3020 2020 2020 ---|.|n t=0 │ │ │ │ 000113c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011400: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00011400: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00011410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011450: 2d2d 2b0a 0a56 6172 6961 626c 6573 206d --+..Variables m │ │ │ │ -00011460: 7573 7420 6265 6769 6e20 7769 7468 2061 ust begin with a │ │ │ │ -00011470: 206c 6574 7465 7220 286c 6f77 6572 6361 letter (lowerca │ │ │ │ -00011480: 7365 206f 7220 6361 7069 7461 6c29 2061 se or capital) a │ │ │ │ -00011490: 6e64 2063 616e 206f 6e6c 7920 636f 6e74 nd can only cont │ │ │ │ -000114a0: 6169 6e0a 6c65 7474 6572 732c 206e 756d ain.letters, num │ │ │ │ -000114b0: 6265 7273 2c20 756e 6465 7273 636f 7265 bers, underscore │ │ │ │ -000114c0: 732c 2061 6e64 2073 7175 6172 6520 6272 s, and square br │ │ │ │ -000114d0: 6163 6b65 7473 2e0a 0a57 6179 7320 746f ackets...Ways to │ │ │ │ -000114e0: 2075 7365 2062 6572 7469 6e69 5472 6163 use bertiniTrac │ │ │ │ -000114f0: 6b48 6f6d 6f74 6f70 793a 0a3d 3d3d 3d3d kHomotopy:.===== │ │ │ │ +00011450: 2d2d 2d2b 0a0a 5661 7269 6162 6c65 7320 ---+..Variables │ │ │ │ +00011460: 6d75 7374 2062 6567 696e 2077 6974 6820 must begin with │ │ │ │ +00011470: 6120 6c65 7474 6572 2028 6c6f 7765 7263 a letter (lowerc │ │ │ │ +00011480: 6173 6520 6f72 2063 6170 6974 616c 2920 ase or capital) │ │ │ │ +00011490: 616e 6420 6361 6e20 6f6e 6c79 2063 6f6e and can only con │ │ │ │ +000114a0: 7461 696e 0a6c 6574 7465 7273 2c20 6e75 tain.letters, nu │ │ │ │ +000114b0: 6d62 6572 732c 2075 6e64 6572 7363 6f72 mbers, underscor │ │ │ │ +000114c0: 6573 2c20 616e 6420 7371 7561 7265 2062 es, and square b │ │ │ │ +000114d0: 7261 636b 6574 732e 0a0a 5761 7973 2074 rackets...Ways t │ │ │ │ +000114e0: 6f20 7573 6520 6265 7274 696e 6954 7261 o use bertiniTra │ │ │ │ +000114f0: 636b 486f 6d6f 746f 7079 3a0a 3d3d 3d3d ckHomotopy:.==== │ │ │ │ 00011500: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00011510: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ -00011520: 2a20 2262 6572 7469 6e69 5472 6163 6b48 * "bertiniTrackH │ │ │ │ -00011530: 6f6d 6f74 6f70 7928 5269 6e67 456c 656d omotopy(RingElem │ │ │ │ -00011540: 656e 742c 4c69 7374 2c4c 6973 7429 220a ent,List,List)". │ │ │ │ -00011550: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ -00011560: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ -00011570: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ -00011580: 6374 202a 6e6f 7465 2062 6572 7469 6e69 ct *note bertini │ │ │ │ -00011590: 5472 6163 6b48 6f6d 6f74 6f70 793a 2062 TrackHomotopy: b │ │ │ │ -000115a0: 6572 7469 6e69 5472 6163 6b48 6f6d 6f74 ertiniTrackHomot │ │ │ │ -000115b0: 6f70 792c 2069 7320 6120 2a6e 6f74 6520 opy, is a *note │ │ │ │ -000115c0: 6d65 7468 6f64 0a66 756e 6374 696f 6e20 method.function │ │ │ │ -000115d0: 7769 7468 206f 7074 696f 6e73 3a20 284d with options: (M │ │ │ │ -000115e0: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ -000115f0: 6f64 4675 6e63 7469 6f6e 5769 7468 4f70 odFunctionWithOp │ │ │ │ -00011600: 7469 6f6e 732c 2e0a 1f0a 4669 6c65 3a20 tions,....File: │ │ │ │ -00011610: 4265 7274 696e 692e 696e 666f 2c20 4e6f Bertini.info, No │ │ │ │ -00011620: 6465 3a20 6265 7274 696e 6954 7261 636b de: bertiniTrack │ │ │ │ -00011630: 486f 6d6f 746f 7079 5f6c 705f 7064 5f70 Homotopy_lp_pd_p │ │ │ │ -00011640: 645f 7064 5f63 6d56 6572 626f 7365 3d3e d_pd_cmVerbose=> │ │ │ │ -00011650: 5f70 645f 7064 5f70 645f 7270 2c20 4e65 _pd_pd_pd_rp, Ne │ │ │ │ -00011660: 7874 3a20 6265 7274 696e 6955 7365 7248 xt: bertiniUserH │ │ │ │ -00011670: 6f6d 6f74 6f70 792c 2050 7265 763a 2062 omotopy, Prev: b │ │ │ │ -00011680: 6572 7469 6e69 5472 6163 6b48 6f6d 6f74 ertiniTrackHomot │ │ │ │ -00011690: 6f70 792c 2055 703a 2054 6f70 0a0a 6265 opy, Up: Top..be │ │ │ │ -000116a0: 7274 696e 6954 7261 636b 486f 6d6f 746f rtiniTrackHomoto │ │ │ │ -000116b0: 7079 282e 2e2e 2c56 6572 626f 7365 3d3e py(...,Verbose=> │ │ │ │ -000116c0: 2e2e 2e29 202d 2d20 4f70 7469 6f6e 2074 ...) -- Option t │ │ │ │ -000116d0: 6f20 7369 6c65 6e63 6520 6164 6469 7469 o silence additi │ │ │ │ -000116e0: 6f6e 616c 206f 7574 7075 740a 2a2a 2a2a onal output.**** │ │ │ │ +00011510: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +00011520: 202a 2022 6265 7274 696e 6954 7261 636b * "bertiniTrack │ │ │ │ +00011530: 486f 6d6f 746f 7079 2852 696e 6745 6c65 Homotopy(RingEle │ │ │ │ +00011540: 6d65 6e74 2c4c 6973 742c 4c69 7374 2922 ment,List,List)" │ │ │ │ +00011550: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +00011560: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +00011570: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +00011580: 6563 7420 2a6e 6f74 6520 6265 7274 696e ect *note bertin │ │ │ │ +00011590: 6954 7261 636b 486f 6d6f 746f 7079 3a20 iTrackHomotopy: │ │ │ │ +000115a0: 6265 7274 696e 6954 7261 636b 486f 6d6f bertiniTrackHomo │ │ │ │ +000115b0: 746f 7079 2c20 6973 2061 202a 6e6f 7465 topy, is a *note │ │ │ │ +000115c0: 206d 6574 686f 640a 6675 6e63 7469 6f6e method.function │ │ │ │ +000115d0: 2077 6974 6820 6f70 7469 6f6e 733a 2028 with options: ( │ │ │ │ +000115e0: 4d61 6361 756c 6179 3244 6f63 294d 6574 Macaulay2Doc)Met │ │ │ │ +000115f0: 686f 6446 756e 6374 696f 6e57 6974 684f hodFunctionWithO │ │ │ │ +00011600: 7074 696f 6e73 2c2e 0a1f 0a46 696c 653a ptions,....File: │ │ │ │ +00011610: 2042 6572 7469 6e69 2e69 6e66 6f2c 204e Bertini.info, N │ │ │ │ +00011620: 6f64 653a 2062 6572 7469 6e69 5472 6163 ode: bertiniTrac │ │ │ │ +00011630: 6b48 6f6d 6f74 6f70 795f 6c70 5f70 645f kHomotopy_lp_pd_ │ │ │ │ +00011640: 7064 5f70 645f 636d 5665 7262 6f73 653d pd_pd_cmVerbose= │ │ │ │ +00011650: 3e5f 7064 5f70 645f 7064 5f72 702c 204e >_pd_pd_pd_rp, N │ │ │ │ +00011660: 6578 743a 2062 6572 7469 6e69 5573 6572 ext: bertiniUser │ │ │ │ +00011670: 486f 6d6f 746f 7079 2c20 5072 6576 3a20 Homotopy, Prev: │ │ │ │ +00011680: 6265 7274 696e 6954 7261 636b 486f 6d6f bertiniTrackHomo │ │ │ │ +00011690: 746f 7079 2c20 5570 3a20 546f 700a 0a62 topy, Up: Top..b │ │ │ │ +000116a0: 6572 7469 6e69 5472 6163 6b48 6f6d 6f74 ertiniTrackHomot │ │ │ │ +000116b0: 6f70 7928 2e2e 2e2c 5665 7262 6f73 653d opy(...,Verbose= │ │ │ │ +000116c0: 3e2e 2e2e 2920 2d2d 204f 7074 696f 6e20 >...) -- Option │ │ │ │ +000116d0: 746f 2073 696c 656e 6365 2061 6464 6974 to silence addit │ │ │ │ +000116e0: 696f 6e61 6c20 6f75 7470 7574 0a2a 2a2a ional output.*** │ │ │ │ 000116f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00011700: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00011710: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00011720: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00011730: 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 796e 6f70 *********..Synop │ │ │ │ -00011740: 7369 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 sis.========.. │ │ │ │ -00011750: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ -00011760: 2020 6265 7274 696e 6954 7261 636b 486f bertiniTrackHo │ │ │ │ -00011770: 6d6f 746f 7079 5665 7262 6f73 6528 2e2e motopyVerbose(.. │ │ │ │ -00011780: 2e2c 5665 7262 6f73 653d 3e42 6f6f 6c65 .,Verbose=>Boole │ │ │ │ -00011790: 616e 290a 2020 2020 2020 2020 6265 7274 an). bert │ │ │ │ -000117a0: 696e 6955 7365 7248 6f6d 6f74 6f70 7956 iniUserHomotopyV │ │ │ │ -000117b0: 6572 626f 7365 282e 2e2e 2c56 6572 626f erbose(...,Verbo │ │ │ │ -000117c0: 7365 3d3e 426f 6f6c 6561 6e29 0a20 2020 se=>Boolean). │ │ │ │ -000117d0: 2020 2020 2062 6572 7469 6e69 506f 7344 bertiniPosD │ │ │ │ -000117e0: 696d 536f 6c76 6528 2e2e 2e2c 5665 7262 imSolve(...,Verb │ │ │ │ -000117f0: 6f73 653d 3e42 6f6f 6c65 616e 290a 2020 ose=>Boolean). │ │ │ │ -00011800: 2020 2020 2020 6265 7274 696e 6952 6566 bertiniRef │ │ │ │ -00011810: 696e 6553 6f6c 7328 2e2e 2e2c 5665 7262 ineSols(...,Verb │ │ │ │ -00011820: 6f73 653d 3e42 6f6f 6c65 616e 290a 2020 ose=>Boolean). │ │ │ │ -00011830: 2020 2020 2020 6265 7274 696e 6953 616d bertiniSam │ │ │ │ -00011840: 706c 6528 2e2e 2e2c 5665 7262 6f73 653d ple(...,Verbose= │ │ │ │ -00011850: 3e42 6f6f 6c65 616e 290a 2020 2020 2020 >Boolean). │ │ │ │ -00011860: 2020 6265 7274 696e 695a 6572 6f44 696d bertiniZeroDim │ │ │ │ -00011870: 536f 6c76 6528 2e2e 2e2c 5665 7262 6f73 Solve(...,Verbos │ │ │ │ -00011880: 653d 3e42 6f6f 6c65 616e 290a 2020 2020 e=>Boolean). │ │ │ │ -00011890: 2020 2020 6265 7274 696e 6950 6172 616d bertiniParam │ │ │ │ -000118a0: 6574 6572 486f 6d6f 746f 7079 282e 2e2e eterHomotopy(... │ │ │ │ -000118b0: 2c56 6572 626f 7365 3d3e 426f 6f6c 6561 ,Verbose=>Boolea │ │ │ │ -000118c0: 6e29 0a20 2020 2020 2020 206d 616b 6542 n). makeB │ │ │ │ -000118d0: 2749 6e70 7574 4669 6c65 282e 2e2e 2c56 'InputFile(...,V │ │ │ │ -000118e0: 6572 626f 7365 3d3e 426f 6f6c 6561 6e29 erbose=>Boolean) │ │ │ │ -000118f0: 0a20 2020 2020 2020 206d 616b 654d 656d . makeMem │ │ │ │ -00011900: 6265 7273 6869 7046 696c 6528 2e2e 2e2c bershipFile(..., │ │ │ │ -00011910: 5665 7262 6f73 653d 3e42 6f6f 6c65 616e Verbose=>Boolean │ │ │ │ -00011920: 290a 2020 2020 2020 2020 6227 5048 4761 ). b'PHGa │ │ │ │ -00011930: 6c6f 6973 4772 6f75 7028 2e2e 2e2c 5665 loisGroup(...,Ve │ │ │ │ -00011940: 7262 6f73 653d 3e42 6f6f 6c65 616e 290a rbose=>Boolean). │ │ │ │ -00011950: 2020 2020 2020 2020 6227 5048 4d6f 6e6f b'PHMono │ │ │ │ -00011960: 6472 6f6d 7943 6f6c 6c65 6374 282e 2e2e dromyCollect(... │ │ │ │ -00011970: 2c56 6572 626f 7365 3d3e 426f 6f6c 6561 ,Verbose=>Boolea │ │ │ │ -00011980: 6e29 0a20 2020 2020 2020 2069 6d70 6f72 n). impor │ │ │ │ -00011990: 7449 6e63 6964 656e 6365 4d61 7472 6978 tIncidenceMatrix │ │ │ │ -000119a0: 282e 2e2e 2c56 6572 626f 7365 3d3e 426f (...,Verbose=>Bo │ │ │ │ -000119b0: 6f6c 6561 6e29 0a20 2020 2020 2020 2069 olean). i │ │ │ │ -000119c0: 6d70 6f72 744d 6169 6e44 6174 6146 696c mportMainDataFil │ │ │ │ -000119d0: 6528 2e2e 2e2c 5665 7262 6f73 653d 3e42 e(...,Verbose=>B │ │ │ │ -000119e0: 6f6f 6c65 616e 290a 2020 2020 2020 2020 oolean). │ │ │ │ -000119f0: 696d 706f 7274 536c 6963 6546 696c 6528 importSliceFile( │ │ │ │ -00011a00: 2e2e 2e2c 5665 7262 6f73 653d 3e42 6f6f ...,Verbose=>Boo │ │ │ │ -00011a10: 6c65 616e 290a 2020 2020 2020 2020 696d lean). im │ │ │ │ -00011a20: 706f 7274 536f 6c75 7469 6f6e 7346 696c portSolutionsFil │ │ │ │ -00011a30: 6528 2e2e 2e2c 5665 7262 6f73 653d 3e42 e(...,Verbose=>B │ │ │ │ -00011a40: 6f6f 6c65 616e 290a 2020 2020 2020 2020 oolean). │ │ │ │ -00011a50: 7275 6e42 6572 7469 6e69 282e 2e2e 2c56 runBertini(...,V │ │ │ │ -00011a60: 6572 626f 7365 3d3e 426f 6f6c 6561 6e29 erbose=>Boolean) │ │ │ │ -00011a70: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ -00011a80: 3d3d 3d3d 3d3d 3d3d 3d0a 0a55 7365 2056 =========..Use V │ │ │ │ -00011a90: 6572 626f 7365 3d3e 6661 6c73 6520 746f erbose=>false to │ │ │ │ -00011aa0: 2073 696c 656e 6365 2061 6464 6974 696f silence additio │ │ │ │ -00011ab0: 6e61 6c20 6f75 7470 7574 2e0a 0a46 7572 nal output...Fur │ │ │ │ -00011ac0: 7468 6572 2069 6e66 6f72 6d61 7469 6f6e ther information │ │ │ │ -00011ad0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -00011ae0: 3d3d 3d3d 0a0a 2020 2a20 4465 6661 756c ====.. * Defaul │ │ │ │ -00011af0: 7420 7661 6c75 653a 202a 6e6f 7465 2066 t value: *note f │ │ │ │ -00011b00: 616c 7365 3a20 284d 6163 6175 6c61 7932 alse: (Macaulay2 │ │ │ │ -00011b10: 446f 6329 6661 6c73 652c 0a20 202a 2046 Doc)false,. * F │ │ │ │ -00011b20: 756e 6374 696f 6e3a 202a 6e6f 7465 2062 unction: *note b │ │ │ │ -00011b30: 6572 7469 6e69 5472 6163 6b48 6f6d 6f74 ertiniTrackHomot │ │ │ │ -00011b40: 6f70 793a 2062 6572 7469 6e69 5472 6163 opy: bertiniTrac │ │ │ │ -00011b50: 6b48 6f6d 6f74 6f70 792c 202d 2d20 6120 kHomotopy, -- a │ │ │ │ -00011b60: 6d61 696e 0a20 2020 206d 6574 686f 6420 main. method │ │ │ │ -00011b70: 746f 2074 7261 636b 2075 7369 6e67 2061 to track using a │ │ │ │ -00011b80: 2075 7365 722d 6465 6669 6e65 6420 686f user-defined ho │ │ │ │ -00011b90: 6d6f 746f 7079 0a20 202a 204f 7074 696f motopy. * Optio │ │ │ │ -00011ba0: 6e20 6b65 793a 202a 6e6f 7465 2056 6572 n key: *note Ver │ │ │ │ -00011bb0: 626f 7365 3a20 284d 6163 6175 6c61 7932 bose: (Macaulay2 │ │ │ │ -00011bc0: 446f 6329 5665 7262 6f73 652c 202d 2d20 Doc)Verbose, -- │ │ │ │ -00011bd0: 7265 7175 6573 7420 7665 7262 6f73 650a request verbose. │ │ │ │ -00011be0: 2020 2020 6665 6564 6261 636b 0a0a 4675 feedback..Fu │ │ │ │ -00011bf0: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ -00011c00: 696f 6e61 6c20 6172 6775 6d65 6e74 206e ional argument n │ │ │ │ -00011c10: 616d 6564 2056 6572 626f 7365 3a0a 3d3d amed Verbose:.== │ │ │ │ +00011730: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f **********..Syno │ │ │ │ +00011740: 7073 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 psis.========.. │ │ │ │ +00011750: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ +00011760: 2020 2062 6572 7469 6e69 5472 6163 6b48 bertiniTrackH │ │ │ │ +00011770: 6f6d 6f74 6f70 7956 6572 626f 7365 282e omotopyVerbose(. │ │ │ │ +00011780: 2e2e 2c56 6572 626f 7365 3d3e 426f 6f6c ..,Verbose=>Bool │ │ │ │ +00011790: 6561 6e29 0a20 2020 2020 2020 2062 6572 ean). ber │ │ │ │ +000117a0: 7469 6e69 5573 6572 486f 6d6f 746f 7079 tiniUserHomotopy │ │ │ │ +000117b0: 5665 7262 6f73 6528 2e2e 2e2c 5665 7262 Verbose(...,Verb │ │ │ │ +000117c0: 6f73 653d 3e42 6f6f 6c65 616e 290a 2020 ose=>Boolean). │ │ │ │ +000117d0: 2020 2020 2020 6265 7274 696e 6950 6f73 bertiniPos │ │ │ │ +000117e0: 4469 6d53 6f6c 7665 282e 2e2e 2c56 6572 DimSolve(...,Ver │ │ │ │ +000117f0: 626f 7365 3d3e 426f 6f6c 6561 6e29 0a20 bose=>Boolean). │ │ │ │ +00011800: 2020 2020 2020 2062 6572 7469 6e69 5265 bertiniRe │ │ │ │ +00011810: 6669 6e65 536f 6c73 282e 2e2e 2c56 6572 fineSols(...,Ver │ │ │ │ +00011820: 626f 7365 3d3e 426f 6f6c 6561 6e29 0a20 bose=>Boolean). │ │ │ │ +00011830: 2020 2020 2020 2062 6572 7469 6e69 5361 bertiniSa │ │ │ │ +00011840: 6d70 6c65 282e 2e2e 2c56 6572 626f 7365 mple(...,Verbose │ │ │ │ +00011850: 3d3e 426f 6f6c 6561 6e29 0a20 2020 2020 =>Boolean). │ │ │ │ +00011860: 2020 2062 6572 7469 6e69 5a65 726f 4469 bertiniZeroDi │ │ │ │ +00011870: 6d53 6f6c 7665 282e 2e2e 2c56 6572 626f mSolve(...,Verbo │ │ │ │ +00011880: 7365 3d3e 426f 6f6c 6561 6e29 0a20 2020 se=>Boolean). │ │ │ │ +00011890: 2020 2020 2062 6572 7469 6e69 5061 7261 bertiniPara │ │ │ │ +000118a0: 6d65 7465 7248 6f6d 6f74 6f70 7928 2e2e meterHomotopy(.. │ │ │ │ +000118b0: 2e2c 5665 7262 6f73 653d 3e42 6f6f 6c65 .,Verbose=>Boole │ │ │ │ +000118c0: 616e 290a 2020 2020 2020 2020 6d61 6b65 an). make │ │ │ │ +000118d0: 4227 496e 7075 7446 696c 6528 2e2e 2e2c B'InputFile(..., │ │ │ │ +000118e0: 5665 7262 6f73 653d 3e42 6f6f 6c65 616e Verbose=>Boolean │ │ │ │ +000118f0: 290a 2020 2020 2020 2020 6d61 6b65 4d65 ). makeMe │ │ │ │ +00011900: 6d62 6572 7368 6970 4669 6c65 282e 2e2e mbershipFile(... │ │ │ │ +00011910: 2c56 6572 626f 7365 3d3e 426f 6f6c 6561 ,Verbose=>Boolea │ │ │ │ +00011920: 6e29 0a20 2020 2020 2020 2062 2750 4847 n). b'PHG │ │ │ │ +00011930: 616c 6f69 7347 726f 7570 282e 2e2e 2c56 aloisGroup(...,V │ │ │ │ +00011940: 6572 626f 7365 3d3e 426f 6f6c 6561 6e29 erbose=>Boolean) │ │ │ │ +00011950: 0a20 2020 2020 2020 2062 2750 484d 6f6e . b'PHMon │ │ │ │ +00011960: 6f64 726f 6d79 436f 6c6c 6563 7428 2e2e odromyCollect(.. │ │ │ │ +00011970: 2e2c 5665 7262 6f73 653d 3e42 6f6f 6c65 .,Verbose=>Boole │ │ │ │ +00011980: 616e 290a 2020 2020 2020 2020 696d 706f an). impo │ │ │ │ +00011990: 7274 496e 6369 6465 6e63 654d 6174 7269 rtIncidenceMatri │ │ │ │ +000119a0: 7828 2e2e 2e2c 5665 7262 6f73 653d 3e42 x(...,Verbose=>B │ │ │ │ +000119b0: 6f6f 6c65 616e 290a 2020 2020 2020 2020 oolean). │ │ │ │ +000119c0: 696d 706f 7274 4d61 696e 4461 7461 4669 importMainDataFi │ │ │ │ +000119d0: 6c65 282e 2e2e 2c56 6572 626f 7365 3d3e le(...,Verbose=> │ │ │ │ +000119e0: 426f 6f6c 6561 6e29 0a20 2020 2020 2020 Boolean). │ │ │ │ +000119f0: 2069 6d70 6f72 7453 6c69 6365 4669 6c65 importSliceFile │ │ │ │ +00011a00: 282e 2e2e 2c56 6572 626f 7365 3d3e 426f (...,Verbose=>Bo │ │ │ │ +00011a10: 6f6c 6561 6e29 0a20 2020 2020 2020 2069 olean). i │ │ │ │ +00011a20: 6d70 6f72 7453 6f6c 7574 696f 6e73 4669 mportSolutionsFi │ │ │ │ +00011a30: 6c65 282e 2e2e 2c56 6572 626f 7365 3d3e le(...,Verbose=> │ │ │ │ +00011a40: 426f 6f6c 6561 6e29 0a20 2020 2020 2020 Boolean). │ │ │ │ +00011a50: 2072 756e 4265 7274 696e 6928 2e2e 2e2c runBertini(..., │ │ │ │ +00011a60: 5665 7262 6f73 653d 3e42 6f6f 6c65 616e Verbose=>Boolean │ │ │ │ +00011a70: 290a 0a44 6573 6372 6970 7469 6f6e 0a3d )..Description.= │ │ │ │ +00011a80: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5573 6520 ==========..Use │ │ │ │ +00011a90: 5665 7262 6f73 653d 3e66 616c 7365 2074 Verbose=>false t │ │ │ │ +00011aa0: 6f20 7369 6c65 6e63 6520 6164 6469 7469 o silence additi │ │ │ │ +00011ab0: 6f6e 616c 206f 7574 7075 742e 0a0a 4675 onal output...Fu │ │ │ │ +00011ac0: 7274 6865 7220 696e 666f 726d 6174 696f rther informatio │ │ │ │ +00011ad0: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d n.============== │ │ │ │ +00011ae0: 3d3d 3d3d 3d0a 0a20 202a 2044 6566 6175 =====.. * Defau │ │ │ │ +00011af0: 6c74 2076 616c 7565 3a20 2a6e 6f74 6520 lt value: *note │ │ │ │ +00011b00: 6661 6c73 653a 2028 4d61 6361 756c 6179 false: (Macaulay │ │ │ │ +00011b10: 3244 6f63 2966 616c 7365 2c0a 2020 2a20 2Doc)false,. * │ │ │ │ +00011b20: 4675 6e63 7469 6f6e 3a20 2a6e 6f74 6520 Function: *note │ │ │ │ +00011b30: 6265 7274 696e 6954 7261 636b 486f 6d6f bertiniTrackHomo │ │ │ │ +00011b40: 746f 7079 3a20 6265 7274 696e 6954 7261 topy: bertiniTra │ │ │ │ +00011b50: 636b 486f 6d6f 746f 7079 2c20 2d2d 2061 ckHomotopy, -- a │ │ │ │ +00011b60: 206d 6169 6e0a 2020 2020 6d65 7468 6f64 main. method │ │ │ │ +00011b70: 2074 6f20 7472 6163 6b20 7573 696e 6720 to track using │ │ │ │ +00011b80: 6120 7573 6572 2d64 6566 696e 6564 2068 a user-defined h │ │ │ │ +00011b90: 6f6d 6f74 6f70 790a 2020 2a20 4f70 7469 omotopy. * Opti │ │ │ │ +00011ba0: 6f6e 206b 6579 3a20 2a6e 6f74 6520 5665 on key: *note Ve │ │ │ │ +00011bb0: 7262 6f73 653a 2028 4d61 6361 756c 6179 rbose: (Macaulay │ │ │ │ +00011bc0: 3244 6f63 2956 6572 626f 7365 2c20 2d2d 2Doc)Verbose, -- │ │ │ │ +00011bd0: 2072 6571 7565 7374 2076 6572 626f 7365 request verbose │ │ │ │ +00011be0: 0a20 2020 2066 6565 6462 6163 6b0a 0a46 . feedback..F │ │ │ │ +00011bf0: 756e 6374 696f 6e73 2077 6974 6820 6f70 unctions with op │ │ │ │ +00011c00: 7469 6f6e 616c 2061 7267 756d 656e 7420 tional argument │ │ │ │ +00011c10: 6e61 6d65 6420 5665 7262 6f73 653a 0a3d named Verbose:.= │ │ │ │ 00011c20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 00011c30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00011c40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ -00011c50: 202a 2022 6265 7274 696e 6943 6f6d 706f * "bertiniCompo │ │ │ │ -00011c60: 6e65 6e74 4d65 6d62 6572 5465 7374 282e nentMemberTest(. │ │ │ │ -00011c70: 2e2e 2c56 6572 626f 7365 3d3e 2e2e 2e29 ..,Verbose=>...) │ │ │ │ -00011c80: 220a 2020 2a20 2262 6572 7469 6e69 5061 ". * "bertiniPa │ │ │ │ -00011c90: 7261 6d65 7465 7248 6f6d 6f74 6f70 7928 rameterHomotopy( │ │ │ │ -00011ca0: 2e2e 2e2c 5665 7262 6f73 653d 3e2e 2e2e ...,Verbose=>... │ │ │ │ -00011cb0: 2922 0a20 202a 2022 6265 7274 696e 6950 )". * "bertiniP │ │ │ │ -00011cc0: 6f73 4469 6d53 6f6c 7665 282e 2e2e 2c56 osDimSolve(...,V │ │ │ │ -00011cd0: 6572 626f 7365 3d3e 2e2e 2e29 220a 2020 erbose=>...)". │ │ │ │ -00011ce0: 2a20 2262 6572 7469 6e69 5265 6669 6e65 * "bertiniRefine │ │ │ │ -00011cf0: 536f 6c73 282e 2e2e 2c56 6572 626f 7365 Sols(...,Verbose │ │ │ │ -00011d00: 3d3e 2e2e 2e29 220a 2020 2a20 2262 6572 =>...)". * "ber │ │ │ │ -00011d10: 7469 6e69 5361 6d70 6c65 282e 2e2e 2c56 tiniSample(...,V │ │ │ │ -00011d20: 6572 626f 7365 3d3e 2e2e 2e29 220a 2020 erbose=>...)". │ │ │ │ -00011d30: 2a20 2a6e 6f74 6520 6265 7274 696e 6954 * *note bertiniT │ │ │ │ -00011d40: 7261 636b 486f 6d6f 746f 7079 282e 2e2e rackHomotopy(... │ │ │ │ -00011d50: 2c56 6572 626f 7365 3d3e 2e2e 2e29 3a0a ,Verbose=>...):. │ │ │ │ -00011d60: 2020 2020 6265 7274 696e 6954 7261 636b bertiniTrack │ │ │ │ -00011d70: 486f 6d6f 746f 7079 5f6c 705f 7064 5f70 Homotopy_lp_pd_p │ │ │ │ -00011d80: 645f 7064 5f63 6d56 6572 626f 7365 3d3e d_pd_cmVerbose=> │ │ │ │ -00011d90: 5f70 645f 7064 5f70 645f 7270 2c20 2d2d _pd_pd_pd_rp, -- │ │ │ │ -00011da0: 204f 7074 696f 6e20 746f 0a20 2020 2073 Option to. s │ │ │ │ -00011db0: 696c 656e 6365 2061 6464 6974 696f 6e61 ilence additiona │ │ │ │ -00011dc0: 6c20 6f75 7470 7574 0a20 202a 2022 6265 l output. * "be │ │ │ │ -00011dd0: 7274 696e 6955 7365 7248 6f6d 6f74 6f70 rtiniUserHomotop │ │ │ │ -00011de0: 7928 2e2e 2e2c 5665 7262 6f73 653d 3e2e y(...,Verbose=>. │ │ │ │ -00011df0: 2e2e 2922 0a20 202a 2022 6265 7274 696e ..)". * "bertin │ │ │ │ -00011e00: 695a 6572 6f44 696d 536f 6c76 6528 2e2e iZeroDimSolve(.. │ │ │ │ -00011e10: 2e2c 5665 7262 6f73 653d 3e2e 2e2e 2922 .,Verbose=>...)" │ │ │ │ -00011e20: 0a20 202a 2022 696d 706f 7274 496e 6369 . * "importInci │ │ │ │ -00011e30: 6465 6e63 654d 6174 7269 7828 2e2e 2e2c denceMatrix(..., │ │ │ │ -00011e40: 5665 7262 6f73 653d 3e2e 2e2e 2922 0a20 Verbose=>...)". │ │ │ │ -00011e50: 202a 2022 696d 706f 7274 4d61 696e 4461 * "importMainDa │ │ │ │ -00011e60: 7461 4669 6c65 282e 2e2e 2c56 6572 626f taFile(...,Verbo │ │ │ │ -00011e70: 7365 3d3e 2e2e 2e29 220a 2020 2a20 2269 se=>...)". * "i │ │ │ │ -00011e80: 6d70 6f72 7453 6f6c 7574 696f 6e73 4669 mportSolutionsFi │ │ │ │ -00011e90: 6c65 282e 2e2e 2c56 6572 626f 7365 3d3e le(...,Verbose=> │ │ │ │ -00011ea0: 2e2e 2e29 220a 2020 2a20 226d 616b 6542 ...)". * "makeB │ │ │ │ -00011eb0: 2749 6e70 7574 4669 6c65 282e 2e2e 2c56 'InputFile(...,V │ │ │ │ -00011ec0: 6572 626f 7365 3d3e 2e2e 2e29 220a 2020 erbose=>...)". │ │ │ │ -00011ed0: 2a20 226d 616b 654d 656d 6265 7273 6869 * "makeMembershi │ │ │ │ -00011ee0: 7046 696c 6528 2e2e 2e2c 5665 7262 6f73 pFile(...,Verbos │ │ │ │ -00011ef0: 653d 3e2e 2e2e 2922 0a20 202a 2022 6d61 e=>...)". * "ma │ │ │ │ -00011f00: 6b65 5361 6d70 6c65 536f 6c75 7469 6f6e keSampleSolution │ │ │ │ -00011f10: 7346 696c 6528 2e2e 2e2c 5665 7262 6f73 sFile(...,Verbos │ │ │ │ -00011f20: 653d 3e2e 2e2e 2922 0a20 202a 2022 7275 e=>...)". * "ru │ │ │ │ -00011f30: 6e42 6572 7469 6e69 282e 2e2e 2c56 6572 nBertini(...,Ver │ │ │ │ -00011f40: 626f 7365 3d3e 2e2e 2e29 220a 2020 2a20 bose=>...)". * │ │ │ │ -00011f50: 2263 6865 636b 282e 2e2e 2c56 6572 626f "check(...,Verbo │ │ │ │ -00011f60: 7365 3d3e 2e2e 2e29 2220 2d2d 2073 6565 se=>...)" -- see │ │ │ │ -00011f70: 202a 6e6f 7465 2063 6865 636b 3a20 284d *note check: (M │ │ │ │ -00011f80: 6163 6175 6c61 7932 446f 6329 6368 6563 acaulay2Doc)chec │ │ │ │ -00011f90: 6b2c 202d 2d0a 2020 2020 7065 7266 6f72 k, --. perfor │ │ │ │ -00011fa0: 6d20 7465 7374 7320 6f66 2061 2070 6163 m tests of a pac │ │ │ │ -00011fb0: 6b61 6765 0a20 202a 2022 6368 6563 6b44 kage. * "checkD │ │ │ │ -00011fc0: 6567 7265 6573 282e 2e2e 2c56 6572 626f egrees(...,Verbo │ │ │ │ -00011fd0: 7365 3d3e 2e2e 2e29 2220 2d2d 2073 6565 se=>...)" -- see │ │ │ │ -00011fe0: 202a 6e6f 7465 2063 6865 636b 4465 6772 *note checkDegr │ │ │ │ -00011ff0: 6565 733a 0a20 2020 2028 4973 6f6d 6f72 ees:. (Isomor │ │ │ │ -00012000: 7068 6973 6d29 6368 6563 6b44 6567 7265 phism)checkDegre │ │ │ │ -00012010: 6573 2c20 2d2d 2063 6f6d 7061 7265 7320 es, -- compares │ │ │ │ -00012020: 7468 6520 6465 6772 6565 7320 6f66 2067 the degrees of g │ │ │ │ -00012030: 656e 6572 6174 6f72 7320 6f66 2074 776f enerators of two │ │ │ │ -00012040: 0a20 2020 206d 6f64 756c 6573 0a20 202a . modules. * │ │ │ │ -00012050: 2022 636f 7079 4469 7265 6374 6f72 7928 "copyDirectory( │ │ │ │ -00012060: 2e2e 2e2c 5665 7262 6f73 653d 3e2e 2e2e ...,Verbose=>... │ │ │ │ -00012070: 2922 202d 2d20 7365 6520 2a6e 6f74 650a )" -- see *note. │ │ │ │ -00012080: 2020 2020 636f 7079 4469 7265 6374 6f72 copyDirector │ │ │ │ -00012090: 7928 5374 7269 6e67 2c53 7472 696e 6729 y(String,String) │ │ │ │ -000120a0: 3a0a 2020 2020 284d 6163 6175 6c61 7932 :. (Macaulay2 │ │ │ │ -000120b0: 446f 6329 636f 7079 4469 7265 6374 6f72 Doc)copyDirector │ │ │ │ -000120c0: 795f 6c70 5374 7269 6e67 5f63 6d53 7472 y_lpString_cmStr │ │ │ │ -000120d0: 696e 675f 7270 2c0a 2020 2a20 2263 6f70 ing_rp,. * "cop │ │ │ │ -000120e0: 7946 696c 6528 2e2e 2e2c 5665 7262 6f73 yFile(...,Verbos │ │ │ │ -000120f0: 653d 3e2e 2e2e 2922 202d 2d20 7365 6520 e=>...)" -- see │ │ │ │ -00012100: 2a6e 6f74 6520 636f 7079 4669 6c65 2853 *note copyFile(S │ │ │ │ -00012110: 7472 696e 672c 5374 7269 6e67 293a 0a20 tring,String):. │ │ │ │ -00012120: 2020 2028 4d61 6361 756c 6179 3244 6f63 (Macaulay2Doc │ │ │ │ -00012130: 2963 6f70 7946 696c 655f 6c70 5374 7269 )copyFile_lpStri │ │ │ │ -00012140: 6e67 5f63 6d53 7472 696e 675f 7270 2c0a ng_cmString_rp,. │ │ │ │ -00012150: 2020 2a20 2266 696e 6450 726f 6772 616d * "findProgram │ │ │ │ -00012160: 282e 2e2e 2c56 6572 626f 7365 3d3e 2e2e (...,Verbose=>.. │ │ │ │ -00012170: 2e29 2220 2d2d 2073 6565 202a 6e6f 7465 .)" -- see *note │ │ │ │ -00012180: 2066 696e 6450 726f 6772 616d 3a0a 2020 findProgram:. │ │ │ │ -00012190: 2020 284d 6163 6175 6c61 7932 446f 6329 (Macaulay2Doc) │ │ │ │ -000121a0: 6669 6e64 5072 6f67 7261 6d2c 202d 2d20 findProgram, -- │ │ │ │ -000121b0: 6c6f 6164 2065 7874 6572 6e61 6c20 7072 load external pr │ │ │ │ -000121c0: 6f67 7261 6d0a 2020 2a20 2269 6e73 7461 ogram. * "insta │ │ │ │ -000121d0: 6c6c 5061 636b 6167 6528 2e2e 2e2c 5665 llPackage(...,Ve │ │ │ │ -000121e0: 7262 6f73 653d 3e2e 2e2e 2922 202d 2d20 rbose=>...)" -- │ │ │ │ -000121f0: 7365 6520 2a6e 6f74 6520 696e 7374 616c see *note instal │ │ │ │ -00012200: 6c50 6163 6b61 6765 3a0a 2020 2020 284d lPackage:. (M │ │ │ │ -00012210: 6163 6175 6c61 7932 446f 6329 696e 7374 acaulay2Doc)inst │ │ │ │ -00012220: 616c 6c50 6163 6b61 6765 2c20 2d2d 206c allPackage, -- l │ │ │ │ -00012230: 6f61 6420 616e 6420 696e 7374 616c 6c20 oad and install │ │ │ │ -00012240: 6120 7061 636b 6167 6520 616e 6420 6974 a package and it │ │ │ │ -00012250: 730a 2020 2020 646f 6375 6d65 6e74 6174 s. documentat │ │ │ │ -00012260: 696f 6e0a 2020 2a20 2269 7349 736f 6d6f ion. * "isIsomo │ │ │ │ -00012270: 7270 6869 6328 2e2e 2e2c 5665 7262 6f73 rphic(...,Verbos │ │ │ │ -00012280: 653d 3e2e 2e2e 2922 202d 2d20 7365 6520 e=>...)" -- see │ │ │ │ -00012290: 2a6e 6f74 6520 6973 4973 6f6d 6f72 7068 *note isIsomorph │ │ │ │ -000122a0: 6963 3a0a 2020 2020 2849 736f 6d6f 7270 ic:. (Isomorp │ │ │ │ -000122b0: 6869 736d 2969 7349 736f 6d6f 7270 6869 hism)isIsomorphi │ │ │ │ -000122c0: 632c 202d 2d20 5072 6f62 6162 696c 6973 c, -- Probabilis │ │ │ │ -000122d0: 7469 6320 7465 7374 2066 6f72 2069 736f tic test for iso │ │ │ │ -000122e0: 6d6f 7270 6869 736d 206f 6620 6d6f 6475 morphism of modu │ │ │ │ -000122f0: 6c65 730a 2020 2a20 226d 6f76 6546 696c les. * "moveFil │ │ │ │ -00012300: 6528 2e2e 2e2c 5665 7262 6f73 653d 3e2e e(...,Verbose=>. │ │ │ │ -00012310: 2e2e 2922 202d 2d20 7365 6520 2a6e 6f74 ..)" -- see *not │ │ │ │ -00012320: 6520 6d6f 7665 4669 6c65 2853 7472 696e e moveFile(Strin │ │ │ │ -00012330: 672c 5374 7269 6e67 293a 0a20 2020 2028 g,String):. ( │ │ │ │ -00012340: 4d61 6361 756c 6179 3244 6f63 296d 6f76 Macaulay2Doc)mov │ │ │ │ -00012350: 6546 696c 655f 6c70 5374 7269 6e67 5f63 eFile_lpString_c │ │ │ │ -00012360: 6d53 7472 696e 675f 7270 2c0a 2020 2a20 mString_rp,. * │ │ │ │ -00012370: 2272 756e 5072 6f67 7261 6d28 2e2e 2e2c "runProgram(..., │ │ │ │ -00012380: 5665 7262 6f73 653d 3e2e 2e2e 2922 202d Verbose=>...)" - │ │ │ │ -00012390: 2d20 7365 6520 2a6e 6f74 6520 7275 6e50 - see *note runP │ │ │ │ -000123a0: 726f 6772 616d 3a0a 2020 2020 284d 6163 rogram:. (Mac │ │ │ │ -000123b0: 6175 6c61 7932 446f 6329 7275 6e50 726f aulay2Doc)runPro │ │ │ │ -000123c0: 6772 616d 2c20 2d2d 2072 756e 2061 6e20 gram, -- run an │ │ │ │ -000123d0: 6578 7465 726e 616c 2070 726f 6772 616d external program │ │ │ │ -000123e0: 0a20 202a 2022 7379 6d6c 696e 6b44 6972 . * "symlinkDir │ │ │ │ -000123f0: 6563 746f 7279 282e 2e2e 2c56 6572 626f ectory(...,Verbo │ │ │ │ -00012400: 7365 3d3e 2e2e 2e29 2220 2d2d 2073 6565 se=>...)" -- see │ │ │ │ -00012410: 202a 6e6f 7465 0a20 2020 2073 796d 6c69 *note. symli │ │ │ │ -00012420: 6e6b 4469 7265 6374 6f72 7928 5374 7269 nkDirectory(Stri │ │ │ │ -00012430: 6e67 2c53 7472 696e 6729 3a0a 2020 2020 ng,String):. │ │ │ │ -00012440: 284d 6163 6175 6c61 7932 446f 6329 7379 (Macaulay2Doc)sy │ │ │ │ -00012450: 6d6c 696e 6b44 6972 6563 746f 7279 5f6c mlinkDirectory_l │ │ │ │ -00012460: 7053 7472 696e 675f 636d 5374 7269 6e67 pString_cmString │ │ │ │ -00012470: 5f72 702c 202d 2d20 6d61 6b65 2073 796d _rp, -- make sym │ │ │ │ -00012480: 626f 6c69 6320 6c69 6e6b 730a 2020 2020 bolic links. │ │ │ │ -00012490: 666f 7220 616c 6c20 6669 6c65 7320 696e for all files in │ │ │ │ -000124a0: 2061 2064 6972 6563 746f 7279 2074 7265 a directory tre │ │ │ │ -000124b0: 650a 1f0a 4669 6c65 3a20 4265 7274 696e e...File: Bertin │ │ │ │ -000124c0: 692e 696e 666f 2c20 4e6f 6465 3a20 6265 i.info, Node: be │ │ │ │ -000124d0: 7274 696e 6955 7365 7248 6f6d 6f74 6f70 rtiniUserHomotop │ │ │ │ -000124e0: 792c 204e 6578 743a 2062 6572 7469 6e69 y, Next: bertini │ │ │ │ -000124f0: 5a65 726f 4469 6d53 6f6c 7665 2c20 5072 ZeroDimSolve, Pr │ │ │ │ -00012500: 6576 3a20 6265 7274 696e 6954 7261 636b ev: bertiniTrack │ │ │ │ -00012510: 486f 6d6f 746f 7079 5f6c 705f 7064 5f70 Homotopy_lp_pd_p │ │ │ │ -00012520: 645f 7064 5f63 6d56 6572 626f 7365 3d3e d_pd_cmVerbose=> │ │ │ │ -00012530: 5f70 645f 7064 5f70 645f 7270 2c20 5570 _pd_pd_pd_rp, Up │ │ │ │ -00012540: 3a20 546f 700a 0a62 6572 7469 6e69 5573 : Top..bertiniUs │ │ │ │ -00012550: 6572 486f 6d6f 746f 7079 202d 2d20 6120 erHomotopy -- a │ │ │ │ -00012560: 6d61 696e 206d 6574 686f 6420 746f 2074 main method to t │ │ │ │ -00012570: 7261 636b 2061 2075 7365 722d 6465 6669 rack a user-defi │ │ │ │ -00012580: 6e65 6420 686f 6d6f 746f 7079 0a2a 2a2a ned homotopy.*** │ │ │ │ +00011c40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +00011c50: 2020 2a20 2262 6572 7469 6e69 436f 6d70 * "bertiniComp │ │ │ │ +00011c60: 6f6e 656e 744d 656d 6265 7254 6573 7428 onentMemberTest( │ │ │ │ +00011c70: 2e2e 2e2c 5665 7262 6f73 653d 3e2e 2e2e ...,Verbose=>... │ │ │ │ +00011c80: 2922 0a20 202a 2022 6265 7274 696e 6950 )". * "bertiniP │ │ │ │ +00011c90: 6172 616d 6574 6572 486f 6d6f 746f 7079 arameterHomotopy │ │ │ │ +00011ca0: 282e 2e2e 2c56 6572 626f 7365 3d3e 2e2e (...,Verbose=>.. │ │ │ │ +00011cb0: 2e29 220a 2020 2a20 2262 6572 7469 6e69 .)". * "bertini │ │ │ │ +00011cc0: 506f 7344 696d 536f 6c76 6528 2e2e 2e2c PosDimSolve(..., │ │ │ │ +00011cd0: 5665 7262 6f73 653d 3e2e 2e2e 2922 0a20 Verbose=>...)". │ │ │ │ +00011ce0: 202a 2022 6265 7274 696e 6952 6566 696e * "bertiniRefin │ │ │ │ +00011cf0: 6553 6f6c 7328 2e2e 2e2c 5665 7262 6f73 eSols(...,Verbos │ │ │ │ +00011d00: 653d 3e2e 2e2e 2922 0a20 202a 2022 6265 e=>...)". * "be │ │ │ │ +00011d10: 7274 696e 6953 616d 706c 6528 2e2e 2e2c rtiniSample(..., │ │ │ │ +00011d20: 5665 7262 6f73 653d 3e2e 2e2e 2922 0a20 Verbose=>...)". │ │ │ │ +00011d30: 202a 202a 6e6f 7465 2062 6572 7469 6e69 * *note bertini │ │ │ │ +00011d40: 5472 6163 6b48 6f6d 6f74 6f70 7928 2e2e TrackHomotopy(.. │ │ │ │ +00011d50: 2e2c 5665 7262 6f73 653d 3e2e 2e2e 293a .,Verbose=>...): │ │ │ │ +00011d60: 0a20 2020 2062 6572 7469 6e69 5472 6163 . bertiniTrac │ │ │ │ +00011d70: 6b48 6f6d 6f74 6f70 795f 6c70 5f70 645f kHomotopy_lp_pd_ │ │ │ │ +00011d80: 7064 5f70 645f 636d 5665 7262 6f73 653d pd_pd_cmVerbose= │ │ │ │ +00011d90: 3e5f 7064 5f70 645f 7064 5f72 702c 202d >_pd_pd_pd_rp, - │ │ │ │ +00011da0: 2d20 4f70 7469 6f6e 2074 6f0a 2020 2020 - Option to. │ │ │ │ +00011db0: 7369 6c65 6e63 6520 6164 6469 7469 6f6e silence addition │ │ │ │ +00011dc0: 616c 206f 7574 7075 740a 2020 2a20 2262 al output. * "b │ │ │ │ +00011dd0: 6572 7469 6e69 5573 6572 486f 6d6f 746f ertiniUserHomoto │ │ │ │ +00011de0: 7079 282e 2e2e 2c56 6572 626f 7365 3d3e py(...,Verbose=> │ │ │ │ +00011df0: 2e2e 2e29 220a 2020 2a20 2262 6572 7469 ...)". * "berti │ │ │ │ +00011e00: 6e69 5a65 726f 4469 6d53 6f6c 7665 282e niZeroDimSolve(. │ │ │ │ +00011e10: 2e2e 2c56 6572 626f 7365 3d3e 2e2e 2e29 ..,Verbose=>...) │ │ │ │ +00011e20: 220a 2020 2a20 2269 6d70 6f72 7449 6e63 ". * "importInc │ │ │ │ +00011e30: 6964 656e 6365 4d61 7472 6978 282e 2e2e idenceMatrix(... │ │ │ │ +00011e40: 2c56 6572 626f 7365 3d3e 2e2e 2e29 220a ,Verbose=>...)". │ │ │ │ +00011e50: 2020 2a20 2269 6d70 6f72 744d 6169 6e44 * "importMainD │ │ │ │ +00011e60: 6174 6146 696c 6528 2e2e 2e2c 5665 7262 ataFile(...,Verb │ │ │ │ +00011e70: 6f73 653d 3e2e 2e2e 2922 0a20 202a 2022 ose=>...)". * " │ │ │ │ +00011e80: 696d 706f 7274 536f 6c75 7469 6f6e 7346 importSolutionsF │ │ │ │ +00011e90: 696c 6528 2e2e 2e2c 5665 7262 6f73 653d ile(...,Verbose= │ │ │ │ +00011ea0: 3e2e 2e2e 2922 0a20 202a 2022 6d61 6b65 >...)". * "make │ │ │ │ +00011eb0: 4227 496e 7075 7446 696c 6528 2e2e 2e2c B'InputFile(..., │ │ │ │ +00011ec0: 5665 7262 6f73 653d 3e2e 2e2e 2922 0a20 Verbose=>...)". │ │ │ │ +00011ed0: 202a 2022 6d61 6b65 4d65 6d62 6572 7368 * "makeMembersh │ │ │ │ +00011ee0: 6970 4669 6c65 282e 2e2e 2c56 6572 626f ipFile(...,Verbo │ │ │ │ +00011ef0: 7365 3d3e 2e2e 2e29 220a 2020 2a20 226d se=>...)". * "m │ │ │ │ +00011f00: 616b 6553 616d 706c 6553 6f6c 7574 696f akeSampleSolutio │ │ │ │ +00011f10: 6e73 4669 6c65 282e 2e2e 2c56 6572 626f nsFile(...,Verbo │ │ │ │ +00011f20: 7365 3d3e 2e2e 2e29 220a 2020 2a20 2272 se=>...)". * "r │ │ │ │ +00011f30: 756e 4265 7274 696e 6928 2e2e 2e2c 5665 unBertini(...,Ve │ │ │ │ +00011f40: 7262 6f73 653d 3e2e 2e2e 2922 0a20 202a rbose=>...)". * │ │ │ │ +00011f50: 2022 6368 6563 6b28 2e2e 2e2c 5665 7262 "check(...,Verb │ │ │ │ +00011f60: 6f73 653d 3e2e 2e2e 2922 202d 2d20 7365 ose=>...)" -- se │ │ │ │ +00011f70: 6520 2a6e 6f74 6520 6368 6563 6b3a 2028 e *note check: ( │ │ │ │ +00011f80: 4d61 6361 756c 6179 3244 6f63 2963 6865 Macaulay2Doc)che │ │ │ │ +00011f90: 636b 2c20 2d2d 0a20 2020 2070 6572 666f ck, --. perfo │ │ │ │ +00011fa0: 726d 2074 6573 7473 206f 6620 6120 7061 rm tests of a pa │ │ │ │ +00011fb0: 636b 6167 650a 2020 2a20 2263 6865 636b ckage. * "check │ │ │ │ +00011fc0: 4465 6772 6565 7328 2e2e 2e2c 5665 7262 Degrees(...,Verb │ │ │ │ +00011fd0: 6f73 653d 3e2e 2e2e 2922 202d 2d20 7365 ose=>...)" -- se │ │ │ │ +00011fe0: 6520 2a6e 6f74 6520 6368 6563 6b44 6567 e *note checkDeg │ │ │ │ +00011ff0: 7265 6573 3a0a 2020 2020 2849 736f 6d6f rees:. (Isomo │ │ │ │ +00012000: 7270 6869 736d 2963 6865 636b 4465 6772 rphism)checkDegr │ │ │ │ +00012010: 6565 732c 202d 2d20 636f 6d70 6172 6573 ees, -- compares │ │ │ │ +00012020: 2074 6865 2064 6567 7265 6573 206f 6620 the degrees of │ │ │ │ +00012030: 6765 6e65 7261 746f 7273 206f 6620 7477 generators of tw │ │ │ │ +00012040: 6f0a 2020 2020 6d6f 6475 6c65 730a 2020 o. modules. │ │ │ │ +00012050: 2a20 2263 6f70 7944 6972 6563 746f 7279 * "copyDirectory │ │ │ │ +00012060: 282e 2e2e 2c56 6572 626f 7365 3d3e 2e2e (...,Verbose=>.. │ │ │ │ +00012070: 2e29 2220 2d2d 2073 6565 202a 6e6f 7465 .)" -- see *note │ │ │ │ +00012080: 0a20 2020 2063 6f70 7944 6972 6563 746f . copyDirecto │ │ │ │ +00012090: 7279 2853 7472 696e 672c 5374 7269 6e67 ry(String,String │ │ │ │ +000120a0: 293a 0a20 2020 2028 4d61 6361 756c 6179 ):. (Macaulay │ │ │ │ +000120b0: 3244 6f63 2963 6f70 7944 6972 6563 746f 2Doc)copyDirecto │ │ │ │ +000120c0: 7279 5f6c 7053 7472 696e 675f 636d 5374 ry_lpString_cmSt │ │ │ │ +000120d0: 7269 6e67 5f72 702c 0a20 202a 2022 636f ring_rp,. * "co │ │ │ │ +000120e0: 7079 4669 6c65 282e 2e2e 2c56 6572 626f pyFile(...,Verbo │ │ │ │ +000120f0: 7365 3d3e 2e2e 2e29 2220 2d2d 2073 6565 se=>...)" -- see │ │ │ │ +00012100: 202a 6e6f 7465 2063 6f70 7946 696c 6528 *note copyFile( │ │ │ │ +00012110: 5374 7269 6e67 2c53 7472 696e 6729 3a0a String,String):. │ │ │ │ +00012120: 2020 2020 284d 6163 6175 6c61 7932 446f (Macaulay2Do │ │ │ │ +00012130: 6329 636f 7079 4669 6c65 5f6c 7053 7472 c)copyFile_lpStr │ │ │ │ +00012140: 696e 675f 636d 5374 7269 6e67 5f72 702c ing_cmString_rp, │ │ │ │ +00012150: 0a20 202a 2022 6669 6e64 5072 6f67 7261 . * "findProgra │ │ │ │ +00012160: 6d28 2e2e 2e2c 5665 7262 6f73 653d 3e2e m(...,Verbose=>. │ │ │ │ +00012170: 2e2e 2922 202d 2d20 7365 6520 2a6e 6f74 ..)" -- see *not │ │ │ │ +00012180: 6520 6669 6e64 5072 6f67 7261 6d3a 0a20 e findProgram:. │ │ │ │ +00012190: 2020 2028 4d61 6361 756c 6179 3244 6f63 (Macaulay2Doc │ │ │ │ +000121a0: 2966 696e 6450 726f 6772 616d 2c20 2d2d )findProgram, -- │ │ │ │ +000121b0: 206c 6f61 6420 6578 7465 726e 616c 2070 load external p │ │ │ │ +000121c0: 726f 6772 616d 0a20 202a 2022 696e 7374 rogram. * "inst │ │ │ │ +000121d0: 616c 6c50 6163 6b61 6765 282e 2e2e 2c56 allPackage(...,V │ │ │ │ +000121e0: 6572 626f 7365 3d3e 2e2e 2e29 2220 2d2d erbose=>...)" -- │ │ │ │ +000121f0: 2073 6565 202a 6e6f 7465 2069 6e73 7461 see *note insta │ │ │ │ +00012200: 6c6c 5061 636b 6167 653a 0a20 2020 2028 llPackage:. ( │ │ │ │ +00012210: 4d61 6361 756c 6179 3244 6f63 2969 6e73 Macaulay2Doc)ins │ │ │ │ +00012220: 7461 6c6c 5061 636b 6167 652c 202d 2d20 tallPackage, -- │ │ │ │ +00012230: 6c6f 6164 2061 6e64 2069 6e73 7461 6c6c load and install │ │ │ │ +00012240: 2061 2070 6163 6b61 6765 2061 6e64 2069 a package and i │ │ │ │ +00012250: 7473 0a20 2020 2064 6f63 756d 656e 7461 ts. documenta │ │ │ │ +00012260: 7469 6f6e 0a20 202a 2022 6973 4973 6f6d tion. * "isIsom │ │ │ │ +00012270: 6f72 7068 6963 282e 2e2e 2c56 6572 626f orphic(...,Verbo │ │ │ │ +00012280: 7365 3d3e 2e2e 2e29 2220 2d2d 2073 6565 se=>...)" -- see │ │ │ │ +00012290: 202a 6e6f 7465 2069 7349 736f 6d6f 7270 *note isIsomorp │ │ │ │ +000122a0: 6869 633a 0a20 2020 2028 4973 6f6d 6f72 hic:. (Isomor │ │ │ │ +000122b0: 7068 6973 6d29 6973 4973 6f6d 6f72 7068 phism)isIsomorph │ │ │ │ +000122c0: 6963 2c20 2d2d 2050 726f 6261 6269 6c69 ic, -- Probabili │ │ │ │ +000122d0: 7374 6963 2074 6573 7420 666f 7220 6973 stic test for is │ │ │ │ +000122e0: 6f6d 6f72 7068 6973 6d20 6f66 206d 6f64 omorphism of mod │ │ │ │ +000122f0: 756c 6573 0a20 202a 2022 6d6f 7665 4669 ules. * "moveFi │ │ │ │ +00012300: 6c65 282e 2e2e 2c56 6572 626f 7365 3d3e le(...,Verbose=> │ │ │ │ +00012310: 2e2e 2e29 2220 2d2d 2073 6565 202a 6e6f ...)" -- see *no │ │ │ │ +00012320: 7465 206d 6f76 6546 696c 6528 5374 7269 te moveFile(Stri │ │ │ │ +00012330: 6e67 2c53 7472 696e 6729 3a0a 2020 2020 ng,String):. │ │ │ │ +00012340: 284d 6163 6175 6c61 7932 446f 6329 6d6f (Macaulay2Doc)mo │ │ │ │ +00012350: 7665 4669 6c65 5f6c 7053 7472 696e 675f veFile_lpString_ │ │ │ │ +00012360: 636d 5374 7269 6e67 5f72 702c 0a20 202a cmString_rp,. * │ │ │ │ +00012370: 2022 7275 6e50 726f 6772 616d 282e 2e2e "runProgram(... │ │ │ │ +00012380: 2c56 6572 626f 7365 3d3e 2e2e 2e29 2220 ,Verbose=>...)" │ │ │ │ +00012390: 2d2d 2073 6565 202a 6e6f 7465 2072 756e -- see *note run │ │ │ │ +000123a0: 5072 6f67 7261 6d3a 0a20 2020 2028 4d61 Program:. (Ma │ │ │ │ +000123b0: 6361 756c 6179 3244 6f63 2972 756e 5072 caulay2Doc)runPr │ │ │ │ +000123c0: 6f67 7261 6d2c 202d 2d20 7275 6e20 616e ogram, -- run an │ │ │ │ +000123d0: 2065 7874 6572 6e61 6c20 7072 6f67 7261 external progra │ │ │ │ +000123e0: 6d0a 2020 2a20 2273 796d 6c69 6e6b 4469 m. * "symlinkDi │ │ │ │ +000123f0: 7265 6374 6f72 7928 2e2e 2e2c 5665 7262 rectory(...,Verb │ │ │ │ +00012400: 6f73 653d 3e2e 2e2e 2922 202d 2d20 7365 ose=>...)" -- se │ │ │ │ +00012410: 6520 2a6e 6f74 650a 2020 2020 7379 6d6c e *note. syml │ │ │ │ +00012420: 696e 6b44 6972 6563 746f 7279 2853 7472 inkDirectory(Str │ │ │ │ +00012430: 696e 672c 5374 7269 6e67 293a 0a20 2020 ing,String):. │ │ │ │ +00012440: 2028 4d61 6361 756c 6179 3244 6f63 2973 (Macaulay2Doc)s │ │ │ │ +00012450: 796d 6c69 6e6b 4469 7265 6374 6f72 795f ymlinkDirectory_ │ │ │ │ +00012460: 6c70 5374 7269 6e67 5f63 6d53 7472 696e lpString_cmStrin │ │ │ │ +00012470: 675f 7270 2c20 2d2d 206d 616b 6520 7379 g_rp, -- make sy │ │ │ │ +00012480: 6d62 6f6c 6963 206c 696e 6b73 0a20 2020 mbolic links. │ │ │ │ +00012490: 2066 6f72 2061 6c6c 2066 696c 6573 2069 for all files i │ │ │ │ +000124a0: 6e20 6120 6469 7265 6374 6f72 7920 7472 n a directory tr │ │ │ │ +000124b0: 6565 0a1f 0a46 696c 653a 2042 6572 7469 ee...File: Berti │ │ │ │ +000124c0: 6e69 2e69 6e66 6f2c 204e 6f64 653a 2062 ni.info, Node: b │ │ │ │ +000124d0: 6572 7469 6e69 5573 6572 486f 6d6f 746f ertiniUserHomoto │ │ │ │ +000124e0: 7079 2c20 4e65 7874 3a20 6265 7274 696e py, Next: bertin │ │ │ │ +000124f0: 695a 6572 6f44 696d 536f 6c76 652c 2050 iZeroDimSolve, P │ │ │ │ +00012500: 7265 763a 2062 6572 7469 6e69 5472 6163 rev: bertiniTrac │ │ │ │ +00012510: 6b48 6f6d 6f74 6f70 795f 6c70 5f70 645f kHomotopy_lp_pd_ │ │ │ │ +00012520: 7064 5f70 645f 636d 5665 7262 6f73 653d pd_pd_cmVerbose= │ │ │ │ +00012530: 3e5f 7064 5f70 645f 7064 5f72 702c 2055 >_pd_pd_pd_rp, U │ │ │ │ +00012540: 703a 2054 6f70 0a0a 6265 7274 696e 6955 p: Top..bertiniU │ │ │ │ +00012550: 7365 7248 6f6d 6f74 6f70 7920 2d2d 2061 serHomotopy -- a │ │ │ │ +00012560: 206d 6169 6e20 6d65 7468 6f64 2074 6f20 main method to │ │ │ │ +00012570: 7472 6163 6b20 6120 7573 6572 2d64 6566 track a user-def │ │ │ │ +00012580: 696e 6564 2068 6f6d 6f74 6f70 790a 2a2a ined homotopy.** │ │ │ │ 00012590: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000125a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000125b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000125c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000125d0: 2a2a 0a0a 5379 6e6f 7073 6973 0a3d 3d3d **..Synopsis.=== │ │ │ │ -000125e0: 3d3d 3d3d 3d0a 0a20 202a 2055 7361 6765 =====.. * Usage │ │ │ │ -000125f0: 3a20 0a20 2020 2020 2020 2053 303d 6265 : . S0=be │ │ │ │ -00012600: 7274 696e 6955 7365 7248 6f6d 6f74 6f70 rtiniUserHomotop │ │ │ │ -00012610: 7928 742c 2050 2c20 482c 2053 3129 0a20 y(t, P, H, S1). │ │ │ │ -00012620: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ -00012630: 202a 2074 2c20 6120 2a6e 6f74 6520 7269 * t, a *note ri │ │ │ │ -00012640: 6e67 2065 6c65 6d65 6e74 3a20 284d 6163 ng element: (Mac │ │ │ │ -00012650: 6175 6c61 7932 446f 6329 5269 6e67 456c aulay2Doc)RingEl │ │ │ │ -00012660: 656d 656e 742c 2c20 6120 7061 7468 2076 ement,, a path v │ │ │ │ -00012670: 6172 6961 626c 650a 2020 2020 2020 2a20 ariable. * │ │ │ │ -00012680: 502c 2061 202a 6e6f 7465 206c 6973 743a P, a *note list: │ │ │ │ -00012690: 2028 4d61 6361 756c 6179 3244 6f63 294c (Macaulay2Doc)L │ │ │ │ -000126a0: 6973 742c 2c20 6120 6c69 7374 206f 6620 ist,, a list of │ │ │ │ -000126b0: 6f70 7469 6f6e 7320 7468 6174 2073 6574 options that set │ │ │ │ -000126c0: 2074 6865 0a20 2020 2020 2020 2070 6172 the. par │ │ │ │ -000126d0: 616d 6574 6572 730a 2020 2020 2020 2a20 ameters. * │ │ │ │ -000126e0: 482c 2061 202a 6e6f 7465 206c 6973 743a H, a *note list: │ │ │ │ -000126f0: 2028 4d61 6361 756c 6179 3244 6f63 294c (Macaulay2Doc)L │ │ │ │ -00012700: 6973 742c 2c20 6120 6c69 7374 206f 6620 ist,, a list of │ │ │ │ -00012710: 706f 6c79 6e6f 6d69 616c 7320 7468 6174 polynomials that │ │ │ │ -00012720: 2064 6566 696e 650a 2020 2020 2020 2020 define. │ │ │ │ -00012730: 7468 6520 686f 6d6f 746f 7079 0a20 2020 the homotopy. │ │ │ │ -00012740: 2020 202a 2053 312c 2061 202a 6e6f 7465 * S1, a *note │ │ │ │ -00012750: 206c 6973 743a 2028 4d61 6361 756c 6179 list: (Macaulay │ │ │ │ -00012760: 3244 6f63 294c 6973 742c 2c20 6120 6c69 2Doc)List,, a li │ │ │ │ -00012770: 7374 206f 6620 736f 6c75 7469 6f6e 7320 st of solutions │ │ │ │ -00012780: 746f 2074 6865 2073 7461 7274 0a20 2020 to the start. │ │ │ │ -00012790: 2020 2020 2073 7973 7465 6d0a 2020 2a20 system. * │ │ │ │ -000127a0: 2a6e 6f74 6520 4f70 7469 6f6e 616c 2069 *note Optional i │ │ │ │ -000127b0: 6e70 7574 733a 2028 4d61 6361 756c 6179 nputs: (Macaulay │ │ │ │ -000127c0: 3244 6f63 2975 7369 6e67 2066 756e 6374 2Doc)using funct │ │ │ │ -000127d0: 696f 6e73 2077 6974 6820 6f70 7469 6f6e ions with option │ │ │ │ -000127e0: 616c 2069 6e70 7574 732c 3a0a 2020 2020 al inputs,:. │ │ │ │ -000127f0: 2020 2a20 2a6e 6f74 6520 4166 6656 6172 * *note AffVar │ │ │ │ -00012800: 6961 626c 6547 726f 7570 3a20 5661 7269 iableGroup: Vari │ │ │ │ -00012810: 6162 6c65 2067 726f 7570 732c 203d 3e20 able groups, => │ │ │ │ -00012820: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ -00012830: 7565 207b 7d2c 2061 6e0a 2020 2020 2020 ue {}, an. │ │ │ │ -00012840: 2020 6f70 7469 6f6e 2074 6f20 6772 6f75 option to grou │ │ │ │ -00012850: 7020 7661 7269 6162 6c65 7320 616e 6420 p variables and │ │ │ │ -00012860: 7573 6520 6d75 6c74 6968 6f6d 6f67 656e use multihomogen │ │ │ │ -00012870: 656f 7573 2068 6f6d 6f74 6f70 6965 730a eous homotopies. │ │ │ │ -00012880: 2020 2020 2020 2a20 4227 436f 6e73 7461 * B'Consta │ │ │ │ -00012890: 6e74 7320 286d 6973 7369 6e67 2064 6f63 nts (missing doc │ │ │ │ -000128a0: 756d 656e 7461 7469 6f6e 2920 3d3e 202e umentation) => . │ │ │ │ -000128b0: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ -000128c0: 6520 7b7d 2c20 0a20 2020 2020 202a 2042 e {}, . * B │ │ │ │ -000128d0: 2746 756e 6374 696f 6e73 2028 6d69 7373 'Functions (miss │ │ │ │ -000128e0: 696e 6720 646f 6375 6d65 6e74 6174 696f ing documentatio │ │ │ │ -000128f0: 6e29 203d 3e20 2e2e 2e2c 2064 6566 6175 n) => ..., defau │ │ │ │ -00012900: 6c74 2076 616c 7565 207b 7d2c 200a 2020 lt value {}, . │ │ │ │ -00012910: 2020 2020 2a20 4265 7274 696e 6949 6e70 * BertiniInp │ │ │ │ -00012920: 7574 436f 6e66 6967 7572 6174 696f 6e20 utConfiguration │ │ │ │ -00012930: 286d 6973 7369 6e67 2064 6f63 756d 656e (missing documen │ │ │ │ -00012940: 7461 7469 6f6e 2920 3d3e 202e 2e2e 2c20 tation) => ..., │ │ │ │ -00012950: 6465 6661 756c 7420 7661 6c75 650a 2020 default value. │ │ │ │ -00012960: 2020 2020 2020 7b7d 2c0a 2020 2020 2020 {},. │ │ │ │ -00012970: 2a20 486f 6d56 6172 6961 626c 6547 726f * HomVariableGro │ │ │ │ -00012980: 7570 2028 6d69 7373 696e 6720 646f 6375 up (missing docu │ │ │ │ -00012990: 6d65 6e74 6174 696f 6e29 203d 3e20 2e2e mentation) => .. │ │ │ │ -000129a0: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ -000129b0: 207b 7d2c 200a 2020 2020 2020 2a20 4d32 {}, . * M2 │ │ │ │ -000129c0: 5072 6563 6973 696f 6e20 286d 6973 7369 Precision (missi │ │ │ │ -000129d0: 6e67 2064 6f63 756d 656e 7461 7469 6f6e ng documentation │ │ │ │ -000129e0: 2920 3d3e 202e 2e2e 2c20 6465 6661 756c ) => ..., defaul │ │ │ │ -000129f0: 7420 7661 6c75 6520 3533 2c20 0a20 2020 t value 53, . │ │ │ │ -00012a00: 2020 202a 204f 7574 7075 7453 7479 6c65 * OutputStyle │ │ │ │ -00012a10: 2028 6d69 7373 696e 6720 646f 6375 6d65 (missing docume │ │ │ │ -00012a20: 6e74 6174 696f 6e29 203d 3e20 2e2e 2e2c ntation) => ..., │ │ │ │ -00012a30: 2064 6566 6175 6c74 2076 616c 7565 2022 default value " │ │ │ │ -00012a40: 4f75 7450 6f69 6e74 7322 2c20 0a20 2020 OutPoints", . │ │ │ │ -00012a50: 2020 202a 2052 616e 646f 6d43 6f6d 706c * RandomCompl │ │ │ │ -00012a60: 6578 2028 6d69 7373 696e 6720 646f 6375 ex (missing docu │ │ │ │ -00012a70: 6d65 6e74 6174 696f 6e29 203d 3e20 2e2e mentation) => .. │ │ │ │ -00012a80: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ -00012a90: 207b 7d2c 200a 2020 2020 2020 2a20 5261 {}, . * Ra │ │ │ │ -00012aa0: 6e64 6f6d 5265 616c 2028 6d69 7373 696e ndomReal (missin │ │ │ │ -00012ab0: 6720 646f 6375 6d65 6e74 6174 696f 6e29 g documentation) │ │ │ │ -00012ac0: 203d 3e20 2e2e 2e2c 2064 6566 6175 6c74 => ..., default │ │ │ │ -00012ad0: 2076 616c 7565 207b 7d2c 200a 2020 2020 value {}, . │ │ │ │ -00012ae0: 2020 2a20 2a6e 6f74 6520 546f 7044 6972 * *note TopDir │ │ │ │ -00012af0: 6563 746f 7279 3a20 546f 7044 6972 6563 ectory: TopDirec │ │ │ │ -00012b00: 746f 7279 2c20 3d3e 202e 2e2e 2c20 6465 tory, => ..., de │ │ │ │ -00012b10: 6661 756c 7420 7661 6c75 650a 2020 2020 fault value. │ │ │ │ -00012b20: 2020 2020 222f 746d 702f 4d32 2d37 3134 "/tmp/M2-714 │ │ │ │ -00012b30: 3831 2d30 2f30 222c 204f 7074 696f 6e20 81-0/0", Option │ │ │ │ -00012b40: 746f 2063 6861 6e67 6520 6469 7265 6374 to change direct │ │ │ │ -00012b50: 6f72 7920 666f 7220 6669 6c65 2073 746f ory for file sto │ │ │ │ -00012b60: 7261 6765 2e0a 2020 2020 2020 2a20 2a6e rage.. * *n │ │ │ │ -00012b70: 6f74 6520 5665 7262 6f73 653a 2062 6572 ote Verbose: ber │ │ │ │ -00012b80: 7469 6e69 5472 6163 6b48 6f6d 6f74 6f70 tiniTrackHomotop │ │ │ │ -00012b90: 795f 6c70 5f70 645f 7064 5f70 645f 636d y_lp_pd_pd_pd_cm │ │ │ │ -00012ba0: 5665 7262 6f73 653d 3e5f 7064 5f70 645f Verbose=>_pd_pd_ │ │ │ │ -00012bb0: 7064 5f72 700a 2020 2020 2020 2020 2c20 pd_rp. , │ │ │ │ -00012bc0: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ -00012bd0: 7661 6c75 6520 6661 6c73 652c 204f 7074 value false, Opt │ │ │ │ -00012be0: 696f 6e20 746f 2073 696c 656e 6365 2061 ion to silence a │ │ │ │ -00012bf0: 6464 6974 696f 6e61 6c20 6f75 7470 7574 dditional output │ │ │ │ -00012c00: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ -00012c10: 2020 2020 2a20 5330 2c20 6120 2a6e 6f74 * S0, a *not │ │ │ │ -00012c20: 6520 6c69 7374 3a20 284d 6163 6175 6c61 e list: (Macaula │ │ │ │ -00012c30: 7932 446f 6329 4c69 7374 2c2c 2061 206c y2Doc)List,, a l │ │ │ │ -00012c40: 6973 7420 6f66 2073 6f6c 7574 696f 6e73 ist of solutions │ │ │ │ -00012c50: 2074 6f20 7468 650a 2020 2020 2020 2020 to the. │ │ │ │ -00012c60: 7461 7267 6574 2073 7973 7465 6d0a 0a44 target system..D │ │ │ │ -00012c70: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -00012c80: 3d3d 3d3d 3d3d 0a0a 5468 6973 206d 6574 ======..This met │ │ │ │ -00012c90: 686f 6420 6361 6c6c 7320 4265 7274 696e hod calls Bertin │ │ │ │ -00012ca0: 6920 746f 2074 7261 636b 2061 2075 7365 i to track a use │ │ │ │ -00012cb0: 722d 6465 6669 6e65 6420 686f 6d6f 746f r-defined homoto │ │ │ │ -00012cc0: 7079 2e20 2054 6865 2075 7365 7220 6e65 py. The user ne │ │ │ │ -00012cd0: 6564 7320 746f 0a73 7065 6369 6679 2074 eds to.specify t │ │ │ │ -00012ce0: 6865 2068 6f6d 6f74 6f70 7920 482c 2074 he homotopy H, t │ │ │ │ -00012cf0: 6865 2070 6174 6820 7661 7269 6162 6c65 he path variable │ │ │ │ -00012d00: 2074 2c20 616e 6420 6120 6c69 7374 206f t, and a list o │ │ │ │ -00012d10: 6620 7374 6172 7420 736f 6c75 7469 6f6e f start solution │ │ │ │ -00012d20: 7320 5331 2e0a 4265 7274 696e 6920 2831 s S1..Bertini (1 │ │ │ │ -00012d30: 2920 7772 6974 6573 2074 6865 2068 6f6d ) writes the hom │ │ │ │ -00012d40: 6f74 6f70 7920 616e 6420 7374 6172 7420 otopy and start │ │ │ │ -00012d50: 736f 6c75 7469 6f6e 7320 746f 2074 656d solutions to tem │ │ │ │ -00012d60: 706f 7261 7279 2066 696c 6573 2c20 2832 porary files, (2 │ │ │ │ -00012d70: 290a 696e 766f 6b65 7320 4265 7274 696e ).invokes Bertin │ │ │ │ -00012d80: 6927 7320 736f 6c76 6572 2077 6974 6820 i's solver with │ │ │ │ -00012d90: 636f 6e66 6967 7572 6174 696f 6e20 6b65 configuration ke │ │ │ │ -00012da0: 7977 6f72 6420 5573 6572 486f 6d6f 746f yword UserHomoto │ │ │ │ -00012db0: 7079 203d 3e20 322c 2028 3329 0a73 746f py => 2, (3).sto │ │ │ │ -00012dc0: 7265 7320 7468 6520 6f75 7470 7574 206f res the output o │ │ │ │ -00012dd0: 6620 4265 7274 696e 6920 696e 2061 2074 f Bertini in a t │ │ │ │ -00012de0: 656d 706f 7261 7279 2066 696c 652c 2061 emporary file, a │ │ │ │ -00012df0: 6e64 2028 3429 2070 6172 7365 7320 6120 nd (4) parses a │ │ │ │ -00012e00: 6d61 6368 696e 650a 7265 6164 6162 6c65 machine.readable │ │ │ │ -00012e10: 2066 696c 6520 746f 206f 7574 7075 7420 file to output │ │ │ │ -00012e20: 6120 6c69 7374 206f 6620 736f 6c75 7469 a list of soluti │ │ │ │ -00012e30: 6f6e 732e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ons...+--------- │ │ │ │ +000125d0: 2a2a 2a0a 0a53 796e 6f70 7369 730a 3d3d ***..Synopsis.== │ │ │ │ +000125e0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 5573 6167 ======.. * Usag │ │ │ │ +000125f0: 653a 200a 2020 2020 2020 2020 5330 3d62 e: . S0=b │ │ │ │ +00012600: 6572 7469 6e69 5573 6572 486f 6d6f 746f ertiniUserHomoto │ │ │ │ +00012610: 7079 2874 2c20 502c 2048 2c20 5331 290a py(t, P, H, S1). │ │ │ │ +00012620: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +00012630: 2020 2a20 742c 2061 202a 6e6f 7465 2072 * t, a *note r │ │ │ │ +00012640: 696e 6720 656c 656d 656e 743a 2028 4d61 ing element: (Ma │ │ │ │ +00012650: 6361 756c 6179 3244 6f63 2952 696e 6745 caulay2Doc)RingE │ │ │ │ +00012660: 6c65 6d65 6e74 2c2c 2061 2070 6174 6820 lement,, a path │ │ │ │ +00012670: 7661 7269 6162 6c65 0a20 2020 2020 202a variable. * │ │ │ │ +00012680: 2050 2c20 6120 2a6e 6f74 6520 6c69 7374 P, a *note list │ │ │ │ +00012690: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +000126a0: 4c69 7374 2c2c 2061 206c 6973 7420 6f66 List,, a list of │ │ │ │ +000126b0: 206f 7074 696f 6e73 2074 6861 7420 7365 options that se │ │ │ │ +000126c0: 7420 7468 650a 2020 2020 2020 2020 7061 t the. pa │ │ │ │ +000126d0: 7261 6d65 7465 7273 0a20 2020 2020 202a rameters. * │ │ │ │ +000126e0: 2048 2c20 6120 2a6e 6f74 6520 6c69 7374 H, a *note list │ │ │ │ +000126f0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00012700: 4c69 7374 2c2c 2061 206c 6973 7420 6f66 List,, a list of │ │ │ │ +00012710: 2070 6f6c 796e 6f6d 6961 6c73 2074 6861 polynomials tha │ │ │ │ +00012720: 7420 6465 6669 6e65 0a20 2020 2020 2020 t define. │ │ │ │ +00012730: 2074 6865 2068 6f6d 6f74 6f70 790a 2020 the homotopy. │ │ │ │ +00012740: 2020 2020 2a20 5331 2c20 6120 2a6e 6f74 * S1, a *not │ │ │ │ +00012750: 6520 6c69 7374 3a20 284d 6163 6175 6c61 e list: (Macaula │ │ │ │ +00012760: 7932 446f 6329 4c69 7374 2c2c 2061 206c y2Doc)List,, a l │ │ │ │ +00012770: 6973 7420 6f66 2073 6f6c 7574 696f 6e73 ist of solutions │ │ │ │ +00012780: 2074 6f20 7468 6520 7374 6172 740a 2020 to the start. │ │ │ │ +00012790: 2020 2020 2020 7379 7374 656d 0a20 202a system. * │ │ │ │ +000127a0: 202a 6e6f 7465 204f 7074 696f 6e61 6c20 *note Optional │ │ │ │ +000127b0: 696e 7075 7473 3a20 284d 6163 6175 6c61 inputs: (Macaula │ │ │ │ +000127c0: 7932 446f 6329 7573 696e 6720 6675 6e63 y2Doc)using func │ │ │ │ +000127d0: 7469 6f6e 7320 7769 7468 206f 7074 696f tions with optio │ │ │ │ +000127e0: 6e61 6c20 696e 7075 7473 2c3a 0a20 2020 nal inputs,:. │ │ │ │ +000127f0: 2020 202a 202a 6e6f 7465 2041 6666 5661 * *note AffVa │ │ │ │ +00012800: 7269 6162 6c65 4772 6f75 703a 2056 6172 riableGroup: Var │ │ │ │ +00012810: 6961 626c 6520 6772 6f75 7073 2c20 3d3e iable groups, => │ │ │ │ +00012820: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ +00012830: 6c75 6520 7b7d 2c20 616e 0a20 2020 2020 lue {}, an. │ │ │ │ +00012840: 2020 206f 7074 696f 6e20 746f 2067 726f option to gro │ │ │ │ +00012850: 7570 2076 6172 6961 626c 6573 2061 6e64 up variables and │ │ │ │ +00012860: 2075 7365 206d 756c 7469 686f 6d6f 6765 use multihomoge │ │ │ │ +00012870: 6e65 6f75 7320 686f 6d6f 746f 7069 6573 neous homotopies │ │ │ │ +00012880: 0a20 2020 2020 202a 2042 2743 6f6e 7374 . * B'Const │ │ │ │ +00012890: 616e 7473 2028 6d69 7373 696e 6720 646f ants (missing do │ │ │ │ +000128a0: 6375 6d65 6e74 6174 696f 6e29 203d 3e20 cumentation) => │ │ │ │ +000128b0: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ +000128c0: 7565 207b 7d2c 200a 2020 2020 2020 2a20 ue {}, . * │ │ │ │ +000128d0: 4227 4675 6e63 7469 6f6e 7320 286d 6973 B'Functions (mis │ │ │ │ +000128e0: 7369 6e67 2064 6f63 756d 656e 7461 7469 sing documentati │ │ │ │ +000128f0: 6f6e 2920 3d3e 202e 2e2e 2c20 6465 6661 on) => ..., defa │ │ │ │ +00012900: 756c 7420 7661 6c75 6520 7b7d 2c20 0a20 ult value {}, . │ │ │ │ +00012910: 2020 2020 202a 2042 6572 7469 6e69 496e * BertiniIn │ │ │ │ +00012920: 7075 7443 6f6e 6669 6775 7261 7469 6f6e putConfiguration │ │ │ │ +00012930: 2028 6d69 7373 696e 6720 646f 6375 6d65 (missing docume │ │ │ │ +00012940: 6e74 6174 696f 6e29 203d 3e20 2e2e 2e2c ntation) => ..., │ │ │ │ +00012950: 2064 6566 6175 6c74 2076 616c 7565 0a20 default value. │ │ │ │ +00012960: 2020 2020 2020 207b 7d2c 0a20 2020 2020 {},. │ │ │ │ +00012970: 202a 2048 6f6d 5661 7269 6162 6c65 4772 * HomVariableGr │ │ │ │ +00012980: 6f75 7020 286d 6973 7369 6e67 2064 6f63 oup (missing doc │ │ │ │ +00012990: 756d 656e 7461 7469 6f6e 2920 3d3e 202e umentation) => . │ │ │ │ +000129a0: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ +000129b0: 6520 7b7d 2c20 0a20 2020 2020 202a 204d e {}, . * M │ │ │ │ +000129c0: 3250 7265 6369 7369 6f6e 2028 6d69 7373 2Precision (miss │ │ │ │ +000129d0: 696e 6720 646f 6375 6d65 6e74 6174 696f ing documentatio │ │ │ │ +000129e0: 6e29 203d 3e20 2e2e 2e2c 2064 6566 6175 n) => ..., defau │ │ │ │ +000129f0: 6c74 2076 616c 7565 2035 332c 200a 2020 lt value 53, . │ │ │ │ +00012a00: 2020 2020 2a20 4f75 7470 7574 5374 796c * OutputStyl │ │ │ │ +00012a10: 6520 286d 6973 7369 6e67 2064 6f63 756d e (missing docum │ │ │ │ +00012a20: 656e 7461 7469 6f6e 2920 3d3e 202e 2e2e entation) => ... │ │ │ │ +00012a30: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ +00012a40: 224f 7574 506f 696e 7473 222c 200a 2020 "OutPoints", . │ │ │ │ +00012a50: 2020 2020 2a20 5261 6e64 6f6d 436f 6d70 * RandomComp │ │ │ │ +00012a60: 6c65 7820 286d 6973 7369 6e67 2064 6f63 lex (missing doc │ │ │ │ +00012a70: 756d 656e 7461 7469 6f6e 2920 3d3e 202e umentation) => . │ │ │ │ +00012a80: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ +00012a90: 6520 7b7d 2c20 0a20 2020 2020 202a 2052 e {}, . * R │ │ │ │ +00012aa0: 616e 646f 6d52 6561 6c20 286d 6973 7369 andomReal (missi │ │ │ │ +00012ab0: 6e67 2064 6f63 756d 656e 7461 7469 6f6e ng documentation │ │ │ │ +00012ac0: 2920 3d3e 202e 2e2e 2c20 6465 6661 756c ) => ..., defaul │ │ │ │ +00012ad0: 7420 7661 6c75 6520 7b7d 2c20 0a20 2020 t value {}, . │ │ │ │ +00012ae0: 2020 202a 202a 6e6f 7465 2054 6f70 4469 * *note TopDi │ │ │ │ +00012af0: 7265 6374 6f72 793a 2054 6f70 4469 7265 rectory: TopDire │ │ │ │ +00012b00: 6374 6f72 792c 203d 3e20 2e2e 2e2c 2064 ctory, => ..., d │ │ │ │ +00012b10: 6566 6175 6c74 2076 616c 7565 0a20 2020 efault value. │ │ │ │ +00012b20: 2020 2020 2022 2f74 6d70 2f4d 322d 3132 "/tmp/M2-12 │ │ │ │ +00012b30: 3430 3334 2d30 2f30 222c 204f 7074 696f 4034-0/0", Optio │ │ │ │ +00012b40: 6e20 746f 2063 6861 6e67 6520 6469 7265 n to change dire │ │ │ │ +00012b50: 6374 6f72 7920 666f 7220 6669 6c65 2073 ctory for file s │ │ │ │ +00012b60: 746f 7261 6765 2e0a 2020 2020 2020 2a20 torage.. * │ │ │ │ +00012b70: 2a6e 6f74 6520 5665 7262 6f73 653a 2062 *note Verbose: b │ │ │ │ +00012b80: 6572 7469 6e69 5472 6163 6b48 6f6d 6f74 ertiniTrackHomot │ │ │ │ +00012b90: 6f70 795f 6c70 5f70 645f 7064 5f70 645f opy_lp_pd_pd_pd_ │ │ │ │ +00012ba0: 636d 5665 7262 6f73 653d 3e5f 7064 5f70 cmVerbose=>_pd_p │ │ │ │ +00012bb0: 645f 7064 5f72 700a 2020 2020 2020 2020 d_pd_rp. │ │ │ │ +00012bc0: 2c20 3d3e 202e 2e2e 2c20 6465 6661 756c , => ..., defaul │ │ │ │ +00012bd0: 7420 7661 6c75 6520 6661 6c73 652c 204f t value false, O │ │ │ │ +00012be0: 7074 696f 6e20 746f 2073 696c 656e 6365 ption to silence │ │ │ │ +00012bf0: 2061 6464 6974 696f 6e61 6c20 6f75 7470 additional outp │ │ │ │ +00012c00: 7574 0a20 202a 204f 7574 7075 7473 3a0a ut. * Outputs:. │ │ │ │ +00012c10: 2020 2020 2020 2a20 5330 2c20 6120 2a6e * S0, a *n │ │ │ │ +00012c20: 6f74 6520 6c69 7374 3a20 284d 6163 6175 ote list: (Macau │ │ │ │ +00012c30: 6c61 7932 446f 6329 4c69 7374 2c2c 2061 lay2Doc)List,, a │ │ │ │ +00012c40: 206c 6973 7420 6f66 2073 6f6c 7574 696f list of solutio │ │ │ │ +00012c50: 6e73 2074 6f20 7468 650a 2020 2020 2020 ns to the. │ │ │ │ +00012c60: 2020 7461 7267 6574 2073 7973 7465 6d0a target system. │ │ │ │ +00012c70: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +00012c80: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 206d ========..This m │ │ │ │ +00012c90: 6574 686f 6420 6361 6c6c 7320 4265 7274 ethod calls Bert │ │ │ │ +00012ca0: 696e 6920 746f 2074 7261 636b 2061 2075 ini to track a u │ │ │ │ +00012cb0: 7365 722d 6465 6669 6e65 6420 686f 6d6f ser-defined homo │ │ │ │ +00012cc0: 746f 7079 2e20 2054 6865 2075 7365 7220 topy. The user │ │ │ │ +00012cd0: 6e65 6564 7320 746f 0a73 7065 6369 6679 needs to.specify │ │ │ │ +00012ce0: 2074 6865 2068 6f6d 6f74 6f70 7920 482c the homotopy H, │ │ │ │ +00012cf0: 2074 6865 2070 6174 6820 7661 7269 6162 the path variab │ │ │ │ +00012d00: 6c65 2074 2c20 616e 6420 6120 6c69 7374 le t, and a list │ │ │ │ +00012d10: 206f 6620 7374 6172 7420 736f 6c75 7469 of start soluti │ │ │ │ +00012d20: 6f6e 7320 5331 2e0a 4265 7274 696e 6920 ons S1..Bertini │ │ │ │ +00012d30: 2831 2920 7772 6974 6573 2074 6865 2068 (1) writes the h │ │ │ │ +00012d40: 6f6d 6f74 6f70 7920 616e 6420 7374 6172 omotopy and star │ │ │ │ +00012d50: 7420 736f 6c75 7469 6f6e 7320 746f 2074 t solutions to t │ │ │ │ +00012d60: 656d 706f 7261 7279 2066 696c 6573 2c20 emporary files, │ │ │ │ +00012d70: 2832 290a 696e 766f 6b65 7320 4265 7274 (2).invokes Bert │ │ │ │ +00012d80: 696e 6927 7320 736f 6c76 6572 2077 6974 ini's solver wit │ │ │ │ +00012d90: 6820 636f 6e66 6967 7572 6174 696f 6e20 h configuration │ │ │ │ +00012da0: 6b65 7977 6f72 6420 5573 6572 486f 6d6f keyword UserHomo │ │ │ │ +00012db0: 746f 7079 203d 3e20 322c 2028 3329 0a73 topy => 2, (3).s │ │ │ │ +00012dc0: 746f 7265 7320 7468 6520 6f75 7470 7574 tores the output │ │ │ │ +00012dd0: 206f 6620 4265 7274 696e 6920 696e 2061 of Bertini in a │ │ │ │ +00012de0: 2074 656d 706f 7261 7279 2066 696c 652c temporary file, │ │ │ │ +00012df0: 2061 6e64 2028 3429 2070 6172 7365 7320 and (4) parses │ │ │ │ +00012e00: 6120 6d61 6368 696e 650a 7265 6164 6162 a machine.readab │ │ │ │ +00012e10: 6c65 2066 696c 6520 746f 206f 7574 7075 le file to outpu │ │ │ │ +00012e20: 7420 6120 6c69 7374 206f 6620 736f 6c75 t a list of solu │ │ │ │ +00012e30: 7469 6f6e 732e 0a0a 2b2d 2d2d 2d2d 2d2d tions...+------- │ │ │ │ 00012e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012e80: 2b0a 7c69 3120 3a20 5220 3d20 4343 5b78 +.|i1 : R = CC[x │ │ │ │ -00012e90: 2c61 2c74 5d3b 202d 2d20 696e 636c 7564 ,a,t]; -- includ │ │ │ │ -00012ea0: 6520 7468 6520 7061 7468 2076 6172 6961 e the path varia │ │ │ │ -00012eb0: 626c 6520 696e 2074 6865 2072 696e 6720 ble in the ring │ │ │ │ -00012ec0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00012ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012e80: 2d2d 2b0a 7c69 3120 3a20 5220 3d20 4343 --+.|i1 : R = CC │ │ │ │ +00012e90: 5b78 2c61 2c74 5d3b 202d 2d20 696e 636c [x,a,t]; -- incl │ │ │ │ +00012ea0: 7564 6520 7468 6520 7061 7468 2076 6172 ude the path var │ │ │ │ +00012eb0: 6961 626c 6520 696e 2074 6865 2072 696e iable in the rin │ │ │ │ +00012ec0: 6720 2020 2020 2020 2020 2020 2020 7c0a g |. │ │ │ │ +00012ed0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00012ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012f10: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ -00012f20: 4820 3d20 7b20 2878 5e32 2d31 292a 6120 H = { (x^2-1)*a │ │ │ │ -00012f30: 2b20 2878 5e32 2d32 292a 2831 2d61 297d + (x^2-2)*(1-a)} │ │ │ │ -00012f40: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +00012f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ +00012f20: 3a20 4820 3d20 7b20 2878 5e32 2d31 292a : H = { (x^2-1)* │ │ │ │ +00012f30: 6120 2b20 2878 5e32 2d32 292a 2831 2d61 a + (x^2-2)*(1-a │ │ │ │ +00012f40: 297d 3b20 2020 2020 2020 2020 2020 2020 )}; │ │ │ │ 00012f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012f60: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00012f60: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 00012f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012fb0: 2b0a 7c69 3320 3a20 736f 6c31 203d 2070 +.|i3 : sol1 = p │ │ │ │ -00012fc0: 6f69 6e74 207b 7b31 7d7d 3b20 2020 2020 oint {{1}}; │ │ │ │ +00012fb0: 2d2d 2b0a 7c69 3320 3a20 736f 6c31 203d --+.|i3 : sol1 = │ │ │ │ +00012fc0: 2070 6f69 6e74 207b 7b31 7d7d 3b20 2020 point {{1}}; │ │ │ │ 00012fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012ff0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00013000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012ff0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013000: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00013010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013040: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ -00013050: 736f 6c32 203d 2070 6f69 6e74 207b 7b2d sol2 = point {{- │ │ │ │ -00013060: 317d 7d3b 2020 2020 2020 2020 2020 2020 1}}; │ │ │ │ +00013040: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ +00013050: 3a20 736f 6c32 203d 2070 6f69 6e74 207b : sol2 = point { │ │ │ │ +00013060: 7b2d 317d 7d3b 2020 2020 2020 2020 2020 {-1}}; │ │ │ │ 00013070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013090: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00013090: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 000130a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000130b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000130c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000130d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000130e0: 2b0a 7c69 3520 3a20 5331 3d20 7b20 736f +.|i5 : S1= { so │ │ │ │ -000130f0: 6c31 2c20 736f 6c32 2020 7d3b 2d2d 736f l1, sol2 };--so │ │ │ │ -00013100: 6c75 7469 6f6e 7320 746f 2048 2077 6865 lutions to H whe │ │ │ │ -00013110: 6e20 743d 3120 2020 2020 2020 2020 2020 n t=1 │ │ │ │ -00013120: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00013130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000130e0: 2d2d 2b0a 7c69 3520 3a20 5331 3d20 7b20 --+.|i5 : S1= { │ │ │ │ +000130f0: 736f 6c31 2c20 736f 6c32 2020 7d3b 2d2d sol1, sol2 };-- │ │ │ │ +00013100: 736f 6c75 7469 6f6e 7320 746f 2048 2077 solutions to H w │ │ │ │ +00013110: 6865 6e20 743d 3120 2020 2020 2020 2020 hen t=1 │ │ │ │ +00013120: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013130: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00013140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013170: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ -00013180: 5330 203d 2062 6572 7469 6e69 5573 6572 S0 = bertiniUser │ │ │ │ -00013190: 486f 6d6f 746f 7079 2028 742c 7b61 3d3e Homotopy (t,{a=> │ │ │ │ -000131a0: 747d 2c20 482c 2053 3129 202d 2d73 6f6c t}, H, S1) --sol │ │ │ │ -000131b0: 7574 696f 6e73 2074 6f20 4820 7768 656e utions to H when │ │ │ │ -000131c0: 2074 3d30 7c0a 7c20 2020 2020 2020 2020 t=0|.| │ │ │ │ +00013170: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 ----------+.|i6 │ │ │ │ +00013180: 3a20 5330 203d 2062 6572 7469 6e69 5573 : S0 = bertiniUs │ │ │ │ +00013190: 6572 486f 6d6f 746f 7079 2028 742c 7b61 erHomotopy (t,{a │ │ │ │ +000131a0: 3d3e 747d 2c20 482c 2053 3129 202d 2d73 =>t}, H, S1) --s │ │ │ │ +000131b0: 6f6c 7574 696f 6e73 2074 6f20 4820 7768 olutions to H wh │ │ │ │ +000131c0: 656e 2074 3d30 7c0a 7c20 2020 2020 2020 en t=0|.| │ │ │ │ 000131d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000131e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000131f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013210: 7c0a 7c6f 3620 3d20 7b7b 312e 3431 3432 |.|o6 = {{1.4142 │ │ │ │ -00013220: 317d 2c20 7b2d 312e 3431 3432 317d 7d20 1}, {-1.41421}} │ │ │ │ -00013230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013210: 2020 7c0a 7c6f 3620 3d20 7b7b 312e 3431 |.|o6 = {{1.41 │ │ │ │ +00013220: 3432 317d 2c20 7b2d 312e 3431 3432 317d 421}, {-1.41421} │ │ │ │ +00013230: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 00013240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013250: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00013260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013250: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013260: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000132a0: 2020 2020 2020 2020 7c0a 7c6f 3620 3a20 |.|o6 : │ │ │ │ -000132b0: 4c69 7374 2020 2020 2020 2020 2020 2020 List │ │ │ │ +000132a0: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ +000132b0: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ 000132c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000132d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000132e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000132f0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000132f0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 00013300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013340: 2b0a 7c69 3720 3a20 7065 656b 2053 305f +.|i7 : peek S0_ │ │ │ │ -00013350: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00013340: 2d2d 2b0a 7c69 3720 3a20 7065 656b 2053 --+.|i7 : peek S │ │ │ │ +00013350: 305f 3020 2020 2020 2020 2020 2020 2020 0_0 │ │ │ │ 00013360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013380: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00013390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013380: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013390: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000133a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000133b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000133c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000133d0: 2020 2020 2020 2020 7c0a 7c6f 3720 3d20 |.|o7 = │ │ │ │ -000133e0: 506f 696e 747b 6361 6368 6520 3d3e 2043 Point{cache => C │ │ │ │ -000133f0: 6163 6865 5461 626c 657b 2e2e 2e31 342e acheTable{...14. │ │ │ │ -00013400: 2e2e 7d7d 2020 2020 2020 2020 2020 2020 ..}} │ │ │ │ +000133d0: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ +000133e0: 3d20 506f 696e 747b 6361 6368 6520 3d3e = Point{cache => │ │ │ │ +000133f0: 2043 6163 6865 5461 626c 657b 2e2e 2e31 CacheTable{...1 │ │ │ │ +00013400: 342e 2e2e 7d7d 2020 2020 2020 2020 2020 4...}} │ │ │ │ 00013410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013420: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00013430: 2020 436f 6f72 6469 6e61 7465 7320 3d3e Coordinates => │ │ │ │ -00013440: 207b 312e 3431 3432 317d 2020 2020 2020 {1.41421} │ │ │ │ +00013420: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00013430: 2020 2020 436f 6f72 6469 6e61 7465 7320 Coordinates │ │ │ │ +00013440: 3d3e 207b 312e 3431 3432 317d 2020 2020 => {1.41421} │ │ │ │ 00013450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013470: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00013470: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00013480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000134a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000134b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 2b2d ------------+.+- │ │ │ │ -000134c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000134b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000134c0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000134d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000134e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000134f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00013510: 3820 3a20 523d 4343 5b78 2c79 2c74 2c61 8 : R=CC[x,y,t,a │ │ │ │ -00013520: 5d3b 202d 2d20 696e 636c 7564 6520 7468 ]; -- include th │ │ │ │ -00013530: 6520 7061 7468 2076 6172 6961 626c 6520 e path variable │ │ │ │ -00013540: 696e 2074 6865 2072 696e 6720 2020 2020 in the ring │ │ │ │ -00013550: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00013560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00013510: 7c69 3820 3a20 523d 4343 5b78 2c79 2c74 |i8 : R=CC[x,y,t │ │ │ │ +00013520: 2c61 5d3b 202d 2d20 696e 636c 7564 6520 ,a]; -- include │ │ │ │ +00013530: 7468 6520 7061 7468 2076 6172 6961 626c the path variabl │ │ │ │ +00013540: 6520 696e 2074 6865 2072 696e 6720 2020 e in the ring │ │ │ │ +00013550: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013560: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00013570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000135a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000135b0: 3920 3a20 6631 3d28 785e 322d 795e 3229 9 : f1=(x^2-y^2) │ │ │ │ -000135c0: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +000135a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000135b0: 7c69 3920 3a20 6631 3d28 785e 322d 795e |i9 : f1=(x^2-y^ │ │ │ │ +000135c0: 3229 3b20 2020 2020 2020 2020 2020 2020 2); │ │ │ │ 000135d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000135e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000135f0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00013600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000135f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013600: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00013610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00013650: 3130 203a 2066 323d 2832 2a78 5e32 2d33 10 : f2=(2*x^2-3 │ │ │ │ -00013660: 2a78 2a79 2b35 2a79 5e32 293b 2020 2020 *x*y+5*y^2); │ │ │ │ +00013640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00013650: 7c69 3130 203a 2066 323d 2832 2a78 5e32 |i10 : f2=(2*x^2 │ │ │ │ +00013660: 2d33 2a78 2a79 2b35 2a79 5e32 293b 2020 -3*x*y+5*y^2); │ │ │ │ 00013670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013690: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -000136a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013690: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000136a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000136b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000136c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000136d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000136e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000136f0: 3131 203a 2048 203d 207b 2066 312a 6120 11 : H = { f1*a │ │ │ │ -00013700: 2b20 6632 2a28 312d 6129 7d3b 202d 2d48 + f2*(1-a)}; --H │ │ │ │ -00013710: 2069 7320 6120 6c69 7374 206f 6620 706f is a list of po │ │ │ │ -00013720: 6c79 6e6f 6d69 616c 7320 696e 2078 2c79 lynomials in x,y │ │ │ │ -00013730: 2c74 2020 2020 2020 2020 2020 7c0a 2b2d ,t |.+- │ │ │ │ -00013740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000136e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000136f0: 7c69 3131 203a 2048 203d 207b 2066 312a |i11 : H = { f1* │ │ │ │ +00013700: 6120 2b20 6632 2a28 312d 6129 7d3b 202d a + f2*(1-a)}; - │ │ │ │ +00013710: 2d48 2069 7320 6120 6c69 7374 206f 6620 -H is a list of │ │ │ │ +00013720: 706f 6c79 6e6f 6d69 616c 7320 696e 2078 polynomials in x │ │ │ │ +00013730: 2c79 2c74 2020 2020 2020 2020 2020 7c0a ,y,t |. │ │ │ │ +00013740: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00013750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00013790: 3132 203a 2073 6f6c 313d 2020 2020 706f 12 : sol1= po │ │ │ │ -000137a0: 696e 747b 7b31 2c31 7d7d 2d2d 7b7b 782c int{{1,1}}--{{x, │ │ │ │ -000137b0: 797d 7d20 636f 6f72 6469 6e61 7465 7320 y}} coordinates │ │ │ │ -000137c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000137d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000137e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00013790: 7c69 3132 203a 2073 6f6c 313d 2020 2020 |i12 : sol1= │ │ │ │ +000137a0: 706f 696e 747b 7b31 2c31 7d7d 2d2d 7b7b point{{1,1}}--{{ │ │ │ │ +000137b0: 782c 797d 7d20 636f 6f72 6469 6e61 7465 x,y}} coordinate │ │ │ │ +000137c0: 7320 2020 2020 2020 2020 2020 2020 2020 s │ │ │ │ +000137d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000137e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000137f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013820: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00013830: 3132 203d 2073 6f6c 3120 2020 2020 2020 12 = sol1 │ │ │ │ +00013820: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013830: 7c6f 3132 203d 2073 6f6c 3120 2020 2020 |o12 = sol1 │ │ │ │ 00013840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013870: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00013880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013870: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013880: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000138a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000138b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000138c0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000138d0: 3132 203a 2050 6f69 6e74 2020 2020 2020 12 : Point │ │ │ │ +000138c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000138d0: 7c6f 3132 203a 2050 6f69 6e74 2020 2020 |o12 : Point │ │ │ │ 000138e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000138f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013910: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00013920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013910: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013920: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00013930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00013970: 3133 203a 2073 6f6c 323d 2020 2020 706f 13 : sol2= po │ │ │ │ -00013980: 696e 747b 7b20 2d31 2c31 7d7d 2020 2020 int{{ -1,1}} │ │ │ │ +00013960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00013970: 7c69 3133 203a 2073 6f6c 323d 2020 2020 |i13 : sol2= │ │ │ │ +00013980: 706f 696e 747b 7b20 2d31 2c31 7d7d 2020 point{{ -1,1}} │ │ │ │ 00013990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000139a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000139b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000139c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000139b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000139c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000139d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000139e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000139f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013a00: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00013a10: 3133 203d 2073 6f6c 3220 2020 2020 2020 13 = sol2 │ │ │ │ +00013a00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013a10: 7c6f 3133 203d 2073 6f6c 3220 2020 2020 |o13 = sol2 │ │ │ │ 00013a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013a50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00013a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013a50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013a60: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013aa0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00013ab0: 3133 203a 2050 6f69 6e74 2020 2020 2020 13 : Point │ │ │ │ +00013aa0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013ab0: 7c6f 3133 203a 2050 6f69 6e74 2020 2020 |o13 : Point │ │ │ │ 00013ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013af0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00013b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013af0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013b00: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00013b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00013b50: 3134 203a 2053 313d 7b73 6f6c 312c 736f 14 : S1={sol1,so │ │ │ │ -00013b60: 6c32 7d2d 2d73 6f6c 7574 696f 6e73 2074 l2}--solutions t │ │ │ │ -00013b70: 6f20 4820 7768 656e 2074 3d31 2020 2020 o H when t=1 │ │ │ │ +00013b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00013b50: 7c69 3134 203a 2053 313d 7b73 6f6c 312c |i14 : S1={sol1, │ │ │ │ +00013b60: 736f 6c32 7d2d 2d73 6f6c 7574 696f 6e73 sol2}--solutions │ │ │ │ +00013b70: 2074 6f20 4820 7768 656e 2074 3d31 2020 to H when t=1 │ │ │ │ 00013b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013b90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00013ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013b90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013ba0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013be0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00013bf0: 3134 203d 207b 736f 6c31 2c20 736f 6c32 14 = {sol1, sol2 │ │ │ │ -00013c00: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +00013be0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013bf0: 7c6f 3134 203d 207b 736f 6c31 2c20 736f |o14 = {sol1, so │ │ │ │ +00013c00: 6c32 7d20 2020 2020 2020 2020 2020 2020 l2} │ │ │ │ 00013c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013c30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00013c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013c30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013c40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013c80: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00013c90: 3134 203a 204c 6973 7420 2020 2020 2020 14 : List │ │ │ │ +00013c80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013c90: 7c6f 3134 203a 204c 6973 7420 2020 2020 |o14 : List │ │ │ │ 00013ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013cd0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00013ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013cd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013ce0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00013cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00013d30: 3135 203a 2053 303d 6265 7274 696e 6955 15 : S0=bertiniU │ │ │ │ -00013d40: 7365 7248 6f6d 6f74 6f70 7928 742c 7b61 serHomotopy(t,{a │ │ │ │ -00013d50: 3d3e 747d 2c20 482c 2053 312c 2048 6f6d =>t}, H, S1, Hom │ │ │ │ -00013d60: 5661 7269 6162 6c65 4772 6f75 703d 3e7b VariableGroup=>{ │ │ │ │ -00013d70: 782c 797d 2920 2020 2020 2020 7c0a 7c20 x,y}) |.| │ │ │ │ -00013d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00013d30: 7c69 3135 203a 2053 303d 6265 7274 696e |i15 : S0=bertin │ │ │ │ +00013d40: 6955 7365 7248 6f6d 6f74 6f70 7928 742c iUserHomotopy(t, │ │ │ │ +00013d50: 7b61 3d3e 747d 2c20 482c 2053 312c 2048 {a=>t}, H, S1, H │ │ │ │ +00013d60: 6f6d 5661 7269 6162 6c65 4772 6f75 703d omVariableGroup= │ │ │ │ +00013d70: 3e7b 782c 797d 2920 2020 2020 2020 7c0a >{x,y}) |. │ │ │ │ +00013d80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013dc0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00013dd0: 3135 203d 207b 7b31 2c20 2e33 2b2e 3535 15 = {{1, .3+.55 │ │ │ │ -00013de0: 3637 3736 2a69 697d 2c20 7b31 2c20 2e33 6776*ii}, {1, .3 │ │ │ │ -00013df0: 2d2e 3535 3637 3736 2a69 697d 7d20 2020 -.556776*ii}} │ │ │ │ +00013dc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013dd0: 7c6f 3135 203d 207b 7b31 2c20 2e33 2b2e |o15 = {{1, .3+. │ │ │ │ +00013de0: 3535 3637 3736 2a69 697d 2c20 7b31 2c20 556776*ii}, {1, │ │ │ │ +00013df0: 2e33 2d2e 3535 3637 3736 2a69 697d 7d20 .3-.556776*ii}} │ │ │ │ 00013e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013e10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00013e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013e10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013e20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013e60: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00013e70: 3135 203a 204c 6973 7420 2020 2020 2020 15 : List │ │ │ │ +00013e60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013e70: 7c6f 3135 203a 204c 6973 7420 2020 2020 |o15 : List │ │ │ │ 00013e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013eb0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -00013ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013eb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013ec0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ 00013ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c2d ------------|.|- │ │ │ │ -00013f10: 2d73 6f6c 7574 696f 6e73 2074 6f20 4820 -solutions to H │ │ │ │ -00013f20: 7768 656e 2074 3d30 2020 2020 2020 2020 when t=0 │ │ │ │ +00013f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00013f10: 7c2d 2d73 6f6c 7574 696f 6e73 2074 6f20 |--solutions to │ │ │ │ +00013f20: 4820 7768 656e 2074 3d30 2020 2020 2020 H when t=0 │ │ │ │ 00013f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013f50: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00013f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013f50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013f60: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00013f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 ------------+..W │ │ │ │ -00013fb0: 6179 7320 746f 2075 7365 2062 6572 7469 ays to use berti │ │ │ │ -00013fc0: 6e69 5573 6572 486f 6d6f 746f 7079 3a0a niUserHomotopy:. │ │ │ │ -00013fd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00013fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00013fb0: 0a57 6179 7320 746f 2075 7365 2062 6572 .Ways to use ber │ │ │ │ +00013fc0: 7469 6e69 5573 6572 486f 6d6f 746f 7079 tiniUserHomotopy │ │ │ │ +00013fd0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ 00013fe0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00013ff0: 0a0a 2020 2a20 2262 6572 7469 6e69 5573 .. * "bertiniUs │ │ │ │ -00014000: 6572 486f 6d6f 746f 7079 2854 6869 6e67 erHomotopy(Thing │ │ │ │ -00014010: 2c4c 6973 742c 4c69 7374 2c4c 6973 7429 ,List,List,List) │ │ │ │ -00014020: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ -00014030: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ -00014040: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ -00014050: 6a65 6374 202a 6e6f 7465 2062 6572 7469 ject *note berti │ │ │ │ -00014060: 6e69 5573 6572 486f 6d6f 746f 7079 3a20 niUserHomotopy: │ │ │ │ -00014070: 6265 7274 696e 6955 7365 7248 6f6d 6f74 bertiniUserHomot │ │ │ │ -00014080: 6f70 792c 2069 7320 6120 2a6e 6f74 6520 opy, is a *note │ │ │ │ -00014090: 6d65 7468 6f64 0a66 756e 6374 696f 6e20 method.function │ │ │ │ -000140a0: 7769 7468 206f 7074 696f 6e73 3a20 284d with options: (M │ │ │ │ -000140b0: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ -000140c0: 6f64 4675 6e63 7469 6f6e 5769 7468 4f70 odFunctionWithOp │ │ │ │ -000140d0: 7469 6f6e 732c 2e0a 1f0a 4669 6c65 3a20 tions,....File: │ │ │ │ -000140e0: 4265 7274 696e 692e 696e 666f 2c20 4e6f Bertini.info, No │ │ │ │ -000140f0: 6465 3a20 6265 7274 696e 695a 6572 6f44 de: bertiniZeroD │ │ │ │ -00014100: 696d 536f 6c76 652c 204e 6578 743a 2043 imSolve, Next: C │ │ │ │ -00014110: 6f70 7942 2746 696c 652c 2050 7265 763a opyB'File, Prev: │ │ │ │ -00014120: 2062 6572 7469 6e69 5573 6572 486f 6d6f bertiniUserHomo │ │ │ │ -00014130: 746f 7079 2c20 5570 3a20 546f 700a 0a62 topy, Up: Top..b │ │ │ │ -00014140: 6572 7469 6e69 5a65 726f 4469 6d53 6f6c ertiniZeroDimSol │ │ │ │ -00014150: 7665 202d 2d20 6120 6d61 696e 206d 6574 ve -- a main met │ │ │ │ -00014160: 686f 6420 746f 2073 6f6c 7665 2061 207a hod to solve a z │ │ │ │ -00014170: 6572 6f2d 6469 6d65 6e73 696f 6e61 6c20 ero-dimensional │ │ │ │ -00014180: 7379 7374 656d 206f 6620 6571 7561 7469 system of equati │ │ │ │ -00014190: 6f6e 730a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ons.************ │ │ │ │ +00013ff0: 3d3d 0a0a 2020 2a20 2262 6572 7469 6e69 ==.. * "bertini │ │ │ │ +00014000: 5573 6572 486f 6d6f 746f 7079 2854 6869 UserHomotopy(Thi │ │ │ │ +00014010: 6e67 2c4c 6973 742c 4c69 7374 2c4c 6973 ng,List,List,Lis │ │ │ │ +00014020: 7429 220a 0a46 6f72 2074 6865 2070 726f t)"..For the pro │ │ │ │ +00014030: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +00014040: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +00014050: 6f62 6a65 6374 202a 6e6f 7465 2062 6572 object *note ber │ │ │ │ +00014060: 7469 6e69 5573 6572 486f 6d6f 746f 7079 tiniUserHomotopy │ │ │ │ +00014070: 3a20 6265 7274 696e 6955 7365 7248 6f6d : bertiniUserHom │ │ │ │ +00014080: 6f74 6f70 792c 2069 7320 6120 2a6e 6f74 otopy, is a *not │ │ │ │ +00014090: 6520 6d65 7468 6f64 0a66 756e 6374 696f e method.functio │ │ │ │ +000140a0: 6e20 7769 7468 206f 7074 696f 6e73 3a20 n with options: │ │ │ │ +000140b0: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ +000140c0: 7468 6f64 4675 6e63 7469 6f6e 5769 7468 thodFunctionWith │ │ │ │ +000140d0: 4f70 7469 6f6e 732c 2e0a 1f0a 4669 6c65 Options,....File │ │ │ │ +000140e0: 3a20 4265 7274 696e 692e 696e 666f 2c20 : Bertini.info, │ │ │ │ +000140f0: 4e6f 6465 3a20 6265 7274 696e 695a 6572 Node: bertiniZer │ │ │ │ +00014100: 6f44 696d 536f 6c76 652c 204e 6578 743a oDimSolve, Next: │ │ │ │ +00014110: 2043 6f70 7942 2746 696c 652c 2050 7265 CopyB'File, Pre │ │ │ │ +00014120: 763a 2062 6572 7469 6e69 5573 6572 486f v: bertiniUserHo │ │ │ │ +00014130: 6d6f 746f 7079 2c20 5570 3a20 546f 700a motopy, Up: Top. │ │ │ │ +00014140: 0a62 6572 7469 6e69 5a65 726f 4469 6d53 .bertiniZeroDimS │ │ │ │ +00014150: 6f6c 7665 202d 2d20 6120 6d61 696e 206d olve -- a main m │ │ │ │ +00014160: 6574 686f 6420 746f 2073 6f6c 7665 2061 ethod to solve a │ │ │ │ +00014170: 207a 6572 6f2d 6469 6d65 6e73 696f 6e61 zero-dimensiona │ │ │ │ +00014180: 6c20 7379 7374 656d 206f 6620 6571 7561 l system of equa │ │ │ │ +00014190: 7469 6f6e 730a 2a2a 2a2a 2a2a 2a2a 2a2a tions.********** │ │ │ │ 000141a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000141b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000141c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000141d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000141e0: 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 ********..Synops │ │ │ │ -000141f0: 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a is.========.. * │ │ │ │ -00014200: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -00014210: 2053 203d 2062 6572 7469 6e69 5a65 726f S = bertiniZero │ │ │ │ -00014220: 4469 6d53 6f6c 7665 2046 0a20 2020 2020 DimSolve F. │ │ │ │ -00014230: 2020 2053 203d 2062 6572 7469 6e69 5a65 S = bertiniZe │ │ │ │ -00014240: 726f 4469 6d53 6f6c 7665 2049 0a20 2020 roDimSolve I. │ │ │ │ -00014250: 2020 2020 2053 203d 2062 6572 7469 6e69 S = bertini │ │ │ │ -00014260: 5a65 726f 4469 6d53 6f6c 7665 2849 2c20 ZeroDimSolve(I, │ │ │ │ -00014270: 5573 6552 6567 656e 6572 6174 696f 6e3d UseRegeneration= │ │ │ │ -00014280: 3e31 290a 2020 2a20 496e 7075 7473 3a0a >1). * Inputs:. │ │ │ │ -00014290: 2020 2020 2020 2a20 462c 2061 202a 6e6f * F, a *no │ │ │ │ -000142a0: 7465 206c 6973 743a 2028 4d61 6361 756c te list: (Macaul │ │ │ │ -000142b0: 6179 3244 6f63 294c 6973 742c 2c20 6120 ay2Doc)List,, a │ │ │ │ -000142c0: 6c69 7374 206f 6620 7269 6e67 2065 6c65 list of ring ele │ │ │ │ -000142d0: 6d65 6e74 7320 2873 7973 7465 6d0a 2020 ments (system. │ │ │ │ -000142e0: 2020 2020 2020 6e65 6564 206e 6f74 2062 need not b │ │ │ │ -000142f0: 6520 7371 7561 7265 290a 2020 2020 2020 e square). │ │ │ │ -00014300: 2a20 492c 2061 6e20 2a6e 6f74 6520 6964 * I, an *note id │ │ │ │ -00014310: 6561 6c3a 2028 4d61 6361 756c 6179 3244 eal: (Macaulay2D │ │ │ │ -00014320: 6f63 2949 6465 616c 2c2c 2061 6e20 6964 oc)Ideal,, an id │ │ │ │ -00014330: 6561 6c20 6465 6669 6e69 6e67 2061 2076 eal defining a v │ │ │ │ -00014340: 6172 6965 7479 0a20 202a 202a 6e6f 7465 ariety. * *note │ │ │ │ -00014350: 204f 7074 696f 6e61 6c20 696e 7075 7473 Optional inputs │ │ │ │ -00014360: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00014370: 7573 696e 6720 6675 6e63 7469 6f6e 7320 using functions │ │ │ │ -00014380: 7769 7468 206f 7074 696f 6e61 6c20 696e with optional in │ │ │ │ -00014390: 7075 7473 2c3a 0a20 2020 2020 202a 202a puts,:. * * │ │ │ │ -000143a0: 6e6f 7465 2041 6666 5661 7269 6162 6c65 note AffVariable │ │ │ │ -000143b0: 4772 6f75 703a 2056 6172 6961 626c 6520 Group: Variable │ │ │ │ -000143c0: 6772 6f75 7073 2c20 3d3e 202e 2e2e 2c20 groups, => ..., │ │ │ │ -000143d0: 6465 6661 756c 7420 7661 6c75 6520 7b7d default value {} │ │ │ │ -000143e0: 2c20 616e 0a20 2020 2020 2020 206f 7074 , an. opt │ │ │ │ -000143f0: 696f 6e20 746f 2067 726f 7570 2076 6172 ion to group var │ │ │ │ -00014400: 6961 626c 6573 2061 6e64 2075 7365 206d iables and use m │ │ │ │ -00014410: 756c 7469 686f 6d6f 6765 6e65 6f75 7320 ultihomogeneous │ │ │ │ -00014420: 686f 6d6f 746f 7069 6573 0a20 2020 2020 homotopies. │ │ │ │ -00014430: 202a 202a 6e6f 7465 2042 2743 6f6e 7374 * *note B'Const │ │ │ │ -00014440: 616e 7473 3a20 4227 436f 6e73 7461 6e74 ants: B'Constant │ │ │ │ -00014450: 732c 203d 3e20 2e2e 2e2c 2064 6566 6175 s, => ..., defau │ │ │ │ -00014460: 6c74 2076 616c 7565 207b 7d2c 2061 6e20 lt value {}, an │ │ │ │ -00014470: 6f70 7469 6f6e 2074 6f0a 2020 2020 2020 option to. │ │ │ │ -00014480: 2020 6465 7369 676e 6174 6520 7468 6520 designate the │ │ │ │ -00014490: 636f 6e73 7461 6e74 7320 666f 7220 6120 constants for a │ │ │ │ -000144a0: 4265 7274 696e 6920 496e 7075 7420 6669 Bertini Input fi │ │ │ │ -000144b0: 6c65 0a20 2020 2020 202a 2042 2746 756e le. * B'Fun │ │ │ │ -000144c0: 6374 696f 6e73 2028 6d69 7373 696e 6720 ctions (missing │ │ │ │ -000144d0: 646f 6375 6d65 6e74 6174 696f 6e29 203d documentation) = │ │ │ │ -000144e0: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ -000144f0: 616c 7565 207b 7d2c 200a 2020 2020 2020 alue {}, . │ │ │ │ -00014500: 2a20 4265 7274 696e 6949 6e70 7574 436f * BertiniInputCo │ │ │ │ -00014510: 6e66 6967 7572 6174 696f 6e20 286d 6973 nfiguration (mis │ │ │ │ -00014520: 7369 6e67 2064 6f63 756d 656e 7461 7469 sing documentati │ │ │ │ -00014530: 6f6e 2920 3d3e 202e 2e2e 2c20 6465 6661 on) => ..., defa │ │ │ │ -00014540: 756c 7420 7661 6c75 650a 2020 2020 2020 ult value. │ │ │ │ -00014550: 2020 7b7d 2c0a 2020 2020 2020 2a20 2a6e {},. * *n │ │ │ │ -00014560: 6f74 6520 486f 6d56 6172 6961 626c 6547 ote HomVariableG │ │ │ │ -00014570: 726f 7570 3a20 5661 7269 6162 6c65 2067 roup: Variable g │ │ │ │ -00014580: 726f 7570 732c 203d 3e20 2e2e 2e2c 2064 roups, => ..., d │ │ │ │ -00014590: 6566 6175 6c74 2076 616c 7565 207b 7d2c efault value {}, │ │ │ │ -000145a0: 2061 6e0a 2020 2020 2020 2020 6f70 7469 an. opti │ │ │ │ -000145b0: 6f6e 2074 6f20 6772 6f75 7020 7661 7269 on to group vari │ │ │ │ -000145c0: 6162 6c65 7320 616e 6420 7573 6520 6d75 ables and use mu │ │ │ │ -000145d0: 6c74 6968 6f6d 6f67 656e 656f 7573 2068 ltihomogeneous h │ │ │ │ -000145e0: 6f6d 6f74 6f70 6965 730a 2020 2020 2020 omotopies. │ │ │ │ -000145f0: 2a20 4973 5072 6f6a 6563 7469 7665 2028 * IsProjective ( │ │ │ │ -00014600: 6d69 7373 696e 6720 646f 6375 6d65 6e74 missing document │ │ │ │ -00014610: 6174 696f 6e29 203d 3e20 2e2e 2e2c 2064 ation) => ..., d │ │ │ │ -00014620: 6566 6175 6c74 2076 616c 7565 202d 312c efault value -1, │ │ │ │ -00014630: 200a 2020 2020 2020 2a20 4d32 5072 6563 . * M2Prec │ │ │ │ -00014640: 6973 696f 6e20 286d 6973 7369 6e67 2064 ision (missing d │ │ │ │ -00014650: 6f63 756d 656e 7461 7469 6f6e 2920 3d3e ocumentation) => │ │ │ │ -00014660: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ -00014670: 6c75 6520 3533 2c20 0a20 2020 2020 202a lue 53, . * │ │ │ │ -00014680: 204e 616d 654d 6169 6e44 6174 6146 696c NameMainDataFil │ │ │ │ -00014690: 6520 286d 6973 7369 6e67 2064 6f63 756d e (missing docum │ │ │ │ -000146a0: 656e 7461 7469 6f6e 2920 3d3e 202e 2e2e entation) => ... │ │ │ │ -000146b0: 2c20 6465 6661 756c 7420 7661 6c75 650a , default value. │ │ │ │ -000146c0: 2020 2020 2020 2020 226d 6169 6e5f 6461 "main_da │ │ │ │ -000146d0: 7461 222c 0a20 2020 2020 202a 204e 616d ta",. * Nam │ │ │ │ -000146e0: 6553 6f6c 7574 696f 6e73 4669 6c65 2028 eSolutionsFile ( │ │ │ │ -000146f0: 6d69 7373 696e 6720 646f 6375 6d65 6e74 missing document │ │ │ │ -00014700: 6174 696f 6e29 203d 3e20 2e2e 2e2c 2064 ation) => ..., d │ │ │ │ -00014710: 6566 6175 6c74 2076 616c 7565 0a20 2020 efault value. │ │ │ │ -00014720: 2020 2020 2022 7261 775f 736f 6c75 7469 "raw_soluti │ │ │ │ -00014730: 6f6e 7322 2c0a 2020 2020 2020 2a20 4f75 ons",. * Ou │ │ │ │ -00014740: 7470 7574 5374 796c 6520 286d 6973 7369 tputStyle (missi │ │ │ │ -00014750: 6e67 2064 6f63 756d 656e 7461 7469 6f6e ng documentation │ │ │ │ -00014760: 2920 3d3e 202e 2e2e 2c20 6465 6661 756c ) => ..., defaul │ │ │ │ -00014770: 7420 7661 6c75 6520 224f 7574 506f 696e t value "OutPoin │ │ │ │ -00014780: 7473 222c 200a 2020 2020 2020 2a20 2a6e ts", . * *n │ │ │ │ -00014790: 6f74 6520 5261 6e64 6f6d 436f 6d70 6c65 ote RandomComple │ │ │ │ -000147a0: 783a 2042 6572 7469 6e69 2069 6e70 7574 x: Bertini input │ │ │ │ -000147b0: 2066 696c 6520 6465 636c 6172 6174 696f file declaratio │ │ │ │ -000147c0: 6e73 5f63 6f20 7261 6e64 6f6d 206e 756d ns_co random num │ │ │ │ -000147d0: 6265 7273 2c0a 2020 2020 2020 2020 3d3e bers,. => │ │ │ │ -000147e0: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ -000147f0: 6c75 6520 7b7d 2c20 616e 206f 7074 696f lue {}, an optio │ │ │ │ -00014800: 6e20 7768 6963 6820 6465 7369 676e 6174 n which designat │ │ │ │ -00014810: 6573 0a20 2020 2020 2020 2073 796d 626f es. symbo │ │ │ │ -00014820: 6c73 2f73 7472 696e 6773 2f76 6172 6961 ls/strings/varia │ │ │ │ -00014830: 626c 6573 2074 6861 7420 7769 6c6c 2062 bles that will b │ │ │ │ -00014840: 6520 7365 7420 746f 2062 6520 6120 7261 e set to be a ra │ │ │ │ -00014850: 6e64 6f6d 2072 6561 6c20 6e75 6d62 6572 ndom real number │ │ │ │ -00014860: 0a20 2020 2020 2020 206f 7220 7261 6e64 . or rand │ │ │ │ -00014870: 6f6d 2063 6f6d 706c 6578 206e 756d 6265 om complex numbe │ │ │ │ -00014880: 720a 2020 2020 2020 2a20 2a6e 6f74 6520 r. * *note │ │ │ │ -00014890: 5261 6e64 6f6d 5265 616c 3a20 4265 7274 RandomReal: Bert │ │ │ │ -000148a0: 696e 6920 696e 7075 7420 6669 6c65 2064 ini input file d │ │ │ │ -000148b0: 6563 6c61 7261 7469 6f6e 735f 636f 2072 eclarations_co r │ │ │ │ -000148c0: 616e 646f 6d20 6e75 6d62 6572 732c 203d andom numbers, = │ │ │ │ -000148d0: 3e0a 2020 2020 2020 2020 2e2e 2e2c 2064 >. ..., d │ │ │ │ -000148e0: 6566 6175 6c74 2076 616c 7565 207b 7d2c efault value {}, │ │ │ │ -000148f0: 2061 6e20 6f70 7469 6f6e 2077 6869 6368 an option which │ │ │ │ -00014900: 2064 6573 6967 6e61 7465 730a 2020 2020 designates. │ │ │ │ -00014910: 2020 2020 7379 6d62 6f6c 732f 7374 7269 symbols/stri │ │ │ │ -00014920: 6e67 732f 7661 7269 6162 6c65 7320 7468 ngs/variables th │ │ │ │ -00014930: 6174 2077 696c 6c20 6265 2073 6574 2074 at will be set t │ │ │ │ -00014940: 6f20 6265 2061 2072 616e 646f 6d20 7265 o be a random re │ │ │ │ -00014950: 616c 206e 756d 6265 720a 2020 2020 2020 al number. │ │ │ │ -00014960: 2020 6f72 2072 616e 646f 6d20 636f 6d70 or random comp │ │ │ │ -00014970: 6c65 7820 6e75 6d62 6572 0a20 2020 2020 lex number. │ │ │ │ -00014980: 202a 202a 6e6f 7465 2054 6f70 4469 7265 * *note TopDire │ │ │ │ -00014990: 6374 6f72 793a 2054 6f70 4469 7265 6374 ctory: TopDirect │ │ │ │ -000149a0: 6f72 792c 203d 3e20 2e2e 2e2c 2064 6566 ory, => ..., def │ │ │ │ -000149b0: 6175 6c74 2076 616c 7565 0a20 2020 2020 ault value. │ │ │ │ -000149c0: 2020 2022 2f74 6d70 2f4d 322d 3731 3438 "/tmp/M2-7148 │ │ │ │ -000149d0: 312d 302f 3022 2c20 4f70 7469 6f6e 2074 1-0/0", Option t │ │ │ │ -000149e0: 6f20 6368 616e 6765 2064 6972 6563 746f o change directo │ │ │ │ -000149f0: 7279 2066 6f72 2066 696c 6520 7374 6f72 ry for file stor │ │ │ │ -00014a00: 6167 652e 0a20 2020 2020 202a 2055 7365 age.. * Use │ │ │ │ -00014a10: 5265 6765 6e65 7261 7469 6f6e 2028 6d69 Regeneration (mi │ │ │ │ -00014a20: 7373 696e 6720 646f 6375 6d65 6e74 6174 ssing documentat │ │ │ │ -00014a30: 696f 6e29 203d 3e20 2e2e 2e2c 2064 6566 ion) => ..., def │ │ │ │ -00014a40: 6175 6c74 2076 616c 7565 202d 312c 200a ault value -1, . │ │ │ │ -00014a50: 2020 2020 2020 2a20 2a6e 6f74 6520 5665 * *note Ve │ │ │ │ -00014a60: 7262 6f73 653a 2062 6572 7469 6e69 5472 rbose: bertiniTr │ │ │ │ -00014a70: 6163 6b48 6f6d 6f74 6f70 795f 6c70 5f70 ackHomotopy_lp_p │ │ │ │ -00014a80: 645f 7064 5f70 645f 636d 5665 7262 6f73 d_pd_pd_cmVerbos │ │ │ │ -00014a90: 653d 3e5f 7064 5f70 645f 7064 5f72 700a e=>_pd_pd_pd_rp. │ │ │ │ -00014aa0: 2020 2020 2020 2020 2c20 3d3e 202e 2e2e , => ... │ │ │ │ -00014ab0: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -00014ac0: 6661 6c73 652c 204f 7074 696f 6e20 746f false, Option to │ │ │ │ -00014ad0: 2073 696c 656e 6365 2061 6464 6974 696f silence additio │ │ │ │ -00014ae0: 6e61 6c20 6f75 7470 7574 0a20 202a 204f nal output. * O │ │ │ │ -00014af0: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ -00014b00: 532c 2061 202a 6e6f 7465 206c 6973 743a S, a *note list: │ │ │ │ -00014b10: 2028 4d61 6361 756c 6179 3244 6f63 294c (Macaulay2Doc)L │ │ │ │ -00014b20: 6973 742c 2c20 6120 6c69 7374 206f 6620 ist,, a list of │ │ │ │ -00014b30: 706f 696e 7473 2074 6861 7420 6172 650a points that are. │ │ │ │ -00014b40: 2020 2020 2020 2020 636f 6e74 6169 6e65 containe │ │ │ │ -00014b50: 6420 696e 2074 6865 2076 6172 6965 7479 d in the variety │ │ │ │ -00014b60: 206f 6620 460a 0a44 6573 6372 6970 7469 of F..Descripti │ │ │ │ -00014b70: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -00014b80: 5468 6973 206d 6574 686f 6420 6669 6e64 This method find │ │ │ │ -00014b90: 7320 6973 6f6c 6174 6564 2073 6f6c 7574 s isolated solut │ │ │ │ -00014ba0: 696f 6e73 2074 6f20 7468 6520 7379 7374 ions to the syst │ │ │ │ -00014bb0: 656d 2046 2076 6961 206e 756d 6572 6963 em F via numeric │ │ │ │ -00014bc0: 616c 2070 6f6c 796e 6f6d 6961 6c0a 686f al polynomial.ho │ │ │ │ -00014bd0: 6d6f 746f 7079 2063 6f6e 7469 6e75 6174 motopy continuat │ │ │ │ -00014be0: 696f 6e20 6279 2028 3129 2062 7569 6c64 ion by (1) build │ │ │ │ -00014bf0: 696e 6720 6120 4265 7274 696e 6920 696e ing a Bertini in │ │ │ │ -00014c00: 7075 7420 6669 6c65 2066 726f 6d20 7468 put file from th │ │ │ │ -00014c10: 6520 7379 7374 656d 2046 2c0a 2832 2920 e system F,.(2) │ │ │ │ -00014c20: 6361 6c6c 696e 6720 4265 7274 696e 6920 calling Bertini │ │ │ │ -00014c30: 6f6e 2074 6869 7320 696e 7075 7420 6669 on this input fi │ │ │ │ -00014c40: 6c65 2c20 2833 2920 7265 7475 726e 696e le, (3) returnin │ │ │ │ -00014c50: 6720 736f 6c75 7469 6f6e 7320 6672 6f6d g solutions from │ │ │ │ -00014c60: 2061 206d 6163 6869 6e65 0a72 6561 6461 a machine.reada │ │ │ │ -00014c70: 626c 6520 6669 6c65 2074 6861 7420 6973 ble file that is │ │ │ │ -00014c80: 2061 6e20 6f75 7470 7574 2066 726f 6d20 an output from │ │ │ │ -00014c90: 4265 7274 696e 692e 0a0a 2b2d 2d2d 2d2d Bertini...+----- │ │ │ │ +000141e0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f **********..Syno │ │ │ │ +000141f0: 7073 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 psis.========.. │ │ │ │ +00014200: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ +00014210: 2020 2053 203d 2062 6572 7469 6e69 5a65 S = bertiniZe │ │ │ │ +00014220: 726f 4469 6d53 6f6c 7665 2046 0a20 2020 roDimSolve F. │ │ │ │ +00014230: 2020 2020 2053 203d 2062 6572 7469 6e69 S = bertini │ │ │ │ +00014240: 5a65 726f 4469 6d53 6f6c 7665 2049 0a20 ZeroDimSolve I. │ │ │ │ +00014250: 2020 2020 2020 2053 203d 2062 6572 7469 S = berti │ │ │ │ +00014260: 6e69 5a65 726f 4469 6d53 6f6c 7665 2849 niZeroDimSolve(I │ │ │ │ +00014270: 2c20 5573 6552 6567 656e 6572 6174 696f , UseRegeneratio │ │ │ │ +00014280: 6e3d 3e31 290a 2020 2a20 496e 7075 7473 n=>1). * Inputs │ │ │ │ +00014290: 3a0a 2020 2020 2020 2a20 462c 2061 202a :. * F, a * │ │ │ │ +000142a0: 6e6f 7465 206c 6973 743a 2028 4d61 6361 note list: (Maca │ │ │ │ +000142b0: 756c 6179 3244 6f63 294c 6973 742c 2c20 ulay2Doc)List,, │ │ │ │ +000142c0: 6120 6c69 7374 206f 6620 7269 6e67 2065 a list of ring e │ │ │ │ +000142d0: 6c65 6d65 6e74 7320 2873 7973 7465 6d0a lements (system. │ │ │ │ +000142e0: 2020 2020 2020 2020 6e65 6564 206e 6f74 need not │ │ │ │ +000142f0: 2062 6520 7371 7561 7265 290a 2020 2020 be square). │ │ │ │ +00014300: 2020 2a20 492c 2061 6e20 2a6e 6f74 6520 * I, an *note │ │ │ │ +00014310: 6964 6561 6c3a 2028 4d61 6361 756c 6179 ideal: (Macaulay │ │ │ │ +00014320: 3244 6f63 2949 6465 616c 2c2c 2061 6e20 2Doc)Ideal,, an │ │ │ │ +00014330: 6964 6561 6c20 6465 6669 6e69 6e67 2061 ideal defining a │ │ │ │ +00014340: 2076 6172 6965 7479 0a20 202a 202a 6e6f variety. * *no │ │ │ │ +00014350: 7465 204f 7074 696f 6e61 6c20 696e 7075 te Optional inpu │ │ │ │ +00014360: 7473 3a20 284d 6163 6175 6c61 7932 446f ts: (Macaulay2Do │ │ │ │ +00014370: 6329 7573 696e 6720 6675 6e63 7469 6f6e c)using function │ │ │ │ +00014380: 7320 7769 7468 206f 7074 696f 6e61 6c20 s with optional │ │ │ │ +00014390: 696e 7075 7473 2c3a 0a20 2020 2020 202a inputs,:. * │ │ │ │ +000143a0: 202a 6e6f 7465 2041 6666 5661 7269 6162 *note AffVariab │ │ │ │ +000143b0: 6c65 4772 6f75 703a 2056 6172 6961 626c leGroup: Variabl │ │ │ │ +000143c0: 6520 6772 6f75 7073 2c20 3d3e 202e 2e2e e groups, => ... │ │ │ │ +000143d0: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ +000143e0: 7b7d 2c20 616e 0a20 2020 2020 2020 206f {}, an. o │ │ │ │ +000143f0: 7074 696f 6e20 746f 2067 726f 7570 2076 ption to group v │ │ │ │ +00014400: 6172 6961 626c 6573 2061 6e64 2075 7365 ariables and use │ │ │ │ +00014410: 206d 756c 7469 686f 6d6f 6765 6e65 6f75 multihomogeneou │ │ │ │ +00014420: 7320 686f 6d6f 746f 7069 6573 0a20 2020 s homotopies. │ │ │ │ +00014430: 2020 202a 202a 6e6f 7465 2042 2743 6f6e * *note B'Con │ │ │ │ +00014440: 7374 616e 7473 3a20 4227 436f 6e73 7461 stants: B'Consta │ │ │ │ +00014450: 6e74 732c 203d 3e20 2e2e 2e2c 2064 6566 nts, => ..., def │ │ │ │ +00014460: 6175 6c74 2076 616c 7565 207b 7d2c 2061 ault value {}, a │ │ │ │ +00014470: 6e20 6f70 7469 6f6e 2074 6f0a 2020 2020 n option to. │ │ │ │ +00014480: 2020 2020 6465 7369 676e 6174 6520 7468 designate th │ │ │ │ +00014490: 6520 636f 6e73 7461 6e74 7320 666f 7220 e constants for │ │ │ │ +000144a0: 6120 4265 7274 696e 6920 496e 7075 7420 a Bertini Input │ │ │ │ +000144b0: 6669 6c65 0a20 2020 2020 202a 2042 2746 file. * B'F │ │ │ │ +000144c0: 756e 6374 696f 6e73 2028 6d69 7373 696e unctions (missin │ │ │ │ +000144d0: 6720 646f 6375 6d65 6e74 6174 696f 6e29 g documentation) │ │ │ │ +000144e0: 203d 3e20 2e2e 2e2c 2064 6566 6175 6c74 => ..., default │ │ │ │ +000144f0: 2076 616c 7565 207b 7d2c 200a 2020 2020 value {}, . │ │ │ │ +00014500: 2020 2a20 4265 7274 696e 6949 6e70 7574 * BertiniInput │ │ │ │ +00014510: 436f 6e66 6967 7572 6174 696f 6e20 286d Configuration (m │ │ │ │ +00014520: 6973 7369 6e67 2064 6f63 756d 656e 7461 issing documenta │ │ │ │ +00014530: 7469 6f6e 2920 3d3e 202e 2e2e 2c20 6465 tion) => ..., de │ │ │ │ +00014540: 6661 756c 7420 7661 6c75 650a 2020 2020 fault value. │ │ │ │ +00014550: 2020 2020 7b7d 2c0a 2020 2020 2020 2a20 {},. * │ │ │ │ +00014560: 2a6e 6f74 6520 486f 6d56 6172 6961 626c *note HomVariabl │ │ │ │ +00014570: 6547 726f 7570 3a20 5661 7269 6162 6c65 eGroup: Variable │ │ │ │ +00014580: 2067 726f 7570 732c 203d 3e20 2e2e 2e2c groups, => ..., │ │ │ │ +00014590: 2064 6566 6175 6c74 2076 616c 7565 207b default value { │ │ │ │ +000145a0: 7d2c 2061 6e0a 2020 2020 2020 2020 6f70 }, an. op │ │ │ │ +000145b0: 7469 6f6e 2074 6f20 6772 6f75 7020 7661 tion to group va │ │ │ │ +000145c0: 7269 6162 6c65 7320 616e 6420 7573 6520 riables and use │ │ │ │ +000145d0: 6d75 6c74 6968 6f6d 6f67 656e 656f 7573 multihomogeneous │ │ │ │ +000145e0: 2068 6f6d 6f74 6f70 6965 730a 2020 2020 homotopies. │ │ │ │ +000145f0: 2020 2a20 4973 5072 6f6a 6563 7469 7665 * IsProjective │ │ │ │ +00014600: 2028 6d69 7373 696e 6720 646f 6375 6d65 (missing docume │ │ │ │ +00014610: 6e74 6174 696f 6e29 203d 3e20 2e2e 2e2c ntation) => ..., │ │ │ │ +00014620: 2064 6566 6175 6c74 2076 616c 7565 202d default value - │ │ │ │ +00014630: 312c 200a 2020 2020 2020 2a20 4d32 5072 1, . * M2Pr │ │ │ │ +00014640: 6563 6973 696f 6e20 286d 6973 7369 6e67 ecision (missing │ │ │ │ +00014650: 2064 6f63 756d 656e 7461 7469 6f6e 2920 documentation) │ │ │ │ +00014660: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +00014670: 7661 6c75 6520 3533 2c20 0a20 2020 2020 value 53, . │ │ │ │ +00014680: 202a 204e 616d 654d 6169 6e44 6174 6146 * NameMainDataF │ │ │ │ +00014690: 696c 6520 286d 6973 7369 6e67 2064 6f63 ile (missing doc │ │ │ │ +000146a0: 756d 656e 7461 7469 6f6e 2920 3d3e 202e umentation) => . │ │ │ │ +000146b0: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ +000146c0: 650a 2020 2020 2020 2020 226d 6169 6e5f e. "main_ │ │ │ │ +000146d0: 6461 7461 222c 0a20 2020 2020 202a 204e data",. * N │ │ │ │ +000146e0: 616d 6553 6f6c 7574 696f 6e73 4669 6c65 ameSolutionsFile │ │ │ │ +000146f0: 2028 6d69 7373 696e 6720 646f 6375 6d65 (missing docume │ │ │ │ +00014700: 6e74 6174 696f 6e29 203d 3e20 2e2e 2e2c ntation) => ..., │ │ │ │ +00014710: 2064 6566 6175 6c74 2076 616c 7565 0a20 default value. │ │ │ │ +00014720: 2020 2020 2020 2022 7261 775f 736f 6c75 "raw_solu │ │ │ │ +00014730: 7469 6f6e 7322 2c0a 2020 2020 2020 2a20 tions",. * │ │ │ │ +00014740: 4f75 7470 7574 5374 796c 6520 286d 6973 OutputStyle (mis │ │ │ │ +00014750: 7369 6e67 2064 6f63 756d 656e 7461 7469 sing documentati │ │ │ │ +00014760: 6f6e 2920 3d3e 202e 2e2e 2c20 6465 6661 on) => ..., defa │ │ │ │ +00014770: 756c 7420 7661 6c75 6520 224f 7574 506f ult value "OutPo │ │ │ │ +00014780: 696e 7473 222c 200a 2020 2020 2020 2a20 ints", . * │ │ │ │ +00014790: 2a6e 6f74 6520 5261 6e64 6f6d 436f 6d70 *note RandomComp │ │ │ │ +000147a0: 6c65 783a 2042 6572 7469 6e69 2069 6e70 lex: Bertini inp │ │ │ │ +000147b0: 7574 2066 696c 6520 6465 636c 6172 6174 ut file declarat │ │ │ │ +000147c0: 696f 6e73 5f63 6f20 7261 6e64 6f6d 206e ions_co random n │ │ │ │ +000147d0: 756d 6265 7273 2c0a 2020 2020 2020 2020 umbers,. │ │ │ │ +000147e0: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +000147f0: 7661 6c75 6520 7b7d 2c20 616e 206f 7074 value {}, an opt │ │ │ │ +00014800: 696f 6e20 7768 6963 6820 6465 7369 676e ion which design │ │ │ │ +00014810: 6174 6573 0a20 2020 2020 2020 2073 796d ates. sym │ │ │ │ +00014820: 626f 6c73 2f73 7472 696e 6773 2f76 6172 bols/strings/var │ │ │ │ +00014830: 6961 626c 6573 2074 6861 7420 7769 6c6c iables that will │ │ │ │ +00014840: 2062 6520 7365 7420 746f 2062 6520 6120 be set to be a │ │ │ │ +00014850: 7261 6e64 6f6d 2072 6561 6c20 6e75 6d62 random real numb │ │ │ │ +00014860: 6572 0a20 2020 2020 2020 206f 7220 7261 er. or ra │ │ │ │ +00014870: 6e64 6f6d 2063 6f6d 706c 6578 206e 756d ndom complex num │ │ │ │ +00014880: 6265 720a 2020 2020 2020 2a20 2a6e 6f74 ber. * *not │ │ │ │ +00014890: 6520 5261 6e64 6f6d 5265 616c 3a20 4265 e RandomReal: Be │ │ │ │ +000148a0: 7274 696e 6920 696e 7075 7420 6669 6c65 rtini input file │ │ │ │ +000148b0: 2064 6563 6c61 7261 7469 6f6e 735f 636f declarations_co │ │ │ │ +000148c0: 2072 616e 646f 6d20 6e75 6d62 6572 732c random numbers, │ │ │ │ +000148d0: 203d 3e0a 2020 2020 2020 2020 2e2e 2e2c =>. ..., │ │ │ │ +000148e0: 2064 6566 6175 6c74 2076 616c 7565 207b default value { │ │ │ │ +000148f0: 7d2c 2061 6e20 6f70 7469 6f6e 2077 6869 }, an option whi │ │ │ │ +00014900: 6368 2064 6573 6967 6e61 7465 730a 2020 ch designates. │ │ │ │ +00014910: 2020 2020 2020 7379 6d62 6f6c 732f 7374 symbols/st │ │ │ │ +00014920: 7269 6e67 732f 7661 7269 6162 6c65 7320 rings/variables │ │ │ │ +00014930: 7468 6174 2077 696c 6c20 6265 2073 6574 that will be set │ │ │ │ +00014940: 2074 6f20 6265 2061 2072 616e 646f 6d20 to be a random │ │ │ │ +00014950: 7265 616c 206e 756d 6265 720a 2020 2020 real number. │ │ │ │ +00014960: 2020 2020 6f72 2072 616e 646f 6d20 636f or random co │ │ │ │ +00014970: 6d70 6c65 7820 6e75 6d62 6572 0a20 2020 mplex number. │ │ │ │ +00014980: 2020 202a 202a 6e6f 7465 2054 6f70 4469 * *note TopDi │ │ │ │ +00014990: 7265 6374 6f72 793a 2054 6f70 4469 7265 rectory: TopDire │ │ │ │ +000149a0: 6374 6f72 792c 203d 3e20 2e2e 2e2c 2064 ctory, => ..., d │ │ │ │ +000149b0: 6566 6175 6c74 2076 616c 7565 0a20 2020 efault value. │ │ │ │ +000149c0: 2020 2020 2022 2f74 6d70 2f4d 322d 3132 "/tmp/M2-12 │ │ │ │ +000149d0: 3430 3334 2d30 2f30 222c 204f 7074 696f 4034-0/0", Optio │ │ │ │ +000149e0: 6e20 746f 2063 6861 6e67 6520 6469 7265 n to change dire │ │ │ │ +000149f0: 6374 6f72 7920 666f 7220 6669 6c65 2073 ctory for file s │ │ │ │ +00014a00: 746f 7261 6765 2e0a 2020 2020 2020 2a20 torage.. * │ │ │ │ +00014a10: 5573 6552 6567 656e 6572 6174 696f 6e20 UseRegeneration │ │ │ │ +00014a20: 286d 6973 7369 6e67 2064 6f63 756d 656e (missing documen │ │ │ │ +00014a30: 7461 7469 6f6e 2920 3d3e 202e 2e2e 2c20 tation) => ..., │ │ │ │ +00014a40: 6465 6661 756c 7420 7661 6c75 6520 2d31 default value -1 │ │ │ │ +00014a50: 2c20 0a20 2020 2020 202a 202a 6e6f 7465 , . * *note │ │ │ │ +00014a60: 2056 6572 626f 7365 3a20 6265 7274 696e Verbose: bertin │ │ │ │ +00014a70: 6954 7261 636b 486f 6d6f 746f 7079 5f6c iTrackHomotopy_l │ │ │ │ +00014a80: 705f 7064 5f70 645f 7064 5f63 6d56 6572 p_pd_pd_pd_cmVer │ │ │ │ +00014a90: 626f 7365 3d3e 5f70 645f 7064 5f70 645f bose=>_pd_pd_pd_ │ │ │ │ +00014aa0: 7270 0a20 2020 2020 2020 202c 203d 3e20 rp. , => │ │ │ │ +00014ab0: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ +00014ac0: 7565 2066 616c 7365 2c20 4f70 7469 6f6e ue false, Option │ │ │ │ +00014ad0: 2074 6f20 7369 6c65 6e63 6520 6164 6469 to silence addi │ │ │ │ +00014ae0: 7469 6f6e 616c 206f 7574 7075 740a 2020 tional output. │ │ │ │ +00014af0: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ +00014b00: 202a 2053 2c20 6120 2a6e 6f74 6520 6c69 * S, a *note li │ │ │ │ +00014b10: 7374 3a20 284d 6163 6175 6c61 7932 446f st: (Macaulay2Do │ │ │ │ +00014b20: 6329 4c69 7374 2c2c 2061 206c 6973 7420 c)List,, a list │ │ │ │ +00014b30: 6f66 2070 6f69 6e74 7320 7468 6174 2061 of points that a │ │ │ │ +00014b40: 7265 0a20 2020 2020 2020 2063 6f6e 7461 re. conta │ │ │ │ +00014b50: 696e 6564 2069 6e20 7468 6520 7661 7269 ined in the vari │ │ │ │ +00014b60: 6574 7920 6f66 2046 0a0a 4465 7363 7269 ety of F..Descri │ │ │ │ +00014b70: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +00014b80: 3d0a 0a54 6869 7320 6d65 7468 6f64 2066 =..This method f │ │ │ │ +00014b90: 696e 6473 2069 736f 6c61 7465 6420 736f inds isolated so │ │ │ │ +00014ba0: 6c75 7469 6f6e 7320 746f 2074 6865 2073 lutions to the s │ │ │ │ +00014bb0: 7973 7465 6d20 4620 7669 6120 6e75 6d65 ystem F via nume │ │ │ │ +00014bc0: 7269 6361 6c20 706f 6c79 6e6f 6d69 616c rical polynomial │ │ │ │ +00014bd0: 0a68 6f6d 6f74 6f70 7920 636f 6e74 696e .homotopy contin │ │ │ │ +00014be0: 7561 7469 6f6e 2062 7920 2831 2920 6275 uation by (1) bu │ │ │ │ +00014bf0: 696c 6469 6e67 2061 2042 6572 7469 6e69 ilding a Bertini │ │ │ │ +00014c00: 2069 6e70 7574 2066 696c 6520 6672 6f6d input file from │ │ │ │ +00014c10: 2074 6865 2073 7973 7465 6d20 462c 0a28 the system F,.( │ │ │ │ +00014c20: 3229 2063 616c 6c69 6e67 2042 6572 7469 2) calling Berti │ │ │ │ +00014c30: 6e69 206f 6e20 7468 6973 2069 6e70 7574 ni on this input │ │ │ │ +00014c40: 2066 696c 652c 2028 3329 2072 6574 7572 file, (3) retur │ │ │ │ +00014c50: 6e69 6e67 2073 6f6c 7574 696f 6e73 2066 ning solutions f │ │ │ │ +00014c60: 726f 6d20 6120 6d61 6368 696e 650a 7265 rom a machine.re │ │ │ │ +00014c70: 6164 6162 6c65 2066 696c 6520 7468 6174 adable file that │ │ │ │ +00014c80: 2069 7320 616e 206f 7574 7075 7420 6672 is an output fr │ │ │ │ +00014c90: 6f6d 2042 6572 7469 6e69 2e0a 0a2b 2d2d om Bertini...+-- │ │ │ │ 00014ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00014ce0: 3120 3a20 5220 3d20 4343 5b78 2c79 5d3b 1 : R = CC[x,y]; │ │ │ │ -00014cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00014ce0: 0a7c 6931 203a 2052 203d 2043 435b 782c .|i1 : R = CC[x, │ │ │ │ +00014cf0: 795d 3b20 2020 2020 2020 2020 2020 2020 y]; │ │ │ │ 00014d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014d20: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00014d20: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00014d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014d60: 2d2d 2d2d 2b0a 7c69 3220 3a20 4620 3d20 ----+.|i2 : F = │ │ │ │ -00014d70: 7b78 5e32 2d31 2c79 5e32 2d32 7d3b 2020 {x^2-1,y^2-2}; │ │ │ │ -00014d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014d60: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2046 -------+.|i2 : F │ │ │ │ +00014d70: 203d 207b 785e 322d 312c 795e 322d 327d = {x^2-1,y^2-2} │ │ │ │ +00014d80: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ 00014d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014da0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00014da0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 00014db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00014df0: 3320 3a20 5320 3d20 6265 7274 696e 695a 3 : S = bertiniZ │ │ │ │ -00014e00: 6572 6f44 696d 536f 6c76 6520 4620 2020 eroDimSolve F │ │ │ │ +00014de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00014df0: 0a7c 6933 203a 2053 203d 2062 6572 7469 .|i3 : S = berti │ │ │ │ +00014e00: 6e69 5a65 726f 4469 6d53 6f6c 7665 2046 niZeroDimSolve F │ │ │ │ 00014e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014e30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00014e30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00014e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014e70: 2020 2020 7c0a 7c6f 3320 3d20 7b7b 312c |.|o3 = {{1, │ │ │ │ -00014e80: 2031 2e34 3134 3231 7d2c 207b 312c 202d 1.41421}, {1, - │ │ │ │ -00014e90: 312e 3431 3432 317d 2c20 7b2d 312c 2031 1.41421}, {-1, 1 │ │ │ │ -00014ea0: 2e34 3134 3231 7d2c 207b 2d31 2c20 2d31 .41421}, {-1, -1 │ │ │ │ -00014eb0: 2e34 3134 3231 7d7d 7c0a 7c20 2020 2020 .41421}}|.| │ │ │ │ +00014e70: 2020 2020 2020 207c 0a7c 6f33 203d 207b |.|o3 = { │ │ │ │ +00014e80: 7b31 2c20 312e 3431 3432 317d 2c20 7b31 {1, 1.41421}, {1 │ │ │ │ +00014e90: 2c20 2d31 2e34 3134 3231 7d2c 207b 2d31 , -1.41421}, {-1 │ │ │ │ +00014ea0: 2c20 312e 3431 3432 317d 2c20 7b2d 312c , 1.41421}, {-1, │ │ │ │ +00014eb0: 202d 312e 3431 3432 317d 7d7c 0a7c 2020 -1.41421}}|.| │ │ │ │ 00014ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014ef0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00014f00: 3320 3a20 4c69 7374 2020 2020 2020 2020 3 : List │ │ │ │ +00014ef0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00014f00: 0a7c 6f33 203a 204c 6973 7420 2020 2020 .|o3 : List │ │ │ │ 00014f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014f40: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00014f40: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00014f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014f80: 2d2d 2d2d 2b0a 0a45 6163 6820 736f 6c75 ----+..Each solu │ │ │ │ -00014f90: 7469 6f6e 2069 7320 6f66 2074 7970 6520 tion is of type │ │ │ │ -00014fa0: 2a6e 6f74 6520 506f 696e 743a 2028 4e41 *note Point: (NA │ │ │ │ -00014fb0: 4774 7970 6573 2941 6273 7472 6163 7450 Gtypes)AbstractP │ │ │ │ -00014fc0: 6f69 6e74 2c2e 2020 4164 6469 7469 6f6e oint,. Addition │ │ │ │ -00014fd0: 616c 0a69 6e66 6f72 6d61 7469 6f6e 2061 al.information a │ │ │ │ -00014fe0: 626f 7574 2074 6865 2073 6f6c 7574 696f bout the solutio │ │ │ │ -00014ff0: 6e20 6361 6e20 6265 2061 6363 6573 7365 n can be accesse │ │ │ │ -00015000: 6420 6279 2075 7369 6e67 202a 6e6f 7465 d by using *note │ │ │ │ -00015010: 2070 6565 6b3a 0a28 4d61 6361 756c 6179 peek:.(Macaulay │ │ │ │ -00015020: 3244 6f63 2970 6565 6b2c 2e0a 0a2b 2d2d 2Doc)peek,...+-- │ │ │ │ -00015030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014f80: 2d2d 2d2d 2d2d 2d2b 0a0a 4561 6368 2073 -------+..Each s │ │ │ │ +00014f90: 6f6c 7574 696f 6e20 6973 206f 6620 7479 olution is of ty │ │ │ │ +00014fa0: 7065 202a 6e6f 7465 2050 6f69 6e74 3a20 pe *note Point: │ │ │ │ +00014fb0: 284e 4147 7479 7065 7329 4162 7374 7261 (NAGtypes)Abstra │ │ │ │ +00014fc0: 6374 506f 696e 742c 2e20 2041 6464 6974 ctPoint,. Addit │ │ │ │ +00014fd0: 696f 6e61 6c0a 696e 666f 726d 6174 696f ional.informatio │ │ │ │ +00014fe0: 6e20 6162 6f75 7420 7468 6520 736f 6c75 n about the solu │ │ │ │ +00014ff0: 7469 6f6e 2063 616e 2062 6520 6163 6365 tion can be acce │ │ │ │ +00015000: 7373 6564 2062 7920 7573 696e 6720 2a6e ssed by using *n │ │ │ │ +00015010: 6f74 6520 7065 656b 3a0a 284d 6163 6175 ote peek:.(Macau │ │ │ │ +00015020: 6c61 7932 446f 6329 7065 656b 2c2e 0a0a lay2Doc)peek,... │ │ │ │ +00015030: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00015040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015050: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2070 -------+.|i4 : p │ │ │ │ -00015060: 6565 6b20 535f 3020 2020 2020 2020 2020 eek S_0 │ │ │ │ +00015050: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ +00015060: 3a20 7065 656b 2053 5f30 2020 2020 2020 : peek S_0 │ │ │ │ 00015070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015080: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015080: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00015090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000150a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000150b0: 0a7c 6f34 203d 2050 6f69 6e74 7b63 6163 .|o4 = Point{cac │ │ │ │ -000150c0: 6865 203d 3e20 4361 6368 6554 6162 6c65 he => CacheTable │ │ │ │ -000150d0: 7b2e 2e2e 3134 2e2e 2e7d 7d7c 0a7c 2020 {...14...}}|.| │ │ │ │ -000150e0: 2020 2020 2020 2020 2043 6f6f 7264 696e Coordin │ │ │ │ -000150f0: 6174 6573 203d 3e20 7b31 2c20 312e 3431 ates => {1, 1.41 │ │ │ │ -00015100: 3432 317d 2020 207c 0a2b 2d2d 2d2d 2d2d 421} |.+------ │ │ │ │ +000150a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000150b0: 2020 7c0a 7c6f 3420 3d20 506f 696e 747b |.|o4 = Point{ │ │ │ │ +000150c0: 6361 6368 6520 3d3e 2043 6163 6865 5461 cache => CacheTa │ │ │ │ +000150d0: 626c 657b 2e2e 2e31 342e 2e2e 7d7d 7c0a ble{...14...}}|. │ │ │ │ +000150e0: 7c20 2020 2020 2020 2020 2020 436f 6f72 | Coor │ │ │ │ +000150f0: 6469 6e61 7465 7320 3d3e 207b 312c 2031 dinates => {1, 1 │ │ │ │ +00015100: 2e34 3134 3231 7d20 2020 7c0a 2b2d 2d2d .41421} |.+--- │ │ │ │ 00015110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015130: 2d2d 2d2b 0a0a 4265 7274 696e 6920 7573 ---+..Bertini us │ │ │ │ -00015140: 6573 2061 206d 756c 7469 686f 6d6f 6765 es a multihomoge │ │ │ │ -00015150: 6e65 6f75 7320 686f 6d6f 746f 7079 2061 neous homotopy a │ │ │ │ -00015160: 7320 6120 6465 6661 756c 742c 2062 7574 s a default, but │ │ │ │ -00015170: 2072 6567 656e 6572 6174 696f 6e20 6361 regeneration ca │ │ │ │ -00015180: 6e20 6265 0a64 6570 6c6f 7965 6420 7769 n be.deployed wi │ │ │ │ -00015190: 7468 2074 6865 206f 7074 696f 6e20 5573 th the option Us │ │ │ │ -000151a0: 6552 6567 656e 6572 6174 696f 6e3d 3e31 eRegeneration=>1 │ │ │ │ -000151b0: 202e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+----------- │ │ │ │ +00015130: 2d2d 2d2d 2d2d 2b0a 0a42 6572 7469 6e69 ------+..Bertini │ │ │ │ +00015140: 2075 7365 7320 6120 6d75 6c74 6968 6f6d uses a multihom │ │ │ │ +00015150: 6f67 656e 656f 7573 2068 6f6d 6f74 6f70 ogeneous homotop │ │ │ │ +00015160: 7920 6173 2061 2064 6566 6175 6c74 2c20 y as a default, │ │ │ │ +00015170: 6275 7420 7265 6765 6e65 7261 7469 6f6e but regeneration │ │ │ │ +00015180: 2063 616e 2062 650a 6465 706c 6f79 6564 can be.deployed │ │ │ │ +00015190: 2077 6974 6820 7468 6520 6f70 7469 6f6e with the option │ │ │ │ +000151a0: 2055 7365 5265 6765 6e65 7261 7469 6f6e UseRegeneration │ │ │ │ +000151b0: 3d3e 3120 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d =>1 ...+-------- │ │ │ │ 000151c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000151d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000151e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2052 -------+.|i5 : R │ │ │ │ -000151f0: 203d 2043 435b 785d 3b20 2020 2020 2020 = CC[x]; │ │ │ │ +000151e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ +000151f0: 3a20 5220 3d20 4343 5b78 5d3b 2020 2020 : R = CC[x]; │ │ │ │ 00015200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015210: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00015220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015210: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00015220: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00015230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015250: 2d2b 0a7c 6936 203a 2046 203d 207b 785e -+.|i6 : F = {x^ │ │ │ │ -00015260: 322a 2878 2d31 297d 3b20 2020 2020 2020 2*(x-1)}; │ │ │ │ +00015250: 2d2d 2d2d 2b0a 7c69 3620 3a20 4620 3d20 ----+.|i6 : F = │ │ │ │ +00015260: 7b78 5e32 2a28 782d 3129 7d3b 2020 2020 {x^2*(x-1)}; │ │ │ │ 00015270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015280: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00015280: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 00015290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000152a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000152b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 -----------+.|i7 │ │ │ │ -000152c0: 203a 2053 203d 2062 6572 7469 6e69 5a65 : S = bertiniZe │ │ │ │ -000152d0: 726f 4469 6d53 6f6c 7665 2046 2020 2020 roDimSolve F │ │ │ │ +000152b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000152c0: 7c69 3720 3a20 5320 3d20 6265 7274 696e |i7 : S = bertin │ │ │ │ +000152d0: 695a 6572 6f44 696d 536f 6c76 6520 4620 iZeroDimSolve F │ │ │ │ 000152e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000152f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000152f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00015300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015320: 2020 2020 207c 0a7c 6f37 203d 207b 7b31 |.|o7 = {{1 │ │ │ │ -00015330: 7d2c 207b 2d31 2e35 3535 3839 652d 3135 }, {-1.55589e-15 │ │ │ │ -00015340: 2d32 2e34 3630 3531 652d 3135 2a69 697d -2.46051e-15*ii} │ │ │ │ -00015350: 7d20 2020 2020 2020 2020 7c0a 7c20 2020 } |.| │ │ │ │ +00015320: 2020 2020 2020 2020 7c0a 7c6f 3720 3d20 |.|o7 = │ │ │ │ +00015330: 7b7b 317d 2c20 7b2d 312e 3535 3538 3965 {{1}, {-1.55589e │ │ │ │ +00015340: 2d31 352d 322e 3436 3035 3165 2d31 352a -15-2.46051e-15* │ │ │ │ +00015350: 6969 7d7d 2020 2020 2020 2020 207c 0a7c ii}} |.| │ │ │ │ 00015360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015380: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015390: 0a7c 6f37 203a 204c 6973 7420 2020 2020 .|o7 : List │ │ │ │ +00015380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015390: 2020 7c0a 7c6f 3720 3a20 4c69 7374 2020 |.|o7 : List │ │ │ │ 000153a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000153b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000153c0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000153c0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 000153d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000153e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000153f0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a ---------+.|i8 : │ │ │ │ -00015400: 2042 203d 2062 6572 7469 6e69 5a65 726f B = bertiniZero │ │ │ │ -00015410: 4469 6d53 6f6c 7665 2846 2c55 7365 5265 DimSolve(F,UseRe │ │ │ │ -00015420: 6765 6e65 7261 7469 6f6e 3d3e 3129 7c0a generation=>1)|. │ │ │ │ -00015430: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000153f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00015400: 3820 3a20 4220 3d20 6265 7274 696e 695a 8 : B = bertiniZ │ │ │ │ +00015410: 6572 6f44 696d 536f 6c76 6528 462c 5573 eroDimSolve(F,Us │ │ │ │ +00015420: 6552 6567 656e 6572 6174 696f 6e3d 3e31 eRegeneration=>1 │ │ │ │ +00015430: 297c 0a7c 2020 2020 2020 2020 2020 2020 )|.| │ │ │ │ 00015440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015460: 2020 207c 0a7c 6f38 203d 207b 7b31 7d7d |.|o8 = {{1}} │ │ │ │ -00015470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015460: 2020 2020 2020 7c0a 7c6f 3820 3d20 7b7b |.|o8 = {{ │ │ │ │ +00015470: 317d 7d20 2020 2020 2020 2020 2020 2020 1}} │ │ │ │ 00015480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015490: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00015490: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000154a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000154b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000154c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000154d0: 6f38 203a 204c 6973 7420 2020 2020 2020 o8 : List │ │ │ │ +000154c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000154d0: 7c0a 7c6f 3820 3a20 4c69 7374 2020 2020 |.|o8 : List │ │ │ │ 000154e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000154f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015500: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00015500: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00015510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015530: 2d2d 2d2d 2d2d 2d2b 0a0a 5661 7269 6162 -------+..Variab │ │ │ │ -00015540: 6c65 7320 6d75 7374 2062 6567 696e 2077 les must begin w │ │ │ │ -00015550: 6974 6820 6120 6c65 7474 6572 2028 6c6f ith a letter (lo │ │ │ │ -00015560: 7765 7263 6173 6520 6f72 2063 6170 6974 wercase or capit │ │ │ │ -00015570: 616c 2920 616e 6420 6361 6e20 6f6e 6c79 al) and can only │ │ │ │ -00015580: 2063 6f6e 7461 696e 0a6c 6574 7465 7273 contain.letters │ │ │ │ -00015590: 2c20 6e75 6d62 6572 732c 2075 6e64 6572 , numbers, under │ │ │ │ -000155a0: 7363 6f72 6573 2c20 616e 6420 7371 7561 scores, and squa │ │ │ │ -000155b0: 7265 2062 7261 636b 6574 732e 2052 6567 re brackets. Reg │ │ │ │ -000155c0: 656e 6572 6174 696f 6e20 696e 0a62 6572 eneration in.ber │ │ │ │ -000155d0: 7469 6e69 5a65 726f 4469 6d53 6f6c 7665 tiniZeroDimSolve │ │ │ │ -000155e0: 206f 6e6c 7920 6669 6e64 7320 6e6f 6e73 only finds nons │ │ │ │ -000155f0: 696e 6775 6c61 7220 6973 6f6c 6174 6564 ingular isolated │ │ │ │ -00015600: 2070 6f69 6e74 732e 0a0a 5761 7973 2074 points...Ways t │ │ │ │ -00015610: 6f20 7573 6520 6265 7274 696e 695a 6572 o use bertiniZer │ │ │ │ -00015620: 6f44 696d 536f 6c76 653a 0a3d 3d3d 3d3d oDimSolve:.===== │ │ │ │ +00015530: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a56 6172 ----------+..Var │ │ │ │ +00015540: 6961 626c 6573 206d 7573 7420 6265 6769 iables must begi │ │ │ │ +00015550: 6e20 7769 7468 2061 206c 6574 7465 7220 n with a letter │ │ │ │ +00015560: 286c 6f77 6572 6361 7365 206f 7220 6361 (lowercase or ca │ │ │ │ +00015570: 7069 7461 6c29 2061 6e64 2063 616e 206f pital) and can o │ │ │ │ +00015580: 6e6c 7920 636f 6e74 6169 6e0a 6c65 7474 nly contain.lett │ │ │ │ +00015590: 6572 732c 206e 756d 6265 7273 2c20 756e ers, numbers, un │ │ │ │ +000155a0: 6465 7273 636f 7265 732c 2061 6e64 2073 derscores, and s │ │ │ │ +000155b0: 7175 6172 6520 6272 6163 6b65 7473 2e20 quare brackets. │ │ │ │ +000155c0: 5265 6765 6e65 7261 7469 6f6e 2069 6e0a Regeneration in. │ │ │ │ +000155d0: 6265 7274 696e 695a 6572 6f44 696d 536f bertiniZeroDimSo │ │ │ │ +000155e0: 6c76 6520 6f6e 6c79 2066 696e 6473 206e lve only finds n │ │ │ │ +000155f0: 6f6e 7369 6e67 756c 6172 2069 736f 6c61 onsingular isola │ │ │ │ +00015600: 7465 6420 706f 696e 7473 2e0a 0a57 6179 ted points...Way │ │ │ │ +00015610: 7320 746f 2075 7365 2062 6572 7469 6e69 s to use bertini │ │ │ │ +00015620: 5a65 726f 4469 6d53 6f6c 7665 3a0a 3d3d ZeroDimSolve:.== │ │ │ │ 00015630: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00015640: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -00015650: 2022 6265 7274 696e 695a 6572 6f44 696d "bertiniZeroDim │ │ │ │ -00015660: 536f 6c76 6528 4964 6561 6c29 220a 2020 Solve(Ideal)". │ │ │ │ -00015670: 2a20 2262 6572 7469 6e69 5a65 726f 4469 * "bertiniZeroDi │ │ │ │ -00015680: 6d53 6f6c 7665 284c 6973 7429 220a 0a46 mSolve(List)"..F │ │ │ │ -00015690: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -000156a0: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -000156b0: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -000156c0: 202a 6e6f 7465 2062 6572 7469 6e69 5a65 *note bertiniZe │ │ │ │ -000156d0: 726f 4469 6d53 6f6c 7665 3a20 6265 7274 roDimSolve: bert │ │ │ │ -000156e0: 696e 695a 6572 6f44 696d 536f 6c76 652c iniZeroDimSolve, │ │ │ │ -000156f0: 2069 7320 6120 2a6e 6f74 6520 6d65 7468 is a *note meth │ │ │ │ -00015700: 6f64 0a66 756e 6374 696f 6e20 7769 7468 od.function with │ │ │ │ -00015710: 206f 7074 696f 6e73 3a20 284d 6163 6175 options: (Macau │ │ │ │ -00015720: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ -00015730: 6e63 7469 6f6e 5769 7468 4f70 7469 6f6e nctionWithOption │ │ │ │ -00015740: 732c 2e0a 1f0a 4669 6c65 3a20 4265 7274 s,....File: Bert │ │ │ │ -00015750: 696e 692e 696e 666f 2c20 4e6f 6465 3a20 ini.info, Node: │ │ │ │ -00015760: 436f 7079 4227 4669 6c65 2c20 4e65 7874 CopyB'File, Next │ │ │ │ -00015770: 3a20 696d 706f 7274 496e 6369 6465 6e63 : importIncidenc │ │ │ │ -00015780: 654d 6174 7269 782c 2050 7265 763a 2062 eMatrix, Prev: b │ │ │ │ -00015790: 6572 7469 6e69 5a65 726f 4469 6d53 6f6c ertiniZeroDimSol │ │ │ │ -000157a0: 7665 2c20 5570 3a20 546f 700a 0a43 6f70 ve, Up: Top..Cop │ │ │ │ -000157b0: 7942 2746 696c 6520 2d2d 2061 6e20 6f70 yB'File -- an op │ │ │ │ -000157c0: 7469 6f6e 616c 2061 7267 756d 656e 7420 tional argument │ │ │ │ -000157d0: 746f 2073 7065 6369 6679 2077 6865 7468 to specify wheth │ │ │ │ -000157e0: 6572 206d 616b 6520 6120 636f 7079 206f er make a copy o │ │ │ │ -000157f0: 6620 7468 6520 6669 6c65 2e0a 2a2a 2a2a f the file..**** │ │ │ │ +00015640: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +00015650: 2020 2a20 2262 6572 7469 6e69 5a65 726f * "bertiniZero │ │ │ │ +00015660: 4469 6d53 6f6c 7665 2849 6465 616c 2922 DimSolve(Ideal)" │ │ │ │ +00015670: 0a20 202a 2022 6265 7274 696e 695a 6572 . * "bertiniZer │ │ │ │ +00015680: 6f44 696d 536f 6c76 6528 4c69 7374 2922 oDimSolve(List)" │ │ │ │ +00015690: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +000156a0: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +000156b0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +000156c0: 6563 7420 2a6e 6f74 6520 6265 7274 696e ect *note bertin │ │ │ │ +000156d0: 695a 6572 6f44 696d 536f 6c76 653a 2062 iZeroDimSolve: b │ │ │ │ +000156e0: 6572 7469 6e69 5a65 726f 4469 6d53 6f6c ertiniZeroDimSol │ │ │ │ +000156f0: 7665 2c20 6973 2061 202a 6e6f 7465 206d ve, is a *note m │ │ │ │ +00015700: 6574 686f 640a 6675 6e63 7469 6f6e 2077 ethod.function w │ │ │ │ +00015710: 6974 6820 6f70 7469 6f6e 733a 2028 4d61 ith options: (Ma │ │ │ │ +00015720: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ +00015730: 6446 756e 6374 696f 6e57 6974 684f 7074 dFunctionWithOpt │ │ │ │ +00015740: 696f 6e73 2c2e 0a1f 0a46 696c 653a 2042 ions,....File: B │ │ │ │ +00015750: 6572 7469 6e69 2e69 6e66 6f2c 204e 6f64 ertini.info, Nod │ │ │ │ +00015760: 653a 2043 6f70 7942 2746 696c 652c 204e e: CopyB'File, N │ │ │ │ +00015770: 6578 743a 2069 6d70 6f72 7449 6e63 6964 ext: importIncid │ │ │ │ +00015780: 656e 6365 4d61 7472 6978 2c20 5072 6576 enceMatrix, Prev │ │ │ │ +00015790: 3a20 6265 7274 696e 695a 6572 6f44 696d : bertiniZeroDim │ │ │ │ +000157a0: 536f 6c76 652c 2055 703a 2054 6f70 0a0a Solve, Up: Top.. │ │ │ │ +000157b0: 436f 7079 4227 4669 6c65 202d 2d20 616e CopyB'File -- an │ │ │ │ +000157c0: 206f 7074 696f 6e61 6c20 6172 6775 6d65 optional argume │ │ │ │ +000157d0: 6e74 2074 6f20 7370 6563 6966 7920 7768 nt to specify wh │ │ │ │ +000157e0: 6574 6865 7220 6d61 6b65 2061 2063 6f70 ether make a cop │ │ │ │ +000157f0: 7920 6f66 2074 6865 2066 696c 652e 0a2a y of the file..* │ │ │ │ 00015800: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00015810: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00015820: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00015830: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00015840: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 **********..Desc │ │ │ │ -00015850: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ -00015860: 3d3d 3d0a 0a57 6865 6e20 7365 7420 746f ===..When set to │ │ │ │ -00015870: 2074 7275 652c 2061 2066 696c 6520 6973 true, a file is │ │ │ │ -00015880: 2063 6f70 7920 6f66 2074 6865 2066 696c copy of the fil │ │ │ │ -00015890: 6520 6973 206d 6164 6520 7261 7468 6572 e is made rather │ │ │ │ -000158a0: 2074 6861 6e20 6a75 7374 206d 6f76 6564 than just moved │ │ │ │ -000158b0: 2e0a 5468 6520 6465 6661 756c 7420 696e ..The default in │ │ │ │ -000158c0: 206d 6f76 6542 2746 696c 6520 6973 2073 moveB'File is s │ │ │ │ -000158d0: 6574 2074 6f20 6661 6c73 652e 0a0a 4675 et to false...Fu │ │ │ │ -000158e0: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ -000158f0: 696f 6e61 6c20 6172 6775 6d65 6e74 206e ional argument n │ │ │ │ -00015900: 616d 6564 2043 6f70 7942 2746 696c 653a amed CopyB'File: │ │ │ │ -00015910: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +00015840: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a44 *************..D │ │ │ │ +00015850: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +00015860: 3d3d 3d3d 3d3d 0a0a 5768 656e 2073 6574 ======..When set │ │ │ │ +00015870: 2074 6f20 7472 7565 2c20 6120 6669 6c65 to true, a file │ │ │ │ +00015880: 2069 7320 636f 7079 206f 6620 7468 6520 is copy of the │ │ │ │ +00015890: 6669 6c65 2069 7320 6d61 6465 2072 6174 file is made rat │ │ │ │ +000158a0: 6865 7220 7468 616e 206a 7573 7420 6d6f her than just mo │ │ │ │ +000158b0: 7665 642e 0a54 6865 2064 6566 6175 6c74 ved..The default │ │ │ │ +000158c0: 2069 6e20 6d6f 7665 4227 4669 6c65 2069 in moveB'File i │ │ │ │ +000158d0: 7320 7365 7420 746f 2066 616c 7365 2e0a s set to false.. │ │ │ │ +000158e0: 0a46 756e 6374 696f 6e73 2077 6974 6820 .Functions with │ │ │ │ +000158f0: 6f70 7469 6f6e 616c 2061 7267 756d 656e optional argumen │ │ │ │ +00015900: 7420 6e61 6d65 6420 436f 7079 4227 4669 t named CopyB'Fi │ │ │ │ +00015910: 6c65 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d le:.============ │ │ │ │ 00015920: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 00015930: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00015940: 3d3d 3d0a 0a20 202a 2022 6d6f 7665 4227 ===.. * "moveB' │ │ │ │ -00015950: 4669 6c65 282e 2e2e 2c43 6f70 7942 2746 File(...,CopyB'F │ │ │ │ -00015960: 696c 653d 3e2e 2e2e 2922 0a0a 466f 7220 ile=>...)"..For │ │ │ │ -00015970: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -00015980: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00015990: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -000159a0: 6f74 6520 436f 7079 4227 4669 6c65 3a20 ote CopyB'File: │ │ │ │ -000159b0: 436f 7079 4227 4669 6c65 2c20 6973 2061 CopyB'File, is a │ │ │ │ -000159c0: 202a 6e6f 7465 2073 796d 626f 6c3a 0a28 *note symbol:.( │ │ │ │ -000159d0: 4d61 6361 756c 6179 3244 6f63 2953 796d Macaulay2Doc)Sym │ │ │ │ -000159e0: 626f 6c2c 2e0a 1f0a 4669 6c65 3a20 4265 bol,....File: Be │ │ │ │ -000159f0: 7274 696e 692e 696e 666f 2c20 4e6f 6465 rtini.info, Node │ │ │ │ -00015a00: 3a20 696d 706f 7274 496e 6369 6465 6e63 : importIncidenc │ │ │ │ -00015a10: 654d 6174 7269 782c 204e 6578 743a 2069 eMatrix, Next: i │ │ │ │ -00015a20: 6d70 6f72 744d 6169 6e44 6174 6146 696c mportMainDataFil │ │ │ │ -00015a30: 652c 2050 7265 763a 2043 6f70 7942 2746 e, Prev: CopyB'F │ │ │ │ -00015a40: 696c 652c 2055 703a 2054 6f70 0a0a 696d ile, Up: Top..im │ │ │ │ -00015a50: 706f 7274 496e 6369 6465 6e63 654d 6174 portIncidenceMat │ │ │ │ -00015a60: 7269 7820 2d2d 2049 6d70 6f72 7473 2061 rix -- Imports a │ │ │ │ -00015a70: 6e20 696e 6369 6465 6e63 6520 6d61 7472 n incidence matr │ │ │ │ -00015a80: 6978 2066 696c 6520 6166 7465 7220 7275 ix file after ru │ │ │ │ -00015a90: 6e6e 696e 6720 6d61 6b65 4d65 6d62 6572 nning makeMember │ │ │ │ -00015aa0: 7368 6970 4669 6c65 2e0a 2a2a 2a2a 2a2a shipFile..****** │ │ │ │ +00015940: 3d3d 3d3d 3d3d 0a0a 2020 2a20 226d 6f76 ======.. * "mov │ │ │ │ +00015950: 6542 2746 696c 6528 2e2e 2e2c 436f 7079 eB'File(...,Copy │ │ │ │ +00015960: 4227 4669 6c65 3d3e 2e2e 2e29 220a 0a46 B'File=>...)"..F │ │ │ │ +00015970: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +00015980: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +00015990: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +000159a0: 202a 6e6f 7465 2043 6f70 7942 2746 696c *note CopyB'Fil │ │ │ │ +000159b0: 653a 2043 6f70 7942 2746 696c 652c 2069 e: CopyB'File, i │ │ │ │ +000159c0: 7320 6120 2a6e 6f74 6520 7379 6d62 6f6c s a *note symbol │ │ │ │ +000159d0: 3a0a 284d 6163 6175 6c61 7932 446f 6329 :.(Macaulay2Doc) │ │ │ │ +000159e0: 5379 6d62 6f6c 2c2e 0a1f 0a46 696c 653a Symbol,....File: │ │ │ │ +000159f0: 2042 6572 7469 6e69 2e69 6e66 6f2c 204e Bertini.info, N │ │ │ │ +00015a00: 6f64 653a 2069 6d70 6f72 7449 6e63 6964 ode: importIncid │ │ │ │ +00015a10: 656e 6365 4d61 7472 6978 2c20 4e65 7874 enceMatrix, Next │ │ │ │ +00015a20: 3a20 696d 706f 7274 4d61 696e 4461 7461 : importMainData │ │ │ │ +00015a30: 4669 6c65 2c20 5072 6576 3a20 436f 7079 File, Prev: Copy │ │ │ │ +00015a40: 4227 4669 6c65 2c20 5570 3a20 546f 700a B'File, Up: Top. │ │ │ │ +00015a50: 0a69 6d70 6f72 7449 6e63 6964 656e 6365 .importIncidence │ │ │ │ +00015a60: 4d61 7472 6978 202d 2d20 496d 706f 7274 Matrix -- Import │ │ │ │ +00015a70: 7320 616e 2069 6e63 6964 656e 6365 206d s an incidence m │ │ │ │ +00015a80: 6174 7269 7820 6669 6c65 2061 6674 6572 atrix file after │ │ │ │ +00015a90: 2072 756e 6e69 6e67 206d 616b 654d 656d running makeMem │ │ │ │ +00015aa0: 6265 7273 6869 7046 696c 652e 0a2a 2a2a bershipFile..*** │ │ │ │ 00015ab0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00015ac0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00015ad0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00015ae0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00015af0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00015b00: 2a2a 2a2a 2a0a 0a53 796e 6f70 7369 730a *****..Synopsis. │ │ │ │ -00015b10: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 5573 ========.. * Us │ │ │ │ -00015b20: 6167 653a 200a 2020 2020 2020 2020 696d age: . im │ │ │ │ -00015b30: 706f 7274 496e 6369 6465 6e63 654d 6174 portIncidenceMat │ │ │ │ -00015b40: 7269 7828 7329 0a20 202a 2049 6e70 7574 rix(s). * Input │ │ │ │ -00015b50: 733a 0a20 2020 2020 202a 2073 2c20 6120 s:. * s, a │ │ │ │ -00015b60: 2a6e 6f74 6520 7374 7269 6e67 3a20 284d *note string: (M │ │ │ │ -00015b70: 6163 6175 6c61 7932 446f 6329 5374 7269 acaulay2Doc)Stri │ │ │ │ -00015b80: 6e67 2c2c 2054 6865 2064 6972 6563 746f ng,, The directo │ │ │ │ -00015b90: 7279 2077 6865 7265 2074 6865 2066 696c ry where the fil │ │ │ │ -00015ba0: 650a 2020 2020 2020 2020 6973 2073 746f e. is sto │ │ │ │ -00015bb0: 7265 642e 0a20 202a 202a 6e6f 7465 204f red.. * *note O │ │ │ │ -00015bc0: 7074 696f 6e61 6c20 696e 7075 7473 3a20 ptional inputs: │ │ │ │ -00015bd0: 284d 6163 6175 6c61 7932 446f 6329 7573 (Macaulay2Doc)us │ │ │ │ -00015be0: 696e 6720 6675 6e63 7469 6f6e 7320 7769 ing functions wi │ │ │ │ -00015bf0: 7468 206f 7074 696f 6e61 6c20 696e 7075 th optional inpu │ │ │ │ -00015c00: 7473 2c3a 0a20 2020 2020 202a 204e 616d ts,:. * Nam │ │ │ │ -00015c10: 6549 6e63 6964 656e 6365 4d61 7472 6978 eIncidenceMatrix │ │ │ │ -00015c20: 4669 6c65 2028 6d69 7373 696e 6720 646f File (missing do │ │ │ │ -00015c30: 6375 6d65 6e74 6174 696f 6e29 203d 3e20 cumentation) => │ │ │ │ -00015c40: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ -00015c50: 7565 0a20 2020 2020 2020 2022 696e 6369 ue. "inci │ │ │ │ -00015c60: 6465 6e63 655f 6d61 7472 6978 222c 0a20 dence_matrix",. │ │ │ │ -00015c70: 2020 2020 202a 2053 746f 7261 6765 466f * StorageFo │ │ │ │ -00015c80: 6c64 6572 2028 6d69 7373 696e 6720 646f lder (missing do │ │ │ │ -00015c90: 6375 6d65 6e74 6174 696f 6e29 203d 3e20 cumentation) => │ │ │ │ -00015ca0: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ -00015cb0: 7565 206e 756c 6c2c 200a 2020 2020 2020 ue null, . │ │ │ │ -00015cc0: 2a20 2a6e 6f74 6520 5665 7262 6f73 653a * *note Verbose: │ │ │ │ -00015cd0: 2062 6572 7469 6e69 5472 6163 6b48 6f6d bertiniTrackHom │ │ │ │ -00015ce0: 6f74 6f70 795f 6c70 5f70 645f 7064 5f70 otopy_lp_pd_pd_p │ │ │ │ -00015cf0: 645f 636d 5665 7262 6f73 653d 3e5f 7064 d_cmVerbose=>_pd │ │ │ │ -00015d00: 5f70 645f 7064 5f72 700a 2020 2020 2020 _pd_pd_rp. │ │ │ │ -00015d10: 2020 2c20 3d3e 202e 2e2e 2c20 6465 6661 , => ..., defa │ │ │ │ -00015d20: 756c 7420 7661 6c75 6520 6661 6c73 652c ult value false, │ │ │ │ -00015d30: 204f 7074 696f 6e20 746f 2073 696c 656e Option to silen │ │ │ │ -00015d40: 6365 2061 6464 6974 696f 6e61 6c20 6f75 ce additional ou │ │ │ │ -00015d50: 7470 7574 0a0a 4465 7363 7269 7074 696f tput..Descriptio │ │ │ │ -00015d60: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a41 n.===========..A │ │ │ │ -00015d70: 6674 6572 2072 756e 6e69 6e67 206d 616b fter running mak │ │ │ │ -00015d80: 654d 656d 6265 7273 6869 7046 696c 6520 eMembershipFile │ │ │ │ -00015d90: 4265 7274 696e 6920 7072 6f64 7563 6573 Bertini produces │ │ │ │ -00015da0: 2061 6e20 696e 6369 6465 6e63 655f 6d61 an incidence_ma │ │ │ │ -00015db0: 7472 6978 2066 696c 652e 2054 6865 0a69 trix file. The.i │ │ │ │ -00015dc0: 6e63 6964 656e 6365 5f6d 6174 7269 7820 ncidence_matrix │ │ │ │ -00015dd0: 7361 7973 2077 6869 6368 2070 6f69 6e74 says which point │ │ │ │ -00015de0: 7320 6265 6c6f 6e67 2074 6f20 7768 6963 s belong to whic │ │ │ │ -00015df0: 6820 636f 6d70 6f6e 656e 7473 2e20 4f75 h components. Ou │ │ │ │ -00015e00: 7220 696e 6369 6465 6e63 650a 6d61 7472 r incidence.matr │ │ │ │ -00015e10: 6978 2069 7320 666c 6174 7465 6e65 6420 ix is flattened │ │ │ │ -00015e20: 746f 2061 206c 6973 742e 2054 6865 206e to a list. The n │ │ │ │ -00015e30: 756d 6265 7220 6f66 2065 6c65 6d65 6e74 umber of element │ │ │ │ -00015e40: 7320 696e 2074 6865 494d 2069 7320 6571 s in theIM is eq │ │ │ │ -00015e50: 7561 6c20 746f 2074 6865 0a6e 756d 6265 ual to the.numbe │ │ │ │ -00015e60: 7220 6f66 2070 6f69 6e74 7320 696e 2074 r of points in t │ │ │ │ -00015e70: 6865 2073 6f6c 7574 696f 6e73 2066 696c he solutions fil │ │ │ │ -00015e80: 652e 2045 6163 6820 656c 656d 656e 7420 e. Each element │ │ │ │ -00015e90: 6f66 2074 6865 494d 2069 7320 6120 6c69 of theIM is a li │ │ │ │ -00015ea0: 7374 206f 660a 7365 7175 656e 6365 7320 st of.sequences │ │ │ │ -00015eb0: 6f66 2032 2065 6c65 6d65 6e74 7320 2863 of 2 elements (c │ │ │ │ -00015ec0: 6f64 696d 2c63 6f6d 706f 6e65 6e74 204e odim,component N │ │ │ │ -00015ed0: 756d 6265 7229 2e20 4e6f 7465 2074 6861 umber). Note tha │ │ │ │ -00015ee0: 7420 7765 2066 6f6c 6c6f 7720 7468 650a t we follow the. │ │ │ │ -00015ef0: 4265 7274 696e 6920 636f 6e76 656e 7469 Bertini conventi │ │ │ │ -00015f00: 6f6e 2061 6e64 2073 7769 7463 6820 6672 on and switch fr │ │ │ │ -00015f10: 6f6d 2028 6469 6d65 6e73 696f 6e2c 636f om (dimension,co │ │ │ │ -00015f20: 6d70 6f6e 656e 7420 6e75 6d62 6572 2920 mponent number) │ │ │ │ -00015f30: 696e 6465 7869 6e67 2074 6f0a 2863 6f64 indexing to.(cod │ │ │ │ -00015f40: 696d 656e 7369 6f6e 2c63 6f6d 706f 6e65 imension,compone │ │ │ │ -00015f50: 6e74 206e 756d 6265 7229 2069 6e64 6578 nt number) index │ │ │ │ -00015f60: 696e 672e 0a0a 4966 2074 6865 204e 616d ing...If the Nam │ │ │ │ -00015f70: 6549 6e63 6964 656e 6365 4d61 7472 6978 eIncidenceMatrix │ │ │ │ -00015f80: 4669 6c65 206f 7074 696f 6e20 6973 2073 File option is s │ │ │ │ -00015f90: 6574 2077 6865 6e20 7765 2077 616e 7420 et when we want │ │ │ │ -00015fa0: 746f 2069 6d70 6f72 7420 6669 6c65 7320 to import files │ │ │ │ -00015fb0: 7769 7468 0a61 2064 6966 6665 7265 6e74 with.a different │ │ │ │ -00015fc0: 206e 616d 652e 0a0a 2b2d 2d2d 2d2d 2d2d name...+------- │ │ │ │ +00015b00: 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 ********..Synops │ │ │ │ +00015b10: 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a is.========.. * │ │ │ │ +00015b20: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +00015b30: 2069 6d70 6f72 7449 6e63 6964 656e 6365 importIncidence │ │ │ │ +00015b40: 4d61 7472 6978 2873 290a 2020 2a20 496e Matrix(s). * In │ │ │ │ +00015b50: 7075 7473 3a0a 2020 2020 2020 2a20 732c puts:. * s, │ │ │ │ +00015b60: 2061 202a 6e6f 7465 2073 7472 696e 673a a *note string: │ │ │ │ +00015b70: 2028 4d61 6361 756c 6179 3244 6f63 2953 (Macaulay2Doc)S │ │ │ │ +00015b80: 7472 696e 672c 2c20 5468 6520 6469 7265 tring,, The dire │ │ │ │ +00015b90: 6374 6f72 7920 7768 6572 6520 7468 6520 ctory where the │ │ │ │ +00015ba0: 6669 6c65 0a20 2020 2020 2020 2069 7320 file. is │ │ │ │ +00015bb0: 7374 6f72 6564 2e0a 2020 2a20 2a6e 6f74 stored.. * *not │ │ │ │ +00015bc0: 6520 4f70 7469 6f6e 616c 2069 6e70 7574 e Optional input │ │ │ │ +00015bd0: 733a 2028 4d61 6361 756c 6179 3244 6f63 s: (Macaulay2Doc │ │ │ │ +00015be0: 2975 7369 6e67 2066 756e 6374 696f 6e73 )using functions │ │ │ │ +00015bf0: 2077 6974 6820 6f70 7469 6f6e 616c 2069 with optional i │ │ │ │ +00015c00: 6e70 7574 732c 3a0a 2020 2020 2020 2a20 nputs,:. * │ │ │ │ +00015c10: 4e61 6d65 496e 6369 6465 6e63 654d 6174 NameIncidenceMat │ │ │ │ +00015c20: 7269 7846 696c 6520 286d 6973 7369 6e67 rixFile (missing │ │ │ │ +00015c30: 2064 6f63 756d 656e 7461 7469 6f6e 2920 documentation) │ │ │ │ +00015c40: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +00015c50: 7661 6c75 650a 2020 2020 2020 2020 2269 value. "i │ │ │ │ +00015c60: 6e63 6964 656e 6365 5f6d 6174 7269 7822 ncidence_matrix" │ │ │ │ +00015c70: 2c0a 2020 2020 2020 2a20 5374 6f72 6167 ,. * Storag │ │ │ │ +00015c80: 6546 6f6c 6465 7220 286d 6973 7369 6e67 eFolder (missing │ │ │ │ +00015c90: 2064 6f63 756d 656e 7461 7469 6f6e 2920 documentation) │ │ │ │ +00015ca0: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +00015cb0: 7661 6c75 6520 6e75 6c6c 2c20 0a20 2020 value null, . │ │ │ │ +00015cc0: 2020 202a 202a 6e6f 7465 2056 6572 626f * *note Verbo │ │ │ │ +00015cd0: 7365 3a20 6265 7274 696e 6954 7261 636b se: bertiniTrack │ │ │ │ +00015ce0: 486f 6d6f 746f 7079 5f6c 705f 7064 5f70 Homotopy_lp_pd_p │ │ │ │ +00015cf0: 645f 7064 5f63 6d56 6572 626f 7365 3d3e d_pd_cmVerbose=> │ │ │ │ +00015d00: 5f70 645f 7064 5f70 645f 7270 0a20 2020 _pd_pd_pd_rp. │ │ │ │ +00015d10: 2020 2020 202c 203d 3e20 2e2e 2e2c 2064 , => ..., d │ │ │ │ +00015d20: 6566 6175 6c74 2076 616c 7565 2066 616c efault value fal │ │ │ │ +00015d30: 7365 2c20 4f70 7469 6f6e 2074 6f20 7369 se, Option to si │ │ │ │ +00015d40: 6c65 6e63 6520 6164 6469 7469 6f6e 616c lence additional │ │ │ │ +00015d50: 206f 7574 7075 740a 0a44 6573 6372 6970 output..Descrip │ │ │ │ +00015d60: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ +00015d70: 0a0a 4166 7465 7220 7275 6e6e 696e 6720 ..After running │ │ │ │ +00015d80: 6d61 6b65 4d65 6d62 6572 7368 6970 4669 makeMembershipFi │ │ │ │ +00015d90: 6c65 2042 6572 7469 6e69 2070 726f 6475 le Bertini produ │ │ │ │ +00015da0: 6365 7320 616e 2069 6e63 6964 656e 6365 ces an incidence │ │ │ │ +00015db0: 5f6d 6174 7269 7820 6669 6c65 2e20 5468 _matrix file. Th │ │ │ │ +00015dc0: 650a 696e 6369 6465 6e63 655f 6d61 7472 e.incidence_matr │ │ │ │ +00015dd0: 6978 2073 6179 7320 7768 6963 6820 706f ix says which po │ │ │ │ +00015de0: 696e 7473 2062 656c 6f6e 6720 746f 2077 ints belong to w │ │ │ │ +00015df0: 6869 6368 2063 6f6d 706f 6e65 6e74 732e hich components. │ │ │ │ +00015e00: 204f 7572 2069 6e63 6964 656e 6365 0a6d Our incidence.m │ │ │ │ +00015e10: 6174 7269 7820 6973 2066 6c61 7474 656e atrix is flatten │ │ │ │ +00015e20: 6564 2074 6f20 6120 6c69 7374 2e20 5468 ed to a list. Th │ │ │ │ +00015e30: 6520 6e75 6d62 6572 206f 6620 656c 656d e number of elem │ │ │ │ +00015e40: 656e 7473 2069 6e20 7468 6549 4d20 6973 ents in theIM is │ │ │ │ +00015e50: 2065 7175 616c 2074 6f20 7468 650a 6e75 equal to the.nu │ │ │ │ +00015e60: 6d62 6572 206f 6620 706f 696e 7473 2069 mber of points i │ │ │ │ +00015e70: 6e20 7468 6520 736f 6c75 7469 6f6e 7320 n the solutions │ │ │ │ +00015e80: 6669 6c65 2e20 4561 6368 2065 6c65 6d65 file. Each eleme │ │ │ │ +00015e90: 6e74 206f 6620 7468 6549 4d20 6973 2061 nt of theIM is a │ │ │ │ +00015ea0: 206c 6973 7420 6f66 0a73 6571 7565 6e63 list of.sequenc │ │ │ │ +00015eb0: 6573 206f 6620 3220 656c 656d 656e 7473 es of 2 elements │ │ │ │ +00015ec0: 2028 636f 6469 6d2c 636f 6d70 6f6e 656e (codim,componen │ │ │ │ +00015ed0: 7420 4e75 6d62 6572 292e 204e 6f74 6520 t Number). Note │ │ │ │ +00015ee0: 7468 6174 2077 6520 666f 6c6c 6f77 2074 that we follow t │ │ │ │ +00015ef0: 6865 0a42 6572 7469 6e69 2063 6f6e 7665 he.Bertini conve │ │ │ │ +00015f00: 6e74 696f 6e20 616e 6420 7377 6974 6368 ntion and switch │ │ │ │ +00015f10: 2066 726f 6d20 2864 696d 656e 7369 6f6e from (dimension │ │ │ │ +00015f20: 2c63 6f6d 706f 6e65 6e74 206e 756d 6265 ,component numbe │ │ │ │ +00015f30: 7229 2069 6e64 6578 696e 6720 746f 0a28 r) indexing to.( │ │ │ │ +00015f40: 636f 6469 6d65 6e73 696f 6e2c 636f 6d70 codimension,comp │ │ │ │ +00015f50: 6f6e 656e 7420 6e75 6d62 6572 2920 696e onent number) in │ │ │ │ +00015f60: 6465 7869 6e67 2e0a 0a49 6620 7468 6520 dexing...If the │ │ │ │ +00015f70: 4e61 6d65 496e 6369 6465 6e63 654d 6174 NameIncidenceMat │ │ │ │ +00015f80: 7269 7846 696c 6520 6f70 7469 6f6e 2069 rixFile option i │ │ │ │ +00015f90: 7320 7365 7420 7768 656e 2077 6520 7761 s set when we wa │ │ │ │ +00015fa0: 6e74 2074 6f20 696d 706f 7274 2066 696c nt to import fil │ │ │ │ +00015fb0: 6573 2077 6974 680a 6120 6469 6666 6572 es with.a differ │ │ │ │ +00015fc0: 656e 7420 6e61 6d65 2e0a 0a2b 2d2d 2d2d ent name...+---- │ │ │ │ 00015fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016010: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 6d61 ------+.|i1 : ma │ │ │ │ -00016020: 6b65 4227 496e 7075 7446 696c 6528 7374 keB'InputFile(st │ │ │ │ -00016030: 6f72 6542 4d32 4669 6c65 732c 2020 2020 oreBM2Files, │ │ │ │ +00016010: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +00016020: 206d 616b 6542 2749 6e70 7574 4669 6c65 makeB'InputFile │ │ │ │ +00016030: 2873 746f 7265 424d 3246 696c 6573 2c20 (storeBM2Files, │ │ │ │ 00016040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016060: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00016070: 2020 4265 7274 696e 6949 6e70 7574 436f BertiniInputCo │ │ │ │ -00016080: 6e66 6967 7572 6174 696f 6e3d 3e7b 7b54 nfiguration=>{{T │ │ │ │ -00016090: 7261 636b 5479 7065 2c31 7d7d 2c20 2020 rackType,1}}, │ │ │ │ +00016060: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00016070: 2020 2020 2042 6572 7469 6e69 496e 7075 BertiniInpu │ │ │ │ +00016080: 7443 6f6e 6669 6775 7261 7469 6f6e 3d3e tConfiguration=> │ │ │ │ +00016090: 7b7b 5472 6163 6b54 7970 652c 317d 7d2c {{TrackType,1}}, │ │ │ │ 000160a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000160b0: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ +000160b0: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ 000160c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000160d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000160e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000160f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016100: 2d2d 2d2d 2d2d 7c0a 7c41 6666 5661 7269 ------|.|AffVari │ │ │ │ -00016110: 6162 6c65 4772 6f75 703d 3e7b 782c 792c ableGroup=>{x,y, │ │ │ │ -00016120: 7a7d 2c20 2020 2020 2020 2020 2020 2020 z}, │ │ │ │ +00016100: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 4166 6656 ---------|.|AffV │ │ │ │ +00016110: 6172 6961 626c 6547 726f 7570 3d3e 7b78 ariableGroup=>{x │ │ │ │ +00016120: 2c79 2c7a 7d2c 2020 2020 2020 2020 2020 ,y,z}, │ │ │ │ 00016130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016150: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ +00016150: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ 00016160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000161a0: 2d2d 2d2d 2d2d 7c0a 7c42 2750 6f6c 796e ------|.|B'Polyn │ │ │ │ -000161b0: 6f6d 6961 6c73 3d3e 7b22 7a2a 2828 782b omials=>{"z*((x+ │ │ │ │ -000161c0: 792b 7a29 5e33 2d31 2922 2c22 7a2a 2879 y+z)^3-1)","z*(y │ │ │ │ -000161d0: 5e32 2d33 2b7a 2922 7d20 2020 2029 3b20 ^2-3+z)"} ); │ │ │ │ -000161e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000161f0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000161a0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 4227 506f ---------|.|B'Po │ │ │ │ +000161b0: 6c79 6e6f 6d69 616c 733d 3e7b 227a 2a28 lynomials=>{"z*( │ │ │ │ +000161c0: 2878 2b79 2b7a 295e 332d 3129 222c 227a (x+y+z)^3-1)","z │ │ │ │ +000161d0: 2a28 795e 322d 332b 7a29 227d 2020 2020 *(y^2-3+z)"} │ │ │ │ +000161e0: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ +000161f0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 00016200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016240: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 7275 ------+.|i2 : ru │ │ │ │ -00016250: 6e42 6572 7469 6e69 2873 746f 7265 424d nBertini(storeBM │ │ │ │ -00016260: 3246 696c 6573 2920 2020 2020 2020 2020 2Files) │ │ │ │ +00016240: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ +00016250: 2072 756e 4265 7274 696e 6928 7374 6f72 runBertini(stor │ │ │ │ +00016260: 6542 4d32 4669 6c65 7329 2020 2020 2020 eBM2Files) │ │ │ │ 00016270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016290: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00016290: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 000162a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000162b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000162c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000162d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000162e0: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 6d61 ------+.|i3 : ma │ │ │ │ -000162f0: 6b65 5361 6d70 6c65 536f 6c75 7469 6f6e keSampleSolution │ │ │ │ -00016300: 7346 696c 6528 7374 6f72 6542 4d32 4669 sFile(storeBM2Fi │ │ │ │ -00016310: 6c65 732c 322c 5370 6563 6966 7943 6f6d les,2,SpecifyCom │ │ │ │ -00016320: 706f 6e65 6e74 3d3e 7b31 2c30 7d29 2020 ponent=>{1,0}) │ │ │ │ -00016330: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000162e0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ +000162f0: 206d 616b 6553 616d 706c 6553 6f6c 7574 makeSampleSolut │ │ │ │ +00016300: 696f 6e73 4669 6c65 2873 746f 7265 424d ionsFile(storeBM │ │ │ │ +00016310: 3246 696c 6573 2c32 2c53 7065 6369 6679 2Files,2,Specify │ │ │ │ +00016320: 436f 6d70 6f6e 656e 743d 3e7b 312c 307d Component=>{1,0} │ │ │ │ +00016330: 2920 2020 2020 2020 207c 0a2b 2d2d 2d2d ) |.+---- │ │ │ │ 00016340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016380: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 6d61 ------+.|i4 : ma │ │ │ │ -00016390: 6b65 4d65 6d62 6572 7368 6970 4669 6c65 keMembershipFile │ │ │ │ -000163a0: 2873 746f 7265 424d 3246 696c 6573 2c4e (storeBM2Files,N │ │ │ │ -000163b0: 616d 6553 6f6c 7574 696f 6e73 4669 6c65 ameSolutionsFile │ │ │ │ -000163c0: 3d3e 2273 616d 706c 655f 736f 6c75 7469 =>"sample_soluti │ │ │ │ -000163d0: 6f6e 735f 2020 7c0a 7c2d 2d2d 2d2d 2d2d ons_ |.|------- │ │ │ │ +00016380: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ +00016390: 206d 616b 654d 656d 6265 7273 6869 7046 makeMembershipF │ │ │ │ +000163a0: 696c 6528 7374 6f72 6542 4d32 4669 6c65 ile(storeBM2File │ │ │ │ +000163b0: 732c 4e61 6d65 536f 6c75 7469 6f6e 7346 s,NameSolutionsF │ │ │ │ +000163c0: 696c 653d 3e22 7361 6d70 6c65 5f73 6f6c ile=>"sample_sol │ │ │ │ +000163d0: 7574 696f 6e73 5f20 207c 0a7c 2d2d 2d2d utions_ |.|---- │ │ │ │ 000163e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000163f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016420: 2d2d 2d2d 2d2d 7c0a 7c66 696c 6522 2920 ------|.|file") │ │ │ │ -00016430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016420: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 6669 6c65 ---------|.|file │ │ │ │ +00016430: 2229 2020 2020 2020 2020 2020 2020 2020 ") │ │ │ │ 00016440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016470: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00016470: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 00016480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000164a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000164b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000164c0: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 7468 ------+.|i5 : th │ │ │ │ -000164d0: 6549 4d3d 696d 706f 7274 496e 6369 6465 eIM=importIncide │ │ │ │ -000164e0: 6e63 654d 6174 7269 7828 7374 6f72 6542 nceMatrix(storeB │ │ │ │ -000164f0: 4d32 4669 6c65 7329 2020 2020 2020 2020 M2Files) │ │ │ │ +000164c0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ +000164d0: 2074 6865 494d 3d69 6d70 6f72 7449 6e63 theIM=importInc │ │ │ │ +000164e0: 6964 656e 6365 4d61 7472 6978 2873 746f idenceMatrix(sto │ │ │ │ +000164f0: 7265 424d 3246 696c 6573 2920 2020 2020 reBM2Files) │ │ │ │ 00016500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016510: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00016510: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00016520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016560: 2020 2020 2020 7c0a 7c6f 3520 3d20 7b7b |.|o5 = {{ │ │ │ │ -00016570: 2832 2c20 3029 7d2c 207b 2832 2c20 3029 (2, 0)}, {(2, 0) │ │ │ │ -00016580: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ +00016560: 2020 2020 2020 2020 207c 0a7c 6f35 203d |.|o5 = │ │ │ │ +00016570: 207b 7b28 322c 2030 297d 2c20 7b28 322c {{(2, 0)}, {(2, │ │ │ │ +00016580: 2030 297d 7d20 2020 2020 2020 2020 2020 0)}} │ │ │ │ 00016590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000165a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000165b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000165b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000165c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000165d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000165e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000165f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016600: 2020 2020 2020 7c0a 7c6f 3520 3a20 4c69 |.|o5 : Li │ │ │ │ -00016610: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ +00016600: 2020 2020 2020 2020 207c 0a7c 6f35 203a |.|o5 : │ │ │ │ +00016610: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ 00016620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016650: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00016650: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 00016660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000166a0: 2d2d 2d2d 2d2d 2b0a 0a57 6179 7320 746f ------+..Ways to │ │ │ │ -000166b0: 2075 7365 2069 6d70 6f72 7449 6e63 6964 use importIncid │ │ │ │ -000166c0: 656e 6365 4d61 7472 6978 3a0a 3d3d 3d3d enceMatrix:.==== │ │ │ │ +000166a0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5761 7973 ---------+..Ways │ │ │ │ +000166b0: 2074 6f20 7573 6520 696d 706f 7274 496e to use importIn │ │ │ │ +000166c0: 6369 6465 6e63 654d 6174 7269 783a 0a3d cidenceMatrix:.= │ │ │ │ 000166d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000166e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -000166f0: 2020 2a20 2269 6d70 6f72 7449 6e63 6964 * "importIncid │ │ │ │ -00016700: 656e 6365 4d61 7472 6978 2853 7472 696e enceMatrix(Strin │ │ │ │ -00016710: 6729 220a 0a46 6f72 2074 6865 2070 726f g)"..For the pro │ │ │ │ -00016720: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -00016730: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -00016740: 6f62 6a65 6374 202a 6e6f 7465 2069 6d70 object *note imp │ │ │ │ -00016750: 6f72 7449 6e63 6964 656e 6365 4d61 7472 ortIncidenceMatr │ │ │ │ -00016760: 6978 3a20 696d 706f 7274 496e 6369 6465 ix: importIncide │ │ │ │ -00016770: 6e63 654d 6174 7269 782c 2069 7320 6120 nceMatrix, is a │ │ │ │ -00016780: 2a6e 6f74 650a 6d65 7468 6f64 2066 756e *note.method fun │ │ │ │ -00016790: 6374 696f 6e20 7769 7468 206f 7074 696f ction with optio │ │ │ │ -000167a0: 6e73 3a20 284d 6163 6175 6c61 7932 446f ns: (Macaulay2Do │ │ │ │ -000167b0: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ -000167c0: 5769 7468 4f70 7469 6f6e 732c 2e0a 1f0a WithOptions,.... │ │ │ │ -000167d0: 4669 6c65 3a20 4265 7274 696e 692e 696e File: Bertini.in │ │ │ │ -000167e0: 666f 2c20 4e6f 6465 3a20 696d 706f 7274 fo, Node: import │ │ │ │ -000167f0: 4d61 696e 4461 7461 4669 6c65 2c20 4e65 MainDataFile, Ne │ │ │ │ -00016800: 7874 3a20 696d 706f 7274 5061 7261 6d65 xt: importParame │ │ │ │ -00016810: 7465 7246 696c 652c 2050 7265 763a 2069 terFile, Prev: i │ │ │ │ -00016820: 6d70 6f72 7449 6e63 6964 656e 6365 4d61 mportIncidenceMa │ │ │ │ -00016830: 7472 6978 2c20 5570 3a20 546f 700a 0a69 trix, Up: Top..i │ │ │ │ -00016840: 6d70 6f72 744d 6169 6e44 6174 6146 696c mportMainDataFil │ │ │ │ -00016850: 6520 2d2d 2054 6869 7320 6675 6e63 7469 e -- This functi │ │ │ │ -00016860: 6f6e 2069 6d70 6f72 7473 2070 6f69 6e74 on imports point │ │ │ │ -00016870: 7320 6672 6f6d 2074 6865 206d 6169 6e20 s from the main │ │ │ │ -00016880: 6461 7461 2066 696c 6520 666f 726d 2061 data file form a │ │ │ │ -00016890: 2042 6572 7469 6e69 2072 756e 2e0a 2a2a Bertini run..** │ │ │ │ -000168a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000166e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000166f0: 3d0a 0a20 202a 2022 696d 706f 7274 496e =.. * "importIn │ │ │ │ +00016700: 6369 6465 6e63 654d 6174 7269 7828 5374 cidenceMatrix(St │ │ │ │ +00016710: 7269 6e67 2922 0a0a 466f 7220 7468 6520 ring)"..For the │ │ │ │ +00016720: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ +00016730: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ +00016740: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ +00016750: 696d 706f 7274 496e 6369 6465 6e63 654d importIncidenceM │ │ │ │ +00016760: 6174 7269 783a 2069 6d70 6f72 7449 6e63 atrix: importInc │ │ │ │ +00016770: 6964 656e 6365 4d61 7472 6978 2c20 6973 idenceMatrix, is │ │ │ │ +00016780: 2061 202a 6e6f 7465 0a6d 6574 686f 6420 a *note.method │ │ │ │ +00016790: 6675 6e63 7469 6f6e 2077 6974 6820 6f70 function with op │ │ │ │ +000167a0: 7469 6f6e 733a 2028 4d61 6361 756c 6179 tions: (Macaulay │ │ │ │ +000167b0: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ +000167c0: 696f 6e57 6974 684f 7074 696f 6e73 2c2e ionWithOptions,. │ │ │ │ +000167d0: 0a1f 0a46 696c 653a 2042 6572 7469 6e69 ...File: Bertini │ │ │ │ +000167e0: 2e69 6e66 6f2c 204e 6f64 653a 2069 6d70 .info, Node: imp │ │ │ │ +000167f0: 6f72 744d 6169 6e44 6174 6146 696c 652c ortMainDataFile, │ │ │ │ +00016800: 204e 6578 743a 2069 6d70 6f72 7450 6172 Next: importPar │ │ │ │ +00016810: 616d 6574 6572 4669 6c65 2c20 5072 6576 ameterFile, Prev │ │ │ │ +00016820: 3a20 696d 706f 7274 496e 6369 6465 6e63 : importIncidenc │ │ │ │ +00016830: 654d 6174 7269 782c 2055 703a 2054 6f70 eMatrix, Up: Top │ │ │ │ +00016840: 0a0a 696d 706f 7274 4d61 696e 4461 7461 ..importMainData │ │ │ │ +00016850: 4669 6c65 202d 2d20 5468 6973 2066 756e File -- This fun │ │ │ │ +00016860: 6374 696f 6e20 696d 706f 7274 7320 706f ction imports po │ │ │ │ +00016870: 696e 7473 2066 726f 6d20 7468 6520 6d61 ints from the ma │ │ │ │ +00016880: 696e 2064 6174 6120 6669 6c65 2066 6f72 in data file for │ │ │ │ +00016890: 6d20 6120 4265 7274 696e 6920 7275 6e2e m a Bertini run. │ │ │ │ +000168a0: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ 000168b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000168c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000168d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000168e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000168f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 5379 ************..Sy │ │ │ │ -00016900: 6e6f 7073 6973 0a3d 3d3d 3d3d 3d3d 3d0a nopsis.========. │ │ │ │ -00016910: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ -00016920: 2020 2020 2069 6d70 6f72 744d 6169 6e44 importMainD │ │ │ │ -00016930: 6174 6146 696c 6528 7468 6544 6972 290a ataFile(theDir). │ │ │ │ -00016940: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ -00016950: 2020 2a20 7468 6544 6972 2c20 6120 2a6e * theDir, a *n │ │ │ │ -00016960: 6f74 6520 7374 7269 6e67 3a20 284d 6163 ote string: (Mac │ │ │ │ -00016970: 6175 6c61 7932 446f 6329 5374 7269 6e67 aulay2Doc)String │ │ │ │ -00016980: 2c2c 2054 6865 2064 6972 6563 746f 7279 ,, The directory │ │ │ │ -00016990: 2077 6865 7265 2074 6865 0a20 2020 2020 where the. │ │ │ │ -000169a0: 2020 206d 6169 6e5f 6461 7461 2066 696c main_data fil │ │ │ │ -000169b0: 6520 6973 206c 6f63 6174 6564 2e0a 2020 e is located.. │ │ │ │ -000169c0: 2a20 2a6e 6f74 6520 4f70 7469 6f6e 616c * *note Optional │ │ │ │ -000169d0: 2069 6e70 7574 733a 2028 4d61 6361 756c inputs: (Macaul │ │ │ │ -000169e0: 6179 3244 6f63 2975 7369 6e67 2066 756e ay2Doc)using fun │ │ │ │ -000169f0: 6374 696f 6e73 2077 6974 6820 6f70 7469 ctions with opti │ │ │ │ -00016a00: 6f6e 616c 2069 6e70 7574 732c 3a0a 2020 onal inputs,:. │ │ │ │ -00016a10: 2020 2020 2a20 4d32 5072 6563 6973 696f * M2Precisio │ │ │ │ -00016a20: 6e20 286d 6973 7369 6e67 2064 6f63 756d n (missing docum │ │ │ │ -00016a30: 656e 7461 7469 6f6e 2920 3d3e 202e 2e2e entation) => ... │ │ │ │ -00016a40: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -00016a50: 3533 2c20 0a20 2020 2020 202a 204e 616d 53, . * Nam │ │ │ │ -00016a60: 654d 6169 6e44 6174 6146 696c 6520 286d eMainDataFile (m │ │ │ │ -00016a70: 6973 7369 6e67 2064 6f63 756d 656e 7461 issing documenta │ │ │ │ -00016a80: 7469 6f6e 2920 3d3e 202e 2e2e 2c20 6465 tion) => ..., de │ │ │ │ -00016a90: 6661 756c 7420 7661 6c75 650a 2020 2020 fault value. │ │ │ │ -00016aa0: 2020 2020 226d 6169 6e5f 6461 7461 222c "main_data", │ │ │ │ -00016ab0: 0a20 2020 2020 202a 2050 6174 684c 6973 . * PathLis │ │ │ │ -00016ac0: 7420 286d 6973 7369 6e67 2064 6f63 756d t (missing docum │ │ │ │ -00016ad0: 656e 7461 7469 6f6e 2920 3d3e 202e 2e2e entation) => ... │ │ │ │ -00016ae0: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -00016af0: 6e75 6c6c 2c20 0a20 2020 2020 202a 2053 null, . * S │ │ │ │ -00016b00: 7065 6369 6679 4469 6d20 286d 6973 7369 pecifyDim (missi │ │ │ │ -00016b10: 6e67 2064 6f63 756d 656e 7461 7469 6f6e ng documentation │ │ │ │ -00016b20: 2920 3d3e 202e 2e2e 2c20 6465 6661 756c ) => ..., defaul │ │ │ │ -00016b30: 7420 7661 6c75 6520 6661 6c73 652c 200a t value false, . │ │ │ │ -00016b40: 2020 2020 2020 2a20 2a6e 6f74 6520 5665 * *note Ve │ │ │ │ -00016b50: 7262 6f73 653a 2062 6572 7469 6e69 5472 rbose: bertiniTr │ │ │ │ -00016b60: 6163 6b48 6f6d 6f74 6f70 795f 6c70 5f70 ackHomotopy_lp_p │ │ │ │ -00016b70: 645f 7064 5f70 645f 636d 5665 7262 6f73 d_pd_pd_cmVerbos │ │ │ │ -00016b80: 653d 3e5f 7064 5f70 645f 7064 5f72 700a e=>_pd_pd_pd_rp. │ │ │ │ -00016b90: 2020 2020 2020 2020 2c20 3d3e 202e 2e2e , => ... │ │ │ │ -00016ba0: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -00016bb0: 6661 6c73 652c 204f 7074 696f 6e20 746f false, Option to │ │ │ │ -00016bc0: 2073 696c 656e 6365 2061 6464 6974 696f silence additio │ │ │ │ -00016bd0: 6e61 6c20 6f75 7470 7574 0a0a 4465 7363 nal output..Desc │ │ │ │ -00016be0: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ -00016bf0: 3d3d 3d0a 0a54 6869 7320 6675 6e63 7469 ===..This functi │ │ │ │ -00016c00: 6f6e 2064 6f65 7320 6e6f 7420 696d 706f on does not impo │ │ │ │ -00016c10: 7274 2061 206c 6973 7420 6f66 2063 6f6f rt a list of coo │ │ │ │ -00016c20: 7264 696e 6174 6573 2e20 496e 7374 6561 rdinates. Instea │ │ │ │ -00016c30: 6420 6974 2069 6d70 6f72 7473 2070 6f69 d it imports poi │ │ │ │ -00016c40: 6e74 730a 6672 6f6d 2061 206d 6169 6e5f nts.from a main_ │ │ │ │ -00016c50: 6461 7461 2066 696c 652e 2054 6865 7365 data file. These │ │ │ │ -00016c60: 2070 6f69 6e74 7320 636f 6e74 6169 6e20 points contain │ │ │ │ -00016c70: 636f 6f72 6469 6e61 7465 732c 2063 6f6e coordinates, con │ │ │ │ -00016c80: 6469 7469 6f6e 206e 756d 6265 7273 2c20 dition numbers, │ │ │ │ -00016c90: 616e 640a 6574 632e 2054 6865 2069 6e66 and.etc. The inf │ │ │ │ -00016ca0: 6f72 6d61 7469 6f6e 2074 6865 2070 6f69 ormation the poi │ │ │ │ -00016cb0: 6e74 7320 636f 6e74 6169 6e20 6465 7065 nts contain depe │ │ │ │ -00016cc0: 6e64 206f 6e20 6966 2072 6567 656e 6572 nd on if regener │ │ │ │ -00016cd0: 6174 696f 6e20 7761 7320 7573 6564 2061 ation was used a │ │ │ │ -00016ce0: 6e64 0a69 6620 6120 5472 6163 6b54 7970 nd.if a TrackTyp │ │ │ │ -00016cf0: 6520 3020 6f72 2031 2077 6173 2075 7365 e 0 or 1 was use │ │ │ │ -00016d00: 642e 2057 6865 6e20 5472 6163 6b54 7970 d. When TrackTyp │ │ │ │ -00016d10: 6520 3120 6973 2075 7365 642c 2055 4e43 e 1 is used, UNC │ │ │ │ -00016d20: 4c41 5353 4946 4945 4420 706f 696e 7473 LASSIFIED points │ │ │ │ -00016d30: 0a77 696c 6c20 6861 7665 2063 6f6d 706f .will have compo │ │ │ │ -00016d40: 6e65 6e74 206e 756d 6265 7220 2d31 2e0a nent number -1.. │ │ │ │ -00016d50: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000168f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +00016900: 0a53 796e 6f70 7369 730a 3d3d 3d3d 3d3d .Synopsis.====== │ │ │ │ +00016910: 3d3d 0a0a 2020 2a20 5573 6167 653a 200a ==.. * Usage: . │ │ │ │ +00016920: 2020 2020 2020 2020 696d 706f 7274 4d61 importMa │ │ │ │ +00016930: 696e 4461 7461 4669 6c65 2874 6865 4469 inDataFile(theDi │ │ │ │ +00016940: 7229 0a20 202a 2049 6e70 7574 733a 0a20 r). * Inputs:. │ │ │ │ +00016950: 2020 2020 202a 2074 6865 4469 722c 2061 * theDir, a │ │ │ │ +00016960: 202a 6e6f 7465 2073 7472 696e 673a 2028 *note string: ( │ │ │ │ +00016970: 4d61 6361 756c 6179 3244 6f63 2953 7472 Macaulay2Doc)Str │ │ │ │ +00016980: 696e 672c 2c20 5468 6520 6469 7265 6374 ing,, The direct │ │ │ │ +00016990: 6f72 7920 7768 6572 6520 7468 650a 2020 ory where the. │ │ │ │ +000169a0: 2020 2020 2020 6d61 696e 5f64 6174 6120 main_data │ │ │ │ +000169b0: 6669 6c65 2069 7320 6c6f 6361 7465 642e file is located. │ │ │ │ +000169c0: 0a20 202a 202a 6e6f 7465 204f 7074 696f . * *note Optio │ │ │ │ +000169d0: 6e61 6c20 696e 7075 7473 3a20 284d 6163 nal inputs: (Mac │ │ │ │ +000169e0: 6175 6c61 7932 446f 6329 7573 696e 6720 aulay2Doc)using │ │ │ │ +000169f0: 6675 6e63 7469 6f6e 7320 7769 7468 206f functions with o │ │ │ │ +00016a00: 7074 696f 6e61 6c20 696e 7075 7473 2c3a ptional inputs,: │ │ │ │ +00016a10: 0a20 2020 2020 202a 204d 3250 7265 6369 . * M2Preci │ │ │ │ +00016a20: 7369 6f6e 2028 6d69 7373 696e 6720 646f sion (missing do │ │ │ │ +00016a30: 6375 6d65 6e74 6174 696f 6e29 203d 3e20 cumentation) => │ │ │ │ +00016a40: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ +00016a50: 7565 2035 332c 200a 2020 2020 2020 2a20 ue 53, . * │ │ │ │ +00016a60: 4e61 6d65 4d61 696e 4461 7461 4669 6c65 NameMainDataFile │ │ │ │ +00016a70: 2028 6d69 7373 696e 6720 646f 6375 6d65 (missing docume │ │ │ │ +00016a80: 6e74 6174 696f 6e29 203d 3e20 2e2e 2e2c ntation) => ..., │ │ │ │ +00016a90: 2064 6566 6175 6c74 2076 616c 7565 0a20 default value. │ │ │ │ +00016aa0: 2020 2020 2020 2022 6d61 696e 5f64 6174 "main_dat │ │ │ │ +00016ab0: 6122 2c0a 2020 2020 2020 2a20 5061 7468 a",. * Path │ │ │ │ +00016ac0: 4c69 7374 2028 6d69 7373 696e 6720 646f List (missing do │ │ │ │ +00016ad0: 6375 6d65 6e74 6174 696f 6e29 203d 3e20 cumentation) => │ │ │ │ +00016ae0: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ +00016af0: 7565 206e 756c 6c2c 200a 2020 2020 2020 ue null, . │ │ │ │ +00016b00: 2a20 5370 6563 6966 7944 696d 2028 6d69 * SpecifyDim (mi │ │ │ │ +00016b10: 7373 696e 6720 646f 6375 6d65 6e74 6174 ssing documentat │ │ │ │ +00016b20: 696f 6e29 203d 3e20 2e2e 2e2c 2064 6566 ion) => ..., def │ │ │ │ +00016b30: 6175 6c74 2076 616c 7565 2066 616c 7365 ault value false │ │ │ │ +00016b40: 2c20 0a20 2020 2020 202a 202a 6e6f 7465 , . * *note │ │ │ │ +00016b50: 2056 6572 626f 7365 3a20 6265 7274 696e Verbose: bertin │ │ │ │ +00016b60: 6954 7261 636b 486f 6d6f 746f 7079 5f6c iTrackHomotopy_l │ │ │ │ +00016b70: 705f 7064 5f70 645f 7064 5f63 6d56 6572 p_pd_pd_pd_cmVer │ │ │ │ +00016b80: 626f 7365 3d3e 5f70 645f 7064 5f70 645f bose=>_pd_pd_pd_ │ │ │ │ +00016b90: 7270 0a20 2020 2020 2020 202c 203d 3e20 rp. , => │ │ │ │ +00016ba0: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ +00016bb0: 7565 2066 616c 7365 2c20 4f70 7469 6f6e ue false, Option │ │ │ │ +00016bc0: 2074 6f20 7369 6c65 6e63 6520 6164 6469 to silence addi │ │ │ │ +00016bd0: 7469 6f6e 616c 206f 7574 7075 740a 0a44 tional output..D │ │ │ │ +00016be0: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +00016bf0: 3d3d 3d3d 3d3d 0a0a 5468 6973 2066 756e ======..This fun │ │ │ │ +00016c00: 6374 696f 6e20 646f 6573 206e 6f74 2069 ction does not i │ │ │ │ +00016c10: 6d70 6f72 7420 6120 6c69 7374 206f 6620 mport a list of │ │ │ │ +00016c20: 636f 6f72 6469 6e61 7465 732e 2049 6e73 coordinates. Ins │ │ │ │ +00016c30: 7465 6164 2069 7420 696d 706f 7274 7320 tead it imports │ │ │ │ +00016c40: 706f 696e 7473 0a66 726f 6d20 6120 6d61 points.from a ma │ │ │ │ +00016c50: 696e 5f64 6174 6120 6669 6c65 2e20 5468 in_data file. Th │ │ │ │ +00016c60: 6573 6520 706f 696e 7473 2063 6f6e 7461 ese points conta │ │ │ │ +00016c70: 696e 2063 6f6f 7264 696e 6174 6573 2c20 in coordinates, │ │ │ │ +00016c80: 636f 6e64 6974 696f 6e20 6e75 6d62 6572 condition number │ │ │ │ +00016c90: 732c 2061 6e64 0a65 7463 2e20 5468 6520 s, and.etc. The │ │ │ │ +00016ca0: 696e 666f 726d 6174 696f 6e20 7468 6520 information the │ │ │ │ +00016cb0: 706f 696e 7473 2063 6f6e 7461 696e 2064 points contain d │ │ │ │ +00016cc0: 6570 656e 6420 6f6e 2069 6620 7265 6765 epend on if rege │ │ │ │ +00016cd0: 6e65 7261 7469 6f6e 2077 6173 2075 7365 neration was use │ │ │ │ +00016ce0: 6420 616e 640a 6966 2061 2054 7261 636b d and.if a Track │ │ │ │ +00016cf0: 5479 7065 2030 206f 7220 3120 7761 7320 Type 0 or 1 was │ │ │ │ +00016d00: 7573 6564 2e20 5768 656e 2054 7261 636b used. When Track │ │ │ │ +00016d10: 5479 7065 2031 2069 7320 7573 6564 2c20 Type 1 is used, │ │ │ │ +00016d20: 554e 434c 4153 5349 4649 4544 2070 6f69 UNCLASSIFIED poi │ │ │ │ +00016d30: 6e74 730a 7769 6c6c 2068 6176 6520 636f nts.will have co │ │ │ │ +00016d40: 6d70 6f6e 656e 7420 6e75 6d62 6572 202d mponent number - │ │ │ │ +00016d50: 312e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 1...+----------- │ │ │ │ 00016d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00016da0: 0a7c 6931 203a 206d 616b 6542 2749 6e70 .|i1 : makeB'Inp │ │ │ │ -00016db0: 7574 4669 6c65 2873 746f 7265 424d 3246 utFile(storeBM2F │ │ │ │ -00016dc0: 696c 6573 2c20 2020 2020 2020 2020 2020 iles, │ │ │ │ +00016d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016da0: 2d2d 2b0a 7c69 3120 3a20 6d61 6b65 4227 --+.|i1 : makeB' │ │ │ │ +00016db0: 496e 7075 7446 696c 6528 7374 6f72 6542 InputFile(storeB │ │ │ │ +00016dc0: 4d32 4669 6c65 732c 2020 2020 2020 2020 M2Files, │ │ │ │ 00016dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016de0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016df0: 0a7c 2020 2020 2020 2041 6666 5661 7269 .| AffVari │ │ │ │ -00016e00: 6162 6c65 4772 6f75 703d 3e7b 782c 792c ableGroup=>{x,y, │ │ │ │ -00016e10: 7a7d 2c20 2020 2020 2020 2020 2020 2020 z}, │ │ │ │ +00016de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016df0: 2020 7c0a 7c20 2020 2020 2020 4166 6656 |.| AffV │ │ │ │ +00016e00: 6172 6961 626c 6547 726f 7570 3d3e 7b78 ariableGroup=>{x │ │ │ │ +00016e10: 2c79 2c7a 7d2c 2020 2020 2020 2020 2020 ,y,z}, │ │ │ │ 00016e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016e40: 0a7c 2020 2020 2020 2042 6572 7469 6e69 .| Bertini │ │ │ │ -00016e50: 496e 7075 7443 6f6e 6669 6775 7261 7469 InputConfigurati │ │ │ │ -00016e60: 6f6e 3d3e 7b7b 5472 6163 6b54 7970 652c on=>{{TrackType, │ │ │ │ -00016e70: 317d 7d2c 2020 2020 2020 2020 2020 2020 1}}, │ │ │ │ -00016e80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016e90: 0a7c 2020 2020 2020 2042 2750 6f6c 796e .| B'Polyn │ │ │ │ -00016ea0: 6f6d 6961 6c73 3d3e 7b22 2878 5e32 2b79 omials=>{"(x^2+y │ │ │ │ -00016eb0: 5e32 2b7a 5e32 2d31 292a 7922 7d29 3b20 ^2+z^2-1)*y"}); │ │ │ │ -00016ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ed0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016ee0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00016e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016e40: 2020 7c0a 7c20 2020 2020 2020 4265 7274 |.| Bert │ │ │ │ +00016e50: 696e 6949 6e70 7574 436f 6e66 6967 7572 iniInputConfigur │ │ │ │ +00016e60: 6174 696f 6e3d 3e7b 7b54 7261 636b 5479 ation=>{{TrackTy │ │ │ │ +00016e70: 7065 2c31 7d7d 2c20 2020 2020 2020 2020 pe,1}}, │ │ │ │ +00016e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016e90: 2020 7c0a 7c20 2020 2020 2020 4227 506f |.| B'Po │ │ │ │ +00016ea0: 6c79 6e6f 6d69 616c 733d 3e7b 2228 785e lynomials=>{"(x^ │ │ │ │ +00016eb0: 322b 795e 322b 7a5e 322d 3129 2a79 227d 2+y^2+z^2-1)*y"} │ │ │ │ +00016ec0: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ +00016ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016ee0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00016ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00016f30: 0a7c 6932 203a 2072 756e 4265 7274 696e .|i2 : runBertin │ │ │ │ -00016f40: 6928 7374 6f72 6542 4d32 4669 6c65 7329 i(storeBM2Files) │ │ │ │ -00016f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016f30: 2d2d 2b0a 7c69 3220 3a20 7275 6e42 6572 --+.|i2 : runBer │ │ │ │ +00016f40: 7469 6e69 2873 746f 7265 424d 3246 696c tini(storeBM2Fil │ │ │ │ +00016f50: 6573 2920 2020 2020 2020 2020 2020 2020 es) │ │ │ │ 00016f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016f80: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00016f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f80: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00016f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00016fd0: 0a7c 6933 203a 2074 6865 506f 696e 7473 .|i3 : thePoints │ │ │ │ -00016fe0: 3d69 6d70 6f72 744d 6169 6e44 6174 6146 =importMainDataF │ │ │ │ -00016ff0: 696c 6528 7374 6f72 6542 4d32 4669 6c65 ile(storeBM2File │ │ │ │ -00017000: 7329 2020 2020 2020 2020 2020 2020 2020 s) │ │ │ │ -00017010: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017020: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00016fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016fd0: 2d2d 2b0a 7c69 3320 3a20 7468 6550 6f69 --+.|i3 : thePoi │ │ │ │ +00016fe0: 6e74 733d 696d 706f 7274 4d61 696e 4461 nts=importMainDa │ │ │ │ +00016ff0: 7461 4669 6c65 2873 746f 7265 424d 3246 taFile(storeBM2F │ │ │ │ +00017000: 696c 6573 2920 2020 2020 2020 2020 2020 iles) │ │ │ │ +00017010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017020: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017060: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017070: 0a7c 6f33 203d 207b 7b2d 2e30 3030 3237 .|o3 = {{-.00027 │ │ │ │ -00017080: 3339 3135 2b2e 3030 3133 3531 3739 2a69 3915+.00135179*i │ │ │ │ -00017090: 692c 2031 2e31 3834 3733 652d 3139 2d34 i, 1.18473e-19-4 │ │ │ │ -000170a0: 2e32 3138 3537 652d 3139 2a69 692c 2020 .21857e-19*ii, │ │ │ │ -000170b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000170c0: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +00017060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017070: 2020 7c0a 7c6f 3320 3d20 7b7b 2d2e 3030 |.|o3 = {{-.00 │ │ │ │ +00017080: 3032 3733 3931 352b 2e30 3031 3335 3137 0273915+.0013517 │ │ │ │ +00017090: 392a 6969 2c20 312e 3138 3437 3365 2d31 9*ii, 1.18473e-1 │ │ │ │ +000170a0: 392d 342e 3231 3835 3765 2d31 392a 6969 9-4.21857e-19*ii │ │ │ │ +000170b0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +000170c0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ 000170d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000170e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000170f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00017110: 0a7c 2020 2020 202d 2e33 3034 3832 2d2e .| -.30482-. │ │ │ │ -00017120: 3935 3234 3131 2a69 697d 2c20 7b31 2e30 952411*ii}, {1.0 │ │ │ │ -00017130: 3035 3731 2d2e 3636 3734 382a 6969 2c20 0571-.66748*ii, │ │ │ │ -00017140: 312e 3136 3238 322b 2e33 3237 3339 392a 1.16282+.327399* │ │ │ │ -00017150: 6969 2c20 2020 2020 2020 2020 2020 207c ii, | │ │ │ │ -00017160: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +00017100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017110: 2d2d 7c0a 7c20 2020 2020 2d2e 3330 3438 --|.| -.3048 │ │ │ │ +00017120: 322d 2e39 3532 3431 312a 6969 7d2c 207b 2-.952411*ii}, { │ │ │ │ +00017130: 312e 3030 3537 312d 2e36 3637 3438 2a69 1.00571-.66748*i │ │ │ │ +00017140: 692c 2031 2e31 3632 3832 2b2e 3332 3733 i, 1.16282+.3273 │ │ │ │ +00017150: 3939 2a69 692c 2020 2020 2020 2020 2020 99*ii, │ │ │ │ +00017160: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ 00017170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000171a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000171b0: 0a7c 2020 2020 202d 2e33 3035 3538 322d .| -.305582- │ │ │ │ -000171c0: 2e39 3530 3932 392a 6969 7d2c 207b 2d31 .950929*ii}, {-1 │ │ │ │ -000171d0: 2e30 3039 3636 2b2e 3636 3837 3435 2a69 .00966+.668745*i │ │ │ │ -000171e0: 692c 202d 312e 3136 3339 352d 2e33 3330 i, -1.16395-.330 │ │ │ │ -000171f0: 3931 392a 6969 2c20 2020 2020 2020 207c 919*ii, | │ │ │ │ -00017200: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +000171a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000171b0: 2d2d 7c0a 7c20 2020 2020 2d2e 3330 3535 --|.| -.3055 │ │ │ │ +000171c0: 3832 2d2e 3935 3039 3239 2a69 697d 2c20 82-.950929*ii}, │ │ │ │ +000171d0: 7b2d 312e 3030 3936 362b 2e36 3638 3734 {-1.00966+.66874 │ │ │ │ +000171e0: 352a 6969 2c20 2d31 2e31 3633 3935 2d2e 5*ii, -1.16395-. │ │ │ │ +000171f0: 3333 3039 3139 2a69 692c 2020 2020 2020 330919*ii, │ │ │ │ +00017200: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ 00017210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00017250: 0a7c 2020 2020 202d 2e33 3034 3035 342d .| -.304054- │ │ │ │ -00017260: 2e39 3533 3839 342a 6969 7d7d 2020 2020 .953894*ii}} │ │ │ │ +00017240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017250: 2d2d 7c0a 7c20 2020 2020 2d2e 3330 3430 --|.| -.3040 │ │ │ │ +00017260: 3534 2d2e 3935 3338 3934 2a69 697d 7d20 54-.953894*ii}} │ │ │ │ 00017270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017290: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000172a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00017290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000172a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000172b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000172c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000172d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000172e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000172f0: 0a7c 6f33 203a 204c 6973 7420 2020 2020 .|o3 : List │ │ │ │ +000172e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000172f0: 2020 7c0a 7c6f 3320 3a20 4c69 7374 2020 |.|o3 : List │ │ │ │ 00017300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017330: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017340: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00017330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017340: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00017350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00017390: 0a7c 6934 203a 2077 6974 6e65 7373 506f .|i4 : witnessPo │ │ │ │ -000173a0: 696e 7473 4469 6d31 3d20 696d 706f 7274 intsDim1= import │ │ │ │ -000173b0: 4d61 696e 4461 7461 4669 6c65 2873 746f MainDataFile(sto │ │ │ │ -000173c0: 7265 424d 3246 696c 6573 2c53 7065 6369 reBM2Files,Speci │ │ │ │ -000173d0: 6679 4469 6d3d 3e31 292d 2d57 6520 207c fyDim=>1)--We | │ │ │ │ -000173e0: 0a7c 3120 2020 2020 2020 2020 2020 2020 .|1 │ │ │ │ +00017380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017390: 2d2d 2b0a 7c69 3420 3a20 7769 746e 6573 --+.|i4 : witnes │ │ │ │ +000173a0: 7350 6f69 6e74 7344 696d 313d 2069 6d70 sPointsDim1= imp │ │ │ │ +000173b0: 6f72 744d 6169 6e44 6174 6146 696c 6528 ortMainDataFile( │ │ │ │ +000173c0: 7374 6f72 6542 4d32 4669 6c65 732c 5370 storeBM2Files,Sp │ │ │ │ +000173d0: 6563 6966 7944 696d 3d3e 3129 2d2d 5765 ecifyDim=>1)--We │ │ │ │ +000173e0: 2020 7c0a 7c31 2020 2020 2020 2020 2020 |.|1 │ │ │ │ 000173f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017420: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017430: 0a7c 3120 2020 2020 2020 2020 2020 2020 .|1 │ │ │ │ +00017420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017430: 2020 7c0a 7c31 2020 2020 2020 2020 2020 |.|1 │ │ │ │ 00017440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017470: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017480: 0a7c 3120 2020 2020 2020 2020 2020 2020 .|1 │ │ │ │ +00017470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017480: 2020 7c0a 7c31 2020 2020 2020 2020 2020 |.|1 │ │ │ │ 00017490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000174a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000174b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000174c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000174d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000174c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000174d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000174e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000174f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017510: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017520: 0a7c 6f34 203d 207b 7d20 2020 2020 2020 .|o4 = {} │ │ │ │ +00017510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017520: 2020 7c0a 7c6f 3420 3d20 7b7d 2020 2020 |.|o4 = {} │ │ │ │ 00017530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017560: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017570: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00017560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017570: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000175a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000175b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000175c0: 0a7c 6f34 203a 204c 6973 7420 2020 2020 .|o4 : List │ │ │ │ +000175b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000175c0: 2020 7c0a 7c6f 3420 3a20 4c69 7374 2020 |.|o4 : List │ │ │ │ 000175d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000175e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000175f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017600: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017610: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00017600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017610: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ 00017620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00017660: 0a7c 6361 6e20 6368 6f6f 7365 2077 6869 .|can choose whi │ │ │ │ -00017670: 6368 2064 696d 656e 7369 6f6e 2077 6520 ch dimension we │ │ │ │ -00017680: 696d 706f 7274 2070 6f69 6e74 7320 6672 import points fr │ │ │ │ -00017690: 6f6d 2e20 5468 6572 6520 6172 6520 6e6f om. There are no │ │ │ │ -000176a0: 2077 6974 6e65 7373 2070 6f69 6e74 737c witness points| │ │ │ │ -000176b0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00017650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017660: 2d2d 7c0a 7c63 616e 2063 686f 6f73 6520 --|.|can choose │ │ │ │ +00017670: 7768 6963 6820 6469 6d65 6e73 696f 6e20 which dimension │ │ │ │ +00017680: 7765 2069 6d70 6f72 7420 706f 696e 7473 we import points │ │ │ │ +00017690: 2066 726f 6d2e 2054 6865 7265 2061 7265 from. There are │ │ │ │ +000176a0: 206e 6f20 7769 746e 6573 7320 706f 696e no witness poin │ │ │ │ +000176b0: 7473 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d ts|.|----------- │ │ │ │ 000176c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000176d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000176e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000176f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00017700: 0a7c 696e 2064 696d 656e 7369 6f6e 2031 .|in dimension 1 │ │ │ │ -00017710: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +000176f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017700: 2d2d 7c0a 7c69 6e20 6469 6d65 6e73 696f --|.|in dimensio │ │ │ │ +00017710: 6e20 312e 2020 2020 2020 2020 2020 2020 n 1. │ │ │ │ 00017720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017740: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017750: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00017740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017750: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00017760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000177a0: 0a7c 6935 203a 2073 6f72 744d 6169 6e44 .|i5 : sortMainD │ │ │ │ -000177b0: 6174 6143 6f6d 706f 6e65 6e74 7328 7468 ataComponents(th │ │ │ │ -000177c0: 6550 6f69 6e74 7329 2020 2020 2020 2020 ePoints) │ │ │ │ +00017790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000177a0: 2d2d 2b0a 7c69 3520 3a20 736f 7274 4d61 --+.|i5 : sortMa │ │ │ │ +000177b0: 696e 4461 7461 436f 6d70 6f6e 656e 7473 inDataComponents │ │ │ │ +000177c0: 2874 6865 506f 696e 7473 2920 2020 2020 (thePoints) │ │ │ │ 000177d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000177e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000177f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000177e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000177f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017830: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017840: 0a7c 6f35 203d 207b 7b7b 2d2e 3030 3032 .|o5 = {{{-.0002 │ │ │ │ -00017850: 3733 3931 352b 2e30 3031 3335 3137 392a 73915+.00135179* │ │ │ │ -00017860: 6969 2c20 312e 3138 3437 3365 2d31 392d ii, 1.18473e-19- │ │ │ │ -00017870: 342e 3231 3835 3765 2d31 392a 6969 2c20 4.21857e-19*ii, │ │ │ │ -00017880: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017890: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +00017830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017840: 2020 7c0a 7c6f 3520 3d20 7b7b 7b2d 2e30 |.|o5 = {{{-.0 │ │ │ │ +00017850: 3030 3237 3339 3135 2b2e 3030 3133 3531 00273915+.001351 │ │ │ │ +00017860: 3739 2a69 692c 2031 2e31 3834 3733 652d 79*ii, 1.18473e- │ │ │ │ +00017870: 3139 2d34 2e32 3138 3537 652d 3139 2a69 19-4.21857e-19*i │ │ │ │ +00017880: 692c 2020 2020 2020 2020 2020 2020 2020 i, │ │ │ │ +00017890: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ 000178a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000178b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000178c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000178d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000178e0: 0a7c 2020 2020 202d 2e33 3034 3832 2d2e .| -.30482-. │ │ │ │ -000178f0: 3935 3234 3131 2a69 697d 7d2c 207b 7b31 952411*ii}}, {{1 │ │ │ │ -00017900: 2e30 3035 3731 2d2e 3636 3734 382a 6969 .00571-.66748*ii │ │ │ │ -00017910: 2c20 312e 3136 3238 322b 2e33 3237 3339 , 1.16282+.32739 │ │ │ │ -00017920: 392a 6969 2c20 2020 2020 2020 2020 207c 9*ii, | │ │ │ │ -00017930: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +000178d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000178e0: 2d2d 7c0a 7c20 2020 2020 2d2e 3330 3438 --|.| -.3048 │ │ │ │ +000178f0: 322d 2e39 3532 3431 312a 6969 7d7d 2c20 2-.952411*ii}}, │ │ │ │ +00017900: 7b7b 312e 3030 3537 312d 2e36 3637 3438 {{1.00571-.66748 │ │ │ │ +00017910: 2a69 692c 2031 2e31 3632 3832 2b2e 3332 *ii, 1.16282+.32 │ │ │ │ +00017920: 3733 3939 2a69 692c 2020 2020 2020 2020 7399*ii, │ │ │ │ +00017930: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ 00017940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00017980: 0a7c 2020 2020 202d 2e33 3035 3538 322d .| -.305582- │ │ │ │ -00017990: 2e39 3530 3932 392a 6969 7d2c 207b 2d31 .950929*ii}, {-1 │ │ │ │ -000179a0: 2e30 3039 3636 2b2e 3636 3837 3435 2a69 .00966+.668745*i │ │ │ │ -000179b0: 692c 202d 312e 3136 3339 352d 2e33 3330 i, -1.16395-.330 │ │ │ │ -000179c0: 3931 392a 6969 2c20 2020 2020 2020 207c 919*ii, | │ │ │ │ -000179d0: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +00017970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017980: 2d2d 7c0a 7c20 2020 2020 2d2e 3330 3535 --|.| -.3055 │ │ │ │ +00017990: 3832 2d2e 3935 3039 3239 2a69 697d 2c20 82-.950929*ii}, │ │ │ │ +000179a0: 7b2d 312e 3030 3936 362b 2e36 3638 3734 {-1.00966+.66874 │ │ │ │ +000179b0: 352a 6969 2c20 2d31 2e31 3633 3935 2d2e 5*ii, -1.16395-. │ │ │ │ +000179c0: 3333 3039 3139 2a69 692c 2020 2020 2020 330919*ii, │ │ │ │ +000179d0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ 000179e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000179f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00017a20: 0a7c 2020 2020 202d 2e33 3034 3035 342d .| -.304054- │ │ │ │ -00017a30: 2e39 3533 3839 342a 6969 7d7d 7d20 2020 .953894*ii}}} │ │ │ │ +00017a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017a20: 2d2d 7c0a 7c20 2020 2020 2d2e 3330 3430 --|.| -.3040 │ │ │ │ +00017a30: 3534 2d2e 3935 3338 3934 2a69 697d 7d7d 54-.953894*ii}}} │ │ │ │ 00017a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017a60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017a70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00017a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017a70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ab0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017ac0: 0a7c 6f35 203a 204c 6973 7420 2020 2020 .|o5 : List │ │ │ │ +00017ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017ac0: 2020 7c0a 7c6f 3520 3a20 4c69 7374 2020 |.|o5 : List │ │ │ │ 00017ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017b00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017b10: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00017b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017b10: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00017b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00017b60: 0a0a 5761 7973 2074 6f20 7573 6520 696d ..Ways to use im │ │ │ │ -00017b70: 706f 7274 4d61 696e 4461 7461 4669 6c65 portMainDataFile │ │ │ │ -00017b80: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +00017b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017b60: 2d2d 2b0a 0a57 6179 7320 746f 2075 7365 --+..Ways to use │ │ │ │ +00017b70: 2069 6d70 6f72 744d 6169 6e44 6174 6146 importMainDataF │ │ │ │ +00017b80: 696c 653a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d ile:.=========== │ │ │ │ 00017b90: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00017ba0: 3d0a 0a20 202a 2022 696d 706f 7274 4d61 =.. * "importMa │ │ │ │ -00017bb0: 696e 4461 7461 4669 6c65 2853 7472 696e inDataFile(Strin │ │ │ │ -00017bc0: 6729 220a 0a46 6f72 2074 6865 2070 726f g)"..For the pro │ │ │ │ -00017bd0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -00017be0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -00017bf0: 6f62 6a65 6374 202a 6e6f 7465 2069 6d70 object *note imp │ │ │ │ -00017c00: 6f72 744d 6169 6e44 6174 6146 696c 653a ortMainDataFile: │ │ │ │ -00017c10: 2069 6d70 6f72 744d 6169 6e44 6174 6146 importMainDataF │ │ │ │ -00017c20: 696c 652c 2069 7320 6120 2a6e 6f74 6520 ile, is a *note │ │ │ │ -00017c30: 6d65 7468 6f64 0a66 756e 6374 696f 6e20 method.function │ │ │ │ -00017c40: 7769 7468 206f 7074 696f 6e73 3a20 284d with options: (M │ │ │ │ -00017c50: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ -00017c60: 6f64 4675 6e63 7469 6f6e 5769 7468 4f70 odFunctionWithOp │ │ │ │ -00017c70: 7469 6f6e 732c 2e0a 1f0a 4669 6c65 3a20 tions,....File: │ │ │ │ -00017c80: 4265 7274 696e 692e 696e 666f 2c20 4e6f Bertini.info, No │ │ │ │ -00017c90: 6465 3a20 696d 706f 7274 5061 7261 6d65 de: importParame │ │ │ │ -00017ca0: 7465 7246 696c 652c 204e 6578 743a 2069 terFile, Next: i │ │ │ │ -00017cb0: 6d70 6f72 7453 6f6c 7574 696f 6e73 4669 mportSolutionsFi │ │ │ │ -00017cc0: 6c65 2c20 5072 6576 3a20 696d 706f 7274 le, Prev: import │ │ │ │ -00017cd0: 4d61 696e 4461 7461 4669 6c65 2c20 5570 MainDataFile, Up │ │ │ │ -00017ce0: 3a20 546f 700a 0a69 6d70 6f72 7450 6172 : Top..importPar │ │ │ │ -00017cf0: 616d 6574 6572 4669 6c65 202d 2d20 496d ameterFile -- Im │ │ │ │ -00017d00: 706f 7274 7320 7061 7261 6d65 7465 7273 ports parameters │ │ │ │ -00017d10: 2066 726f 6d20 6120 4265 7274 696e 6920 from a Bertini │ │ │ │ -00017d20: 7061 7261 6d65 7465 7220 6669 6c65 2e0a parameter file.. │ │ │ │ -00017d30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00017ba0: 3d3d 3d3d 0a0a 2020 2a20 2269 6d70 6f72 ====.. * "impor │ │ │ │ +00017bb0: 744d 6169 6e44 6174 6146 696c 6528 5374 tMainDataFile(St │ │ │ │ +00017bc0: 7269 6e67 2922 0a0a 466f 7220 7468 6520 ring)"..For the │ │ │ │ +00017bd0: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ +00017be0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ +00017bf0: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ +00017c00: 696d 706f 7274 4d61 696e 4461 7461 4669 importMainDataFi │ │ │ │ +00017c10: 6c65 3a20 696d 706f 7274 4d61 696e 4461 le: importMainDa │ │ │ │ +00017c20: 7461 4669 6c65 2c20 6973 2061 202a 6e6f taFile, is a *no │ │ │ │ +00017c30: 7465 206d 6574 686f 640a 6675 6e63 7469 te method.functi │ │ │ │ +00017c40: 6f6e 2077 6974 6820 6f70 7469 6f6e 733a on with options: │ │ │ │ +00017c50: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +00017c60: 6574 686f 6446 756e 6374 696f 6e57 6974 ethodFunctionWit │ │ │ │ +00017c70: 684f 7074 696f 6e73 2c2e 0a1f 0a46 696c hOptions,....Fil │ │ │ │ +00017c80: 653a 2042 6572 7469 6e69 2e69 6e66 6f2c e: Bertini.info, │ │ │ │ +00017c90: 204e 6f64 653a 2069 6d70 6f72 7450 6172 Node: importPar │ │ │ │ +00017ca0: 616d 6574 6572 4669 6c65 2c20 4e65 7874 ameterFile, Next │ │ │ │ +00017cb0: 3a20 696d 706f 7274 536f 6c75 7469 6f6e : importSolution │ │ │ │ +00017cc0: 7346 696c 652c 2050 7265 763a 2069 6d70 sFile, Prev: imp │ │ │ │ +00017cd0: 6f72 744d 6169 6e44 6174 6146 696c 652c ortMainDataFile, │ │ │ │ +00017ce0: 2055 703a 2054 6f70 0a0a 696d 706f 7274 Up: Top..import │ │ │ │ +00017cf0: 5061 7261 6d65 7465 7246 696c 6520 2d2d ParameterFile -- │ │ │ │ +00017d00: 2049 6d70 6f72 7473 2070 6172 616d 6574 Imports paramet │ │ │ │ +00017d10: 6572 7320 6672 6f6d 2061 2042 6572 7469 ers from a Berti │ │ │ │ +00017d20: 6e69 2070 6172 616d 6574 6572 2066 696c ni parameter fil │ │ │ │ +00017d30: 652e 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a e..************* │ │ │ │ 00017d40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00017d50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00017d60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00017d70: 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 ********..Synops │ │ │ │ -00017d80: 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a is.========.. * │ │ │ │ -00017d90: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -00017da0: 2069 6d70 6f72 7450 6172 616d 6574 6572 importParameter │ │ │ │ -00017db0: 4669 6c65 2873 290a 2020 2a20 496e 7075 File(s). * Inpu │ │ │ │ -00017dc0: 7473 3a0a 2020 2020 2020 2a20 732c 2061 ts:. * s, a │ │ │ │ -00017dd0: 202a 6e6f 7465 2073 7472 696e 673a 2028 *note string: ( │ │ │ │ -00017de0: 4d61 6361 756c 6179 3244 6f63 2953 7472 Macaulay2Doc)Str │ │ │ │ -00017df0: 696e 672c 2c20 5468 6520 6469 7265 6374 ing,, The direct │ │ │ │ -00017e00: 6f72 7920 7768 6572 6520 7468 6520 6669 ory where the fi │ │ │ │ -00017e10: 6c65 0a20 2020 2020 2020 2069 7320 7374 le. is st │ │ │ │ -00017e20: 6f72 6564 2e0a 2020 2a20 2a6e 6f74 6520 ored.. * *note │ │ │ │ -00017e30: 4f70 7469 6f6e 616c 2069 6e70 7574 733a Optional inputs: │ │ │ │ -00017e40: 2028 4d61 6361 756c 6179 3244 6f63 2975 (Macaulay2Doc)u │ │ │ │ -00017e50: 7369 6e67 2066 756e 6374 696f 6e73 2077 sing functions w │ │ │ │ -00017e60: 6974 6820 6f70 7469 6f6e 616c 2069 6e70 ith optional inp │ │ │ │ -00017e70: 7574 732c 3a0a 2020 2020 2020 2a20 4d32 uts,:. * M2 │ │ │ │ -00017e80: 5072 6563 6973 696f 6e20 286d 6973 7369 Precision (missi │ │ │ │ -00017e90: 6e67 2064 6f63 756d 656e 7461 7469 6f6e ng documentation │ │ │ │ -00017ea0: 2920 3d3e 202e 2e2e 2c20 6465 6661 756c ) => ..., defaul │ │ │ │ -00017eb0: 7420 7661 6c75 6520 3533 2c20 0a20 2020 t value 53, . │ │ │ │ -00017ec0: 2020 202a 204e 616d 6550 6172 616d 6574 * NameParamet │ │ │ │ -00017ed0: 6572 4669 6c65 2028 6d69 7373 696e 6720 erFile (missing │ │ │ │ -00017ee0: 646f 6375 6d65 6e74 6174 696f 6e29 203d documentation) = │ │ │ │ -00017ef0: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ -00017f00: 616c 7565 0a20 2020 2020 2020 2022 6669 alue. "fi │ │ │ │ -00017f10: 6e61 6c5f 7061 7261 6d65 7465 7273 222c nal_parameters", │ │ │ │ -00017f20: 0a20 2020 2020 202a 2053 746f 7261 6765 . * Storage │ │ │ │ -00017f30: 466f 6c64 6572 2028 6d69 7373 696e 6720 Folder (missing │ │ │ │ -00017f40: 646f 6375 6d65 6e74 6174 696f 6e29 203d documentation) = │ │ │ │ -00017f50: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ -00017f60: 616c 7565 206e 756c 6c2c 200a 0a44 6573 alue null, ..Des │ │ │ │ -00017f70: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -00017f80: 3d3d 3d3d 0a0a 4166 7465 7220 4265 7274 ====..After Bert │ │ │ │ -00017f90: 696e 6920 646f 6573 2061 2070 6172 616d ini does a param │ │ │ │ -00017fa0: 6574 6572 2068 6f6d 6f74 6f70 7920 6d61 eter homotopy ma │ │ │ │ -00017fb0: 6e79 2066 696c 6573 2061 7265 2063 7265 ny files are cre │ │ │ │ -00017fc0: 6174 6564 2e20 5468 6973 2066 756e 6374 ated. This funct │ │ │ │ -00017fd0: 696f 6e0a 696d 706f 7274 7320 7468 6520 ion.imports the │ │ │ │ -00017fe0: 7061 7261 6d65 7465 7273 2066 726f 6d20 parameters from │ │ │ │ -00017ff0: 2074 6865 2022 6669 6e61 6c5f 7061 7261 the "final_para │ │ │ │ -00018000: 6d65 7465 7273 2220 6669 6c65 2061 7320 meters" file as │ │ │ │ -00018010: 7468 6520 6465 6661 756c 742e 0a0a 2b2d the default...+- │ │ │ │ -00018020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017d70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 796e ***********..Syn │ │ │ │ +00017d80: 6f70 7369 730a 3d3d 3d3d 3d3d 3d3d 0a0a opsis.========.. │ │ │ │ +00017d90: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ +00017da0: 2020 2020 696d 706f 7274 5061 7261 6d65 importParame │ │ │ │ +00017db0: 7465 7246 696c 6528 7329 0a20 202a 2049 terFile(s). * I │ │ │ │ +00017dc0: 6e70 7574 733a 0a20 2020 2020 202a 2073 nputs:. * s │ │ │ │ +00017dd0: 2c20 6120 2a6e 6f74 6520 7374 7269 6e67 , a *note string │ │ │ │ +00017de0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00017df0: 5374 7269 6e67 2c2c 2054 6865 2064 6972 String,, The dir │ │ │ │ +00017e00: 6563 746f 7279 2077 6865 7265 2074 6865 ectory where the │ │ │ │ +00017e10: 2066 696c 650a 2020 2020 2020 2020 6973 file. is │ │ │ │ +00017e20: 2073 746f 7265 642e 0a20 202a 202a 6e6f stored.. * *no │ │ │ │ +00017e30: 7465 204f 7074 696f 6e61 6c20 696e 7075 te Optional inpu │ │ │ │ +00017e40: 7473 3a20 284d 6163 6175 6c61 7932 446f ts: (Macaulay2Do │ │ │ │ +00017e50: 6329 7573 696e 6720 6675 6e63 7469 6f6e c)using function │ │ │ │ +00017e60: 7320 7769 7468 206f 7074 696f 6e61 6c20 s with optional │ │ │ │ +00017e70: 696e 7075 7473 2c3a 0a20 2020 2020 202a inputs,:. * │ │ │ │ +00017e80: 204d 3250 7265 6369 7369 6f6e 2028 6d69 M2Precision (mi │ │ │ │ +00017e90: 7373 696e 6720 646f 6375 6d65 6e74 6174 ssing documentat │ │ │ │ +00017ea0: 696f 6e29 203d 3e20 2e2e 2e2c 2064 6566 ion) => ..., def │ │ │ │ +00017eb0: 6175 6c74 2076 616c 7565 2035 332c 200a ault value 53, . │ │ │ │ +00017ec0: 2020 2020 2020 2a20 4e61 6d65 5061 7261 * NamePara │ │ │ │ +00017ed0: 6d65 7465 7246 696c 6520 286d 6973 7369 meterFile (missi │ │ │ │ +00017ee0: 6e67 2064 6f63 756d 656e 7461 7469 6f6e ng documentation │ │ │ │ +00017ef0: 2920 3d3e 202e 2e2e 2c20 6465 6661 756c ) => ..., defaul │ │ │ │ +00017f00: 7420 7661 6c75 650a 2020 2020 2020 2020 t value. │ │ │ │ +00017f10: 2266 696e 616c 5f70 6172 616d 6574 6572 "final_parameter │ │ │ │ +00017f20: 7322 2c0a 2020 2020 2020 2a20 5374 6f72 s",. * Stor │ │ │ │ +00017f30: 6167 6546 6f6c 6465 7220 286d 6973 7369 ageFolder (missi │ │ │ │ +00017f40: 6e67 2064 6f63 756d 656e 7461 7469 6f6e ng documentation │ │ │ │ +00017f50: 2920 3d3e 202e 2e2e 2c20 6465 6661 756c ) => ..., defaul │ │ │ │ +00017f60: 7420 7661 6c75 6520 6e75 6c6c 2c20 0a0a t value null, .. │ │ │ │ +00017f70: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +00017f80: 3d3d 3d3d 3d3d 3d0a 0a41 6674 6572 2042 =======..After B │ │ │ │ +00017f90: 6572 7469 6e69 2064 6f65 7320 6120 7061 ertini does a pa │ │ │ │ +00017fa0: 7261 6d65 7465 7220 686f 6d6f 746f 7079 rameter homotopy │ │ │ │ +00017fb0: 206d 616e 7920 6669 6c65 7320 6172 6520 many files are │ │ │ │ +00017fc0: 6372 6561 7465 642e 2054 6869 7320 6675 created. This fu │ │ │ │ +00017fd0: 6e63 7469 6f6e 0a69 6d70 6f72 7473 2074 nction.imports t │ │ │ │ +00017fe0: 6865 2070 6172 616d 6574 6572 7320 6672 he parameters fr │ │ │ │ +00017ff0: 6f6d 2020 7468 6520 2266 696e 616c 5f70 om the "final_p │ │ │ │ +00018000: 6172 616d 6574 6572 7322 2066 696c 6520 arameters" file │ │ │ │ +00018010: 6173 2074 6865 2064 6566 6175 6c74 2e0a as the default.. │ │ │ │ +00018020: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00018030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00018070: 3120 3a20 7772 6974 6550 6172 616d 6574 1 : writeParamet │ │ │ │ -00018080: 6572 4669 6c65 2873 746f 7265 424d 3246 erFile(storeBM2F │ │ │ │ -00018090: 696c 6573 2c7b 312c 327d 2c4e 616d 6550 iles,{1,2},NameP │ │ │ │ -000180a0: 6172 616d 6574 6572 4669 6c65 3d3e 2266 arameterFile=>"f │ │ │ │ -000180b0: 696e 616c 5f20 2020 2020 2020 7c0a 7c2d inal_ |.|- │ │ │ │ -000180c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00018070: 0a7c 6931 203a 2077 7269 7465 5061 7261 .|i1 : writePara │ │ │ │ +00018080: 6d65 7465 7246 696c 6528 7374 6f72 6542 meterFile(storeB │ │ │ │ +00018090: 4d32 4669 6c65 732c 7b31 2c32 7d2c 4e61 M2Files,{1,2},Na │ │ │ │ +000180a0: 6d65 5061 7261 6d65 7465 7246 696c 653d meParameterFile= │ │ │ │ +000180b0: 3e22 6669 6e61 6c5f 2020 2020 2020 207c >"final_ | │ │ │ │ +000180c0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 000180d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000180e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000180f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c70 ------------|.|p │ │ │ │ -00018110: 6172 616d 6574 6572 7322 293b 2020 2020 arameters"); │ │ │ │ +00018100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00018110: 0a7c 7061 7261 6d65 7465 7273 2229 3b20 .|parameters"); │ │ │ │ 00018120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018150: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00018160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018150: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00018160: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00018170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000181a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000181b0: 3220 3a20 696d 706f 7274 5061 7261 6d65 2 : importParame │ │ │ │ -000181c0: 7465 7246 696c 6528 7374 6f72 6542 4d32 terFile(storeBM2 │ │ │ │ -000181d0: 4669 6c65 7329 2020 2020 2020 2020 2020 Files) │ │ │ │ +000181a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +000181b0: 0a7c 6932 203a 2069 6d70 6f72 7450 6172 .|i2 : importPar │ │ │ │ +000181c0: 616d 6574 6572 4669 6c65 2873 746f 7265 ameterFile(store │ │ │ │ +000181d0: 424d 3246 696c 6573 2920 2020 2020 2020 BM2Files) │ │ │ │ 000181e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000181f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00018200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000181f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00018200: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00018210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018240: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00018250: 3220 3d20 7b31 2c20 327d 2020 2020 2020 2 = {1, 2} │ │ │ │ +00018240: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00018250: 0a7c 6f32 203d 207b 312c 2032 7d20 2020 .|o2 = {1, 2} │ │ │ │ 00018260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018290: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000182a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018290: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000182a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000182b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000182c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000182d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000182e0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000182f0: 3220 3a20 4c69 7374 2020 2020 2020 2020 2 : List │ │ │ │ +000182e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000182f0: 0a7c 6f32 203a 204c 6973 7420 2020 2020 .|o2 : List │ │ │ │ 00018300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018330: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00018340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018330: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00018340: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00018350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 ------------+..W │ │ │ │ -00018390: 6179 7320 746f 2075 7365 2069 6d70 6f72 ays to use impor │ │ │ │ -000183a0: 7450 6172 616d 6574 6572 4669 6c65 3a0a tParameterFile:. │ │ │ │ -000183b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00018380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00018390: 0a0a 5761 7973 2074 6f20 7573 6520 696d ..Ways to use im │ │ │ │ +000183a0: 706f 7274 5061 7261 6d65 7465 7246 696c portParameterFil │ │ │ │ +000183b0: 653a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d e:.============= │ │ │ │ 000183c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000183d0: 0a0a 2020 2a20 2269 6d70 6f72 7450 6172 .. * "importPar │ │ │ │ -000183e0: 616d 6574 6572 4669 6c65 2853 7472 696e ameterFile(Strin │ │ │ │ -000183f0: 6729 220a 0a46 6f72 2074 6865 2070 726f g)"..For the pro │ │ │ │ -00018400: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -00018410: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -00018420: 6f62 6a65 6374 202a 6e6f 7465 2069 6d70 object *note imp │ │ │ │ -00018430: 6f72 7450 6172 616d 6574 6572 4669 6c65 ortParameterFile │ │ │ │ -00018440: 3a20 696d 706f 7274 5061 7261 6d65 7465 : importParamete │ │ │ │ -00018450: 7246 696c 652c 2069 7320 6120 2a6e 6f74 rFile, is a *not │ │ │ │ -00018460: 6520 6d65 7468 6f64 0a66 756e 6374 696f e method.functio │ │ │ │ -00018470: 6e20 7769 7468 206f 7074 696f 6e73 3a20 n with options: │ │ │ │ -00018480: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ -00018490: 7468 6f64 4675 6e63 7469 6f6e 5769 7468 thodFunctionWith │ │ │ │ -000184a0: 4f70 7469 6f6e 732c 2e0a 1f0a 4669 6c65 Options,....File │ │ │ │ -000184b0: 3a20 4265 7274 696e 692e 696e 666f 2c20 : Bertini.info, │ │ │ │ -000184c0: 4e6f 6465 3a20 696d 706f 7274 536f 6c75 Node: importSolu │ │ │ │ -000184d0: 7469 6f6e 7346 696c 652c 204e 6578 743a tionsFile, Next: │ │ │ │ -000184e0: 2049 7350 726f 6a65 6374 6976 652c 2050 IsProjective, P │ │ │ │ -000184f0: 7265 763a 2069 6d70 6f72 7450 6172 616d rev: importParam │ │ │ │ -00018500: 6574 6572 4669 6c65 2c20 5570 3a20 546f eterFile, Up: To │ │ │ │ -00018510: 700a 0a69 6d70 6f72 7453 6f6c 7574 696f p..importSolutio │ │ │ │ -00018520: 6e73 4669 6c65 202d 2d20 496d 706f 7274 nsFile -- Import │ │ │ │ -00018530: 7320 636f 6f72 6469 6e61 7465 7320 6672 s coordinates fr │ │ │ │ -00018540: 6f6d 2061 2042 6572 7469 6e69 2073 6f6c om a Bertini sol │ │ │ │ -00018550: 7574 696f 6e20 6669 6c65 2e0a 2a2a 2a2a ution file..**** │ │ │ │ +000183d0: 3d3d 3d0a 0a20 202a 2022 696d 706f 7274 ===.. * "import │ │ │ │ +000183e0: 5061 7261 6d65 7465 7246 696c 6528 5374 ParameterFile(St │ │ │ │ +000183f0: 7269 6e67 2922 0a0a 466f 7220 7468 6520 ring)"..For the │ │ │ │ +00018400: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ +00018410: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ +00018420: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ +00018430: 696d 706f 7274 5061 7261 6d65 7465 7246 importParameterF │ │ │ │ +00018440: 696c 653a 2069 6d70 6f72 7450 6172 616d ile: importParam │ │ │ │ +00018450: 6574 6572 4669 6c65 2c20 6973 2061 202a eterFile, is a * │ │ │ │ +00018460: 6e6f 7465 206d 6574 686f 640a 6675 6e63 note method.func │ │ │ │ +00018470: 7469 6f6e 2077 6974 6820 6f70 7469 6f6e tion with option │ │ │ │ +00018480: 733a 2028 4d61 6361 756c 6179 3244 6f63 s: (Macaulay2Doc │ │ │ │ +00018490: 294d 6574 686f 6446 756e 6374 696f 6e57 )MethodFunctionW │ │ │ │ +000184a0: 6974 684f 7074 696f 6e73 2c2e 0a1f 0a46 ithOptions,....F │ │ │ │ +000184b0: 696c 653a 2042 6572 7469 6e69 2e69 6e66 ile: Bertini.inf │ │ │ │ +000184c0: 6f2c 204e 6f64 653a 2069 6d70 6f72 7453 o, Node: importS │ │ │ │ +000184d0: 6f6c 7574 696f 6e73 4669 6c65 2c20 4e65 olutionsFile, Ne │ │ │ │ +000184e0: 7874 3a20 4973 5072 6f6a 6563 7469 7665 xt: IsProjective │ │ │ │ +000184f0: 2c20 5072 6576 3a20 696d 706f 7274 5061 , Prev: importPa │ │ │ │ +00018500: 7261 6d65 7465 7246 696c 652c 2055 703a rameterFile, Up: │ │ │ │ +00018510: 2054 6f70 0a0a 696d 706f 7274 536f 6c75 Top..importSolu │ │ │ │ +00018520: 7469 6f6e 7346 696c 6520 2d2d 2049 6d70 tionsFile -- Imp │ │ │ │ +00018530: 6f72 7473 2063 6f6f 7264 696e 6174 6573 orts coordinates │ │ │ │ +00018540: 2066 726f 6d20 6120 4265 7274 696e 6920 from a Bertini │ │ │ │ +00018550: 736f 6c75 7469 6f6e 2066 696c 652e 0a2a solution file..* │ │ │ │ 00018560: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00018570: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00018580: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00018590: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000185a0: 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 0a3d ****..Synopsis.= │ │ │ │ -000185b0: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 7361 =======.. * Usa │ │ │ │ -000185c0: 6765 3a20 0a20 2020 2020 2020 2069 6d70 ge: . imp │ │ │ │ -000185d0: 6f72 7453 6f6c 7574 696f 6e73 4669 6c65 ortSolutionsFile │ │ │ │ -000185e0: 2873 290a 2020 2a20 496e 7075 7473 3a0a (s). * Inputs:. │ │ │ │ -000185f0: 2020 2020 2020 2a20 732c 2061 202a 6e6f * s, a *no │ │ │ │ -00018600: 7465 2073 7472 696e 673a 2028 4d61 6361 te string: (Maca │ │ │ │ -00018610: 756c 6179 3244 6f63 2953 7472 696e 672c ulay2Doc)String, │ │ │ │ -00018620: 2c20 5468 6520 6469 7265 6374 6f72 7920 , The directory │ │ │ │ -00018630: 7768 6572 6520 7468 6520 6669 6c65 0a20 where the file. │ │ │ │ -00018640: 2020 2020 2020 2069 7320 7374 6f72 6564 is stored │ │ │ │ -00018650: 2e0a 2020 2a20 2a6e 6f74 6520 4f70 7469 .. * *note Opti │ │ │ │ -00018660: 6f6e 616c 2069 6e70 7574 733a 2028 4d61 onal inputs: (Ma │ │ │ │ -00018670: 6361 756c 6179 3244 6f63 2975 7369 6e67 caulay2Doc)using │ │ │ │ -00018680: 2066 756e 6374 696f 6e73 2077 6974 6820 functions with │ │ │ │ -00018690: 6f70 7469 6f6e 616c 2069 6e70 7574 732c optional inputs, │ │ │ │ -000186a0: 3a0a 2020 2020 2020 2a20 4d32 5072 6563 :. * M2Prec │ │ │ │ -000186b0: 6973 696f 6e20 286d 6973 7369 6e67 2064 ision (missing d │ │ │ │ -000186c0: 6f63 756d 656e 7461 7469 6f6e 2920 3d3e ocumentation) => │ │ │ │ -000186d0: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ -000186e0: 6c75 6520 3533 2c20 0a20 2020 2020 202a lue 53, . * │ │ │ │ -000186f0: 204e 616d 6553 6f6c 7574 696f 6e73 4669 NameSolutionsFi │ │ │ │ -00018700: 6c65 2028 6d69 7373 696e 6720 646f 6375 le (missing docu │ │ │ │ -00018710: 6d65 6e74 6174 696f 6e29 203d 3e20 2e2e mentation) => .. │ │ │ │ -00018720: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ -00018730: 0a20 2020 2020 2020 2022 7261 775f 736f . "raw_so │ │ │ │ -00018740: 6c75 7469 6f6e 7322 2c0a 2020 2020 2020 lutions",. │ │ │ │ -00018750: 2a20 4f72 6465 7250 6174 6873 2028 6d69 * OrderPaths (mi │ │ │ │ -00018760: 7373 696e 6720 646f 6375 6d65 6e74 6174 ssing documentat │ │ │ │ -00018770: 696f 6e29 203d 3e20 2e2e 2e2c 2064 6566 ion) => ..., def │ │ │ │ -00018780: 6175 6c74 2076 616c 7565 2066 616c 7365 ault value false │ │ │ │ -00018790: 2c20 0a20 2020 2020 202a 2053 746f 7261 , . * Stora │ │ │ │ -000187a0: 6765 466f 6c64 6572 2028 6d69 7373 696e geFolder (missin │ │ │ │ -000187b0: 6720 646f 6375 6d65 6e74 6174 696f 6e29 g documentation) │ │ │ │ -000187c0: 203d 3e20 2e2e 2e2c 2064 6566 6175 6c74 => ..., default │ │ │ │ -000187d0: 2076 616c 7565 206e 756c 6c2c 200a 2020 value null, . │ │ │ │ -000187e0: 2020 2020 2a20 2a6e 6f74 6520 5665 7262 * *note Verb │ │ │ │ -000187f0: 6f73 653a 2062 6572 7469 6e69 5472 6163 ose: bertiniTrac │ │ │ │ -00018800: 6b48 6f6d 6f74 6f70 795f 6c70 5f70 645f kHomotopy_lp_pd_ │ │ │ │ -00018810: 7064 5f70 645f 636d 5665 7262 6f73 653d pd_pd_cmVerbose= │ │ │ │ -00018820: 3e5f 7064 5f70 645f 7064 5f72 700a 2020 >_pd_pd_pd_rp. │ │ │ │ -00018830: 2020 2020 2020 2c20 3d3e 202e 2e2e 2c20 , => ..., │ │ │ │ -00018840: 6465 6661 756c 7420 7661 6c75 6520 6661 default value fa │ │ │ │ -00018850: 6c73 652c 204f 7074 696f 6e20 746f 2073 lse, Option to s │ │ │ │ -00018860: 696c 656e 6365 2061 6464 6974 696f 6e61 ilence additiona │ │ │ │ -00018870: 6c20 6f75 7470 7574 0a0a 4465 7363 7269 l output..Descri │ │ │ │ -00018880: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -00018890: 3d0a 0a41 6674 6572 2042 6572 7469 6e69 =..After Bertini │ │ │ │ -000188a0: 2064 6f65 7320 6120 7275 6e20 6d61 6e79 does a run many │ │ │ │ -000188b0: 2066 696c 6573 2061 7265 2063 7265 6174 files are creat │ │ │ │ -000188c0: 6564 2e20 5468 6973 2066 756e 6374 696f ed. This functio │ │ │ │ -000188d0: 6e20 696d 706f 7274 7320 7468 650a 636f n imports the.co │ │ │ │ -000188e0: 6f72 6469 6e61 7465 7320 6f66 2073 6f6c ordinates of sol │ │ │ │ -000188f0: 7574 696f 6e73 2066 726f 6d20 7468 6520 utions from the │ │ │ │ -00018900: 7369 6d70 6c65 2022 7261 775f 736f 6c75 simple "raw_solu │ │ │ │ -00018910: 7469 6f6e 7322 2066 696c 652e 2042 7920 tions" file. By │ │ │ │ -00018920: 7573 696e 6720 7468 650a 6f70 7469 6f6e using the.option │ │ │ │ -00018930: 204e 616d 6553 6f6c 7574 696f 6e73 4669 NameSolutionsFi │ │ │ │ -00018940: 6c65 3d3e 2272 6561 6c5f 6669 6e69 7465 le=>"real_finite │ │ │ │ -00018950: 5f73 6f6c 7574 696f 6e73 2220 7765 2077 _solutions" we w │ │ │ │ -00018960: 6f75 6c64 2069 6d70 6f72 7420 736f 6c75 ould import solu │ │ │ │ -00018970: 7469 6f6e 730a 6672 6f6d 2072 6561 6c20 tions.from real │ │ │ │ -00018980: 6669 6e69 7465 2073 6f6c 7574 696f 6e73 finite solutions │ │ │ │ -00018990: 2e20 4f74 6865 7220 636f 6d6d 6f6e 2066 . Other common f │ │ │ │ -000189a0: 696c 6520 6e61 6d65 7320 6172 650a 226e ile names are."n │ │ │ │ -000189b0: 6f6e 7369 6e67 756c 6172 5f73 6f6c 7574 onsingular_solut │ │ │ │ -000189c0: 696f 6e73 222c 2022 6669 6e69 7465 5f73 ions", "finite_s │ │ │ │ -000189d0: 6f6c 7574 696f 6e73 222c 2022 696e 6669 olutions", "infi │ │ │ │ -000189e0: 6e69 7465 5f73 6f6c 7574 696f 6e73 222c nite_solutions", │ │ │ │ -000189f0: 2061 6e64 0a22 7369 6e67 756c 6172 5f73 and."singular_s │ │ │ │ -00018a00: 6f6c 7574 696f 6e73 222e 0a0a 4966 2074 olutions"...If t │ │ │ │ -00018a10: 6865 204e 616d 6553 6f6c 7574 696f 6e73 he NameSolutions │ │ │ │ -00018a20: 4669 6c65 206f 7074 696f 6e20 6973 2073 File option is s │ │ │ │ -00018a30: 6574 2074 6f20 3020 7468 656e 2022 6e6f et to 0 then "no │ │ │ │ -00018a40: 6e73 696e 6775 6c61 725f 736f 6c75 7469 nsingular_soluti │ │ │ │ -00018a50: 6f6e 7322 2069 730a 696d 706f 7274 6564 ons" is.imported │ │ │ │ -00018a60: 2c20 6973 2073 6574 2074 6f20 3120 7468 , is set to 1 th │ │ │ │ -00018a70: 656e 2022 7265 616c 5f66 696e 6974 655f en "real_finite_ │ │ │ │ -00018a80: 736f 6c75 7469 6f6e 7322 2069 7320 696d solutions" is im │ │ │ │ -00018a90: 706f 7274 6564 2c20 6973 2073 6574 2074 ported, is set t │ │ │ │ -00018aa0: 6f20 320a 7468 656e 2022 696e 6669 6e69 o 2.then "infini │ │ │ │ -00018ab0: 7465 5f73 6f6c 7574 696f 6e73 2220 6973 te_solutions" is │ │ │ │ -00018ac0: 2069 6d70 6f72 7465 642c 2069 7320 7365 imported, is se │ │ │ │ -00018ad0: 7420 746f 2033 2074 6865 6e20 2266 696e t to 3 then "fin │ │ │ │ -00018ae0: 6974 655f 736f 6c75 7469 6f6e 7322 2069 ite_solutions" i │ │ │ │ -00018af0: 730a 696d 706f 7274 6564 2c20 6973 2073 s.imported, is s │ │ │ │ -00018b00: 6574 2074 6f20 3420 7468 656e 2022 7374 et to 4 then "st │ │ │ │ -00018b10: 6172 7422 2069 7320 696d 706f 7274 6564 art" is imported │ │ │ │ -00018b20: 2c20 6973 2073 6574 2074 6f20 3520 7468 , is set to 5 th │ │ │ │ -00018b30: 656e 0a22 7261 775f 736f 6c75 7469 6f6e en."raw_solution │ │ │ │ -00018b40: 7322 2069 7320 696d 706f 7274 6564 2e0a s" is imported.. │ │ │ │ -00018b50: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000185a0: 2a2a 2a2a 2a2a 2a0a 0a53 796e 6f70 7369 *******..Synopsi │ │ │ │ +000185b0: 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 s.========.. * │ │ │ │ +000185c0: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +000185d0: 696d 706f 7274 536f 6c75 7469 6f6e 7346 importSolutionsF │ │ │ │ +000185e0: 696c 6528 7329 0a20 202a 2049 6e70 7574 ile(s). * Input │ │ │ │ +000185f0: 733a 0a20 2020 2020 202a 2073 2c20 6120 s:. * s, a │ │ │ │ +00018600: 2a6e 6f74 6520 7374 7269 6e67 3a20 284d *note string: (M │ │ │ │ +00018610: 6163 6175 6c61 7932 446f 6329 5374 7269 acaulay2Doc)Stri │ │ │ │ +00018620: 6e67 2c2c 2054 6865 2064 6972 6563 746f ng,, The directo │ │ │ │ +00018630: 7279 2077 6865 7265 2074 6865 2066 696c ry where the fil │ │ │ │ +00018640: 650a 2020 2020 2020 2020 6973 2073 746f e. is sto │ │ │ │ +00018650: 7265 642e 0a20 202a 202a 6e6f 7465 204f red.. * *note O │ │ │ │ +00018660: 7074 696f 6e61 6c20 696e 7075 7473 3a20 ptional inputs: │ │ │ │ +00018670: 284d 6163 6175 6c61 7932 446f 6329 7573 (Macaulay2Doc)us │ │ │ │ +00018680: 696e 6720 6675 6e63 7469 6f6e 7320 7769 ing functions wi │ │ │ │ +00018690: 7468 206f 7074 696f 6e61 6c20 696e 7075 th optional inpu │ │ │ │ +000186a0: 7473 2c3a 0a20 2020 2020 202a 204d 3250 ts,:. * M2P │ │ │ │ +000186b0: 7265 6369 7369 6f6e 2028 6d69 7373 696e recision (missin │ │ │ │ +000186c0: 6720 646f 6375 6d65 6e74 6174 696f 6e29 g documentation) │ │ │ │ +000186d0: 203d 3e20 2e2e 2e2c 2064 6566 6175 6c74 => ..., default │ │ │ │ +000186e0: 2076 616c 7565 2035 332c 200a 2020 2020 value 53, . │ │ │ │ +000186f0: 2020 2a20 4e61 6d65 536f 6c75 7469 6f6e * NameSolution │ │ │ │ +00018700: 7346 696c 6520 286d 6973 7369 6e67 2064 sFile (missing d │ │ │ │ +00018710: 6f63 756d 656e 7461 7469 6f6e 2920 3d3e ocumentation) => │ │ │ │ +00018720: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ +00018730: 6c75 650a 2020 2020 2020 2020 2272 6177 lue. "raw │ │ │ │ +00018740: 5f73 6f6c 7574 696f 6e73 222c 0a20 2020 _solutions",. │ │ │ │ +00018750: 2020 202a 204f 7264 6572 5061 7468 7320 * OrderPaths │ │ │ │ +00018760: 286d 6973 7369 6e67 2064 6f63 756d 656e (missing documen │ │ │ │ +00018770: 7461 7469 6f6e 2920 3d3e 202e 2e2e 2c20 tation) => ..., │ │ │ │ +00018780: 6465 6661 756c 7420 7661 6c75 6520 6661 default value fa │ │ │ │ +00018790: 6c73 652c 200a 2020 2020 2020 2a20 5374 lse, . * St │ │ │ │ +000187a0: 6f72 6167 6546 6f6c 6465 7220 286d 6973 orageFolder (mis │ │ │ │ +000187b0: 7369 6e67 2064 6f63 756d 656e 7461 7469 sing documentati │ │ │ │ +000187c0: 6f6e 2920 3d3e 202e 2e2e 2c20 6465 6661 on) => ..., defa │ │ │ │ +000187d0: 756c 7420 7661 6c75 6520 6e75 6c6c 2c20 ult value null, │ │ │ │ +000187e0: 0a20 2020 2020 202a 202a 6e6f 7465 2056 . * *note V │ │ │ │ +000187f0: 6572 626f 7365 3a20 6265 7274 696e 6954 erbose: bertiniT │ │ │ │ +00018800: 7261 636b 486f 6d6f 746f 7079 5f6c 705f rackHomotopy_lp_ │ │ │ │ +00018810: 7064 5f70 645f 7064 5f63 6d56 6572 626f pd_pd_pd_cmVerbo │ │ │ │ +00018820: 7365 3d3e 5f70 645f 7064 5f70 645f 7270 se=>_pd_pd_pd_rp │ │ │ │ +00018830: 0a20 2020 2020 2020 202c 203d 3e20 2e2e . , => .. │ │ │ │ +00018840: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ +00018850: 2066 616c 7365 2c20 4f70 7469 6f6e 2074 false, Option t │ │ │ │ +00018860: 6f20 7369 6c65 6e63 6520 6164 6469 7469 o silence additi │ │ │ │ +00018870: 6f6e 616c 206f 7574 7075 740a 0a44 6573 onal output..Des │ │ │ │ +00018880: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ +00018890: 3d3d 3d3d 0a0a 4166 7465 7220 4265 7274 ====..After Bert │ │ │ │ +000188a0: 696e 6920 646f 6573 2061 2072 756e 206d ini does a run m │ │ │ │ +000188b0: 616e 7920 6669 6c65 7320 6172 6520 6372 any files are cr │ │ │ │ +000188c0: 6561 7465 642e 2054 6869 7320 6675 6e63 eated. This func │ │ │ │ +000188d0: 7469 6f6e 2069 6d70 6f72 7473 2074 6865 tion imports the │ │ │ │ +000188e0: 0a63 6f6f 7264 696e 6174 6573 206f 6620 .coordinates of │ │ │ │ +000188f0: 736f 6c75 7469 6f6e 7320 6672 6f6d 2074 solutions from t │ │ │ │ +00018900: 6865 2073 696d 706c 6520 2272 6177 5f73 he simple "raw_s │ │ │ │ +00018910: 6f6c 7574 696f 6e73 2220 6669 6c65 2e20 olutions" file. │ │ │ │ +00018920: 4279 2075 7369 6e67 2074 6865 0a6f 7074 By using the.opt │ │ │ │ +00018930: 696f 6e20 4e61 6d65 536f 6c75 7469 6f6e ion NameSolution │ │ │ │ +00018940: 7346 696c 653d 3e22 7265 616c 5f66 696e sFile=>"real_fin │ │ │ │ +00018950: 6974 655f 736f 6c75 7469 6f6e 7322 2077 ite_solutions" w │ │ │ │ +00018960: 6520 776f 756c 6420 696d 706f 7274 2073 e would import s │ │ │ │ +00018970: 6f6c 7574 696f 6e73 0a66 726f 6d20 7265 olutions.from re │ │ │ │ +00018980: 616c 2066 696e 6974 6520 736f 6c75 7469 al finite soluti │ │ │ │ +00018990: 6f6e 732e 204f 7468 6572 2063 6f6d 6d6f ons. Other commo │ │ │ │ +000189a0: 6e20 6669 6c65 206e 616d 6573 2061 7265 n file names are │ │ │ │ +000189b0: 0a22 6e6f 6e73 696e 6775 6c61 725f 736f ."nonsingular_so │ │ │ │ +000189c0: 6c75 7469 6f6e 7322 2c20 2266 696e 6974 lutions", "finit │ │ │ │ +000189d0: 655f 736f 6c75 7469 6f6e 7322 2c20 2269 e_solutions", "i │ │ │ │ +000189e0: 6e66 696e 6974 655f 736f 6c75 7469 6f6e nfinite_solution │ │ │ │ +000189f0: 7322 2c20 616e 640a 2273 696e 6775 6c61 s", and."singula │ │ │ │ +00018a00: 725f 736f 6c75 7469 6f6e 7322 2e0a 0a49 r_solutions"...I │ │ │ │ +00018a10: 6620 7468 6520 4e61 6d65 536f 6c75 7469 f the NameSoluti │ │ │ │ +00018a20: 6f6e 7346 696c 6520 6f70 7469 6f6e 2069 onsFile option i │ │ │ │ +00018a30: 7320 7365 7420 746f 2030 2074 6865 6e20 s set to 0 then │ │ │ │ +00018a40: 226e 6f6e 7369 6e67 756c 6172 5f73 6f6c "nonsingular_sol │ │ │ │ +00018a50: 7574 696f 6e73 2220 6973 0a69 6d70 6f72 utions" is.impor │ │ │ │ +00018a60: 7465 642c 2069 7320 7365 7420 746f 2031 ted, is set to 1 │ │ │ │ +00018a70: 2074 6865 6e20 2272 6561 6c5f 6669 6e69 then "real_fini │ │ │ │ +00018a80: 7465 5f73 6f6c 7574 696f 6e73 2220 6973 te_solutions" is │ │ │ │ +00018a90: 2069 6d70 6f72 7465 642c 2069 7320 7365 imported, is se │ │ │ │ +00018aa0: 7420 746f 2032 0a74 6865 6e20 2269 6e66 t to 2.then "inf │ │ │ │ +00018ab0: 696e 6974 655f 736f 6c75 7469 6f6e 7322 inite_solutions" │ │ │ │ +00018ac0: 2069 7320 696d 706f 7274 6564 2c20 6973 is imported, is │ │ │ │ +00018ad0: 2073 6574 2074 6f20 3320 7468 656e 2022 set to 3 then " │ │ │ │ +00018ae0: 6669 6e69 7465 5f73 6f6c 7574 696f 6e73 finite_solutions │ │ │ │ +00018af0: 2220 6973 0a69 6d70 6f72 7465 642c 2069 " is.imported, i │ │ │ │ +00018b00: 7320 7365 7420 746f 2034 2074 6865 6e20 s set to 4 then │ │ │ │ +00018b10: 2273 7461 7274 2220 6973 2069 6d70 6f72 "start" is impor │ │ │ │ +00018b20: 7465 642c 2069 7320 7365 7420 746f 2035 ted, is set to 5 │ │ │ │ +00018b30: 2074 6865 6e0a 2272 6177 5f73 6f6c 7574 then."raw_solut │ │ │ │ +00018b40: 696f 6e73 2220 6973 2069 6d70 6f72 7465 ions" is importe │ │ │ │ +00018b50: 642e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d d...+----------- │ │ │ │ 00018b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00018ba0: 0a7c 6931 203a 2052 3d51 515b 782c 795d .|i1 : R=QQ[x,y] │ │ │ │ -00018bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018ba0: 2d2d 2b0a 7c69 3120 3a20 523d 5151 5b78 --+.|i1 : R=QQ[x │ │ │ │ +00018bb0: 2c79 5d20 2020 2020 2020 2020 2020 2020 ,y] │ │ │ │ 00018bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018be0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00018bf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00018be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018bf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00018c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018c30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00018c40: 0a7c 6f31 203d 2052 2020 2020 2020 2020 .|o1 = R │ │ │ │ +00018c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018c40: 2020 7c0a 7c6f 3120 3d20 5220 2020 2020 |.|o1 = R │ │ │ │ 00018c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018c80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00018c90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00018c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018c90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00018ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018cd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00018ce0: 0a7c 6f31 203a 2050 6f6c 796e 6f6d 6961 .|o1 : Polynomia │ │ │ │ -00018cf0: 6c52 696e 6720 2020 2020 2020 2020 2020 lRing │ │ │ │ +00018cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018ce0: 2020 7c0a 7c6f 3120 3a20 506f 6c79 6e6f |.|o1 : Polyno │ │ │ │ +00018cf0: 6d69 616c 5269 6e67 2020 2020 2020 2020 mialRing │ │ │ │ 00018d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018d20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00018d30: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00018d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018d30: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00018d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00018d80: 0a7c 6932 203a 206d 616b 6542 2749 6e70 .|i2 : makeB'Inp │ │ │ │ -00018d90: 7574 4669 6c65 2873 746f 7265 424d 3246 utFile(storeBM2F │ │ │ │ -00018da0: 696c 6573 2c20 2020 2020 2020 2020 2020 iles, │ │ │ │ +00018d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018d80: 2d2d 2b0a 7c69 3220 3a20 6d61 6b65 4227 --+.|i2 : makeB' │ │ │ │ +00018d90: 496e 7075 7446 696c 6528 7374 6f72 6542 InputFile(storeB │ │ │ │ +00018da0: 4d32 4669 6c65 732c 2020 2020 2020 2020 M2Files, │ │ │ │ 00018db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018dc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00018dd0: 0a7c 2020 2020 2020 2020 2041 6666 5661 .| AffVa │ │ │ │ -00018de0: 7269 6162 6c65 4772 6f75 703d 3e7b 7b78 riableGroup=>{{x │ │ │ │ -00018df0: 2c79 7d7d 2c20 2020 2020 2020 2020 2020 ,y}}, │ │ │ │ +00018dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018dd0: 2020 7c0a 7c20 2020 2020 2020 2020 4166 |.| Af │ │ │ │ +00018de0: 6656 6172 6961 626c 6547 726f 7570 3d3e fVariableGroup=> │ │ │ │ +00018df0: 7b7b 782c 797d 7d2c 2020 2020 2020 2020 {{x,y}}, │ │ │ │ 00018e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018e10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00018e20: 0a7c 2020 2020 2020 2020 2042 2750 6f6c .| B'Pol │ │ │ │ -00018e30: 796e 6f6d 6961 6c73 3d3e 7b78 5e32 2d31 ynomials=>{x^2-1 │ │ │ │ -00018e40: 2c79 5e33 2d31 7d29 3b20 2020 2020 2020 ,y^3-1}); │ │ │ │ +00018e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018e20: 2020 7c0a 7c20 2020 2020 2020 2020 4227 |.| B' │ │ │ │ +00018e30: 506f 6c79 6e6f 6d69 616c 733d 3e7b 785e Polynomials=>{x^ │ │ │ │ +00018e40: 322d 312c 795e 332d 317d 293b 2020 2020 2-1,y^3-1}); │ │ │ │ 00018e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018e60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00018e70: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00018e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018e70: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00018e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00018ec0: 0a7c 6933 203a 2072 756e 4265 7274 696e .|i3 : runBertin │ │ │ │ -00018ed0: 6928 7374 6f72 6542 4d32 4669 6c65 7329 i(storeBM2Files) │ │ │ │ -00018ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018ec0: 2d2d 2b0a 7c69 3320 3a20 7275 6e42 6572 --+.|i3 : runBer │ │ │ │ +00018ed0: 7469 6e69 2873 746f 7265 424d 3246 696c tini(storeBM2Fil │ │ │ │ +00018ee0: 6573 2920 2020 2020 2020 2020 2020 2020 es) │ │ │ │ 00018ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018f00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00018f10: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00018f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018f10: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00018f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00018f60: 0a7c 6934 203a 2069 6d70 6f72 7453 6f6c .|i4 : importSol │ │ │ │ -00018f70: 7574 696f 6e73 4669 6c65 2873 746f 7265 utionsFile(store │ │ │ │ -00018f80: 424d 3246 696c 6573 2920 2020 2020 2020 BM2Files) │ │ │ │ +00018f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018f60: 2d2d 2b0a 7c69 3420 3a20 696d 706f 7274 --+.|i4 : import │ │ │ │ +00018f70: 536f 6c75 7469 6f6e 7346 696c 6528 7374 SolutionsFile(st │ │ │ │ +00018f80: 6f72 6542 4d32 4669 6c65 7329 2020 2020 oreBM2Files) │ │ │ │ 00018f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018fa0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00018fb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00018fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018fb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00018fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018ff0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00019000: 0a7c 6f34 203d 207b 7b31 2c20 317d 2c20 .|o4 = {{1, 1}, │ │ │ │ -00019010: 7b31 2c20 2d2e 352b 2e38 3636 3032 352a {1, -.5+.866025* │ │ │ │ -00019020: 6969 7d2c 207b 312c 202d 2e35 2d2e 3836 ii}, {1, -.5-.86 │ │ │ │ -00019030: 3630 3235 2a69 697d 2c20 7b2d 312c 2031 6025*ii}, {-1, 1 │ │ │ │ -00019040: 7d2c 207b 2d31 2c20 2020 2020 2020 207c }, {-1, | │ │ │ │ -00019050: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +00018ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019000: 2020 7c0a 7c6f 3420 3d20 7b7b 312c 2031 |.|o4 = {{1, 1 │ │ │ │ +00019010: 7d2c 207b 312c 202d 2e35 2b2e 3836 3630 }, {1, -.5+.8660 │ │ │ │ +00019020: 3235 2a69 697d 2c20 7b31 2c20 2d2e 352d 25*ii}, {1, -.5- │ │ │ │ +00019030: 2e38 3636 3032 352a 6969 7d2c 207b 2d31 .866025*ii}, {-1 │ │ │ │ +00019040: 2c20 317d 2c20 7b2d 312c 2020 2020 2020 , 1}, {-1, │ │ │ │ +00019050: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ 00019060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000190a0: 0a7c 2020 2020 202d 2e35 2b2e 3836 3630 .| -.5+.8660 │ │ │ │ -000190b0: 3235 2a69 697d 2c20 7b2d 312c 202d 2e35 25*ii}, {-1, -.5 │ │ │ │ -000190c0: 2d2e 3836 3630 3235 2a69 697d 7d20 2020 -.866025*ii}} │ │ │ │ +00019090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000190a0: 2d2d 7c0a 7c20 2020 2020 2d2e 352b 2e38 --|.| -.5+.8 │ │ │ │ +000190b0: 3636 3032 352a 6969 7d2c 207b 2d31 2c20 66025*ii}, {-1, │ │ │ │ +000190c0: 2d2e 352d 2e38 3636 3032 352a 6969 7d7d -.5-.866025*ii}} │ │ │ │ 000190d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000190e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000190f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000190e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000190f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00019100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019130: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00019140: 0a7c 6f34 203a 204c 6973 7420 2020 2020 .|o4 : List │ │ │ │ +00019130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019140: 2020 7c0a 7c6f 3420 3a20 4c69 7374 2020 |.|o4 : List │ │ │ │ 00019150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019180: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00019190: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00019180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019190: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 000191a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000191b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000191c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000191d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000191e0: 0a7c 6935 203a 2069 6d70 6f72 7453 6f6c .|i5 : importSol │ │ │ │ -000191f0: 7574 696f 6e73 4669 6c65 2873 746f 7265 utionsFile(store │ │ │ │ -00019200: 424d 3246 696c 6573 2c4e 616d 6553 6f6c BM2Files,NameSol │ │ │ │ -00019210: 7574 696f 6e73 4669 6c65 3d3e 2272 6561 utionsFile=>"rea │ │ │ │ -00019220: 6c5f 6669 6e69 7465 5f20 2020 2020 207c l_finite_ | │ │ │ │ -00019230: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000191d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000191e0: 2d2d 2b0a 7c69 3520 3a20 696d 706f 7274 --+.|i5 : import │ │ │ │ +000191f0: 536f 6c75 7469 6f6e 7346 696c 6528 7374 SolutionsFile(st │ │ │ │ +00019200: 6f72 6542 4d32 4669 6c65 732c 4e61 6d65 oreBM2Files,Name │ │ │ │ +00019210: 536f 6c75 7469 6f6e 7346 696c 653d 3e22 SolutionsFile=>" │ │ │ │ +00019220: 7265 616c 5f66 696e 6974 655f 2020 2020 real_finite_ │ │ │ │ +00019230: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00019240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019270: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00019280: 0a7c 6f35 203d 207b 7b31 2c20 317d 2c20 .|o5 = {{1, 1}, │ │ │ │ -00019290: 7b2d 312c 2031 7d7d 2020 2020 2020 2020 {-1, 1}} │ │ │ │ +00019270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019280: 2020 7c0a 7c6f 3520 3d20 7b7b 312c 2031 |.|o5 = {{1, 1 │ │ │ │ +00019290: 7d2c 207b 2d31 2c20 317d 7d20 2020 2020 }, {-1, 1}} │ │ │ │ 000192a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000192b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000192c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000192d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000192c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000192d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000192e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000192f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019310: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00019320: 0a7c 6f35 203a 204c 6973 7420 2020 2020 .|o5 : List │ │ │ │ +00019310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019320: 2020 7c0a 7c6f 3520 3a20 4c69 7374 2020 |.|o5 : List │ │ │ │ 00019330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019360: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00019370: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00019360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019370: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ 00019380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000193a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000193b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000193c0: 0a7c 736f 6c75 7469 6f6e 7322 2920 2020 .|solutions") │ │ │ │ +000193b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000193c0: 2d2d 7c0a 7c73 6f6c 7574 696f 6e73 2229 --|.|solutions") │ │ │ │ 000193d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000193e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000193f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019400: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00019410: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00019400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019410: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00019420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00019460: 0a7c 6936 203a 2069 6d70 6f72 7453 6f6c .|i6 : importSol │ │ │ │ -00019470: 7574 696f 6e73 4669 6c65 2873 746f 7265 utionsFile(store │ │ │ │ -00019480: 424d 3246 696c 6573 2c4e 616d 6553 6f6c BM2Files,NameSol │ │ │ │ -00019490: 7574 696f 6e73 4669 6c65 3d3e 3029 2020 utionsFile=>0) │ │ │ │ -000194a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000194b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00019450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019460: 2d2d 2b0a 7c69 3620 3a20 696d 706f 7274 --+.|i6 : import │ │ │ │ +00019470: 536f 6c75 7469 6f6e 7346 696c 6528 7374 SolutionsFile(st │ │ │ │ +00019480: 6f72 6542 4d32 4669 6c65 732c 4e61 6d65 oreBM2Files,Name │ │ │ │ +00019490: 536f 6c75 7469 6f6e 7346 696c 653d 3e30 SolutionsFile=>0 │ │ │ │ +000194a0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +000194b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000194c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000194d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000194e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000194f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00019500: 0a7c 6f36 203d 207b 7b31 2c20 317d 2c20 .|o6 = {{1, 1}, │ │ │ │ -00019510: 7b31 2c20 2d2e 352b 2e38 3636 3032 352a {1, -.5+.866025* │ │ │ │ -00019520: 6969 7d2c 207b 312c 202d 2e35 2d2e 3836 ii}, {1, -.5-.86 │ │ │ │ -00019530: 3630 3235 2a69 697d 2c20 7b2d 312c 2031 6025*ii}, {-1, 1 │ │ │ │ -00019540: 7d2c 207b 2d31 2c20 2020 2020 2020 207c }, {-1, | │ │ │ │ -00019550: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +000194f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019500: 2020 7c0a 7c6f 3620 3d20 7b7b 312c 2031 |.|o6 = {{1, 1 │ │ │ │ +00019510: 7d2c 207b 312c 202d 2e35 2b2e 3836 3630 }, {1, -.5+.8660 │ │ │ │ +00019520: 3235 2a69 697d 2c20 7b31 2c20 2d2e 352d 25*ii}, {1, -.5- │ │ │ │ +00019530: 2e38 3636 3032 352a 6969 7d2c 207b 2d31 .866025*ii}, {-1 │ │ │ │ +00019540: 2c20 317d 2c20 7b2d 312c 2020 2020 2020 , 1}, {-1, │ │ │ │ +00019550: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ 00019560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000195a0: 0a7c 2020 2020 202d 2e35 2b2e 3836 3630 .| -.5+.8660 │ │ │ │ -000195b0: 3235 2a69 697d 2c20 7b2d 312c 202d 2e35 25*ii}, {-1, -.5 │ │ │ │ -000195c0: 2d2e 3836 3630 3235 2a69 697d 7d20 2020 -.866025*ii}} │ │ │ │ +00019590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000195a0: 2d2d 7c0a 7c20 2020 2020 2d2e 352b 2e38 --|.| -.5+.8 │ │ │ │ +000195b0: 3636 3032 352a 6969 7d2c 207b 2d31 2c20 66025*ii}, {-1, │ │ │ │ +000195c0: 2d2e 352d 2e38 3636 3032 352a 6969 7d7d -.5-.866025*ii}} │ │ │ │ 000195d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000195e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000195f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000195e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000195f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00019600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019630: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00019640: 0a7c 6f36 203a 204c 6973 7420 2020 2020 .|o6 : List │ │ │ │ +00019630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019640: 2020 7c0a 7c6f 3620 3a20 4c69 7374 2020 |.|o6 : List │ │ │ │ 00019650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019680: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00019690: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00019680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019690: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 000196a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000196b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000196c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000196d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000196e0: 0a0a 5761 7973 2074 6f20 7573 6520 696d ..Ways to use im │ │ │ │ -000196f0: 706f 7274 536f 6c75 7469 6f6e 7346 696c portSolutionsFil │ │ │ │ -00019700: 653a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d e:.============= │ │ │ │ +000196d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000196e0: 2d2d 2b0a 0a57 6179 7320 746f 2075 7365 --+..Ways to use │ │ │ │ +000196f0: 2069 6d70 6f72 7453 6f6c 7574 696f 6e73 importSolutions │ │ │ │ +00019700: 4669 6c65 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d File:.========== │ │ │ │ 00019710: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00019720: 3d3d 3d0a 0a20 202a 2022 696d 706f 7274 ===.. * "import │ │ │ │ -00019730: 536f 6c75 7469 6f6e 7346 696c 6528 5374 SolutionsFile(St │ │ │ │ -00019740: 7269 6e67 2922 0a0a 466f 7220 7468 6520 ring)"..For the │ │ │ │ -00019750: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -00019760: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -00019770: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -00019780: 696d 706f 7274 536f 6c75 7469 6f6e 7346 importSolutionsF │ │ │ │ -00019790: 696c 653a 2069 6d70 6f72 7453 6f6c 7574 ile: importSolut │ │ │ │ -000197a0: 696f 6e73 4669 6c65 2c20 6973 2061 202a ionsFile, is a * │ │ │ │ -000197b0: 6e6f 7465 206d 6574 686f 640a 6675 6e63 note method.func │ │ │ │ -000197c0: 7469 6f6e 2077 6974 6820 6f70 7469 6f6e tion with option │ │ │ │ -000197d0: 733a 2028 4d61 6361 756c 6179 3244 6f63 s: (Macaulay2Doc │ │ │ │ -000197e0: 294d 6574 686f 6446 756e 6374 696f 6e57 )MethodFunctionW │ │ │ │ -000197f0: 6974 684f 7074 696f 6e73 2c2e 0a1f 0a46 ithOptions,....F │ │ │ │ -00019800: 696c 653a 2042 6572 7469 6e69 2e69 6e66 ile: Bertini.inf │ │ │ │ -00019810: 6f2c 204e 6f64 653a 2049 7350 726f 6a65 o, Node: IsProje │ │ │ │ -00019820: 6374 6976 652c 204e 6578 743a 204d 6169 ctive, Next: Mai │ │ │ │ -00019830: 6e44 6174 6144 6972 6563 746f 7279 2c20 nDataDirectory, │ │ │ │ -00019840: 5072 6576 3a20 696d 706f 7274 536f 6c75 Prev: importSolu │ │ │ │ -00019850: 7469 6f6e 7346 696c 652c 2055 703a 2054 tionsFile, Up: T │ │ │ │ -00019860: 6f70 0a0a 4973 5072 6f6a 6563 7469 7665 op..IsProjective │ │ │ │ -00019870: 202d 2d20 6f70 7469 6f6e 616c 2061 7267 -- optional arg │ │ │ │ -00019880: 756d 656e 7420 746f 2073 7065 6369 6679 ument to specify │ │ │ │ -00019890: 2077 6865 7468 6572 2074 6f20 7573 6520 whether to use │ │ │ │ -000198a0: 686f 6d6f 6765 6e65 6f75 7320 636f 6f72 homogeneous coor │ │ │ │ -000198b0: 6469 6e61 7465 730a 2a2a 2a2a 2a2a 2a2a dinates.******** │ │ │ │ +00019720: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2269 6d70 ======.. * "imp │ │ │ │ +00019730: 6f72 7453 6f6c 7574 696f 6e73 4669 6c65 ortSolutionsFile │ │ │ │ +00019740: 2853 7472 696e 6729 220a 0a46 6f72 2074 (String)"..For t │ │ │ │ +00019750: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +00019760: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00019770: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ +00019780: 7465 2069 6d70 6f72 7453 6f6c 7574 696f te importSolutio │ │ │ │ +00019790: 6e73 4669 6c65 3a20 696d 706f 7274 536f nsFile: importSo │ │ │ │ +000197a0: 6c75 7469 6f6e 7346 696c 652c 2069 7320 lutionsFile, is │ │ │ │ +000197b0: 6120 2a6e 6f74 6520 6d65 7468 6f64 0a66 a *note method.f │ │ │ │ +000197c0: 756e 6374 696f 6e20 7769 7468 206f 7074 unction with opt │ │ │ │ +000197d0: 696f 6e73 3a20 284d 6163 6175 6c61 7932 ions: (Macaulay2 │ │ │ │ +000197e0: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ +000197f0: 6f6e 5769 7468 4f70 7469 6f6e 732c 2e0a onWithOptions,.. │ │ │ │ +00019800: 1f0a 4669 6c65 3a20 4265 7274 696e 692e ..File: Bertini. │ │ │ │ +00019810: 696e 666f 2c20 4e6f 6465 3a20 4973 5072 info, Node: IsPr │ │ │ │ +00019820: 6f6a 6563 7469 7665 2c20 4e65 7874 3a20 ojective, Next: │ │ │ │ +00019830: 4d61 696e 4461 7461 4469 7265 6374 6f72 MainDataDirector │ │ │ │ +00019840: 792c 2050 7265 763a 2069 6d70 6f72 7453 y, Prev: importS │ │ │ │ +00019850: 6f6c 7574 696f 6e73 4669 6c65 2c20 5570 olutionsFile, Up │ │ │ │ +00019860: 3a20 546f 700a 0a49 7350 726f 6a65 6374 : Top..IsProject │ │ │ │ +00019870: 6976 6520 2d2d 206f 7074 696f 6e61 6c20 ive -- optional │ │ │ │ +00019880: 6172 6775 6d65 6e74 2074 6f20 7370 6563 argument to spec │ │ │ │ +00019890: 6966 7920 7768 6574 6865 7220 746f 2075 ify whether to u │ │ │ │ +000198a0: 7365 2068 6f6d 6f67 656e 656f 7573 2063 se homogeneous c │ │ │ │ +000198b0: 6f6f 7264 696e 6174 6573 0a2a 2a2a 2a2a oordinates.***** │ │ │ │ 000198c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000198d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000198e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000198f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00019900: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a44 6573 ***********..Des │ │ │ │ -00019910: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -00019920: 3d3d 3d3d 0a0a 5768 656e 2073 6574 2074 ====..When set t │ │ │ │ -00019930: 6f20 312c 2074 6869 7320 6f70 7469 6f6e o 1, this option │ │ │ │ -00019940: 2069 6e64 6963 6174 6573 2074 6861 7420 indicates that │ │ │ │ -00019950: 7468 6520 696e 7075 7420 7379 7374 656d the input system │ │ │ │ -00019960: 2069 7320 686f 6d6f 6765 6e69 7a65 6420 is homogenized │ │ │ │ -00019970: 616e 640a 7468 6520 6f75 7470 7574 2073 and.the output s │ │ │ │ -00019980: 686f 756c 6420 6265 2067 6976 656e 2069 hould be given i │ │ │ │ -00019990: 6e20 7072 6f6a 6563 7469 7665 2073 7061 n projective spa │ │ │ │ -000199a0: 6365 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d ce...+---------- │ │ │ │ +00019900: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +00019910: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +00019920: 3d3d 3d3d 3d3d 3d0a 0a57 6865 6e20 7365 =======..When se │ │ │ │ +00019930: 7420 746f 2031 2c20 7468 6973 206f 7074 t to 1, this opt │ │ │ │ +00019940: 696f 6e20 696e 6469 6361 7465 7320 7468 ion indicates th │ │ │ │ +00019950: 6174 2074 6865 2069 6e70 7574 2073 7973 at the input sys │ │ │ │ +00019960: 7465 6d20 6973 2068 6f6d 6f67 656e 697a tem is homogeniz │ │ │ │ +00019970: 6564 2061 6e64 0a74 6865 206f 7574 7075 ed and.the outpu │ │ │ │ +00019980: 7420 7368 6f75 6c64 2062 6520 6769 7665 t should be give │ │ │ │ +00019990: 6e20 696e 2070 726f 6a65 6374 6976 6520 n in projective │ │ │ │ +000199a0: 7370 6163 652e 0a0a 2b2d 2d2d 2d2d 2d2d space...+------- │ │ │ │ 000199b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000199c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000199d0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ -000199e0: 2052 203d 2043 435b 782c 792c 7a5d 3b20 R = CC[x,y,z]; │ │ │ │ -000199f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019a00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00019a10: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000199d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000199e0: 3120 3a20 5220 3d20 4343 5b78 2c79 2c7a 1 : R = CC[x,y,z │ │ │ │ +000199f0: 5d3b 2020 2020 2020 2020 2020 2020 2020 ]; │ │ │ │ +00019a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019a10: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00019a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019a40: 2d2d 2d2d 2d2b 0a7c 6932 203a 2066 203d -----+.|i2 : f = │ │ │ │ -00019a50: 207b 2878 5e32 2b79 5e32 2d7a 5e32 292a {(x^2+y^2-z^2)* │ │ │ │ -00019a60: 287a 2d78 292c 2878 5e32 2b79 5e32 2d7a (z-x),(x^2+y^2-z │ │ │ │ -00019a70: 5e32 292a 287a 2b79 297d 3b7c 0a2b 2d2d ^2)*(z+y)};|.+-- │ │ │ │ -00019a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019a40: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ +00019a50: 6620 3d20 7b28 785e 322b 795e 322d 7a5e f = {(x^2+y^2-z^ │ │ │ │ +00019a60: 3229 2a28 7a2d 7829 2c28 785e 322b 795e 2)*(z-x),(x^2+y^ │ │ │ │ +00019a70: 322d 7a5e 3229 2a28 7a2b 7929 7d3b 7c0a 2-z^2)*(z+y)};|. │ │ │ │ +00019a80: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00019a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019ab0: 2d2b 0a7c 6933 203a 2062 6572 7469 6e69 -+.|i3 : bertini │ │ │ │ -00019ac0: 506f 7344 696d 536f 6c76 6528 662c 4973 PosDimSolve(f,Is │ │ │ │ -00019ad0: 5072 6f6a 6563 7469 7665 3d3e 3129 3b20 Projective=>1); │ │ │ │ -00019ae0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00019ab0: 2d2d 2d2d 2b0a 7c69 3320 3a20 6265 7274 ----+.|i3 : bert │ │ │ │ +00019ac0: 696e 6950 6f73 4469 6d53 6f6c 7665 2866 iniPosDimSolve(f │ │ │ │ +00019ad0: 2c49 7350 726f 6a65 6374 6976 653d 3e31 ,IsProjective=>1 │ │ │ │ +00019ae0: 293b 2020 2020 2020 2020 7c0a 2b2d 2d2d ); |.+--- │ │ │ │ 00019af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -00019b20: 4675 6e63 7469 6f6e 7320 7769 7468 206f Functions with o │ │ │ │ -00019b30: 7074 696f 6e61 6c20 6172 6775 6d65 6e74 ptional argument │ │ │ │ -00019b40: 206e 616d 6564 2049 7350 726f 6a65 6374 named IsProject │ │ │ │ -00019b50: 6976 653a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d ive:.=========== │ │ │ │ +00019b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019b20: 2b0a 0a46 756e 6374 696f 6e73 2077 6974 +..Functions wit │ │ │ │ +00019b30: 6820 6f70 7469 6f6e 616c 2061 7267 756d h optional argum │ │ │ │ +00019b40: 656e 7420 6e61 6d65 6420 4973 5072 6f6a ent named IsProj │ │ │ │ +00019b50: 6563 7469 7665 3a0a 3d3d 3d3d 3d3d 3d3d ective:.======== │ │ │ │ 00019b60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 00019b70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00019b80: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2062 =========.. * b │ │ │ │ -00019b90: 6572 7469 6e69 5a65 726f 4469 6d53 6f6c ertiniZeroDimSol │ │ │ │ -00019ba0: 7665 282e 2e2e 2c49 7350 726f 6a65 6374 ve(...,IsProject │ │ │ │ -00019bb0: 6976 653d 3e2e 2e2e 2920 286d 6973 7369 ive=>...) (missi │ │ │ │ -00019bc0: 6e67 2064 6f63 756d 656e 7461 7469 6f6e ng documentation │ │ │ │ -00019bd0: 290a 2020 2a20 2262 6572 7469 6e69 436f ). * "bertiniCo │ │ │ │ -00019be0: 6d70 6f6e 656e 744d 656d 6265 7254 6573 mponentMemberTes │ │ │ │ -00019bf0: 7428 2e2e 2e2c 4973 5072 6f6a 6563 7469 t(...,IsProjecti │ │ │ │ -00019c00: 7665 3d3e 2e2e 2e29 220a 2020 2a20 2262 ve=>...)". * "b │ │ │ │ -00019c10: 6572 7469 6e69 506f 7344 696d 536f 6c76 ertiniPosDimSolv │ │ │ │ -00019c20: 6528 2e2e 2e2c 4973 5072 6f6a 6563 7469 e(...,IsProjecti │ │ │ │ -00019c30: 7665 3d3e 2e2e 2e29 220a 2020 2a20 2262 ve=>...)". * "b │ │ │ │ -00019c40: 6572 7469 6e69 5265 6669 6e65 536f 6c73 ertiniRefineSols │ │ │ │ -00019c50: 282e 2e2e 2c49 7350 726f 6a65 6374 6976 (...,IsProjectiv │ │ │ │ -00019c60: 653d 3e2e 2e2e 2922 0a20 202a 2022 6265 e=>...)". * "be │ │ │ │ -00019c70: 7274 696e 6953 616d 706c 6528 2e2e 2e2c rtiniSample(..., │ │ │ │ -00019c80: 4973 5072 6f6a 6563 7469 7665 3d3e 2e2e IsProjective=>.. │ │ │ │ -00019c90: 2e29 220a 2020 2a20 2262 6572 7469 6e69 .)". * "bertini │ │ │ │ -00019ca0: 5472 6163 6b48 6f6d 6f74 6f70 7928 2e2e TrackHomotopy(.. │ │ │ │ -00019cb0: 2e2c 4973 5072 6f6a 6563 7469 7665 3d3e .,IsProjective=> │ │ │ │ -00019cc0: 2e2e 2e29 220a 0a46 6f72 2074 6865 2070 ...)"..For the p │ │ │ │ -00019cd0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -00019ce0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -00019cf0: 6520 6f62 6a65 6374 202a 6e6f 7465 2049 e object *note I │ │ │ │ -00019d00: 7350 726f 6a65 6374 6976 653a 2049 7350 sProjective: IsP │ │ │ │ -00019d10: 726f 6a65 6374 6976 652c 2069 7320 6120 rojective, is a │ │ │ │ -00019d20: 2a6e 6f74 6520 7379 6d62 6f6c 3a0a 284d *note symbol:.(M │ │ │ │ -00019d30: 6163 6175 6c61 7932 446f 6329 5379 6d62 acaulay2Doc)Symb │ │ │ │ -00019d40: 6f6c 2c2e 0a1f 0a46 696c 653a 2042 6572 ol,....File: Ber │ │ │ │ -00019d50: 7469 6e69 2e69 6e66 6f2c 204e 6f64 653a tini.info, Node: │ │ │ │ -00019d60: 204d 6169 6e44 6174 6144 6972 6563 746f MainDataDirecto │ │ │ │ -00019d70: 7279 2c20 4e65 7874 3a20 6d61 6b65 4227 ry, Next: makeB' │ │ │ │ -00019d80: 496e 7075 7446 696c 652c 2050 7265 763a InputFile, Prev: │ │ │ │ -00019d90: 2049 7350 726f 6a65 6374 6976 652c 2055 IsProjective, U │ │ │ │ -00019da0: 703a 2054 6f70 0a0a 4d61 696e 4461 7461 p: Top..MainData │ │ │ │ -00019db0: 4469 7265 6374 6f72 790a 2a2a 2a2a 2a2a Directory.****** │ │ │ │ -00019dc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a46 6f72 ***********..For │ │ │ │ -00019dd0: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ -00019de0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00019df0: 3d3d 0a0a 5468 6520 6f62 6a65 6374 204d ==..The object M │ │ │ │ -00019e00: 6169 6e44 6174 6144 6972 6563 746f 7279 ainDataDirectory │ │ │ │ -00019e10: 2028 6d69 7373 696e 6720 646f 6375 6d65 (missing docume │ │ │ │ -00019e20: 6e74 6174 696f 6e29 2069 7320 6120 2a6e ntation) is a *n │ │ │ │ -00019e30: 6f74 6520 7379 6d62 6f6c 3a0a 284d 6163 ote symbol:.(Mac │ │ │ │ -00019e40: 6175 6c61 7932 446f 6329 5379 6d62 6f6c aulay2Doc)Symbol │ │ │ │ -00019e50: 2c2e 0a1f 0a46 696c 653a 2042 6572 7469 ,....File: Berti │ │ │ │ -00019e60: 6e69 2e69 6e66 6f2c 204e 6f64 653a 206d ni.info, Node: m │ │ │ │ -00019e70: 616b 6542 2749 6e70 7574 4669 6c65 2c20 akeB'InputFile, │ │ │ │ -00019e80: 4e65 7874 3a20 6d61 6b65 4227 5365 6374 Next: makeB'Sect │ │ │ │ -00019e90: 696f 6e2c 2050 7265 763a 204d 6169 6e44 ion, Prev: MainD │ │ │ │ -00019ea0: 6174 6144 6972 6563 746f 7279 2c20 5570 ataDirectory, Up │ │ │ │ -00019eb0: 3a20 546f 700a 0a6d 616b 6542 2749 6e70 : Top..makeB'Inp │ │ │ │ -00019ec0: 7574 4669 6c65 202d 2d20 7772 6974 6520 utFile -- write │ │ │ │ -00019ed0: 6120 4265 7274 696e 6920 696e 7075 7420 a Bertini input │ │ │ │ -00019ee0: 6669 6c65 2069 6e20 6120 6469 7265 6374 file in a direct │ │ │ │ -00019ef0: 6f72 790a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ory.************ │ │ │ │ +00019b80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ +00019b90: 2a20 6265 7274 696e 695a 6572 6f44 696d * bertiniZeroDim │ │ │ │ +00019ba0: 536f 6c76 6528 2e2e 2e2c 4973 5072 6f6a Solve(...,IsProj │ │ │ │ +00019bb0: 6563 7469 7665 3d3e 2e2e 2e29 2028 6d69 ective=>...) (mi │ │ │ │ +00019bc0: 7373 696e 6720 646f 6375 6d65 6e74 6174 ssing documentat │ │ │ │ +00019bd0: 696f 6e29 0a20 202a 2022 6265 7274 696e ion). * "bertin │ │ │ │ +00019be0: 6943 6f6d 706f 6e65 6e74 4d65 6d62 6572 iComponentMember │ │ │ │ +00019bf0: 5465 7374 282e 2e2e 2c49 7350 726f 6a65 Test(...,IsProje │ │ │ │ +00019c00: 6374 6976 653d 3e2e 2e2e 2922 0a20 202a ctive=>...)". * │ │ │ │ +00019c10: 2022 6265 7274 696e 6950 6f73 4469 6d53 "bertiniPosDimS │ │ │ │ +00019c20: 6f6c 7665 282e 2e2e 2c49 7350 726f 6a65 olve(...,IsProje │ │ │ │ +00019c30: 6374 6976 653d 3e2e 2e2e 2922 0a20 202a ctive=>...)". * │ │ │ │ +00019c40: 2022 6265 7274 696e 6952 6566 696e 6553 "bertiniRefineS │ │ │ │ +00019c50: 6f6c 7328 2e2e 2e2c 4973 5072 6f6a 6563 ols(...,IsProjec │ │ │ │ +00019c60: 7469 7665 3d3e 2e2e 2e29 220a 2020 2a20 tive=>...)". * │ │ │ │ +00019c70: 2262 6572 7469 6e69 5361 6d70 6c65 282e "bertiniSample(. │ │ │ │ +00019c80: 2e2e 2c49 7350 726f 6a65 6374 6976 653d ..,IsProjective= │ │ │ │ +00019c90: 3e2e 2e2e 2922 0a20 202a 2022 6265 7274 >...)". * "bert │ │ │ │ +00019ca0: 696e 6954 7261 636b 486f 6d6f 746f 7079 iniTrackHomotopy │ │ │ │ +00019cb0: 282e 2e2e 2c49 7350 726f 6a65 6374 6976 (...,IsProjectiv │ │ │ │ +00019cc0: 653d 3e2e 2e2e 2922 0a0a 466f 7220 7468 e=>...)"..For th │ │ │ │ +00019cd0: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +00019ce0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00019cf0: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +00019d00: 6520 4973 5072 6f6a 6563 7469 7665 3a20 e IsProjective: │ │ │ │ +00019d10: 4973 5072 6f6a 6563 7469 7665 2c20 6973 IsProjective, is │ │ │ │ +00019d20: 2061 202a 6e6f 7465 2073 796d 626f 6c3a a *note symbol: │ │ │ │ +00019d30: 0a28 4d61 6361 756c 6179 3244 6f63 2953 .(Macaulay2Doc)S │ │ │ │ +00019d40: 796d 626f 6c2c 2e0a 1f0a 4669 6c65 3a20 ymbol,....File: │ │ │ │ +00019d50: 4265 7274 696e 692e 696e 666f 2c20 4e6f Bertini.info, No │ │ │ │ +00019d60: 6465 3a20 4d61 696e 4461 7461 4469 7265 de: MainDataDire │ │ │ │ +00019d70: 6374 6f72 792c 204e 6578 743a 206d 616b ctory, Next: mak │ │ │ │ +00019d80: 6542 2749 6e70 7574 4669 6c65 2c20 5072 eB'InputFile, Pr │ │ │ │ +00019d90: 6576 3a20 4973 5072 6f6a 6563 7469 7665 ev: IsProjective │ │ │ │ +00019da0: 2c20 5570 3a20 546f 700a 0a4d 6169 6e44 , Up: Top..MainD │ │ │ │ +00019db0: 6174 6144 6972 6563 746f 7279 0a2a 2a2a ataDirectory.*** │ │ │ │ +00019dc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +00019dd0: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +00019de0: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +00019df0: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +00019e00: 7420 4d61 696e 4461 7461 4469 7265 6374 t MainDataDirect │ │ │ │ +00019e10: 6f72 7920 286d 6973 7369 6e67 2064 6f63 ory (missing doc │ │ │ │ +00019e20: 756d 656e 7461 7469 6f6e 2920 6973 2061 umentation) is a │ │ │ │ +00019e30: 202a 6e6f 7465 2073 796d 626f 6c3a 0a28 *note symbol:.( │ │ │ │ +00019e40: 4d61 6361 756c 6179 3244 6f63 2953 796d Macaulay2Doc)Sym │ │ │ │ +00019e50: 626f 6c2c 2e0a 1f0a 4669 6c65 3a20 4265 bol,....File: Be │ │ │ │ +00019e60: 7274 696e 692e 696e 666f 2c20 4e6f 6465 rtini.info, Node │ │ │ │ +00019e70: 3a20 6d61 6b65 4227 496e 7075 7446 696c : makeB'InputFil │ │ │ │ +00019e80: 652c 204e 6578 743a 206d 616b 6542 2753 e, Next: makeB'S │ │ │ │ +00019e90: 6563 7469 6f6e 2c20 5072 6576 3a20 4d61 ection, Prev: Ma │ │ │ │ +00019ea0: 696e 4461 7461 4469 7265 6374 6f72 792c inDataDirectory, │ │ │ │ +00019eb0: 2055 703a 2054 6f70 0a0a 6d61 6b65 4227 Up: Top..makeB' │ │ │ │ +00019ec0: 496e 7075 7446 696c 6520 2d2d 2077 7269 InputFile -- wri │ │ │ │ +00019ed0: 7465 2061 2042 6572 7469 6e69 2069 6e70 te a Bertini inp │ │ │ │ +00019ee0: 7574 2066 696c 6520 696e 2061 2064 6972 ut file in a dir │ │ │ │ +00019ef0: 6563 746f 7279 0a2a 2a2a 2a2a 2a2a 2a2a ectory.********* │ │ │ │ 00019f00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00019f10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00019f20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00019f30: 0a0a 5379 6e6f 7073 6973 0a3d 3d3d 3d3d ..Synopsis.===== │ │ │ │ -00019f40: 3d3d 3d0a 0a20 202a 2055 7361 6765 3a20 ===.. * Usage: │ │ │ │ -00019f50: 0a20 2020 2020 2020 206d 616b 6542 2749 . makeB'I │ │ │ │ -00019f60: 6e70 7574 4669 6c65 2873 290a 2020 2a20 nputFile(s). * │ │ │ │ -00019f70: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -00019f80: 732c 2061 202a 6e6f 7465 2073 7472 696e s, a *note strin │ │ │ │ -00019f90: 673a 2028 4d61 6361 756c 6179 3244 6f63 g: (Macaulay2Doc │ │ │ │ -00019fa0: 2953 7472 696e 672c 2c20 6120 6469 7265 )String,, a dire │ │ │ │ -00019fb0: 6374 6f72 7920 7768 6572 6520 7468 6520 ctory where the │ │ │ │ -00019fc0: 696e 7075 740a 2020 2020 2020 2020 6669 input. fi │ │ │ │ -00019fd0: 6c65 2077 696c 6c20 6265 2077 7269 7474 le will be writt │ │ │ │ -00019fe0: 656e 0a20 202a 202a 6e6f 7465 204f 7074 en. * *note Opt │ │ │ │ -00019ff0: 696f 6e61 6c20 696e 7075 7473 3a20 284d ional inputs: (M │ │ │ │ -0001a000: 6163 6175 6c61 7932 446f 6329 7573 696e acaulay2Doc)usin │ │ │ │ -0001a010: 6720 6675 6e63 7469 6f6e 7320 7769 7468 g functions with │ │ │ │ -0001a020: 206f 7074 696f 6e61 6c20 696e 7075 7473 optional inputs │ │ │ │ -0001a030: 2c3a 0a20 2020 2020 202a 202a 6e6f 7465 ,:. * *note │ │ │ │ -0001a040: 2041 6666 5661 7269 6162 6c65 4772 6f75 AffVariableGrou │ │ │ │ -0001a050: 703a 2056 6172 6961 626c 6520 6772 6f75 p: Variable grou │ │ │ │ -0001a060: 7073 2c20 3d3e 202e 2e2e 2c20 6465 6661 ps, => ..., defa │ │ │ │ -0001a070: 756c 7420 7661 6c75 6520 7b7d 2c20 616e ult value {}, an │ │ │ │ -0001a080: 0a20 2020 2020 2020 206f 7074 696f 6e20 . option │ │ │ │ -0001a090: 746f 2067 726f 7570 2076 6172 6961 626c to group variabl │ │ │ │ -0001a0a0: 6573 2061 6e64 2075 7365 206d 756c 7469 es and use multi │ │ │ │ -0001a0b0: 686f 6d6f 6765 6e65 6f75 7320 686f 6d6f homogeneous homo │ │ │ │ -0001a0c0: 746f 7069 6573 0a20 2020 2020 202a 202a topies. * * │ │ │ │ -0001a0d0: 6e6f 7465 2042 2743 6f6e 7374 616e 7473 note B'Constants │ │ │ │ -0001a0e0: 3a20 4227 436f 6e73 7461 6e74 732c 203d : B'Constants, = │ │ │ │ -0001a0f0: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ -0001a100: 616c 7565 207b 7d2c 2061 6e20 6f70 7469 alue {}, an opti │ │ │ │ -0001a110: 6f6e 2074 6f0a 2020 2020 2020 2020 6465 on to. de │ │ │ │ -0001a120: 7369 676e 6174 6520 7468 6520 636f 6e73 signate the cons │ │ │ │ -0001a130: 7461 6e74 7320 666f 7220 6120 4265 7274 tants for a Bert │ │ │ │ -0001a140: 696e 6920 496e 7075 7420 6669 6c65 0a20 ini Input file. │ │ │ │ -0001a150: 2020 2020 202a 2042 2746 756e 6374 696f * B'Functio │ │ │ │ -0001a160: 6e73 2028 6d69 7373 696e 6720 646f 6375 ns (missing docu │ │ │ │ -0001a170: 6d65 6e74 6174 696f 6e29 203d 3e20 2e2e mentation) => .. │ │ │ │ -0001a180: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ -0001a190: 207b 7d2c 200a 2020 2020 2020 2a20 4227 {}, . * B' │ │ │ │ -0001a1a0: 506f 6c79 6e6f 6d69 616c 7320 286d 6973 Polynomials (mis │ │ │ │ -0001a1b0: 7369 6e67 2064 6f63 756d 656e 7461 7469 sing documentati │ │ │ │ -0001a1c0: 6f6e 2920 3d3e 202e 2e2e 2c20 6465 6661 on) => ..., defa │ │ │ │ -0001a1d0: 756c 7420 7661 6c75 6520 7b7d 2c20 0a20 ult value {}, . │ │ │ │ -0001a1e0: 2020 2020 202a 2042 6572 7469 6e69 496e * BertiniIn │ │ │ │ -0001a1f0: 7075 7443 6f6e 6669 6775 7261 7469 6f6e putConfiguration │ │ │ │ -0001a200: 2028 6d69 7373 696e 6720 646f 6375 6d65 (missing docume │ │ │ │ -0001a210: 6e74 6174 696f 6e29 203d 3e20 2e2e 2e2c ntation) => ..., │ │ │ │ -0001a220: 2064 6566 6175 6c74 2076 616c 7565 0a20 default value. │ │ │ │ -0001a230: 2020 2020 2020 207b 7d2c 0a20 2020 2020 {},. │ │ │ │ -0001a240: 202a 202a 6e6f 7465 2048 6f6d 5661 7269 * *note HomVari │ │ │ │ -0001a250: 6162 6c65 4772 6f75 703a 2056 6172 6961 ableGroup: Varia │ │ │ │ -0001a260: 626c 6520 6772 6f75 7073 2c20 3d3e 202e ble groups, => . │ │ │ │ -0001a270: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ -0001a280: 6520 7b7d 2c20 616e 0a20 2020 2020 2020 e {}, an. │ │ │ │ -0001a290: 206f 7074 696f 6e20 746f 2067 726f 7570 option to group │ │ │ │ -0001a2a0: 2076 6172 6961 626c 6573 2061 6e64 2075 variables and u │ │ │ │ -0001a2b0: 7365 206d 756c 7469 686f 6d6f 6765 6e65 se multihomogene │ │ │ │ -0001a2c0: 6f75 7320 686f 6d6f 746f 7069 6573 0a20 ous homotopies. │ │ │ │ -0001a2d0: 2020 2020 202a 204e 616d 6542 2749 6e70 * NameB'Inp │ │ │ │ -0001a2e0: 7574 4669 6c65 2028 6d69 7373 696e 6720 utFile (missing │ │ │ │ -0001a2f0: 646f 6375 6d65 6e74 6174 696f 6e29 203d documentation) = │ │ │ │ -0001a300: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ -0001a310: 616c 7565 2022 696e 7075 7422 2c20 0a20 alue "input", . │ │ │ │ -0001a320: 2020 2020 202a 204e 616d 6550 6f6c 796e * NamePolyn │ │ │ │ -0001a330: 6f6d 6961 6c73 2028 6d69 7373 696e 6720 omials (missing │ │ │ │ -0001a340: 646f 6375 6d65 6e74 6174 696f 6e29 203d documentation) = │ │ │ │ -0001a350: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ -0001a360: 616c 7565 207b 7d2c 200a 2020 2020 2020 alue {}, . │ │ │ │ -0001a370: 2a20 5061 7261 6d65 7465 7247 726f 7570 * ParameterGroup │ │ │ │ -0001a380: 2028 6d69 7373 696e 6720 646f 6375 6d65 (missing docume │ │ │ │ -0001a390: 6e74 6174 696f 6e29 203d 3e20 2e2e 2e2c ntation) => ..., │ │ │ │ -0001a3a0: 2064 6566 6175 6c74 2076 616c 7565 207b default value { │ │ │ │ -0001a3b0: 7d2c 200a 2020 2020 2020 2a20 5061 7468 }, . * Path │ │ │ │ -0001a3c0: 5661 7269 6162 6c65 2028 6d69 7373 696e Variable (missin │ │ │ │ -0001a3d0: 6720 646f 6375 6d65 6e74 6174 696f 6e29 g documentation) │ │ │ │ -0001a3e0: 203d 3e20 2e2e 2e2c 2064 6566 6175 6c74 => ..., default │ │ │ │ -0001a3f0: 2076 616c 7565 207b 7d2c 200a 2020 2020 value {}, . │ │ │ │ -0001a400: 2020 2a20 2a6e 6f74 6520 5261 6e64 6f6d * *note Random │ │ │ │ -0001a410: 436f 6d70 6c65 783a 2042 6572 7469 6e69 Complex: Bertini │ │ │ │ -0001a420: 2069 6e70 7574 2066 696c 6520 6465 636c input file decl │ │ │ │ -0001a430: 6172 6174 696f 6e73 5f63 6f20 7261 6e64 arations_co rand │ │ │ │ -0001a440: 6f6d 206e 756d 6265 7273 2c0a 2020 2020 om numbers,. │ │ │ │ -0001a450: 2020 2020 3d3e 202e 2e2e 2c20 6465 6661 => ..., defa │ │ │ │ -0001a460: 756c 7420 7661 6c75 6520 7b7d 2c20 616e ult value {}, an │ │ │ │ -0001a470: 206f 7074 696f 6e20 7768 6963 6820 6465 option which de │ │ │ │ -0001a480: 7369 676e 6174 6573 0a20 2020 2020 2020 signates. │ │ │ │ -0001a490: 2073 796d 626f 6c73 2f73 7472 696e 6773 symbols/strings │ │ │ │ -0001a4a0: 2f76 6172 6961 626c 6573 2074 6861 7420 /variables that │ │ │ │ -0001a4b0: 7769 6c6c 2062 6520 7365 7420 746f 2062 will be set to b │ │ │ │ -0001a4c0: 6520 6120 7261 6e64 6f6d 2072 6561 6c20 e a random real │ │ │ │ -0001a4d0: 6e75 6d62 6572 0a20 2020 2020 2020 206f number. o │ │ │ │ -0001a4e0: 7220 7261 6e64 6f6d 2063 6f6d 706c 6578 r random complex │ │ │ │ -0001a4f0: 206e 756d 6265 720a 2020 2020 2020 2a20 number. * │ │ │ │ -0001a500: 2a6e 6f74 6520 5261 6e64 6f6d 5265 616c *note RandomReal │ │ │ │ -0001a510: 3a20 4265 7274 696e 6920 696e 7075 7420 : Bertini input │ │ │ │ -0001a520: 6669 6c65 2064 6563 6c61 7261 7469 6f6e file declaration │ │ │ │ -0001a530: 735f 636f 2072 616e 646f 6d20 6e75 6d62 s_co random numb │ │ │ │ -0001a540: 6572 732c 203d 3e0a 2020 2020 2020 2020 ers, =>. │ │ │ │ -0001a550: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ -0001a560: 7565 207b 7d2c 2061 6e20 6f70 7469 6f6e ue {}, an option │ │ │ │ -0001a570: 2077 6869 6368 2064 6573 6967 6e61 7465 which designate │ │ │ │ -0001a580: 730a 2020 2020 2020 2020 7379 6d62 6f6c s. symbol │ │ │ │ -0001a590: 732f 7374 7269 6e67 732f 7661 7269 6162 s/strings/variab │ │ │ │ -0001a5a0: 6c65 7320 7468 6174 2077 696c 6c20 6265 les that will be │ │ │ │ -0001a5b0: 2073 6574 2074 6f20 6265 2061 2072 616e set to be a ran │ │ │ │ -0001a5c0: 646f 6d20 7265 616c 206e 756d 6265 720a dom real number. │ │ │ │ -0001a5d0: 2020 2020 2020 2020 6f72 2072 616e 646f or rando │ │ │ │ -0001a5e0: 6d20 636f 6d70 6c65 7820 6e75 6d62 6572 m complex number │ │ │ │ -0001a5f0: 0a20 2020 2020 202a 2053 6574 5061 7261 . * SetPara │ │ │ │ -0001a600: 6d65 7465 7247 726f 7570 2028 6d69 7373 meterGroup (miss │ │ │ │ -0001a610: 696e 6720 646f 6375 6d65 6e74 6174 696f ing documentatio │ │ │ │ -0001a620: 6e29 203d 3e20 2e2e 2e2c 2064 6566 6175 n) => ..., defau │ │ │ │ -0001a630: 6c74 2076 616c 7565 207b 7d2c 200a 2020 lt value {}, . │ │ │ │ -0001a640: 2020 2020 2a20 5374 6f72 6167 6546 6f6c * StorageFol │ │ │ │ -0001a650: 6465 7220 286d 6973 7369 6e67 2064 6f63 der (missing doc │ │ │ │ -0001a660: 756d 656e 7461 7469 6f6e 2920 3d3e 202e umentation) => . │ │ │ │ -0001a670: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ -0001a680: 6520 6e75 6c6c 2c20 0a20 2020 2020 202a e null, . * │ │ │ │ -0001a690: 2056 6172 6961 626c 654c 6973 7420 286d VariableList (m │ │ │ │ -0001a6a0: 6973 7369 6e67 2064 6f63 756d 656e 7461 issing documenta │ │ │ │ -0001a6b0: 7469 6f6e 2920 3d3e 202e 2e2e 2c20 6465 tion) => ..., de │ │ │ │ -0001a6c0: 6661 756c 7420 7661 6c75 6520 7b7d 2c20 fault value {}, │ │ │ │ -0001a6d0: 0a20 2020 2020 202a 202a 6e6f 7465 2056 . * *note V │ │ │ │ -0001a6e0: 6572 626f 7365 3a20 6265 7274 696e 6954 erbose: bertiniT │ │ │ │ -0001a6f0: 7261 636b 486f 6d6f 746f 7079 5f6c 705f rackHomotopy_lp_ │ │ │ │ -0001a700: 7064 5f70 645f 7064 5f63 6d56 6572 626f pd_pd_pd_cmVerbo │ │ │ │ -0001a710: 7365 3d3e 5f70 645f 7064 5f70 645f 7270 se=>_pd_pd_pd_rp │ │ │ │ -0001a720: 0a20 2020 2020 2020 202c 203d 3e20 2e2e . , => .. │ │ │ │ -0001a730: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ -0001a740: 2066 616c 7365 2c20 4f70 7469 6f6e 2074 false, Option t │ │ │ │ -0001a750: 6f20 7369 6c65 6e63 6520 6164 6469 7469 o silence additi │ │ │ │ -0001a760: 6f6e 616c 206f 7574 7075 740a 0a44 6573 onal output..Des │ │ │ │ -0001a770: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -0001a780: 3d3d 3d3d 0a0a 5468 6973 2066 756e 6374 ====..This funct │ │ │ │ -0001a790: 696f 6e20 7772 6974 6573 2061 2042 6572 ion writes a Ber │ │ │ │ -0001a7a0: 7469 6e69 2069 6e70 7574 2066 696c 652e tini input file. │ │ │ │ -0001a7b0: 2054 6865 2075 7365 7220 6361 6e20 7370 The user can sp │ │ │ │ -0001a7c0: 6563 6966 7920 434f 4e46 4947 5320 666f ecify CONFIGS fo │ │ │ │ -0001a7d0: 7220 7468 650a 6669 6c65 2075 7369 6e67 r the.file using │ │ │ │ -0001a7e0: 2074 6865 2042 6572 7469 6e69 496e 7075 the BertiniInpu │ │ │ │ -0001a7f0: 7443 6f6e 6669 6775 7261 7469 6f6e 206f tConfiguration o │ │ │ │ -0001a800: 7074 696f 6e2e 2054 6865 2075 7365 7220 ption. The user │ │ │ │ -0001a810: 7368 6f75 6c64 2073 7065 6369 6679 0a76 should specify.v │ │ │ │ -0001a820: 6172 6961 626c 6520 6772 6f75 7073 2077 ariable groups w │ │ │ │ -0001a830: 6974 6820 7468 6520 4166 6656 6172 6961 ith the AffVaria │ │ │ │ -0001a840: 626c 6547 726f 7570 2028 6166 6669 6e65 bleGroup (affine │ │ │ │ -0001a850: 2076 6172 6961 626c 6520 6772 6f75 7029 variable group) │ │ │ │ -0001a860: 206f 7074 696f 6e20 6f72 0a48 6f6d 5661 option or.HomVa │ │ │ │ -0001a870: 7269 6162 6c65 4772 6f75 7020 2868 6f6d riableGroup (hom │ │ │ │ -0001a880: 6f67 656e 656f 7573 2076 6172 6961 626c ogeneous variabl │ │ │ │ -0001a890: 6520 6772 6f75 7029 206f 7074 696f 6e2e e group) option. │ │ │ │ -0001a8a0: 2054 6865 2075 7365 7220 7368 6f75 6c64 The user should │ │ │ │ -0001a8b0: 2073 7065 6369 6679 0a74 6865 2070 6f6c specify.the pol │ │ │ │ -0001a8c0: 796e 6f6d 6961 6c20 7379 7374 656d 2074 ynomial system t │ │ │ │ -0001a8d0: 6865 7920 7761 6e74 2074 6f20 736f 6c76 hey want to solv │ │ │ │ -0001a8e0: 6520 7769 7468 2074 6865 2020 4227 506f e with the B'Po │ │ │ │ -0001a8f0: 6c79 6e6f 6d69 616c 7320 6f70 7469 6f6e lynomials option │ │ │ │ -0001a900: 206f 720a 4227 4675 6e63 7469 6f6e 7320 or.B'Functions │ │ │ │ -0001a910: 6f70 7469 6f6e 2e20 4966 2042 2750 6f6c option. If B'Pol │ │ │ │ -0001a920: 796e 6f6d 6961 6c73 2069 7320 6e6f 7420 ynomials is not │ │ │ │ -0001a930: 7573 6564 2074 6865 6e20 7468 6520 7573 used then the us │ │ │ │ -0001a940: 6572 2073 686f 756c 6420 7573 6520 7468 er should use th │ │ │ │ -0001a950: 650a 4e61 6d65 506f 6c79 6e6f 6d69 616c e.NamePolynomial │ │ │ │ -0001a960: 7320 6f70 7469 6f6e 2e0a 0a2b 2d2d 2d2d s option...+---- │ │ │ │ +00019f30: 2a2a 2a0a 0a53 796e 6f70 7369 730a 3d3d ***..Synopsis.== │ │ │ │ +00019f40: 3d3d 3d3d 3d3d 0a0a 2020 2a20 5573 6167 ======.. * Usag │ │ │ │ +00019f50: 653a 200a 2020 2020 2020 2020 6d61 6b65 e: . make │ │ │ │ +00019f60: 4227 496e 7075 7446 696c 6528 7329 0a20 B'InputFile(s). │ │ │ │ +00019f70: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ +00019f80: 202a 2073 2c20 6120 2a6e 6f74 6520 7374 * s, a *note st │ │ │ │ +00019f90: 7269 6e67 3a20 284d 6163 6175 6c61 7932 ring: (Macaulay2 │ │ │ │ +00019fa0: 446f 6329 5374 7269 6e67 2c2c 2061 2064 Doc)String,, a d │ │ │ │ +00019fb0: 6972 6563 746f 7279 2077 6865 7265 2074 irectory where t │ │ │ │ +00019fc0: 6865 2069 6e70 7574 0a20 2020 2020 2020 he input. │ │ │ │ +00019fd0: 2066 696c 6520 7769 6c6c 2062 6520 7772 file will be wr │ │ │ │ +00019fe0: 6974 7465 6e0a 2020 2a20 2a6e 6f74 6520 itten. * *note │ │ │ │ +00019ff0: 4f70 7469 6f6e 616c 2069 6e70 7574 733a Optional inputs: │ │ │ │ +0001a000: 2028 4d61 6361 756c 6179 3244 6f63 2975 (Macaulay2Doc)u │ │ │ │ +0001a010: 7369 6e67 2066 756e 6374 696f 6e73 2077 sing functions w │ │ │ │ +0001a020: 6974 6820 6f70 7469 6f6e 616c 2069 6e70 ith optional inp │ │ │ │ +0001a030: 7574 732c 3a0a 2020 2020 2020 2a20 2a6e uts,:. * *n │ │ │ │ +0001a040: 6f74 6520 4166 6656 6172 6961 626c 6547 ote AffVariableG │ │ │ │ +0001a050: 726f 7570 3a20 5661 7269 6162 6c65 2067 roup: Variable g │ │ │ │ +0001a060: 726f 7570 732c 203d 3e20 2e2e 2e2c 2064 roups, => ..., d │ │ │ │ +0001a070: 6566 6175 6c74 2076 616c 7565 207b 7d2c efault value {}, │ │ │ │ +0001a080: 2061 6e0a 2020 2020 2020 2020 6f70 7469 an. opti │ │ │ │ +0001a090: 6f6e 2074 6f20 6772 6f75 7020 7661 7269 on to group vari │ │ │ │ +0001a0a0: 6162 6c65 7320 616e 6420 7573 6520 6d75 ables and use mu │ │ │ │ +0001a0b0: 6c74 6968 6f6d 6f67 656e 656f 7573 2068 ltihomogeneous h │ │ │ │ +0001a0c0: 6f6d 6f74 6f70 6965 730a 2020 2020 2020 omotopies. │ │ │ │ +0001a0d0: 2a20 2a6e 6f74 6520 4227 436f 6e73 7461 * *note B'Consta │ │ │ │ +0001a0e0: 6e74 733a 2042 2743 6f6e 7374 616e 7473 nts: B'Constants │ │ │ │ +0001a0f0: 2c20 3d3e 202e 2e2e 2c20 6465 6661 756c , => ..., defaul │ │ │ │ +0001a100: 7420 7661 6c75 6520 7b7d 2c20 616e 206f t value {}, an o │ │ │ │ +0001a110: 7074 696f 6e20 746f 0a20 2020 2020 2020 ption to. │ │ │ │ +0001a120: 2064 6573 6967 6e61 7465 2074 6865 2063 designate the c │ │ │ │ +0001a130: 6f6e 7374 616e 7473 2066 6f72 2061 2042 onstants for a B │ │ │ │ +0001a140: 6572 7469 6e69 2049 6e70 7574 2066 696c ertini Input fil │ │ │ │ +0001a150: 650a 2020 2020 2020 2a20 4227 4675 6e63 e. * B'Func │ │ │ │ +0001a160: 7469 6f6e 7320 286d 6973 7369 6e67 2064 tions (missing d │ │ │ │ +0001a170: 6f63 756d 656e 7461 7469 6f6e 2920 3d3e ocumentation) => │ │ │ │ +0001a180: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ +0001a190: 6c75 6520 7b7d 2c20 0a20 2020 2020 202a lue {}, . * │ │ │ │ +0001a1a0: 2042 2750 6f6c 796e 6f6d 6961 6c73 2028 B'Polynomials ( │ │ │ │ +0001a1b0: 6d69 7373 696e 6720 646f 6375 6d65 6e74 missing document │ │ │ │ +0001a1c0: 6174 696f 6e29 203d 3e20 2e2e 2e2c 2064 ation) => ..., d │ │ │ │ +0001a1d0: 6566 6175 6c74 2076 616c 7565 207b 7d2c efault value {}, │ │ │ │ +0001a1e0: 200a 2020 2020 2020 2a20 4265 7274 696e . * Bertin │ │ │ │ +0001a1f0: 6949 6e70 7574 436f 6e66 6967 7572 6174 iInputConfigurat │ │ │ │ +0001a200: 696f 6e20 286d 6973 7369 6e67 2064 6f63 ion (missing doc │ │ │ │ +0001a210: 756d 656e 7461 7469 6f6e 2920 3d3e 202e umentation) => . │ │ │ │ +0001a220: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ +0001a230: 650a 2020 2020 2020 2020 7b7d 2c0a 2020 e. {},. │ │ │ │ +0001a240: 2020 2020 2a20 2a6e 6f74 6520 486f 6d56 * *note HomV │ │ │ │ +0001a250: 6172 6961 626c 6547 726f 7570 3a20 5661 ariableGroup: Va │ │ │ │ +0001a260: 7269 6162 6c65 2067 726f 7570 732c 203d riable groups, = │ │ │ │ +0001a270: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ +0001a280: 616c 7565 207b 7d2c 2061 6e0a 2020 2020 alue {}, an. │ │ │ │ +0001a290: 2020 2020 6f70 7469 6f6e 2074 6f20 6772 option to gr │ │ │ │ +0001a2a0: 6f75 7020 7661 7269 6162 6c65 7320 616e oup variables an │ │ │ │ +0001a2b0: 6420 7573 6520 6d75 6c74 6968 6f6d 6f67 d use multihomog │ │ │ │ +0001a2c0: 656e 656f 7573 2068 6f6d 6f74 6f70 6965 eneous homotopie │ │ │ │ +0001a2d0: 730a 2020 2020 2020 2a20 4e61 6d65 4227 s. * NameB' │ │ │ │ +0001a2e0: 496e 7075 7446 696c 6520 286d 6973 7369 InputFile (missi │ │ │ │ +0001a2f0: 6e67 2064 6f63 756d 656e 7461 7469 6f6e ng documentation │ │ │ │ +0001a300: 2920 3d3e 202e 2e2e 2c20 6465 6661 756c ) => ..., defaul │ │ │ │ +0001a310: 7420 7661 6c75 6520 2269 6e70 7574 222c t value "input", │ │ │ │ +0001a320: 200a 2020 2020 2020 2a20 4e61 6d65 506f . * NamePo │ │ │ │ +0001a330: 6c79 6e6f 6d69 616c 7320 286d 6973 7369 lynomials (missi │ │ │ │ +0001a340: 6e67 2064 6f63 756d 656e 7461 7469 6f6e ng documentation │ │ │ │ +0001a350: 2920 3d3e 202e 2e2e 2c20 6465 6661 756c ) => ..., defaul │ │ │ │ +0001a360: 7420 7661 6c75 6520 7b7d 2c20 0a20 2020 t value {}, . │ │ │ │ +0001a370: 2020 202a 2050 6172 616d 6574 6572 4772 * ParameterGr │ │ │ │ +0001a380: 6f75 7020 286d 6973 7369 6e67 2064 6f63 oup (missing doc │ │ │ │ +0001a390: 756d 656e 7461 7469 6f6e 2920 3d3e 202e umentation) => . │ │ │ │ +0001a3a0: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ +0001a3b0: 6520 7b7d 2c20 0a20 2020 2020 202a 2050 e {}, . * P │ │ │ │ +0001a3c0: 6174 6856 6172 6961 626c 6520 286d 6973 athVariable (mis │ │ │ │ +0001a3d0: 7369 6e67 2064 6f63 756d 656e 7461 7469 sing documentati │ │ │ │ +0001a3e0: 6f6e 2920 3d3e 202e 2e2e 2c20 6465 6661 on) => ..., defa │ │ │ │ +0001a3f0: 756c 7420 7661 6c75 6520 7b7d 2c20 0a20 ult value {}, . │ │ │ │ +0001a400: 2020 2020 202a 202a 6e6f 7465 2052 616e * *note Ran │ │ │ │ +0001a410: 646f 6d43 6f6d 706c 6578 3a20 4265 7274 domComplex: Bert │ │ │ │ +0001a420: 696e 6920 696e 7075 7420 6669 6c65 2064 ini input file d │ │ │ │ +0001a430: 6563 6c61 7261 7469 6f6e 735f 636f 2072 eclarations_co r │ │ │ │ +0001a440: 616e 646f 6d20 6e75 6d62 6572 732c 0a20 andom numbers,. │ │ │ │ +0001a450: 2020 2020 2020 203d 3e20 2e2e 2e2c 2064 => ..., d │ │ │ │ +0001a460: 6566 6175 6c74 2076 616c 7565 207b 7d2c efault value {}, │ │ │ │ +0001a470: 2061 6e20 6f70 7469 6f6e 2077 6869 6368 an option which │ │ │ │ +0001a480: 2064 6573 6967 6e61 7465 730a 2020 2020 designates. │ │ │ │ +0001a490: 2020 2020 7379 6d62 6f6c 732f 7374 7269 symbols/stri │ │ │ │ +0001a4a0: 6e67 732f 7661 7269 6162 6c65 7320 7468 ngs/variables th │ │ │ │ +0001a4b0: 6174 2077 696c 6c20 6265 2073 6574 2074 at will be set t │ │ │ │ +0001a4c0: 6f20 6265 2061 2072 616e 646f 6d20 7265 o be a random re │ │ │ │ +0001a4d0: 616c 206e 756d 6265 720a 2020 2020 2020 al number. │ │ │ │ +0001a4e0: 2020 6f72 2072 616e 646f 6d20 636f 6d70 or random comp │ │ │ │ +0001a4f0: 6c65 7820 6e75 6d62 6572 0a20 2020 2020 lex number. │ │ │ │ +0001a500: 202a 202a 6e6f 7465 2052 616e 646f 6d52 * *note RandomR │ │ │ │ +0001a510: 6561 6c3a 2042 6572 7469 6e69 2069 6e70 eal: Bertini inp │ │ │ │ +0001a520: 7574 2066 696c 6520 6465 636c 6172 6174 ut file declarat │ │ │ │ +0001a530: 696f 6e73 5f63 6f20 7261 6e64 6f6d 206e ions_co random n │ │ │ │ +0001a540: 756d 6265 7273 2c20 3d3e 0a20 2020 2020 umbers, =>. │ │ │ │ +0001a550: 2020 202e 2e2e 2c20 6465 6661 756c 7420 ..., default │ │ │ │ +0001a560: 7661 6c75 6520 7b7d 2c20 616e 206f 7074 value {}, an opt │ │ │ │ +0001a570: 696f 6e20 7768 6963 6820 6465 7369 676e ion which design │ │ │ │ +0001a580: 6174 6573 0a20 2020 2020 2020 2073 796d ates. sym │ │ │ │ +0001a590: 626f 6c73 2f73 7472 696e 6773 2f76 6172 bols/strings/var │ │ │ │ +0001a5a0: 6961 626c 6573 2074 6861 7420 7769 6c6c iables that will │ │ │ │ +0001a5b0: 2062 6520 7365 7420 746f 2062 6520 6120 be set to be a │ │ │ │ +0001a5c0: 7261 6e64 6f6d 2072 6561 6c20 6e75 6d62 random real numb │ │ │ │ +0001a5d0: 6572 0a20 2020 2020 2020 206f 7220 7261 er. or ra │ │ │ │ +0001a5e0: 6e64 6f6d 2063 6f6d 706c 6578 206e 756d ndom complex num │ │ │ │ +0001a5f0: 6265 720a 2020 2020 2020 2a20 5365 7450 ber. * SetP │ │ │ │ +0001a600: 6172 616d 6574 6572 4772 6f75 7020 286d arameterGroup (m │ │ │ │ +0001a610: 6973 7369 6e67 2064 6f63 756d 656e 7461 issing documenta │ │ │ │ +0001a620: 7469 6f6e 2920 3d3e 202e 2e2e 2c20 6465 tion) => ..., de │ │ │ │ +0001a630: 6661 756c 7420 7661 6c75 6520 7b7d 2c20 fault value {}, │ │ │ │ +0001a640: 0a20 2020 2020 202a 2053 746f 7261 6765 . * Storage │ │ │ │ +0001a650: 466f 6c64 6572 2028 6d69 7373 696e 6720 Folder (missing │ │ │ │ +0001a660: 646f 6375 6d65 6e74 6174 696f 6e29 203d documentation) = │ │ │ │ +0001a670: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ +0001a680: 616c 7565 206e 756c 6c2c 200a 2020 2020 alue null, . │ │ │ │ +0001a690: 2020 2a20 5661 7269 6162 6c65 4c69 7374 * VariableList │ │ │ │ +0001a6a0: 2028 6d69 7373 696e 6720 646f 6375 6d65 (missing docume │ │ │ │ +0001a6b0: 6e74 6174 696f 6e29 203d 3e20 2e2e 2e2c ntation) => ..., │ │ │ │ +0001a6c0: 2064 6566 6175 6c74 2076 616c 7565 207b default value { │ │ │ │ +0001a6d0: 7d2c 200a 2020 2020 2020 2a20 2a6e 6f74 }, . * *not │ │ │ │ +0001a6e0: 6520 5665 7262 6f73 653a 2062 6572 7469 e Verbose: berti │ │ │ │ +0001a6f0: 6e69 5472 6163 6b48 6f6d 6f74 6f70 795f niTrackHomotopy_ │ │ │ │ +0001a700: 6c70 5f70 645f 7064 5f70 645f 636d 5665 lp_pd_pd_pd_cmVe │ │ │ │ +0001a710: 7262 6f73 653d 3e5f 7064 5f70 645f 7064 rbose=>_pd_pd_pd │ │ │ │ +0001a720: 5f72 700a 2020 2020 2020 2020 2c20 3d3e _rp. , => │ │ │ │ +0001a730: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ +0001a740: 6c75 6520 6661 6c73 652c 204f 7074 696f lue false, Optio │ │ │ │ +0001a750: 6e20 746f 2073 696c 656e 6365 2061 6464 n to silence add │ │ │ │ +0001a760: 6974 696f 6e61 6c20 6f75 7470 7574 0a0a itional output.. │ │ │ │ +0001a770: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +0001a780: 3d3d 3d3d 3d3d 3d0a 0a54 6869 7320 6675 =======..This fu │ │ │ │ +0001a790: 6e63 7469 6f6e 2077 7269 7465 7320 6120 nction writes a │ │ │ │ +0001a7a0: 4265 7274 696e 6920 696e 7075 7420 6669 Bertini input fi │ │ │ │ +0001a7b0: 6c65 2e20 5468 6520 7573 6572 2063 616e le. The user can │ │ │ │ +0001a7c0: 2073 7065 6369 6679 2043 4f4e 4649 4753 specify CONFIGS │ │ │ │ +0001a7d0: 2066 6f72 2074 6865 0a66 696c 6520 7573 for the.file us │ │ │ │ +0001a7e0: 696e 6720 7468 6520 4265 7274 696e 6949 ing the BertiniI │ │ │ │ +0001a7f0: 6e70 7574 436f 6e66 6967 7572 6174 696f nputConfiguratio │ │ │ │ +0001a800: 6e20 6f70 7469 6f6e 2e20 5468 6520 7573 n option. The us │ │ │ │ +0001a810: 6572 2073 686f 756c 6420 7370 6563 6966 er should specif │ │ │ │ +0001a820: 790a 7661 7269 6162 6c65 2067 726f 7570 y.variable group │ │ │ │ +0001a830: 7320 7769 7468 2074 6865 2041 6666 5661 s with the AffVa │ │ │ │ +0001a840: 7269 6162 6c65 4772 6f75 7020 2861 6666 riableGroup (aff │ │ │ │ +0001a850: 696e 6520 7661 7269 6162 6c65 2067 726f ine variable gro │ │ │ │ +0001a860: 7570 2920 6f70 7469 6f6e 206f 720a 486f up) option or.Ho │ │ │ │ +0001a870: 6d56 6172 6961 626c 6547 726f 7570 2028 mVariableGroup ( │ │ │ │ +0001a880: 686f 6d6f 6765 6e65 6f75 7320 7661 7269 homogeneous vari │ │ │ │ +0001a890: 6162 6c65 2067 726f 7570 2920 6f70 7469 able group) opti │ │ │ │ +0001a8a0: 6f6e 2e20 5468 6520 7573 6572 2073 686f on. The user sho │ │ │ │ +0001a8b0: 756c 6420 7370 6563 6966 790a 7468 6520 uld specify.the │ │ │ │ +0001a8c0: 706f 6c79 6e6f 6d69 616c 2073 7973 7465 polynomial syste │ │ │ │ +0001a8d0: 6d20 7468 6579 2077 616e 7420 746f 2073 m they want to s │ │ │ │ +0001a8e0: 6f6c 7665 2077 6974 6820 7468 6520 2042 olve with the B │ │ │ │ +0001a8f0: 2750 6f6c 796e 6f6d 6961 6c73 206f 7074 'Polynomials opt │ │ │ │ +0001a900: 696f 6e20 6f72 0a42 2746 756e 6374 696f ion or.B'Functio │ │ │ │ +0001a910: 6e73 206f 7074 696f 6e2e 2049 6620 4227 ns option. If B' │ │ │ │ +0001a920: 506f 6c79 6e6f 6d69 616c 7320 6973 206e Polynomials is n │ │ │ │ +0001a930: 6f74 2075 7365 6420 7468 656e 2074 6865 ot used then the │ │ │ │ +0001a940: 2075 7365 7220 7368 6f75 6c64 2075 7365 user should use │ │ │ │ +0001a950: 2074 6865 0a4e 616d 6550 6f6c 796e 6f6d the.NamePolynom │ │ │ │ +0001a960: 6961 6c73 206f 7074 696f 6e2e 0a0a 2b2d ials option...+- │ │ │ │ 0001a970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a9a0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 -------+.|i1 : R │ │ │ │ -0001a9b0: 3d51 515b 7831 2c78 322c 795d 2020 2020 =QQ[x1,x2,y] │ │ │ │ +0001a9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ +0001a9b0: 3a20 523d 5151 5b78 312c 7832 2c79 5d20 : R=QQ[x1,x2,y] │ │ │ │ 0001a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a9e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001a9e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 0001a9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa20: 2020 207c 0a7c 6f31 203d 2052 2020 2020 |.|o1 = R │ │ │ │ +0001aa20: 2020 2020 2020 7c0a 7c6f 3120 3d20 5220 |.|o1 = R │ │ │ │ 0001aa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001aa60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 0001aa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001aaa0: 0a7c 6f31 203a 2050 6f6c 796e 6f6d 6961 .|o1 : Polynomia │ │ │ │ -0001aab0: 6c52 696e 6720 2020 2020 2020 2020 2020 lRing │ │ │ │ +0001aa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aaa0: 2020 7c0a 7c6f 3120 3a20 506f 6c79 6e6f |.|o1 : Polyno │ │ │ │ +0001aab0: 6d69 616c 5269 6e67 2020 2020 2020 2020 mialRing │ │ │ │ 0001aac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aad0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -0001aae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aae0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0001aaf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ab00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ab10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -0001ab20: 203a 2074 6865 4469 7220 3d20 7465 6d70 : theDir = temp │ │ │ │ -0001ab30: 6f72 6172 7946 696c 654e 616d 6528 293b oraryFileName(); │ │ │ │ -0001ab40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab50: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001ab10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0001ab20: 7c69 3220 3a20 7468 6544 6972 203d 2074 |i2 : theDir = t │ │ │ │ +0001ab30: 656d 706f 7261 7279 4669 6c65 4e61 6d65 emporaryFileName │ │ │ │ +0001ab40: 2829 3b20 2020 2020 2020 2020 2020 2020 (); │ │ │ │ +0001ab50: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 0001ab60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ab70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ab80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ab90: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 206d -------+.|i3 : m │ │ │ │ -0001aba0: 616b 6544 6972 6563 746f 7279 2074 6865 akeDirectory the │ │ │ │ -0001abb0: 4469 7220 2020 2020 2020 2020 2020 2020 Dir │ │ │ │ +0001ab90: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ +0001aba0: 3a20 6d61 6b65 4469 7265 6374 6f72 7920 : makeDirectory │ │ │ │ +0001abb0: 7468 6544 6972 2020 2020 2020 2020 2020 theDir │ │ │ │ 0001abc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001abd0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001abd0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ 0001abe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001abf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ac00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ac10: 2d2d 2d2b 0a7c 6934 203a 206d 616b 6542 ---+.|i4 : makeB │ │ │ │ -0001ac20: 2749 6e70 7574 4669 6c65 2874 6865 4469 'InputFile(theDi │ │ │ │ -0001ac30: 722c 2020 2020 2020 2020 2020 2020 2020 r, │ │ │ │ +0001ac10: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 6d61 ------+.|i4 : ma │ │ │ │ +0001ac20: 6b65 4227 496e 7075 7446 696c 6528 7468 keB'InputFile(th │ │ │ │ +0001ac30: 6544 6972 2c20 2020 2020 2020 2020 2020 eDir, │ │ │ │ 0001ac40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ac50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001ac60: 2042 6572 7469 6e69 496e 7075 7443 6f6e BertiniInputCon │ │ │ │ -0001ac70: 6669 6775 7261 7469 6f6e 3d3e 7b4d 5054 figuration=>{MPT │ │ │ │ -0001ac80: 7970 653d 3e32 7d2c 2020 2020 2020 207c ype=>2}, | │ │ │ │ -0001ac90: 0a7c 2020 2020 2020 2020 2041 6666 5661 .| AffVa │ │ │ │ -0001aca0: 7269 6162 6c65 4772 6f75 703d 3e7b 7b78 riableGroup=>{{x │ │ │ │ -0001acb0: 312c 7832 7d2c 7b79 7d7d 2c20 2020 2020 1,x2},{y}}, │ │ │ │ -0001acc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001acd0: 2020 2020 2020 2020 2020 2020 2042 2750 B'P │ │ │ │ -0001ace0: 6f6c 796e 6f6d 6961 6c73 3d3e 7b79 2a28 olynomials=>{y*( │ │ │ │ -0001acf0: 7831 2b78 322b 3129 5e32 2b31 2c78 312d x1+x2+1)^2+1,x1- │ │ │ │ -0001ad00: 7832 2b31 2c79 2d32 7d29 3b7c 0a2b 2d2d x2+1,y-2});|.+-- │ │ │ │ -0001ad10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ac50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001ac60: 2020 2020 4265 7274 696e 6949 6e70 7574 BertiniInput │ │ │ │ +0001ac70: 436f 6e66 6967 7572 6174 696f 6e3d 3e7b Configuration=>{ │ │ │ │ +0001ac80: 4d50 5479 7065 3d3e 327d 2c20 2020 2020 MPType=>2}, │ │ │ │ +0001ac90: 2020 7c0a 7c20 2020 2020 2020 2020 4166 |.| Af │ │ │ │ +0001aca0: 6656 6172 6961 626c 6547 726f 7570 3d3e fVariableGroup=> │ │ │ │ +0001acb0: 7b7b 7831 2c78 327d 2c7b 797d 7d2c 2020 {{x1,x2},{y}}, │ │ │ │ +0001acc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001acd0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001ace0: 4227 506f 6c79 6e6f 6d69 616c 733d 3e7b B'Polynomials=>{ │ │ │ │ +0001acf0: 792a 2878 312b 7832 2b31 295e 322b 312c y*(x1+x2+1)^2+1, │ │ │ │ +0001ad00: 7831 2d78 322b 312c 792d 327d 293b 7c0a x1-x2+1,y-2});|. │ │ │ │ +0001ad10: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0001ad20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ad30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ad40: 2d2d 2d2d 2d2d 2d2d 2d2b 0a2b 2d2d 2d2d ---------+.+---- │ │ │ │ +0001ad40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 2b2d ------------+.+- │ │ │ │ 0001ad50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ad60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ad70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ad80: 2b0a 7c69 3520 3a20 523d 5151 5b78 312c +.|i5 : R=QQ[x1, │ │ │ │ -0001ad90: 7832 2c79 2c58 5d20 2020 2020 2020 2020 x2,y,X] │ │ │ │ +0001ad80: 2d2d 2d2b 0a7c 6935 203a 2052 3d51 515b ---+.|i5 : R=QQ[ │ │ │ │ +0001ad90: 7831 2c78 322c 792c 585d 2020 2020 2020 x1,x2,y,X] │ │ │ │ 0001ada0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001adb0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001adb0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 0001adc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ade0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001adf0: 7c6f 3520 3d20 5220 2020 2020 2020 2020 |o5 = R │ │ │ │ +0001ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001adf0: 207c 0a7c 6f35 203d 2052 2020 2020 2020 |.|o5 = R │ │ │ │ 0001ae00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ae10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001ae20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 0001ae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae50: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001ae60: 3520 3a20 506f 6c79 6e6f 6d69 616c 5269 5 : PolynomialRi │ │ │ │ -0001ae70: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ +0001ae50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001ae60: 0a7c 6f35 203a 2050 6f6c 796e 6f6d 6961 .|o5 : Polynomia │ │ │ │ +0001ae70: 6c52 696e 6720 2020 2020 2020 2020 2020 lRing │ │ │ │ 0001ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae90: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0001ae90: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 0001aea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001aeb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001aec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 ----------+.|i6 │ │ │ │ -0001aed0: 3a20 6d61 6b65 4227 496e 7075 7446 696c : makeB'InputFil │ │ │ │ -0001aee0: 6528 7468 6544 6972 2c20 2020 2020 2020 e(theDir, │ │ │ │ +0001aec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0001aed0: 6936 203a 206d 616b 6542 2749 6e70 7574 i6 : makeB'Input │ │ │ │ +0001aee0: 4669 6c65 2874 6865 4469 722c 2020 2020 File(theDir, │ │ │ │ 0001aef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001af00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001af10: 2042 6572 7469 6e69 496e 7075 7443 6f6e BertiniInputCon │ │ │ │ -0001af20: 6669 6775 7261 7469 6f6e 3d3e 7b4d 5054 figuration=>{MPT │ │ │ │ -0001af30: 7970 653d 3e32 7d2c 7c0a 7c20 2020 2020 ype=>2},|.| │ │ │ │ -0001af40: 2020 2020 4166 6656 6172 6961 626c 6547 AffVariableG │ │ │ │ -0001af50: 726f 7570 3d3e 7b7b 7831 2c78 327d 2c7b roup=>{{x1,x2},{ │ │ │ │ -0001af60: 797d 7d2c 2020 2020 2020 2020 2020 207c y}}, | │ │ │ │ -0001af70: 0a7c 2020 2020 2020 2020 2020 2020 204e .| N │ │ │ │ -0001af80: 616d 6550 6f6c 796e 6f6d 6961 6c73 3d3e amePolynomials=> │ │ │ │ -0001af90: 7b66 312c 6632 2c66 337d 2c20 2020 2020 {f1,f2,f3}, │ │ │ │ -0001afa0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001afb0: 2020 2020 2020 4227 4675 6e63 7469 6f6e B'Function │ │ │ │ -0001afc0: 733d 3e7b 2020 2020 2020 2020 2020 2020 s=>{ │ │ │ │ -0001afd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001afe0: 2020 2020 2020 2020 2020 2020 7b58 2c78 {X,x │ │ │ │ -0001aff0: 312b 7832 2b31 7d2c 2020 2020 2020 2020 1+x2+1}, │ │ │ │ +0001af00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001af10: 2020 2020 4265 7274 696e 6949 6e70 7574 BertiniInput │ │ │ │ +0001af20: 436f 6e66 6967 7572 6174 696f 6e3d 3e7b Configuration=>{ │ │ │ │ +0001af30: 4d50 5479 7065 3d3e 327d 2c7c 0a7c 2020 MPType=>2},|.| │ │ │ │ +0001af40: 2020 2020 2020 2041 6666 5661 7269 6162 AffVariab │ │ │ │ +0001af50: 6c65 4772 6f75 703d 3e7b 7b78 312c 7832 leGroup=>{{x1,x2 │ │ │ │ +0001af60: 7d2c 7b79 7d7d 2c20 2020 2020 2020 2020 },{y}}, │ │ │ │ +0001af70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001af80: 2020 4e61 6d65 506f 6c79 6e6f 6d69 616c NamePolynomial │ │ │ │ +0001af90: 733d 3e7b 6631 2c66 322c 6633 7d2c 2020 s=>{f1,f2,f3}, │ │ │ │ +0001afa0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001afb0: 2020 2020 2020 2020 2042 2746 756e 6374 B'Funct │ │ │ │ +0001afc0: 696f 6e73 3d3e 7b20 2020 2020 2020 2020 ions=>{ │ │ │ │ +0001afd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001afe0: 7c0a 7c20 2020 2020 2020 2020 2020 207b |.| { │ │ │ │ +0001aff0: 582c 7831 2b78 322b 317d 2c20 2020 2020 X,x1+x2+1}, │ │ │ │ 0001b000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b010: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001b020: 2020 207b 6631 2c79 2a58 5e32 2b31 7d2c {f1,y*X^2+1}, │ │ │ │ -0001b030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b040: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b050: 2020 2020 2020 2020 2020 7b66 322c 7831 {f2,x1 │ │ │ │ -0001b060: 2d78 322b 317d 2c20 2020 2020 2020 2020 -x2+1}, │ │ │ │ +0001b010: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001b020: 2020 2020 2020 7b66 312c 792a 585e 322b {f1,y*X^2+ │ │ │ │ +0001b030: 317d 2c20 2020 2020 2020 2020 2020 2020 1}, │ │ │ │ +0001b040: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001b050: 7c20 2020 2020 2020 2020 2020 207b 6632 | {f2 │ │ │ │ +0001b060: 2c78 312d 7832 2b31 7d2c 2020 2020 2020 ,x1-x2+1}, │ │ │ │ 0001b070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b080: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001b090: 207b 6633 2c79 2d32 7d7d 293b 2020 2020 {f3,y-2}}); │ │ │ │ +0001b080: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001b090: 2020 2020 7b66 332c 792d 327d 7d29 3b20 {f3,y-2}}); │ │ │ │ 0001b0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b0b0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001b0b0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 0001b0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b0f0: 2b0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +.+------------- │ │ │ │ +0001b0f0: 2d2d 2d2b 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d ---+.+---------- │ │ │ │ 0001b100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b120: 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a 2052 -------+.|i7 : R │ │ │ │ -0001b130: 3d51 515b 7831 2c78 322c 792c 585d 2020 =QQ[x1,x2,y,X] │ │ │ │ -0001b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b150: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001b160: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0001b120: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 ----------+.|i7 │ │ │ │ +0001b130: 3a20 523d 5151 5b78 312c 7832 2c79 2c58 : R=QQ[x1,x2,y,X │ │ │ │ +0001b140: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +0001b150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b160: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b190: 2020 2020 207c 0a7c 6f37 203d 2052 2020 |.|o7 = R │ │ │ │ -0001b1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b190: 2020 2020 2020 2020 7c0a 7c6f 3720 3d20 |.|o7 = │ │ │ │ +0001b1a0: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 0001b1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b1c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001b1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b1c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001b1d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001b1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b200: 2020 207c 0a7c 6f37 203a 2050 6f6c 796e |.|o7 : Polyn │ │ │ │ -0001b210: 6f6d 6961 6c52 696e 6720 2020 2020 2020 omialRing │ │ │ │ +0001b200: 2020 2020 2020 7c0a 7c6f 3720 3a20 506f |.|o7 : Po │ │ │ │ +0001b210: 6c79 6e6f 6d69 616c 5269 6e67 2020 2020 lynomialRing │ │ │ │ 0001b220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b230: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001b230: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 0001b240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b270: 2d2b 0a7c 6938 203a 206d 616b 6542 2749 -+.|i8 : makeB'I │ │ │ │ -0001b280: 6e70 7574 4669 6c65 2874 6865 4469 722c nputFile(theDir, │ │ │ │ -0001b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b2a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001b2b0: 2020 2020 2020 2020 2042 6572 7469 6e69 Bertini │ │ │ │ -0001b2c0: 496e 7075 7443 6f6e 6669 6775 7261 7469 InputConfigurati │ │ │ │ -0001b2d0: 6f6e 3d3e 7b4d 5079 7065 3d3e 327d 2c7c on=>{MPype=>2},| │ │ │ │ -0001b2e0: 0a7c 2020 2020 2020 2020 2020 4166 6656 .| AffV │ │ │ │ -0001b2f0: 6172 6961 626c 6547 726f 7570 3d3e 7b7b ariableGroup=>{{ │ │ │ │ -0001b300: 7831 2c78 327d 2c7b 797d 7d2c 2020 2020 x1,x2},{y}}, │ │ │ │ -0001b310: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001b320: 2020 2020 2020 2020 4227 506f 6c79 6e6f B'Polyno │ │ │ │ -0001b330: 6d69 616c 733d 3e7b 792a 585e 322b 312c mials=>{y*X^2+1, │ │ │ │ -0001b340: 7831 2d78 322b 312c 792d 327d 2c7c 0a7c x1-x2+1,y-2},|.| │ │ │ │ -0001b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b360: 4227 4675 6e63 7469 6f6e 733d 3e7b 2020 B'Functions=>{ │ │ │ │ -0001b370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b380: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001b390: 2020 2020 2020 2020 2020 7b58 2c78 312b {X,x1+ │ │ │ │ -0001b3a0: 7832 2b31 7d7d 293b 2020 2020 2020 2020 x2+1}}); │ │ │ │ -0001b3b0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -0001b3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b270: 2d2d 2d2d 2b0a 7c69 3820 3a20 6d61 6b65 ----+.|i8 : make │ │ │ │ +0001b280: 4227 496e 7075 7446 696c 6528 7468 6544 B'InputFile(theD │ │ │ │ +0001b290: 6972 2c20 2020 2020 2020 2020 2020 2020 ir, │ │ │ │ +0001b2a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001b2b0: 2020 2020 2020 2020 2020 2020 4265 7274 Bert │ │ │ │ +0001b2c0: 696e 6949 6e70 7574 436f 6e66 6967 7572 iniInputConfigur │ │ │ │ +0001b2d0: 6174 696f 6e3d 3e7b 4d50 7970 653d 3e32 ation=>{MPype=>2 │ │ │ │ +0001b2e0: 7d2c 7c0a 7c20 2020 2020 2020 2020 2041 },|.| A │ │ │ │ +0001b2f0: 6666 5661 7269 6162 6c65 4772 6f75 703d ffVariableGroup= │ │ │ │ +0001b300: 3e7b 7b78 312c 7832 7d2c 7b79 7d7d 2c20 >{{x1,x2},{y}}, │ │ │ │ +0001b310: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001b320: 2020 2020 2020 2020 2020 2042 2750 6f6c B'Pol │ │ │ │ +0001b330: 796e 6f6d 6961 6c73 3d3e 7b79 2a58 5e32 ynomials=>{y*X^2 │ │ │ │ +0001b340: 2b31 2c78 312d 7832 2b31 2c79 2d32 7d2c +1,x1-x2+1,y-2}, │ │ │ │ +0001b350: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001b360: 2020 2042 2746 756e 6374 696f 6e73 3d3e B'Functions=> │ │ │ │ +0001b370: 7b20 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ +0001b380: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001b390: 2020 2020 2020 2020 2020 2020 207b 582c {X, │ │ │ │ +0001b3a0: 7831 2b78 322b 317d 7d29 3b20 2020 2020 x1+x2+1}}); │ │ │ │ +0001b3b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001b3c0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0001b3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b3f0: 2d2d 2b0a 0a56 6172 6961 626c 6573 206d --+..Variables m │ │ │ │ -0001b400: 7573 7420 6265 6769 6e20 7769 7468 2061 ust begin with a │ │ │ │ -0001b410: 206c 6574 7465 7220 286c 6f77 6572 6361 letter (lowerca │ │ │ │ -0001b420: 7365 206f 7220 6361 7069 7461 6c29 2061 se or capital) a │ │ │ │ -0001b430: 6e64 2063 616e 206f 6e6c 7920 636f 6e74 nd can only cont │ │ │ │ -0001b440: 6169 6e0a 6c65 7474 6572 732c 206e 756d ain.letters, num │ │ │ │ -0001b450: 6265 7273 2c20 756e 6465 7273 636f 7265 bers, underscore │ │ │ │ -0001b460: 732c 2061 6e64 2073 7175 6172 6520 6272 s, and square br │ │ │ │ -0001b470: 6163 6b65 7473 2e20 226a 6164 6522 2073 ackets. "jade" s │ │ │ │ -0001b480: 686f 756c 6420 6e6f 7420 6265 2075 7365 hould not be use │ │ │ │ -0001b490: 640a 696e 2061 6e79 2065 7870 7265 7373 d.in any express │ │ │ │ -0001b4a0: 696f 6e2e 2022 4922 2063 616e 206f 6e6c ion. "I" can onl │ │ │ │ -0001b4b0: 7920 6265 2075 7365 6420 746f 2072 6570 y be used to rep │ │ │ │ -0001b4c0: 7265 7365 6e74 2074 6865 2063 6f6d 706c resent the compl │ │ │ │ -0001b4d0: 6578 206e 756d 6265 720a 7371 7274 282d ex number.sqrt(- │ │ │ │ -0001b4e0: 3129 2e0a 0a57 6179 7320 746f 2075 7365 1)...Ways to use │ │ │ │ -0001b4f0: 206d 616b 6542 2749 6e70 7574 4669 6c65 makeB'InputFile │ │ │ │ -0001b500: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -0001b510: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -0001b520: 2020 2a20 226d 616b 6542 2749 6e70 7574 * "makeB'Input │ │ │ │ -0001b530: 4669 6c65 2853 7472 696e 6729 220a 0a46 File(String)"..F │ │ │ │ -0001b540: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -0001b550: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -0001b560: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -0001b570: 202a 6e6f 7465 206d 616b 6542 2749 6e70 *note makeB'Inp │ │ │ │ -0001b580: 7574 4669 6c65 3a20 6d61 6b65 4227 496e utFile: makeB'In │ │ │ │ -0001b590: 7075 7446 696c 652c 2069 7320 6120 2a6e putFile, is a *n │ │ │ │ -0001b5a0: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ -0001b5b0: 696f 6e0a 7769 7468 206f 7074 696f 6e73 ion.with options │ │ │ │ -0001b5c0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -0001b5d0: 4d65 7468 6f64 4675 6e63 7469 6f6e 5769 MethodFunctionWi │ │ │ │ -0001b5e0: 7468 4f70 7469 6f6e 732c 2e0a 1f0a 4669 thOptions,....Fi │ │ │ │ -0001b5f0: 6c65 3a20 4265 7274 696e 692e 696e 666f le: Bertini.info │ │ │ │ -0001b600: 2c20 4e6f 6465 3a20 6d61 6b65 4227 5365 , Node: makeB'Se │ │ │ │ -0001b610: 6374 696f 6e2c 204e 6578 743a 206d 616b ction, Next: mak │ │ │ │ -0001b620: 6542 2753 6c69 6365 2c20 5072 6576 3a20 eB'Slice, Prev: │ │ │ │ -0001b630: 6d61 6b65 4227 496e 7075 7446 696c 652c makeB'InputFile, │ │ │ │ -0001b640: 2055 703a 2054 6f70 0a0a 6d61 6b65 4227 Up: Top..makeB' │ │ │ │ -0001b650: 5365 6374 696f 6e20 2d2d 206d 616b 6542 Section -- makeB │ │ │ │ -0001b660: 2753 6563 7469 6f6e 2063 7265 6174 6573 'Section creates │ │ │ │ -0001b670: 2061 2068 6173 6820 7461 626c 6520 7468 a hash table th │ │ │ │ -0001b680: 6174 2072 6570 7265 7365 6e74 7320 6120 at represents a │ │ │ │ -0001b690: 6879 7065 7270 6c61 6e65 2e0a 2a2a 2a2a hyperplane..**** │ │ │ │ +0001b3f0: 2d2d 2d2d 2d2b 0a0a 5661 7269 6162 6c65 -----+..Variable │ │ │ │ +0001b400: 7320 6d75 7374 2062 6567 696e 2077 6974 s must begin wit │ │ │ │ +0001b410: 6820 6120 6c65 7474 6572 2028 6c6f 7765 h a letter (lowe │ │ │ │ +0001b420: 7263 6173 6520 6f72 2063 6170 6974 616c rcase or capital │ │ │ │ +0001b430: 2920 616e 6420 6361 6e20 6f6e 6c79 2063 ) and can only c │ │ │ │ +0001b440: 6f6e 7461 696e 0a6c 6574 7465 7273 2c20 ontain.letters, │ │ │ │ +0001b450: 6e75 6d62 6572 732c 2075 6e64 6572 7363 numbers, undersc │ │ │ │ +0001b460: 6f72 6573 2c20 616e 6420 7371 7561 7265 ores, and square │ │ │ │ +0001b470: 2062 7261 636b 6574 732e 2022 6a61 6465 brackets. "jade │ │ │ │ +0001b480: 2220 7368 6f75 6c64 206e 6f74 2062 6520 " should not be │ │ │ │ +0001b490: 7573 6564 0a69 6e20 616e 7920 6578 7072 used.in any expr │ │ │ │ +0001b4a0: 6573 7369 6f6e 2e20 2249 2220 6361 6e20 ession. "I" can │ │ │ │ +0001b4b0: 6f6e 6c79 2062 6520 7573 6564 2074 6f20 only be used to │ │ │ │ +0001b4c0: 7265 7072 6573 656e 7420 7468 6520 636f represent the co │ │ │ │ +0001b4d0: 6d70 6c65 7820 6e75 6d62 6572 0a73 7172 mplex number.sqr │ │ │ │ +0001b4e0: 7428 2d31 292e 0a0a 5761 7973 2074 6f20 t(-1)...Ways to │ │ │ │ +0001b4f0: 7573 6520 6d61 6b65 4227 496e 7075 7446 use makeB'InputF │ │ │ │ +0001b500: 696c 653a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d ile:.=========== │ │ │ │ +0001b510: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001b520: 3d0a 0a20 202a 2022 6d61 6b65 4227 496e =.. * "makeB'In │ │ │ │ +0001b530: 7075 7446 696c 6528 5374 7269 6e67 2922 putFile(String)" │ │ │ │ +0001b540: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +0001b550: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +0001b560: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +0001b570: 6563 7420 2a6e 6f74 6520 6d61 6b65 4227 ect *note makeB' │ │ │ │ +0001b580: 496e 7075 7446 696c 653a 206d 616b 6542 InputFile: makeB │ │ │ │ +0001b590: 2749 6e70 7574 4669 6c65 2c20 6973 2061 'InputFile, is a │ │ │ │ +0001b5a0: 202a 6e6f 7465 206d 6574 686f 6420 6675 *note method fu │ │ │ │ +0001b5b0: 6e63 7469 6f6e 0a77 6974 6820 6f70 7469 nction.with opti │ │ │ │ +0001b5c0: 6f6e 733a 2028 4d61 6361 756c 6179 3244 ons: (Macaulay2D │ │ │ │ +0001b5d0: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ +0001b5e0: 6e57 6974 684f 7074 696f 6e73 2c2e 0a1f nWithOptions,... │ │ │ │ +0001b5f0: 0a46 696c 653a 2042 6572 7469 6e69 2e69 .File: Bertini.i │ │ │ │ +0001b600: 6e66 6f2c 204e 6f64 653a 206d 616b 6542 nfo, Node: makeB │ │ │ │ +0001b610: 2753 6563 7469 6f6e 2c20 4e65 7874 3a20 'Section, Next: │ │ │ │ +0001b620: 6d61 6b65 4227 536c 6963 652c 2050 7265 makeB'Slice, Pre │ │ │ │ +0001b630: 763a 206d 616b 6542 2749 6e70 7574 4669 v: makeB'InputFi │ │ │ │ +0001b640: 6c65 2c20 5570 3a20 546f 700a 0a6d 616b le, Up: Top..mak │ │ │ │ +0001b650: 6542 2753 6563 7469 6f6e 202d 2d20 6d61 eB'Section -- ma │ │ │ │ +0001b660: 6b65 4227 5365 6374 696f 6e20 6372 6561 keB'Section crea │ │ │ │ +0001b670: 7465 7320 6120 6861 7368 2074 6162 6c65 tes a hash table │ │ │ │ +0001b680: 2074 6861 7420 7265 7072 6573 656e 7473 that represents │ │ │ │ +0001b690: 2061 2068 7970 6572 706c 616e 652e 0a2a a hyperplane..* │ │ │ │ 0001b6a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001b6b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001b6c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001b6d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001b6e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 *************..S │ │ │ │ -0001b6f0: 796e 6f70 7369 730a 3d3d 3d3d 3d3d 3d3d ynopsis.======== │ │ │ │ -0001b700: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ -0001b710: 2020 2020 2020 6d61 6b65 4227 5365 6374 makeB'Sect │ │ │ │ -0001b720: 696f 6e28 6c29 0a20 202a 2049 6e70 7574 ion(l). * Input │ │ │ │ -0001b730: 733a 0a20 2020 2020 202a 206c 2c20 6120 s:. * l, a │ │ │ │ -0001b740: 2a6e 6f74 6520 6c69 7374 3a20 284d 6163 *note list: (Mac │ │ │ │ -0001b750: 6175 6c61 7932 446f 6329 4c69 7374 2c2c aulay2Doc)List,, │ │ │ │ -0001b760: 2041 206c 6973 7420 6f66 2076 6172 6961 A list of varia │ │ │ │ -0001b770: 626c 6573 2e0a 2020 2a20 2a6e 6f74 6520 bles.. * *note │ │ │ │ -0001b780: 4f70 7469 6f6e 616c 2069 6e70 7574 733a Optional inputs: │ │ │ │ -0001b790: 2028 4d61 6361 756c 6179 3244 6f63 2975 (Macaulay2Doc)u │ │ │ │ -0001b7a0: 7369 6e67 2066 756e 6374 696f 6e73 2077 sing functions w │ │ │ │ -0001b7b0: 6974 6820 6f70 7469 6f6e 616c 2069 6e70 ith optional inp │ │ │ │ -0001b7c0: 7574 732c 3a0a 2020 2020 2020 2a20 4227 uts,:. * B' │ │ │ │ -0001b7d0: 486f 6d6f 6765 6e69 7a61 7469 6f6e 203d Homogenization = │ │ │ │ -0001b7e0: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ -0001b7f0: 616c 7565 2031 0a20 2020 2020 202a 2042 alue 1. * B │ │ │ │ -0001b800: 274e 756d 6265 7243 6f65 6666 6963 6965 'NumberCoefficie │ │ │ │ -0001b810: 6e74 7320 3d3e 202e 2e2e 2c20 6465 6661 nts => ..., defa │ │ │ │ -0001b820: 756c 7420 7661 6c75 6520 7b7d 0a20 2020 ult value {}. │ │ │ │ -0001b830: 2020 202a 2043 6f6e 7461 696e 7350 6f69 * ContainsPoi │ │ │ │ -0001b840: 6e74 203d 3e20 2e2e 2e2c 2064 6566 6175 nt => ..., defau │ │ │ │ -0001b850: 6c74 2076 616c 7565 207b 7d0a 2020 2020 lt value {}. │ │ │ │ -0001b860: 2020 2a20 4e61 6d65 4227 5365 6374 696f * NameB'Sectio │ │ │ │ -0001b870: 6e20 3d3e 202e 2e2e 2c20 6465 6661 756c n => ..., defaul │ │ │ │ -0001b880: 7420 7661 6c75 6520 6e75 6c6c 0a20 2020 t value null. │ │ │ │ -0001b890: 2020 202a 2052 616e 646f 6d43 6f65 6666 * RandomCoeff │ │ │ │ -0001b8a0: 6963 6965 6e74 4765 6e65 7261 746f 7220 icientGenerator │ │ │ │ -0001b8b0: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ -0001b8c0: 7661 6c75 650a 2020 2020 2020 2020 4675 value. Fu │ │ │ │ -0001b8d0: 6e63 7469 6f6e 436c 6f73 7572 655b 2e2e nctionClosure[.. │ │ │ │ -0001b8e0: 2f42 6572 7469 6e69 2e6d 323a 3233 3134 /Bertini.m2:2314 │ │ │ │ -0001b8f0: 3a33 372d 3233 3134 3a36 365d 0a0a 4465 :37-2314:66]..De │ │ │ │ -0001b900: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ -0001b910: 3d3d 3d3d 3d0a 0a6d 616b 6542 2753 6563 =====..makeB'Sec │ │ │ │ -0001b920: 7469 6f6e 2061 6c6c 6f77 7320 666f 7220 tion allows for │ │ │ │ -0001b930: 6561 7379 2063 7265 6174 696f 6e20 6f66 easy creation of │ │ │ │ -0001b940: 2065 7175 6174 696f 6e73 2074 6861 7420 equations that │ │ │ │ -0001b950: 6465 6669 6e65 2068 7970 6572 706c 616e define hyperplan │ │ │ │ -0001b960: 6573 2e0a 5468 6520 6465 6661 756c 7420 es..The default │ │ │ │ -0001b970: 6372 6561 7465 7320 6120 6861 7368 2074 creates a hash t │ │ │ │ -0001b980: 6162 6c65 2077 6974 6820 7477 6f20 6b65 able with two ke │ │ │ │ -0001b990: 7973 3a20 4227 4e75 6d62 6572 436f 6566 ys: B'NumberCoef │ │ │ │ -0001b9a0: 6669 6369 656e 7473 2061 6e64 0a42 2753 ficients and.B'S │ │ │ │ -0001b9b0: 6563 7469 6f6e 5374 7269 6e67 2e20 5468 ectionString. Th │ │ │ │ -0001b9c0: 6520 6669 7273 7420 6b65 7920 6973 2061 e first key is a │ │ │ │ -0001b9d0: 206c 6973 7420 6f66 206e 756d 6265 7273 list of numbers │ │ │ │ -0001b9e0: 2069 6e20 4343 2074 6861 7420 6172 650a in CC that are. │ │ │ │ -0001b9f0: 636f 6566 6669 6369 656e 7473 2c20 616e coefficients, an │ │ │ │ -0001ba00: 6420 7468 6520 7365 636f 6e64 206b 6579 d the second key │ │ │ │ -0001ba10: 2069 7320 6120 7374 7269 6e67 2072 6570 is a string rep │ │ │ │ -0001ba20: 7265 7365 6e74 696e 6720 7468 6520 6c69 resenting the li │ │ │ │ -0001ba30: 6e65 6172 0a70 6f6c 796e 6f6d 6961 6c2e near.polynomial. │ │ │ │ -0001ba40: 2054 6865 206f 7074 696f 6e20 5261 6e64 The option Rand │ │ │ │ -0001ba50: 6f6d 436f 6566 6669 6369 656e 7447 656e omCoefficientGen │ │ │ │ -0001ba60: 6572 6174 6f72 2063 616e 2062 6520 7365 erator can be se │ │ │ │ -0001ba70: 7420 746f 2061 2066 756e 6374 696f 6e20 t to a function │ │ │ │ -0001ba80: 746f 0a67 656e 6572 6174 6520 7261 6e64 to.generate rand │ │ │ │ -0001ba90: 6f6d 206e 756d 6265 7273 2066 6f72 2074 om numbers for t │ │ │ │ -0001baa0: 6865 2063 6f65 6666 6963 6965 6e74 732e he coefficients. │ │ │ │ -0001bab0: 0a0a 546f 2067 6574 2061 6666 696e 6520 ..To get affine │ │ │ │ -0001bac0: 6c69 6e65 6172 2065 7175 6174 696f 6e73 linear equations │ │ │ │ -0001bad0: 2069 6e63 6c75 6465 2031 2069 6e20 7468 include 1 in th │ │ │ │ -0001bae0: 6520 696e 7075 7420 6c69 7374 2e0a 0a54 e input list...T │ │ │ │ -0001baf0: 6f20 6861 7665 2061 6e20 6166 6669 6e65 o have an affine │ │ │ │ -0001bb00: 206c 696e 6561 7220 6571 7561 7469 6f6e linear equation │ │ │ │ -0001bb10: 2074 6861 7420 636f 6e74 6169 6e73 2061 that contains a │ │ │ │ -0001bb20: 2070 6172 7469 6375 6c61 7220 706f 696e particular poin │ │ │ │ -0001bb30: 7420 7765 2073 6574 2074 6865 0a43 6f6e t we set the.Con │ │ │ │ -0001bb40: 7461 696e 7350 6f69 6e74 206f 7074 696f tainsPoint optio │ │ │ │ -0001bb50: 6e20 746f 2061 206c 6973 7420 6f66 2063 n to a list of c │ │ │ │ -0001bb60: 6f6f 7264 696e 6174 6573 206f 7220 6120 oordinates or a │ │ │ │ -0001bb70: 706f 696e 742e 2054 6f20 6765 7420 616e point. To get an │ │ │ │ -0001bb80: 2068 6f6d 6f67 656e 656f 7573 0a65 7175 homogeneous.equ │ │ │ │ -0001bb90: 6174 696f 6e20 7468 6174 2063 6f6e 7461 ation that conta │ │ │ │ -0001bba0: 696e 7320 6120 7072 6f6a 6563 7469 7665 ins a projective │ │ │ │ -0001bbb0: 2070 6f69 6e74 2077 6520 6861 7665 2074 point we have t │ │ │ │ -0001bbc0: 6f20 7365 7420 7468 6520 436f 6e74 6169 o set the Contai │ │ │ │ -0001bbd0: 6e73 506f 696e 740a 6f70 7469 6f6e 2061 nsPoint.option a │ │ │ │ -0001bbe0: 7320 7765 6c6c 2061 7320 7468 6520 4227 s well as the B' │ │ │ │ -0001bbf0: 486f 6d6f 6765 6e69 7a61 7469 6f6e 206f Homogenization o │ │ │ │ -0001bc00: 7074 696f 6e2e 0a0a 2b2d 2d2d 2d2d 2d2d ption...+------- │ │ │ │ +0001b6e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001b6f0: 0a0a 5379 6e6f 7073 6973 0a3d 3d3d 3d3d ..Synopsis.===== │ │ │ │ +0001b700: 3d3d 3d0a 0a20 202a 2055 7361 6765 3a20 ===.. * Usage: │ │ │ │ +0001b710: 0a20 2020 2020 2020 206d 616b 6542 2753 . makeB'S │ │ │ │ +0001b720: 6563 7469 6f6e 286c 290a 2020 2a20 496e ection(l). * In │ │ │ │ +0001b730: 7075 7473 3a0a 2020 2020 2020 2a20 6c2c puts:. * l, │ │ │ │ +0001b740: 2061 202a 6e6f 7465 206c 6973 743a 2028 a *note list: ( │ │ │ │ +0001b750: 4d61 6361 756c 6179 3244 6f63 294c 6973 Macaulay2Doc)Lis │ │ │ │ +0001b760: 742c 2c20 4120 6c69 7374 206f 6620 7661 t,, A list of va │ │ │ │ +0001b770: 7269 6162 6c65 732e 0a20 202a 202a 6e6f riables.. * *no │ │ │ │ +0001b780: 7465 204f 7074 696f 6e61 6c20 696e 7075 te Optional inpu │ │ │ │ +0001b790: 7473 3a20 284d 6163 6175 6c61 7932 446f ts: (Macaulay2Do │ │ │ │ +0001b7a0: 6329 7573 696e 6720 6675 6e63 7469 6f6e c)using function │ │ │ │ +0001b7b0: 7320 7769 7468 206f 7074 696f 6e61 6c20 s with optional │ │ │ │ +0001b7c0: 696e 7075 7473 2c3a 0a20 2020 2020 202a inputs,:. * │ │ │ │ +0001b7d0: 2042 2748 6f6d 6f67 656e 697a 6174 696f B'Homogenizatio │ │ │ │ +0001b7e0: 6e20 3d3e 202e 2e2e 2c20 6465 6661 756c n => ..., defaul │ │ │ │ +0001b7f0: 7420 7661 6c75 6520 310a 2020 2020 2020 t value 1. │ │ │ │ +0001b800: 2a20 4227 4e75 6d62 6572 436f 6566 6669 * B'NumberCoeffi │ │ │ │ +0001b810: 6369 656e 7473 203d 3e20 2e2e 2e2c 2064 cients => ..., d │ │ │ │ +0001b820: 6566 6175 6c74 2076 616c 7565 207b 7d0a efault value {}. │ │ │ │ +0001b830: 2020 2020 2020 2a20 436f 6e74 6169 6e73 * Contains │ │ │ │ +0001b840: 506f 696e 7420 3d3e 202e 2e2e 2c20 6465 Point => ..., de │ │ │ │ +0001b850: 6661 756c 7420 7661 6c75 6520 7b7d 0a20 fault value {}. │ │ │ │ +0001b860: 2020 2020 202a 204e 616d 6542 2753 6563 * NameB'Sec │ │ │ │ +0001b870: 7469 6f6e 203d 3e20 2e2e 2e2c 2064 6566 tion => ..., def │ │ │ │ +0001b880: 6175 6c74 2076 616c 7565 206e 756c 6c0a ault value null. │ │ │ │ +0001b890: 2020 2020 2020 2a20 5261 6e64 6f6d 436f * RandomCo │ │ │ │ +0001b8a0: 6566 6669 6369 656e 7447 656e 6572 6174 efficientGenerat │ │ │ │ +0001b8b0: 6f72 203d 3e20 2e2e 2e2c 2064 6566 6175 or => ..., defau │ │ │ │ +0001b8c0: 6c74 2076 616c 7565 0a20 2020 2020 2020 lt value. │ │ │ │ +0001b8d0: 2046 756e 6374 696f 6e43 6c6f 7375 7265 FunctionClosure │ │ │ │ +0001b8e0: 5b2e 2e2f 4265 7274 696e 692e 6d32 3a32 [../Bertini.m2:2 │ │ │ │ +0001b8f0: 3331 343a 3337 2d32 3331 343a 3636 5d0a 314:37-2314:66]. │ │ │ │ +0001b900: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +0001b910: 3d3d 3d3d 3d3d 3d3d 0a0a 6d61 6b65 4227 ========..makeB' │ │ │ │ +0001b920: 5365 6374 696f 6e20 616c 6c6f 7773 2066 Section allows f │ │ │ │ +0001b930: 6f72 2065 6173 7920 6372 6561 7469 6f6e or easy creation │ │ │ │ +0001b940: 206f 6620 6571 7561 7469 6f6e 7320 7468 of equations th │ │ │ │ +0001b950: 6174 2064 6566 696e 6520 6879 7065 7270 at define hyperp │ │ │ │ +0001b960: 6c61 6e65 732e 0a54 6865 2064 6566 6175 lanes..The defau │ │ │ │ +0001b970: 6c74 2063 7265 6174 6573 2061 2068 6173 lt creates a has │ │ │ │ +0001b980: 6820 7461 626c 6520 7769 7468 2074 776f h table with two │ │ │ │ +0001b990: 206b 6579 733a 2042 274e 756d 6265 7243 keys: B'NumberC │ │ │ │ +0001b9a0: 6f65 6666 6963 6965 6e74 7320 616e 640a oefficients and. │ │ │ │ +0001b9b0: 4227 5365 6374 696f 6e53 7472 696e 672e B'SectionString. │ │ │ │ +0001b9c0: 2054 6865 2066 6972 7374 206b 6579 2069 The first key i │ │ │ │ +0001b9d0: 7320 6120 6c69 7374 206f 6620 6e75 6d62 s a list of numb │ │ │ │ +0001b9e0: 6572 7320 696e 2043 4320 7468 6174 2061 ers in CC that a │ │ │ │ +0001b9f0: 7265 0a63 6f65 6666 6963 6965 6e74 732c re.coefficients, │ │ │ │ +0001ba00: 2061 6e64 2074 6865 2073 6563 6f6e 6420 and the second │ │ │ │ +0001ba10: 6b65 7920 6973 2061 2073 7472 696e 6720 key is a string │ │ │ │ +0001ba20: 7265 7072 6573 656e 7469 6e67 2074 6865 representing the │ │ │ │ +0001ba30: 206c 696e 6561 720a 706f 6c79 6e6f 6d69 linear.polynomi │ │ │ │ +0001ba40: 616c 2e20 5468 6520 6f70 7469 6f6e 2052 al. The option R │ │ │ │ +0001ba50: 616e 646f 6d43 6f65 6666 6963 6965 6e74 andomCoefficient │ │ │ │ +0001ba60: 4765 6e65 7261 746f 7220 6361 6e20 6265 Generator can be │ │ │ │ +0001ba70: 2073 6574 2074 6f20 6120 6675 6e63 7469 set to a functi │ │ │ │ +0001ba80: 6f6e 2074 6f0a 6765 6e65 7261 7465 2072 on to.generate r │ │ │ │ +0001ba90: 616e 646f 6d20 6e75 6d62 6572 7320 666f andom numbers fo │ │ │ │ +0001baa0: 7220 7468 6520 636f 6566 6669 6369 656e r the coefficien │ │ │ │ +0001bab0: 7473 2e0a 0a54 6f20 6765 7420 6166 6669 ts...To get affi │ │ │ │ +0001bac0: 6e65 206c 696e 6561 7220 6571 7561 7469 ne linear equati │ │ │ │ +0001bad0: 6f6e 7320 696e 636c 7564 6520 3120 696e ons include 1 in │ │ │ │ +0001bae0: 2074 6865 2069 6e70 7574 206c 6973 742e the input list. │ │ │ │ +0001baf0: 0a0a 546f 2068 6176 6520 616e 2061 6666 ..To have an aff │ │ │ │ +0001bb00: 696e 6520 6c69 6e65 6172 2065 7175 6174 ine linear equat │ │ │ │ +0001bb10: 696f 6e20 7468 6174 2063 6f6e 7461 696e ion that contain │ │ │ │ +0001bb20: 7320 6120 7061 7274 6963 756c 6172 2070 s a particular p │ │ │ │ +0001bb30: 6f69 6e74 2077 6520 7365 7420 7468 650a oint we set the. │ │ │ │ +0001bb40: 436f 6e74 6169 6e73 506f 696e 7420 6f70 ContainsPoint op │ │ │ │ +0001bb50: 7469 6f6e 2074 6f20 6120 6c69 7374 206f tion to a list o │ │ │ │ +0001bb60: 6620 636f 6f72 6469 6e61 7465 7320 6f72 f coordinates or │ │ │ │ +0001bb70: 2061 2070 6f69 6e74 2e20 546f 2067 6574 a point. To get │ │ │ │ +0001bb80: 2061 6e20 686f 6d6f 6765 6e65 6f75 730a an homogeneous. │ │ │ │ +0001bb90: 6571 7561 7469 6f6e 2074 6861 7420 636f equation that co │ │ │ │ +0001bba0: 6e74 6169 6e73 2061 2070 726f 6a65 6374 ntains a project │ │ │ │ +0001bbb0: 6976 6520 706f 696e 7420 7765 2068 6176 ive point we hav │ │ │ │ +0001bbc0: 6520 746f 2073 6574 2074 6865 2043 6f6e e to set the Con │ │ │ │ +0001bbd0: 7461 696e 7350 6f69 6e74 0a6f 7074 696f tainsPoint.optio │ │ │ │ +0001bbe0: 6e20 6173 2077 656c 6c20 6173 2074 6865 n as well as the │ │ │ │ +0001bbf0: 2042 2748 6f6d 6f67 656e 697a 6174 696f B'Homogenizatio │ │ │ │ +0001bc00: 6e20 6f70 7469 6f6e 2e0a 0a2b 2d2d 2d2d n option...+---- │ │ │ │ 0001bc10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001bc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001bc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001bc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bc50: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 733d ------+.|i1 : s= │ │ │ │ -0001bc60: 6d61 6b65 4227 5365 6374 696f 6e28 7b78 makeB'Section({x │ │ │ │ -0001bc70: 2c79 2c7a 7d29 2020 2020 2020 2020 2020 ,y,z}) │ │ │ │ +0001bc50: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +0001bc60: 2073 3d6d 616b 6542 2753 6563 7469 6f6e s=makeB'Section │ │ │ │ +0001bc70: 287b 782c 792c 7a7d 2920 2020 2020 2020 ({x,y,z}) │ │ │ │ 0001bc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bca0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001bca0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001bcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bcf0: 2020 2020 2020 7c0a 7c6f 3120 3d20 4227 |.|o1 = B' │ │ │ │ -0001bd00: 5365 6374 696f 6e7b 2e2e 2e32 2e2e 2e7d Section{...2...} │ │ │ │ -0001bd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bcf0: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ +0001bd00: 2042 2753 6563 7469 6f6e 7b2e 2e2e 322e B'Section{...2. │ │ │ │ +0001bd10: 2e2e 7d20 2020 2020 2020 2020 2020 2020 ..} │ │ │ │ 0001bd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bd40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001bd40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001bd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bd90: 2020 2020 2020 7c0a 7c6f 3120 3a20 4227 |.|o1 : B' │ │ │ │ -0001bda0: 5365 6374 696f 6e20 2020 2020 2020 2020 Section │ │ │ │ +0001bd90: 2020 2020 2020 2020 207c 0a7c 6f31 203a |.|o1 : │ │ │ │ +0001bda0: 2042 2753 6563 7469 6f6e 2020 2020 2020 B'Section │ │ │ │ 0001bdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bde0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001bde0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 0001bdf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001be00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001be10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001be20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001be30: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 636c ------+.|i2 : cl │ │ │ │ -0001be40: 6173 7320 7320 2020 2020 2020 2020 2020 ass s │ │ │ │ +0001be30: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ +0001be40: 2063 6c61 7373 2073 2020 2020 2020 2020 class s │ │ │ │ 0001be50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001be80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001be80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bed0: 2020 2020 2020 7c0a 7c6f 3220 3d20 4227 |.|o2 = B' │ │ │ │ -0001bee0: 5365 6374 696f 6e20 2020 2020 2020 2020 Section │ │ │ │ +0001bed0: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ +0001bee0: 2042 2753 6563 7469 6f6e 2020 2020 2020 B'Section │ │ │ │ 0001bef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bf20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001bf20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001bf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bf70: 2020 2020 2020 7c0a 7c6f 3220 3a20 5479 |.|o2 : Ty │ │ │ │ -0001bf80: 7065 2020 2020 2020 2020 2020 2020 2020 pe │ │ │ │ +0001bf70: 2020 2020 2020 2020 207c 0a7c 6f32 203a |.|o2 : │ │ │ │ +0001bf80: 2054 7970 6520 2020 2020 2020 2020 2020 Type │ │ │ │ 0001bf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bfc0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001bfc0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 0001bfd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001bfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001bff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c010: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 7261 ------+.|i3 : ra │ │ │ │ -0001c020: 6e64 6f6d 5265 616c 436f 6566 6669 6369 ndomRealCoeffici │ │ │ │ -0001c030: 656e 7447 656e 6572 6174 6f72 3d28 292d entGenerator=()- │ │ │ │ -0001c040: 3e72 616e 646f 6d28 5252 2920 2020 2020 >random(RR) │ │ │ │ +0001c010: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ +0001c020: 2072 616e 646f 6d52 6561 6c43 6f65 6666 randomRealCoeff │ │ │ │ +0001c030: 6963 6965 6e74 4765 6e65 7261 746f 723d icientGenerator= │ │ │ │ +0001c040: 2829 2d3e 7261 6e64 6f6d 2852 5229 2020 ()->random(RR) │ │ │ │ 0001c050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c060: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001c060: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001c070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c0b0: 2020 2020 2020 7c0a 7c6f 3320 3d20 7261 |.|o3 = ra │ │ │ │ -0001c0c0: 6e64 6f6d 5265 616c 436f 6566 6669 6369 ndomRealCoeffici │ │ │ │ -0001c0d0: 656e 7447 656e 6572 6174 6f72 2020 2020 entGenerator │ │ │ │ +0001c0b0: 2020 2020 2020 2020 207c 0a7c 6f33 203d |.|o3 = │ │ │ │ +0001c0c0: 2072 616e 646f 6d52 6561 6c43 6f65 6666 randomRealCoeff │ │ │ │ +0001c0d0: 6963 6965 6e74 4765 6e65 7261 746f 7220 icientGenerator │ │ │ │ 0001c0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c100: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001c100: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001c110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c150: 2020 2020 2020 7c0a 7c6f 3320 3a20 4675 |.|o3 : Fu │ │ │ │ -0001c160: 6e63 7469 6f6e 436c 6f73 7572 6520 2020 nctionClosure │ │ │ │ +0001c150: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ +0001c160: 2046 756e 6374 696f 6e43 6c6f 7375 7265 FunctionClosure │ │ │ │ 0001c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c1a0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001c1a0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 0001c1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c1f0: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 7352 ------+.|i4 : sR │ │ │ │ -0001c200: 6561 6c3d 6d61 6b65 4227 5365 6374 696f eal=makeB'Sectio │ │ │ │ -0001c210: 6e28 7b78 2c79 2c7a 7d2c 5261 6e64 6f6d n({x,y,z},Random │ │ │ │ -0001c220: 436f 6566 6669 6369 656e 7447 656e 6572 CoefficientGener │ │ │ │ -0001c230: 6174 6f72 3d3e 2020 2020 2020 2020 2020 ator=> │ │ │ │ -0001c240: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001c1f0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ +0001c200: 2073 5265 616c 3d6d 616b 6542 2753 6563 sReal=makeB'Sec │ │ │ │ +0001c210: 7469 6f6e 287b 782c 792c 7a7d 2c52 616e tion({x,y,z},Ran │ │ │ │ +0001c220: 646f 6d43 6f65 6666 6963 6965 6e74 4765 domCoefficientGe │ │ │ │ +0001c230: 6e65 7261 746f 723d 3e20 2020 2020 2020 nerator=> │ │ │ │ +0001c240: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001c250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c290: 2020 2020 2020 7c0a 7c6f 3420 3d20 4227 |.|o4 = B' │ │ │ │ -0001c2a0: 5365 6374 696f 6e7b 2e2e 2e32 2e2e 2e7d Section{...2...} │ │ │ │ -0001c2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c290: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ +0001c2a0: 2042 2753 6563 7469 6f6e 7b2e 2e2e 322e B'Section{...2. │ │ │ │ +0001c2b0: 2e2e 7d20 2020 2020 2020 2020 2020 2020 ..} │ │ │ │ 0001c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c2e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001c2e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001c2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c330: 2020 2020 2020 7c0a 7c6f 3420 3a20 4227 |.|o4 : B' │ │ │ │ -0001c340: 5365 6374 696f 6e20 2020 2020 2020 2020 Section │ │ │ │ +0001c330: 2020 2020 2020 2020 207c 0a7c 6f34 203a |.|o4 : │ │ │ │ +0001c340: 2042 2753 6563 7469 6f6e 2020 2020 2020 B'Section │ │ │ │ 0001c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c380: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ +0001c380: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ 0001c390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c3d0: 2d2d 2d2d 2d2d 7c0a 7c72 616e 646f 6d52 ------|.|randomR │ │ │ │ -0001c3e0: 6561 6c43 6f65 6666 6963 6965 6e74 4765 ealCoefficientGe │ │ │ │ -0001c3f0: 6e65 7261 746f 7229 2020 2020 2020 2020 nerator) │ │ │ │ +0001c3d0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7261 6e64 ---------|.|rand │ │ │ │ +0001c3e0: 6f6d 5265 616c 436f 6566 6669 6369 656e omRealCoefficien │ │ │ │ +0001c3f0: 7447 656e 6572 6174 6f72 2920 2020 2020 tGenerator) │ │ │ │ 0001c400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c420: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001c420: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 0001c430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c470: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 7352 ------+.|i5 : sR │ │ │ │ -0001c480: 6561 6c23 4227 4e75 6d62 6572 436f 6566 eal#B'NumberCoef │ │ │ │ -0001c490: 6669 6369 656e 7473 2020 2020 2020 2020 ficients │ │ │ │ +0001c470: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ +0001c480: 2073 5265 616c 2342 274e 756d 6265 7243 sReal#B'NumberC │ │ │ │ +0001c490: 6f65 6666 6963 6965 6e74 7320 2020 2020 oefficients │ │ │ │ 0001c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c4c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001c4c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001c4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c510: 2020 2020 2020 7c0a 7c6f 3520 3d20 7b2e |.|o5 = {. │ │ │ │ -0001c520: 3037 3431 3833 352c 202e 3830 3836 3934 0741835, .808694 │ │ │ │ -0001c530: 2c20 2e33 3632 3833 357d 2020 2020 2020 , .362835} │ │ │ │ +0001c510: 2020 2020 2020 2020 207c 0a7c 6f35 203d |.|o5 = │ │ │ │ +0001c520: 207b 2e30 3734 3138 3335 2c20 2e38 3038 {.0741835, .808 │ │ │ │ +0001c530: 3639 342c 202e 3336 3238 3335 7d20 2020 694, .362835} │ │ │ │ 0001c540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c560: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001c560: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001c570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c5b0: 2020 2020 2020 7c0a 7c6f 3520 3a20 4c69 |.|o5 : Li │ │ │ │ -0001c5c0: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ +0001c5b0: 2020 2020 2020 2020 207c 0a7c 6f35 203a |.|o5 : │ │ │ │ +0001c5c0: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ 0001c5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c600: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001c600: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 0001c610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c650: 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 7261 ------+.|i6 : ra │ │ │ │ -0001c660: 6e64 6f6d 5261 7469 6f6e 616c 436f 6566 ndomRationalCoef │ │ │ │ -0001c670: 6669 6369 656e 7447 656e 6572 6174 6f72 ficientGenerator │ │ │ │ -0001c680: 3d28 292d 3e72 616e 646f 6d28 5151 2920 =()->random(QQ) │ │ │ │ -0001c690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c6a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001c650: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a ---------+.|i6 : │ │ │ │ +0001c660: 2072 616e 646f 6d52 6174 696f 6e61 6c43 randomRationalC │ │ │ │ +0001c670: 6f65 6666 6963 6965 6e74 4765 6e65 7261 oefficientGenera │ │ │ │ +0001c680: 746f 723d 2829 2d3e 7261 6e64 6f6d 2851 tor=()->random(Q │ │ │ │ +0001c690: 5129 2020 2020 2020 2020 2020 2020 2020 Q) │ │ │ │ +0001c6a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001c6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c6f0: 2020 2020 2020 7c0a 7c6f 3620 3d20 7261 |.|o6 = ra │ │ │ │ -0001c700: 6e64 6f6d 5261 7469 6f6e 616c 436f 6566 ndomRationalCoef │ │ │ │ -0001c710: 6669 6369 656e 7447 656e 6572 6174 6f72 ficientGenerator │ │ │ │ -0001c720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c6f0: 2020 2020 2020 2020 207c 0a7c 6f36 203d |.|o6 = │ │ │ │ +0001c700: 2072 616e 646f 6d52 6174 696f 6e61 6c43 randomRationalC │ │ │ │ +0001c710: 6f65 6666 6963 6965 6e74 4765 6e65 7261 oefficientGenera │ │ │ │ +0001c720: 746f 7220 2020 2020 2020 2020 2020 2020 tor │ │ │ │ 0001c730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c740: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001c740: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001c750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c790: 2020 2020 2020 7c0a 7c6f 3620 3a20 4675 |.|o6 : Fu │ │ │ │ -0001c7a0: 6e63 7469 6f6e 436c 6f73 7572 6520 2020 nctionClosure │ │ │ │ +0001c790: 2020 2020 2020 2020 207c 0a7c 6f36 203a |.|o6 : │ │ │ │ +0001c7a0: 2046 756e 6374 696f 6e43 6c6f 7375 7265 FunctionClosure │ │ │ │ 0001c7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c7e0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001c7e0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 0001c7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c830: 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 7352 ------+.|i7 : sR │ │ │ │ -0001c840: 6174 696f 6e61 6c3d 6d61 6b65 4227 5365 ational=makeB'Se │ │ │ │ -0001c850: 6374 696f 6e28 7b78 2c79 2c7a 7d2c 5261 ction({x,y,z},Ra │ │ │ │ -0001c860: 6e64 6f6d 436f 6566 6669 6369 656e 7447 ndomCoefficientG │ │ │ │ -0001c870: 656e 6572 6174 6f72 3d3e 2020 2020 2020 enerator=> │ │ │ │ -0001c880: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001c830: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a ---------+.|i7 : │ │ │ │ +0001c840: 2073 5261 7469 6f6e 616c 3d6d 616b 6542 sRational=makeB │ │ │ │ +0001c850: 2753 6563 7469 6f6e 287b 782c 792c 7a7d 'Section({x,y,z} │ │ │ │ +0001c860: 2c52 616e 646f 6d43 6f65 6666 6963 6965 ,RandomCoefficie │ │ │ │ +0001c870: 6e74 4765 6e65 7261 746f 723d 3e20 2020 ntGenerator=> │ │ │ │ +0001c880: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c8d0: 2020 2020 2020 7c0a 7c6f 3720 3d20 4227 |.|o7 = B' │ │ │ │ -0001c8e0: 5365 6374 696f 6e7b 2e2e 2e32 2e2e 2e7d Section{...2...} │ │ │ │ -0001c8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c8d0: 2020 2020 2020 2020 207c 0a7c 6f37 203d |.|o7 = │ │ │ │ +0001c8e0: 2042 2753 6563 7469 6f6e 7b2e 2e2e 322e B'Section{...2. │ │ │ │ +0001c8f0: 2e2e 7d20 2020 2020 2020 2020 2020 2020 ..} │ │ │ │ 0001c900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c920: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001c920: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001c930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c970: 2020 2020 2020 7c0a 7c6f 3720 3a20 4227 |.|o7 : B' │ │ │ │ -0001c980: 5365 6374 696f 6e20 2020 2020 2020 2020 Section │ │ │ │ +0001c970: 2020 2020 2020 2020 207c 0a7c 6f37 203a |.|o7 : │ │ │ │ +0001c980: 2042 2753 6563 7469 6f6e 2020 2020 2020 B'Section │ │ │ │ 0001c990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c9c0: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ +0001c9c0: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ 0001c9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ca00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ca10: 2d2d 2d2d 2d2d 7c0a 7c72 616e 646f 6d52 ------|.|randomR │ │ │ │ -0001ca20: 6174 696f 6e61 6c43 6f65 6666 6963 6965 ationalCoefficie │ │ │ │ -0001ca30: 6e74 4765 6e65 7261 746f 7229 2020 2020 ntGenerator) │ │ │ │ +0001ca10: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7261 6e64 ---------|.|rand │ │ │ │ +0001ca20: 6f6d 5261 7469 6f6e 616c 436f 6566 6669 omRationalCoeffi │ │ │ │ +0001ca30: 6369 656e 7447 656e 6572 6174 6f72 2920 cientGenerator) │ │ │ │ 0001ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ca50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ca60: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001ca60: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 0001ca70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ca80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ca90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001caa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cab0: 2d2d 2d2d 2d2d 2b0a 7c69 3820 3a20 7352 ------+.|i8 : sR │ │ │ │ -0001cac0: 6174 696f 6e61 6c23 4227 4e75 6d62 6572 ational#B'Number │ │ │ │ -0001cad0: 436f 6566 6669 6369 656e 7473 2020 2020 Coefficients │ │ │ │ +0001cab0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a ---------+.|i8 : │ │ │ │ +0001cac0: 2073 5261 7469 6f6e 616c 2342 274e 756d sRational#B'Num │ │ │ │ +0001cad0: 6265 7243 6f65 6666 6963 6965 6e74 7320 berCoefficients │ │ │ │ 0001cae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001caf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cb00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001cb00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001cb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cb50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001cb60: 3720 2031 2020 2037 2020 2020 2020 2020 7 1 7 │ │ │ │ +0001cb50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001cb60: 2020 2037 2020 3120 2020 3720 2020 2020 7 1 7 │ │ │ │ 0001cb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cba0: 2020 2020 2020 7c0a 7c6f 3820 3d20 7b2d |.|o8 = {- │ │ │ │ -0001cbb0: 2d2c 202d 2c20 2d2d 7d20 2020 2020 2020 -, -, --} │ │ │ │ +0001cba0: 2020 2020 2020 2020 207c 0a7c 6f38 203d |.|o8 = │ │ │ │ +0001cbb0: 207b 2d2d 2c20 2d2c 202d 2d7d 2020 2020 {--, -, --} │ │ │ │ 0001cbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cbf0: 2020 2020 2020 7c0a 7c20 2020 2020 2031 |.| 1 │ │ │ │ -0001cc00: 3020 2032 2020 3130 2020 2020 2020 2020 0 2 10 │ │ │ │ +0001cbf0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001cc00: 2020 3130 2020 3220 2031 3020 2020 2020 10 2 10 │ │ │ │ 0001cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cc40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001cc40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001cc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cc90: 2020 2020 2020 7c0a 7c6f 3820 3a20 4c69 |.|o8 : Li │ │ │ │ -0001cca0: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ +0001cc90: 2020 2020 2020 2020 207c 0a7c 6f38 203a |.|o8 : │ │ │ │ +0001cca0: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ 0001ccb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ccc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ccd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cce0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001cce0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 0001ccf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001cd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001cd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001cd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cd30: 2d2d 2d2d 2d2d 2b0a 2b2d 2d2d 2d2d 2d2d ------+.+------- │ │ │ │ +0001cd30: 2d2d 2d2d 2d2d 2d2d 2d2b 0a2b 2d2d 2d2d ---------+.+---- │ │ │ │ 0001cd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001cd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cd60: 2d2d 2d2d 2b0a 7c69 3920 3a20 6166 6669 ----+.|i9 : affi │ │ │ │ -0001cd70: 6e65 5365 6374 696f 6e3d 6d61 6b65 4227 neSection=makeB' │ │ │ │ -0001cd80: 5365 6374 696f 6e28 7b78 2c79 2c7a 2c31 Section({x,y,z,1 │ │ │ │ -0001cd90: 7d29 7c0a 7c20 2020 2020 2020 2020 2020 })|.| │ │ │ │ +0001cd60: 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a 2061 -------+.|i9 : a │ │ │ │ +0001cd70: 6666 696e 6553 6563 7469 6f6e 3d6d 616b ffineSection=mak │ │ │ │ +0001cd80: 6542 2753 6563 7469 6f6e 287b 782c 792c eB'Section({x,y, │ │ │ │ +0001cd90: 7a2c 317d 297c 0a7c 2020 2020 2020 2020 z,1})|.| │ │ │ │ 0001cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cdc0: 7c0a 7c6f 3920 3d20 4227 5365 6374 696f |.|o9 = B'Sectio │ │ │ │ -0001cdd0: 6e7b 2e2e 2e32 2e2e 2e7d 2020 2020 2020 n{...2...} │ │ │ │ -0001cde0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001cdf0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0001cdc0: 2020 207c 0a7c 6f39 203d 2042 2753 6563 |.|o9 = B'Sec │ │ │ │ +0001cdd0: 7469 6f6e 7b2e 2e2e 322e 2e2e 7d20 2020 tion{...2...} │ │ │ │ +0001cde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cdf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001ce00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ce10: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001ce20: 3920 3a20 4227 5365 6374 696f 6e20 2020 9 : B'Section │ │ │ │ +0001ce10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001ce20: 0a7c 6f39 203a 2042 2753 6563 7469 6f6e .|o9 : B'Section │ │ │ │ 0001ce30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ce40: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001ce40: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 0001ce50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ce60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ce70: 2d2d 2d2d 2d2d 2d2d 2b0a 2b2d 2d2d 2d2d --------+.+----- │ │ │ │ +0001ce70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a2b 2d2d -----------+.+-- │ │ │ │ 0001ce80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ce90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001cea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ceb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cec0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3130 203a --------+.|i10 : │ │ │ │ -0001ced0: 2058 3d7b 782c 792c 7a7d 2020 2020 2020 X={x,y,z} │ │ │ │ +0001cec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +0001ced0: 3020 3a20 583d 7b78 2c79 2c7a 7d20 2020 0 : X={x,y,z} │ │ │ │ 0001cee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cf10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001cf10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0001cf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cf60: 2020 2020 2020 2020 7c0a 7c6f 3130 203d |.|o10 = │ │ │ │ -0001cf70: 207b 782c 2079 2c20 7a7d 2020 2020 2020 {x, y, z} │ │ │ │ +0001cf60: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0001cf70: 3020 3d20 7b78 2c20 792c 207a 7d20 2020 0 = {x, y, z} │ │ │ │ 0001cf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cfb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001cfb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0001cfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d000: 2020 2020 2020 2020 7c0a 7c6f 3130 203a |.|o10 : │ │ │ │ -0001d010: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ +0001d000: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0001d010: 3020 3a20 4c69 7374 2020 2020 2020 2020 0 : List │ │ │ │ 0001d020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d050: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001d050: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 0001d060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d0a0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 203a --------+.|i11 : │ │ │ │ -0001d0b0: 2050 3d7b 312c 322c 337d 2020 2020 2020 P={1,2,3} │ │ │ │ +0001d0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +0001d0b0: 3120 3a20 503d 7b31 2c32 2c33 7d20 2020 1 : P={1,2,3} │ │ │ │ 0001d0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d0f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001d0f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0001d100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d140: 2020 2020 2020 2020 7c0a 7c6f 3131 203d |.|o11 = │ │ │ │ -0001d150: 207b 312c 2032 2c20 337d 2020 2020 2020 {1, 2, 3} │ │ │ │ +0001d140: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0001d150: 3120 3d20 7b31 2c20 322c 2033 7d20 2020 1 = {1, 2, 3} │ │ │ │ 0001d160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d190: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001d190: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0001d1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d1e0: 2020 2020 2020 2020 7c0a 7c6f 3131 203a |.|o11 : │ │ │ │ -0001d1f0: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ +0001d1e0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0001d1f0: 3120 3a20 4c69 7374 2020 2020 2020 2020 1 : List │ │ │ │ 0001d200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d230: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001d230: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 0001d240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d280: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3132 203a --------+.|i12 : │ │ │ │ -0001d290: 2061 6666 696e 6543 6f6e 7461 696e 696e affineContainin │ │ │ │ -0001d2a0: 6750 6f69 6e74 3d6d 616b 6542 2753 6563 gPoint=makeB'Sec │ │ │ │ -0001d2b0: 7469 6f6e 287b 782c 792c 7a7d 2c43 6f6e tion({x,y,z},Con │ │ │ │ -0001d2c0: 7461 696e 7350 6f69 6e74 3d3e 5029 2020 tainsPoint=>P) │ │ │ │ -0001d2d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001d280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +0001d290: 3220 3a20 6166 6669 6e65 436f 6e74 6169 2 : affineContai │ │ │ │ +0001d2a0: 6e69 6e67 506f 696e 743d 6d61 6b65 4227 ningPoint=makeB' │ │ │ │ +0001d2b0: 5365 6374 696f 6e28 7b78 2c79 2c7a 7d2c Section({x,y,z}, │ │ │ │ +0001d2c0: 436f 6e74 6169 6e73 506f 696e 743d 3e50 ContainsPoint=>P │ │ │ │ +0001d2d0: 2920 2020 2020 2020 2020 207c 0a7c 2020 ) |.| │ │ │ │ 0001d2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d320: 2020 2020 2020 2020 7c0a 7c6f 3132 203d |.|o12 = │ │ │ │ -0001d330: 2042 2753 6563 7469 6f6e 7b2e 2e2e 332e B'Section{...3. │ │ │ │ -0001d340: 2e2e 7d20 2020 2020 2020 2020 2020 2020 ..} │ │ │ │ +0001d320: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0001d330: 3220 3d20 4227 5365 6374 696f 6e7b 2e2e 2 = B'Section{.. │ │ │ │ +0001d340: 2e33 2e2e 2e7d 2020 2020 2020 2020 2020 .3...} │ │ │ │ 0001d350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d370: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001d370: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0001d380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d3c0: 2020 2020 2020 2020 7c0a 7c6f 3132 203a |.|o12 : │ │ │ │ -0001d3d0: 2042 2753 6563 7469 6f6e 2020 2020 2020 B'Section │ │ │ │ +0001d3c0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0001d3d0: 3220 3a20 4227 5365 6374 696f 6e20 2020 2 : B'Section │ │ │ │ 0001d3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d410: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001d410: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 0001d420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d460: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3133 203a --------+.|i13 : │ │ │ │ -0001d470: 2072 3d20 6166 6669 6e65 436f 6e74 6169 r= affineContai │ │ │ │ -0001d480: 6e69 6e67 506f 696e 7423 4227 5365 6374 ningPoint#B'Sect │ │ │ │ -0001d490: 696f 6e53 7472 696e 6720 2020 2020 2020 ionString │ │ │ │ +0001d460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +0001d470: 3320 3a20 723d 2061 6666 696e 6543 6f6e 3 : r= affineCon │ │ │ │ +0001d480: 7461 696e 696e 6750 6f69 6e74 2342 2753 tainingPoint#B'S │ │ │ │ +0001d490: 6563 7469 6f6e 5374 7269 6e67 2020 2020 ectionString │ │ │ │ 0001d4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d4b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001d4b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0001d4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d500: 2020 2020 2020 2020 7c0a 7c6f 3133 203d |.|o13 = │ │ │ │ -0001d510: 2028 312e 3138 3932 312b 2e38 3439 3533 (1.18921+.84953 │ │ │ │ -0001d520: 392a 6969 292a 2878 2d28 3129 2a28 3129 9*ii)*(x-(1)*(1) │ │ │ │ -0001d530: 292b 282d 2e35 3432 3337 312b 2e33 3037 )+(-.542371+.307 │ │ │ │ -0001d540: 3133 372a 6969 292a 2879 2d28 3129 2a28 137*ii)*(y-(1)*( │ │ │ │ -0001d550: 3229 292b 2820 2020 7c0a 7c20 2020 2020 2))+( |.| │ │ │ │ -0001d560: 2031 2e33 3639 3435 2b2e 3031 3536 3333 1.36945+.015633 │ │ │ │ -0001d570: 2a69 6929 2a28 7a2d 2831 292a 2833 2929 *ii)*(z-(1)*(3)) │ │ │ │ -0001d580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d500: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0001d510: 3320 3d20 2831 2e31 3839 3231 2b2e 3834 3 = (1.18921+.84 │ │ │ │ +0001d520: 3935 3339 2a69 6929 2a28 782d 2831 292a 9539*ii)*(x-(1)* │ │ │ │ +0001d530: 2831 2929 2b28 2d2e 3534 3233 3731 2b2e (1))+(-.542371+. │ │ │ │ +0001d540: 3330 3731 3337 2a69 6929 2a28 792d 2831 307137*ii)*(y-(1 │ │ │ │ +0001d550: 292a 2832 2929 2b28 2020 207c 0a7c 2020 )*(2))+( |.| │ │ │ │ +0001d560: 2020 2020 312e 3336 3934 352b 2e30 3135 1.36945+.015 │ │ │ │ +0001d570: 3633 332a 6969 292a 287a 2d28 3129 2a28 633*ii)*(z-(1)*( │ │ │ │ +0001d580: 3329 2920 2020 2020 2020 2020 2020 2020 3)) │ │ │ │ 0001d590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d5a0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001d5a0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 0001d5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d5f0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3134 203a --------+.|i14 : │ │ │ │ -0001d600: 2070 7269 6e74 2072 2020 2020 2020 2020 print r │ │ │ │ +0001d5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +0001d600: 3420 3a20 7072 696e 7420 7220 2020 2020 4 : print r │ │ │ │ 0001d610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d640: 2020 2020 2020 2020 7c0a 7c28 312e 3138 |.|(1.18 │ │ │ │ -0001d650: 3932 312b 2e38 3439 3533 392a 6969 292a 921+.849539*ii)* │ │ │ │ -0001d660: 2878 2d28 3129 2a28 3129 292b 282d 2e35 (x-(1)*(1))+(-.5 │ │ │ │ -0001d670: 3432 3337 312b 2e33 3037 3133 372a 6969 42371+.307137*ii │ │ │ │ -0001d680: 292a 2879 2d28 3129 2a28 3229 292b 2831 )*(y-(1)*(2))+(1 │ │ │ │ -0001d690: 2e33 3639 3435 2020 7c0a 7c2d 2d2d 2d2d .36945 |.|----- │ │ │ │ +0001d640: 2020 2020 2020 2020 2020 207c 0a7c 2831 |.|(1 │ │ │ │ +0001d650: 2e31 3839 3231 2b2e 3834 3935 3339 2a69 .18921+.849539*i │ │ │ │ +0001d660: 6929 2a28 782d 2831 292a 2831 2929 2b28 i)*(x-(1)*(1))+( │ │ │ │ +0001d670: 2d2e 3534 3233 3731 2b2e 3330 3731 3337 -.542371+.307137 │ │ │ │ +0001d680: 2a69 6929 2a28 792d 2831 292a 2832 2929 *ii)*(y-(1)*(2)) │ │ │ │ +0001d690: 2b28 312e 3336 3934 3520 207c 0a7c 2d2d +(1.36945 |.|-- │ │ │ │ 0001d6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d6e0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c2b 2e30 3135 --------|.|+.015 │ │ │ │ -0001d6f0: 3633 332a 6969 292a 287a 2d28 3129 2a28 633*ii)*(z-(1)*( │ │ │ │ -0001d700: 3329 2920 2020 2020 2020 2020 2020 2020 3)) │ │ │ │ +0001d6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2b2e -----------|.|+. │ │ │ │ +0001d6f0: 3031 3536 3333 2a69 6929 2a28 7a2d 2831 015633*ii)*(z-(1 │ │ │ │ +0001d700: 292a 2833 2929 2020 2020 2020 2020 2020 )*(3)) │ │ │ │ 0001d710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d730: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001d730: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 0001d740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d780: 2d2d 2d2d 2d2d 2d2d 2b0a 2b2d 2d2d 2d2d --------+.+----- │ │ │ │ +0001d780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a2b 2d2d -----------+.+-- │ │ │ │ 0001d790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d7d0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3135 203a --------+.|i15 : │ │ │ │ -0001d7e0: 2072 486f 6d6f 6765 5365 6374 696f 6e3d rHomogeSection= │ │ │ │ -0001d7f0: 206d 616b 6542 2753 6563 7469 6f6e 287b makeB'Section({ │ │ │ │ -0001d800: 782c 792c 7a7d 2c43 6f6e 7461 696e 7350 x,y,z},ContainsP │ │ │ │ -0001d810: 6f69 6e74 3d3e 502c 4227 486f 6d6f 6765 oint=>P,B'Homoge │ │ │ │ -0001d820: 6e69 7a61 7469 6f6e 7c0a 7c20 2020 2020 nization|.| │ │ │ │ +0001d7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +0001d7e0: 3520 3a20 7248 6f6d 6f67 6553 6563 7469 5 : rHomogeSecti │ │ │ │ +0001d7f0: 6f6e 3d20 6d61 6b65 4227 5365 6374 696f on= makeB'Sectio │ │ │ │ +0001d800: 6e28 7b78 2c79 2c7a 7d2c 436f 6e74 6169 n({x,y,z},Contai │ │ │ │ +0001d810: 6e73 506f 696e 743d 3e50 2c42 2748 6f6d nsPoint=>P,B'Hom │ │ │ │ +0001d820: 6f67 656e 697a 6174 696f 6e7c 0a7c 2020 ogenization|.| │ │ │ │ 0001d830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d870: 2020 2020 2020 2020 7c0a 7c6f 3135 203d |.|o15 = │ │ │ │ -0001d880: 2042 2753 6563 7469 6f6e 7b2e 2e2e 332e B'Section{...3. │ │ │ │ -0001d890: 2e2e 7d20 2020 2020 2020 2020 2020 2020 ..} │ │ │ │ +0001d870: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0001d880: 3520 3d20 4227 5365 6374 696f 6e7b 2e2e 5 = B'Section{.. │ │ │ │ +0001d890: 2e33 2e2e 2e7d 2020 2020 2020 2020 2020 .3...} │ │ │ │ 0001d8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d8c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001d8c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0001d8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d910: 2020 2020 2020 2020 7c0a 7c6f 3135 203a |.|o15 : │ │ │ │ -0001d920: 2042 2753 6563 7469 6f6e 2020 2020 2020 B'Section │ │ │ │ +0001d910: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0001d920: 3520 3a20 4227 5365 6374 696f 6e20 2020 5 : B'Section │ │ │ │ 0001d930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d960: 2020 2020 2020 2020 7c0a 7c2d 2d2d 2d2d |.|----- │ │ │ │ +0001d960: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ 0001d970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d9b0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c3d 3e22 782b --------|.|=>"x+ │ │ │ │ -0001d9c0: 792b 7a22 2920 2020 2020 2020 2020 2020 y+z") │ │ │ │ +0001d9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 3d3e -----------|.|=> │ │ │ │ +0001d9c0: 2278 2b79 2b7a 2229 2020 2020 2020 2020 "x+y+z") │ │ │ │ 0001d9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001da00: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001da00: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 0001da10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001da20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001da30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001da40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001da50: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3136 203a --------+.|i16 : │ │ │ │ -0001da60: 2070 6565 6b20 7248 6f6d 6f67 6553 6563 peek rHomogeSec │ │ │ │ -0001da70: 7469 6f6e 2020 2020 2020 2020 2020 2020 tion │ │ │ │ +0001da50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +0001da60: 3620 3a20 7065 656b 2072 486f 6d6f 6765 6 : peek rHomoge │ │ │ │ +0001da70: 5365 6374 696f 6e20 2020 2020 2020 2020 Section │ │ │ │ 0001da80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001da90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001daa0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001daa0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0001dab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001daf0: 2020 2020 2020 2020 7c0a 7c6f 3136 203d |.|o16 = │ │ │ │ -0001db00: 2042 2753 6563 7469 6f6e 7b42 2748 6f6d B'Section{B'Hom │ │ │ │ -0001db10: 6f67 656e 697a 6174 696f 6e20 3d3e 2078 ogenization => x │ │ │ │ -0001db20: 2b79 2b7a 2020 2020 2020 2020 2020 2020 +y+z │ │ │ │ +0001daf0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0001db00: 3620 3d20 4227 5365 6374 696f 6e7b 4227 6 = B'Section{B' │ │ │ │ +0001db10: 486f 6d6f 6765 6e69 7a61 7469 6f6e 203d Homogenization = │ │ │ │ +0001db20: 3e20 782b 792b 7a20 2020 2020 2020 2020 > x+y+z │ │ │ │ 0001db30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001db40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001db50: 2020 2020 2020 2020 2020 2042 274e 756d B'Num │ │ │ │ -0001db60: 6265 7243 6f65 6666 6963 6965 6e74 7320 berCoefficients │ │ │ │ -0001db70: 3d3e 207b 2e35 3334 3631 342d 2e31 3735 => {.534614-.175 │ │ │ │ -0001db80: 3934 352a 6969 2c20 2e34 3236 3730 3420 945*ii, .426704 │ │ │ │ -0001db90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001dba0: 2020 2020 2020 2020 2020 2042 2753 6563 B'Sec │ │ │ │ -0001dbb0: 7469 6f6e 5374 7269 6e67 203d 3e20 282e tionString => (. │ │ │ │ -0001dbc0: 3533 3436 3134 2d2e 3137 3539 3435 2a69 534614-.175945*i │ │ │ │ -0001dbd0: 6929 2a28 782d 2878 2b79 2b7a 292a 2820 i)*(x-(x+y+z)*( │ │ │ │ -0001dbe0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001dbf0: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d --------------- │ │ │ │ +0001db40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001db50: 2020 2020 2020 2020 2020 2020 2020 4227 B' │ │ │ │ +0001db60: 4e75 6d62 6572 436f 6566 6669 6369 656e NumberCoefficien │ │ │ │ +0001db70: 7473 203d 3e20 7b2e 3533 3436 3134 2d2e ts => {.534614-. │ │ │ │ +0001db80: 3137 3539 3435 2a69 692c 202e 3432 3637 175945*ii, .4267 │ │ │ │ +0001db90: 3034 2020 2020 2020 2020 207c 0a7c 2020 04 |.| │ │ │ │ +0001dba0: 2020 2020 2020 2020 2020 2020 2020 4227 B' │ │ │ │ +0001dbb0: 5365 6374 696f 6e53 7472 696e 6720 3d3e SectionString => │ │ │ │ +0001dbc0: 2028 2e35 3334 3631 342d 2e31 3735 3934 (.534614-.17594 │ │ │ │ +0001dbd0: 352a 6969 292a 2878 2d28 782b 792b 7a29 5*ii)*(x-(x+y+z) │ │ │ │ +0001dbe0: 2a28 2020 2020 2020 2020 207c 0a7c 2020 *( |.| │ │ │ │ +0001dbf0: 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ------------ │ │ │ │ 0001dc00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001dc10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001dc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dc30: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0001dc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ 0001dc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dc80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001dc90: 202d 2e39 3735 3339 2a69 692c 202d 2e34 -.97539*ii, -.4 │ │ │ │ -0001dca0: 3738 3830 332b 2e30 3431 3630 3038 2a69 78803+.0416008*i │ │ │ │ -0001dcb0: 697d 2020 2020 2020 2020 2020 2020 2020 i} │ │ │ │ +0001dc80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001dc90: 2020 2020 2d2e 3937 3533 392a 6969 2c20 -.97539*ii, │ │ │ │ +0001dca0: 2d2e 3437 3838 3033 2b2e 3034 3136 3030 -.478803+.041600 │ │ │ │ +0001dcb0: 382a 6969 7d20 2020 2020 2020 2020 2020 8*ii} │ │ │ │ 0001dcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dcd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001dce0: 2031 2929 2b28 2e34 3236 3730 342d 2e39 1))+(.426704-.9 │ │ │ │ -0001dcf0: 3735 3339 2a69 6929 2a28 792d 2878 2b79 7539*ii)*(y-(x+y │ │ │ │ -0001dd00: 2b7a 292a 2832 2929 2b28 2d2e 3437 3838 +z)*(2))+(-.4788 │ │ │ │ -0001dd10: 3033 2b2e 3034 3136 3030 382a 6969 292a 03+.0416008*ii)* │ │ │ │ -0001dd20: 287a 2d28 782b 792b 7c0a 7c20 2020 2020 (z-(x+y+|.| │ │ │ │ -0001dd30: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d --------------- │ │ │ │ +0001dcd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001dce0: 2020 2020 3129 292b 282e 3432 3637 3034 1))+(.426704 │ │ │ │ +0001dcf0: 2d2e 3937 3533 392a 6969 292a 2879 2d28 -.97539*ii)*(y-( │ │ │ │ +0001dd00: 782b 792b 7a29 2a28 3229 292b 282d 2e34 x+y+z)*(2))+(-.4 │ │ │ │ +0001dd10: 3738 3830 332b 2e30 3431 3630 3038 2a69 78803+.0416008*i │ │ │ │ +0001dd20: 6929 2a28 7a2d 2878 2b79 2b7c 0a7c 2020 i)*(z-(x+y+|.| │ │ │ │ +0001dd30: 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ------------ │ │ │ │ 0001dd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001dd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001dd60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dd70: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ -0001dd80: 2020 2020 2020 2020 7d20 2020 2020 2020 } │ │ │ │ +0001dd70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0001dd80: 2020 2020 2020 2020 2020 207d 2020 2020 } │ │ │ │ 0001dd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ddb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ddc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001ddc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0001ddd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ddf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001de00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001de10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001de20: 207a 292a 2833 2929 2020 2020 2020 2020 z)*(3)) │ │ │ │ +0001de10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001de20: 2020 2020 7a29 2a28 3329 2920 2020 2020 z)*(3)) │ │ │ │ 0001de30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001de40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001de50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001de60: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001de60: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 0001de70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001de80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001de90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001dea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001deb0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3137 203a --------+.|i17 : │ │ │ │ -0001dec0: 2070 7269 6e74 2072 486f 6d6f 6765 5365 print rHomogeSe │ │ │ │ -0001ded0: 6374 696f 6e23 4227 5365 6374 696f 6e53 ction#B'SectionS │ │ │ │ -0001dee0: 7472 696e 6720 2020 2020 2020 2020 2020 tring │ │ │ │ +0001deb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +0001dec0: 3720 3a20 7072 696e 7420 7248 6f6d 6f67 7 : print rHomog │ │ │ │ +0001ded0: 6553 6563 7469 6f6e 2342 2753 6563 7469 eSection#B'Secti │ │ │ │ +0001dee0: 6f6e 5374 7269 6e67 2020 2020 2020 2020 onString │ │ │ │ 0001def0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001df00: 2020 2020 2020 2020 7c0a 7c28 2e35 3334 |.|(.534 │ │ │ │ -0001df10: 3631 342d 2e31 3735 3934 352a 6969 292a 614-.175945*ii)* │ │ │ │ -0001df20: 2878 2d28 782b 792b 7a29 2a28 3129 292b (x-(x+y+z)*(1))+ │ │ │ │ -0001df30: 282e 3432 3637 3034 2d2e 3937 3533 392a (.426704-.97539* │ │ │ │ -0001df40: 6969 292a 2879 2d28 782b 792b 7a29 2a28 ii)*(y-(x+y+z)*( │ │ │ │ -0001df50: 3220 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2 |.|----- │ │ │ │ +0001df00: 2020 2020 2020 2020 2020 207c 0a7c 282e |.|(. │ │ │ │ +0001df10: 3533 3436 3134 2d2e 3137 3539 3435 2a69 534614-.175945*i │ │ │ │ +0001df20: 6929 2a28 782d 2878 2b79 2b7a 292a 2831 i)*(x-(x+y+z)*(1 │ │ │ │ +0001df30: 2929 2b28 2e34 3236 3730 342d 2e39 3735 ))+(.426704-.975 │ │ │ │ +0001df40: 3339 2a69 6929 2a28 792d 2878 2b79 2b7a 39*ii)*(y-(x+y+z │ │ │ │ +0001df50: 292a 2832 2020 2020 2020 207c 0a7c 2d2d )*(2 |.|-- │ │ │ │ 0001df60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001df70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001df80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001df90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dfa0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c29 292b 282d --------|.|))+(- │ │ │ │ -0001dfb0: 2e34 3738 3830 332b 2e30 3431 3630 3038 .478803+.0416008 │ │ │ │ -0001dfc0: 2a69 6929 2a28 7a2d 2878 2b79 2b7a 292a *ii)*(z-(x+y+z)* │ │ │ │ -0001dfd0: 2833 2929 2020 2020 2020 2020 2020 2020 (3)) │ │ │ │ +0001dfa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2929 -----------|.|)) │ │ │ │ +0001dfb0: 2b28 2d2e 3437 3838 3033 2b2e 3034 3136 +(-.478803+.0416 │ │ │ │ +0001dfc0: 3030 382a 6969 292a 287a 2d28 782b 792b 008*ii)*(z-(x+y+ │ │ │ │ +0001dfd0: 7a29 2a28 3329 2920 2020 2020 2020 2020 z)*(3)) │ │ │ │ 0001dfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dff0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001dff0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 0001e000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e040: 2d2d 2d2d 2d2d 2d2d 2b0a 2b2d 2d2d 2d2d --------+.+----- │ │ │ │ +0001e040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a2b 2d2d -----------+.+-- │ │ │ │ 0001e050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e070: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3820 3a20 -------+.|i18 : │ │ │ │ -0001e080: 663d 2279 5e33 2d78 2a79 2b31 2220 2020 f="y^3-x*y+1" │ │ │ │ +0001e070: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3138 ----------+.|i18 │ │ │ │ +0001e080: 203a 2066 3d22 795e 332d 782a 792b 3122 : f="y^3-x*y+1" │ │ │ │ 0001e090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e0a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001e0a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001e0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e0d0: 2020 2020 207c 0a7c 6f31 3820 3d20 795e |.|o18 = y^ │ │ │ │ -0001e0e0: 332d 782a 792b 3120 2020 2020 2020 2020 3-x*y+1 │ │ │ │ +0001e0d0: 2020 2020 2020 2020 7c0a 7c6f 3138 203d |.|o18 = │ │ │ │ +0001e0e0: 2079 5e33 2d78 2a79 2b31 2020 2020 2020 y^3-x*y+1 │ │ │ │ 0001e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e100: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001e100: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 0001e110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e130: 2d2d 2d2b 0a7c 6931 3920 3a20 7331 3d6d ---+.|i19 : s1=m │ │ │ │ -0001e140: 616b 6542 2753 6563 7469 6f6e 287b 782c akeB'Section({x, │ │ │ │ -0001e150: 792c 317d 2920 2020 2020 2020 2020 2020 y,1}) │ │ │ │ -0001e160: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001e130: 2d2d 2d2d 2d2d 2b0a 7c69 3139 203a 2073 ------+.|i19 : s │ │ │ │ +0001e140: 313d 6d61 6b65 4227 5365 6374 696f 6e28 1=makeB'Section( │ │ │ │ +0001e150: 7b78 2c79 2c31 7d29 2020 2020 2020 2020 {x,y,1}) │ │ │ │ +0001e160: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0001e170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e190: 207c 0a7c 6f31 3920 3d20 4227 5365 6374 |.|o19 = B'Sect │ │ │ │ -0001e1a0: 696f 6e7b 2e2e 2e32 2e2e 2e7d 2020 2020 ion{...2...} │ │ │ │ +0001e190: 2020 2020 7c0a 7c6f 3139 203d 2042 2753 |.|o19 = B'S │ │ │ │ +0001e1a0: 6563 7469 6f6e 7b2e 2e2e 322e 2e2e 7d20 ection{...2...} │ │ │ │ 0001e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e1c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001e1c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001e1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e1e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001e1f0: 0a7c 6f31 3920 3a20 4227 5365 6374 696f .|o19 : B'Sectio │ │ │ │ -0001e200: 6e20 2020 2020 2020 2020 2020 2020 2020 n │ │ │ │ -0001e210: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001e220: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0001e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e1f0: 2020 7c0a 7c6f 3139 203a 2042 2753 6563 |.|o19 : B'Sec │ │ │ │ +0001e200: 7469 6f6e 2020 2020 2020 2020 2020 2020 tion │ │ │ │ +0001e210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e220: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0001e230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0001e250: 6932 3020 3a20 6d61 6b65 4227 496e 7075 i20 : makeB'Inpu │ │ │ │ -0001e260: 7446 696c 6528 7374 6f72 6542 4d32 4669 tFile(storeBM2Fi │ │ │ │ -0001e270: 6c65 732c 2020 2020 2020 2020 7c0a 7c20 les, |.| │ │ │ │ -0001e280: 2020 2020 2020 2041 6666 5661 7269 6162 AffVariab │ │ │ │ -0001e290: 6c65 4772 6f75 703d 3e7b 782c 797d 2c20 leGroup=>{x,y}, │ │ │ │ -0001e2a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001e2b0: 2020 2020 2020 4227 506f 6c79 6e6f 6d69 B'Polynomi │ │ │ │ -0001e2c0: 616c 733d 3e7b 662c 7331 7d29 3b20 2020 als=>{f,s1}); │ │ │ │ -0001e2d0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001e240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e250: 2b0a 7c69 3230 203a 206d 616b 6542 2749 +.|i20 : makeB'I │ │ │ │ +0001e260: 6e70 7574 4669 6c65 2873 746f 7265 424d nputFile(storeBM │ │ │ │ +0001e270: 3246 696c 6573 2c20 2020 2020 2020 207c 2Files, | │ │ │ │ +0001e280: 0a7c 2020 2020 2020 2020 4166 6656 6172 .| AffVar │ │ │ │ +0001e290: 6961 626c 6547 726f 7570 3d3e 7b78 2c79 iableGroup=>{x,y │ │ │ │ +0001e2a0: 7d2c 2020 2020 2020 2020 2020 2020 7c0a }, |. │ │ │ │ +0001e2b0: 7c20 2020 2020 2020 2042 2750 6f6c 796e | B'Polyn │ │ │ │ +0001e2c0: 6f6d 6961 6c73 3d3e 7b66 2c73 317d 293b omials=>{f,s1}); │ │ │ │ +0001e2d0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 0001e2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e300: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3120 ---------+.|i21 │ │ │ │ -0001e310: 3a20 7275 6e42 6572 7469 6e69 2873 746f : runBertini(sto │ │ │ │ -0001e320: 7265 424d 3246 696c 6573 2920 2020 2020 reBM2Files) │ │ │ │ -0001e330: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001e300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0001e310: 3231 203a 2072 756e 4265 7274 696e 6928 21 : runBertini( │ │ │ │ +0001e320: 7374 6f72 6542 4d32 4669 6c65 7329 2020 storeBM2Files) │ │ │ │ +0001e330: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 0001e340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e360: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3220 3a20 -------+.|i22 : │ │ │ │ -0001e370: 2369 6d70 6f72 7453 6f6c 7574 696f 6e73 #importSolutions │ │ │ │ -0001e380: 4669 6c65 2873 746f 7265 424d 3246 696c File(storeBM2Fil │ │ │ │ -0001e390: 6573 293d 3d33 7c0a 7c20 2020 2020 2020 es)==3|.| │ │ │ │ +0001e360: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3232 ----------+.|i22 │ │ │ │ +0001e370: 203a 2023 696d 706f 7274 536f 6c75 7469 : #importSoluti │ │ │ │ +0001e380: 6f6e 7346 696c 6528 7374 6f72 6542 4d32 onsFile(storeBM2 │ │ │ │ +0001e390: 4669 6c65 7329 3d3d 337c 0a7c 2020 2020 Files)==3|.| │ │ │ │ 0001e3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e3c0: 2020 2020 207c 0a7c 6f32 3220 3d20 7472 |.|o22 = tr │ │ │ │ -0001e3d0: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +0001e3c0: 2020 2020 2020 2020 7c0a 7c6f 3232 203d |.|o22 = │ │ │ │ +0001e3d0: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ 0001e3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e3f0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001e3f0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 0001e400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e420: 2d2d 2d2b 0a0a 5761 7973 2074 6f20 7573 ---+..Ways to us │ │ │ │ -0001e430: 6520 6d61 6b65 4227 5365 6374 696f 6e3a e makeB'Section: │ │ │ │ -0001e440: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0001e450: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -0001e460: 2022 6d61 6b65 4227 5365 6374 696f 6e28 "makeB'Section( │ │ │ │ -0001e470: 4c69 7374 2922 0a0a 466f 7220 7468 6520 List)"..For the │ │ │ │ -0001e480: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -0001e490: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -0001e4a0: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -0001e4b0: 6d61 6b65 4227 5365 6374 696f 6e3a 206d makeB'Section: m │ │ │ │ -0001e4c0: 616b 6542 2753 6563 7469 6f6e 2c20 6973 akeB'Section, is │ │ │ │ -0001e4d0: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ -0001e4e0: 6675 6e63 7469 6f6e 2077 6974 680a 6f70 function with.op │ │ │ │ -0001e4f0: 7469 6f6e 733a 2028 4d61 6361 756c 6179 tions: (Macaulay │ │ │ │ -0001e500: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ -0001e510: 696f 6e57 6974 684f 7074 696f 6e73 2c2e ionWithOptions,. │ │ │ │ -0001e520: 0a1f 0a46 696c 653a 2042 6572 7469 6e69 ...File: Bertini │ │ │ │ -0001e530: 2e69 6e66 6f2c 204e 6f64 653a 206d 616b .info, Node: mak │ │ │ │ -0001e540: 6542 2753 6c69 6365 2c20 4e65 7874 3a20 eB'Slice, Next: │ │ │ │ -0001e550: 6d6f 7665 4227 4669 6c65 2c20 5072 6576 moveB'File, Prev │ │ │ │ -0001e560: 3a20 6d61 6b65 4227 5365 6374 696f 6e2c : makeB'Section, │ │ │ │ -0001e570: 2055 703a 2054 6f70 0a0a 6d61 6b65 4227 Up: Top..makeB' │ │ │ │ -0001e580: 536c 6963 6520 2d2d 206d 616b 6542 2753 Slice -- makeB'S │ │ │ │ -0001e590: 6c69 6365 2063 7265 6174 6573 2061 2068 lice creates a h │ │ │ │ -0001e5a0: 6173 6820 7461 626c 6520 7468 6174 2072 ash table that r │ │ │ │ -0001e5b0: 6570 7265 7365 6e74 7320 6120 6c69 6e65 epresents a line │ │ │ │ -0001e5c0: 6172 2073 6c69 6365 2e0a 2a2a 2a2a 2a2a ar slice..****** │ │ │ │ +0001e420: 2d2d 2d2d 2d2d 2b0a 0a57 6179 7320 746f ------+..Ways to │ │ │ │ +0001e430: 2075 7365 206d 616b 6542 2753 6563 7469 use makeB'Secti │ │ │ │ +0001e440: 6f6e 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d on:.============ │ │ │ │ +0001e450: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +0001e460: 2020 2a20 226d 616b 6542 2753 6563 7469 * "makeB'Secti │ │ │ │ +0001e470: 6f6e 284c 6973 7429 220a 0a46 6f72 2074 on(List)"..For t │ │ │ │ +0001e480: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +0001e490: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001e4a0: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ +0001e4b0: 7465 206d 616b 6542 2753 6563 7469 6f6e te makeB'Section │ │ │ │ +0001e4c0: 3a20 6d61 6b65 4227 5365 6374 696f 6e2c : makeB'Section, │ │ │ │ +0001e4d0: 2069 7320 6120 2a6e 6f74 6520 6d65 7468 is a *note meth │ │ │ │ +0001e4e0: 6f64 2066 756e 6374 696f 6e20 7769 7468 od function with │ │ │ │ +0001e4f0: 0a6f 7074 696f 6e73 3a20 284d 6163 6175 .options: (Macau │ │ │ │ +0001e500: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ +0001e510: 6e63 7469 6f6e 5769 7468 4f70 7469 6f6e nctionWithOption │ │ │ │ +0001e520: 732c 2e0a 1f0a 4669 6c65 3a20 4265 7274 s,....File: Bert │ │ │ │ +0001e530: 696e 692e 696e 666f 2c20 4e6f 6465 3a20 ini.info, Node: │ │ │ │ +0001e540: 6d61 6b65 4227 536c 6963 652c 204e 6578 makeB'Slice, Nex │ │ │ │ +0001e550: 743a 206d 6f76 6542 2746 696c 652c 2050 t: moveB'File, P │ │ │ │ +0001e560: 7265 763a 206d 616b 6542 2753 6563 7469 rev: makeB'Secti │ │ │ │ +0001e570: 6f6e 2c20 5570 3a20 546f 700a 0a6d 616b on, Up: Top..mak │ │ │ │ +0001e580: 6542 2753 6c69 6365 202d 2d20 6d61 6b65 eB'Slice -- make │ │ │ │ +0001e590: 4227 536c 6963 6520 6372 6561 7465 7320 B'Slice creates │ │ │ │ +0001e5a0: 6120 6861 7368 2074 6162 6c65 2074 6861 a hash table tha │ │ │ │ +0001e5b0: 7420 7265 7072 6573 656e 7473 2061 206c t represents a l │ │ │ │ +0001e5c0: 696e 6561 7220 736c 6963 652e 0a2a 2a2a inear slice..*** │ │ │ │ 0001e5d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001e5e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001e5f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001e600: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001e610: 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 796e 6f70 *********..Synop │ │ │ │ -0001e620: 7369 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 sis.========.. │ │ │ │ -0001e630: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ -0001e640: 2020 6d61 6b65 4227 536c 6963 6528 736c makeB'Slice(sl │ │ │ │ -0001e650: 6963 6554 7970 652c 7661 7269 6162 6c65 iceType,variable │ │ │ │ -0001e660: 4772 6f75 7073 290a 2020 2a20 496e 7075 Groups). * Inpu │ │ │ │ -0001e670: 7473 3a0a 2020 2020 2020 2a20 736c 6963 ts:. * slic │ │ │ │ -0001e680: 6554 7970 652c 2061 202a 6e6f 7465 206c eType, a *note l │ │ │ │ -0001e690: 6973 743a 2028 4d61 6361 756c 6179 3244 ist: (Macaulay2D │ │ │ │ -0001e6a0: 6f63 294c 6973 742c 2c20 4120 6c69 7374 oc)List,, A list │ │ │ │ -0001e6b0: 206f 6620 696e 7465 6765 7273 206f 720a of integers or. │ │ │ │ -0001e6c0: 2020 2020 2020 2020 696e 7465 6765 722e integer. │ │ │ │ -0001e6d0: 0a20 2020 2020 202a 2076 6172 6961 626c . * variabl │ │ │ │ -0001e6e0: 6547 726f 7570 732c 2061 202a 6e6f 7465 eGroups, a *note │ │ │ │ -0001e6f0: 206c 6973 743a 2028 4d61 6361 756c 6179 list: (Macaulay │ │ │ │ -0001e700: 3244 6f63 294c 6973 742c 2c20 4120 6c69 2Doc)List,, A li │ │ │ │ -0001e710: 7374 206f 6620 6c69 7374 206f 660a 2020 st of list of. │ │ │ │ -0001e720: 2020 2020 2020 7661 7269 6162 6c65 7320 variables │ │ │ │ -0001e730: 6f72 206c 6973 7420 6f66 2076 6172 6961 or list of varia │ │ │ │ -0001e740: 626c 6573 2e0a 2020 2a20 2a6e 6f74 6520 bles.. * *note │ │ │ │ -0001e750: 4f70 7469 6f6e 616c 2069 6e70 7574 733a Optional inputs: │ │ │ │ -0001e760: 2028 4d61 6361 756c 6179 3244 6f63 2975 (Macaulay2Doc)u │ │ │ │ -0001e770: 7369 6e67 2066 756e 6374 696f 6e73 2077 sing functions w │ │ │ │ -0001e780: 6974 6820 6f70 7469 6f6e 616c 2069 6e70 ith optional inp │ │ │ │ -0001e790: 7574 732c 3a0a 2020 2020 2020 2a20 2a6e uts,:. * *n │ │ │ │ -0001e7a0: 6f74 6520 4227 486f 6d6f 6765 6e69 7a61 ote B'Homogeniza │ │ │ │ -0001e7b0: 7469 6f6e 3a20 6d61 6b65 4227 5365 6374 tion: makeB'Sect │ │ │ │ -0001e7c0: 696f 6e2c 203d 3e20 2e2e 2e2c 2064 6566 ion, => ..., def │ │ │ │ -0001e7d0: 6175 6c74 2076 616c 7565 207b 7d2c 0a20 ault value {},. │ │ │ │ -0001e7e0: 2020 2020 2020 206d 616b 6542 2753 6563 makeB'Sec │ │ │ │ -0001e7f0: 7469 6f6e 2063 7265 6174 6573 2061 2068 tion creates a h │ │ │ │ -0001e800: 6173 6820 7461 626c 6520 7468 6174 2072 ash table that r │ │ │ │ -0001e810: 6570 7265 7365 6e74 7320 6120 6879 7065 epresents a hype │ │ │ │ -0001e820: 7270 6c61 6e65 2e0a 2020 2020 2020 2a20 rplane.. * │ │ │ │ -0001e830: 4227 4e75 6d62 6572 436f 6566 6669 6369 B'NumberCoeffici │ │ │ │ -0001e840: 656e 7473 203d 3e20 2e2e 2e2c 2064 6566 ents => ..., def │ │ │ │ -0001e850: 6175 6c74 2076 616c 7565 207b 7d0a 2020 ault value {}. │ │ │ │ -0001e860: 2020 2020 2a20 436f 6e74 6169 6e73 4d75 * ContainsMu │ │ │ │ -0001e870: 6c74 6950 726f 6a65 6374 6976 6550 6f69 ltiProjectivePoi │ │ │ │ -0001e880: 6e74 203d 3e20 2e2e 2e2c 2064 6566 6175 nt => ..., defau │ │ │ │ -0001e890: 6c74 2076 616c 7565 207b 7d0a 2020 2020 lt value {}. │ │ │ │ -0001e8a0: 2020 2a20 436f 6e74 6169 6e73 506f 696e * ContainsPoin │ │ │ │ -0001e8b0: 7420 3d3e 202e 2e2e 2c20 6465 6661 756c t => ..., defaul │ │ │ │ -0001e8c0: 7420 7661 6c75 6520 7b7d 0a20 2020 2020 t value {}. │ │ │ │ -0001e8d0: 202a 204e 616d 6542 2753 6c69 6365 203d * NameB'Slice = │ │ │ │ -0001e8e0: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ -0001e8f0: 616c 7565 206e 756c 6c0a 2020 2020 2020 alue null. │ │ │ │ -0001e900: 2a20 5261 6e64 6f6d 436f 6566 6669 6369 * RandomCoeffici │ │ │ │ -0001e910: 656e 7447 656e 6572 6174 6f72 203d 3e20 entGenerator => │ │ │ │ -0001e920: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ -0001e930: 7565 0a20 2020 2020 2020 2046 756e 6374 ue. Funct │ │ │ │ -0001e940: 696f 6e43 6c6f 7375 7265 5b2e 2e2f 4265 ionClosure[../Be │ │ │ │ -0001e950: 7274 696e 692e 6d32 3a32 3335 363a 3337 rtini.m2:2356:37 │ │ │ │ -0001e960: 2d32 3335 363a 3636 5d0a 0a44 6573 6372 -2356:66]..Descr │ │ │ │ -0001e970: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ -0001e980: 3d3d 0a0a 6d61 6b65 4227 536c 6963 6520 ==..makeB'Slice │ │ │ │ -0001e990: 616c 6c6f 7773 2066 6f72 2065 6173 7920 allows for easy │ │ │ │ -0001e9a0: 6372 6561 7469 6f6e 206f 6620 6571 7561 creation of equa │ │ │ │ -0001e9b0: 7469 6f6e 7320 7468 6174 2064 6566 696e tions that defin │ │ │ │ -0001e9c0: 6520 6c69 6e65 6172 2073 7061 6365 732c e linear spaces, │ │ │ │ -0001e9d0: 0a69 2e65 2e20 736c 6963 6573 2e20 5468 .i.e. slices. Th │ │ │ │ -0001e9e0: 6520 6465 6661 756c 7420 6372 6561 7465 e default create │ │ │ │ -0001e9f0: 7320 6120 6861 7368 2074 6162 6c65 2077 s a hash table w │ │ │ │ -0001ea00: 6974 6820 7477 6f20 6b65 7973 3a0a 4227 ith two keys:.B' │ │ │ │ -0001ea10: 4e75 6d62 6572 436f 6566 6669 6369 656e NumberCoefficien │ │ │ │ -0001ea20: 7473 2061 6e64 2042 2753 6563 7469 6f6e ts and B'Section │ │ │ │ -0001ea30: 5374 7269 6e67 2e20 5768 656e 2077 6520 String. When we │ │ │ │ -0001ea40: 6861 7665 2061 206d 756c 7469 7072 6f6a have a multiproj │ │ │ │ -0001ea50: 6563 7469 7665 0a76 6172 6965 7479 2077 ective.variety w │ │ │ │ -0001ea60: 6520 6361 6e20 6469 6666 6572 656e 7420 e can different │ │ │ │ -0001ea70: 7479 7065 7320 6f66 2073 6c69 6365 732e types of slices. │ │ │ │ -0001ea80: 2054 6f20 6d61 6b65 2061 2073 6c69 6365 To make a slice │ │ │ │ -0001ea90: 2077 6520 6e65 6564 2074 6f20 7370 6563 we need to spec │ │ │ │ -0001eaa0: 6966 790a 7468 6520 7479 7065 206f 6620 ify.the type of │ │ │ │ -0001eab0: 736c 6963 6520 7765 2077 616e 7420 666f slice we want fo │ │ │ │ -0001eac0: 6c6c 6f77 6564 2062 7920 7661 7269 6162 llowed by variab │ │ │ │ -0001ead0: 6c65 2067 726f 7570 732e 0a0a 2b2d 2d2d le groups...+--- │ │ │ │ +0001e610: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 5379 ************..Sy │ │ │ │ +0001e620: 6e6f 7073 6973 0a3d 3d3d 3d3d 3d3d 3d0a nopsis.========. │ │ │ │ +0001e630: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +0001e640: 2020 2020 206d 616b 6542 2753 6c69 6365 makeB'Slice │ │ │ │ +0001e650: 2873 6c69 6365 5479 7065 2c76 6172 6961 (sliceType,varia │ │ │ │ +0001e660: 626c 6547 726f 7570 7329 0a20 202a 2049 bleGroups). * I │ │ │ │ +0001e670: 6e70 7574 733a 0a20 2020 2020 202a 2073 nputs:. * s │ │ │ │ +0001e680: 6c69 6365 5479 7065 2c20 6120 2a6e 6f74 liceType, a *not │ │ │ │ +0001e690: 6520 6c69 7374 3a20 284d 6163 6175 6c61 e list: (Macaula │ │ │ │ +0001e6a0: 7932 446f 6329 4c69 7374 2c2c 2041 206c y2Doc)List,, A l │ │ │ │ +0001e6b0: 6973 7420 6f66 2069 6e74 6567 6572 7320 ist of integers │ │ │ │ +0001e6c0: 6f72 0a20 2020 2020 2020 2069 6e74 6567 or. integ │ │ │ │ +0001e6d0: 6572 2e0a 2020 2020 2020 2a20 7661 7269 er.. * vari │ │ │ │ +0001e6e0: 6162 6c65 4772 6f75 7073 2c20 6120 2a6e ableGroups, a *n │ │ │ │ +0001e6f0: 6f74 6520 6c69 7374 3a20 284d 6163 6175 ote list: (Macau │ │ │ │ +0001e700: 6c61 7932 446f 6329 4c69 7374 2c2c 2041 lay2Doc)List,, A │ │ │ │ +0001e710: 206c 6973 7420 6f66 206c 6973 7420 6f66 list of list of │ │ │ │ +0001e720: 0a20 2020 2020 2020 2076 6172 6961 626c . variabl │ │ │ │ +0001e730: 6573 206f 7220 6c69 7374 206f 6620 7661 es or list of va │ │ │ │ +0001e740: 7269 6162 6c65 732e 0a20 202a 202a 6e6f riables.. * *no │ │ │ │ +0001e750: 7465 204f 7074 696f 6e61 6c20 696e 7075 te Optional inpu │ │ │ │ +0001e760: 7473 3a20 284d 6163 6175 6c61 7932 446f ts: (Macaulay2Do │ │ │ │ +0001e770: 6329 7573 696e 6720 6675 6e63 7469 6f6e c)using function │ │ │ │ +0001e780: 7320 7769 7468 206f 7074 696f 6e61 6c20 s with optional │ │ │ │ +0001e790: 696e 7075 7473 2c3a 0a20 2020 2020 202a inputs,:. * │ │ │ │ +0001e7a0: 202a 6e6f 7465 2042 2748 6f6d 6f67 656e *note B'Homogen │ │ │ │ +0001e7b0: 697a 6174 696f 6e3a 206d 616b 6542 2753 ization: makeB'S │ │ │ │ +0001e7c0: 6563 7469 6f6e 2c20 3d3e 202e 2e2e 2c20 ection, => ..., │ │ │ │ +0001e7d0: 6465 6661 756c 7420 7661 6c75 6520 7b7d default value {} │ │ │ │ +0001e7e0: 2c0a 2020 2020 2020 2020 6d61 6b65 4227 ,. makeB' │ │ │ │ +0001e7f0: 5365 6374 696f 6e20 6372 6561 7465 7320 Section creates │ │ │ │ +0001e800: 6120 6861 7368 2074 6162 6c65 2074 6861 a hash table tha │ │ │ │ +0001e810: 7420 7265 7072 6573 656e 7473 2061 2068 t represents a h │ │ │ │ +0001e820: 7970 6572 706c 616e 652e 0a20 2020 2020 yperplane.. │ │ │ │ +0001e830: 202a 2042 274e 756d 6265 7243 6f65 6666 * B'NumberCoeff │ │ │ │ +0001e840: 6963 6965 6e74 7320 3d3e 202e 2e2e 2c20 icients => ..., │ │ │ │ +0001e850: 6465 6661 756c 7420 7661 6c75 6520 7b7d default value {} │ │ │ │ +0001e860: 0a20 2020 2020 202a 2043 6f6e 7461 696e . * Contain │ │ │ │ +0001e870: 734d 756c 7469 5072 6f6a 6563 7469 7665 sMultiProjective │ │ │ │ +0001e880: 506f 696e 7420 3d3e 202e 2e2e 2c20 6465 Point => ..., de │ │ │ │ +0001e890: 6661 756c 7420 7661 6c75 6520 7b7d 0a20 fault value {}. │ │ │ │ +0001e8a0: 2020 2020 202a 2043 6f6e 7461 696e 7350 * ContainsP │ │ │ │ +0001e8b0: 6f69 6e74 203d 3e20 2e2e 2e2c 2064 6566 oint => ..., def │ │ │ │ +0001e8c0: 6175 6c74 2076 616c 7565 207b 7d0a 2020 ault value {}. │ │ │ │ +0001e8d0: 2020 2020 2a20 4e61 6d65 4227 536c 6963 * NameB'Slic │ │ │ │ +0001e8e0: 6520 3d3e 202e 2e2e 2c20 6465 6661 756c e => ..., defaul │ │ │ │ +0001e8f0: 7420 7661 6c75 6520 6e75 6c6c 0a20 2020 t value null. │ │ │ │ +0001e900: 2020 202a 2052 616e 646f 6d43 6f65 6666 * RandomCoeff │ │ │ │ +0001e910: 6963 6965 6e74 4765 6e65 7261 746f 7220 icientGenerator │ │ │ │ +0001e920: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +0001e930: 7661 6c75 650a 2020 2020 2020 2020 4675 value. Fu │ │ │ │ +0001e940: 6e63 7469 6f6e 436c 6f73 7572 655b 2e2e nctionClosure[.. │ │ │ │ +0001e950: 2f42 6572 7469 6e69 2e6d 323a 3233 3536 /Bertini.m2:2356 │ │ │ │ +0001e960: 3a33 372d 3233 3536 3a36 365d 0a0a 4465 :37-2356:66]..De │ │ │ │ +0001e970: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +0001e980: 3d3d 3d3d 3d0a 0a6d 616b 6542 2753 6c69 =====..makeB'Sli │ │ │ │ +0001e990: 6365 2061 6c6c 6f77 7320 666f 7220 6561 ce allows for ea │ │ │ │ +0001e9a0: 7379 2063 7265 6174 696f 6e20 6f66 2065 sy creation of e │ │ │ │ +0001e9b0: 7175 6174 696f 6e73 2074 6861 7420 6465 quations that de │ │ │ │ +0001e9c0: 6669 6e65 206c 696e 6561 7220 7370 6163 fine linear spac │ │ │ │ +0001e9d0: 6573 2c0a 692e 652e 2073 6c69 6365 732e es,.i.e. slices. │ │ │ │ +0001e9e0: 2054 6865 2064 6566 6175 6c74 2063 7265 The default cre │ │ │ │ +0001e9f0: 6174 6573 2061 2068 6173 6820 7461 626c ates a hash tabl │ │ │ │ +0001ea00: 6520 7769 7468 2074 776f 206b 6579 733a e with two keys: │ │ │ │ +0001ea10: 0a42 274e 756d 6265 7243 6f65 6666 6963 .B'NumberCoeffic │ │ │ │ +0001ea20: 6965 6e74 7320 616e 6420 4227 5365 6374 ients and B'Sect │ │ │ │ +0001ea30: 696f 6e53 7472 696e 672e 2057 6865 6e20 ionString. When │ │ │ │ +0001ea40: 7765 2068 6176 6520 6120 6d75 6c74 6970 we have a multip │ │ │ │ +0001ea50: 726f 6a65 6374 6976 650a 7661 7269 6574 rojective.variet │ │ │ │ +0001ea60: 7920 7765 2063 616e 2064 6966 6665 7265 y we can differe │ │ │ │ +0001ea70: 6e74 2074 7970 6573 206f 6620 736c 6963 nt types of slic │ │ │ │ +0001ea80: 6573 2e20 546f 206d 616b 6520 6120 736c es. To make a sl │ │ │ │ +0001ea90: 6963 6520 7765 206e 6565 6420 746f 2073 ice we need to s │ │ │ │ +0001eaa0: 7065 6369 6679 0a74 6865 2074 7970 6520 pecify.the type │ │ │ │ +0001eab0: 6f66 2073 6c69 6365 2077 6520 7761 6e74 of slice we want │ │ │ │ +0001eac0: 2066 6f6c 6c6f 7765 6420 6279 2076 6172 followed by var │ │ │ │ +0001ead0: 6961 626c 6520 6772 6f75 7073 2e0a 0a2b iable groups...+ │ │ │ │ 0001eae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001eaf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001eb00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001eb10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001eb20: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ -0001eb30: 3a20 736c 6963 6554 7970 653d 7b31 2c31 : sliceType={1,1 │ │ │ │ -0001eb40: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +0001eb20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0001eb30: 6931 203a 2073 6c69 6365 5479 7065 3d7b i1 : sliceType={ │ │ │ │ +0001eb40: 312c 317d 2020 2020 2020 2020 2020 2020 1,1} │ │ │ │ 0001eb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001eb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001eb70: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001eb70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0001eb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001eb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001eba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ebb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ebc0: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ -0001ebd0: 3d20 7b31 2c20 317d 2020 2020 2020 2020 = {1, 1} │ │ │ │ +0001ebc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001ebd0: 6f31 203d 207b 312c 2031 7d20 2020 2020 o1 = {1, 1} │ │ │ │ 0001ebe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ebf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ec00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ec10: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001ec10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0001ec20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ec30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ec40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ec50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ec60: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ -0001ec70: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ +0001ec60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001ec70: 6f31 203a 204c 6973 7420 2020 2020 2020 o1 : List │ │ │ │ 0001ec80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ec90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001eca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ecb0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001ecb0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 0001ecc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ecd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ece0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ecf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ed00: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ -0001ed10: 3a20 7661 7269 6162 6c65 4772 6f75 7073 : variableGroups │ │ │ │ -0001ed20: 3d7b 7b78 302c 7831 7d2c 7b79 302c 7931 ={{x0,x1},{y0,y1 │ │ │ │ -0001ed30: 2c79 327d 7d20 2020 2020 2020 2020 2020 ,y2}} │ │ │ │ +0001ed00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0001ed10: 6932 203a 2076 6172 6961 626c 6547 726f i2 : variableGro │ │ │ │ +0001ed20: 7570 733d 7b7b 7830 2c78 317d 2c7b 7930 ups={{x0,x1},{y0 │ │ │ │ +0001ed30: 2c79 312c 7932 7d7d 2020 2020 2020 2020 ,y1,y2}} │ │ │ │ 0001ed40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ed50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001ed50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0001ed60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ed70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ed80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ed90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001eda0: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -0001edb0: 3d20 7b7b 7830 2c20 7831 7d2c 207b 7930 = {{x0, x1}, {y0 │ │ │ │ -0001edc0: 2c20 7931 2c20 7932 7d7d 2020 2020 2020 , y1, y2}} │ │ │ │ +0001eda0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001edb0: 6f32 203d 207b 7b78 302c 2078 317d 2c20 o2 = {{x0, x1}, │ │ │ │ +0001edc0: 7b79 302c 2079 312c 2079 327d 7d20 2020 {y0, y1, y2}} │ │ │ │ 0001edd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ede0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001edf0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001edf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0001ee00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ee10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ee20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ee30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ee40: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -0001ee50: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ +0001ee40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001ee50: 6f32 203a 204c 6973 7420 2020 2020 2020 o2 : List │ │ │ │ 0001ee60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ee70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ee80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ee90: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001ee90: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 0001eea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001eeb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001eec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001eed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001eee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ -0001eef0: 3a20 7879 536c 6963 653d 6d61 6b65 4227 : xySlice=makeB' │ │ │ │ -0001ef00: 536c 6963 6528 736c 6963 6554 7970 652c Slice(sliceType, │ │ │ │ -0001ef10: 7661 7269 6162 6c65 4772 6f75 7073 2920 variableGroups) │ │ │ │ -0001ef20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ef30: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001eee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0001eef0: 6933 203a 2078 7953 6c69 6365 3d6d 616b i3 : xySlice=mak │ │ │ │ +0001ef00: 6542 2753 6c69 6365 2873 6c69 6365 5479 eB'Slice(sliceTy │ │ │ │ +0001ef10: 7065 2c76 6172 6961 626c 6547 726f 7570 pe,variableGroup │ │ │ │ +0001ef20: 7329 2020 2020 2020 2020 2020 2020 2020 s) │ │ │ │ +0001ef30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0001ef40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ef60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ef70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ef80: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ -0001ef90: 3d20 4227 536c 6963 657b 2e2e 2e34 2e2e = B'Slice{...4.. │ │ │ │ -0001efa0: 2e7d 2020 2020 2020 2020 2020 2020 2020 .} │ │ │ │ +0001ef80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001ef90: 6f33 203d 2042 2753 6c69 6365 7b2e 2e2e o3 = B'Slice{... │ │ │ │ +0001efa0: 342e 2e2e 7d20 2020 2020 2020 2020 2020 4...} │ │ │ │ 0001efb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001efc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001efd0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001efd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0001efe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001eff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f020: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ -0001f030: 3a20 4227 536c 6963 6520 2020 2020 2020 : B'Slice │ │ │ │ +0001f020: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f030: 6f33 203a 2042 2753 6c69 6365 2020 2020 o3 : B'Slice │ │ │ │ 0001f040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f070: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001f070: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 0001f080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ -0001f0d0: 3a20 7065 656b 2078 7953 6c69 6365 2020 : peek xySlice │ │ │ │ -0001f0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0001f0d0: 6934 203a 2070 6565 6b20 7879 536c 6963 i4 : peek xySlic │ │ │ │ +0001f0e0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ 0001f0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f110: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001f110: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0001f120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f160: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ -0001f170: 3d20 4227 536c 6963 657b 4227 4e75 6d62 = B'Slice{B'Numb │ │ │ │ -0001f180: 6572 436f 6566 6669 6369 656e 7473 203d erCoefficients = │ │ │ │ -0001f190: 3e20 7b7b 312e 3439 3134 342b 2e37 3133 > {{1.49144+.713 │ │ │ │ -0001f1a0: 3834 362a 6969 2c20 2d2e 3834 3031 3133 846*ii, -.840113 │ │ │ │ -0001f1b0: 2b31 2e31 3938 362a 2020 7c0a 7c20 2020 +1.1986* |.| │ │ │ │ -0001f1c0: 2020 2020 2020 2020 2020 4227 5365 6374 B'Sect │ │ │ │ -0001f1d0: 696f 6e53 7472 696e 6720 3d3e 207b 2831 ionString => {(1 │ │ │ │ -0001f1e0: 2e34 3931 3434 2b2e 3731 3338 3436 2a69 .49144+.713846*i │ │ │ │ -0001f1f0: 6929 2a28 7830 292b 282d 2e38 3430 3131 i)*(x0)+(-.84011 │ │ │ │ -0001f200: 332b 312e 3139 3836 2020 7c0a 7c20 2020 3+1.1986 |.| │ │ │ │ -0001f210: 2020 2020 2020 2020 2020 4c69 7374 4227 ListB' │ │ │ │ -0001f220: 5365 6374 696f 6e73 203d 3e20 7b42 2753 Sections => {B'S │ │ │ │ -0001f230: 6563 7469 6f6e 7b2e 2e2e 322e 2e2e 7d2c ection{...2...}, │ │ │ │ -0001f240: 2042 2753 6563 7469 6f6e 7b2e 2e2e 322e B'Section{...2. │ │ │ │ -0001f250: 2e2e 7d7d 2020 2020 2020 7c0a 7c20 2020 ..}} |.| │ │ │ │ -0001f260: 2020 2020 2020 2020 2020 4e61 6d65 4227 NameB' │ │ │ │ -0001f270: 536c 6963 6520 3d3e 206e 756c 6c20 2020 Slice => null │ │ │ │ +0001f160: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f170: 6f34 203d 2042 2753 6c69 6365 7b42 274e o4 = B'Slice{B'N │ │ │ │ +0001f180: 756d 6265 7243 6f65 6666 6963 6965 6e74 umberCoefficient │ │ │ │ +0001f190: 7320 3d3e 207b 7b31 2e34 3931 3434 2b2e s => {{1.49144+. │ │ │ │ +0001f1a0: 3731 3338 3436 2a69 692c 202d 2e38 3430 713846*ii, -.840 │ │ │ │ +0001f1b0: 3131 332b 312e 3139 3836 2a20 207c 0a7c 113+1.1986* |.| │ │ │ │ +0001f1c0: 2020 2020 2020 2020 2020 2020 2042 2753 B'S │ │ │ │ +0001f1d0: 6563 7469 6f6e 5374 7269 6e67 203d 3e20 ectionString => │ │ │ │ +0001f1e0: 7b28 312e 3439 3134 342b 2e37 3133 3834 {(1.49144+.71384 │ │ │ │ +0001f1f0: 362a 6969 292a 2878 3029 2b28 2d2e 3834 6*ii)*(x0)+(-.84 │ │ │ │ +0001f200: 3031 3133 2b31 2e31 3938 3620 207c 0a7c 0113+1.1986 |.| │ │ │ │ +0001f210: 2020 2020 2020 2020 2020 2020 204c 6973 Lis │ │ │ │ +0001f220: 7442 2753 6563 7469 6f6e 7320 3d3e 207b tB'Sections => { │ │ │ │ +0001f230: 4227 5365 6374 696f 6e7b 2e2e 2e32 2e2e B'Section{...2.. │ │ │ │ +0001f240: 2e7d 2c20 4227 5365 6374 696f 6e7b 2e2e .}, B'Section{.. │ │ │ │ +0001f250: 2e32 2e2e 2e7d 7d20 2020 2020 207c 0a7c .2...}} |.| │ │ │ │ +0001f260: 2020 2020 2020 2020 2020 2020 204e 616d Nam │ │ │ │ +0001f270: 6542 2753 6c69 6365 203d 3e20 6e75 6c6c eB'Slice => null │ │ │ │ 0001f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2a0: 2020 2020 2020 2020 2020 7c0a 7c2d 2d2d |.|--- │ │ │ │ +0001f2a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0001f2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c69 697d ----------|.|ii} │ │ │ │ -0001f300: 2c20 7b2e 3031 3438 3432 2b31 2e32 3335 , {.014842+1.235 │ │ │ │ -0001f310: 3438 2a69 692c 202d 2e32 3134 3436 382b 48*ii, -.214468+ │ │ │ │ -0001f320: 2e39 3131 3239 332a 6969 2c20 2d2e 3438 .911293*ii, -.48 │ │ │ │ -0001f330: 3631 3736 2b2e 3430 3035 3737 2a69 697d 6176+.400577*ii} │ │ │ │ -0001f340: 7d20 2020 2020 2020 2020 7c0a 7c2a 6969 } |.|*ii │ │ │ │ -0001f350: 292a 2878 3129 2c20 282e 3031 3438 3432 )*(x1), (.014842 │ │ │ │ -0001f360: 2b31 2e32 3335 3438 2a69 6929 2a28 7930 +1.23548*ii)*(y0 │ │ │ │ -0001f370: 292b 282d 2e32 3134 3436 382b 2e39 3131 )+(-.214468+.911 │ │ │ │ -0001f380: 3239 332a 6969 292a 2879 3129 2b28 2d2e 293*ii)*(y1)+(-. │ │ │ │ -0001f390: 3438 3631 3736 2020 2020 7c0a 7c2d 2d2d 486176 |.|--- │ │ │ │ +0001f2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +0001f300: 6969 7d2c 207b 2e30 3134 3834 322b 312e ii}, {.014842+1. │ │ │ │ +0001f310: 3233 3534 382a 6969 2c20 2d2e 3231 3434 23548*ii, -.2144 │ │ │ │ +0001f320: 3638 2b2e 3931 3132 3933 2a69 692c 202d 68+.911293*ii, - │ │ │ │ +0001f330: 2e34 3836 3137 362b 2e34 3030 3537 372a .486176+.400577* │ │ │ │ +0001f340: 6969 7d7d 2020 2020 2020 2020 207c 0a7c ii}} |.| │ │ │ │ +0001f350: 2a69 6929 2a28 7831 292c 2028 2e30 3134 *ii)*(x1), (.014 │ │ │ │ +0001f360: 3834 322b 312e 3233 3534 382a 6969 292a 842+1.23548*ii)* │ │ │ │ +0001f370: 2879 3029 2b28 2d2e 3231 3434 3638 2b2e (y0)+(-.214468+. │ │ │ │ +0001f380: 3931 3132 3933 2a69 6929 2a28 7931 292b 911293*ii)*(y1)+ │ │ │ │ +0001f390: 282d 2e34 3836 3137 3620 2020 207c 0a7c (-.486176 |.| │ │ │ │ 0001f3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 ----------|.| │ │ │ │ -0001f3f0: 2020 2020 2020 2020 2020 2020 2020 207d } │ │ │ │ -0001f400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +0001f3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f400: 2020 7d20 2020 2020 2020 2020 2020 2020 } │ │ │ │ 0001f410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f430: 2020 2020 2020 2020 2020 7c0a 7c2b 2e34 |.|+.4 │ │ │ │ -0001f440: 3030 3537 372a 6969 292a 2879 3229 7d20 00577*ii)*(y2)} │ │ │ │ -0001f450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f430: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f440: 2b2e 3430 3035 3737 2a69 6929 2a28 7932 +.400577*ii)*(y2 │ │ │ │ +0001f450: 297d 2020 2020 2020 2020 2020 2020 2020 )} │ │ │ │ 0001f460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f480: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001f480: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 0001f490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f4a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ -0001f4e0: 3a20 666f 7220 6920 696e 2020 7879 536c : for i in xySl │ │ │ │ -0001f4f0: 6963 6523 4227 5365 6374 696f 6e53 7472 ice#B'SectionStr │ │ │ │ -0001f500: 696e 6720 646f 2070 7269 6e74 2069 2020 ing do print i │ │ │ │ -0001f510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f520: 2020 2020 2020 2020 2020 7c0a 7c28 312e |.|(1. │ │ │ │ -0001f530: 3439 3134 342b 2e37 3133 3834 362a 6969 49144+.713846*ii │ │ │ │ -0001f540: 292a 2878 3029 2b28 2d2e 3834 3031 3133 )*(x0)+(-.840113 │ │ │ │ -0001f550: 2b31 2e31 3938 362a 6969 292a 2878 3129 +1.1986*ii)*(x1) │ │ │ │ -0001f560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f570: 2020 2020 2020 2020 2020 7c0a 7c28 2e30 |.|(.0 │ │ │ │ -0001f580: 3134 3834 322b 312e 3233 3534 382a 6969 14842+1.23548*ii │ │ │ │ -0001f590: 292a 2879 3029 2b28 2d2e 3231 3434 3638 )*(y0)+(-.214468 │ │ │ │ -0001f5a0: 2b2e 3931 3132 3933 2a69 6929 2a28 7931 +.911293*ii)*(y1 │ │ │ │ -0001f5b0: 292b 282d 2e34 3836 3137 362b 2e34 3030 )+(-.486176+.400 │ │ │ │ -0001f5c0: 3537 372a 6969 292a 2820 7c0a 7c2d 2d2d 577*ii)*( |.|--- │ │ │ │ +0001f4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0001f4e0: 6935 203a 2066 6f72 2069 2069 6e20 2078 i5 : for i in x │ │ │ │ +0001f4f0: 7953 6c69 6365 2342 2753 6563 7469 6f6e ySlice#B'Section │ │ │ │ +0001f500: 5374 7269 6e67 2064 6f20 7072 696e 7420 String do print │ │ │ │ +0001f510: 6920 2020 2020 2020 2020 2020 2020 2020 i │ │ │ │ +0001f520: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f530: 2831 2e34 3931 3434 2b2e 3731 3338 3436 (1.49144+.713846 │ │ │ │ +0001f540: 2a69 6929 2a28 7830 292b 282d 2e38 3430 *ii)*(x0)+(-.840 │ │ │ │ +0001f550: 3131 332b 312e 3139 3836 2a69 6929 2a28 113+1.1986*ii)*( │ │ │ │ +0001f560: 7831 2920 2020 2020 2020 2020 2020 2020 x1) │ │ │ │ +0001f570: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f580: 282e 3031 3438 3432 2b31 2e32 3335 3438 (.014842+1.23548 │ │ │ │ +0001f590: 2a69 6929 2a28 7930 292b 282d 2e32 3134 *ii)*(y0)+(-.214 │ │ │ │ +0001f5a0: 3436 382b 2e39 3131 3239 332a 6969 292a 468+.911293*ii)* │ │ │ │ +0001f5b0: 2879 3129 2b28 2d2e 3438 3631 3736 2b2e (y1)+(-.486176+. │ │ │ │ +0001f5c0: 3430 3035 3737 2a69 6929 2a28 207c 0a7c 400577*ii)*( |.| │ │ │ │ 0001f5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f610: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c79 3229 ----------|.|y2) │ │ │ │ -0001f620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +0001f620: 7932 2920 2020 2020 2020 2020 2020 2020 y2) │ │ │ │ 0001f630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f660: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001f660: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 0001f670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 2b2d 2d2d ----------+.+--- │ │ │ │ +0001f6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a2b -------------+.+ │ │ │ │ 0001f6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f700: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 ----------+.|i6 │ │ │ │ -0001f710: 3a20 6153 6c69 6365 3d6d 616b 6542 2753 : aSlice=makeB'S │ │ │ │ -0001f720: 6c69 6365 2833 2c7b 782c 792c 7a2c 317d lice(3,{x,y,z,1} │ │ │ │ -0001f730: 2c4e 616d 6542 2753 6c69 6365 3d3e 2266 ,NameB'Slice=>"f │ │ │ │ -0001f740: 2229 3b20 2020 2020 2020 2020 2020 2020 "); │ │ │ │ -0001f750: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001f700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0001f710: 6936 203a 2061 536c 6963 653d 6d61 6b65 i6 : aSlice=make │ │ │ │ +0001f720: 4227 536c 6963 6528 332c 7b78 2c79 2c7a B'Slice(3,{x,y,z │ │ │ │ +0001f730: 2c31 7d2c 4e61 6d65 4227 536c 6963 653d ,1},NameB'Slice= │ │ │ │ +0001f740: 3e22 6622 293b 2020 2020 2020 2020 2020 >"f"); │ │ │ │ +0001f750: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 0001f760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 ----------+.|i7 │ │ │ │ -0001f7b0: 3a20 6153 6c69 6365 234e 616d 6542 2753 : aSlice#NameB'S │ │ │ │ -0001f7c0: 6c69 6365 2020 2020 2020 2020 2020 2020 lice │ │ │ │ +0001f7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0001f7b0: 6937 203a 2061 536c 6963 6523 4e61 6d65 i7 : aSlice#Name │ │ │ │ +0001f7c0: 4227 536c 6963 6520 2020 2020 2020 2020 B'Slice │ │ │ │ 0001f7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f7f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001f7f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0001f800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f840: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ -0001f850: 3d20 7b66 302c 2066 312c 2066 327d 2020 = {f0, f1, f2} │ │ │ │ -0001f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f840: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f850: 6f37 203d 207b 6630 2c20 6631 2c20 6632 o7 = {f0, f1, f2 │ │ │ │ +0001f860: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 0001f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f890: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001f890: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0001f8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f8e0: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ -0001f8f0: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ +0001f8e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f8f0: 6f37 203a 204c 6973 7420 2020 2020 2020 o7 : List │ │ │ │ 0001f900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f930: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001f930: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 0001f940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f980: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 ----------+.|i8 │ │ │ │ -0001f990: 3a20 6d61 6b65 4227 496e 7075 7446 696c : makeB'InputFil │ │ │ │ -0001f9a0: 6528 7374 6f72 6542 4d32 4669 6c65 732c e(storeBM2Files, │ │ │ │ -0001f9b0: 4166 6656 6172 6961 626c 6547 726f 7570 AffVariableGroup │ │ │ │ -0001f9c0: 3d3e 7b78 2c79 2c7a 7d2c 4227 4675 6e63 =>{x,y,z},B'Func │ │ │ │ -0001f9d0: 7469 6f6e 733d 3e7b 2020 7c0a 7c2d 2d2d tions=>{ |.|--- │ │ │ │ +0001f980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0001f990: 6938 203a 206d 616b 6542 2749 6e70 7574 i8 : makeB'Input │ │ │ │ +0001f9a0: 4669 6c65 2873 746f 7265 424d 3246 696c File(storeBM2Fil │ │ │ │ +0001f9b0: 6573 2c41 6666 5661 7269 6162 6c65 4772 es,AffVariableGr │ │ │ │ +0001f9c0: 6f75 703d 3e7b 782c 792c 7a7d 2c42 2746 oup=>{x,y,z},B'F │ │ │ │ +0001f9d0: 756e 6374 696f 6e73 3d3e 7b20 207c 0a7c unctions=>{ |.| │ │ │ │ 0001f9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fa00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fa10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fa20: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c61 536c ----------|.|aSl │ │ │ │ -0001fa30: 6963 657d 2c4e 616d 6550 6f6c 796e 6f6d ice},NamePolynom │ │ │ │ -0001fa40: 6961 6c73 3d3e 7b22 6630 222c 2266 3122 ials=>{"f0","f1" │ │ │ │ -0001fa50: 2c22 6632 227d 293b 2020 2020 2020 2020 ,"f2"}); │ │ │ │ +0001fa20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +0001fa30: 6153 6c69 6365 7d2c 4e61 6d65 506f 6c79 aSlice},NamePoly │ │ │ │ +0001fa40: 6e6f 6d69 616c 733d 3e7b 2266 3022 2c22 nomials=>{"f0"," │ │ │ │ +0001fa50: 6631 222c 2266 3222 7d29 3b20 2020 2020 f1","f2"}); │ │ │ │ 0001fa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fa70: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001fa70: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 0001fa80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fa90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001faa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 2b2d 2d2d ----------+.+--- │ │ │ │ +0001fac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a2b -------------+.+ │ │ │ │ 0001fad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001faf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fb00: 2d2d 2d2d 2d2d 2b0a 7c69 3920 3a20 6631 ------+.|i9 : f1 │ │ │ │ -0001fb10: 3d22 7830 2a79 302b 7831 2a79 302b 7832 ="x0*y0+x1*y0+x2 │ │ │ │ -0001fb20: 2a79 3222 2020 2020 2020 2020 2020 2020 *y2" │ │ │ │ +0001fb00: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a ---------+.|i9 : │ │ │ │ +0001fb10: 2066 313d 2278 302a 7930 2b78 312a 7930 f1="x0*y0+x1*y0 │ │ │ │ +0001fb20: 2b78 322a 7932 2220 2020 2020 2020 2020 +x2*y2" │ │ │ │ 0001fb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fb40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001fb40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0001fb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fb70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001fb80: 7c6f 3920 3d20 7830 2a79 302b 7831 2a79 |o9 = x0*y0+x1*y │ │ │ │ -0001fb90: 302b 7832 2a79 3220 2020 2020 2020 2020 0+x2*y2 │ │ │ │ +0001fb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001fb80: 207c 0a7c 6f39 203d 2078 302a 7930 2b78 |.|o9 = x0*y0+x │ │ │ │ +0001fb90: 312a 7930 2b78 322a 7932 2020 2020 2020 1*y0+x2*y2 │ │ │ │ 0001fba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fbb0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001fbb0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 0001fbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fbd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fbe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fbf0: 2d2d 2d2d 2d2d 2b0a 7c69 3130 203a 2066 ------+.|i10 : f │ │ │ │ -0001fc00: 323d 2278 302a 7930 5e32 2b78 312a 7931 2="x0*y0^2+x1*y1 │ │ │ │ -0001fc10: 2a79 322b 7832 2a79 302a 7932 2220 2020 *y2+x2*y0*y2" │ │ │ │ +0001fbf0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 ---------+.|i10 │ │ │ │ +0001fc00: 3a20 6632 3d22 7830 2a79 305e 322b 7831 : f2="x0*y0^2+x1 │ │ │ │ +0001fc10: 2a79 312a 7932 2b78 322a 7930 2a79 3222 *y1*y2+x2*y0*y2" │ │ │ │ 0001fc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fc30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001fc30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0001fc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fc60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001fc70: 7c6f 3130 203d 2078 302a 7930 5e32 2b78 |o10 = x0*y0^2+x │ │ │ │ -0001fc80: 312a 7931 2a79 322b 7832 2a79 302a 7932 1*y1*y2+x2*y0*y2 │ │ │ │ -0001fc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fca0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001fc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001fc70: 207c 0a7c 6f31 3020 3d20 7830 2a79 305e |.|o10 = x0*y0^ │ │ │ │ +0001fc80: 322b 7831 2a79 312a 7932 2b78 322a 7930 2+x1*y1*y2+x2*y0 │ │ │ │ +0001fc90: 2a79 3220 2020 2020 2020 2020 2020 2020 *y2 │ │ │ │ +0001fca0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 0001fcb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fcc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fcd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fce0: 2d2d 2d2d 2d2d 2b0a 7c69 3131 203a 2076 ------+.|i11 : v │ │ │ │ -0001fcf0: 6172 6961 626c 6547 726f 7570 733d 7b7b ariableGroups={{ │ │ │ │ -0001fd00: 7830 2c78 312c 7832 7d2c 7b79 302c 7931 x0,x1,x2},{y0,y1 │ │ │ │ -0001fd10: 2c79 327d 7d20 2020 2020 2020 2020 2020 ,y2}} │ │ │ │ -0001fd20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001fce0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 ---------+.|i11 │ │ │ │ +0001fcf0: 3a20 7661 7269 6162 6c65 4772 6f75 7073 : variableGroups │ │ │ │ +0001fd00: 3d7b 7b78 302c 7831 2c78 327d 2c7b 7930 ={{x0,x1,x2},{y0 │ │ │ │ +0001fd10: 2c79 312c 7932 7d7d 2020 2020 2020 2020 ,y1,y2}} │ │ │ │ +0001fd20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0001fd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fd50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001fd60: 7c6f 3131 203d 207b 7b78 302c 2078 312c |o11 = {{x0, x1, │ │ │ │ -0001fd70: 2078 327d 2c20 7b79 302c 2079 312c 2079 x2}, {y0, y1, y │ │ │ │ -0001fd80: 327d 7d20 2020 2020 2020 2020 2020 2020 2}} │ │ │ │ -0001fd90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001fd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001fd60: 207c 0a7c 6f31 3120 3d20 7b7b 7830 2c20 |.|o11 = {{x0, │ │ │ │ +0001fd70: 7831 2c20 7832 7d2c 207b 7930 2c20 7931 x1, x2}, {y0, y1 │ │ │ │ +0001fd80: 2c20 7932 7d7d 2020 2020 2020 2020 2020 , y2}} │ │ │ │ +0001fd90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0001fda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fdd0: 2020 2020 2020 7c0a 7c6f 3131 203a 204c |.|o11 : L │ │ │ │ -0001fde0: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +0001fdd0: 2020 2020 2020 2020 207c 0a7c 6f31 3120 |.|o11 │ │ │ │ +0001fde0: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ 0001fdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fe00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fe10: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001fe10: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0001fe20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fe30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fe40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0001fe50: 7c69 3132 203a 2078 7853 6c69 6365 3d6d |i12 : xxSlice=m │ │ │ │ -0001fe60: 616b 6542 2753 6c69 6365 287b 322c 307d akeB'Slice({2,0} │ │ │ │ -0001fe70: 2c76 6172 6961 626c 6547 726f 7570 7329 ,variableGroups) │ │ │ │ -0001fe80: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001fe40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001fe50: 2d2b 0a7c 6931 3220 3a20 7878 536c 6963 -+.|i12 : xxSlic │ │ │ │ +0001fe60: 653d 6d61 6b65 4227 536c 6963 6528 7b32 e=makeB'Slice({2 │ │ │ │ +0001fe70: 2c30 7d2c 7661 7269 6162 6c65 4772 6f75 ,0},variableGrou │ │ │ │ +0001fe80: 7073 2920 2020 2020 2020 2020 207c 0a7c ps) |.| │ │ │ │ 0001fe90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001feb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fec0: 2020 2020 2020 7c0a 7c6f 3132 203d 2042 |.|o12 = B │ │ │ │ -0001fed0: 2753 6c69 6365 7b2e 2e2e 342e 2e2e 7d20 'Slice{...4...} │ │ │ │ -0001fee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001fec0: 2020 2020 2020 2020 207c 0a7c 6f31 3220 |.|o12 │ │ │ │ +0001fed0: 3d20 4227 536c 6963 657b 2e2e 2e34 2e2e = B'Slice{...4.. │ │ │ │ +0001fee0: 2e7d 2020 2020 2020 2020 2020 2020 2020 .} │ │ │ │ 0001fef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ff00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001ff00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0001ff10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ff20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ff30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001ff40: 7c6f 3132 203a 2042 2753 6c69 6365 2020 |o12 : B'Slice │ │ │ │ -0001ff50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ff30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ff40: 207c 0a7c 6f31 3220 3a20 4227 536c 6963 |.|o12 : B'Slic │ │ │ │ +0001ff50: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ 0001ff60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ff70: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001ff70: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 0001ff80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ff90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ffa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ffb0: 2d2d 2d2d 2d2d 2b0a 7c69 3133 203a 2078 ------+.|i13 : x │ │ │ │ -0001ffc0: 7953 6c69 6365 3d6d 616b 6542 2753 6c69 ySlice=makeB'Sli │ │ │ │ -0001ffd0: 6365 287b 312c 317d 2c76 6172 6961 626c ce({1,1},variabl │ │ │ │ -0001ffe0: 6547 726f 7570 7329 2020 2020 2020 2020 eGroups) │ │ │ │ -0001fff0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001ffb0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3320 ---------+.|i13 │ │ │ │ +0001ffc0: 3a20 7879 536c 6963 653d 6d61 6b65 4227 : xySlice=makeB' │ │ │ │ +0001ffd0: 536c 6963 6528 7b31 2c31 7d2c 7661 7269 Slice({1,1},vari │ │ │ │ +0001ffe0: 6162 6c65 4772 6f75 7073 2920 2020 2020 ableGroups) │ │ │ │ +0001fff0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00020000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020020: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00020030: 7c6f 3133 203d 2042 2753 6c69 6365 7b2e |o13 = B'Slice{. │ │ │ │ -00020040: 2e2e 342e 2e2e 7d20 2020 2020 2020 2020 ..4...} │ │ │ │ +00020020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020030: 207c 0a7c 6f31 3320 3d20 4227 536c 6963 |.|o13 = B'Slic │ │ │ │ +00020040: 657b 2e2e 2e34 2e2e 2e7d 2020 2020 2020 e{...4...} │ │ │ │ 00020050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020060: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00020060: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00020070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000200a0: 2020 2020 2020 7c0a 7c6f 3133 203a 2042 |.|o13 : B │ │ │ │ -000200b0: 2753 6c69 6365 2020 2020 2020 2020 2020 'Slice │ │ │ │ +000200a0: 2020 2020 2020 2020 207c 0a7c 6f31 3320 |.|o13 │ │ │ │ +000200b0: 3a20 4227 536c 6963 6520 2020 2020 2020 : B'Slice │ │ │ │ 000200c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000200d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000200e0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000200e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 000200f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00020120: 7c69 3134 203a 2079 7953 6c69 6365 3d6d |i14 : yySlice=m │ │ │ │ -00020130: 616b 6542 2753 6c69 6365 287b 302c 327d akeB'Slice({0,2} │ │ │ │ -00020140: 2c76 6172 6961 626c 6547 726f 7570 7329 ,variableGroups) │ │ │ │ -00020150: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00020110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020120: 2d2b 0a7c 6931 3420 3a20 7979 536c 6963 -+.|i14 : yySlic │ │ │ │ +00020130: 653d 6d61 6b65 4227 536c 6963 6528 7b30 e=makeB'Slice({0 │ │ │ │ +00020140: 2c32 7d2c 7661 7269 6162 6c65 4772 6f75 ,2},variableGrou │ │ │ │ +00020150: 7073 2920 2020 2020 2020 2020 207c 0a7c ps) |.| │ │ │ │ 00020160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020190: 2020 2020 2020 7c0a 7c6f 3134 203d 2042 |.|o14 = B │ │ │ │ -000201a0: 2753 6c69 6365 7b2e 2e2e 342e 2e2e 7d20 'Slice{...4...} │ │ │ │ -000201b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020190: 2020 2020 2020 2020 207c 0a7c 6f31 3420 |.|o14 │ │ │ │ +000201a0: 3d20 4227 536c 6963 657b 2e2e 2e34 2e2e = B'Slice{...4.. │ │ │ │ +000201b0: 2e7d 2020 2020 2020 2020 2020 2020 2020 .} │ │ │ │ 000201c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000201d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000201d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 000201e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000201f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020200: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00020210: 7c6f 3134 203a 2042 2753 6c69 6365 2020 |o14 : B'Slice │ │ │ │ -00020220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020210: 207c 0a7c 6f31 3420 3a20 4227 536c 6963 |.|o14 : B'Slic │ │ │ │ +00020220: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ 00020230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020240: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00020240: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 00020250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020280: 2d2d 2d2d 2d2d 2b0a 7c69 3135 203a 206d ------+.|i15 : m │ │ │ │ -00020290: 616b 6542 2749 6e70 7574 4669 6c65 2873 akeB'InputFile(s │ │ │ │ -000202a0: 746f 7265 424d 3246 696c 6573 2c20 2020 toreBM2Files, │ │ │ │ +00020280: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3520 ---------+.|i15 │ │ │ │ +00020290: 3a20 6d61 6b65 4227 496e 7075 7446 696c : makeB'InputFil │ │ │ │ +000202a0: 6528 7374 6f72 6542 4d32 4669 6c65 732c e(storeBM2Files, │ │ │ │ 000202b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000202c0: 2020 7c0a 7c20 2020 2020 2020 2020 2048 |.| H │ │ │ │ -000202d0: 6f6d 5661 7269 6162 6c65 4772 6f75 703d omVariableGroup= │ │ │ │ -000202e0: 3e76 6172 6961 626c 6547 726f 7570 732c >variableGroups, │ │ │ │ -000202f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00020300: 7c20 2020 2020 2020 2020 2042 2750 6f6c | B'Pol │ │ │ │ -00020310: 796e 6f6d 6961 6c73 3d3e 7b66 312c 6632 ynomials=>{f1,f2 │ │ │ │ -00020320: 7d7c 7878 536c 6963 6523 4c69 7374 4227 }|xxSlice#ListB' │ │ │ │ -00020330: 5365 6374 696f 6e73 293b 7c0a 2b2d 2d2d Sections);|.+--- │ │ │ │ +000202c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000202d0: 2020 486f 6d56 6172 6961 626c 6547 726f HomVariableGro │ │ │ │ +000202e0: 7570 3d3e 7661 7269 6162 6c65 4772 6f75 up=>variableGrou │ │ │ │ +000202f0: 7073 2c20 2020 2020 2020 2020 2020 2020 ps, │ │ │ │ +00020300: 207c 0a7c 2020 2020 2020 2020 2020 4227 |.| B' │ │ │ │ +00020310: 506f 6c79 6e6f 6d69 616c 733d 3e7b 6631 Polynomials=>{f1 │ │ │ │ +00020320: 2c66 327d 7c78 7853 6c69 6365 234c 6973 ,f2}|xxSlice#Lis │ │ │ │ +00020330: 7442 2753 6563 7469 6f6e 7329 3b7c 0a2b tB'Sections);|.+ │ │ │ │ 00020340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020370: 2d2d 2d2d 2d2d 2b0a 7c69 3136 203a 2072 ------+.|i16 : r │ │ │ │ -00020380: 756e 4265 7274 696e 6928 7374 6f72 6542 unBertini(storeB │ │ │ │ -00020390: 4d32 4669 6c65 7329 2020 2020 2020 2020 M2Files) │ │ │ │ +00020370: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3620 ---------+.|i16 │ │ │ │ +00020380: 3a20 7275 6e42 6572 7469 6e69 2873 746f : runBertini(sto │ │ │ │ +00020390: 7265 424d 3246 696c 6573 2920 2020 2020 reBM2Files) │ │ │ │ 000203a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000203b0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000203b0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 000203c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000203d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000203e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000203f0: 7c69 3137 203a 2078 7844 6567 7265 653d |i17 : xxDegree= │ │ │ │ -00020400: 2369 6d70 6f72 7453 6f6c 7574 696f 6e73 #importSolutions │ │ │ │ -00020410: 4669 6c65 2873 746f 7265 424d 3246 696c File(storeBM2Fil │ │ │ │ -00020420: 6573 2920 2020 2020 2020 7c0a 7c20 2020 es) |.| │ │ │ │ +000203e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000203f0: 2d2b 0a7c 6931 3720 3a20 7878 4465 6772 -+.|i17 : xxDegr │ │ │ │ +00020400: 6565 3d23 696d 706f 7274 536f 6c75 7469 ee=#importSoluti │ │ │ │ +00020410: 6f6e 7346 696c 6528 7374 6f72 6542 4d32 onsFile(storeBM2 │ │ │ │ +00020420: 4669 6c65 7329 2020 2020 2020 207c 0a7c Files) |.| │ │ │ │ 00020430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020460: 2020 2020 2020 7c0a 7c6f 3137 203d 2032 |.|o17 = 2 │ │ │ │ -00020470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020460: 2020 2020 2020 2020 207c 0a7c 6f31 3720 |.|o17 │ │ │ │ +00020470: 3d20 3220 2020 2020 2020 2020 2020 2020 = 2 │ │ │ │ 00020480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000204a0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000204a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 000204b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000204c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000204d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000204e0: 7c69 3138 203a 206d 616b 6542 2749 6e70 |i18 : makeB'Inp │ │ │ │ -000204f0: 7574 4669 6c65 2873 746f 7265 424d 3246 utFile(storeBM2F │ │ │ │ -00020500: 696c 6573 2c20 2020 2020 2020 2020 2020 iles, │ │ │ │ -00020510: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00020520: 2020 2020 2020 2048 6f6d 5661 7269 6162 HomVariab │ │ │ │ -00020530: 6c65 4772 6f75 703d 3e76 6172 6961 626c leGroup=>variabl │ │ │ │ -00020540: 6547 726f 7570 732c 2020 2020 2020 2020 eGroups, │ │ │ │ -00020550: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00020560: 2020 2042 2750 6f6c 796e 6f6d 6961 6c73 B'Polynomials │ │ │ │ -00020570: 3d3e 7b66 312c 6632 7d7c 7879 536c 6963 =>{f1,f2}|xySlic │ │ │ │ -00020580: 6523 4c69 7374 4227 5365 6374 696f 6e73 e#ListB'Sections │ │ │ │ -00020590: 293b 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d );|.+----------- │ │ │ │ +000204d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000204e0: 2d2b 0a7c 6931 3820 3a20 6d61 6b65 4227 -+.|i18 : makeB' │ │ │ │ +000204f0: 496e 7075 7446 696c 6528 7374 6f72 6542 InputFile(storeB │ │ │ │ +00020500: 4d32 4669 6c65 732c 2020 2020 2020 2020 M2Files, │ │ │ │ +00020510: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00020520: 2020 2020 2020 2020 2020 486f 6d56 6172 HomVar │ │ │ │ +00020530: 6961 626c 6547 726f 7570 3d3e 7661 7269 iableGroup=>vari │ │ │ │ +00020540: 6162 6c65 4772 6f75 7073 2c20 2020 2020 ableGroups, │ │ │ │ +00020550: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00020560: 2020 2020 2020 4227 506f 6c79 6e6f 6d69 B'Polynomi │ │ │ │ +00020570: 616c 733d 3e7b 6631 2c66 327d 7c78 7953 als=>{f1,f2}|xyS │ │ │ │ +00020580: 6c69 6365 234c 6973 7442 2753 6563 7469 lice#ListB'Secti │ │ │ │ +00020590: 6f6e 7329 3b7c 0a2b 2d2d 2d2d 2d2d 2d2d ons);|.+-------- │ │ │ │ 000205a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000205b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000205c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000205d0: 7c69 3139 203a 2072 756e 4265 7274 696e |i19 : runBertin │ │ │ │ -000205e0: 6928 7374 6f72 6542 4d32 4669 6c65 7329 i(storeBM2Files) │ │ │ │ -000205f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020600: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000205c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000205d0: 2d2b 0a7c 6931 3920 3a20 7275 6e42 6572 -+.|i19 : runBer │ │ │ │ +000205e0: 7469 6e69 2873 746f 7265 424d 3246 696c tini(storeBM2Fil │ │ │ │ +000205f0: 6573 2920 2020 2020 2020 2020 2020 2020 es) │ │ │ │ +00020600: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 00020610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020640: 2d2d 2d2d 2d2d 2b0a 7c69 3230 203a 2078 ------+.|i20 : x │ │ │ │ -00020650: 7944 6567 7265 653d 2369 6d70 6f72 7453 yDegree=#importS │ │ │ │ -00020660: 6f6c 7574 696f 6e73 4669 6c65 2873 746f olutionsFile(sto │ │ │ │ -00020670: 7265 424d 3246 696c 6573 2920 2020 2020 reBM2Files) │ │ │ │ -00020680: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00020640: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3020 ---------+.|i20 │ │ │ │ +00020650: 3a20 7879 4465 6772 6565 3d23 696d 706f : xyDegree=#impo │ │ │ │ +00020660: 7274 536f 6c75 7469 6f6e 7346 696c 6528 rtSolutionsFile( │ │ │ │ +00020670: 7374 6f72 6542 4d32 4669 6c65 7329 2020 storeBM2Files) │ │ │ │ +00020680: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00020690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000206a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000206b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000206c0: 7c6f 3230 203d 2033 2020 2020 2020 2020 |o20 = 3 │ │ │ │ +000206b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000206c0: 207c 0a7c 6f32 3020 3d20 3320 2020 2020 |.|o20 = 3 │ │ │ │ 000206d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000206e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000206f0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000206f0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 00020700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020730: 2d2d 2d2d 2d2d 2b0a 7c69 3231 203a 206d ------+.|i21 : m │ │ │ │ -00020740: 616b 6542 2749 6e70 7574 4669 6c65 2873 akeB'InputFile(s │ │ │ │ -00020750: 746f 7265 424d 3246 696c 6573 2c20 2020 toreBM2Files, │ │ │ │ +00020730: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3120 ---------+.|i21 │ │ │ │ +00020740: 3a20 6d61 6b65 4227 496e 7075 7446 696c : makeB'InputFil │ │ │ │ +00020750: 6528 7374 6f72 6542 4d32 4669 6c65 732c e(storeBM2Files, │ │ │ │ 00020760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020770: 2020 7c0a 7c20 2020 2020 2020 2020 2048 |.| H │ │ │ │ -00020780: 6f6d 5661 7269 6162 6c65 4772 6f75 703d omVariableGroup= │ │ │ │ -00020790: 3e76 6172 6961 626c 6547 726f 7570 732c >variableGroups, │ │ │ │ -000207a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000207b0: 7c20 2020 2020 2020 2020 2042 2750 6f6c | B'Pol │ │ │ │ -000207c0: 796e 6f6d 6961 6c73 3d3e 7b66 312c 6632 ynomials=>{f1,f2 │ │ │ │ -000207d0: 7d7c 7979 536c 6963 6523 4c69 7374 4227 }|yySlice#ListB' │ │ │ │ -000207e0: 5365 6374 696f 6e73 293b 7c0a 2b2d 2d2d Sections);|.+--- │ │ │ │ +00020770: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00020780: 2020 486f 6d56 6172 6961 626c 6547 726f HomVariableGro │ │ │ │ +00020790: 7570 3d3e 7661 7269 6162 6c65 4772 6f75 up=>variableGrou │ │ │ │ +000207a0: 7073 2c20 2020 2020 2020 2020 2020 2020 ps, │ │ │ │ +000207b0: 207c 0a7c 2020 2020 2020 2020 2020 4227 |.| B' │ │ │ │ +000207c0: 506f 6c79 6e6f 6d69 616c 733d 3e7b 6631 Polynomials=>{f1 │ │ │ │ +000207d0: 2c66 327d 7c79 7953 6c69 6365 234c 6973 ,f2}|yySlice#Lis │ │ │ │ +000207e0: 7442 2753 6563 7469 6f6e 7329 3b7c 0a2b tB'Sections);|.+ │ │ │ │ 000207f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020820: 2d2d 2d2d 2d2d 2b0a 7c69 3232 203a 2072 ------+.|i22 : r │ │ │ │ -00020830: 756e 4265 7274 696e 6928 7374 6f72 6542 unBertini(storeB │ │ │ │ -00020840: 4d32 4669 6c65 7329 2020 2020 2020 2020 M2Files) │ │ │ │ +00020820: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3220 ---------+.|i22 │ │ │ │ +00020830: 3a20 7275 6e42 6572 7469 6e69 2873 746f : runBertini(sto │ │ │ │ +00020840: 7265 424d 3246 696c 6573 2920 2020 2020 reBM2Files) │ │ │ │ 00020850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020860: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00020860: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00020870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000208a0: 7c69 3233 203a 2079 7944 6567 7265 653d |i23 : yyDegree= │ │ │ │ -000208b0: 2369 6d70 6f72 7453 6f6c 7574 696f 6e73 #importSolutions │ │ │ │ -000208c0: 4669 6c65 2873 746f 7265 424d 3246 696c File(storeBM2Fil │ │ │ │ -000208d0: 6573 2920 2020 2020 2020 7c0a 7c20 2020 es) |.| │ │ │ │ +00020890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000208a0: 2d2b 0a7c 6932 3320 3a20 7979 4465 6772 -+.|i23 : yyDegr │ │ │ │ +000208b0: 6565 3d23 696d 706f 7274 536f 6c75 7469 ee=#importSoluti │ │ │ │ +000208c0: 6f6e 7346 696c 6528 7374 6f72 6542 4d32 onsFile(storeBM2 │ │ │ │ +000208d0: 4669 6c65 7329 2020 2020 2020 207c 0a7c Files) |.| │ │ │ │ 000208e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000208f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020910: 2020 2020 2020 7c0a 7c6f 3233 203d 2031 |.|o23 = 1 │ │ │ │ -00020920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020910: 2020 2020 2020 2020 207c 0a7c 6f32 3320 |.|o23 │ │ │ │ +00020920: 3d20 3120 2020 2020 2020 2020 2020 2020 = 1 │ │ │ │ 00020930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020950: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00020950: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00020960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00020990: 0a57 6179 7320 746f 2075 7365 206d 616b .Ways to use mak │ │ │ │ -000209a0: 6542 2753 6c69 6365 3a0a 3d3d 3d3d 3d3d eB'Slice:.====== │ │ │ │ +00020980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020990: 2d2b 0a0a 5761 7973 2074 6f20 7573 6520 -+..Ways to use │ │ │ │ +000209a0: 6d61 6b65 4227 536c 6963 653a 0a3d 3d3d makeB'Slice:.=== │ │ │ │ 000209b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000209c0: 3d3d 0a0a 2020 2a20 226d 616b 6542 2753 ==.. * "makeB'S │ │ │ │ -000209d0: 6c69 6365 2854 6869 6e67 2c4c 6973 7429 lice(Thing,List) │ │ │ │ -000209e0: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ -000209f0: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ -00020a00: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ -00020a10: 6a65 6374 202a 6e6f 7465 206d 616b 6542 ject *note makeB │ │ │ │ -00020a20: 2753 6c69 6365 3a20 6d61 6b65 4227 536c 'Slice: makeB'Sl │ │ │ │ -00020a30: 6963 652c 2069 7320 6120 2a6e 6f74 6520 ice, is a *note │ │ │ │ -00020a40: 6d65 7468 6f64 2066 756e 6374 696f 6e20 method function │ │ │ │ -00020a50: 7769 7468 0a6f 7074 696f 6e73 3a20 284d with.options: (M │ │ │ │ -00020a60: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ -00020a70: 6f64 4675 6e63 7469 6f6e 5769 7468 4f70 odFunctionWithOp │ │ │ │ -00020a80: 7469 6f6e 732c 2e0a 1f0a 4669 6c65 3a20 tions,....File: │ │ │ │ -00020a90: 4265 7274 696e 692e 696e 666f 2c20 4e6f Bertini.info, No │ │ │ │ -00020aa0: 6465 3a20 6d6f 7665 4227 4669 6c65 2c20 de: moveB'File, │ │ │ │ -00020ab0: 4e65 7874 3a20 4e75 6d62 6572 546f 4227 Next: NumberToB' │ │ │ │ -00020ac0: 5374 7269 6e67 2c20 5072 6576 3a20 6d61 String, Prev: ma │ │ │ │ -00020ad0: 6b65 4227 536c 6963 652c 2055 703a 2054 keB'Slice, Up: T │ │ │ │ -00020ae0: 6f70 0a0a 6d6f 7665 4227 4669 6c65 202d op..moveB'File - │ │ │ │ -00020af0: 2d20 4d6f 7665 206f 7220 636f 7079 2066 - Move or copy f │ │ │ │ -00020b00: 696c 6573 2e0a 2a2a 2a2a 2a2a 2a2a 2a2a iles..********** │ │ │ │ +000209c0: 3d3d 3d3d 3d0a 0a20 202a 2022 6d61 6b65 =====.. * "make │ │ │ │ +000209d0: 4227 536c 6963 6528 5468 696e 672c 4c69 B'Slice(Thing,Li │ │ │ │ +000209e0: 7374 2922 0a0a 466f 7220 7468 6520 7072 st)"..For the pr │ │ │ │ +000209f0: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ +00020a00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ +00020a10: 206f 626a 6563 7420 2a6e 6f74 6520 6d61 object *note ma │ │ │ │ +00020a20: 6b65 4227 536c 6963 653a 206d 616b 6542 keB'Slice: makeB │ │ │ │ +00020a30: 2753 6c69 6365 2c20 6973 2061 202a 6e6f 'Slice, is a *no │ │ │ │ +00020a40: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ +00020a50: 6f6e 2077 6974 680a 6f70 7469 6f6e 733a on with.options: │ │ │ │ +00020a60: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +00020a70: 6574 686f 6446 756e 6374 696f 6e57 6974 ethodFunctionWit │ │ │ │ +00020a80: 684f 7074 696f 6e73 2c2e 0a1f 0a46 696c hOptions,....Fil │ │ │ │ +00020a90: 653a 2042 6572 7469 6e69 2e69 6e66 6f2c e: Bertini.info, │ │ │ │ +00020aa0: 204e 6f64 653a 206d 6f76 6542 2746 696c Node: moveB'Fil │ │ │ │ +00020ab0: 652c 204e 6578 743a 204e 756d 6265 7254 e, Next: NumberT │ │ │ │ +00020ac0: 6f42 2753 7472 696e 672c 2050 7265 763a oB'String, Prev: │ │ │ │ +00020ad0: 206d 616b 6542 2753 6c69 6365 2c20 5570 makeB'Slice, Up │ │ │ │ +00020ae0: 3a20 546f 700a 0a6d 6f76 6542 2746 696c : Top..moveB'Fil │ │ │ │ +00020af0: 6520 2d2d 204d 6f76 6520 6f72 2063 6f70 e -- Move or cop │ │ │ │ +00020b00: 7920 6669 6c65 732e 0a2a 2a2a 2a2a 2a2a y files..******* │ │ │ │ 00020b10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00020b20: 2a2a 2a2a 2a2a 2a0a 0a53 796e 6f70 7369 *******..Synopsi │ │ │ │ -00020b30: 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 s.========.. * │ │ │ │ -00020b40: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ -00020b50: 6d6f 7665 4227 4669 6c65 2873 2c66 2c6e moveB'File(s,f,n │ │ │ │ -00020b60: 290a 2020 2a20 496e 7075 7473 3a0a 2020 ). * Inputs:. │ │ │ │ -00020b70: 2020 2020 2a20 732c 2061 202a 6e6f 7465 * s, a *note │ │ │ │ -00020b80: 2073 7472 696e 673a 2028 4d61 6361 756c string: (Macaul │ │ │ │ -00020b90: 6179 3244 6f63 2953 7472 696e 672c 2c20 ay2Doc)String,, │ │ │ │ -00020ba0: 4120 7374 7269 6e67 2067 6976 696e 6720 A string giving │ │ │ │ -00020bb0: 6120 6469 7265 6374 6f72 792e 0a20 2020 a directory.. │ │ │ │ -00020bc0: 2020 202a 2066 2c20 6120 2a6e 6f74 6520 * f, a *note │ │ │ │ -00020bd0: 7374 7269 6e67 3a20 284d 6163 6175 6c61 string: (Macaula │ │ │ │ -00020be0: 7932 446f 6329 5374 7269 6e67 2c2c 2041 y2Doc)String,, A │ │ │ │ -00020bf0: 206e 616d 6520 6f66 2061 2066 696c 652e name of a file. │ │ │ │ -00020c00: 0a20 2020 2020 202a 2073 2c20 6120 2a6e . * s, a *n │ │ │ │ -00020c10: 6f74 6520 7374 7269 6e67 3a20 284d 6163 ote string: (Mac │ │ │ │ -00020c20: 6175 6c61 7932 446f 6329 5374 7269 6e67 aulay2Doc)String │ │ │ │ -00020c30: 2c2c 2041 206e 6577 206e 616d 6520 666f ,, A new name fo │ │ │ │ -00020c40: 7220 7468 6520 6669 6c65 2e0a 2020 2a20 r the file.. * │ │ │ │ -00020c50: 2a6e 6f74 6520 4f70 7469 6f6e 616c 2069 *note Optional i │ │ │ │ -00020c60: 6e70 7574 733a 2028 4d61 6361 756c 6179 nputs: (Macaulay │ │ │ │ -00020c70: 3244 6f63 2975 7369 6e67 2066 756e 6374 2Doc)using funct │ │ │ │ -00020c80: 696f 6e73 2077 6974 6820 6f70 7469 6f6e ions with option │ │ │ │ -00020c90: 616c 2069 6e70 7574 732c 3a0a 2020 2020 al inputs,:. │ │ │ │ -00020ca0: 2020 2a20 2a6e 6f74 6520 436f 7079 4227 * *note CopyB' │ │ │ │ -00020cb0: 4669 6c65 3a20 436f 7079 4227 4669 6c65 File: CopyB'File │ │ │ │ -00020cc0: 2c20 3d3e 202e 2e2e 2c20 6465 6661 756c , => ..., defaul │ │ │ │ -00020cd0: 7420 7661 6c75 6520 6661 6c73 652c 2061 t value false, a │ │ │ │ -00020ce0: 6e20 6f70 7469 6f6e 616c 0a20 2020 2020 n optional. │ │ │ │ -00020cf0: 2020 2061 7267 756d 656e 7420 746f 2073 argument to s │ │ │ │ -00020d00: 7065 6369 6679 2077 6865 7468 6572 206d pecify whether m │ │ │ │ -00020d10: 616b 6520 6120 636f 7079 206f 6620 7468 ake a copy of th │ │ │ │ -00020d20: 6520 6669 6c65 2e0a 2020 2020 2020 2a20 e file.. * │ │ │ │ -00020d30: 4d6f 7665 546f 4469 7265 6374 6f72 7920 MoveToDirectory │ │ │ │ -00020d40: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ -00020d50: 7661 6c75 6520 6e75 6c6c 0a20 2020 2020 value null. │ │ │ │ -00020d60: 202a 2053 7562 466f 6c64 6572 203d 3e20 * SubFolder => │ │ │ │ -00020d70: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ -00020d80: 7565 206e 756c 6c0a 0a44 6573 6372 6970 ue null..Descrip │ │ │ │ -00020d90: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ -00020da0: 0a0a 5468 6973 2066 756e 6374 696f 6e20 ..This function │ │ │ │ -00020db0: 7461 6b65 7320 7468 6520 6669 6c65 2066 takes the file f │ │ │ │ -00020dc0: 2069 6e20 7468 6520 6469 7265 6374 6f72 in the director │ │ │ │ -00020dd0: 7920 7320 616e 6420 7265 6e61 6d65 7320 y s and renames │ │ │ │ -00020de0: 6974 2074 6f20 6e2e 0a0a 2b2d 2d2d 2d2d it to n...+----- │ │ │ │ +00020b20: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f **********..Syno │ │ │ │ +00020b30: 7073 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 psis.========.. │ │ │ │ +00020b40: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ +00020b50: 2020 206d 6f76 6542 2746 696c 6528 732c moveB'File(s, │ │ │ │ +00020b60: 662c 6e29 0a20 202a 2049 6e70 7574 733a f,n). * Inputs: │ │ │ │ +00020b70: 0a20 2020 2020 202a 2073 2c20 6120 2a6e . * s, a *n │ │ │ │ +00020b80: 6f74 6520 7374 7269 6e67 3a20 284d 6163 ote string: (Mac │ │ │ │ +00020b90: 6175 6c61 7932 446f 6329 5374 7269 6e67 aulay2Doc)String │ │ │ │ +00020ba0: 2c2c 2041 2073 7472 696e 6720 6769 7669 ,, A string givi │ │ │ │ +00020bb0: 6e67 2061 2064 6972 6563 746f 7279 2e0a ng a directory.. │ │ │ │ +00020bc0: 2020 2020 2020 2a20 662c 2061 202a 6e6f * f, a *no │ │ │ │ +00020bd0: 7465 2073 7472 696e 673a 2028 4d61 6361 te string: (Maca │ │ │ │ +00020be0: 756c 6179 3244 6f63 2953 7472 696e 672c ulay2Doc)String, │ │ │ │ +00020bf0: 2c20 4120 6e61 6d65 206f 6620 6120 6669 , A name of a fi │ │ │ │ +00020c00: 6c65 2e0a 2020 2020 2020 2a20 732c 2061 le.. * s, a │ │ │ │ +00020c10: 202a 6e6f 7465 2073 7472 696e 673a 2028 *note string: ( │ │ │ │ +00020c20: 4d61 6361 756c 6179 3244 6f63 2953 7472 Macaulay2Doc)Str │ │ │ │ +00020c30: 696e 672c 2c20 4120 6e65 7720 6e61 6d65 ing,, A new name │ │ │ │ +00020c40: 2066 6f72 2074 6865 2066 696c 652e 0a20 for the file.. │ │ │ │ +00020c50: 202a 202a 6e6f 7465 204f 7074 696f 6e61 * *note Optiona │ │ │ │ +00020c60: 6c20 696e 7075 7473 3a20 284d 6163 6175 l inputs: (Macau │ │ │ │ +00020c70: 6c61 7932 446f 6329 7573 696e 6720 6675 lay2Doc)using fu │ │ │ │ +00020c80: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ +00020c90: 696f 6e61 6c20 696e 7075 7473 2c3a 0a20 ional inputs,:. │ │ │ │ +00020ca0: 2020 2020 202a 202a 6e6f 7465 2043 6f70 * *note Cop │ │ │ │ +00020cb0: 7942 2746 696c 653a 2043 6f70 7942 2746 yB'File: CopyB'F │ │ │ │ +00020cc0: 696c 652c 203d 3e20 2e2e 2e2c 2064 6566 ile, => ..., def │ │ │ │ +00020cd0: 6175 6c74 2076 616c 7565 2066 616c 7365 ault value false │ │ │ │ +00020ce0: 2c20 616e 206f 7074 696f 6e61 6c0a 2020 , an optional. │ │ │ │ +00020cf0: 2020 2020 2020 6172 6775 6d65 6e74 2074 argument t │ │ │ │ +00020d00: 6f20 7370 6563 6966 7920 7768 6574 6865 o specify whethe │ │ │ │ +00020d10: 7220 6d61 6b65 2061 2063 6f70 7920 6f66 r make a copy of │ │ │ │ +00020d20: 2074 6865 2066 696c 652e 0a20 2020 2020 the file.. │ │ │ │ +00020d30: 202a 204d 6f76 6554 6f44 6972 6563 746f * MoveToDirecto │ │ │ │ +00020d40: 7279 203d 3e20 2e2e 2e2c 2064 6566 6175 ry => ..., defau │ │ │ │ +00020d50: 6c74 2076 616c 7565 206e 756c 6c0a 2020 lt value null. │ │ │ │ +00020d60: 2020 2020 2a20 5375 6246 6f6c 6465 7220 * SubFolder │ │ │ │ +00020d70: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +00020d80: 7661 6c75 6520 6e75 6c6c 0a0a 4465 7363 value null..Desc │ │ │ │ +00020d90: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +00020da0: 3d3d 3d0a 0a54 6869 7320 6675 6e63 7469 ===..This functi │ │ │ │ +00020db0: 6f6e 2074 616b 6573 2074 6865 2066 696c on takes the fil │ │ │ │ +00020dc0: 6520 6620 696e 2074 6865 2064 6972 6563 e f in the direc │ │ │ │ +00020dd0: 746f 7279 2073 2061 6e64 2072 656e 616d tory s and renam │ │ │ │ +00020de0: 6573 2069 7420 746f 206e 2e0a 0a2b 2d2d es it to n...+-- │ │ │ │ 00020df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020e30: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 7772 ------+.|i1 : wr │ │ │ │ -00020e40: 6974 6550 6172 616d 6574 6572 4669 6c65 iteParameterFile │ │ │ │ -00020e50: 2873 746f 7265 424d 3246 696c 6573 2c7b (storeBM2Files,{ │ │ │ │ -00020e60: 322c 332c 352c 377d 293b 2020 2020 2020 2,3,5,7}); │ │ │ │ +00020e30: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +00020e40: 2077 7269 7465 5061 7261 6d65 7465 7246 writeParameterF │ │ │ │ +00020e50: 696c 6528 7374 6f72 6542 4d32 4669 6c65 ile(storeBM2File │ │ │ │ +00020e60: 732c 7b32 2c33 2c35 2c37 7d29 3b20 2020 s,{2,3,5,7}); │ │ │ │ 00020e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020e80: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00020e80: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 00020e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020ed0: 2d2d 2b0a 7c69 3220 3a20 6669 6c65 4578 --+.|i2 : fileEx │ │ │ │ -00020ee0: 6973 7473 2873 746f 7265 424d 3246 696c ists(storeBM2Fil │ │ │ │ -00020ef0: 6573 7c22 2f66 696e 616c 5f70 6172 616d es|"/final_param │ │ │ │ -00020f00: 6574 6572 7322 2920 2020 2020 2020 2020 eters") │ │ │ │ +00020ed0: 2d2d 2d2d 2d2b 0a7c 6932 203a 2066 696c -----+.|i2 : fil │ │ │ │ +00020ee0: 6545 7869 7374 7328 7374 6f72 6542 4d32 eExists(storeBM2 │ │ │ │ +00020ef0: 4669 6c65 737c 222f 6669 6e61 6c5f 7061 Files|"/final_pa │ │ │ │ +00020f00: 7261 6d65 7465 7273 2229 2020 2020 2020 rameters") │ │ │ │ 00020f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020f20: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00020f20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00020f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020f60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00020f70: 7c6f 3220 3d20 7472 7565 2020 2020 2020 |o2 = true │ │ │ │ +00020f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020f70: 207c 0a7c 6f32 203d 2074 7275 6520 2020 |.|o2 = true │ │ │ │ 00020f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020fb0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00020fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020fb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020fc0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00020fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021000: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ -00021010: 3a20 6d6f 7665 4227 4669 6c65 2873 746f : moveB'File(sto │ │ │ │ -00021020: 7265 424d 3246 696c 6573 2c22 6669 6e61 reBM2Files,"fina │ │ │ │ -00021030: 6c5f 7061 7261 6d65 7465 7273 222c 2273 l_parameters","s │ │ │ │ -00021040: 7461 7274 5f70 6172 616d 6574 6572 7322 tart_parameters" │ │ │ │ -00021050: 2920 2020 2020 2020 7c0a 2b2d 2d2d 2d2d ) |.+----- │ │ │ │ +00021000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00021010: 6933 203a 206d 6f76 6542 2746 696c 6528 i3 : moveB'File( │ │ │ │ +00021020: 7374 6f72 6542 4d32 4669 6c65 732c 2266 storeBM2Files,"f │ │ │ │ +00021030: 696e 616c 5f70 6172 616d 6574 6572 7322 inal_parameters" │ │ │ │ +00021040: 2c22 7374 6172 745f 7061 7261 6d65 7465 ,"start_paramete │ │ │ │ +00021050: 7273 2229 2020 2020 2020 207c 0a2b 2d2d rs") |.+-- │ │ │ │ 00021060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000210a0: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 6669 ------+.|i4 : fi │ │ │ │ -000210b0: 6c65 4578 6973 7473 2873 746f 7265 424d leExists(storeBM │ │ │ │ -000210c0: 3246 696c 6573 7c22 2f66 696e 616c 5f70 2Files|"/final_p │ │ │ │ -000210d0: 6172 616d 6574 6572 7322 2920 2020 2020 arameters") │ │ │ │ +000210a0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ +000210b0: 2066 696c 6545 7869 7374 7328 7374 6f72 fileExists(stor │ │ │ │ +000210c0: 6542 4d32 4669 6c65 737c 222f 6669 6e61 eBM2Files|"/fina │ │ │ │ +000210d0: 6c5f 7061 7261 6d65 7465 7273 2229 2020 l_parameters") │ │ │ │ 000210e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000210f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000210f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00021100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021140: 2020 7c0a 7c6f 3420 3d20 6661 6c73 6520 |.|o4 = false │ │ │ │ -00021150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021140: 2020 2020 207c 0a7c 6f34 203d 2066 616c |.|o4 = fal │ │ │ │ +00021150: 7365 2020 2020 2020 2020 2020 2020 2020 se │ │ │ │ 00021160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021190: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00021190: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 000211a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000211b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000211c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000211d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000211e0: 7c69 3520 3a20 6669 6c65 4578 6973 7473 |i5 : fileExists │ │ │ │ -000211f0: 2873 746f 7265 424d 3246 696c 6573 7c22 (storeBM2Files|" │ │ │ │ -00021200: 2f73 7461 7274 5f70 6172 616d 6574 6572 /start_parameter │ │ │ │ -00021210: 7322 2920 2020 2020 2020 2020 2020 2020 s") │ │ │ │ -00021220: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00021230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000211d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000211e0: 2d2b 0a7c 6935 203a 2066 696c 6545 7869 -+.|i5 : fileExi │ │ │ │ +000211f0: 7374 7328 7374 6f72 6542 4d32 4669 6c65 sts(storeBM2File │ │ │ │ +00021200: 737c 222f 7374 6172 745f 7061 7261 6d65 s|"/start_parame │ │ │ │ +00021210: 7465 7273 2229 2020 2020 2020 2020 2020 ters") │ │ │ │ +00021220: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021230: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021270: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ -00021280: 3d20 7472 7565 2020 2020 2020 2020 2020 = true │ │ │ │ +00021270: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021280: 6f35 203d 2074 7275 6520 2020 2020 2020 o5 = true │ │ │ │ 00021290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000212a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000212b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000212c0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000212c0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 000212d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000212e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000212f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021310: 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 6d6f ------+.|i6 : mo │ │ │ │ -00021320: 7665 4227 4669 6c65 2873 746f 7265 424d veB'File(storeBM │ │ │ │ -00021330: 3246 696c 6573 2c22 7374 6172 745f 7061 2Files,"start_pa │ │ │ │ -00021340: 7261 6d65 7465 7273 222c 2262 6163 6b75 rameters","backu │ │ │ │ -00021350: 7022 2c43 6f70 7942 2746 696c 653d 3e74 p",CopyB'File=>t │ │ │ │ -00021360: 7275 6529 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d rue)|.+--------- │ │ │ │ +00021310: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a ---------+.|i6 : │ │ │ │ +00021320: 206d 6f76 6542 2746 696c 6528 7374 6f72 moveB'File(stor │ │ │ │ +00021330: 6542 4d32 4669 6c65 732c 2273 7461 7274 eBM2Files,"start │ │ │ │ +00021340: 5f70 6172 616d 6574 6572 7322 2c22 6261 _parameters","ba │ │ │ │ +00021350: 636b 7570 222c 436f 7079 4227 4669 6c65 ckup",CopyB'File │ │ │ │ +00021360: 3d3e 7472 7565 297c 0a2b 2d2d 2d2d 2d2d =>true)|.+------ │ │ │ │ 00021370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000213a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000213b0: 2d2d 2b0a 7c69 3720 3a20 6669 6c65 4578 --+.|i7 : fileEx │ │ │ │ -000213c0: 6973 7473 2873 746f 7265 424d 3246 696c ists(storeBM2Fil │ │ │ │ -000213d0: 6573 7c22 2f73 7461 7274 5f70 6172 616d es|"/start_param │ │ │ │ -000213e0: 6574 6572 7322 2920 2020 2020 2020 2020 eters") │ │ │ │ +000213b0: 2d2d 2d2d 2d2b 0a7c 6937 203a 2066 696c -----+.|i7 : fil │ │ │ │ +000213c0: 6545 7869 7374 7328 7374 6f72 6542 4d32 eExists(storeBM2 │ │ │ │ +000213d0: 4669 6c65 737c 222f 7374 6172 745f 7061 Files|"/start_pa │ │ │ │ +000213e0: 7261 6d65 7465 7273 2229 2020 2020 2020 rameters") │ │ │ │ 000213f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021400: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00021400: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00021410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021440: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00021450: 7c6f 3720 3d20 7472 7565 2020 2020 2020 |o7 = true │ │ │ │ +00021440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021450: 207c 0a7c 6f37 203d 2074 7275 6520 2020 |.|o7 = true │ │ │ │ 00021460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021490: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -000214a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021490: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000214a0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 000214b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000214c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000214d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000214e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 ----------+.|i8 │ │ │ │ -000214f0: 3a20 6669 6c65 4578 6973 7473 2873 746f : fileExists(sto │ │ │ │ -00021500: 7265 424d 3246 696c 6573 7c22 2f62 6163 reBM2Files|"/bac │ │ │ │ -00021510: 6b75 7022 2920 2020 2020 2020 2020 2020 kup") │ │ │ │ +000214e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000214f0: 6938 203a 2066 696c 6545 7869 7374 7328 i8 : fileExists( │ │ │ │ +00021500: 7374 6f72 6542 4d32 4669 6c65 737c 222f storeBM2Files|"/ │ │ │ │ +00021510: 6261 636b 7570 2229 2020 2020 2020 2020 backup") │ │ │ │ 00021520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021530: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00021530: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00021540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021580: 2020 2020 2020 7c0a 7c6f 3820 3d20 7472 |.|o8 = tr │ │ │ │ -00021590: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00021580: 2020 2020 2020 2020 207c 0a7c 6f38 203d |.|o8 = │ │ │ │ +00021590: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ 000215a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000215b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000215c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000215d0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000215d0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 000215e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000215f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021620: 2d2d 2b0a 0a54 6865 206f 7074 696f 6e73 --+..The options │ │ │ │ -00021630: 204d 6f76 6554 6f44 6972 6563 746f 7279 MoveToDirectory │ │ │ │ -00021640: 2061 6e64 2053 7562 466f 6c64 6572 2067 and SubFolder g │ │ │ │ -00021650: 6976 6520 6772 6561 7465 7220 636f 6e74 ive greater cont │ │ │ │ -00021660: 726f 6c20 666f 7220 7768 6572 6520 746f rol for where to │ │ │ │ -00021670: 0a6d 6f76 6520 7468 6520 6669 6c65 2e0a .move the file.. │ │ │ │ -00021680: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00021620: 2d2d 2d2d 2d2b 0a0a 5468 6520 6f70 7469 -----+..The opti │ │ │ │ +00021630: 6f6e 7320 4d6f 7665 546f 4469 7265 6374 ons MoveToDirect │ │ │ │ +00021640: 6f72 7920 616e 6420 5375 6246 6f6c 6465 ory and SubFolde │ │ │ │ +00021650: 7220 6769 7665 2067 7265 6174 6572 2063 r give greater c │ │ │ │ +00021660: 6f6e 7472 6f6c 2066 6f72 2077 6865 7265 ontrol for where │ │ │ │ +00021670: 2074 6f0a 6d6f 7665 2074 6865 2066 696c to.move the fil │ │ │ │ +00021680: 652e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d e...+----------- │ │ │ │ 00021690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000216a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000216b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000216c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000216d0: 0a7c 6939 203a 2044 6972 3120 3d20 7465 .|i9 : Dir1 = te │ │ │ │ -000216e0: 6d70 6f72 6172 7946 696c 654e 616d 6528 mporaryFileName( │ │ │ │ -000216f0: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ +000216c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000216d0: 2d2d 2b0a 7c69 3920 3a20 4469 7231 203d --+.|i9 : Dir1 = │ │ │ │ +000216e0: 2074 656d 706f 7261 7279 4669 6c65 4e61 temporaryFileNa │ │ │ │ +000216f0: 6d65 2829 3b20 2020 2020 2020 2020 2020 me(); │ │ │ │ 00021700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021710: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00021720: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00021710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021720: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00021730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00021770: 0a7c 6931 3020 3a20 6d61 6b65 4469 7265 .|i10 : makeDire │ │ │ │ -00021780: 6374 6f72 7920 4469 7231 2020 2020 2020 ctory Dir1 │ │ │ │ +00021760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021770: 2d2d 2b0a 7c69 3130 203a 206d 616b 6544 --+.|i10 : makeD │ │ │ │ +00021780: 6972 6563 746f 7279 2044 6972 3120 2020 irectory Dir1 │ │ │ │ 00021790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000217a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000217b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000217c0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000217b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000217c0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 000217d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000217e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000217f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00021810: 0a7c 6931 3120 3a20 7772 6974 6550 6172 .|i11 : writePar │ │ │ │ -00021820: 616d 6574 6572 4669 6c65 2873 746f 7265 ameterFile(store │ │ │ │ -00021830: 424d 3246 696c 6573 2c7b 322c 332c 352c BM2Files,{2,3,5, │ │ │ │ -00021840: 377d 293b 2020 2020 2020 2020 2020 2020 7}); │ │ │ │ -00021850: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00021860: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00021800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021810: 2d2d 2b0a 7c69 3131 203a 2077 7269 7465 --+.|i11 : write │ │ │ │ +00021820: 5061 7261 6d65 7465 7246 696c 6528 7374 ParameterFile(st │ │ │ │ +00021830: 6f72 6542 4d32 4669 6c65 732c 7b32 2c33 oreBM2Files,{2,3 │ │ │ │ +00021840: 2c35 2c37 7d29 3b20 2020 2020 2020 2020 ,5,7}); │ │ │ │ +00021850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021860: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00021870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000218a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000218b0: 0a7c 6931 3220 3a20 6d6f 7665 4227 4669 .|i12 : moveB'Fi │ │ │ │ -000218c0: 6c65 2873 746f 7265 424d 3246 696c 6573 le(storeBM2Files │ │ │ │ -000218d0: 2c22 6669 6e61 6c5f 7061 7261 6d65 7465 ,"final_paramete │ │ │ │ -000218e0: 7273 222c 2273 7461 7274 5f70 6172 616d rs","start_param │ │ │ │ -000218f0: 6574 6572 7322 2c20 2020 2020 2020 207c eters", | │ │ │ │ -00021900: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +000218a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000218b0: 2d2d 2b0a 7c69 3132 203a 206d 6f76 6542 --+.|i12 : moveB │ │ │ │ +000218c0: 2746 696c 6528 7374 6f72 6542 4d32 4669 'File(storeBM2Fi │ │ │ │ +000218d0: 6c65 732c 2266 696e 616c 5f70 6172 616d les,"final_param │ │ │ │ +000218e0: 6574 6572 7322 2c22 7374 6172 745f 7061 eters","start_pa │ │ │ │ +000218f0: 7261 6d65 7465 7273 222c 2020 2020 2020 rameters", │ │ │ │ +00021900: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ 00021910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00021950: 0a7c 4d6f 7665 546f 4469 7265 6374 6f72 .|MoveToDirector │ │ │ │ -00021960: 793d 3e44 6972 3129 2020 2020 2020 2020 y=>Dir1) │ │ │ │ +00021940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021950: 2d2d 7c0a 7c4d 6f76 6554 6f44 6972 6563 --|.|MoveToDirec │ │ │ │ +00021960: 746f 7279 3d3e 4469 7231 2920 2020 2020 tory=>Dir1) │ │ │ │ 00021970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021990: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000219a0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00021990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000219a0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 000219b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000219c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000219d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000219e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000219f0: 0a7c 6931 3320 3a20 6669 6c65 4578 6973 .|i13 : fileExis │ │ │ │ -00021a00: 7473 2844 6972 317c 222f 7374 6172 745f ts(Dir1|"/start_ │ │ │ │ -00021a10: 7061 7261 6d65 7465 7273 2229 2020 2020 parameters") │ │ │ │ +000219e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000219f0: 2d2d 2b0a 7c69 3133 203a 2066 696c 6545 --+.|i13 : fileE │ │ │ │ +00021a00: 7869 7374 7328 4469 7231 7c22 2f73 7461 xists(Dir1|"/sta │ │ │ │ +00021a10: 7274 5f70 6172 616d 6574 6572 7322 2920 rt_parameters") │ │ │ │ 00021a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021a30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00021a40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00021a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021a40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00021a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021a80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00021a90: 0a7c 6f31 3320 3d20 7472 7565 2020 2020 .|o13 = true │ │ │ │ +00021a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021a90: 2020 7c0a 7c6f 3133 203d 2074 7275 6520 |.|o13 = true │ │ │ │ 00021aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021ad0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00021ae0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00021ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021ae0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00021af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00021b30: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00021b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021b30: 2d2d 2b0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d --+.+----------- │ │ │ │ 00021b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00021b80: 0a7c 6931 3420 3a20 6d61 6b65 4469 7265 .|i14 : makeDire │ │ │ │ -00021b90: 6374 6f72 7920 2873 746f 7265 424d 3246 ctory (storeBM2F │ │ │ │ -00021ba0: 696c 6573 7c22 2f44 6972 3222 2920 2020 iles|"/Dir2") │ │ │ │ +00021b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021b80: 2d2d 2b0a 7c69 3134 203a 206d 616b 6544 --+.|i14 : makeD │ │ │ │ +00021b90: 6972 6563 746f 7279 2028 7374 6f72 6542 irectory (storeB │ │ │ │ +00021ba0: 4d32 4669 6c65 737c 222f 4469 7232 2229 M2Files|"/Dir2") │ │ │ │ 00021bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021bc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00021bd0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00021bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021bd0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00021be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00021c20: 0a7c 6931 3520 3a20 7772 6974 6550 6172 .|i15 : writePar │ │ │ │ -00021c30: 616d 6574 6572 4669 6c65 2873 746f 7265 ameterFile(store │ │ │ │ -00021c40: 424d 3246 696c 6573 2c7b 322c 332c 352c BM2Files,{2,3,5, │ │ │ │ -00021c50: 377d 293b 2020 2020 2020 2020 2020 2020 7}); │ │ │ │ -00021c60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00021c70: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00021c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021c20: 2d2d 2b0a 7c69 3135 203a 2077 7269 7465 --+.|i15 : write │ │ │ │ +00021c30: 5061 7261 6d65 7465 7246 696c 6528 7374 ParameterFile(st │ │ │ │ +00021c40: 6f72 6542 4d32 4669 6c65 732c 7b32 2c33 oreBM2Files,{2,3 │ │ │ │ +00021c50: 2c35 2c37 7d29 3b20 2020 2020 2020 2020 ,5,7}); │ │ │ │ +00021c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021c70: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00021c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00021cc0: 0a7c 6931 3620 3a20 6d6f 7665 4227 4669 .|i16 : moveB'Fi │ │ │ │ -00021cd0: 6c65 2873 746f 7265 424d 3246 696c 6573 le(storeBM2Files │ │ │ │ -00021ce0: 2c22 6669 6e61 6c5f 7061 7261 6d65 7465 ,"final_paramete │ │ │ │ -00021cf0: 7273 222c 2273 7461 7274 5f70 6172 616d rs","start_param │ │ │ │ -00021d00: 6574 6572 7322 2c20 2020 2020 2020 207c eters", | │ │ │ │ -00021d10: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00021cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021cc0: 2d2d 2b0a 7c69 3136 203a 206d 6f76 6542 --+.|i16 : moveB │ │ │ │ +00021cd0: 2746 696c 6528 7374 6f72 6542 4d32 4669 'File(storeBM2Fi │ │ │ │ +00021ce0: 6c65 732c 2266 696e 616c 5f70 6172 616d les,"final_param │ │ │ │ +00021cf0: 6574 6572 7322 2c22 7374 6172 745f 7061 eters","start_pa │ │ │ │ +00021d00: 7261 6d65 7465 7273 222c 2020 2020 2020 rameters", │ │ │ │ +00021d10: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ 00021d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00021d60: 0a7c 5375 6246 6f6c 6465 723d 3e22 4469 .|SubFolder=>"Di │ │ │ │ -00021d70: 7232 2229 2020 2020 2020 2020 2020 2020 r2") │ │ │ │ +00021d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021d60: 2d2d 7c0a 7c53 7562 466f 6c64 6572 3d3e --|.|SubFolder=> │ │ │ │ +00021d70: 2244 6972 3222 2920 2020 2020 2020 2020 "Dir2") │ │ │ │ 00021d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00021db0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00021da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021db0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00021dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00021e00: 0a7c 6931 3720 3a20 6669 6c65 4578 6973 .|i17 : fileExis │ │ │ │ -00021e10: 7473 2873 746f 7265 424d 3246 696c 6573 ts(storeBM2Files │ │ │ │ -00021e20: 7c22 2f44 6972 322f 7374 6172 745f 7061 |"/Dir2/start_pa │ │ │ │ -00021e30: 7261 6d65 7465 7273 2229 2020 2020 2020 rameters") │ │ │ │ -00021e40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00021e50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00021df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021e00: 2d2d 2b0a 7c69 3137 203a 2066 696c 6545 --+.|i17 : fileE │ │ │ │ +00021e10: 7869 7374 7328 7374 6f72 6542 4d32 4669 xists(storeBM2Fi │ │ │ │ +00021e20: 6c65 737c 222f 4469 7232 2f73 7461 7274 les|"/Dir2/start │ │ │ │ +00021e30: 5f70 6172 616d 6574 6572 7322 2920 2020 _parameters") │ │ │ │ +00021e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021e50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00021e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021e90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00021ea0: 0a7c 6f31 3720 3d20 7472 7565 2020 2020 .|o17 = true │ │ │ │ +00021e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021ea0: 2020 7c0a 7c6f 3137 203d 2074 7275 6520 |.|o17 = true │ │ │ │ 00021eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021ee0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00021ef0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00021ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021ef0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00021f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00021f40: 0a0a 5761 7973 2074 6f20 7573 6520 6d6f ..Ways to use mo │ │ │ │ -00021f50: 7665 4227 4669 6c65 3a0a 3d3d 3d3d 3d3d veB'File:.====== │ │ │ │ +00021f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021f40: 2d2d 2b0a 0a57 6179 7320 746f 2075 7365 --+..Ways to use │ │ │ │ +00021f50: 206d 6f76 6542 2746 696c 653a 0a3d 3d3d moveB'File:.=== │ │ │ │ 00021f60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00021f70: 3d0a 0a20 202a 2022 6d6f 7665 4227 4669 =.. * "moveB'Fi │ │ │ │ -00021f80: 6c65 2853 7472 696e 672c 5374 7269 6e67 le(String,String │ │ │ │ -00021f90: 2c53 7472 696e 6729 220a 0a46 6f72 2074 ,String)"..For t │ │ │ │ -00021fa0: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ -00021fb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00021fc0: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ -00021fd0: 7465 206d 6f76 6542 2746 696c 653a 206d te moveB'File: m │ │ │ │ -00021fe0: 6f76 6542 2746 696c 652c 2069 7320 6120 oveB'File, is a │ │ │ │ -00021ff0: 2a6e 6f74 6520 6d65 7468 6f64 2066 756e *note method fun │ │ │ │ -00022000: 6374 696f 6e20 7769 7468 0a6f 7074 696f ction with.optio │ │ │ │ -00022010: 6e73 3a20 284d 6163 6175 6c61 7932 446f ns: (Macaulay2Do │ │ │ │ -00022020: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ -00022030: 5769 7468 4f70 7469 6f6e 732c 2e0a 1f0a WithOptions,.... │ │ │ │ -00022040: 4669 6c65 3a20 4265 7274 696e 692e 696e File: Bertini.in │ │ │ │ -00022050: 666f 2c20 4e6f 6465 3a20 4e75 6d62 6572 fo, Node: Number │ │ │ │ -00022060: 546f 4227 5374 7269 6e67 2c20 4e65 7874 ToB'String, Next │ │ │ │ -00022070: 3a20 5061 7468 4c69 7374 2c20 5072 6576 : PathList, Prev │ │ │ │ -00022080: 3a20 6d6f 7665 4227 4669 6c65 2c20 5570 : moveB'File, Up │ │ │ │ -00022090: 3a20 546f 700a 0a4e 756d 6265 7254 6f42 : Top..NumberToB │ │ │ │ -000220a0: 2753 7472 696e 6720 2d2d 2054 7261 6e73 'String -- Trans │ │ │ │ -000220b0: 6c61 7465 7320 6120 6e75 6d62 6572 2074 lates a number t │ │ │ │ -000220c0: 6f20 6120 7374 7269 6e67 2074 6861 7420 o a string that │ │ │ │ -000220d0: 4265 7274 696e 6920 6361 6e20 7265 6164 Bertini can read │ │ │ │ -000220e0: 2e0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ..************** │ │ │ │ +00021f70: 3d3d 3d3d 0a0a 2020 2a20 226d 6f76 6542 ====.. * "moveB │ │ │ │ +00021f80: 2746 696c 6528 5374 7269 6e67 2c53 7472 'File(String,Str │ │ │ │ +00021f90: 696e 672c 5374 7269 6e67 2922 0a0a 466f ing,String)"..Fo │ │ │ │ +00021fa0: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +00021fb0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +00021fc0: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +00021fd0: 2a6e 6f74 6520 6d6f 7665 4227 4669 6c65 *note moveB'File │ │ │ │ +00021fe0: 3a20 6d6f 7665 4227 4669 6c65 2c20 6973 : moveB'File, is │ │ │ │ +00021ff0: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ +00022000: 6675 6e63 7469 6f6e 2077 6974 680a 6f70 function with.op │ │ │ │ +00022010: 7469 6f6e 733a 2028 4d61 6361 756c 6179 tions: (Macaulay │ │ │ │ +00022020: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ +00022030: 696f 6e57 6974 684f 7074 696f 6e73 2c2e ionWithOptions,. │ │ │ │ +00022040: 0a1f 0a46 696c 653a 2042 6572 7469 6e69 ...File: Bertini │ │ │ │ +00022050: 2e69 6e66 6f2c 204e 6f64 653a 204e 756d .info, Node: Num │ │ │ │ +00022060: 6265 7254 6f42 2753 7472 696e 672c 204e berToB'String, N │ │ │ │ +00022070: 6578 743a 2050 6174 684c 6973 742c 2050 ext: PathList, P │ │ │ │ +00022080: 7265 763a 206d 6f76 6542 2746 696c 652c rev: moveB'File, │ │ │ │ +00022090: 2055 703a 2054 6f70 0a0a 4e75 6d62 6572 Up: Top..Number │ │ │ │ +000220a0: 546f 4227 5374 7269 6e67 202d 2d20 5472 ToB'String -- Tr │ │ │ │ +000220b0: 616e 736c 6174 6573 2061 206e 756d 6265 anslates a numbe │ │ │ │ +000220c0: 7220 746f 2061 2073 7472 696e 6720 7468 r to a string th │ │ │ │ +000220d0: 6174 2042 6572 7469 6e69 2063 616e 2072 at Bertini can r │ │ │ │ +000220e0: 6561 642e 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a ead..*********** │ │ │ │ 000220f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00022100: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00022110: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00022120: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 5379 ************..Sy │ │ │ │ -00022130: 6e6f 7073 6973 0a3d 3d3d 3d3d 3d3d 3d0a nopsis.========. │ │ │ │ -00022140: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ -00022150: 2020 2020 204e 756d 6265 7254 6f42 2753 NumberToB'S │ │ │ │ -00022160: 7472 696e 6728 6e29 0a20 202a 2049 6e70 tring(n). * Inp │ │ │ │ -00022170: 7574 733a 0a20 2020 2020 202a 206e 2c20 uts:. * n, │ │ │ │ -00022180: 6120 2a6e 6f74 6520 7468 696e 673a 2028 a *note thing: ( │ │ │ │ -00022190: 4d61 6361 756c 6179 3244 6f63 2954 6869 Macaulay2Doc)Thi │ │ │ │ -000221a0: 6e67 2c2c 206e 2069 7320 6120 6e75 6d62 ng,, n is a numb │ │ │ │ -000221b0: 6572 2e0a 2020 2a20 2a6e 6f74 6520 4f70 er.. * *note Op │ │ │ │ -000221c0: 7469 6f6e 616c 2069 6e70 7574 733a 2028 tional inputs: ( │ │ │ │ -000221d0: 4d61 6361 756c 6179 3244 6f63 2975 7369 Macaulay2Doc)usi │ │ │ │ -000221e0: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ -000221f0: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ -00022200: 732c 3a0a 2020 2020 2020 2a20 4d32 5072 s,:. * M2Pr │ │ │ │ -00022210: 6563 6973 696f 6e20 286d 6973 7369 6e67 ecision (missing │ │ │ │ -00022220: 2064 6f63 756d 656e 7461 7469 6f6e 2920 documentation) │ │ │ │ -00022230: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ -00022240: 7661 6c75 6520 3533 2c20 0a0a 4465 7363 value 53, ..Desc │ │ │ │ -00022250: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ -00022260: 3d3d 3d0a 0a54 6869 7320 6675 6e63 7469 ===..This functi │ │ │ │ -00022270: 6f6e 2074 616b 6573 2061 206e 756d 6265 on takes a numbe │ │ │ │ -00022280: 7220 6173 2061 6e20 696e 7075 7420 7468 r as an input th │ │ │ │ -00022290: 656e 206f 7574 7075 7473 2061 2073 7472 en outputs a str │ │ │ │ -000222a0: 696e 6720 746f 2072 6570 7265 7365 6e74 ing to represent │ │ │ │ -000222b0: 0a74 6869 7320 6e75 6d62 6572 2074 6f20 .this number to │ │ │ │ -000222c0: 4265 7274 696e 692e 2054 6865 206e 756d Bertini. The num │ │ │ │ -000222d0: 6265 7273 2061 7265 2063 6f6e 7665 7274 bers are convert │ │ │ │ -000222e0: 6564 2074 6f20 666c 6f61 7469 6e67 2070 ed to floating p │ │ │ │ -000222f0: 6f69 6e74 2074 6f0a 7072 6563 6973 696f oint to.precisio │ │ │ │ -00022300: 6e20 6465 7465 726d 696e 6564 2062 7920 n determined by │ │ │ │ -00022310: 7468 6520 6f70 7469 6f6e 204d 3250 7265 the option M2Pre │ │ │ │ -00022320: 6369 7369 6f6e 2e0a 0a2b 2d2d 2d2d 2d2d cision...+------ │ │ │ │ +00022120: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +00022130: 0a53 796e 6f70 7369 730a 3d3d 3d3d 3d3d .Synopsis.====== │ │ │ │ +00022140: 3d3d 0a0a 2020 2a20 5573 6167 653a 200a ==.. * Usage: . │ │ │ │ +00022150: 2020 2020 2020 2020 4e75 6d62 6572 546f NumberTo │ │ │ │ +00022160: 4227 5374 7269 6e67 286e 290a 2020 2a20 B'String(n). * │ │ │ │ +00022170: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ +00022180: 6e2c 2061 202a 6e6f 7465 2074 6869 6e67 n, a *note thing │ │ │ │ +00022190: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +000221a0: 5468 696e 672c 2c20 6e20 6973 2061 206e Thing,, n is a n │ │ │ │ +000221b0: 756d 6265 722e 0a20 202a 202a 6e6f 7465 umber.. * *note │ │ │ │ +000221c0: 204f 7074 696f 6e61 6c20 696e 7075 7473 Optional inputs │ │ │ │ +000221d0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +000221e0: 7573 696e 6720 6675 6e63 7469 6f6e 7320 using functions │ │ │ │ +000221f0: 7769 7468 206f 7074 696f 6e61 6c20 696e with optional in │ │ │ │ +00022200: 7075 7473 2c3a 0a20 2020 2020 202a 204d puts,:. * M │ │ │ │ +00022210: 3250 7265 6369 7369 6f6e 2028 6d69 7373 2Precision (miss │ │ │ │ +00022220: 696e 6720 646f 6375 6d65 6e74 6174 696f ing documentatio │ │ │ │ +00022230: 6e29 203d 3e20 2e2e 2e2c 2064 6566 6175 n) => ..., defau │ │ │ │ +00022240: 6c74 2076 616c 7565 2035 332c 200a 0a44 lt value 53, ..D │ │ │ │ +00022250: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +00022260: 3d3d 3d3d 3d3d 0a0a 5468 6973 2066 756e ======..This fun │ │ │ │ +00022270: 6374 696f 6e20 7461 6b65 7320 6120 6e75 ction takes a nu │ │ │ │ +00022280: 6d62 6572 2061 7320 616e 2069 6e70 7574 mber as an input │ │ │ │ +00022290: 2074 6865 6e20 6f75 7470 7574 7320 6120 then outputs a │ │ │ │ +000222a0: 7374 7269 6e67 2074 6f20 7265 7072 6573 string to repres │ │ │ │ +000222b0: 656e 740a 7468 6973 206e 756d 6265 7220 ent.this number │ │ │ │ +000222c0: 746f 2042 6572 7469 6e69 2e20 5468 6520 to Bertini. The │ │ │ │ +000222d0: 6e75 6d62 6572 7320 6172 6520 636f 6e76 numbers are conv │ │ │ │ +000222e0: 6572 7465 6420 746f 2066 6c6f 6174 696e erted to floatin │ │ │ │ +000222f0: 6720 706f 696e 7420 746f 0a70 7265 6369 g point to.preci │ │ │ │ +00022300: 7369 6f6e 2064 6574 6572 6d69 6e65 6420 sion determined │ │ │ │ +00022310: 6279 2074 6865 206f 7074 696f 6e20 4d32 by the option M2 │ │ │ │ +00022320: 5072 6563 6973 696f 6e2e 0a0a 2b2d 2d2d Precision...+--- │ │ │ │ 00022330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022360: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -00022370: 4e75 6d62 6572 546f 4227 5374 7269 6e67 NumberToB'String │ │ │ │ -00022380: 2832 2b35 2a69 6929 2020 2020 2020 2020 (2+5*ii) │ │ │ │ +00022360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00022370: 203a 204e 756d 6265 7254 6f42 2753 7472 : NumberToB'Str │ │ │ │ +00022380: 696e 6728 322b 352a 6969 2920 2020 2020 ing(2+5*ii) │ │ │ │ 00022390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000223a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000223a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 000223b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000223c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000223d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000223e0: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ -000223f0: 3d20 2e32 6531 202e 3565 3120 2020 2020 = .2e1 .5e1 │ │ │ │ +000223e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000223f0: 6f31 203d 202e 3265 3120 2e35 6531 2020 o1 = .2e1 .5e1 │ │ │ │ 00022400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022420: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00022430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022420: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00022430: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00022440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00022470: 3220 3a20 4e75 6d62 6572 546f 4227 5374 2 : NumberToB'St │ │ │ │ -00022480: 7269 6e67 2831 2f33 2c4d 3250 7265 6369 ring(1/3,M2Preci │ │ │ │ -00022490: 7369 6f6e 3d3e 3136 2920 2020 2020 2020 sion=>16) │ │ │ │ -000224a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000224b0: 5761 726e 696e 673a 2072 6174 696f 6e61 Warning: rationa │ │ │ │ -000224c0: 6c20 6e75 6d62 6572 7320 7769 6c6c 2062 l numbers will b │ │ │ │ -000224d0: 6520 636f 6e76 6572 7465 6420 746f 2066 e converted to f │ │ │ │ -000224e0: 6c6f 6174 696e 6720 706f 696e 742e 7c0a loating point.|. │ │ │ │ -000224f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00022460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00022470: 0a7c 6932 203a 204e 756d 6265 7254 6f42 .|i2 : NumberToB │ │ │ │ +00022480: 2753 7472 696e 6728 312f 332c 4d32 5072 'String(1/3,M2Pr │ │ │ │ +00022490: 6563 6973 696f 6e3d 3e31 3629 2020 2020 ecision=>16) │ │ │ │ +000224a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000224b0: 7c0a 7c57 6172 6e69 6e67 3a20 7261 7469 |.|Warning: rati │ │ │ │ +000224c0: 6f6e 616c 206e 756d 6265 7273 2077 696c onal numbers wil │ │ │ │ +000224d0: 6c20 6265 2063 6f6e 7665 7274 6564 2074 l be converted t │ │ │ │ +000224e0: 6f20 666c 6f61 7469 6e67 2070 6f69 6e74 o floating point │ │ │ │ +000224f0: 2e7c 0a7c 2020 2020 2020 2020 2020 2020 .|.| │ │ │ │ 00022500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022520: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00022530: 0a7c 6f32 203d 202e 3333 3333 3333 3333 .|o2 = .33333333 │ │ │ │ -00022540: 3333 3333 3333 3333 3165 3020 2e30 6530 333333331e0 .0e0 │ │ │ │ -00022550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022530: 2020 7c0a 7c6f 3220 3d20 2e33 3333 3333 |.|o2 = .33333 │ │ │ │ +00022540: 3333 3333 3333 3333 3333 3331 6530 202e 333333333331e0 . │ │ │ │ +00022550: 3065 3020 2020 2020 2020 2020 2020 2020 0e0 │ │ │ │ 00022560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022570: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00022570: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00022580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000225a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000225b0: 2d2b 0a7c 6933 203a 204e 756d 6265 7254 -+.|i3 : NumberT │ │ │ │ -000225c0: 6f42 2753 7472 696e 6728 312f 332c 4d32 oB'String(1/3,M2 │ │ │ │ -000225d0: 5072 6563 6973 696f 6e3d 3e31 3238 2920 Precision=>128) │ │ │ │ -000225e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000225f0: 2020 7c0a 7c57 6172 6e69 6e67 3a20 7261 |.|Warning: ra │ │ │ │ -00022600: 7469 6f6e 616c 206e 756d 6265 7273 2077 tional numbers w │ │ │ │ -00022610: 696c 6c20 6265 2063 6f6e 7665 7274 6564 ill be converted │ │ │ │ -00022620: 2074 6f20 666c 6f61 7469 6e67 2070 6f69 to floating poi │ │ │ │ -00022630: 6e74 2e7c 0a7c 2020 2020 2020 2020 2020 nt.|.| │ │ │ │ +000225b0: 2d2d 2d2d 2b0a 7c69 3320 3a20 4e75 6d62 ----+.|i3 : Numb │ │ │ │ +000225c0: 6572 546f 4227 5374 7269 6e67 2831 2f33 erToB'String(1/3 │ │ │ │ +000225d0: 2c4d 3250 7265 6369 7369 6f6e 3d3e 3132 ,M2Precision=>12 │ │ │ │ +000225e0: 3829 2020 2020 2020 2020 2020 2020 2020 8) │ │ │ │ +000225f0: 2020 2020 207c 0a7c 5761 726e 696e 673a |.|Warning: │ │ │ │ +00022600: 2072 6174 696f 6e61 6c20 6e75 6d62 6572 rational number │ │ │ │ +00022610: 7320 7769 6c6c 2062 6520 636f 6e76 6572 s will be conver │ │ │ │ +00022620: 7465 6420 746f 2066 6c6f 6174 696e 6720 ted to floating │ │ │ │ +00022630: 706f 696e 742e 7c0a 7c20 2020 2020 2020 point.|.| │ │ │ │ 00022640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022670: 2020 2020 7c0a 7c6f 3320 3d20 2e33 3333 |.|o3 = .333 │ │ │ │ +00022670: 2020 2020 2020 207c 0a7c 6f33 203d 202e |.|o3 = . │ │ │ │ 00022680: 3333 3333 3333 3333 3333 3333 3333 3333 3333333333333333 │ │ │ │ 00022690: 3333 3333 3333 3333 3333 3333 3333 3333 3333333333333333 │ │ │ │ -000226a0: 3333 3333 3865 3020 2e30 6530 2020 2020 33338e0 .0e0 │ │ │ │ -000226b0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000226a0: 3333 3333 3333 3338 6530 202e 3065 3020 33333338e0 .0e0 │ │ │ │ +000226b0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ 000226c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000226d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000226e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000226f0: 2d2d 2d2d 2d2d 2b0a 0a57 6179 7320 746f ------+..Ways to │ │ │ │ -00022700: 2075 7365 204e 756d 6265 7254 6f42 2753 use NumberToB'S │ │ │ │ -00022710: 7472 696e 673a 0a3d 3d3d 3d3d 3d3d 3d3d tring:.========= │ │ │ │ +000226f0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5761 7973 ---------+..Ways │ │ │ │ +00022700: 2074 6f20 7573 6520 4e75 6d62 6572 546f to use NumberTo │ │ │ │ +00022710: 4227 5374 7269 6e67 3a0a 3d3d 3d3d 3d3d B'String:.====== │ │ │ │ 00022720: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00022730: 3d3d 3d3d 0a0a 2020 2a20 224e 756d 6265 ====.. * "Numbe │ │ │ │ -00022740: 7254 6f42 2753 7472 696e 6728 5468 696e rToB'String(Thin │ │ │ │ -00022750: 6729 220a 0a46 6f72 2074 6865 2070 726f g)"..For the pro │ │ │ │ -00022760: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -00022770: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -00022780: 6f62 6a65 6374 202a 6e6f 7465 204e 756d object *note Num │ │ │ │ -00022790: 6265 7254 6f42 2753 7472 696e 673a 204e berToB'String: N │ │ │ │ -000227a0: 756d 6265 7254 6f42 2753 7472 696e 672c umberToB'String, │ │ │ │ -000227b0: 2069 7320 6120 2a6e 6f74 6520 6d65 7468 is a *note meth │ │ │ │ -000227c0: 6f64 2066 756e 6374 696f 6e0a 7769 7468 od function.with │ │ │ │ -000227d0: 206f 7074 696f 6e73 3a20 284d 6163 6175 options: (Macau │ │ │ │ -000227e0: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ -000227f0: 6e63 7469 6f6e 5769 7468 4f70 7469 6f6e nctionWithOption │ │ │ │ -00022800: 732c 2e0a 1f0a 4669 6c65 3a20 4265 7274 s,....File: Bert │ │ │ │ -00022810: 696e 692e 696e 666f 2c20 4e6f 6465 3a20 ini.info, Node: │ │ │ │ -00022820: 5061 7468 4c69 7374 2c20 4e65 7874 3a20 PathList, Next: │ │ │ │ -00022830: 7261 6469 6361 6c4c 6973 742c 2050 7265 radicalList, Pre │ │ │ │ -00022840: 763a 204e 756d 6265 7254 6f42 2753 7472 v: NumberToB'Str │ │ │ │ -00022850: 696e 672c 2055 703a 2054 6f70 0a0a 5061 ing, Up: Top..Pa │ │ │ │ -00022860: 7468 4c69 7374 0a2a 2a2a 2a2a 2a2a 2a0a thList.********. │ │ │ │ -00022870: 0a46 756e 6374 696f 6e73 2077 6974 6820 .Functions with │ │ │ │ -00022880: 6f70 7469 6f6e 616c 2061 7267 756d 656e optional argumen │ │ │ │ -00022890: 7420 6e61 6d65 6420 5061 7468 4c69 7374 t named PathList │ │ │ │ -000228a0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +00022730: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 4e75 =======.. * "Nu │ │ │ │ +00022740: 6d62 6572 546f 4227 5374 7269 6e67 2854 mberToB'String(T │ │ │ │ +00022750: 6869 6e67 2922 0a0a 466f 7220 7468 6520 hing)"..For the │ │ │ │ +00022760: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ +00022770: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ +00022780: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ +00022790: 4e75 6d62 6572 546f 4227 5374 7269 6e67 NumberToB'String │ │ │ │ +000227a0: 3a20 4e75 6d62 6572 546f 4227 5374 7269 : NumberToB'Stri │ │ │ │ +000227b0: 6e67 2c20 6973 2061 202a 6e6f 7465 206d ng, is a *note m │ │ │ │ +000227c0: 6574 686f 6420 6675 6e63 7469 6f6e 0a77 ethod function.w │ │ │ │ +000227d0: 6974 6820 6f70 7469 6f6e 733a 2028 4d61 ith options: (Ma │ │ │ │ +000227e0: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ +000227f0: 6446 756e 6374 696f 6e57 6974 684f 7074 dFunctionWithOpt │ │ │ │ +00022800: 696f 6e73 2c2e 0a1f 0a46 696c 653a 2042 ions,....File: B │ │ │ │ +00022810: 6572 7469 6e69 2e69 6e66 6f2c 204e 6f64 ertini.info, Nod │ │ │ │ +00022820: 653a 2050 6174 684c 6973 742c 204e 6578 e: PathList, Nex │ │ │ │ +00022830: 743a 2072 6164 6963 616c 4c69 7374 2c20 t: radicalList, │ │ │ │ +00022840: 5072 6576 3a20 4e75 6d62 6572 546f 4227 Prev: NumberToB' │ │ │ │ +00022850: 5374 7269 6e67 2c20 5570 3a20 546f 700a String, Up: Top. │ │ │ │ +00022860: 0a50 6174 684c 6973 740a 2a2a 2a2a 2a2a .PathList.****** │ │ │ │ +00022870: 2a2a 0a0a 4675 6e63 7469 6f6e 7320 7769 **..Functions wi │ │ │ │ +00022880: 7468 206f 7074 696f 6e61 6c20 6172 6775 th optional argu │ │ │ │ +00022890: 6d65 6e74 206e 616d 6564 2050 6174 684c ment named PathL │ │ │ │ +000228a0: 6973 743a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d ist:.=========== │ │ │ │ 000228b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 000228c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000228d0: 3d3d 0a0a 2020 2a20 696d 706f 7274 4d61 ==.. * importMa │ │ │ │ -000228e0: 696e 4461 7461 4669 6c65 282e 2e2e 2c50 inDataFile(...,P │ │ │ │ -000228f0: 6174 684c 6973 743d 3e2e 2e2e 2920 286d athList=>...) (m │ │ │ │ -00022900: 6973 7369 6e67 2064 6f63 756d 656e 7461 issing documenta │ │ │ │ -00022910: 7469 6f6e 290a 0a46 6f72 2074 6865 2070 tion)..For the p │ │ │ │ -00022920: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -00022930: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -00022940: 6520 6f62 6a65 6374 2050 6174 684c 6973 e object PathLis │ │ │ │ -00022950: 7420 286d 6973 7369 6e67 2064 6f63 756d t (missing docum │ │ │ │ -00022960: 656e 7461 7469 6f6e 2920 6973 2061 202a entation) is a * │ │ │ │ -00022970: 6e6f 7465 2073 796d 626f 6c3a 0a28 4d61 note symbol:.(Ma │ │ │ │ -00022980: 6361 756c 6179 3244 6f63 2953 796d 626f caulay2Doc)Symbo │ │ │ │ -00022990: 6c2c 2e0a 1f0a 4669 6c65 3a20 4265 7274 l,....File: Bert │ │ │ │ -000229a0: 696e 692e 696e 666f 2c20 4e6f 6465 3a20 ini.info, Node: │ │ │ │ -000229b0: 7261 6469 6361 6c4c 6973 742c 204e 6578 radicalList, Nex │ │ │ │ -000229c0: 743a 2073 746f 7265 424d 3246 696c 6573 t: storeBM2Files │ │ │ │ -000229d0: 2c20 5072 6576 3a20 5061 7468 4c69 7374 , Prev: PathList │ │ │ │ -000229e0: 2c20 5570 3a20 546f 700a 0a72 6164 6963 , Up: Top..radic │ │ │ │ -000229f0: 616c 4c69 7374 202d 2d20 4120 7375 7070 alList -- A supp │ │ │ │ -00022a00: 6f72 7420 6675 6e63 7469 6f6e 2074 6861 ort function tha │ │ │ │ -00022a10: 7420 7265 6d6f 7665 7320 6d75 6c74 6970 t removes multip │ │ │ │ -00022a20: 6c69 6369 7469 6573 206f 6620 6e75 6d62 licities of numb │ │ │ │ -00022a30: 6572 7320 696e 2061 206c 6973 7420 7570 ers in a list up │ │ │ │ -00022a40: 2074 6f20 6120 746f 6c65 7261 6e63 652e to a tolerance. │ │ │ │ -00022a50: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ +000228d0: 3d3d 3d3d 3d0a 0a20 202a 2069 6d70 6f72 =====.. * impor │ │ │ │ +000228e0: 744d 6169 6e44 6174 6146 696c 6528 2e2e tMainDataFile(.. │ │ │ │ +000228f0: 2e2c 5061 7468 4c69 7374 3d3e 2e2e 2e29 .,PathList=>...) │ │ │ │ +00022900: 2028 6d69 7373 696e 6720 646f 6375 6d65 (missing docume │ │ │ │ +00022910: 6e74 6174 696f 6e29 0a0a 466f 7220 7468 ntation)..For th │ │ │ │ +00022920: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +00022930: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00022940: 0a54 6865 206f 626a 6563 7420 5061 7468 .The object Path │ │ │ │ +00022950: 4c69 7374 2028 6d69 7373 696e 6720 646f List (missing do │ │ │ │ +00022960: 6375 6d65 6e74 6174 696f 6e29 2069 7320 cumentation) is │ │ │ │ +00022970: 6120 2a6e 6f74 6520 7379 6d62 6f6c 3a0a a *note symbol:. │ │ │ │ +00022980: 284d 6163 6175 6c61 7932 446f 6329 5379 (Macaulay2Doc)Sy │ │ │ │ +00022990: 6d62 6f6c 2c2e 0a1f 0a46 696c 653a 2042 mbol,....File: B │ │ │ │ +000229a0: 6572 7469 6e69 2e69 6e66 6f2c 204e 6f64 ertini.info, Nod │ │ │ │ +000229b0: 653a 2072 6164 6963 616c 4c69 7374 2c20 e: radicalList, │ │ │ │ +000229c0: 4e65 7874 3a20 7374 6f72 6542 4d32 4669 Next: storeBM2Fi │ │ │ │ +000229d0: 6c65 732c 2050 7265 763a 2050 6174 684c les, Prev: PathL │ │ │ │ +000229e0: 6973 742c 2055 703a 2054 6f70 0a0a 7261 ist, Up: Top..ra │ │ │ │ +000229f0: 6469 6361 6c4c 6973 7420 2d2d 2041 2073 dicalList -- A s │ │ │ │ +00022a00: 7570 706f 7274 2066 756e 6374 696f 6e20 upport function │ │ │ │ +00022a10: 7468 6174 2072 656d 6f76 6573 206d 756c that removes mul │ │ │ │ +00022a20: 7469 706c 6963 6974 6965 7320 6f66 206e tiplicities of n │ │ │ │ +00022a30: 756d 6265 7273 2069 6e20 6120 6c69 7374 umbers in a list │ │ │ │ +00022a40: 2075 7020 746f 2061 2074 6f6c 6572 616e up to a toleran │ │ │ │ +00022a50: 6365 2e0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ce..************ │ │ │ │ 00022a60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00022a70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00022a80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00022a90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00022aa0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00022ab0: 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 ******..Synopsis │ │ │ │ -00022ac0: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 .========.. * U │ │ │ │ -00022ad0: 7361 6765 3a20 0a20 2020 2020 2020 2072 sage: . r │ │ │ │ -00022ae0: 6164 6963 616c 4c69 7374 284c 6973 742c adicalList(List, │ │ │ │ -00022af0: 4e75 6d62 6572 290a 2020 2020 2020 2020 Number). │ │ │ │ -00022b00: 7261 6469 6361 6c4c 6973 7428 4c69 7374 radicalList(List │ │ │ │ -00022b10: 290a 2020 2a20 496e 7075 7473 3a0a 2020 ). * Inputs:. │ │ │ │ -00022b20: 2020 2020 2a20 4c2c 2061 202a 6e6f 7465 * L, a *note │ │ │ │ -00022b30: 206c 6973 743a 2028 4d61 6361 756c 6179 list: (Macaulay │ │ │ │ -00022b40: 3244 6f63 294c 6973 742c 2c20 4120 6c69 2Doc)List,, A li │ │ │ │ -00022b50: 7374 206f 6620 636f 6d70 6c65 7820 6f72 st of complex or │ │ │ │ -00022b60: 2072 6561 6c0a 2020 2020 2020 2020 6e75 real. nu │ │ │ │ -00022b70: 6d62 6572 732e 0a20 2020 2020 202a 204e mbers.. * N │ │ │ │ -00022b80: 2c20 6120 2a6e 6f74 6520 6e75 6d62 6572 , a *note number │ │ │ │ -00022b90: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00022ba0: 4e75 6d62 6572 2c2c 2041 2073 6d61 6c6c Number,, A small │ │ │ │ -00022bb0: 2072 6561 6c20 6e75 6d62 6572 2e0a 0a44 real number...D │ │ │ │ -00022bc0: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -00022bd0: 3d3d 3d3d 3d3d 0a0a 5468 6973 206f 7574 ======..This out │ │ │ │ -00022be0: 7075 7473 2061 2073 7562 6c69 7374 206f puts a sublist o │ │ │ │ -00022bf0: 6620 636f 6d70 6c65 7820 6f72 2072 6561 f complex or rea │ │ │ │ -00022c00: 6c20 6e75 6d62 6572 7320 7468 6174 2061 l numbers that a │ │ │ │ -00022c10: 6c6c 2068 6176 6520 6469 7374 696e 6374 ll have distinct │ │ │ │ -00022c20: 206e 6f72 6d73 0a75 7020 746f 2074 6865 norms.up to the │ │ │ │ -00022c30: 2074 6f6c 6572 616e 6365 204e 2028 6465 tolerance N (de │ │ │ │ -00022c40: 6661 756c 7420 6973 2031 652d 3130 292e fault is 1e-10). │ │ │ │ -00022c50: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ +00022ab0: 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 796e 6f70 *********..Synop │ │ │ │ +00022ac0: 7369 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 sis.========.. │ │ │ │ +00022ad0: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ +00022ae0: 2020 7261 6469 6361 6c4c 6973 7428 4c69 radicalList(Li │ │ │ │ +00022af0: 7374 2c4e 756d 6265 7229 0a20 2020 2020 st,Number). │ │ │ │ +00022b00: 2020 2072 6164 6963 616c 4c69 7374 284c radicalList(L │ │ │ │ +00022b10: 6973 7429 0a20 202a 2049 6e70 7574 733a ist). * Inputs: │ │ │ │ +00022b20: 0a20 2020 2020 202a 204c 2c20 6120 2a6e . * L, a *n │ │ │ │ +00022b30: 6f74 6520 6c69 7374 3a20 284d 6163 6175 ote list: (Macau │ │ │ │ +00022b40: 6c61 7932 446f 6329 4c69 7374 2c2c 2041 lay2Doc)List,, A │ │ │ │ +00022b50: 206c 6973 7420 6f66 2063 6f6d 706c 6578 list of complex │ │ │ │ +00022b60: 206f 7220 7265 616c 0a20 2020 2020 2020 or real. │ │ │ │ +00022b70: 206e 756d 6265 7273 2e0a 2020 2020 2020 numbers.. │ │ │ │ +00022b80: 2a20 4e2c 2061 202a 6e6f 7465 206e 756d * N, a *note num │ │ │ │ +00022b90: 6265 723a 2028 4d61 6361 756c 6179 3244 ber: (Macaulay2D │ │ │ │ +00022ba0: 6f63 294e 756d 6265 722c 2c20 4120 736d oc)Number,, A sm │ │ │ │ +00022bb0: 616c 6c20 7265 616c 206e 756d 6265 722e all real number. │ │ │ │ +00022bc0: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +00022bd0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 7320 =========..This │ │ │ │ +00022be0: 6f75 7470 7574 7320 6120 7375 626c 6973 outputs a sublis │ │ │ │ +00022bf0: 7420 6f66 2063 6f6d 706c 6578 206f 7220 t of complex or │ │ │ │ +00022c00: 7265 616c 206e 756d 6265 7273 2074 6861 real numbers tha │ │ │ │ +00022c10: 7420 616c 6c20 6861 7665 2064 6973 7469 t all have disti │ │ │ │ +00022c20: 6e63 7420 6e6f 726d 730a 7570 2074 6f20 nct norms.up to │ │ │ │ +00022c30: 7468 6520 746f 6c65 7261 6e63 6520 4e20 the tolerance N │ │ │ │ +00022c40: 2864 6566 6175 6c74 2069 7320 3165 2d31 (default is 1e-1 │ │ │ │ +00022c50: 3029 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 0)...+---------- │ │ │ │ 00022c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022c70: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -00022c80: 7261 6469 6361 6c4c 6973 7428 7b32 2e30 radicalList({2.0 │ │ │ │ -00022c90: 3030 2c31 2e39 3939 7d29 2020 2020 2020 00,1.999}) │ │ │ │ -00022ca0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00022c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00022c80: 203a 2072 6164 6963 616c 4c69 7374 287b : radicalList({ │ │ │ │ +00022c90: 322e 3030 302c 312e 3939 397d 2920 2020 2.000,1.999}) │ │ │ │ +00022ca0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00022cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022cc0: 2020 2020 2020 2020 7c0a 7c6f 3120 3d20 |.|o1 = │ │ │ │ -00022cd0: 7b32 2c20 312e 3939 397d 2020 2020 2020 {2, 1.999} │ │ │ │ +00022cc0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00022cd0: 203d 207b 322c 2031 2e39 3939 7d20 2020 = {2, 1.999} │ │ │ │ 00022ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022cf0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00022cf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00022d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d10: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ -00022d20: 4c69 7374 2020 2020 2020 2020 2020 2020 List │ │ │ │ +00022d10: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00022d20: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ 00022d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d40: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00022d40: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00022d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022d60: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ -00022d70: 7261 6469 6361 6c4c 6973 7428 7b32 2e30 radicalList({2.0 │ │ │ │ -00022d80: 3030 2c31 2e39 3939 7d2c 3165 2d31 3029 00,1.999},1e-10) │ │ │ │ -00022d90: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00022d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +00022d70: 203a 2072 6164 6963 616c 4c69 7374 287b : radicalList({ │ │ │ │ +00022d80: 322e 3030 302c 312e 3939 397d 2c31 652d 2.000,1.999},1e- │ │ │ │ +00022d90: 3130 297c 0a7c 2020 2020 2020 2020 2020 10)|.| │ │ │ │ 00022da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022db0: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ -00022dc0: 7b32 2c20 312e 3939 397d 2020 2020 2020 {2, 1.999} │ │ │ │ +00022db0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00022dc0: 203d 207b 322c 2031 2e39 3939 7d20 2020 = {2, 1.999} │ │ │ │ 00022dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022de0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00022de0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00022df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022e00: 2020 2020 2020 2020 7c0a 7c6f 3220 3a20 |.|o2 : │ │ │ │ -00022e10: 4c69 7374 2020 2020 2020 2020 2020 2020 List │ │ │ │ +00022e00: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00022e10: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ 00022e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022e30: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00022e30: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00022e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022e50: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ -00022e60: 7261 6469 6361 6c4c 6973 7428 7b32 2e30 radicalList({2.0 │ │ │ │ -00022e70: 3030 2c31 2e39 3939 7d2c 3165 2d32 2920 00,1.999},1e-2) │ │ │ │ -00022e80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00022e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ +00022e60: 203a 2072 6164 6963 616c 4c69 7374 287b : radicalList({ │ │ │ │ +00022e70: 322e 3030 302c 312e 3939 397d 2c31 652d 2.000,1.999},1e- │ │ │ │ +00022e80: 3229 207c 0a7c 2020 2020 2020 2020 2020 2) |.| │ │ │ │ 00022e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ea0: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ -00022eb0: 7b32 7d20 2020 2020 2020 2020 2020 2020 {2} │ │ │ │ +00022ea0: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ +00022eb0: 203d 207b 327d 2020 2020 2020 2020 2020 = {2} │ │ │ │ 00022ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ed0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00022ed0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00022ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ef0: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ -00022f00: 4c69 7374 2020 2020 2020 2020 2020 2020 List │ │ │ │ +00022ef0: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ +00022f00: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ 00022f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f20: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00022f20: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00022f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022f40: 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 6179 7320 --------+..Ways │ │ │ │ -00022f50: 746f 2075 7365 2072 6164 6963 616c 4c69 to use radicalLi │ │ │ │ -00022f60: 7374 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d st:.============ │ │ │ │ -00022f70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ -00022f80: 2a20 2272 6164 6963 616c 4c69 7374 284c * "radicalList(L │ │ │ │ -00022f90: 6973 7429 220a 2020 2a20 2272 6164 6963 ist)". * "radic │ │ │ │ -00022fa0: 616c 4c69 7374 284c 6973 742c 4e75 6d62 alList(List,Numb │ │ │ │ -00022fb0: 6572 2922 0a0a 466f 7220 7468 6520 7072 er)"..For the pr │ │ │ │ -00022fc0: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ -00022fd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ -00022fe0: 206f 626a 6563 7420 2a6e 6f74 6520 7261 object *note ra │ │ │ │ -00022ff0: 6469 6361 6c4c 6973 743a 2072 6164 6963 dicalList: radic │ │ │ │ -00023000: 616c 4c69 7374 2c20 6973 2061 202a 6e6f alList, is a *no │ │ │ │ -00023010: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ -00023020: 6f6e 2077 6974 680a 6f70 7469 6f6e 733a on with.options: │ │ │ │ -00023030: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ -00023040: 6574 686f 6446 756e 6374 696f 6e57 6974 ethodFunctionWit │ │ │ │ -00023050: 684f 7074 696f 6e73 2c2e 0a1f 0a46 696c hOptions,....Fil │ │ │ │ -00023060: 653a 2042 6572 7469 6e69 2e69 6e66 6f2c e: Bertini.info, │ │ │ │ -00023070: 204e 6f64 653a 2073 746f 7265 424d 3246 Node: storeBM2F │ │ │ │ -00023080: 696c 6573 2c20 4e65 7874 3a20 7375 6250 iles, Next: subP │ │ │ │ -00023090: 6f69 6e74 2c20 5072 6576 3a20 7261 6469 oint, Prev: radi │ │ │ │ -000230a0: 6361 6c4c 6973 742c 2055 703a 2054 6f70 calList, Up: Top │ │ │ │ -000230b0: 0a0a 7374 6f72 6542 4d32 4669 6c65 730a ..storeBM2Files. │ │ │ │ -000230c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a46 *************..F │ │ │ │ -000230d0: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -000230e0: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -000230f0: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -00023100: 2073 746f 7265 424d 3246 696c 6573 2028 storeBM2Files ( │ │ │ │ -00023110: 6d69 7373 696e 6720 646f 6375 6d65 6e74 missing document │ │ │ │ -00023120: 6174 696f 6e29 2069 7320 6120 2a6e 6f74 ation) is a *not │ │ │ │ -00023130: 6520 7374 7269 6e67 3a0a 284d 6163 6175 e string:.(Macau │ │ │ │ -00023140: 6c61 7932 446f 6329 5374 7269 6e67 2c2e lay2Doc)String,. │ │ │ │ -00023150: 0a1f 0a46 696c 653a 2042 6572 7469 6e69 ...File: Bertini │ │ │ │ -00023160: 2e69 6e66 6f2c 204e 6f64 653a 2073 7562 .info, Node: sub │ │ │ │ -00023170: 506f 696e 742c 204e 6578 743a 2054 6f70 Point, Next: Top │ │ │ │ -00023180: 4469 7265 6374 6f72 792c 2050 7265 763a Directory, Prev: │ │ │ │ -00023190: 2073 746f 7265 424d 3246 696c 6573 2c20 storeBM2Files, │ │ │ │ -000231a0: 5570 3a20 546f 700a 0a73 7562 506f 696e Up: Top..subPoin │ │ │ │ -000231b0: 7420 2d2d 2054 6869 7320 6675 6e63 7469 t -- This functi │ │ │ │ -000231c0: 6f6e 2065 7661 6c75 6174 6573 2061 2070 on evaluates a p │ │ │ │ -000231d0: 6f6c 796e 6f6d 6961 6c20 6f72 206d 6174 olynomial or mat │ │ │ │ -000231e0: 7269 7820 6174 2061 2070 6f69 6e74 2e0a rix at a point.. │ │ │ │ -000231f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00022f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5761 -----------+..Wa │ │ │ │ +00022f50: 7973 2074 6f20 7573 6520 7261 6469 6361 ys to use radica │ │ │ │ +00022f60: 6c4c 6973 743a 0a3d 3d3d 3d3d 3d3d 3d3d lList:.========= │ │ │ │ +00022f70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00022f80: 0a20 202a 2022 7261 6469 6361 6c4c 6973 . * "radicalLis │ │ │ │ +00022f90: 7428 4c69 7374 2922 0a20 202a 2022 7261 t(List)". * "ra │ │ │ │ +00022fa0: 6469 6361 6c4c 6973 7428 4c69 7374 2c4e dicalList(List,N │ │ │ │ +00022fb0: 756d 6265 7229 220a 0a46 6f72 2074 6865 umber)"..For the │ │ │ │ +00022fc0: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ +00022fd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +00022fe0: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ +00022ff0: 2072 6164 6963 616c 4c69 7374 3a20 7261 radicalList: ra │ │ │ │ +00023000: 6469 6361 6c4c 6973 742c 2069 7320 6120 dicalList, is a │ │ │ │ +00023010: 2a6e 6f74 6520 6d65 7468 6f64 2066 756e *note method fun │ │ │ │ +00023020: 6374 696f 6e20 7769 7468 0a6f 7074 696f ction with.optio │ │ │ │ +00023030: 6e73 3a20 284d 6163 6175 6c61 7932 446f ns: (Macaulay2Do │ │ │ │ +00023040: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ +00023050: 5769 7468 4f70 7469 6f6e 732c 2e0a 1f0a WithOptions,.... │ │ │ │ +00023060: 4669 6c65 3a20 4265 7274 696e 692e 696e File: Bertini.in │ │ │ │ +00023070: 666f 2c20 4e6f 6465 3a20 7374 6f72 6542 fo, Node: storeB │ │ │ │ +00023080: 4d32 4669 6c65 732c 204e 6578 743a 2073 M2Files, Next: s │ │ │ │ +00023090: 7562 506f 696e 742c 2050 7265 763a 2072 ubPoint, Prev: r │ │ │ │ +000230a0: 6164 6963 616c 4c69 7374 2c20 5570 3a20 adicalList, Up: │ │ │ │ +000230b0: 546f 700a 0a73 746f 7265 424d 3246 696c Top..storeBM2Fil │ │ │ │ +000230c0: 6573 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a es.************* │ │ │ │ +000230d0: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +000230e0: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +000230f0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +00023100: 6563 7420 7374 6f72 6542 4d32 4669 6c65 ect storeBM2File │ │ │ │ +00023110: 7320 286d 6973 7369 6e67 2064 6f63 756d s (missing docum │ │ │ │ +00023120: 656e 7461 7469 6f6e 2920 6973 2061 202a entation) is a * │ │ │ │ +00023130: 6e6f 7465 2073 7472 696e 673a 0a28 4d61 note string:.(Ma │ │ │ │ +00023140: 6361 756c 6179 3244 6f63 2953 7472 696e caulay2Doc)Strin │ │ │ │ +00023150: 672c 2e0a 1f0a 4669 6c65 3a20 4265 7274 g,....File: Bert │ │ │ │ +00023160: 696e 692e 696e 666f 2c20 4e6f 6465 3a20 ini.info, Node: │ │ │ │ +00023170: 7375 6250 6f69 6e74 2c20 4e65 7874 3a20 subPoint, Next: │ │ │ │ +00023180: 546f 7044 6972 6563 746f 7279 2c20 5072 TopDirectory, Pr │ │ │ │ +00023190: 6576 3a20 7374 6f72 6542 4d32 4669 6c65 ev: storeBM2File │ │ │ │ +000231a0: 732c 2055 703a 2054 6f70 0a0a 7375 6250 s, Up: Top..subP │ │ │ │ +000231b0: 6f69 6e74 202d 2d20 5468 6973 2066 756e oint -- This fun │ │ │ │ +000231c0: 6374 696f 6e20 6576 616c 7561 7465 7320 ction evaluates │ │ │ │ +000231d0: 6120 706f 6c79 6e6f 6d69 616c 206f 7220 a polynomial or │ │ │ │ +000231e0: 6d61 7472 6978 2061 7420 6120 706f 696e matrix at a poin │ │ │ │ +000231f0: 742e 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a t..************* │ │ │ │ 00023200: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00023210: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00023220: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00023230: 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 ******..Synopsis │ │ │ │ -00023240: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 .========.. * U │ │ │ │ -00023250: 7361 6765 3a20 0a20 2020 2020 2020 2073 sage: . s │ │ │ │ -00023260: 7562 506f 696e 7428 662c 762c 7029 0a20 ubPoint(f,v,p). │ │ │ │ -00023270: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ -00023280: 202a 2066 2c20 6120 2a6e 6f74 6520 7468 * f, a *note th │ │ │ │ -00023290: 696e 673a 2028 4d61 6361 756c 6179 3244 ing: (Macaulay2D │ │ │ │ -000232a0: 6f63 2954 6869 6e67 2c2c 2041 2070 6f6c oc)Thing,, A pol │ │ │ │ -000232b0: 796e 6f6d 6961 6c20 6f72 2061 206d 6174 ynomial or a mat │ │ │ │ -000232c0: 7269 782e 0a20 2020 2020 202a 2076 2c20 rix.. * v, │ │ │ │ -000232d0: 6120 2a6e 6f74 6520 6c69 7374 3a20 284d a *note list: (M │ │ │ │ -000232e0: 6163 6175 6c61 7932 446f 6329 4c69 7374 acaulay2Doc)List │ │ │ │ -000232f0: 2c2c 204c 6973 7420 6f66 2076 6172 6961 ,, List of varia │ │ │ │ -00023300: 626c 6573 2074 6861 7420 7765 2077 696c bles that we wil │ │ │ │ -00023310: 6c20 6265 0a20 2020 2020 2020 2065 7661 l be. eva │ │ │ │ -00023320: 6c75 6174 6564 2061 7420 7468 6520 706f luated at the po │ │ │ │ -00023330: 696e 742e 0a20 2020 2020 202a 2070 2c20 int.. * p, │ │ │ │ -00023340: 6120 2a6e 6f74 6520 7468 696e 673a 2028 a *note thing: ( │ │ │ │ -00023350: 4d61 6361 756c 6179 3244 6f63 2954 6869 Macaulay2Doc)Thi │ │ │ │ -00023360: 6e67 2c2c 2041 2070 6f69 6e74 206f 7220 ng,, A point or │ │ │ │ -00023370: 6120 6c69 7374 206f 660a 2020 2020 2020 a list of. │ │ │ │ -00023380: 2020 636f 6f72 6469 6e61 7465 7320 6f72 coordinates or │ │ │ │ -00023390: 2061 206d 6174 7269 782e 0a20 202a 202a a matrix.. * * │ │ │ │ -000233a0: 6e6f 7465 204f 7074 696f 6e61 6c20 696e note Optional in │ │ │ │ -000233b0: 7075 7473 3a20 284d 6163 6175 6c61 7932 puts: (Macaulay2 │ │ │ │ -000233c0: 446f 6329 7573 696e 6720 6675 6e63 7469 Doc)using functi │ │ │ │ -000233d0: 6f6e 7320 7769 7468 206f 7074 696f 6e61 ons with optiona │ │ │ │ -000233e0: 6c20 696e 7075 7473 2c3a 0a20 2020 2020 l inputs,:. │ │ │ │ -000233f0: 202a 204d 3250 7265 6369 7369 6f6e 2028 * M2Precision ( │ │ │ │ -00023400: 6d69 7373 696e 6720 646f 6375 6d65 6e74 missing document │ │ │ │ -00023410: 6174 696f 6e29 203d 3e20 2e2e 2e2c 2064 ation) => ..., d │ │ │ │ -00023420: 6566 6175 6c74 2076 616c 7565 2035 332c efault value 53, │ │ │ │ -00023430: 200a 2020 2020 2020 2a20 5370 6563 6966 . * Specif │ │ │ │ -00023440: 7956 6172 6961 626c 6573 2028 6d69 7373 yVariables (miss │ │ │ │ -00023450: 696e 6720 646f 6375 6d65 6e74 6174 696f ing documentatio │ │ │ │ -00023460: 6e29 203d 3e20 2e2e 2e2c 2064 6566 6175 n) => ..., defau │ │ │ │ -00023470: 6c74 2076 616c 7565 2066 616c 7365 2c20 lt value false, │ │ │ │ -00023480: 0a20 2020 2020 202a 2053 7562 496e 746f . * SubInto │ │ │ │ -00023490: 4343 2028 6d69 7373 696e 6720 646f 6375 CC (missing docu │ │ │ │ -000234a0: 6d65 6e74 6174 696f 6e29 203d 3e20 2e2e mentation) => .. │ │ │ │ -000234b0: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ -000234c0: 2066 616c 7365 2c20 0a0a 4465 7363 7269 false, ..Descri │ │ │ │ -000234d0: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -000234e0: 3d0a 0a45 7661 6c75 6174 6520 6620 6174 =..Evaluate f at │ │ │ │ -000234f0: 2061 2070 6f69 6e74 2e0a 0a2b 2d2d 2d2d a point...+---- │ │ │ │ +00023230: 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 796e 6f70 *********..Synop │ │ │ │ +00023240: 7369 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 sis.========.. │ │ │ │ +00023250: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ +00023260: 2020 7375 6250 6f69 6e74 2866 2c76 2c70 subPoint(f,v,p │ │ │ │ +00023270: 290a 2020 2a20 496e 7075 7473 3a0a 2020 ). * Inputs:. │ │ │ │ +00023280: 2020 2020 2a20 662c 2061 202a 6e6f 7465 * f, a *note │ │ │ │ +00023290: 2074 6869 6e67 3a20 284d 6163 6175 6c61 thing: (Macaula │ │ │ │ +000232a0: 7932 446f 6329 5468 696e 672c 2c20 4120 y2Doc)Thing,, A │ │ │ │ +000232b0: 706f 6c79 6e6f 6d69 616c 206f 7220 6120 polynomial or a │ │ │ │ +000232c0: 6d61 7472 6978 2e0a 2020 2020 2020 2a20 matrix.. * │ │ │ │ +000232d0: 762c 2061 202a 6e6f 7465 206c 6973 743a v, a *note list: │ │ │ │ +000232e0: 2028 4d61 6361 756c 6179 3244 6f63 294c (Macaulay2Doc)L │ │ │ │ +000232f0: 6973 742c 2c20 4c69 7374 206f 6620 7661 ist,, List of va │ │ │ │ +00023300: 7269 6162 6c65 7320 7468 6174 2077 6520 riables that we │ │ │ │ +00023310: 7769 6c6c 2062 650a 2020 2020 2020 2020 will be. │ │ │ │ +00023320: 6576 616c 7561 7465 6420 6174 2074 6865 evaluated at the │ │ │ │ +00023330: 2070 6f69 6e74 2e0a 2020 2020 2020 2a20 point.. * │ │ │ │ +00023340: 702c 2061 202a 6e6f 7465 2074 6869 6e67 p, a *note thing │ │ │ │ +00023350: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00023360: 5468 696e 672c 2c20 4120 706f 696e 7420 Thing,, A point │ │ │ │ +00023370: 6f72 2061 206c 6973 7420 6f66 0a20 2020 or a list of. │ │ │ │ +00023380: 2020 2020 2063 6f6f 7264 696e 6174 6573 coordinates │ │ │ │ +00023390: 206f 7220 6120 6d61 7472 6978 2e0a 2020 or a matrix.. │ │ │ │ +000233a0: 2a20 2a6e 6f74 6520 4f70 7469 6f6e 616c * *note Optional │ │ │ │ +000233b0: 2069 6e70 7574 733a 2028 4d61 6361 756c inputs: (Macaul │ │ │ │ +000233c0: 6179 3244 6f63 2975 7369 6e67 2066 756e ay2Doc)using fun │ │ │ │ +000233d0: 6374 696f 6e73 2077 6974 6820 6f70 7469 ctions with opti │ │ │ │ +000233e0: 6f6e 616c 2069 6e70 7574 732c 3a0a 2020 onal inputs,:. │ │ │ │ +000233f0: 2020 2020 2a20 4d32 5072 6563 6973 696f * M2Precisio │ │ │ │ +00023400: 6e20 286d 6973 7369 6e67 2064 6f63 756d n (missing docum │ │ │ │ +00023410: 656e 7461 7469 6f6e 2920 3d3e 202e 2e2e entation) => ... │ │ │ │ +00023420: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ +00023430: 3533 2c20 0a20 2020 2020 202a 2053 7065 53, . * Spe │ │ │ │ +00023440: 6369 6679 5661 7269 6162 6c65 7320 286d cifyVariables (m │ │ │ │ +00023450: 6973 7369 6e67 2064 6f63 756d 656e 7461 issing documenta │ │ │ │ +00023460: 7469 6f6e 2920 3d3e 202e 2e2e 2c20 6465 tion) => ..., de │ │ │ │ +00023470: 6661 756c 7420 7661 6c75 6520 6661 6c73 fault value fals │ │ │ │ +00023480: 652c 200a 2020 2020 2020 2a20 5375 6249 e, . * SubI │ │ │ │ +00023490: 6e74 6f43 4320 286d 6973 7369 6e67 2064 ntoCC (missing d │ │ │ │ +000234a0: 6f63 756d 656e 7461 7469 6f6e 2920 3d3e ocumentation) => │ │ │ │ +000234b0: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ +000234c0: 6c75 6520 6661 6c73 652c 200a 0a44 6573 lue false, ..Des │ │ │ │ +000234d0: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ +000234e0: 3d3d 3d3d 0a0a 4576 616c 7561 7465 2066 ====..Evaluate f │ │ │ │ +000234f0: 2061 7420 6120 706f 696e 742e 0a0a 2b2d at a point...+- │ │ │ │ 00023500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023530: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 3d43 -----+.|i1 : R=C │ │ │ │ -00023540: 435b 782c 792c 7a5d 2020 2020 2020 2020 C[x,y,z] │ │ │ │ +00023530: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ +00023540: 523d 4343 5b78 2c79 2c7a 5d20 2020 2020 R=CC[x,y,z] │ │ │ │ 00023550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023570: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023570: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00023580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000235a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000235b0: 6f31 203d 2052 2020 2020 2020 2020 2020 o1 = R │ │ │ │ +000235a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000235b0: 7c0a 7c6f 3120 3d20 5220 2020 2020 2020 |.|o1 = R │ │ │ │ 000235c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000235d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000235e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000235e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 000235f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023620: 2020 2020 207c 0a7c 6f31 203a 2050 6f6c |.|o1 : Pol │ │ │ │ -00023630: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ +00023620: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ +00023630: 506f 6c79 6e6f 6d69 616c 5269 6e67 2020 PolynomialRing │ │ │ │ 00023640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023660: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00023660: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00023670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000236a0: 6932 203a 2066 3d7a 2a78 2b79 2020 2020 i2 : f=z*x+y │ │ │ │ +00023690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000236a0: 2b0a 7c69 3220 3a20 663d 7a2a 782b 7920 +.|i2 : f=z*x+y │ │ │ │ 000236b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000236c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000236d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000236d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 000236e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000236f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023710: 2020 2020 207c 0a7c 6f32 203d 2078 2a7a |.|o2 = x*z │ │ │ │ -00023720: 202b 2079 2020 2020 2020 2020 2020 2020 + y │ │ │ │ +00023710: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ +00023720: 782a 7a20 2b20 7920 2020 2020 2020 2020 x*z + y │ │ │ │ 00023730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023750: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023750: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00023760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023780: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00023790: 6f32 203a 2052 2020 2020 2020 2020 2020 o2 : R │ │ │ │ +00023780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023790: 7c0a 7c6f 3220 3a20 5220 2020 2020 2020 |.|o2 : R │ │ │ │ 000237a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000237b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000237c0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000237c0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 000237d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000237e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000237f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023800: 2d2d 2d2d 2d2b 0a7c 6933 203a 2073 7562 -----+.|i3 : sub │ │ │ │ -00023810: 506f 696e 7428 662c 7b78 2c79 7d2c 7b2e Point(f,{x,y},{. │ │ │ │ -00023820: 312c 2e32 7d29 2020 2020 2020 2020 2020 1,.2}) │ │ │ │ +00023800: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ +00023810: 7375 6250 6f69 6e74 2866 2c7b 782c 797d subPoint(f,{x,y} │ │ │ │ +00023820: 2c7b 2e31 2c2e 327d 2920 2020 2020 2020 ,{.1,.2}) │ │ │ │ 00023830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023840: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023840: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00023850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023870: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00023880: 6f33 203d 202e 317a 202b 202e 3220 2020 o3 = .1z + .2 │ │ │ │ +00023870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023880: 7c0a 7c6f 3320 3d20 2e31 7a20 2b20 2e32 |.|o3 = .1z + .2 │ │ │ │ 00023890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000238a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000238b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000238b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 000238c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000238d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000238e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000238f0: 2020 2020 207c 0a7c 6f33 203a 2052 2020 |.|o3 : R │ │ │ │ -00023900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000238f0: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ +00023900: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 00023910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023930: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00023930: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00023940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00023970: 6934 203a 2073 7562 506f 696e 7428 662c i4 : subPoint(f, │ │ │ │ -00023980: 7b78 2c79 2c7a 7d2c 7b2e 312c 2e32 2c2e {x,y,z},{.1,.2,. │ │ │ │ -00023990: 337d 2c53 7065 6369 6679 5661 7269 6162 3},SpecifyVariab │ │ │ │ -000239a0: 6c65 733d 3e7b 797d 297c 0a7c 2020 2020 les=>{y})|.| │ │ │ │ +00023960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023970: 2b0a 7c69 3420 3a20 7375 6250 6f69 6e74 +.|i4 : subPoint │ │ │ │ +00023980: 2866 2c7b 782c 792c 7a7d 2c7b 2e31 2c2e (f,{x,y,z},{.1,. │ │ │ │ +00023990: 322c 2e33 7d2c 5370 6563 6966 7956 6172 2,.3},SpecifyVar │ │ │ │ +000239a0: 6961 626c 6573 3d3e 7b79 7d29 7c0a 7c20 iables=>{y})|.| │ │ │ │ 000239b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000239c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000239d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000239e0: 2020 2020 207c 0a7c 6f34 203d 2078 2a7a |.|o4 = x*z │ │ │ │ -000239f0: 202b 202e 3220 2020 2020 2020 2020 2020 + .2 │ │ │ │ +000239e0: 2020 2020 2020 2020 7c0a 7c6f 3420 3d20 |.|o4 = │ │ │ │ +000239f0: 782a 7a20 2b20 2e32 2020 2020 2020 2020 x*z + .2 │ │ │ │ 00023a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023a20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00023a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00023a60: 6f34 203a 2052 2020 2020 2020 2020 2020 o4 : R │ │ │ │ +00023a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023a60: 7c0a 7c6f 3420 3a20 5220 2020 2020 2020 |.|o4 : R │ │ │ │ 00023a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a90: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00023a90: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 00023aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023ad0: 2d2d 2d2d 2d2b 0a2b 2d2d 2d2d 2d2d 2d2d -----+.+-------- │ │ │ │ +00023ad0: 2d2d 2d2d 2d2d 2d2d 2b0a 2b2d 2d2d 2d2d --------+.+----- │ │ │ │ 00023ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00023b20: 0a7c 6935 203a 2052 3d43 435f 3230 305b .|i5 : R=CC_200[ │ │ │ │ -00023b30: 782c 792c 7a5d 2020 2020 2020 2020 2020 x,y,z] │ │ │ │ +00023b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023b20: 2d2d 2b0a 7c69 3520 3a20 523d 4343 5f32 --+.|i5 : R=CC_2 │ │ │ │ +00023b30: 3030 5b78 2c79 2c7a 5d20 2020 2020 2020 00[x,y,z] │ │ │ │ 00023b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00023b60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00023b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023bb0: 2020 207c 0a7c 6f35 203d 2052 2020 2020 |.|o5 = R │ │ │ │ +00023bb0: 2020 2020 2020 7c0a 7c6f 3520 3d20 5220 |.|o5 = R │ │ │ │ 00023bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023bf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00023c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023c00: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00023c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c40: 2020 2020 2020 207c 0a7c 6f35 203a 2050 |.|o5 : P │ │ │ │ -00023c50: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ +00023c40: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ +00023c50: 3a20 506f 6c79 6e6f 6d69 616c 5269 6e67 : PolynomialRing │ │ │ │ 00023c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c90: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00023c90: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00023ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 -----------+.|i6 │ │ │ │ -00023ce0: 203a 2066 3d7a 2a78 2b79 2020 2020 2020 : f=z*x+y │ │ │ │ +00023cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00023ce0: 7c69 3620 3a20 663d 7a2a 782b 7920 2020 |i6 : f=z*x+y │ │ │ │ 00023cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023d20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00023d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00023d70: 0a7c 6f36 203d 2078 2a7a 202b 2079 2020 .|o6 = x*z + y │ │ │ │ -00023d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023d70: 2020 7c0a 7c6f 3620 3d20 782a 7a20 2b20 |.|o6 = x*z + │ │ │ │ +00023d80: 7920 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ 00023d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023db0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00023db0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00023dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023e00: 2020 207c 0a7c 6f36 203a 2052 2020 2020 |.|o6 : R │ │ │ │ +00023e00: 2020 2020 2020 7c0a 7c6f 3620 3a20 5220 |.|o6 : R │ │ │ │ 00023e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023e40: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00023e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023e50: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00023e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023e90: 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a 2073 -------+.|i7 : s │ │ │ │ -00023ea0: 7562 506f 696e 7428 662c 7b78 2c79 2c7a ubPoint(f,{x,y,z │ │ │ │ -00023eb0: 7d2c 7b2e 312c 2e32 2c2e 337d 2c53 7562 },{.1,.2,.3},Sub │ │ │ │ -00023ec0: 496e 746f 4343 3d3e 7472 7565 2920 2020 IntoCC=>true) │ │ │ │ +00023e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 ----------+.|i7 │ │ │ │ +00023ea0: 3a20 7375 6250 6f69 6e74 2866 2c7b 782c : subPoint(f,{x, │ │ │ │ +00023eb0: 792c 7a7d 2c7b 2e31 2c2e 322c 2e33 7d2c y,z},{.1,.2,.3}, │ │ │ │ +00023ec0: 5375 6249 6e74 6f43 433d 3e74 7275 6529 SubIntoCC=>true) │ │ │ │ 00023ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ee0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023ee0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00023ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023f20: 2020 2020 2020 2020 2020 207c 0a7c 6f37 |.|o7 │ │ │ │ -00023f30: 203d 202e 3233 2020 2020 2020 2020 2020 = .23 │ │ │ │ +00023f20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023f30: 7c6f 3720 3d20 2e32 3320 2020 2020 2020 |o7 = .23 │ │ │ │ 00023f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023f70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023f70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00023f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023fb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00023fc0: 0a7c 6f37 203a 2043 4320 286f 6620 7072 .|o7 : CC (of pr │ │ │ │ -00023fd0: 6563 6973 696f 6e20 3533 2920 2020 2020 ecision 53) │ │ │ │ +00023fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023fc0: 2020 7c0a 7c6f 3720 3a20 4343 2028 6f66 |.|o7 : CC (of │ │ │ │ +00023fd0: 2070 7265 6369 7369 6f6e 2035 3329 2020 precision 53) │ │ │ │ 00023fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024000: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00024000: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 00024010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024050: 2d2d 2d2b 0a7c 6938 203a 2073 7562 506f ---+.|i8 : subPo │ │ │ │ -00024060: 696e 7428 662c 7b78 2c79 2c7a 7d2c 7b2e int(f,{x,y,z},{. │ │ │ │ -00024070: 3132 3334 3536 3738 3930 3132 3334 3536 1234567890123456 │ │ │ │ -00024080: 3738 3930 3132 3334 3536 3738 3930 3132 7890123456789012 │ │ │ │ -00024090: 3334 3536 3738 3930 7032 3030 2c7c 0a7c 34567890p200,|.| │ │ │ │ -000240a0: 2020 2020 2020 2020 2020 2020 2030 2c31 0,1 │ │ │ │ -000240b0: 7d2c 5375 6249 6e74 6f43 433d 3e74 7275 },SubIntoCC=>tru │ │ │ │ -000240c0: 652c 4d32 5072 6563 6973 696f 6e3d 3e32 e,M2Precision=>2 │ │ │ │ -000240d0: 3030 2920 2020 2020 2020 2020 2020 2020 00) │ │ │ │ -000240e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00024050: 2d2d 2d2d 2d2d 2b0a 7c69 3820 3a20 7375 ------+.|i8 : su │ │ │ │ +00024060: 6250 6f69 6e74 2866 2c7b 782c 792c 7a7d bPoint(f,{x,y,z} │ │ │ │ +00024070: 2c7b 2e31 3233 3435 3637 3839 3031 3233 ,{.1234567890123 │ │ │ │ +00024080: 3435 3637 3839 3031 3233 3435 3637 3839 4567890123456789 │ │ │ │ +00024090: 3031 3233 3435 3637 3839 3070 3230 302c 01234567890p200, │ │ │ │ +000240a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000240b0: 302c 317d 2c53 7562 496e 746f 4343 3d3e 0,1},SubIntoCC=> │ │ │ │ +000240c0: 7472 7565 2c4d 3250 7265 6369 7369 6f6e true,M2Precision │ │ │ │ +000240d0: 3d3e 3230 3029 2020 2020 2020 2020 2020 =>200) │ │ │ │ +000240e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 000240f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024130: 207c 0a7c 6f38 203d 202e 3132 3334 3536 |.|o8 = .123456 │ │ │ │ -00024140: 3738 3930 3132 3334 3536 3738 3930 3132 7890123456789012 │ │ │ │ -00024150: 3334 3536 3738 3930 3132 3334 3536 3738 3456789012345678 │ │ │ │ -00024160: 3920 2020 2020 2020 2020 2020 2020 2020 9 │ │ │ │ -00024170: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00024180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024130: 2020 2020 7c0a 7c6f 3820 3d20 2e31 3233 |.|o8 = .123 │ │ │ │ +00024140: 3435 3637 3839 3031 3233 3435 3637 3839 4567890123456789 │ │ │ │ +00024150: 3031 3233 3435 3637 3839 3031 3233 3435 0123456789012345 │ │ │ │ +00024160: 3637 3839 2020 2020 2020 2020 2020 2020 6789 │ │ │ │ +00024170: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00024180: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00024190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000241a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000241b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000241c0: 2020 2020 207c 0a7c 6f38 203a 2043 4320 |.|o8 : CC │ │ │ │ -000241d0: 286f 6620 7072 6563 6973 696f 6e20 3230 (of precision 20 │ │ │ │ -000241e0: 3029 2020 2020 2020 2020 2020 2020 2020 0) │ │ │ │ +000241c0: 2020 2020 2020 2020 7c0a 7c6f 3820 3a20 |.|o8 : │ │ │ │ +000241d0: 4343 2028 6f66 2070 7265 6369 7369 6f6e CC (of precision │ │ │ │ +000241e0: 2032 3030 2920 2020 2020 2020 2020 2020 200) │ │ │ │ 000241f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024200: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00024210: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00024200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024210: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00024220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024250: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4361 7665 ---------+..Cave │ │ │ │ -00024260: 6174 0a3d 3d3d 3d3d 3d0a 0a57 6865 6e20 at.======..When │ │ │ │ -00024270: 5375 6249 6e74 6f43 4320 6973 2073 6574 SubIntoCC is set │ │ │ │ -00024280: 2074 6f20 7472 7565 2074 6865 6e20 756e to true then un │ │ │ │ -00024290: 7365 7420 7661 7269 6162 6c65 7320 7769 set variables wi │ │ │ │ -000242a0: 6c6c 2062 6520 7365 7420 746f 207a 6572 ll be set to zer │ │ │ │ -000242b0: 6f20 6f72 0a75 6e65 7870 6563 7465 6420 o or.unexpected │ │ │ │ -000242c0: 7661 6c75 6573 2e0a 0a57 6179 7320 746f values...Ways to │ │ │ │ -000242d0: 2075 7365 2073 7562 506f 696e 743a 0a3d use subPoint:.= │ │ │ │ -000242e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000242f0: 3d3d 3d3d 0a0a 2020 2a20 2273 7562 506f ====.. * "subPo │ │ │ │ -00024300: 696e 7428 5468 696e 672c 4c69 7374 2c54 int(Thing,List,T │ │ │ │ -00024310: 6869 6e67 2922 0a0a 466f 7220 7468 6520 hing)"..For the │ │ │ │ -00024320: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -00024330: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -00024340: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -00024350: 7375 6250 6f69 6e74 3a20 7375 6250 6f69 subPoint: subPoi │ │ │ │ -00024360: 6e74 2c20 6973 2061 202a 6e6f 7465 206d nt, is a *note m │ │ │ │ -00024370: 6574 686f 6420 6675 6e63 7469 6f6e 2077 ethod function w │ │ │ │ -00024380: 6974 6820 6f70 7469 6f6e 733a 0a28 4d61 ith options:.(Ma │ │ │ │ -00024390: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ -000243a0: 6446 756e 6374 696f 6e57 6974 684f 7074 dFunctionWithOpt │ │ │ │ -000243b0: 696f 6e73 2c2e 0a1f 0a46 696c 653a 2042 ions,....File: B │ │ │ │ -000243c0: 6572 7469 6e69 2e69 6e66 6f2c 204e 6f64 ertini.info, Nod │ │ │ │ -000243d0: 653a 2054 6f70 4469 7265 6374 6f72 792c e: TopDirectory, │ │ │ │ -000243e0: 204e 6578 743a 2055 7365 5265 6765 6e65 Next: UseRegene │ │ │ │ -000243f0: 7261 7469 6f6e 2c20 5072 6576 3a20 7375 ration, Prev: su │ │ │ │ -00024400: 6250 6f69 6e74 2c20 5570 3a20 546f 700a bPoint, Up: Top. │ │ │ │ -00024410: 0a54 6f70 4469 7265 6374 6f72 7920 2d2d .TopDirectory -- │ │ │ │ -00024420: 204f 7074 696f 6e20 746f 2063 6861 6e67 Option to chang │ │ │ │ -00024430: 6520 6469 7265 6374 6f72 7920 666f 7220 e directory for │ │ │ │ -00024440: 6669 6c65 2073 746f 7261 6765 2e0a 2a2a file storage..** │ │ │ │ -00024450: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00024250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a43 ------------+..C │ │ │ │ +00024260: 6176 6561 740a 3d3d 3d3d 3d3d 0a0a 5768 aveat.======..Wh │ │ │ │ +00024270: 656e 2053 7562 496e 746f 4343 2069 7320 en SubIntoCC is │ │ │ │ +00024280: 7365 7420 746f 2074 7275 6520 7468 656e set to true then │ │ │ │ +00024290: 2075 6e73 6574 2076 6172 6961 626c 6573 unset variables │ │ │ │ +000242a0: 2077 696c 6c20 6265 2073 6574 2074 6f20 will be set to │ │ │ │ +000242b0: 7a65 726f 206f 720a 756e 6578 7065 6374 zero or.unexpect │ │ │ │ +000242c0: 6564 2076 616c 7565 732e 0a0a 5761 7973 ed values...Ways │ │ │ │ +000242d0: 2074 6f20 7573 6520 7375 6250 6f69 6e74 to use subPoint │ │ │ │ +000242e0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +000242f0: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 7375 =======.. * "su │ │ │ │ +00024300: 6250 6f69 6e74 2854 6869 6e67 2c4c 6973 bPoint(Thing,Lis │ │ │ │ +00024310: 742c 5468 696e 6729 220a 0a46 6f72 2074 t,Thing)"..For t │ │ │ │ +00024320: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +00024330: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00024340: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ +00024350: 7465 2073 7562 506f 696e 743a 2073 7562 te subPoint: sub │ │ │ │ +00024360: 506f 696e 742c 2069 7320 6120 2a6e 6f74 Point, is a *not │ │ │ │ +00024370: 6520 6d65 7468 6f64 2066 756e 6374 696f e method functio │ │ │ │ +00024380: 6e20 7769 7468 206f 7074 696f 6e73 3a0a n with options:. │ │ │ │ +00024390: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ +000243a0: 7468 6f64 4675 6e63 7469 6f6e 5769 7468 thodFunctionWith │ │ │ │ +000243b0: 4f70 7469 6f6e 732c 2e0a 1f0a 4669 6c65 Options,....File │ │ │ │ +000243c0: 3a20 4265 7274 696e 692e 696e 666f 2c20 : Bertini.info, │ │ │ │ +000243d0: 4e6f 6465 3a20 546f 7044 6972 6563 746f Node: TopDirecto │ │ │ │ +000243e0: 7279 2c20 4e65 7874 3a20 5573 6552 6567 ry, Next: UseReg │ │ │ │ +000243f0: 656e 6572 6174 696f 6e2c 2050 7265 763a eneration, Prev: │ │ │ │ +00024400: 2073 7562 506f 696e 742c 2055 703a 2054 subPoint, Up: T │ │ │ │ +00024410: 6f70 0a0a 546f 7044 6972 6563 746f 7279 op..TopDirectory │ │ │ │ +00024420: 202d 2d20 4f70 7469 6f6e 2074 6f20 6368 -- Option to ch │ │ │ │ +00024430: 616e 6765 2064 6972 6563 746f 7279 2066 ange directory f │ │ │ │ +00024440: 6f72 2066 696c 6520 7374 6f72 6167 652e or file storage. │ │ │ │ +00024450: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ 00024460: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00024470: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00024480: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f **********..Syno │ │ │ │ -00024490: 7073 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 psis.========.. │ │ │ │ -000244a0: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ -000244b0: 2020 2062 6572 7469 6e69 5061 7261 6d65 bertiniParame │ │ │ │ -000244c0: 7465 7248 6f6d 6f74 6f70 7928 2e2e 2e2c terHomotopy(..., │ │ │ │ -000244d0: 546f 7044 6972 6563 746f 7279 3d3e 5374 TopDirectory=>St │ │ │ │ -000244e0: 7269 6e67 290a 2020 2020 2020 2020 6265 ring). be │ │ │ │ -000244f0: 7274 696e 695a 6572 6f44 696d 536f 6c76 rtiniZeroDimSolv │ │ │ │ -00024500: 6528 2e2e 2e2c 546f 7044 6972 6563 746f e(...,TopDirecto │ │ │ │ -00024510: 7279 3d3e 5374 7269 6e67 290a 2020 2020 ry=>String). │ │ │ │ -00024520: 2020 2020 6265 7274 696e 6955 7365 7248 bertiniUserH │ │ │ │ -00024530: 6f6d 6f74 6f70 7928 2e2e 2e2c 546f 7044 omotopy(...,TopD │ │ │ │ -00024540: 6972 6563 746f 7279 3d3e 5374 7269 6e67 irectory=>String │ │ │ │ -00024550: 290a 0a44 6573 6372 6970 7469 6f6e 0a3d )..Description.= │ │ │ │ -00024560: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 ==========..This │ │ │ │ -00024570: 206f 7074 696f 6e20 7370 6563 6966 6965 option specifie │ │ │ │ -00024580: 7320 6120 6469 7265 6374 6f72 7920 746f s a directory to │ │ │ │ -00024590: 2073 746f 7265 2042 6572 7469 6e69 206f store Bertini o │ │ │ │ -000245a0: 7574 7075 7420 6669 6c65 732e 0a0a 4675 utput files...Fu │ │ │ │ -000245b0: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ -000245c0: 696f 6e61 6c20 6172 6775 6d65 6e74 206e ional argument n │ │ │ │ -000245d0: 616d 6564 2054 6f70 4469 7265 6374 6f72 amed TopDirector │ │ │ │ -000245e0: 793a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d y:.============= │ │ │ │ +00024480: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 *************..S │ │ │ │ +00024490: 796e 6f70 7369 730a 3d3d 3d3d 3d3d 3d3d ynopsis.======== │ │ │ │ +000244a0: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ +000244b0: 2020 2020 2020 6265 7274 696e 6950 6172 bertiniPar │ │ │ │ +000244c0: 616d 6574 6572 486f 6d6f 746f 7079 282e ameterHomotopy(. │ │ │ │ +000244d0: 2e2e 2c54 6f70 4469 7265 6374 6f72 793d ..,TopDirectory= │ │ │ │ +000244e0: 3e53 7472 696e 6729 0a20 2020 2020 2020 >String). │ │ │ │ +000244f0: 2062 6572 7469 6e69 5a65 726f 4469 6d53 bertiniZeroDimS │ │ │ │ +00024500: 6f6c 7665 282e 2e2e 2c54 6f70 4469 7265 olve(...,TopDire │ │ │ │ +00024510: 6374 6f72 793d 3e53 7472 696e 6729 0a20 ctory=>String). │ │ │ │ +00024520: 2020 2020 2020 2062 6572 7469 6e69 5573 bertiniUs │ │ │ │ +00024530: 6572 486f 6d6f 746f 7079 282e 2e2e 2c54 erHomotopy(...,T │ │ │ │ +00024540: 6f70 4469 7265 6374 6f72 793d 3e53 7472 opDirectory=>Str │ │ │ │ +00024550: 696e 6729 0a0a 4465 7363 7269 7074 696f ing)..Descriptio │ │ │ │ +00024560: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 n.===========..T │ │ │ │ +00024570: 6869 7320 6f70 7469 6f6e 2073 7065 6369 his option speci │ │ │ │ +00024580: 6669 6573 2061 2064 6972 6563 746f 7279 fies a directory │ │ │ │ +00024590: 2074 6f20 7374 6f72 6520 4265 7274 696e to store Bertin │ │ │ │ +000245a0: 6920 6f75 7470 7574 2066 696c 6573 2e0a i output files.. │ │ │ │ +000245b0: 0a46 756e 6374 696f 6e73 2077 6974 6820 .Functions with │ │ │ │ +000245c0: 6f70 7469 6f6e 616c 2061 7267 756d 656e optional argumen │ │ │ │ +000245d0: 7420 6e61 6d65 6420 546f 7044 6972 6563 t named TopDirec │ │ │ │ +000245e0: 746f 7279 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d tory:.========== │ │ │ │ 000245f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 00024600: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00024610: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 6265 =======.. * "be │ │ │ │ -00024620: 7274 696e 6950 6172 616d 6574 6572 486f rtiniParameterHo │ │ │ │ -00024630: 6d6f 746f 7079 282e 2e2e 2c54 6f70 4469 motopy(...,TopDi │ │ │ │ -00024640: 7265 6374 6f72 793d 3e2e 2e2e 2922 0a20 rectory=>...)". │ │ │ │ -00024650: 202a 2022 6265 7274 696e 6955 7365 7248 * "bertiniUserH │ │ │ │ -00024660: 6f6d 6f74 6f70 7928 2e2e 2e2c 546f 7044 omotopy(...,TopD │ │ │ │ -00024670: 6972 6563 746f 7279 3d3e 2e2e 2e29 220a irectory=>...)". │ │ │ │ -00024680: 2020 2a20 2262 6572 7469 6e69 5a65 726f * "bertiniZero │ │ │ │ -00024690: 4469 6d53 6f6c 7665 282e 2e2e 2c54 6f70 DimSolve(...,Top │ │ │ │ -000246a0: 4469 7265 6374 6f72 793d 3e2e 2e2e 2922 Directory=>...)" │ │ │ │ -000246b0: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ -000246c0: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ -000246d0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ -000246e0: 6563 7420 2a6e 6f74 6520 546f 7044 6972 ect *note TopDir │ │ │ │ -000246f0: 6563 746f 7279 3a20 546f 7044 6972 6563 ectory: TopDirec │ │ │ │ -00024700: 746f 7279 2c20 6973 2061 202a 6e6f 7465 tory, is a *note │ │ │ │ -00024710: 2073 796d 626f 6c3a 0a28 4d61 6361 756c symbol:.(Macaul │ │ │ │ -00024720: 6179 3244 6f63 2953 796d 626f 6c2c 2e0a ay2Doc)Symbol,.. │ │ │ │ -00024730: 1f0a 4669 6c65 3a20 4265 7274 696e 692e ..File: Bertini. │ │ │ │ -00024740: 696e 666f 2c20 4e6f 6465 3a20 5573 6552 info, Node: UseR │ │ │ │ -00024750: 6567 656e 6572 6174 696f 6e2c 204e 6578 egeneration, Nex │ │ │ │ -00024760: 743a 2076 616c 7565 424d 322c 2050 7265 t: valueBM2, Pre │ │ │ │ -00024770: 763a 2054 6f70 4469 7265 6374 6f72 792c v: TopDirectory, │ │ │ │ -00024780: 2055 703a 2054 6f70 0a0a 5573 6552 6567 Up: Top..UseReg │ │ │ │ -00024790: 656e 6572 6174 696f 6e20 2d2d 2061 6e20 eneration -- an │ │ │ │ -000247a0: 6f70 7469 6f6e 2073 7065 6369 6679 696e option specifyin │ │ │ │ -000247b0: 6720 7768 656e 2074 6f20 7573 6520 7265 g when to use re │ │ │ │ -000247c0: 6765 6e65 7261 7469 6f6e 0a2a 2a2a 2a2a generation.***** │ │ │ │ +00024610: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +00024620: 2262 6572 7469 6e69 5061 7261 6d65 7465 "bertiniParamete │ │ │ │ +00024630: 7248 6f6d 6f74 6f70 7928 2e2e 2e2c 546f rHomotopy(...,To │ │ │ │ +00024640: 7044 6972 6563 746f 7279 3d3e 2e2e 2e29 pDirectory=>...) │ │ │ │ +00024650: 220a 2020 2a20 2262 6572 7469 6e69 5573 ". * "bertiniUs │ │ │ │ +00024660: 6572 486f 6d6f 746f 7079 282e 2e2e 2c54 erHomotopy(...,T │ │ │ │ +00024670: 6f70 4469 7265 6374 6f72 793d 3e2e 2e2e opDirectory=>... │ │ │ │ +00024680: 2922 0a20 202a 2022 6265 7274 696e 695a )". * "bertiniZ │ │ │ │ +00024690: 6572 6f44 696d 536f 6c76 6528 2e2e 2e2c eroDimSolve(..., │ │ │ │ +000246a0: 546f 7044 6972 6563 746f 7279 3d3e 2e2e TopDirectory=>.. │ │ │ │ +000246b0: 2e29 220a 0a46 6f72 2074 6865 2070 726f .)"..For the pro │ │ │ │ +000246c0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +000246d0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +000246e0: 6f62 6a65 6374 202a 6e6f 7465 2054 6f70 object *note Top │ │ │ │ +000246f0: 4469 7265 6374 6f72 793a 2054 6f70 4469 Directory: TopDi │ │ │ │ +00024700: 7265 6374 6f72 792c 2069 7320 6120 2a6e rectory, is a *n │ │ │ │ +00024710: 6f74 6520 7379 6d62 6f6c 3a0a 284d 6163 ote symbol:.(Mac │ │ │ │ +00024720: 6175 6c61 7932 446f 6329 5379 6d62 6f6c aulay2Doc)Symbol │ │ │ │ +00024730: 2c2e 0a1f 0a46 696c 653a 2042 6572 7469 ,....File: Berti │ │ │ │ +00024740: 6e69 2e69 6e66 6f2c 204e 6f64 653a 2055 ni.info, Node: U │ │ │ │ +00024750: 7365 5265 6765 6e65 7261 7469 6f6e 2c20 seRegeneration, │ │ │ │ +00024760: 4e65 7874 3a20 7661 6c75 6542 4d32 2c20 Next: valueBM2, │ │ │ │ +00024770: 5072 6576 3a20 546f 7044 6972 6563 746f Prev: TopDirecto │ │ │ │ +00024780: 7279 2c20 5570 3a20 546f 700a 0a55 7365 ry, Up: Top..Use │ │ │ │ +00024790: 5265 6765 6e65 7261 7469 6f6e 202d 2d20 Regeneration -- │ │ │ │ +000247a0: 616e 206f 7074 696f 6e20 7370 6563 6966 an option specif │ │ │ │ +000247b0: 7969 6e67 2077 6865 6e20 746f 2075 7365 ying when to use │ │ │ │ +000247c0: 2072 6567 656e 6572 6174 696f 6e0a 2a2a regeneration.** │ │ │ │ 000247d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000247e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000247f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00024800: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 796e ***********..Syn │ │ │ │ -00024810: 6f70 7369 730a 3d3d 3d3d 3d3d 3d3d 0a0a opsis.========.. │ │ │ │ -00024820: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ -00024830: 2020 2020 6265 7274 696e 6950 6172 616d bertiniParam │ │ │ │ -00024840: 6574 6572 486f 6d6f 746f 7079 282e 2e2e eterHomotopy(... │ │ │ │ -00024850: 2c54 6f70 4469 7265 6374 6f72 793d 3e53 ,TopDirectory=>S │ │ │ │ -00024860: 7472 696e 6729 0a20 2020 2020 2020 2062 tring). b │ │ │ │ -00024870: 6572 7469 6e69 5a65 726f 4469 6d53 6f6c ertiniZeroDimSol │ │ │ │ -00024880: 7665 282e 2e2e 2c54 6f70 4469 7265 6374 ve(...,TopDirect │ │ │ │ -00024890: 6f72 793d 3e53 7472 696e 6729 0a20 2020 ory=>String). │ │ │ │ -000248a0: 2020 2020 2062 6572 7469 6e69 5573 6572 bertiniUser │ │ │ │ -000248b0: 486f 6d6f 746f 7079 282e 2e2e 2c54 6f70 Homotopy(...,Top │ │ │ │ -000248c0: 4469 7265 6374 6f72 793d 3e53 7472 696e Directory=>Strin │ │ │ │ -000248d0: 6729 0a0a 4465 7363 7269 7074 696f 6e0a g)..Description. │ │ │ │ -000248e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 ===========..Thi │ │ │ │ -000248f0: 7320 6f70 7469 6f6e 2069 7320 7365 7420 s option is set │ │ │ │ -00024900: 746f 2031 2074 6f20 6861 7665 2042 6572 to 1 to have Ber │ │ │ │ -00024910: 7469 6e69 2075 7365 2072 6567 656e 6572 tini use regener │ │ │ │ -00024920: 6174 696f 6e20 7768 656e 2073 6f6c 7669 ation when solvi │ │ │ │ -00024930: 6e67 2061 0a70 6f6c 796e 6f6d 6961 6c20 ng a.polynomial │ │ │ │ -00024940: 7379 7374 656d 2e0a 0a0a 0a46 756e 6374 system.....Funct │ │ │ │ -00024950: 696f 6e73 2077 6974 6820 6f70 7469 6f6e ions with option │ │ │ │ -00024960: 616c 2061 7267 756d 656e 7420 6e61 6d65 al argument name │ │ │ │ -00024970: 6420 5573 6552 6567 656e 6572 6174 696f d UseRegeneratio │ │ │ │ -00024980: 6e3a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d n:.============= │ │ │ │ +00024800: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +00024810: 5379 6e6f 7073 6973 0a3d 3d3d 3d3d 3d3d Synopsis.======= │ │ │ │ +00024820: 3d0a 0a20 202a 2055 7361 6765 3a20 0a20 =.. * Usage: . │ │ │ │ +00024830: 2020 2020 2020 2062 6572 7469 6e69 5061 bertiniPa │ │ │ │ +00024840: 7261 6d65 7465 7248 6f6d 6f74 6f70 7928 rameterHomotopy( │ │ │ │ +00024850: 2e2e 2e2c 546f 7044 6972 6563 746f 7279 ...,TopDirectory │ │ │ │ +00024860: 3d3e 5374 7269 6e67 290a 2020 2020 2020 =>String). │ │ │ │ +00024870: 2020 6265 7274 696e 695a 6572 6f44 696d bertiniZeroDim │ │ │ │ +00024880: 536f 6c76 6528 2e2e 2e2c 546f 7044 6972 Solve(...,TopDir │ │ │ │ +00024890: 6563 746f 7279 3d3e 5374 7269 6e67 290a ectory=>String). │ │ │ │ +000248a0: 2020 2020 2020 2020 6265 7274 696e 6955 bertiniU │ │ │ │ +000248b0: 7365 7248 6f6d 6f74 6f70 7928 2e2e 2e2c serHomotopy(..., │ │ │ │ +000248c0: 546f 7044 6972 6563 746f 7279 3d3e 5374 TopDirectory=>St │ │ │ │ +000248d0: 7269 6e67 290a 0a44 6573 6372 6970 7469 ring)..Descripti │ │ │ │ +000248e0: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +000248f0: 5468 6973 206f 7074 696f 6e20 6973 2073 This option is s │ │ │ │ +00024900: 6574 2074 6f20 3120 746f 2068 6176 6520 et to 1 to have │ │ │ │ +00024910: 4265 7274 696e 6920 7573 6520 7265 6765 Bertini use rege │ │ │ │ +00024920: 6e65 7261 7469 6f6e 2077 6865 6e20 736f neration when so │ │ │ │ +00024930: 6c76 696e 6720 610a 706f 6c79 6e6f 6d69 lving a.polynomi │ │ │ │ +00024940: 616c 2073 7973 7465 6d2e 0a0a 0a0a 4675 al system.....Fu │ │ │ │ +00024950: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ +00024960: 696f 6e61 6c20 6172 6775 6d65 6e74 206e ional argument n │ │ │ │ +00024970: 616d 6564 2055 7365 5265 6765 6e65 7261 amed UseRegenera │ │ │ │ +00024980: 7469 6f6e 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d tion:.========== │ │ │ │ 00024990: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 000249a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000249b0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -000249c0: 6265 7274 696e 695a 6572 6f44 696d 536f bertiniZeroDimSo │ │ │ │ -000249d0: 6c76 6528 2e2e 2e2c 5573 6552 6567 656e lve(...,UseRegen │ │ │ │ -000249e0: 6572 6174 696f 6e3d 3e2e 2e2e 2920 286d eration=>...) (m │ │ │ │ -000249f0: 6973 7369 6e67 2064 6f63 756d 656e 7461 issing documenta │ │ │ │ -00024a00: 7469 6f6e 290a 0a46 6f72 2074 6865 2070 tion)..For the p │ │ │ │ -00024a10: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -00024a20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -00024a30: 6520 6f62 6a65 6374 202a 6e6f 7465 2055 e object *note U │ │ │ │ -00024a40: 7365 5265 6765 6e65 7261 7469 6f6e 3a20 seRegeneration: │ │ │ │ -00024a50: 5573 6552 6567 656e 6572 6174 696f 6e2c UseRegeneration, │ │ │ │ -00024a60: 2069 7320 6120 2a6e 6f74 6520 7379 6d62 is a *note symb │ │ │ │ -00024a70: 6f6c 3a0a 284d 6163 6175 6c61 7932 446f ol:.(Macaulay2Do │ │ │ │ -00024a80: 6329 5379 6d62 6f6c 2c2e 0a1f 0a46 696c c)Symbol,....Fil │ │ │ │ -00024a90: 653a 2042 6572 7469 6e69 2e69 6e66 6f2c e: Bertini.info, │ │ │ │ -00024aa0: 204e 6f64 653a 2076 616c 7565 424d 322c Node: valueBM2, │ │ │ │ -00024ab0: 204e 6578 743a 2056 6172 6961 626c 6520 Next: Variable │ │ │ │ -00024ac0: 6772 6f75 7073 2c20 5072 6576 3a20 5573 groups, Prev: Us │ │ │ │ -00024ad0: 6552 6567 656e 6572 6174 696f 6e2c 2055 eRegeneration, U │ │ │ │ -00024ae0: 703a 2054 6f70 0a0a 7661 6c75 6542 4d32 p: Top..valueBM2 │ │ │ │ -00024af0: 202d 2d20 5468 6973 2066 756e 6374 696f -- This functio │ │ │ │ -00024b00: 6e20 6d61 6b65 7320 6120 6e75 6d62 6572 n makes a number │ │ │ │ -00024b10: 2069 6e20 4343 2066 726f 6d20 6120 7374 in CC from a st │ │ │ │ -00024b20: 7269 6e67 2e0a 2a2a 2a2a 2a2a 2a2a 2a2a ring..********** │ │ │ │ +000249b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +000249c0: 202a 2062 6572 7469 6e69 5a65 726f 4469 * bertiniZeroDi │ │ │ │ +000249d0: 6d53 6f6c 7665 282e 2e2e 2c55 7365 5265 mSolve(...,UseRe │ │ │ │ +000249e0: 6765 6e65 7261 7469 6f6e 3d3e 2e2e 2e29 generation=>...) │ │ │ │ +000249f0: 2028 6d69 7373 696e 6720 646f 6375 6d65 (missing docume │ │ │ │ +00024a00: 6e74 6174 696f 6e29 0a0a 466f 7220 7468 ntation)..For th │ │ │ │ +00024a10: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +00024a20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00024a30: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +00024a40: 6520 5573 6552 6567 656e 6572 6174 696f e UseRegeneratio │ │ │ │ +00024a50: 6e3a 2055 7365 5265 6765 6e65 7261 7469 n: UseRegenerati │ │ │ │ +00024a60: 6f6e 2c20 6973 2061 202a 6e6f 7465 2073 on, is a *note s │ │ │ │ +00024a70: 796d 626f 6c3a 0a28 4d61 6361 756c 6179 ymbol:.(Macaulay │ │ │ │ +00024a80: 3244 6f63 2953 796d 626f 6c2c 2e0a 1f0a 2Doc)Symbol,.... │ │ │ │ +00024a90: 4669 6c65 3a20 4265 7274 696e 692e 696e File: Bertini.in │ │ │ │ +00024aa0: 666f 2c20 4e6f 6465 3a20 7661 6c75 6542 fo, Node: valueB │ │ │ │ +00024ab0: 4d32 2c20 4e65 7874 3a20 5661 7269 6162 M2, Next: Variab │ │ │ │ +00024ac0: 6c65 2067 726f 7570 732c 2050 7265 763a le groups, Prev: │ │ │ │ +00024ad0: 2055 7365 5265 6765 6e65 7261 7469 6f6e UseRegeneration │ │ │ │ +00024ae0: 2c20 5570 3a20 546f 700a 0a76 616c 7565 , Up: Top..value │ │ │ │ +00024af0: 424d 3220 2d2d 2054 6869 7320 6675 6e63 BM2 -- This func │ │ │ │ +00024b00: 7469 6f6e 206d 616b 6573 2061 206e 756d tion makes a num │ │ │ │ +00024b10: 6265 7220 696e 2043 4320 6672 6f6d 2061 ber in CC from a │ │ │ │ +00024b20: 2073 7472 696e 672e 0a2a 2a2a 2a2a 2a2a string..******* │ │ │ │ 00024b30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00024b40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00024b50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00024b60: 2a2a 2a0a 0a53 796e 6f70 7369 730a 3d3d ***..Synopsis.== │ │ │ │ -00024b70: 3d3d 3d3d 3d3d 0a0a 2020 2a20 5573 6167 ======.. * Usag │ │ │ │ -00024b80: 653a 200a 2020 2020 2020 2020 7661 6c75 e: . valu │ │ │ │ -00024b90: 6542 4d32 2873 290a 2020 2a20 496e 7075 eBM2(s). * Inpu │ │ │ │ -00024ba0: 7473 3a0a 2020 2020 2020 2a20 732c 2061 ts:. * s, a │ │ │ │ -00024bb0: 202a 6e6f 7465 2073 7472 696e 673a 2028 *note string: ( │ │ │ │ -00024bc0: 4d61 6361 756c 6179 3244 6f63 2953 7472 Macaulay2Doc)Str │ │ │ │ -00024bd0: 696e 672c 2c20 4120 7374 7269 6e67 2074 ing,, A string t │ │ │ │ -00024be0: 6861 7420 6769 7665 7320 610a 2020 2020 hat gives a. │ │ │ │ -00024bf0: 2020 2020 636f 6f72 6469 6e61 7465 2e0a coordinate.. │ │ │ │ -00024c00: 2020 2a20 2a6e 6f74 6520 4f70 7469 6f6e * *note Option │ │ │ │ -00024c10: 616c 2069 6e70 7574 733a 2028 4d61 6361 al inputs: (Maca │ │ │ │ -00024c20: 756c 6179 3244 6f63 2975 7369 6e67 2066 ulay2Doc)using f │ │ │ │ -00024c30: 756e 6374 696f 6e73 2077 6974 6820 6f70 unctions with op │ │ │ │ -00024c40: 7469 6f6e 616c 2069 6e70 7574 732c 3a0a tional inputs,:. │ │ │ │ -00024c50: 2020 2020 2020 2a20 4d32 5072 6563 6973 * M2Precis │ │ │ │ -00024c60: 696f 6e20 286d 6973 7369 6e67 2064 6f63 ion (missing doc │ │ │ │ -00024c70: 756d 656e 7461 7469 6f6e 2920 3d3e 202e umentation) => . │ │ │ │ -00024c80: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ -00024c90: 6520 3533 2c20 0a0a 4465 7363 7269 7074 e 53, ..Descript │ │ │ │ -00024ca0: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -00024cb0: 0a54 6869 7320 6675 6e63 7469 6f6e 2074 .This function t │ │ │ │ -00024cc0: 616b 6520 6120 7374 7269 6e67 2072 6570 ake a string rep │ │ │ │ -00024cd0: 7265 7365 6e74 696e 6720 6120 636f 6f72 resenting a coor │ │ │ │ -00024ce0: 6469 6e61 7465 2069 6e20 6120 4265 7274 dinate in a Bert │ │ │ │ -00024cf0: 696e 6920 736f 6c75 7469 6f6e 730a 6669 ini solutions.fi │ │ │ │ -00024d00: 6c65 206f 7220 7061 7261 6d65 7465 7220 le or parameter │ │ │ │ -00024d10: 6669 6c65 2061 6e64 206d 616b 6573 2061 file and makes a │ │ │ │ -00024d20: 206e 756d 6265 7220 696e 2043 432e 2057 number in CC. W │ │ │ │ -00024d30: 6520 6361 6e20 6164 6a75 7374 2074 6865 e can adjust the │ │ │ │ -00024d40: 2070 7265 6369 7369 6f6e 0a75 7369 6e67 precision.using │ │ │ │ -00024d50: 2074 6865 204d 3250 7265 6369 7369 6f6e the M2Precision │ │ │ │ -00024d60: 206f 7074 696f 6e2e 2046 7261 6374 696f option. Fractio │ │ │ │ -00024d70: 6e73 2073 686f 756c 6420 6e6f 7420 6265 ns should not be │ │ │ │ -00024d80: 2069 6e20 7468 6520 7374 7269 6e67 2073 in the string s │ │ │ │ -00024d90: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ +00024b60: 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 ******..Synopsis │ │ │ │ +00024b70: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 .========.. * U │ │ │ │ +00024b80: 7361 6765 3a20 0a20 2020 2020 2020 2076 sage: . v │ │ │ │ +00024b90: 616c 7565 424d 3228 7329 0a20 202a 2049 alueBM2(s). * I │ │ │ │ +00024ba0: 6e70 7574 733a 0a20 2020 2020 202a 2073 nputs:. * s │ │ │ │ +00024bb0: 2c20 6120 2a6e 6f74 6520 7374 7269 6e67 , a *note string │ │ │ │ +00024bc0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00024bd0: 5374 7269 6e67 2c2c 2041 2073 7472 696e String,, A strin │ │ │ │ +00024be0: 6720 7468 6174 2067 6976 6573 2061 0a20 g that gives a. │ │ │ │ +00024bf0: 2020 2020 2020 2063 6f6f 7264 696e 6174 coordinat │ │ │ │ +00024c00: 652e 0a20 202a 202a 6e6f 7465 204f 7074 e.. * *note Opt │ │ │ │ +00024c10: 696f 6e61 6c20 696e 7075 7473 3a20 284d ional inputs: (M │ │ │ │ +00024c20: 6163 6175 6c61 7932 446f 6329 7573 696e acaulay2Doc)usin │ │ │ │ +00024c30: 6720 6675 6e63 7469 6f6e 7320 7769 7468 g functions with │ │ │ │ +00024c40: 206f 7074 696f 6e61 6c20 696e 7075 7473 optional inputs │ │ │ │ +00024c50: 2c3a 0a20 2020 2020 202a 204d 3250 7265 ,:. * M2Pre │ │ │ │ +00024c60: 6369 7369 6f6e 2028 6d69 7373 696e 6720 cision (missing │ │ │ │ +00024c70: 646f 6375 6d65 6e74 6174 696f 6e29 203d documentation) = │ │ │ │ +00024c80: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ +00024c90: 616c 7565 2035 332c 200a 0a44 6573 6372 alue 53, ..Descr │ │ │ │ +00024ca0: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ +00024cb0: 3d3d 0a0a 5468 6973 2066 756e 6374 696f ==..This functio │ │ │ │ +00024cc0: 6e20 7461 6b65 2061 2073 7472 696e 6720 n take a string │ │ │ │ +00024cd0: 7265 7072 6573 656e 7469 6e67 2061 2063 representing a c │ │ │ │ +00024ce0: 6f6f 7264 696e 6174 6520 696e 2061 2042 oordinate in a B │ │ │ │ +00024cf0: 6572 7469 6e69 2073 6f6c 7574 696f 6e73 ertini solutions │ │ │ │ +00024d00: 0a66 696c 6520 6f72 2070 6172 616d 6574 .file or paramet │ │ │ │ +00024d10: 6572 2066 696c 6520 616e 6420 6d61 6b65 er file and make │ │ │ │ +00024d20: 7320 6120 6e75 6d62 6572 2069 6e20 4343 s a number in CC │ │ │ │ +00024d30: 2e20 5765 2063 616e 2061 646a 7573 7420 . We can adjust │ │ │ │ +00024d40: 7468 6520 7072 6563 6973 696f 6e0a 7573 the precision.us │ │ │ │ +00024d50: 696e 6720 7468 6520 4d32 5072 6563 6973 ing the M2Precis │ │ │ │ +00024d60: 696f 6e20 6f70 7469 6f6e 2e20 4672 6163 ion option. Frac │ │ │ │ +00024d70: 7469 6f6e 7320 7368 6f75 6c64 206e 6f74 tions should not │ │ │ │ +00024d80: 2062 6520 696e 2074 6865 2073 7472 696e be in the strin │ │ │ │ +00024d90: 6720 732e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d g s...+--------- │ │ │ │ 00024da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024de0: 2d2b 0a7c 6931 203a 2076 616c 7565 424d -+.|i1 : valueBM │ │ │ │ -00024df0: 3228 2231 2e32 3265 2d32 2034 652d 3522 2("1.22e-2 4e-5" │ │ │ │ -00024e00: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00024de0: 2d2d 2d2d 2b0a 7c69 3120 3a20 7661 6c75 ----+.|i1 : valu │ │ │ │ +00024df0: 6542 4d32 2822 312e 3232 652d 3220 3465 eBM2("1.22e-2 4e │ │ │ │ +00024e00: 2d35 2229 2020 2020 2020 2020 2020 2020 -5") │ │ │ │ 00024e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024e30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024e30: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00024e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024e80: 207c 0a7c 6f31 203d 202e 3031 3232 2b2e |.|o1 = .0122+. │ │ │ │ -00024e90: 3030 3030 342a 6969 2020 2020 2020 2020 00004*ii │ │ │ │ +00024e80: 2020 2020 7c0a 7c6f 3120 3d20 2e30 3132 |.|o1 = .012 │ │ │ │ +00024e90: 322b 2e30 3030 3034 2a69 6920 2020 2020 2+.00004*ii │ │ │ │ 00024ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ed0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024ed0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00024ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024f20: 207c 0a7c 6f31 203a 2043 4320 286f 6620 |.|o1 : CC (of │ │ │ │ -00024f30: 7072 6563 6973 696f 6e20 3533 2920 2020 precision 53) │ │ │ │ +00024f20: 2020 2020 7c0a 7c6f 3120 3a20 4343 2028 |.|o1 : CC ( │ │ │ │ +00024f30: 6f66 2070 7265 6369 7369 6f6e 2035 3329 of precision 53) │ │ │ │ 00024f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024f70: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00024f70: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00024f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024fc0: 2d2b 0a7c 6932 203a 2076 616c 7565 424d -+.|i2 : valueBM │ │ │ │ -00024fd0: 3228 2231 2e32 3220 3465 2d35 2229 2020 2("1.22 4e-5") │ │ │ │ -00024fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024fc0: 2d2d 2d2d 2b0a 7c69 3220 3a20 7661 6c75 ----+.|i2 : valu │ │ │ │ +00024fd0: 6542 4d32 2822 312e 3232 2034 652d 3522 eBM2("1.22 4e-5" │ │ │ │ +00024fe0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00024ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025010: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025010: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00025020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025060: 207c 0a7c 6f32 203d 2031 2e32 322b 2e30 |.|o2 = 1.22+.0 │ │ │ │ -00025070: 3030 3034 2a69 6920 2020 2020 2020 2020 0004*ii │ │ │ │ +00025060: 2020 2020 7c0a 7c6f 3220 3d20 312e 3232 |.|o2 = 1.22 │ │ │ │ +00025070: 2b2e 3030 3030 342a 6969 2020 2020 2020 +.00004*ii │ │ │ │ 00025080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000250a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000250b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000250c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000250d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000250e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000250f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025100: 207c 0a7c 6f32 203a 2043 4320 286f 6620 |.|o2 : CC (of │ │ │ │ -00025110: 7072 6563 6973 696f 6e20 3533 2920 2020 precision 53) │ │ │ │ +00025100: 2020 2020 7c0a 7c6f 3220 3a20 4343 2028 |.|o2 : CC ( │ │ │ │ +00025110: 6f66 2070 7265 6369 7369 6f6e 2035 3329 of precision 53) │ │ │ │ 00025120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025150: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00025150: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00025160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000251a0: 2d2b 0a7c 6933 203a 2076 616c 7565 424d -+.|i3 : valueBM │ │ │ │ -000251b0: 3228 2231 2e32 3220 3422 2920 2020 2020 2("1.22 4") │ │ │ │ +000251a0: 2d2d 2d2d 2b0a 7c69 3320 3a20 7661 6c75 ----+.|i3 : valu │ │ │ │ +000251b0: 6542 4d32 2822 312e 3232 2034 2229 2020 eBM2("1.22 4") │ │ │ │ 000251c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000251d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000251e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000251f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000251f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00025200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025240: 207c 0a7c 6f33 203d 2031 2e32 322b 342a |.|o3 = 1.22+4* │ │ │ │ -00025250: 6969 2020 2020 2020 2020 2020 2020 2020 ii │ │ │ │ +00025240: 2020 2020 7c0a 7c6f 3320 3d20 312e 3232 |.|o3 = 1.22 │ │ │ │ +00025250: 2b34 2a69 6920 2020 2020 2020 2020 2020 +4*ii │ │ │ │ 00025260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025290: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025290: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000252a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000252b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000252c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000252d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000252e0: 207c 0a7c 6f33 203a 2043 4320 286f 6620 |.|o3 : CC (of │ │ │ │ -000252f0: 7072 6563 6973 696f 6e20 3533 2920 2020 precision 53) │ │ │ │ +000252e0: 2020 2020 7c0a 7c6f 3320 3a20 4343 2028 |.|o3 : CC ( │ │ │ │ +000252f0: 6f66 2070 7265 6369 7369 6f6e 2035 3329 of precision 53) │ │ │ │ 00025300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025330: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00025330: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00025340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025380: 2d2b 0a7c 6934 203a 2076 616c 7565 424d -+.|i4 : valueBM │ │ │ │ -00025390: 3228 2231 2e32 3265 2b32 2034 2022 2920 2("1.22e+2 4 ") │ │ │ │ -000253a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025380: 2d2d 2d2d 2b0a 7c69 3420 3a20 7661 6c75 ----+.|i4 : valu │ │ │ │ +00025390: 6542 4d32 2822 312e 3232 652b 3220 3420 eBM2("1.22e+2 4 │ │ │ │ +000253a0: 2229 2020 2020 2020 2020 2020 2020 2020 ") │ │ │ │ 000253b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000253c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000253d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000253d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000253e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000253f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025420: 207c 0a7c 6f34 203d 2031 3232 2b34 2a69 |.|o4 = 122+4*i │ │ │ │ -00025430: 6920 2020 2020 2020 2020 2020 2020 2020 i │ │ │ │ +00025420: 2020 2020 7c0a 7c6f 3420 3d20 3132 322b |.|o4 = 122+ │ │ │ │ +00025430: 342a 6969 2020 2020 2020 2020 2020 2020 4*ii │ │ │ │ 00025440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025470: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025470: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00025480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000254a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000254b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000254c0: 207c 0a7c 6f34 203a 2043 4320 286f 6620 |.|o4 : CC (of │ │ │ │ -000254d0: 7072 6563 6973 696f 6e20 3533 2920 2020 precision 53) │ │ │ │ +000254c0: 2020 2020 7c0a 7c6f 3420 3a20 4343 2028 |.|o4 : CC ( │ │ │ │ +000254d0: 6f66 2070 7265 6369 7369 6f6e 2035 3329 of precision 53) │ │ │ │ 000254e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000254f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025510: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00025510: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00025520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025560: 2d2b 0a7c 6935 203a 206e 313d 7661 6c75 -+.|i5 : n1=valu │ │ │ │ -00025570: 6542 4d32 2822 312e 3131 222c 4d32 5072 eBM2("1.11",M2Pr │ │ │ │ -00025580: 6563 6973 696f 6e3d 3e35 3229 2020 2020 ecision=>52) │ │ │ │ +00025560: 2d2d 2d2d 2b0a 7c69 3520 3a20 6e31 3d76 ----+.|i5 : n1=v │ │ │ │ +00025570: 616c 7565 424d 3228 2231 2e31 3122 2c4d alueBM2("1.11",M │ │ │ │ +00025580: 3250 7265 6369 7369 6f6e 3d3e 3532 2920 2Precision=>52) │ │ │ │ 00025590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000255a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000255b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000255b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000255c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000255d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000255e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000255f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025600: 207c 0a7c 6f35 203d 2031 2e31 3120 2020 |.|o5 = 1.11 │ │ │ │ +00025600: 2020 2020 7c0a 7c6f 3520 3d20 312e 3131 |.|o5 = 1.11 │ │ │ │ 00025610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025650: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025650: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00025660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000256a0: 207c 0a7c 6f35 203a 2052 5220 286f 6620 |.|o5 : RR (of │ │ │ │ -000256b0: 7072 6563 6973 696f 6e20 3532 2920 2020 precision 52) │ │ │ │ +000256a0: 2020 2020 7c0a 7c6f 3520 3a20 5252 2028 |.|o5 : RR ( │ │ │ │ +000256b0: 6f66 2070 7265 6369 7369 6f6e 2035 3229 of precision 52) │ │ │ │ 000256c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000256d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000256e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000256f0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000256f0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00025700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025740: 2d2b 0a7c 6936 203a 206e 323d 7661 6c75 -+.|i6 : n2=valu │ │ │ │ -00025750: 6542 4d32 2822 312e 3131 222c 4d32 5072 eBM2("1.11",M2Pr │ │ │ │ -00025760: 6563 6973 696f 6e3d 3e33 3030 2920 2020 ecision=>300) │ │ │ │ +00025740: 2d2d 2d2d 2b0a 7c69 3620 3a20 6e32 3d76 ----+.|i6 : n2=v │ │ │ │ +00025750: 616c 7565 424d 3228 2231 2e31 3122 2c4d alueBM2("1.11",M │ │ │ │ +00025760: 3250 7265 6369 7369 6f6e 3d3e 3330 3029 2Precision=>300) │ │ │ │ 00025770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025790: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025790: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000257a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000257b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000257c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000257d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000257e0: 207c 0a7c 6f36 203d 2031 2e31 3120 2020 |.|o6 = 1.11 │ │ │ │ +000257e0: 2020 2020 7c0a 7c6f 3620 3d20 312e 3131 |.|o6 = 1.11 │ │ │ │ 000257f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025830: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025830: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00025840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025880: 207c 0a7c 6f36 203a 2052 5220 286f 6620 |.|o6 : RR (of │ │ │ │ -00025890: 7072 6563 6973 696f 6e20 3330 3029 2020 precision 300) │ │ │ │ -000258a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025880: 2020 2020 7c0a 7c6f 3620 3a20 5252 2028 |.|o6 : RR ( │ │ │ │ +00025890: 6f66 2070 7265 6369 7369 6f6e 2033 3030 of precision 300 │ │ │ │ +000258a0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 000258b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000258c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000258d0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000258d0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 000258e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000258f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025920: 2d2b 0a7c 6937 203a 2074 6f45 7874 6572 -+.|i7 : toExter │ │ │ │ -00025930: 6e61 6c53 7472 696e 6720 6e31 2020 2020 nalString n1 │ │ │ │ +00025920: 2d2d 2d2d 2b0a 7c69 3720 3a20 746f 4578 ----+.|i7 : toEx │ │ │ │ +00025930: 7465 726e 616c 5374 7269 6e67 206e 3120 ternalString n1 │ │ │ │ 00025940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025970: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025970: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00025980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000259a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000259b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000259c0: 207c 0a7c 6f37 203d 202e 3131 3039 3939 |.|o7 = .110999 │ │ │ │ -000259d0: 3939 3939 3939 3939 3939 3970 3532 6531 99999999999p52e1 │ │ │ │ -000259e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000259c0: 2020 2020 7c0a 7c6f 3720 3d20 2e31 3130 |.|o7 = .110 │ │ │ │ +000259d0: 3939 3939 3939 3939 3939 3939 3939 7035 99999999999999p5 │ │ │ │ +000259e0: 3265 3120 2020 2020 2020 2020 2020 2020 2e1 │ │ │ │ 000259f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025a10: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00025a10: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00025a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025a60: 2d2b 0a7c 6938 203a 2074 6f45 7874 6572 -+.|i8 : toExter │ │ │ │ -00025a70: 6e61 6c53 7472 696e 6720 6e32 2020 2020 nalString n2 │ │ │ │ +00025a60: 2d2d 2d2d 2b0a 7c69 3820 3a20 746f 4578 ----+.|i8 : toEx │ │ │ │ +00025a70: 7465 726e 616c 5374 7269 6e67 206e 3220 ternalString n2 │ │ │ │ 00025a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025ab0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025ab0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00025ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025b00: 207c 0a7c 6f38 203d 202e 3131 3130 3030 |.|o8 = .111000 │ │ │ │ +00025b00: 2020 2020 7c0a 7c6f 3820 3d20 2e31 3131 |.|o8 = .111 │ │ │ │ 00025b10: 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000 │ │ │ │ 00025b20: 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000 │ │ │ │ 00025b30: 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000 │ │ │ │ 00025b40: 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000 │ │ │ │ -00025b50: 307c 0a7c 2020 2020 2030 3030 3030 3030 0|.| 0000000 │ │ │ │ -00025b60: 3030 3030 3030 3030 3030 3030 3033 7033 00000000000003p3 │ │ │ │ -00025b70: 3030 6531 2020 2020 2020 2020 2020 2020 00e1 │ │ │ │ +00025b50: 3030 3030 7c0a 7c20 2020 2020 3030 3030 0000|.| 0000 │ │ │ │ +00025b60: 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000 │ │ │ │ +00025b70: 3370 3330 3065 3120 2020 2020 2020 2020 3p300e1 │ │ │ │ 00025b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025ba0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00025ba0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00025bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025bf0: 2d2b 0a0a 5761 7973 2074 6f20 7573 6520 -+..Ways to use │ │ │ │ -00025c00: 7661 6c75 6542 4d32 3a0a 3d3d 3d3d 3d3d valueBM2:.====== │ │ │ │ -00025c10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -00025c20: 0a20 202a 2022 7661 6c75 6542 4d32 2853 . * "valueBM2(S │ │ │ │ -00025c30: 7472 696e 6729 220a 0a46 6f72 2074 6865 tring)"..For the │ │ │ │ -00025c40: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -00025c50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00025c60: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -00025c70: 2076 616c 7565 424d 323a 2076 616c 7565 valueBM2: value │ │ │ │ -00025c80: 424d 322c 2069 7320 6120 2a6e 6f74 6520 BM2, is a *note │ │ │ │ -00025c90: 6d65 7468 6f64 2066 756e 6374 696f 6e20 method function │ │ │ │ -00025ca0: 7769 7468 206f 7074 696f 6e73 3a0a 284d with options:.(M │ │ │ │ -00025cb0: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ -00025cc0: 6f64 4675 6e63 7469 6f6e 5769 7468 4f70 odFunctionWithOp │ │ │ │ -00025cd0: 7469 6f6e 732c 2e0a 1f0a 4669 6c65 3a20 tions,....File: │ │ │ │ -00025ce0: 4265 7274 696e 692e 696e 666f 2c20 4e6f Bertini.info, No │ │ │ │ -00025cf0: 6465 3a20 5661 7269 6162 6c65 2067 726f de: Variable gro │ │ │ │ -00025d00: 7570 732c 204e 6578 743a 2077 7269 7465 ups, Next: write │ │ │ │ -00025d10: 5374 6172 7446 696c 652c 2050 7265 763a StartFile, Prev: │ │ │ │ -00025d20: 2076 616c 7565 424d 322c 2055 703a 2054 valueBM2, Up: T │ │ │ │ -00025d30: 6f70 0a0a 5661 7269 6162 6c65 2067 726f op..Variable gro │ │ │ │ -00025d40: 7570 7320 2d2d 2061 6e20 6f70 7469 6f6e ups -- an option │ │ │ │ -00025d50: 2074 6f20 6772 6f75 7020 7661 7269 6162 to group variab │ │ │ │ -00025d60: 6c65 7320 616e 6420 7573 6520 6d75 6c74 les and use mult │ │ │ │ -00025d70: 6968 6f6d 6f67 656e 656f 7573 2068 6f6d ihomogeneous hom │ │ │ │ -00025d80: 6f74 6f70 6965 730a 2a2a 2a2a 2a2a 2a2a otopies.******** │ │ │ │ +00025bf0: 2d2d 2d2d 2b0a 0a57 6179 7320 746f 2075 ----+..Ways to u │ │ │ │ +00025c00: 7365 2076 616c 7565 424d 323a 0a3d 3d3d se valueBM2:.=== │ │ │ │ +00025c10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00025c20: 3d3d 0a0a 2020 2a20 2276 616c 7565 424d ==.. * "valueBM │ │ │ │ +00025c30: 3228 5374 7269 6e67 2922 0a0a 466f 7220 2(String)"..For │ │ │ │ +00025c40: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ +00025c50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00025c60: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ +00025c70: 6f74 6520 7661 6c75 6542 4d32 3a20 7661 ote valueBM2: va │ │ │ │ +00025c80: 6c75 6542 4d32 2c20 6973 2061 202a 6e6f lueBM2, is a *no │ │ │ │ +00025c90: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ +00025ca0: 6f6e 2077 6974 6820 6f70 7469 6f6e 733a on with options: │ │ │ │ +00025cb0: 0a28 4d61 6361 756c 6179 3244 6f63 294d .(Macaulay2Doc)M │ │ │ │ +00025cc0: 6574 686f 6446 756e 6374 696f 6e57 6974 ethodFunctionWit │ │ │ │ +00025cd0: 684f 7074 696f 6e73 2c2e 0a1f 0a46 696c hOptions,....Fil │ │ │ │ +00025ce0: 653a 2042 6572 7469 6e69 2e69 6e66 6f2c e: Bertini.info, │ │ │ │ +00025cf0: 204e 6f64 653a 2056 6172 6961 626c 6520 Node: Variable │ │ │ │ +00025d00: 6772 6f75 7073 2c20 4e65 7874 3a20 7772 groups, Next: wr │ │ │ │ +00025d10: 6974 6553 7461 7274 4669 6c65 2c20 5072 iteStartFile, Pr │ │ │ │ +00025d20: 6576 3a20 7661 6c75 6542 4d32 2c20 5570 ev: valueBM2, Up │ │ │ │ +00025d30: 3a20 546f 700a 0a56 6172 6961 626c 6520 : Top..Variable │ │ │ │ +00025d40: 6772 6f75 7073 202d 2d20 616e 206f 7074 groups -- an opt │ │ │ │ +00025d50: 696f 6e20 746f 2067 726f 7570 2076 6172 ion to group var │ │ │ │ +00025d60: 6961 626c 6573 2061 6e64 2075 7365 206d iables and use m │ │ │ │ +00025d70: 756c 7469 686f 6d6f 6765 6e65 6f75 7320 ultihomogeneous │ │ │ │ +00025d80: 686f 6d6f 746f 7069 6573 0a2a 2a2a 2a2a homotopies.***** │ │ │ │ 00025d90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00025da0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00025db0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00025dc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00025dd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a47 726f ***********..Gro │ │ │ │ -00025de0: 7570 696e 6720 7468 6520 7661 7269 6162 uping the variab │ │ │ │ -00025df0: 6c65 7320 6861 7320 4265 7274 696e 6920 les has Bertini │ │ │ │ -00025e00: 736f 6c76 6520 7a65 726f 2064 696d 656e solve zero dimen │ │ │ │ -00025e10: 7369 6f6e 616c 2073 7973 7465 6d73 2075 sional systems u │ │ │ │ -00025e20: 7369 6e67 0a6d 756c 7469 686f 6d6f 6765 sing.multihomoge │ │ │ │ -00025e30: 6e65 6f75 7320 686f 6d6f 746f 7069 6573 neous homotopies │ │ │ │ -00025e40: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ +00025dd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +00025de0: 4772 6f75 7069 6e67 2074 6865 2076 6172 Grouping the var │ │ │ │ +00025df0: 6961 626c 6573 2068 6173 2042 6572 7469 iables has Berti │ │ │ │ +00025e00: 6e69 2073 6f6c 7665 207a 6572 6f20 6469 ni solve zero di │ │ │ │ +00025e10: 6d65 6e73 696f 6e61 6c20 7379 7374 656d mensional system │ │ │ │ +00025e20: 7320 7573 696e 670a 6d75 6c74 6968 6f6d s using.multihom │ │ │ │ +00025e30: 6f67 656e 656f 7573 2068 6f6d 6f74 6f70 ogeneous homotop │ │ │ │ +00025e40: 6965 732e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ies...+--------- │ │ │ │ 00025e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025e80: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ -00025e90: 2043 435b 782c 795d 3b20 2020 2020 2020 CC[x,y]; │ │ │ │ +00025e80: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ +00025e90: 5220 3d20 4343 5b78 2c79 5d3b 2020 2020 R = CC[x,y]; │ │ │ │ 00025ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025ec0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00025ec0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 00025ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00025f10: 6932 203a 2046 3120 3d20 7b78 2a79 2b31 i2 : F1 = {x*y+1 │ │ │ │ -00025f20: 2c32 2a78 2a79 2b33 2a78 2b34 2a79 2b35 ,2*x*y+3*x+4*y+5 │ │ │ │ -00025f30: 7d3b 2020 2020 2020 2020 2020 2020 2020 }; │ │ │ │ +00025f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025f10: 2b0a 7c69 3220 3a20 4631 203d 207b 782a +.|i2 : F1 = {x* │ │ │ │ +00025f20: 792b 312c 322a 782a 792b 332a 782b 342a y+1,2*x*y+3*x+4* │ │ │ │ +00025f30: 792b 357d 3b20 2020 2020 2020 2020 2020 y+5}; │ │ │ │ 00025f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025f50: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00025f50: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00025f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025f90: 2d2d 2d2d 2d2b 0a7c 6933 203a 2062 6572 -----+.|i3 : ber │ │ │ │ -00025fa0: 7469 6e69 5a65 726f 4469 6d53 6f6c 7665 tiniZeroDimSolve │ │ │ │ -00025fb0: 2846 312c 2041 6666 5661 7269 6162 6c65 (F1, AffVariable │ │ │ │ -00025fc0: 4772 6f75 703d 3e7b 7b78 7d2c 7b79 7d7d Group=>{{x},{y}} │ │ │ │ -00025fd0: 293b 2020 2020 2020 207c 0a2b 2d2d 2d2d ); |.+---- │ │ │ │ +00025f90: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ +00025fa0: 6265 7274 696e 695a 6572 6f44 696d 536f bertiniZeroDimSo │ │ │ │ +00025fb0: 6c76 6528 4631 2c20 4166 6656 6172 6961 lve(F1, AffVaria │ │ │ │ +00025fc0: 626c 6547 726f 7570 3d3e 7b7b 787d 2c7b bleGroup=>{{x},{ │ │ │ │ +00025fd0: 797d 7d29 3b20 2020 2020 2020 7c0a 2b2d y}}); |.+- │ │ │ │ 00025fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00026020: 6934 203a 2068 5220 3d43 435b 7830 2c78 i4 : hR =CC[x0,x │ │ │ │ -00026030: 312c 7930 2c79 315d 2020 2020 2020 2020 1,y0,y1] │ │ │ │ +00026010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026020: 2b0a 7c69 3420 3a20 6852 203d 4343 5b78 +.|i4 : hR =CC[x │ │ │ │ +00026030: 302c 7831 2c79 302c 7931 5d20 2020 2020 0,x1,y0,y1] │ │ │ │ 00026040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026060: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026060: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00026070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000260a0: 2020 2020 207c 0a7c 6f34 203d 2068 5220 |.|o4 = hR │ │ │ │ -000260b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000260a0: 2020 2020 2020 2020 7c0a 7c6f 3420 3d20 |.|o4 = │ │ │ │ +000260b0: 6852 2020 2020 2020 2020 2020 2020 2020 hR │ │ │ │ 000260c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000260d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000260e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000260e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 000260f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026120: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00026130: 6f34 203a 2050 6f6c 796e 6f6d 6961 6c52 o4 : PolynomialR │ │ │ │ -00026140: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ +00026120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026130: 7c0a 7c6f 3420 3a20 506f 6c79 6e6f 6d69 |.|o4 : Polynomi │ │ │ │ +00026140: 616c 5269 6e67 2020 2020 2020 2020 2020 alRing │ │ │ │ 00026150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026170: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00026170: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00026180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000261a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000261b0: 2d2d 2d2d 2d2b 0a7c 6935 203a 2046 3220 -----+.|i5 : F2 │ │ │ │ -000261c0: 3d20 7b78 312a 7931 2b78 302a 7930 2c32 = {x1*y1+x0*y0,2 │ │ │ │ -000261d0: 2a78 312a 7931 2b33 2a78 312a 7930 2b34 *x1*y1+3*x1*y0+4 │ │ │ │ -000261e0: 2a78 302a 7931 2b35 2a78 302a 7930 7d3b *x0*y1+5*x0*y0}; │ │ │ │ -000261f0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000261b0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 --------+.|i5 : │ │ │ │ +000261c0: 4632 203d 207b 7831 2a79 312b 7830 2a79 F2 = {x1*y1+x0*y │ │ │ │ +000261d0: 302c 322a 7831 2a79 312b 332a 7831 2a79 0,2*x1*y1+3*x1*y │ │ │ │ +000261e0: 302b 342a 7830 2a79 312b 352a 7830 2a79 0+4*x0*y1+5*x0*y │ │ │ │ +000261f0: 307d 3b20 2020 2020 2020 2020 7c0a 2b2d 0}; |.+- │ │ │ │ 00026200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00026240: 6936 203a 2062 6572 7469 6e69 5a65 726f i6 : bertiniZero │ │ │ │ -00026250: 4469 6d53 6f6c 7665 2846 322c 486f 6d56 DimSolve(F2,HomV │ │ │ │ -00026260: 6172 6961 626c 6547 726f 7570 3d3e 7b7b ariableGroup=>{{ │ │ │ │ -00026270: 7830 2c78 317d 2c7b 7930 2c79 317d 7d29 x0,x1},{y0,y1}}) │ │ │ │ -00026280: 3b7c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ;|.+------------ │ │ │ │ +00026230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026240: 2b0a 7c69 3620 3a20 6265 7274 696e 695a +.|i6 : bertiniZ │ │ │ │ +00026250: 6572 6f44 696d 536f 6c76 6528 4632 2c48 eroDimSolve(F2,H │ │ │ │ +00026260: 6f6d 5661 7269 6162 6c65 4772 6f75 703d omVariableGroup= │ │ │ │ +00026270: 3e7b 7b78 302c 7831 7d2c 7b79 302c 7931 >{{x0,x1},{y0,y1 │ │ │ │ +00026280: 7d7d 293b 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d }});|.+--------- │ │ │ │ 00026290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000262a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000262b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000262c0: 2d2d 2d2d 2d2b 0a1f 0a46 696c 653a 2042 -----+...File: B │ │ │ │ -000262d0: 6572 7469 6e69 2e69 6e66 6f2c 204e 6f64 ertini.info, Nod │ │ │ │ -000262e0: 653a 2077 7269 7465 5374 6172 7446 696c e: writeStartFil │ │ │ │ -000262f0: 652c 2050 7265 763a 2056 6172 6961 626c e, Prev: Variabl │ │ │ │ -00026300: 6520 6772 6f75 7073 2c20 5570 3a20 546f e groups, Up: To │ │ │ │ -00026310: 700a 0a77 7269 7465 5374 6172 7446 696c p..writeStartFil │ │ │ │ -00026320: 6520 2d2d 2057 7269 7465 7320 7468 6520 e -- Writes the │ │ │ │ -00026330: 6c69 7374 206f 6620 6c69 7374 206f 6620 list of list of │ │ │ │ -00026340: 636f 6f72 6469 6e61 7465 7320 746f 2061 coordinates to a │ │ │ │ -00026350: 2066 696c 6520 7468 6174 2042 6572 7469 file that Berti │ │ │ │ -00026360: 6e69 2063 616e 2072 6561 642e 0a2a 2a2a ni can read..*** │ │ │ │ +000262c0: 2d2d 2d2d 2d2d 2d2d 2b0a 1f0a 4669 6c65 --------+...File │ │ │ │ +000262d0: 3a20 4265 7274 696e 692e 696e 666f 2c20 : Bertini.info, │ │ │ │ +000262e0: 4e6f 6465 3a20 7772 6974 6553 7461 7274 Node: writeStart │ │ │ │ +000262f0: 4669 6c65 2c20 5072 6576 3a20 5661 7269 File, Prev: Vari │ │ │ │ +00026300: 6162 6c65 2067 726f 7570 732c 2055 703a able groups, Up: │ │ │ │ +00026310: 2054 6f70 0a0a 7772 6974 6553 7461 7274 Top..writeStart │ │ │ │ +00026320: 4669 6c65 202d 2d20 5772 6974 6573 2074 File -- Writes t │ │ │ │ +00026330: 6865 206c 6973 7420 6f66 206c 6973 7420 he list of list │ │ │ │ +00026340: 6f66 2063 6f6f 7264 696e 6174 6573 2074 of coordinates t │ │ │ │ +00026350: 6f20 6120 6669 6c65 2074 6861 7420 4265 o a file that Be │ │ │ │ +00026360: 7274 696e 6920 6361 6e20 7265 6164 2e0a rtini can read.. │ │ │ │ 00026370: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00026380: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00026390: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000263a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000263b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000263c0: 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 ******..Synopsis │ │ │ │ -000263d0: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 .========.. * U │ │ │ │ -000263e0: 7361 6765 3a20 0a20 2020 2020 2020 2077 sage: . w │ │ │ │ -000263f0: 7269 7465 5374 6172 7446 696c 6528 732c riteStartFile(s, │ │ │ │ -00026400: 7629 0a20 202a 2049 6e70 7574 733a 0a20 v). * Inputs:. │ │ │ │ -00026410: 2020 2020 202a 2073 2c20 6120 2a6e 6f74 * s, a *not │ │ │ │ -00026420: 6520 7374 7269 6e67 3a20 284d 6163 6175 e string: (Macau │ │ │ │ -00026430: 6c61 7932 446f 6329 5374 7269 6e67 2c2c lay2Doc)String,, │ │ │ │ -00026440: 2054 6865 2064 6972 6563 746f 7279 2077 The directory w │ │ │ │ -00026450: 6865 7265 2074 6865 0a20 2020 2020 2020 here the. │ │ │ │ -00026460: 2042 6572 7469 6e69 2066 696c 6520 7769 Bertini file wi │ │ │ │ -00026470: 6c6c 2062 6520 7772 6974 7465 6e2e 0a20 ll be written.. │ │ │ │ -00026480: 2020 2020 202a 2076 2c20 6120 2a6e 6f74 * v, a *not │ │ │ │ -00026490: 6520 6c69 7374 3a20 284d 6163 6175 6c61 e list: (Macaula │ │ │ │ -000264a0: 7932 446f 6329 4c69 7374 2c2c 2041 206c y2Doc)List,, A l │ │ │ │ -000264b0: 6973 7420 6f66 206c 6973 7420 6e75 6d62 ist of list numb │ │ │ │ -000264c0: 6572 7320 7468 6174 2077 696c 6c0a 2020 ers that will. │ │ │ │ -000264d0: 2020 2020 2020 6265 2077 7269 7474 656e be written │ │ │ │ -000264e0: 2074 6f20 7468 6520 6669 6c65 2e0a 2020 to the file.. │ │ │ │ -000264f0: 2a20 2a6e 6f74 6520 4f70 7469 6f6e 616c * *note Optional │ │ │ │ -00026500: 2069 6e70 7574 733a 2028 4d61 6361 756c inputs: (Macaul │ │ │ │ -00026510: 6179 3244 6f63 2975 7369 6e67 2066 756e ay2Doc)using fun │ │ │ │ -00026520: 6374 696f 6e73 2077 6974 6820 6f70 7469 ctions with opti │ │ │ │ -00026530: 6f6e 616c 2069 6e70 7574 732c 3a0a 2020 onal inputs,:. │ │ │ │ -00026540: 2020 2020 2a20 4d32 5072 6563 6973 696f * M2Precisio │ │ │ │ -00026550: 6e20 286d 6973 7369 6e67 2064 6f63 756d n (missing docum │ │ │ │ -00026560: 656e 7461 7469 6f6e 2920 3d3e 202e 2e2e entation) => ... │ │ │ │ -00026570: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -00026580: 3533 2c20 0a20 2020 2020 202a 204e 616d 53, . * Nam │ │ │ │ -00026590: 6553 7461 7274 4669 6c65 2028 6d69 7373 eStartFile (miss │ │ │ │ -000265a0: 696e 6720 646f 6375 6d65 6e74 6174 696f ing documentatio │ │ │ │ -000265b0: 6e29 203d 3e20 2e2e 2e2c 2064 6566 6175 n) => ..., defau │ │ │ │ -000265c0: 6c74 2076 616c 7565 2022 7374 6172 7422 lt value "start" │ │ │ │ -000265d0: 2c20 0a20 2020 2020 202a 2053 746f 7261 , . * Stora │ │ │ │ -000265e0: 6765 466f 6c64 6572 2028 6d69 7373 696e geFolder (missin │ │ │ │ -000265f0: 6720 646f 6375 6d65 6e74 6174 696f 6e29 g documentation) │ │ │ │ -00026600: 203d 3e20 2e2e 2e2c 2064 6566 6175 6c74 => ..., default │ │ │ │ -00026610: 2076 616c 7565 206e 756c 6c2c 200a 0a44 value null, ..D │ │ │ │ -00026620: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -00026630: 3d3d 3d3d 3d3d 0a0a 5468 6973 2066 756e ======..This fun │ │ │ │ -00026640: 6374 696f 6e20 6361 6e20 6265 2075 7365 ction can be use │ │ │ │ -00026650: 6420 746f 2077 7269 7465 2022 7374 6172 d to write "star │ │ │ │ -00026660: 7422 2066 696c 6573 2061 6e64 2061 6e79 t" files and any │ │ │ │ -00026670: 206f 7468 6572 2073 6f6c 7574 696f 6e20 other solution │ │ │ │ -00026680: 6669 6c65 0a75 7369 6e67 2074 6865 206f file.using the o │ │ │ │ -00026690: 7074 696f 6e20 4e61 6d65 5374 6172 7446 ption NameStartF │ │ │ │ -000266a0: 696c 653d 3e22 416e 794e 616d 6559 6f75 ile=>"AnyNameYou │ │ │ │ -000266b0: 5761 6e74 222e 0a0a 2b2d 2d2d 2d2d 2d2d Want"...+------- │ │ │ │ +000263c0: 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 796e 6f70 *********..Synop │ │ │ │ +000263d0: 7369 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 sis.========.. │ │ │ │ +000263e0: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ +000263f0: 2020 7772 6974 6553 7461 7274 4669 6c65 writeStartFile │ │ │ │ +00026400: 2873 2c76 290a 2020 2a20 496e 7075 7473 (s,v). * Inputs │ │ │ │ +00026410: 3a0a 2020 2020 2020 2a20 732c 2061 202a :. * s, a * │ │ │ │ +00026420: 6e6f 7465 2073 7472 696e 673a 2028 4d61 note string: (Ma │ │ │ │ +00026430: 6361 756c 6179 3244 6f63 2953 7472 696e caulay2Doc)Strin │ │ │ │ +00026440: 672c 2c20 5468 6520 6469 7265 6374 6f72 g,, The director │ │ │ │ +00026450: 7920 7768 6572 6520 7468 650a 2020 2020 y where the. │ │ │ │ +00026460: 2020 2020 4265 7274 696e 6920 6669 6c65 Bertini file │ │ │ │ +00026470: 2077 696c 6c20 6265 2077 7269 7474 656e will be written │ │ │ │ +00026480: 2e0a 2020 2020 2020 2a20 762c 2061 202a .. * v, a * │ │ │ │ +00026490: 6e6f 7465 206c 6973 743a 2028 4d61 6361 note list: (Maca │ │ │ │ +000264a0: 756c 6179 3244 6f63 294c 6973 742c 2c20 ulay2Doc)List,, │ │ │ │ +000264b0: 4120 6c69 7374 206f 6620 6c69 7374 206e A list of list n │ │ │ │ +000264c0: 756d 6265 7273 2074 6861 7420 7769 6c6c umbers that will │ │ │ │ +000264d0: 0a20 2020 2020 2020 2062 6520 7772 6974 . be writ │ │ │ │ +000264e0: 7465 6e20 746f 2074 6865 2066 696c 652e ten to the file. │ │ │ │ +000264f0: 0a20 202a 202a 6e6f 7465 204f 7074 696f . * *note Optio │ │ │ │ +00026500: 6e61 6c20 696e 7075 7473 3a20 284d 6163 nal inputs: (Mac │ │ │ │ +00026510: 6175 6c61 7932 446f 6329 7573 696e 6720 aulay2Doc)using │ │ │ │ +00026520: 6675 6e63 7469 6f6e 7320 7769 7468 206f functions with o │ │ │ │ +00026530: 7074 696f 6e61 6c20 696e 7075 7473 2c3a ptional inputs,: │ │ │ │ +00026540: 0a20 2020 2020 202a 204d 3250 7265 6369 . * M2Preci │ │ │ │ +00026550: 7369 6f6e 2028 6d69 7373 696e 6720 646f sion (missing do │ │ │ │ +00026560: 6375 6d65 6e74 6174 696f 6e29 203d 3e20 cumentation) => │ │ │ │ +00026570: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ +00026580: 7565 2035 332c 200a 2020 2020 2020 2a20 ue 53, . * │ │ │ │ +00026590: 4e61 6d65 5374 6172 7446 696c 6520 286d NameStartFile (m │ │ │ │ +000265a0: 6973 7369 6e67 2064 6f63 756d 656e 7461 issing documenta │ │ │ │ +000265b0: 7469 6f6e 2920 3d3e 202e 2e2e 2c20 6465 tion) => ..., de │ │ │ │ +000265c0: 6661 756c 7420 7661 6c75 6520 2273 7461 fault value "sta │ │ │ │ +000265d0: 7274 222c 200a 2020 2020 2020 2a20 5374 rt", . * St │ │ │ │ +000265e0: 6f72 6167 6546 6f6c 6465 7220 286d 6973 orageFolder (mis │ │ │ │ +000265f0: 7369 6e67 2064 6f63 756d 656e 7461 7469 sing documentati │ │ │ │ +00026600: 6f6e 2920 3d3e 202e 2e2e 2c20 6465 6661 on) => ..., defa │ │ │ │ +00026610: 756c 7420 7661 6c75 6520 6e75 6c6c 2c20 ult value null, │ │ │ │ +00026620: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +00026630: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 7320 =========..This │ │ │ │ +00026640: 6675 6e63 7469 6f6e 2063 616e 2062 6520 function can be │ │ │ │ +00026650: 7573 6564 2074 6f20 7772 6974 6520 2273 used to write "s │ │ │ │ +00026660: 7461 7274 2220 6669 6c65 7320 616e 6420 tart" files and │ │ │ │ +00026670: 616e 7920 6f74 6865 7220 736f 6c75 7469 any other soluti │ │ │ │ +00026680: 6f6e 2066 696c 650a 7573 696e 6720 7468 on file.using th │ │ │ │ +00026690: 6520 6f70 7469 6f6e 204e 616d 6553 7461 e option NameSta │ │ │ │ +000266a0: 7274 4669 6c65 3d3e 2241 6e79 4e61 6d65 rtFile=>"AnyName │ │ │ │ +000266b0: 596f 7557 616e 7422 2e0a 0a2b 2d2d 2d2d YouWant"...+---- │ │ │ │ 000266c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000266d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000266e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000266f0: 2d2b 0a7c 6931 203a 2063 6f6f 7264 696e -+.|i1 : coordin │ │ │ │ -00026700: 6174 6573 4f66 5477 6f50 6e74 733d 7b7b atesOfTwoPnts={{ │ │ │ │ -00026710: 312c 307d 2c7b 332c 347d 7d20 2020 2020 1,0},{3,4}} │ │ │ │ -00026720: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00026730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000266f0: 2d2d 2d2d 2b0a 7c69 3120 3a20 636f 6f72 ----+.|i1 : coor │ │ │ │ +00026700: 6469 6e61 7465 734f 6654 776f 506e 7473 dinatesOfTwoPnts │ │ │ │ +00026710: 3d7b 7b31 2c30 7d2c 7b33 2c34 7d7d 2020 ={{1,0},{3,4}} │ │ │ │ +00026720: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026730: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026760: 2020 2020 2020 207c 0a7c 6f31 203d 207b |.|o1 = { │ │ │ │ -00026770: 7b31 2c20 307d 2c20 7b33 2c20 347d 7d20 {1, 0}, {3, 4}} │ │ │ │ -00026780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026760: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ +00026770: 3d20 7b7b 312c 2030 7d2c 207b 332c 2034 = {{1, 0}, {3, 4 │ │ │ │ +00026780: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ 00026790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000267a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000267a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 000267b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000267c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000267d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000267e0: 6f31 203a 204c 6973 7420 2020 2020 2020 o1 : List │ │ │ │ +000267d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000267e0: 7c0a 7c6f 3120 3a20 4c69 7374 2020 2020 |.|o1 : List │ │ │ │ 000267f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026810: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00026810: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 00026820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026850: 2d2d 2d2b 0a7c 6932 203a 2077 7269 7465 ---+.|i2 : write │ │ │ │ -00026860: 5374 6172 7446 696c 6528 7374 6f72 6542 StartFile(storeB │ │ │ │ -00026870: 4d32 4669 6c65 732c 636f 6f72 6469 6e61 M2Files,coordina │ │ │ │ -00026880: 7465 734f 6654 776f 506e 7473 293b 7c0a tesOfTwoPnts);|. │ │ │ │ -00026890: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00026850: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 7772 ------+.|i2 : wr │ │ │ │ +00026860: 6974 6553 7461 7274 4669 6c65 2873 746f iteStartFile(sto │ │ │ │ +00026870: 7265 424d 3246 696c 6573 2c63 6f6f 7264 reBM2Files,coord │ │ │ │ +00026880: 696e 6174 6573 4f66 5477 6f50 6e74 7329 inatesOfTwoPnts) │ │ │ │ +00026890: 3b7c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ;|.+------------ │ │ │ │ 000268a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000268b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000268c0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5761 7973 ---------+..Ways │ │ │ │ -000268d0: 2074 6f20 7573 6520 7772 6974 6553 7461 to use writeSta │ │ │ │ -000268e0: 7274 4669 6c65 3a0a 3d3d 3d3d 3d3d 3d3d rtFile:.======== │ │ │ │ +000268c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 ------------+..W │ │ │ │ +000268d0: 6179 7320 746f 2075 7365 2077 7269 7465 ays to use write │ │ │ │ +000268e0: 5374 6172 7446 696c 653a 0a3d 3d3d 3d3d StartFile:.===== │ │ │ │ 000268f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00026900: 3d3d 3d0a 0a20 202a 2022 7772 6974 6553 ===.. * "writeS │ │ │ │ -00026910: 7461 7274 4669 6c65 2853 7472 696e 672c tartFile(String, │ │ │ │ -00026920: 4c69 7374 2922 0a0a 466f 7220 7468 6520 List)"..For the │ │ │ │ -00026930: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -00026940: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -00026950: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -00026960: 7772 6974 6553 7461 7274 4669 6c65 3a20 writeStartFile: │ │ │ │ -00026970: 7772 6974 6553 7461 7274 4669 6c65 2c20 writeStartFile, │ │ │ │ -00026980: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ -00026990: 6420 6675 6e63 7469 6f6e 0a77 6974 6820 d function.with │ │ │ │ -000269a0: 6f70 7469 6f6e 733a 2028 4d61 6361 756c options: (Macaul │ │ │ │ -000269b0: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ -000269c0: 6374 696f 6e57 6974 684f 7074 696f 6e73 ctionWithOptions │ │ │ │ -000269d0: 2c2e 0a1f 0a54 6167 2054 6162 6c65 3a0a ,....Tag Table:. │ │ │ │ -000269e0: 4e6f 6465 3a20 546f 707f 3232 330a 4e6f Node: Top.223.No │ │ │ │ -000269f0: 6465 3a20 4164 6469 7469 6f6e 616c 4669 de: AdditionalFi │ │ │ │ -00026a00: 6c65 737f 3137 3134 350a 4e6f 6465 3a20 les.17145.Node: │ │ │ │ -00026a10: 4227 436f 6e73 7461 6e74 737f 3137 3538 B'Constants.1758 │ │ │ │ -00026a20: 300a 4e6f 6465 3a20 4227 5365 6374 696f 0.Node: B'Sectio │ │ │ │ -00026a30: 6e7f 3139 3134 370a 4e6f 6465 3a20 4227 n.19147.Node: B' │ │ │ │ -00026a40: 536c 6963 657f 3139 3833 350a 4e6f 6465 Slice.19835.Node │ │ │ │ -00026a50: 3a20 4265 7274 696e 6920 696e 7075 7420 : Bertini input │ │ │ │ -00026a60: 636f 6e66 6967 7572 6174 696f 6e7f 3230 configuration.20 │ │ │ │ -00026a70: 3533 310a 4e6f 6465 3a20 4265 7274 696e 531.Node: Bertin │ │ │ │ -00026a80: 6920 696e 7075 7420 6669 6c65 2064 6563 i input file dec │ │ │ │ -00026a90: 6c61 7261 7469 6f6e 735f 636f 2072 616e larations_co ran │ │ │ │ -00026aa0: 646f 6d20 6e75 6d62 6572 737f 3235 3637 dom numbers.2567 │ │ │ │ -00026ab0: 320a 4e6f 6465 3a20 6265 7274 696e 6943 2.Node: bertiniC │ │ │ │ -00026ac0: 6f6d 706f 6e65 6e74 4d65 6d62 6572 5465 omponentMemberTe │ │ │ │ -00026ad0: 7374 7f32 3836 3636 0a4e 6f64 653a 2062 st.28666.Node: b │ │ │ │ -00026ae0: 6572 7469 6e69 5061 7261 6d65 7465 7248 ertiniParameterH │ │ │ │ -00026af0: 6f6d 6f74 6f70 797f 3331 3837 300a 4e6f omotopy.31870.No │ │ │ │ -00026b00: 6465 3a20 6265 7274 696e 6950 6f73 4469 de: bertiniPosDi │ │ │ │ -00026b10: 6d53 6f6c 7665 7f34 3633 3530 0a4e 6f64 mSolve.46350.Nod │ │ │ │ -00026b20: 653a 2062 6572 7469 6e69 5265 6669 6e65 e: bertiniRefine │ │ │ │ -00026b30: 536f 6c73 7f35 3337 3539 0a4e 6f64 653a Sols.53759.Node: │ │ │ │ -00026b40: 2062 6572 7469 6e69 5361 6d70 6c65 7f35 bertiniSample.5 │ │ │ │ -00026b50: 3838 3132 0a4e 6f64 653a 2062 6572 7469 8812.Node: berti │ │ │ │ -00026b60: 6e69 5472 6163 6b48 6f6d 6f74 6f70 797f niTrackHomotopy. │ │ │ │ -00026b70: 3634 3235 310a 4e6f 6465 3a20 6265 7274 64251.Node: bert │ │ │ │ -00026b80: 696e 6954 7261 636b 486f 6d6f 746f 7079 iniTrackHomotopy │ │ │ │ -00026b90: 5f6c 705f 7064 5f70 645f 7064 5f63 6d56 _lp_pd_pd_pd_cmV │ │ │ │ -00026ba0: 6572 626f 7365 3d3e 5f70 645f 7064 5f70 erbose=>_pd_pd_p │ │ │ │ -00026bb0: 645f 7270 7f37 3131 3736 0a4e 6f64 653a d_rp.71176.Node: │ │ │ │ -00026bc0: 2062 6572 7469 6e69 5573 6572 486f 6d6f bertiniUserHomo │ │ │ │ -00026bd0: 746f 7079 7f37 3439 3330 0a4e 6f64 653a topy.74930.Node: │ │ │ │ -00026be0: 2062 6572 7469 6e69 5a65 726f 4469 6d53 bertiniZeroDimS │ │ │ │ -00026bf0: 6f6c 7665 7f38 3231 3336 0a4e 6f64 653a olve.82136.Node: │ │ │ │ -00026c00: 2043 6f70 7942 2746 696c 657f 3837 3837 CopyB'File.8787 │ │ │ │ -00026c10: 360a 4e6f 6465 3a20 696d 706f 7274 496e 6.Node: importIn │ │ │ │ -00026c20: 6369 6465 6e63 654d 6174 7269 787f 3838 cidenceMatrix.88 │ │ │ │ -00026c30: 3535 300a 4e6f 6465 3a20 696d 706f 7274 550.Node: import │ │ │ │ -00026c40: 4d61 696e 4461 7461 4669 6c65 7f39 3231 MainDataFile.921 │ │ │ │ -00026c50: 3130 0a4e 6f64 653a 2069 6d70 6f72 7450 10.Node: importP │ │ │ │ -00026c60: 6172 616d 6574 6572 4669 6c65 7f39 3734 arameterFile.974 │ │ │ │ -00026c70: 3030 0a4e 6f64 653a 2069 6d70 6f72 7453 00.Node: importS │ │ │ │ -00026c80: 6f6c 7574 696f 6e73 4669 6c65 7f39 3934 olutionsFile.994 │ │ │ │ -00026c90: 3938 0a4e 6f64 653a 2049 7350 726f 6a65 98.Node: IsProje │ │ │ │ -00026ca0: 6374 6976 657f 3130 3434 3435 0a4e 6f64 ctive.104445.Nod │ │ │ │ -00026cb0: 653a 204d 6169 6e44 6174 6144 6972 6563 e: MainDataDirec │ │ │ │ -00026cc0: 746f 7279 7f31 3035 3739 370a 4e6f 6465 tory.105797.Node │ │ │ │ -00026cd0: 3a20 6d61 6b65 4227 496e 7075 7446 696c : makeB'InputFil │ │ │ │ -00026ce0: 657f 3130 3630 3637 0a4e 6f64 653a 206d e.106067.Node: m │ │ │ │ -00026cf0: 616b 6542 2753 6563 7469 6f6e 7f31 3132 akeB'Section.112 │ │ │ │ -00026d00: 3130 380a 4e6f 6465 3a20 6d61 6b65 4227 108.Node: makeB' │ │ │ │ -00026d10: 536c 6963 657f 3132 3431 3933 0a4e 6f64 Slice.124193.Nod │ │ │ │ -00026d20: 653a 206d 6f76 6542 2746 696c 657f 3133 e: moveB'File.13 │ │ │ │ -00026d30: 3337 3638 0a4e 6f64 653a 204e 756d 6265 3768.Node: Numbe │ │ │ │ -00026d40: 7254 6f42 2753 7472 696e 677f 3133 3933 rToB'String.1393 │ │ │ │ -00026d50: 3236 0a4e 6f64 653a 2050 6174 684c 6973 26.Node: PathLis │ │ │ │ -00026d60: 747f 3134 3133 3136 0a4e 6f64 653a 2072 t.141316.Node: r │ │ │ │ -00026d70: 6164 6963 616c 4c69 7374 7f31 3431 3731 adicalList.14171 │ │ │ │ -00026d80: 360a 4e6f 6465 3a20 7374 6f72 6542 4d32 6.Node: storeBM2 │ │ │ │ -00026d90: 4669 6c65 737f 3134 3334 3531 0a4e 6f64 Files.143451.Nod │ │ │ │ -00026da0: 653a 2073 7562 506f 696e 747f 3134 3336 e: subPoint.1436 │ │ │ │ -00026db0: 3937 0a4e 6f64 653a 2054 6f70 4469 7265 97.Node: TopDire │ │ │ │ -00026dc0: 6374 6f72 797f 3134 3834 3037 0a4e 6f64 ctory.148407.Nod │ │ │ │ -00026dd0: 653a 2055 7365 5265 6765 6e65 7261 7469 e: UseRegenerati │ │ │ │ -00026de0: 6f6e 7f31 3439 3239 360a 4e6f 6465 3a20 on.149296.Node: │ │ │ │ -00026df0: 7661 6c75 6542 4d32 7f31 3530 3135 350a valueBM2.150155. │ │ │ │ -00026e00: 4e6f 6465 3a20 5661 7269 6162 6c65 2067 Node: Variable g │ │ │ │ -00026e10: 726f 7570 737f 3135 3438 3430 0a4e 6f64 roups.154840.Nod │ │ │ │ -00026e20: 653a 2077 7269 7465 5374 6172 7446 696c e: writeStartFil │ │ │ │ -00026e30: 657f 3135 3633 3539 0a1f 0a45 6e64 2054 e.156359...End T │ │ │ │ -00026e40: 6167 2054 6162 6c65 0a ag Table. │ │ │ │ +00026900: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2277 7269 ======.. * "wri │ │ │ │ +00026910: 7465 5374 6172 7446 696c 6528 5374 7269 teStartFile(Stri │ │ │ │ +00026920: 6e67 2c4c 6973 7429 220a 0a46 6f72 2074 ng,List)"..For t │ │ │ │ +00026930: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +00026940: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00026950: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ +00026960: 7465 2077 7269 7465 5374 6172 7446 696c te writeStartFil │ │ │ │ +00026970: 653a 2077 7269 7465 5374 6172 7446 696c e: writeStartFil │ │ │ │ +00026980: 652c 2069 7320 6120 2a6e 6f74 6520 6d65 e, is a *note me │ │ │ │ +00026990: 7468 6f64 2066 756e 6374 696f 6e0a 7769 thod function.wi │ │ │ │ +000269a0: 7468 206f 7074 696f 6e73 3a20 284d 6163 th options: (Mac │ │ │ │ +000269b0: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ +000269c0: 4675 6e63 7469 6f6e 5769 7468 4f70 7469 FunctionWithOpti │ │ │ │ +000269d0: 6f6e 732c 2e0a 1f0a 5461 6720 5461 626c ons,....Tag Tabl │ │ │ │ +000269e0: 653a 0a4e 6f64 653a 2054 6f70 7f32 3233 e:.Node: Top.223 │ │ │ │ +000269f0: 0a4e 6f64 653a 2041 6464 6974 696f 6e61 .Node: Additiona │ │ │ │ +00026a00: 6c46 696c 6573 7f31 3731 3435 0a4e 6f64 lFiles.17145.Nod │ │ │ │ +00026a10: 653a 2042 2743 6f6e 7374 616e 7473 7f31 e: B'Constants.1 │ │ │ │ +00026a20: 3735 3830 0a4e 6f64 653a 2042 2753 6563 7580.Node: B'Sec │ │ │ │ +00026a30: 7469 6f6e 7f31 3931 3437 0a4e 6f64 653a tion.19147.Node: │ │ │ │ +00026a40: 2042 2753 6c69 6365 7f31 3938 3335 0a4e B'Slice.19835.N │ │ │ │ +00026a50: 6f64 653a 2042 6572 7469 6e69 2069 6e70 ode: Bertini inp │ │ │ │ +00026a60: 7574 2063 6f6e 6669 6775 7261 7469 6f6e ut configuration │ │ │ │ +00026a70: 7f32 3035 3331 0a4e 6f64 653a 2042 6572 .20531.Node: Ber │ │ │ │ +00026a80: 7469 6e69 2069 6e70 7574 2066 696c 6520 tini input file │ │ │ │ +00026a90: 6465 636c 6172 6174 696f 6e73 5f63 6f20 declarations_co │ │ │ │ +00026aa0: 7261 6e64 6f6d 206e 756d 6265 7273 7f32 random numbers.2 │ │ │ │ +00026ab0: 3536 3732 0a4e 6f64 653a 2062 6572 7469 5672.Node: berti │ │ │ │ +00026ac0: 6e69 436f 6d70 6f6e 656e 744d 656d 6265 niComponentMembe │ │ │ │ +00026ad0: 7254 6573 747f 3238 3636 360a 4e6f 6465 rTest.28666.Node │ │ │ │ +00026ae0: 3a20 6265 7274 696e 6950 6172 616d 6574 : bertiniParamet │ │ │ │ +00026af0: 6572 486f 6d6f 746f 7079 7f33 3138 3730 erHomotopy.31870 │ │ │ │ +00026b00: 0a4e 6f64 653a 2062 6572 7469 6e69 506f .Node: bertiniPo │ │ │ │ +00026b10: 7344 696d 536f 6c76 657f 3436 3335 310a sDimSolve.46351. │ │ │ │ +00026b20: 4e6f 6465 3a20 6265 7274 696e 6952 6566 Node: bertiniRef │ │ │ │ +00026b30: 696e 6553 6f6c 737f 3533 3736 300a 4e6f ineSols.53760.No │ │ │ │ +00026b40: 6465 3a20 6265 7274 696e 6953 616d 706c de: bertiniSampl │ │ │ │ +00026b50: 657f 3538 3831 330a 4e6f 6465 3a20 6265 e.58813.Node: be │ │ │ │ +00026b60: 7274 696e 6954 7261 636b 486f 6d6f 746f rtiniTrackHomoto │ │ │ │ +00026b70: 7079 7f36 3432 3532 0a4e 6f64 653a 2062 py.64252.Node: b │ │ │ │ +00026b80: 6572 7469 6e69 5472 6163 6b48 6f6d 6f74 ertiniTrackHomot │ │ │ │ +00026b90: 6f70 795f 6c70 5f70 645f 7064 5f70 645f opy_lp_pd_pd_pd_ │ │ │ │ +00026ba0: 636d 5665 7262 6f73 653d 3e5f 7064 5f70 cmVerbose=>_pd_p │ │ │ │ +00026bb0: 645f 7064 5f72 707f 3731 3137 370a 4e6f d_pd_rp.71177.No │ │ │ │ +00026bc0: 6465 3a20 6265 7274 696e 6955 7365 7248 de: bertiniUserH │ │ │ │ +00026bd0: 6f6d 6f74 6f70 797f 3734 3933 310a 4e6f omotopy.74931.No │ │ │ │ +00026be0: 6465 3a20 6265 7274 696e 695a 6572 6f44 de: bertiniZeroD │ │ │ │ +00026bf0: 696d 536f 6c76 657f 3832 3133 380a 4e6f imSolve.82138.No │ │ │ │ +00026c00: 6465 3a20 436f 7079 4227 4669 6c65 7f38 de: CopyB'File.8 │ │ │ │ +00026c10: 3738 3739 0a4e 6f64 653a 2069 6d70 6f72 7879.Node: impor │ │ │ │ +00026c20: 7449 6e63 6964 656e 6365 4d61 7472 6978 tIncidenceMatrix │ │ │ │ +00026c30: 7f38 3835 3533 0a4e 6f64 653a 2069 6d70 .88553.Node: imp │ │ │ │ +00026c40: 6f72 744d 6169 6e44 6174 6146 696c 657f ortMainDataFile. │ │ │ │ +00026c50: 3932 3131 330a 4e6f 6465 3a20 696d 706f 92113.Node: impo │ │ │ │ +00026c60: 7274 5061 7261 6d65 7465 7246 696c 657f rtParameterFile. │ │ │ │ +00026c70: 3937 3430 330a 4e6f 6465 3a20 696d 706f 97403.Node: impo │ │ │ │ +00026c80: 7274 536f 6c75 7469 6f6e 7346 696c 657f rtSolutionsFile. │ │ │ │ +00026c90: 3939 3530 310a 4e6f 6465 3a20 4973 5072 99501.Node: IsPr │ │ │ │ +00026ca0: 6f6a 6563 7469 7665 7f31 3034 3434 380a ojective.104448. │ │ │ │ +00026cb0: 4e6f 6465 3a20 4d61 696e 4461 7461 4469 Node: MainDataDi │ │ │ │ +00026cc0: 7265 6374 6f72 797f 3130 3538 3030 0a4e rectory.105800.N │ │ │ │ +00026cd0: 6f64 653a 206d 616b 6542 2749 6e70 7574 ode: makeB'Input │ │ │ │ +00026ce0: 4669 6c65 7f31 3036 3037 300a 4e6f 6465 File.106070.Node │ │ │ │ +00026cf0: 3a20 6d61 6b65 4227 5365 6374 696f 6e7f : makeB'Section. │ │ │ │ +00026d00: 3131 3231 3131 0a4e 6f64 653a 206d 616b 112111.Node: mak │ │ │ │ +00026d10: 6542 2753 6c69 6365 7f31 3234 3139 360a eB'Slice.124196. │ │ │ │ +00026d20: 4e6f 6465 3a20 6d6f 7665 4227 4669 6c65 Node: moveB'File │ │ │ │ +00026d30: 7f31 3333 3737 310a 4e6f 6465 3a20 4e75 .133771.Node: Nu │ │ │ │ +00026d40: 6d62 6572 546f 4227 5374 7269 6e67 7f31 mberToB'String.1 │ │ │ │ +00026d50: 3339 3332 390a 4e6f 6465 3a20 5061 7468 39329.Node: Path │ │ │ │ +00026d60: 4c69 7374 7f31 3431 3331 390a 4e6f 6465 List.141319.Node │ │ │ │ +00026d70: 3a20 7261 6469 6361 6c4c 6973 747f 3134 : radicalList.14 │ │ │ │ +00026d80: 3137 3139 0a4e 6f64 653a 2073 746f 7265 1719.Node: store │ │ │ │ +00026d90: 424d 3246 696c 6573 7f31 3433 3435 340a BM2Files.143454. │ │ │ │ +00026da0: 4e6f 6465 3a20 7375 6250 6f69 6e74 7f31 Node: subPoint.1 │ │ │ │ +00026db0: 3433 3730 300a 4e6f 6465 3a20 546f 7044 43700.Node: TopD │ │ │ │ +00026dc0: 6972 6563 746f 7279 7f31 3438 3431 300a irectory.148410. │ │ │ │ +00026dd0: 4e6f 6465 3a20 5573 6552 6567 656e 6572 Node: UseRegener │ │ │ │ +00026de0: 6174 696f 6e7f 3134 3932 3939 0a4e 6f64 ation.149299.Nod │ │ │ │ +00026df0: 653a 2076 616c 7565 424d 327f 3135 3031 e: valueBM2.1501 │ │ │ │ +00026e00: 3538 0a4e 6f64 653a 2056 6172 6961 626c 58.Node: Variabl │ │ │ │ +00026e10: 6520 6772 6f75 7073 7f31 3534 3834 330a e groups.154843. │ │ │ │ +00026e20: 4e6f 6465 3a20 7772 6974 6553 7461 7274 Node: writeStart │ │ │ │ +00026e30: 4669 6c65 7f31 3536 3336 320a 1f0a 456e File.156362...En │ │ │ │ +00026e40: 6420 5461 6720 5461 626c 650a d Tag Table. │ │ ├── ./usr/share/info/BettiCharacters.info.gz │ │ │ ├── BettiCharacters.info │ │ │ │ @@ -12411,15 +12411,15 @@ │ │ │ │ 000307a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000307b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 000307c0: 6939 203a 2065 6c61 7073 6564 5469 6d65 i9 : elapsedTime │ │ │ │ 000307d0: 2063 203d 2063 6861 7261 6374 6572 2041 c = character A │ │ │ │ 000307e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000307f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030800: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00030810: 202d 2d20 2e34 3434 3233 3273 2065 6c61 -- .444232s ela │ │ │ │ +00030810: 202d 2d20 312e 3037 3431 3573 2065 6c61 -- 1.07415s ela │ │ │ │ 00030820: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 00030830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030850: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00030860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -13607,15 +13607,15 @@ │ │ │ │ 00035260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035280: 2d2b 0a7c 6937 203a 2065 6c61 7073 6564 -+.|i7 : elapsed │ │ │ │ 00035290: 5469 6d65 2063 3d63 6861 7261 6374 6572 Time c=character │ │ │ │ 000352a0: 2041 2020 2020 2020 2020 2020 2020 2020 A │ │ │ │ 000352b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000352c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000352d0: 207c 0a7c 202d 2d20 2e35 3132 3534 3773 |.| -- .512547s │ │ │ │ +000352d0: 207c 0a7c 202d 2d20 2e38 3734 3533 3673 |.| -- .874536s │ │ │ │ 000352e0: 2065 6c61 7073 6564 2020 2020 2020 2020 elapsed │ │ │ │ 000352f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035320: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00035330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -15025,16 +15025,16 @@ │ │ │ │ 0003ab00: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 0003ab10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ab20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ab30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 0003ab40: 7c69 3230 203a 2065 6c61 7073 6564 5469 |i20 : elapsedTi │ │ │ │ 0003ab50: 6d65 2061 3120 3d20 6368 6172 6163 7465 me a1 = characte │ │ │ │ 0003ab60: 7220 4131 2020 2020 2020 2020 2020 2020 r A1 │ │ │ │ -0003ab70: 2020 207c 0a7c 202d 2d20 2e38 3535 3735 |.| -- .85575 │ │ │ │ -0003ab80: 3373 2065 6c61 7073 6564 2020 2020 2020 3s elapsed │ │ │ │ +0003ab70: 2020 207c 0a7c 202d 2d20 312e 3235 3936 |.| -- 1.2596 │ │ │ │ +0003ab80: 3173 2065 6c61 7073 6564 2020 2020 2020 1s elapsed │ │ │ │ 0003ab90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003aba0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 0003abb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003abc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003abd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0003abe0: 6f32 3020 3d20 4368 6172 6163 7465 7220 o20 = Character │ │ │ │ 0003abf0: 6f76 6572 2052 2020 2020 2020 2020 2020 over R │ │ │ │ @@ -15065,15 +15065,15 @@ │ │ │ │ 0003ad80: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0003ad90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ada0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003adb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3231 ----------+.|i21 │ │ │ │ 0003adc0: 203a 2065 6c61 7073 6564 5469 6d65 2061 : elapsedTime a │ │ │ │ 0003add0: 3220 3d20 6368 6172 6163 7465 7220 4132 2 = character A2 │ │ │ │ 0003ade0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0003adf0: 0a7c 202d 2d20 3337 2e38 3630 3173 2065 .| -- 37.8601s e │ │ │ │ +0003adf0: 0a7c 202d 2d20 3538 2e31 3132 3373 2065 .| -- 58.1123s e │ │ │ │ 0003ae00: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ 0003ae10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ae20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 0003ae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ae50: 2020 2020 2020 2020 207c 0a7c 6f32 3120 |.|o21 │ │ │ │ 0003ae60: 3d20 4368 6172 6163 7465 7220 6f76 6572 = Character over │ │ │ │ @@ -15523,15 +15523,15 @@ │ │ │ │ 0003ca20: 203a 2041 6374 696f 6e4f 6e47 7261 6465 : ActionOnGrade │ │ │ │ 0003ca30: 644d 6f64 756c 6520 2020 2020 2020 2020 dModule │ │ │ │ 0003ca40: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 0003ca50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ca60: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3332 ----------+.|i32 │ │ │ │ 0003ca70: 203a 2065 6c61 7073 6564 5469 6d65 2062 : elapsedTime b │ │ │ │ 0003ca80: 203d 2063 6861 7261 6374 6572 2842 2c32 = character(B,2 │ │ │ │ -0003ca90: 3129 7c0a 7c20 2d2d 2031 372e 3233 3337 1)|.| -- 17.2337 │ │ │ │ +0003ca90: 3129 7c0a 7c20 2d2d 2032 332e 3039 3639 1)|.| -- 23.0969 │ │ │ │ 0003caa0: 7320 656c 6170 7365 6420 2020 2020 2020 s elapsed │ │ │ │ 0003cab0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 0003cac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cae0: 2020 7c0a 7c6f 3332 203d 2043 6861 7261 |.|o32 = Chara │ │ │ │ 0003caf0: 6374 6572 206f 7665 7220 5220 2020 2020 cter over R │ │ │ │ 0003cb00: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ ├── ./usr/share/info/Bruns.info.gz │ │ │ ├── Bruns.info │ │ │ │ @@ -1019,17 +1019,17 @@ │ │ │ │ 00003fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 00003fc0: 6932 3320 3a20 7469 6d65 206a 3d62 7275 i23 : time j=bru │ │ │ │ 00003fd0: 6e73 2046 2e64 645f 333b 2020 2020 2020 ns F.dd_3; │ │ │ │ 00003fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004000: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00004010: 202d 2d20 7573 6564 2030 2e31 3430 3634 -- used 0.14064 │ │ │ │ -00004020: 3473 2028 6370 7529 3b20 302e 3133 3931 4s (cpu); 0.1391 │ │ │ │ -00004030: 3938 7320 2874 6872 6561 6429 3b20 3073 98s (thread); 0s │ │ │ │ +00004010: 202d 2d20 7573 6564 2030 2e33 3038 3030 -- used 0.30800 │ │ │ │ +00004020: 3273 2028 6370 7529 3b20 302e 3331 3039 2s (cpu); 0.3109 │ │ │ │ +00004030: 3136 7320 2874 6872 6561 6429 3b20 3073 16s (thread); 0s │ │ │ │ 00004040: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00004050: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00004060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000040a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ ├── ./usr/share/info/CellularResolutions.info.gz │ │ │ ├── CellularResolutions.info │ │ │ │ @@ -2149,63 +2149,63 @@ │ │ │ │ 00008640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008650: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00008660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008690: 207c 0a7c 6f38 203d 2052 656c 6174 696f |.|o8 = Relatio │ │ │ │ 000086a0: 6e20 4d61 7472 6978 3a20 7c20 3120 3020 n Matrix: | 1 0 │ │ │ │ -000086b0: 3020 3020 3020 3120 3020 3120 3020 3020 0 0 0 1 0 1 0 0 │ │ │ │ -000086c0: 3120 3020 3020 3020 3020 3120 3120 7c7c 1 0 0 0 0 1 1 || │ │ │ │ +000086b0: 3020 3020 3020 3120 3020 3020 3120 3020 0 0 0 1 0 0 1 0 │ │ │ │ +000086c0: 3120 3020 3020 3020 3120 3020 3120 7c7c 1 0 0 0 1 0 1 || │ │ │ │ 000086d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000086e0: 2020 2020 2020 2020 7c20 3020 3120 3020 | 0 1 0 │ │ │ │ -000086f0: 3020 3020 3020 3120 3020 3120 3120 3120 0 0 0 1 0 1 1 1 │ │ │ │ -00008700: 3020 3020 3120 3120 3120 3120 7c7c 0a7c 0 0 1 1 1 1 ||.| │ │ │ │ +000086f0: 3020 3020 3020 3120 3020 3120 3020 3020 0 0 0 1 0 1 0 0 │ │ │ │ +00008700: 3120 3020 3020 3020 3120 3120 7c7c 0a7c 1 0 0 0 1 1 ||.| │ │ │ │ 00008710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008720: 2020 2020 2020 7c20 3020 3020 3120 3020 | 0 0 1 0 │ │ │ │ -00008730: 3020 3020 3120 3020 3020 3020 3020 3120 0 0 1 0 0 0 0 1 │ │ │ │ -00008740: 3120 3120 3120 3020 3020 7c7c 0a7c 2020 1 1 1 0 0 ||.| │ │ │ │ +00008730: 3020 3020 3020 3120 3020 3120 3120 3120 0 0 0 1 0 1 1 1 │ │ │ │ +00008740: 3020 3120 3120 3120 3120 7c7c 0a7c 2020 0 1 1 1 1 ||.| │ │ │ │ 00008750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008760: 2020 2020 7c20 3020 3020 3020 3120 3020 | 0 0 0 1 0 │ │ │ │ -00008770: 3120 3020 3020 3120 3020 3020 3120 3020 1 0 0 1 0 0 1 0 │ │ │ │ -00008780: 3120 3020 3120 3020 7c7c 0a7c 2020 2020 1 0 1 0 ||.| │ │ │ │ +00008770: 3120 3020 3120 3020 3020 3020 3020 3120 1 0 1 0 0 0 0 1 │ │ │ │ +00008780: 3120 3120 3020 3020 7c7c 0a7c 2020 2020 1 1 0 0 ||.| │ │ │ │ 00008790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000087a0: 2020 7c20 3020 3020 3020 3020 3120 3020 | 0 0 0 0 1 0 │ │ │ │ -000087b0: 3020 3120 3020 3120 3020 3020 3120 3020 0 1 0 1 0 0 1 0 │ │ │ │ -000087c0: 3120 3020 3120 7c7c 0a7c 2020 2020 2020 1 0 1 ||.| │ │ │ │ +000087b0: 3120 3020 3020 3120 3020 3020 3120 3120 1 0 0 1 0 0 1 1 │ │ │ │ +000087c0: 3020 3120 3020 7c7c 0a7c 2020 2020 2020 0 1 0 ||.| │ │ │ │ 000087d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000087e0: 7c20 3020 3020 3020 3020 3020 3120 3020 | 0 0 0 0 0 1 0 │ │ │ │ -000087f0: 3020 3020 3020 3020 3020 3020 3020 3020 0 0 0 0 0 0 0 0 │ │ │ │ -00008800: 3120 3020 7c7c 0a7c 2020 2020 2020 2020 1 0 ||.| │ │ │ │ +000087f0: 3020 3020 3020 3020 3020 3020 3020 3120 0 0 0 0 0 0 0 1 │ │ │ │ +00008800: 3020 3020 7c7c 0a7c 2020 2020 2020 2020 0 0 ||.| │ │ │ │ 00008810: 2020 2020 2020 2020 2020 2020 2020 7c20 | │ │ │ │ 00008820: 3020 3020 3020 3020 3020 3020 3120 3020 0 0 0 0 0 0 1 0 │ │ │ │ -00008830: 3020 3020 3020 3020 3020 3120 3120 3020 0 0 0 0 0 1 1 0 │ │ │ │ +00008830: 3020 3020 3020 3020 3020 3020 3020 3120 0 0 0 0 0 0 0 1 │ │ │ │ 00008840: 3020 7c7c 0a7c 2020 2020 2020 2020 2020 0 ||.| │ │ │ │ 00008850: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ 00008860: 3020 3020 3020 3020 3020 3020 3120 3020 0 0 0 0 0 0 1 0 │ │ │ │ -00008870: 3020 3020 3020 3020 3020 3020 3020 3120 0 0 0 0 0 0 0 1 │ │ │ │ +00008870: 3020 3020 3020 3020 3120 3120 3020 3020 0 0 0 0 1 1 0 0 │ │ │ │ 00008880: 7c7c 0a7c 2020 2020 2020 2020 2020 2020 ||.| │ │ │ │ 00008890: 2020 2020 2020 2020 2020 7c20 3020 3020 | 0 0 │ │ │ │ 000088a0: 3020 3020 3020 3020 3020 3020 3120 3020 0 0 0 0 0 0 1 0 │ │ │ │ -000088b0: 3020 3020 3020 3120 3020 3120 3020 7c7c 0 0 0 1 0 1 0 || │ │ │ │ +000088b0: 3020 3020 3020 3020 3020 3020 3120 7c7c 0 0 0 0 0 0 1 || │ │ │ │ 000088c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000088d0: 2020 2020 2020 2020 7c20 3020 3020 3020 | 0 0 0 │ │ │ │ 000088e0: 3020 3020 3020 3020 3020 3020 3120 3020 0 0 0 0 0 0 1 0 │ │ │ │ -000088f0: 3020 3020 3020 3120 3020 3120 7c7c 0a7c 0 0 0 1 0 1 ||.| │ │ │ │ +000088f0: 3020 3020 3120 3020 3120 3020 7c7c 0a7c 0 0 1 0 1 0 ||.| │ │ │ │ 00008900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008910: 2020 2020 2020 7c20 3020 3020 3020 3020 | 0 0 0 0 │ │ │ │ 00008920: 3020 3020 3020 3020 3020 3020 3120 3020 0 0 0 0 0 0 1 0 │ │ │ │ -00008930: 3020 3020 3020 3120 3120 7c7c 0a7c 2020 0 0 0 1 1 ||.| │ │ │ │ +00008930: 3020 3020 3120 3020 3120 7c7c 0a7c 2020 0 0 1 0 1 ||.| │ │ │ │ 00008940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008950: 2020 2020 7c20 3020 3020 3020 3020 3020 | 0 0 0 0 0 │ │ │ │ 00008960: 3020 3020 3020 3020 3020 3020 3120 3020 0 0 0 0 0 0 1 0 │ │ │ │ -00008970: 3120 3020 3020 3020 7c7c 0a7c 2020 2020 1 0 0 0 ||.| │ │ │ │ +00008970: 3020 3020 3120 3120 7c7c 0a7c 2020 2020 0 0 1 1 ||.| │ │ │ │ 00008980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008990: 2020 7c20 3020 3020 3020 3020 3020 3020 | 0 0 0 0 0 0 │ │ │ │ -000089a0: 3020 3020 3020 3020 3020 3020 3120 3020 0 0 0 0 0 0 1 0 │ │ │ │ -000089b0: 3120 3020 3020 7c7c 0a7c 2020 2020 2020 1 0 0 ||.| │ │ │ │ +000089a0: 3020 3020 3020 3020 3020 3020 3120 3120 0 0 0 0 0 0 1 1 │ │ │ │ +000089b0: 3020 3020 3020 7c7c 0a7c 2020 2020 2020 0 0 0 ||.| │ │ │ │ 000089c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000089d0: 7c20 3020 3020 3020 3020 3020 3020 3020 | 0 0 0 0 0 0 0 │ │ │ │ 000089e0: 3020 3020 3020 3020 3020 3020 3120 3020 0 0 0 0 0 0 1 0 │ │ │ │ 000089f0: 3020 3020 7c7c 0a7c 2020 2020 2020 2020 0 0 ||.| │ │ │ │ 00008a00: 2020 2020 2020 2020 2020 2020 2020 7c20 | │ │ │ │ 00008a10: 3020 3020 3020 3020 3020 3020 3020 3020 0 0 0 0 0 0 0 0 │ │ │ │ 00008a20: 3020 3020 3020 3020 3020 3020 3120 3020 0 0 0 0 0 0 1 0 │ │ │ │ @@ -2559,17 +2559,17 @@ │ │ │ │ 00009fe0: 6443 292f 6365 6c6c 4c61 6265 6c20 2020 dC)/cellLabel │ │ │ │ 00009ff0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0000a000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a030: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0000a040: 7c6f 3130 203d 207b 7b78 2a77 2c20 782a |o10 = {{x*w, x* │ │ │ │ -0000a050: 792c 2079 2a7a 2c20 792a 7a7d 2c20 7b79 y, y*z, y*z}, {y │ │ │ │ -0000a060: 2a7a 2c20 782a 792a 7a2c 2078 2a79 2a7a *z, x*y*z, x*y*z │ │ │ │ -0000a070: 2a77 2c20 782a 792a 777d 2c20 7b78 2a79 *w, x*y*w}, {x*y │ │ │ │ +0000a050: 792c 2079 2a7a 2c20 792a 7a7d 2c20 7b78 y, y*z, y*z}, {x │ │ │ │ +0000a060: 2a79 2a77 2c20 792a 7a2c 2078 2a79 2a7a *y*w, y*z, x*y*z │ │ │ │ +0000a070: 2c20 782a 792a 7a2a 777d 2c20 7b78 2a79 , x*y*z*w}, {x*y │ │ │ │ 0000a080: 2a7a 2a77 7d7d 7c0a 7c20 2020 2020 2020 *z*w}}|.| │ │ │ │ 0000a090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a0c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0000a0d0: 7c6f 3130 203a 204c 6973 7420 2020 2020 |o10 : List │ │ │ │ 0000a0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -2790,33 +2790,33 @@ │ │ │ │ 0000ae50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 0000ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ae90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aea0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 0000aeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000aec0: 2020 2033 2032 2020 2032 2033 2020 2020 3 2 2 3 │ │ │ │ -0000aed0: 2034 2020 2035 2020 2035 2020 2034 2020 4 5 5 4 │ │ │ │ +0000aec0: 2020 2035 2020 2034 2020 2020 3320 3220 5 4 3 2 │ │ │ │ +0000aed0: 2020 3220 3320 2020 2020 3420 2020 3520 2 3 4 5 │ │ │ │ 0000aee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aef0: 2020 2020 2020 2020 2020 7c0a 7c6f 3820 |.|o8 │ │ │ │ 0000af00: 3d20 4861 7368 5461 626c 657b 3020 3d3e = HashTable{0 => │ │ │ │ -0000af10: 207b 7820 7920 2c20 7820 7920 2c20 782a {x y , x y , x* │ │ │ │ -0000af20: 7920 2c20 7820 2c20 7820 2c20 7820 797d y , x , x , x y} │ │ │ │ +0000af10: 207b 7820 2c20 7820 792c 2078 2079 202c {x , x y, x y , │ │ │ │ +0000af20: 2078 2079 202c 2078 2a79 202c 2078 207d x y , x*y , x } │ │ │ │ 0000af30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000af40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 0000af50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000af60: 2020 2035 2034 2020 2035 2020 2020 3520 5 4 5 5 │ │ │ │ -0000af70: 3220 2020 3520 3320 2020 3520 3420 2020 2 5 3 5 4 │ │ │ │ -0000af80: 3420 3220 2020 3420 3420 2020 3520 2020 4 2 4 4 5 │ │ │ │ -0000af90: 2033 2033 2020 2020 2020 7c0a 7c20 2020 3 3 |.| │ │ │ │ +0000af60: 2020 2035 2032 2020 2035 2033 2020 2035 5 2 5 3 5 │ │ │ │ +0000af70: 2034 2020 2034 2032 2020 2034 2034 2020 4 4 2 4 4 │ │ │ │ +0000af80: 2035 2020 2020 3320 3320 2020 3520 3220 5 3 3 5 2 │ │ │ │ +0000af90: 2020 3220 3420 2020 2020 7c0a 7c20 2020 2 4 |.| │ │ │ │ 0000afa0: 2020 2020 2020 2020 2020 2020 3120 3d3e 1 => │ │ │ │ -0000afb0: 207b 7820 7920 2c20 7820 792c 2078 2079 {x y , x y, x y │ │ │ │ -0000afc0: 202c 2078 2079 202c 2078 2079 202c 2078 , x y , x y , x │ │ │ │ -0000afd0: 2079 202c 2078 2079 202c 2078 2079 2c20 y , x y , x y, │ │ │ │ -0000afe0: 7820 7920 2c20 2020 2020 7c0a 7c20 2020 x y , |.| │ │ │ │ +0000afb0: 207b 7820 7920 2c20 7820 7920 2c20 7820 {x y , x y , x │ │ │ │ +0000afc0: 7920 2c20 7820 7920 2c20 7820 7920 2c20 y , x y , x y , │ │ │ │ +0000afd0: 7820 792c 2078 2079 202c 2078 2079 202c x y, x y , x y , │ │ │ │ +0000afe0: 2078 2079 202c 2020 2020 7c0a 7c20 2020 x y , |.| │ │ │ │ 0000aff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b000: 2020 2035 2032 2020 2035 2034 2020 2035 5 2 5 4 5 │ │ │ │ 0000b010: 2033 2020 2035 2034 2020 2035 2032 2020 3 5 4 5 2 │ │ │ │ 0000b020: 2035 2034 2020 2035 2033 2020 2035 2034 5 4 5 3 5 4 │ │ │ │ 0000b030: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 0000b040: 2020 2020 2020 2020 2020 2020 3220 3d3e 2 => │ │ │ │ 0000b050: 207b 7820 7920 2c20 7820 7920 2c20 7820 {x y , x y , x │ │ │ │ @@ -2834,25 +2834,25 @@ │ │ │ │ 0000b110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b120: 2020 2020 2020 2020 2020 7c0a 7c2d 2d2d |.|--- │ │ │ │ 0000b130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b170: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 ----------|.| │ │ │ │ -0000b180: 2020 2020 2020 2020 2020 2020 2020 7d20 } │ │ │ │ +0000b180: 2020 2020 2020 2020 2020 2020 207d 2020 } │ │ │ │ 0000b190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b1c0: 2020 2020 2020 2020 2020 7c0a 7c20 3520 |.| 5 │ │ │ │ -0000b1d0: 3220 2020 3220 3420 2020 3520 3320 2020 2 2 4 5 3 │ │ │ │ +0000b1d0: 3320 2020 3520 3420 2020 3520 2020 2020 3 5 4 5 │ │ │ │ 0000b1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b210: 2020 2020 2020 2020 2020 7c0a 7c78 2079 |.|x y │ │ │ │ -0000b220: 202c 2078 2079 202c 2078 2079 207d 2020 , x y , x y } │ │ │ │ +0000b220: 202c 2078 2079 202c 2078 2079 7d20 2020 , x y , x y} │ │ │ │ 0000b230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b260: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ 0000b270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -4936,25 +4936,25 @@ │ │ │ │ 00013470: 3220 3a20 6661 6365 506f 7365 7420 4320 2 : facePoset C │ │ │ │ 00013480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013490: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 000134a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000134b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000134c0: 2020 2020 2020 2020 207c 0a7c 6f31 3220 |.|o12 │ │ │ │ 000134d0: 3d20 5265 6c61 7469 6f6e 204d 6174 7269 = Relation Matri │ │ │ │ -000134e0: 783a 207c 2031 2030 2030 2030 2030 2031 x: | 1 0 0 0 0 1 │ │ │ │ +000134e0: 783a 207c 2031 2030 2030 2030 2031 2030 x: | 1 0 0 0 1 0 │ │ │ │ 000134f0: 2031 2030 2031 207c 7c0a 7c20 2020 2020 1 0 1 ||.| │ │ │ │ 00013500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013510: 2020 7c20 3020 3120 3020 3020 3120 3020 | 0 1 0 0 1 0 │ │ │ │ -00013520: 3120 3020 3120 7c7c 0a7c 2020 2020 2020 1 0 1 ||.| │ │ │ │ +00013510: 2020 7c20 3020 3120 3020 3020 3020 3020 | 0 1 0 0 0 0 │ │ │ │ +00013520: 3120 3120 3120 7c7c 0a7c 2020 2020 2020 1 1 1 ||.| │ │ │ │ 00013530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013540: 207c 2030 2030 2031 2030 2031 2030 2030 | 0 0 1 0 1 0 0 │ │ │ │ +00013540: 207c 2030 2030 2031 2030 2030 2031 2030 | 0 0 1 0 0 1 0 │ │ │ │ 00013550: 2031 2031 207c 7c0a 7c20 2020 2020 2020 1 1 ||.| │ │ │ │ 00013560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013570: 7c20 3020 3020 3020 3120 3020 3120 3020 | 0 0 0 1 0 1 0 │ │ │ │ -00013580: 3120 3120 7c7c 0a7c 2020 2020 2020 2020 1 1 ||.| │ │ │ │ +00013570: 7c20 3020 3020 3020 3120 3120 3120 3020 | 0 0 0 1 1 1 0 │ │ │ │ +00013580: 3020 3120 7c7c 0a7c 2020 2020 2020 2020 0 1 ||.| │ │ │ │ 00013590: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000135a0: 2030 2030 2030 2030 2031 2030 2030 2030 0 0 0 0 1 0 0 0 │ │ │ │ 000135b0: 2031 207c 7c0a 7c20 2020 2020 2020 2020 1 ||.| │ │ │ │ 000135c0: 2020 2020 2020 2020 2020 2020 2020 7c20 | │ │ │ │ 000135d0: 3020 3020 3020 3020 3020 3120 3020 3020 0 0 0 0 0 1 0 0 │ │ │ │ 000135e0: 3120 7c7c 0a7c 2020 2020 2020 2020 2020 1 ||.| │ │ │ │ 000135f0: 2020 2020 2020 2020 2020 2020 207c 2030 | 0 │ │ ├── ./usr/share/info/ChainComplexExtras.info.gz │ │ │ ├── ChainComplexExtras.info │ │ │ │ @@ -4516,17 +4516,17 @@ │ │ │ │ 00011a30: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00011a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011a60: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3320 3a20 -------+.|i13 : │ │ │ │ 00011a70: 7469 6d65 206d 203d 206d 696e 696d 697a time m = minimiz │ │ │ │ 00011a80: 6520 2845 5b31 5d29 3b20 2020 2020 2020 e (E[1]); │ │ │ │ 00011a90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00011aa0: 0a7c 202d 2d20 7573 6564 2030 2e32 3831 .| -- used 0.281 │ │ │ │ -00011ab0: 3335 3173 2028 6370 7529 3b20 302e 3230 351s (cpu); 0.20 │ │ │ │ -00011ac0: 3431 3937 7320 2874 6872 6561 6429 3b20 4197s (thread); │ │ │ │ +00011aa0: 0a7c 202d 2d20 7573 6564 2030 2e33 3330 .| -- used 0.330 │ │ │ │ +00011ab0: 3032 3873 2028 6370 7529 3b20 302e 3237 028s (cpu); 0.27 │ │ │ │ +00011ac0: 3530 3034 7320 2874 6872 6561 6429 3b20 5004s (thread); │ │ │ │ 00011ad0: 3073 2028 6763 297c 0a2b 2d2d 2d2d 2d2d 0s (gc)|.+------ │ │ │ │ 00011ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00011b10: 0a7c 6931 3420 3a20 6973 5175 6173 6949 .|i14 : isQuasiI │ │ │ │ 00011b20: 736f 6d6f 7270 6869 736d 206d 2020 2020 somorphism m │ │ │ │ 00011b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -6196,31 +6196,31 @@ │ │ │ │ 00018330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018340: 2d2d 2d2d 2d2d 2b0a 7c69 3820 3a20 7469 ------+.|i8 : ti │ │ │ │ 00018350: 6d65 206d 203d 2072 6573 6f6c 7574 696f me m = resolutio │ │ │ │ 00018360: 6e4f 6643 6861 696e 436f 6d70 6c65 7820 nOfChainComplex │ │ │ │ 00018370: 433b 2020 2020 2020 2020 2020 2020 2020 C; │ │ │ │ 00018380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018390: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -000183a0: 6420 302e 3039 3632 3538 7320 2863 7075 d 0.096258s (cpu │ │ │ │ -000183b0: 293b 2030 2e30 3935 3834 3632 7320 2874 ); 0.0958462s (t │ │ │ │ -000183c0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +000183a0: 6420 302e 3132 3430 3538 7320 2863 7075 d 0.124058s (cpu │ │ │ │ +000183b0: 293b 2030 2e31 3233 3037 3773 2028 7468 ); 0.123077s (th │ │ │ │ +000183c0: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 000183d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000183e0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 000183f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018430: 2d2d 2d2d 2d2d 2b0a 7c69 3920 3a20 7469 ------+.|i9 : ti │ │ │ │ 00018440: 6d65 206e 203d 2063 6172 7461 6e45 696c me n = cartanEil │ │ │ │ 00018450: 656e 6265 7267 5265 736f 6c75 7469 6f6e enbergResolution │ │ │ │ 00018460: 2043 3b20 2020 2020 2020 2020 2020 2020 C; │ │ │ │ 00018470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018480: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -00018490: 6420 302e 3230 3231 3136 7320 2863 7075 d 0.202116s (cpu │ │ │ │ -000184a0: 293b 2030 2e31 3439 3937 3873 2028 7468 ); 0.149978s (th │ │ │ │ +00018490: 6420 302e 3330 3436 3139 7320 2863 7075 d 0.304619s (cpu │ │ │ │ +000184a0: 293b 2030 2e32 3534 3338 3273 2028 7468 ); 0.254382s (th │ │ │ │ 000184b0: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 000184c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000184d0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 000184e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000184f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ ├── ./usr/share/info/CharacteristicClasses.info.gz │ │ │ ├── CharacteristicClasses.info │ │ │ │ @@ -1066,16 +1066,16 @@ │ │ │ │ 00004290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000042a0: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 7469 ------+.|i3 : ti │ │ │ │ 000042b0: 6d65 2043 534d 2055 2020 2020 2020 2020 me CSM U │ │ │ │ 000042c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000042d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000042e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000042f0: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -00004300: 6420 302e 3236 3137 3033 7320 2863 7075 d 0.261703s (cpu │ │ │ │ -00004310: 293b 2030 2e31 3139 3731 3373 2028 7468 ); 0.119713s (th │ │ │ │ +00004300: 6420 302e 3535 3632 3336 7320 2863 7075 d 0.556236s (cpu │ │ │ │ +00004310: 293b 2030 2e31 3338 3134 3373 2028 7468 ); 0.138143s (th │ │ │ │ 00004320: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 00004330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004340: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00004350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1151,16 +1151,16 @@ │ │ │ │ 000047e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000047f0: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 7469 ------+.|i4 : ti │ │ │ │ 00004800: 6d65 2043 534d 2855 2c43 6865 636b 536d me CSM(U,CheckSm │ │ │ │ 00004810: 6f6f 7468 3d3e 6661 6c73 6529 2020 2020 ooth=>false) │ │ │ │ 00004820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004840: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -00004850: 6420 302e 3534 3434 3939 7320 2863 7075 d 0.544499s (cpu │ │ │ │ -00004860: 293b 2030 2e32 3635 3936 3173 2028 7468 ); 0.265961s (th │ │ │ │ +00004850: 6420 302e 3637 3038 3131 7320 2863 7075 d 0.670811s (cpu │ │ │ │ +00004860: 293b 2030 2e34 3038 3230 3473 2028 7468 ); 0.408204s (th │ │ │ │ 00004870: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 00004880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004890: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000048a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000048b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000048c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000048d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4113,16 +4113,16 @@ │ │ │ │ 00010100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010120: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 --------+.|i5 : │ │ │ │ 00010130: 7469 6d65 2043 534d 2849 2c43 6f6d 704d time CSM(I,CompM │ │ │ │ 00010140: 6574 686f 643d 3e50 726f 6a65 6374 6976 ethod=>Projectiv │ │ │ │ 00010150: 6544 6567 7265 6529 2020 2020 2020 2020 eDegree) │ │ │ │ 00010160: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00010170: 2d20 7573 6564 2031 2e32 3739 3634 7320 - used 1.27964s │ │ │ │ -00010180: 2863 7075 293b 2030 2e33 3535 3036 3573 (cpu); 0.355065s │ │ │ │ +00010170: 2d20 7573 6564 2032 2e30 3833 3033 7320 - used 2.08303s │ │ │ │ +00010180: 2863 7075 293b 2030 2e36 3734 3038 3573 (cpu); 0.674085s │ │ │ │ 00010190: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ 000101a0: 6329 2020 2020 2020 2020 2020 2020 7c0a c) |. │ │ │ │ 000101b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000101c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000101d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000101e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000101f0: 207c 0a7c 2020 2020 2020 2035 2020 2020 |.| 5 │ │ │ │ @@ -4172,16 +4172,16 @@ │ │ │ │ 000104b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000104c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000104d0: 2d2d 2b0a 7c69 3620 3a20 7469 6d65 2043 --+.|i6 : time C │ │ │ │ 000104e0: 534d 2849 2c43 6f6d 704d 6574 686f 643d SM(I,CompMethod= │ │ │ │ 000104f0: 3e50 6e52 6573 6964 7561 6c29 2020 2020 >PnResidual) │ │ │ │ 00010500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010510: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00010520: 2032 2e31 3534 3231 7320 2863 7075 293b 2.15421s (cpu); │ │ │ │ -00010530: 2031 2e37 3333 3534 7320 2874 6872 6561 1.73354s (threa │ │ │ │ +00010520: 2033 2e37 3237 3937 7320 2863 7075 293b 3.72797s (cpu); │ │ │ │ +00010530: 2033 2e31 3835 3832 7320 2874 6872 6561 3.18582s (threa │ │ │ │ 00010540: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 00010550: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00010560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010590: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000105a0: 2020 2020 2035 2020 2020 2020 3420 2020 5 4 │ │ │ │ @@ -4260,16 +4260,16 @@ │ │ │ │ 00010a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010a50: 2d2b 0a7c 6931 3020 3a20 7469 6d65 2043 -+.|i10 : time C │ │ │ │ 00010a60: 534d 284b 2c43 6f6d 704d 6574 686f 643d SM(K,CompMethod= │ │ │ │ 00010a70: 3e50 726f 6a65 6374 6976 6544 6567 7265 >ProjectiveDegre │ │ │ │ 00010a80: 6529 2020 2020 2020 2020 2020 2020 2020 e) │ │ │ │ 00010a90: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00010aa0: 302e 3536 3037 3135 7320 2863 7075 293b 0.560715s (cpu); │ │ │ │ -00010ab0: 2030 2e32 3633 3530 3773 2028 7468 7265 0.263507s (thre │ │ │ │ +00010aa0: 302e 3534 3631 3133 7320 2863 7075 293b 0.546113s (cpu); │ │ │ │ +00010ab0: 2030 2e33 3630 3232 3473 2028 7468 7265 0.360224s (thre │ │ │ │ 00010ac0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 00010ad0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00010ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010b10: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00010b20: 2020 2020 2033 2020 2020 2032 2020 2020 3 2 │ │ │ │ @@ -4318,18 +4318,18 @@ │ │ │ │ 00010dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ 00010e00: 3120 3a20 7469 6d65 2043 534d 284b 2c43 1 : time CSM(K,C │ │ │ │ 00010e10: 6f6d 704d 6574 686f 643d 3e50 6e52 6573 ompMethod=>PnRes │ │ │ │ 00010e20: 6964 7561 6c29 2020 2020 2020 2020 2020 idual) │ │ │ │ 00010e30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00010e40: 7c20 2d2d 2075 7365 6420 302e 3331 3938 | -- used 0.3198 │ │ │ │ -00010e50: 3831 7320 2863 7075 293b 2030 2e31 3633 81s (cpu); 0.163 │ │ │ │ -00010e60: 3239 3273 2028 7468 7265 6164 293b 2030 292s (thread); 0 │ │ │ │ -00010e70: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ +00010e40: 7c20 2d2d 2075 7365 6420 302e 3436 3632 | -- used 0.4662 │ │ │ │ +00010e50: 3535 7320 2863 7075 293b 2030 2e30 3934 55s (cpu); 0.094 │ │ │ │ +00010e60: 3535 3734 7320 2874 6872 6561 6429 3b20 5574s (thread); │ │ │ │ +00010e70: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 00010e80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00010e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010ec0: 2020 2020 7c0a 7c20 2020 2020 2020 2033 |.| 3 │ │ │ │ 00010ed0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 00010ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -5289,16 +5289,16 @@ │ │ │ │ 00014a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014ab0: 2d2d 2d2d 2b0a 7c69 3135 203a 2074 696d ----+.|i15 : tim │ │ │ │ 00014ac0: 6520 6373 6d4b 3d43 534d 2841 2c4b 2920 e csmK=CSM(A,K) │ │ │ │ 00014ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014ae0: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00014af0: 2d20 7573 6564 2031 2e35 3139 3632 7320 - used 1.51962s │ │ │ │ -00014b00: 2863 7075 293b 2030 2e35 3239 3531 3573 (cpu); 0.529515s │ │ │ │ +00014af0: 2d20 7573 6564 2034 2e31 3638 3433 7320 - used 4.16843s │ │ │ │ +00014b00: 2863 7075 293b 2030 2e38 3537 3037 3573 (cpu); 0.857075s │ │ │ │ 00014b10: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ 00014b20: 6329 7c0a 7c20 2020 2020 2020 2020 2020 c)|.| │ │ │ │ 00014b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014b50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00014b60: 2020 2020 3220 3220 2020 2020 3220 2020 2 2 2 │ │ │ │ 00014b70: 2020 2020 2020 3220 2020 2032 2020 2020 2 2 │ │ │ │ @@ -5467,16 +5467,16 @@ │ │ │ │ 000155a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000155b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000155c0: 2d2d 2d2d 2b0a 7c69 3232 203a 2074 696d ----+.|i22 : tim │ │ │ │ 000155d0: 6520 4353 4d28 412c 4b2c 6d29 2020 2020 e CSM(A,K,m) │ │ │ │ 000155e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000155f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015600: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ -00015610: 3236 3836 3031 7320 2863 7075 293b 2030 268601s (cpu); 0 │ │ │ │ -00015620: 2e31 3030 3334 3173 2028 7468 7265 6164 .100341s (thread │ │ │ │ +00015610: 3330 3635 3331 7320 2863 7075 293b 2030 306531s (cpu); 0 │ │ │ │ +00015620: 2e31 3233 3936 3873 2028 7468 7265 6164 .123968s (thread │ │ │ │ 00015630: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 00015640: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00015650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015670: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00015680: 7c20 2020 2020 2020 2032 2032 2020 2020 | 2 2 │ │ │ │ 00015690: 2032 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ @@ -6424,18 +6424,18 @@ │ │ │ │ 00019170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019180: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ 00019190: 3a20 7469 6d65 2045 756c 6572 2849 2c49 : time Euler(I,I │ │ │ │ 000191a0: 6e70 7574 4973 536d 6f6f 7468 3d3e 7472 nputIsSmooth=>tr │ │ │ │ 000191b0: 7565 2920 2020 2020 2020 2020 2020 2020 ue) │ │ │ │ 000191c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000191d0: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -000191e0: 2075 7365 6420 302e 3133 3435 3731 7320 used 0.134571s │ │ │ │ -000191f0: 2863 7075 293b 2030 2e30 3630 3534 3731 (cpu); 0.0605471 │ │ │ │ -00019200: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -00019210: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +000191e0: 2075 7365 6420 302e 3334 3736 3673 2028 used 0.34766s ( │ │ │ │ +000191f0: 6370 7529 3b20 302e 3135 3130 3131 7320 cpu); 0.151011s │ │ │ │ +00019200: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ +00019210: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00019220: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00019230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019270: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ 00019280: 3d20 3420 2020 2020 2020 2020 2020 2020 = 4 │ │ │ │ @@ -6449,18 +6449,18 @@ │ │ │ │ 00019300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019310: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ 00019320: 3a20 7469 6d65 2045 756c 6572 2049 2020 : time Euler I │ │ │ │ 00019330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019360: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -00019370: 2075 7365 6420 302e 3331 3631 3138 7320 used 0.316118s │ │ │ │ -00019380: 2863 7075 293b 2030 2e31 3637 3235 3673 (cpu); 0.167256s │ │ │ │ -00019390: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ -000193a0: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ +00019370: 2075 7365 6420 302e 3433 3837 3873 2028 used 0.43878s ( │ │ │ │ +00019380: 6370 7529 3b20 302e 3138 3136 7320 2874 cpu); 0.1816s (t │ │ │ │ +00019390: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +000193a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000193b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 000193c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000193d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000193e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000193f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019400: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ 00019410: 3d20 3420 2020 2020 2020 2020 2020 2020 = 4 │ │ │ │ @@ -6653,17 +6653,17 @@ │ │ │ │ 00019fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00019fe0: 7c69 3130 203a 2074 696d 6520 4575 6c65 |i10 : time Eule │ │ │ │ 00019ff0: 7228 4a2c 4d65 7468 6f64 3d3e 4469 7265 r(J,Method=>Dire │ │ │ │ 0001a000: 6374 436f 6d70 6c65 7465 496e 7429 2020 ctCompleteInt) │ │ │ │ 0001a010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a020: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ -0001a030: 3330 3937 3873 2028 6370 7529 3b20 302e 30978s (cpu); 0. │ │ │ │ -0001a040: 3039 3332 3431 3773 2028 7468 7265 6164 0932417s (thread │ │ │ │ -0001a050: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +0001a030: 3534 3734 3835 7320 2863 7075 293b 2030 547485s (cpu); 0 │ │ │ │ +0001a040: 2e31 3338 3439 7320 2874 6872 6561 6429 .13849s (thread) │ │ │ │ +0001a050: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 0001a060: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001a070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a0a0: 2020 2020 2020 2020 2020 7c0a 7c6f 3130 |.|o10 │ │ │ │ 0001a0b0: 203d 2032 2020 2020 2020 2020 2020 2020 = 2 │ │ │ │ 0001a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -6674,17 +6674,17 @@ │ │ │ │ 0001a110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a130: 2d2d 2b0a 7c69 3131 203a 2074 696d 6520 --+.|i11 : time │ │ │ │ 0001a140: 4575 6c65 7228 4a2c 4d65 7468 6f64 3d3e Euler(J,Method=> │ │ │ │ 0001a150: 4469 7265 6374 436f 6d70 6c65 7465 496e DirectCompleteIn │ │ │ │ 0001a160: 742c 496e 6473 4f66 536d 6f6f 7468 3d3e t,IndsOfSmooth=> │ │ │ │ 0001a170: 7b30 2c31 7d29 7c0a 7c20 2d2d 2075 7365 {0,1})|.| -- use │ │ │ │ -0001a180: 6420 302e 3230 3337 3734 7320 2863 7075 d 0.203774s (cpu │ │ │ │ -0001a190: 293b 2030 2e30 3930 3034 3638 7320 2874 ); 0.0900468s (t │ │ │ │ -0001a1a0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +0001a180: 6420 302e 3237 3436 3034 7320 2863 7075 d 0.274604s (cpu │ │ │ │ +0001a190: 293b 2030 2e31 3135 3837 3873 2028 7468 ); 0.115878s (th │ │ │ │ +0001a1a0: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 0001a1b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 0001a1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a1f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0001a200: 7c6f 3131 203d 2032 2020 2020 2020 2020 |o11 = 2 │ │ │ │ 0001a210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -7280,17 +7280,17 @@ │ │ │ │ 0001c6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c710: 2b0a 7c69 3320 3a20 7469 6d65 2043 534d +.|i3 : time CSM │ │ │ │ 0001c720: 2849 2c4d 6574 686f 643d 3e44 6972 6563 (I,Method=>Direc │ │ │ │ 0001c730: 7443 6f6d 706c 6574 496e 7429 2020 2020 tCompletInt) │ │ │ │ 0001c740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c750: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -0001c760: 6564 2034 2e35 3036 3638 7320 2863 7075 ed 4.50668s (cpu │ │ │ │ -0001c770: 293b 2031 2e32 3930 3232 7320 2874 6872 ); 1.29022s (thr │ │ │ │ -0001c780: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ +0001c760: 6564 2031 372e 3130 3831 7320 2863 7075 ed 17.1081s (cpu │ │ │ │ +0001c770: 293b 2032 2e34 3139 3173 2028 7468 7265 ); 2.4191s (thre │ │ │ │ +0001c780: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 0001c790: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0001c7a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0001c7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c7e0: 2020 2020 207c 0a7c 2020 2020 2020 2032 |.| 2 │ │ │ │ 0001c7f0: 2032 2020 2020 2032 2020 2020 2020 2020 2 2 │ │ │ │ @@ -7342,16 +7342,16 @@ │ │ │ │ 0001cad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001cae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001caf0: 2d2d 2b0a 7c69 3420 3a20 7469 6d65 2043 --+.|i4 : time C │ │ │ │ 0001cb00: 534d 2849 2c4d 6574 686f 643d 3e44 6972 SM(I,Method=>Dir │ │ │ │ 0001cb10: 6563 7443 6f6d 706c 6574 496e 742c 496e ectCompletInt,In │ │ │ │ 0001cb20: 6473 4f66 536d 6f6f 7468 3d3e 7b31 2c32 dsOfSmooth=>{1,2 │ │ │ │ 0001cb30: 7d29 2020 2020 2020 207c 0a7c 202d 2d20 }) |.| -- │ │ │ │ -0001cb40: 7573 6564 2034 2e31 3533 3132 7320 2863 used 4.15312s (c │ │ │ │ -0001cb50: 7075 293b 2031 2e32 3132 3535 7320 2874 pu); 1.21255s (t │ │ │ │ +0001cb40: 7573 6564 2031 372e 3331 3637 7320 2863 used 17.3167s (c │ │ │ │ +0001cb50: 7075 293b 2032 2e32 3330 3432 7320 2874 pu); 2.23042s (t │ │ │ │ 0001cb60: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 0001cb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001cb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cbc0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ @@ -7478,16 +7478,16 @@ │ │ │ │ 0001d350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d380: 2d2d 2b0a 7c69 3320 3a20 7469 6d65 2043 --+.|i3 : time C │ │ │ │ 0001d390: 534d 2049 2020 2020 2020 2020 2020 2020 SM I │ │ │ │ 0001d3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d3b0: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -0001d3c0: 2d20 7573 6564 2031 2e33 3839 3737 7320 - used 1.38977s │ │ │ │ -0001d3d0: 2863 7075 293b 2030 2e35 3035 3435 3873 (cpu); 0.505458s │ │ │ │ +0001d3c0: 2d20 7573 6564 2032 2e39 3636 3338 7320 - used 2.96638s │ │ │ │ +0001d3d0: 2863 7075 293b 2030 2e37 3931 3136 3773 (cpu); 0.791167s │ │ │ │ 0001d3e0: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ 0001d3f0: 6329 2020 7c0a 7c20 2020 2020 2020 2020 c) |.| │ │ │ │ 0001d400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d420: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0001d430: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ 0001d440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -7528,16 +7528,16 @@ │ │ │ │ 0001d670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d6a0: 2b0a 7c69 3420 3a20 7469 6d65 2043 534d +.|i4 : time CSM │ │ │ │ 0001d6b0: 2849 2c49 6e70 7574 4973 536d 6f6f 7468 (I,InputIsSmooth │ │ │ │ 0001d6c0: 3d3e 7472 7565 2920 2020 2020 2020 2020 =>true) │ │ │ │ 0001d6d0: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -0001d6e0: 7573 6564 2030 2e31 3738 3232 3773 2028 used 0.178227s ( │ │ │ │ -0001d6f0: 6370 7529 3b20 302e 3035 3035 3337 3473 cpu); 0.0505374s │ │ │ │ +0001d6e0: 7573 6564 2030 2e32 3438 3931 3373 2028 used 0.248913s ( │ │ │ │ +0001d6f0: 6370 7529 3b20 302e 3034 3131 3834 3973 cpu); 0.0411849s │ │ │ │ 0001d700: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ 0001d710: 6329 7c0a 7c20 2020 2020 2020 2020 2020 c)|.| │ │ │ │ 0001d720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d740: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0001d750: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ 0001d760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -7583,4088 +7583,4087 @@ │ │ │ │ 0001d9e0: 6c79 2c20 7573 6520 7468 6520 636f 6d6d ly, use the comm │ │ │ │ 0001d9f0: 616e 6420 2a6e 6f74 6520 4368 6572 6e3a and *note Chern: │ │ │ │ 0001da00: 2043 6865 726e 2c20 696e 7374 6561 640a Chern, instead. │ │ │ │ 0001da10: 696e 2074 6869 7320 6361 7365 2e0a 0a2b in this case...+ │ │ │ │ 0001da20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001da30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001da40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001da50: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2074 -------+.|i5 : t │ │ │ │ -0001da60: 696d 6520 4368 6572 6e20 4920 2020 2020 ime Chern I │ │ │ │ +0001da50: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 7469 ------+.|i5 : ti │ │ │ │ +0001da60: 6d65 2043 6865 726e 2049 2020 2020 2020 me Chern I │ │ │ │ 0001da70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001da80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001da90: 207c 0a7c 202d 2d20 7573 6564 2030 2e30 |.| -- used 0.0 │ │ │ │ -0001daa0: 3434 3833 3535 7320 2863 7075 293b 2030 448355s (cpu); 0 │ │ │ │ -0001dab0: 2e30 3331 3731 3037 7320 2874 6872 6561 .0317107s (threa │ │ │ │ -0001dac0: 6429 3b20 3073 2028 6763 297c 0a7c 2020 d); 0s (gc)|.| │ │ │ │ +0001da80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001da90: 0a7c 202d 2d20 7573 6564 2030 2e34 3036 .| -- used 0.406 │ │ │ │ +0001daa0: 3334 3673 2028 6370 7529 3b20 302e 3033 346s (cpu); 0.03 │ │ │ │ +0001dab0: 3136 3735 3673 2028 7468 7265 6164 293b 16756s (thread); │ │ │ │ +0001dac0: 2030 7320 2867 6329 7c0a 7c20 2020 2020 0s (gc)|.| │ │ │ │ 0001dad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001daf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001db00: 2020 2020 207c 0a7c 2020 2020 2020 2033 |.| 3 │ │ │ │ +0001db00: 207c 0a7c 2020 2020 2020 2033 2020 2020 |.| 3 │ │ │ │ 0001db10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001db20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001db30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001db40: 0a7c 6f35 203d 2034 6820 2020 2020 2020 .|o5 = 4h │ │ │ │ +0001db30: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ +0001db40: 3d20 3468 2020 2020 2020 2020 2020 2020 = 4h │ │ │ │ 0001db50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001db60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001db70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0001db80: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0001db70: 2020 207c 0a7c 2020 2020 2020 2031 2020 |.| 1 │ │ │ │ +0001db80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001db90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dbb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001dba0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001dbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dbe0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001dbf0: 2020 2020 205a 5a5b 6820 5d20 2020 2020 ZZ[h ] │ │ │ │ +0001dbe0: 2020 2020 207c 0a7c 2020 2020 205a 5a5b |.| ZZ[ │ │ │ │ +0001dbf0: 6820 5d20 2020 2020 2020 2020 2020 2020 h ] │ │ │ │ 0001dc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dc20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0001dc30: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0001dc10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001dc20: 7c20 2020 2020 2020 2020 3120 2020 2020 | 1 │ │ │ │ +0001dc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dc60: 207c 0a7c 6f35 203a 202d 2d2d 2d2d 2d20 |.|o5 : ------ │ │ │ │ +0001dc50: 2020 2020 2020 207c 0a7c 6f35 203a 202d |.|o5 : - │ │ │ │ +0001dc60: 2d2d 2d2d 2d20 2020 2020 2020 2020 2020 ----- │ │ │ │ 0001dc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dc90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001dca0: 2020 2020 2020 3520 2020 2020 2020 2020 5 │ │ │ │ +0001dc90: 7c0a 7c20 2020 2020 2020 2035 2020 2020 |.| 5 │ │ │ │ +0001dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dcd0: 2020 2020 207c 0a7c 2020 2020 2020 2068 |.| h │ │ │ │ +0001dcc0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001dcd0: 2020 2068 2020 2020 2020 2020 2020 2020 h │ │ │ │ 0001dce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dd00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001dd10: 0a7c 2020 2020 2020 2020 3120 2020 2020 .| 1 │ │ │ │ +0001dd00: 2020 7c0a 7c20 2020 2020 2020 2031 2020 |.| 1 │ │ │ │ +0001dd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dd40: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001dd30: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0001dd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001dd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001dd60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dd70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dd80: 2d2d 2d2b 0a0a 4675 6e63 7469 6f6e 7320 ---+..Functions │ │ │ │ -0001dd90: 7769 7468 206f 7074 696f 6e61 6c20 6172 with optional ar │ │ │ │ -0001dda0: 6775 6d65 6e74 206e 616d 6564 2049 6e70 gument named Inp │ │ │ │ -0001ddb0: 7574 4973 536d 6f6f 7468 3a0a 3d3d 3d3d utIsSmooth:.==== │ │ │ │ +0001dd70: 2d2d 2d2d 2b0a 0a46 756e 6374 696f 6e73 ----+..Functions │ │ │ │ +0001dd80: 2077 6974 6820 6f70 7469 6f6e 616c 2061 with optional a │ │ │ │ +0001dd90: 7267 756d 656e 7420 6e61 6d65 6420 496e rgument named In │ │ │ │ +0001dda0: 7075 7449 7353 6d6f 6f74 683a 0a3d 3d3d putIsSmooth:.=== │ │ │ │ +0001ddb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 0001ddc0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 0001ddd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001dde0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001ddf0: 3d0a 0a20 202a 2022 4353 4d28 2e2e 2e2c =.. * "CSM(..., │ │ │ │ -0001de00: 496e 7075 7449 7353 6d6f 6f74 683d 3e2e InputIsSmooth=>. │ │ │ │ -0001de10: 2e2e 2922 202d 2d20 7365 6520 2a6e 6f74 ..)" -- see *not │ │ │ │ -0001de20: 6520 4353 4d3a 2043 534d 2c20 2d2d 2054 e CSM: CSM, -- T │ │ │ │ -0001de30: 6865 0a20 2020 2043 6865 726e 2d53 6368 he. Chern-Sch │ │ │ │ -0001de40: 7761 7274 7a2d 4d61 6350 6865 7273 6f6e wartz-MacPherson │ │ │ │ -0001de50: 2063 6c61 7373 0a20 202a 2045 756c 6572 class. * Euler │ │ │ │ -0001de60: 282e 2e2e 2c49 6e70 7574 4973 536d 6f6f (...,InputIsSmoo │ │ │ │ -0001de70: 7468 3d3e 2e2e 2e29 2028 6d69 7373 696e th=>...) (missin │ │ │ │ -0001de80: 6720 646f 6375 6d65 6e74 6174 696f 6e29 g documentation) │ │ │ │ -0001de90: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ -0001dea0: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ -0001deb0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ -0001dec0: 6563 7420 2a6e 6f74 6520 496e 7075 7449 ect *note InputI │ │ │ │ -0001ded0: 7353 6d6f 6f74 683a 2049 6e70 7574 4973 sSmooth: InputIs │ │ │ │ -0001dee0: 536d 6f6f 7468 2c20 6973 2061 202a 6e6f Smooth, is a *no │ │ │ │ -0001def0: 7465 2073 796d 626f 6c3a 0a28 4d61 6361 te symbol:.(Maca │ │ │ │ -0001df00: 756c 6179 3244 6f63 2953 796d 626f 6c2c ulay2Doc)Symbol, │ │ │ │ -0001df10: 2e0a 1f0a 4669 6c65 3a20 4368 6172 6163 ....File: Charac │ │ │ │ -0001df20: 7465 7269 7374 6963 436c 6173 7365 732e teristicClasses. │ │ │ │ -0001df30: 696e 666f 2c20 4e6f 6465 3a20 6973 4d75 info, Node: isMu │ │ │ │ -0001df40: 6c74 6948 6f6d 6f67 656e 656f 7573 2c20 ltiHomogeneous, │ │ │ │ -0001df50: 4e65 7874 3a20 4d65 7468 6f64 2c20 5072 Next: Method, Pr │ │ │ │ -0001df60: 6576 3a20 496e 7075 7449 7353 6d6f 6f74 ev: InputIsSmoot │ │ │ │ -0001df70: 682c 2055 703a 2054 6f70 0a0a 6973 4d75 h, Up: Top..isMu │ │ │ │ -0001df80: 6c74 6948 6f6d 6f67 656e 656f 7573 202d ltiHomogeneous - │ │ │ │ -0001df90: 2d20 4368 6563 6b73 2069 6620 616e 2069 - Checks if an i │ │ │ │ -0001dfa0: 6465 616c 2069 7320 686f 6d6f 6765 6e65 deal is homogene │ │ │ │ -0001dfb0: 6f75 7320 7769 7468 2072 6573 7065 6374 ous with respect │ │ │ │ -0001dfc0: 2074 6f20 7468 6520 6772 6164 696e 6720 to the grading │ │ │ │ -0001dfd0: 6f6e 2069 7473 2072 696e 6720 2869 2e65 on its ring (i.e │ │ │ │ -0001dfe0: 2e20 6d75 6c74 692d 686f 6d6f 6765 6e65 . multi-homogene │ │ │ │ -0001dff0: 6f75 7320 696e 2074 6865 206d 756c 7469 ous in the multi │ │ │ │ -0001e000: 2d67 7261 6465 6420 6361 7365 290a 2a2a -graded case).** │ │ │ │ +0001dde0: 3d3d 0a0a 2020 2a20 2243 534d 282e 2e2e ==.. * "CSM(... │ │ │ │ +0001ddf0: 2c49 6e70 7574 4973 536d 6f6f 7468 3d3e ,InputIsSmooth=> │ │ │ │ +0001de00: 2e2e 2e29 2220 2d2d 2073 6565 202a 6e6f ...)" -- see *no │ │ │ │ +0001de10: 7465 2043 534d 3a20 4353 4d2c 202d 2d20 te CSM: CSM, -- │ │ │ │ +0001de20: 5468 650a 2020 2020 4368 6572 6e2d 5363 The. Chern-Sc │ │ │ │ +0001de30: 6877 6172 747a 2d4d 6163 5068 6572 736f hwartz-MacPherso │ │ │ │ +0001de40: 6e20 636c 6173 730a 2020 2a20 4575 6c65 n class. * Eule │ │ │ │ +0001de50: 7228 2e2e 2e2c 496e 7075 7449 7353 6d6f r(...,InputIsSmo │ │ │ │ +0001de60: 6f74 683d 3e2e 2e2e 2920 286d 6973 7369 oth=>...) (missi │ │ │ │ +0001de70: 6e67 2064 6f63 756d 656e 7461 7469 6f6e ng documentation │ │ │ │ +0001de80: 290a 0a46 6f72 2074 6865 2070 726f 6772 )..For the progr │ │ │ │ +0001de90: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +0001dea0: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +0001deb0: 6a65 6374 202a 6e6f 7465 2049 6e70 7574 ject *note Input │ │ │ │ +0001dec0: 4973 536d 6f6f 7468 3a20 496e 7075 7449 IsSmooth: InputI │ │ │ │ +0001ded0: 7353 6d6f 6f74 682c 2069 7320 6120 2a6e sSmooth, is a *n │ │ │ │ +0001dee0: 6f74 6520 7379 6d62 6f6c 3a0a 284d 6163 ote symbol:.(Mac │ │ │ │ +0001def0: 6175 6c61 7932 446f 6329 5379 6d62 6f6c aulay2Doc)Symbol │ │ │ │ +0001df00: 2c2e 0a1f 0a46 696c 653a 2043 6861 7261 ,....File: Chara │ │ │ │ +0001df10: 6374 6572 6973 7469 6343 6c61 7373 6573 cteristicClasses │ │ │ │ +0001df20: 2e69 6e66 6f2c 204e 6f64 653a 2069 734d .info, Node: isM │ │ │ │ +0001df30: 756c 7469 486f 6d6f 6765 6e65 6f75 732c ultiHomogeneous, │ │ │ │ +0001df40: 204e 6578 743a 204d 6574 686f 642c 2050 Next: Method, P │ │ │ │ +0001df50: 7265 763a 2049 6e70 7574 4973 536d 6f6f rev: InputIsSmoo │ │ │ │ +0001df60: 7468 2c20 5570 3a20 546f 700a 0a69 734d th, Up: Top..isM │ │ │ │ +0001df70: 756c 7469 486f 6d6f 6765 6e65 6f75 7320 ultiHomogeneous │ │ │ │ +0001df80: 2d2d 2043 6865 636b 7320 6966 2061 6e20 -- Checks if an │ │ │ │ +0001df90: 6964 6561 6c20 6973 2068 6f6d 6f67 656e ideal is homogen │ │ │ │ +0001dfa0: 656f 7573 2077 6974 6820 7265 7370 6563 eous with respec │ │ │ │ +0001dfb0: 7420 746f 2074 6865 2067 7261 6469 6e67 t to the grading │ │ │ │ +0001dfc0: 206f 6e20 6974 7320 7269 6e67 2028 692e on its ring (i. │ │ │ │ +0001dfd0: 652e 206d 756c 7469 2d68 6f6d 6f67 656e e. multi-homogen │ │ │ │ +0001dfe0: 656f 7573 2069 6e20 7468 6520 6d75 6c74 eous in the mult │ │ │ │ +0001dff0: 692d 6772 6164 6564 2063 6173 6529 0a2a i-graded case).* │ │ │ │ +0001e000: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001e010: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001e020: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001e030: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001e040: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001e050: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001e060: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001e070: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001e080: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001e090: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -0001e0a0: 0a53 796e 6f70 7369 730a 3d3d 3d3d 3d3d .Synopsis.====== │ │ │ │ -0001e0b0: 3d3d 0a0a 2020 2a20 5573 6167 653a 200a ==.. * Usage: . │ │ │ │ -0001e0c0: 2020 2020 2020 2020 6973 4d75 6c74 6948 isMultiH │ │ │ │ -0001e0d0: 6f6d 6f67 656e 656f 7573 2049 0a20 2020 omogeneous I. │ │ │ │ -0001e0e0: 2020 2020 2069 734d 756c 7469 486f 6d6f isMultiHomo │ │ │ │ -0001e0f0: 6765 6e65 6f75 7320 660a 2020 2a20 496e geneous f. * In │ │ │ │ -0001e100: 7075 7473 3a0a 2020 2020 2020 2a20 492c puts:. * I, │ │ │ │ -0001e110: 2061 6e20 2a6e 6f74 6520 6964 6561 6c3a an *note ideal: │ │ │ │ -0001e120: 2028 4d61 6361 756c 6179 3244 6f63 2949 (Macaulay2Doc)I │ │ │ │ -0001e130: 6465 616c 2c2c 2061 6e20 6964 6561 6c20 deal,, an ideal │ │ │ │ -0001e140: 696e 2061 2067 7261 6465 6420 6f72 0a20 in a graded or. │ │ │ │ -0001e150: 2020 2020 2020 206d 756c 7469 2d67 7261 multi-gra │ │ │ │ -0001e160: 6465 6420 7269 6e67 0a20 2020 2020 202a ded ring. * │ │ │ │ -0001e170: 2066 2c20 6120 2a6e 6f74 6520 7269 6e67 f, a *note ring │ │ │ │ -0001e180: 2065 6c65 6d65 6e74 3a20 284d 6163 6175 element: (Macau │ │ │ │ -0001e190: 6c61 7932 446f 6329 5269 6e67 456c 656d lay2Doc)RingElem │ │ │ │ -0001e1a0: 656e 742c 2c20 6120 656c 656d 656e 7420 ent,, a element │ │ │ │ -0001e1b0: 696e 2061 0a20 2020 2020 2020 2067 7261 in a. gra │ │ │ │ -0001e1c0: 6465 6420 6f72 206d 756c 7469 2d67 7261 ded or multi-gra │ │ │ │ -0001e1d0: 6465 6420 7269 6e67 0a20 202a 204f 7574 ded ring. * Out │ │ │ │ -0001e1e0: 7075 7473 3a0a 2020 2020 2020 2a20 6120 puts:. * a │ │ │ │ -0001e1f0: 2a6e 6f74 6520 426f 6f6c 6561 6e20 7661 *note Boolean va │ │ │ │ -0001e200: 6c75 653a 2028 4d61 6361 756c 6179 3244 lue: (Macaulay2D │ │ │ │ -0001e210: 6f63 2942 6f6f 6c65 616e 2c2c 200a 0a44 oc)Boolean,, ..D │ │ │ │ -0001e220: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -0001e230: 3d3d 3d3d 3d3d 0a0a 5465 7374 7320 6966 ======..Tests if │ │ │ │ -0001e240: 2074 6865 2069 6e70 7574 2049 6465 616c the input Ideal │ │ │ │ -0001e250: 206f 7220 5269 6e67 456c 656d 656e 7420 or RingElement │ │ │ │ -0001e260: 6973 2048 6f6d 6f67 656e 656f 7573 2077 is Homogeneous w │ │ │ │ -0001e270: 6974 6820 7265 7370 6563 7420 746f 2074 ith respect to t │ │ │ │ -0001e280: 6865 0a67 7261 6469 6e67 206f 6e20 7468 he.grading on th │ │ │ │ -0001e290: 6520 7269 6e67 2e20 486f 6d6f 6765 6e65 e ring. Homogene │ │ │ │ -0001e2a0: 6f75 7320 696e 7075 7420 6973 2072 6571 ous input is req │ │ │ │ -0001e2b0: 7569 7265 6420 666f 7220 616c 6c20 6d65 uired for all me │ │ │ │ -0001e2c0: 7468 6f64 7320 746f 2063 6f6d 7075 7465 thods to compute │ │ │ │ -0001e2d0: 0a63 6861 7261 6374 6572 6973 7469 6320 .characteristic │ │ │ │ -0001e2e0: 636c 6173 7365 732e 0a0a 5468 6973 206d classes...This m │ │ │ │ -0001e2f0: 6574 686f 6420 776f 726b 7320 666f 7220 ethod works for │ │ │ │ -0001e300: 6964 6561 6c73 2069 6e20 7468 6520 6772 ideals in the gr │ │ │ │ -0001e310: 6164 6564 2063 6f6f 7264 696e 6174 6520 aded coordinate │ │ │ │ -0001e320: 7269 6e67 7320 6f66 2074 6f72 6963 2076 rings of toric v │ │ │ │ -0001e330: 6172 6965 7469 6573 2c0a 616e 6420 6865 arieties,.and he │ │ │ │ -0001e340: 6e63 6520 666f 7220 7072 6f64 7563 7473 nce for products │ │ │ │ -0001e350: 206f 6620 7072 6f6a 6563 7469 7665 2073 of projective s │ │ │ │ -0001e360: 7061 6365 732e 2054 6865 7365 2063 616e paces. These can │ │ │ │ -0001e370: 2062 6520 6372 6561 7465 6420 6469 7265 be created dire │ │ │ │ -0001e380: 6374 6c79 2c20 6f72 0a75 7369 6e67 206d ctly, or.using m │ │ │ │ -0001e390: 6574 686f 6473 2074 6865 202a 6e6f 7465 ethods the *note │ │ │ │ -0001e3a0: 204d 756c 7469 5072 6f6a 436f 6f72 6452 MultiProjCoordR │ │ │ │ -0001e3b0: 696e 673a 204d 756c 7469 5072 6f6a 436f ing: MultiProjCo │ │ │ │ -0001e3c0: 6f72 6452 696e 672c 206d 6574 686f 6420 ordRing, method │ │ │ │ -0001e3d0: 6f66 2074 6869 730a 7061 636b 6167 652c of this.package, │ │ │ │ -0001e3e0: 206f 7220 7769 7468 206d 6574 686f 6473 or with methods │ │ │ │ -0001e3f0: 2066 726f 6d20 7468 6520 4e6f 726d 616c from the Normal │ │ │ │ -0001e400: 546f 7269 6356 6172 6965 7469 6573 2050 ToricVarieties P │ │ │ │ -0001e410: 6163 6b61 6765 2e0a 0a2b 2d2d 2d2d 2d2d ackage...+------ │ │ │ │ +0001e090: 0a0a 5379 6e6f 7073 6973 0a3d 3d3d 3d3d ..Synopsis.===== │ │ │ │ +0001e0a0: 3d3d 3d0a 0a20 202a 2055 7361 6765 3a20 ===.. * Usage: │ │ │ │ +0001e0b0: 0a20 2020 2020 2020 2069 734d 756c 7469 . isMulti │ │ │ │ +0001e0c0: 486f 6d6f 6765 6e65 6f75 7320 490a 2020 Homogeneous I. │ │ │ │ +0001e0d0: 2020 2020 2020 6973 4d75 6c74 6948 6f6d isMultiHom │ │ │ │ +0001e0e0: 6f67 656e 656f 7573 2066 0a20 202a 2049 ogeneous f. * I │ │ │ │ +0001e0f0: 6e70 7574 733a 0a20 2020 2020 202a 2049 nputs:. * I │ │ │ │ +0001e100: 2c20 616e 202a 6e6f 7465 2069 6465 616c , an *note ideal │ │ │ │ +0001e110: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0001e120: 4964 6561 6c2c 2c20 616e 2069 6465 616c Ideal,, an ideal │ │ │ │ +0001e130: 2069 6e20 6120 6772 6164 6564 206f 720a in a graded or. │ │ │ │ +0001e140: 2020 2020 2020 2020 6d75 6c74 692d 6772 multi-gr │ │ │ │ +0001e150: 6164 6564 2072 696e 670a 2020 2020 2020 aded ring. │ │ │ │ +0001e160: 2a20 662c 2061 202a 6e6f 7465 2072 696e * f, a *note rin │ │ │ │ +0001e170: 6720 656c 656d 656e 743a 2028 4d61 6361 g element: (Maca │ │ │ │ +0001e180: 756c 6179 3244 6f63 2952 696e 6745 6c65 ulay2Doc)RingEle │ │ │ │ +0001e190: 6d65 6e74 2c2c 2061 2065 6c65 6d65 6e74 ment,, a element │ │ │ │ +0001e1a0: 2069 6e20 610a 2020 2020 2020 2020 6772 in a. gr │ │ │ │ +0001e1b0: 6164 6564 206f 7220 6d75 6c74 692d 6772 aded or multi-gr │ │ │ │ +0001e1c0: 6164 6564 2072 696e 670a 2020 2a20 4f75 aded ring. * Ou │ │ │ │ +0001e1d0: 7470 7574 733a 0a20 2020 2020 202a 2061 tputs:. * a │ │ │ │ +0001e1e0: 202a 6e6f 7465 2042 6f6f 6c65 616e 2076 *note Boolean v │ │ │ │ +0001e1f0: 616c 7565 3a20 284d 6163 6175 6c61 7932 alue: (Macaulay2 │ │ │ │ +0001e200: 446f 6329 426f 6f6c 6561 6e2c 2c20 0a0a Doc)Boolean,, .. │ │ │ │ +0001e210: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +0001e220: 3d3d 3d3d 3d3d 3d0a 0a54 6573 7473 2069 =======..Tests i │ │ │ │ +0001e230: 6620 7468 6520 696e 7075 7420 4964 6561 f the input Idea │ │ │ │ +0001e240: 6c20 6f72 2052 696e 6745 6c65 6d65 6e74 l or RingElement │ │ │ │ +0001e250: 2069 7320 486f 6d6f 6765 6e65 6f75 7320 is Homogeneous │ │ │ │ +0001e260: 7769 7468 2072 6573 7065 6374 2074 6f20 with respect to │ │ │ │ +0001e270: 7468 650a 6772 6164 696e 6720 6f6e 2074 the.grading on t │ │ │ │ +0001e280: 6865 2072 696e 672e 2048 6f6d 6f67 656e he ring. Homogen │ │ │ │ +0001e290: 656f 7573 2069 6e70 7574 2069 7320 7265 eous input is re │ │ │ │ +0001e2a0: 7175 6972 6564 2066 6f72 2061 6c6c 206d quired for all m │ │ │ │ +0001e2b0: 6574 686f 6473 2074 6f20 636f 6d70 7574 ethods to comput │ │ │ │ +0001e2c0: 650a 6368 6172 6163 7465 7269 7374 6963 e.characteristic │ │ │ │ +0001e2d0: 2063 6c61 7373 6573 2e0a 0a54 6869 7320 classes...This │ │ │ │ +0001e2e0: 6d65 7468 6f64 2077 6f72 6b73 2066 6f72 method works for │ │ │ │ +0001e2f0: 2069 6465 616c 7320 696e 2074 6865 2067 ideals in the g │ │ │ │ +0001e300: 7261 6465 6420 636f 6f72 6469 6e61 7465 raded coordinate │ │ │ │ +0001e310: 2072 696e 6773 206f 6620 746f 7269 6320 rings of toric │ │ │ │ +0001e320: 7661 7269 6574 6965 732c 0a61 6e64 2068 varieties,.and h │ │ │ │ +0001e330: 656e 6365 2066 6f72 2070 726f 6475 6374 ence for product │ │ │ │ +0001e340: 7320 6f66 2070 726f 6a65 6374 6976 6520 s of projective │ │ │ │ +0001e350: 7370 6163 6573 2e20 5468 6573 6520 6361 spaces. These ca │ │ │ │ +0001e360: 6e20 6265 2063 7265 6174 6564 2064 6972 n be created dir │ │ │ │ +0001e370: 6563 746c 792c 206f 720a 7573 696e 6720 ectly, or.using │ │ │ │ +0001e380: 6d65 7468 6f64 7320 7468 6520 2a6e 6f74 methods the *not │ │ │ │ +0001e390: 6520 4d75 6c74 6950 726f 6a43 6f6f 7264 e MultiProjCoord │ │ │ │ +0001e3a0: 5269 6e67 3a20 4d75 6c74 6950 726f 6a43 Ring: MultiProjC │ │ │ │ +0001e3b0: 6f6f 7264 5269 6e67 2c20 6d65 7468 6f64 oordRing, method │ │ │ │ +0001e3c0: 206f 6620 7468 6973 0a70 6163 6b61 6765 of this.package │ │ │ │ +0001e3d0: 2c20 6f72 2077 6974 6820 6d65 7468 6f64 , or with method │ │ │ │ +0001e3e0: 7320 6672 6f6d 2074 6865 204e 6f72 6d61 s from the Norma │ │ │ │ +0001e3f0: 6c54 6f72 6963 5661 7269 6574 6965 7320 lToricVarieties │ │ │ │ +0001e400: 5061 636b 6167 652e 0a0a 2b2d 2d2d 2d2d Package...+----- │ │ │ │ +0001e410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e450: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ -0001e460: 2052 3d4d 756c 7469 5072 6f6a 436f 6f72 R=MultiProjCoor │ │ │ │ -0001e470: 6452 696e 6728 7b31 2c32 2c31 7d29 2020 dRing({1,2,1}) │ │ │ │ -0001e480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e490: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001e440: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ +0001e450: 3a20 523d 4d75 6c74 6950 726f 6a43 6f6f : R=MultiProjCoo │ │ │ │ +0001e460: 7264 5269 6e67 287b 312c 322c 317d 2920 rdRing({1,2,1}) │ │ │ │ +0001e470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e480: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e4d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001e4e0: 6f31 203d 2052 2020 2020 2020 2020 2020 o1 = R │ │ │ │ +0001e4c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001e4d0: 7c6f 3120 3d20 5220 2020 2020 2020 2020 |o1 = R │ │ │ │ +0001e4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e510: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001e520: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001e510: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001e520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e560: 207c 0a7c 6f31 203a 2050 6f6c 796e 6f6d |.|o1 : Polynom │ │ │ │ -0001e570: 6961 6c52 696e 6720 2020 2020 2020 2020 ialRing │ │ │ │ +0001e550: 2020 7c0a 7c6f 3120 3a20 506f 6c79 6e6f |.|o1 : Polyno │ │ │ │ +0001e560: 6d69 616c 5269 6e67 2020 2020 2020 2020 mialRing │ │ │ │ +0001e570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e5a0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0001e590: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001e5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e5e0: 2d2d 2d2d 2d2b 0a7c 6932 203a 2078 3d67 -----+.|i2 : x=g │ │ │ │ -0001e5f0: 656e 7328 5229 2020 2020 2020 2020 2020 ens(R) │ │ │ │ +0001e5d0: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 783d ------+.|i2 : x= │ │ │ │ +0001e5e0: 6765 6e73 2852 2920 2020 2020 2020 2020 gens(R) │ │ │ │ +0001e5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e620: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001e610: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001e620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e660: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ -0001e670: 207b 7820 2c20 7820 2c20 7820 2c20 7820 {x , x , x , x │ │ │ │ -0001e680: 2c20 7820 2c20 7820 2c20 7820 7d20 2020 , x , x , x } │ │ │ │ -0001e690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e6a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001e6b0: 2020 2020 2030 2020 2031 2020 2032 2020 0 1 2 │ │ │ │ -0001e6c0: 2033 2020 2034 2020 2035 2020 2036 2020 3 4 5 6 │ │ │ │ -0001e6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e6e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001e650: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ +0001e660: 3d20 7b78 202c 2078 202c 2078 202c 2078 = {x , x , x , x │ │ │ │ +0001e670: 202c 2078 202c 2078 202c 2078 207d 2020 , x , x , x } │ │ │ │ +0001e680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e690: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001e6a0: 2020 2020 2020 3020 2020 3120 2020 3220 0 1 2 │ │ │ │ +0001e6b0: 2020 3320 2020 3420 2020 3520 2020 3620 3 4 5 6 │ │ │ │ +0001e6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e6d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001e6e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0001e6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e720: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001e730: 0a7c 6f32 203a 204c 6973 7420 2020 2020 .|o2 : List │ │ │ │ +0001e720: 7c0a 7c6f 3220 3a20 4c69 7374 2020 2020 |.|o2 : List │ │ │ │ +0001e730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e770: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0001e760: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001e770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e7b0: 2d2d 2d2b 0a7c 6933 203a 2049 3d69 6465 ---+.|i3 : I=ide │ │ │ │ -0001e7c0: 616c 2878 5f30 5e32 2a78 5f33 2d78 5f31 al(x_0^2*x_3-x_1 │ │ │ │ -0001e7d0: 2a78 5f30 2a78 5f34 2c78 5f36 5e33 2920 *x_0*x_4,x_6^3) │ │ │ │ -0001e7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e7f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001e7a0: 2d2d 2d2d 2b0a 7c69 3320 3a20 493d 6964 ----+.|i3 : I=id │ │ │ │ +0001e7b0: 6561 6c28 785f 305e 322a 785f 332d 785f eal(x_0^2*x_3-x_ │ │ │ │ +0001e7c0: 312a 785f 302a 785f 342c 785f 365e 3329 1*x_0*x_4,x_6^3) │ │ │ │ +0001e7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e7e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001e7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e830: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0001e840: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -0001e850: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ -0001e860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e870: 2020 2020 2020 2020 207c 0a7c 6f33 203d |.|o3 = │ │ │ │ -0001e880: 2069 6465 616c 2028 7820 7820 202d 2078 ideal (x x - x │ │ │ │ -0001e890: 2078 2078 202c 2078 2029 2020 2020 2020 x x , x ) │ │ │ │ -0001e8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e8b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001e8c0: 2020 2020 2020 2020 2020 2030 2033 2020 0 3 │ │ │ │ -0001e8d0: 2020 3020 3120 3420 2020 3620 2020 2020 0 1 4 6 │ │ │ │ -0001e8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e8f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001e820: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001e830: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +0001e840: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ +0001e850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e860: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ +0001e870: 3d20 6964 6561 6c20 2878 2078 2020 2d20 = ideal (x x - │ │ │ │ +0001e880: 7820 7820 7820 2c20 7820 2920 2020 2020 x x x , x ) │ │ │ │ +0001e890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e8a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001e8b0: 2020 2020 2020 2020 2020 2020 3020 3320 0 3 │ │ │ │ +0001e8c0: 2020 2030 2031 2034 2020 2036 2020 2020 0 1 4 6 │ │ │ │ +0001e8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e8e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001e8f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0001e900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e930: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001e940: 0a7c 6f33 203a 2049 6465 616c 206f 6620 .|o3 : Ideal of │ │ │ │ -0001e950: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +0001e930: 7c0a 7c6f 3320 3a20 4964 6561 6c20 6f66 |.|o3 : Ideal of │ │ │ │ +0001e940: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +0001e950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e980: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0001e970: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001e980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e9c0: 2d2d 2d2b 0a7c 6934 203a 2069 734d 756c ---+.|i4 : isMul │ │ │ │ -0001e9d0: 7469 486f 6d6f 6765 6e65 6f75 7320 4920 tiHomogeneous I │ │ │ │ +0001e9b0: 2d2d 2d2d 2b0a 7c69 3420 3a20 6973 4d75 ----+.|i4 : isMu │ │ │ │ +0001e9c0: 6c74 6948 6f6d 6f67 656e 656f 7573 2049 ltiHomogeneous I │ │ │ │ +0001e9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ea00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001e9f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001ea00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ea10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ea20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ea30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ea40: 2020 2020 2020 207c 0a7c 6f34 203d 2074 |.|o4 = t │ │ │ │ -0001ea50: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ +0001ea30: 2020 2020 2020 2020 7c0a 7c6f 3420 3d20 |.|o4 = │ │ │ │ +0001ea40: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ +0001ea50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ea60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ea70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ea80: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001ea70: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001ea80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ea90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001eaa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001eab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001eac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ -0001ead0: 203a 2069 734d 756c 7469 486f 6d6f 6765 : isMultiHomoge │ │ │ │ -0001eae0: 6e65 6f75 7320 6964 6561 6c28 785f 302a neous ideal(x_0* │ │ │ │ -0001eaf0: 785f 332d 785f 312a 785f 302a 785f 342c x_3-x_1*x_0*x_4, │ │ │ │ -0001eb00: 785f 365e 3329 2020 2020 2020 207c 0a7c x_6^3) |.| │ │ │ │ -0001eb10: 496e 7075 7420 7465 726d 2062 656c 6f77 Input term below │ │ │ │ -0001eb20: 2069 7320 6e6f 7420 686f 6d6f 6765 6e65 is not homogene │ │ │ │ -0001eb30: 6f75 7320 7769 7468 2072 6573 7065 6374 ous with respect │ │ │ │ -0001eb40: 2074 6f20 7468 6520 6772 6164 696e 677c to the grading| │ │ │ │ -0001eb50: 0a7c 2d20 7820 7820 7820 202b 2078 2078 .|- x x x + x x │ │ │ │ +0001eab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0001eac0: 3520 3a20 6973 4d75 6c74 6948 6f6d 6f67 5 : isMultiHomog │ │ │ │ +0001ead0: 656e 656f 7573 2069 6465 616c 2878 5f30 eneous ideal(x_0 │ │ │ │ +0001eae0: 2a78 5f33 2d78 5f31 2a78 5f30 2a78 5f34 *x_3-x_1*x_0*x_4 │ │ │ │ +0001eaf0: 2c78 5f36 5e33 2920 2020 2020 2020 7c0a ,x_6^3) |. │ │ │ │ +0001eb00: 7c49 6e70 7574 2074 6572 6d20 6265 6c6f |Input term belo │ │ │ │ +0001eb10: 7720 6973 206e 6f74 2068 6f6d 6f67 656e w is not homogen │ │ │ │ +0001eb20: 656f 7573 2077 6974 6820 7265 7370 6563 eous with respec │ │ │ │ +0001eb30: 7420 746f 2074 6865 2067 7261 6469 6e67 t to the grading │ │ │ │ +0001eb40: 7c0a 7c2d 2078 2078 2078 2020 2b20 7820 |.|- x x x + x │ │ │ │ +0001eb50: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ 0001eb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001eb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001eb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001eb90: 207c 0a7c 2020 2030 2031 2034 2020 2020 |.| 0 1 4 │ │ │ │ -0001eba0: 3020 3320 2020 2020 2020 2020 2020 2020 0 3 │ │ │ │ +0001eb80: 2020 7c0a 7c20 2020 3020 3120 3420 2020 |.| 0 1 4 │ │ │ │ +0001eb90: 2030 2033 2020 2020 2020 2020 2020 2020 0 3 │ │ │ │ +0001eba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ebb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ebc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ebd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001ebc0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001ebd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ebe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ebf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ec00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ec10: 2020 2020 207c 0a7c 6f35 203d 2066 616c |.|o5 = fal │ │ │ │ -0001ec20: 7365 2020 2020 2020 2020 2020 2020 2020 se │ │ │ │ +0001ec00: 2020 2020 2020 7c0a 7c6f 3520 3d20 6661 |.|o5 = fa │ │ │ │ +0001ec10: 6c73 6520 2020 2020 2020 2020 2020 2020 lse │ │ │ │ +0001ec20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ec30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ec40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ec50: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0001ec40: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001ec50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ec60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ec70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ec80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ec90: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4e6f 7465 ---------+..Note │ │ │ │ -0001eca0: 2074 6861 7420 666f 7220 616e 2069 6465 that for an ide │ │ │ │ -0001ecb0: 616c 2074 6f20 6265 206d 756c 7469 2d68 al to be multi-h │ │ │ │ -0001ecc0: 6f6d 6f67 656e 656f 7573 2074 6865 2064 omogeneous the d │ │ │ │ -0001ecd0: 6567 7265 6520 7665 6374 6f72 206f 6620 egree vector of │ │ │ │ -0001ece0: 616c 6c0a 6d6f 6e6f 6d69 616c 7320 696e all.monomials in │ │ │ │ -0001ecf0: 2061 2067 6976 656e 2067 656e 6572 6174 a given generat │ │ │ │ -0001ed00: 6f72 206d 7573 7420 6265 2074 6865 2073 or must be the s │ │ │ │ -0001ed10: 616d 652e 0a0a 5761 7973 2074 6f20 7573 ame...Ways to us │ │ │ │ -0001ed20: 6520 6973 4d75 6c74 6948 6f6d 6f67 656e e isMultiHomogen │ │ │ │ -0001ed30: 656f 7573 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d eous:.========== │ │ │ │ -0001ed40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001ed50: 3d3d 3d3d 3d0a 0a20 202a 2022 6973 4d75 =====.. * "isMu │ │ │ │ -0001ed60: 6c74 6948 6f6d 6f67 656e 656f 7573 2849 ltiHomogeneous(I │ │ │ │ -0001ed70: 6465 616c 2922 0a20 202a 2022 6973 4d75 deal)". * "isMu │ │ │ │ -0001ed80: 6c74 6948 6f6d 6f67 656e 656f 7573 2852 ltiHomogeneous(R │ │ │ │ -0001ed90: 696e 6745 6c65 6d65 6e74 2922 0a0a 466f ingElement)"..Fo │ │ │ │ -0001eda0: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -0001edb0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0001edc0: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -0001edd0: 2a6e 6f74 6520 6973 4d75 6c74 6948 6f6d *note isMultiHom │ │ │ │ -0001ede0: 6f67 656e 656f 7573 3a20 6973 4d75 6c74 ogeneous: isMult │ │ │ │ -0001edf0: 6948 6f6d 6f67 656e 656f 7573 2c20 6973 iHomogeneous, is │ │ │ │ -0001ee00: 2061 202a 6e6f 7465 206d 6574 686f 640a a *note method. │ │ │ │ -0001ee10: 6675 6e63 7469 6f6e 3a20 284d 6163 6175 function: (Macau │ │ │ │ -0001ee20: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ -0001ee30: 6e63 7469 6f6e 2c2e 0a1f 0a46 696c 653a nction,....File: │ │ │ │ -0001ee40: 2043 6861 7261 6374 6572 6973 7469 6343 CharacteristicC │ │ │ │ -0001ee50: 6c61 7373 6573 2e69 6e66 6f2c 204e 6f64 lasses.info, Nod │ │ │ │ -0001ee60: 653a 204d 6574 686f 642c 204e 6578 743a e: Method, Next: │ │ │ │ -0001ee70: 204d 756c 7469 5072 6f6a 436f 6f72 6452 MultiProjCoordR │ │ │ │ -0001ee80: 696e 672c 2050 7265 763a 2069 734d 756c ing, Prev: isMul │ │ │ │ -0001ee90: 7469 486f 6d6f 6765 6e65 6f75 732c 2055 tiHomogeneous, U │ │ │ │ -0001eea0: 703a 2054 6f70 0a0a 4d65 7468 6f64 0a2a p: Top..Method.* │ │ │ │ -0001eeb0: 2a2a 2a2a 2a0a 0a44 6573 6372 6970 7469 *****..Descripti │ │ │ │ -0001eec0: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -0001eed0: 5468 6520 6f70 7469 6f6e 204d 6574 686f The option Metho │ │ │ │ -0001eee0: 6420 6973 206f 6e6c 7920 7573 6564 2062 d is only used b │ │ │ │ -0001eef0: 7920 7468 6520 636f 6d6d 616e 6473 202a y the commands * │ │ │ │ -0001ef00: 6e6f 7465 2043 534d 3a20 4353 4d2c 2061 note CSM: CSM, a │ │ │ │ -0001ef10: 6e64 202a 6e6f 7465 2045 756c 6572 3a0a nd *note Euler:. │ │ │ │ -0001ef20: 4575 6c65 722c 2061 6e64 206f 6e6c 7920 Euler, and only │ │ │ │ -0001ef30: 696e 2063 6f6d 6269 6e61 7469 6f6e 2077 in combination w │ │ │ │ -0001ef40: 6974 6820 2a6e 6f74 6520 436f 6d70 4d65 ith *note CompMe │ │ │ │ -0001ef50: 7468 6f64 3a0a 436f 6d70 4d65 7468 6f64 thod:.CompMethod │ │ │ │ -0001ef60: 2c3d 3e50 726f 6a65 6374 6976 6544 6567 ,=>ProjectiveDeg │ │ │ │ -0001ef70: 7265 652e 2054 6865 204d 6574 686f 6420 ree. The Method │ │ │ │ -0001ef80: 496e 636c 7573 696f 6e45 7863 6c75 7369 InclusionExclusi │ │ │ │ -0001ef90: 6f6e 2077 696c 6c20 616c 7761 7973 2062 on will always b │ │ │ │ -0001efa0: 650a 7573 6564 2077 6974 6820 2a6e 6f74 e.used with *not │ │ │ │ -0001efb0: 6520 436f 6d70 4d65 7468 6f64 3a20 436f e CompMethod: Co │ │ │ │ -0001efc0: 6d70 4d65 7468 6f64 2c20 506e 5265 7369 mpMethod, PnResi │ │ │ │ -0001efd0: 6475 616c 206f 7220 6265 7274 696e 692e dual or bertini. │ │ │ │ -0001efe0: 2057 6865 6e20 7468 6520 696e 7075 740a When the input. │ │ │ │ -0001eff0: 6964 6561 6c20 6973 2061 2063 6f6d 706c ideal is a compl │ │ │ │ -0001f000: 6574 6520 696e 7465 7273 6563 7469 6f6e ete intersection │ │ │ │ -0001f010: 206f 6e65 206d 6179 2c20 706f 7465 6e74 one may, potent │ │ │ │ -0001f020: 6961 6c6c 792c 2073 7065 6564 2075 7020 ially, speed up │ │ │ │ -0001f030: 7468 6520 636f 6d70 7574 6174 696f 6e0a the computation. │ │ │ │ -0001f040: 6279 2073 6574 7469 6e67 204d 6574 686f by setting Metho │ │ │ │ -0001f050: 643d 3e20 4469 7265 6374 436f 6d70 6c65 d=> DirectComple │ │ │ │ -0001f060: 7465 496e 742e 2054 6865 206f 7074 696f teInt. The optio │ │ │ │ -0001f070: 6e20 4d65 7468 6f64 2069 7320 6f6e 6c79 n Method is only │ │ │ │ -0001f080: 2075 7365 6420 6279 2074 6865 0a63 6f6d used by the.com │ │ │ │ -0001f090: 6d61 6e64 7320 2a6e 6f74 6520 4353 4d3a mands *note CSM: │ │ │ │ -0001f0a0: 2043 534d 2c20 616e 6420 2a6e 6f74 6520 CSM, and *note │ │ │ │ -0001f0b0: 4575 6c65 723a 2045 756c 6572 2c20 616e Euler: Euler, an │ │ │ │ -0001f0c0: 6420 6f6e 6c79 2069 6e20 636f 6d62 696e d only in combin │ │ │ │ -0001f0d0: 6174 696f 6e20 7769 7468 0a2a 6e6f 7465 ation with.*note │ │ │ │ -0001f0e0: 2043 6f6d 704d 6574 686f 643a 2043 6f6d CompMethod: Com │ │ │ │ -0001f0f0: 704d 6574 686f 642c 3d3e 5072 6f6a 6563 pMethod,=>Projec │ │ │ │ -0001f100: 7469 7665 4465 6772 6565 2e20 5468 6520 tiveDegree. The │ │ │ │ -0001f110: 4d65 7468 6f64 2049 6e63 6c75 7369 6f6e Method Inclusion │ │ │ │ -0001f120: 4578 636c 7573 696f 6e0a 7769 6c6c 2061 Exclusion.will a │ │ │ │ -0001f130: 6c77 6179 7320 6265 2075 7365 6420 7769 lways be used wi │ │ │ │ -0001f140: 7468 202a 6e6f 7465 2043 6f6d 704d 6574 th *note CompMet │ │ │ │ -0001f150: 686f 643a 2043 6f6d 704d 6574 686f 642c hod: CompMethod, │ │ │ │ -0001f160: 2050 6e52 6573 6964 7561 6c20 6f72 2062 PnResidual or b │ │ │ │ -0001f170: 6572 7469 6e69 2e0a 0a2b 2d2d 2d2d 2d2d ertini...+------ │ │ │ │ +0001ec80: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a4e 6f74 ----------+..Not │ │ │ │ +0001ec90: 6520 7468 6174 2066 6f72 2061 6e20 6964 e that for an id │ │ │ │ +0001eca0: 6561 6c20 746f 2062 6520 6d75 6c74 692d eal to be multi- │ │ │ │ +0001ecb0: 686f 6d6f 6765 6e65 6f75 7320 7468 6520 homogeneous the │ │ │ │ +0001ecc0: 6465 6772 6565 2076 6563 746f 7220 6f66 degree vector of │ │ │ │ +0001ecd0: 2061 6c6c 0a6d 6f6e 6f6d 6961 6c73 2069 all.monomials i │ │ │ │ +0001ece0: 6e20 6120 6769 7665 6e20 6765 6e65 7261 n a given genera │ │ │ │ +0001ecf0: 746f 7220 6d75 7374 2062 6520 7468 6520 tor must be the │ │ │ │ +0001ed00: 7361 6d65 2e0a 0a57 6179 7320 746f 2075 same...Ways to u │ │ │ │ +0001ed10: 7365 2069 734d 756c 7469 486f 6d6f 6765 se isMultiHomoge │ │ │ │ +0001ed20: 6e65 6f75 733a 0a3d 3d3d 3d3d 3d3d 3d3d neous:.========= │ │ │ │ +0001ed30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001ed40: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2269 734d ======.. * "isM │ │ │ │ +0001ed50: 756c 7469 486f 6d6f 6765 6e65 6f75 7328 ultiHomogeneous( │ │ │ │ +0001ed60: 4964 6561 6c29 220a 2020 2a20 2269 734d Ideal)". * "isM │ │ │ │ +0001ed70: 756c 7469 486f 6d6f 6765 6e65 6f75 7328 ultiHomogeneous( │ │ │ │ +0001ed80: 5269 6e67 456c 656d 656e 7429 220a 0a46 RingElement)"..F │ │ │ │ +0001ed90: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +0001eda0: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +0001edb0: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +0001edc0: 202a 6e6f 7465 2069 734d 756c 7469 486f *note isMultiHo │ │ │ │ +0001edd0: 6d6f 6765 6e65 6f75 733a 2069 734d 756c mogeneous: isMul │ │ │ │ +0001ede0: 7469 486f 6d6f 6765 6e65 6f75 732c 2069 tiHomogeneous, i │ │ │ │ +0001edf0: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ +0001ee00: 0a66 756e 6374 696f 6e3a 2028 4d61 6361 .function: (Maca │ │ │ │ +0001ee10: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ +0001ee20: 756e 6374 696f 6e2c 2e0a 1f0a 4669 6c65 unction,....File │ │ │ │ +0001ee30: 3a20 4368 6172 6163 7465 7269 7374 6963 : Characteristic │ │ │ │ +0001ee40: 436c 6173 7365 732e 696e 666f 2c20 4e6f Classes.info, No │ │ │ │ +0001ee50: 6465 3a20 4d65 7468 6f64 2c20 4e65 7874 de: Method, Next │ │ │ │ +0001ee60: 3a20 4d75 6c74 6950 726f 6a43 6f6f 7264 : MultiProjCoord │ │ │ │ +0001ee70: 5269 6e67 2c20 5072 6576 3a20 6973 4d75 Ring, Prev: isMu │ │ │ │ +0001ee80: 6c74 6948 6f6d 6f67 656e 656f 7573 2c20 ltiHomogeneous, │ │ │ │ +0001ee90: 5570 3a20 546f 700a 0a4d 6574 686f 640a Up: Top..Method. │ │ │ │ +0001eea0: 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 7074 ******..Descript │ │ │ │ +0001eeb0: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ +0001eec0: 0a54 6865 206f 7074 696f 6e20 4d65 7468 .The option Meth │ │ │ │ +0001eed0: 6f64 2069 7320 6f6e 6c79 2075 7365 6420 od is only used │ │ │ │ +0001eee0: 6279 2074 6865 2063 6f6d 6d61 6e64 7320 by the commands │ │ │ │ +0001eef0: 2a6e 6f74 6520 4353 4d3a 2043 534d 2c20 *note CSM: CSM, │ │ │ │ +0001ef00: 616e 6420 2a6e 6f74 6520 4575 6c65 723a and *note Euler: │ │ │ │ +0001ef10: 0a45 756c 6572 2c20 616e 6420 6f6e 6c79 .Euler, and only │ │ │ │ +0001ef20: 2069 6e20 636f 6d62 696e 6174 696f 6e20 in combination │ │ │ │ +0001ef30: 7769 7468 202a 6e6f 7465 2043 6f6d 704d with *note CompM │ │ │ │ +0001ef40: 6574 686f 643a 0a43 6f6d 704d 6574 686f ethod:.CompMetho │ │ │ │ +0001ef50: 642c 3d3e 5072 6f6a 6563 7469 7665 4465 d,=>ProjectiveDe │ │ │ │ +0001ef60: 6772 6565 2e20 5468 6520 4d65 7468 6f64 gree. The Method │ │ │ │ +0001ef70: 2049 6e63 6c75 7369 6f6e 4578 636c 7573 InclusionExclus │ │ │ │ +0001ef80: 696f 6e20 7769 6c6c 2061 6c77 6179 7320 ion will always │ │ │ │ +0001ef90: 6265 0a75 7365 6420 7769 7468 202a 6e6f be.used with *no │ │ │ │ +0001efa0: 7465 2043 6f6d 704d 6574 686f 643a 2043 te CompMethod: C │ │ │ │ +0001efb0: 6f6d 704d 6574 686f 642c 2050 6e52 6573 ompMethod, PnRes │ │ │ │ +0001efc0: 6964 7561 6c20 6f72 2062 6572 7469 6e69 idual or bertini │ │ │ │ +0001efd0: 2e20 5768 656e 2074 6865 2069 6e70 7574 . When the input │ │ │ │ +0001efe0: 0a69 6465 616c 2069 7320 6120 636f 6d70 .ideal is a comp │ │ │ │ +0001eff0: 6c65 7465 2069 6e74 6572 7365 6374 696f lete intersectio │ │ │ │ +0001f000: 6e20 6f6e 6520 6d61 792c 2070 6f74 656e n one may, poten │ │ │ │ +0001f010: 7469 616c 6c79 2c20 7370 6565 6420 7570 tially, speed up │ │ │ │ +0001f020: 2074 6865 2063 6f6d 7075 7461 7469 6f6e the computation │ │ │ │ +0001f030: 0a62 7920 7365 7474 696e 6720 4d65 7468 .by setting Meth │ │ │ │ +0001f040: 6f64 3d3e 2044 6972 6563 7443 6f6d 706c od=> DirectCompl │ │ │ │ +0001f050: 6574 6549 6e74 2e20 5468 6520 6f70 7469 eteInt. The opti │ │ │ │ +0001f060: 6f6e 204d 6574 686f 6420 6973 206f 6e6c on Method is onl │ │ │ │ +0001f070: 7920 7573 6564 2062 7920 7468 650a 636f y used by the.co │ │ │ │ +0001f080: 6d6d 616e 6473 202a 6e6f 7465 2043 534d mmands *note CSM │ │ │ │ +0001f090: 3a20 4353 4d2c 2061 6e64 202a 6e6f 7465 : CSM, and *note │ │ │ │ +0001f0a0: 2045 756c 6572 3a20 4575 6c65 722c 2061 Euler: Euler, a │ │ │ │ +0001f0b0: 6e64 206f 6e6c 7920 696e 2063 6f6d 6269 nd only in combi │ │ │ │ +0001f0c0: 6e61 7469 6f6e 2077 6974 680a 2a6e 6f74 nation with.*not │ │ │ │ +0001f0d0: 6520 436f 6d70 4d65 7468 6f64 3a20 436f e CompMethod: Co │ │ │ │ +0001f0e0: 6d70 4d65 7468 6f64 2c3d 3e50 726f 6a65 mpMethod,=>Proje │ │ │ │ +0001f0f0: 6374 6976 6544 6567 7265 652e 2054 6865 ctiveDegree. The │ │ │ │ +0001f100: 204d 6574 686f 6420 496e 636c 7573 696f Method Inclusio │ │ │ │ +0001f110: 6e45 7863 6c75 7369 6f6e 0a77 696c 6c20 nExclusion.will │ │ │ │ +0001f120: 616c 7761 7973 2062 6520 7573 6564 2077 always be used w │ │ │ │ +0001f130: 6974 6820 2a6e 6f74 6520 436f 6d70 4d65 ith *note CompMe │ │ │ │ +0001f140: 7468 6f64 3a20 436f 6d70 4d65 7468 6f64 thod: CompMethod │ │ │ │ +0001f150: 2c20 506e 5265 7369 6475 616c 206f 7220 , PnResidual or │ │ │ │ +0001f160: 6265 7274 696e 692e 0a0a 2b2d 2d2d 2d2d bertini...+----- │ │ │ │ +0001f170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f1b0: 2d2d 2b0a 7c69 3120 3a20 5220 3d20 5a5a --+.|i1 : R = ZZ │ │ │ │ -0001f1c0: 2f33 3237 3439 5b78 5f30 2e2e 785f 365d /32749[x_0..x_6] │ │ │ │ -0001f1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f1e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f1a0: 2d2d 2d2b 0a7c 6931 203a 2052 203d 205a ---+.|i1 : R = Z │ │ │ │ +0001f1b0: 5a2f 3332 3734 395b 785f 302e 2e78 5f36 Z/32749[x_0..x_6 │ │ │ │ +0001f1c0: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +0001f1d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001f1e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0001f1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f220: 2020 2020 2020 2020 7c0a 7c6f 3120 3d20 |.|o1 = │ │ │ │ -0001f230: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +0001f210: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ +0001f220: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +0001f230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f260: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001f250: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001f260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f290: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001f2a0: 7c6f 3120 3a20 506f 6c79 6e6f 6d69 616c |o1 : Polynomial │ │ │ │ -0001f2b0: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ -0001f2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2d0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001f280: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001f290: 0a7c 6f31 203a 2050 6f6c 796e 6f6d 6961 .|o1 : Polynomia │ │ │ │ +0001f2a0: 6c52 696e 6720 2020 2020 2020 2020 2020 lRing │ │ │ │ +0001f2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f2c0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001f2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f310: 2d2d 2d2d 2b0a 7c69 3220 3a20 493d 6964 ----+.|i2 : I=id │ │ │ │ -0001f320: 6561 6c28 7261 6e64 6f6d 2832 2c52 292c eal(random(2,R), │ │ │ │ -0001f330: 7261 6e64 6f6d 2831 2c52 292c 525f 302a random(1,R),R_0* │ │ │ │ -0001f340: 525f 312a 525f 362d 525f 305e 3329 3b7c R_1*R_6-R_0^3);| │ │ │ │ -0001f350: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001f300: 2d2d 2d2d 2d2b 0a7c 6932 203a 2049 3d69 -----+.|i2 : I=i │ │ │ │ +0001f310: 6465 616c 2872 616e 646f 6d28 322c 5229 deal(random(2,R) │ │ │ │ +0001f320: 2c72 616e 646f 6d28 312c 5229 2c52 5f30 ,random(1,R),R_0 │ │ │ │ +0001f330: 2a52 5f31 2a52 5f36 2d52 5f30 5e33 293b *R_1*R_6-R_0^3); │ │ │ │ +0001f340: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001f350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f380: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -0001f390: 3a20 4964 6561 6c20 6f66 2052 2020 2020 : Ideal of R │ │ │ │ +0001f370: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +0001f380: 203a 2049 6465 616c 206f 6620 5220 2020 : Ideal of R │ │ │ │ +0001f390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f3c0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001f3b0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001f3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f400: 2b0a 7c69 3320 3a20 7469 6d65 2043 534d +.|i3 : time CSM │ │ │ │ -0001f410: 2049 2020 2020 2020 2020 2020 2020 2020 I │ │ │ │ -0001f420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f430: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -0001f440: 2d20 7573 6564 2032 2e39 3539 3331 7320 - used 2.95931s │ │ │ │ -0001f450: 2863 7075 293b 2030 2e39 3739 3137 3773 (cpu); 0.979177s │ │ │ │ -0001f460: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ -0001f470: 6329 2020 2020 7c0a 7c20 2020 2020 2020 c) |.| │ │ │ │ +0001f3f0: 2d2b 0a7c 6933 203a 2074 696d 6520 4353 -+.|i3 : time CS │ │ │ │ +0001f400: 4d20 4920 2020 2020 2020 2020 2020 2020 M I │ │ │ │ +0001f410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f420: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001f430: 2d2d 2075 7365 6420 392e 3832 3435 3273 -- used 9.82452s │ │ │ │ +0001f440: 2028 6370 7529 3b20 312e 3633 3638 3573 (cpu); 1.63685s │ │ │ │ +0001f450: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ +0001f460: 6329 2020 2020 207c 0a7c 2020 2020 2020 c) |.| │ │ │ │ +0001f470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f4b0: 207c 0a7c 2020 2020 2020 2020 3520 2020 |.| 5 │ │ │ │ -0001f4c0: 2020 2034 2020 2020 2033 2020 2020 2020 4 3 │ │ │ │ -0001f4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f4e0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001f4f0: 3320 3d20 3132 6820 202b 2031 3068 2020 3 = 12h + 10h │ │ │ │ -0001f500: 2b20 3668 2020 2020 2020 2020 2020 2020 + 6h │ │ │ │ -0001f510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f520: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0001f530: 2020 3120 2020 2020 2031 2020 2020 2031 1 1 1 │ │ │ │ +0001f4a0: 2020 7c0a 7c20 2020 2020 2020 2035 2020 |.| 5 │ │ │ │ +0001f4b0: 2020 2020 3420 2020 2020 3320 2020 2020 4 3 │ │ │ │ +0001f4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f4d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f4e0: 6f33 203d 2031 3268 2020 2b20 3130 6820 o3 = 12h + 10h │ │ │ │ +0001f4f0: 202b 2036 6820 2020 2020 2020 2020 2020 + 6h │ │ │ │ +0001f500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f510: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001f520: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +0001f530: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 0001f540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f560: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001f550: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001f560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f590: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001f5a0: 2020 2020 205a 5a5b 6820 5d20 2020 2020 ZZ[h ] │ │ │ │ +0001f580: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001f590: 7c20 2020 2020 5a5a 5b68 205d 2020 2020 | ZZ[h ] │ │ │ │ +0001f5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f5d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001f5e0: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ +0001f5c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001f5d0: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +0001f5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f610: 2020 207c 0a7c 6f33 203a 202d 2d2d 2d2d |.|o3 : ----- │ │ │ │ -0001f620: 2d20 2020 2020 2020 2020 2020 2020 2020 - │ │ │ │ -0001f630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f640: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001f650: 7c20 2020 2020 2020 2037 2020 2020 2020 | 7 │ │ │ │ +0001f600: 2020 2020 7c0a 7c6f 3320 3a20 2d2d 2d2d |.|o3 : ---- │ │ │ │ +0001f610: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ +0001f620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f630: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001f640: 0a7c 2020 2020 2020 2020 3720 2020 2020 .| 7 │ │ │ │ +0001f650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f680: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0001f690: 2020 2068 2020 2020 2020 2020 2020 2020 h │ │ │ │ +0001f670: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001f680: 2020 2020 6820 2020 2020 2020 2020 2020 h │ │ │ │ +0001f690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f6c0: 2020 2020 7c0a 7c20 2020 2020 2020 2031 |.| 1 │ │ │ │ +0001f6b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001f6c0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 0001f6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f6f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001f700: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0001f6f0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0001f700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f730: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ -0001f740: 3a20 7469 6d65 2043 534d 2849 2c4d 6574 : time CSM(I,Met │ │ │ │ -0001f750: 686f 643d 3e44 6972 6563 7443 6f6d 706c hod=>DirectCompl │ │ │ │ -0001f760: 6574 6549 6e74 2920 2020 2020 2020 2020 eteInt) │ │ │ │ -0001f770: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -0001f780: 2030 2e39 3839 3436 3373 2028 6370 7529 0.989463s (cpu) │ │ │ │ -0001f790: 3b20 302e 3334 3738 3135 7320 2874 6872 ; 0.347815s (thr │ │ │ │ -0001f7a0: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ -0001f7b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001f720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ +0001f730: 203a 2074 696d 6520 4353 4d28 492c 4d65 : time CSM(I,Me │ │ │ │ +0001f740: 7468 6f64 3d3e 4469 7265 6374 436f 6d70 thod=>DirectComp │ │ │ │ +0001f750: 6c65 7465 496e 7429 2020 2020 2020 2020 leteInt) │ │ │ │ +0001f760: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ +0001f770: 6420 322e 3634 3736 3973 2028 6370 7529 d 2.64769s (cpu) │ │ │ │ +0001f780: 3b20 302e 3434 3631 3137 7320 2874 6872 ; 0.446117s (thr │ │ │ │ +0001f790: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ +0001f7a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001f7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f7e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001f7f0: 2020 2020 2020 3520 2020 2020 2034 2020 5 4 │ │ │ │ -0001f800: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0001f810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f820: 2020 2020 2020 7c0a 7c6f 3420 3d20 3132 |.|o4 = 12 │ │ │ │ -0001f830: 6820 202b 2031 3068 2020 2b20 3668 2020 h + 10h + 6h │ │ │ │ +0001f7d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001f7e0: 2020 2020 2020 2035 2020 2020 2020 3420 5 4 │ │ │ │ +0001f7f0: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ +0001f800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f810: 2020 2020 2020 207c 0a7c 6f34 203d 2031 |.|o4 = 1 │ │ │ │ +0001f820: 3268 2020 2b20 3130 6820 202b 2036 6820 2h + 10h + 6h │ │ │ │ +0001f830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f860: 207c 0a7c 2020 2020 2020 2020 3120 2020 |.| 1 │ │ │ │ -0001f870: 2020 2031 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -0001f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f890: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001f850: 2020 7c0a 7c20 2020 2020 2020 2031 2020 |.| 1 │ │ │ │ +0001f860: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ +0001f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f880: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f8d0: 2020 2020 2020 207c 0a7c 2020 2020 205a |.| Z │ │ │ │ -0001f8e0: 5a5b 6820 5d20 2020 2020 2020 2020 2020 Z[h ] │ │ │ │ +0001f8c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001f8d0: 5a5a 5b68 205d 2020 2020 2020 2020 2020 ZZ[h ] │ │ │ │ +0001f8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f910: 2020 7c0a 7c20 2020 2020 2020 2020 3120 |.| 1 │ │ │ │ +0001f900: 2020 207c 0a7c 2020 2020 2020 2020 2031 |.| 1 │ │ │ │ +0001f910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f940: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001f950: 6f34 203a 202d 2d2d 2d2d 2d20 2020 2020 o4 : ------ │ │ │ │ +0001f930: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001f940: 7c6f 3420 3a20 2d2d 2d2d 2d2d 2020 2020 |o4 : ------ │ │ │ │ +0001f950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f980: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001f990: 2020 2037 2020 2020 2020 2020 2020 2020 7 │ │ │ │ +0001f970: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001f980: 2020 2020 3720 2020 2020 2020 2020 2020 7 │ │ │ │ +0001f990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f9c0: 2020 207c 0a7c 2020 2020 2020 2068 2020 |.| h │ │ │ │ +0001f9b0: 2020 2020 7c0a 7c20 2020 2020 2020 6820 |.| h │ │ │ │ +0001f9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f9f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001fa00: 7c20 2020 2020 2020 2031 2020 2020 2020 | 1 │ │ │ │ +0001f9e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001f9f0: 0a7c 2020 2020 2020 2020 3120 2020 2020 .| 1 │ │ │ │ +0001fa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fa30: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001fa20: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001fa30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fa40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fa50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fa60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fa70: 2d2d 2d2d 2b0a 0a57 6865 6e20 7573 696e ----+..When usin │ │ │ │ -0001fa80: 6720 7468 6520 4469 7265 6374 436f 6d70 g the DirectComp │ │ │ │ -0001fa90: 6c65 7465 496e 7420 6d65 7468 6f64 206f leteInt method o │ │ │ │ -0001faa0: 6e65 206d 6179 2070 6f74 656e 7469 616c ne may potential │ │ │ │ -0001fab0: 6c79 2066 7572 7468 6572 2073 7065 6564 ly further speed │ │ │ │ -0001fac0: 2075 700a 636f 6d70 7574 6174 696f 6e20 up.computation │ │ │ │ -0001fad0: 7469 6d65 2062 7920 7370 6563 6966 7969 time by specifyi │ │ │ │ -0001fae0: 6e67 2077 6861 7420 7375 6273 6574 206f ng what subset o │ │ │ │ -0001faf0: 6620 7468 6520 6765 6e65 7261 746f 7273 f the generators │ │ │ │ -0001fb00: 206f 6620 7468 6520 696e 7075 7420 6964 of the input id │ │ │ │ -0001fb10: 6561 6c0a 6465 6669 6e65 2061 2073 6d6f eal.define a smo │ │ │ │ -0001fb20: 6f74 6820 7375 6273 6368 656d 6520 2869 oth subscheme (i │ │ │ │ -0001fb30: 6620 7468 6973 2069 7320 6b6e 6f77 6e29 f this is known) │ │ │ │ -0001fb40: 2c20 7365 6520 2a6e 6f74 6520 496e 6473 , see *note Inds │ │ │ │ -0001fb50: 4f66 536d 6f6f 7468 3a0a 496e 6473 4f66 OfSmooth:.IndsOf │ │ │ │ -0001fb60: 536d 6f6f 7468 2c2e 0a0a 4675 6e63 7469 Smooth,...Functi │ │ │ │ -0001fb70: 6f6e 7320 7769 7468 206f 7074 696f 6e61 ons with optiona │ │ │ │ -0001fb80: 6c20 6172 6775 6d65 6e74 206e 616d 6564 l argument named │ │ │ │ -0001fb90: 204d 6574 686f 643a 0a3d 3d3d 3d3d 3d3d Method:.======= │ │ │ │ +0001fa60: 2d2d 2d2d 2d2b 0a0a 5768 656e 2075 7369 -----+..When usi │ │ │ │ +0001fa70: 6e67 2074 6865 2044 6972 6563 7443 6f6d ng the DirectCom │ │ │ │ +0001fa80: 706c 6574 6549 6e74 206d 6574 686f 6420 pleteInt method │ │ │ │ +0001fa90: 6f6e 6520 6d61 7920 706f 7465 6e74 6961 one may potentia │ │ │ │ +0001faa0: 6c6c 7920 6675 7274 6865 7220 7370 6565 lly further spee │ │ │ │ +0001fab0: 6420 7570 0a63 6f6d 7075 7461 7469 6f6e d up.computation │ │ │ │ +0001fac0: 2074 696d 6520 6279 2073 7065 6369 6679 time by specify │ │ │ │ +0001fad0: 696e 6720 7768 6174 2073 7562 7365 7420 ing what subset │ │ │ │ +0001fae0: 6f66 2074 6865 2067 656e 6572 6174 6f72 of the generator │ │ │ │ +0001faf0: 7320 6f66 2074 6865 2069 6e70 7574 2069 s of the input i │ │ │ │ +0001fb00: 6465 616c 0a64 6566 696e 6520 6120 736d deal.define a sm │ │ │ │ +0001fb10: 6f6f 7468 2073 7562 7363 6865 6d65 2028 ooth subscheme ( │ │ │ │ +0001fb20: 6966 2074 6869 7320 6973 206b 6e6f 776e if this is known │ │ │ │ +0001fb30: 292c 2073 6565 202a 6e6f 7465 2049 6e64 ), see *note Ind │ │ │ │ +0001fb40: 734f 6653 6d6f 6f74 683a 0a49 6e64 734f sOfSmooth:.IndsO │ │ │ │ +0001fb50: 6653 6d6f 6f74 682c 2e0a 0a46 756e 6374 fSmooth,...Funct │ │ │ │ +0001fb60: 696f 6e73 2077 6974 6820 6f70 7469 6f6e ions with option │ │ │ │ +0001fb70: 616c 2061 7267 756d 656e 7420 6e61 6d65 al argument name │ │ │ │ +0001fb80: 6420 4d65 7468 6f64 3a0a 3d3d 3d3d 3d3d d Method:.====== │ │ │ │ +0001fb90: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 0001fba0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001fbb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001fbc0: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 4353 =======.. * "CS │ │ │ │ -0001fbd0: 4d28 2e2e 2e2c 4d65 7468 6f64 3d3e 2e2e M(...,Method=>.. │ │ │ │ -0001fbe0: 2e29 2220 2d2d 2073 6565 202a 6e6f 7465 .)" -- see *note │ │ │ │ -0001fbf0: 2043 534d 3a20 4353 4d2c 202d 2d20 5468 CSM: CSM, -- Th │ │ │ │ -0001fc00: 650a 2020 2020 4368 6572 6e2d 5363 6877 e. Chern-Schw │ │ │ │ -0001fc10: 6172 747a 2d4d 6163 5068 6572 736f 6e20 artz-MacPherson │ │ │ │ -0001fc20: 636c 6173 730a 2020 2a20 4575 6c65 7228 class. * Euler( │ │ │ │ -0001fc30: 2e2e 2e2c 4d65 7468 6f64 3d3e 2e2e 2e29 ...,Method=>...) │ │ │ │ -0001fc40: 2028 6d69 7373 696e 6720 646f 6375 6d65 (missing docume │ │ │ │ -0001fc50: 6e74 6174 696f 6e29 0a0a 466f 7220 7468 ntation)..For th │ │ │ │ -0001fc60: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -0001fc70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -0001fc80: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -0001fc90: 6520 4d65 7468 6f64 3a20 4d65 7468 6f64 e Method: Method │ │ │ │ -0001fca0: 2c20 6973 2061 202a 6e6f 7465 2073 796d , is a *note sym │ │ │ │ -0001fcb0: 626f 6c3a 2028 4d61 6361 756c 6179 3244 bol: (Macaulay2D │ │ │ │ -0001fcc0: 6f63 2953 796d 626f 6c2c 2e0a 1f0a 4669 oc)Symbol,....Fi │ │ │ │ -0001fcd0: 6c65 3a20 4368 6172 6163 7465 7269 7374 le: Characterist │ │ │ │ -0001fce0: 6963 436c 6173 7365 732e 696e 666f 2c20 icClasses.info, │ │ │ │ -0001fcf0: 4e6f 6465 3a20 4d75 6c74 6950 726f 6a43 Node: MultiProjC │ │ │ │ -0001fd00: 6f6f 7264 5269 6e67 2c20 4e65 7874 3a20 oordRing, Next: │ │ │ │ -0001fd10: 4f75 7470 7574 2c20 5072 6576 3a20 4d65 Output, Prev: Me │ │ │ │ -0001fd20: 7468 6f64 2c20 5570 3a20 546f 700a 0a4d thod, Up: Top..M │ │ │ │ -0001fd30: 756c 7469 5072 6f6a 436f 6f72 6452 696e ultiProjCoordRin │ │ │ │ -0001fd40: 6720 2d2d 2041 2071 7569 636b 2077 6179 g -- A quick way │ │ │ │ -0001fd50: 2074 6f20 6275 696c 6420 7468 6520 636f to build the co │ │ │ │ -0001fd60: 6f72 6469 6e61 7465 2072 696e 6720 6f66 ordinate ring of │ │ │ │ -0001fd70: 2061 2070 726f 6475 6374 206f 6620 7072 a product of pr │ │ │ │ -0001fd80: 6f6a 6563 7469 7665 2073 7061 6365 730a ojective spaces. │ │ │ │ +0001fbb0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2243 ========.. * "C │ │ │ │ +0001fbc0: 534d 282e 2e2e 2c4d 6574 686f 643d 3e2e SM(...,Method=>. │ │ │ │ +0001fbd0: 2e2e 2922 202d 2d20 7365 6520 2a6e 6f74 ..)" -- see *not │ │ │ │ +0001fbe0: 6520 4353 4d3a 2043 534d 2c20 2d2d 2054 e CSM: CSM, -- T │ │ │ │ +0001fbf0: 6865 0a20 2020 2043 6865 726e 2d53 6368 he. Chern-Sch │ │ │ │ +0001fc00: 7761 7274 7a2d 4d61 6350 6865 7273 6f6e wartz-MacPherson │ │ │ │ +0001fc10: 2063 6c61 7373 0a20 202a 2045 756c 6572 class. * Euler │ │ │ │ +0001fc20: 282e 2e2e 2c4d 6574 686f 643d 3e2e 2e2e (...,Method=>... │ │ │ │ +0001fc30: 2920 286d 6973 7369 6e67 2064 6f63 756d ) (missing docum │ │ │ │ +0001fc40: 656e 7461 7469 6f6e 290a 0a46 6f72 2074 entation)..For t │ │ │ │ +0001fc50: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +0001fc60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001fc70: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ +0001fc80: 7465 204d 6574 686f 643a 204d 6574 686f te Method: Metho │ │ │ │ +0001fc90: 642c 2069 7320 6120 2a6e 6f74 6520 7379 d, is a *note sy │ │ │ │ +0001fca0: 6d62 6f6c 3a20 284d 6163 6175 6c61 7932 mbol: (Macaulay2 │ │ │ │ +0001fcb0: 446f 6329 5379 6d62 6f6c 2c2e 0a1f 0a46 Doc)Symbol,....F │ │ │ │ +0001fcc0: 696c 653a 2043 6861 7261 6374 6572 6973 ile: Characteris │ │ │ │ +0001fcd0: 7469 6343 6c61 7373 6573 2e69 6e66 6f2c ticClasses.info, │ │ │ │ +0001fce0: 204e 6f64 653a 204d 756c 7469 5072 6f6a Node: MultiProj │ │ │ │ +0001fcf0: 436f 6f72 6452 696e 672c 204e 6578 743a CoordRing, Next: │ │ │ │ +0001fd00: 204f 7574 7075 742c 2050 7265 763a 204d Output, Prev: M │ │ │ │ +0001fd10: 6574 686f 642c 2055 703a 2054 6f70 0a0a ethod, Up: Top.. │ │ │ │ +0001fd20: 4d75 6c74 6950 726f 6a43 6f6f 7264 5269 MultiProjCoordRi │ │ │ │ +0001fd30: 6e67 202d 2d20 4120 7175 6963 6b20 7761 ng -- A quick wa │ │ │ │ +0001fd40: 7920 746f 2062 7569 6c64 2074 6865 2063 y to build the c │ │ │ │ +0001fd50: 6f6f 7264 696e 6174 6520 7269 6e67 206f oordinate ring o │ │ │ │ +0001fd60: 6620 6120 7072 6f64 7563 7420 6f66 2070 f a product of p │ │ │ │ +0001fd70: 726f 6a65 6374 6976 6520 7370 6163 6573 rojective spaces │ │ │ │ +0001fd80: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ 0001fd90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fda0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fdb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fdc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fdd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001fde0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001fdf0: 0a0a 5379 6e6f 7073 6973 0a3d 3d3d 3d3d ..Synopsis.===== │ │ │ │ -0001fe00: 3d3d 3d0a 0a20 202a 2055 7361 6765 3a20 ===.. * Usage: │ │ │ │ -0001fe10: 0a20 2020 2020 2020 204d 756c 7469 5072 . MultiPr │ │ │ │ -0001fe20: 6f6a 436f 6f72 6452 696e 6720 4469 6d73 ojCoordRing Dims │ │ │ │ -0001fe30: 0a20 2020 2020 2020 204d 756c 7469 5072 . MultiPr │ │ │ │ -0001fe40: 6f6a 436f 6f72 6452 696e 6720 2843 6f65 ojCoordRing (Coe │ │ │ │ -0001fe50: 6666 5269 6e67 2c44 696d 7329 0a20 2020 ffRing,Dims). │ │ │ │ -0001fe60: 2020 2020 204d 756c 7469 5072 6f6a 436f MultiProjCo │ │ │ │ -0001fe70: 6f72 6452 696e 6720 2876 6172 2c44 696d ordRing (var,Dim │ │ │ │ -0001fe80: 7329 0a20 2020 2020 2020 204d 756c 7469 s). Multi │ │ │ │ -0001fe90: 5072 6f6a 436f 6f72 6452 696e 6720 2843 ProjCoordRing (C │ │ │ │ -0001fea0: 6f65 6666 5269 6e67 2c76 6172 2c44 696d oeffRing,var,Dim │ │ │ │ -0001feb0: 7329 0a20 202a 2049 6e70 7574 733a 0a20 s). * Inputs:. │ │ │ │ -0001fec0: 2020 2020 202a 2044 696d 732c 2061 202a * Dims, a * │ │ │ │ -0001fed0: 6e6f 7465 206c 6973 743a 2028 4d61 6361 note list: (Maca │ │ │ │ -0001fee0: 756c 6179 3244 6f63 294c 6973 742c 2c20 ulay2Doc)List,, │ │ │ │ -0001fef0: 7265 7072 6573 656e 7469 6e67 2074 6865 representing the │ │ │ │ -0001ff00: 2064 696d 656e 7369 6f6e 7320 6f66 0a20 dimensions of. │ │ │ │ -0001ff10: 2020 2020 2020 2074 6865 2070 726f 6a65 the proje │ │ │ │ -0001ff20: 6374 6976 6520 7370 6163 6573 2c20 692e ctive spaces, i. │ │ │ │ -0001ff30: 652e 207b 6e5f 312c 2e2e 2e2c 6e5f 6d7d e. {n_1,...,n_m} │ │ │ │ -0001ff40: 2063 6f72 7265 7370 6f6e 6473 2074 6f20 corresponds to │ │ │ │ -0001ff50: 5c50 505e 7b6e 5f31 7d0a 2020 2020 2020 \PP^{n_1}. │ │ │ │ -0001ff60: 2020 782e 2e2e 2e20 7820 5c50 505e 7b6e x.... x \PP^{n │ │ │ │ -0001ff70: 5f6d 7d0a 2020 2020 2020 2a20 436f 6566 _m}. * Coef │ │ │ │ -0001ff80: 6652 696e 672c 2061 202a 6e6f 7465 2072 fRing, a *note r │ │ │ │ -0001ff90: 696e 673a 2028 4d61 6361 756c 6179 3244 ing: (Macaulay2D │ │ │ │ -0001ffa0: 6f63 2952 696e 672c 2c20 7468 6520 636f oc)Ring,, the co │ │ │ │ -0001ffb0: 6566 6669 6369 656e 7420 7269 6e67 206f efficient ring o │ │ │ │ -0001ffc0: 660a 2020 2020 2020 2020 7468 6520 6772 f. the gr │ │ │ │ -0001ffd0: 6164 6564 2070 6f6c 796e 6f6d 6961 6c20 aded polynomial │ │ │ │ -0001ffe0: 7269 6e67 2074 6f20 6265 2062 7569 6c74 ring to be built │ │ │ │ -0001fff0: 2062 7920 7468 6520 6d65 7468 6f64 2c20 by the method, │ │ │ │ -00020000: 6279 2064 6566 6175 6c74 2074 6869 730a by default this. │ │ │ │ -00020010: 2020 2020 2020 2020 6973 205c 5a5a 2f33 is \ZZ/3 │ │ │ │ -00020020: 3237 3439 0a20 2020 2020 202a 2076 6172 2749. * var │ │ │ │ -00020030: 2c20 6120 2a6e 6f74 6520 7379 6d62 6f6c , a *note symbol │ │ │ │ -00020040: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00020050: 5379 6d62 6f6c 2c2c 2074 6f20 6265 2075 Symbol,, to be u │ │ │ │ -00020060: 7365 6420 666f 7220 7468 650a 2020 2020 sed for the. │ │ │ │ -00020070: 2020 2020 696e 7465 726d 6564 6961 7465 intermediate │ │ │ │ -00020080: 7320 6f66 2074 6865 2067 7261 6465 6420 s of the graded │ │ │ │ -00020090: 706f 6c79 6e6f 6d69 616c 2072 696e 6720 polynomial ring │ │ │ │ -000200a0: 746f 2062 6520 6275 696c 7420 6279 2074 to be built by t │ │ │ │ -000200b0: 6865 206d 6574 686f 640a 2020 2a20 4f75 he method. * Ou │ │ │ │ -000200c0: 7470 7574 733a 0a20 2020 2020 202a 2061 tputs:. * a │ │ │ │ -000200d0: 202a 6e6f 7465 2072 696e 673a 2028 4d61 *note ring: (Ma │ │ │ │ -000200e0: 6361 756c 6179 3244 6f63 2952 696e 672c caulay2Doc)Ring, │ │ │ │ -000200f0: 2c20 7468 6520 6772 6164 6564 2063 6f6f , the graded coo │ │ │ │ -00020100: 7264 696e 6174 6520 7269 6e67 206f 6620 rdinate ring of │ │ │ │ -00020110: 7468 650a 2020 2020 2020 2020 5c50 505e the. \PP^ │ │ │ │ -00020120: 7b6e 5f31 7d20 782e 2e2e 2e20 7820 5c50 {n_1} x.... x \P │ │ │ │ -00020130: 505e 7b6e 5f6d 7d20 7768 6572 6520 7b6e P^{n_m} where {n │ │ │ │ -00020140: 5f31 2c2e 2e2e 2c6e 5f6d 7d20 6973 2074 _1,...,n_m} is t │ │ │ │ -00020150: 6865 2069 6e70 7574 206c 6973 7420 6f66 he input list of │ │ │ │ -00020160: 0a20 2020 2020 2020 2064 696d 656e 7369 . dimensi │ │ │ │ -00020170: 6f6e 730a 0a44 6573 6372 6970 7469 6f6e ons..Description │ │ │ │ -00020180: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 436f .===========..Co │ │ │ │ -00020190: 6d70 7574 6573 2074 6865 2067 7261 6465 mputes the grade │ │ │ │ -000201a0: 6420 636f 6f72 6469 6e61 7465 2072 696e d coordinate rin │ │ │ │ -000201b0: 6720 6f66 2074 6865 205c 5050 5e7b 6e5f g of the \PP^{n_ │ │ │ │ -000201c0: 317d 2078 2e2e 2e2e 2078 205c 5050 5e7b 1} x.... x \PP^{ │ │ │ │ -000201d0: 6e5f 6d7d 2077 6865 7265 0a7b 6e5f 312c n_m} where.{n_1, │ │ │ │ -000201e0: 2e2e 2e2c 6e5f 6d7d 2069 7320 7468 6520 ...,n_m} is the │ │ │ │ -000201f0: 696e 7075 7420 6c69 7374 206f 6620 6469 input list of di │ │ │ │ -00020200: 6d65 6e73 696f 6e73 2e20 5468 6973 206d mensions. This m │ │ │ │ -00020210: 6574 686f 6420 6973 2075 7365 6420 746f ethod is used to │ │ │ │ -00020220: 2071 7569 636b 6c79 0a62 7569 6c64 2074 quickly.build t │ │ │ │ -00020230: 6865 2063 6f6f 7264 696e 6174 6520 7269 he coordinate ri │ │ │ │ -00020240: 6e67 206f 6620 6120 7072 6f64 7563 7420 ng of a product │ │ │ │ -00020250: 6f66 2070 726f 6a65 6374 6976 6520 7370 of projective sp │ │ │ │ -00020260: 6163 6573 2066 6f72 2075 7365 2069 6e0a aces for use in. │ │ │ │ -00020270: 636f 6d70 7574 6174 696f 6e73 2e0a 0a2b computations...+ │ │ │ │ +0001fde0: 2a0a 0a53 796e 6f70 7369 730a 3d3d 3d3d *..Synopsis.==== │ │ │ │ +0001fdf0: 3d3d 3d3d 0a0a 2020 2a20 5573 6167 653a ====.. * Usage: │ │ │ │ +0001fe00: 200a 2020 2020 2020 2020 4d75 6c74 6950 . MultiP │ │ │ │ +0001fe10: 726f 6a43 6f6f 7264 5269 6e67 2044 696d rojCoordRing Dim │ │ │ │ +0001fe20: 730a 2020 2020 2020 2020 4d75 6c74 6950 s. MultiP │ │ │ │ +0001fe30: 726f 6a43 6f6f 7264 5269 6e67 2028 436f rojCoordRing (Co │ │ │ │ +0001fe40: 6566 6652 696e 672c 4469 6d73 290a 2020 effRing,Dims). │ │ │ │ +0001fe50: 2020 2020 2020 4d75 6c74 6950 726f 6a43 MultiProjC │ │ │ │ +0001fe60: 6f6f 7264 5269 6e67 2028 7661 722c 4469 oordRing (var,Di │ │ │ │ +0001fe70: 6d73 290a 2020 2020 2020 2020 4d75 6c74 ms). Mult │ │ │ │ +0001fe80: 6950 726f 6a43 6f6f 7264 5269 6e67 2028 iProjCoordRing ( │ │ │ │ +0001fe90: 436f 6566 6652 696e 672c 7661 722c 4469 CoeffRing,var,Di │ │ │ │ +0001fea0: 6d73 290a 2020 2a20 496e 7075 7473 3a0a ms). * Inputs:. │ │ │ │ +0001feb0: 2020 2020 2020 2a20 4469 6d73 2c20 6120 * Dims, a │ │ │ │ +0001fec0: 2a6e 6f74 6520 6c69 7374 3a20 284d 6163 *note list: (Mac │ │ │ │ +0001fed0: 6175 6c61 7932 446f 6329 4c69 7374 2c2c aulay2Doc)List,, │ │ │ │ +0001fee0: 2072 6570 7265 7365 6e74 696e 6720 7468 representing th │ │ │ │ +0001fef0: 6520 6469 6d65 6e73 696f 6e73 206f 660a e dimensions of. │ │ │ │ +0001ff00: 2020 2020 2020 2020 7468 6520 7072 6f6a the proj │ │ │ │ +0001ff10: 6563 7469 7665 2073 7061 6365 732c 2069 ective spaces, i │ │ │ │ +0001ff20: 2e65 2e20 7b6e 5f31 2c2e 2e2e 2c6e 5f6d .e. {n_1,...,n_m │ │ │ │ +0001ff30: 7d20 636f 7272 6573 706f 6e64 7320 746f } corresponds to │ │ │ │ +0001ff40: 205c 5050 5e7b 6e5f 317d 0a20 2020 2020 \PP^{n_1}. │ │ │ │ +0001ff50: 2020 2078 2e2e 2e2e 2078 205c 5050 5e7b x.... x \PP^{ │ │ │ │ +0001ff60: 6e5f 6d7d 0a20 2020 2020 202a 2043 6f65 n_m}. * Coe │ │ │ │ +0001ff70: 6666 5269 6e67 2c20 6120 2a6e 6f74 6520 ffRing, a *note │ │ │ │ +0001ff80: 7269 6e67 3a20 284d 6163 6175 6c61 7932 ring: (Macaulay2 │ │ │ │ +0001ff90: 446f 6329 5269 6e67 2c2c 2074 6865 2063 Doc)Ring,, the c │ │ │ │ +0001ffa0: 6f65 6666 6963 6965 6e74 2072 696e 6720 oefficient ring │ │ │ │ +0001ffb0: 6f66 0a20 2020 2020 2020 2074 6865 2067 of. the g │ │ │ │ +0001ffc0: 7261 6465 6420 706f 6c79 6e6f 6d69 616c raded polynomial │ │ │ │ +0001ffd0: 2072 696e 6720 746f 2062 6520 6275 696c ring to be buil │ │ │ │ +0001ffe0: 7420 6279 2074 6865 206d 6574 686f 642c t by the method, │ │ │ │ +0001fff0: 2062 7920 6465 6661 756c 7420 7468 6973 by default this │ │ │ │ +00020000: 0a20 2020 2020 2020 2069 7320 5c5a 5a2f . is \ZZ/ │ │ │ │ +00020010: 3332 3734 390a 2020 2020 2020 2a20 7661 32749. * va │ │ │ │ +00020020: 722c 2061 202a 6e6f 7465 2073 796d 626f r, a *note symbo │ │ │ │ +00020030: 6c3a 2028 4d61 6361 756c 6179 3244 6f63 l: (Macaulay2Doc │ │ │ │ +00020040: 2953 796d 626f 6c2c 2c20 746f 2062 6520 )Symbol,, to be │ │ │ │ +00020050: 7573 6564 2066 6f72 2074 6865 0a20 2020 used for the. │ │ │ │ +00020060: 2020 2020 2069 6e74 6572 6d65 6469 6174 intermediat │ │ │ │ +00020070: 6573 206f 6620 7468 6520 6772 6164 6564 es of the graded │ │ │ │ +00020080: 2070 6f6c 796e 6f6d 6961 6c20 7269 6e67 polynomial ring │ │ │ │ +00020090: 2074 6f20 6265 2062 7569 6c74 2062 7920 to be built by │ │ │ │ +000200a0: 7468 6520 6d65 7468 6f64 0a20 202a 204f the method. * O │ │ │ │ +000200b0: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ +000200c0: 6120 2a6e 6f74 6520 7269 6e67 3a20 284d a *note ring: (M │ │ │ │ +000200d0: 6163 6175 6c61 7932 446f 6329 5269 6e67 acaulay2Doc)Ring │ │ │ │ +000200e0: 2c2c 2074 6865 2067 7261 6465 6420 636f ,, the graded co │ │ │ │ +000200f0: 6f72 6469 6e61 7465 2072 696e 6720 6f66 ordinate ring of │ │ │ │ +00020100: 2074 6865 0a20 2020 2020 2020 205c 5050 the. \PP │ │ │ │ +00020110: 5e7b 6e5f 317d 2078 2e2e 2e2e 2078 205c ^{n_1} x.... x \ │ │ │ │ +00020120: 5050 5e7b 6e5f 6d7d 2077 6865 7265 207b PP^{n_m} where { │ │ │ │ +00020130: 6e5f 312c 2e2e 2e2c 6e5f 6d7d 2069 7320 n_1,...,n_m} is │ │ │ │ +00020140: 7468 6520 696e 7075 7420 6c69 7374 206f the input list o │ │ │ │ +00020150: 660a 2020 2020 2020 2020 6469 6d65 6e73 f. dimens │ │ │ │ +00020160: 696f 6e73 0a0a 4465 7363 7269 7074 696f ions..Descriptio │ │ │ │ +00020170: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a43 n.===========..C │ │ │ │ +00020180: 6f6d 7075 7465 7320 7468 6520 6772 6164 omputes the grad │ │ │ │ +00020190: 6564 2063 6f6f 7264 696e 6174 6520 7269 ed coordinate ri │ │ │ │ +000201a0: 6e67 206f 6620 7468 6520 5c50 505e 7b6e ng of the \PP^{n │ │ │ │ +000201b0: 5f31 7d20 782e 2e2e 2e20 7820 5c50 505e _1} x.... x \PP^ │ │ │ │ +000201c0: 7b6e 5f6d 7d20 7768 6572 650a 7b6e 5f31 {n_m} where.{n_1 │ │ │ │ +000201d0: 2c2e 2e2e 2c6e 5f6d 7d20 6973 2074 6865 ,...,n_m} is the │ │ │ │ +000201e0: 2069 6e70 7574 206c 6973 7420 6f66 2064 input list of d │ │ │ │ +000201f0: 696d 656e 7369 6f6e 732e 2054 6869 7320 imensions. This │ │ │ │ +00020200: 6d65 7468 6f64 2069 7320 7573 6564 2074 method is used t │ │ │ │ +00020210: 6f20 7175 6963 6b6c 790a 6275 696c 6420 o quickly.build │ │ │ │ +00020220: 7468 6520 636f 6f72 6469 6e61 7465 2072 the coordinate r │ │ │ │ +00020230: 696e 6720 6f66 2061 2070 726f 6475 6374 ing of a product │ │ │ │ +00020240: 206f 6620 7072 6f6a 6563 7469 7665 2073 of projective s │ │ │ │ +00020250: 7061 6365 7320 666f 7220 7573 6520 696e paces for use in │ │ │ │ +00020260: 0a63 6f6d 7075 7461 7469 6f6e 732e 0a0a .computations... │ │ │ │ +00020270: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00020280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000202a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000202b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000202c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000202d0: 6931 203a 2053 3d4d 756c 7469 5072 6f6a i1 : S=MultiProj │ │ │ │ -000202e0: 436f 6f72 6452 696e 6728 5151 2c73 796d CoordRing(QQ,sym │ │ │ │ -000202f0: 626f 6c20 7a2c 7b31 2c33 2c33 7d29 2020 bol z,{1,3,3}) │ │ │ │ -00020300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020310: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000202b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000202c0: 7c69 3120 3a20 533d 4d75 6c74 6950 726f |i1 : S=MultiPro │ │ │ │ +000202d0: 6a43 6f6f 7264 5269 6e67 2851 512c 7379 jCoordRing(QQ,sy │ │ │ │ +000202e0: 6d62 6f6c 207a 2c7b 312c 332c 337d 2920 mbol z,{1,3,3}) │ │ │ │ +000202f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020300: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020310: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00020320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020360: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00020370: 6f31 203d 2053 2020 2020 2020 2020 2020 o1 = S │ │ │ │ +00020350: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020360: 7c6f 3120 3d20 5320 2020 2020 2020 2020 |o1 = S │ │ │ │ +00020370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000203a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000203b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000203a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000203b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000203c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000203d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000203e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000203f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020400: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00020410: 6f31 203a 2050 6f6c 796e 6f6d 6961 6c52 o1 : PolynomialR │ │ │ │ -00020420: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ +000203f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020400: 7c6f 3120 3a20 506f 6c79 6e6f 6d69 616c |o1 : Polynomial │ │ │ │ +00020410: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ +00020420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020450: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00020440: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020450: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00020460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000204a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000204b0: 6932 203a 2064 6567 7265 6573 2053 2020 i2 : degrees S │ │ │ │ +00020490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000204a0: 7c69 3220 3a20 6465 6772 6565 7320 5320 |i2 : degrees S │ │ │ │ +000204b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000204c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000204d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000204e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000204f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000204e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000204f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00020500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020540: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00020550: 6f32 203d 207b 7b31 2c20 302c 2030 7d2c o2 = {{1, 0, 0}, │ │ │ │ -00020560: 207b 312c 2030 2c20 307d 2c20 7b30 2c20 {1, 0, 0}, {0, │ │ │ │ -00020570: 312c 2030 7d2c 207b 302c 2031 2c20 307d 1, 0}, {0, 1, 0} │ │ │ │ -00020580: 2c20 7b30 2c20 312c 2030 7d2c 207b 302c , {0, 1, 0}, {0, │ │ │ │ -00020590: 2031 2c20 307d 2c20 7b30 2c20 207c 0a7c 1, 0}, {0, |.| │ │ │ │ -000205a0: 2020 2020 202d 2d2d 2d2d 2d2d 2d2d 2d2d ----------- │ │ │ │ +00020530: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020540: 7c6f 3220 3d20 7b7b 312c 2030 2c20 307d |o2 = {{1, 0, 0} │ │ │ │ +00020550: 2c20 7b31 2c20 302c 2030 7d2c 207b 302c , {1, 0, 0}, {0, │ │ │ │ +00020560: 2031 2c20 307d 2c20 7b30 2c20 312c 2030 1, 0}, {0, 1, 0 │ │ │ │ +00020570: 7d2c 207b 302c 2031 2c20 307d 2c20 7b30 }, {0, 1, 0}, {0 │ │ │ │ +00020580: 2c20 312c 2030 7d2c 207b 302c 2020 7c0a , 1, 0}, {0, |. │ │ │ │ +00020590: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +000205a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000205b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000205c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000205d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000205e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ -000205f0: 2020 2020 2030 2c20 317d 2c20 7b30 2c20 0, 1}, {0, │ │ │ │ -00020600: 302c 2031 7d2c 207b 302c 2030 2c20 317d 0, 1}, {0, 0, 1} │ │ │ │ -00020610: 2c20 7b30 2c20 302c 2031 7d7d 2020 2020 , {0, 0, 1}} │ │ │ │ -00020620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020630: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000205d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +000205e0: 7c20 2020 2020 302c 2031 7d2c 207b 302c | 0, 1}, {0, │ │ │ │ +000205f0: 2030 2c20 317d 2c20 7b30 2c20 302c 2031 0, 1}, {0, 0, 1 │ │ │ │ +00020600: 7d2c 207b 302c 2030 2c20 317d 7d20 2020 }, {0, 0, 1}} │ │ │ │ +00020610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020620: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020630: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00020640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020680: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00020690: 6f32 203a 204c 6973 7420 2020 2020 2020 o2 : List │ │ │ │ +00020670: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020680: 7c6f 3220 3a20 4c69 7374 2020 2020 2020 |o2 : List │ │ │ │ +00020690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000206a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000206b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000206c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000206d0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000206c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000206d0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000206e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000206f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00020730: 6933 203a 2052 3d4d 756c 7469 5072 6f6a i3 : R=MultiProj │ │ │ │ -00020740: 436f 6f72 6452 696e 6720 7b32 2c33 7d20 CoordRing {2,3} │ │ │ │ +00020710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00020720: 7c69 3320 3a20 523d 4d75 6c74 6950 726f |i3 : R=MultiPro │ │ │ │ +00020730: 6a43 6f6f 7264 5269 6e67 207b 322c 337d jCoordRing {2,3} │ │ │ │ +00020740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020770: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00020760: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020770: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00020780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000207a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000207b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000207c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000207d0: 6f33 203d 2052 2020 2020 2020 2020 2020 o3 = R │ │ │ │ +000207b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000207c0: 7c6f 3320 3d20 5220 2020 2020 2020 2020 |o3 = R │ │ │ │ +000207d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000207e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000207f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020810: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00020800: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020810: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00020820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020860: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00020870: 6f33 203a 2050 6f6c 796e 6f6d 6961 6c52 o3 : PolynomialR │ │ │ │ -00020880: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ +00020850: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020860: 7c6f 3320 3a20 506f 6c79 6e6f 6d69 616c |o3 : Polynomial │ │ │ │ +00020870: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ +00020880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000208a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000208b0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000208a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000208b0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000208c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000208d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000208e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000208f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00020910: 6934 203a 2063 6f65 6666 6963 6965 6e74 i4 : coefficient │ │ │ │ -00020920: 5269 6e67 2052 2020 2020 2020 2020 2020 Ring R │ │ │ │ +000208f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00020900: 7c69 3420 3a20 636f 6566 6669 6369 656e |i4 : coefficien │ │ │ │ +00020910: 7452 696e 6720 5220 2020 2020 2020 2020 tRing R │ │ │ │ +00020920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020950: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00020940: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020950: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00020960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000209a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000209b0: 2020 2020 2020 205a 5a20 2020 2020 2020 ZZ │ │ │ │ +00020990: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000209a0: 7c20 2020 2020 2020 5a5a 2020 2020 2020 | ZZ │ │ │ │ +000209b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000209c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000209d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000209e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000209f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00020a00: 6f34 203d 202d 2d2d 2d2d 2020 2020 2020 o4 = ----- │ │ │ │ +000209e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000209f0: 7c6f 3420 3d20 2d2d 2d2d 2d20 2020 2020 |o4 = ----- │ │ │ │ +00020a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020a40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00020a50: 2020 2020 2033 3237 3439 2020 2020 2020 32749 │ │ │ │ +00020a30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020a40: 7c20 2020 2020 3332 3734 3920 2020 2020 | 32749 │ │ │ │ +00020a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020a90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00020a80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020a90: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00020aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ae0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00020af0: 6f34 203a 2051 756f 7469 656e 7452 696e o4 : QuotientRin │ │ │ │ -00020b00: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ +00020ad0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020ae0: 7c6f 3420 3a20 5175 6f74 6965 6e74 5269 |o4 : QuotientRi │ │ │ │ +00020af0: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ +00020b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020b30: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00020b20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020b30: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00020b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00020b90: 6935 203a 2064 6573 6372 6962 6520 5220 i5 : describe R │ │ │ │ +00020b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00020b80: 7c69 3520 3a20 6465 7363 7269 6265 2052 |i5 : describe R │ │ │ │ +00020b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020bd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00020bc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020bd0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00020be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020c20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00020c30: 2020 2020 2020 205a 5a20 2020 2020 2020 ZZ │ │ │ │ +00020c10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020c20: 7c20 2020 2020 2020 5a5a 2020 2020 2020 | ZZ │ │ │ │ +00020c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020c70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00020c80: 6f35 203d 202d 2d2d 2d2d 5b78 202e 2e78 o5 = -----[x ..x │ │ │ │ -00020c90: 202c 2044 6567 7265 6573 203d 3e20 7b33 , Degrees => {3 │ │ │ │ -00020ca0: 3a7b 317d 2c20 343a 7b30 7d7d 2c20 4865 :{1}, 4:{0}}, He │ │ │ │ -00020cb0: 6674 203d 3e20 7b32 3a31 7d5d 2020 2020 ft => {2:1}] │ │ │ │ -00020cc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00020cd0: 2020 2020 2033 3237 3439 2020 3020 2020 32749 0 │ │ │ │ -00020ce0: 3620 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ -00020cf0: 207b 307d 2020 2020 7b31 7d20 2020 2020 {0} {1} │ │ │ │ -00020d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020d10: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00020c60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020c70: 7c6f 3520 3d20 2d2d 2d2d 2d5b 7820 2e2e |o5 = -----[x .. │ │ │ │ +00020c80: 7820 2c20 4465 6772 6565 7320 3d3e 207b x , Degrees => { │ │ │ │ +00020c90: 333a 7b31 7d2c 2034 3a7b 307d 7d2c 2048 3:{1}, 4:{0}}, H │ │ │ │ +00020ca0: 6566 7420 3d3e 207b 323a 317d 5d20 2020 eft => {2:1}] │ │ │ │ +00020cb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020cc0: 7c20 2020 2020 3332 3734 3920 2030 2020 | 32749 0 │ │ │ │ +00020cd0: 2036 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +00020ce0: 2020 7b30 7d20 2020 207b 317d 2020 2020 {0} {1} │ │ │ │ +00020cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020d00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020d10: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00020d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00020d70: 6936 203a 2041 3d43 686f 7752 696e 6720 i6 : A=ChowRing │ │ │ │ -00020d80: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +00020d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00020d60: 7c69 3620 3a20 413d 4368 6f77 5269 6e67 |i6 : A=ChowRing │ │ │ │ +00020d70: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +00020d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020db0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00020da0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020db0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00020dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020e00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00020e10: 6f36 203d 2041 2020 2020 2020 2020 2020 o6 = A │ │ │ │ +00020df0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020e00: 7c6f 3620 3d20 4120 2020 2020 2020 2020 |o6 = A │ │ │ │ +00020e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020e50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00020e40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020e50: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00020e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ea0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00020eb0: 6f36 203a 2051 756f 7469 656e 7452 696e o6 : QuotientRin │ │ │ │ -00020ec0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ +00020e90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020ea0: 7c6f 3620 3a20 5175 6f74 6965 6e74 5269 |o6 : QuotientRi │ │ │ │ +00020eb0: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ +00020ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ef0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00020ee0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020ef0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00020f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00020f50: 6937 203a 2064 6573 6372 6962 6520 4120 i7 : describe A │ │ │ │ +00020f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00020f40: 7c69 3720 3a20 6465 7363 7269 6265 2041 |i7 : describe A │ │ │ │ +00020f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020f90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00020f80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020f90: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00020fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020fe0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00020ff0: 2020 2020 205a 5a5b 6820 2e2e 6820 5d20 ZZ[h ..h ] │ │ │ │ +00020fd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020fe0: 7c20 2020 2020 5a5a 5b68 202e 2e68 205d | ZZ[h ..h ] │ │ │ │ +00020ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021030: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00021040: 2020 2020 2020 2020 2031 2020 2032 2020 1 2 │ │ │ │ +00021020: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00021030: 7c20 2020 2020 2020 2020 3120 2020 3220 | 1 2 │ │ │ │ +00021040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021080: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00021090: 6f37 203d 202d 2d2d 2d2d 2d2d 2d2d 2d20 o7 = ---------- │ │ │ │ +00021070: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00021080: 7c6f 3720 3d20 2d2d 2d2d 2d2d 2d2d 2d2d |o7 = ---------- │ │ │ │ +00021090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000210a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000210b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000210c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000210d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000210e0: 2020 2020 2020 2020 3320 2020 3420 2020 3 4 │ │ │ │ +000210c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000210d0: 7c20 2020 2020 2020 2033 2020 2034 2020 | 3 4 │ │ │ │ +000210e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000210f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021120: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00021130: 2020 2020 2020 2868 202c 2068 2029 2020 (h , h ) │ │ │ │ +00021110: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00021120: 7c20 2020 2020 2028 6820 2c20 6820 2920 | (h , h ) │ │ │ │ +00021130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021170: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00021180: 2020 2020 2020 2020 3120 2020 3220 2020 1 2 │ │ │ │ +00021160: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00021170: 7c20 2020 2020 2020 2031 2020 2032 2020 | 1 2 │ │ │ │ +00021180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000211a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000211b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000211c0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000211b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000211c0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000211d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000211e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000211f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00021220: 6938 203a 2053 6567 7265 2841 2c69 6465 i8 : Segre(A,ide │ │ │ │ -00021230: 616c 2072 616e 646f 6d28 7b31 2c31 7d2c al random({1,1}, │ │ │ │ -00021240: 5229 2920 2020 2020 2020 2020 2020 2020 R)) │ │ │ │ -00021250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021260: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00021210: 7c69 3820 3a20 5365 6772 6528 412c 6964 |i8 : Segre(A,id │ │ │ │ +00021220: 6561 6c20 7261 6e64 6f6d 287b 312c 317d eal random({1,1} │ │ │ │ +00021230: 2c52 2929 2020 2020 2020 2020 2020 2020 ,R)) │ │ │ │ +00021240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021250: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00021260: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00021270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000212a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000212b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000212c0: 2020 2020 2020 2020 3220 3320 2020 2020 2 3 │ │ │ │ -000212d0: 3220 3220 2020 2020 2020 3320 2020 2020 2 2 3 │ │ │ │ -000212e0: 3220 2020 2020 2020 2020 3220 2020 2033 2 2 3 │ │ │ │ -000212f0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -00021300: 2032 2020 2020 2020 2020 2020 207c 0a7c 2 |.| │ │ │ │ -00021310: 6f38 203d 2031 3068 2068 2020 2d20 3668 o8 = 10h h - 6h │ │ │ │ -00021320: 2068 2020 2d20 3468 2068 2020 2b20 3368 h - 4h h + 3h │ │ │ │ -00021330: 2068 2020 2b20 3368 2068 2020 2b20 6820 h + 3h h + h │ │ │ │ -00021340: 202d 2068 2020 2d20 3268 2068 2020 2d20 - h - 2h h - │ │ │ │ -00021350: 6820 202b 2068 2020 2b20 6820 207c 0a7c h + h + h |.| │ │ │ │ -00021360: 2020 2020 2020 2020 3120 3220 2020 2020 1 2 │ │ │ │ -00021370: 3120 3220 2020 2020 3120 3220 2020 2020 1 2 1 2 │ │ │ │ -00021380: 3120 3220 2020 2020 3120 3220 2020 2032 1 2 1 2 2 │ │ │ │ -00021390: 2020 2020 3120 2020 2020 3120 3220 2020 1 1 2 │ │ │ │ -000213a0: 2032 2020 2020 3120 2020 2032 207c 0a7c 2 1 2 |.| │ │ │ │ +000212a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000212b0: 7c20 2020 2020 2020 2032 2033 2020 2020 | 2 3 │ │ │ │ +000212c0: 2032 2032 2020 2020 2020 2033 2020 2020 2 2 3 │ │ │ │ +000212d0: 2032 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ +000212e0: 3320 2020 2032 2020 2020 2020 2020 2020 3 2 │ │ │ │ +000212f0: 2020 3220 2020 2020 2020 2020 2020 7c0a 2 |. │ │ │ │ +00021300: 7c6f 3820 3d20 3130 6820 6820 202d 2036 |o8 = 10h h - 6 │ │ │ │ +00021310: 6820 6820 202d 2034 6820 6820 202b 2033 h h - 4h h + 3 │ │ │ │ +00021320: 6820 6820 202b 2033 6820 6820 202b 2068 h h + 3h h + h │ │ │ │ +00021330: 2020 2d20 6820 202d 2032 6820 6820 202d - h - 2h h - │ │ │ │ +00021340: 2068 2020 2b20 6820 202b 2068 2020 7c0a h + h + h |. │ │ │ │ +00021350: 7c20 2020 2020 2020 2031 2032 2020 2020 | 1 2 │ │ │ │ +00021360: 2031 2032 2020 2020 2031 2032 2020 2020 1 2 1 2 │ │ │ │ +00021370: 2031 2032 2020 2020 2031 2032 2020 2020 1 2 1 2 │ │ │ │ +00021380: 3220 2020 2031 2020 2020 2031 2032 2020 2 1 1 2 │ │ │ │ +00021390: 2020 3220 2020 2031 2020 2020 3220 7c0a 2 1 2 |. │ │ │ │ +000213a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000213b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000213c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000213d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000213e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000213f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00021400: 6f38 203a 2041 2020 2020 2020 2020 2020 o8 : A │ │ │ │ +000213e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000213f0: 7c6f 3820 3a20 4120 2020 2020 2020 2020 |o8 : A │ │ │ │ +00021400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021440: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00021430: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00021440: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00021450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -000214a0: 5761 7973 2074 6f20 7573 6520 4d75 6c74 Ways to use Mult │ │ │ │ -000214b0: 6950 726f 6a43 6f6f 7264 5269 6e67 3a0a iProjCoordRing:. │ │ │ │ +00021480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00021490: 0a57 6179 7320 746f 2075 7365 204d 756c .Ways to use Mul │ │ │ │ +000214a0: 7469 5072 6f6a 436f 6f72 6452 696e 673a tiProjCoordRing: │ │ │ │ +000214b0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ 000214c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000214d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -000214e0: 0a20 202a 2022 4d75 6c74 6950 726f 6a43 . * "MultiProjC │ │ │ │ -000214f0: 6f6f 7264 5269 6e67 284c 6973 7429 220a oordRing(List)". │ │ │ │ -00021500: 2020 2a20 224d 756c 7469 5072 6f6a 436f * "MultiProjCo │ │ │ │ -00021510: 6f72 6452 696e 6728 5269 6e67 2c4c 6973 ordRing(Ring,Lis │ │ │ │ -00021520: 7429 220a 2020 2a20 224d 756c 7469 5072 t)". * "MultiPr │ │ │ │ -00021530: 6f6a 436f 6f72 6452 696e 6728 5269 6e67 ojCoordRing(Ring │ │ │ │ -00021540: 2c53 796d 626f 6c2c 4c69 7374 2922 0a20 ,Symbol,List)". │ │ │ │ -00021550: 202a 2022 4d75 6c74 6950 726f 6a43 6f6f * "MultiProjCoo │ │ │ │ -00021560: 7264 5269 6e67 2853 796d 626f 6c2c 4c69 rdRing(Symbol,Li │ │ │ │ -00021570: 7374 2922 0a0a 466f 7220 7468 6520 7072 st)"..For the pr │ │ │ │ -00021580: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ -00021590: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ -000215a0: 206f 626a 6563 7420 2a6e 6f74 6520 4d75 object *note Mu │ │ │ │ -000215b0: 6c74 6950 726f 6a43 6f6f 7264 5269 6e67 ltiProjCoordRing │ │ │ │ -000215c0: 3a20 4d75 6c74 6950 726f 6a43 6f6f 7264 : MultiProjCoord │ │ │ │ -000215d0: 5269 6e67 2c20 6973 2061 202a 6e6f 7465 Ring, is a *note │ │ │ │ -000215e0: 206d 6574 686f 640a 6675 6e63 7469 6f6e method.function │ │ │ │ -000215f0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00021600: 4d65 7468 6f64 4675 6e63 7469 6f6e 2c2e MethodFunction,. │ │ │ │ -00021610: 0a1f 0a46 696c 653a 2043 6861 7261 6374 ...File: Charact │ │ │ │ -00021620: 6572 6973 7469 6343 6c61 7373 6573 2e69 eristicClasses.i │ │ │ │ -00021630: 6e66 6f2c 204e 6f64 653a 204f 7574 7075 nfo, Node: Outpu │ │ │ │ -00021640: 742c 204e 6578 743a 2070 726f 6261 6269 t, Next: probabi │ │ │ │ -00021650: 6c69 7374 6963 2061 6c67 6f72 6974 686d listic algorithm │ │ │ │ -00021660: 2c20 5072 6576 3a20 4d75 6c74 6950 726f , Prev: MultiPro │ │ │ │ -00021670: 6a43 6f6f 7264 5269 6e67 2c20 5570 3a20 jCoordRing, Up: │ │ │ │ -00021680: 546f 700a 0a4f 7574 7075 740a 2a2a 2a2a Top..Output.**** │ │ │ │ -00021690: 2a2a 0a0a 4465 7363 7269 7074 696f 6e0a **..Description. │ │ │ │ -000216a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ -000216b0: 206f 7074 696f 6e20 4f75 7470 7574 2069 option Output i │ │ │ │ -000216c0: 7320 6f6e 6c79 2075 7365 6420 6279 2074 s only used by t │ │ │ │ -000216d0: 6865 2063 6f6d 6d61 6e64 7320 2a6e 6f74 he commands *not │ │ │ │ -000216e0: 6520 4353 4d3a 2043 534d 2c2c 202a 6e6f e CSM: CSM,, *no │ │ │ │ -000216f0: 7465 2053 6567 7265 3a0a 5365 6772 652c te Segre:.Segre, │ │ │ │ -00021700: 2c20 2a6e 6f74 6520 4368 6572 6e3a 2043 , *note Chern: C │ │ │ │ -00021710: 6865 726e 2c20 616e 6420 2a6e 6f74 6520 hern, and *note │ │ │ │ -00021720: 4575 6c65 723a 2045 756c 6572 2c20 746f Euler: Euler, to │ │ │ │ -00021730: 2073 7065 6369 6679 2074 6865 2074 7970 specify the typ │ │ │ │ -00021740: 6520 6f66 0a6f 7574 7075 7420 746f 2062 e of.output to b │ │ │ │ -00021750: 6520 7265 7475 726e 6564 2074 6f20 7468 e returned to th │ │ │ │ -00021760: 6520 7573 6564 2e20 5468 6973 206f 7074 e used. This opt │ │ │ │ -00021770: 696f 6e20 7769 6c6c 2062 6520 6967 6e6f ion will be igno │ │ │ │ -00021780: 7265 6420 7768 656e 2075 7365 6420 7769 red when used wi │ │ │ │ -00021790: 7468 0a2a 6e6f 7465 2043 6f6d 704d 6574 th.*note CompMet │ │ │ │ -000217a0: 686f 643a 2043 6f6d 704d 6574 686f 642c hod: CompMethod, │ │ │ │ -000217b0: 2050 6e52 6573 6964 7561 6c20 6f72 2062 PnResidual or b │ │ │ │ -000217c0: 6572 7469 6e69 2e20 5468 6520 6f70 7469 ertini. The opti │ │ │ │ -000217d0: 6f6e 2077 696c 6c20 616c 736f 2062 650a on will also be. │ │ │ │ -000217e0: 6967 6e6f 7265 2077 6865 6e20 2a6e 6f74 ignore when *not │ │ │ │ -000217f0: 6520 4d65 7468 6f64 3a20 4d65 7468 6f64 e Method: Method │ │ │ │ -00021800: 2c3d 3e44 6972 6563 7443 6f6d 706c 6574 ,=>DirectComplet │ │ │ │ -00021810: 6549 6e74 2069 7320 7573 6564 2e20 5468 eInt is used. Th │ │ │ │ -00021820: 6520 6465 6661 756c 740a 6f75 7470 7574 e default.output │ │ │ │ -00021830: 2066 6f72 2061 6c6c 2074 6865 7365 206d for all these m │ │ │ │ -00021840: 6574 686f 6473 2069 7320 4368 6f77 5269 ethods is ChowRi │ │ │ │ -00021850: 6e67 456c 656c 6d65 6e74 2077 6869 6368 ngElelment which │ │ │ │ -00021860: 2077 696c 6c20 7265 7475 726e 2061 6e20 will return an │ │ │ │ -00021870: 656c 656d 656e 740a 6f66 2074 6865 2061 element.of the a │ │ │ │ -00021880: 7070 726f 7072 6961 7465 2043 686f 7720 ppropriate Chow │ │ │ │ -00021890: 7269 6e67 2e20 416c 6c20 6d65 7468 6f64 ring. All method │ │ │ │ -000218a0: 7320 616c 736f 2068 6176 6520 616e 206f s also have an o │ │ │ │ -000218b0: 7074 696f 6e20 4861 7368 466f 726d 2077 ption HashForm w │ │ │ │ -000218c0: 6869 6368 0a72 6574 7572 6e73 2061 6464 hich.returns add │ │ │ │ -000218d0: 6974 696f 6e61 6c20 696e 666f 726d 6174 itional informat │ │ │ │ -000218e0: 696f 6e20 636f 6d70 7574 6564 2062 7920 ion computed by │ │ │ │ -000218f0: 7468 6520 6d65 7468 6f64 7320 6475 7269 the methods duri │ │ │ │ -00021900: 6e67 2074 6865 6972 2073 7461 6e64 6172 ng their standar │ │ │ │ -00021910: 640a 6f70 6572 6174 696f 6e2e 0a0a 2b2d d.operation...+- │ │ │ │ +000214d0: 0a0a 2020 2a20 224d 756c 7469 5072 6f6a .. * "MultiProj │ │ │ │ +000214e0: 436f 6f72 6452 696e 6728 4c69 7374 2922 CoordRing(List)" │ │ │ │ +000214f0: 0a20 202a 2022 4d75 6c74 6950 726f 6a43 . * "MultiProjC │ │ │ │ +00021500: 6f6f 7264 5269 6e67 2852 696e 672c 4c69 oordRing(Ring,Li │ │ │ │ +00021510: 7374 2922 0a20 202a 2022 4d75 6c74 6950 st)". * "MultiP │ │ │ │ +00021520: 726f 6a43 6f6f 7264 5269 6e67 2852 696e rojCoordRing(Rin │ │ │ │ +00021530: 672c 5379 6d62 6f6c 2c4c 6973 7429 220a g,Symbol,List)". │ │ │ │ +00021540: 2020 2a20 224d 756c 7469 5072 6f6a 436f * "MultiProjCo │ │ │ │ +00021550: 6f72 6452 696e 6728 5379 6d62 6f6c 2c4c ordRing(Symbol,L │ │ │ │ +00021560: 6973 7429 220a 0a46 6f72 2074 6865 2070 ist)"..For the p │ │ │ │ +00021570: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +00021580: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +00021590: 6520 6f62 6a65 6374 202a 6e6f 7465 204d e object *note M │ │ │ │ +000215a0: 756c 7469 5072 6f6a 436f 6f72 6452 696e ultiProjCoordRin │ │ │ │ +000215b0: 673a 204d 756c 7469 5072 6f6a 436f 6f72 g: MultiProjCoor │ │ │ │ +000215c0: 6452 696e 672c 2069 7320 6120 2a6e 6f74 dRing, is a *not │ │ │ │ +000215d0: 6520 6d65 7468 6f64 0a66 756e 6374 696f e method.functio │ │ │ │ +000215e0: 6e3a 2028 4d61 6361 756c 6179 3244 6f63 n: (Macaulay2Doc │ │ │ │ +000215f0: 294d 6574 686f 6446 756e 6374 696f 6e2c )MethodFunction, │ │ │ │ +00021600: 2e0a 1f0a 4669 6c65 3a20 4368 6172 6163 ....File: Charac │ │ │ │ +00021610: 7465 7269 7374 6963 436c 6173 7365 732e teristicClasses. │ │ │ │ +00021620: 696e 666f 2c20 4e6f 6465 3a20 4f75 7470 info, Node: Outp │ │ │ │ +00021630: 7574 2c20 4e65 7874 3a20 7072 6f62 6162 ut, Next: probab │ │ │ │ +00021640: 696c 6973 7469 6320 616c 676f 7269 7468 ilistic algorith │ │ │ │ +00021650: 6d2c 2050 7265 763a 204d 756c 7469 5072 m, Prev: MultiPr │ │ │ │ +00021660: 6f6a 436f 6f72 6452 696e 672c 2055 703a ojCoordRing, Up: │ │ │ │ +00021670: 2054 6f70 0a0a 4f75 7470 7574 0a2a 2a2a Top..Output.*** │ │ │ │ +00021680: 2a2a 2a0a 0a44 6573 6372 6970 7469 6f6e ***..Description │ │ │ │ +00021690: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 .===========..Th │ │ │ │ +000216a0: 6520 6f70 7469 6f6e 204f 7574 7075 7420 e option Output │ │ │ │ +000216b0: 6973 206f 6e6c 7920 7573 6564 2062 7920 is only used by │ │ │ │ +000216c0: 7468 6520 636f 6d6d 616e 6473 202a 6e6f the commands *no │ │ │ │ +000216d0: 7465 2043 534d 3a20 4353 4d2c 2c20 2a6e te CSM: CSM,, *n │ │ │ │ +000216e0: 6f74 6520 5365 6772 653a 0a53 6567 7265 ote Segre:.Segre │ │ │ │ +000216f0: 2c2c 202a 6e6f 7465 2043 6865 726e 3a20 ,, *note Chern: │ │ │ │ +00021700: 4368 6572 6e2c 2061 6e64 202a 6e6f 7465 Chern, and *note │ │ │ │ +00021710: 2045 756c 6572 3a20 4575 6c65 722c 2074 Euler: Euler, t │ │ │ │ +00021720: 6f20 7370 6563 6966 7920 7468 6520 7479 o specify the ty │ │ │ │ +00021730: 7065 206f 660a 6f75 7470 7574 2074 6f20 pe of.output to │ │ │ │ +00021740: 6265 2072 6574 7572 6e65 6420 746f 2074 be returned to t │ │ │ │ +00021750: 6865 2075 7365 642e 2054 6869 7320 6f70 he used. This op │ │ │ │ +00021760: 7469 6f6e 2077 696c 6c20 6265 2069 676e tion will be ign │ │ │ │ +00021770: 6f72 6564 2077 6865 6e20 7573 6564 2077 ored when used w │ │ │ │ +00021780: 6974 680a 2a6e 6f74 6520 436f 6d70 4d65 ith.*note CompMe │ │ │ │ +00021790: 7468 6f64 3a20 436f 6d70 4d65 7468 6f64 thod: CompMethod │ │ │ │ +000217a0: 2c20 506e 5265 7369 6475 616c 206f 7220 , PnResidual or │ │ │ │ +000217b0: 6265 7274 696e 692e 2054 6865 206f 7074 bertini. The opt │ │ │ │ +000217c0: 696f 6e20 7769 6c6c 2061 6c73 6f20 6265 ion will also be │ │ │ │ +000217d0: 0a69 676e 6f72 6520 7768 656e 202a 6e6f .ignore when *no │ │ │ │ +000217e0: 7465 204d 6574 686f 643a 204d 6574 686f te Method: Metho │ │ │ │ +000217f0: 642c 3d3e 4469 7265 6374 436f 6d70 6c65 d,=>DirectComple │ │ │ │ +00021800: 7465 496e 7420 6973 2075 7365 642e 2054 teInt is used. T │ │ │ │ +00021810: 6865 2064 6566 6175 6c74 0a6f 7574 7075 he default.outpu │ │ │ │ +00021820: 7420 666f 7220 616c 6c20 7468 6573 6520 t for all these │ │ │ │ +00021830: 6d65 7468 6f64 7320 6973 2043 686f 7752 methods is ChowR │ │ │ │ +00021840: 696e 6745 6c65 6c6d 656e 7420 7768 6963 ingElelment whic │ │ │ │ +00021850: 6820 7769 6c6c 2072 6574 7572 6e20 616e h will return an │ │ │ │ +00021860: 2065 6c65 6d65 6e74 0a6f 6620 7468 6520 element.of the │ │ │ │ +00021870: 6170 7072 6f70 7269 6174 6520 4368 6f77 appropriate Chow │ │ │ │ +00021880: 2072 696e 672e 2041 6c6c 206d 6574 686f ring. All metho │ │ │ │ +00021890: 6473 2061 6c73 6f20 6861 7665 2061 6e20 ds also have an │ │ │ │ +000218a0: 6f70 7469 6f6e 2048 6173 6846 6f72 6d20 option HashForm │ │ │ │ +000218b0: 7768 6963 680a 7265 7475 726e 7320 6164 which.returns ad │ │ │ │ +000218c0: 6469 7469 6f6e 616c 2069 6e66 6f72 6d61 ditional informa │ │ │ │ +000218d0: 7469 6f6e 2063 6f6d 7075 7465 6420 6279 tion computed by │ │ │ │ +000218e0: 2074 6865 206d 6574 686f 6473 2064 7572 the methods dur │ │ │ │ +000218f0: 696e 6720 7468 6569 7220 7374 616e 6461 ing their standa │ │ │ │ +00021900: 7264 0a6f 7065 7261 7469 6f6e 2e0a 0a2b rd.operation...+ │ │ │ │ +00021910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00021970: 3120 3a20 5220 3d20 5a5a 2f33 3237 3439 1 : R = ZZ/32749 │ │ │ │ -00021980: 5b78 5f30 2e2e 785f 365d 2020 2020 2020 [x_0..x_6] │ │ │ │ +00021950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00021960: 6931 203a 2052 203d 205a 5a2f 3332 3734 i1 : R = ZZ/3274 │ │ │ │ +00021970: 395b 785f 302e 2e78 5f36 5d20 2020 2020 9[x_0..x_6] │ │ │ │ +00021980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000219a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000219b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000219a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000219b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000219c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000219d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000219e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000219f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021a00: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00021a10: 3120 3d20 5220 2020 2020 2020 2020 2020 1 = R │ │ │ │ +000219f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021a00: 6f31 203d 2052 2020 2020 2020 2020 2020 o1 = R │ │ │ │ +00021a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021a50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00021a40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021aa0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00021ab0: 3120 3a20 506f 6c79 6e6f 6d69 616c 5269 1 : PolynomialRi │ │ │ │ -00021ac0: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ +00021a90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021aa0: 6f31 203a 2050 6f6c 796e 6f6d 6961 6c52 o1 : PolynomialR │ │ │ │ +00021ab0: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ +00021ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021af0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00021ae0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00021af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00021b50: 3220 3a20 413d 4368 6f77 5269 6e67 2852 2 : A=ChowRing(R │ │ │ │ -00021b60: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00021b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00021b40: 6932 203a 2041 3d43 686f 7752 696e 6728 i2 : A=ChowRing( │ │ │ │ +00021b50: 5229 2020 2020 2020 2020 2020 2020 2020 R) │ │ │ │ +00021b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00021b80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021be0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00021bf0: 3220 3d20 4120 2020 2020 2020 2020 2020 2 = A │ │ │ │ +00021bd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021be0: 6f32 203d 2041 2020 2020 2020 2020 2020 o2 = A │ │ │ │ +00021bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021c30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00021c20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021c80: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00021c90: 3220 3a20 5175 6f74 6965 6e74 5269 6e67 2 : QuotientRing │ │ │ │ +00021c70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021c80: 6f32 203a 2051 756f 7469 656e 7452 696e o2 : QuotientRin │ │ │ │ +00021c90: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ 00021ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021cd0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00021cc0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00021cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00021d30: 3320 3a20 493d 6964 6561 6c28 7261 6e64 3 : I=ideal(rand │ │ │ │ -00021d40: 6f6d 2832 2c52 292c 525f 302a 525f 312a om(2,R),R_0*R_1* │ │ │ │ -00021d50: 525f 362d 525f 305e 3329 3b20 2020 2020 R_6-R_0^3); │ │ │ │ -00021d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021d70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00021d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00021d20: 6933 203a 2049 3d69 6465 616c 2872 616e i3 : I=ideal(ran │ │ │ │ +00021d30: 646f 6d28 322c 5229 2c52 5f30 2a52 5f31 dom(2,R),R_0*R_1 │ │ │ │ +00021d40: 2a52 5f36 2d52 5f30 5e33 293b 2020 2020 *R_6-R_0^3); │ │ │ │ +00021d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021d60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021dc0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00021dd0: 3320 3a20 4964 6561 6c20 6f66 2052 2020 3 : Ideal of R │ │ │ │ +00021db0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021dc0: 6f33 203a 2049 6465 616c 206f 6620 5220 o3 : Ideal of R │ │ │ │ +00021dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021e10: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00021e00: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00021e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00021e70: 3420 3a20 6373 6d3d 4353 4d28 412c 492c 4 : csm=CSM(A,I, │ │ │ │ -00021e80: 4f75 7470 7574 3d3e 4861 7368 466f 726d Output=>HashForm │ │ │ │ -00021e90: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -00021ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021eb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00021e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00021e60: 6934 203a 2063 736d 3d43 534d 2841 2c49 i4 : csm=CSM(A,I │ │ │ │ +00021e70: 2c4f 7574 7075 743d 3e48 6173 6846 6f72 ,Output=>HashFor │ │ │ │ +00021e80: 6d29 2020 2020 2020 2020 2020 2020 2020 m) │ │ │ │ +00021e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021ea0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021f00: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00021f10: 3420 3d20 4d75 7461 626c 6548 6173 6854 4 = MutableHashT │ │ │ │ -00021f20: 6162 6c65 7b2e 2e2e 342e 2e2e 7d20 2020 able{...4...} │ │ │ │ +00021ef0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021f00: 6f34 203d 204d 7574 6162 6c65 4861 7368 o4 = MutableHash │ │ │ │ +00021f10: 5461 626c 657b 2e2e 2e34 2e2e 2e7d 2020 Table{...4...} │ │ │ │ +00021f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021f50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00021f40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021fa0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00021fb0: 3420 3a20 4d75 7461 626c 6548 6173 6854 4 : MutableHashT │ │ │ │ -00021fc0: 6162 6c65 2020 2020 2020 2020 2020 2020 able │ │ │ │ +00021f90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021fa0: 6f34 203a 204d 7574 6162 6c65 4861 7368 o4 : MutableHash │ │ │ │ +00021fb0: 5461 626c 6520 2020 2020 2020 2020 2020 Table │ │ │ │ +00021fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021ff0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00021fe0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00021ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00022050: 3520 3a20 7065 656b 2063 736d 2020 2020 5 : peek csm │ │ │ │ +00022030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00022040: 6935 203a 2070 6565 6b20 6373 6d20 2020 i5 : peek csm │ │ │ │ +00022050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022090: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00022080: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000220a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000220b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000220c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000220d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000220e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000220d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000220e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000220f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022110: 2036 2020 2020 2020 3520 2020 2020 2034 6 5 4 │ │ │ │ -00022120: 2020 2020 2020 3320 2020 2020 2032 2020 3 2 │ │ │ │ -00022130: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00022140: 3520 3d20 4d75 7461 626c 6548 6173 6854 5 = MutableHashT │ │ │ │ -00022150: 6162 6c65 7b7b 302c 2031 7d20 3d3e 2032 able{{0, 1} => 2 │ │ │ │ -00022160: 6820 202b 2032 3368 2020 2b20 3332 6820 h + 23h + 32h │ │ │ │ -00022170: 202b 2033 3368 2020 2b20 3138 6820 202b + 33h + 18h + │ │ │ │ -00022180: 2035 6820 7d20 2020 2020 2020 7c0a 7c20 5h } |.| │ │ │ │ +00022100: 2020 3620 2020 2020 2035 2020 2020 2020 6 5 │ │ │ │ +00022110: 3420 2020 2020 2033 2020 2020 2020 3220 4 3 2 │ │ │ │ +00022120: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022130: 6f35 203d 204d 7574 6162 6c65 4861 7368 o5 = MutableHash │ │ │ │ +00022140: 5461 626c 657b 7b30 2c20 317d 203d 3e20 Table{{0, 1} => │ │ │ │ +00022150: 3268 2020 2b20 3233 6820 202b 2033 3268 2h + 23h + 32h │ │ │ │ +00022160: 2020 2b20 3333 6820 202b 2031 3868 2020 + 33h + 18h │ │ │ │ +00022170: 2b20 3568 207d 2020 2020 2020 207c 0a7c + 5h } |.| │ │ │ │ +00022180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000221a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000221b0: 2031 2020 2020 2020 3120 2020 2020 2031 1 1 1 │ │ │ │ -000221c0: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -000221d0: 2020 2031 2020 2020 2020 2020 7c0a 7c20 1 |.| │ │ │ │ +000221a0: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ +000221b0: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ +000221c0: 2020 2020 3120 2020 2020 2020 207c 0a7c 1 |.| │ │ │ │ +000221d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000221e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000221f0: 2020 2020 2020 2020 2020 2020 2020 2036 6 │ │ │ │ -00022200: 2020 2020 2020 3520 2020 2020 2034 2020 5 4 │ │ │ │ -00022210: 2020 2020 3320 2020 2020 3220 2020 2020 3 2 │ │ │ │ -00022220: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00022230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022240: 2020 2020 2043 534d 203d 3e20 3130 6820 CSM => 10h │ │ │ │ -00022250: 202b 2031 3268 2020 2b20 3232 6820 202b + 12h + 22h + │ │ │ │ -00022260: 2031 3668 2020 2b20 3668 2020 2020 2020 16h + 6h │ │ │ │ -00022270: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000221f0: 3620 2020 2020 2035 2020 2020 2020 3420 6 5 4 │ │ │ │ +00022200: 2020 2020 2033 2020 2020 2032 2020 2020 3 2 │ │ │ │ +00022210: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022230: 2020 2020 2020 4353 4d20 3d3e 2031 3068 CSM => 10h │ │ │ │ +00022240: 2020 2b20 3132 6820 202b 2032 3268 2020 + 12h + 22h │ │ │ │ +00022250: 2b20 3136 6820 202b 2036 6820 2020 2020 + 16h + 6h │ │ │ │ +00022260: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022290: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -000222a0: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -000222b0: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ -000222c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000222d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000222e0: 2020 2020 2020 2020 2020 2020 2020 3620 6 │ │ │ │ -000222f0: 2020 2020 2035 2020 2020 2020 3420 2020 5 4 │ │ │ │ -00022300: 2020 2033 2020 2020 2020 3220 2020 2020 3 2 │ │ │ │ -00022310: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00022320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022330: 2020 2020 207b 307d 203d 3e20 3668 2020 {0} => 6h │ │ │ │ -00022340: 2b20 3138 6820 202b 2032 3668 2020 2b20 + 18h + 26h + │ │ │ │ -00022350: 3232 6820 202b 2031 3068 2020 2b20 3268 22h + 10h + 2h │ │ │ │ -00022360: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00022370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022380: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ -00022390: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ -000223a0: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ -000223b0: 3120 2020 2020 2020 2020 2020 7c0a 7c20 1 |.| │ │ │ │ -000223c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000223d0: 2020 2020 2020 2020 2020 2020 2020 3620 6 │ │ │ │ -000223e0: 2020 2020 2035 2020 2020 2020 3420 2020 5 4 │ │ │ │ -000223f0: 2020 2033 2020 2020 2020 3220 2020 2020 3 2 │ │ │ │ -00022400: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00022410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022420: 2020 2020 207b 317d 203d 3e20 3668 2020 {1} => 6h │ │ │ │ -00022430: 2b20 3137 6820 202b 2032 3868 2020 2b20 + 17h + 28h + │ │ │ │ -00022440: 3237 6820 202b 2031 3468 2020 2b20 3368 27h + 14h + 3h │ │ │ │ -00022450: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00022460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022470: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ -00022480: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ -00022490: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ -000224a0: 3120 2020 2020 2020 2020 2020 7c0a 2b2d 1 |.+- │ │ │ │ +00022290: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ +000222a0: 2020 2020 2031 2020 2020 2031 2020 2020 1 1 │ │ │ │ +000222b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000222c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000222d0: 2020 2020 2020 2020 2020 2020 2020 2036 6 │ │ │ │ +000222e0: 2020 2020 2020 3520 2020 2020 2034 2020 5 4 │ │ │ │ +000222f0: 2020 2020 3320 2020 2020 2032 2020 2020 3 2 │ │ │ │ +00022300: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022320: 2020 2020 2020 7b30 7d20 3d3e 2036 6820 {0} => 6h │ │ │ │ +00022330: 202b 2031 3868 2020 2b20 3236 6820 202b + 18h + 26h + │ │ │ │ +00022340: 2032 3268 2020 2b20 3130 6820 202b 2032 22h + 10h + 2 │ │ │ │ +00022350: 6820 2020 2020 2020 2020 2020 207c 0a7c h |.| │ │ │ │ +00022360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022370: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +00022380: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ +00022390: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ +000223a0: 2031 2020 2020 2020 2020 2020 207c 0a7c 1 |.| │ │ │ │ +000223b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000223c0: 2020 2020 2020 2020 2020 2020 2020 2036 6 │ │ │ │ +000223d0: 2020 2020 2020 3520 2020 2020 2034 2020 5 4 │ │ │ │ +000223e0: 2020 2020 3320 2020 2020 2032 2020 2020 3 2 │ │ │ │ +000223f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022410: 2020 2020 2020 7b31 7d20 3d3e 2036 6820 {1} => 6h │ │ │ │ +00022420: 202b 2031 3768 2020 2b20 3238 6820 202b + 17h + 28h + │ │ │ │ +00022430: 2032 3768 2020 2b20 3134 6820 202b 2033 27h + 14h + 3 │ │ │ │ +00022440: 6820 2020 2020 2020 2020 2020 207c 0a7c h |.| │ │ │ │ +00022450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022460: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +00022470: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ +00022480: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00022490: 2031 2020 2020 2020 2020 2020 207c 0a2b 1 |.+ │ │ │ │ +000224a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000224b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000224c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000224d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000224e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000224f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00022500: 3620 3a20 4353 4d28 412c 6964 6561 6c20 6 : CSM(A,ideal │ │ │ │ -00022510: 495f 3029 3d3d 6373 6d23 7b30 7d20 2020 I_0)==csm#{0} │ │ │ │ +000224e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000224f0: 6936 203a 2043 534d 2841 2c69 6465 616c i6 : CSM(A,ideal │ │ │ │ +00022500: 2049 5f30 293d 3d63 736d 237b 307d 2020 I_0)==csm#{0} │ │ │ │ +00022510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022540: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00022530: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022590: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000225a0: 3620 3d20 7472 7565 2020 2020 2020 2020 6 = true │ │ │ │ +00022580: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022590: 6f36 203d 2074 7275 6520 2020 2020 2020 o6 = true │ │ │ │ +000225a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000225b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000225c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000225d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000225e0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000225d0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000225e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000225f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00022640: 3720 3a20 4353 4d28 412c 6964 6561 6c28 7 : CSM(A,ideal( │ │ │ │ -00022650: 495f 302a 495f 3129 293d 3d63 736d 237b I_0*I_1))==csm#{ │ │ │ │ -00022660: 302c 317d 2020 2020 2020 2020 2020 2020 0,1} │ │ │ │ -00022670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022680: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00022620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00022630: 6937 203a 2043 534d 2841 2c69 6465 616c i7 : CSM(A,ideal │ │ │ │ +00022640: 2849 5f30 2a49 5f31 2929 3d3d 6373 6d23 (I_0*I_1))==csm# │ │ │ │ +00022650: 7b30 2c31 7d20 2020 2020 2020 2020 2020 {0,1} │ │ │ │ +00022660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022670: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000226a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000226b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000226c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000226d0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000226e0: 3720 3d20 7472 7565 2020 2020 2020 2020 7 = true │ │ │ │ +000226c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000226d0: 6f37 203d 2074 7275 6520 2020 2020 2020 o7 = true │ │ │ │ +000226e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000226f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022720: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00022710: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00022720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00022780: 3820 3a20 633d 4368 6572 6e28 2049 2c20 8 : c=Chern( I, │ │ │ │ -00022790: 4f75 7470 7574 3d3e 4861 7368 466f 726d Output=>HashForm │ │ │ │ -000227a0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -000227b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000227c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00022760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00022770: 6938 203a 2063 3d43 6865 726e 2820 492c i8 : c=Chern( I, │ │ │ │ +00022780: 204f 7574 7075 743d 3e48 6173 6846 6f72 Output=>HashFor │ │ │ │ +00022790: 6d29 2020 2020 2020 2020 2020 2020 2020 m) │ │ │ │ +000227a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000227b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000227c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000227d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000227e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000227f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022810: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00022820: 3820 3d20 4d75 7461 626c 6548 6173 6854 8 = MutableHashT │ │ │ │ -00022830: 6162 6c65 7b2e 2e2e 362e 2e2e 7d20 2020 able{...6...} │ │ │ │ +00022800: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022810: 6f38 203d 204d 7574 6162 6c65 4861 7368 o8 = MutableHash │ │ │ │ +00022820: 5461 626c 657b 2e2e 2e36 2e2e 2e7d 2020 Table{...6...} │ │ │ │ +00022830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022860: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00022850: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000228a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000228b0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000228c0: 3820 3a20 4d75 7461 626c 6548 6173 6854 8 : MutableHashT │ │ │ │ -000228d0: 6162 6c65 2020 2020 2020 2020 2020 2020 able │ │ │ │ +000228a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000228b0: 6f38 203a 204d 7574 6162 6c65 4861 7368 o8 : MutableHash │ │ │ │ +000228c0: 5461 626c 6520 2020 2020 2020 2020 2020 Table │ │ │ │ +000228d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000228e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000228f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022900: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000228f0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00022900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00022960: 3920 3a20 7065 656b 2063 2020 2020 2020 9 : peek c │ │ │ │ +00022940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00022950: 6939 203a 2070 6565 6b20 6320 2020 2020 i9 : peek c │ │ │ │ +00022960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000229a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00022990: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000229a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000229b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000229c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000229d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000229e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000229f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000229e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000229f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022a20: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -00022a30: 2020 3320 2020 2020 2034 2020 2020 2020 3 4 │ │ │ │ -00022a40: 2035 2020 2020 2020 2036 2020 7c0a 7c6f 5 6 |.|o │ │ │ │ -00022a50: 3920 3d20 4d75 7461 626c 6548 6173 6854 9 = MutableHashT │ │ │ │ -00022a60: 6162 6c65 7b53 6567 7265 4c69 7374 203d able{SegreList = │ │ │ │ -00022a70: 3e20 7b30 2c20 302c 2036 6820 2c20 2d33 > {0, 0, 6h , -3 │ │ │ │ -00022a80: 3068 202c 2031 3134 6820 2c20 2d33 3930 0h , 114h , -390 │ │ │ │ -00022a90: 6820 2c20 3132 3636 6820 7d7d 7c0a 7c20 h , 1266h }}|.| │ │ │ │ +00022a10: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00022a20: 2020 2033 2020 2020 2020 3420 2020 2020 3 4 │ │ │ │ +00022a30: 2020 3520 2020 2020 2020 3620 207c 0a7c 5 6 |.| │ │ │ │ +00022a40: 6f39 203d 204d 7574 6162 6c65 4861 7368 o9 = MutableHash │ │ │ │ +00022a50: 5461 626c 657b 5365 6772 654c 6973 7420 Table{SegreList │ │ │ │ +00022a60: 3d3e 207b 302c 2030 2c20 3668 202c 202d => {0, 0, 6h , - │ │ │ │ +00022a70: 3330 6820 2c20 3131 3468 202c 202d 3339 30h , 114h , -39 │ │ │ │ +00022a80: 3068 202c 2031 3236 3668 207d 7d7c 0a7c 0h , 1266h }}|.| │ │ │ │ +00022a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ac0: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -00022ad0: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -00022ae0: 2031 2020 2020 2020 2031 2020 7c0a 7c20 1 1 |.| │ │ │ │ +00022ab0: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ +00022ac0: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00022ad0: 2020 3120 2020 2020 2020 3120 207c 0a7c 1 1 |.| │ │ │ │ +00022ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b10: 2020 2020 2020 2020 2032 2020 2020 3320 2 3 │ │ │ │ -00022b20: 2020 2034 2020 2020 3520 2020 2036 2020 4 5 6 │ │ │ │ -00022b30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00022b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b50: 2020 2020 2047 6c69 7374 203d 3e20 7b31 Glist => {1 │ │ │ │ -00022b60: 2c20 3368 202c 2033 6820 2c20 3368 202c , 3h , 3h , 3h , │ │ │ │ -00022b70: 2033 6820 2c20 3368 202c 2033 6820 7d20 3h , 3h , 3h } │ │ │ │ -00022b80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00022b00: 2020 2020 2020 2020 2020 3220 2020 2033 2 3 │ │ │ │ +00022b10: 2020 2020 3420 2020 2035 2020 2020 3620 4 5 6 │ │ │ │ +00022b20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022b40: 2020 2020 2020 476c 6973 7420 3d3e 207b Glist => { │ │ │ │ +00022b50: 312c 2033 6820 2c20 3368 202c 2033 6820 1, 3h , 3h , 3h │ │ │ │ +00022b60: 2c20 3368 202c 2033 6820 2c20 3368 207d , 3h , 3h , 3h } │ │ │ │ +00022b70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022ba0: 2020 2020 2031 2020 2020 3120 2020 2031 1 1 1 │ │ │ │ 00022bb0: 2020 2020 3120 2020 2031 2020 2020 3120 1 1 1 │ │ │ │ -00022bc0: 2020 2031 2020 2020 3120 2020 2031 2020 1 1 1 │ │ │ │ -00022bd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00022bc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022c00: 2020 2036 2020 2020 2020 2035 2020 2020 6 5 │ │ │ │ -00022c10: 2020 2034 2020 2020 2020 3320 2020 2020 4 3 │ │ │ │ -00022c20: 3220 2020 2020 2020 2020 2020 7c0a 7c20 2 |.| │ │ │ │ -00022c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022c40: 2020 2020 2053 6567 7265 203d 3e20 3132 Segre => 12 │ │ │ │ -00022c50: 3636 6820 202d 2033 3930 6820 202b 2031 66h - 390h + 1 │ │ │ │ -00022c60: 3134 6820 202d 2033 3068 2020 2b20 3668 14h - 30h + 6h │ │ │ │ -00022c70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00022bf0: 2020 2020 3620 2020 2020 2020 3520 2020 6 5 │ │ │ │ +00022c00: 2020 2020 3420 2020 2020 2033 2020 2020 4 3 │ │ │ │ +00022c10: 2032 2020 2020 2020 2020 2020 207c 0a7c 2 |.| │ │ │ │ +00022c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022c30: 2020 2020 2020 5365 6772 6520 3d3e 2031 Segre => 1 │ │ │ │ +00022c40: 3236 3668 2020 2d20 3339 3068 2020 2b20 266h - 390h + │ │ │ │ +00022c50: 3131 3468 2020 2d20 3330 6820 202b 2036 114h - 30h + 6 │ │ │ │ +00022c60: 6820 2020 2020 2020 2020 2020 207c 0a7c h |.| │ │ │ │ +00022c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ca0: 2020 2031 2020 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00022cb0: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00022cc0: 3120 2020 2020 2020 2020 2020 7c0a 7c20 1 |.| │ │ │ │ +00022c90: 2020 2020 3120 2020 2020 2020 3120 2020 1 1 │ │ │ │ +00022ca0: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00022cb0: 2031 2020 2020 2020 2020 2020 207c 0a7c 1 |.| │ │ │ │ +00022cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022cf0: 2036 2020 2020 2020 3520 2020 2020 2034 6 5 4 │ │ │ │ -00022d00: 2020 2020 2020 3320 2020 2020 3220 2020 3 2 │ │ │ │ -00022d10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00022d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d30: 2020 2020 2043 6865 726e 203d 3e20 3930 Chern => 90 │ │ │ │ -00022d40: 6820 202d 2031 3268 2020 2b20 3330 6820 h - 12h + 30h │ │ │ │ -00022d50: 202b 2031 3268 2020 2b20 3668 2020 2020 + 12h + 6h │ │ │ │ -00022d60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00022ce0: 2020 3620 2020 2020 2035 2020 2020 2020 6 5 │ │ │ │ +00022cf0: 3420 2020 2020 2033 2020 2020 2032 2020 4 3 2 │ │ │ │ +00022d00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022d20: 2020 2020 2020 4368 6572 6e20 3d3e 2039 Chern => 9 │ │ │ │ +00022d30: 3068 2020 2d20 3132 6820 202b 2033 3068 0h - 12h + 30h │ │ │ │ +00022d40: 2020 2b20 3132 6820 202b 2036 6820 2020 + 12h + 6h │ │ │ │ +00022d50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d90: 2031 2020 2020 2020 3120 2020 2020 2031 1 1 1 │ │ │ │ -00022da0: 2020 2020 2020 3120 2020 2020 3120 2020 1 1 │ │ │ │ -00022db0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00022dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022dd0: 2020 2020 2020 2020 2020 2020 2020 3620 6 │ │ │ │ -00022de0: 2020 2020 2035 2020 2020 2020 3420 2020 5 4 │ │ │ │ -00022df0: 2020 2033 2020 2020 2032 2020 2020 2020 3 2 │ │ │ │ -00022e00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00022e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022e20: 2020 2020 2043 4620 3d3e 2039 3068 2020 CF => 90h │ │ │ │ -00022e30: 2d20 3132 6820 202b 2033 3068 2020 2b20 - 12h + 30h + │ │ │ │ -00022e40: 3132 6820 202b 2036 6820 2020 2020 2020 12h + 6h │ │ │ │ -00022e50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00022e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022e70: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ -00022e80: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ -00022e90: 2020 2031 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -00022ea0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00022eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ec0: 2020 2020 2020 2020 2020 2020 3620 2020 6 │ │ │ │ -00022ed0: 2020 3520 2020 2020 3420 2020 2020 3320 5 4 3 │ │ │ │ -00022ee0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -00022ef0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00022f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f10: 2020 2020 2047 203d 3e20 3368 2020 2b20 G => 3h + │ │ │ │ -00022f20: 3368 2020 2b20 3368 2020 2b20 3368 2020 3h + 3h + 3h │ │ │ │ -00022f30: 2b20 3368 2020 2b20 3368 2020 2b20 3120 + 3h + 3h + 1 │ │ │ │ -00022f40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00022f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f60: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ -00022f70: 2020 3120 2020 2020 3120 2020 2020 3120 1 1 1 │ │ │ │ -00022f80: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00022f90: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00022d80: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ +00022d90: 3120 2020 2020 2031 2020 2020 2031 2020 1 1 1 │ │ │ │ +00022da0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022dc0: 2020 2020 2020 2020 2020 2020 2020 2036 6 │ │ │ │ +00022dd0: 2020 2020 2020 3520 2020 2020 2034 2020 5 4 │ │ │ │ +00022de0: 2020 2020 3320 2020 2020 3220 2020 2020 3 2 │ │ │ │ +00022df0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022e10: 2020 2020 2020 4346 203d 3e20 3930 6820 CF => 90h │ │ │ │ +00022e20: 202d 2031 3268 2020 2b20 3330 6820 202b - 12h + 30h + │ │ │ │ +00022e30: 2031 3268 2020 2b20 3668 2020 2020 2020 12h + 6h │ │ │ │ +00022e40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022e60: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +00022e70: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ +00022e80: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00022e90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022eb0: 2020 2020 2020 2020 2020 2020 2036 2020 6 │ │ │ │ +00022ec0: 2020 2035 2020 2020 2034 2020 2020 2033 5 4 3 │ │ │ │ +00022ed0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00022ee0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022f00: 2020 2020 2020 4720 3d3e 2033 6820 202b G => 3h + │ │ │ │ +00022f10: 2033 6820 202b 2033 6820 202b 2033 6820 3h + 3h + 3h │ │ │ │ +00022f20: 202b 2033 6820 202b 2033 6820 202b 2031 + 3h + 3h + 1 │ │ │ │ +00022f30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022f50: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +00022f60: 2020 2031 2020 2020 2031 2020 2020 2031 1 1 1 │ │ │ │ +00022f70: 2020 2020 2031 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00022f80: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00022f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00022ff0: 3130 203a 2073 6567 3d53 6567 7265 2820 10 : seg=Segre( │ │ │ │ -00023000: 492c 204f 7574 7075 743d 3e48 6173 6846 I, Output=>HashF │ │ │ │ -00023010: 6f72 6d29 2020 2020 2020 2020 2020 2020 orm) │ │ │ │ -00023020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023030: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00022fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00022fe0: 6931 3020 3a20 7365 673d 5365 6772 6528 i10 : seg=Segre( │ │ │ │ +00022ff0: 2049 2c20 4f75 7470 7574 3d3e 4861 7368 I, Output=>Hash │ │ │ │ +00023000: 466f 726d 2920 2020 2020 2020 2020 2020 Form) │ │ │ │ +00023010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023020: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023080: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00023090: 3130 203d 204d 7574 6162 6c65 4861 7368 10 = MutableHash │ │ │ │ -000230a0: 5461 626c 657b 2e2e 2e34 2e2e 2e7d 2020 Table{...4...} │ │ │ │ +00023070: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023080: 6f31 3020 3d20 4d75 7461 626c 6548 6173 o10 = MutableHas │ │ │ │ +00023090: 6854 6162 6c65 7b2e 2e2e 342e 2e2e 7d20 hTable{...4...} │ │ │ │ +000230a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000230b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000230c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000230d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000230c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000230d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000230e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000230f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023120: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00023130: 3130 203a 204d 7574 6162 6c65 4861 7368 10 : MutableHash │ │ │ │ -00023140: 5461 626c 6520 2020 2020 2020 2020 2020 Table │ │ │ │ +00023110: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023120: 6f31 3020 3a20 4d75 7461 626c 6548 6173 o10 : MutableHas │ │ │ │ +00023130: 6854 6162 6c65 2020 2020 2020 2020 2020 hTable │ │ │ │ +00023140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023170: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00023160: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00023170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000231a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000231b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000231c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000231d0: 3131 203a 2070 6565 6b20 7365 6720 2020 11 : peek seg │ │ │ │ +000231b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000231c0: 6931 3120 3a20 7065 656b 2073 6567 2020 i11 : peek seg │ │ │ │ +000231d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000231e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000231f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023210: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00023200: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023260: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00023250: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023290: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000232a0: 2020 2033 2020 2020 2020 3420 2020 2020 3 4 │ │ │ │ -000232b0: 2020 3520 2020 2020 2020 2020 7c0a 7c6f 5 |.|o │ │ │ │ -000232c0: 3131 203d 204d 7574 6162 6c65 4861 7368 11 = MutableHash │ │ │ │ -000232d0: 5461 626c 657b 5365 6772 654c 6973 7420 Table{SegreList │ │ │ │ -000232e0: 3d3e 207b 302c 2030 2c20 3668 202c 202d => {0, 0, 6h , - │ │ │ │ -000232f0: 3330 6820 2c20 3131 3468 202c 202d 3339 30h , 114h , -39 │ │ │ │ -00023300: 3068 202c 2020 2020 2020 2020 7c0a 7c20 0h , |.| │ │ │ │ +00023280: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00023290: 2020 2020 3320 2020 2020 2034 2020 2020 3 4 │ │ │ │ +000232a0: 2020 2035 2020 2020 2020 2020 207c 0a7c 5 |.| │ │ │ │ +000232b0: 6f31 3120 3d20 4d75 7461 626c 6548 6173 o11 = MutableHas │ │ │ │ +000232c0: 6854 6162 6c65 7b53 6567 7265 4c69 7374 hTable{SegreList │ │ │ │ +000232d0: 203d 3e20 7b30 2c20 302c 2036 6820 2c20 => {0, 0, 6h , │ │ │ │ +000232e0: 2d33 3068 202c 2031 3134 6820 2c20 2d33 -30h , 114h , -3 │ │ │ │ +000232f0: 3930 6820 2c20 2020 2020 2020 207c 0a7c 90h , |.| │ │ │ │ +00023300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023330: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ -00023340: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00023350: 2020 3120 2020 2020 2020 2020 7c0a 7c20 1 |.| │ │ │ │ +00023320: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +00023330: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00023340: 2020 2031 2020 2020 2020 2020 207c 0a7c 1 |.| │ │ │ │ +00023350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023380: 2020 2020 2020 2020 2020 3220 2020 2033 2 3 │ │ │ │ -00023390: 2020 2020 3420 2020 2035 2020 2020 3620 4 5 6 │ │ │ │ -000233a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000233b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000233c0: 2020 2020 2020 476c 6973 7420 3d3e 207b Glist => { │ │ │ │ -000233d0: 312c 2033 6820 2c20 3368 202c 2033 6820 1, 3h , 3h , 3h │ │ │ │ -000233e0: 2c20 3368 202c 2033 6820 2c20 3368 207d , 3h , 3h , 3h } │ │ │ │ -000233f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00023370: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00023380: 3320 2020 2034 2020 2020 3520 2020 2036 3 4 5 6 │ │ │ │ +00023390: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000233a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000233b0: 2020 2020 2020 2047 6c69 7374 203d 3e20 Glist => │ │ │ │ +000233c0: 7b31 2c20 3368 202c 2033 6820 2c20 3368 {1, 3h , 3h , 3h │ │ │ │ +000233d0: 202c 2033 6820 2c20 3368 202c 2033 6820 , 3h , 3h , 3h │ │ │ │ +000233e0: 7d20 2020 2020 2020 2020 2020 207c 0a7c } |.| │ │ │ │ +000233f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023420: 2020 2020 2031 2020 2020 3120 2020 2031 1 1 1 │ │ │ │ -00023430: 2020 2020 3120 2020 2031 2020 2020 3120 1 1 1 │ │ │ │ -00023440: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00023410: 2020 2020 2020 3120 2020 2031 2020 2020 1 1 │ │ │ │ +00023420: 3120 2020 2031 2020 2020 3120 2020 2031 1 1 1 1 │ │ │ │ +00023430: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023470: 2020 2020 3620 2020 2020 2020 3520 2020 6 5 │ │ │ │ -00023480: 2020 2020 3420 2020 2020 2033 2020 2020 4 3 │ │ │ │ -00023490: 2032 2020 2020 2020 2020 2020 7c0a 7c20 2 |.| │ │ │ │ -000234a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000234b0: 2020 2020 2020 5365 6772 6520 3d3e 2031 Segre => 1 │ │ │ │ -000234c0: 3236 3668 2020 2d20 3339 3068 2020 2b20 266h - 390h + │ │ │ │ -000234d0: 3131 3468 2020 2d20 3330 6820 202b 2036 114h - 30h + 6 │ │ │ │ -000234e0: 6820 2020 2020 2020 2020 2020 7c0a 7c20 h |.| │ │ │ │ +00023460: 2020 2020 2036 2020 2020 2020 2035 2020 6 5 │ │ │ │ +00023470: 2020 2020 2034 2020 2020 2020 3320 2020 4 3 │ │ │ │ +00023480: 2020 3220 2020 2020 2020 2020 207c 0a7c 2 |.| │ │ │ │ +00023490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000234a0: 2020 2020 2020 2053 6567 7265 203d 3e20 Segre => │ │ │ │ +000234b0: 3132 3636 6820 202d 2033 3930 6820 202b 1266h - 390h + │ │ │ │ +000234c0: 2031 3134 6820 202d 2033 3068 2020 2b20 114h - 30h + │ │ │ │ +000234d0: 3668 2020 2020 2020 2020 2020 207c 0a7c 6h |.| │ │ │ │ +000234e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000234f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023510: 2020 2020 3120 2020 2020 2020 3120 2020 1 1 │ │ │ │ -00023520: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00023530: 2031 2020 2020 2020 2020 2020 7c0a 7c20 1 |.| │ │ │ │ -00023540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023550: 2020 2020 2020 2020 2020 2020 2036 2020 6 │ │ │ │ -00023560: 2020 2035 2020 2020 2034 2020 2020 2033 5 4 3 │ │ │ │ -00023570: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00023580: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00023590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000235a0: 2020 2020 2020 4720 3d3e 2033 6820 202b G => 3h + │ │ │ │ -000235b0: 2033 6820 202b 2033 6820 202b 2033 6820 3h + 3h + 3h │ │ │ │ -000235c0: 202b 2033 6820 202b 2033 6820 202b 2031 + 3h + 3h + 1 │ │ │ │ -000235d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000235e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000235f0: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ -00023600: 2020 2031 2020 2020 2031 2020 2020 2031 1 1 1 │ │ │ │ -00023610: 2020 2020 2031 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00023620: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ +00023500: 2020 2020 2031 2020 2020 2020 2031 2020 1 1 │ │ │ │ +00023510: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ +00023520: 2020 3120 2020 2020 2020 2020 207c 0a7c 1 |.| │ │ │ │ +00023530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023540: 2020 2020 2020 2020 2020 2020 2020 3620 6 │ │ │ │ +00023550: 2020 2020 3520 2020 2020 3420 2020 2020 5 4 │ │ │ │ +00023560: 3320 2020 2020 3220 2020 2020 2020 2020 3 2 │ │ │ │ +00023570: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023590: 2020 2020 2020 2047 203d 3e20 3368 2020 G => 3h │ │ │ │ +000235a0: 2b20 3368 2020 2b20 3368 2020 2b20 3368 + 3h + 3h + 3h │ │ │ │ +000235b0: 2020 2b20 3368 2020 2b20 3368 2020 2b20 + 3h + 3h + │ │ │ │ +000235c0: 3120 2020 2020 2020 2020 2020 207c 0a7c 1 |.| │ │ │ │ +000235d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000235e0: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +000235f0: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00023600: 3120 2020 2020 3120 2020 2020 3120 2020 1 1 1 │ │ │ │ +00023610: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -00023680: 2020 2020 3620 2020 2020 2020 2020 2020 6 │ │ │ │ +00023660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00023670: 2020 2020 2036 2020 2020 2020 2020 2020 6 │ │ │ │ +00023680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000236a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000236b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000236c0: 2020 2020 2020 2020 2020 2020 7c0a 7c31 |.|1 │ │ │ │ -000236d0: 3236 3668 207d 7d20 2020 2020 2020 2020 266h }} │ │ │ │ +000236b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000236c0: 3132 3636 6820 7d7d 2020 2020 2020 2020 1266h }} │ │ │ │ +000236d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000236e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000236f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023710: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00023720: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ +00023700: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023710: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +00023720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023760: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00023750: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00023760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000237a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000237b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000237c0: 3132 203a 2065 753d 4575 6c65 7228 2049 12 : eu=Euler( I │ │ │ │ -000237d0: 2c20 4f75 7470 7574 3d3e 4861 7368 466f , Output=>HashFo │ │ │ │ -000237e0: 726d 2920 2020 2020 2020 2020 2020 2020 rm) │ │ │ │ -000237f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023800: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000237a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000237b0: 6931 3220 3a20 6575 3d45 756c 6572 2820 i12 : eu=Euler( │ │ │ │ +000237c0: 492c 204f 7574 7075 743d 3e48 6173 6846 I, Output=>HashF │ │ │ │ +000237d0: 6f72 6d29 2020 2020 2020 2020 2020 2020 orm) │ │ │ │ +000237e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000237f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023850: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00023860: 3132 203d 204d 7574 6162 6c65 4861 7368 12 = MutableHash │ │ │ │ -00023870: 5461 626c 657b 2e2e 2e35 2e2e 2e7d 2020 Table{...5...} │ │ │ │ +00023840: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023850: 6f31 3220 3d20 4d75 7461 626c 6548 6173 o12 = MutableHas │ │ │ │ +00023860: 6854 6162 6c65 7b2e 2e2e 352e 2e2e 7d20 hTable{...5...} │ │ │ │ +00023870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000238a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00023890: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000238a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000238b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000238c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000238d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000238e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000238f0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00023900: 3132 203a 204d 7574 6162 6c65 4861 7368 12 : MutableHash │ │ │ │ -00023910: 5461 626c 6520 2020 2020 2020 2020 2020 Table │ │ │ │ +000238e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000238f0: 6f31 3220 3a20 4d75 7461 626c 6548 6173 o12 : MutableHas │ │ │ │ +00023900: 6854 6162 6c65 2020 2020 2020 2020 2020 hTable │ │ │ │ +00023910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023940: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00023930: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00023940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000239a0: 3133 203a 2070 6565 6b20 6575 2020 2020 13 : peek eu │ │ │ │ +00023980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00023990: 6931 3320 3a20 7065 656b 2065 7520 2020 i13 : peek eu │ │ │ │ +000239a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000239b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000239c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000239d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000239e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000239d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000239e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000239f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a30: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00023a40: 3133 203d 204d 7574 6162 6c65 4861 7368 13 = MutableHash │ │ │ │ -00023a50: 5461 626c 657b 4575 6c65 7220 3d3e 2031 Table{Euler => 1 │ │ │ │ -00023a60: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00023a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a80: 2020 2020 207d 2020 2020 2020 7c0a 7c20 } |.| │ │ │ │ +00023a20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023a30: 6f31 3320 3d20 4d75 7461 626c 6548 6173 o13 = MutableHas │ │ │ │ +00023a40: 6854 6162 6c65 7b45 756c 6572 203d 3e20 hTable{Euler => │ │ │ │ +00023a50: 3130 2020 2020 2020 2020 2020 2020 2020 10 │ │ │ │ +00023a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023a70: 2020 2020 2020 7d20 2020 2020 207c 0a7c } |.| │ │ │ │ +00023a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ab0: 2020 3620 2020 2020 2035 2020 2020 2020 6 5 │ │ │ │ -00023ac0: 3420 2020 2020 2033 2020 2020 2020 3220 4 3 2 │ │ │ │ -00023ad0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00023ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023af0: 2020 2020 2020 7b30 2c20 317d 203d 3e20 {0, 1} => │ │ │ │ -00023b00: 3268 2020 2b20 3233 6820 202b 2033 3268 2h + 23h + 32h │ │ │ │ -00023b10: 2020 2b20 3333 6820 202b 2031 3868 2020 + 33h + 18h │ │ │ │ -00023b20: 2b20 3568 2020 2020 2020 2020 7c0a 7c20 + 5h |.| │ │ │ │ +00023aa0: 2020 2036 2020 2020 2020 3520 2020 2020 6 5 │ │ │ │ +00023ab0: 2034 2020 2020 2020 3320 2020 2020 2032 4 3 2 │ │ │ │ +00023ac0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023ae0: 2020 2020 2020 207b 302c 2031 7d20 3d3e {0, 1} => │ │ │ │ +00023af0: 2032 6820 202b 2032 3368 2020 2b20 3332 2h + 23h + 32 │ │ │ │ +00023b00: 6820 202b 2033 3368 2020 2b20 3138 6820 h + 33h + 18h │ │ │ │ +00023b10: 202b 2035 6820 2020 2020 2020 207c 0a7c + 5h |.| │ │ │ │ +00023b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b50: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -00023b60: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ -00023b70: 2020 2020 3120 2020 2020 2020 7c0a 7c20 1 |.| │ │ │ │ +00023b40: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00023b50: 2031 2020 2020 2020 3120 2020 2020 2031 1 1 1 │ │ │ │ +00023b60: 2020 2020 2031 2020 2020 2020 207c 0a7c 1 |.| │ │ │ │ +00023b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ba0: 3620 2020 2020 2035 2020 2020 2020 3420 6 5 4 │ │ │ │ -00023bb0: 2020 2020 2033 2020 2020 2032 2020 2020 3 2 │ │ │ │ -00023bc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00023bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023be0: 2020 2020 2020 4353 4d20 3d3e 2031 3068 CSM => 10h │ │ │ │ -00023bf0: 2020 2b20 3132 6820 202b 2032 3268 2020 + 12h + 22h │ │ │ │ -00023c00: 2b20 3136 6820 202b 2036 6820 2020 2020 + 16h + 6h │ │ │ │ -00023c10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00023b90: 2036 2020 2020 2020 3520 2020 2020 2034 6 5 4 │ │ │ │ +00023ba0: 2020 2020 2020 3320 2020 2020 3220 2020 3 2 │ │ │ │ +00023bb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023bd0: 2020 2020 2020 2043 534d 203d 3e20 3130 CSM => 10 │ │ │ │ +00023be0: 6820 202b 2031 3268 2020 2b20 3232 6820 h + 12h + 22h │ │ │ │ +00023bf0: 202b 2031 3668 2020 2b20 3668 2020 2020 + 16h + 6h │ │ │ │ +00023c00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c40: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ -00023c50: 2020 2020 2031 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00023c60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00023c30: 2031 2020 2020 2020 3120 2020 2020 2031 1 1 1 │ │ │ │ +00023c40: 2020 2020 2020 3120 2020 2020 3120 2020 1 1 │ │ │ │ +00023c50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c80: 2020 2020 2020 2020 2020 2020 2020 2036 6 │ │ │ │ -00023c90: 2020 2020 2020 3520 2020 2020 2034 2020 5 4 │ │ │ │ -00023ca0: 2020 2020 3320 2020 2020 2032 2020 2020 3 2 │ │ │ │ -00023cb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00023cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023cd0: 2020 2020 2020 7b30 7d20 3d3e 2036 6820 {0} => 6h │ │ │ │ -00023ce0: 202b 2031 3868 2020 2b20 3236 6820 202b + 18h + 26h + │ │ │ │ -00023cf0: 2032 3268 2020 2b20 3130 6820 202b 2032 22h + 10h + 2 │ │ │ │ -00023d00: 6820 2020 2020 2020 2020 2020 7c0a 7c20 h |.| │ │ │ │ +00023c80: 3620 2020 2020 2035 2020 2020 2020 3420 6 5 4 │ │ │ │ +00023c90: 2020 2020 2033 2020 2020 2020 3220 2020 3 2 │ │ │ │ +00023ca0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023cc0: 2020 2020 2020 207b 307d 203d 3e20 3668 {0} => 6h │ │ │ │ +00023cd0: 2020 2b20 3138 6820 202b 2032 3668 2020 + 18h + 26h │ │ │ │ +00023ce0: 2b20 3232 6820 202b 2031 3068 2020 2b20 + 22h + 10h + │ │ │ │ +00023cf0: 3268 2020 2020 2020 2020 2020 207c 0a7c 2h |.| │ │ │ │ +00023d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d20: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -00023d30: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -00023d40: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00023d50: 2031 2020 2020 2020 2020 2020 7c0a 7c20 1 |.| │ │ │ │ +00023d20: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ +00023d30: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ +00023d40: 2020 3120 2020 2020 2020 2020 207c 0a7c 1 |.| │ │ │ │ +00023d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d70: 2020 2020 2020 2020 2020 2020 2020 2036 6 │ │ │ │ -00023d80: 2020 2020 2020 3520 2020 2020 2034 2020 5 4 │ │ │ │ -00023d90: 2020 2020 3320 2020 2020 2032 2020 2020 3 2 │ │ │ │ -00023da0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00023db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023dc0: 2020 2020 2020 7b31 7d20 3d3e 2036 6820 {1} => 6h │ │ │ │ -00023dd0: 202b 2031 3768 2020 2b20 3238 6820 202b + 17h + 28h + │ │ │ │ -00023de0: 2032 3768 2020 2b20 3134 6820 202b 2033 27h + 14h + 3 │ │ │ │ -00023df0: 6820 2020 2020 2020 2020 2020 7c0a 7c20 h |.| │ │ │ │ +00023d70: 3620 2020 2020 2035 2020 2020 2020 3420 6 5 4 │ │ │ │ +00023d80: 2020 2020 2033 2020 2020 2020 3220 2020 3 2 │ │ │ │ +00023d90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023db0: 2020 2020 2020 207b 317d 203d 3e20 3668 {1} => 6h │ │ │ │ +00023dc0: 2020 2b20 3137 6820 202b 2032 3868 2020 + 17h + 28h │ │ │ │ +00023dd0: 2b20 3237 6820 202b 2031 3468 2020 2b20 + 27h + 14h + │ │ │ │ +00023de0: 3368 2020 2020 2020 2020 2020 207c 0a7c 3h |.| │ │ │ │ +00023df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023e10: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -00023e20: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -00023e30: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00023e40: 2031 2020 2020 2020 2020 2020 7c0a 2b2d 1 |.+- │ │ │ │ +00023e10: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ +00023e20: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ +00023e30: 2020 3120 2020 2020 2020 2020 207c 0a2b 1 |.+ │ │ │ │ +00023e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a54 ------------+..T │ │ │ │ -00023ea0: 6865 204d 7574 6162 6c65 4861 7368 5461 he MutableHashTa │ │ │ │ -00023eb0: 626c 6520 7265 7475 726e 6564 2077 6974 ble returned wit │ │ │ │ -00023ec0: 6820 7468 6520 6f70 7469 6f6e 204f 7574 h the option Out │ │ │ │ -00023ed0: 7075 743d 3e48 6173 6846 6f72 6d20 636f put=>HashForm co │ │ │ │ -00023ee0: 6e74 6169 6e73 0a64 6966 6665 7265 6e74 ntains.different │ │ │ │ -00023ef0: 2069 6e66 6f72 6d61 7469 6f6e 2064 6570 information dep │ │ │ │ -00023f00: 656e 6469 6e67 206f 6e20 7468 6520 6d65 ending on the me │ │ │ │ -00023f10: 7468 6f64 2077 6974 6820 7768 6963 6820 thod with which │ │ │ │ -00023f20: 6974 2069 7320 7573 6564 2e0a 4164 6469 it is used..Addi │ │ │ │ -00023f30: 7469 6f6e 616c 6c79 2069 6620 7468 6520 tionally if the │ │ │ │ -00023f40: 6f70 7469 6f6e 202a 6e6f 7465 2049 6e70 option *note Inp │ │ │ │ -00023f50: 7574 4973 536d 6f6f 7468 3a20 496e 7075 utIsSmooth: Inpu │ │ │ │ -00023f60: 7449 7353 6d6f 6f74 682c 2069 7320 7573 tIsSmooth, is us │ │ │ │ -00023f70: 6564 2074 6865 6e20 7468 650a 6861 7368 ed then the.hash │ │ │ │ -00023f80: 2074 6162 6c65 2072 6574 7572 6e65 6420 table returned │ │ │ │ -00023f90: 6279 2074 6865 206d 6574 686f 6473 2045 by the methods E │ │ │ │ -00023fa0: 756c 6572 2061 6e64 2043 534d 2077 696c uler and CSM wil │ │ │ │ -00023fb0: 6c20 6265 2074 6865 2073 616d 6520 6173 l be the same as │ │ │ │ -00023fc0: 2074 6861 740a 7265 7475 726e 6564 2062 that.returned b │ │ │ │ -00023fd0: 7920 4368 6572 6e2e 2057 6865 6e20 7573 y Chern. When us │ │ │ │ -00023fe0: 696e 6720 7468 6520 2a6e 6f74 6520 4353 ing the *note CS │ │ │ │ -00023ff0: 4d3a 2043 534d 2c20 2063 6f6d 6d61 6e64 M: CSM, command │ │ │ │ -00024000: 2069 6e20 7468 6520 6465 6661 756c 740a in the default. │ │ │ │ -00024010: 636f 6e66 6967 7572 6174 696f 6e73 2028 configurations ( │ │ │ │ -00024020: 7468 6174 2069 7320 2a6e 6f74 6520 4d65 that is *note Me │ │ │ │ -00024030: 7468 6f64 3a20 4d65 7468 6f64 2c3d 3e49 thod: Method,=>I │ │ │ │ -00024040: 6e63 6c75 7369 6f6e 4578 636c 7573 696f nclusionExclusio │ │ │ │ -00024050: 6e2c 202a 6e6f 7465 0a43 6f6d 704d 6574 n, *note.CompMet │ │ │ │ -00024060: 686f 643a 2043 6f6d 704d 6574 686f 642c hod: CompMethod, │ │ │ │ -00024070: 3d3e 5072 6f6a 6563 7469 7665 4465 6772 =>ProjectiveDegr │ │ │ │ -00024080: 6565 2920 7468 6572 6520 6973 2074 6865 ee) there is the │ │ │ │ -00024090: 2061 6464 6974 696f 6e61 6c20 6f70 7469 additional opti │ │ │ │ -000240a0: 6f6e 2074 6f0a 7365 7420 4f75 7470 7574 on to.set Output │ │ │ │ -000240b0: 3d3e 4861 7368 466f 726d 584c 2e20 5468 =>HashFormXL. Th │ │ │ │ -000240c0: 6973 2072 6574 7572 6e73 2061 6c6c 2074 is returns all t │ │ │ │ -000240d0: 6865 2075 7375 616c 2069 6e66 6f72 6d61 he usual informa │ │ │ │ -000240e0: 7469 6f6e 2074 6861 740a 4f75 7470 7574 tion that.Output │ │ │ │ -000240f0: 3d3e 4861 7368 466f 726d 2077 6f75 6c64 =>HashForm would │ │ │ │ -00024100: 2066 6f72 2074 6869 7320 636f 6e66 6967 for this config │ │ │ │ -00024110: 7572 6174 696f 6e20 7769 7468 2074 6865 uration with the │ │ │ │ -00024120: 2061 6464 6974 696f 6e20 6f66 2074 6865 addition of the │ │ │ │ -00024130: 0a70 726f 6a65 6374 6976 6520 6465 6772 .projective degr │ │ │ │ -00024140: 6565 7320 616e 6420 5365 6772 6520 636c ees and Segre cl │ │ │ │ -00024150: 6173 7365 7320 6f66 2073 696e 6775 6c61 asses of singula │ │ │ │ -00024160: 7269 7479 2073 7562 7363 6865 6d65 7320 rity subschemes │ │ │ │ -00024170: 6765 6e65 7261 7465 6420 6279 2074 6865 generated by the │ │ │ │ -00024180: 0a68 7970 6572 7375 7266 6163 6573 2063 .hypersurfaces c │ │ │ │ -00024190: 6f6e 7369 6465 7265 6420 696e 2074 6865 onsidered in the │ │ │ │ -000241a0: 2069 6e63 6c75 7369 6f6e 2f65 7863 6c75 inclusion/exclu │ │ │ │ -000241b0: 7369 6f6e 2070 726f 6365 6475 7265 2c20 sion procedure, │ │ │ │ -000241c0: 7468 6174 2069 7320 696e 0a66 696e 6469 that is in.findi │ │ │ │ -000241d0: 6e67 2074 6865 2043 534d 2063 6c61 7373 ng the CSM class │ │ │ │ -000241e0: 206f 6620 616c 6c20 6879 7065 7273 7572 of all hypersur │ │ │ │ -000241f0: 6661 6365 7320 6765 6e65 7261 7465 6420 faces generated │ │ │ │ -00024200: 6279 2074 616b 696e 6720 6120 7072 6f64 by taking a prod │ │ │ │ -00024210: 7563 7420 6f66 0a73 6f6d 6520 7375 6273 uct of.some subs │ │ │ │ -00024220: 6574 7320 6f66 2067 656e 6572 6174 6f72 ets of generator │ │ │ │ -00024230: 7320 6f66 2074 6865 2069 6e70 7574 2069 s of the input i │ │ │ │ -00024240: 6465 616c 2e20 4e6f 7465 2074 6861 742c deal. Note that, │ │ │ │ -00024250: 2073 696e 6365 2074 6865 2043 534d 2063 since the CSM c │ │ │ │ -00024260: 6c61 7373 0a6f 6620 6120 7375 6273 6368 lass.of a subsch │ │ │ │ -00024270: 656d 6520 6571 7561 6c73 2074 6865 2043 eme equals the C │ │ │ │ -00024280: 534d 2063 6c61 7373 206f 6620 6974 7320 SM class of its │ │ │ │ -00024290: 7265 6475 6365 6420 7363 6865 6d65 2c20 reduced scheme, │ │ │ │ -000242a0: 6f72 2065 7175 6976 616c 656e 746c 7920 or equivalently │ │ │ │ -000242b0: 666f 720a 7573 2074 6865 2043 534d 2063 for.us the CSM c │ │ │ │ -000242c0: 6c61 7373 2063 6f72 7265 7370 6f6e 6469 lass correspondi │ │ │ │ -000242d0: 6e67 2074 6f20 616e 2069 6465 616c 2049 ng to an ideal I │ │ │ │ -000242e0: 2065 7175 616c 7320 7468 6520 4353 4d20 equals the CSM │ │ │ │ -000242f0: 636c 6173 7320 6f66 2074 6865 0a72 6164 class of the.rad │ │ │ │ -00024300: 6963 616c 206f 6620 492c 2074 6865 6e20 ical of I, then │ │ │ │ -00024310: 696e 7465 726e 616c 6c79 2077 6520 616c internally we al │ │ │ │ -00024320: 7761 7973 2077 6f72 6b20 7769 7468 2072 ways work with r │ │ │ │ -00024330: 6164 6963 616c 2069 6465 616c 7320 2866 adical ideals (f │ │ │ │ -00024340: 6f72 0a65 6666 6963 6965 6e63 7920 7265 or.efficiency re │ │ │ │ -00024350: 6173 6f6e 7329 2e20 4865 6e63 6520 7468 asons). Hence th │ │ │ │ -00024360: 6520 7072 6f6a 6563 7469 7665 2064 6567 e projective deg │ │ │ │ -00024370: 7265 6573 2061 6e64 2053 6567 7265 2063 rees and Segre c │ │ │ │ -00024380: 6c61 7373 6573 2063 6f6d 7075 7465 640a lasses computed. │ │ │ │ -00024390: 696e 7465 726e 616c 6c79 2077 696c 6c20 internally will │ │ │ │ -000243a0: 6265 2074 686f 7365 206f 6620 7468 6520 be those of the │ │ │ │ -000243b0: 7261 6469 6361 6c20 6f66 2061 6e20 6964 radical of an id │ │ │ │ -000243c0: 6561 6c20 6465 6669 6e65 6420 6279 2061 eal defined by a │ │ │ │ -000243d0: 2070 6f6c 796e 6f6d 6961 6c0a 7768 6963 polynomial.whic │ │ │ │ -000243e0: 6820 6973 2061 2070 726f 6475 6374 206f h is a product o │ │ │ │ -000243f0: 6620 736f 6d65 2073 7562 7365 7420 6f66 f some subset of │ │ │ │ -00024400: 2074 6865 2067 656e 6572 6174 6f72 732e the generators. │ │ │ │ -00024410: 2057 6520 696c 6c75 7374 7261 7465 2074 We illustrate t │ │ │ │ -00024420: 6869 7320 7769 7468 2061 6e0a 6578 616d his with an.exam │ │ │ │ -00024430: 706c 6520 6265 6c6f 772e 0a0a 2b2d 2d2d ple below...+--- │ │ │ │ +00023e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +00023e90: 5468 6520 4d75 7461 626c 6548 6173 6854 The MutableHashT │ │ │ │ +00023ea0: 6162 6c65 2072 6574 7572 6e65 6420 7769 able returned wi │ │ │ │ +00023eb0: 7468 2074 6865 206f 7074 696f 6e20 4f75 th the option Ou │ │ │ │ +00023ec0: 7470 7574 3d3e 4861 7368 466f 726d 2063 tput=>HashForm c │ │ │ │ +00023ed0: 6f6e 7461 696e 730a 6469 6666 6572 656e ontains.differen │ │ │ │ +00023ee0: 7420 696e 666f 726d 6174 696f 6e20 6465 t information de │ │ │ │ +00023ef0: 7065 6e64 696e 6720 6f6e 2074 6865 206d pending on the m │ │ │ │ +00023f00: 6574 686f 6420 7769 7468 2077 6869 6368 ethod with which │ │ │ │ +00023f10: 2069 7420 6973 2075 7365 642e 0a41 6464 it is used..Add │ │ │ │ +00023f20: 6974 696f 6e61 6c6c 7920 6966 2074 6865 itionally if the │ │ │ │ +00023f30: 206f 7074 696f 6e20 2a6e 6f74 6520 496e option *note In │ │ │ │ +00023f40: 7075 7449 7353 6d6f 6f74 683a 2049 6e70 putIsSmooth: Inp │ │ │ │ +00023f50: 7574 4973 536d 6f6f 7468 2c20 6973 2075 utIsSmooth, is u │ │ │ │ +00023f60: 7365 6420 7468 656e 2074 6865 0a68 6173 sed then the.has │ │ │ │ +00023f70: 6820 7461 626c 6520 7265 7475 726e 6564 h table returned │ │ │ │ +00023f80: 2062 7920 7468 6520 6d65 7468 6f64 7320 by the methods │ │ │ │ +00023f90: 4575 6c65 7220 616e 6420 4353 4d20 7769 Euler and CSM wi │ │ │ │ +00023fa0: 6c6c 2062 6520 7468 6520 7361 6d65 2061 ll be the same a │ │ │ │ +00023fb0: 7320 7468 6174 0a72 6574 7572 6e65 6420 s that.returned │ │ │ │ +00023fc0: 6279 2043 6865 726e 2e20 5768 656e 2075 by Chern. When u │ │ │ │ +00023fd0: 7369 6e67 2074 6865 202a 6e6f 7465 2043 sing the *note C │ │ │ │ +00023fe0: 534d 3a20 4353 4d2c 2020 636f 6d6d 616e SM: CSM, comman │ │ │ │ +00023ff0: 6420 696e 2074 6865 2064 6566 6175 6c74 d in the default │ │ │ │ +00024000: 0a63 6f6e 6669 6775 7261 7469 6f6e 7320 .configurations │ │ │ │ +00024010: 2874 6861 7420 6973 202a 6e6f 7465 204d (that is *note M │ │ │ │ +00024020: 6574 686f 643a 204d 6574 686f 642c 3d3e ethod: Method,=> │ │ │ │ +00024030: 496e 636c 7573 696f 6e45 7863 6c75 7369 InclusionExclusi │ │ │ │ +00024040: 6f6e 2c20 2a6e 6f74 650a 436f 6d70 4d65 on, *note.CompMe │ │ │ │ +00024050: 7468 6f64 3a20 436f 6d70 4d65 7468 6f64 thod: CompMethod │ │ │ │ +00024060: 2c3d 3e50 726f 6a65 6374 6976 6544 6567 ,=>ProjectiveDeg │ │ │ │ +00024070: 7265 6529 2074 6865 7265 2069 7320 7468 ree) there is th │ │ │ │ +00024080: 6520 6164 6469 7469 6f6e 616c 206f 7074 e additional opt │ │ │ │ +00024090: 696f 6e20 746f 0a73 6574 204f 7574 7075 ion to.set Outpu │ │ │ │ +000240a0: 743d 3e48 6173 6846 6f72 6d58 4c2e 2054 t=>HashFormXL. T │ │ │ │ +000240b0: 6869 7320 7265 7475 726e 7320 616c 6c20 his returns all │ │ │ │ +000240c0: 7468 6520 7573 7561 6c20 696e 666f 726d the usual inform │ │ │ │ +000240d0: 6174 696f 6e20 7468 6174 0a4f 7574 7075 ation that.Outpu │ │ │ │ +000240e0: 743d 3e48 6173 6846 6f72 6d20 776f 756c t=>HashForm woul │ │ │ │ +000240f0: 6420 666f 7220 7468 6973 2063 6f6e 6669 d for this confi │ │ │ │ +00024100: 6775 7261 7469 6f6e 2077 6974 6820 7468 guration with th │ │ │ │ +00024110: 6520 6164 6469 7469 6f6e 206f 6620 7468 e addition of th │ │ │ │ +00024120: 650a 7072 6f6a 6563 7469 7665 2064 6567 e.projective deg │ │ │ │ +00024130: 7265 6573 2061 6e64 2053 6567 7265 2063 rees and Segre c │ │ │ │ +00024140: 6c61 7373 6573 206f 6620 7369 6e67 756c lasses of singul │ │ │ │ +00024150: 6172 6974 7920 7375 6273 6368 656d 6573 arity subschemes │ │ │ │ +00024160: 2067 656e 6572 6174 6564 2062 7920 7468 generated by th │ │ │ │ +00024170: 650a 6879 7065 7273 7572 6661 6365 7320 e.hypersurfaces │ │ │ │ +00024180: 636f 6e73 6964 6572 6564 2069 6e20 7468 considered in th │ │ │ │ +00024190: 6520 696e 636c 7573 696f 6e2f 6578 636c e inclusion/excl │ │ │ │ +000241a0: 7573 696f 6e20 7072 6f63 6564 7572 652c usion procedure, │ │ │ │ +000241b0: 2074 6861 7420 6973 2069 6e0a 6669 6e64 that is in.find │ │ │ │ +000241c0: 696e 6720 7468 6520 4353 4d20 636c 6173 ing the CSM clas │ │ │ │ +000241d0: 7320 6f66 2061 6c6c 2068 7970 6572 7375 s of all hypersu │ │ │ │ +000241e0: 7266 6163 6573 2067 656e 6572 6174 6564 rfaces generated │ │ │ │ +000241f0: 2062 7920 7461 6b69 6e67 2061 2070 726f by taking a pro │ │ │ │ +00024200: 6475 6374 206f 660a 736f 6d65 2073 7562 duct of.some sub │ │ │ │ +00024210: 7365 7473 206f 6620 6765 6e65 7261 746f sets of generato │ │ │ │ +00024220: 7273 206f 6620 7468 6520 696e 7075 7420 rs of the input │ │ │ │ +00024230: 6964 6561 6c2e 204e 6f74 6520 7468 6174 ideal. Note that │ │ │ │ +00024240: 2c20 7369 6e63 6520 7468 6520 4353 4d20 , since the CSM │ │ │ │ +00024250: 636c 6173 730a 6f66 2061 2073 7562 7363 class.of a subsc │ │ │ │ +00024260: 6865 6d65 2065 7175 616c 7320 7468 6520 heme equals the │ │ │ │ +00024270: 4353 4d20 636c 6173 7320 6f66 2069 7473 CSM class of its │ │ │ │ +00024280: 2072 6564 7563 6564 2073 6368 656d 652c reduced scheme, │ │ │ │ +00024290: 206f 7220 6571 7569 7661 6c65 6e74 6c79 or equivalently │ │ │ │ +000242a0: 2066 6f72 0a75 7320 7468 6520 4353 4d20 for.us the CSM │ │ │ │ +000242b0: 636c 6173 7320 636f 7272 6573 706f 6e64 class correspond │ │ │ │ +000242c0: 696e 6720 746f 2061 6e20 6964 6561 6c20 ing to an ideal │ │ │ │ +000242d0: 4920 6571 7561 6c73 2074 6865 2043 534d I equals the CSM │ │ │ │ +000242e0: 2063 6c61 7373 206f 6620 7468 650a 7261 class of the.ra │ │ │ │ +000242f0: 6469 6361 6c20 6f66 2049 2c20 7468 656e dical of I, then │ │ │ │ +00024300: 2069 6e74 6572 6e61 6c6c 7920 7765 2061 internally we a │ │ │ │ +00024310: 6c77 6179 7320 776f 726b 2077 6974 6820 lways work with │ │ │ │ +00024320: 7261 6469 6361 6c20 6964 6561 6c73 2028 radical ideals ( │ │ │ │ +00024330: 666f 720a 6566 6669 6369 656e 6379 2072 for.efficiency r │ │ │ │ +00024340: 6561 736f 6e73 292e 2048 656e 6365 2074 easons). Hence t │ │ │ │ +00024350: 6865 2070 726f 6a65 6374 6976 6520 6465 he projective de │ │ │ │ +00024360: 6772 6565 7320 616e 6420 5365 6772 6520 grees and Segre │ │ │ │ +00024370: 636c 6173 7365 7320 636f 6d70 7574 6564 classes computed │ │ │ │ +00024380: 0a69 6e74 6572 6e61 6c6c 7920 7769 6c6c .internally will │ │ │ │ +00024390: 2062 6520 7468 6f73 6520 6f66 2074 6865 be those of the │ │ │ │ +000243a0: 2072 6164 6963 616c 206f 6620 616e 2069 radical of an i │ │ │ │ +000243b0: 6465 616c 2064 6566 696e 6564 2062 7920 deal defined by │ │ │ │ +000243c0: 6120 706f 6c79 6e6f 6d69 616c 0a77 6869 a polynomial.whi │ │ │ │ +000243d0: 6368 2069 7320 6120 7072 6f64 7563 7420 ch is a product │ │ │ │ +000243e0: 6f66 2073 6f6d 6520 7375 6273 6574 206f of some subset o │ │ │ │ +000243f0: 6620 7468 6520 6765 6e65 7261 746f 7273 f the generators │ │ │ │ +00024400: 2e20 5765 2069 6c6c 7573 7472 6174 6520 . We illustrate │ │ │ │ +00024410: 7468 6973 2077 6974 6820 616e 0a65 7861 this with an.exa │ │ │ │ +00024420: 6d70 6c65 2062 656c 6f77 2e0a 0a2b 2d2d mple below...+-- │ │ │ │ +00024430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024480: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3134 ----------+.|i14 │ │ │ │ -00024490: 203a 2063 736d 584c 6861 7368 3d43 534d : csmXLhash=CSM │ │ │ │ -000244a0: 2841 2c49 2c4f 7574 7075 743d 3e48 6173 (A,I,Output=>Has │ │ │ │ -000244b0: 6846 6f72 6d58 4c29 2020 2020 2020 2020 hFormXL) │ │ │ │ -000244c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000244d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00024470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00024480: 3420 3a20 6373 6d58 4c68 6173 683d 4353 4 : csmXLhash=CS │ │ │ │ +00024490: 4d28 412c 492c 4f75 7470 7574 3d3e 4861 M(A,I,Output=>Ha │ │ │ │ +000244a0: 7368 466f 726d 584c 2920 2020 2020 2020 shFormXL) │ │ │ │ +000244b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000244c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000244d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000244e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000244f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024520: 2020 2020 2020 2020 2020 7c0a 7c6f 3134 |.|o14 │ │ │ │ -00024530: 203d 204d 7574 6162 6c65 4861 7368 5461 = MutableHashTa │ │ │ │ -00024540: 626c 657b 2e2e 2e31 302e 2e2e 7d20 2020 ble{...10...} │ │ │ │ +00024510: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00024520: 3420 3d20 4d75 7461 626c 6548 6173 6854 4 = MutableHashT │ │ │ │ +00024530: 6162 6c65 7b2e 2e2e 3130 2e2e 2e7d 2020 able{...10...} │ │ │ │ +00024540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024570: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00024560: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00024570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000245a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000245b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000245c0: 2020 2020 2020 2020 2020 7c0a 7c6f 3134 |.|o14 │ │ │ │ -000245d0: 203a 204d 7574 6162 6c65 4861 7368 5461 : MutableHashTa │ │ │ │ -000245e0: 626c 6520 2020 2020 2020 2020 2020 2020 ble │ │ │ │ +000245b0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +000245c0: 3420 3a20 4d75 7461 626c 6548 6173 6854 4 : MutableHashT │ │ │ │ +000245d0: 6162 6c65 2020 2020 2020 2020 2020 2020 able │ │ │ │ +000245e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000245f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024610: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00024600: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00024610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024660: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3135 ----------+.|i15 │ │ │ │ -00024670: 203a 2070 6565 6b20 6373 6d58 4c68 6173 : peek csmXLhas │ │ │ │ -00024680: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ +00024650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00024660: 3520 3a20 7065 656b 2063 736d 584c 6861 5 : peek csmXLha │ │ │ │ +00024670: 7368 2020 2020 2020 2020 2020 2020 2020 sh │ │ │ │ +00024680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000246a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000246b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000246a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000246b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000246c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000246d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000246e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000246f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024700: 2020 2020 2020 2020 2020 7c0a 7c6f 3135 |.|o15 │ │ │ │ -00024710: 203d 204d 7574 6162 6c65 4861 7368 5461 = MutableHashTa │ │ │ │ -00024720: 626c 657b 4728 4a61 636f 6269 616e 297b ble{G(Jacobian){ │ │ │ │ -00024730: 307d 203d 3e20 3020 2020 2020 2020 2020 0} => 0 │ │ │ │ -00024740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024750: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00024760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024770: 2020 2020 5365 6772 6528 4a61 636f 6269 Segre(Jacobi │ │ │ │ -00024780: 616e 297b 307d 203d 3e20 3020 2020 2020 an){0} => 0 │ │ │ │ -00024790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000247a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000246f0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00024700: 3520 3d20 4d75 7461 626c 6548 6173 6854 5 = MutableHashT │ │ │ │ +00024710: 6162 6c65 7b47 284a 6163 6f62 6961 6e29 able{G(Jacobian) │ │ │ │ +00024720: 7b30 7d20 3d3e 2030 2020 2020 2020 2020 {0} => 0 │ │ │ │ +00024730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024740: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00024750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024760: 2020 2020 2053 6567 7265 284a 6163 6f62 Segre(Jacob │ │ │ │ +00024770: 6961 6e29 7b30 7d20 3d3e 2030 2020 2020 ian){0} => 0 │ │ │ │ +00024780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024790: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000247a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000247b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000247c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000247d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000247e0: 2036 2020 2020 2020 2035 2020 2020 2020 6 5 │ │ │ │ -000247f0: 2034 2020 2020 2020 2020 7c0a 7c20 2020 4 |.| │ │ │ │ -00024800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024810: 2020 2020 5365 6772 6528 4a61 636f 6269 Segre(Jacobi │ │ │ │ -00024820: 616e 297b 302c 2031 7d20 3d3e 2033 3930 an){0, 1} => 390 │ │ │ │ -00024830: 6820 202d 2033 3836 6820 202b 2031 3530 h - 386h + 150 │ │ │ │ -00024840: 6820 202d 2020 2020 2020 7c0a 7c20 2020 h - |.| │ │ │ │ +000247d0: 2020 3620 2020 2020 2020 3520 2020 2020 6 5 │ │ │ │ +000247e0: 2020 3420 2020 2020 2020 207c 0a7c 2020 4 |.| │ │ │ │ +000247f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024800: 2020 2020 2053 6567 7265 284a 6163 6f62 Segre(Jacob │ │ │ │ +00024810: 6961 6e29 7b30 2c20 317d 203d 3e20 3339 ian){0, 1} => 39 │ │ │ │ +00024820: 3068 2020 2d20 3338 3668 2020 2b20 3135 0h - 386h + 15 │ │ │ │ +00024830: 3068 2020 2d20 2020 2020 207c 0a7c 2020 0h - |.| │ │ │ │ +00024840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024880: 2031 2020 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -00024890: 2031 2020 2020 2020 2020 7c0a 7c20 2020 1 |.| │ │ │ │ +00024870: 2020 3120 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00024880: 2020 3120 2020 2020 2020 207c 0a7c 2020 1 |.| │ │ │ │ +00024890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000248a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000248b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000248c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000248d0: 3620 2020 2020 2035 2020 2020 2033 2020 6 5 3 │ │ │ │ -000248e0: 2020 2032 2020 2020 2020 7c0a 7c20 2020 2 |.| │ │ │ │ -000248f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024900: 2020 2020 5365 6772 6528 4a61 636f 6269 Segre(Jacobi │ │ │ │ -00024910: 616e 297b 317d 203d 3e20 2d20 3136 3068 an){1} => - 160h │ │ │ │ -00024920: 2020 2b20 3332 6820 202d 2034 6820 202b + 32h - 4h + │ │ │ │ -00024930: 2032 6820 2020 2020 2020 7c0a 7c20 2020 2h |.| │ │ │ │ +000248c0: 2036 2020 2020 2020 3520 2020 2020 3320 6 5 3 │ │ │ │ +000248d0: 2020 2020 3220 2020 2020 207c 0a7c 2020 2 |.| │ │ │ │ +000248e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000248f0: 2020 2020 2053 6567 7265 284a 6163 6f62 Segre(Jacob │ │ │ │ +00024900: 6961 6e29 7b31 7d20 3d3e 202d 2031 3630 ian){1} => - 160 │ │ │ │ +00024910: 6820 202b 2033 3268 2020 2d20 3468 2020 h + 32h - 4h │ │ │ │ +00024920: 2b20 3268 2020 2020 2020 207c 0a7c 2020 + 2h |.| │ │ │ │ +00024930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024970: 3120 2020 2020 2031 2020 2020 2031 2020 1 1 1 │ │ │ │ -00024980: 2020 2031 2020 2020 2020 7c0a 7c20 2020 1 |.| │ │ │ │ +00024960: 2031 2020 2020 2020 3120 2020 2020 3120 1 1 1 │ │ │ │ +00024970: 2020 2020 3120 2020 2020 207c 0a7c 2020 1 |.| │ │ │ │ +00024980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000249a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000249b0: 2020 2020 2020 2020 2020 2020 3620 2020 6 │ │ │ │ -000249c0: 2020 2035 2020 2020 2020 3420 2020 2020 5 4 │ │ │ │ -000249d0: 2033 2020 2020 2020 2020 7c0a 7c20 2020 3 |.| │ │ │ │ -000249e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000249f0: 2020 2020 4728 4a61 636f 6269 616e 297b G(Jacobian){ │ │ │ │ -00024a00: 302c 2031 7d20 3d3e 2031 3068 2020 2b20 0, 1} => 10h + │ │ │ │ -00024a10: 3130 6820 202b 2031 3068 2020 2b20 3130 10h + 10h + 10 │ │ │ │ -00024a20: 6820 202b 2020 2020 2020 7c0a 7c20 2020 h + |.| │ │ │ │ +000249a0: 2020 2020 2020 2020 2020 2020 2036 2020 6 │ │ │ │ +000249b0: 2020 2020 3520 2020 2020 2034 2020 2020 5 4 │ │ │ │ +000249c0: 2020 3320 2020 2020 2020 207c 0a7c 2020 3 |.| │ │ │ │ +000249d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000249e0: 2020 2020 2047 284a 6163 6f62 6961 6e29 G(Jacobian) │ │ │ │ +000249f0: 7b30 2c20 317d 203d 3e20 3130 6820 202b {0, 1} => 10h + │ │ │ │ +00024a00: 2031 3068 2020 2b20 3130 6820 202b 2031 10h + 10h + 1 │ │ │ │ +00024a10: 3068 2020 2b20 2020 2020 207c 0a7c 2020 0h + |.| │ │ │ │ +00024a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024a50: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ -00024a60: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00024a70: 2031 2020 2020 2020 2020 7c0a 7c20 2020 1 |.| │ │ │ │ +00024a40: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +00024a50: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00024a60: 2020 3120 2020 2020 2020 207c 0a7c 2020 1 |.| │ │ │ │ +00024a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024aa0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -00024ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ac0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00024ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ae0: 2020 2020 4728 4a61 636f 6269 616e 297b G(Jacobian){ │ │ │ │ -00024af0: 317d 203d 3e20 3268 2020 2b20 3268 2020 1} => 2h + 2h │ │ │ │ -00024b00: 2b20 3120 2020 2020 2020 2020 2020 2020 + 1 │ │ │ │ -00024b10: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00024a90: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +00024aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024ab0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00024ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024ad0: 2020 2020 2047 284a 6163 6f62 6961 6e29 G(Jacobian) │ │ │ │ +00024ae0: 7b31 7d20 3d3e 2032 6820 202b 2032 6820 {1} => 2h + 2h │ │ │ │ +00024af0: 202b 2031 2020 2020 2020 2020 2020 2020 + 1 │ │ │ │ +00024b00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00024b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024b40: 2020 2020 2020 2020 3120 2020 2020 3120 1 1 │ │ │ │ -00024b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024b60: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00024b30: 2020 2020 2020 2020 2031 2020 2020 2031 1 1 │ │ │ │ +00024b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024b50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00024b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024b90: 3620 2020 2020 2035 2020 2020 2020 3420 6 5 4 │ │ │ │ -00024ba0: 2020 2020 2033 2020 2020 2020 3220 2020 3 2 │ │ │ │ -00024bb0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00024bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024bd0: 2020 2020 7b30 2c20 317d 203d 3e20 3268 {0, 1} => 2h │ │ │ │ -00024be0: 2020 2b20 3233 6820 202b 2033 3268 2020 + 23h + 32h │ │ │ │ -00024bf0: 2b20 3333 6820 202b 2031 3868 2020 2b20 + 33h + 18h + │ │ │ │ -00024c00: 3568 2020 2020 2020 2020 7c0a 7c20 2020 5h |.| │ │ │ │ +00024b80: 2036 2020 2020 2020 3520 2020 2020 2034 6 5 4 │ │ │ │ +00024b90: 2020 2020 2020 3320 2020 2020 2032 2020 3 2 │ │ │ │ +00024ba0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00024bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024bc0: 2020 2020 207b 302c 2031 7d20 3d3e 2032 {0, 1} => 2 │ │ │ │ +00024bd0: 6820 202b 2032 3368 2020 2b20 3332 6820 h + 23h + 32h │ │ │ │ +00024be0: 202b 2033 3368 2020 2b20 3138 6820 202b + 33h + 18h + │ │ │ │ +00024bf0: 2035 6820 2020 2020 2020 207c 0a7c 2020 5h |.| │ │ │ │ +00024c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024c30: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ -00024c40: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ -00024c50: 2020 3120 2020 2020 2020 7c0a 7c20 2020 1 |.| │ │ │ │ -00024c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024c70: 2020 2020 2020 2020 2020 2020 2020 3620 6 │ │ │ │ -00024c80: 2020 2020 2035 2020 2020 2020 3420 2020 5 4 │ │ │ │ -00024c90: 2020 2033 2020 2020 2032 2020 2020 2020 3 2 │ │ │ │ -00024ca0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00024cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024cc0: 2020 2020 4353 4d20 3d3e 2031 3068 2020 CSM => 10h │ │ │ │ -00024cd0: 2b20 3132 6820 202b 2032 3268 2020 2b20 + 12h + 22h + │ │ │ │ -00024ce0: 3136 6820 202b 2036 6820 2020 2020 2020 16h + 6h │ │ │ │ -00024cf0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00024d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024d10: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ -00024d20: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ -00024d30: 2020 2031 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -00024d40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00024d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024d60: 2020 2020 2020 2020 2020 2020 2036 2020 6 │ │ │ │ -00024d70: 2020 2020 3520 2020 2020 2034 2020 2020 5 4 │ │ │ │ -00024d80: 2020 3320 2020 2020 2032 2020 2020 2020 3 2 │ │ │ │ -00024d90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00024da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024db0: 2020 2020 7b30 7d20 3d3e 2036 6820 202b {0} => 6h + │ │ │ │ -00024dc0: 2031 3868 2020 2b20 3236 6820 202b 2032 18h + 26h + 2 │ │ │ │ -00024dd0: 3268 2020 2b20 3130 6820 202b 2032 6820 2h + 10h + 2h │ │ │ │ -00024de0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00024df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024e00: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ -00024e10: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00024e20: 2020 3120 2020 2020 2031 2020 2020 2031 1 1 1 │ │ │ │ -00024e30: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00024e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024e50: 2020 2020 2020 2020 2020 2020 2036 2020 6 │ │ │ │ -00024e60: 2020 2020 3520 2020 2020 2034 2020 2020 5 4 │ │ │ │ -00024e70: 2020 3320 2020 2020 2032 2020 2020 2020 3 2 │ │ │ │ -00024e80: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00024e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ea0: 2020 2020 7b31 7d20 3d3e 2036 6820 202b {1} => 6h + │ │ │ │ -00024eb0: 2031 3768 2020 2b20 3238 6820 202b 2032 17h + 28h + 2 │ │ │ │ -00024ec0: 3768 2020 2b20 3134 6820 202b 2033 6820 7h + 14h + 3h │ │ │ │ -00024ed0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00024ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ef0: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ -00024f00: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00024f10: 2020 3120 2020 2020 2031 2020 2020 2031 1 1 1 │ │ │ │ -00024f20: 2020 2020 2020 2020 2020 7c0a 7c2d 2d2d |.|--- │ │ │ │ +00024c20: 2031 2020 2020 2020 3120 2020 2020 2031 1 1 1 │ │ │ │ +00024c30: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ +00024c40: 2020 2031 2020 2020 2020 207c 0a7c 2020 1 |.| │ │ │ │ +00024c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024c60: 2020 2020 2020 2020 2020 2020 2020 2036 6 │ │ │ │ +00024c70: 2020 2020 2020 3520 2020 2020 2034 2020 5 4 │ │ │ │ +00024c80: 2020 2020 3320 2020 2020 3220 2020 2020 3 2 │ │ │ │ +00024c90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00024ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024cb0: 2020 2020 2043 534d 203d 3e20 3130 6820 CSM => 10h │ │ │ │ +00024cc0: 202b 2031 3268 2020 2b20 3232 6820 202b + 12h + 22h + │ │ │ │ +00024cd0: 2031 3668 2020 2b20 3668 2020 2020 2020 16h + 6h │ │ │ │ +00024ce0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00024cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024d00: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +00024d10: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ +00024d20: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00024d30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00024d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024d50: 2020 2020 2020 2020 2020 2020 2020 3620 6 │ │ │ │ +00024d60: 2020 2020 2035 2020 2020 2020 3420 2020 5 4 │ │ │ │ +00024d70: 2020 2033 2020 2020 2020 3220 2020 2020 3 2 │ │ │ │ +00024d80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00024d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024da0: 2020 2020 207b 307d 203d 3e20 3668 2020 {0} => 6h │ │ │ │ +00024db0: 2b20 3138 6820 202b 2032 3668 2020 2b20 + 18h + 26h + │ │ │ │ +00024dc0: 3232 6820 202b 2031 3068 2020 2b20 3268 22h + 10h + 2h │ │ │ │ +00024dd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00024de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024df0: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +00024e00: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ +00024e10: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00024e20: 3120 2020 2020 2020 2020 207c 0a7c 2020 1 |.| │ │ │ │ +00024e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024e40: 2020 2020 2020 2020 2020 2020 2020 3620 6 │ │ │ │ +00024e50: 2020 2020 2035 2020 2020 2020 3420 2020 5 4 │ │ │ │ +00024e60: 2020 2033 2020 2020 2020 3220 2020 2020 3 2 │ │ │ │ +00024e70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00024e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024e90: 2020 2020 207b 317d 203d 3e20 3668 2020 {1} => 6h │ │ │ │ +00024ea0: 2b20 3137 6820 202b 2032 3868 2020 2b20 + 17h + 28h + │ │ │ │ +00024eb0: 3237 6820 202b 2031 3468 2020 2b20 3368 27h + 14h + 3h │ │ │ │ +00024ec0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00024ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024ee0: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +00024ef0: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ +00024f00: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00024f10: 3120 2020 2020 2020 2020 207c 0a7c 2d2d 1 |.|-- │ │ │ │ +00024f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024f70: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 ----------|.| │ │ │ │ -00024f80: 2020 2020 2020 2020 2020 7d20 2020 2020 } │ │ │ │ +00024f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00024f70: 2020 2020 2020 2020 2020 207d 2020 2020 } │ │ │ │ +00024f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024fc0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00024fb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00024fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025010: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00025020: 3320 2020 2020 3220 2020 2020 2020 2020 3 2 │ │ │ │ +00025000: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00025010: 2033 2020 2020 2032 2020 2020 2020 2020 3 2 │ │ │ │ +00025020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025060: 2020 2020 2020 2020 2020 7c0a 7c34 3268 |.|42h │ │ │ │ -00025070: 2020 2b20 3868 2020 2020 2020 2020 2020 + 8h │ │ │ │ +00025050: 2020 2020 2020 2020 2020 207c 0a7c 3432 |.|42 │ │ │ │ +00025060: 6820 202b 2038 6820 2020 2020 2020 2020 h + 8h │ │ │ │ +00025070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000250c0: 3120 2020 2020 3120 2020 2020 2020 2020 1 1 │ │ │ │ +000250a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000250b0: 2031 2020 2020 2031 2020 2020 2020 2020 1 1 │ │ │ │ +000250c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000250d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000250e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025100: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000250f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00025100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025150: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00025140: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00025150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000251a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00025190: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000251a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000251b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000251c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000251d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000251e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000251f0: 2020 2020 2020 2020 2020 7c0a 7c20 2032 |.| 2 │ │ │ │ +000251e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000251f0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00025200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025240: 2020 2020 2020 2020 2020 7c0a 7c38 6820 |.|8h │ │ │ │ -00025250: 202b 2034 6820 202b 2031 2020 2020 2020 + 4h + 1 │ │ │ │ +00025230: 2020 2020 2020 2020 2020 207c 0a7c 3868 |.|8h │ │ │ │ +00025240: 2020 2b20 3468 2020 2b20 3120 2020 2020 + 4h + 1 │ │ │ │ +00025250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025290: 2020 2020 2020 2020 2020 7c0a 7c20 2031 |.| 1 │ │ │ │ -000252a0: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +00025280: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00025290: 3120 2020 2020 3120 2020 2020 2020 2020 1 1 │ │ │ │ +000252a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000252b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000252c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000252d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000252e0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000252d0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000252e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000252f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025330: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3136 ----------+.|i16 │ │ │ │ -00025340: 203a 204b 3d69 6465 616c 2049 5f30 2a49 : K=ideal I_0*I │ │ │ │ -00025350: 5f31 3b20 2020 2020 2020 2020 2020 2020 _1; │ │ │ │ +00025320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00025330: 3620 3a20 4b3d 6964 6561 6c20 495f 302a 6 : K=ideal I_0* │ │ │ │ +00025340: 495f 313b 2020 2020 2020 2020 2020 2020 I_1; │ │ │ │ +00025350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025380: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00025370: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00025380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000253a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000253b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000253c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000253d0: 2020 2020 2020 2020 2020 7c0a 7c6f 3136 |.|o16 │ │ │ │ -000253e0: 203a 2049 6465 616c 206f 6620 5220 2020 : Ideal of R │ │ │ │ +000253c0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +000253d0: 3620 3a20 4964 6561 6c20 6f66 2052 2020 6 : Ideal of R │ │ │ │ +000253e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000253f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025420: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00025410: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00025420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025470: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3137 ----------+.|i17 │ │ │ │ -00025480: 203a 2043 534d 2841 2c72 6164 6963 616c : CSM(A,radical │ │ │ │ -00025490: 204b 293d 3d43 534d 2841 2c4b 2920 2020 K)==CSM(A,K) │ │ │ │ +00025460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00025470: 3720 3a20 4353 4d28 412c 7261 6469 6361 7 : CSM(A,radica │ │ │ │ +00025480: 6c20 4b29 3d3d 4353 4d28 412c 4b29 2020 l K)==CSM(A,K) │ │ │ │ +00025490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000254a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000254b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000254c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000254b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000254c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000254d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000254e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000254f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025510: 2020 2020 2020 2020 2020 7c0a 7c6f 3137 |.|o17 │ │ │ │ -00025520: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ +00025500: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00025510: 3720 3d20 7472 7565 2020 2020 2020 2020 7 = true │ │ │ │ +00025520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025560: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00025550: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00025560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000255a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000255b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3138 ----------+.|i18 │ │ │ │ -000255c0: 203a 204a 3d69 6465 616c 206a 6163 6f62 : J=ideal jacob │ │ │ │ -000255d0: 6961 6e20 7261 6469 6361 6c20 4b3b 2020 ian radical K; │ │ │ │ +000255a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +000255b0: 3820 3a20 4a3d 6964 6561 6c20 6a61 636f 8 : J=ideal jaco │ │ │ │ +000255c0: 6269 616e 2072 6164 6963 616c 204b 3b20 bian radical K; │ │ │ │ +000255d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000255e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000255f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025600: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000255f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00025600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025650: 2020 2020 2020 2020 2020 7c0a 7c6f 3138 |.|o18 │ │ │ │ -00025660: 203a 2049 6465 616c 206f 6620 5220 2020 : Ideal of R │ │ │ │ +00025640: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00025650: 3820 3a20 4964 6561 6c20 6f66 2052 2020 8 : Ideal of R │ │ │ │ +00025660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000256a0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00025690: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000256a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000256b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000256c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000256d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000256e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000256f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3139 ----------+.|i19 │ │ │ │ -00025700: 203a 2073 6567 4a3d 5365 6772 6528 412c : segJ=Segre(A, │ │ │ │ -00025710: 4a2c 4f75 7470 7574 3d3e 4861 7368 466f J,Output=>HashFo │ │ │ │ -00025720: 726d 2920 2020 2020 2020 2020 2020 2020 rm) │ │ │ │ -00025730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025740: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000256e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +000256f0: 3920 3a20 7365 674a 3d53 6567 7265 2841 9 : segJ=Segre(A │ │ │ │ +00025700: 2c4a 2c4f 7574 7075 743d 3e48 6173 6846 ,J,Output=>HashF │ │ │ │ +00025710: 6f72 6d29 2020 2020 2020 2020 2020 2020 orm) │ │ │ │ +00025720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025730: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00025740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025790: 2020 2020 2020 2020 2020 7c0a 7c6f 3139 |.|o19 │ │ │ │ -000257a0: 203d 204d 7574 6162 6c65 4861 7368 5461 = MutableHashTa │ │ │ │ -000257b0: 626c 657b 2e2e 2e34 2e2e 2e7d 2020 2020 ble{...4...} │ │ │ │ +00025780: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00025790: 3920 3d20 4d75 7461 626c 6548 6173 6854 9 = MutableHashT │ │ │ │ +000257a0: 6162 6c65 7b2e 2e2e 342e 2e2e 7d20 2020 able{...4...} │ │ │ │ +000257b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000257c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000257d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000257e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000257d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000257e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000257f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025830: 2020 2020 2020 2020 2020 7c0a 7c6f 3139 |.|o19 │ │ │ │ -00025840: 203a 204d 7574 6162 6c65 4861 7368 5461 : MutableHashTa │ │ │ │ -00025850: 626c 6520 2020 2020 2020 2020 2020 2020 ble │ │ │ │ +00025820: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00025830: 3920 3a20 4d75 7461 626c 6548 6173 6854 9 : MutableHashT │ │ │ │ +00025840: 6162 6c65 2020 2020 2020 2020 2020 2020 able │ │ │ │ +00025850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025880: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00025870: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00025880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000258a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000258b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000258c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000258d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3230 ----------+.|i20 │ │ │ │ -000258e0: 203a 2063 736d 584c 6861 7368 2328 2247 : csmXLhash#("G │ │ │ │ -000258f0: 284a 6163 6f62 6961 6e29 227c 746f 5374 (Jacobian)"|toSt │ │ │ │ -00025900: 7269 6e67 287b 302c 317d 2929 3d3d 7365 ring({0,1}))==se │ │ │ │ -00025910: 674a 2322 4722 2020 2020 2020 2020 2020 gJ#"G" │ │ │ │ -00025920: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000258c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +000258d0: 3020 3a20 6373 6d58 4c68 6173 6823 2822 0 : csmXLhash#(" │ │ │ │ +000258e0: 4728 4a61 636f 6269 616e 2922 7c74 6f53 G(Jacobian)"|toS │ │ │ │ +000258f0: 7472 696e 6728 7b30 2c31 7d29 293d 3d73 tring({0,1}))==s │ │ │ │ +00025900: 6567 4a23 2247 2220 2020 2020 2020 2020 egJ#"G" │ │ │ │ +00025910: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00025920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025970: 2020 2020 2020 2020 2020 7c0a 7c6f 3230 |.|o20 │ │ │ │ -00025980: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ +00025960: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00025970: 3020 3d20 7472 7565 2020 2020 2020 2020 0 = true │ │ │ │ +00025980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000259a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000259b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000259c0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000259b0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000259c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000259d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000259e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000259f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3231 ----------+.|i21 │ │ │ │ -00025a20: 203a 2063 736d 584c 6861 7368 2328 2253 : csmXLhash#("S │ │ │ │ -00025a30: 6567 7265 284a 6163 6f62 6961 6e29 227c egre(Jacobian)"| │ │ │ │ -00025a40: 746f 5374 7269 6e67 287b 302c 317d 2929 toString({0,1})) │ │ │ │ -00025a50: 3d3d 7365 674a 2322 5365 6772 6522 2020 ==segJ#"Segre" │ │ │ │ -00025a60: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00025a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +00025a10: 3120 3a20 6373 6d58 4c68 6173 6823 2822 1 : csmXLhash#(" │ │ │ │ +00025a20: 5365 6772 6528 4a61 636f 6269 616e 2922 Segre(Jacobian)" │ │ │ │ +00025a30: 7c74 6f53 7472 696e 6728 7b30 2c31 7d29 |toString({0,1}) │ │ │ │ +00025a40: 293d 3d73 6567 4a23 2253 6567 7265 2220 )==segJ#"Segre" │ │ │ │ +00025a50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00025a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025ab0: 2020 2020 2020 2020 2020 7c0a 7c6f 3231 |.|o21 │ │ │ │ -00025ac0: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ +00025aa0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00025ab0: 3120 3d20 7472 7565 2020 2020 2020 2020 1 = true │ │ │ │ +00025ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025b00: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00025af0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00025b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a46 756e ----------+..Fun │ │ │ │ -00025b60: 6374 696f 6e73 2077 6974 6820 6f70 7469 ctions with opti │ │ │ │ -00025b70: 6f6e 616c 2061 7267 756d 656e 7420 6e61 onal argument na │ │ │ │ -00025b80: 6d65 6420 4f75 7470 7574 3a0a 3d3d 3d3d med Output:.==== │ │ │ │ +00025b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4675 -----------+..Fu │ │ │ │ +00025b50: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ +00025b60: 696f 6e61 6c20 6172 6775 6d65 6e74 206e ional argument n │ │ │ │ +00025b70: 616d 6564 204f 7574 7075 743a 0a3d 3d3d amed Output:.=== │ │ │ │ +00025b80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 00025b90: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00025ba0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00025bb0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -00025bc0: 2243 6865 726e 282e 2e2e 2c4f 7574 7075 "Chern(...,Outpu │ │ │ │ -00025bd0: 743d 3e2e 2e2e 2922 202d 2d20 7365 6520 t=>...)" -- see │ │ │ │ -00025be0: 2a6e 6f74 6520 4368 6572 6e3a 2043 6865 *note Chern: Che │ │ │ │ -00025bf0: 726e 2c20 2d2d 2054 6865 2043 6865 726e rn, -- The Chern │ │ │ │ -00025c00: 2063 6c61 7373 0a20 202a 2022 4353 4d28 class. * "CSM( │ │ │ │ -00025c10: 2e2e 2e2c 4f75 7470 7574 3d3e 2e2e 2e29 ...,Output=>...) │ │ │ │ -00025c20: 2220 2d2d 2073 6565 202a 6e6f 7465 2043 " -- see *note C │ │ │ │ -00025c30: 534d 3a20 4353 4d2c 202d 2d20 5468 650a SM: CSM, -- The. │ │ │ │ -00025c40: 2020 2020 4368 6572 6e2d 5363 6877 6172 Chern-Schwar │ │ │ │ -00025c50: 747a 2d4d 6163 5068 6572 736f 6e20 636c tz-MacPherson cl │ │ │ │ -00025c60: 6173 730a 2020 2a20 2245 756c 6572 282e ass. * "Euler(. │ │ │ │ -00025c70: 2e2e 2c4f 7574 7075 743d 3e2e 2e2e 2922 ..,Output=>...)" │ │ │ │ -00025c80: 202d 2d20 7365 6520 2a6e 6f74 6520 4575 -- see *note Eu │ │ │ │ -00025c90: 6c65 723a 2045 756c 6572 2c20 2d2d 2054 ler: Euler, -- T │ │ │ │ -00025ca0: 6865 2045 756c 6572 0a20 2020 2043 6861 he Euler. Cha │ │ │ │ -00025cb0: 7261 6374 6572 6973 7469 630a 2020 2a20 racteristic. * │ │ │ │ -00025cc0: 2253 6567 7265 282e 2e2e 2c4f 7574 7075 "Segre(...,Outpu │ │ │ │ -00025cd0: 743d 3e2e 2e2e 2922 202d 2d20 7365 6520 t=>...)" -- see │ │ │ │ -00025ce0: 2a6e 6f74 6520 5365 6772 653a 2053 6567 *note Segre: Seg │ │ │ │ -00025cf0: 7265 2c20 2d2d 2054 6865 2053 6567 7265 re, -- The Segre │ │ │ │ -00025d00: 2063 6c61 7373 206f 6620 610a 2020 2020 class of a. │ │ │ │ -00025d10: 7375 6273 6368 656d 650a 0a46 6f72 2074 subscheme..For t │ │ │ │ -00025d20: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ -00025d30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00025d40: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ -00025d50: 7465 204f 7574 7075 743a 204f 7574 7075 te Output: Outpu │ │ │ │ -00025d60: 742c 2069 7320 6120 2a6e 6f74 6520 7379 t, is a *note sy │ │ │ │ -00025d70: 6d62 6f6c 3a20 284d 6163 6175 6c61 7932 mbol: (Macaulay2 │ │ │ │ -00025d80: 446f 6329 5379 6d62 6f6c 2c2e 0a1f 0a46 Doc)Symbol,....F │ │ │ │ -00025d90: 696c 653a 2043 6861 7261 6374 6572 6973 ile: Characteris │ │ │ │ -00025da0: 7469 6343 6c61 7373 6573 2e69 6e66 6f2c ticClasses.info, │ │ │ │ -00025db0: 204e 6f64 653a 2070 726f 6261 6269 6c69 Node: probabili │ │ │ │ -00025dc0: 7374 6963 2061 6c67 6f72 6974 686d 2c20 stic algorithm, │ │ │ │ -00025dd0: 4e65 7874 3a20 5365 6772 652c 2050 7265 Next: Segre, Pre │ │ │ │ -00025de0: 763a 204f 7574 7075 742c 2055 703a 2054 v: Output, Up: T │ │ │ │ -00025df0: 6f70 0a0a 7072 6f62 6162 696c 6973 7469 op..probabilisti │ │ │ │ -00025e00: 6320 616c 676f 7269 7468 6d0a 2a2a 2a2a c algorithm.**** │ │ │ │ -00025e10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00025e20: 2a2a 2a0a 0a54 6865 2061 6c67 6f72 6974 ***..The algorit │ │ │ │ -00025e30: 686d 7320 7573 6564 2066 6f72 2074 6865 hms used for the │ │ │ │ -00025e40: 2063 6f6d 7075 7461 7469 6f6e 206f 6620 computation of │ │ │ │ -00025e50: 6368 6172 6163 7465 7269 7374 6963 2063 characteristic c │ │ │ │ -00025e60: 6c61 7373 6573 2061 7265 0a70 726f 6261 lasses are.proba │ │ │ │ -00025e70: 6269 6c69 7374 6963 2e20 5468 656f 7265 bilistic. Theore │ │ │ │ -00025e80: 7469 6361 6c6c 792c 2074 6865 7920 6361 tically, they ca │ │ │ │ -00025e90: 6c63 756c 6174 6520 7468 6520 636c 6173 lculate the clas │ │ │ │ -00025ea0: 7365 7320 636f 7272 6563 746c 7920 666f ses correctly fo │ │ │ │ -00025eb0: 7220 610a 6765 6e65 7261 6c20 6368 6f69 r a.general choi │ │ │ │ -00025ec0: 6365 206f 6620 6365 7274 6169 6e20 706f ce of certain po │ │ │ │ -00025ed0: 6c79 6e6f 6d69 616c 732e 2054 6861 7420 lynomials. That │ │ │ │ -00025ee0: 6973 2c20 7468 6572 6520 6973 2061 6e20 is, there is an │ │ │ │ -00025ef0: 6f70 656e 2064 656e 7365 205a 6172 6973 open dense Zaris │ │ │ │ -00025f00: 6b69 0a73 6574 2066 6f72 2077 6869 6368 ki.set for which │ │ │ │ -00025f10: 2074 6865 2061 6c67 6f72 6974 686d 2079 the algorithm y │ │ │ │ -00025f20: 6965 6c64 7320 7468 6520 636f 7272 6563 ields the correc │ │ │ │ -00025f30: 7420 636c 6173 732c 2069 2e65 2e2c 2074 t class, i.e., t │ │ │ │ -00025f40: 6865 2063 6f72 7265 6374 2063 6c61 7373 he correct class │ │ │ │ -00025f50: 0a69 7320 6361 6c63 756c 6174 6564 2077 .is calculated w │ │ │ │ -00025f60: 6974 6820 7072 6f62 6162 696c 6974 7920 ith probability │ │ │ │ -00025f70: 312e 2048 6f77 6576 6572 2c20 7369 6e63 1. However, sinc │ │ │ │ -00025f80: 6520 7468 6520 696d 706c 656d 656e 7461 e the implementa │ │ │ │ -00025f90: 7469 6f6e 2077 6f72 6b73 206f 7665 720a tion works over. │ │ │ │ -00025fa0: 6120 6469 7363 7265 7465 2070 726f 6261 a discrete proba │ │ │ │ -00025fb0: 6269 6c69 7479 2073 7061 6365 2074 6865 bility space the │ │ │ │ -00025fc0: 7265 2069 7320 6120 7665 7279 2073 6d61 re is a very sma │ │ │ │ -00025fd0: 6c6c 2c20 6275 7420 6e6f 6e2d 7a65 726f ll, but non-zero │ │ │ │ -00025fe0: 2c20 7072 6f62 6162 696c 6974 790a 6f66 , probability.of │ │ │ │ -00025ff0: 206e 6f74 2063 6f6d 7075 7469 6e67 2074 not computing t │ │ │ │ -00026000: 6865 2063 6f72 7265 6374 2063 6c61 7373 he correct class │ │ │ │ -00026010: 2e20 536b 6570 7469 6361 6c20 7573 6572 . Skeptical user │ │ │ │ -00026020: 7320 7368 6f75 6c64 2072 6570 6561 7420 s should repeat │ │ │ │ -00026030: 6361 6c63 756c 6174 696f 6e73 0a73 6576 calculations.sev │ │ │ │ -00026040: 6572 616c 2074 696d 6573 2074 6f20 696e eral times to in │ │ │ │ -00026050: 6372 6561 7365 2074 6865 2070 726f 6261 crease the proba │ │ │ │ -00026060: 6269 6c69 7479 206f 6620 636f 6d70 7574 bility of comput │ │ │ │ -00026070: 696e 6720 7468 6520 636f 7272 6563 7420 ing the correct │ │ │ │ -00026080: 636c 6173 732e 0a0a 496e 2074 6865 2063 class...In the c │ │ │ │ -00026090: 6173 6520 6f66 2074 6865 2073 796d 626f ase of the symbo │ │ │ │ -000260a0: 6c69 6320 696d 706c 656d 656e 7461 7469 lic implementati │ │ │ │ -000260b0: 6f6e 206f 6620 7468 6520 5072 6f6a 6563 on of the Projec │ │ │ │ -000260c0: 7469 7665 4465 6772 6565 206d 6574 686f tiveDegree metho │ │ │ │ -000260d0: 640a 7072 6163 7469 6361 6c20 6578 7065 d.practical expe │ │ │ │ -000260e0: 7269 656e 6365 2061 6e64 2061 6c67 6f72 rience and algor │ │ │ │ -000260f0: 6974 686d 2074 6573 7469 6e67 2069 6e64 ithm testing ind │ │ │ │ -00026100: 6963 6174 6520 7468 6174 2061 2066 696e icate that a fin │ │ │ │ -00026110: 6974 6520 6669 656c 6420 7769 7468 0a6f ite field with.o │ │ │ │ -00026120: 7665 7220 3235 3030 3020 656c 656d 656e ver 25000 elemen │ │ │ │ -00026130: 7473 2069 7320 6d6f 7265 2074 6861 6e20 ts is more than │ │ │ │ -00026140: 7375 6666 6963 6965 6e74 2074 6f20 6578 sufficient to ex │ │ │ │ -00026150: 7065 6374 2061 2063 6f72 7265 6374 2072 pect a correct r │ │ │ │ -00026160: 6573 756c 7420 7769 7468 0a68 6967 6820 esult with.high │ │ │ │ -00026170: 7072 6f62 6162 696c 6974 792c 2069 2e65 probability, i.e │ │ │ │ -00026180: 2e20 7573 696e 6720 7468 6520 6669 6e69 . using the fini │ │ │ │ -00026190: 7465 2066 6965 6c64 206b 6b3d 5a5a 2f32 te field kk=ZZ/2 │ │ │ │ -000261a0: 3530 3733 2074 6865 2065 7870 6572 696d 5073 the experim │ │ │ │ -000261b0: 656e 7461 6c0a 6368 616e 6365 206f 6620 ental.chance of │ │ │ │ -000261c0: 6661 696c 7572 6520 7769 7468 2074 6865 failure with the │ │ │ │ -000261d0: 2050 726f 6a65 6374 6976 6544 6567 7265 ProjectiveDegre │ │ │ │ -000261e0: 6520 616c 676f 7269 7468 6d20 6f6e 2061 e algorithm on a │ │ │ │ -000261f0: 2076 6172 6965 7479 206f 6620 6578 616d variety of exam │ │ │ │ -00026200: 706c 6573 0a77 6173 206c 6573 7320 7468 ples.was less th │ │ │ │ -00026210: 616e 2031 2f32 3030 302e 2055 7369 6e67 an 1/2000. Using │ │ │ │ -00026220: 2074 6865 2066 696e 6974 6520 6669 656c the finite fiel │ │ │ │ -00026230: 6420 6b6b 3d5a 5a2f 3332 3734 3920 7265 d kk=ZZ/32749 re │ │ │ │ -00026240: 7375 6c74 6564 2069 6e20 6e6f 0a66 6169 sulted in no.fai │ │ │ │ -00026250: 6c75 7265 7320 696e 206f 7665 7220 3130 lures in over 10 │ │ │ │ -00026260: 3030 3020 6174 7465 6d70 7473 206f 6620 000 attempts of │ │ │ │ -00026270: 7365 7665 7261 6c20 6469 6666 6572 656e several differen │ │ │ │ -00026280: 7420 6578 616d 706c 6573 2e0a 0a57 6520 t examples...We │ │ │ │ -00026290: 696c 6c75 7374 7261 7465 2074 6865 2070 illustrate the p │ │ │ │ -000262a0: 726f 6261 6269 6c69 7374 6963 2062 6568 robabilistic beh │ │ │ │ -000262b0: 6176 696f 7572 2077 6974 6820 616e 2065 aviour with an e │ │ │ │ -000262c0: 7861 6d70 6c65 2077 6865 7265 2074 6865 xample where the │ │ │ │ -000262d0: 2063 686f 7365 6e0a 7261 6e64 6f6d 2073 chosen.random s │ │ │ │ -000262e0: 6565 6420 6c65 6164 7320 746f 2061 2077 eed leads to a w │ │ │ │ -000262f0: 726f 6e67 2072 6573 756c 7420 696e 2074 rong result in t │ │ │ │ -00026300: 6865 2066 6972 7374 2063 616c 6375 6c61 he first calcula │ │ │ │ -00026310: 7469 6f6e 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d tion...+-------- │ │ │ │ +00025ba0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +00025bb0: 2022 4368 6572 6e28 2e2e 2e2c 4f75 7470 "Chern(...,Outp │ │ │ │ +00025bc0: 7574 3d3e 2e2e 2e29 2220 2d2d 2073 6565 ut=>...)" -- see │ │ │ │ +00025bd0: 202a 6e6f 7465 2043 6865 726e 3a20 4368 *note Chern: Ch │ │ │ │ +00025be0: 6572 6e2c 202d 2d20 5468 6520 4368 6572 ern, -- The Cher │ │ │ │ +00025bf0: 6e20 636c 6173 730a 2020 2a20 2243 534d n class. * "CSM │ │ │ │ +00025c00: 282e 2e2e 2c4f 7574 7075 743d 3e2e 2e2e (...,Output=>... │ │ │ │ +00025c10: 2922 202d 2d20 7365 6520 2a6e 6f74 6520 )" -- see *note │ │ │ │ +00025c20: 4353 4d3a 2043 534d 2c20 2d2d 2054 6865 CSM: CSM, -- The │ │ │ │ +00025c30: 0a20 2020 2043 6865 726e 2d53 6368 7761 . Chern-Schwa │ │ │ │ +00025c40: 7274 7a2d 4d61 6350 6865 7273 6f6e 2063 rtz-MacPherson c │ │ │ │ +00025c50: 6c61 7373 0a20 202a 2022 4575 6c65 7228 lass. * "Euler( │ │ │ │ +00025c60: 2e2e 2e2c 4f75 7470 7574 3d3e 2e2e 2e29 ...,Output=>...) │ │ │ │ +00025c70: 2220 2d2d 2073 6565 202a 6e6f 7465 2045 " -- see *note E │ │ │ │ +00025c80: 756c 6572 3a20 4575 6c65 722c 202d 2d20 uler: Euler, -- │ │ │ │ +00025c90: 5468 6520 4575 6c65 720a 2020 2020 4368 The Euler. Ch │ │ │ │ +00025ca0: 6172 6163 7465 7269 7374 6963 0a20 202a aracteristic. * │ │ │ │ +00025cb0: 2022 5365 6772 6528 2e2e 2e2c 4f75 7470 "Segre(...,Outp │ │ │ │ +00025cc0: 7574 3d3e 2e2e 2e29 2220 2d2d 2073 6565 ut=>...)" -- see │ │ │ │ +00025cd0: 202a 6e6f 7465 2053 6567 7265 3a20 5365 *note Segre: Se │ │ │ │ +00025ce0: 6772 652c 202d 2d20 5468 6520 5365 6772 gre, -- The Segr │ │ │ │ +00025cf0: 6520 636c 6173 7320 6f66 2061 0a20 2020 e class of a. │ │ │ │ +00025d00: 2073 7562 7363 6865 6d65 0a0a 466f 7220 subscheme..For │ │ │ │ +00025d10: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ +00025d20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00025d30: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ +00025d40: 6f74 6520 4f75 7470 7574 3a20 4f75 7470 ote Output: Outp │ │ │ │ +00025d50: 7574 2c20 6973 2061 202a 6e6f 7465 2073 ut, is a *note s │ │ │ │ +00025d60: 796d 626f 6c3a 2028 4d61 6361 756c 6179 ymbol: (Macaulay │ │ │ │ +00025d70: 3244 6f63 2953 796d 626f 6c2c 2e0a 1f0a 2Doc)Symbol,.... │ │ │ │ +00025d80: 4669 6c65 3a20 4368 6172 6163 7465 7269 File: Characteri │ │ │ │ +00025d90: 7374 6963 436c 6173 7365 732e 696e 666f sticClasses.info │ │ │ │ +00025da0: 2c20 4e6f 6465 3a20 7072 6f62 6162 696c , Node: probabil │ │ │ │ +00025db0: 6973 7469 6320 616c 676f 7269 7468 6d2c istic algorithm, │ │ │ │ +00025dc0: 204e 6578 743a 2053 6567 7265 2c20 5072 Next: Segre, Pr │ │ │ │ +00025dd0: 6576 3a20 4f75 7470 7574 2c20 5570 3a20 ev: Output, Up: │ │ │ │ +00025de0: 546f 700a 0a70 726f 6261 6269 6c69 7374 Top..probabilist │ │ │ │ +00025df0: 6963 2061 6c67 6f72 6974 686d 0a2a 2a2a ic algorithm.*** │ │ │ │ +00025e00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00025e10: 2a2a 2a2a 0a0a 5468 6520 616c 676f 7269 ****..The algori │ │ │ │ +00025e20: 7468 6d73 2075 7365 6420 666f 7220 7468 thms used for th │ │ │ │ +00025e30: 6520 636f 6d70 7574 6174 696f 6e20 6f66 e computation of │ │ │ │ +00025e40: 2063 6861 7261 6374 6572 6973 7469 6320 characteristic │ │ │ │ +00025e50: 636c 6173 7365 7320 6172 650a 7072 6f62 classes are.prob │ │ │ │ +00025e60: 6162 696c 6973 7469 632e 2054 6865 6f72 abilistic. Theor │ │ │ │ +00025e70: 6574 6963 616c 6c79 2c20 7468 6579 2063 etically, they c │ │ │ │ +00025e80: 616c 6375 6c61 7465 2074 6865 2063 6c61 alculate the cla │ │ │ │ +00025e90: 7373 6573 2063 6f72 7265 6374 6c79 2066 sses correctly f │ │ │ │ +00025ea0: 6f72 2061 0a67 656e 6572 616c 2063 686f or a.general cho │ │ │ │ +00025eb0: 6963 6520 6f66 2063 6572 7461 696e 2070 ice of certain p │ │ │ │ +00025ec0: 6f6c 796e 6f6d 6961 6c73 2e20 5468 6174 olynomials. That │ │ │ │ +00025ed0: 2069 732c 2074 6865 7265 2069 7320 616e is, there is an │ │ │ │ +00025ee0: 206f 7065 6e20 6465 6e73 6520 5a61 7269 open dense Zari │ │ │ │ +00025ef0: 736b 690a 7365 7420 666f 7220 7768 6963 ski.set for whic │ │ │ │ +00025f00: 6820 7468 6520 616c 676f 7269 7468 6d20 h the algorithm │ │ │ │ +00025f10: 7969 656c 6473 2074 6865 2063 6f72 7265 yields the corre │ │ │ │ +00025f20: 6374 2063 6c61 7373 2c20 692e 652e 2c20 ct class, i.e., │ │ │ │ +00025f30: 7468 6520 636f 7272 6563 7420 636c 6173 the correct clas │ │ │ │ +00025f40: 730a 6973 2063 616c 6375 6c61 7465 6420 s.is calculated │ │ │ │ +00025f50: 7769 7468 2070 726f 6261 6269 6c69 7479 with probability │ │ │ │ +00025f60: 2031 2e20 486f 7765 7665 722c 2073 696e 1. However, sin │ │ │ │ +00025f70: 6365 2074 6865 2069 6d70 6c65 6d65 6e74 ce the implement │ │ │ │ +00025f80: 6174 696f 6e20 776f 726b 7320 6f76 6572 ation works over │ │ │ │ +00025f90: 0a61 2064 6973 6372 6574 6520 7072 6f62 .a discrete prob │ │ │ │ +00025fa0: 6162 696c 6974 7920 7370 6163 6520 7468 ability space th │ │ │ │ +00025fb0: 6572 6520 6973 2061 2076 6572 7920 736d ere is a very sm │ │ │ │ +00025fc0: 616c 6c2c 2062 7574 206e 6f6e 2d7a 6572 all, but non-zer │ │ │ │ +00025fd0: 6f2c 2070 726f 6261 6269 6c69 7479 0a6f o, probability.o │ │ │ │ +00025fe0: 6620 6e6f 7420 636f 6d70 7574 696e 6720 f not computing │ │ │ │ +00025ff0: 7468 6520 636f 7272 6563 7420 636c 6173 the correct clas │ │ │ │ +00026000: 732e 2053 6b65 7074 6963 616c 2075 7365 s. Skeptical use │ │ │ │ +00026010: 7273 2073 686f 756c 6420 7265 7065 6174 rs should repeat │ │ │ │ +00026020: 2063 616c 6375 6c61 7469 6f6e 730a 7365 calculations.se │ │ │ │ +00026030: 7665 7261 6c20 7469 6d65 7320 746f 2069 veral times to i │ │ │ │ +00026040: 6e63 7265 6173 6520 7468 6520 7072 6f62 ncrease the prob │ │ │ │ +00026050: 6162 696c 6974 7920 6f66 2063 6f6d 7075 ability of compu │ │ │ │ +00026060: 7469 6e67 2074 6865 2063 6f72 7265 6374 ting the correct │ │ │ │ +00026070: 2063 6c61 7373 2e0a 0a49 6e20 7468 6520 class...In the │ │ │ │ +00026080: 6361 7365 206f 6620 7468 6520 7379 6d62 case of the symb │ │ │ │ +00026090: 6f6c 6963 2069 6d70 6c65 6d65 6e74 6174 olic implementat │ │ │ │ +000260a0: 696f 6e20 6f66 2074 6865 2050 726f 6a65 ion of the Proje │ │ │ │ +000260b0: 6374 6976 6544 6567 7265 6520 6d65 7468 ctiveDegree meth │ │ │ │ +000260c0: 6f64 0a70 7261 6374 6963 616c 2065 7870 od.practical exp │ │ │ │ +000260d0: 6572 6965 6e63 6520 616e 6420 616c 676f erience and algo │ │ │ │ +000260e0: 7269 7468 6d20 7465 7374 696e 6720 696e rithm testing in │ │ │ │ +000260f0: 6469 6361 7465 2074 6861 7420 6120 6669 dicate that a fi │ │ │ │ +00026100: 6e69 7465 2066 6965 6c64 2077 6974 680a nite field with. │ │ │ │ +00026110: 6f76 6572 2032 3530 3030 2065 6c65 6d65 over 25000 eleme │ │ │ │ +00026120: 6e74 7320 6973 206d 6f72 6520 7468 616e nts is more than │ │ │ │ +00026130: 2073 7566 6669 6369 656e 7420 746f 2065 sufficient to e │ │ │ │ +00026140: 7870 6563 7420 6120 636f 7272 6563 7420 xpect a correct │ │ │ │ +00026150: 7265 7375 6c74 2077 6974 680a 6869 6768 result with.high │ │ │ │ +00026160: 2070 726f 6261 6269 6c69 7479 2c20 692e probability, i. │ │ │ │ +00026170: 652e 2075 7369 6e67 2074 6865 2066 696e e. using the fin │ │ │ │ +00026180: 6974 6520 6669 656c 6420 6b6b 3d5a 5a2f ite field kk=ZZ/ │ │ │ │ +00026190: 3235 3037 3320 7468 6520 6578 7065 7269 25073 the experi │ │ │ │ +000261a0: 6d65 6e74 616c 0a63 6861 6e63 6520 6f66 mental.chance of │ │ │ │ +000261b0: 2066 6169 6c75 7265 2077 6974 6820 7468 failure with th │ │ │ │ +000261c0: 6520 5072 6f6a 6563 7469 7665 4465 6772 e ProjectiveDegr │ │ │ │ +000261d0: 6565 2061 6c67 6f72 6974 686d 206f 6e20 ee algorithm on │ │ │ │ +000261e0: 6120 7661 7269 6574 7920 6f66 2065 7861 a variety of exa │ │ │ │ +000261f0: 6d70 6c65 730a 7761 7320 6c65 7373 2074 mples.was less t │ │ │ │ +00026200: 6861 6e20 312f 3230 3030 2e20 5573 696e han 1/2000. Usin │ │ │ │ +00026210: 6720 7468 6520 6669 6e69 7465 2066 6965 g the finite fie │ │ │ │ +00026220: 6c64 206b 6b3d 5a5a 2f33 3237 3439 2072 ld kk=ZZ/32749 r │ │ │ │ +00026230: 6573 756c 7465 6420 696e 206e 6f0a 6661 esulted in no.fa │ │ │ │ +00026240: 696c 7572 6573 2069 6e20 6f76 6572 2031 ilures in over 1 │ │ │ │ +00026250: 3030 3030 2061 7474 656d 7074 7320 6f66 0000 attempts of │ │ │ │ +00026260: 2073 6576 6572 616c 2064 6966 6665 7265 several differe │ │ │ │ +00026270: 6e74 2065 7861 6d70 6c65 732e 0a0a 5765 nt examples...We │ │ │ │ +00026280: 2069 6c6c 7573 7472 6174 6520 7468 6520 illustrate the │ │ │ │ +00026290: 7072 6f62 6162 696c 6973 7469 6320 6265 probabilistic be │ │ │ │ +000262a0: 6861 7669 6f75 7220 7769 7468 2061 6e20 haviour with an │ │ │ │ +000262b0: 6578 616d 706c 6520 7768 6572 6520 7468 example where th │ │ │ │ +000262c0: 6520 6368 6f73 656e 0a72 616e 646f 6d20 e chosen.random │ │ │ │ +000262d0: 7365 6564 206c 6561 6473 2074 6f20 6120 seed leads to a │ │ │ │ +000262e0: 7772 6f6e 6720 7265 7375 6c74 2069 6e20 wrong result in │ │ │ │ +000262f0: 7468 6520 6669 7273 7420 6361 6c63 756c the first calcul │ │ │ │ +00026300: 6174 696f 6e2e 0a0a 2b2d 2d2d 2d2d 2d2d ation...+------- │ │ │ │ +00026310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026340: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -00026350: 7365 7452 616e 646f 6d53 6565 6420 3132 setRandomSeed 12 │ │ │ │ -00026360: 313b 2020 2020 2020 2020 2020 2020 2020 1; │ │ │ │ -00026370: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00026330: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +00026340: 2073 6574 5261 6e64 6f6d 5365 6564 2031 setRandomSeed 1 │ │ │ │ +00026350: 3231 3b20 2020 2020 2020 2020 2020 2020 21; │ │ │ │ +00026360: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00026370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000263a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000263b0: 7c69 3220 3a20 5220 3d20 5151 5b78 2c79 |i2 : R = QQ[x,y │ │ │ │ -000263c0: 2c7a 2c77 5d20 2020 2020 2020 2020 2020 ,z,w] │ │ │ │ -000263d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000263e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +000263a0: 0a7c 6932 203a 2052 203d 2051 515b 782c .|i2 : R = QQ[x, │ │ │ │ +000263b0: 792c 7a2c 775d 2020 2020 2020 2020 2020 y,z,w] │ │ │ │ +000263c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000263d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000263e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000263f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026410: 2020 2020 7c0a 7c6f 3220 3d20 5220 2020 |.|o2 = R │ │ │ │ +00026400: 2020 2020 207c 0a7c 6f32 203d 2052 2020 |.|o2 = R │ │ │ │ +00026410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026440: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00026430: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00026440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026470: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -00026480: 3a20 506f 6c79 6e6f 6d69 616c 5269 6e67 : PolynomialRing │ │ │ │ -00026490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000264a0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00026460: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00026470: 203a 2050 6f6c 796e 6f6d 6961 6c52 696e : PolynomialRin │ │ │ │ +00026480: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ +00026490: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000264a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000264b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000264c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000264d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000264e0: 2b0a 7c69 3320 3a20 4920 3d20 6d69 6e6f +.|i3 : I = mino │ │ │ │ -000264f0: 7273 2832 2c6d 6174 7269 787b 7b78 2c79 rs(2,matrix{{x,y │ │ │ │ -00026500: 2c7a 7d2c 7b79 2c7a 2c77 7d7d 2920 2020 ,z},{y,z,w}}) │ │ │ │ -00026510: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000264d0: 2d2b 0a7c 6933 203a 2049 203d 206d 696e -+.|i3 : I = min │ │ │ │ +000264e0: 6f72 7328 322c 6d61 7472 6978 7b7b 782c ors(2,matrix{{x, │ │ │ │ +000264f0: 792c 7a7d 2c7b 792c 7a2c 777d 7d29 2020 y,z},{y,z,w}}) │ │ │ │ +00026500: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00026510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026540: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00026550: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -00026560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026570: 2032 2020 2020 2020 207c 0a7c 6f33 203d 2 |.|o3 = │ │ │ │ -00026580: 2069 6465 616c 2028 2d20 7920 202b 2078 ideal (- y + x │ │ │ │ -00026590: 2a7a 2c20 2d20 792a 7a20 2b20 782a 772c *z, - y*z + x*w, │ │ │ │ -000265a0: 202d 207a 2020 2b20 792a 7729 7c0a 7c20 - z + y*w)|.| │ │ │ │ +00026530: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00026540: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +00026550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026560: 2020 3220 2020 2020 2020 7c0a 7c6f 3320 2 |.|o3 │ │ │ │ +00026570: 3d20 6964 6561 6c20 282d 2079 2020 2b20 = ideal (- y + │ │ │ │ +00026580: 782a 7a2c 202d 2079 2a7a 202b 2078 2a77 x*z, - y*z + x*w │ │ │ │ +00026590: 2c20 2d20 7a20 202b 2079 2a77 297c 0a7c , - z + y*w)|.| │ │ │ │ +000265a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000265b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000265c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000265d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000265e0: 0a7c 6f33 203a 2049 6465 616c 206f 6620 .|o3 : Ideal of │ │ │ │ -000265f0: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ -00026600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026610: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000265d0: 7c0a 7c6f 3320 3a20 4964 6561 6c20 6f66 |.|o3 : Ideal of │ │ │ │ +000265e0: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +000265f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026600: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00026610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026640: 2d2d 2d2d 2d2b 0a7c 6934 203a 2043 6865 -----+.|i4 : Che │ │ │ │ -00026650: 726e 2028 492c 436f 6d70 4d65 7468 6f64 rn (I,CompMethod │ │ │ │ -00026660: 3d3e 506e 5265 7369 6475 616c 2920 2020 =>PnResidual) │ │ │ │ -00026670: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00026630: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 4368 ------+.|i4 : Ch │ │ │ │ +00026640: 6572 6e20 2849 2c43 6f6d 704d 6574 686f ern (I,CompMetho │ │ │ │ +00026650: 643d 3e50 6e52 6573 6964 7561 6c29 2020 d=>PnResidual) │ │ │ │ +00026660: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00026670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000266a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000266b0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -000266c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000266d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000266e0: 7c6f 3420 3d20 3448 2020 2020 2020 2020 |o4 = 4H │ │ │ │ +00026690: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000266a0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000266b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000266c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000266d0: 0a7c 6f34 203d 2034 4820 2020 2020 2020 .|o4 = 4H │ │ │ │ +000266e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000266f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026710: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026700: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026740: 2020 2020 7c0a 7c20 2020 2020 5a5a 5b48 |.| ZZ[H │ │ │ │ -00026750: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ -00026760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026770: 2020 2020 2020 207c 0a7c 6f34 203a 202d |.|o4 : - │ │ │ │ -00026780: 2d2d 2d2d 2020 2020 2020 2020 2020 2020 ---- │ │ │ │ -00026790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000267a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000267b0: 2020 2020 2034 2020 2020 2020 2020 2020 4 │ │ │ │ -000267c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000267d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000267e0: 2020 2020 2020 2048 2020 2020 2020 2020 H │ │ │ │ +00026730: 2020 2020 207c 0a7c 2020 2020 205a 5a5b |.| ZZ[ │ │ │ │ +00026740: 485d 2020 2020 2020 2020 2020 2020 2020 H] │ │ │ │ +00026750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026760: 2020 2020 2020 2020 7c0a 7c6f 3420 3a20 |.|o4 : │ │ │ │ +00026770: 2d2d 2d2d 2d20 2020 2020 2020 2020 2020 ----- │ │ │ │ +00026780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026790: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000267a0: 2020 2020 2020 3420 2020 2020 2020 2020 4 │ │ │ │ +000267b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000267c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000267d0: 7c20 2020 2020 2020 4820 2020 2020 2020 | H │ │ │ │ +000267e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000267f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026810: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00026800: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00026810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026840: 2d2d 2d2b 0a7c 6935 203a 2043 6865 726e ---+.|i5 : Chern │ │ │ │ -00026850: 2028 492c 436f 6d70 4d65 7468 6f64 3d3e (I,CompMethod=> │ │ │ │ -00026860: 506e 5265 7369 6475 616c 2920 2020 2020 PnResidual) │ │ │ │ -00026870: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00026830: 2d2d 2d2d 2b0a 7c69 3520 3a20 4368 6572 ----+.|i5 : Cher │ │ │ │ +00026840: 6e20 2849 2c43 6f6d 704d 6574 686f 643d n (I,CompMethod= │ │ │ │ +00026850: 3e50 6e52 6573 6964 7561 6c29 2020 2020 >PnResidual) │ │ │ │ +00026860: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00026870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000268a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000268b0: 2020 2033 2020 2020 2032 2020 2020 2020 3 2 │ │ │ │ -000268c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000268d0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000268e0: 3520 3d20 3248 2020 2b20 3348 2020 2020 5 = 2H + 3H │ │ │ │ +00026890: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000268a0: 2020 2020 3320 2020 2020 3220 2020 2020 3 2 │ │ │ │ +000268b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000268c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000268d0: 6f35 203d 2032 4820 202b 2033 4820 2020 o5 = 2H + 3H │ │ │ │ +000268e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000268f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026900: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00026910: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00026900: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026940: 2020 7c0a 7c20 2020 2020 5a5a 5b48 5d20 |.| ZZ[H] │ │ │ │ +00026930: 2020 207c 0a7c 2020 2020 205a 5a5b 485d |.| ZZ[H] │ │ │ │ +00026940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026970: 2020 2020 207c 0a7c 6f35 203a 202d 2d2d |.|o5 : --- │ │ │ │ -00026980: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ -00026990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000269a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000269b0: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -000269c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000269d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000269e0: 2020 2020 2048 2020 2020 2020 2020 2020 H │ │ │ │ -000269f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00026a10: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00026960: 2020 2020 2020 7c0a 7c6f 3520 3a20 2d2d |.|o5 : -- │ │ │ │ +00026970: 2d2d 2d20 2020 2020 2020 2020 2020 2020 --- │ │ │ │ +00026980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026990: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000269a0: 2020 2020 3420 2020 2020 2020 2020 2020 4 │ │ │ │ +000269b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000269c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000269d0: 2020 2020 2020 4820 2020 2020 2020 2020 H │ │ │ │ +000269e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000269f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026a00: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00026a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026a40: 2d2b 0a7c 6936 203a 2043 6865 726e 2028 -+.|i6 : Chern ( │ │ │ │ -00026a50: 492c 436f 6d70 4d65 7468 6f64 3d3e 506e I,CompMethod=>Pn │ │ │ │ -00026a60: 5265 7369 6475 616c 2920 2020 2020 2020 Residual) │ │ │ │ -00026a70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00026a30: 2d2d 2b0a 7c69 3620 3a20 4368 6572 6e20 --+.|i6 : Chern │ │ │ │ +00026a40: 2849 2c43 6f6d 704d 6574 686f 643d 3e50 (I,CompMethod=>P │ │ │ │ +00026a50: 6e52 6573 6964 7561 6c29 2020 2020 2020 nResidual) │ │ │ │ +00026a60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026aa0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00026ab0: 2033 2020 2020 2032 2020 2020 2020 2020 3 2 │ │ │ │ -00026ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ad0: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ -00026ae0: 3d20 3248 2020 2b20 3348 2020 2020 2020 = 2H + 3H │ │ │ │ -00026af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00026a90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00026aa0: 2020 3320 2020 2020 3220 2020 2020 2020 3 2 │ │ │ │ +00026ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026ac0: 2020 2020 2020 2020 2020 207c 0a7c 6f36 |.|o6 │ │ │ │ +00026ad0: 203d 2032 4820 202b 2033 4820 2020 2020 = 2H + 3H │ │ │ │ +00026ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026af0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00026b00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00026b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b40: 7c0a 7c20 2020 2020 5a5a 5b48 5d20 2020 |.| ZZ[H] │ │ │ │ +00026b30: 207c 0a7c 2020 2020 205a 5a5b 485d 2020 |.| ZZ[H] │ │ │ │ +00026b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b70: 2020 207c 0a7c 6f36 203a 202d 2d2d 2d2d |.|o6 : ----- │ │ │ │ +00026b60: 2020 2020 7c0a 7c6f 3620 3a20 2d2d 2d2d |.|o6 : ---- │ │ │ │ +00026b70: 2d20 2020 2020 2020 2020 2020 2020 2020 - │ │ │ │ 00026b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ba0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00026bb0: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00026bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026bd0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00026be0: 2020 2048 2020 2020 2020 2020 2020 2020 H │ │ │ │ -00026bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026c00: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00026b90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00026ba0: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00026bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026bc0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00026bd0: 2020 2020 4820 2020 2020 2020 2020 2020 H │ │ │ │ +00026be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026bf0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00026c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00026c40: 0a7c 6937 203a 2043 6865 726e 2849 2c43 .|i7 : Chern(I,C │ │ │ │ -00026c50: 6f6d 704d 6574 686f 643d 3e50 726f 6a65 ompMethod=>Proje │ │ │ │ -00026c60: 6374 6976 6544 6567 7265 6529 2020 2020 ctiveDegree) │ │ │ │ -00026c70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026c30: 2b0a 7c69 3720 3a20 4368 6572 6e28 492c +.|i7 : Chern(I, │ │ │ │ +00026c40: 436f 6d70 4d65 7468 6f64 3d3e 5072 6f6a CompMethod=>Proj │ │ │ │ +00026c50: 6563 7469 7665 4465 6772 6565 2920 2020 ectiveDegree) │ │ │ │ +00026c60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ca0: 2020 2020 207c 0a7c 2020 2020 2020 2033 |.| 3 │ │ │ │ -00026cb0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00026cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026cd0: 2020 2020 2020 2020 7c0a 7c6f 3720 3d20 |.|o7 = │ │ │ │ -00026ce0: 3268 2020 2b20 3368 2020 2020 2020 2020 2h + 3h │ │ │ │ -00026cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026d00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00026d10: 2020 2020 2031 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00026d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026d30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00026d40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00026c90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00026ca0: 3320 2020 2020 3220 2020 2020 2020 2020 3 2 │ │ │ │ +00026cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026cc0: 2020 2020 2020 2020 207c 0a7c 6f37 203d |.|o7 = │ │ │ │ +00026cd0: 2032 6820 202b 2033 6820 2020 2020 2020 2h + 3h │ │ │ │ +00026ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026cf0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00026d00: 2020 2020 2020 3120 2020 2020 3120 2020 1 1 │ │ │ │ +00026d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026d20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026d30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00026d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026d70: 207c 0a7c 2020 2020 205a 5a5b 6820 5d20 |.| ZZ[h ] │ │ │ │ +00026d60: 2020 7c0a 7c20 2020 2020 5a5a 5b68 205d |.| ZZ[h ] │ │ │ │ +00026d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026da0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026db0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00026dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026dd0: 2020 2020 2020 207c 0a7c 6f37 203a 202d |.|o7 : - │ │ │ │ -00026de0: 2d2d 2d2d 2d20 2020 2020 2020 2020 2020 ----- │ │ │ │ -00026df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026e00: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00026e10: 2020 2020 2034 2020 2020 2020 2020 2020 4 │ │ │ │ -00026e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026e30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00026e40: 2020 2020 2020 2068 2020 2020 2020 2020 h │ │ │ │ +00026d90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026da0: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00026db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026dc0: 2020 2020 2020 2020 7c0a 7c6f 3720 3a20 |.|o7 : │ │ │ │ +00026dd0: 2d2d 2d2d 2d2d 2020 2020 2020 2020 2020 ------ │ │ │ │ +00026de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026df0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00026e00: 2020 2020 2020 3420 2020 2020 2020 2020 4 │ │ │ │ +00026e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026e20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00026e30: 7c20 2020 2020 2020 6820 2020 2020 2020 | h │ │ │ │ +00026e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026e70: 7c0a 7c20 2020 2020 2020 2031 2020 2020 |.| 1 │ │ │ │ +00026e60: 207c 0a7c 2020 2020 2020 2020 3120 2020 |.| 1 │ │ │ │ +00026e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ea0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00026e90: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00026ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026ed0: 2d2d 2d2d 2d2d 2b0a 1f0a 4669 6c65 3a20 ------+...File: │ │ │ │ -00026ee0: 4368 6172 6163 7465 7269 7374 6963 436c CharacteristicCl │ │ │ │ -00026ef0: 6173 7365 732e 696e 666f 2c20 4e6f 6465 asses.info, Node │ │ │ │ -00026f00: 3a20 5365 6772 652c 204e 6578 743a 2054 : Segre, Next: T │ │ │ │ -00026f10: 6f72 6963 4368 6f77 5269 6e67 2c20 5072 oricChowRing, Pr │ │ │ │ -00026f20: 6576 3a20 7072 6f62 6162 696c 6973 7469 ev: probabilisti │ │ │ │ -00026f30: 6320 616c 676f 7269 7468 6d2c 2055 703a c algorithm, Up: │ │ │ │ -00026f40: 2054 6f70 0a0a 5365 6772 6520 2d2d 2054 Top..Segre -- T │ │ │ │ -00026f50: 6865 2053 6567 7265 2063 6c61 7373 206f he Segre class o │ │ │ │ -00026f60: 6620 6120 7375 6273 6368 656d 650a 2a2a f a subscheme.** │ │ │ │ +00026ec0: 2d2d 2d2d 2d2d 2d2b 0a1f 0a46 696c 653a -------+...File: │ │ │ │ +00026ed0: 2043 6861 7261 6374 6572 6973 7469 6343 CharacteristicC │ │ │ │ +00026ee0: 6c61 7373 6573 2e69 6e66 6f2c 204e 6f64 lasses.info, Nod │ │ │ │ +00026ef0: 653a 2053 6567 7265 2c20 4e65 7874 3a20 e: Segre, Next: │ │ │ │ +00026f00: 546f 7269 6343 686f 7752 696e 672c 2050 ToricChowRing, P │ │ │ │ +00026f10: 7265 763a 2070 726f 6261 6269 6c69 7374 rev: probabilist │ │ │ │ +00026f20: 6963 2061 6c67 6f72 6974 686d 2c20 5570 ic algorithm, Up │ │ │ │ +00026f30: 3a20 546f 700a 0a53 6567 7265 202d 2d20 : Top..Segre -- │ │ │ │ +00026f40: 5468 6520 5365 6772 6520 636c 6173 7320 The Segre class │ │ │ │ +00026f50: 6f66 2061 2073 7562 7363 6865 6d65 0a2a of a subscheme.* │ │ │ │ +00026f60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00026f70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00026f80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00026f90: 2a2a 2a2a 2a0a 0a53 796e 6f70 7369 730a *****..Synopsis. │ │ │ │ -00026fa0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 5573 ========.. * Us │ │ │ │ -00026fb0: 6167 653a 200a 2020 2020 2020 2020 5365 age: . Se │ │ │ │ -00026fc0: 6772 6520 490a 2020 2020 2020 2020 5365 gre I. Se │ │ │ │ -00026fd0: 6772 6528 412c 4929 0a20 2020 2020 2020 gre(A,I). │ │ │ │ -00026fe0: 2053 6567 7265 2858 2c4a 290a 2020 2020 Segre(X,J). │ │ │ │ -00026ff0: 2020 2020 5365 6772 6528 4368 2c58 2c4a Segre(Ch,X,J │ │ │ │ -00027000: 290a 2020 2a20 496e 7075 7473 3a0a 2020 ). * Inputs:. │ │ │ │ -00027010: 2020 2020 2a20 492c 2061 6e20 2a6e 6f74 * I, an *not │ │ │ │ -00027020: 6520 6964 6561 6c3a 2028 4d61 6361 756c e ideal: (Macaul │ │ │ │ -00027030: 6179 3244 6f63 2949 6465 616c 2c2c 2061 ay2Doc)Ideal,, a │ │ │ │ -00027040: 206d 756c 7469 2d68 6f6d 6f67 656e 656f multi-homogeneo │ │ │ │ -00027050: 7573 2069 6465 616c 2069 6e20 610a 2020 us ideal in a. │ │ │ │ -00027060: 2020 2020 2020 6772 6164 6564 2070 6f6c graded pol │ │ │ │ -00027070: 796e 6f6d 6961 6c20 7269 6e67 206f 7665 ynomial ring ove │ │ │ │ -00027080: 7220 6120 6669 656c 6420 6465 6669 6e69 r a field defini │ │ │ │ -00027090: 6e67 2061 2063 6c6f 7365 6420 7375 6273 ng a closed subs │ │ │ │ -000270a0: 6368 656d 6520 5620 6f66 0a20 2020 2020 cheme V of. │ │ │ │ -000270b0: 2020 205c 5050 5e7b 6e5f 317d 782e 2e2e \PP^{n_1}x... │ │ │ │ -000270c0: 785c 5050 5e7b 6e5f 6d7d 0a20 2020 2020 x\PP^{n_m}. │ │ │ │ -000270d0: 202a 2041 2c20 6120 2a6e 6f74 6520 7175 * A, a *note qu │ │ │ │ -000270e0: 6f74 6965 6e74 2072 696e 673a 2028 4d61 otient ring: (Ma │ │ │ │ -000270f0: 6361 756c 6179 3244 6f63 2951 756f 7469 caulay2Doc)Quoti │ │ │ │ -00027100: 656e 7452 696e 672c 2c0a 2020 2020 2020 entRing,,. │ │ │ │ -00027110: 2020 413d 5c5a 5a5b 685f 312c 2e2e 2e2c A=\ZZ[h_1,..., │ │ │ │ -00027120: 685f 6d5d 2f28 685f 315e 7b6e 5f31 2b31 h_m]/(h_1^{n_1+1 │ │ │ │ -00027130: 7d2c 2e2e 2e2c 685f 6d5e 7b6e 5f6d 2b31 },...,h_m^{n_m+1 │ │ │ │ -00027140: 7d29 2071 756f 7469 656e 7420 7269 6e67 }) quotient ring │ │ │ │ -00027150: 0a20 2020 2020 2020 2072 6570 7265 7365 . represe │ │ │ │ -00027160: 6e74 696e 6720 7468 6520 4368 6f77 2072 nting the Chow r │ │ │ │ -00027170: 696e 6720 6f66 205c 5050 5e7b 6e5f 317d ing of \PP^{n_1} │ │ │ │ -00027180: 782e 2e2e 785c 5050 5e7b 6e5f 6d7d 2c20 x...x\PP^{n_m}, │ │ │ │ -00027190: 7468 6973 2072 696e 6720 7368 6f75 6c64 this ring should │ │ │ │ -000271a0: 0a20 2020 2020 2020 2062 6520 6275 696c . be buil │ │ │ │ -000271b0: 7420 7573 696e 6720 7468 6520 2a6e 6f74 t using the *not │ │ │ │ -000271c0: 6520 4368 6f77 5269 6e67 3a20 4368 6f77 e ChowRing: Chow │ │ │ │ -000271d0: 5269 6e67 2c20 636f 6d6d 616e 640a 2020 Ring, command. │ │ │ │ -000271e0: 2020 2020 2a20 4a2c 2061 6e20 2a6e 6f74 * J, an *not │ │ │ │ -000271f0: 6520 6964 6561 6c3a 2028 4d61 6361 756c e ideal: (Macaul │ │ │ │ -00027200: 6179 3244 6f63 2949 6465 616c 2c2c 2069 ay2Doc)Ideal,, i │ │ │ │ -00027210: 6e20 7468 6520 6772 6164 6564 2070 6f6c n the graded pol │ │ │ │ -00027220: 796e 6f6d 6961 6c20 7269 6e67 0a20 2020 ynomial ring. │ │ │ │ -00027230: 2020 2020 2077 6869 6368 2069 7320 636f which is co │ │ │ │ -00027240: 6f72 6469 6e61 7465 2072 696e 6720 6f66 ordinate ring of │ │ │ │ -00027250: 2074 6865 204e 6f72 6d61 6c20 546f 7269 the Normal Tori │ │ │ │ -00027260: 6320 5661 7269 6574 7920 580a 2020 2020 c Variety X. │ │ │ │ -00027270: 2020 2a20 582c 2061 202a 6e6f 7465 206e * X, a *note n │ │ │ │ -00027280: 6f72 6d61 6c20 746f 7269 6320 7661 7269 ormal toric vari │ │ │ │ -00027290: 6574 793a 0a20 2020 2020 2020 2028 4e6f ety:. (No │ │ │ │ -000272a0: 726d 616c 546f 7269 6356 6172 6965 7469 rmalToricVarieti │ │ │ │ -000272b0: 6573 294e 6f72 6d61 6c54 6f72 6963 5661 es)NormalToricVa │ │ │ │ -000272c0: 7269 6574 792c 2c20 7768 6963 6820 6973 riety,, which is │ │ │ │ -000272d0: 2074 6865 2061 6d62 6965 6e74 2073 7061 the ambient spa │ │ │ │ -000272e0: 6365 0a20 2020 2020 2020 2077 6869 6368 ce. which │ │ │ │ -000272f0: 2063 6f6e 7461 696e 7320 5628 4a29 0a20 contains V(J). │ │ │ │ -00027300: 2020 2020 202a 2043 682c 2061 202a 6e6f * Ch, a *no │ │ │ │ -00027310: 7465 2071 756f 7469 656e 7420 7269 6e67 te quotient ring │ │ │ │ -00027320: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00027330: 5175 6f74 6965 6e74 5269 6e67 2c2c 2074 QuotientRing,, t │ │ │ │ -00027340: 6865 2043 686f 7720 7269 6e67 0a20 2020 he Chow ring. │ │ │ │ -00027350: 2020 2020 206f 6620 7468 6520 746f 7269 of the tori │ │ │ │ -00027360: 6320 7661 7269 6574 7920 582c 2043 683d c variety X, Ch= │ │ │ │ -00027370: 2872 696e 6720 4a29 2f28 5352 2b4c 5229 (ring J)/(SR+LR) │ │ │ │ -00027380: 2077 6865 7265 2053 5220 6973 2074 6865 where SR is the │ │ │ │ -00027390: 0a20 2020 2020 2020 2053 7461 6e6c 6579 . Stanley │ │ │ │ -000273a0: 2d52 6569 736e 6572 2069 6465 616c 206f -Reisner ideal o │ │ │ │ -000273b0: 6620 7468 6520 6661 6e20 6465 6669 6e69 f the fan defini │ │ │ │ -000273c0: 6e67 2058 2061 6e64 204c 5220 6973 2074 ng X and LR is t │ │ │ │ -000273d0: 6865 206c 696e 6561 720a 2020 2020 2020 he linear. │ │ │ │ -000273e0: 2020 7265 6c61 7469 6f6e 7320 6964 6561 relations idea │ │ │ │ -000273f0: 6c2c 2074 6869 7320 7269 6e67 2073 686f l, this ring sho │ │ │ │ -00027400: 756c 6420 6265 2062 7569 6c74 2075 7369 uld be built usi │ │ │ │ -00027410: 6e67 2074 6865 202a 6e6f 7465 0a20 2020 ng the *note. │ │ │ │ -00027420: 2020 2020 2054 6f72 6963 4368 6f77 5269 ToricChowRi │ │ │ │ -00027430: 6e67 3a20 546f 7269 6343 686f 7752 696e ng: ToricChowRin │ │ │ │ -00027440: 672c 2063 6f6d 6d61 6e64 0a20 202a 202a g, command. * * │ │ │ │ -00027450: 6e6f 7465 204f 7074 696f 6e61 6c20 696e note Optional in │ │ │ │ -00027460: 7075 7473 3a20 284d 6163 6175 6c61 7932 puts: (Macaulay2 │ │ │ │ -00027470: 446f 6329 7573 696e 6720 6675 6e63 7469 Doc)using functi │ │ │ │ -00027480: 6f6e 7320 7769 7468 206f 7074 696f 6e61 ons with optiona │ │ │ │ -00027490: 6c20 696e 7075 7473 2c3a 0a20 2020 2020 l inputs,:. │ │ │ │ -000274a0: 202a 2043 6f6d 704d 6574 686f 6420 286d * CompMethod (m │ │ │ │ -000274b0: 6973 7369 6e67 2064 6f63 756d 656e 7461 issing documenta │ │ │ │ -000274c0: 7469 6f6e 2920 3d3e 202e 2e2e 2c20 6465 tion) => ..., de │ │ │ │ -000274d0: 6661 756c 7420 7661 6c75 650a 2020 2020 fault value. │ │ │ │ -000274e0: 2020 2020 5072 6f6a 6563 7469 7665 4465 ProjectiveDe │ │ │ │ -000274f0: 6772 6565 2c20 5072 6f6a 6563 7469 7665 gree, Projective │ │ │ │ -00027500: 4465 6772 6565 2c20 7468 6973 2061 6c67 Degree, this alg │ │ │ │ -00027510: 6f72 6974 686d 206d 6179 2062 6520 7573 orithm may be us │ │ │ │ -00027520: 6564 2066 6f72 0a20 2020 2020 2020 2073 ed for. s │ │ │ │ -00027530: 7562 7363 6865 6d65 7320 6f66 2061 6e79 ubschemes of any │ │ │ │ -00027540: 2061 7070 6c69 6361 626c 6520 746f 7269 applicable tori │ │ │ │ -00027550: 6320 7661 7269 6574 7920 2874 6869 7320 c variety (this │ │ │ │ -00027560: 6d61 7920 6265 2063 6865 636b 6564 2075 may be checked u │ │ │ │ -00027570: 7369 6e67 0a20 2020 2020 2020 2074 6865 sing. the │ │ │ │ -00027580: 202a 6e6f 7465 2043 6865 636b 546f 7269 *note CheckTori │ │ │ │ -00027590: 6356 6172 6965 7479 5661 6c69 643a 2043 cVarietyValid: C │ │ │ │ -000275a0: 6865 636b 546f 7269 6356 6172 6965 7479 heckToricVariety │ │ │ │ -000275b0: 5661 6c69 642c 2063 6f6d 6d61 6e64 290a Valid, command). │ │ │ │ -000275c0: 2020 2020 2020 2a20 436f 6d70 4d65 7468 * CompMeth │ │ │ │ -000275d0: 6f64 2028 6d69 7373 696e 6720 646f 6375 od (missing docu │ │ │ │ -000275e0: 6d65 6e74 6174 696f 6e29 203d 3e20 2e2e mentation) => .. │ │ │ │ -000275f0: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ -00027600: 0a20 2020 2020 2020 2050 726f 6a65 6374 . Project │ │ │ │ -00027610: 6976 6544 6567 7265 652c 2050 6e52 6573 iveDegree, PnRes │ │ │ │ -00027620: 6964 7561 6c2c 2074 6869 7320 616c 676f idual, this algo │ │ │ │ -00027630: 7269 7468 6d20 6d61 7920 6265 2075 7365 rithm may be use │ │ │ │ -00027640: 6420 666f 7220 7375 6273 6368 656d 6573 d for subschemes │ │ │ │ -00027650: 0a20 2020 2020 2020 206f 6620 5c50 505e . of \PP^ │ │ │ │ -00027660: 6e20 6f6e 6c79 0a20 2020 2020 202a 204f n only. * O │ │ │ │ -00027670: 7574 7075 7420 3d3e 202e 2e2e 2c20 6465 utput => ..., de │ │ │ │ -00027680: 6661 756c 7420 7661 6c75 6520 4368 6f77 fault value Chow │ │ │ │ -00027690: 5269 6e67 456c 656d 656e 742c 2043 686f RingElement, Cho │ │ │ │ -000276a0: 7752 696e 6745 6c65 6d65 6e74 2c20 7265 wRingElement, re │ │ │ │ -000276b0: 7475 726e 730a 2020 2020 2020 2020 6120 turns. a │ │ │ │ -000276c0: 5269 6e67 456c 656d 656e 7420 696e 2074 RingElement in t │ │ │ │ -000276d0: 6865 2043 686f 7720 7269 6e67 206f 6620 he Chow ring of │ │ │ │ -000276e0: 7468 6520 6170 7072 6f70 7269 6174 6520 the appropriate │ │ │ │ -000276f0: 616d 6269 656e 7420 7370 6163 650a 2020 ambient space. │ │ │ │ -00027700: 2020 2020 2a20 4f75 7470 7574 203d 3e20 * Output => │ │ │ │ -00027710: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ -00027720: 7565 2043 686f 7752 696e 6745 6c65 6d65 ue ChowRingEleme │ │ │ │ -00027730: 6e74 2c20 4861 7368 466f 726d 2c20 4861 nt, HashForm, Ha │ │ │ │ -00027740: 7368 466f 726d 0a20 2020 2020 2020 2072 shForm. r │ │ │ │ -00027750: 6574 7572 6e73 2061 204d 7574 6162 6c65 eturns a Mutable │ │ │ │ -00027760: 4861 7368 5461 626c 6520 636f 6e74 6169 HashTable contai │ │ │ │ -00027770: 6e69 6e67 2074 6865 2066 6f6c 6c6f 7769 ning the followi │ │ │ │ -00027780: 6e67 206b 6579 733a 2022 4722 2028 7468 ng keys: "G" (th │ │ │ │ -00027790: 650a 2020 2020 2020 2020 706f 6c79 6e6f e. polyno │ │ │ │ -000277a0: 6d69 616c 2077 6974 6820 636f 6566 6669 mial with coeffi │ │ │ │ -000277b0: 6369 656e 7473 206f 6620 7468 6520 6879 cients of the hy │ │ │ │ -000277c0: 7065 7270 6c61 6e65 2063 6c61 7373 6573 perplane classes │ │ │ │ -000277d0: 2072 6570 7265 7365 6e74 696e 6720 7468 representing th │ │ │ │ -000277e0: 650a 2020 2020 2020 2020 7072 6f6a 6563 e. projec │ │ │ │ -000277f0: 7469 7665 2064 6567 7265 6573 292c 2022 tive degrees), " │ │ │ │ -00027800: 476c 6973 7422 2028 7468 6520 6c69 7374 Glist" (the list │ │ │ │ -00027810: 2066 6f72 6d20 6f66 2022 4722 2920 2c20 form of "G") , │ │ │ │ -00027820: 2253 6567 7265 2220 2874 6865 0a20 2020 "Segre" (the. │ │ │ │ -00027830: 2020 2020 2074 6f74 616c 2053 6567 7265 total Segre │ │ │ │ -00027840: 2063 6c61 7373 206f 6620 7468 6520 696e class of the in │ │ │ │ -00027850: 7075 7429 2c22 5365 6772 654c 6973 7422 put),"SegreList" │ │ │ │ -00027860: 2028 7468 6520 6c69 7374 2066 6f72 6d20 (the list form │ │ │ │ -00027870: 6f66 2022 5365 6772 6522 290a 2020 2a20 of "Segre"). * │ │ │ │ -00027880: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ -00027890: 2061 202a 6e6f 7465 2072 696e 6720 656c a *note ring el │ │ │ │ -000278a0: 656d 656e 743a 2028 4d61 6361 756c 6179 ement: (Macaulay │ │ │ │ -000278b0: 3244 6f63 2952 696e 6745 6c65 6d65 6e74 2Doc)RingElement │ │ │ │ -000278c0: 2c2c 2074 6865 2070 7573 6866 6f72 7761 ,, the pushforwa │ │ │ │ -000278d0: 7264 206f 660a 2020 2020 2020 2020 7468 rd of. th │ │ │ │ -000278e0: 6520 746f 7461 6c20 5365 6772 6520 636c e total Segre cl │ │ │ │ -000278f0: 6173 7320 6f66 2074 6865 2073 6368 656d ass of the schem │ │ │ │ -00027900: 6520 5620 6465 6669 6e65 6420 6279 2074 e V defined by t │ │ │ │ -00027910: 6865 2069 6e70 7574 2069 6465 616c 2074 he input ideal t │ │ │ │ -00027920: 6f20 7468 650a 2020 2020 2020 2020 6170 o the. ap │ │ │ │ -00027930: 7072 6f70 7269 6174 6520 4368 6f77 2072 propriate Chow r │ │ │ │ -00027940: 696e 670a 0a44 6573 6372 6970 7469 6f6e ing..Description │ │ │ │ -00027950: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 466f .===========..Fo │ │ │ │ -00027960: 7220 6120 7375 6273 6368 656d 6520 5620 r a subscheme V │ │ │ │ -00027970: 6f66 2061 6e20 6170 706c 6963 6162 6c65 of an applicable │ │ │ │ -00027980: 2074 6f72 6963 2076 6172 6965 7479 2058 toric variety X │ │ │ │ -00027990: 2074 6869 7320 636f 6d6d 616e 6420 636f this command co │ │ │ │ -000279a0: 6d70 7574 6573 2074 6865 0a70 7573 682d mputes the.push- │ │ │ │ -000279b0: 666f 7277 6172 6420 6f66 2074 6865 2074 forward of the t │ │ │ │ -000279c0: 6f74 616c 2053 6567 7265 2063 6c61 7373 otal Segre class │ │ │ │ -000279d0: 2073 2856 2c58 2920 6f66 2056 2069 6e20 s(V,X) of V in │ │ │ │ -000279e0: 5820 746f 2074 6865 2043 686f 7720 7269 X to the Chow ri │ │ │ │ -000279f0: 6e67 206f 6620 582e 0a0a 2b2d 2d2d 2d2d ng of X...+----- │ │ │ │ +00026f80: 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 ******..Synopsis │ │ │ │ +00026f90: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 .========.. * U │ │ │ │ +00026fa0: 7361 6765 3a20 0a20 2020 2020 2020 2053 sage: . S │ │ │ │ +00026fb0: 6567 7265 2049 0a20 2020 2020 2020 2053 egre I. S │ │ │ │ +00026fc0: 6567 7265 2841 2c49 290a 2020 2020 2020 egre(A,I). │ │ │ │ +00026fd0: 2020 5365 6772 6528 582c 4a29 0a20 2020 Segre(X,J). │ │ │ │ +00026fe0: 2020 2020 2053 6567 7265 2843 682c 582c Segre(Ch,X, │ │ │ │ +00026ff0: 4a29 0a20 202a 2049 6e70 7574 733a 0a20 J). * Inputs:. │ │ │ │ +00027000: 2020 2020 202a 2049 2c20 616e 202a 6e6f * I, an *no │ │ │ │ +00027010: 7465 2069 6465 616c 3a20 284d 6163 6175 te ideal: (Macau │ │ │ │ +00027020: 6c61 7932 446f 6329 4964 6561 6c2c 2c20 lay2Doc)Ideal,, │ │ │ │ +00027030: 6120 6d75 6c74 692d 686f 6d6f 6765 6e65 a multi-homogene │ │ │ │ +00027040: 6f75 7320 6964 6561 6c20 696e 2061 0a20 ous ideal in a. │ │ │ │ +00027050: 2020 2020 2020 2067 7261 6465 6420 706f graded po │ │ │ │ +00027060: 6c79 6e6f 6d69 616c 2072 696e 6720 6f76 lynomial ring ov │ │ │ │ +00027070: 6572 2061 2066 6965 6c64 2064 6566 696e er a field defin │ │ │ │ +00027080: 696e 6720 6120 636c 6f73 6564 2073 7562 ing a closed sub │ │ │ │ +00027090: 7363 6865 6d65 2056 206f 660a 2020 2020 scheme V of. │ │ │ │ +000270a0: 2020 2020 5c50 505e 7b6e 5f31 7d78 2e2e \PP^{n_1}x.. │ │ │ │ +000270b0: 2e78 5c50 505e 7b6e 5f6d 7d0a 2020 2020 .x\PP^{n_m}. │ │ │ │ +000270c0: 2020 2a20 412c 2061 202a 6e6f 7465 2071 * A, a *note q │ │ │ │ +000270d0: 756f 7469 656e 7420 7269 6e67 3a20 284d uotient ring: (M │ │ │ │ +000270e0: 6163 6175 6c61 7932 446f 6329 5175 6f74 acaulay2Doc)Quot │ │ │ │ +000270f0: 6965 6e74 5269 6e67 2c2c 0a20 2020 2020 ientRing,,. │ │ │ │ +00027100: 2020 2041 3d5c 5a5a 5b68 5f31 2c2e 2e2e A=\ZZ[h_1,... │ │ │ │ +00027110: 2c68 5f6d 5d2f 2868 5f31 5e7b 6e5f 312b ,h_m]/(h_1^{n_1+ │ │ │ │ +00027120: 317d 2c2e 2e2e 2c68 5f6d 5e7b 6e5f 6d2b 1},...,h_m^{n_m+ │ │ │ │ +00027130: 317d 2920 7175 6f74 6965 6e74 2072 696e 1}) quotient rin │ │ │ │ +00027140: 670a 2020 2020 2020 2020 7265 7072 6573 g. repres │ │ │ │ +00027150: 656e 7469 6e67 2074 6865 2043 686f 7720 enting the Chow │ │ │ │ +00027160: 7269 6e67 206f 6620 5c50 505e 7b6e 5f31 ring of \PP^{n_1 │ │ │ │ +00027170: 7d78 2e2e 2e78 5c50 505e 7b6e 5f6d 7d2c }x...x\PP^{n_m}, │ │ │ │ +00027180: 2074 6869 7320 7269 6e67 2073 686f 756c this ring shoul │ │ │ │ +00027190: 640a 2020 2020 2020 2020 6265 2062 7569 d. be bui │ │ │ │ +000271a0: 6c74 2075 7369 6e67 2074 6865 202a 6e6f lt using the *no │ │ │ │ +000271b0: 7465 2043 686f 7752 696e 673a 2043 686f te ChowRing: Cho │ │ │ │ +000271c0: 7752 696e 672c 2063 6f6d 6d61 6e64 0a20 wRing, command. │ │ │ │ +000271d0: 2020 2020 202a 204a 2c20 616e 202a 6e6f * J, an *no │ │ │ │ +000271e0: 7465 2069 6465 616c 3a20 284d 6163 6175 te ideal: (Macau │ │ │ │ +000271f0: 6c61 7932 446f 6329 4964 6561 6c2c 2c20 lay2Doc)Ideal,, │ │ │ │ +00027200: 696e 2074 6865 2067 7261 6465 6420 706f in the graded po │ │ │ │ +00027210: 6c79 6e6f 6d69 616c 2072 696e 670a 2020 lynomial ring. │ │ │ │ +00027220: 2020 2020 2020 7768 6963 6820 6973 2063 which is c │ │ │ │ +00027230: 6f6f 7264 696e 6174 6520 7269 6e67 206f oordinate ring o │ │ │ │ +00027240: 6620 7468 6520 4e6f 726d 616c 2054 6f72 f the Normal Tor │ │ │ │ +00027250: 6963 2056 6172 6965 7479 2058 0a20 2020 ic Variety X. │ │ │ │ +00027260: 2020 202a 2058 2c20 6120 2a6e 6f74 6520 * X, a *note │ │ │ │ +00027270: 6e6f 726d 616c 2074 6f72 6963 2076 6172 normal toric var │ │ │ │ +00027280: 6965 7479 3a0a 2020 2020 2020 2020 284e iety:. (N │ │ │ │ +00027290: 6f72 6d61 6c54 6f72 6963 5661 7269 6574 ormalToricVariet │ │ │ │ +000272a0: 6965 7329 4e6f 726d 616c 546f 7269 6356 ies)NormalToricV │ │ │ │ +000272b0: 6172 6965 7479 2c2c 2077 6869 6368 2069 ariety,, which i │ │ │ │ +000272c0: 7320 7468 6520 616d 6269 656e 7420 7370 s the ambient sp │ │ │ │ +000272d0: 6163 650a 2020 2020 2020 2020 7768 6963 ace. whic │ │ │ │ +000272e0: 6820 636f 6e74 6169 6e73 2056 284a 290a h contains V(J). │ │ │ │ +000272f0: 2020 2020 2020 2a20 4368 2c20 6120 2a6e * Ch, a *n │ │ │ │ +00027300: 6f74 6520 7175 6f74 6965 6e74 2072 696e ote quotient rin │ │ │ │ +00027310: 673a 2028 4d61 6361 756c 6179 3244 6f63 g: (Macaulay2Doc │ │ │ │ +00027320: 2951 756f 7469 656e 7452 696e 672c 2c20 )QuotientRing,, │ │ │ │ +00027330: 7468 6520 4368 6f77 2072 696e 670a 2020 the Chow ring. │ │ │ │ +00027340: 2020 2020 2020 6f66 2074 6865 2074 6f72 of the tor │ │ │ │ +00027350: 6963 2076 6172 6965 7479 2058 2c20 4368 ic variety X, Ch │ │ │ │ +00027360: 3d28 7269 6e67 204a 292f 2853 522b 4c52 =(ring J)/(SR+LR │ │ │ │ +00027370: 2920 7768 6572 6520 5352 2069 7320 7468 ) where SR is th │ │ │ │ +00027380: 650a 2020 2020 2020 2020 5374 616e 6c65 e. Stanle │ │ │ │ +00027390: 792d 5265 6973 6e65 7220 6964 6561 6c20 y-Reisner ideal │ │ │ │ +000273a0: 6f66 2074 6865 2066 616e 2064 6566 696e of the fan defin │ │ │ │ +000273b0: 696e 6720 5820 616e 6420 4c52 2069 7320 ing X and LR is │ │ │ │ +000273c0: 7468 6520 6c69 6e65 6172 0a20 2020 2020 the linear. │ │ │ │ +000273d0: 2020 2072 656c 6174 696f 6e73 2069 6465 relations ide │ │ │ │ +000273e0: 616c 2c20 7468 6973 2072 696e 6720 7368 al, this ring sh │ │ │ │ +000273f0: 6f75 6c64 2062 6520 6275 696c 7420 7573 ould be built us │ │ │ │ +00027400: 696e 6720 7468 6520 2a6e 6f74 650a 2020 ing the *note. │ │ │ │ +00027410: 2020 2020 2020 546f 7269 6343 686f 7752 ToricChowR │ │ │ │ +00027420: 696e 673a 2054 6f72 6963 4368 6f77 5269 ing: ToricChowRi │ │ │ │ +00027430: 6e67 2c20 636f 6d6d 616e 640a 2020 2a20 ng, command. * │ │ │ │ +00027440: 2a6e 6f74 6520 4f70 7469 6f6e 616c 2069 *note Optional i │ │ │ │ +00027450: 6e70 7574 733a 2028 4d61 6361 756c 6179 nputs: (Macaulay │ │ │ │ +00027460: 3244 6f63 2975 7369 6e67 2066 756e 6374 2Doc)using funct │ │ │ │ +00027470: 696f 6e73 2077 6974 6820 6f70 7469 6f6e ions with option │ │ │ │ +00027480: 616c 2069 6e70 7574 732c 3a0a 2020 2020 al inputs,:. │ │ │ │ +00027490: 2020 2a20 436f 6d70 4d65 7468 6f64 2028 * CompMethod ( │ │ │ │ +000274a0: 6d69 7373 696e 6720 646f 6375 6d65 6e74 missing document │ │ │ │ +000274b0: 6174 696f 6e29 203d 3e20 2e2e 2e2c 2064 ation) => ..., d │ │ │ │ +000274c0: 6566 6175 6c74 2076 616c 7565 0a20 2020 efault value. │ │ │ │ +000274d0: 2020 2020 2050 726f 6a65 6374 6976 6544 ProjectiveD │ │ │ │ +000274e0: 6567 7265 652c 2050 726f 6a65 6374 6976 egree, Projectiv │ │ │ │ +000274f0: 6544 6567 7265 652c 2074 6869 7320 616c eDegree, this al │ │ │ │ +00027500: 676f 7269 7468 6d20 6d61 7920 6265 2075 gorithm may be u │ │ │ │ +00027510: 7365 6420 666f 720a 2020 2020 2020 2020 sed for. │ │ │ │ +00027520: 7375 6273 6368 656d 6573 206f 6620 616e subschemes of an │ │ │ │ +00027530: 7920 6170 706c 6963 6162 6c65 2074 6f72 y applicable tor │ │ │ │ +00027540: 6963 2076 6172 6965 7479 2028 7468 6973 ic variety (this │ │ │ │ +00027550: 206d 6179 2062 6520 6368 6563 6b65 6420 may be checked │ │ │ │ +00027560: 7573 696e 670a 2020 2020 2020 2020 7468 using. th │ │ │ │ +00027570: 6520 2a6e 6f74 6520 4368 6563 6b54 6f72 e *note CheckTor │ │ │ │ +00027580: 6963 5661 7269 6574 7956 616c 6964 3a20 icVarietyValid: │ │ │ │ +00027590: 4368 6563 6b54 6f72 6963 5661 7269 6574 CheckToricVariet │ │ │ │ +000275a0: 7956 616c 6964 2c20 636f 6d6d 616e 6429 yValid, command) │ │ │ │ +000275b0: 0a20 2020 2020 202a 2043 6f6d 704d 6574 . * CompMet │ │ │ │ +000275c0: 686f 6420 286d 6973 7369 6e67 2064 6f63 hod (missing doc │ │ │ │ +000275d0: 756d 656e 7461 7469 6f6e 2920 3d3e 202e umentation) => . │ │ │ │ +000275e0: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ +000275f0: 650a 2020 2020 2020 2020 5072 6f6a 6563 e. Projec │ │ │ │ +00027600: 7469 7665 4465 6772 6565 2c20 506e 5265 tiveDegree, PnRe │ │ │ │ +00027610: 7369 6475 616c 2c20 7468 6973 2061 6c67 sidual, this alg │ │ │ │ +00027620: 6f72 6974 686d 206d 6179 2062 6520 7573 orithm may be us │ │ │ │ +00027630: 6564 2066 6f72 2073 7562 7363 6865 6d65 ed for subscheme │ │ │ │ +00027640: 730a 2020 2020 2020 2020 6f66 205c 5050 s. of \PP │ │ │ │ +00027650: 5e6e 206f 6e6c 790a 2020 2020 2020 2a20 ^n only. * │ │ │ │ +00027660: 4f75 7470 7574 203d 3e20 2e2e 2e2c 2064 Output => ..., d │ │ │ │ +00027670: 6566 6175 6c74 2076 616c 7565 2043 686f efault value Cho │ │ │ │ +00027680: 7752 696e 6745 6c65 6d65 6e74 2c20 4368 wRingElement, Ch │ │ │ │ +00027690: 6f77 5269 6e67 456c 656d 656e 742c 2072 owRingElement, r │ │ │ │ +000276a0: 6574 7572 6e73 0a20 2020 2020 2020 2061 eturns. a │ │ │ │ +000276b0: 2052 696e 6745 6c65 6d65 6e74 2069 6e20 RingElement in │ │ │ │ +000276c0: 7468 6520 4368 6f77 2072 696e 6720 6f66 the Chow ring of │ │ │ │ +000276d0: 2074 6865 2061 7070 726f 7072 6961 7465 the appropriate │ │ │ │ +000276e0: 2061 6d62 6965 6e74 2073 7061 6365 0a20 ambient space. │ │ │ │ +000276f0: 2020 2020 202a 204f 7574 7075 7420 3d3e * Output => │ │ │ │ +00027700: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ +00027710: 6c75 6520 4368 6f77 5269 6e67 456c 656d lue ChowRingElem │ │ │ │ +00027720: 656e 742c 2048 6173 6846 6f72 6d2c 2048 ent, HashForm, H │ │ │ │ +00027730: 6173 6846 6f72 6d0a 2020 2020 2020 2020 ashForm. │ │ │ │ +00027740: 7265 7475 726e 7320 6120 4d75 7461 626c returns a Mutabl │ │ │ │ +00027750: 6548 6173 6854 6162 6c65 2063 6f6e 7461 eHashTable conta │ │ │ │ +00027760: 696e 696e 6720 7468 6520 666f 6c6c 6f77 ining the follow │ │ │ │ +00027770: 696e 6720 6b65 7973 3a20 2247 2220 2874 ing keys: "G" (t │ │ │ │ +00027780: 6865 0a20 2020 2020 2020 2070 6f6c 796e he. polyn │ │ │ │ +00027790: 6f6d 6961 6c20 7769 7468 2063 6f65 6666 omial with coeff │ │ │ │ +000277a0: 6963 6965 6e74 7320 6f66 2074 6865 2068 icients of the h │ │ │ │ +000277b0: 7970 6572 706c 616e 6520 636c 6173 7365 yperplane classe │ │ │ │ +000277c0: 7320 7265 7072 6573 656e 7469 6e67 2074 s representing t │ │ │ │ +000277d0: 6865 0a20 2020 2020 2020 2070 726f 6a65 he. proje │ │ │ │ +000277e0: 6374 6976 6520 6465 6772 6565 7329 2c20 ctive degrees), │ │ │ │ +000277f0: 2247 6c69 7374 2220 2874 6865 206c 6973 "Glist" (the lis │ │ │ │ +00027800: 7420 666f 726d 206f 6620 2247 2229 202c t form of "G") , │ │ │ │ +00027810: 2022 5365 6772 6522 2028 7468 650a 2020 "Segre" (the. │ │ │ │ +00027820: 2020 2020 2020 746f 7461 6c20 5365 6772 total Segr │ │ │ │ +00027830: 6520 636c 6173 7320 6f66 2074 6865 2069 e class of the i │ │ │ │ +00027840: 6e70 7574 292c 2253 6567 7265 4c69 7374 nput),"SegreList │ │ │ │ +00027850: 2220 2874 6865 206c 6973 7420 666f 726d " (the list form │ │ │ │ +00027860: 206f 6620 2253 6567 7265 2229 0a20 202a of "Segre"). * │ │ │ │ +00027870: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ +00027880: 2a20 6120 2a6e 6f74 6520 7269 6e67 2065 * a *note ring e │ │ │ │ +00027890: 6c65 6d65 6e74 3a20 284d 6163 6175 6c61 lement: (Macaula │ │ │ │ +000278a0: 7932 446f 6329 5269 6e67 456c 656d 656e y2Doc)RingElemen │ │ │ │ +000278b0: 742c 2c20 7468 6520 7075 7368 666f 7277 t,, the pushforw │ │ │ │ +000278c0: 6172 6420 6f66 0a20 2020 2020 2020 2074 ard of. t │ │ │ │ +000278d0: 6865 2074 6f74 616c 2053 6567 7265 2063 he total Segre c │ │ │ │ +000278e0: 6c61 7373 206f 6620 7468 6520 7363 6865 lass of the sche │ │ │ │ +000278f0: 6d65 2056 2064 6566 696e 6564 2062 7920 me V defined by │ │ │ │ +00027900: 7468 6520 696e 7075 7420 6964 6561 6c20 the input ideal │ │ │ │ +00027910: 746f 2074 6865 0a20 2020 2020 2020 2061 to the. a │ │ │ │ +00027920: 7070 726f 7072 6961 7465 2043 686f 7720 ppropriate Chow │ │ │ │ +00027930: 7269 6e67 0a0a 4465 7363 7269 7074 696f ring..Descriptio │ │ │ │ +00027940: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a46 n.===========..F │ │ │ │ +00027950: 6f72 2061 2073 7562 7363 6865 6d65 2056 or a subscheme V │ │ │ │ +00027960: 206f 6620 616e 2061 7070 6c69 6361 626c of an applicabl │ │ │ │ +00027970: 6520 746f 7269 6320 7661 7269 6574 7920 e toric variety │ │ │ │ +00027980: 5820 7468 6973 2063 6f6d 6d61 6e64 2063 X this command c │ │ │ │ +00027990: 6f6d 7075 7465 7320 7468 650a 7075 7368 omputes the.push │ │ │ │ +000279a0: 2d66 6f72 7761 7264 206f 6620 7468 6520 -forward of the │ │ │ │ +000279b0: 746f 7461 6c20 5365 6772 6520 636c 6173 total Segre clas │ │ │ │ +000279c0: 7320 7328 562c 5829 206f 6620 5620 696e s s(V,X) of V in │ │ │ │ +000279d0: 2058 2074 6f20 7468 6520 4368 6f77 2072 X to the Chow r │ │ │ │ +000279e0: 696e 6720 6f66 2058 2e0a 0a2b 2d2d 2d2d ing of X...+---- │ │ │ │ +000279f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027a20: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -00027a30: 7365 7452 616e 646f 6d53 6565 6420 3732 setRandomSeed 72 │ │ │ │ -00027a40: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ -00027a50: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00027a10: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +00027a20: 2073 6574 5261 6e64 6f6d 5365 6564 2037 setRandomSeed 7 │ │ │ │ +00027a30: 323b 2020 2020 2020 2020 2020 2020 2020 2; │ │ │ │ +00027a40: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00027a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027a80: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ -00027a90: 5220 3d20 5a5a 2f33 3237 3439 5b77 2c79 R = ZZ/32749[w,y │ │ │ │ -00027aa0: 2c7a 5d20 2020 2020 2020 2020 2020 2020 ,z] │ │ │ │ -00027ab0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00027a70: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ +00027a80: 2052 203d 205a 5a2f 3332 3734 395b 772c R = ZZ/32749[w, │ │ │ │ +00027a90: 792c 7a5d 2020 2020 2020 2020 2020 2020 y,z] │ │ │ │ +00027aa0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00027ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027ae0: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ -00027af0: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ -00027b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027b10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00027ad0: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ +00027ae0: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +00027af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027b00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00027b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027b40: 2020 2020 2020 2020 7c0a 7c6f 3220 3a20 |.|o2 : │ │ │ │ -00027b50: 506f 6c79 6e6f 6d69 616c 5269 6e67 2020 PolynomialRing │ │ │ │ -00027b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027b70: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00027b30: 2020 2020 2020 2020 207c 0a7c 6f32 203a |.|o2 : │ │ │ │ +00027b40: 2050 6f6c 796e 6f6d 6961 6c52 696e 6720 PolynomialRing │ │ │ │ +00027b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027b60: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00027b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027ba0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ -00027bb0: 5365 6772 6528 6964 6561 6c28 772a 7929 Segre(ideal(w*y) │ │ │ │ -00027bc0: 2c43 6f6d 704d 6574 686f 643d 3e50 6e52 ,CompMethod=>PnR │ │ │ │ -00027bd0: 6573 6964 7561 6c29 7c0a 7c20 2020 2020 esidual)|.| │ │ │ │ +00027b90: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ +00027ba0: 2053 6567 7265 2869 6465 616c 2877 2a79 Segre(ideal(w*y │ │ │ │ +00027bb0: 292c 436f 6d70 4d65 7468 6f64 3d3e 506e ),CompMethod=>Pn │ │ │ │ +00027bc0: 5265 7369 6475 616c 297c 0a7c 2020 2020 Residual)|.| │ │ │ │ +00027bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027c00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00027c10: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -00027c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027c30: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ -00027c40: 2d20 3448 2020 2b20 3248 2020 2020 2020 - 4H + 2H │ │ │ │ -00027c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027c60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00027bf0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00027c00: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00027c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027c20: 2020 2020 2020 2020 207c 0a7c 6f33 203d |.|o3 = │ │ │ │ +00027c30: 202d 2034 4820 202b 2032 4820 2020 2020 - 4H + 2H │ │ │ │ +00027c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027c50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00027c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027c90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00027ca0: 5a5a 5b48 5d20 2020 2020 2020 2020 2020 ZZ[H] │ │ │ │ -00027cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027cc0: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ -00027cd0: 2d2d 2d2d 2d20 2020 2020 2020 2020 2020 ----- │ │ │ │ -00027ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027cf0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00027d00: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00027d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027d20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00027d30: 2020 4820 2020 2020 2020 2020 2020 2020 H │ │ │ │ -00027d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027d50: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00027c80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00027c90: 205a 5a5b 485d 2020 2020 2020 2020 2020 ZZ[H] │ │ │ │ +00027ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027cb0: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ +00027cc0: 202d 2d2d 2d2d 2020 2020 2020 2020 2020 ----- │ │ │ │ +00027cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027ce0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00027cf0: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ +00027d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027d10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00027d20: 2020 2048 2020 2020 2020 2020 2020 2020 H │ │ │ │ +00027d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027d40: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00027d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027d80: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ -00027d90: 413d 4368 6f77 5269 6e67 2852 2920 2020 A=ChowRing(R) │ │ │ │ -00027da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027db0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00027d70: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ +00027d80: 2041 3d43 686f 7752 696e 6728 5229 2020 A=ChowRing(R) │ │ │ │ +00027d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027da0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00027db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027de0: 2020 2020 2020 2020 7c0a 7c6f 3420 3d20 |.|o4 = │ │ │ │ -00027df0: 4120 2020 2020 2020 2020 2020 2020 2020 A │ │ │ │ -00027e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027e10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00027dd0: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ +00027de0: 2041 2020 2020 2020 2020 2020 2020 2020 A │ │ │ │ +00027df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027e00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00027e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027e40: 2020 2020 2020 2020 7c0a 7c6f 3420 3a20 |.|o4 : │ │ │ │ -00027e50: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ -00027e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027e70: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00027e30: 2020 2020 2020 2020 207c 0a7c 6f34 203a |.|o4 : │ │ │ │ +00027e40: 2051 756f 7469 656e 7452 696e 6720 2020 QuotientRing │ │ │ │ +00027e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027e60: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00027e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027ea0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 --------+.|i5 : │ │ │ │ -00027eb0: 5365 6772 6528 412c 6964 6561 6c28 775e Segre(A,ideal(w^ │ │ │ │ -00027ec0: 322a 792c 772a 795e 3229 2920 2020 2020 2*y,w*y^2)) │ │ │ │ -00027ed0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00027e90: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ +00027ea0: 2053 6567 7265 2841 2c69 6465 616c 2877 Segre(A,ideal(w │ │ │ │ +00027eb0: 5e32 2a79 2c77 2a79 5e32 2929 2020 2020 ^2*y,w*y^2)) │ │ │ │ +00027ec0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00027ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027f00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00027f10: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -00027f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027f30: 2020 2020 2020 2020 7c0a 7c6f 3520 3d20 |.|o5 = │ │ │ │ -00027f40: 2d20 3368 2020 2b20 3268 2020 2020 2020 - 3h + 2h │ │ │ │ -00027f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027f60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00027f70: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00027f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027f90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00027ef0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00027f00: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00027f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027f20: 2020 2020 2020 2020 207c 0a7c 6f35 203d |.|o5 = │ │ │ │ +00027f30: 202d 2033 6820 202b 2032 6820 2020 2020 - 3h + 2h │ │ │ │ +00027f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027f50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00027f60: 2020 2020 2031 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00027f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027f80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00027f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027fc0: 2020 2020 2020 2020 7c0a 7c6f 3520 3a20 |.|o5 : │ │ │ │ -00027fd0: 4120 2020 2020 2020 2020 2020 2020 2020 A │ │ │ │ -00027fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027ff0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00027fb0: 2020 2020 2020 2020 207c 0a7c 6f35 203a |.|o5 : │ │ │ │ +00027fc0: 2041 2020 2020 2020 2020 2020 2020 2020 A │ │ │ │ +00027fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027fe0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00027ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028020: 2d2d 2d2d 2d2d 2d2d 2b0a 0a4e 6f77 2063 --------+..Now c │ │ │ │ -00028030: 6f6e 7369 6465 7220 616e 2065 7861 6d70 onsider an examp │ │ │ │ -00028040: 6c65 2069 6e20 5c50 505e 3220 5c74 696d le in \PP^2 \tim │ │ │ │ -00028050: 6573 205c 5050 5e32 2c20 6966 2077 6520 es \PP^2, if we │ │ │ │ -00028060: 696e 7075 7420 7468 6520 4368 6f77 2072 input the Chow r │ │ │ │ -00028070: 696e 6720 4120 7468 650a 6f75 7470 7574 ing A the.output │ │ │ │ -00028080: 2077 696c 6c20 6265 2072 6574 7572 6e65 will be returne │ │ │ │ -00028090: 6420 696e 2074 6865 2073 616d 6520 7269 d in the same ri │ │ │ │ -000280a0: 6e67 2e20 546f 2065 6e73 7572 6520 7072 ng. To ensure pr │ │ │ │ -000280b0: 6f70 6572 2066 756e 6374 696f 6e20 6f66 oper function of │ │ │ │ -000280c0: 2074 6865 0a6d 6574 686f 6473 2077 6520 the.methods we │ │ │ │ -000280d0: 6275 696c 6420 7468 6520 4368 6f77 2072 build the Chow r │ │ │ │ -000280e0: 696e 6720 7573 696e 6720 7468 6520 2a6e ing using the *n │ │ │ │ -000280f0: 6f74 6520 4368 6f77 5269 6e67 3a20 4368 ote ChowRing: Ch │ │ │ │ -00028100: 6f77 5269 6e67 2c20 636f 6d6d 616e 642e owRing, command. │ │ │ │ -00028110: 2057 650a 6d61 7920 616c 736f 2072 6574 We.may also ret │ │ │ │ -00028120: 7572 6e20 6120 4d75 7461 626c 6548 6173 urn a MutableHas │ │ │ │ -00028130: 6854 6162 6c65 2e0a 0a2b 2d2d 2d2d 2d2d hTable...+------ │ │ │ │ +00028010: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4e6f 7720 ---------+..Now │ │ │ │ +00028020: 636f 6e73 6964 6572 2061 6e20 6578 616d consider an exam │ │ │ │ +00028030: 706c 6520 696e 205c 5050 5e32 205c 7469 ple in \PP^2 \ti │ │ │ │ +00028040: 6d65 7320 5c50 505e 322c 2069 6620 7765 mes \PP^2, if we │ │ │ │ +00028050: 2069 6e70 7574 2074 6865 2043 686f 7720 input the Chow │ │ │ │ +00028060: 7269 6e67 2041 2074 6865 0a6f 7574 7075 ring A the.outpu │ │ │ │ +00028070: 7420 7769 6c6c 2062 6520 7265 7475 726e t will be return │ │ │ │ +00028080: 6564 2069 6e20 7468 6520 7361 6d65 2072 ed in the same r │ │ │ │ +00028090: 696e 672e 2054 6f20 656e 7375 7265 2070 ing. To ensure p │ │ │ │ +000280a0: 726f 7065 7220 6675 6e63 7469 6f6e 206f roper function o │ │ │ │ +000280b0: 6620 7468 650a 6d65 7468 6f64 7320 7765 f the.methods we │ │ │ │ +000280c0: 2062 7569 6c64 2074 6865 2043 686f 7720 build the Chow │ │ │ │ +000280d0: 7269 6e67 2075 7369 6e67 2074 6865 202a ring using the * │ │ │ │ +000280e0: 6e6f 7465 2043 686f 7752 696e 673a 2043 note ChowRing: C │ │ │ │ +000280f0: 686f 7752 696e 672c 2063 6f6d 6d61 6e64 howRing, command │ │ │ │ +00028100: 2e20 5765 0a6d 6179 2061 6c73 6f20 7265 . We.may also re │ │ │ │ +00028110: 7475 726e 2061 204d 7574 6162 6c65 4861 turn a MutableHa │ │ │ │ +00028120: 7368 5461 626c 652e 0a0a 2b2d 2d2d 2d2d shTable...+----- │ │ │ │ +00028130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028180: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2052 -------+.|i6 : R │ │ │ │ -00028190: 3d4d 756c 7469 5072 6f6a 436f 6f72 6452 =MultiProjCoordR │ │ │ │ -000281a0: 696e 6728 7b32 2c32 7d29 2020 2020 2020 ing({2,2}) │ │ │ │ +00028170: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ +00028180: 523d 4d75 6c74 6950 726f 6a43 6f6f 7264 R=MultiProjCoord │ │ │ │ +00028190: 5269 6e67 287b 322c 327d 2920 2020 2020 Ring({2,2}) │ │ │ │ +000281a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000281b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000281c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000281d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000281c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000281d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000281e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000281f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028220: 2020 2020 2020 207c 0a7c 6f36 203d 2052 |.|o6 = R │ │ │ │ +00028210: 2020 2020 2020 2020 7c0a 7c6f 3620 3d20 |.|o6 = │ │ │ │ +00028220: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 00028230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028270: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00028260: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000282a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000282b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000282c0: 2020 2020 2020 207c 0a7c 6f36 203a 2050 |.|o6 : P │ │ │ │ -000282d0: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ +000282b0: 2020 2020 2020 2020 7c0a 7c6f 3620 3a20 |.|o6 : │ │ │ │ +000282c0: 506f 6c79 6e6f 6d69 616c 5269 6e67 2020 PolynomialRing │ │ │ │ +000282d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000282e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000282f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028310: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00028300: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00028310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028360: 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a 2072 -------+.|i7 : r │ │ │ │ -00028370: 3d67 656e 7320 5220 2020 2020 2020 2020 =gens R │ │ │ │ +00028350: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 --------+.|i7 : │ │ │ │ +00028360: 723d 6765 6e73 2052 2020 2020 2020 2020 r=gens R │ │ │ │ +00028370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000283a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000283b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000283a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000283b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000283c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000283d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000283e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000283f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028400: 2020 2020 2020 207c 0a7c 6f37 203d 207b |.|o7 = { │ │ │ │ -00028410: 7820 2c20 7820 2c20 7820 2c20 7820 2c20 x , x , x , x , │ │ │ │ -00028420: 7820 2c20 7820 7d20 2020 2020 2020 2020 x , x } │ │ │ │ +000283f0: 2020 2020 2020 2020 7c0a 7c6f 3720 3d20 |.|o7 = │ │ │ │ +00028400: 7b78 202c 2078 202c 2078 202c 2078 202c {x , x , x , x , │ │ │ │ +00028410: 2078 202c 2078 207d 2020 2020 2020 2020 x , x } │ │ │ │ +00028420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028450: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00028460: 2030 2020 2031 2020 2032 2020 2033 2020 0 1 2 3 │ │ │ │ -00028470: 2034 2020 2035 2020 2020 2020 2020 2020 4 5 │ │ │ │ +00028440: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028450: 2020 3020 2020 3120 2020 3220 2020 3320 0 1 2 3 │ │ │ │ +00028460: 2020 3420 2020 3520 2020 2020 2020 2020 4 5 │ │ │ │ +00028470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000284a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00028490: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000284a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000284b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000284c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000284d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000284e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000284f0: 2020 2020 2020 207c 0a7c 6f37 203a 204c |.|o7 : L │ │ │ │ -00028500: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +000284e0: 2020 2020 2020 2020 7c0a 7c6f 3720 3a20 |.|o7 : │ │ │ │ +000284f0: 4c69 7374 2020 2020 2020 2020 2020 2020 List │ │ │ │ +00028500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028540: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00028530: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00028540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028590: 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a 2041 -------+.|i8 : A │ │ │ │ -000285a0: 3d43 686f 7752 696e 6728 5229 2020 2020 =ChowRing(R) │ │ │ │ +00028580: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 3a20 --------+.|i8 : │ │ │ │ +00028590: 413d 4368 6f77 5269 6e67 2852 2920 2020 A=ChowRing(R) │ │ │ │ +000285a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000285b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000285c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000285d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000285e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000285d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000285e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000285f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028630: 2020 2020 2020 207c 0a7c 6f38 203d 2041 |.|o8 = A │ │ │ │ +00028620: 2020 2020 2020 2020 7c0a 7c6f 3820 3d20 |.|o8 = │ │ │ │ +00028630: 4120 2020 2020 2020 2020 2020 2020 2020 A │ │ │ │ 00028640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028680: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00028670: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000286a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000286b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000286c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000286d0: 2020 2020 2020 207c 0a7c 6f38 203a 2051 |.|o8 : Q │ │ │ │ -000286e0: 756f 7469 656e 7452 696e 6720 2020 2020 uotientRing │ │ │ │ +000286c0: 2020 2020 2020 2020 7c0a 7c6f 3820 3a20 |.|o8 : │ │ │ │ +000286d0: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ +000286e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000286f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028720: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00028710: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00028720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028770: 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a 2049 -------+.|i9 : I │ │ │ │ -00028780: 3d69 6465 616c 2872 5f30 5e32 2a72 5f33 =ideal(r_0^2*r_3 │ │ │ │ -00028790: 2d72 5f34 2a72 5f31 2a72 5f32 2c72 5f32 -r_4*r_1*r_2,r_2 │ │ │ │ -000287a0: 5e32 2a72 5f35 2920 2020 2020 2020 2020 ^2*r_5) │ │ │ │ -000287b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000287c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00028760: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3920 3a20 --------+.|i9 : │ │ │ │ +00028770: 493d 6964 6561 6c28 725f 305e 322a 725f I=ideal(r_0^2*r_ │ │ │ │ +00028780: 332d 725f 342a 725f 312a 725f 322c 725f 3-r_4*r_1*r_2,r_ │ │ │ │ +00028790: 325e 322a 725f 3529 2020 2020 2020 2020 2^2*r_5) │ │ │ │ +000287a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000287b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000287c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000287d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000287e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000287f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028810: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00028800: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028810: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 00028820: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00028830: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00028830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028860: 2020 2020 2020 207c 0a7c 6f39 203d 2069 |.|o9 = i │ │ │ │ -00028870: 6465 616c 2028 7820 7820 202d 2078 2078 deal (x x - x x │ │ │ │ -00028880: 2078 202c 2078 2078 2029 2020 2020 2020 x , x x ) │ │ │ │ +00028850: 2020 2020 2020 2020 7c0a 7c6f 3920 3d20 |.|o9 = │ │ │ │ +00028860: 6964 6561 6c20 2878 2078 2020 2d20 7820 ideal (x x - x │ │ │ │ +00028870: 7820 7820 2c20 7820 7820 2920 2020 2020 x x , x x ) │ │ │ │ +00028880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000288a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000288b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000288c0: 2020 2020 2020 2030 2033 2020 2020 3120 0 3 1 │ │ │ │ -000288d0: 3220 3420 2020 3220 3520 2020 2020 2020 2 4 2 5 │ │ │ │ +000288a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000288b0: 2020 2020 2020 2020 3020 3320 2020 2031 0 3 1 │ │ │ │ +000288c0: 2032 2034 2020 2032 2035 2020 2020 2020 2 4 2 5 │ │ │ │ +000288d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000288e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000288f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028900: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000288f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028950: 2020 2020 2020 207c 0a7c 6f39 203a 2049 |.|o9 : I │ │ │ │ -00028960: 6465 616c 206f 6620 5220 2020 2020 2020 deal of R │ │ │ │ +00028940: 2020 2020 2020 2020 7c0a 7c6f 3920 3a20 |.|o9 : │ │ │ │ +00028950: 4964 6561 6c20 6f66 2052 2020 2020 2020 Ideal of R │ │ │ │ +00028960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000289a0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00028990: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000289a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000289b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000289c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000289d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000289e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000289f0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 -------+.|i10 : │ │ │ │ -00028a00: 5365 6772 6520 4920 2020 2020 2020 2020 Segre I │ │ │ │ +000289e0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3130 203a --------+.|i10 : │ │ │ │ +000289f0: 2053 6567 7265 2049 2020 2020 2020 2020 Segre I │ │ │ │ +00028a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028a40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00028a30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028a90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00028aa0: 2020 2032 2032 2020 2020 2020 3220 2020 2 2 2 │ │ │ │ -00028ab0: 2020 2020 2020 2032 2020 2020 2032 2020 2 2 │ │ │ │ -00028ac0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -00028ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ae0: 2020 2020 2020 207c 0a7c 6f31 3020 3d20 |.|o10 = │ │ │ │ -00028af0: 3732 6820 6820 202d 2032 3468 2068 2020 72h h - 24h h │ │ │ │ -00028b00: 2d20 3132 6820 6820 202b 2034 6820 202b - 12h h + 4h + │ │ │ │ -00028b10: 2034 6820 6820 202b 2068 2020 2020 2020 4h h + h │ │ │ │ -00028b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028b30: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00028b40: 2020 2031 2032 2020 2020 2020 3120 3220 1 2 1 2 │ │ │ │ -00028b50: 2020 2020 2031 2032 2020 2020 2031 2020 1 2 1 │ │ │ │ -00028b60: 2020 2031 2032 2020 2020 3220 2020 2020 1 2 2 │ │ │ │ -00028b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028b80: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00028a80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028a90: 2020 2020 3220 3220 2020 2020 2032 2020 2 2 2 │ │ │ │ +00028aa0: 2020 2020 2020 2020 3220 2020 2020 3220 2 2 │ │ │ │ +00028ab0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00028ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028ad0: 2020 2020 2020 2020 7c0a 7c6f 3130 203d |.|o10 = │ │ │ │ +00028ae0: 2037 3268 2068 2020 2d20 3234 6820 6820 72h h - 24h h │ │ │ │ +00028af0: 202d 2031 3268 2068 2020 2b20 3468 2020 - 12h h + 4h │ │ │ │ +00028b00: 2b20 3468 2068 2020 2b20 6820 2020 2020 + 4h h + h │ │ │ │ +00028b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028b20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028b30: 2020 2020 3120 3220 2020 2020 2031 2032 1 2 1 2 │ │ │ │ +00028b40: 2020 2020 2020 3120 3220 2020 2020 3120 1 2 1 │ │ │ │ +00028b50: 2020 2020 3120 3220 2020 2032 2020 2020 1 2 2 │ │ │ │ +00028b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028b70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028bd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00028be0: 5a5a 5b68 202e 2e68 205d 2020 2020 2020 ZZ[h ..h ] │ │ │ │ +00028bc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028bd0: 205a 5a5b 6820 2e2e 6820 5d20 2020 2020 ZZ[h ..h ] │ │ │ │ +00028be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00028c30: 2020 2020 3120 2020 3220 2020 2020 2020 1 2 │ │ │ │ +00028c10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028c20: 2020 2020 2031 2020 2032 2020 2020 2020 1 2 │ │ │ │ +00028c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c70: 2020 2020 2020 207c 0a7c 6f31 3020 3a20 |.|o10 : │ │ │ │ -00028c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2020 2020 2020 ---------- │ │ │ │ +00028c60: 2020 2020 2020 2020 7c0a 7c6f 3130 203a |.|o10 : │ │ │ │ +00028c70: 202d 2d2d 2d2d 2d2d 2d2d 2d20 2020 2020 ---------- │ │ │ │ +00028c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028cc0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00028cd0: 2020 2033 2020 2033 2020 2020 2020 2020 3 3 │ │ │ │ +00028cb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028cc0: 2020 2020 3320 2020 3320 2020 2020 2020 3 3 │ │ │ │ +00028cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00028d20: 2028 6820 2c20 6820 2920 2020 2020 2020 (h , h ) │ │ │ │ +00028d00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028d10: 2020 2868 202c 2068 2029 2020 2020 2020 (h , h ) │ │ │ │ +00028d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00028d70: 2020 2031 2020 2032 2020 2020 2020 2020 1 2 │ │ │ │ +00028d50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028d60: 2020 2020 3120 2020 3220 2020 2020 2020 1 2 │ │ │ │ +00028d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028db0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00028da0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00028db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028e00: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 3a20 -------+.|i11 : │ │ │ │ -00028e10: 7331 3d53 6567 7265 2841 2c49 2920 2020 s1=Segre(A,I) │ │ │ │ +00028df0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 203a --------+.|i11 : │ │ │ │ +00028e00: 2073 313d 5365 6772 6528 412c 4929 2020 s1=Segre(A,I) │ │ │ │ +00028e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00028e40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ea0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00028eb0: 2020 2032 2032 2020 2020 2020 3220 2020 2 2 2 │ │ │ │ -00028ec0: 2020 2020 2020 2032 2020 2020 2032 2020 2 2 │ │ │ │ -00028ed0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -00028ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ef0: 2020 2020 2020 207c 0a7c 6f31 3120 3d20 |.|o11 = │ │ │ │ -00028f00: 3732 6820 6820 202d 2032 3468 2068 2020 72h h - 24h h │ │ │ │ -00028f10: 2d20 3132 6820 6820 202b 2034 6820 202b - 12h h + 4h + │ │ │ │ -00028f20: 2034 6820 6820 202b 2068 2020 2020 2020 4h h + h │ │ │ │ -00028f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00028f50: 2020 2031 2032 2020 2020 2020 3120 3220 1 2 1 2 │ │ │ │ -00028f60: 2020 2020 2031 2032 2020 2020 2031 2020 1 2 1 │ │ │ │ -00028f70: 2020 2031 2032 2020 2020 3220 2020 2020 1 2 2 │ │ │ │ -00028f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00028e90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028ea0: 2020 2020 3220 3220 2020 2020 2032 2020 2 2 2 │ │ │ │ +00028eb0: 2020 2020 2020 2020 3220 2020 2020 3220 2 2 │ │ │ │ +00028ec0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00028ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028ee0: 2020 2020 2020 2020 7c0a 7c6f 3131 203d |.|o11 = │ │ │ │ +00028ef0: 2037 3268 2068 2020 2d20 3234 6820 6820 72h h - 24h h │ │ │ │ +00028f00: 202d 2031 3268 2068 2020 2b20 3468 2020 - 12h h + 4h │ │ │ │ +00028f10: 2b20 3468 2068 2020 2b20 6820 2020 2020 + 4h h + h │ │ │ │ +00028f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028f30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028f40: 2020 2020 3120 3220 2020 2020 2031 2032 1 2 1 2 │ │ │ │ +00028f50: 2020 2020 2020 3120 3220 2020 2020 3120 1 2 1 │ │ │ │ +00028f60: 2020 2020 3120 3220 2020 2032 2020 2020 1 2 2 │ │ │ │ +00028f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028f80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028fe0: 2020 2020 2020 207c 0a7c 6f31 3120 3a20 |.|o11 : │ │ │ │ -00028ff0: 4120 2020 2020 2020 2020 2020 2020 2020 A │ │ │ │ +00028fd0: 2020 2020 2020 2020 7c0a 7c6f 3131 203a |.|o11 : │ │ │ │ +00028fe0: 2041 2020 2020 2020 2020 2020 2020 2020 A │ │ │ │ +00028ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029030: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00029020: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00029030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029080: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3220 3a20 -------+.|i12 : │ │ │ │ -00029090: 5365 6748 6173 683d 5365 6772 6528 412c SegHash=Segre(A, │ │ │ │ -000290a0: 492c 4f75 7470 7574 3d3e 4861 7368 466f I,Output=>HashFo │ │ │ │ -000290b0: 726d 2920 2020 2020 2020 2020 2020 2020 rm) │ │ │ │ -000290c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000290d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00029070: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3132 203a --------+.|i12 : │ │ │ │ +00029080: 2053 6567 4861 7368 3d53 6567 7265 2841 SegHash=Segre(A │ │ │ │ +00029090: 2c49 2c4f 7574 7075 743d 3e48 6173 6846 ,I,Output=>HashF │ │ │ │ +000290a0: 6f72 6d29 2020 2020 2020 2020 2020 2020 orm) │ │ │ │ +000290b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000290c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000290d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000290e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000290f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029120: 2020 2020 2020 207c 0a7c 6f31 3220 3d20 |.|o12 = │ │ │ │ -00029130: 4d75 7461 626c 6548 6173 6854 6162 6c65 MutableHashTable │ │ │ │ -00029140: 7b2e 2e2e 342e 2e2e 7d20 2020 2020 2020 {...4...} │ │ │ │ +00029110: 2020 2020 2020 2020 7c0a 7c6f 3132 203d |.|o12 = │ │ │ │ +00029120: 204d 7574 6162 6c65 4861 7368 5461 626c MutableHashTabl │ │ │ │ +00029130: 657b 2e2e 2e34 2e2e 2e7d 2020 2020 2020 e{...4...} │ │ │ │ +00029140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029170: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00029160: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00029170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000291a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000291b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000291c0: 2020 2020 2020 207c 0a7c 6f31 3220 3a20 |.|o12 : │ │ │ │ -000291d0: 4d75 7461 626c 6548 6173 6854 6162 6c65 MutableHashTable │ │ │ │ +000291b0: 2020 2020 2020 2020 7c0a 7c6f 3132 203a |.|o12 : │ │ │ │ +000291c0: 204d 7574 6162 6c65 4861 7368 5461 626c MutableHashTabl │ │ │ │ +000291d0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ 000291e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000291f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029210: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00029200: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00029210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029260: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3320 3a20 -------+.|i13 : │ │ │ │ -00029270: 7065 656b 2053 6567 4861 7368 2020 2020 peek SegHash │ │ │ │ +00029250: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3133 203a --------+.|i13 : │ │ │ │ +00029260: 2070 6565 6b20 5365 6748 6173 6820 2020 peek SegHash │ │ │ │ +00029270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000292a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000292b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000292a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000292b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000292c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000292d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000292e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000292f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029300: 2020 2020 2020 207c 0a7c 6f31 3320 3d20 |.|o13 = │ │ │ │ -00029310: 4d75 7461 626c 6548 6173 6854 6162 6c65 MutableHashTable │ │ │ │ -00029320: 7b47 203d 3e20 3268 2020 2b20 6820 202b {G => 2h + h + │ │ │ │ -00029330: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00029340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029350: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00029360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029370: 2020 2020 2020 2020 3120 2020 2032 2020 1 2 │ │ │ │ +000292f0: 2020 2020 2020 2020 7c0a 7c6f 3133 203d |.|o13 = │ │ │ │ +00029300: 204d 7574 6162 6c65 4861 7368 5461 626c MutableHashTabl │ │ │ │ +00029310: 657b 4720 3d3e 2032 6820 202b 2068 2020 e{G => 2h + h │ │ │ │ +00029320: 2b20 3120 2020 2020 2020 2020 2020 2020 + 1 │ │ │ │ +00029330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029340: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00029350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029360: 2020 2020 2020 2020 2031 2020 2020 3220 1 2 │ │ │ │ +00029370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000293a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000293b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000293c0: 2047 6c69 7374 203d 3e20 7b31 2c20 3268 Glist => {1, 2h │ │ │ │ -000293d0: 2020 2b20 6820 2c20 302c 2030 2c20 307d + h , 0, 0, 0} │ │ │ │ -000293e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000293f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00029390: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000293a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000293b0: 2020 476c 6973 7420 3d3e 207b 312c 2032 Glist => {1, 2 │ │ │ │ +000293c0: 6820 202b 2068 202c 2030 2c20 302c 2030 h + h , 0, 0, 0 │ │ │ │ +000293d0: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +000293e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000293f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029420: 3120 2020 2032 2020 2020 2020 2020 2020 1 2 │ │ │ │ -00029430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029440: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00029410: 2031 2020 2020 3220 2020 2020 2020 2020 1 2 │ │ │ │ +00029420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029430: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00029440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029470: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00029480: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -00029490: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000294a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000294b0: 2053 6567 7265 4c69 7374 203d 3e20 7b30 SegreList => {0 │ │ │ │ -000294c0: 2c20 302c 2034 6820 202b 2034 6820 6820 , 0, 4h + 4h h │ │ │ │ -000294d0: 202b 2068 202c 202d 2020 2020 2020 2020 + h , - │ │ │ │ -000294e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00029460: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +00029470: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00029480: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00029490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000294a0: 2020 5365 6772 654c 6973 7420 3d3e 207b SegreList => { │ │ │ │ +000294b0: 302c 2030 2c20 3468 2020 2b20 3468 2068 0, 0, 4h + 4h h │ │ │ │ +000294c0: 2020 2b20 6820 2c20 2d20 2020 2020 2020 + h , - │ │ │ │ +000294d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000294e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000294f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029510: 2020 2020 2020 2031 2020 2020 2031 2032 1 1 2 │ │ │ │ -00029520: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -00029530: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00029540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029550: 2020 2020 2020 2020 2020 2020 2032 2032 2 2 │ │ │ │ -00029560: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00029570: 2032 2020 2020 2032 2020 2020 2020 2020 2 2 │ │ │ │ -00029580: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00029590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000295a0: 2053 6567 7265 203d 3e20 3732 6820 6820 Segre => 72h h │ │ │ │ -000295b0: 202d 2032 3468 2068 2020 2d20 3132 6820 - 24h h - 12h │ │ │ │ -000295c0: 6820 202b 2034 6820 2020 2020 2020 2020 h + 4h │ │ │ │ -000295d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000295e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000295f0: 2020 2020 2020 2020 2020 2020 2031 2032 1 2 │ │ │ │ -00029600: 2020 2020 2020 3120 3220 2020 2020 2031 1 2 1 │ │ │ │ -00029610: 2032 2020 2020 2031 2020 2020 2020 2020 2 1 │ │ │ │ -00029620: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ +00029500: 2020 2020 2020 2020 3120 2020 2020 3120 1 1 │ │ │ │ +00029510: 3220 2020 2032 2020 2020 2020 2020 2020 2 2 │ │ │ │ +00029520: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00029530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029540: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00029550: 3220 2020 2020 2032 2020 2020 2020 2020 2 2 │ │ │ │ +00029560: 2020 3220 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ +00029570: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00029580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029590: 2020 5365 6772 6520 3d3e 2037 3268 2068 Segre => 72h h │ │ │ │ +000295a0: 2020 2d20 3234 6820 6820 202d 2031 3268 - 24h h - 12h │ │ │ │ +000295b0: 2068 2020 2b20 3468 2020 2020 2020 2020 h + 4h │ │ │ │ +000295c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000295d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000295e0: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +000295f0: 3220 2020 2020 2031 2032 2020 2020 2020 2 1 2 │ │ │ │ +00029600: 3120 3220 2020 2020 3120 2020 2020 2020 1 2 1 │ │ │ │ +00029610: 2020 2020 2020 2020 7c0a 7c2d 2d2d 2d2d |.|----- │ │ │ │ +00029620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029670: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 -------|.| │ │ │ │ -00029680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029690: 2020 7d20 2020 2020 2020 2020 2020 2020 } │ │ │ │ +00029660: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +00029670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029680: 2020 207d 2020 2020 2020 2020 2020 2020 } │ │ │ │ +00029690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000296a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000296b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000296c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000296b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000296c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000296d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000296e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000296f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029710: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00029700: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00029710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029760: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00029750: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00029760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000297a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000297b0: 2020 2020 2020 207c 0a7c 2020 2032 2020 |.| 2 │ │ │ │ -000297c0: 2020 2020 2020 2020 3220 2020 2020 3220 2 2 │ │ │ │ -000297d0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000297a0: 2020 2020 2020 2020 7c0a 7c20 2020 3220 |.| 2 │ │ │ │ +000297b0: 2020 2020 2020 2020 2032 2020 2020 2032 2 2 │ │ │ │ +000297c0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000297d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000297e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000297f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029800: 2020 2020 2020 207c 0a7c 3234 6820 6820 |.|24h h │ │ │ │ -00029810: 202d 2031 3268 2068 202c 2037 3268 2068 - 12h h , 72h h │ │ │ │ -00029820: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +000297f0: 2020 2020 2020 2020 7c0a 7c32 3468 2068 |.|24h h │ │ │ │ +00029800: 2020 2d20 3132 6820 6820 2c20 3732 6820 - 12h h , 72h │ │ │ │ +00029810: 6820 7d20 2020 2020 2020 2020 2020 2020 h } │ │ │ │ +00029820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029850: 2020 2020 2020 207c 0a7c 2020 2031 2032 |.| 1 2 │ │ │ │ -00029860: 2020 2020 2020 3120 3220 2020 2020 3120 1 2 1 │ │ │ │ -00029870: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00029840: 2020 2020 2020 2020 7c0a 7c20 2020 3120 |.| 1 │ │ │ │ +00029850: 3220 2020 2020 2031 2032 2020 2020 2031 2 1 2 1 │ │ │ │ +00029860: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00029870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000298a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000298b0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00029890: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000298a0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000298b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000298c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000298d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000298e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000298f0: 2020 2020 2020 207c 0a7c 2b20 3468 2068 |.|+ 4h h │ │ │ │ -00029900: 2020 2b20 6820 2020 2020 2020 2020 2020 + h │ │ │ │ +000298e0: 2020 2020 2020 2020 7c0a 7c2b 2034 6820 |.|+ 4h │ │ │ │ +000298f0: 6820 202b 2068 2020 2020 2020 2020 2020 h + h │ │ │ │ +00029900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029940: 2020 2020 2020 207c 0a7c 2020 2020 3120 |.| 1 │ │ │ │ -00029950: 3220 2020 2032 2020 2020 2020 2020 2020 2 2 │ │ │ │ +00029930: 2020 2020 2020 2020 7c0a 7c20 2020 2031 |.| 1 │ │ │ │ +00029940: 2032 2020 2020 3220 2020 2020 2020 2020 2 2 │ │ │ │ +00029950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029990: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00029980: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00029990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000299a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000299b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000299c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000299d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000299e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3420 3a20 -------+.|i14 : │ │ │ │ -000299f0: 7331 3d3d 5365 6748 6173 6823 2253 6567 s1==SegHash#"Seg │ │ │ │ -00029a00: 7265 2220 2020 2020 2020 2020 2020 2020 re" │ │ │ │ +000299d0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3134 203a --------+.|i14 : │ │ │ │ +000299e0: 2073 313d 3d53 6567 4861 7368 2322 5365 s1==SegHash#"Se │ │ │ │ +000299f0: 6772 6522 2020 2020 2020 2020 2020 2020 gre" │ │ │ │ +00029a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029a30: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00029a20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00029a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029a80: 2020 2020 2020 207c 0a7c 6f31 3420 3d20 |.|o14 = │ │ │ │ -00029a90: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ +00029a70: 2020 2020 2020 2020 7c0a 7c6f 3134 203d |.|o14 = │ │ │ │ +00029a80: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ +00029a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ad0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00029ac0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00029ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029b20: 2d2d 2d2d 2d2d 2d2b 0a0a 496e 2074 6865 -------+..In the │ │ │ │ -00029b30: 2063 6173 6520 7768 6572 6520 7468 6520 case where the │ │ │ │ -00029b40: 616d 6269 656e 7420 7370 6163 6520 6973 ambient space is │ │ │ │ -00029b50: 2061 2074 6f72 6963 2076 6172 6965 7479 a toric variety │ │ │ │ -00029b60: 2077 6869 6368 2069 7320 6e6f 7420 6120 which is not a │ │ │ │ -00029b70: 7072 6f64 7563 740a 6f66 2070 726f 6a65 product.of proje │ │ │ │ -00029b80: 6374 6976 6520 7370 6163 6573 2077 6520 ctive spaces we │ │ │ │ -00029b90: 6d75 7374 206c 6f61 6420 7468 6520 4e6f must load the No │ │ │ │ -00029ba0: 726d 616c 546f 7269 6356 6172 6965 7469 rmalToricVarieti │ │ │ │ -00029bb0: 6573 2070 6163 6b61 6765 2061 6e64 206d es package and m │ │ │ │ -00029bc0: 7573 740a 616c 736f 2069 6e70 7574 2074 ust.also input t │ │ │ │ -00029bd0: 6865 2074 6f72 6963 2076 6172 6965 7479 he toric variety │ │ │ │ -00029be0: 2e20 4966 2074 6865 2074 6f72 6963 2076 . If the toric v │ │ │ │ -00029bf0: 6172 6965 7479 2069 7320 6120 7072 6f64 ariety is a prod │ │ │ │ -00029c00: 7563 7420 6f66 2070 726f 6a65 6374 6976 uct of projectiv │ │ │ │ -00029c10: 650a 7370 6163 6520 6974 2069 7320 7265 e.space it is re │ │ │ │ -00029c20: 636f 6d6d 656e 6465 6420 746f 2075 7365 commended to use │ │ │ │ -00029c30: 2074 6865 2066 6f72 6d20 6162 6f76 6520 the form above │ │ │ │ -00029c40: 7261 7468 6572 2074 6861 6e20 696e 7075 rather than inpu │ │ │ │ -00029c50: 7474 696e 6720 7468 6520 746f 7269 630a tting the toric. │ │ │ │ -00029c60: 7661 7269 6574 7920 666f 7220 6566 6669 variety for effi │ │ │ │ -00029c70: 6369 656e 6379 2072 6561 736f 6e73 2e0a ciency reasons.. │ │ │ │ -00029c80: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00029b10: 2d2d 2d2d 2d2d 2d2d 2b0a 0a49 6e20 7468 --------+..In th │ │ │ │ +00029b20: 6520 6361 7365 2077 6865 7265 2074 6865 e case where the │ │ │ │ +00029b30: 2061 6d62 6965 6e74 2073 7061 6365 2069 ambient space i │ │ │ │ +00029b40: 7320 6120 746f 7269 6320 7661 7269 6574 s a toric variet │ │ │ │ +00029b50: 7920 7768 6963 6820 6973 206e 6f74 2061 y which is not a │ │ │ │ +00029b60: 2070 726f 6475 6374 0a6f 6620 7072 6f6a product.of proj │ │ │ │ +00029b70: 6563 7469 7665 2073 7061 6365 7320 7765 ective spaces we │ │ │ │ +00029b80: 206d 7573 7420 6c6f 6164 2074 6865 204e must load the N │ │ │ │ +00029b90: 6f72 6d61 6c54 6f72 6963 5661 7269 6574 ormalToricVariet │ │ │ │ +00029ba0: 6965 7320 7061 636b 6167 6520 616e 6420 ies package and │ │ │ │ +00029bb0: 6d75 7374 0a61 6c73 6f20 696e 7075 7420 must.also input │ │ │ │ +00029bc0: 7468 6520 746f 7269 6320 7661 7269 6574 the toric variet │ │ │ │ +00029bd0: 792e 2049 6620 7468 6520 746f 7269 6320 y. If the toric │ │ │ │ +00029be0: 7661 7269 6574 7920 6973 2061 2070 726f variety is a pro │ │ │ │ +00029bf0: 6475 6374 206f 6620 7072 6f6a 6563 7469 duct of projecti │ │ │ │ +00029c00: 7665 0a73 7061 6365 2069 7420 6973 2072 ve.space it is r │ │ │ │ +00029c10: 6563 6f6d 6d65 6e64 6564 2074 6f20 7573 ecommended to us │ │ │ │ +00029c20: 6520 7468 6520 666f 726d 2061 626f 7665 e the form above │ │ │ │ +00029c30: 2072 6174 6865 7220 7468 616e 2069 6e70 rather than inp │ │ │ │ +00029c40: 7574 7469 6e67 2074 6865 2074 6f72 6963 utting the toric │ │ │ │ +00029c50: 0a76 6172 6965 7479 2066 6f72 2065 6666 .variety for eff │ │ │ │ +00029c60: 6963 6965 6e63 7920 7265 6173 6f6e 732e iciency reasons. │ │ │ │ +00029c70: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ +00029c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3135 ----------+.|i15 │ │ │ │ -00029cd0: 203a 206e 6565 6473 5061 636b 6167 6520 : needsPackage │ │ │ │ -00029ce0: 224e 6f72 6d61 6c54 6f72 6963 5661 7269 "NormalToricVari │ │ │ │ -00029cf0: 6574 6965 7322 2020 2020 2020 2020 2020 eties" │ │ │ │ -00029d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00029cc0: 3520 3a20 6e65 6564 7350 6163 6b61 6765 5 : needsPackage │ │ │ │ +00029cd0: 2022 4e6f 726d 616c 546f 7269 6356 6172 "NormalToricVar │ │ │ │ +00029ce0: 6965 7469 6573 2220 2020 2020 2020 2020 ieties" │ │ │ │ +00029cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029d00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00029d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d60: 7c0a 7c6f 3135 203d 204e 6f72 6d61 6c54 |.|o15 = NormalT │ │ │ │ -00029d70: 6f72 6963 5661 7269 6574 6965 7320 2020 oricVarieties │ │ │ │ +00029d50: 207c 0a7c 6f31 3520 3d20 4e6f 726d 616c |.|o15 = Normal │ │ │ │ +00029d60: 546f 7269 6356 6172 6965 7469 6573 2020 ToricVarieties │ │ │ │ +00029d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029da0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00029d90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00029da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029df0: 2020 2020 2020 7c0a 7c6f 3135 203a 2050 |.|o15 : P │ │ │ │ -00029e00: 6163 6b61 6765 2020 2020 2020 2020 2020 ackage │ │ │ │ +00029de0: 2020 2020 2020 207c 0a7c 6f31 3520 3a20 |.|o15 : │ │ │ │ +00029df0: 5061 636b 6167 6520 2020 2020 2020 2020 Package │ │ │ │ +00029e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e40: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00029e30: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00029e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00029e90: 3136 203a 2052 686f 203d 207b 7b31 2c30 16 : Rho = {{1,0 │ │ │ │ -00029ea0: 2c30 7d2c 7b30 2c31 2c30 7d2c 7b30 2c30 ,0},{0,1,0},{0,0 │ │ │ │ -00029eb0: 2c31 7d2c 7b2d 312c 2d31 2c30 7d2c 7b30 ,1},{-1,-1,0},{0 │ │ │ │ -00029ec0: 2c30 2c2d 317d 7d20 2020 2020 2020 2020 ,0,-1}} │ │ │ │ -00029ed0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00029e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00029e80: 6931 3620 3a20 5268 6f20 3d20 7b7b 312c i16 : Rho = {{1, │ │ │ │ +00029e90: 302c 307d 2c7b 302c 312c 307d 2c7b 302c 0,0},{0,1,0},{0, │ │ │ │ +00029ea0: 302c 317d 2c7b 2d31 2c2d 312c 307d 2c7b 0,1},{-1,-1,0},{ │ │ │ │ +00029eb0: 302c 302c 2d31 7d7d 2020 2020 2020 2020 0,0,-1}} │ │ │ │ +00029ec0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00029ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029f20: 2020 7c0a 7c6f 3136 203d 207b 7b31 2c20 |.|o16 = {{1, │ │ │ │ -00029f30: 302c 2030 7d2c 207b 302c 2031 2c20 307d 0, 0}, {0, 1, 0} │ │ │ │ -00029f40: 2c20 7b30 2c20 302c 2031 7d2c 207b 2d31 , {0, 0, 1}, {-1 │ │ │ │ -00029f50: 2c20 2d31 2c20 307d 2c20 7b30 2c20 302c , -1, 0}, {0, 0, │ │ │ │ -00029f60: 202d 317d 7d20 2020 2020 2020 207c 0a7c -1}} |.| │ │ │ │ +00029f10: 2020 207c 0a7c 6f31 3620 3d20 7b7b 312c |.|o16 = {{1, │ │ │ │ +00029f20: 2030 2c20 307d 2c20 7b30 2c20 312c 2030 0, 0}, {0, 1, 0 │ │ │ │ +00029f30: 7d2c 207b 302c 2030 2c20 317d 2c20 7b2d }, {0, 0, 1}, {- │ │ │ │ +00029f40: 312c 202d 312c 2030 7d2c 207b 302c 2030 1, -1, 0}, {0, 0 │ │ │ │ +00029f50: 2c20 2d31 7d7d 2020 2020 2020 2020 7c0a , -1}} |. │ │ │ │ +00029f60: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00029f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029fb0: 2020 2020 2020 2020 7c0a 7c6f 3136 203a |.|o16 : │ │ │ │ -00029fc0: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ +00029fa0: 2020 2020 2020 2020 207c 0a7c 6f31 3620 |.|o16 │ │ │ │ +00029fb0: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ +00029fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a000: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00029ff0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002a000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0002a050: 7c69 3137 203a 2053 6967 6d61 203d 207b |i17 : Sigma = { │ │ │ │ -0002a060: 7b30 2c31 2c32 7d2c 7b31 2c32 2c33 7d2c {0,1,2},{1,2,3}, │ │ │ │ -0002a070: 7b30 2c32 2c33 7d2c 7b30 2c31 2c34 7d2c {0,2,3},{0,1,4}, │ │ │ │ -0002a080: 7b31 2c33 2c34 7d2c 7b30 2c33 2c34 7d7d {1,3,4},{0,3,4}} │ │ │ │ -0002a090: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0002a030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002a040: 0a7c 6931 3720 3a20 5369 676d 6120 3d20 .|i17 : Sigma = │ │ │ │ +0002a050: 7b7b 302c 312c 327d 2c7b 312c 322c 337d {{0,1,2},{1,2,3} │ │ │ │ +0002a060: 2c7b 302c 322c 337d 2c7b 302c 312c 347d ,{0,2,3},{0,1,4} │ │ │ │ +0002a070: 2c7b 312c 332c 347d 2c7b 302c 332c 347d ,{1,3,4},{0,3,4} │ │ │ │ +0002a080: 7d20 2020 2020 2020 2020 7c0a 7c20 2020 } |.| │ │ │ │ +0002a090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a0e0: 2020 2020 7c0a 7c6f 3137 203d 207b 7b30 |.|o17 = {{0 │ │ │ │ -0002a0f0: 2c20 312c 2032 7d2c 207b 312c 2032 2c20 , 1, 2}, {1, 2, │ │ │ │ -0002a100: 337d 2c20 7b30 2c20 322c 2033 7d2c 207b 3}, {0, 2, 3}, { │ │ │ │ -0002a110: 302c 2031 2c20 347d 2c20 7b31 2c20 332c 0, 1, 4}, {1, 3, │ │ │ │ -0002a120: 2034 7d2c 207b 302c 2033 2c20 347d 7d7c 4}, {0, 3, 4}}| │ │ │ │ -0002a130: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002a0d0: 2020 2020 207c 0a7c 6f31 3720 3d20 7b7b |.|o17 = {{ │ │ │ │ +0002a0e0: 302c 2031 2c20 327d 2c20 7b31 2c20 322c 0, 1, 2}, {1, 2, │ │ │ │ +0002a0f0: 2033 7d2c 207b 302c 2032 2c20 337d 2c20 3}, {0, 2, 3}, │ │ │ │ +0002a100: 7b30 2c20 312c 2034 7d2c 207b 312c 2033 {0, 1, 4}, {1, 3 │ │ │ │ +0002a110: 2c20 347d 2c20 7b30 2c20 332c 2034 7d7d , 4}, {0, 3, 4}} │ │ │ │ +0002a120: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002a130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a170: 2020 2020 2020 2020 2020 7c0a 7c6f 3137 |.|o17 │ │ │ │ -0002a180: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ +0002a160: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0002a170: 3720 3a20 4c69 7374 2020 2020 2020 2020 7 : List │ │ │ │ +0002a180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a1c0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002a1b0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002a1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a210: 2b0a 7c69 3138 203a 2058 203d 206e 6f72 +.|i18 : X = nor │ │ │ │ -0002a220: 6d61 6c54 6f72 6963 5661 7269 6574 7928 malToricVariety( │ │ │ │ -0002a230: 5268 6f2c 5369 676d 612c 436f 6566 6669 Rho,Sigma,Coeffi │ │ │ │ -0002a240: 6369 656e 7452 696e 6720 3d3e 5a5a 2f33 cientRing =>ZZ/3 │ │ │ │ -0002a250: 3237 3439 2920 2020 2020 207c 0a7c 2020 2749) |.| │ │ │ │ +0002a200: 2d2b 0a7c 6931 3820 3a20 5820 3d20 6e6f -+.|i18 : X = no │ │ │ │ +0002a210: 726d 616c 546f 7269 6356 6172 6965 7479 rmalToricVariety │ │ │ │ +0002a220: 2852 686f 2c53 6967 6d61 2c43 6f65 6666 (Rho,Sigma,Coeff │ │ │ │ +0002a230: 6963 6965 6e74 5269 6e67 203d 3e5a 5a2f icientRing =>ZZ/ │ │ │ │ +0002a240: 3332 3734 3929 2020 2020 2020 7c0a 7c20 32749) |.| │ │ │ │ +0002a250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a2a0: 2020 2020 2020 7c0a 7c6f 3138 203d 2058 |.|o18 = X │ │ │ │ +0002a290: 2020 2020 2020 207c 0a7c 6f31 3820 3d20 |.|o18 = │ │ │ │ +0002a2a0: 5820 2020 2020 2020 2020 2020 2020 2020 X │ │ │ │ 0002a2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a2f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002a2e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002a2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a330: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0002a340: 3138 203a 204e 6f72 6d61 6c54 6f72 6963 18 : NormalToric │ │ │ │ -0002a350: 5661 7269 6574 7920 2020 2020 2020 2020 Variety │ │ │ │ +0002a320: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002a330: 6f31 3820 3a20 4e6f 726d 616c 546f 7269 o18 : NormalTori │ │ │ │ +0002a340: 6356 6172 6965 7479 2020 2020 2020 2020 cVariety │ │ │ │ +0002a350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a380: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002a370: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0002a380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a3d0: 2d2d 2b0a 7c69 3139 203a 2043 6865 636b --+.|i19 : Check │ │ │ │ -0002a3e0: 546f 7269 6356 6172 6965 7479 5661 6c69 ToricVarietyVali │ │ │ │ -0002a3f0: 6428 5829 2020 2020 2020 2020 2020 2020 d(X) │ │ │ │ -0002a400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a410: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002a3c0: 2d2d 2d2b 0a7c 6931 3920 3a20 4368 6563 ---+.|i19 : Chec │ │ │ │ +0002a3d0: 6b54 6f72 6963 5661 7269 6574 7956 616c kToricVarietyVal │ │ │ │ +0002a3e0: 6964 2858 2920 2020 2020 2020 2020 2020 id(X) │ │ │ │ +0002a3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a400: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a410: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002a420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a460: 2020 2020 2020 2020 7c0a 7c6f 3139 203d |.|o19 = │ │ │ │ -0002a470: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ +0002a450: 2020 2020 2020 2020 207c 0a7c 6f31 3920 |.|o19 │ │ │ │ +0002a460: 3d20 7472 7565 2020 2020 2020 2020 2020 = true │ │ │ │ +0002a470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a4b0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0002a4a0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002a4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0002a500: 7c69 3230 203a 2052 3d72 696e 6728 5829 |i20 : R=ring(X) │ │ │ │ +0002a4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002a4f0: 0a7c 6932 3020 3a20 523d 7269 6e67 2858 .|i20 : R=ring(X │ │ │ │ +0002a500: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 0002a510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a540: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0002a530: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002a540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a590: 2020 2020 7c0a 7c6f 3230 203d 2052 2020 |.|o20 = R │ │ │ │ +0002a580: 2020 2020 207c 0a7c 6f32 3020 3d20 5220 |.|o20 = R │ │ │ │ +0002a590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a5d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002a5e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002a5d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002a5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a620: 2020 2020 2020 2020 2020 7c0a 7c6f 3230 |.|o20 │ │ │ │ -0002a630: 203a 2050 6f6c 796e 6f6d 6961 6c52 696e : PolynomialRin │ │ │ │ -0002a640: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ +0002a610: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +0002a620: 3020 3a20 506f 6c79 6e6f 6d69 616c 5269 0 : PolynomialRi │ │ │ │ +0002a630: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ +0002a640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a670: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002a660: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002a670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a6c0: 2b0a 7c69 3231 203a 2049 3d69 6465 616c +.|i21 : I=ideal │ │ │ │ -0002a6d0: 2852 5f30 5e34 2a52 5f31 2c52 5f30 2a52 (R_0^4*R_1,R_0*R │ │ │ │ -0002a6e0: 5f33 2a52 5f34 2a52 5f32 2d52 5f32 5e32 _3*R_4*R_2-R_2^2 │ │ │ │ -0002a6f0: 2a52 5f30 5e32 2920 2020 2020 2020 2020 *R_0^2) │ │ │ │ -0002a700: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002a6b0: 2d2b 0a7c 6932 3120 3a20 493d 6964 6561 -+.|i21 : I=idea │ │ │ │ +0002a6c0: 6c28 525f 305e 342a 525f 312c 525f 302a l(R_0^4*R_1,R_0* │ │ │ │ +0002a6d0: 525f 332a 525f 342a 525f 322d 525f 325e R_3*R_4*R_2-R_2^ │ │ │ │ +0002a6e0: 322a 525f 305e 3229 2020 2020 2020 2020 2*R_0^2) │ │ │ │ +0002a6f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002a700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a750: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002a760: 2020 2020 2020 2034 2020 2020 2020 2032 4 2 │ │ │ │ -0002a770: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002a740: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002a750: 2020 2020 2020 2020 3420 2020 2020 2020 4 │ │ │ │ +0002a760: 3220 3220 2020 2020 2020 2020 2020 2020 2 2 │ │ │ │ +0002a770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a7a0: 207c 0a7c 6f32 3120 3d20 6964 6561 6c20 |.|o21 = ideal │ │ │ │ -0002a7b0: 2878 2078 202c 202d 2078 2078 2020 2b20 (x x , - x x + │ │ │ │ -0002a7c0: 7820 7820 7820 7820 2920 2020 2020 2020 x x x x ) │ │ │ │ -0002a7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a7e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002a7f0: 2020 2020 2020 2020 2020 2020 2030 2031 0 1 │ │ │ │ -0002a800: 2020 2020 2030 2032 2020 2020 3020 3220 0 2 0 2 │ │ │ │ -0002a810: 3320 3420 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -0002a820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a830: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002a790: 2020 7c0a 7c6f 3231 203d 2069 6465 616c |.|o21 = ideal │ │ │ │ +0002a7a0: 2028 7820 7820 2c20 2d20 7820 7820 202b (x x , - x x + │ │ │ │ +0002a7b0: 2078 2078 2078 2078 2029 2020 2020 2020 x x x x ) │ │ │ │ +0002a7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a7d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002a7e0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +0002a7f0: 3120 2020 2020 3020 3220 2020 2030 2032 1 0 2 0 2 │ │ │ │ +0002a800: 2033 2034 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ +0002a810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a820: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002a830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a880: 2020 7c0a 7c6f 3231 203a 2049 6465 616c |.|o21 : Ideal │ │ │ │ -0002a890: 206f 6620 5220 2020 2020 2020 2020 2020 of R │ │ │ │ +0002a870: 2020 207c 0a7c 6f32 3120 3a20 4964 6561 |.|o21 : Idea │ │ │ │ +0002a880: 6c20 6f66 2052 2020 2020 2020 2020 2020 l of R │ │ │ │ +0002a890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a8c0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0002a8b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a8c0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0002a8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a910: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3232 203a --------+.|i22 : │ │ │ │ -0002a920: 2053 6567 7265 2858 2c49 2920 2020 2020 Segre(X,I) │ │ │ │ +0002a900: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3220 ---------+.|i22 │ │ │ │ +0002a910: 3a20 5365 6772 6528 582c 4929 2020 2020 : Segre(X,I) │ │ │ │ +0002a920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a960: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002a950: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002a960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a9a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002a9b0: 7c20 2020 2020 2020 2020 2020 3220 2020 | 2 │ │ │ │ -0002a9c0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0002a990: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a9a0: 0a7c 2020 2020 2020 2020 2020 2032 2020 .| 2 │ │ │ │ +0002a9b0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +0002a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a9f0: 2020 2020 2020 2020 207c 0a7c 6f32 3220 |.|o22 │ │ │ │ -0002aa00: 3d20 2d20 3732 7820 7820 202b 2033 7820 = - 72x x + 3x │ │ │ │ -0002aa10: 202b 2038 7820 7820 202b 2078 2020 2020 + 8x x + x │ │ │ │ +0002a9e0: 2020 2020 2020 2020 2020 7c0a 7c6f 3232 |.|o22 │ │ │ │ +0002a9f0: 203d 202d 2037 3278 2078 2020 2b20 3378 = - 72x x + 3x │ │ │ │ +0002aa00: 2020 2b20 3878 2078 2020 2b20 7820 2020 + 8x x + x │ │ │ │ +0002aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aa40: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002aa50: 2020 3320 3420 2020 2020 3320 2020 2020 3 4 3 │ │ │ │ -0002aa60: 3320 3420 2020 2033 2020 2020 2020 2020 3 4 3 │ │ │ │ +0002aa30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002aa40: 2020 2033 2034 2020 2020 2033 2020 2020 3 4 3 │ │ │ │ +0002aa50: 2033 2034 2020 2020 3320 2020 2020 2020 3 4 3 │ │ │ │ +0002aa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aa80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002aa90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002aa80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002aa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aad0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002aae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aaf0: 2020 205a 5a5b 7820 2e2e 7820 5d20 2020 ZZ[x ..x ] │ │ │ │ +0002aac0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aae0: 2020 2020 5a5a 5b78 202e 2e78 205d 2020 ZZ[x ..x ] │ │ │ │ +0002aaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ab10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ab20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002ab30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ab40: 2020 3020 2020 3420 2020 2020 2020 2020 0 4 │ │ │ │ +0002ab10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002ab20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ab30: 2020 2030 2020 2034 2020 2020 2020 2020 0 4 │ │ │ │ +0002ab40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ab50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ab60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ab70: 7c0a 7c6f 3232 203a 202d 2d2d 2d2d 2d2d |.|o22 : ------- │ │ │ │ +0002ab60: 207c 0a7c 6f32 3220 3a20 2d2d 2d2d 2d2d |.|o22 : ------ │ │ │ │ +0002ab70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ab80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ab90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002aba0: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ -0002abb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002abc0: 2020 2020 2878 2078 202c 2078 2078 2078 (x x , x x x │ │ │ │ -0002abd0: 202c 2078 2020 2d20 7820 2c20 7820 202d , x - x , x - │ │ │ │ -0002abe0: 2078 202c 2078 2020 2d20 7820 2920 2020 x , x - x ) │ │ │ │ -0002abf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ac00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002ac10: 2032 2034 2020 2030 2031 2033 2020 2030 2 4 0 1 3 0 │ │ │ │ -0002ac20: 2020 2020 3320 2020 3120 2020 2033 2020 3 1 3 │ │ │ │ -0002ac30: 2032 2020 2020 3420 2020 2020 2020 2020 2 4 │ │ │ │ -0002ac40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ac50: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002ab90: 2d2d 2d20 2020 2020 2020 2020 2020 2020 --- │ │ │ │ +0002aba0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002abb0: 2020 2020 2028 7820 7820 2c20 7820 7820 (x x , x x │ │ │ │ +0002abc0: 7820 2c20 7820 202d 2078 202c 2078 2020 x , x - x , x │ │ │ │ +0002abd0: 2d20 7820 2c20 7820 202d 2078 2029 2020 - x , x - x ) │ │ │ │ +0002abe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002abf0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002ac00: 2020 3220 3420 2020 3020 3120 3320 2020 2 4 0 1 3 │ │ │ │ +0002ac10: 3020 2020 2033 2020 2031 2020 2020 3320 0 3 1 3 │ │ │ │ +0002ac20: 2020 3220 2020 2034 2020 2020 2020 2020 2 4 │ │ │ │ +0002ac30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ac40: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002ac50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ac60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ac70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ac80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ac90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0002aca0: 3233 203a 2043 683d 546f 7269 6343 686f 23 : Ch=ToricCho │ │ │ │ -0002acb0: 7752 696e 6728 5829 2020 2020 2020 2020 wRing(X) │ │ │ │ +0002ac80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0002ac90: 6932 3320 3a20 4368 3d54 6f72 6963 4368 i23 : Ch=ToricCh │ │ │ │ +0002aca0: 6f77 5269 6e67 2858 2920 2020 2020 2020 owRing(X) │ │ │ │ +0002acb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002acc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002acd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ace0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002acd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002ace0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002acf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ad00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ad10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ad20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ad30: 2020 7c0a 7c6f 3233 203d 2043 6820 2020 |.|o23 = Ch │ │ │ │ +0002ad20: 2020 207c 0a7c 6f32 3320 3d20 4368 2020 |.|o23 = Ch │ │ │ │ +0002ad30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ad40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ad50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ad60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ad70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002ad60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002ad70: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002ad80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ad90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ada0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002adb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002adc0: 2020 2020 2020 2020 7c0a 7c6f 3233 203a |.|o23 : │ │ │ │ -0002add0: 2051 756f 7469 656e 7452 696e 6720 2020 QuotientRing │ │ │ │ +0002adb0: 2020 2020 2020 2020 207c 0a7c 6f32 3320 |.|o23 │ │ │ │ +0002adc0: 3a20 5175 6f74 6965 6e74 5269 6e67 2020 : QuotientRing │ │ │ │ +0002add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002adf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ae00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ae10: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0002ae00: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002ae10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ae20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ae30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ae40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ae50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0002ae60: 7c69 3234 203a 2073 333d 5365 6772 6528 |i24 : s3=Segre( │ │ │ │ -0002ae70: 4368 2c58 2c49 2920 2020 2020 2020 2020 Ch,X,I) │ │ │ │ +0002ae40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002ae50: 0a7c 6932 3420 3a20 7333 3d53 6567 7265 .|i24 : s3=Segre │ │ │ │ +0002ae60: 2843 682c 582c 4929 2020 2020 2020 2020 (Ch,X,I) │ │ │ │ +0002ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ae90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aea0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0002ae90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002aea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aef0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002af00: 2020 3220 2020 2020 2020 3220 2020 2020 2 2 │ │ │ │ +0002aee0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002aef0: 2020 2032 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ +0002af00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002af10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002af20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002af40: 0a7c 6f32 3420 3d20 2d20 3732 7820 7820 .|o24 = - 72x x │ │ │ │ -0002af50: 202b 2033 7820 202b 2038 7820 7820 202b + 3x + 8x x + │ │ │ │ -0002af60: 2078 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ -0002af70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af80: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002af90: 2020 2020 2020 2020 3320 3420 2020 2020 3 4 │ │ │ │ -0002afa0: 3320 2020 2020 3320 3420 2020 2033 2020 3 3 4 3 │ │ │ │ +0002af30: 7c0a 7c6f 3234 203d 202d 2037 3278 2078 |.|o24 = - 72x x │ │ │ │ +0002af40: 2020 2b20 3378 2020 2b20 3878 2078 2020 + 3x + 8x x │ │ │ │ +0002af50: 2b20 7820 2020 2020 2020 2020 2020 2020 + x │ │ │ │ +0002af60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002af70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002af80: 2020 2020 2020 2020 2033 2034 2020 2020 3 4 │ │ │ │ +0002af90: 2033 2020 2020 2033 2034 2020 2020 3320 3 3 4 3 │ │ │ │ +0002afa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002afb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002afc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002afd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002afc0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002afd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b020: 7c0a 7c6f 3234 203a 2043 6820 2020 2020 |.|o24 : Ch │ │ │ │ +0002b010: 207c 0a7c 6f32 3420 3a20 4368 2020 2020 |.|o24 : Ch │ │ │ │ +0002b020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b060: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0002b050: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002b060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b0b0: 2d2d 2d2d 2d2d 2b0a 0a41 6c6c 2074 6865 ------+..All the │ │ │ │ -0002b0c0: 2065 7861 6d70 6c65 7320 7765 7265 2064 examples were d │ │ │ │ -0002b0d0: 6f6e 6520 7573 696e 6720 7379 6d62 6f6c one using symbol │ │ │ │ -0002b0e0: 6963 2063 6f6d 7075 7461 7469 6f6e 7320 ic computations │ │ │ │ -0002b0f0: 7769 7468 2047 725c 226f 626e 6572 2062 with Gr\"obner b │ │ │ │ -0002b100: 6173 6573 2e0a 4368 616e 6769 6e67 2074 ases..Changing t │ │ │ │ -0002b110: 6865 206f 7074 696f 6e20 2a6e 6f74 6520 he option *note │ │ │ │ -0002b120: 436f 6d70 4d65 7468 6f64 3a20 436f 6d70 CompMethod: Comp │ │ │ │ -0002b130: 4d65 7468 6f64 2c20 746f 2062 6572 7469 Method, to berti │ │ │ │ -0002b140: 6e69 2077 696c 6c20 646f 2074 6865 206d ni will do the m │ │ │ │ -0002b150: 6169 6e0a 636f 6d70 7574 6174 696f 6e73 ain.computations │ │ │ │ -0002b160: 206e 756d 6572 6963 616c 6c79 2c20 7072 numerically, pr │ │ │ │ -0002b170: 6f76 6964 6564 2042 6572 7469 6e69 2069 ovided Bertini i │ │ │ │ -0002b180: 7320 202a 6e6f 7465 2069 6e73 7461 6c6c s *note install │ │ │ │ -0002b190: 6564 2061 6e64 2063 6f6e 6669 6775 7265 ed and configure │ │ │ │ -0002b1a0: 643a 0a63 6f6e 6669 6775 7269 6e67 2042 d:.configuring B │ │ │ │ -0002b1b0: 6572 7469 6e69 2c2e 204e 6f74 6520 7468 ertini,. Note th │ │ │ │ -0002b1c0: 6174 2074 6865 2062 6572 7469 6e69 206f at the bertini o │ │ │ │ -0002b1d0: 7074 696f 6e20 6973 206f 6e6c 7920 6176 ption is only av │ │ │ │ -0002b1e0: 6169 6c61 626c 6520 666f 720a 7375 6273 ailable for.subs │ │ │ │ -0002b1f0: 6368 656d 6573 206f 6620 5c50 505e 6e2e chemes of \PP^n. │ │ │ │ -0002b200: 0a0a 4f62 7365 7276 6520 7468 6174 2074 ..Observe that t │ │ │ │ -0002b210: 6865 2061 6c67 6f72 6974 686d 2069 7320 he algorithm is │ │ │ │ -0002b220: 6120 7072 6f62 6162 696c 6973 7469 6320 a probabilistic │ │ │ │ -0002b230: 616c 676f 7269 7468 6d20 616e 6420 6d61 algorithm and ma │ │ │ │ -0002b240: 7920 6769 7665 2061 2077 726f 6e67 0a61 y give a wrong.a │ │ │ │ -0002b250: 6e73 7765 7220 7769 7468 2061 2073 6d61 nswer with a sma │ │ │ │ -0002b260: 6c6c 2062 7574 206e 6f6e 7a65 726f 2070 ll but nonzero p │ │ │ │ -0002b270: 726f 6261 6269 6c69 7479 2e20 5265 6164 robability. Read │ │ │ │ -0002b280: 206d 6f72 6520 756e 6465 7220 2a6e 6f74 more under *not │ │ │ │ -0002b290: 650a 7072 6f62 6162 696c 6973 7469 6320 e.probabilistic │ │ │ │ -0002b2a0: 616c 676f 7269 7468 6d3a 2070 726f 6261 algorithm: proba │ │ │ │ -0002b2b0: 6269 6c69 7374 6963 2061 6c67 6f72 6974 bilistic algorit │ │ │ │ -0002b2c0: 686d 2c2e 0a0a 5761 7973 2074 6f20 7573 hm,...Ways to us │ │ │ │ -0002b2d0: 6520 5365 6772 653a 0a3d 3d3d 3d3d 3d3d e Segre:.======= │ │ │ │ -0002b2e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -0002b2f0: 2022 5365 6772 6528 4964 6561 6c29 220a "Segre(Ideal)". │ │ │ │ -0002b300: 2020 2a20 2253 6567 7265 2849 6465 616c * "Segre(Ideal │ │ │ │ -0002b310: 2c53 796d 626f 6c29 220a 2020 2a20 2253 ,Symbol)". * "S │ │ │ │ -0002b320: 6567 7265 2851 756f 7469 656e 7452 696e egre(QuotientRin │ │ │ │ -0002b330: 672c 4964 6561 6c29 220a 0a46 6f72 2074 g,Ideal)"..For t │ │ │ │ -0002b340: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ -0002b350: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0002b360: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ -0002b370: 7465 2053 6567 7265 3a20 5365 6772 652c te Segre: Segre, │ │ │ │ -0002b380: 2069 7320 6120 2a6e 6f74 6520 6d65 7468 is a *note meth │ │ │ │ -0002b390: 6f64 2066 756e 6374 696f 6e20 7769 7468 od function with │ │ │ │ -0002b3a0: 206f 7074 696f 6e73 3a0a 284d 6163 6175 options:.(Macau │ │ │ │ -0002b3b0: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ -0002b3c0: 6e63 7469 6f6e 5769 7468 4f70 7469 6f6e nctionWithOption │ │ │ │ -0002b3d0: 732c 2e0a 1f0a 4669 6c65 3a20 4368 6172 s,....File: Char │ │ │ │ -0002b3e0: 6163 7465 7269 7374 6963 436c 6173 7365 acteristicClasse │ │ │ │ -0002b3f0: 732e 696e 666f 2c20 4e6f 6465 3a20 546f s.info, Node: To │ │ │ │ -0002b400: 7269 6343 686f 7752 696e 672c 2050 7265 ricChowRing, Pre │ │ │ │ -0002b410: 763a 2053 6567 7265 2c20 5570 3a20 546f v: Segre, Up: To │ │ │ │ -0002b420: 700a 0a54 6f72 6963 4368 6f77 5269 6e67 p..ToricChowRing │ │ │ │ -0002b430: 202d 2d20 436f 6d70 7574 6573 2074 6865 -- Computes the │ │ │ │ -0002b440: 2043 686f 7720 7269 6e67 206f 6620 6120 Chow ring of a │ │ │ │ -0002b450: 6e6f 726d 616c 2074 6f72 6963 2076 6172 normal toric var │ │ │ │ -0002b460: 6965 7479 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a iety.*********** │ │ │ │ +0002b0a0: 2d2d 2d2d 2d2d 2d2b 0a0a 416c 6c20 7468 -------+..All th │ │ │ │ +0002b0b0: 6520 6578 616d 706c 6573 2077 6572 6520 e examples were │ │ │ │ +0002b0c0: 646f 6e65 2075 7369 6e67 2073 796d 626f done using symbo │ │ │ │ +0002b0d0: 6c69 6320 636f 6d70 7574 6174 696f 6e73 lic computations │ │ │ │ +0002b0e0: 2077 6974 6820 4772 5c22 6f62 6e65 7220 with Gr\"obner │ │ │ │ +0002b0f0: 6261 7365 732e 0a43 6861 6e67 696e 6720 bases..Changing │ │ │ │ +0002b100: 7468 6520 6f70 7469 6f6e 202a 6e6f 7465 the option *note │ │ │ │ +0002b110: 2043 6f6d 704d 6574 686f 643a 2043 6f6d CompMethod: Com │ │ │ │ +0002b120: 704d 6574 686f 642c 2074 6f20 6265 7274 pMethod, to bert │ │ │ │ +0002b130: 696e 6920 7769 6c6c 2064 6f20 7468 6520 ini will do the │ │ │ │ +0002b140: 6d61 696e 0a63 6f6d 7075 7461 7469 6f6e main.computation │ │ │ │ +0002b150: 7320 6e75 6d65 7269 6361 6c6c 792c 2070 s numerically, p │ │ │ │ +0002b160: 726f 7669 6465 6420 4265 7274 696e 6920 rovided Bertini │ │ │ │ +0002b170: 6973 2020 2a6e 6f74 6520 696e 7374 616c is *note instal │ │ │ │ +0002b180: 6c65 6420 616e 6420 636f 6e66 6967 7572 led and configur │ │ │ │ +0002b190: 6564 3a0a 636f 6e66 6967 7572 696e 6720 ed:.configuring │ │ │ │ +0002b1a0: 4265 7274 696e 692c 2e20 4e6f 7465 2074 Bertini,. Note t │ │ │ │ +0002b1b0: 6861 7420 7468 6520 6265 7274 696e 6920 hat the bertini │ │ │ │ +0002b1c0: 6f70 7469 6f6e 2069 7320 6f6e 6c79 2061 option is only a │ │ │ │ +0002b1d0: 7661 696c 6162 6c65 2066 6f72 0a73 7562 vailable for.sub │ │ │ │ +0002b1e0: 7363 6865 6d65 7320 6f66 205c 5050 5e6e schemes of \PP^n │ │ │ │ +0002b1f0: 2e0a 0a4f 6273 6572 7665 2074 6861 7420 ...Observe that │ │ │ │ +0002b200: 7468 6520 616c 676f 7269 7468 6d20 6973 the algorithm is │ │ │ │ +0002b210: 2061 2070 726f 6261 6269 6c69 7374 6963 a probabilistic │ │ │ │ +0002b220: 2061 6c67 6f72 6974 686d 2061 6e64 206d algorithm and m │ │ │ │ +0002b230: 6179 2067 6976 6520 6120 7772 6f6e 670a ay give a wrong. │ │ │ │ +0002b240: 616e 7377 6572 2077 6974 6820 6120 736d answer with a sm │ │ │ │ +0002b250: 616c 6c20 6275 7420 6e6f 6e7a 6572 6f20 all but nonzero │ │ │ │ +0002b260: 7072 6f62 6162 696c 6974 792e 2052 6561 probability. Rea │ │ │ │ +0002b270: 6420 6d6f 7265 2075 6e64 6572 202a 6e6f d more under *no │ │ │ │ +0002b280: 7465 0a70 726f 6261 6269 6c69 7374 6963 te.probabilistic │ │ │ │ +0002b290: 2061 6c67 6f72 6974 686d 3a20 7072 6f62 algorithm: prob │ │ │ │ +0002b2a0: 6162 696c 6973 7469 6320 616c 676f 7269 abilistic algori │ │ │ │ +0002b2b0: 7468 6d2c 2e0a 0a57 6179 7320 746f 2075 thm,...Ways to u │ │ │ │ +0002b2c0: 7365 2053 6567 7265 3a0a 3d3d 3d3d 3d3d se Segre:.====== │ │ │ │ +0002b2d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ +0002b2e0: 2a20 2253 6567 7265 2849 6465 616c 2922 * "Segre(Ideal)" │ │ │ │ +0002b2f0: 0a20 202a 2022 5365 6772 6528 4964 6561 . * "Segre(Idea │ │ │ │ +0002b300: 6c2c 5379 6d62 6f6c 2922 0a20 202a 2022 l,Symbol)". * " │ │ │ │ +0002b310: 5365 6772 6528 5175 6f74 6965 6e74 5269 Segre(QuotientRi │ │ │ │ +0002b320: 6e67 2c49 6465 616c 2922 0a0a 466f 7220 ng,Ideal)"..For │ │ │ │ +0002b330: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ +0002b340: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0002b350: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ +0002b360: 6f74 6520 5365 6772 653a 2053 6567 7265 ote Segre: Segre │ │ │ │ +0002b370: 2c20 6973 2061 202a 6e6f 7465 206d 6574 , is a *note met │ │ │ │ +0002b380: 686f 6420 6675 6e63 7469 6f6e 2077 6974 hod function wit │ │ │ │ +0002b390: 6820 6f70 7469 6f6e 733a 0a28 4d61 6361 h options:.(Maca │ │ │ │ +0002b3a0: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ +0002b3b0: 756e 6374 696f 6e57 6974 684f 7074 696f unctionWithOptio │ │ │ │ +0002b3c0: 6e73 2c2e 0a1f 0a46 696c 653a 2043 6861 ns,....File: Cha │ │ │ │ +0002b3d0: 7261 6374 6572 6973 7469 6343 6c61 7373 racteristicClass │ │ │ │ +0002b3e0: 6573 2e69 6e66 6f2c 204e 6f64 653a 2054 es.info, Node: T │ │ │ │ +0002b3f0: 6f72 6963 4368 6f77 5269 6e67 2c20 5072 oricChowRing, Pr │ │ │ │ +0002b400: 6576 3a20 5365 6772 652c 2055 703a 2054 ev: Segre, Up: T │ │ │ │ +0002b410: 6f70 0a0a 546f 7269 6343 686f 7752 696e op..ToricChowRin │ │ │ │ +0002b420: 6720 2d2d 2043 6f6d 7075 7465 7320 7468 g -- Computes th │ │ │ │ +0002b430: 6520 4368 6f77 2072 696e 6720 6f66 2061 e Chow ring of a │ │ │ │ +0002b440: 206e 6f72 6d61 6c20 746f 7269 6320 7661 normal toric va │ │ │ │ +0002b450: 7269 6574 790a 2a2a 2a2a 2a2a 2a2a 2a2a riety.********** │ │ │ │ +0002b460: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002b470: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002b480: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002b490: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002b4a0: 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 ******..Synopsis │ │ │ │ -0002b4b0: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 .========.. * U │ │ │ │ -0002b4c0: 7361 6765 3a20 0a20 2020 2020 2020 2054 sage: . T │ │ │ │ -0002b4d0: 6f72 6963 4368 6f77 5269 6e67 2058 0a20 oricChowRing X. │ │ │ │ -0002b4e0: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ -0002b4f0: 202a 2052 2c20 6120 2a6e 6f74 6520 6e6f * R, a *note no │ │ │ │ -0002b500: 726d 616c 2074 6f72 6963 2076 6172 6965 rmal toric varie │ │ │ │ -0002b510: 7479 3a0a 2020 2020 2020 2020 284e 6f72 ty:. (Nor │ │ │ │ -0002b520: 6d61 6c54 6f72 6963 5661 7269 6574 6965 malToricVarietie │ │ │ │ -0002b530: 7329 4e6f 726d 616c 546f 7269 6356 6172 s)NormalToricVar │ │ │ │ -0002b540: 6965 7479 2c2c 2041 206e 6f72 6d61 6c20 iety,, A normal │ │ │ │ -0002b550: 746f 7269 6320 7661 7269 6574 790a 2020 toric variety. │ │ │ │ -0002b560: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ -0002b570: 202a 2061 202a 6e6f 7465 2071 756f 7469 * a *note quoti │ │ │ │ -0002b580: 656e 7420 7269 6e67 3a20 284d 6163 6175 ent ring: (Macau │ │ │ │ -0002b590: 6c61 7932 446f 6329 5175 6f74 6965 6e74 lay2Doc)Quotient │ │ │ │ -0002b5a0: 5269 6e67 2c2c 200a 0a44 6573 6372 6970 Ring,, ..Descrip │ │ │ │ -0002b5b0: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ -0002b5c0: 0a0a 4c65 7420 5820 6265 2061 2074 6f72 ..Let X be a tor │ │ │ │ -0002b5d0: 6963 2076 6172 6965 7479 2077 6974 6820 ic variety with │ │ │ │ -0002b5e0: 746f 7461 6c20 636f 6f72 6469 6e61 7465 total coordinate │ │ │ │ -0002b5f0: 2072 696e 6720 2843 6f78 2072 696e 6729 ring (Cox ring) │ │ │ │ -0002b600: 2052 2e20 5468 6973 206d 6574 686f 640a R. This method. │ │ │ │ -0002b610: 636f 6d70 7574 6573 2074 6865 2043 686f computes the Cho │ │ │ │ -0002b620: 7720 7269 6e67 2020 4368 6f77 2072 696e w ring Chow rin │ │ │ │ -0002b630: 6720 4368 3d52 2f28 5352 2b4c 5229 206f g Ch=R/(SR+LR) o │ │ │ │ -0002b640: 6620 583b 2068 6572 6520 5352 2069 7320 f X; here SR is │ │ │ │ -0002b650: 7468 650a 5374 616e 6c65 792d 5265 6973 the.Stanley-Reis │ │ │ │ -0002b660: 6e65 7220 6964 6561 6c20 6f66 2074 6865 ner ideal of the │ │ │ │ -0002b670: 2063 6f72 7265 7370 6f6e 6469 6e67 2066 corresponding f │ │ │ │ -0002b680: 616e 2061 6e64 204c 5220 6973 2074 6865 an and LR is the │ │ │ │ -0002b690: 2069 6465 616c 206f 6620 6c69 6e65 6172 ideal of linear │ │ │ │ -0002b6a0: 0a72 656c 6174 696f 6e73 2061 6d6f 756e .relations amoun │ │ │ │ -0002b6b0: 7420 7468 6520 7261 7973 2e20 4974 2069 t the rays. It i │ │ │ │ -0002b6c0: 7320 6e65 6564 6564 2066 6f72 2069 6e70 s needed for inp │ │ │ │ -0002b6d0: 7574 2069 6e74 6f20 7468 6520 6d65 7468 ut into the meth │ │ │ │ -0002b6e0: 6f64 7320 2a6e 6f74 6520 5365 6772 653a ods *note Segre: │ │ │ │ -0002b6f0: 0a53 6567 7265 2c2c 202a 6e6f 7465 2043 .Segre,, *note C │ │ │ │ -0002b700: 6865 726e 3a20 4368 6572 6e2c 2061 6e64 hern: Chern, and │ │ │ │ -0002b710: 202a 6e6f 7465 2043 534d 3a20 4353 4d2c *note CSM: CSM, │ │ │ │ -0002b720: 2069 6e20 7468 6520 6361 7365 7320 7768 in the cases wh │ │ │ │ -0002b730: 6572 6520 6120 746f 7269 630a 7661 7269 ere a toric.vari │ │ │ │ -0002b740: 6574 7920 6973 2061 6c73 6f20 696e 7075 ety is also inpu │ │ │ │ -0002b750: 7420 746f 2065 6e73 7572 6520 7468 6174 t to ensure that │ │ │ │ -0002b760: 2074 6865 7365 206d 6574 686f 6473 2072 these methods r │ │ │ │ -0002b770: 6574 7572 6e20 7265 7375 6c74 7320 696e eturn results in │ │ │ │ -0002b780: 2074 6865 2073 616d 650a 7269 6e67 2e20 the same.ring. │ │ │ │ -0002b790: 5765 2067 6976 6520 616e 2065 7861 6d70 We give an examp │ │ │ │ -0002b7a0: 6c65 206f 6620 7468 6520 7573 6520 6f66 le of the use of │ │ │ │ -0002b7b0: 2074 6869 7320 6d65 7468 6f64 2074 6f20 this method to │ │ │ │ -0002b7c0: 776f 726b 2077 6974 6820 656c 656d 656e work with elemen │ │ │ │ -0002b7d0: 7473 206f 6620 7468 650a 4368 6f77 2072 ts of the.Chow r │ │ │ │ -0002b7e0: 696e 6720 6f66 2061 2074 6f72 6963 2076 ing of a toric v │ │ │ │ -0002b7f0: 6172 6965 7479 0a0a 2b2d 2d2d 2d2d 2d2d ariety..+------- │ │ │ │ +0002b490: 2a2a 2a2a 2a2a 2a0a 0a53 796e 6f70 7369 *******..Synopsi │ │ │ │ +0002b4a0: 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 s.========.. * │ │ │ │ +0002b4b0: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +0002b4c0: 546f 7269 6343 686f 7752 696e 6720 580a ToricChowRing X. │ │ │ │ +0002b4d0: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +0002b4e0: 2020 2a20 522c 2061 202a 6e6f 7465 206e * R, a *note n │ │ │ │ +0002b4f0: 6f72 6d61 6c20 746f 7269 6320 7661 7269 ormal toric vari │ │ │ │ +0002b500: 6574 793a 0a20 2020 2020 2020 2028 4e6f ety:. (No │ │ │ │ +0002b510: 726d 616c 546f 7269 6356 6172 6965 7469 rmalToricVarieti │ │ │ │ +0002b520: 6573 294e 6f72 6d61 6c54 6f72 6963 5661 es)NormalToricVa │ │ │ │ +0002b530: 7269 6574 792c 2c20 4120 6e6f 726d 616c riety,, A normal │ │ │ │ +0002b540: 2074 6f72 6963 2076 6172 6965 7479 0a20 toric variety. │ │ │ │ +0002b550: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ +0002b560: 2020 2a20 6120 2a6e 6f74 6520 7175 6f74 * a *note quot │ │ │ │ +0002b570: 6965 6e74 2072 696e 673a 2028 4d61 6361 ient ring: (Maca │ │ │ │ +0002b580: 756c 6179 3244 6f63 2951 756f 7469 656e ulay2Doc)Quotien │ │ │ │ +0002b590: 7452 696e 672c 2c20 0a0a 4465 7363 7269 tRing,, ..Descri │ │ │ │ +0002b5a0: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +0002b5b0: 3d0a 0a4c 6574 2058 2062 6520 6120 746f =..Let X be a to │ │ │ │ +0002b5c0: 7269 6320 7661 7269 6574 7920 7769 7468 ric variety with │ │ │ │ +0002b5d0: 2074 6f74 616c 2063 6f6f 7264 696e 6174 total coordinat │ │ │ │ +0002b5e0: 6520 7269 6e67 2028 436f 7820 7269 6e67 e ring (Cox ring │ │ │ │ +0002b5f0: 2920 522e 2054 6869 7320 6d65 7468 6f64 ) R. This method │ │ │ │ +0002b600: 0a63 6f6d 7075 7465 7320 7468 6520 4368 .computes the Ch │ │ │ │ +0002b610: 6f77 2072 696e 6720 2043 686f 7720 7269 ow ring Chow ri │ │ │ │ +0002b620: 6e67 2043 683d 522f 2853 522b 4c52 2920 ng Ch=R/(SR+LR) │ │ │ │ +0002b630: 6f66 2058 3b20 6865 7265 2053 5220 6973 of X; here SR is │ │ │ │ +0002b640: 2074 6865 0a53 7461 6e6c 6579 2d52 6569 the.Stanley-Rei │ │ │ │ +0002b650: 736e 6572 2069 6465 616c 206f 6620 7468 sner ideal of th │ │ │ │ +0002b660: 6520 636f 7272 6573 706f 6e64 696e 6720 e corresponding │ │ │ │ +0002b670: 6661 6e20 616e 6420 4c52 2069 7320 7468 fan and LR is th │ │ │ │ +0002b680: 6520 6964 6561 6c20 6f66 206c 696e 6561 e ideal of linea │ │ │ │ +0002b690: 720a 7265 6c61 7469 6f6e 7320 616d 6f75 r.relations amou │ │ │ │ +0002b6a0: 6e74 2074 6865 2072 6179 732e 2049 7420 nt the rays. It │ │ │ │ +0002b6b0: 6973 206e 6565 6465 6420 666f 7220 696e is needed for in │ │ │ │ +0002b6c0: 7075 7420 696e 746f 2074 6865 206d 6574 put into the met │ │ │ │ +0002b6d0: 686f 6473 202a 6e6f 7465 2053 6567 7265 hods *note Segre │ │ │ │ +0002b6e0: 3a0a 5365 6772 652c 2c20 2a6e 6f74 6520 :.Segre,, *note │ │ │ │ +0002b6f0: 4368 6572 6e3a 2043 6865 726e 2c20 616e Chern: Chern, an │ │ │ │ +0002b700: 6420 2a6e 6f74 6520 4353 4d3a 2043 534d d *note CSM: CSM │ │ │ │ +0002b710: 2c20 696e 2074 6865 2063 6173 6573 2077 , in the cases w │ │ │ │ +0002b720: 6865 7265 2061 2074 6f72 6963 0a76 6172 here a toric.var │ │ │ │ +0002b730: 6965 7479 2069 7320 616c 736f 2069 6e70 iety is also inp │ │ │ │ +0002b740: 7574 2074 6f20 656e 7375 7265 2074 6861 ut to ensure tha │ │ │ │ +0002b750: 7420 7468 6573 6520 6d65 7468 6f64 7320 t these methods │ │ │ │ +0002b760: 7265 7475 726e 2072 6573 756c 7473 2069 return results i │ │ │ │ +0002b770: 6e20 7468 6520 7361 6d65 0a72 696e 672e n the same.ring. │ │ │ │ +0002b780: 2057 6520 6769 7665 2061 6e20 6578 616d We give an exam │ │ │ │ +0002b790: 706c 6520 6f66 2074 6865 2075 7365 206f ple of the use o │ │ │ │ +0002b7a0: 6620 7468 6973 206d 6574 686f 6420 746f f this method to │ │ │ │ +0002b7b0: 2077 6f72 6b20 7769 7468 2065 6c65 6d65 work with eleme │ │ │ │ +0002b7c0: 6e74 7320 6f66 2074 6865 0a43 686f 7720 nts of the.Chow │ │ │ │ +0002b7d0: 7269 6e67 206f 6620 6120 746f 7269 6320 ring of a toric │ │ │ │ +0002b7e0: 7661 7269 6574 790a 0a2b 2d2d 2d2d 2d2d variety..+------ │ │ │ │ +0002b7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b840: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 6e65 ------+.|i1 : ne │ │ │ │ -0002b850: 6564 7350 6163 6b61 6765 2022 4e6f 726d edsPackage "Norm │ │ │ │ -0002b860: 616c 546f 7269 6356 6172 6965 7469 6573 alToricVarieties │ │ │ │ -0002b870: 2220 2020 2020 2020 2020 2020 2020 2020 " │ │ │ │ -0002b880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b890: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002b830: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 206e -------+.|i1 : n │ │ │ │ +0002b840: 6565 6473 5061 636b 6167 6520 224e 6f72 eedsPackage "Nor │ │ │ │ +0002b850: 6d61 6c54 6f72 6963 5661 7269 6574 6965 malToricVarietie │ │ │ │ +0002b860: 7322 2020 2020 2020 2020 2020 2020 2020 s" │ │ │ │ +0002b870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b880: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002b890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b8e0: 2020 2020 2020 7c0a 7c6f 3120 3d20 4e6f |.|o1 = No │ │ │ │ -0002b8f0: 726d 616c 546f 7269 6356 6172 6965 7469 rmalToricVarieti │ │ │ │ -0002b900: 6573 2020 2020 2020 2020 2020 2020 2020 es │ │ │ │ +0002b8d0: 2020 2020 2020 207c 0a7c 6f31 203d 204e |.|o1 = N │ │ │ │ +0002b8e0: 6f72 6d61 6c54 6f72 6963 5661 7269 6574 ormalToricVariet │ │ │ │ +0002b8f0: 6965 7320 2020 2020 2020 2020 2020 2020 ies │ │ │ │ +0002b900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b930: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002b920: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002b930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b980: 2020 2020 2020 7c0a 7c6f 3120 3a20 5061 |.|o1 : Pa │ │ │ │ -0002b990: 636b 6167 6520 2020 2020 2020 2020 2020 ckage │ │ │ │ +0002b970: 2020 2020 2020 207c 0a7c 6f31 203a 2050 |.|o1 : P │ │ │ │ +0002b980: 6163 6b61 6765 2020 2020 2020 2020 2020 ackage │ │ │ │ +0002b990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b9d0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002b9c0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002b9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ba00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ba10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ba20: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 5268 ------+.|i2 : Rh │ │ │ │ -0002ba30: 6f20 3d20 7b7b 312c 302c 307d 2c7b 302c o = {{1,0,0},{0, │ │ │ │ -0002ba40: 312c 307d 2c7b 302c 302c 317d 2c7b 2d31 1,0},{0,0,1},{-1 │ │ │ │ -0002ba50: 2c2d 312c 307d 2c7b 302c 302c 2d31 7d7d ,-1,0},{0,0,-1}} │ │ │ │ -0002ba60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002ba10: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2052 -------+.|i2 : R │ │ │ │ +0002ba20: 686f 203d 207b 7b31 2c30 2c30 7d2c 7b30 ho = {{1,0,0},{0 │ │ │ │ +0002ba30: 2c31 2c30 7d2c 7b30 2c30 2c31 7d2c 7b2d ,1,0},{0,0,1},{- │ │ │ │ +0002ba40: 312c 2d31 2c30 7d2c 7b30 2c30 2c2d 317d 1,-1,0},{0,0,-1} │ │ │ │ +0002ba50: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +0002ba60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002ba70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ba80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002baa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bac0: 2020 2020 2020 7c0a 7c6f 3220 3d20 7b7b |.|o2 = {{ │ │ │ │ -0002bad0: 312c 2030 2c20 307d 2c20 7b30 2c20 312c 1, 0, 0}, {0, 1, │ │ │ │ -0002bae0: 2030 7d2c 207b 302c 2030 2c20 317d 2c20 0}, {0, 0, 1}, │ │ │ │ -0002baf0: 7b2d 312c 202d 312c 2030 7d2c 207b 302c {-1, -1, 0}, {0, │ │ │ │ -0002bb00: 2030 2c20 2d31 7d7d 2020 2020 2020 2020 0, -1}} │ │ │ │ -0002bb10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002bab0: 2020 2020 2020 207c 0a7c 6f32 203d 207b |.|o2 = { │ │ │ │ +0002bac0: 7b31 2c20 302c 2030 7d2c 207b 302c 2031 {1, 0, 0}, {0, 1 │ │ │ │ +0002bad0: 2c20 307d 2c20 7b30 2c20 302c 2031 7d2c , 0}, {0, 0, 1}, │ │ │ │ +0002bae0: 207b 2d31 2c20 2d31 2c20 307d 2c20 7b30 {-1, -1, 0}, {0 │ │ │ │ +0002baf0: 2c20 302c 202d 317d 7d20 2020 2020 2020 , 0, -1}} │ │ │ │ +0002bb00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002bb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb60: 2020 2020 2020 7c0a 7c6f 3220 3a20 4c69 |.|o2 : Li │ │ │ │ -0002bb70: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ +0002bb50: 2020 2020 2020 207c 0a7c 6f32 203a 204c |.|o2 : L │ │ │ │ +0002bb60: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +0002bb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bbb0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002bba0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002bbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bbd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bbe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bbf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bc00: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 5369 ------+.|i3 : Si │ │ │ │ -0002bc10: 676d 6120 3d20 7b7b 302c 312c 327d 2c7b gma = {{0,1,2},{ │ │ │ │ -0002bc20: 312c 322c 337d 2c7b 302c 322c 337d 2c7b 1,2,3},{0,2,3},{ │ │ │ │ -0002bc30: 302c 312c 347d 2c7b 312c 332c 347d 2c7b 0,1,4},{1,3,4},{ │ │ │ │ -0002bc40: 302c 332c 347d 7d20 2020 2020 2020 2020 0,3,4}} │ │ │ │ -0002bc50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002bbf0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2053 -------+.|i3 : S │ │ │ │ +0002bc00: 6967 6d61 203d 207b 7b30 2c31 2c32 7d2c igma = {{0,1,2}, │ │ │ │ +0002bc10: 7b31 2c32 2c33 7d2c 7b30 2c32 2c33 7d2c {1,2,3},{0,2,3}, │ │ │ │ +0002bc20: 7b30 2c31 2c34 7d2c 7b31 2c33 2c34 7d2c {0,1,4},{1,3,4}, │ │ │ │ +0002bc30: 7b30 2c33 2c34 7d7d 2020 2020 2020 2020 {0,3,4}} │ │ │ │ +0002bc40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002bc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bca0: 2020 2020 2020 7c0a 7c6f 3320 3d20 7b7b |.|o3 = {{ │ │ │ │ -0002bcb0: 302c 2031 2c20 327d 2c20 7b31 2c20 322c 0, 1, 2}, {1, 2, │ │ │ │ -0002bcc0: 2033 7d2c 207b 302c 2032 2c20 337d 2c20 3}, {0, 2, 3}, │ │ │ │ -0002bcd0: 7b30 2c20 312c 2034 7d2c 207b 312c 2033 {0, 1, 4}, {1, 3 │ │ │ │ -0002bce0: 2c20 347d 2c20 7b30 2c20 332c 2034 7d7d , 4}, {0, 3, 4}} │ │ │ │ -0002bcf0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002bc90: 2020 2020 2020 207c 0a7c 6f33 203d 207b |.|o3 = { │ │ │ │ +0002bca0: 7b30 2c20 312c 2032 7d2c 207b 312c 2032 {0, 1, 2}, {1, 2 │ │ │ │ +0002bcb0: 2c20 337d 2c20 7b30 2c20 322c 2033 7d2c , 3}, {0, 2, 3}, │ │ │ │ +0002bcc0: 207b 302c 2031 2c20 347d 2c20 7b31 2c20 {0, 1, 4}, {1, │ │ │ │ +0002bcd0: 332c 2034 7d2c 207b 302c 2033 2c20 347d 3, 4}, {0, 3, 4} │ │ │ │ +0002bce0: 7d20 2020 2020 207c 0a7c 2020 2020 2020 } |.| │ │ │ │ +0002bcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bd40: 2020 2020 2020 7c0a 7c6f 3320 3a20 4c69 |.|o3 : Li │ │ │ │ -0002bd50: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ +0002bd30: 2020 2020 2020 207c 0a7c 6f33 203a 204c |.|o3 : L │ │ │ │ +0002bd40: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +0002bd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bd90: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002bd80: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002bd90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bdb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bdc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bdd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bde0: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 5820 ------+.|i4 : X │ │ │ │ -0002bdf0: 3d20 6e6f 726d 616c 546f 7269 6356 6172 = normalToricVar │ │ │ │ -0002be00: 6965 7479 2852 686f 2c53 6967 6d61 2c43 iety(Rho,Sigma,C │ │ │ │ -0002be10: 6f65 6666 6963 6965 6e74 5269 6e67 203d oefficientRing = │ │ │ │ -0002be20: 3e5a 5a2f 3332 3734 3929 2020 2020 2020 >ZZ/32749) │ │ │ │ -0002be30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002bdd0: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2058 -------+.|i4 : X │ │ │ │ +0002bde0: 203d 206e 6f72 6d61 6c54 6f72 6963 5661 = normalToricVa │ │ │ │ +0002bdf0: 7269 6574 7928 5268 6f2c 5369 676d 612c riety(Rho,Sigma, │ │ │ │ +0002be00: 436f 6566 6669 6369 656e 7452 696e 6720 CoefficientRing │ │ │ │ +0002be10: 3d3e 5a5a 2f33 3237 3439 2920 2020 2020 =>ZZ/32749) │ │ │ │ +0002be20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002be30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002be40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002be50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002be60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002be70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002be80: 2020 2020 2020 7c0a 7c6f 3420 3d20 5820 |.|o4 = X │ │ │ │ +0002be70: 2020 2020 2020 207c 0a7c 6f34 203d 2058 |.|o4 = X │ │ │ │ +0002be80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bed0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002bec0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002bed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf20: 2020 2020 2020 7c0a 7c6f 3420 3a20 4e6f |.|o4 : No │ │ │ │ -0002bf30: 726d 616c 546f 7269 6356 6172 6965 7479 rmalToricVariety │ │ │ │ +0002bf10: 2020 2020 2020 207c 0a7c 6f34 203a 204e |.|o4 : N │ │ │ │ +0002bf20: 6f72 6d61 6c54 6f72 6963 5661 7269 6574 ormalToricVariet │ │ │ │ +0002bf30: 7920 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ 0002bf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf70: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002bf60: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002bf70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bf80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bf90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bfa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bfc0: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 523d ------+.|i5 : R= │ │ │ │ -0002bfd0: 7269 6e67 2058 2020 2020 2020 2020 2020 ring X │ │ │ │ +0002bfb0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2052 -------+.|i5 : R │ │ │ │ +0002bfc0: 3d72 696e 6720 5820 2020 2020 2020 2020 =ring X │ │ │ │ +0002bfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c010: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002c000: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002c010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c060: 2020 2020 2020 7c0a 7c6f 3520 3d20 5220 |.|o5 = R │ │ │ │ +0002c050: 2020 2020 2020 207c 0a7c 6f35 203d 2052 |.|o5 = R │ │ │ │ +0002c060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c0b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002c0a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002c0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c100: 2020 2020 2020 7c0a 7c6f 3520 3a20 506f |.|o5 : Po │ │ │ │ -0002c110: 6c79 6e6f 6d69 616c 5269 6e67 2020 2020 lynomialRing │ │ │ │ +0002c0f0: 2020 2020 2020 207c 0a7c 6f35 203a 2050 |.|o5 : P │ │ │ │ +0002c100: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ +0002c110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c150: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002c140: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002c150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c1a0: 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 4368 ------+.|i6 : Ch │ │ │ │ -0002c1b0: 3d54 6f72 6963 4368 6f77 5269 6e67 2858 =ToricChowRing(X │ │ │ │ -0002c1c0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0002c190: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2043 -------+.|i6 : C │ │ │ │ +0002c1a0: 683d 546f 7269 6343 686f 7752 696e 6728 h=ToricChowRing( │ │ │ │ +0002c1b0: 5829 2020 2020 2020 2020 2020 2020 2020 X) │ │ │ │ +0002c1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c1f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002c1e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002c1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c240: 2020 2020 2020 7c0a 7c6f 3620 3d20 4368 |.|o6 = Ch │ │ │ │ +0002c230: 2020 2020 2020 207c 0a7c 6f36 203d 2043 |.|o6 = C │ │ │ │ +0002c240: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ 0002c250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c290: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002c280: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002c290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c2e0: 2020 2020 2020 7c0a 7c6f 3620 3a20 5175 |.|o6 : Qu │ │ │ │ -0002c2f0: 6f74 6965 6e74 5269 6e67 2020 2020 2020 otientRing │ │ │ │ +0002c2d0: 2020 2020 2020 207c 0a7c 6f36 203a 2051 |.|o6 : Q │ │ │ │ +0002c2e0: 756f 7469 656e 7452 696e 6720 2020 2020 uotientRing │ │ │ │ +0002c2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c330: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002c320: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002c330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c380: 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 6465 ------+.|i7 : de │ │ │ │ -0002c390: 7363 7269 6265 2043 6820 2020 2020 2020 scribe Ch │ │ │ │ +0002c370: 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a 2064 -------+.|i7 : d │ │ │ │ +0002c380: 6573 6372 6962 6520 4368 2020 2020 2020 escribe Ch │ │ │ │ +0002c390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c3d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002c3c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002c3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c420: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002c430: 2020 2020 2020 2020 2020 2020 2020 5a5a ZZ │ │ │ │ -0002c440: 5b78 202e 2e78 205d 2020 2020 2020 2020 [x ..x ] │ │ │ │ +0002c410: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002c420: 2020 2020 2020 2020 2020 2020 2020 205a Z │ │ │ │ +0002c430: 5a5b 7820 2e2e 7820 5d20 2020 2020 2020 Z[x ..x ] │ │ │ │ +0002c440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c470: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002c480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c490: 2020 3020 2020 3420 2020 2020 2020 2020 0 4 │ │ │ │ +0002c460: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002c470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c480: 2020 2030 2020 2034 2020 2020 2020 2020 0 4 │ │ │ │ +0002c490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c4c0: 2020 2020 2020 7c0a 7c6f 3720 3d20 2d2d |.|o7 = -- │ │ │ │ +0002c4b0: 2020 2020 2020 207c 0a7c 6f37 203d 202d |.|o7 = - │ │ │ │ +0002c4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c4f0: 2d2d 2d2d 2d2d 2d20 2020 2020 2020 2020 ------- │ │ │ │ -0002c500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c510: 2020 2020 2020 7c0a 7c20 2020 2020 2878 |.| (x │ │ │ │ -0002c520: 2078 202c 2078 2078 2078 202c 2078 2020 x , x x x , x │ │ │ │ -0002c530: 2d20 7820 2c20 7820 202d 2078 202c 2078 - x , x - x , x │ │ │ │ -0002c540: 2020 2d20 7820 2920 2020 2020 2020 2020 - x ) │ │ │ │ -0002c550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c560: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002c570: 3220 3420 2020 3020 3120 3320 2020 3020 2 4 0 1 3 0 │ │ │ │ -0002c580: 2020 2033 2020 2031 2020 2020 3320 2020 3 1 3 │ │ │ │ -0002c590: 3220 2020 2034 2020 2020 2020 2020 2020 2 4 │ │ │ │ -0002c5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c5b0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002c4e0: 2d2d 2d2d 2d2d 2d2d 2020 2020 2020 2020 -------- │ │ │ │ +0002c4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c500: 2020 2020 2020 207c 0a7c 2020 2020 2028 |.| ( │ │ │ │ +0002c510: 7820 7820 2c20 7820 7820 7820 2c20 7820 x x , x x x , x │ │ │ │ +0002c520: 202d 2078 202c 2078 2020 2d20 7820 2c20 - x , x - x , │ │ │ │ +0002c530: 7820 202d 2078 2029 2020 2020 2020 2020 x - x ) │ │ │ │ +0002c540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c550: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002c560: 2032 2034 2020 2030 2031 2033 2020 2030 2 4 0 1 3 0 │ │ │ │ +0002c570: 2020 2020 3320 2020 3120 2020 2033 2020 3 1 3 │ │ │ │ +0002c580: 2032 2020 2020 3420 2020 2020 2020 2020 2 4 │ │ │ │ +0002c590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c5a0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002c5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c600: 2d2d 2d2d 2d2d 2b0a 7c69 3820 3a20 723d ------+.|i8 : r= │ │ │ │ -0002c610: 6765 6e73 2052 2020 2020 2020 2020 2020 gens R │ │ │ │ +0002c5f0: 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a 2072 -------+.|i8 : r │ │ │ │ +0002c600: 3d67 656e 7320 5220 2020 2020 2020 2020 =gens R │ │ │ │ +0002c610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c650: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002c640: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002c650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c6a0: 2020 2020 2020 7c0a 7c6f 3820 3d20 7b78 |.|o8 = {x │ │ │ │ -0002c6b0: 202c 2078 202c 2078 202c 2078 202c 2078 , x , x , x , x │ │ │ │ -0002c6c0: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +0002c690: 2020 2020 2020 207c 0a7c 6f38 203d 207b |.|o8 = { │ │ │ │ +0002c6a0: 7820 2c20 7820 2c20 7820 2c20 7820 2c20 x , x , x , x , │ │ │ │ +0002c6b0: 7820 7d20 2020 2020 2020 2020 2020 2020 x } │ │ │ │ +0002c6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c6f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002c700: 3020 2020 3120 2020 3220 2020 3320 2020 0 1 2 3 │ │ │ │ -0002c710: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0002c6e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002c6f0: 2030 2020 2031 2020 2032 2020 2033 2020 0 1 2 3 │ │ │ │ +0002c700: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0002c710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c740: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002c730: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002c740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c790: 2020 2020 2020 7c0a 7c6f 3820 3a20 4c69 |.|o8 : Li │ │ │ │ -0002c7a0: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ +0002c780: 2020 2020 2020 207c 0a7c 6f38 203a 204c |.|o8 : L │ │ │ │ +0002c790: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +0002c7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c7e0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002c7d0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002c7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c830: 2d2d 2d2d 2d2d 2b0a 7c69 3920 3a20 493d ------+.|i9 : I= │ │ │ │ -0002c840: 6964 6561 6c28 7261 6e64 6f6d 287b 312c ideal(random({1, │ │ │ │ -0002c850: 307d 2c52 2929 2020 2020 2020 2020 2020 0},R)) │ │ │ │ +0002c820: 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a 2049 -------+.|i9 : I │ │ │ │ +0002c830: 3d69 6465 616c 2872 616e 646f 6d28 7b31 =ideal(random({1 │ │ │ │ +0002c840: 2c30 7d2c 5229 2920 2020 2020 2020 2020 ,0},R)) │ │ │ │ +0002c850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c880: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002c870: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002c880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c8d0: 2020 2020 2020 7c0a 7c6f 3920 3d20 6964 |.|o9 = id │ │ │ │ -0002c8e0: 6561 6c28 3130 3778 2020 2b20 3433 3736 eal(107x + 4376 │ │ │ │ -0002c8f0: 7820 202d 2036 3331 3678 2029 2020 2020 x - 6316x ) │ │ │ │ +0002c8c0: 2020 2020 2020 207c 0a7c 6f39 203d 2069 |.|o9 = i │ │ │ │ +0002c8d0: 6465 616c 2831 3037 7820 202b 2034 3337 deal(107x + 437 │ │ │ │ +0002c8e0: 3678 2020 2d20 3633 3136 7820 2920 2020 6x - 6316x ) │ │ │ │ +0002c8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c920: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002c930: 2020 2020 2020 2020 3020 2020 2020 2020 0 │ │ │ │ -0002c940: 2031 2020 2020 2020 2020 3320 2020 2020 1 3 │ │ │ │ +0002c910: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002c920: 2020 2020 2020 2020 2030 2020 2020 2020 0 │ │ │ │ +0002c930: 2020 3120 2020 2020 2020 2033 2020 2020 1 3 │ │ │ │ +0002c940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c970: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002c960: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002c970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c9c0: 2020 2020 2020 7c0a 7c6f 3920 3a20 4964 |.|o9 : Id │ │ │ │ -0002c9d0: 6561 6c20 6f66 2052 2020 2020 2020 2020 eal of R │ │ │ │ +0002c9b0: 2020 2020 2020 207c 0a7c 6f39 203a 2049 |.|o9 : I │ │ │ │ +0002c9c0: 6465 616c 206f 6620 5220 2020 2020 2020 deal of R │ │ │ │ +0002c9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca10: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002ca00: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002ca10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ca20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ca30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ca40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ca50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ca60: 2d2d 2d2d 2d2d 2b0a 7c69 3130 203a 204b ------+.|i10 : K │ │ │ │ -0002ca70: 3d69 6465 616c 2872 616e 646f 6d28 7b31 =ideal(random({1 │ │ │ │ -0002ca80: 2c31 7d2c 5229 2920 2020 2020 2020 2020 ,1},R)) │ │ │ │ +0002ca50: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 -------+.|i10 : │ │ │ │ +0002ca60: 4b3d 6964 6561 6c28 7261 6e64 6f6d 287b K=ideal(random({ │ │ │ │ +0002ca70: 312c 317d 2c52 2929 2020 2020 2020 2020 1,1},R)) │ │ │ │ +0002ca80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ca90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002caa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cab0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002caa0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002cab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002caf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb00: 2020 2020 2020 7c0a 7c6f 3130 203d 2069 |.|o10 = i │ │ │ │ -0002cb10: 6465 616c 2833 3138 3778 2078 2020 2d20 deal(3187x x - │ │ │ │ -0002cb20: 3630 3533 7820 7820 202d 2031 3630 3930 6053x x - 16090 │ │ │ │ -0002cb30: 7820 7820 202b 2033 3738 3378 2078 2020 x x + 3783x x │ │ │ │ -0002cb40: 2b20 3835 3730 7820 7820 202b 2038 3434 + 8570x x + 844 │ │ │ │ -0002cb50: 3478 2078 2029 7c0a 7c20 2020 2020 2020 4x x )|.| │ │ │ │ -0002cb60: 2020 2020 2020 2020 2020 3020 3220 2020 0 2 │ │ │ │ -0002cb70: 2020 2020 2031 2032 2020 2020 2020 2020 1 2 │ │ │ │ -0002cb80: 2032 2033 2020 2020 2020 2020 3020 3420 2 3 0 4 │ │ │ │ -0002cb90: 2020 2020 2020 2031 2034 2020 2020 2020 1 4 │ │ │ │ -0002cba0: 2020 3320 3420 7c0a 7c20 2020 2020 2020 3 4 |.| │ │ │ │ +0002caf0: 2020 2020 2020 207c 0a7c 6f31 3020 3d20 |.|o10 = │ │ │ │ +0002cb00: 6964 6561 6c28 3331 3837 7820 7820 202d ideal(3187x x - │ │ │ │ +0002cb10: 2036 3035 3378 2078 2020 2d20 3136 3039 6053x x - 1609 │ │ │ │ +0002cb20: 3078 2078 2020 2b20 3337 3833 7820 7820 0x x + 3783x x │ │ │ │ +0002cb30: 202b 2038 3537 3078 2078 2020 2b20 3834 + 8570x x + 84 │ │ │ │ +0002cb40: 3434 7820 7820 297c 0a7c 2020 2020 2020 44x x )|.| │ │ │ │ +0002cb50: 2020 2020 2020 2020 2020 2030 2032 2020 0 2 │ │ │ │ +0002cb60: 2020 2020 2020 3120 3220 2020 2020 2020 1 2 │ │ │ │ +0002cb70: 2020 3220 3320 2020 2020 2020 2030 2034 2 3 0 4 │ │ │ │ +0002cb80: 2020 2020 2020 2020 3120 3420 2020 2020 1 4 │ │ │ │ +0002cb90: 2020 2033 2034 207c 0a7c 2020 2020 2020 3 4 |.| │ │ │ │ +0002cba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cbf0: 2020 2020 2020 7c0a 7c6f 3130 203a 2049 |.|o10 : I │ │ │ │ -0002cc00: 6465 616c 206f 6620 5220 2020 2020 2020 deal of R │ │ │ │ +0002cbe0: 2020 2020 2020 207c 0a7c 6f31 3020 3a20 |.|o10 : │ │ │ │ +0002cbf0: 4964 6561 6c20 6f66 2052 2020 2020 2020 Ideal of R │ │ │ │ +0002cc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc40: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002cc30: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002cc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cc90: 2d2d 2d2d 2d2d 2b0a 7c69 3131 203a 2063 ------+.|i11 : c │ │ │ │ -0002cca0: 3d43 6865 726e 2843 682c 582c 4929 2020 =Chern(Ch,X,I) │ │ │ │ +0002cc80: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 3a20 -------+.|i11 : │ │ │ │ +0002cc90: 633d 4368 6572 6e28 4368 2c58 2c49 2920 c=Chern(Ch,X,I) │ │ │ │ +0002cca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ccb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ccc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ccd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cce0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002ccd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002cce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ccf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cd30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002cd40: 2032 2020 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ +0002cd20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002cd30: 2020 3220 2020 2020 2020 3220 2020 2020 2 2 │ │ │ │ +0002cd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cd80: 2020 2020 2020 7c0a 7c6f 3131 203d 2034 |.|o11 = 4 │ │ │ │ -0002cd90: 7820 7820 202b 2032 7820 202b 2032 7820 x x + 2x + 2x │ │ │ │ -0002cda0: 7820 202b 2078 2020 2020 2020 2020 2020 x + x │ │ │ │ +0002cd70: 2020 2020 2020 207c 0a7c 6f31 3120 3d20 |.|o11 = │ │ │ │ +0002cd80: 3478 2078 2020 2b20 3278 2020 2b20 3278 4x x + 2x + 2x │ │ │ │ +0002cd90: 2078 2020 2b20 7820 2020 2020 2020 2020 x + x │ │ │ │ +0002cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cdd0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002cde0: 2033 2034 2020 2020 2033 2020 2020 2033 3 4 3 3 │ │ │ │ -0002cdf0: 2034 2020 2020 3320 2020 2020 2020 2020 4 3 │ │ │ │ +0002cdc0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002cdd0: 2020 3320 3420 2020 2020 3320 2020 2020 3 4 3 │ │ │ │ +0002cde0: 3320 3420 2020 2033 2020 2020 2020 2020 3 4 3 │ │ │ │ +0002cdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ce00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ce10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ce20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002ce10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002ce20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ce30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ce40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ce50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ce60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ce70: 2020 2020 2020 7c0a 7c6f 3131 203a 2043 |.|o11 : C │ │ │ │ -0002ce80: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ +0002ce60: 2020 2020 2020 207c 0a7c 6f31 3120 3a20 |.|o11 : │ │ │ │ +0002ce70: 4368 2020 2020 2020 2020 2020 2020 2020 Ch │ │ │ │ +0002ce80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ce90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ceb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cec0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002ceb0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002cec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ced0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cf00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cf10: 2d2d 2d2d 2d2d 2b0a 7c69 3132 203a 2073 ------+.|i12 : s │ │ │ │ -0002cf20: 3d53 6567 7265 2843 682c 582c 4b29 2020 =Segre(Ch,X,K) │ │ │ │ +0002cf00: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3220 3a20 -------+.|i12 : │ │ │ │ +0002cf10: 733d 5365 6772 6528 4368 2c58 2c4b 2920 s=Segre(Ch,X,K) │ │ │ │ +0002cf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002cf50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002cf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cfb0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002cfc0: 2032 2020 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ +0002cfa0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002cfb0: 2020 3220 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ +0002cfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d000: 2020 2020 2020 7c0a 7c6f 3132 203d 2033 |.|o12 = 3 │ │ │ │ -0002d010: 7820 7820 202d 2078 2020 2d20 3278 2078 x x - x - 2x x │ │ │ │ -0002d020: 2020 2b20 7820 202b 2078 2020 2020 2020 + x + x │ │ │ │ +0002cff0: 2020 2020 2020 207c 0a7c 6f31 3220 3d20 |.|o12 = │ │ │ │ +0002d000: 3378 2078 2020 2d20 7820 202d 2032 7820 3x x - x - 2x │ │ │ │ +0002d010: 7820 202b 2078 2020 2b20 7820 2020 2020 x + x + x │ │ │ │ +0002d020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d050: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002d060: 2033 2034 2020 2020 3320 2020 2020 3320 3 4 3 3 │ │ │ │ -0002d070: 3420 2020 2033 2020 2020 3420 2020 2020 4 3 4 │ │ │ │ +0002d040: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002d050: 2020 3320 3420 2020 2033 2020 2020 2033 3 4 3 3 │ │ │ │ +0002d060: 2034 2020 2020 3320 2020 2034 2020 2020 4 3 4 │ │ │ │ +0002d070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d0a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002d090: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002d0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d0f0: 2020 2020 2020 7c0a 7c6f 3132 203a 2043 |.|o12 : C │ │ │ │ -0002d100: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ +0002d0e0: 2020 2020 2020 207c 0a7c 6f31 3220 3a20 |.|o12 : │ │ │ │ +0002d0f0: 4368 2020 2020 2020 2020 2020 2020 2020 Ch │ │ │ │ +0002d100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d140: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002d130: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002d140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d190: 2d2d 2d2d 2d2d 2b0a 7c69 3133 203a 2073 ------+.|i13 : s │ │ │ │ -0002d1a0: 2d63 2020 2020 2020 2020 2020 2020 2020 -c │ │ │ │ +0002d180: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3320 3a20 -------+.|i13 : │ │ │ │ +0002d190: 732d 6320 2020 2020 2020 2020 2020 2020 s-c │ │ │ │ +0002d1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d1e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002d1d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002d1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d230: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002d240: 2020 3220 2020 2020 2020 3220 2020 2020 2 2 │ │ │ │ +0002d220: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002d230: 2020 2032 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ +0002d240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d280: 2020 2020 2020 7c0a 7c6f 3133 203d 202d |.|o13 = - │ │ │ │ -0002d290: 2078 2078 2020 2d20 3378 2020 2d20 3478 x x - 3x - 4x │ │ │ │ -0002d2a0: 2078 2020 2b20 7820 2020 2020 2020 2020 x + x │ │ │ │ +0002d270: 2020 2020 2020 207c 0a7c 6f31 3320 3d20 |.|o13 = │ │ │ │ +0002d280: 2d20 7820 7820 202d 2033 7820 202d 2034 - x x - 3x - 4 │ │ │ │ +0002d290: 7820 7820 202b 2078 2020 2020 2020 2020 x x + x │ │ │ │ +0002d2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d2d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002d2e0: 2020 3320 3420 2020 2020 3320 2020 2020 3 4 3 │ │ │ │ -0002d2f0: 3320 3420 2020 2034 2020 2020 2020 2020 3 4 4 │ │ │ │ +0002d2c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002d2d0: 2020 2033 2034 2020 2020 2033 2020 2020 3 4 3 │ │ │ │ +0002d2e0: 2033 2034 2020 2020 3420 2020 2020 2020 3 4 4 │ │ │ │ +0002d2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d320: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002d310: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002d320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d370: 2020 2020 2020 7c0a 7c6f 3133 203a 2043 |.|o13 : C │ │ │ │ -0002d380: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ +0002d360: 2020 2020 2020 207c 0a7c 6f31 3320 3a20 |.|o13 : │ │ │ │ +0002d370: 4368 2020 2020 2020 2020 2020 2020 2020 Ch │ │ │ │ +0002d380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d3c0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002d3b0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002d3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d410: 2d2d 2d2d 2d2d 2b0a 7c69 3134 203a 2073 ------+.|i14 : s │ │ │ │ -0002d420: 2a63 2020 2020 2020 2020 2020 2020 2020 *c │ │ │ │ +0002d400: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3420 3a20 -------+.|i14 : │ │ │ │ +0002d410: 732a 6320 2020 2020 2020 2020 2020 2020 s*c │ │ │ │ +0002d420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d460: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002d450: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002d460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d4b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002d4c0: 2032 2020 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ +0002d4a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002d4b0: 2020 3220 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ +0002d4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d500: 2020 2020 2020 7c0a 7c6f 3134 203d 2032 |.|o14 = 2 │ │ │ │ -0002d510: 7820 7820 202b 2078 2020 2b20 7820 7820 x x + x + x x │ │ │ │ +0002d4f0: 2020 2020 2020 207c 0a7c 6f31 3420 3d20 |.|o14 = │ │ │ │ +0002d500: 3278 2078 2020 2b20 7820 202b 2078 2078 2x x + x + x x │ │ │ │ +0002d510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d550: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002d560: 2033 2034 2020 2020 3320 2020 2033 2034 3 4 3 3 4 │ │ │ │ +0002d540: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002d550: 2020 3320 3420 2020 2033 2020 2020 3320 3 4 3 3 │ │ │ │ +0002d560: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 0002d570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d5a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002d590: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002d5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d5f0: 2020 2020 2020 7c0a 7c6f 3134 203a 2043 |.|o14 : C │ │ │ │ -0002d600: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ +0002d5e0: 2020 2020 2020 207c 0a7c 6f31 3420 3a20 |.|o14 : │ │ │ │ +0002d5f0: 4368 2020 2020 2020 2020 2020 2020 2020 Ch │ │ │ │ +0002d600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d640: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0002d630: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002d640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d690: 2d2d 2d2d 2d2d 2b0a 0a46 6f72 2074 6865 ------+..For the │ │ │ │ -0002d6a0: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -0002d6b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -0002d6c0: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -0002d6d0: 2054 6f72 6963 4368 6f77 5269 6e67 3a20 ToricChowRing: │ │ │ │ -0002d6e0: 546f 7269 6343 686f 7752 696e 672c 2069 ToricChowRing, i │ │ │ │ -0002d6f0: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ -0002d700: 2066 756e 6374 696f 6e3a 0a28 4d61 6361 function:.(Maca │ │ │ │ -0002d710: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ -0002d720: 756e 6374 696f 6e2c 2e0a 1f0a 5461 6720 unction,....Tag │ │ │ │ -0002d730: 5461 626c 653a 0a4e 6f64 653a 2054 6f70 Table:.Node: Top │ │ │ │ -0002d740: 7f33 3336 0a4e 6f64 653a 2062 6572 7469 .336.Node: berti │ │ │ │ -0002d750: 6e69 4368 6563 6b7f 3134 3531 370a 4e6f niCheck.14517.No │ │ │ │ -0002d760: 6465 3a20 4368 6563 6b53 6d6f 6f74 687f de: CheckSmooth. │ │ │ │ -0002d770: 3135 3533 350a 4e6f 6465 3a20 4368 6563 15535.Node: Chec │ │ │ │ -0002d780: 6b54 6f72 6963 5661 7269 6574 7956 616c kToricVarietyVal │ │ │ │ -0002d790: 6964 7f32 3031 3133 0a4e 6f64 653a 2043 id.20113.Node: C │ │ │ │ -0002d7a0: 6865 726e 7f33 3039 3035 0a4e 6f64 653a hern.30905.Node: │ │ │ │ -0002d7b0: 2043 686f 7752 696e 677f 3438 3136 350a ChowRing.48165. │ │ │ │ -0002d7c0: 4e6f 6465 3a20 436c 6173 7349 6e43 686f Node: ClassInCho │ │ │ │ -0002d7d0: 7752 696e 677f 3535 3639 370a 4e6f 6465 wRing.55697.Node │ │ │ │ -0002d7e0: 3a20 436c 6173 7349 6e54 6f72 6963 4368 : ClassInToricCh │ │ │ │ -0002d7f0: 6f77 5269 6e67 7f35 3738 3538 0a4e 6f64 owRing.57858.Nod │ │ │ │ -0002d800: 653a 2043 6f6d 704d 6574 686f 647f 3632 e: CompMethod.62 │ │ │ │ -0002d810: 3930 320a 4e6f 6465 3a20 636f 6e66 6967 902.Node: config │ │ │ │ -0002d820: 7572 696e 6720 4265 7274 696e 697f 3732 uring Bertini.72 │ │ │ │ -0002d830: 3631 310a 4e6f 6465 3a20 4353 4d7f 3734 611.Node: CSM.74 │ │ │ │ -0002d840: 3032 380a 4e6f 6465 3a20 4575 6c65 727f 028.Node: Euler. │ │ │ │ -0002d850: 3937 3436 370a 4e6f 6465 3a20 496e 6473 97467.Node: Inds │ │ │ │ -0002d860: 4f66 536d 6f6f 7468 7f31 3135 3134 360a OfSmooth.115146. │ │ │ │ -0002d870: 4e6f 6465 3a20 496e 7075 7449 7353 6d6f Node: InputIsSmo │ │ │ │ -0002d880: 6f74 687f 3131 3838 3737 0a4e 6f64 653a oth.118877.Node: │ │ │ │ -0002d890: 2069 734d 756c 7469 486f 6d6f 6765 6e65 isMultiHomogene │ │ │ │ -0002d8a0: 6f75 737f 3132 3236 3432 0a4e 6f64 653a ous.122642.Node: │ │ │ │ -0002d8b0: 204d 6574 686f 647f 3132 3635 3231 0a4e Method.126521.N │ │ │ │ -0002d8c0: 6f64 653a 204d 756c 7469 5072 6f6a 436f ode: MultiProjCo │ │ │ │ -0002d8d0: 6f72 6452 696e 677f 3133 3032 3532 0a4e ordRing.130252.N │ │ │ │ -0002d8e0: 6f64 653a 204f 7574 7075 747f 3133 3637 ode: Output.1367 │ │ │ │ -0002d8f0: 3231 0a4e 6f64 653a 2070 726f 6261 6269 21.Node: probabi │ │ │ │ -0002d900: 6c69 7374 6963 2061 6c67 6f72 6974 686d listic algorithm │ │ │ │ -0002d910: 7f31 3535 3032 310a 4e6f 6465 3a20 5365 .155021.Node: Se │ │ │ │ -0002d920: 6772 657f 3135 3934 3438 0a4e 6f64 653a gre.159448.Node: │ │ │ │ -0002d930: 2054 6f72 6963 4368 6f77 5269 6e67 7f31 ToricChowRing.1 │ │ │ │ -0002d940: 3737 3130 380a 1f0a 456e 6420 5461 6720 77108...End Tag │ │ │ │ -0002d950: 5461 626c 650a Table. │ │ │ │ +0002d680: 2d2d 2d2d 2d2d 2d2b 0a0a 466f 7220 7468 -------+..For th │ │ │ │ +0002d690: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +0002d6a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0002d6b0: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +0002d6c0: 6520 546f 7269 6343 686f 7752 696e 673a e ToricChowRing: │ │ │ │ +0002d6d0: 2054 6f72 6963 4368 6f77 5269 6e67 2c20 ToricChowRing, │ │ │ │ +0002d6e0: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ +0002d6f0: 6420 6675 6e63 7469 6f6e 3a0a 284d 6163 d function:.(Mac │ │ │ │ +0002d700: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ +0002d710: 4675 6e63 7469 6f6e 2c2e 0a1f 0a54 6167 Function,....Tag │ │ │ │ +0002d720: 2054 6162 6c65 3a0a 4e6f 6465 3a20 546f Table:.Node: To │ │ │ │ +0002d730: 707f 3333 360a 4e6f 6465 3a20 6265 7274 p.336.Node: bert │ │ │ │ +0002d740: 696e 6943 6865 636b 7f31 3435 3137 0a4e iniCheck.14517.N │ │ │ │ +0002d750: 6f64 653a 2043 6865 636b 536d 6f6f 7468 ode: CheckSmooth │ │ │ │ +0002d760: 7f31 3535 3335 0a4e 6f64 653a 2043 6865 .15535.Node: Che │ │ │ │ +0002d770: 636b 546f 7269 6356 6172 6965 7479 5661 ckToricVarietyVa │ │ │ │ +0002d780: 6c69 647f 3230 3131 330a 4e6f 6465 3a20 lid.20113.Node: │ │ │ │ +0002d790: 4368 6572 6e7f 3330 3930 350a 4e6f 6465 Chern.30905.Node │ │ │ │ +0002d7a0: 3a20 4368 6f77 5269 6e67 7f34 3831 3635 : ChowRing.48165 │ │ │ │ +0002d7b0: 0a4e 6f64 653a 2043 6c61 7373 496e 4368 .Node: ClassInCh │ │ │ │ +0002d7c0: 6f77 5269 6e67 7f35 3536 3937 0a4e 6f64 owRing.55697.Nod │ │ │ │ +0002d7d0: 653a 2043 6c61 7373 496e 546f 7269 6343 e: ClassInToricC │ │ │ │ +0002d7e0: 686f 7752 696e 677f 3537 3835 380a 4e6f howRing.57858.No │ │ │ │ +0002d7f0: 6465 3a20 436f 6d70 4d65 7468 6f64 7f36 de: CompMethod.6 │ │ │ │ +0002d800: 3239 3032 0a4e 6f64 653a 2063 6f6e 6669 2902.Node: confi │ │ │ │ +0002d810: 6775 7269 6e67 2042 6572 7469 6e69 7f37 guring Bertini.7 │ │ │ │ +0002d820: 3236 3131 0a4e 6f64 653a 2043 534d 7f37 2611.Node: CSM.7 │ │ │ │ +0002d830: 3430 3238 0a4e 6f64 653a 2045 756c 6572 4028.Node: Euler │ │ │ │ +0002d840: 7f39 3734 3637 0a4e 6f64 653a 2049 6e64 .97467.Node: Ind │ │ │ │ +0002d850: 734f 6653 6d6f 6f74 687f 3131 3531 3436 sOfSmooth.115146 │ │ │ │ +0002d860: 0a4e 6f64 653a 2049 6e70 7574 4973 536d .Node: InputIsSm │ │ │ │ +0002d870: 6f6f 7468 7f31 3138 3837 370a 4e6f 6465 ooth.118877.Node │ │ │ │ +0002d880: 3a20 6973 4d75 6c74 6948 6f6d 6f67 656e : isMultiHomogen │ │ │ │ +0002d890: 656f 7573 7f31 3232 3632 370a 4e6f 6465 eous.122627.Node │ │ │ │ +0002d8a0: 3a20 4d65 7468 6f64 7f31 3236 3530 360a : Method.126506. │ │ │ │ +0002d8b0: 4e6f 6465 3a20 4d75 6c74 6950 726f 6a43 Node: MultiProjC │ │ │ │ +0002d8c0: 6f6f 7264 5269 6e67 7f31 3330 3233 370a oordRing.130237. │ │ │ │ +0002d8d0: 4e6f 6465 3a20 4f75 7470 7574 7f31 3336 Node: Output.136 │ │ │ │ +0002d8e0: 3730 360a 4e6f 6465 3a20 7072 6f62 6162 706.Node: probab │ │ │ │ +0002d8f0: 696c 6973 7469 6320 616c 676f 7269 7468 ilistic algorith │ │ │ │ +0002d900: 6d7f 3135 3530 3036 0a4e 6f64 653a 2053 m.155006.Node: S │ │ │ │ +0002d910: 6567 7265 7f31 3539 3433 330a 4e6f 6465 egre.159433.Node │ │ │ │ +0002d920: 3a20 546f 7269 6343 686f 7752 696e 677f : ToricChowRing. │ │ │ │ +0002d930: 3137 3730 3933 0a1f 0a45 6e64 2054 6167 177093...End Tag │ │ │ │ +0002d940: 2054 6162 6c65 0a Table. │ │ ├── ./usr/share/info/CodingTheory.info.gz │ │ │ ├── CodingTheory.info │ │ │ │ @@ -3965,71 +3965,71 @@ │ │ │ │ 0000f7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f7d0: 2020 2020 2020 2020 2020 2020 2020 2063 c │ │ │ │ 0000f7e0: 6163 6865 203d 3e20 4361 6368 6554 6162 ache => CacheTab │ │ │ │ 0000f7f0: 6c65 7b7d 2020 2020 2020 2020 2020 207c le{} | │ │ │ │ 0000f800: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000f810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f820: 2020 2020 2020 2020 2020 2020 2020 2043 C │ │ │ │ -0000f830: 6f64 6520 3d3e 2069 6d61 6765 207c 2031 ode => image | 1 │ │ │ │ -0000f840: 2020 2061 2b31 207c 2020 2020 2020 207c a+1 | | │ │ │ │ +0000f830: 6f64 6520 3d3e 2069 6d61 6765 207c 2061 ode => image | a │ │ │ │ +0000f840: 2b31 2030 2020 207c 2020 2020 2020 207c +1 0 | | │ │ │ │ 0000f850: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f880: 2020 2020 2020 2020 2020 2020 207c 2031 | 1 │ │ │ │ -0000f890: 2020 2030 2020 207c 2020 2020 2020 207c 0 | | │ │ │ │ +0000f880: 2020 2020 2020 2020 2020 2020 207c 2061 | a │ │ │ │ +0000f890: 2b31 2030 2020 207c 2020 2020 2020 207c +1 0 | | │ │ │ │ 0000f8a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000f8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f8d0: 2020 2020 2020 2020 2020 2020 207c 2030 | 0 │ │ │ │ -0000f8e0: 2020 2030 2020 207c 2020 2020 2020 207c 0 | | │ │ │ │ +0000f8d0: 2020 2020 2020 2020 2020 2020 207c 2061 | a │ │ │ │ +0000f8e0: 2020 2061 2020 207c 2020 2020 2020 207c a | | │ │ │ │ 0000f8f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000f900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f920: 2020 2020 2020 2020 2020 2020 207c 2030 | 0 │ │ │ │ -0000f930: 2020 2030 2020 207c 2020 2020 2020 207c 0 | | │ │ │ │ +0000f920: 2020 2020 2020 2020 2020 2020 207c 2061 | a │ │ │ │ +0000f930: 2020 2061 2020 207c 2020 2020 2020 207c a | | │ │ │ │ 0000f940: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000f950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f970: 2020 2020 2020 2020 2020 2020 207c 2031 | 1 │ │ │ │ -0000f980: 2020 2031 2020 207c 2020 2020 2020 207c 1 | | │ │ │ │ +0000f980: 2020 2030 2020 207c 2020 2020 2020 207c 0 | | │ │ │ │ 0000f990: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000f9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f9c0: 2020 2020 2020 2020 2020 2020 207c 2061 | a │ │ │ │ -0000f9d0: 2b31 2030 2020 207c 2020 2020 2020 207c +1 0 | | │ │ │ │ +0000f9c0: 2020 2020 2020 2020 2020 2020 207c 2030 | 0 │ │ │ │ +0000f9d0: 2020 2030 2020 207c 2020 2020 2020 207c 0 | | │ │ │ │ 0000f9e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000f9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fa10: 2020 2020 2020 2020 2020 2020 207c 2061 | a │ │ │ │ -0000fa20: 2b31 2030 2020 207c 2020 2020 2020 207c +1 0 | | │ │ │ │ +0000fa10: 2020 2020 2020 2020 2020 2020 207c 2030 | 0 │ │ │ │ +0000fa20: 2020 2030 2020 207c 2020 2020 2020 207c 0 | | │ │ │ │ 0000fa30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000fa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fa60: 2020 2020 2020 2020 2020 2020 207c 2061 | a │ │ │ │ -0000fa70: 2020 2061 2020 207c 2020 2020 2020 207c a | | │ │ │ │ +0000fa60: 2020 2020 2020 2020 2020 2020 207c 2031 | 1 │ │ │ │ +0000fa70: 2020 2061 2b31 207c 2020 2020 2020 207c a+1 | | │ │ │ │ 0000fa80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000fa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000faa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fab0: 2020 2020 2020 2020 2020 2020 207c 2061 | a │ │ │ │ -0000fac0: 2020 2061 2020 207c 2020 2020 2020 207c a | | │ │ │ │ +0000fab0: 2020 2020 2020 2020 2020 2020 207c 2031 | 1 │ │ │ │ +0000fac0: 2020 2031 2020 207c 2020 2020 2020 207c 1 | | │ │ │ │ 0000fad0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000fae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000faf0: 2020 2020 2020 2020 2020 2020 2020 2047 G │ │ │ │ 0000fb00: 656e 6572 6174 6f72 4d61 7472 6978 203d eneratorMatrix = │ │ │ │ -0000fb10: 3e20 7c20 3120 2020 3120 3020 3020 207c > | 1 1 0 0 | │ │ │ │ +0000fb10: 3e20 7c20 612b 3120 612b 3120 6120 207c > | a+1 a+1 a | │ │ │ │ 0000fb20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000fb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fb60: 2020 7c20 612b 3120 3020 3020 3020 207c | a+1 0 0 0 | │ │ │ │ +0000fb60: 2020 7c20 3020 2020 3020 2020 6120 207c | 0 0 a | │ │ │ │ 0000fb70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000fb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fb90: 2020 2020 2020 2020 2020 2020 2020 2047 G │ │ │ │ -0000fba0: 656e 6572 6174 6f72 7320 3d3e 207b 7b31 enerators => {{1 │ │ │ │ -0000fbb0: 2c20 312c 2030 2c20 302c 2031 2c20 207c , 1, 0, 0, 1, | │ │ │ │ +0000fba0: 656e 6572 6174 6f72 7320 3d3e 207b 7b61 enerators => {{a │ │ │ │ +0000fbb0: 202b 2031 2c20 6120 2b20 312c 2061 207c + 1, a + 1, a | │ │ │ │ 0000fbc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000fbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fbe0: 2020 2020 2020 2020 2020 2020 2020 2050 P │ │ │ │ 0000fbf0: 6172 6974 7943 6865 636b 4d61 7472 6978 arityCheckMatrix │ │ │ │ 0000fc00: 203d 3e20 7c20 3120 3020 3020 3020 207c => | 1 0 0 0 | │ │ │ │ 0000fc10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000fc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4064,17 +4064,17 @@ │ │ │ │ 0000fdf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000fe00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fe10: 2020 2020 2020 2020 2020 2020 2020 2050 P │ │ │ │ 0000fe20: 6172 6974 7943 6865 636b 526f 7773 203d arityCheckRows = │ │ │ │ 0000fe30: 3e20 7b7b 312c 2030 2c20 302c 2030 207c > {{1, 0, 0, 0 | │ │ │ │ 0000fe40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000fe50: 2020 2020 2020 506f 696e 7473 203d 3e20 Points => │ │ │ │ -0000fe60: 7b7b 612c 2061 7d2c 207b 302c 2030 7d2c {{a, a}, {0, 0}, │ │ │ │ -0000fe70: 207b 312c 2030 7d2c 207b 302c 2031 7d2c {1, 0}, {0, 1}, │ │ │ │ -0000fe80: 207b 312c 2031 7d2c 207b 612c 2030 207c {1, 1}, {a, 0 | │ │ │ │ +0000fe60: 7b7b 612c 2030 7d2c 207b 302c 2061 7d2c {{a, 0}, {0, a}, │ │ │ │ +0000fe70: 207b 312c 2061 7d2c 207b 612c 2031 7d2c {1, a}, {a, 1}, │ │ │ │ +0000fe80: 207b 302c 2030 7d2c 207b 302c 2031 207c {0, 0}, {0, 1 | │ │ │ │ 0000fe90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000fea0: 2020 2020 2020 506f 6c79 6e6f 6d69 616c Polynomial │ │ │ │ 0000feb0: 5365 7420 3d3e 207b 7820 2b20 7920 2b20 Set => {x + y + │ │ │ │ 0000fec0: 312c 2078 2a79 7d20 2020 2020 2020 2020 1, x*y} │ │ │ │ 0000fed0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000fee0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000fef0: 2020 2020 2020 5365 7473 203d 3e20 7b7b Sets => {{ │ │ │ │ @@ -4172,71 +4172,71 @@ │ │ │ │ 000104b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000104c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000104d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000104e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000104f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010510: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00010520: 0a7c 3120 612b 3120 612b 3120 6120 6120 .|1 a+1 a+1 a a │ │ │ │ +00010520: 0a7c 6120 3120 3020 3020 3120 2020 3120 .|a 1 0 0 1 1 │ │ │ │ 00010530: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00010540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010560: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00010570: 0a7c 3120 3020 2020 3020 2020 6120 6120 .|1 0 0 a a │ │ │ │ +00010570: 0a7c 6120 3020 3020 3020 612b 3120 3120 .|a 0 0 0 a+1 1 │ │ │ │ 00010580: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00010590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000105a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000105b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000105c0: 0a7c 6120 2b20 312c 2061 202b 2031 2c20 .|a + 1, a + 1, │ │ │ │ -000105d0: 612c 2061 7d2c 207b 6120 2b20 312c 2030 a, a}, {a + 1, 0 │ │ │ │ -000105e0: 2c20 302c 2030 2c20 312c 2030 2c20 302c , 0, 0, 1, 0, 0, │ │ │ │ -000105f0: 2061 2c20 617d 7d20 2020 2020 2020 2020 a, a}} │ │ │ │ +000105c0: 0a7c 2c20 612c 2031 2c20 302c 2030 2c20 .|, a, 1, 0, 0, │ │ │ │ +000105d0: 312c 2031 7d2c 207b 302c 2030 2c20 612c 1, 1}, {0, 0, a, │ │ │ │ +000105e0: 2061 2c20 302c 2030 2c20 302c 2061 202b a, 0, 0, 0, a + │ │ │ │ +000105f0: 2031 2c20 317d 7d20 2020 2020 2020 2020 1, 1}} │ │ │ │ 00010600: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00010610: 0a7c 3020 612b 3120 3020 6120 2020 3020 .|0 a+1 0 a 0 │ │ │ │ -00010620: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00010610: 0a7c 3020 3020 3020 6120 2020 3120 7c20 .|0 0 0 a 1 | │ │ │ │ +00010620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010650: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00010660: 0a7c 3020 6120 2020 3020 3020 2020 3020 .|0 a 0 0 0 │ │ │ │ -00010670: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00010660: 0a7c 3020 3020 3020 6120 2020 3120 7c20 .|0 0 0 a 1 | │ │ │ │ +00010670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000106a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000106b0: 0a7c 3020 3020 2020 3020 3020 2020 3020 .|0 0 0 0 0 │ │ │ │ -000106c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000106b0: 0a7c 3020 3020 3020 3020 2020 6120 7c20 .|0 0 0 0 a | │ │ │ │ +000106c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000106d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000106e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000106f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00010700: 0a7c 3020 3020 2020 3020 3020 2020 3020 .|0 0 0 0 0 │ │ │ │ -00010710: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00010700: 0a7c 3020 3020 3020 3020 2020 6120 7c20 .|0 0 0 0 a | │ │ │ │ +00010710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010740: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00010750: 0a7c 3120 3020 2020 3020 612b 3120 3020 .|1 0 0 a+1 0 │ │ │ │ -00010760: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00010750: 0a7c 3120 3020 3020 612b 3120 6120 7c20 .|1 0 0 a+1 a | │ │ │ │ +00010760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010790: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000107a0: 0a7c 3020 3120 2020 3120 3020 2020 3020 .|0 1 1 0 0 │ │ │ │ -000107b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000107a0: 0a7c 3020 3120 3020 3020 2020 3020 7c20 .|0 1 0 0 0 | │ │ │ │ +000107b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000107c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000107d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000107e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000107f0: 0a7c 3020 3020 2020 3020 3120 2020 3120 .|0 0 0 1 1 │ │ │ │ -00010800: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000107f0: 0a7c 3020 3020 3120 3020 2020 3020 7c20 .|0 0 1 0 0 | │ │ │ │ +00010800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010830: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00010840: 0a7c 2c20 302c 2061 202b 2031 2c20 302c .|, 0, a + 1, 0, │ │ │ │ -00010850: 2061 2c20 307d 2c20 7b30 2c20 312c 2030 a, 0}, {0, 1, 0 │ │ │ │ -00010860: 2c20 302c 2030 2c20 612c 2030 2c20 302c , 0, 0, a, 0, 0, │ │ │ │ -00010870: 2030 7d2c 207b 302c 2030 2c20 312c 2030 0}, {0, 0, 1, 0 │ │ │ │ -00010880: 2c20 302c 2030 2c20 302c 2030 2c20 207c , 0, 0, 0, 0, | │ │ │ │ -00010890: 0a7c 7d2c 207b 302c 2061 7d2c 207b 612c .|}, {0, a}, {a, │ │ │ │ -000108a0: 2031 7d2c 207b 312c 2061 7d7d 2020 2020 1}, {1, a}} │ │ │ │ +00010840: 0a7c 2c20 302c 2030 2c20 302c 2061 2c20 .|, 0, 0, 0, a, │ │ │ │ +00010850: 317d 2c20 7b30 2c20 312c 2030 2c20 302c 1}, {0, 1, 0, 0, │ │ │ │ +00010860: 2030 2c20 302c 2030 2c20 612c 2031 7d2c 0, 0, 0, a, 1}, │ │ │ │ +00010870: 207b 302c 2030 2c20 312c 2030 2c20 302c {0, 0, 1, 0, 0, │ │ │ │ +00010880: 2030 2c20 302c 2030 2c20 617d 2c20 207c 0, 0, 0, a}, | │ │ │ │ +00010890: 0a7c 7d2c 207b 312c 2030 7d2c 207b 612c .|}, {1, 0}, {a, │ │ │ │ +000108a0: 2061 7d2c 207b 312c 2031 7d7d 2020 2020 a}, {1, 1}} │ │ │ │ 000108b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000108c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000108d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000108e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000108f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4377,38 +4377,38 @@ │ │ │ │ 00011180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011190: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000111a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000111b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000111c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000111d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000111e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000111f0: 0a7c 307d 2c20 7b30 2c20 302c 2030 2c20 .|0}, {0, 0, 0, │ │ │ │ -00011200: 312c 2030 2c20 302c 2030 2c20 302c 2030 1, 0, 0, 0, 0, 0 │ │ │ │ -00011210: 7d2c 207b 302c 2030 2c20 302c 2030 2c20 }, {0, 0, 0, 0, │ │ │ │ -00011220: 312c 2030 2c20 302c 2061 202b 2031 2c20 1, 0, 0, a + 1, │ │ │ │ -00011230: 307d 2c20 7b30 2c20 302c 2030 2c20 207c 0}, {0, 0, 0, | │ │ │ │ +000111f0: 0a7c 7b30 2c20 302c 2030 2c20 312c 2030 .|{0, 0, 0, 1, 0 │ │ │ │ +00011200: 2c20 302c 2030 2c20 302c 2061 7d2c 207b , 0, 0, 0, a}, { │ │ │ │ +00011210: 302c 2030 2c20 302c 2030 2c20 312c 2030 0, 0, 0, 0, 1, 0 │ │ │ │ +00011220: 2c20 302c 2061 202b 2031 2c20 617d 2c20 , 0, a + 1, a}, │ │ │ │ +00011230: 7b30 2c20 302c 2030 2c20 302c 2030 2c7c {0, 0, 0, 0, 0,| │ │ │ │ 00011240: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00011250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ 00011290: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000112a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000112b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000112c0: 2020 7d20 2020 2020 2020 2020 2020 2020 } │ │ │ │ +000112b0: 2020 2020 2020 2020 2020 2020 7d20 2020 } │ │ │ │ +000112c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000112d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000112e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000112f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011320: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00011330: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00011340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011360: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +00011350: 2020 2020 2020 2020 2020 207d 2020 2020 } │ │ │ │ +00011360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011370: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00011380: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00011390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000113d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ @@ -4507,18 +4507,18 @@ │ │ │ │ 000119a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000119b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000119c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000119d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000119e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000119f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011a00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00011a10: 0a7c 302c 2030 2c20 312c 2031 2c20 302c .|0, 0, 1, 1, 0, │ │ │ │ -00011a20: 2030 7d2c 207b 302c 2030 2c20 302c 2030 0}, {0, 0, 0, 0 │ │ │ │ -00011a30: 2c20 302c 2030 2c20 302c 2031 2c20 317d , 0, 0, 0, 1, 1} │ │ │ │ -00011a40: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +00011a10: 0a7c 312c 2030 2c20 302c 2030 7d2c 207b .|1, 0, 0, 0}, { │ │ │ │ +00011a20: 302c 2030 2c20 302c 2030 2c20 302c 2030 0, 0, 0, 0, 0, 0 │ │ │ │ +00011a30: 2c20 312c 2030 2c20 307d 7d20 2020 2020 , 1, 0, 0}} │ │ │ │ +00011a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011a50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00011a60: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00011a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00011ab0: 0a7c 6935 203a 2043 2e4c 696e 6561 7243 .|i5 : C.LinearC │ │ │ │ @@ -4549,112 +4549,112 @@ │ │ │ │ 00011c40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00011c50: 2020 6361 6368 6520 3d3e 2043 6163 6865 cache => Cache │ │ │ │ 00011c60: 5461 626c 657b 7d20 2020 2020 2020 2020 Table{} │ │ │ │ 00011c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011c80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00011c90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00011ca0: 2020 436f 6465 203d 3e20 696d 6167 6520 Code => image │ │ │ │ -00011cb0: 7c20 3120 2020 612b 3120 7c20 2020 2020 | 1 a+1 | │ │ │ │ +00011cb0: 7c20 612b 3120 3020 2020 7c20 2020 2020 | a+1 0 | │ │ │ │ 00011cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011cd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00011ce0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00011cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011d00: 7c20 3120 2020 3020 2020 7c20 2020 2020 | 1 0 | │ │ │ │ +00011d00: 7c20 612b 3120 3020 2020 7c20 2020 2020 | a+1 0 | │ │ │ │ 00011d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011d20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00011d30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00011d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011d50: 7c20 3020 2020 3020 2020 7c20 2020 2020 | 0 0 | │ │ │ │ +00011d50: 7c20 6120 2020 6120 2020 7c20 2020 2020 | a a | │ │ │ │ 00011d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011d70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00011d80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00011d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011da0: 7c20 3020 2020 3020 2020 7c20 2020 2020 | 0 0 | │ │ │ │ +00011da0: 7c20 6120 2020 6120 2020 7c20 2020 2020 | a a | │ │ │ │ 00011db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011dc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00011dd0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00011de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011df0: 7c20 3120 2020 3120 2020 7c20 2020 2020 | 1 1 | │ │ │ │ +00011df0: 7c20 3120 2020 3020 2020 7c20 2020 2020 | 1 0 | │ │ │ │ 00011e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00011e20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00011e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011e40: 7c20 612b 3120 3020 2020 7c20 2020 2020 | a+1 0 | │ │ │ │ +00011e40: 7c20 3020 2020 3020 2020 7c20 2020 2020 | 0 0 | │ │ │ │ 00011e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00011e70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00011e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011e90: 7c20 612b 3120 3020 2020 7c20 2020 2020 | a+1 0 | │ │ │ │ +00011e90: 7c20 3020 2020 3020 2020 7c20 2020 2020 | 0 0 | │ │ │ │ 00011ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011eb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00011ec0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00011ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011ee0: 7c20 6120 2020 6120 2020 7c20 2020 2020 | a a | │ │ │ │ +00011ee0: 7c20 3120 2020 612b 3120 7c20 2020 2020 | 1 a+1 | │ │ │ │ 00011ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011f00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00011f10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00011f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011f30: 7c20 6120 2020 6120 2020 7c20 2020 2020 | a a | │ │ │ │ +00011f30: 7c20 3120 2020 3120 2020 7c20 2020 2020 | 1 1 | │ │ │ │ 00011f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011f50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00011f60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00011f70: 2020 4765 6e65 7261 746f 724d 6174 7269 GeneratorMatri │ │ │ │ -00011f80: 7820 3d3e 207c 2031 2020 2031 2030 2030 x => | 1 1 0 0 │ │ │ │ -00011f90: 2031 2061 2b31 2061 2b31 2061 2061 207c 1 a+1 a+1 a a | │ │ │ │ +00011f80: 7820 3d3e 207c 2061 2b31 2061 2b31 2061 x => | a+1 a+1 a │ │ │ │ +00011f90: 2061 2031 2030 2030 2031 2020 2031 207c a 1 0 0 1 1 | │ │ │ │ 00011fa0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00011fb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00011fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011fd0: 2020 2020 207c 2061 2b31 2030 2030 2030 | a+1 0 0 0 │ │ │ │ -00011fe0: 2031 2030 2020 2030 2020 2061 2061 207c 1 0 0 a a | │ │ │ │ +00011fd0: 2020 2020 207c 2030 2020 2030 2020 2061 | 0 0 a │ │ │ │ +00011fe0: 2061 2030 2030 2030 2061 2b31 2031 207c a 0 0 0 a+1 1 | │ │ │ │ 00011ff0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00012000: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00012010: 2020 4765 6e65 7261 746f 7273 203d 3e20 Generators => │ │ │ │ -00012020: 7b7b 312c 2031 2c20 302c 2030 2c20 312c {{1, 1, 0, 0, 1, │ │ │ │ -00012030: 2061 202b 2031 2c20 6120 2b20 312c 2061 a + 1, a + 1, a │ │ │ │ -00012040: 2c20 617d 2c20 7b61 202b 2031 2c20 207c , a}, {a + 1, | │ │ │ │ +00012020: 7b7b 6120 2b20 312c 2061 202b 2031 2c20 {{a + 1, a + 1, │ │ │ │ +00012030: 612c 2061 2c20 312c 2030 2c20 302c 2031 a, a, 1, 0, 0, 1 │ │ │ │ +00012040: 2c20 317d 2c20 7b30 2c20 302c 2061 2c7c , 1}, {0, 0, a,| │ │ │ │ 00012050: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00012060: 2020 5061 7269 7479 4368 6563 6b4d 6174 ParityCheckMat │ │ │ │ 00012070: 7269 7820 3d3e 207c 2031 2030 2030 2030 rix => | 1 0 0 0 │ │ │ │ -00012080: 2030 2061 2b31 2030 2061 2020 2030 207c 0 a+1 0 a 0 | │ │ │ │ +00012080: 2030 2030 2030 2061 2020 2031 207c 2020 0 0 0 a 1 | │ │ │ │ 00012090: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000120a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000120b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000120c0: 2020 2020 2020 207c 2030 2031 2030 2030 | 0 1 0 0 │ │ │ │ -000120d0: 2030 2061 2020 2030 2030 2020 2030 207c 0 a 0 0 0 | │ │ │ │ +000120d0: 2030 2030 2030 2061 2020 2031 207c 2020 0 0 0 a 1 | │ │ │ │ 000120e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000120f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00012100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012110: 2020 2020 2020 207c 2030 2030 2031 2030 | 0 0 1 0 │ │ │ │ -00012120: 2030 2030 2020 2030 2030 2020 2030 207c 0 0 0 0 0 | │ │ │ │ +00012120: 2030 2030 2030 2030 2020 2061 207c 2020 0 0 0 0 a | │ │ │ │ 00012130: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00012140: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00012150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012160: 2020 2020 2020 207c 2030 2030 2030 2031 | 0 0 0 1 │ │ │ │ -00012170: 2030 2030 2020 2030 2030 2020 2030 207c 0 0 0 0 0 | │ │ │ │ +00012170: 2030 2030 2030 2030 2020 2061 207c 2020 0 0 0 0 a | │ │ │ │ 00012180: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00012190: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000121a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000121b0: 2020 2020 2020 207c 2030 2030 2030 2030 | 0 0 0 0 │ │ │ │ -000121c0: 2031 2030 2020 2030 2061 2b31 2030 207c 1 0 0 a+1 0 | │ │ │ │ +000121c0: 2031 2030 2030 2061 2b31 2061 207c 2020 1 0 0 a+1 a | │ │ │ │ 000121d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000121e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000121f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012200: 2020 2020 2020 207c 2030 2030 2030 2030 | 0 0 0 0 │ │ │ │ -00012210: 2030 2031 2020 2031 2030 2020 2030 207c 0 1 1 0 0 | │ │ │ │ +00012210: 2030 2031 2030 2030 2020 2030 207c 2020 0 1 0 0 0 | │ │ │ │ 00012220: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00012230: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00012240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012250: 2020 2020 2020 207c 2030 2030 2030 2030 | 0 0 0 0 │ │ │ │ -00012260: 2030 2030 2020 2030 2031 2020 2031 207c 0 0 0 1 1 | │ │ │ │ +00012260: 2030 2030 2031 2030 2020 2030 207c 2020 0 0 1 0 0 | │ │ │ │ 00012270: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00012280: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00012290: 2020 5061 7269 7479 4368 6563 6b52 6f77 ParityCheckRow │ │ │ │ 000122a0: 7320 3d3e 207b 7b31 2c20 302c 2030 2c20 s => {{1, 0, 0, │ │ │ │ -000122b0: 302c 2030 2c20 6120 2b20 312c 2030 2c20 0, 0, a + 1, 0, │ │ │ │ -000122c0: 612c 2030 7d2c 207b 302c 2031 2c20 207c a, 0}, {0, 1, | │ │ │ │ +000122b0: 302c 2030 2c20 302c 2030 2c20 612c 2031 0, 0, 0, 0, a, 1 │ │ │ │ +000122c0: 7d2c 207b 302c 2031 2c20 302c 2030 2c7c }, {0, 1, 0, 0,| │ │ │ │ 000122d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000122e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000122f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012310: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00012320: 0a7c 6f35 203a 204c 696e 6561 7243 6f64 .|o5 : LinearCod │ │ │ │ 00012330: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ @@ -4732,16 +4732,16 @@ │ │ │ │ 000127b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000127c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000127d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000127e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000127f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012810: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00012820: 0a7c 302c 2030 2c20 302c 2031 2c20 302c .|0, 0, 0, 1, 0, │ │ │ │ -00012830: 2030 2c20 612c 2061 7d7d 2020 2020 2020 0, a, a}} │ │ │ │ +00012820: 0a7c 612c 2030 2c20 302c 2030 2c20 6120 .|a, 0, 0, 0, a │ │ │ │ +00012830: 2b20 312c 2031 7d7d 2020 2020 2020 2020 + 1, 1}} │ │ │ │ 00012840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012860: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00012870: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00012880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000128a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4772,19 +4772,19 @@ │ │ │ │ 00012a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00012a50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00012a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00012aa0: 0a7c 302c 2030 2c20 302c 2061 2c20 302c .|0, 0, 0, a, 0, │ │ │ │ -00012ab0: 2030 2c20 307d 2c20 7b30 2c20 302c 2031 0, 0}, {0, 0, 1 │ │ │ │ -00012ac0: 2c20 302c 2030 2c20 302c 2030 2c20 302c , 0, 0, 0, 0, 0, │ │ │ │ -00012ad0: 2030 7d2c 207b 302c 2030 2c20 302c 2031 0}, {0, 0, 0, 1 │ │ │ │ -00012ae0: 2c20 302c 2030 2c20 302c 2030 2c20 207c , 0, 0, 0, 0, | │ │ │ │ +00012aa0: 0a7c 302c 2030 2c20 302c 2061 2c20 317d .|0, 0, 0, a, 1} │ │ │ │ +00012ab0: 2c20 7b30 2c20 302c 2031 2c20 302c 2030 , {0, 0, 1, 0, 0 │ │ │ │ +00012ac0: 2c20 302c 2030 2c20 302c 2061 7d2c 207b , 0, 0, 0, a}, { │ │ │ │ +00012ad0: 302c 2030 2c20 302c 2031 2c20 302c 2030 0, 0, 0, 1, 0, 0 │ │ │ │ +00012ae0: 2c20 302c 2030 2c20 617d 2c20 7b30 2c7c , 0, 0, a}, {0,| │ │ │ │ 00012af0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00012b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ 00012b40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00012b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4892,26 +4892,26 @@ │ │ │ │ 000131b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000131c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000131d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000131e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000131f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013210: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00013220: 0a7c 307d 2c20 7b30 2c20 302c 2030 2c20 .|0}, {0, 0, 0, │ │ │ │ -00013230: 302c 2031 2c20 302c 2030 2c20 6120 2b20 0, 1, 0, 0, a + │ │ │ │ -00013240: 312c 2030 7d2c 207b 302c 2030 2c20 302c 1, 0}, {0, 0, 0, │ │ │ │ -00013250: 2030 2c20 302c 2031 2c20 312c 2030 2c20 0, 0, 1, 1, 0, │ │ │ │ -00013260: 307d 2c20 7b30 2c20 302c 2030 2c20 207c 0}, {0, 0, 0, | │ │ │ │ +00013220: 0a7c 302c 2030 2c20 302c 2031 2c20 302c .|0, 0, 0, 1, 0, │ │ │ │ +00013230: 2030 2c20 6120 2b20 312c 2061 7d2c 207b 0, a + 1, a}, { │ │ │ │ +00013240: 302c 2030 2c20 302c 2030 2c20 302c 2031 0, 0, 0, 0, 0, 1 │ │ │ │ +00013250: 2c20 302c 2030 2c20 307d 2c20 7b30 2c20 , 0, 0, 0}, {0, │ │ │ │ +00013260: 302c 2030 2c20 302c 2030 2c20 302c 207c 0, 0, 0, 0, 0, | │ │ │ │ 00013270: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00013280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000132a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000132b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000132c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000132d0: 2020 2020 7d20 2020 2020 2020 2020 2020 } │ │ │ │ +000132c0: 0a7c 2020 2020 2020 2020 207d 2020 2020 .| } │ │ │ │ +000132d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000132e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000132f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013300: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00013310: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00013320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -5012,16 +5012,16 @@ │ │ │ │ 00013930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013940: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00013950: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00013960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013990: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000139a0: 0a7c 302c 2030 2c20 302c 2030 2c20 312c .|0, 0, 0, 0, 1, │ │ │ │ -000139b0: 2031 7d7d 2020 2020 2020 2020 2020 2020 1}} │ │ │ │ +000139a0: 0a7c 312c 2030 2c20 307d 7d20 2020 2020 .|1, 0, 0}} │ │ │ │ +000139b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000139c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000139d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000139e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000139f0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00013a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -5126,116 +5126,116 @@ │ │ │ │ 00014050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014060: 2020 2020 2020 2020 2020 2020 6361 6368 cach │ │ │ │ 00014070: 6520 3d3e 2043 6163 6865 5461 626c 657b e => CacheTable{ │ │ │ │ 00014080: 7d20 2020 2020 2020 2020 2020 7c0a 7c20 } |.| │ │ │ │ 00014090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000140a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000140b0: 2020 2020 2020 2020 2020 2020 436f 6465 Code │ │ │ │ -000140c0: 203d 3e20 696d 6167 6520 7c20 3020 2020 => image | 0 │ │ │ │ -000140d0: 3020 2020 7c20 2020 2020 2020 7c0a 7c20 0 | |.| │ │ │ │ +000140c0: 203d 3e20 696d 6167 6520 7c20 612b 3120 => image | a+1 │ │ │ │ +000140d0: 3120 2020 7c20 2020 2020 2020 7c0a 7c20 1 | |.| │ │ │ │ 000140e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000140f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014110: 2020 2020 2020 2020 2020 7c20 3020 2020 | 0 │ │ │ │ -00014120: 3020 2020 7c20 2020 2020 2020 7c0a 7c20 0 | |.| │ │ │ │ +00014110: 2020 2020 2020 2020 2020 7c20 6120 2020 | a │ │ │ │ +00014120: 612b 3120 7c20 2020 2020 2020 7c0a 7c20 a+1 | |.| │ │ │ │ 00014130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014160: 2020 2020 2020 2020 2020 7c20 612b 3120 | a+1 │ │ │ │ -00014170: 3120 2020 7c20 2020 2020 2020 7c0a 7c20 1 | |.| │ │ │ │ +00014160: 2020 2020 2020 2020 2020 7c20 3120 2020 | 1 │ │ │ │ +00014170: 612b 3120 7c20 2020 2020 2020 7c0a 7c20 a+1 | |.| │ │ │ │ 00014180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000141a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000141b0: 2020 2020 2020 2020 2020 7c20 6120 2020 | a │ │ │ │ -000141c0: 612b 3120 7c20 2020 2020 2020 7c0a 7c20 a+1 | |.| │ │ │ │ +000141b0: 2020 2020 2020 2020 2020 7c20 3020 2020 | 0 │ │ │ │ +000141c0: 3020 2020 7c20 2020 2020 2020 7c0a 7c20 0 | |.| │ │ │ │ 000141d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000141e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000141f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014200: 2020 2020 2020 2020 2020 7c20 3120 2020 | 1 │ │ │ │ -00014210: 612b 3120 7c20 2020 2020 2020 7c0a 7c20 a+1 | |.| │ │ │ │ +00014200: 2020 2020 2020 2020 2020 7c20 3020 2020 | 0 │ │ │ │ +00014210: 3020 2020 7c20 2020 2020 2020 7c0a 7c20 0 | |.| │ │ │ │ 00014220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014250: 2020 2020 2020 2020 2020 7c20 3020 2020 | 0 │ │ │ │ 00014260: 3020 2020 7c20 2020 2020 2020 7c0a 7c20 0 | |.| │ │ │ │ 00014270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000142a0: 2020 2020 2020 2020 2020 7c20 3020 2020 | 0 │ │ │ │ -000142b0: 3020 2020 7c20 2020 2020 2020 7c0a 7c20 0 | |.| │ │ │ │ +000142a0: 2020 2020 2020 2020 2020 7c20 3120 2020 | 1 │ │ │ │ +000142b0: 3120 2020 7c20 2020 2020 2020 7c0a 7c20 1 | |.| │ │ │ │ 000142c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000142d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000142e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000142f0: 2020 2020 2020 2020 2020 7c20 3020 2020 | 0 │ │ │ │ 00014300: 3020 2020 7c20 2020 2020 2020 7c0a 7c20 0 | |.| │ │ │ │ 00014310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014340: 2020 2020 2020 2020 2020 7c20 3120 2020 | 1 │ │ │ │ -00014350: 3120 2020 7c20 2020 2020 2020 7c0a 7c20 1 | |.| │ │ │ │ +00014340: 2020 2020 2020 2020 2020 7c20 3020 2020 | 0 │ │ │ │ +00014350: 3020 2020 7c20 2020 2020 2020 7c0a 7c20 0 | |.| │ │ │ │ 00014360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014380: 2020 2020 2020 2020 2020 2020 4765 6e65 Gene │ │ │ │ 00014390: 7261 746f 724d 6174 7269 7820 3d3e 207c ratorMatrix => | │ │ │ │ -000143a0: 2030 2030 2061 2b31 2061 2020 7c0a 7c20 0 0 a+1 a |.| │ │ │ │ +000143a0: 2061 2b31 2061 2020 2031 2020 7c0a 7c20 a+1 a 1 |.| │ │ │ │ 000143b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000143c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000143d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000143e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000143f0: 2030 2030 2031 2020 2061 2b20 7c0a 7c20 0 0 1 a+ |.| │ │ │ │ +000143f0: 2031 2020 2061 2b31 2061 2b20 7c0a 7c20 1 a+1 a+ |.| │ │ │ │ 00014400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014420: 2020 2020 2020 2020 2020 2020 4765 6e65 Gene │ │ │ │ -00014430: 7261 746f 7273 203d 3e20 7b7b 302c 2030 rators => {{0, 0 │ │ │ │ -00014440: 2c20 6120 2b20 312c 2061 2c20 7c0a 7c20 , a + 1, a, |.| │ │ │ │ +00014430: 7261 746f 7273 203d 3e20 7b7b 6120 2b20 rators => {{a + │ │ │ │ +00014440: 312c 2061 2c20 312c 2030 2c20 7c0a 7c20 1, a, 1, 0, |.| │ │ │ │ 00014450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014470: 2020 2020 2020 2020 2020 2020 5061 7269 Pari │ │ │ │ 00014480: 7479 4368 6563 6b4d 6174 7269 7820 3d3e tyCheckMatrix => │ │ │ │ -00014490: 207c 2031 2030 2030 2030 2020 7c0a 7c20 | 1 0 0 0 |.| │ │ │ │ +00014490: 207c 2031 2030 2031 2020 2020 7c0a 7c20 | 1 0 1 |.| │ │ │ │ 000144a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000144b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000144c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000144d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000144e0: 207c 2030 2031 2030 2030 2020 7c0a 7c20 | 0 1 0 0 |.| │ │ │ │ +000144e0: 207c 2030 2031 2061 2b31 2020 7c0a 7c20 | 0 1 a+1 |.| │ │ │ │ 000144f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014530: 207c 2030 2030 2031 2030 2020 7c0a 7c20 | 0 0 1 0 |.| │ │ │ │ +00014530: 207c 2030 2030 2030 2020 2020 7c0a 7c20 | 0 0 0 |.| │ │ │ │ 00014540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014580: 207c 2030 2030 2030 2031 2020 7c0a 7c20 | 0 0 0 1 |.| │ │ │ │ +00014580: 207c 2030 2030 2030 2020 2020 7c0a 7c20 | 0 0 0 |.| │ │ │ │ 00014590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000145a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000145b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000145c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000145d0: 207c 2030 2030 2030 2030 2020 7c0a 7c20 | 0 0 0 0 |.| │ │ │ │ +000145d0: 207c 2030 2030 2030 2020 2020 7c0a 7c20 | 0 0 0 |.| │ │ │ │ 000145e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000145f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014620: 207c 2030 2030 2030 2030 2020 7c0a 7c20 | 0 0 0 0 |.| │ │ │ │ +00014620: 207c 2030 2030 2030 2020 2020 7c0a 7c20 | 0 0 0 |.| │ │ │ │ 00014630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014670: 207c 2030 2030 2030 2030 2020 7c0a 7c20 | 0 0 0 0 |.| │ │ │ │ +00014670: 207c 2030 2030 2030 2020 2020 7c0a 7c20 | 0 0 0 |.| │ │ │ │ 00014680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000146a0: 2020 2020 2020 2020 2020 2020 5061 7269 Pari │ │ │ │ 000146b0: 7479 4368 6563 6b52 6f77 7320 3d3e 207b tyCheckRows => { │ │ │ │ -000146c0: 7b31 2c20 302c 2030 2c20 3020 7c0a 7c20 {1, 0, 0, 0 |.| │ │ │ │ +000146c0: 7b31 2c20 302c 2031 2c20 3020 7c0a 7c20 {1, 0, 1, 0 |.| │ │ │ │ 000146d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000146e0: 2020 2050 6f69 6e74 7320 3d3e 207b 7b30 Points => {{0 │ │ │ │ -000146f0: 2c20 617d 2c20 7b61 2c20 307d 2c20 7b31 , a}, {a, 0}, {1 │ │ │ │ -00014700: 2c20 617d 2c20 7b61 2c20 317d 2c20 7b61 , a}, {a, 1}, {a │ │ │ │ -00014710: 2c20 617d 2c20 7b30 2c20 3020 7c0a 7c20 , a}, {0, 0 |.| │ │ │ │ +000146e0: 2020 2050 6f69 6e74 7320 3d3e 207b 7b31 Points => {{1 │ │ │ │ +000146f0: 2c20 617d 2c20 7b61 2c20 317d 2c20 7b61 , a}, {a, 1}, {a │ │ │ │ +00014700: 2c20 617d 2c20 7b30 2c20 307d 2c20 7b30 , a}, {0, 0}, {0 │ │ │ │ +00014710: 2c20 317d 2c20 7b31 2c20 3020 7c0a 7c20 , 1}, {1, 0 |.| │ │ │ │ 00014720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014740: 2020 2020 2020 2020 3220 2020 3220 3320 2 2 3 │ │ │ │ 00014750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014760: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00014770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014780: 2020 2050 6f6c 796e 6f6d 6961 6c53 6574 PolynomialSet │ │ │ │ @@ -5348,71 +5348,71 @@ │ │ │ │ 00014e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014e40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00014e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014e90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00014ea0: 2031 2020 2030 2030 2030 2031 207c 2020 1 0 0 0 1 | │ │ │ │ +00014ea0: 2030 2030 2030 2031 2030 2030 207c 2020 0 0 0 1 0 0 | │ │ │ │ 00014eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014ee0: 2020 2020 2020 2020 2020 2020 7c0a 7c31 |.|1 │ │ │ │ -00014ef0: 2061 2b31 2030 2030 2030 2031 207c 2020 a+1 0 0 0 1 | │ │ │ │ +00014ef0: 2030 2030 2030 2031 2030 2030 207c 2020 0 0 0 1 0 0 | │ │ │ │ 00014f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014f30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00014f40: 312c 2030 2c20 302c 2030 2c20 317d 2c20 1, 0, 0, 0, 1}, │ │ │ │ -00014f50: 7b30 2c20 302c 2031 2c20 6120 2b20 312c {0, 0, 1, a + 1, │ │ │ │ -00014f60: 2061 202b 2031 2c20 302c 2030 2c20 302c a + 1, 0, 0, 0, │ │ │ │ -00014f70: 2031 7d7d 2020 2020 2020 2020 2020 2020 1}} │ │ │ │ +00014f40: 302c 2030 2c20 312c 2030 2c20 307d 2c20 0, 0, 1, 0, 0}, │ │ │ │ +00014f50: 7b31 2c20 6120 2b20 312c 2061 202b 2031 {1, a + 1, a + 1 │ │ │ │ +00014f60: 2c20 302c 2030 2c20 302c 2031 2c20 302c , 0, 0, 0, 1, 0, │ │ │ │ +00014f70: 2030 7d7d 2020 2020 2020 2020 2020 2020 0}} │ │ │ │ 00014f80: 2020 2020 2020 2020 2020 2020 7c0a 7c30 |.|0 │ │ │ │ -00014f90: 2020 2030 2030 2030 2030 207c 2020 2020 0 0 0 0 | │ │ │ │ +00014f90: 2030 2030 2061 2030 2030 207c 2020 2020 0 0 a 0 0 | │ │ │ │ 00014fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014fd0: 2020 2020 2020 2020 2020 2020 7c0a 7c30 |.|0 │ │ │ │ -00014fe0: 2020 2030 2030 2030 2030 207c 2020 2020 0 0 0 0 | │ │ │ │ +00014fe0: 2030 2030 2031 2030 2030 207c 2020 2020 0 0 1 0 0 | │ │ │ │ 00014ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015020: 2020 2020 2020 2020 2020 2020 7c0a 7c31 |.|1 │ │ │ │ -00015030: 2020 2030 2030 2030 2061 207c 2020 2020 0 0 0 a | │ │ │ │ +00015030: 2030 2030 2030 2030 2030 207c 2020 2020 0 0 0 0 0 | │ │ │ │ 00015040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015070: 2020 2020 2020 2020 2020 2020 7c0a 7c61 |.|a │ │ │ │ -00015080: 2b31 2030 2030 2030 2031 207c 2020 2020 +1 0 0 0 1 | │ │ │ │ +00015070: 2020 2020 2020 2020 2020 2020 7c0a 7c30 |.|0 │ │ │ │ +00015080: 2031 2030 2030 2030 2030 207c 2020 2020 1 0 0 0 0 | │ │ │ │ 00015090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000150a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000150b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000150c0: 2020 2020 2020 2020 2020 2020 7c0a 7c30 |.|0 │ │ │ │ -000150d0: 2020 2031 2030 2030 2030 207c 2020 2020 1 0 0 0 | │ │ │ │ +000150d0: 2030 2031 2030 2030 2030 207c 2020 2020 0 1 0 0 0 | │ │ │ │ 000150e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000150f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015110: 2020 2020 2020 2020 2020 2020 7c0a 7c30 |.|0 │ │ │ │ -00015120: 2020 2030 2031 2030 2030 207c 2020 2020 0 1 0 0 | │ │ │ │ +00015120: 2030 2030 2030 2031 2030 207c 2020 2020 0 0 0 1 0 | │ │ │ │ 00015130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015160: 2020 2020 2020 2020 2020 2020 7c0a 7c30 |.|0 │ │ │ │ -00015170: 2020 2030 2030 2031 2030 207c 2020 2020 0 0 1 0 | │ │ │ │ +00015170: 2030 2030 2030 2030 2031 207c 2020 2020 0 0 0 0 1 | │ │ │ │ 00015180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000151a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000151b0: 2020 2020 2020 2020 2020 2020 7c0a 7c2c |.|, │ │ │ │ -000151c0: 2030 2c20 302c 2030 2c20 302c 2030 7d2c 0, 0, 0, 0, 0}, │ │ │ │ -000151d0: 207b 302c 2031 2c20 302c 2030 2c20 302c {0, 1, 0, 0, 0, │ │ │ │ -000151e0: 2030 2c20 302c 2030 2c20 307d 2c20 7b30 0, 0, 0, 0}, {0 │ │ │ │ -000151f0: 2c20 302c 2031 2c20 302c 2031 2c20 302c , 0, 1, 0, 1, 0, │ │ │ │ -00015200: 2030 2c20 302c 2061 7d2c 2020 7c0a 7c7d 0, 0, a}, |.|} │ │ │ │ -00015210: 2c20 7b30 2c20 317d 2c20 7b31 2c20 307d , {0, 1}, {1, 0} │ │ │ │ -00015220: 2c20 7b31 2c20 317d 7d20 2020 2020 2020 , {1, 1}} │ │ │ │ +000151c0: 2030 2c20 302c 2061 2c20 302c 2030 7d2c 0, 0, a, 0, 0}, │ │ │ │ +000151d0: 207b 302c 2031 2c20 6120 2b20 312c 2030 {0, 1, a + 1, 0 │ │ │ │ +000151e0: 2c20 302c 2030 2c20 312c 2030 2c20 307d , 0, 0, 1, 0, 0} │ │ │ │ +000151f0: 2c20 7b30 2c20 302c 2030 2c20 312c 2030 , {0, 0, 0, 1, 0 │ │ │ │ +00015200: 2c20 302c 2030 2c20 302c 2020 7c0a 7c7d , 0, 0, 0, |.|} │ │ │ │ +00015210: 2c20 7b31 2c20 317d 2c20 7b30 2c20 617d , {1, 1}, {0, a} │ │ │ │ +00015220: 2c20 7b61 2c20 307d 7d20 2020 2020 2020 , {a, 0}} │ │ │ │ 00015230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015250: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00015260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -5567,17 +5567,17 @@ │ │ │ │ 00015be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015c00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00015c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015c50: 2020 2020 2020 2020 2020 2020 7c0a 7c7b |.|{ │ │ │ │ -00015c60: 302c 2030 2c20 302c 2031 2c20 6120 2b20 0, 0, 0, 1, a + │ │ │ │ -00015c70: 312c 2030 2c20 302c 2030 2c20 317d 2c20 1, 0, 0, 0, 1}, │ │ │ │ +00015c50: 2020 2020 2020 2020 2020 2020 7c0a 7c30 |.|0 │ │ │ │ +00015c60: 7d2c 207b 302c 2030 2c20 302c 2030 2c20 }, {0, 0, 0, 0, │ │ │ │ +00015c70: 312c 2030 2c20 302c 2030 2c20 307d 2c20 1, 0, 0, 0, 0}, │ │ │ │ 00015c80: 7b30 2c20 302c 2030 2c20 302c 2030 2c20 {0, 0, 0, 0, 0, │ │ │ │ 00015c90: 312c 2030 2c20 302c 2030 7d2c 207b 302c 1, 0, 0, 0}, {0, │ │ │ │ 00015ca0: 2030 2c20 302c 2030 2c20 302c 7c0a 7c2d 0, 0, 0, 0,|.|- │ │ │ │ 00015cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -5698,17 +5698,17 @@ │ │ │ │ 00016410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016420: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00016430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016470: 2020 2020 2020 2020 2020 2020 7c0a 7c30 |.|0 │ │ │ │ -00016480: 2c20 312c 2030 2c20 307d 2c20 7b30 2c20 , 1, 0, 0}, {0, │ │ │ │ +00016480: 2c20 302c 2031 2c20 307d 2c20 7b30 2c20 , 0, 1, 0}, {0, │ │ │ │ 00016490: 302c 2030 2c20 302c 2030 2c20 302c 2030 0, 0, 0, 0, 0, 0 │ │ │ │ -000164a0: 2c20 312c 2030 7d7d 2020 2020 2020 2020 , 1, 0}} │ │ │ │ +000164a0: 2c20 302c 2031 7d7d 2020 2020 2020 2020 , 0, 1}} │ │ │ │ 000164b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000164c0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 000164d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000164e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000164f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a43 ------------+..C │ │ │ │ @@ -5844,71 +5844,71 @@ │ │ │ │ 00016d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016d40: 2020 6361 6368 6520 3d3e 2043 6163 6865 cache => Cache │ │ │ │ 00016d50: 5461 626c 657b 7d20 2020 2020 2020 2020 Table{} │ │ │ │ 00016d60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016d90: 2020 436f 6465 203d 3e20 696d 6167 6520 Code => image │ │ │ │ -00016da0: 7c20 3120 2020 612b 3120 7c20 2020 2020 | 1 a+1 | │ │ │ │ +00016da0: 7c20 3120 2020 3020 2020 7c20 2020 2020 | 1 0 | │ │ │ │ 00016db0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016df0: 7c20 612b 3120 3020 2020 7c20 2020 2020 | a+1 0 | │ │ │ │ +00016df0: 7c20 3020 2020 3020 2020 7c20 2020 2020 | 0 0 | │ │ │ │ 00016e00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e40: 7c20 612b 3120 3020 2020 7c20 2020 2020 | a+1 0 | │ │ │ │ +00016e40: 7c20 3020 2020 3020 2020 7c20 2020 2020 | 0 0 | │ │ │ │ 00016e50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e90: 7c20 6120 2020 6120 2020 7c20 2020 2020 | a a | │ │ │ │ +00016e90: 7c20 612b 3120 3020 2020 7c20 2020 2020 | a+1 0 | │ │ │ │ 00016ea0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ee0: 7c20 3120 2020 3020 2020 7c20 2020 2020 | 1 0 | │ │ │ │ +00016ee0: 7c20 612b 3120 3020 2020 7c20 2020 2020 | a+1 0 | │ │ │ │ 00016ef0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016f30: 7c20 6120 2020 6120 2020 7c20 2020 2020 | a a | │ │ │ │ 00016f40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f80: 7c20 3020 2020 3020 2020 7c20 2020 2020 | 0 0 | │ │ │ │ +00016f80: 7c20 3120 2020 612b 3120 7c20 2020 2020 | 1 a+1 | │ │ │ │ 00016f90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016fd0: 7c20 3020 2020 3020 2020 7c20 2020 2020 | 0 0 | │ │ │ │ +00016fd0: 7c20 6120 2020 6120 2020 7c20 2020 2020 | a a | │ │ │ │ 00016fe0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017020: 7c20 3120 2020 3120 2020 7c20 2020 2020 | 1 1 | │ │ │ │ 00017030: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017060: 2020 4765 6e65 7261 746f 724d 6174 7269 GeneratorMatri │ │ │ │ -00017070: 7820 3d3e 207c 2031 2020 2061 2b31 2061 x => | 1 a+1 a │ │ │ │ -00017080: 2b20 7c0a 7c20 2020 2020 2020 2020 2020 + |.| │ │ │ │ +00017070: 7820 3d3e 207c 2031 2030 2030 2061 2b31 x => | 1 0 0 a+1 │ │ │ │ +00017080: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000170a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000170b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000170c0: 2020 2020 207c 2061 2b31 2030 2020 2030 | a+1 0 0 │ │ │ │ +000170c0: 2020 2020 207c 2030 2030 2030 2030 2020 | 0 0 0 0 │ │ │ │ 000170d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000170e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000170f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017100: 2020 4765 6e65 7261 746f 7273 203d 3e20 Generators => │ │ │ │ -00017110: 7b7b 312c 2061 202b 2031 2c20 6120 2b20 {{1, a + 1, a + │ │ │ │ -00017120: 3120 7c0a 7c20 2020 2020 2020 2020 2020 1 |.| │ │ │ │ +00017110: 7b7b 312c 2030 2c20 302c 2061 202b 2031 {{1, 0, 0, a + 1 │ │ │ │ +00017120: 2c20 7c0a 7c20 2020 2020 2020 2020 2020 , |.| │ │ │ │ 00017130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017150: 2020 5061 7269 7479 4368 6563 6b4d 6174 ParityCheckMat │ │ │ │ 00017160: 7269 7820 3d3e 207c 2031 2030 2030 2030 rix => | 1 0 0 0 │ │ │ │ 00017170: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -5942,18 +5942,18 @@ │ │ │ │ 00017350: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017380: 2020 5061 7269 7479 4368 6563 6b52 6f77 ParityCheckRow │ │ │ │ 00017390: 7320 3d3e 207b 7b31 2c20 302c 2030 2c20 s => {{1, 0, 0, │ │ │ │ 000173a0: 3020 7c0a 7c20 2020 2020 2020 2020 2020 0 |.| │ │ │ │ 000173b0: 2020 2020 2020 2020 2050 6f69 6e74 7320 Points │ │ │ │ -000173c0: 3d3e 207b 7b61 2c20 617d 2c20 7b30 2c20 => {{a, a}, {0, │ │ │ │ -000173d0: 617d 2c20 7b61 2c20 307d 2c20 7b61 2c20 a}, {a, 0}, {a, │ │ │ │ -000173e0: 317d 2c20 7b30 2c20 307d 2c20 7b31 2c20 1}, {0, 0}, {1, │ │ │ │ -000173f0: 6120 7c0a 7c20 2020 2020 2020 2020 2020 a |.| │ │ │ │ +000173c0: 3d3e 207b 7b30 2c20 307d 2c20 7b30 2c20 => {{0, 0}, {0, │ │ │ │ +000173d0: 317d 2c20 7b31 2c20 307d 2c20 7b30 2c20 1}, {1, 0}, {0, │ │ │ │ +000173e0: 617d 2c20 7b61 2c20 307d 2c20 7b61 2c20 a}, {a, 0}, {a, │ │ │ │ +000173f0: 3120 7c0a 7c20 2020 2020 2020 2020 2020 1 |.| │ │ │ │ 00017400: 2020 2020 2020 2020 2050 6f6c 796e 6f6d Polynom │ │ │ │ 00017410: 6961 6c53 6574 203d 3e20 7b78 202b 2079 ialSet => {x + y │ │ │ │ 00017420: 202b 2031 2c20 782a 797d 2020 2020 2020 + 1, x*y} │ │ │ │ 00017430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017440: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017450: 2020 2020 2020 2020 2053 6574 7320 3d3e Sets => │ │ │ │ 00017460: 207b 7b30 2c20 312c 2061 7d2c 207b 302c {{0, 1, a}, {0, │ │ │ │ @@ -6050,71 +6050,71 @@ │ │ │ │ 00017a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017a80: 2020 7c0a 7c31 2061 2031 2061 2030 2030 |.|1 a 1 a 0 0 │ │ │ │ +00017a80: 2020 7c0a 7c61 2b31 2061 2031 2020 2061 |.|a+1 a 1 a │ │ │ │ 00017a90: 2031 207c 2020 2020 2020 2020 2020 2020 1 | │ │ │ │ 00017aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ad0: 2020 7c0a 7c20 2061 2030 2061 2030 2030 |.| a 0 a 0 0 │ │ │ │ +00017ad0: 2020 7c0a 7c30 2020 2061 2061 2b31 2061 |.|0 a a+1 a │ │ │ │ 00017ae0: 2031 207c 2020 2020 2020 2020 2020 2020 1 | │ │ │ │ 00017af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017b20: 2020 7c0a 7c2c 2061 2c20 312c 2061 2c20 |.|, a, 1, a, │ │ │ │ -00017b30: 302c 2030 2c20 317d 2c20 7b61 202b 2031 0, 0, 1}, {a + 1 │ │ │ │ -00017b40: 2c20 302c 2030 2c20 612c 2030 2c20 612c , 0, 0, a, 0, a, │ │ │ │ -00017b50: 2030 2c20 302c 2031 7d7d 2020 2020 2020 0, 0, 1}} │ │ │ │ +00017b20: 2020 7c0a 7c20 6120 2b20 312c 2061 2c20 |.| a + 1, a, │ │ │ │ +00017b30: 312c 2061 2c20 317d 2c20 7b30 2c20 302c 1, a, 1}, {0, 0, │ │ │ │ +00017b40: 2030 2c20 302c 2030 2c20 612c 2061 202b 0, 0, 0, a, a + │ │ │ │ +00017b50: 2031 2c20 612c 2031 7d7d 2020 2020 2020 1, a, 1}} │ │ │ │ 00017b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017b70: 2020 7c0a 7c61 2020 2030 2030 2030 2061 |.|a 0 0 0 a │ │ │ │ -00017b80: 2b31 207c 2020 2020 2020 2020 2020 2020 +1 | │ │ │ │ +00017b70: 2020 7c0a 7c30 2030 2061 2b31 2030 2061 |.|0 0 a+1 0 a │ │ │ │ +00017b80: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00017b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017bc0: 2020 7c0a 7c61 2b31 2030 2030 2030 2030 |.|a+1 0 0 0 0 │ │ │ │ -00017bd0: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00017bc0: 2020 7c0a 7c30 2030 2030 2020 2030 2030 |.|0 0 0 0 0 │ │ │ │ +00017bd0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00017be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017c10: 2020 7c0a 7c61 2b31 2030 2030 2030 2030 |.|a+1 0 0 0 0 │ │ │ │ -00017c20: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00017c10: 2020 7c0a 7c30 2030 2030 2020 2030 2030 |.|0 0 0 0 0 │ │ │ │ +00017c20: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00017c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017c60: 2020 7c0a 7c30 2020 2030 2030 2030 2061 |.|0 0 0 0 a │ │ │ │ -00017c70: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00017c60: 2020 7c0a 7c30 2030 2061 2020 2030 2031 |.|0 0 a 0 1 │ │ │ │ +00017c70: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00017c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017cb0: 2020 7c0a 7c30 2020 2031 2030 2030 2061 |.|0 1 0 0 a │ │ │ │ -00017cc0: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00017cb0: 2020 7c0a 7c31 2030 2061 2020 2030 2031 |.|1 0 a 0 1 │ │ │ │ +00017cc0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00017cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017d00: 2020 7c0a 7c30 2020 2030 2031 2030 2030 |.|0 0 1 0 0 │ │ │ │ -00017d10: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00017d00: 2020 7c0a 7c30 2031 2030 2020 2030 2061 |.|0 1 0 0 a │ │ │ │ +00017d10: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00017d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017d50: 2020 7c0a 7c30 2020 2030 2030 2031 2030 |.|0 0 0 1 0 │ │ │ │ -00017d60: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00017d50: 2020 7c0a 7c30 2030 2030 2020 2031 2061 |.|0 0 0 1 a │ │ │ │ +00017d60: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00017d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017da0: 2020 7c0a 7c2c 2061 2c20 302c 2030 2c20 |.|, a, 0, 0, │ │ │ │ -00017db0: 302c 2061 202b 2031 7d2c 207b 302c 2031 0, a + 1}, {0, 1 │ │ │ │ -00017dc0: 2c20 302c 2030 2c20 6120 2b20 312c 2030 , 0, 0, a + 1, 0 │ │ │ │ -00017dd0: 2c20 302c 2030 2c20 307d 2c20 7b30 2c20 , 0, 0, 0}, {0, │ │ │ │ -00017de0: 302c 2031 2c20 302c 2061 202b 2031 2c20 0, 1, 0, a + 1, │ │ │ │ -00017df0: 302c 7c0a 7c7d 2c20 7b31 2c20 307d 2c20 0,|.|}, {1, 0}, │ │ │ │ -00017e00: 7b30 2c20 317d 2c20 7b31 2c20 317d 7d20 {0, 1}, {1, 1}} │ │ │ │ +00017da0: 2020 7c0a 7c2c 2030 2c20 302c 2061 202b |.|, 0, 0, a + │ │ │ │ +00017db0: 2031 2c20 302c 2061 7d2c 207b 302c 2031 1, 0, a}, {0, 1 │ │ │ │ +00017dc0: 2c20 302c 2030 2c20 302c 2030 2c20 302c , 0, 0, 0, 0, 0, │ │ │ │ +00017dd0: 2030 2c20 307d 2c20 7b30 2c20 302c 2031 0, 0}, {0, 0, 1 │ │ │ │ +00017de0: 2c20 302c 2030 2c20 302c 2030 2c20 302c , 0, 0, 0, 0, 0, │ │ │ │ +00017df0: 2020 7c0a 7c7d 2c20 7b61 2c20 617d 2c20 |.|}, {a, a}, │ │ │ │ +00017e00: 7b31 2c20 617d 2c20 7b31 2c20 317d 7d20 {1, a}, {1, 1}} │ │ │ │ 00017e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017e40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -6255,38 +6255,38 @@ │ │ │ │ 000186e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000186f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018700: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00018710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018750: 2020 7c0a 7c30 2c20 302c 2030 7d2c 207b |.|0, 0, 0}, { │ │ │ │ -00018760: 302c 2030 2c20 302c 2031 2c20 302c 2030 0, 0, 0, 1, 0, 0 │ │ │ │ -00018770: 2c20 302c 2030 2c20 617d 2c20 7b30 2c20 , 0, 0, a}, {0, │ │ │ │ -00018780: 302c 2030 2c20 302c 2030 2c20 312c 2030 0, 0, 0, 0, 1, 0 │ │ │ │ -00018790: 2c20 302c 2061 7d2c 207b 302c 2030 2c20 , 0, a}, {0, 0, │ │ │ │ +00018750: 2020 7c0a 7c30 7d2c 207b 302c 2030 2c20 |.|0}, {0, 0, │ │ │ │ +00018760: 302c 2031 2c20 302c 2030 2c20 612c 2030 0, 1, 0, 0, a, 0 │ │ │ │ +00018770: 2c20 317d 2c20 7b30 2c20 302c 2030 2c20 , 1}, {0, 0, 0, │ │ │ │ +00018780: 302c 2031 2c20 302c 2061 2c20 302c 2031 0, 1, 0, a, 0, 1 │ │ │ │ +00018790: 7d2c 207b 302c 2030 2c20 302c 2030 2c20 }, {0, 0, 0, 0, │ │ │ │ 000187a0: 302c 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 0,|.|----------- │ │ │ │ 000187b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000187c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000187d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000187e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000187f0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ 00018800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018820: 2020 2020 207d 2020 2020 2020 2020 2020 } │ │ │ │ +00018810: 2020 2020 2020 2020 2020 2020 2020 207d } │ │ │ │ +00018820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018840: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00018850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018890: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000188a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000188b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000188c0: 2020 2020 7d20 2020 2020 2020 2020 2020 } │ │ │ │ +000188b0: 2020 2020 2020 2020 2020 2020 2020 7d20 } │ │ │ │ +000188c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000188d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000188e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000188f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018930: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ @@ -6385,18 +6385,18 @@ │ │ │ │ 00018f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018f20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00018f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018f70: 2020 7c0a 7c30 2c20 302c 2030 2c20 312c |.|0, 0, 0, 1, │ │ │ │ -00018f80: 2030 2c20 307d 2c20 7b30 2c20 302c 2030 0, 0}, {0, 0, 0 │ │ │ │ -00018f90: 2c20 302c 2030 2c20 302c 2030 2c20 312c , 0, 0, 0, 0, 1, │ │ │ │ -00018fa0: 2030 7d7d 2020 2020 2020 2020 2020 2020 0}} │ │ │ │ +00018f70: 2020 7c0a 7c31 2c20 302c 2030 2c20 617d |.|1, 0, 0, a} │ │ │ │ +00018f80: 2c20 7b30 2c20 302c 2030 2c20 302c 2030 , {0, 0, 0, 0, 0 │ │ │ │ +00018f90: 2c20 302c 2030 2c20 312c 2061 7d7d 2020 , 0, 0, 1, a}} │ │ │ │ +00018fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018fc0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00018fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019010: 2d2d 2b0a 7c69 3420 3a20 432e 5365 7473 --+.|i4 : C.Sets │ │ │ │ @@ -6618,96 +6618,96 @@ │ │ │ │ 00019d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019da0: 2020 2020 2020 6361 6368 6520 3d3e 2043 cache => C │ │ │ │ 00019db0: 6163 6865 5461 626c 657b 7d20 2020 2020 acheTable{} │ │ │ │ 00019dc0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00019dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019df0: 2020 2020 2020 436f 6465 203d 3e20 696d Code => im │ │ │ │ -00019e00: 6167 6520 7c20 3120 3020 2020 3020 2020 age | 1 0 0 │ │ │ │ +00019e00: 6167 6520 7c20 3020 2020 3120 3020 2020 age | 0 1 0 │ │ │ │ 00019e10: 3020 2020 3020 7c0a 7c20 2020 2020 2020 0 0 |.| │ │ │ │ 00019e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019e50: 2020 2020 7c20 3120 612b 3120 3120 2020 | 1 a+1 1 │ │ │ │ -00019e60: 6120 2020 3120 7c0a 7c20 2020 2020 2020 a 1 |.| │ │ │ │ +00019e50: 2020 2020 7c20 612b 3120 3120 612b 3120 | a+1 1 a+1 │ │ │ │ +00019e60: 3120 2020 6120 7c0a 7c20 2020 2020 2020 1 a |.| │ │ │ │ 00019e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019ea0: 2020 2020 7c20 3120 6120 2020 612b 3120 | 1 a a+1 │ │ │ │ -00019eb0: 6120 2020 3120 7c0a 7c20 2020 2020 2020 a 1 |.| │ │ │ │ +00019ea0: 2020 2020 7c20 3120 2020 3120 6120 2020 | 1 1 a │ │ │ │ +00019eb0: 612b 3120 6120 7c0a 7c20 2020 2020 2020 a+1 a |.| │ │ │ │ 00019ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019ef0: 2020 2020 7c20 3120 3120 2020 6120 2020 | 1 1 a │ │ │ │ -00019f00: 6120 2020 3120 7c0a 7c20 2020 2020 2020 a 1 |.| │ │ │ │ +00019ef0: 2020 2020 7c20 6120 2020 3120 3120 2020 | a 1 1 │ │ │ │ +00019f00: 6120 2020 6120 7c0a 7c20 2020 2020 2020 a a |.| │ │ │ │ 00019f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019f40: 2020 2020 7c20 3120 612b 3120 6120 2020 | 1 a+1 a │ │ │ │ -00019f50: 612b 3120 3120 7c0a 7c20 2020 2020 2020 a+1 1 |.| │ │ │ │ +00019f40: 2020 2020 7c20 3120 2020 3120 612b 3120 | 1 1 a+1 │ │ │ │ +00019f50: 6120 2020 6120 7c0a 7c20 2020 2020 2020 a a |.| │ │ │ │ 00019f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019f90: 2020 2020 7c20 3120 6120 2020 3120 2020 | 1 a 1 │ │ │ │ -00019fa0: 612b 3120 3120 7c0a 7c20 2020 2020 2020 a+1 1 |.| │ │ │ │ +00019f90: 2020 2020 7c20 6120 2020 3120 6120 2020 | a 1 a │ │ │ │ +00019fa0: 3120 2020 6120 7c0a 7c20 2020 2020 2020 1 a |.| │ │ │ │ 00019fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019fe0: 2020 2020 7c20 3120 3120 2020 612b 3120 | 1 1 a+1 │ │ │ │ -00019ff0: 612b 3120 3120 7c0a 7c20 2020 2020 2020 a+1 1 |.| │ │ │ │ +00019fe0: 2020 2020 7c20 612b 3120 3120 3120 2020 | a+1 1 1 │ │ │ │ +00019ff0: 612b 3120 6120 7c0a 7c20 2020 2020 2020 a+1 a |.| │ │ │ │ 0001a000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a030: 2020 2020 7c20 3120 3020 2020 3020 2020 | 1 0 0 │ │ │ │ -0001a040: 3120 2020 3020 7c0a 7c20 2020 2020 2020 1 0 |.| │ │ │ │ +0001a030: 2020 2020 7c20 3020 2020 3120 3020 2020 | 0 1 0 │ │ │ │ +0001a040: 3020 2020 3120 7c0a 7c20 2020 2020 2020 0 1 |.| │ │ │ │ 0001a050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a070: 2020 2020 2020 4765 6e65 7261 746f 724d GeneratorM │ │ │ │ -0001a080: 6174 7269 7820 3d3e 207c 2031 2031 2020 atrix => | 1 1 │ │ │ │ +0001a080: 6174 7269 7820 3d3e 207c 2030 2061 2b31 atrix => | 0 a+1 │ │ │ │ 0001a090: 2031 2020 2020 7c0a 7c20 2020 2020 2020 1 |.| │ │ │ │ 0001a0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a0d0: 2020 2020 2020 2020 207c 2030 2061 2b31 | 0 a+1 │ │ │ │ -0001a0e0: 2061 2020 2020 7c0a 7c20 2020 2020 2020 a |.| │ │ │ │ +0001a0d0: 2020 2020 2020 2020 207c 2031 2031 2020 | 1 1 │ │ │ │ +0001a0e0: 2031 2020 2020 7c0a 7c20 2020 2020 2020 1 |.| │ │ │ │ 0001a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a120: 2020 2020 2020 2020 207c 2030 2031 2020 | 0 1 │ │ │ │ -0001a130: 2061 2b31 2020 7c0a 7c20 2020 2020 2020 a+1 |.| │ │ │ │ +0001a120: 2020 2020 2020 2020 207c 2030 2061 2b31 | 0 a+1 │ │ │ │ +0001a130: 2061 2020 2020 7c0a 7c20 2020 2020 2020 a |.| │ │ │ │ 0001a140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a170: 2020 2020 2020 2020 207c 2030 2061 2020 | 0 a │ │ │ │ -0001a180: 2061 2020 2020 7c0a 7c20 2020 2020 2020 a |.| │ │ │ │ +0001a170: 2020 2020 2020 2020 207c 2030 2031 2020 | 0 1 │ │ │ │ +0001a180: 2061 2b31 2020 7c0a 7c20 2020 2020 2020 a+1 |.| │ │ │ │ 0001a190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a1c0: 2020 2020 2020 2020 207c 2030 2031 2020 | 0 1 │ │ │ │ -0001a1d0: 2031 2020 2020 7c0a 7c20 2020 2020 2020 1 |.| │ │ │ │ +0001a1c0: 2020 2020 2020 2020 207c 2030 2061 2020 | 0 a │ │ │ │ +0001a1d0: 2061 2020 2020 7c0a 7c20 2020 2020 2020 a |.| │ │ │ │ 0001a1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a210: 2020 2020 2020 2020 207c 2030 2061 2020 | 0 a │ │ │ │ -0001a220: 2061 2b31 2020 7c0a 7c20 2020 2020 2020 a+1 |.| │ │ │ │ +0001a210: 2020 2020 2020 2020 207c 2030 2031 2020 | 0 1 │ │ │ │ +0001a220: 2031 2020 2020 7c0a 7c20 2020 2020 2020 1 |.| │ │ │ │ 0001a230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a260: 2020 2020 2020 2020 207c 2030 2061 2b31 | 0 a+1 │ │ │ │ +0001a260: 2020 2020 2020 2020 207c 2030 2061 2020 | 0 a │ │ │ │ 0001a270: 2061 2b31 2020 7c0a 7c20 2020 2020 2020 a+1 |.| │ │ │ │ 0001a280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a2b0: 2020 2020 2020 2020 207c 2030 2061 2b31 | 0 a+1 │ │ │ │ -0001a2c0: 2031 2020 2020 7c0a 7c20 2020 2020 2020 1 |.| │ │ │ │ +0001a2c0: 2061 2b31 2020 7c0a 7c20 2020 2020 2020 a+1 |.| │ │ │ │ 0001a2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a2f0: 2020 2020 2020 4765 6e65 7261 746f 7273 Generators │ │ │ │ -0001a300: 203d 3e20 7b7b 312c 2031 2c20 312c 2031 => {{1, 1, 1, 1 │ │ │ │ -0001a310: 2c20 312c 2020 7c0a 7c20 2020 2020 2020 , 1, |.| │ │ │ │ +0001a300: 203d 3e20 7b7b 302c 2061 202b 2031 2c20 => {{0, a + 1, │ │ │ │ +0001a310: 312c 2061 2c20 7c0a 7c20 2020 2020 2020 1, a, |.| │ │ │ │ 0001a320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a340: 2020 2020 2020 5061 7269 7479 4368 6563 ParityChec │ │ │ │ 0001a350: 6b4d 6174 7269 7820 3d3e 207c 2031 2031 kMatrix => | 1 1 │ │ │ │ 0001a360: 2031 2031 2020 7c0a 7c20 2020 2020 2020 1 1 |.| │ │ │ │ 0001a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -6727,26 +6727,26 @@ │ │ │ │ 0001a460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a480: 2020 2020 2020 2030 2031 2020 2020 3020 0 1 0 │ │ │ │ 0001a490: 3120 2020 2030 2020 2030 2020 2020 3120 1 0 0 1 │ │ │ │ 0001a4a0: 2020 2031 2020 7c0a 7c20 2020 2020 2020 1 |.| │ │ │ │ 0001a4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a4d0: 2020 2032 2020 2032 2020 2020 2020 2020 2 2 │ │ │ │ -0001a4e0: 2033 2020 2020 2020 2032 2020 2020 2020 3 2 │ │ │ │ +0001a4d0: 2020 2020 2020 2020 2032 2020 2032 2020 2 2 │ │ │ │ +0001a4e0: 2020 2020 2020 2033 2020 2020 2020 2032 3 2 │ │ │ │ 0001a4f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001a500: 2020 2020 2020 2020 2020 2020 2050 6f6c Pol │ │ │ │ -0001a510: 796e 6f6d 6961 6c53 6574 203d 3e20 7b31 ynomialSet => {1 │ │ │ │ -0001a520: 2c20 7420 2c20 7420 7420 2c20 7420 2c20 , t , t t , t , │ │ │ │ -0001a530: 7420 2c20 7420 2c20 7420 2c20 7420 7420 t , t , t , t t │ │ │ │ +0001a510: 796e 6f6d 6961 6c53 6574 203d 3e20 7b74 ynomialSet => {t │ │ │ │ +0001a520: 2074 202c 2031 2c20 7420 2c20 7420 7420 t , 1, t , t t │ │ │ │ +0001a530: 2c20 7420 2c20 7420 2c20 7420 2c20 7420 , t , t , t , t │ │ │ │ 0001a540: 7d20 2020 2020 7c0a 7c20 2020 2020 2020 } |.| │ │ │ │ 0001a550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a570: 2020 2030 2020 2030 2031 2020 2031 2020 0 0 1 1 │ │ │ │ -0001a580: 2030 2020 2030 2020 2031 2020 2030 2031 0 0 1 0 1 │ │ │ │ +0001a570: 3020 3120 2020 2020 2030 2020 2030 2031 0 1 0 0 1 │ │ │ │ +0001a580: 2020 2031 2020 2030 2020 2030 2020 2031 1 0 0 1 │ │ │ │ 0001a590: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 0001a5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a5e0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 0001a5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -6774,99 +6774,99 @@ │ │ │ │ 0001a750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a770: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001a780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a7c0: 2020 2020 2020 7c0a 7c20 3020 2020 3020 |.| 0 0 │ │ │ │ +0001a7c0: 2020 2020 2020 7c0a 7c20 2020 3020 3020 |.| 0 0 │ │ │ │ 0001a7d0: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ 0001a7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a810: 2020 2020 2020 7c0a 7c20 6120 2020 612b |.| a a+ │ │ │ │ -0001a820: 3120 612b 3120 7c20 2020 2020 2020 2020 1 a+1 | │ │ │ │ +0001a810: 2020 2020 2020 7c0a 7c20 2020 3120 6120 |.| 1 a │ │ │ │ +0001a820: 2020 612b 3120 7c20 2020 2020 2020 2020 a+1 | │ │ │ │ 0001a830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a860: 2020 2020 2020 7c0a 7c20 612b 3120 612b |.| a+1 a+ │ │ │ │ -0001a870: 3120 3120 2020 7c20 2020 2020 2020 2020 1 1 | │ │ │ │ +0001a860: 2020 2020 2020 7c0a 7c20 2020 3120 612b |.| 1 a+ │ │ │ │ +0001a870: 3120 612b 3120 7c20 2020 2020 2020 2020 1 a+1 | │ │ │ │ 0001a880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a8b0: 2020 2020 2020 7c0a 7c20 3120 2020 612b |.| 1 a+ │ │ │ │ -0001a8c0: 3120 6120 2020 7c20 2020 2020 2020 2020 1 a | │ │ │ │ +0001a8b0: 2020 2020 2020 7c0a 7c20 2020 3120 3120 |.| 1 1 │ │ │ │ +0001a8c0: 2020 612b 3120 7c20 2020 2020 2020 2020 a+1 | │ │ │ │ 0001a8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a900: 2020 2020 2020 7c0a 7c20 6120 2020 6120 |.| a a │ │ │ │ -0001a910: 2020 3120 2020 7c20 2020 2020 2020 2020 1 | │ │ │ │ +0001a900: 2020 2020 2020 7c0a 7c2b 3120 3120 6120 |.|+1 1 a │ │ │ │ +0001a910: 2020 6120 2020 7c20 2020 2020 2020 2020 a | │ │ │ │ 0001a920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a950: 2020 2020 2020 7c0a 7c20 612b 3120 6120 |.| a+1 a │ │ │ │ -0001a960: 2020 6120 2020 7c20 2020 2020 2020 2020 a | │ │ │ │ +0001a950: 2020 2020 2020 7c0a 7c2b 3120 3120 612b |.|+1 1 a+ │ │ │ │ +0001a960: 3120 6120 2020 7c20 2020 2020 2020 2020 1 a | │ │ │ │ 0001a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a9a0: 2020 2020 2020 7c0a 7c20 3120 2020 6120 |.| 1 a │ │ │ │ -0001a9b0: 2020 612b 3120 7c20 2020 2020 2020 2020 a+1 | │ │ │ │ +0001a9a0: 2020 2020 2020 7c0a 7c2b 3120 3120 3120 |.|+1 1 1 │ │ │ │ +0001a9b0: 2020 6120 2020 7c20 2020 2020 2020 2020 a | │ │ │ │ 0001a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a9f0: 2020 2020 2020 7c0a 7c20 3020 2020 3120 |.| 0 1 │ │ │ │ -0001aa00: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +0001a9f0: 2020 2020 2020 7c0a 7c20 2020 3020 3020 |.| 0 0 │ │ │ │ +0001aa00: 2020 3120 2020 7c20 2020 2020 2020 2020 1 | │ │ │ │ 0001aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa40: 2020 2020 2020 7c0a 7c31 2020 2031 2020 |.|1 1 │ │ │ │ -0001aa50: 2031 2020 2031 2020 2031 207c 2020 2020 1 1 1 | │ │ │ │ +0001aa40: 2020 2020 2020 7c0a 7c61 2020 2031 2020 |.|a 1 │ │ │ │ +0001aa50: 2061 2020 2061 2b31 2030 207c 2020 2020 a a+1 0 | │ │ │ │ 0001aa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa90: 2020 2020 2020 7c0a 7c31 2020 2061 2b31 |.|1 a+1 │ │ │ │ -0001aaa0: 2061 2020 2031 2020 2030 207c 2020 2020 a 1 0 | │ │ │ │ +0001aa90: 2020 2020 2020 7c0a 7c31 2020 2031 2020 |.|1 1 │ │ │ │ +0001aaa0: 2031 2020 2031 2020 2031 207c 2020 2020 1 1 1 | │ │ │ │ 0001aab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aae0: 2020 2020 2020 7c0a 7c61 2020 2061 2020 |.|a a │ │ │ │ -0001aaf0: 2031 2020 2061 2b31 2030 207c 2020 2020 1 a+1 0 | │ │ │ │ +0001aae0: 2020 2020 2020 7c0a 7c31 2020 2061 2b31 |.|1 a+1 │ │ │ │ +0001aaf0: 2061 2020 2031 2020 2030 207c 2020 2020 a 1 0 | │ │ │ │ 0001ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ab10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ab20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab30: 2020 2020 2020 7c0a 7c61 2020 2061 2b31 |.|a a+1 │ │ │ │ -0001ab40: 2061 2b31 2061 2b31 2031 207c 2020 2020 a+1 a+1 1 | │ │ │ │ +0001ab30: 2020 2020 2020 7c0a 7c61 2020 2061 2020 |.|a a │ │ │ │ +0001ab40: 2031 2020 2061 2b31 2030 207c 2020 2020 1 a+1 0 | │ │ │ │ 0001ab50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ab60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ab70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab80: 2020 2020 2020 7c0a 7c31 2020 2031 2020 |.|1 1 │ │ │ │ -0001ab90: 2031 2020 2031 2020 2030 207c 2020 2020 1 1 0 | │ │ │ │ +0001ab80: 2020 2020 2020 7c0a 7c61 2020 2061 2b31 |.|a a+1 │ │ │ │ +0001ab90: 2061 2b31 2061 2b31 2031 207c 2020 2020 a+1 a+1 1 | │ │ │ │ 0001aba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001abb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001abc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001abd0: 2020 2020 2020 7c0a 7c31 2020 2061 2020 |.|1 a │ │ │ │ -0001abe0: 2061 2b31 2031 2020 2030 207c 2020 2020 a+1 1 0 | │ │ │ │ +0001abd0: 2020 2020 2020 7c0a 7c31 2020 2031 2020 |.|1 1 │ │ │ │ +0001abe0: 2031 2020 2031 2020 2030 207c 2020 2020 1 1 0 | │ │ │ │ 0001abf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ac00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ac10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ac20: 2020 2020 2020 7c0a 7c61 2b31 2061 2020 |.|a+1 a │ │ │ │ -0001ac30: 2061 2020 2061 2020 2031 207c 2020 2020 a a 1 | │ │ │ │ +0001ac20: 2020 2020 2020 7c0a 7c31 2020 2061 2020 |.|1 a │ │ │ │ +0001ac30: 2061 2b31 2031 2020 2030 207c 2020 2020 a+1 1 0 | │ │ │ │ 0001ac40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ac50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ac60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ac70: 2020 2020 2020 7c0a 7c61 2020 2031 2020 |.|a 1 │ │ │ │ -0001ac80: 2061 2020 2061 2b31 2030 207c 2020 2020 a a+1 0 | │ │ │ │ +0001ac70: 2020 2020 2020 7c0a 7c61 2b31 2061 2020 |.|a+1 a │ │ │ │ +0001ac80: 2061 2020 2061 2020 2031 207c 2020 2020 a a 1 | │ │ │ │ 0001ac90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001acb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001acc0: 2020 2020 2020 7c0a 7c31 2c20 312c 2031 |.|1, 1, 1 │ │ │ │ -0001acd0: 7d2c 207b 302c 2061 202b 2031 2c20 612c }, {0, a + 1, a, │ │ │ │ -0001ace0: 2031 2c20 6120 2b20 312c 2061 2c20 312c 1, a + 1, a, 1, │ │ │ │ -0001acf0: 2030 7d2c 207b 302c 2031 2c20 6120 2b20 0}, {0, 1, a + │ │ │ │ -0001ad00: 312c 2061 2c20 612c 2031 2c20 6120 2b20 1, a, a, 1, a + │ │ │ │ +0001acc0: 2020 2020 2020 7c0a 7c20 312c 2061 2c20 |.| 1, a, │ │ │ │ +0001acd0: 6120 2b20 312c 2030 7d2c 207b 312c 2031 a + 1, 0}, {1, 1 │ │ │ │ +0001ace0: 2c20 312c 2031 2c20 312c 2031 2c20 312c , 1, 1, 1, 1, 1, │ │ │ │ +0001acf0: 2031 7d2c 207b 302c 2061 202b 2031 2c20 1}, {0, a + 1, │ │ │ │ +0001ad00: 612c 2031 2c20 6120 2b20 312c 2061 2c20 a, 1, a + 1, a, │ │ │ │ 0001ad10: 312c 2030 7d2c 7c0a 7c31 2031 2031 2031 1, 0},|.|1 1 1 1 │ │ │ │ 0001ad20: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0001ad30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ad40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ad50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ad60: 2020 2020 2020 7c0a 7c2c 2031 2c20 312c |.|, 1, 1, │ │ │ │ 0001ad70: 2031 2c20 317d 7d20 2020 2020 2020 2020 1, 1}} │ │ │ │ @@ -6999,20 +6999,20 @@ │ │ │ │ 0001b560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b580: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b5d0: 2020 2020 2020 7c0a 7c7b 302c 2061 2c20 |.|{0, a, │ │ │ │ -0001b5e0: 612c 2061 2c20 6120 2b20 312c 2061 202b a, a, a + 1, a + │ │ │ │ -0001b5f0: 2031 2c20 6120 2b20 312c 2031 7d2c 207b 1, a + 1, 1}, { │ │ │ │ -0001b600: 302c 2031 2c20 312c 2031 2c20 312c 2031 0, 1, 1, 1, 1, 1 │ │ │ │ -0001b610: 2c20 312c 2030 7d2c 207b 302c 2061 2c20 , 1, 0}, {0, a, │ │ │ │ -0001b620: 6120 2b20 312c 7c0a 7c2d 2d2d 2d2d 2d2d a + 1,|.|------- │ │ │ │ +0001b5d0: 2020 2020 2020 7c0a 7c7b 302c 2031 2c20 |.|{0, 1, │ │ │ │ +0001b5e0: 6120 2b20 312c 2061 2c20 612c 2031 2c20 a + 1, a, a, 1, │ │ │ │ +0001b5f0: 6120 2b20 312c 2030 7d2c 207b 302c 2061 a + 1, 0}, {0, a │ │ │ │ +0001b600: 2c20 612c 2061 2c20 6120 2b20 312c 2061 , a, a, a + 1, a │ │ │ │ +0001b610: 202b 2031 2c20 6120 2b20 312c 2031 7d2c + 1, a + 1, 1}, │ │ │ │ +0001b620: 207b 302c 2020 7c0a 7c2d 2d2d 2d2d 2d2d {0, |.|------- │ │ │ │ 0001b630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b670: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 0001b680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -7119,41 +7119,41 @@ │ │ │ │ 0001bce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bd00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001bd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bd50: 2020 2020 2020 7c0a 7c31 2c20 612c 2061 |.|1, a, a │ │ │ │ -0001bd60: 202b 2031 2c20 312c 2030 7d2c 207b 302c + 1, 1, 0}, {0, │ │ │ │ -0001bd70: 2061 202b 2031 2c20 6120 2b20 312c 2061 a + 1, a + 1, a │ │ │ │ -0001bd80: 202b 2031 2c20 612c 2061 2c20 612c 2031 + 1, a, a, a, 1 │ │ │ │ -0001bd90: 7d2c 207b 302c 2061 202b 2031 2c20 312c }, {0, a + 1, 1, │ │ │ │ -0001bda0: 2061 2c20 312c 7c0a 7c2d 2d2d 2d2d 2d2d a, 1,|.|------- │ │ │ │ +0001bd50: 2020 2020 2020 7c0a 7c31 2c20 312c 2031 |.|1, 1, 1 │ │ │ │ +0001bd60: 2c20 312c 2031 2c20 312c 2030 7d2c 207b , 1, 1, 1, 0}, { │ │ │ │ +0001bd70: 302c 2061 2c20 6120 2b20 312c 2031 2c20 0, a, a + 1, 1, │ │ │ │ +0001bd80: 612c 2061 202b 2031 2c20 312c 2030 7d2c a, a + 1, 1, 0}, │ │ │ │ +0001bd90: 207b 302c 2061 202b 2031 2c20 6120 2b20 {0, a + 1, a + │ │ │ │ +0001bda0: 312c 2061 202b 7c0a 7c2d 2d2d 2d2d 2d2d 1, a +|.|------- │ │ │ │ 0001bdb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001bdc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001bdd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001bde0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001bdf0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ -0001be00: 2020 2020 2020 207d 2020 2020 2020 2020 } │ │ │ │ +0001be00: 2020 2020 2020 2020 207d 2020 2020 2020 } │ │ │ │ 0001be10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001be50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001bea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bee0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001bef0: 2020 2020 2020 7d20 2020 2020 2020 2020 } │ │ │ │ +0001bef0: 2020 2020 2020 2020 7d20 2020 2020 2020 } │ │ │ │ 0001bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001bf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -7239,16 +7239,16 @@ │ │ │ │ 0001c460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c480: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c4d0: 2020 2020 2020 7c0a 7c61 2c20 6120 2b20 |.|a, a + │ │ │ │ -0001c4e0: 312c 2030 7d7d 2020 2020 2020 2020 2020 1, 0}} │ │ │ │ +0001c4d0: 2020 2020 2020 7c0a 7c31 2c20 612c 2061 |.|1, a, a │ │ │ │ +0001c4e0: 2c20 612c 2031 7d7d 2020 2020 2020 2020 , a, 1}} │ │ │ │ 0001c4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c520: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 0001c530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -12687,18 +12687,18 @@ │ │ │ │ 000318e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000318f0: 2d2d 2b0a 7c69 3220 3a20 7665 6374 6f72 --+.|i2 : vector │ │ │ │ 00031900: 5370 6163 6520 4820 2020 2020 2020 2020 Space H │ │ │ │ 00031910: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00031920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031940: 2020 2020 7c0a 7c6f 3220 3d20 696d 6167 |.|o2 = imag │ │ │ │ -00031950: 6520 7c20 3120 3120 3020 3120 7c20 2020 e | 1 1 0 1 | │ │ │ │ +00031950: 6520 7c20 3120 3020 3120 3120 7c20 2020 e | 1 0 1 1 | │ │ │ │ 00031960: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00031970: 2020 2020 2020 2020 2020 207c 2031 2030 | 1 0 │ │ │ │ -00031980: 2031 2031 207c 2020 2020 2020 2020 2020 1 1 | │ │ │ │ +00031970: 2020 2020 2020 2020 2020 207c 2031 2031 | 1 1 │ │ │ │ +00031980: 2030 2031 207c 2020 2020 2020 2020 2020 0 1 | │ │ │ │ 00031990: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000319a0: 2020 2020 7c20 3120 3120 3120 3020 7c20 | 1 1 1 0 | │ │ │ │ 000319b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000319c0: 0a7c 2020 2020 2020 2020 2020 207c 2031 .| | 1 │ │ │ │ 000319d0: 2030 2030 2030 207c 2020 2020 2020 2020 0 0 0 | │ │ │ │ 000319e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 000319f0: 2020 2020 2020 7c20 3020 3120 3020 3020 | 0 1 0 0 │ │ │ │ @@ -13181,42 +13181,42 @@ │ │ │ │ 000337c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000337d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000337e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000337f0: 2020 2020 2020 7c0a 7c6f 3320 3d20 7b7b |.|o3 = {{ │ │ │ │ 00033800: 612c 2061 2c20 617d 2c20 7b61 202b 2031 a, a, a}, {a + 1 │ │ │ │ 00033810: 2c20 612c 2031 7d2c 207b 312c 2031 2c20 , a, 1}, {1, 1, │ │ │ │ 00033820: 317d 2c20 7b30 2c20 312c 2061 7d2c 207b 1}, {0, 1, a}, { │ │ │ │ -00033830: 302c 2061 2c20 6120 2b20 317d 2c20 7b31 0, a, a + 1}, {1 │ │ │ │ -00033840: 2c20 6120 2b20 7c0a 7c20 2020 2020 2d2d , a + |.| -- │ │ │ │ +00033830: 612c 2031 2c20 6120 2b20 317d 2c20 7b30 a, 1, a + 1}, {0 │ │ │ │ +00033840: 2c20 612c 2061 7c0a 7c20 2020 2020 2d2d , a, a|.| -- │ │ │ │ 00033850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033890: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 312c ------|.| 1, │ │ │ │ -000338a0: 2061 7d2c 207b 302c 2061 202b 2031 2c20 a}, {0, a + 1, │ │ │ │ -000338b0: 317d 2c20 7b61 2c20 312c 2061 202b 2031 1}, {a, 1, a + 1 │ │ │ │ -000338c0: 7d2c 207b 312c 2061 2c20 307d 2c20 7b61 }, {1, a, 0}, {a │ │ │ │ -000338d0: 202b 2031 2c20 6120 2b20 312c 2061 202b + 1, a + 1, a + │ │ │ │ -000338e0: 2031 7d2c 2020 7c0a 7c20 2020 2020 2d2d 1}, |.| -- │ │ │ │ +00033890: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2b20 ------|.| + │ │ │ │ +000338a0: 317d 2c20 7b30 2c20 6120 2b20 312c 2031 1}, {0, a + 1, 1 │ │ │ │ +000338b0: 7d2c 207b 312c 2061 202b 2031 2c20 617d }, {1, a + 1, a} │ │ │ │ +000338c0: 2c20 7b61 202b 2031 2c20 302c 2061 7d2c , {a + 1, 0, a}, │ │ │ │ +000338d0: 207b 612c 2030 2c20 317d 2c20 7b61 202b {a, 0, 1}, {a + │ │ │ │ +000338e0: 2031 2c20 312c 7c0a 7c20 2020 2020 2d2d 1, 1,|.| -- │ │ │ │ 000338f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033930: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 7b61 ------|.| {a │ │ │ │ -00033940: 2c20 302c 2031 7d2c 207b 6120 2b20 312c , 0, 1}, {a + 1, │ │ │ │ -00033950: 2030 2c20 617d 2c20 7b61 202b 2031 2c20 0, a}, {a + 1, │ │ │ │ -00033960: 312c 2030 7d2c 207b 312c 2030 2c20 6120 1, 0}, {1, 0, a │ │ │ │ -00033970: 2b20 317d 2c20 7b61 2c20 6120 2b20 312c + 1}, {a, a + 1, │ │ │ │ -00033980: 2030 7d2c 2020 7c0a 7c20 2020 2020 2d2d 0}, |.| -- │ │ │ │ +00033930: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 307d ------|.| 0} │ │ │ │ +00033940: 2c20 7b31 2c20 612c 2030 7d2c 207b 6120 , {1, a, 0}, {a │ │ │ │ +00033950: 2b20 312c 2061 202b 2031 2c20 6120 2b20 + 1, a + 1, a + │ │ │ │ +00033960: 317d 2c20 7b31 2c20 302c 2061 202b 2031 1}, {1, 0, a + 1 │ │ │ │ +00033970: 7d2c 207b 612c 2061 202b 2031 2c20 307d }, {a, a + 1, 0} │ │ │ │ +00033980: 2c20 7b30 2c20 7c0a 7c20 2020 2020 2d2d , {0, |.| -- │ │ │ │ 00033990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000339a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000339b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000339c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000339d0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 7b30 ------|.| {0 │ │ │ │ -000339e0: 2c20 302c 2030 7d7d 2020 2020 2020 2020 , 0, 0}} │ │ │ │ +000339d0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 302c ------|.| 0, │ │ │ │ +000339e0: 2030 7d7d 2020 2020 2020 2020 2020 2020 0}} │ │ │ │ 000339f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033a20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00033a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -19254,17 +19254,17 @@ │ │ │ │ 0004b350: 2d2d 2d2b 0a7c 6932 203a 2043 312e 5061 ---+.|i2 : C1.Pa │ │ │ │ 0004b360: 7269 7479 4368 6563 6b4d 6174 7269 7820 rityCheckMatrix │ │ │ │ 0004b370: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0004b380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b390: 2020 2020 2020 207c 0a7c 6f32 203d 207c |.|o2 = | │ │ │ │ 0004b3a0: 2031 2031 2031 2031 2030 2030 2030 207c 1 1 1 1 0 0 0 | │ │ │ │ 0004b3b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0004b3c0: 207c 2030 2031 2030 2031 2031 2031 2030 | 0 1 0 1 1 1 0 │ │ │ │ +0004b3c0: 207c 2030 2030 2031 2031 2031 2031 2030 | 0 0 1 1 1 1 0 │ │ │ │ 0004b3d0: 207c 2020 2020 2020 2020 207c 0a7c 2020 | |.| │ │ │ │ -0004b3e0: 2020 207c 2031 2030 2030 2031 2031 2030 | 1 0 0 1 1 0 │ │ │ │ +0004b3e0: 2020 207c 2030 2031 2030 2031 2030 2031 | 0 1 0 1 0 1 │ │ │ │ 0004b3f0: 2031 207c 2020 2020 2020 2020 207c 0a7c 1 | |.| │ │ │ │ 0004b400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b410: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0004b420: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0004b430: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ 0004b440: 377c 0a7c 6f32 203a 204d 6174 7269 7820 7|.|o2 : Matrix │ │ │ │ 0004b450: 2847 4620 3229 2020 3c2d 2d20 2847 4620 (GF 2) <-- (GF │ │ │ │ @@ -24045,17 +24045,17 @@ │ │ │ │ 0005dec0: 462c 7b7b 312c 312c 317d 7d29 3b7c 0a2b F,{{1,1,1}});|.+ │ │ │ │ 0005ded0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005dee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0005def0: 0a7c 6933 203a 206d 6573 7361 6765 7320 .|i3 : messages │ │ │ │ 0005df00: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 0005df10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0005df20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005df30: 2020 207c 0a7c 6f33 203d 207b 7b31 7d2c |.|o3 = {{1}, │ │ │ │ -0005df40: 207b 617d 2c20 7b61 202b 2031 7d2c 207b {a}, {a + 1}, { │ │ │ │ -0005df50: 307d 7d20 207c 0a7c 2020 2020 2020 2020 0}} |.| │ │ │ │ +0005df30: 2020 207c 0a7c 6f33 203d 207b 7b30 7d2c |.|o3 = {{0}, │ │ │ │ +0005df40: 207b 317d 2c20 7b61 7d2c 207b 6120 2b20 {1}, {a}, {a + │ │ │ │ +0005df50: 317d 7d20 207c 0a7c 2020 2020 2020 2020 1}} |.| │ │ │ │ 0005df60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005df70: 2020 2020 2020 207c 0a7c 6f33 203a 204c |.|o3 : L │ │ │ │ 0005df80: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ 0005df90: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 0005dfa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005dfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a2b 2d2d -----------+.+-- │ │ │ │ 0005dfc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -24953,19 +24953,19 @@ │ │ │ │ 00061780: 2020 207c 2030 207c 2020 2020 2020 2020 | 0 | │ │ │ │ 00061790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000617a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000617b0: 2020 2020 2020 7c20 3120 7c20 3d3e 207c | 1 | => | │ │ │ │ 000617c0: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ 000617d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000617e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000617f0: 2020 7c20 3020 7c20 2020 207c 2031 207c | 0 | | 1 | │ │ │ │ +000617f0: 2020 7c20 3020 7c20 2020 207c 2030 207c | 0 | | 0 | │ │ │ │ 00061800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061810: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00061820: 2020 2020 2020 2020 2020 2020 2020 7c20 | │ │ │ │ -00061830: 3120 7c20 2020 207c 2030 207c 2020 2020 1 | | 0 | │ │ │ │ +00061830: 3120 7c20 2020 207c 2031 207c 2020 2020 1 | | 1 | │ │ │ │ 00061840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061850: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00061860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061870: 2020 207c 2030 207c 2020 2020 2020 2020 | 0 | │ │ │ │ 00061880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061890: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000618a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -24983,19 +24983,19 @@ │ │ │ │ 00061960: 3d3e 207c 2030 207c 2020 2020 2020 2020 => | 0 | │ │ │ │ 00061970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061980: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00061990: 2020 2020 2020 7c20 3120 7c20 2020 207c | 1 | | │ │ │ │ 000619a0: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ 000619b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000619c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000619d0: 2020 7c20 3020 7c20 2020 207c 2031 207c | 0 | | 1 | │ │ │ │ +000619d0: 2020 7c20 3020 7c20 2020 207c 2030 207c | 0 | | 0 | │ │ │ │ 000619e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000619f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00061a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061a10: 2020 2020 2020 207c 2030 207c 2020 2020 | 0 | │ │ │ │ +00061a10: 2020 2020 2020 207c 2031 207c 2020 2020 | 1 | │ │ │ │ 00061a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061a30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00061a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061a50: 2020 207c 2030 207c 2020 2020 2020 2020 | 0 | │ │ │ │ 00061a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061a70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00061a80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -25006,22 +25006,22 @@ │ │ │ │ 00061ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061ae0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00061af0: 2020 2020 2020 2020 2020 2020 2020 7c20 | │ │ │ │ 00061b00: 3120 7c20 3d3e 207c 2030 207c 2020 2020 1 | => | 0 | │ │ │ │ 00061b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061b20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00061b30: 2020 2020 2020 2020 2020 7c20 3120 7c20 | 1 | │ │ │ │ -00061b40: 2020 207c 2030 207c 2020 2020 2020 2020 | 0 | │ │ │ │ +00061b40: 2020 207c 2031 207c 2020 2020 2020 2020 | 1 | │ │ │ │ 00061b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061b60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00061b70: 2020 2020 2020 7c20 3120 7c20 2020 207c | 1 | | │ │ │ │ 00061b80: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ 00061b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061ba0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00061bb0: 2020 2020 2020 2020 2020 207c 2031 207c | 1 | │ │ │ │ +00061bb0: 2020 2020 2020 2020 2020 207c 2030 207c | 0 | │ │ │ │ 00061bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061bd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00061be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061bf0: 2020 2020 2020 207c 2030 207c 2020 2020 | 0 | │ │ │ │ 00061c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061c10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00061c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -26456,25 +26456,25 @@ │ │ │ │ 00067570: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00067580: 2020 2020 2020 2063 6163 6865 203d 3e20 cache => │ │ │ │ 00067590: 4361 6368 6554 6162 6c65 7b7d 2020 2020 CacheTable{} │ │ │ │ 000675a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000675b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000675c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000675d0: 2020 2020 2020 2043 6f64 6520 3d3e 2069 Code => i │ │ │ │ -000675e0: 6d61 6765 207c 2031 2031 2030 2031 207c mage | 1 1 0 1 | │ │ │ │ +000675e0: 6d61 6765 207c 2031 2031 2031 2030 207c mage | 1 1 1 0 | │ │ │ │ 000675f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067610: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00067620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067630: 2020 2020 207c 2031 2030 2031 2031 207c | 1 0 1 1 | │ │ │ │ 00067640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067660: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00067670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067680: 2020 2020 207c 2031 2031 2031 2030 207c | 1 1 1 0 | │ │ │ │ +00067680: 2020 2020 207c 2031 2031 2030 2031 207c | 1 1 0 1 | │ │ │ │ 00067690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000676a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000676b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000676c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000676d0: 2020 2020 207c 2031 2030 2030 2030 207c | 1 0 0 0 | │ │ │ │ 000676e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000676f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -26501,47 +26501,47 @@ │ │ │ │ 00067840: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00067850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067860: 2020 2020 2020 2020 2020 7c20 3120 3020 | 1 0 │ │ │ │ 00067870: 3120 3020 3120 3020 3020 7c20 2020 2020 1 0 1 0 0 | │ │ │ │ 00067880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067890: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000678a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000678b0: 2020 2020 2020 2020 2020 7c20 3020 3120 | 0 1 │ │ │ │ -000678c0: 3120 3020 3020 3120 3020 7c20 2020 2020 1 0 0 1 0 | │ │ │ │ +000678b0: 2020 2020 2020 2020 2020 7c20 3120 3120 | 1 1 │ │ │ │ +000678c0: 3020 3020 3020 3120 3020 7c20 2020 2020 0 0 0 1 0 | │ │ │ │ 000678d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000678e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000678f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067900: 2020 2020 2020 2020 2020 7c20 3120 3120 | 1 1 │ │ │ │ -00067910: 3020 3020 3020 3020 3120 7c20 2020 2020 0 0 0 0 1 | │ │ │ │ +00067900: 2020 2020 2020 2020 2020 7c20 3020 3120 | 0 1 │ │ │ │ +00067910: 3120 3020 3020 3020 3120 7c20 2020 2020 1 0 0 0 1 | │ │ │ │ 00067920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067930: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00067940: 2020 2020 2020 2047 656e 6572 6174 6f72 Generator │ │ │ │ 00067950: 7320 3d3e 207b 7b31 2c20 312c 2031 2c20 s => {{1, 1, 1, │ │ │ │ 00067960: 312c 2030 2c20 302c 2030 7d2c 207b 312c 1, 0, 0, 0}, {1, │ │ │ │ 00067970: 2030 2c20 312c 2030 2c20 312c 2030 2c20 0, 1, 0, 1, 0, │ │ │ │ 00067980: 307d 2c20 7c0a 7c20 2020 2020 2020 2020 0}, |.| │ │ │ │ 00067990: 2020 2020 2020 2050 6172 6974 7943 6865 ParityChe │ │ │ │ 000679a0: 636b 4d61 7472 6978 203d 3e20 7c20 3120 ckMatrix => | 1 │ │ │ │ 000679b0: 3120 3120 3120 3020 3020 3020 7c20 2020 1 1 1 0 0 0 | │ │ │ │ 000679c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000679d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000679e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000679f0: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ -00067a00: 3020 3120 3120 3120 3120 3020 7c20 2020 0 1 1 1 1 0 | │ │ │ │ +00067a00: 3120 3120 3020 3120 3120 3020 7c20 2020 1 1 0 1 1 0 | │ │ │ │ 00067a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067a20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00067a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067a40: 2020 2020 2020 2020 2020 2020 7c20 3020 | 0 │ │ │ │ 00067a50: 3120 3020 3120 3020 3120 3120 7c20 2020 1 0 1 0 1 1 | │ │ │ │ 00067a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067a70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00067a80: 2020 2020 2020 2050 6172 6974 7943 6865 ParityChe │ │ │ │ 00067a90: 636b 526f 7773 203d 3e20 7b7b 312c 2031 ckRows => {{1, 1 │ │ │ │ 00067aa0: 2c20 312c 2031 2c20 302c 2030 2c20 307d , 1, 1, 0, 0, 0} │ │ │ │ -00067ab0: 2c20 7b30 2c20 302c 2031 2c20 312c 2031 , {0, 0, 1, 1, 1 │ │ │ │ +00067ab0: 2c20 7b30 2c20 312c 2031 2c20 302c 2031 , {0, 1, 1, 0, 1 │ │ │ │ 00067ac0: 2c20 312c 7c0a 7c20 2020 2020 2020 2020 , 1,|.| │ │ │ │ 00067ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067b10: 2020 2020 7c0a 7c6f 3320 3a20 4c69 6e65 |.|o3 : Line │ │ │ │ 00067b20: 6172 436f 6465 2020 2020 2020 2020 2020 arCode │ │ │ │ @@ -26619,17 +26619,17 @@ │ │ │ │ 00067fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067fc0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00067fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068010: 2020 2020 7c0a 7c7b 302c 2031 2c20 312c |.|{0, 1, 1, │ │ │ │ -00068020: 2030 2c20 302c 2031 2c20 307d 2c20 7b31 0, 0, 1, 0}, {1 │ │ │ │ -00068030: 2c20 312c 2030 2c20 302c 2030 2c20 302c , 1, 0, 0, 0, 0, │ │ │ │ +00068010: 2020 2020 7c0a 7c7b 312c 2031 2c20 302c |.|{1, 1, 0, │ │ │ │ +00068020: 2030 2c20 302c 2031 2c20 307d 2c20 7b30 0, 0, 1, 0}, {0 │ │ │ │ +00068030: 2c20 312c 2031 2c20 302c 2030 2c20 302c , 1, 1, 0, 0, 0, │ │ │ │ 00068040: 2031 7d7d 2020 2020 2020 2020 2020 2020 1}} │ │ │ │ 00068050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068060: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00068070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000680a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -26863,20 +26863,20 @@ │ │ │ │ 00068ee0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00068ef0: 2043 6f64 6520 3d3e 2069 6d61 6765 207c Code => image | │ │ │ │ 00068f00: 2031 2030 2031 2031 207c 2020 2020 2020 1 0 1 1 | │ │ │ │ 00068f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068f20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00068f30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00068f40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00068f50: 2031 2031 2030 2031 207c 2020 2020 2020 1 1 0 1 | │ │ │ │ +00068f50: 2031 2031 2031 2030 207c 2020 2020 2020 1 1 1 0 | │ │ │ │ 00068f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068f70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00068f80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00068f90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00068fa0: 2031 2031 2031 2030 207c 2020 2020 2020 1 1 1 0 | │ │ │ │ +00068fa0: 2031 2031 2030 2031 207c 2020 2020 2020 1 1 0 1 | │ │ │ │ 00068fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068fc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00068fd0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00068fe0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00068ff0: 2031 2030 2030 2030 207c 2020 2020 2020 1 0 0 0 | │ │ │ │ 00069000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069010: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ @@ -26903,47 +26903,47 @@ │ │ │ │ 00069160: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00069170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069180: 2020 2020 7c20 3020 3120 3120 3020 3120 | 0 1 1 0 1 │ │ │ │ 00069190: 3020 3020 7c20 2020 2020 2020 2020 2020 0 0 | │ │ │ │ 000691a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 000691b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000691c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000691d0: 2020 2020 7c20 3120 3020 3120 3020 3020 | 1 0 1 0 0 │ │ │ │ +000691d0: 2020 2020 7c20 3120 3120 3020 3020 3020 | 1 1 0 0 0 │ │ │ │ 000691e0: 3120 3020 7c20 2020 2020 2020 2020 2020 1 0 | │ │ │ │ 000691f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00069200: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00069210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069220: 2020 2020 7c20 3120 3120 3020 3020 3020 | 1 1 0 0 0 │ │ │ │ +00069220: 2020 2020 7c20 3120 3020 3120 3020 3020 | 1 0 1 0 0 │ │ │ │ 00069230: 3020 3120 7c20 2020 2020 2020 2020 2020 0 1 | │ │ │ │ 00069240: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00069250: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00069260: 2047 656e 6572 6174 6f72 7320 3d3e 207b Generators => { │ │ │ │ 00069270: 7b31 2c20 312c 2031 2c20 312c 2030 2c20 {1, 1, 1, 1, 0, │ │ │ │ 00069280: 302c 2030 7d2c 207b 302c 2031 2c20 312c 0, 0}, {0, 1, 1, │ │ │ │ 00069290: 2030 2c20 312c 2030 2c20 307d 2c20 7c0a 0, 1, 0, 0}, |. │ │ │ │ 000692a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000692b0: 2050 6172 6974 7943 6865 636b 4d61 7472 ParityCheckMatr │ │ │ │ 000692c0: 6978 203d 3e20 7c20 3120 3120 3120 3120 ix => | 1 1 1 1 │ │ │ │ 000692d0: 3020 3020 3020 7c20 2020 2020 2020 2020 0 0 0 | │ │ │ │ 000692e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 000692f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00069300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069310: 2020 2020 2020 7c20 3020 3020 3120 3120 | 0 0 1 1 │ │ │ │ +00069310: 2020 2020 2020 7c20 3020 3120 3020 3120 | 0 1 0 1 │ │ │ │ 00069320: 3120 3120 3020 7c20 2020 2020 2020 2020 1 1 0 | │ │ │ │ 00069330: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00069340: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00069350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069360: 2020 2020 2020 7c20 3020 3120 3020 3120 | 0 1 0 1 │ │ │ │ -00069370: 3120 3020 3120 7c20 2020 2020 2020 2020 1 0 1 | │ │ │ │ +00069360: 2020 2020 2020 7c20 3020 3120 3120 3020 | 0 1 1 0 │ │ │ │ +00069370: 3020 3120 3120 7c20 2020 2020 2020 2020 0 1 1 | │ │ │ │ 00069380: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00069390: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000693a0: 2050 6172 6974 7943 6865 636b 526f 7773 ParityCheckRows │ │ │ │ 000693b0: 203d 3e20 7b7b 312c 2031 2c20 312c 2031 => {{1, 1, 1, 1 │ │ │ │ 000693c0: 2c20 302c 2030 2c20 307d 2c20 7b30 2c20 , 0, 0, 0}, {0, │ │ │ │ -000693d0: 302c 2031 2c20 312c 2031 2c20 312c 7c0a 0, 1, 1, 1, 1,|. │ │ │ │ +000693d0: 312c 2030 2c20 312c 2031 2c20 312c 7c0a 1, 0, 1, 1, 1,|. │ │ │ │ 000693e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000693f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069420: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00069430: 7c6f 3120 3a20 4c69 6e65 6172 436f 6465 |o1 : LinearCode │ │ │ │ 00069440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -27021,16 +27021,16 @@ │ │ │ │ 000698c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000698d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 000698e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000698f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069920: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00069930: 7c7b 312c 2030 2c20 312c 2030 2c20 302c |{1, 0, 1, 0, 0, │ │ │ │ -00069940: 2031 2c20 307d 2c20 7b31 2c20 312c 2030 1, 0}, {1, 1, 0 │ │ │ │ +00069930: 7c7b 312c 2031 2c20 302c 2030 2c20 302c |{1, 1, 0, 0, 0, │ │ │ │ +00069940: 2031 2c20 307d 2c20 7b31 2c20 302c 2031 1, 0}, {1, 0, 1 │ │ │ │ 00069950: 2c20 302c 2030 2c20 302c 2031 7d7d 2020 , 0, 0, 0, 1}} │ │ │ │ 00069960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069970: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00069980: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00069990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000699a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000699b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -27041,16 +27041,16 @@ │ │ │ │ 00069a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069a10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00069a20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00069a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069a60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00069a70: 7c20 307d 2c20 7b30 2c20 312c 2030 2c20 | 0}, {0, 1, 0, │ │ │ │ -00069a80: 312c 2031 2c20 302c 2031 7d7d 2020 2020 1, 1, 0, 1}} │ │ │ │ +00069a70: 7c20 307d 2c20 7b30 2c20 312c 2031 2c20 | 0}, {0, 1, 1, │ │ │ │ +00069a80: 302c 2030 2c20 312c 2031 7d7d 2020 2020 0, 0, 1, 1}} │ │ │ │ 00069a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069ab0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00069ac0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00069ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ ├── ./usr/share/info/CohomCalg.info.gz │ │ │ ├── CohomCalg.info │ │ │ │ @@ -1042,15 +1042,15 @@ │ │ │ │ 00004110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00004130: 7c69 3230 203a 2065 6c61 7073 6564 5469 |i20 : elapsedTi │ │ │ │ 00004140: 6d65 2068 7665 6373 203d 2063 6f68 6f6d me hvecs = cohom │ │ │ │ 00004150: 4361 6c67 2858 2c20 4432 2920 2020 2020 Calg(X, D2) │ │ │ │ 00004160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004170: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00004180: 7c20 2d2d 2033 2e30 3833 3037 7320 656c | -- 3.08307s el │ │ │ │ +00004180: 7c20 2d2d 2034 2e31 3432 3936 7320 656c | -- 4.14296s el │ │ │ │ 00004190: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 000041a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000041b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000041c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 000041d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000041e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000041f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1677,15 +1677,15 @@ │ │ │ │ 000068c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000068d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 000068e0: 7c69 3233 203a 2065 6c61 7073 6564 5469 |i23 : elapsedTi │ │ │ │ 000068f0: 6d65 2063 6f68 6f6d 7665 6331 203d 2063 me cohomvec1 = c │ │ │ │ 00006900: 6f68 6f6d 4361 6c67 2858 5f33 202b 2058 ohomCalg(X_3 + X │ │ │ │ 00006910: 5f37 202b 2058 5f38 2920 2020 2020 2020 _7 + X_8) │ │ │ │ 00006920: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00006930: 7c20 2d2d 202e 3338 3336 3633 7320 656c | -- .383663s el │ │ │ │ +00006930: 7c20 2d2d 202e 3937 3837 3834 7320 656c | -- .978784s el │ │ │ │ 00006940: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 00006950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006970: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00006980: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00006990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000069a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1712,15 +1712,15 @@ │ │ │ │ 00006af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00006b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00006b10: 7c69 3234 203a 2065 6c61 7073 6564 5469 |i24 : elapsedTi │ │ │ │ 00006b20: 6d65 2063 6f68 6f6d 7665 6332 203d 2066 me cohomvec2 = f │ │ │ │ 00006b30: 6f72 206a 2066 726f 6d20 3020 746f 2064 or j from 0 to d │ │ │ │ 00006b40: 696d 2058 206c 6973 7420 7261 6e6b 2048 im X list rank H │ │ │ │ 00006b50: 485e 6a28 582c 2020 2020 2020 2020 7c0a H^j(X, |. │ │ │ │ -00006b60: 7c20 2d2d 2031 332e 3535 3836 7320 656c | -- 13.5586s el │ │ │ │ +00006b60: 7c20 2d2d 2031 312e 3532 3634 7320 656c | -- 11.5264s el │ │ │ │ 00006b70: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 00006b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006ba0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00006bb0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00006bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1797,15 +1797,15 @@ │ │ │ │ 00007040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00007050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00007060: 7c69 3237 203a 2065 6c61 7073 6564 5469 |i27 : elapsedTi │ │ │ │ 00007070: 6d65 2063 6f68 6f6d 7665 6331 203d 2063 me cohomvec1 = c │ │ │ │ 00007080: 6f68 6f6d 4361 6c67 2858 5f33 202b 2058 ohomCalg(X_3 + X │ │ │ │ 00007090: 5f37 202d 2058 5f38 2920 2020 2020 2020 _7 - X_8) │ │ │ │ 000070a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000070b0: 7c20 2d2d 202e 3430 3436 3437 7320 656c | -- .404647s el │ │ │ │ +000070b0: 7c20 2d2d 2031 2e30 3338 3938 7320 656c | -- 1.03898s el │ │ │ │ 000070c0: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 000070d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000070e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000070f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00007100: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00007110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1832,20 +1832,20 @@ │ │ │ │ 00007270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00007280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00007290: 7c69 3238 203a 2065 6c61 7073 6564 5469 |i28 : elapsedTi │ │ │ │ 000072a0: 6d65 2063 6f68 6f6d 7665 6332 203d 2065 me cohomvec2 = e │ │ │ │ 000072b0: 6c61 7073 6564 5469 6d65 2066 6f72 206a lapsedTime for j │ │ │ │ 000072c0: 2066 726f 6d20 3020 746f 2064 696d 2058 from 0 to dim X │ │ │ │ 000072d0: 206c 6973 7420 7261 6e6b 2020 2020 7c0a list rank |. │ │ │ │ -000072e0: 7c20 2d2d 202e 3437 3434 3835 7320 656c | -- .474485s el │ │ │ │ +000072e0: 7c20 2d2d 202e 3530 3331 3337 7320 656c | -- .503137s el │ │ │ │ 000072f0: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 00007300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007320: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00007330: 7c20 2d2d 202e 3437 3435 3331 7320 656c | -- .474531s el │ │ │ │ +00007330: 7c20 2d2d 202e 3530 3331 3835 7320 656c | -- .503185s el │ │ │ │ 00007340: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 00007350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007370: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00007380: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00007390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000073a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/CompleteIntersectionResolutions.info.gz │ │ │ ├── CompleteIntersectionResolutions.info │ │ │ │ @@ -4102,17 +4102,17 @@ │ │ │ │ 00010050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010060: 2d2d 2d2d 2d2b 0a7c 6937 203a 2074 696d -----+.|i7 : tim │ │ │ │ 00010070: 6520 4720 3d20 4569 7365 6e62 7564 5368 e G = EisenbudSh │ │ │ │ 00010080: 616d 6173 6828 6666 2c46 2c6c 656e 2920 amash(ff,F,len) │ │ │ │ 00010090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000100a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000100b0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -000100c0: 2039 2e36 3235 3635 7320 2863 7075 293b 9.62565s (cpu); │ │ │ │ -000100d0: 2035 2e30 3834 3973 2028 7468 7265 6164 5.0849s (thread │ │ │ │ -000100e0: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +000100c0: 2031 332e 3632 3732 7320 2863 7075 293b 13.6272s (cpu); │ │ │ │ +000100d0: 2037 2e38 3033 3537 7320 2874 6872 6561 7.80357s (threa │ │ │ │ +000100e0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 000100f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010100: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00010110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010150: 2020 2020 207c 0a7c 2020 2020 202f 2020 |.| / │ │ │ │ @@ -4642,17 +4642,17 @@ │ │ │ │ 00012210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012230: 2d2d 2d2b 0a7c 6932 3020 3a20 4646 203d ---+.|i20 : FF = │ │ │ │ 00012240: 2074 696d 6520 5368 616d 6173 6828 5231 time Shamash(R1 │ │ │ │ 00012250: 2c46 2c34 2920 2020 2020 2020 2020 2020 ,F,4) │ │ │ │ 00012260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012270: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00012280: 2030 2e31 3539 3736 3873 2028 6370 7529 0.159768s (cpu) │ │ │ │ -00012290: 3b20 302e 3038 3830 3735 3673 2028 7468 ; 0.0880756s (th │ │ │ │ -000122a0: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +00012280: 2030 2e31 3633 3833 3673 2028 6370 7529 0.163836s (cpu) │ │ │ │ +00012290: 3b20 302e 3131 3339 3338 7320 2874 6872 ; 0.113938s (thr │ │ │ │ +000122a0: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 000122b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000122c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000122d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000122e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000122f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00012300: 2020 2020 3120 2020 2020 2020 3620 2020 1 6 │ │ │ │ 00012310: 2020 2020 3138 2020 2020 2020 2033 3820 18 38 │ │ │ │ @@ -4683,17 +4683,17 @@ │ │ │ │ 000124a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000124b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000124c0: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3120 3a20 -------+.|i21 : │ │ │ │ 000124d0: 4747 203d 2074 696d 6520 4569 7365 6e62 GG = time Eisenb │ │ │ │ 000124e0: 7564 5368 616d 6173 6828 6666 2c46 2c34 udShamash(ff,F,4 │ │ │ │ 000124f0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00012500: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -00012510: 7573 6564 2031 2e35 3936 3834 7320 2863 used 1.59684s (c │ │ │ │ -00012520: 7075 293b 2030 2e38 3333 3939 3773 2028 pu); 0.833997s ( │ │ │ │ -00012530: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ +00012510: 7573 6564 2032 2e31 3031 3239 7320 2863 used 2.10129s (c │ │ │ │ +00012520: 7075 293b 2031 2e32 3838 3873 2028 7468 pu); 1.2888s (th │ │ │ │ +00012530: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 00012540: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00012550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012580: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00012590: 2020 2020 2020 2f20 525c 3120 2020 2020 / R\1 │ │ │ │ 000125a0: 2f20 525c 3620 2020 2020 2f20 525c 3138 / R\6 / R\18 │ │ │ │ @@ -4736,23612 +4736,23611 @@ │ │ │ │ 000127f0: 6c73 6f20 6465 616c 7320 636f 7272 6563 lso deals correc │ │ │ │ 00012800: 746c 7920 7769 7468 2063 6f6d 706c 6578 tly with complex │ │ │ │ 00012810: 6573 2046 2077 6865 7265 206d 696e 2046 es F where min F │ │ │ │ 00012820: 2069 7320 6e6f 7420 303a 0a0a 2b2d 2d2d is not 0:..+--- │ │ │ │ 00012830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012860: 2d2b 0a7c 6932 3220 3a20 4747 203d 2074 -+.|i22 : GG = t │ │ │ │ -00012870: 696d 6520 4569 7365 6e62 7564 5368 616d ime EisenbudSham │ │ │ │ -00012880: 6173 6828 5231 2c46 5b32 5d2c 3429 2020 ash(R1,F[2],4) │ │ │ │ -00012890: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -000128a0: 7365 6420 312e 3536 3239 3473 2028 6370 sed 1.56294s (cp │ │ │ │ -000128b0: 7529 3b20 302e 3737 3939 3233 7320 2874 u); 0.779923s (t │ │ │ │ -000128c0: 6872 6561 6429 3b20 3073 2028 6763 297c hread); 0s (gc)| │ │ │ │ -000128d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00012860: 2b0a 7c69 3232 203a 2047 4720 3d20 7469 +.|i22 : GG = ti │ │ │ │ +00012870: 6d65 2045 6973 656e 6275 6453 6861 6d61 me EisenbudShama │ │ │ │ +00012880: 7368 2852 312c 465b 325d 2c34 2920 2020 sh(R1,F[2],4) │ │ │ │ +00012890: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ +000128a0: 6420 312e 3936 3433 3173 2028 6370 7529 d 1.96431s (cpu) │ │ │ │ +000128b0: 3b20 312e 3231 3035 3473 2028 7468 7265 ; 1.21054s (thre │ │ │ │ +000128c0: 6164 293b 2030 7320 2867 6329 7c0a 7c20 ad); 0s (gc)|.| │ │ │ │ +000128d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000128e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000128f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012900: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00012910: 2031 2020 2020 2020 2036 2020 2020 2020 1 6 │ │ │ │ -00012920: 2031 3820 2020 2020 2020 3338 2020 2020 18 38 │ │ │ │ -00012930: 2020 2036 3620 2020 2020 2020 207c 0a7c 66 |.| │ │ │ │ -00012940: 6f32 3220 3d20 5231 2020 3c2d 2d20 5231 o22 = R1 <-- R1 │ │ │ │ -00012950: 2020 3c2d 2d20 5231 2020 203c 2d2d 2052 <-- R1 <-- R │ │ │ │ -00012960: 3120 2020 3c2d 2d20 5231 2020 2020 2020 1 <-- R1 │ │ │ │ -00012970: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00012900: 2020 7c0a 7c20 2020 2020 2020 2031 2020 |.| 1 │ │ │ │ +00012910: 2020 2020 2036 2020 2020 2020 2031 3820 6 18 │ │ │ │ +00012920: 2020 2020 2020 3338 2020 2020 2020 2036 38 6 │ │ │ │ +00012930: 3620 2020 2020 2020 7c0a 7c6f 3232 203d 6 |.|o22 = │ │ │ │ +00012940: 2052 3120 203c 2d2d 2052 3120 203c 2d2d R1 <-- R1 <-- │ │ │ │ +00012950: 2052 3120 2020 3c2d 2d20 5231 2020 203c R1 <-- R1 < │ │ │ │ +00012960: 2d2d 2052 3120 2020 2020 2020 2020 7c0a -- R1 |. │ │ │ │ +00012970: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00012980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000129a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000129b0: 2020 2020 2d32 2020 2020 2020 2d31 2020 -2 -1 │ │ │ │ -000129c0: 2020 2020 3020 2020 2020 2020 2031 2020 0 1 │ │ │ │ -000129d0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000129e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000129a0: 2020 2020 7c0a 7c20 2020 2020 202d 3220 |.| -2 │ │ │ │ +000129b0: 2020 2020 202d 3120 2020 2020 2030 2020 -1 0 │ │ │ │ +000129c0: 2020 2020 2020 3120 2020 2020 2020 2032 1 2 │ │ │ │ +000129d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000129e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000129f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012a10: 2020 2020 2020 2020 207c 0a7c 6f32 3220 |.|o22 │ │ │ │ -00012a20: 3a20 4368 6169 6e43 6f6d 706c 6578 2020 : ChainComplex │ │ │ │ +00012a10: 7c0a 7c6f 3232 203a 2043 6861 696e 436f |.|o22 : ChainCo │ │ │ │ +00012a20: 6d70 6c65 7820 2020 2020 2020 2020 2020 mplex │ │ │ │ 00012a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012a50: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00012a40: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00012a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012a80: 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 616c -------+..See al │ │ │ │ -00012a90: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ -00012aa0: 202a 6e6f 7465 206d 616b 6548 6f6d 6f74 *note makeHomot │ │ │ │ -00012ab0: 6f70 6965 733a 206d 616b 6548 6f6d 6f74 opies: makeHomot │ │ │ │ -00012ac0: 6f70 6965 732c 202d 2d20 7265 7475 726e opies, -- return │ │ │ │ -00012ad0: 7320 6120 7379 7374 656d 206f 6620 6869 s a system of hi │ │ │ │ -00012ae0: 6768 6572 0a20 2020 2068 6f6d 6f74 6f70 gher. homotop │ │ │ │ -00012af0: 6965 730a 2020 2a20 2a6e 6f74 6520 5368 ies. * *note Sh │ │ │ │ -00012b00: 616d 6173 683a 2053 6861 6d61 7368 2c20 amash: Shamash, │ │ │ │ -00012b10: 2d2d 2043 6f6d 7075 7465 7320 7468 6520 -- Computes the │ │ │ │ -00012b20: 5368 616d 6173 6820 436f 6d70 6c65 780a Shamash Complex. │ │ │ │ -00012b30: 2020 2a20 2a6e 6f74 6520 6578 706f 3a20 * *note expo: │ │ │ │ -00012b40: 6578 706f 2c20 2d2d 2072 6574 7572 6e73 expo, -- returns │ │ │ │ -00012b50: 2061 2073 6574 2063 6f72 7265 7370 6f6e a set correspon │ │ │ │ -00012b60: 6469 6e67 2074 6f20 7468 6520 6261 7369 ding to the basi │ │ │ │ -00012b70: 7320 6f66 2061 2064 6976 6964 6564 0a20 s of a divided. │ │ │ │ -00012b80: 2020 2070 6f77 6572 0a0a 5761 7973 2074 power..Ways t │ │ │ │ -00012b90: 6f20 7573 6520 4569 7365 6e62 7564 5368 o use EisenbudSh │ │ │ │ -00012ba0: 616d 6173 683a 0a3d 3d3d 3d3d 3d3d 3d3d amash:.========= │ │ │ │ -00012bb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00012bc0: 3d3d 3d0a 0a20 202a 2022 4569 7365 6e62 ===.. * "Eisenb │ │ │ │ -00012bd0: 7564 5368 616d 6173 6828 4d61 7472 6978 udShamash(Matrix │ │ │ │ -00012be0: 2c43 6861 696e 436f 6d70 6c65 782c 5a5a ,ChainComplex,ZZ │ │ │ │ -00012bf0: 2922 0a20 202a 2022 4569 7365 6e62 7564 )". * "Eisenbud │ │ │ │ -00012c00: 5368 616d 6173 6828 5269 6e67 2c43 6861 Shamash(Ring,Cha │ │ │ │ -00012c10: 696e 436f 6d70 6c65 782c 5a5a 2922 0a0a inComplex,ZZ)".. │ │ │ │ -00012c20: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ -00012c30: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ -00012c40: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ -00012c50: 7420 2a6e 6f74 6520 4569 7365 6e62 7564 t *note Eisenbud │ │ │ │ -00012c60: 5368 616d 6173 683a 2045 6973 656e 6275 Shamash: Eisenbu │ │ │ │ -00012c70: 6453 6861 6d61 7368 2c20 6973 2061 202a dShamash, is a * │ │ │ │ -00012c80: 6e6f 7465 206d 6574 686f 6420 6675 6e63 note method func │ │ │ │ -00012c90: 7469 6f6e 3a0a 284d 6163 6175 6c61 7932 tion:.(Macaulay2 │ │ │ │ -00012ca0: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ -00012cb0: 6f6e 2c2e 0a1f 0a46 696c 653a 2043 6f6d on,....File: Com │ │ │ │ -00012cc0: 706c 6574 6549 6e74 6572 7365 6374 696f pleteIntersectio │ │ │ │ -00012cd0: 6e52 6573 6f6c 7574 696f 6e73 2e69 6e66 nResolutions.inf │ │ │ │ -00012ce0: 6f2c 204e 6f64 653a 2045 6973 656e 6275 o, Node: Eisenbu │ │ │ │ -00012cf0: 6453 6861 6d61 7368 546f 7461 6c2c 204e dShamashTotal, N │ │ │ │ -00012d00: 6578 743a 2065 7665 6e45 7874 4d6f 6475 ext: evenExtModu │ │ │ │ -00012d10: 6c65 2c20 5072 6576 3a20 4569 7365 6e62 le, Prev: Eisenb │ │ │ │ -00012d20: 7564 5368 616d 6173 682c 2055 703a 2054 udShamash, Up: T │ │ │ │ -00012d30: 6f70 0a0a 4569 7365 6e62 7564 5368 616d op..EisenbudSham │ │ │ │ -00012d40: 6173 6854 6f74 616c 202d 2d20 5072 6563 ashTotal -- Prec │ │ │ │ -00012d50: 7572 736f 7220 636f 6d70 6c65 7820 6f66 ursor complex of │ │ │ │ -00012d60: 2074 6f74 616c 2045 7874 0a2a 2a2a 2a2a total Ext.***** │ │ │ │ +00012a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 ------------+..S │ │ │ │ +00012a80: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ +00012a90: 0a0a 2020 2a20 2a6e 6f74 6520 6d61 6b65 .. * *note make │ │ │ │ +00012aa0: 486f 6d6f 746f 7069 6573 3a20 6d61 6b65 Homotopies: make │ │ │ │ +00012ab0: 486f 6d6f 746f 7069 6573 2c20 2d2d 2072 Homotopies, -- r │ │ │ │ +00012ac0: 6574 7572 6e73 2061 2073 7973 7465 6d20 eturns a system │ │ │ │ +00012ad0: 6f66 2068 6967 6865 720a 2020 2020 686f of higher. ho │ │ │ │ +00012ae0: 6d6f 746f 7069 6573 0a20 202a 202a 6e6f motopies. * *no │ │ │ │ +00012af0: 7465 2053 6861 6d61 7368 3a20 5368 616d te Shamash: Sham │ │ │ │ +00012b00: 6173 682c 202d 2d20 436f 6d70 7574 6573 ash, -- Computes │ │ │ │ +00012b10: 2074 6865 2053 6861 6d61 7368 2043 6f6d the Shamash Com │ │ │ │ +00012b20: 706c 6578 0a20 202a 202a 6e6f 7465 2065 plex. * *note e │ │ │ │ +00012b30: 7870 6f3a 2065 7870 6f2c 202d 2d20 7265 xpo: expo, -- re │ │ │ │ +00012b40: 7475 726e 7320 6120 7365 7420 636f 7272 turns a set corr │ │ │ │ +00012b50: 6573 706f 6e64 696e 6720 746f 2074 6865 esponding to the │ │ │ │ +00012b60: 2062 6173 6973 206f 6620 6120 6469 7669 basis of a divi │ │ │ │ +00012b70: 6465 640a 2020 2020 706f 7765 720a 0a57 ded. power..W │ │ │ │ +00012b80: 6179 7320 746f 2075 7365 2045 6973 656e ays to use Eisen │ │ │ │ +00012b90: 6275 6453 6861 6d61 7368 3a0a 3d3d 3d3d budShamash:.==== │ │ │ │ +00012ba0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00012bb0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2245 ========.. * "E │ │ │ │ +00012bc0: 6973 656e 6275 6453 6861 6d61 7368 284d isenbudShamash(M │ │ │ │ +00012bd0: 6174 7269 782c 4368 6169 6e43 6f6d 706c atrix,ChainCompl │ │ │ │ +00012be0: 6578 2c5a 5a29 220a 2020 2a20 2245 6973 ex,ZZ)". * "Eis │ │ │ │ +00012bf0: 656e 6275 6453 6861 6d61 7368 2852 696e enbudShamash(Rin │ │ │ │ +00012c00: 672c 4368 6169 6e43 6f6d 706c 6578 2c5a g,ChainComplex,Z │ │ │ │ +00012c10: 5a29 220a 0a46 6f72 2074 6865 2070 726f Z)"..For the pro │ │ │ │ +00012c20: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +00012c30: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +00012c40: 6f62 6a65 6374 202a 6e6f 7465 2045 6973 object *note Eis │ │ │ │ +00012c50: 656e 6275 6453 6861 6d61 7368 3a20 4569 enbudShamash: Ei │ │ │ │ +00012c60: 7365 6e62 7564 5368 616d 6173 682c 2069 senbudShamash, i │ │ │ │ +00012c70: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ +00012c80: 2066 756e 6374 696f 6e3a 0a28 4d61 6361 function:.(Maca │ │ │ │ +00012c90: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ +00012ca0: 756e 6374 696f 6e2c 2e0a 1f0a 4669 6c65 unction,....File │ │ │ │ +00012cb0: 3a20 436f 6d70 6c65 7465 496e 7465 7273 : CompleteInters │ │ │ │ +00012cc0: 6563 7469 6f6e 5265 736f 6c75 7469 6f6e ectionResolution │ │ │ │ +00012cd0: 732e 696e 666f 2c20 4e6f 6465 3a20 4569 s.info, Node: Ei │ │ │ │ +00012ce0: 7365 6e62 7564 5368 616d 6173 6854 6f74 senbudShamashTot │ │ │ │ +00012cf0: 616c 2c20 4e65 7874 3a20 6576 656e 4578 al, Next: evenEx │ │ │ │ +00012d00: 744d 6f64 756c 652c 2050 7265 763a 2045 tModule, Prev: E │ │ │ │ +00012d10: 6973 656e 6275 6453 6861 6d61 7368 2c20 isenbudShamash, │ │ │ │ +00012d20: 5570 3a20 546f 700a 0a45 6973 656e 6275 Up: Top..Eisenbu │ │ │ │ +00012d30: 6453 6861 6d61 7368 546f 7461 6c20 2d2d dShamashTotal -- │ │ │ │ +00012d40: 2050 7265 6375 7273 6f72 2063 6f6d 706c Precursor compl │ │ │ │ +00012d50: 6578 206f 6620 746f 7461 6c20 4578 740a ex of total Ext. │ │ │ │ +00012d60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00012d70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00012d80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00012d90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00012da0: 2a0a 0a53 796e 6f70 7369 730a 3d3d 3d3d *..Synopsis.==== │ │ │ │ -00012db0: 3d3d 3d3d 0a0a 2020 2a20 5573 6167 653a ====.. * Usage: │ │ │ │ -00012dc0: 200a 2020 2020 2020 2020 2864 302c 6431 . (d0,d1 │ │ │ │ -00012dd0: 2920 3d20 2045 6973 656e 6275 6453 6861 ) = EisenbudSha │ │ │ │ -00012de0: 6d61 7368 546f 7461 6c20 4d0a 2020 2a20 mashTotal M. * │ │ │ │ -00012df0: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -00012e00: 4d2c 2061 202a 6e6f 7465 206d 6f64 756c M, a *note modul │ │ │ │ -00012e10: 653a 2028 4d61 6361 756c 6179 3244 6f63 e: (Macaulay2Doc │ │ │ │ -00012e20: 294d 6f64 756c 652c 2c20 6f76 6572 2061 )Module,, over a │ │ │ │ -00012e30: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ -00012e40: 6563 7469 6f6e 0a20 202a 202a 6e6f 7465 ection. * *note │ │ │ │ -00012e50: 204f 7074 696f 6e61 6c20 696e 7075 7473 Optional inputs │ │ │ │ -00012e60: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00012e70: 7573 696e 6720 6675 6e63 7469 6f6e 7320 using functions │ │ │ │ -00012e80: 7769 7468 206f 7074 696f 6e61 6c20 696e with optional in │ │ │ │ -00012e90: 7075 7473 2c3a 0a20 2020 2020 202a 2043 puts,:. * C │ │ │ │ -00012ea0: 6865 636b 203d 3e20 2e2e 2e2c 2064 6566 heck => ..., def │ │ │ │ -00012eb0: 6175 6c74 2076 616c 7565 2066 616c 7365 ault value false │ │ │ │ -00012ec0: 0a20 2020 2020 202a 2047 7261 6469 6e67 . * Grading │ │ │ │ -00012ed0: 203d 3e20 2e2e 2e2c 2064 6566 6175 6c74 => ..., default │ │ │ │ -00012ee0: 2076 616c 7565 2032 0a20 2020 2020 202a value 2. * │ │ │ │ -00012ef0: 2056 6172 6961 626c 6573 203d 3e20 2e2e Variables => .. │ │ │ │ -00012f00: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ -00012f10: 2073 0a20 202a 204f 7574 7075 7473 3a0a s. * Outputs:. │ │ │ │ -00012f20: 2020 2020 2020 2a20 6430 2c20 6120 2a6e * d0, a *n │ │ │ │ -00012f30: 6f74 6520 6d61 7472 6978 3a20 284d 6163 ote matrix: (Mac │ │ │ │ -00012f40: 6175 6c61 7932 446f 6329 4d61 7472 6978 aulay2Doc)Matrix │ │ │ │ -00012f50: 2c2c 206d 6170 206f 6620 6672 6565 206d ,, map of free m │ │ │ │ -00012f60: 6f64 756c 6573 206f 7665 7220 616e 0a20 odules over an. │ │ │ │ -00012f70: 2020 2020 2020 2065 6e6c 6172 6765 6420 enlarged │ │ │ │ -00012f80: 7269 6e67 0a20 2020 2020 202a 2064 312c ring. * d1, │ │ │ │ -00012f90: 2061 202a 6e6f 7465 206d 6174 7269 783a a *note matrix: │ │ │ │ -00012fa0: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ -00012fb0: 6174 7269 782c 2c20 6d61 7020 6f66 2066 atrix,, map of f │ │ │ │ -00012fc0: 7265 6520 6d6f 6475 6c65 7320 6f76 6572 ree modules over │ │ │ │ -00012fd0: 2061 6e0a 2020 2020 2020 2020 656e 6c61 an. enla │ │ │ │ -00012fe0: 7267 6564 2072 696e 670a 0a44 6573 6372 rged ring..Descr │ │ │ │ -00012ff0: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ -00013000: 3d3d 0a0a 4173 7375 6d65 2074 6861 7420 ==..Assume that │ │ │ │ -00013010: 4d20 6973 2064 6566 696e 6564 206f 7665 M is defined ove │ │ │ │ -00013020: 7220 6120 7269 6e67 206f 6620 7468 6520 r a ring of the │ │ │ │ -00013030: 666f 726d 2052 6261 7220 3d20 522f 2866 form Rbar = R/(f │ │ │ │ -00013040: 5f30 2e2e 665f 7b63 2d31 7d29 2c20 610a _0..f_{c-1}), a. │ │ │ │ -00013050: 636f 6d70 6c65 7465 2069 6e74 6572 7365 complete interse │ │ │ │ -00013060: 6374 696f 6e2c 2061 6e64 2074 6861 7420 ction, and that │ │ │ │ -00013070: 4d20 6861 7320 6120 6669 6e69 7465 2066 M has a finite f │ │ │ │ -00013080: 7265 6520 7265 736f 6c75 7469 6f6e 2047 ree resolution G │ │ │ │ -00013090: 206f 7665 7220 522e 2049 6e0a 7468 6973 over R. In.this │ │ │ │ -000130a0: 2063 6173 6520 4d20 6861 7320 6120 6672 case M has a fr │ │ │ │ -000130b0: 6565 2072 6573 6f6c 7574 696f 6e20 4620 ee resolution F │ │ │ │ -000130c0: 6f76 6572 2052 6261 7220 7768 6f73 6520 over Rbar whose │ │ │ │ -000130d0: 6475 616c 2c20 465e 2a20 6973 2061 2066 dual, F^* is a f │ │ │ │ -000130e0: 696e 6974 656c 790a 6765 6e65 7261 7465 initely.generate │ │ │ │ -000130f0: 642c 205a 2d67 7261 6465 6420 6672 6565 d, Z-graded free │ │ │ │ -00013100: 206d 6f64 756c 6520 6f76 6572 2061 2072 module over a r │ │ │ │ -00013110: 696e 6720 5362 6172 5c63 6f6e 6720 6b6b ing Sbar\cong kk │ │ │ │ -00013120: 5b73 5f30 2e2e 735f 7b63 2d31 7d2c 6765 [s_0..s_{c-1},ge │ │ │ │ -00013130: 6e73 0a52 6261 725d 2c20 7768 6572 6520 ns.Rbar], where │ │ │ │ -00013140: 7468 6520 6465 6772 6565 7320 6f66 2074 the degrees of t │ │ │ │ -00013150: 6865 2073 5f69 2061 7265 207b 2d32 2c20 he s_i are {-2, │ │ │ │ -00013160: 2d64 6567 7265 6520 665f 697d 2e20 5468 -degree f_i}. Th │ │ │ │ -00013170: 6973 2072 6573 6f6c 7574 696f 6e20 6973 is resolution is │ │ │ │ -00013180: 0a69 7320 636f 6e73 7472 7563 7465 6420 .is constructed │ │ │ │ -00013190: 6672 6f6d 2074 6865 2064 7561 6c20 6f66 from the dual of │ │ │ │ -000131a0: 2047 2c20 746f 6765 7468 6572 2077 6974 G, together wit │ │ │ │ -000131b0: 6820 7468 6520 6475 616c 7320 6f66 2074 h the duals of t │ │ │ │ -000131c0: 6865 2068 6967 6865 720a 686f 6d6f 746f he higher.homoto │ │ │ │ -000131d0: 7069 6573 206f 6e20 4720 6465 6669 6e65 pies on G define │ │ │ │ -000131e0: 6420 6279 2045 6973 656e 6275 642e 0a0a d by Eisenbud... │ │ │ │ -000131f0: 5468 6520 6675 6e63 7469 6f6e 2072 6574 The function ret │ │ │ │ -00013200: 7572 6e73 2074 6865 2064 6966 6665 7265 urns the differe │ │ │ │ -00013210: 6e74 6961 6c73 2064 303a 465e 2a5f 7b65 ntials d0:F^*_{e │ │ │ │ -00013220: 7665 6e7d 205c 746f 2046 5e2a 5f7b 6f64 ven} \to F^*_{od │ │ │ │ -00013230: 647d 2061 6e64 0a64 313a 465e 2a5f 7b6f d} and.d1:F^*_{o │ │ │ │ -00013240: 6464 7d5c 746f 2046 5e2a 5f7b 6576 656e dd}\to F^*_{even │ │ │ │ -00013250: 7d2e 0a0a 5468 6520 6d61 7073 2064 302c }...The maps d0, │ │ │ │ -00013260: 6431 2066 6f72 6d20 6120 6d61 7472 6978 d1 form a matrix │ │ │ │ -00013270: 2066 6163 746f 7269 7a61 7469 6f6e 206f factorization o │ │ │ │ -00013280: 6620 7375 6d28 632c 2069 2d3e 735f 692a f sum(c, i->s_i* │ │ │ │ -00013290: 665f 6929 2e20 5468 6520 6861 7665 2074 f_i). The have t │ │ │ │ -000132a0: 6865 0a70 726f 7065 7274 7920 7468 6174 he.property that │ │ │ │ -000132b0: 2066 6f72 2061 6e79 2052 6261 7220 6d6f for any Rbar mo │ │ │ │ -000132c0: 6475 6c65 204e 2c0a 0a48 485f 3120 6368 dule N,..HH_1 ch │ │ │ │ -000132d0: 6169 6e43 6f6d 706c 6578 205c 7b64 302a ainComplex \{d0* │ │ │ │ -000132e0: 2a4e 2c20 6431 2a2a 4e5c 7d20 3d20 4578 *N, d1**N\} = Ex │ │ │ │ -000132f0: 745e 7b65 7665 6e7d 5f7b 5262 6172 7d28 t^{even}_{Rbar}( │ │ │ │ -00013300: 4d2c 4e29 0a0a 535e 7b7b 312c 307d 7d2a M,N)..S^{{1,0}}* │ │ │ │ -00013310: 2a48 485f 3120 6368 6169 6e43 6f6d 706c *HH_1 chainCompl │ │ │ │ -00013320: 6578 205c 7b53 5e7b 7b2d 322c 307d 7d2a ex \{S^{{-2,0}}* │ │ │ │ -00013330: 2a64 312a 2a4e 2c20 6430 2a2a 4e5c 7d20 *d1**N, d0**N\} │ │ │ │ -00013340: 3d0a 4578 745e 7b6f 6464 7d5f 7b52 6261 =.Ext^{odd}_{Rba │ │ │ │ -00013350: 727d 284d 2c4e 290a 0a54 6869 7320 6973 r}(M,N)..This is │ │ │ │ -00013360: 2065 6e63 6f64 6564 2069 6e20 7468 6520 encoded in the │ │ │ │ -00013370: 7363 7269 7074 206e 6577 4578 740a 0a4f script newExt..O │ │ │ │ -00013380: 7074 696f 6e20 6465 6661 756c 7473 3a20 ption defaults: │ │ │ │ -00013390: 4368 6563 6b3d 3e66 616c 7365 2056 6172 Check=>false Var │ │ │ │ -000133a0: 6961 626c 6573 3d3e 6765 7453 796d 626f iables=>getSymbo │ │ │ │ -000133b0: 6c20 2273 222c 2047 7261 6469 6e67 203d l "s", Grading = │ │ │ │ -000133c0: 3e32 7d0a 0a49 6620 4772 6164 696e 6720 >2}..If Grading │ │ │ │ -000133d0: 3d3e 312c 2074 6865 6e20 6120 7369 6e67 =>1, then a sing │ │ │ │ -000133e0: 6c79 2067 7261 6465 6420 7265 7375 6c74 ly graded result │ │ │ │ -000133f0: 2069 7320 7265 7475 726e 6564 2028 6a75 is returned (ju │ │ │ │ -00013400: 7374 2066 6f72 6765 7474 696e 6720 7468 st forgetting th │ │ │ │ -00013410: 650a 686f 6d6f 6c6f 6769 6361 6c20 6772 e.homological gr │ │ │ │ -00013420: 6164 696e 672e 290a 0a0a 0a2b 2d2d 2d2d ading.)....+---- │ │ │ │ +00012d90: 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 ******..Synopsis │ │ │ │ +00012da0: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 .========.. * U │ │ │ │ +00012db0: 7361 6765 3a20 0a20 2020 2020 2020 2028 sage: . ( │ │ │ │ +00012dc0: 6430 2c64 3129 203d 2020 4569 7365 6e62 d0,d1) = Eisenb │ │ │ │ +00012dd0: 7564 5368 616d 6173 6854 6f74 616c 204d udShamashTotal M │ │ │ │ +00012de0: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +00012df0: 2020 202a 204d 2c20 6120 2a6e 6f74 6520 * M, a *note │ │ │ │ +00012e00: 6d6f 6475 6c65 3a20 284d 6163 6175 6c61 module: (Macaula │ │ │ │ +00012e10: 7932 446f 6329 4d6f 6475 6c65 2c2c 206f y2Doc)Module,, o │ │ │ │ +00012e20: 7665 7220 6120 636f 6d70 6c65 7465 2069 ver a complete i │ │ │ │ +00012e30: 6e74 6572 7365 6374 696f 6e0a 2020 2a20 ntersection. * │ │ │ │ +00012e40: 2a6e 6f74 6520 4f70 7469 6f6e 616c 2069 *note Optional i │ │ │ │ +00012e50: 6e70 7574 733a 2028 4d61 6361 756c 6179 nputs: (Macaulay │ │ │ │ +00012e60: 3244 6f63 2975 7369 6e67 2066 756e 6374 2Doc)using funct │ │ │ │ +00012e70: 696f 6e73 2077 6974 6820 6f70 7469 6f6e ions with option │ │ │ │ +00012e80: 616c 2069 6e70 7574 732c 3a0a 2020 2020 al inputs,:. │ │ │ │ +00012e90: 2020 2a20 4368 6563 6b20 3d3e 202e 2e2e * Check => ... │ │ │ │ +00012ea0: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ +00012eb0: 6661 6c73 650a 2020 2020 2020 2a20 4772 false. * Gr │ │ │ │ +00012ec0: 6164 696e 6720 3d3e 202e 2e2e 2c20 6465 ading => ..., de │ │ │ │ +00012ed0: 6661 756c 7420 7661 6c75 6520 320a 2020 fault value 2. │ │ │ │ +00012ee0: 2020 2020 2a20 5661 7269 6162 6c65 7320 * Variables │ │ │ │ +00012ef0: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +00012f00: 7661 6c75 6520 730a 2020 2a20 4f75 7470 value s. * Outp │ │ │ │ +00012f10: 7574 733a 0a20 2020 2020 202a 2064 302c uts:. * d0, │ │ │ │ +00012f20: 2061 202a 6e6f 7465 206d 6174 7269 783a a *note matrix: │ │ │ │ +00012f30: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +00012f40: 6174 7269 782c 2c20 6d61 7020 6f66 2066 atrix,, map of f │ │ │ │ +00012f50: 7265 6520 6d6f 6475 6c65 7320 6f76 6572 ree modules over │ │ │ │ +00012f60: 2061 6e0a 2020 2020 2020 2020 656e 6c61 an. enla │ │ │ │ +00012f70: 7267 6564 2072 696e 670a 2020 2020 2020 rged ring. │ │ │ │ +00012f80: 2a20 6431 2c20 6120 2a6e 6f74 6520 6d61 * d1, a *note ma │ │ │ │ +00012f90: 7472 6978 3a20 284d 6163 6175 6c61 7932 trix: (Macaulay2 │ │ │ │ +00012fa0: 446f 6329 4d61 7472 6978 2c2c 206d 6170 Doc)Matrix,, map │ │ │ │ +00012fb0: 206f 6620 6672 6565 206d 6f64 756c 6573 of free modules │ │ │ │ +00012fc0: 206f 7665 7220 616e 0a20 2020 2020 2020 over an. │ │ │ │ +00012fd0: 2065 6e6c 6172 6765 6420 7269 6e67 0a0a enlarged ring.. │ │ │ │ +00012fe0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +00012ff0: 3d3d 3d3d 3d3d 3d0a 0a41 7373 756d 6520 =======..Assume │ │ │ │ +00013000: 7468 6174 204d 2069 7320 6465 6669 6e65 that M is define │ │ │ │ +00013010: 6420 6f76 6572 2061 2072 696e 6720 6f66 d over a ring of │ │ │ │ +00013020: 2074 6865 2066 6f72 6d20 5262 6172 203d the form Rbar = │ │ │ │ +00013030: 2052 2f28 665f 302e 2e66 5f7b 632d 317d R/(f_0..f_{c-1} │ │ │ │ +00013040: 292c 2061 0a63 6f6d 706c 6574 6520 696e ), a.complete in │ │ │ │ +00013050: 7465 7273 6563 7469 6f6e 2c20 616e 6420 tersection, and │ │ │ │ +00013060: 7468 6174 204d 2068 6173 2061 2066 696e that M has a fin │ │ │ │ +00013070: 6974 6520 6672 6565 2072 6573 6f6c 7574 ite free resolut │ │ │ │ +00013080: 696f 6e20 4720 6f76 6572 2052 2e20 496e ion G over R. In │ │ │ │ +00013090: 0a74 6869 7320 6361 7365 204d 2068 6173 .this case M has │ │ │ │ +000130a0: 2061 2066 7265 6520 7265 736f 6c75 7469 a free resoluti │ │ │ │ +000130b0: 6f6e 2046 206f 7665 7220 5262 6172 2077 on F over Rbar w │ │ │ │ +000130c0: 686f 7365 2064 7561 6c2c 2046 5e2a 2069 hose dual, F^* i │ │ │ │ +000130d0: 7320 6120 6669 6e69 7465 6c79 0a67 656e s a finitely.gen │ │ │ │ +000130e0: 6572 6174 6564 2c20 5a2d 6772 6164 6564 erated, Z-graded │ │ │ │ +000130f0: 2066 7265 6520 6d6f 6475 6c65 206f 7665 free module ove │ │ │ │ +00013100: 7220 6120 7269 6e67 2053 6261 725c 636f r a ring Sbar\co │ │ │ │ +00013110: 6e67 206b 6b5b 735f 302e 2e73 5f7b 632d ng kk[s_0..s_{c- │ │ │ │ +00013120: 317d 2c67 656e 730a 5262 6172 5d2c 2077 1},gens.Rbar], w │ │ │ │ +00013130: 6865 7265 2074 6865 2064 6567 7265 6573 here the degrees │ │ │ │ +00013140: 206f 6620 7468 6520 735f 6920 6172 6520 of the s_i are │ │ │ │ +00013150: 7b2d 322c 202d 6465 6772 6565 2066 5f69 {-2, -degree f_i │ │ │ │ +00013160: 7d2e 2054 6869 7320 7265 736f 6c75 7469 }. This resoluti │ │ │ │ +00013170: 6f6e 2069 730a 6973 2063 6f6e 7374 7275 on is.is constru │ │ │ │ +00013180: 6374 6564 2066 726f 6d20 7468 6520 6475 cted from the du │ │ │ │ +00013190: 616c 206f 6620 472c 2074 6f67 6574 6865 al of G, togethe │ │ │ │ +000131a0: 7220 7769 7468 2074 6865 2064 7561 6c73 r with the duals │ │ │ │ +000131b0: 206f 6620 7468 6520 6869 6768 6572 0a68 of the higher.h │ │ │ │ +000131c0: 6f6d 6f74 6f70 6965 7320 6f6e 2047 2064 omotopies on G d │ │ │ │ +000131d0: 6566 696e 6564 2062 7920 4569 7365 6e62 efined by Eisenb │ │ │ │ +000131e0: 7564 2e0a 0a54 6865 2066 756e 6374 696f ud...The functio │ │ │ │ +000131f0: 6e20 7265 7475 726e 7320 7468 6520 6469 n returns the di │ │ │ │ +00013200: 6666 6572 656e 7469 616c 7320 6430 3a46 fferentials d0:F │ │ │ │ +00013210: 5e2a 5f7b 6576 656e 7d20 5c74 6f20 465e ^*_{even} \to F^ │ │ │ │ +00013220: 2a5f 7b6f 6464 7d20 616e 640a 6431 3a46 *_{odd} and.d1:F │ │ │ │ +00013230: 5e2a 5f7b 6f64 647d 5c74 6f20 465e 2a5f ^*_{odd}\to F^*_ │ │ │ │ +00013240: 7b65 7665 6e7d 2e0a 0a54 6865 206d 6170 {even}...The map │ │ │ │ +00013250: 7320 6430 2c64 3120 666f 726d 2061 206d s d0,d1 form a m │ │ │ │ +00013260: 6174 7269 7820 6661 6374 6f72 697a 6174 atrix factorizat │ │ │ │ +00013270: 696f 6e20 6f66 2073 756d 2863 2c20 692d ion of sum(c, i- │ │ │ │ +00013280: 3e73 5f69 2a66 5f69 292e 2054 6865 2068 >s_i*f_i). The h │ │ │ │ +00013290: 6176 6520 7468 650a 7072 6f70 6572 7479 ave the.property │ │ │ │ +000132a0: 2074 6861 7420 666f 7220 616e 7920 5262 that for any Rb │ │ │ │ +000132b0: 6172 206d 6f64 756c 6520 4e2c 0a0a 4848 ar module N,..HH │ │ │ │ +000132c0: 5f31 2063 6861 696e 436f 6d70 6c65 7820 _1 chainComplex │ │ │ │ +000132d0: 5c7b 6430 2a2a 4e2c 2064 312a 2a4e 5c7d \{d0**N, d1**N\} │ │ │ │ +000132e0: 203d 2045 7874 5e7b 6576 656e 7d5f 7b52 = Ext^{even}_{R │ │ │ │ +000132f0: 6261 727d 284d 2c4e 290a 0a53 5e7b 7b31 bar}(M,N)..S^{{1 │ │ │ │ +00013300: 2c30 7d7d 2a2a 4848 5f31 2063 6861 696e ,0}}**HH_1 chain │ │ │ │ +00013310: 436f 6d70 6c65 7820 5c7b 535e 7b7b 2d32 Complex \{S^{{-2 │ │ │ │ +00013320: 2c30 7d7d 2a2a 6431 2a2a 4e2c 2064 302a ,0}}**d1**N, d0* │ │ │ │ +00013330: 2a4e 5c7d 203d 0a45 7874 5e7b 6f64 647d *N\} =.Ext^{odd} │ │ │ │ +00013340: 5f7b 5262 6172 7d28 4d2c 4e29 0a0a 5468 _{Rbar}(M,N)..Th │ │ │ │ +00013350: 6973 2069 7320 656e 636f 6465 6420 696e is is encoded in │ │ │ │ +00013360: 2074 6865 2073 6372 6970 7420 6e65 7745 the script newE │ │ │ │ +00013370: 7874 0a0a 4f70 7469 6f6e 2064 6566 6175 xt..Option defau │ │ │ │ +00013380: 6c74 733a 2043 6865 636b 3d3e 6661 6c73 lts: Check=>fals │ │ │ │ +00013390: 6520 5661 7269 6162 6c65 733d 3e67 6574 e Variables=>get │ │ │ │ +000133a0: 5379 6d62 6f6c 2022 7322 2c20 4772 6164 Symbol "s", Grad │ │ │ │ +000133b0: 696e 6720 3d3e 327d 0a0a 4966 2047 7261 ing =>2}..If Gra │ │ │ │ +000133c0: 6469 6e67 203d 3e31 2c20 7468 656e 2061 ding =>1, then a │ │ │ │ +000133d0: 2073 696e 676c 7920 6772 6164 6564 2072 singly graded r │ │ │ │ +000133e0: 6573 756c 7420 6973 2072 6574 7572 6e65 esult is returne │ │ │ │ +000133f0: 6420 286a 7573 7420 666f 7267 6574 7469 d (just forgetti │ │ │ │ +00013400: 6e67 2074 6865 0a68 6f6d 6f6c 6f67 6963 ng the.homologic │ │ │ │ +00013410: 616c 2067 7261 6469 6e67 2e29 0a0a 0a0a al grading.).... │ │ │ │ +00013420: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00013430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013470: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ -00013480: 206e 203d 2033 2020 2020 2020 2020 2020 n = 3 │ │ │ │ +00013460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00013470: 7c69 3120 3a20 6e20 3d20 3320 2020 2020 |i1 : n = 3 │ │ │ │ +00013480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000134a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000134b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000134c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000134b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000134c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000134d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000134e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000134f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013510: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ -00013520: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00013500: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013510: 7c6f 3120 3d20 3320 2020 2020 2020 2020 |o1 = 3 │ │ │ │ +00013520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013560: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00013550: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013560: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00013570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000135a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000135b0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ -000135c0: 2063 203d 2032 2020 2020 2020 2020 2020 c = 2 │ │ │ │ +000135a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000135b0: 7c69 3220 3a20 6320 3d20 3220 2020 2020 |i2 : c = 2 │ │ │ │ +000135c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000135d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000135e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000135f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013600: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000135f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013600: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013650: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ -00013660: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00013640: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013650: 7c6f 3220 3d20 3220 2020 2020 2020 2020 |o2 = 2 │ │ │ │ +00013660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000136a0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00013690: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000136a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000136b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000136c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000136d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000136e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000136f0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ -00013700: 206b 6b20 3d20 5a5a 2f31 3031 2020 2020 kk = ZZ/101 │ │ │ │ +000136e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000136f0: 7c69 3320 3a20 6b6b 203d 205a 5a2f 3130 |i3 : kk = ZZ/10 │ │ │ │ +00013700: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00013710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013740: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00013730: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013740: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013790: 2020 2020 2020 2020 207c 0a7c 6f33 203d |.|o3 = │ │ │ │ -000137a0: 206b 6b20 2020 2020 2020 2020 2020 2020 kk │ │ │ │ +00013780: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013790: 7c6f 3320 3d20 6b6b 2020 2020 2020 2020 |o3 = kk │ │ │ │ +000137a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000137b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000137c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000137d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000137e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000137d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000137e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000137f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013830: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ -00013840: 2051 756f 7469 656e 7452 696e 6720 2020 QuotientRing │ │ │ │ +00013820: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013830: 7c6f 3320 3a20 5175 6f74 6965 6e74 5269 |o3 : QuotientRi │ │ │ │ +00013840: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ 00013850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013880: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00013870: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013880: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00013890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000138a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000138b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000138c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000138d0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ -000138e0: 2052 203d 206b 6b5b 785f 302e 2e78 5f28 R = kk[x_0..x_( │ │ │ │ -000138f0: 6e2d 3129 5d20 2020 2020 2020 2020 2020 n-1)] │ │ │ │ +000138c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000138d0: 7c69 3420 3a20 5220 3d20 6b6b 5b78 5f30 |i4 : R = kk[x_0 │ │ │ │ +000138e0: 2e2e 785f 286e 2d31 295d 2020 2020 2020 ..x_(n-1)] │ │ │ │ +000138f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013920: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00013910: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013920: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013970: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ -00013980: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +00013960: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013970: 7c6f 3420 3d20 5220 2020 2020 2020 2020 |o4 = R │ │ │ │ +00013980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000139a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000139b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000139c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000139b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000139c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000139d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000139e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000139f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013a10: 2020 2020 2020 2020 207c 0a7c 6f34 203a |.|o4 : │ │ │ │ -00013a20: 2050 6f6c 796e 6f6d 6961 6c52 696e 6720 PolynomialRing │ │ │ │ +00013a00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013a10: 7c6f 3420 3a20 506f 6c79 6e6f 6d69 616c |o4 : Polynomial │ │ │ │ +00013a20: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ 00013a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013a60: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00013a50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013a60: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00013a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013ab0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ -00013ac0: 2049 203d 2069 6465 616c 2878 5f30 5e32 I = ideal(x_0^2 │ │ │ │ -00013ad0: 2c20 785f 325e 3329 2020 2020 2020 2020 , x_2^3) │ │ │ │ +00013aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00013ab0: 7c69 3520 3a20 4920 3d20 6964 6561 6c28 |i5 : I = ideal( │ │ │ │ +00013ac0: 785f 305e 322c 2078 5f32 5e33 2920 2020 x_0^2, x_2^3) │ │ │ │ +00013ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013b00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00013af0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013b00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013b50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00013b60: 2020 2020 2020 2020 2032 2020 2033 2020 2 3 │ │ │ │ +00013b40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013b50: 7c20 2020 2020 2020 2020 2020 2020 3220 | 2 │ │ │ │ +00013b60: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 00013b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013ba0: 2020 2020 2020 2020 207c 0a7c 6f35 203d |.|o5 = │ │ │ │ -00013bb0: 2069 6465 616c 2028 7820 2c20 7820 2920 ideal (x , x ) │ │ │ │ +00013b90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013ba0: 7c6f 3520 3d20 6964 6561 6c20 2878 202c |o5 = ideal (x , │ │ │ │ +00013bb0: 2078 2029 2020 2020 2020 2020 2020 2020 x ) │ │ │ │ 00013bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013bf0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00013c00: 2020 2020 2020 2020 2030 2020 2032 2020 0 2 │ │ │ │ +00013be0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013bf0: 7c20 2020 2020 2020 2020 2020 2020 3020 | 0 │ │ │ │ +00013c00: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00013c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013c40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00013c30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013c40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013c90: 2020 2020 2020 2020 207c 0a7c 6f35 203a |.|o5 : │ │ │ │ -00013ca0: 2049 6465 616c 206f 6620 5220 2020 2020 Ideal of R │ │ │ │ +00013c80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013c90: 7c6f 3520 3a20 4964 6561 6c20 6f66 2052 |o5 : Ideal of R │ │ │ │ +00013ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013ce0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00013cd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013ce0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00013cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013d30: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a ---------+.|i6 : │ │ │ │ -00013d40: 2066 6620 3d20 6765 6e73 2049 2020 2020 ff = gens I │ │ │ │ +00013d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00013d30: 7c69 3620 3a20 6666 203d 2067 656e 7320 |i6 : ff = gens │ │ │ │ +00013d40: 4920 2020 2020 2020 2020 2020 2020 2020 I │ │ │ │ 00013d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013d80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00013d70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013d80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013dd0: 2020 2020 2020 2020 207c 0a7c 6f36 203d |.|o6 = │ │ │ │ -00013de0: 207c 2078 5f30 5e32 2078 5f32 5e33 207c | x_0^2 x_2^3 | │ │ │ │ +00013dc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013dd0: 7c6f 3620 3d20 7c20 785f 305e 3220 785f |o6 = | x_0^2 x_ │ │ │ │ +00013de0: 325e 3320 7c20 2020 2020 2020 2020 2020 2^3 | │ │ │ │ 00013df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013e20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00013e10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013e20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013e70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00013e80: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ -00013e90: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00013e60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013e70: 7c20 2020 2020 2020 2020 2020 2020 3120 | 1 │ │ │ │ +00013e80: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00013e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013ec0: 2020 2020 2020 2020 207c 0a7c 6f36 203a |.|o6 : │ │ │ │ -00013ed0: 204d 6174 7269 7820 5220 203c 2d2d 2052 Matrix R <-- R │ │ │ │ +00013eb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013ec0: 7c6f 3620 3a20 4d61 7472 6978 2052 2020 |o6 : Matrix R │ │ │ │ +00013ed0: 3c2d 2d20 5220 2020 2020 2020 2020 2020 <-- R │ │ │ │ 00013ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013f10: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00013f00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013f10: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00013f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013f60: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a ---------+.|i7 : │ │ │ │ -00013f70: 2052 6261 7220 3d20 522f 4920 2020 2020 Rbar = R/I │ │ │ │ +00013f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00013f60: 7c69 3720 3a20 5262 6172 203d 2052 2f49 |i7 : Rbar = R/I │ │ │ │ +00013f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013fb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00013fa0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00013fb0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00013fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014000: 2020 2020 2020 2020 207c 0a7c 6f37 203d |.|o7 = │ │ │ │ -00014010: 2052 6261 7220 2020 2020 2020 2020 2020 Rbar │ │ │ │ +00013ff0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014000: 7c6f 3720 3d20 5262 6172 2020 2020 2020 |o7 = Rbar │ │ │ │ +00014010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014050: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00014040: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014050: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00014060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000140a0: 2020 2020 2020 2020 207c 0a7c 6f37 203a |.|o7 : │ │ │ │ -000140b0: 2051 756f 7469 656e 7452 696e 6720 2020 QuotientRing │ │ │ │ +00014090: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000140a0: 7c6f 3720 3a20 5175 6f74 6965 6e74 5269 |o7 : QuotientRi │ │ │ │ +000140b0: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ 000140c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000140d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000140e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000140f0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000140e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000140f0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00014100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014140: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a ---------+.|i8 : │ │ │ │ -00014150: 2062 6172 203d 206d 6170 2852 6261 722c bar = map(Rbar, │ │ │ │ -00014160: 2052 2920 2020 2020 2020 2020 2020 2020 R) │ │ │ │ +00014130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00014140: 7c69 3820 3a20 6261 7220 3d20 6d61 7028 |i8 : bar = map( │ │ │ │ +00014150: 5262 6172 2c20 5229 2020 2020 2020 2020 Rbar, R) │ │ │ │ +00014160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014190: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00014180: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014190: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000141a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000141b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000141c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000141d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000141e0: 2020 2020 2020 2020 207c 0a7c 6f38 203d |.|o8 = │ │ │ │ -000141f0: 206d 6170 2028 5262 6172 2c20 522c 207b map (Rbar, R, { │ │ │ │ -00014200: 7820 2c20 7820 2c20 7820 7d29 2020 2020 x , x , x }) │ │ │ │ +000141d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000141e0: 7c6f 3820 3d20 6d61 7020 2852 6261 722c |o8 = map (Rbar, │ │ │ │ +000141f0: 2052 2c20 7b78 202c 2078 202c 2078 207d R, {x , x , x } │ │ │ │ +00014200: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00014210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014230: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014250: 2030 2020 2031 2020 2032 2020 2020 2020 0 1 2 │ │ │ │ +00014220: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014230: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00014240: 2020 2020 2020 3020 2020 3120 2020 3220 0 1 2 │ │ │ │ +00014250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014280: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00014270: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014280: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00014290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000142a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000142b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000142c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000142d0: 2020 2020 2020 2020 207c 0a7c 6f38 203a |.|o8 : │ │ │ │ -000142e0: 2052 696e 674d 6170 2052 6261 7220 3c2d RingMap Rbar <- │ │ │ │ -000142f0: 2d20 5220 2020 2020 2020 2020 2020 2020 - R │ │ │ │ +000142c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000142d0: 7c6f 3820 3a20 5269 6e67 4d61 7020 5262 |o8 : RingMap Rb │ │ │ │ +000142e0: 6172 203c 2d2d 2052 2020 2020 2020 2020 ar <-- R │ │ │ │ +000142f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014320: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00014310: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014320: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00014330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014370: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a ---------+.|i9 : │ │ │ │ -00014380: 204d 6261 7220 3d20 7072 756e 6520 636f Mbar = prune co │ │ │ │ -00014390: 6b65 7220 7261 6e64 6f6d 2852 6261 725e ker random(Rbar^ │ │ │ │ -000143a0: 312c 2052 6261 725e 7b2d 327d 2920 2020 1, Rbar^{-2}) │ │ │ │ -000143b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000143c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00014360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00014370: 7c69 3920 3a20 4d62 6172 203d 2070 7275 |i9 : Mbar = pru │ │ │ │ +00014380: 6e65 2063 6f6b 6572 2072 616e 646f 6d28 ne coker random( │ │ │ │ +00014390: 5262 6172 5e31 2c20 5262 6172 5e7b 2d32 Rbar^1, Rbar^{-2 │ │ │ │ +000143a0: 7d29 2020 2020 2020 2020 2020 2020 2020 }) │ │ │ │ +000143b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000143c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000143d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000143e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000143f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014410: 2020 2020 2020 2020 207c 0a7c 6f39 203d |.|o9 = │ │ │ │ -00014420: 2063 6f6b 6572 6e65 6c20 7c20 785f 3078 cokernel | x_0x │ │ │ │ -00014430: 5f31 2b32 3478 5f31 5e32 2b34 3978 5f30 _1+24x_1^2+49x_0 │ │ │ │ -00014440: 785f 322b 3378 5f31 785f 322b 3578 5f32 x_2+3x_1x_2+5x_2 │ │ │ │ -00014450: 5e32 207c 2020 2020 2020 2020 2020 2020 ^2 | │ │ │ │ -00014460: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00014400: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014410: 7c6f 3920 3d20 636f 6b65 726e 656c 207c |o9 = cokernel | │ │ │ │ +00014420: 2078 5f30 785f 312b 3234 785f 315e 322b x_0x_1+24x_1^2+ │ │ │ │ +00014430: 3439 785f 3078 5f32 2b33 785f 3178 5f32 49x_0x_2+3x_1x_2 │ │ │ │ +00014440: 2b35 785f 325e 3220 7c20 2020 2020 2020 +5x_2^2 | │ │ │ │ +00014450: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014460: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00014470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000144a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000144b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000144a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000144b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000144c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000144d0: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +000144d0: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 000144e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000144f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014500: 2020 2020 2020 2020 207c 0a7c 6f39 203a |.|o9 : │ │ │ │ -00014510: 2052 6261 722d 6d6f 6475 6c65 2c20 7175 Rbar-module, qu │ │ │ │ -00014520: 6f74 6965 6e74 206f 6620 5262 6172 2020 otient of Rbar │ │ │ │ +000144f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014500: 7c6f 3920 3a20 5262 6172 2d6d 6f64 756c |o9 : Rbar-modul │ │ │ │ +00014510: 652c 2071 756f 7469 656e 7420 6f66 2052 e, quotient of R │ │ │ │ +00014520: 6261 7220 2020 2020 2020 2020 2020 2020 bar │ │ │ │ 00014530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014550: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00014540: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014550: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00014560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000145a0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 ---------+.|i10 │ │ │ │ -000145b0: 3a20 2864 302c 6431 2920 3d20 4569 7365 : (d0,d1) = Eise │ │ │ │ -000145c0: 6e62 7564 5368 616d 6173 6854 6f74 616c nbudShamashTotal │ │ │ │ -000145d0: 284d 6261 722c 4772 6164 696e 6720 3d3e (Mbar,Grading => │ │ │ │ -000145e0: 3129 2020 2020 2020 2020 2020 2020 2020 1) │ │ │ │ -000145f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00014590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000145a0: 7c69 3130 203a 2028 6430 2c64 3129 203d |i10 : (d0,d1) = │ │ │ │ +000145b0: 2045 6973 656e 6275 6453 6861 6d61 7368 EisenbudShamash │ │ │ │ +000145c0: 546f 7461 6c28 4d62 6172 2c47 7261 6469 Total(Mbar,Gradi │ │ │ │ +000145d0: 6e67 203d 3e31 2920 2020 2020 2020 2020 ng =>1) │ │ │ │ +000145e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000145f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00014600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014640: 2020 2020 2020 2020 207c 0a7c 6f31 3020 |.|o10 │ │ │ │ -00014650: 3d20 287b 2d32 7d20 7c20 785f 305e 3220 = ({-2} | x_0^2 │ │ │ │ +00014630: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014640: 7c6f 3130 203d 2028 7b2d 327d 207c 2078 |o10 = ({-2} | x │ │ │ │ +00014650: 5f30 5e32 2020 2020 2020 2020 2020 2020 _0^2 │ │ │ │ 00014660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014680: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00014690: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000146a0: 2020 207b 2d32 7d20 7c20 785f 3078 5f31 {-2} | x_0x_1 │ │ │ │ -000146b0: 2b32 3478 5f31 5e32 2b34 3978 5f30 785f +24x_1^2+49x_0x_ │ │ │ │ -000146c0: 322b 3378 5f31 785f 322b 3578 5f32 5e32 2+3x_1x_2+5x_2^2 │ │ │ │ -000146d0: 2033 3073 5f30 2020 2020 2020 2020 2020 30s_0 │ │ │ │ -000146e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000146f0: 2020 207b 2d33 7d20 7c20 785f 325e 3320 {-3} | x_2^3 │ │ │ │ +00014670: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ +00014680: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014690: 7c20 2020 2020 2020 7b2d 327d 207c 2078 | {-2} | x │ │ │ │ +000146a0: 5f30 785f 312b 3234 785f 315e 322b 3439 _0x_1+24x_1^2+49 │ │ │ │ +000146b0: 785f 3078 5f32 2b33 785f 3178 5f32 2b35 x_0x_2+3x_1x_2+5 │ │ │ │ +000146c0: 785f 325e 3220 3330 735f 3020 2020 2020 x_2^2 30s_0 │ │ │ │ +000146d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000146e0: 7c20 2020 2020 2020 7b2d 337d 207c 2078 | {-3} | x │ │ │ │ +000146f0: 5f32 5e33 2020 2020 2020 2020 2020 2020 _2^3 │ │ │ │ 00014700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014720: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00014730: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014740: 2020 207b 2d37 7d20 7c20 3020 2020 2020 {-7} | 0 │ │ │ │ +00014710: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ +00014720: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014730: 7c20 2020 2020 2020 7b2d 377d 207c 2030 | {-7} | 0 │ │ │ │ +00014740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014770: 2078 5f32 5e33 2020 2020 2020 2020 2020 x_2^3 │ │ │ │ -00014780: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014790: 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d -------------- │ │ │ │ +00014760: 2020 2020 2020 785f 325e 3320 2020 2020 x_2^3 │ │ │ │ +00014770: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014780: 7c20 2020 2020 202d 2d2d 2d2d 2d2d 2d2d | --------- │ │ │ │ +00014790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000147a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000147b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000147c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000147d0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ -000147e0: 2020 2d73 5f31 2020 2020 2020 2020 2020 -s_1 │ │ │ │ +000147c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +000147d0: 7c20 2020 2020 202d 735f 3120 2020 2020 | -s_1 │ │ │ │ +000147e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000147f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014800: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ -00014810: 2020 2020 207c 2c20 7b30 7d20 207c 2020 |, {0} | │ │ │ │ -00014820: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014830: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00014800: 2030 2020 2020 2020 2020 7c2c 207b 307d 0 |, {0} │ │ │ │ +00014810: 2020 7c20 2020 2020 2020 2020 2020 7c0a | |. │ │ │ │ +00014820: 7c20 2020 2020 2030 2020 2020 2020 2020 | 0 │ │ │ │ +00014830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014850: 2020 2020 2020 2020 2020 2020 2d73 5f31 -s_1 │ │ │ │ -00014860: 2020 2020 207c 2020 7b2d 347d 207c 2020 | {-4} | │ │ │ │ -00014870: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014880: 2020 735f 3020 2020 2020 2020 2020 2020 s_0 │ │ │ │ +00014850: 202d 735f 3120 2020 2020 7c20 207b 2d34 -s_1 | {-4 │ │ │ │ +00014860: 7d20 7c20 2020 2020 2020 2020 2020 7c0a } | |. │ │ │ │ +00014870: 7c20 2020 2020 2073 5f30 2020 2020 2020 | s_0 │ │ │ │ +00014880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000148a0: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ -000148b0: 2020 2020 207c 2020 7b2d 357d 207c 2020 | {-5} | │ │ │ │ -000148c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000148d0: 2020 3337 785f 3078 5f31 2d32 3178 5f31 37x_0x_1-21x_1 │ │ │ │ -000148e0: 5e32 2d35 785f 3078 5f32 2b31 3078 5f31 ^2-5x_0x_2+10x_1 │ │ │ │ -000148f0: 785f 322d 3137 785f 325e 3220 2d33 3778 x_2-17x_2^2 -37x │ │ │ │ -00014900: 5f30 5e32 207c 2020 7b2d 357d 207c 2020 _0^2 | {-5} | │ │ │ │ -00014910: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014920: 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d -------------- │ │ │ │ +000148a0: 2030 2020 2020 2020 2020 7c20 207b 2d35 0 | {-5 │ │ │ │ +000148b0: 7d20 7c20 2020 2020 2020 2020 2020 7c0a } | |. │ │ │ │ +000148c0: 7c20 2020 2020 2033 3778 5f30 785f 312d | 37x_0x_1- │ │ │ │ +000148d0: 3231 785f 315e 322d 3578 5f30 785f 322b 21x_1^2-5x_0x_2+ │ │ │ │ +000148e0: 3130 785f 3178 5f32 2d31 3778 5f32 5e32 10x_1x_2-17x_2^2 │ │ │ │ +000148f0: 202d 3337 785f 305e 3220 7c20 207b 2d35 -37x_0^2 | {-5 │ │ │ │ +00014900: 7d20 7c20 2020 2020 2020 2020 2020 7c0a } | |. │ │ │ │ +00014910: 7c20 2020 2020 202d 2d2d 2d2d 2d2d 2d2d | --------- │ │ │ │ +00014920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014960: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ -00014970: 2020 735f 3020 2020 2020 2020 2020 2020 s_0 │ │ │ │ +00014950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00014960: 7c20 2020 2020 2073 5f30 2020 2020 2020 | s_0 │ │ │ │ +00014970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014990: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ -000149a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000149b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000149c0: 2020 3337 785f 3078 5f31 2d32 3178 5f31 37x_0x_1-21x_1 │ │ │ │ -000149d0: 5e32 2d35 785f 3078 5f32 2b31 3078 5f31 ^2-5x_0x_2+10x_1 │ │ │ │ -000149e0: 785f 322d 3137 785f 325e 3220 2d33 3778 x_2-17x_2^2 -37x │ │ │ │ -000149f0: 5f30 5e32 2020 2020 2020 2020 2020 2020 _0^2 │ │ │ │ -00014a00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014a10: 2020 2d78 5f32 5e33 2020 2020 2020 2020 -x_2^3 │ │ │ │ +00014990: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000149a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000149b0: 7c20 2020 2020 2033 3778 5f30 785f 312d | 37x_0x_1- │ │ │ │ +000149c0: 3231 785f 315e 322d 3578 5f30 785f 322b 21x_1^2-5x_0x_2+ │ │ │ │ +000149d0: 3130 785f 3178 5f32 2d31 3778 5f32 5e32 10x_1x_2-17x_2^2 │ │ │ │ +000149e0: 202d 3337 785f 305e 3220 2020 2020 2020 -37x_0^2 │ │ │ │ +000149f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014a00: 7c20 2020 2020 202d 785f 325e 3320 2020 | -x_2^3 │ │ │ │ +00014a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014a30: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ -00014a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014a50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014a60: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00014a30: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00014a40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014a50: 7c20 2020 2020 2030 2020 2020 2020 2020 | 0 │ │ │ │ +00014a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014a80: 2020 2020 2020 2020 2020 2020 2d78 5f32 -x_2 │ │ │ │ -00014a90: 5e33 2020 2020 2020 2020 2020 2020 2020 ^3 │ │ │ │ -00014aa0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014ab0: 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d -------------- │ │ │ │ +00014a80: 202d 785f 325e 3320 2020 2020 2020 2020 -x_2^3 │ │ │ │ +00014a90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014aa0: 7c20 2020 2020 202d 2d2d 2d2d 2d2d 2d2d | --------- │ │ │ │ +00014ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014af0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ -00014b00: 2020 735f 3120 2020 2020 2020 2020 2020 s_1 │ │ │ │ -00014b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014b20: 2020 2020 2020 2020 2030 2020 2020 207c 0 | │ │ │ │ -00014b30: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -00014b40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014b50: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00014b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014b70: 2020 2020 2020 2020 2073 5f31 2020 207c s_1 | │ │ │ │ -00014b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014b90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014ba0: 2020 785f 305e 3220 2020 2020 2020 2020 x_0^2 │ │ │ │ -00014bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014bc0: 2020 2020 2020 2020 2030 2020 2020 207c 0 | │ │ │ │ -00014bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014be0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014bf0: 2020 785f 3078 5f31 2b32 3478 5f31 5e32 x_0x_1+24x_1^2 │ │ │ │ -00014c00: 2b34 3978 5f30 785f 322b 3378 5f31 785f +49x_0x_2+3x_1x_ │ │ │ │ -00014c10: 322b 3578 5f32 5e32 2033 3073 5f30 207c 2+5x_2^2 30s_0 | │ │ │ │ -00014c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014c30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00014ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00014af0: 7c20 2020 2020 2073 5f31 2020 2020 2020 | s_1 │ │ │ │ +00014b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014b10: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +00014b20: 2020 2020 7c29 2020 2020 2020 2020 2020 |) │ │ │ │ +00014b30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014b40: 7c20 2020 2020 2030 2020 2020 2020 2020 | 0 │ │ │ │ +00014b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014b60: 2020 2020 2020 2020 2020 2020 2020 735f s_ │ │ │ │ +00014b70: 3120 2020 7c20 2020 2020 2020 2020 2020 1 | │ │ │ │ +00014b80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014b90: 7c20 2020 2020 2078 5f30 5e32 2020 2020 | x_0^2 │ │ │ │ +00014ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014bb0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +00014bc0: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ +00014bd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014be0: 7c20 2020 2020 2078 5f30 785f 312b 3234 | x_0x_1+24 │ │ │ │ +00014bf0: 785f 315e 322b 3439 785f 3078 5f32 2b33 x_1^2+49x_0x_2+3 │ │ │ │ +00014c00: 785f 3178 5f32 2b35 785f 325e 3220 3330 x_1x_2+5x_2^2 30 │ │ │ │ +00014c10: 735f 3020 7c20 2020 2020 2020 2020 2020 s_0 | │ │ │ │ +00014c20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014c30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00014c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014c80: 2020 2020 2020 2020 207c 0a7c 6f31 3020 |.|o10 │ │ │ │ -00014c90: 3a20 5365 7175 656e 6365 2020 2020 2020 : Sequence │ │ │ │ +00014c70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014c80: 7c6f 3130 203a 2053 6571 7565 6e63 6520 |o10 : Sequence │ │ │ │ +00014c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014cd0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00014cc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014cd0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00014ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014d20: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 ---------+.|i11 │ │ │ │ -00014d30: 3a20 6430 2a64 3120 2020 2020 2020 2020 : d0*d1 │ │ │ │ +00014d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00014d20: 7c69 3131 203a 2064 302a 6431 2020 2020 |i11 : d0*d1 │ │ │ │ +00014d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014d70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00014d60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014d70: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00014d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014dc0: 2020 2020 2020 2020 207c 0a7c 6f31 3120 |.|o11 │ │ │ │ -00014dd0: 3d20 7b2d 327d 207c 2073 5f31 785f 325e = {-2} | s_1x_2^ │ │ │ │ -00014de0: 332b 735f 3078 5f30 5e32 2030 2020 2020 3+s_0x_0^2 0 │ │ │ │ -00014df0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -00014e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014e10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014e20: 2020 7b2d 327d 207c 2030 2020 2020 2020 {-2} | 0 │ │ │ │ -00014e30: 2020 2020 2020 2020 2020 2073 5f31 785f s_1x_ │ │ │ │ -00014e40: 325e 332b 735f 3078 5f30 5e32 2030 2020 2^3+s_0x_0^2 0 │ │ │ │ -00014e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014e60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014e70: 2020 7b2d 337d 207c 2030 2020 2020 2020 {-3} | 0 │ │ │ │ -00014e80: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ -00014e90: 2020 2020 2020 2020 2020 2020 2073 5f31 s_1 │ │ │ │ -00014ea0: 785f 325e 332b 735f 3078 5f30 5e32 2020 x_2^3+s_0x_0^2 │ │ │ │ -00014eb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014ec0: 2020 7b2d 377d 207c 2030 2020 2020 2020 {-7} | 0 │ │ │ │ -00014ed0: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ -00014ee0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -00014ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014f00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014f10: 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d -------------- │ │ │ │ +00014db0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014dc0: 7c6f 3131 203d 207b 2d32 7d20 7c20 735f |o11 = {-2} | s_ │ │ │ │ +00014dd0: 3178 5f32 5e33 2b73 5f30 785f 305e 3220 1x_2^3+s_0x_0^2 │ │ │ │ +00014de0: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00014df0: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00014e00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014e10: 7c20 2020 2020 207b 2d32 7d20 7c20 3020 | {-2} | 0 │ │ │ │ +00014e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014e30: 735f 3178 5f32 5e33 2b73 5f30 785f 305e s_1x_2^3+s_0x_0^ │ │ │ │ +00014e40: 3220 3020 2020 2020 2020 2020 2020 2020 2 0 │ │ │ │ +00014e50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014e60: 7c20 2020 2020 207b 2d33 7d20 7c20 3020 | {-3} | 0 │ │ │ │ +00014e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014e80: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00014e90: 2020 735f 3178 5f32 5e33 2b73 5f30 785f s_1x_2^3+s_0x_ │ │ │ │ +00014ea0: 305e 3220 2020 2020 2020 2020 2020 7c0a 0^2 |. │ │ │ │ +00014eb0: 7c20 2020 2020 207b 2d37 7d20 7c20 3020 | {-7} | 0 │ │ │ │ +00014ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014ed0: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00014ee0: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00014ef0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014f00: 7c20 2020 2020 202d 2d2d 2d2d 2d2d 2d2d | --------- │ │ │ │ +00014f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014f50: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ -00014f60: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00014f70: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ +00014f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00014f50: 7c20 2020 2020 2030 2020 2020 2020 2020 | 0 │ │ │ │ +00014f60: 2020 2020 2020 2020 207c 2020 2020 2020 | │ │ │ │ +00014f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014fa0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014fb0: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00014fc0: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ +00014f90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014fa0: 7c20 2020 2020 2030 2020 2020 2020 2020 | 0 │ │ │ │ +00014fb0: 2020 2020 2020 2020 207c 2020 2020 2020 | │ │ │ │ +00014fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014ff0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00015000: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00015010: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ +00014fe0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014ff0: 7c20 2020 2020 2030 2020 2020 2020 2020 | 0 │ │ │ │ +00015000: 2020 2020 2020 2020 207c 2020 2020 2020 | │ │ │ │ +00015010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015040: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00015050: 2020 735f 3178 5f32 5e33 2b73 5f30 785f s_1x_2^3+s_0x_ │ │ │ │ -00015060: 305e 3220 7c20 2020 2020 2020 2020 2020 0^2 | │ │ │ │ +00015030: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015040: 7c20 2020 2020 2073 5f31 785f 325e 332b | s_1x_2^3+ │ │ │ │ +00015050: 735f 3078 5f30 5e32 207c 2020 2020 2020 s_0x_0^2 | │ │ │ │ +00015060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015090: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00015080: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015090: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000150a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000150b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000150c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000150d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000150e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000150d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000150e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000150f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015100: 2020 2020 2020 2020 2020 2020 2034 2020 4 │ │ │ │ -00015110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015120: 2020 2020 2020 2034 2020 2020 2020 2020 4 │ │ │ │ -00015130: 2020 2020 2020 2020 207c 0a7c 6f31 3120 |.|o11 │ │ │ │ -00015140: 3a20 4d61 7472 6978 2028 6b6b 5b73 202e : Matrix (kk[s . │ │ │ │ -00015150: 2e73 202c 2078 202e 2e78 205d 2920 203c .s , x ..x ]) < │ │ │ │ -00015160: 2d2d 2028 6b6b 5b73 202e 2e73 202c 2078 -- (kk[s ..s , x │ │ │ │ -00015170: 202e 2e78 205d 2920 2020 2020 2020 2020 ..x ]) │ │ │ │ -00015180: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00015190: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -000151a0: 2020 3120 2020 3020 2020 3220 2020 2020 1 0 2 │ │ │ │ -000151b0: 2020 2020 2020 2020 3020 2020 3120 2020 0 1 │ │ │ │ -000151c0: 3020 2020 3220 2020 2020 2020 2020 2020 0 2 │ │ │ │ -000151d0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00015100: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00015110: 2020 2020 2020 2020 2020 2020 3420 2020 4 │ │ │ │ +00015120: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015130: 7c6f 3131 203a 204d 6174 7269 7820 286b |o11 : Matrix (k │ │ │ │ +00015140: 6b5b 7320 2e2e 7320 2c20 7820 2e2e 7820 k[s ..s , x ..x │ │ │ │ +00015150: 5d29 2020 3c2d 2d20 286b 6b5b 7320 2e2e ]) <-- (kk[s .. │ │ │ │ +00015160: 7320 2c20 7820 2e2e 7820 5d29 2020 2020 s , x ..x ]) │ │ │ │ +00015170: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015180: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00015190: 2020 2030 2020 2031 2020 2030 2020 2032 0 1 0 2 │ │ │ │ +000151a0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ +000151b0: 2031 2020 2030 2020 2032 2020 2020 2020 1 0 2 │ │ │ │ +000151c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000151d0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000151e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000151f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015220: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3220 ---------+.|i12 │ │ │ │ -00015230: 3a20 6431 2a64 3020 2020 2020 2020 2020 : d1*d0 │ │ │ │ +00015210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00015220: 7c69 3132 203a 2064 312a 6430 2020 2020 |i12 : d1*d0 │ │ │ │ +00015230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015270: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00015260: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015270: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00015280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000152a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000152b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000152c0: 2020 2020 2020 2020 207c 0a7c 6f31 3220 |.|o12 │ │ │ │ -000152d0: 3d20 7b30 7d20 207c 2073 5f31 785f 325e = {0} | s_1x_2^ │ │ │ │ -000152e0: 332b 735f 3078 5f30 5e32 2030 2020 2020 3+s_0x_0^2 0 │ │ │ │ -000152f0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -00015300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015310: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00015320: 2020 7b2d 347d 207c 2030 2020 2020 2020 {-4} | 0 │ │ │ │ -00015330: 2020 2020 2020 2020 2020 2073 5f31 785f s_1x_ │ │ │ │ -00015340: 325e 332b 735f 3078 5f30 5e32 2030 2020 2^3+s_0x_0^2 0 │ │ │ │ -00015350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015360: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00015370: 2020 7b2d 357d 207c 2030 2020 2020 2020 {-5} | 0 │ │ │ │ -00015380: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ -00015390: 2020 2020 2020 2020 2020 2020 2073 5f31 s_1 │ │ │ │ -000153a0: 785f 325e 332b 735f 3078 5f30 5e32 2020 x_2^3+s_0x_0^2 │ │ │ │ -000153b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000153c0: 2020 7b2d 357d 207c 2030 2020 2020 2020 {-5} | 0 │ │ │ │ -000153d0: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ -000153e0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -000153f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015400: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00015410: 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d -------------- │ │ │ │ +000152b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000152c0: 7c6f 3132 203d 207b 307d 2020 7c20 735f |o12 = {0} | s_ │ │ │ │ +000152d0: 3178 5f32 5e33 2b73 5f30 785f 305e 3220 1x_2^3+s_0x_0^2 │ │ │ │ +000152e0: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000152f0: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00015300: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015310: 7c20 2020 2020 207b 2d34 7d20 7c20 3020 | {-4} | 0 │ │ │ │ +00015320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015330: 735f 3178 5f32 5e33 2b73 5f30 785f 305e s_1x_2^3+s_0x_0^ │ │ │ │ +00015340: 3220 3020 2020 2020 2020 2020 2020 2020 2 0 │ │ │ │ +00015350: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015360: 7c20 2020 2020 207b 2d35 7d20 7c20 3020 | {-5} | 0 │ │ │ │ +00015370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015380: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00015390: 2020 735f 3178 5f32 5e33 2b73 5f30 785f s_1x_2^3+s_0x_ │ │ │ │ +000153a0: 305e 3220 2020 2020 2020 2020 2020 7c0a 0^2 |. │ │ │ │ +000153b0: 7c20 2020 2020 207b 2d35 7d20 7c20 3020 | {-5} | 0 │ │ │ │ +000153c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000153d0: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000153e0: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000153f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015400: 7c20 2020 2020 202d 2d2d 2d2d 2d2d 2d2d | --------- │ │ │ │ +00015410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015450: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ -00015460: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00015470: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ +00015440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00015450: 7c20 2020 2020 2030 2020 2020 2020 2020 | 0 │ │ │ │ +00015460: 2020 2020 2020 2020 207c 2020 2020 2020 | │ │ │ │ +00015470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000154a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000154b0: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -000154c0: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ +00015490: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000154a0: 7c20 2020 2020 2030 2020 2020 2020 2020 | 0 │ │ │ │ +000154b0: 2020 2020 2020 2020 207c 2020 2020 2020 | │ │ │ │ +000154c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000154d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000154e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000154f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00015500: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00015510: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ +000154e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000154f0: 7c20 2020 2020 2030 2020 2020 2020 2020 | 0 │ │ │ │ +00015500: 2020 2020 2020 2020 207c 2020 2020 2020 | │ │ │ │ +00015510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015540: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00015550: 2020 735f 3178 5f32 5e33 2b73 5f30 785f s_1x_2^3+s_0x_ │ │ │ │ -00015560: 305e 3220 7c20 2020 2020 2020 2020 2020 0^2 | │ │ │ │ +00015530: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015540: 7c20 2020 2020 2073 5f31 785f 325e 332b | s_1x_2^3+ │ │ │ │ +00015550: 735f 3078 5f30 5e32 207c 2020 2020 2020 s_0x_0^2 | │ │ │ │ +00015560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015590: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00015580: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015590: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000155a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000155b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000155c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000155d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000155e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000155d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000155e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000155f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015600: 2020 2020 2020 2020 2020 2020 2034 2020 4 │ │ │ │ -00015610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015620: 2020 2020 2020 2034 2020 2020 2020 2020 4 │ │ │ │ -00015630: 2020 2020 2020 2020 207c 0a7c 6f31 3220 |.|o12 │ │ │ │ -00015640: 3a20 4d61 7472 6978 2028 6b6b 5b73 202e : Matrix (kk[s . │ │ │ │ -00015650: 2e73 202c 2078 202e 2e78 205d 2920 203c .s , x ..x ]) < │ │ │ │ -00015660: 2d2d 2028 6b6b 5b73 202e 2e73 202c 2078 -- (kk[s ..s , x │ │ │ │ -00015670: 202e 2e78 205d 2920 2020 2020 2020 2020 ..x ]) │ │ │ │ -00015680: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00015690: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -000156a0: 2020 3120 2020 3020 2020 3220 2020 2020 1 0 2 │ │ │ │ -000156b0: 2020 2020 2020 2020 3020 2020 3120 2020 0 1 │ │ │ │ -000156c0: 3020 2020 3220 2020 2020 2020 2020 2020 0 2 │ │ │ │ -000156d0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00015600: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00015610: 2020 2020 2020 2020 2020 2020 3420 2020 4 │ │ │ │ +00015620: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015630: 7c6f 3132 203a 204d 6174 7269 7820 286b |o12 : Matrix (k │ │ │ │ +00015640: 6b5b 7320 2e2e 7320 2c20 7820 2e2e 7820 k[s ..s , x ..x │ │ │ │ +00015650: 5d29 2020 3c2d 2d20 286b 6b5b 7320 2e2e ]) <-- (kk[s .. │ │ │ │ +00015660: 7320 2c20 7820 2e2e 7820 5d29 2020 2020 s , x ..x ]) │ │ │ │ +00015670: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015680: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00015690: 2020 2030 2020 2031 2020 2030 2020 2032 0 1 0 2 │ │ │ │ +000156a0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ +000156b0: 2031 2020 2030 2020 2032 2020 2020 2020 1 0 2 │ │ │ │ +000156c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000156d0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000156e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000156f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015720: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3320 ---------+.|i13 │ │ │ │ -00015730: 3a20 5320 3d20 7269 6e67 2064 3020 2020 : S = ring d0 │ │ │ │ +00015710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00015720: 7c69 3133 203a 2053 203d 2072 696e 6720 |i13 : S = ring │ │ │ │ +00015730: 6430 2020 2020 2020 2020 2020 2020 2020 d0 │ │ │ │ 00015740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015770: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00015760: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015770: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00015780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000157a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000157b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000157c0: 2020 2020 2020 2020 207c 0a7c 6f31 3320 |.|o13 │ │ │ │ -000157d0: 3d20 5320 2020 2020 2020 2020 2020 2020 = S │ │ │ │ +000157b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000157c0: 7c6f 3133 203d 2053 2020 2020 2020 2020 |o13 = S │ │ │ │ +000157d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000157e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000157f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015810: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00015800: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015810: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00015820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015860: 2020 2020 2020 2020 207c 0a7c 6f31 3320 |.|o13 │ │ │ │ -00015870: 3a20 506f 6c79 6e6f 6d69 616c 5269 6e67 : PolynomialRing │ │ │ │ +00015850: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015860: 7c6f 3133 203a 2050 6f6c 796e 6f6d 6961 |o13 : Polynomia │ │ │ │ +00015870: 6c52 696e 6720 2020 2020 2020 2020 2020 lRing │ │ │ │ 00015880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000158a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000158b0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000158a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000158b0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000158c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000158d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000158e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000158f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015900: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3420 ---------+.|i14 │ │ │ │ -00015910: 3a20 7068 6920 3d20 6d61 7028 532c 5229 : phi = map(S,R) │ │ │ │ +000158f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00015900: 7c69 3134 203a 2070 6869 203d 206d 6170 |i14 : phi = map │ │ │ │ +00015910: 2853 2c52 2920 2020 2020 2020 2020 2020 (S,R) │ │ │ │ 00015920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015950: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00015940: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015950: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00015960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000159a0: 2020 2020 2020 2020 207c 0a7c 6f31 3420 |.|o14 │ │ │ │ -000159b0: 3d20 6d61 7020 2853 2c20 522c 207b 7820 = map (S, R, {x │ │ │ │ -000159c0: 2c20 7820 2c20 7820 7d29 2020 2020 2020 , x , x }) │ │ │ │ +00015990: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000159a0: 7c6f 3134 203d 206d 6170 2028 532c 2052 |o14 = map (S, R │ │ │ │ +000159b0: 2c20 7b78 202c 2078 202c 2078 207d 2920 , {x , x , x }) │ │ │ │ +000159c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000159d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000159e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000159f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00015a00: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00015a10: 2020 2031 2020 2032 2020 2020 2020 2020 1 2 │ │ │ │ +000159e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000159f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00015a00: 2020 2020 3020 2020 3120 2020 3220 2020 0 1 2 │ │ │ │ +00015a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00015a30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015a40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00015a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a90: 2020 2020 2020 2020 207c 0a7c 6f31 3420 |.|o14 │ │ │ │ -00015aa0: 3a20 5269 6e67 4d61 7020 5320 3c2d 2d20 : RingMap S <-- │ │ │ │ -00015ab0: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +00015a80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015a90: 7c6f 3134 203a 2052 696e 674d 6170 2053 |o14 : RingMap S │ │ │ │ +00015aa0: 203c 2d2d 2052 2020 2020 2020 2020 2020 <-- R │ │ │ │ +00015ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015ae0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00015ad0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015ae0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00015af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015b30: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3520 ---------+.|i15 │ │ │ │ -00015b40: 3a20 4953 203d 2070 6869 2049 2020 2020 : IS = phi I │ │ │ │ +00015b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00015b30: 7c69 3135 203a 2049 5320 3d20 7068 6920 |i15 : IS = phi │ │ │ │ +00015b40: 4920 2020 2020 2020 2020 2020 2020 2020 I │ │ │ │ 00015b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015b80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00015b70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015b80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00015b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015bd0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00015be0: 2020 2020 2020 2020 2020 3220 2020 3320 2 3 │ │ │ │ +00015bc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015bd0: 7c20 2020 2020 2020 2020 2020 2020 2032 | 2 │ │ │ │ +00015be0: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 00015bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015c20: 2020 2020 2020 2020 207c 0a7c 6f31 3520 |.|o15 │ │ │ │ -00015c30: 3d20 6964 6561 6c20 2878 202c 2078 2029 = ideal (x , x ) │ │ │ │ +00015c10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015c20: 7c6f 3135 203d 2069 6465 616c 2028 7820 |o15 = ideal (x │ │ │ │ +00015c30: 2c20 7820 2920 2020 2020 2020 2020 2020 , x ) │ │ │ │ 00015c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015c70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00015c80: 2020 2020 2020 2020 2020 3020 2020 3220 0 2 │ │ │ │ +00015c60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015c70: 7c20 2020 2020 2020 2020 2020 2020 2030 | 0 │ │ │ │ +00015c80: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00015c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015cc0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00015cb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015cc0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00015cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015d10: 2020 2020 2020 2020 207c 0a7c 6f31 3520 |.|o15 │ │ │ │ -00015d20: 3a20 4964 6561 6c20 6f66 2053 2020 2020 : Ideal of S │ │ │ │ +00015d00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015d10: 7c6f 3135 203a 2049 6465 616c 206f 6620 |o15 : Ideal of │ │ │ │ +00015d20: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ 00015d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015d60: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00015d50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015d60: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00015d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015db0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3620 ---------+.|i16 │ │ │ │ -00015dc0: 3a20 5362 6172 203d 2053 2f49 5320 2020 : Sbar = S/IS │ │ │ │ +00015da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00015db0: 7c69 3136 203a 2053 6261 7220 3d20 532f |i16 : Sbar = S/ │ │ │ │ +00015dc0: 4953 2020 2020 2020 2020 2020 2020 2020 IS │ │ │ │ 00015dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015e00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00015df0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015e00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00015e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015e50: 2020 2020 2020 2020 207c 0a7c 6f31 3620 |.|o16 │ │ │ │ -00015e60: 3d20 5362 6172 2020 2020 2020 2020 2020 = Sbar │ │ │ │ +00015e40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015e50: 7c6f 3136 203d 2053 6261 7220 2020 2020 |o16 = Sbar │ │ │ │ +00015e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015ea0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00015e90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015ea0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00015eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015ef0: 2020 2020 2020 2020 207c 0a7c 6f31 3620 |.|o16 │ │ │ │ -00015f00: 3a20 5175 6f74 6965 6e74 5269 6e67 2020 : QuotientRing │ │ │ │ +00015ee0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015ef0: 7c6f 3136 203a 2051 756f 7469 656e 7452 |o16 : QuotientR │ │ │ │ +00015f00: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ 00015f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015f40: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00015f30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015f40: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00015f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015f90: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3720 ---------+.|i17 │ │ │ │ -00015fa0: 3a20 534d 6261 7220 3d20 5362 6172 2a2a : SMbar = Sbar** │ │ │ │ -00015fb0: 4d62 6172 2020 2020 2020 2020 2020 2020 Mbar │ │ │ │ +00015f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00015f90: 7c69 3137 203a 2053 4d62 6172 203d 2053 |i17 : SMbar = S │ │ │ │ +00015fa0: 6261 722a 2a4d 6261 7220 2020 2020 2020 bar**Mbar │ │ │ │ +00015fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015fe0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00015fd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015fe0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00015ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016030: 2020 2020 2020 2020 207c 0a7c 6f31 3720 |.|o17 │ │ │ │ -00016040: 3d20 636f 6b65 726e 656c 207c 2078 5f30 = cokernel | x_0 │ │ │ │ -00016050: 785f 312b 3234 785f 315e 322b 3439 785f x_1+24x_1^2+49x_ │ │ │ │ -00016060: 3078 5f32 2b33 785f 3178 5f32 2b35 785f 0x_2+3x_1x_2+5x_ │ │ │ │ -00016070: 325e 3220 7c20 2020 2020 2020 2020 2020 2^2 | │ │ │ │ -00016080: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00016020: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00016030: 7c6f 3137 203d 2063 6f6b 6572 6e65 6c20 |o17 = cokernel │ │ │ │ +00016040: 7c20 785f 3078 5f31 2b32 3478 5f31 5e32 | x_0x_1+24x_1^2 │ │ │ │ +00016050: 2b34 3978 5f30 785f 322b 3378 5f31 785f +49x_0x_2+3x_1x_ │ │ │ │ +00016060: 322b 3578 5f32 5e32 207c 2020 2020 2020 2+5x_2^2 | │ │ │ │ +00016070: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00016080: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00016090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000160a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000160b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000160c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000160d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000160c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000160d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000160e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000160f0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +000160f0: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ 00016100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016120: 2020 2020 2020 2020 207c 0a7c 6f31 3720 |.|o17 │ │ │ │ -00016130: 3a20 5362 6172 2d6d 6f64 756c 652c 2071 : Sbar-module, q │ │ │ │ -00016140: 756f 7469 656e 7420 6f66 2053 6261 7220 uotient of Sbar │ │ │ │ +00016110: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00016120: 7c6f 3137 203a 2053 6261 722d 6d6f 6475 |o17 : Sbar-modu │ │ │ │ +00016130: 6c65 2c20 7175 6f74 6965 6e74 206f 6620 le, quotient of │ │ │ │ +00016140: 5362 6172 2020 2020 2020 2020 2020 2020 Sbar │ │ │ │ 00016150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016170: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00016160: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00016170: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00016180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000161a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000161b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000161c0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 486f 6d28 ---------+..Hom( │ │ │ │ -000161d0: 6430 2c53 6261 7229 2061 6e64 2048 6f6d d0,Sbar) and Hom │ │ │ │ -000161e0: 2864 312c 5362 6172 2920 746f 6765 7468 (d1,Sbar) togeth │ │ │ │ -000161f0: 6572 2066 6f72 6d20 7468 6520 7265 736f er form the reso │ │ │ │ -00016200: 6c75 7469 6f6e 206f 6620 4d62 6172 3b20 lution of Mbar; │ │ │ │ -00016210: 7468 7573 2074 6865 0a68 6f6d 6f6c 6f67 thus the.homolog │ │ │ │ -00016220: 7920 6f66 206f 6e65 2063 6f6d 706f 7369 y of one composi │ │ │ │ -00016230: 7469 6f6e 2069 7320 302c 2077 6869 6c65 tion is 0, while │ │ │ │ -00016240: 2074 6865 206f 7468 6572 2069 7320 4d62 the other is Mb │ │ │ │ -00016250: 6172 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d ar..+----------- │ │ │ │ +000161b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000161c0: 0a48 6f6d 2864 302c 5362 6172 2920 616e .Hom(d0,Sbar) an │ │ │ │ +000161d0: 6420 486f 6d28 6431 2c53 6261 7229 2074 d Hom(d1,Sbar) t │ │ │ │ +000161e0: 6f67 6574 6865 7220 666f 726d 2074 6865 ogether form the │ │ │ │ +000161f0: 2072 6573 6f6c 7574 696f 6e20 6f66 204d resolution of M │ │ │ │ +00016200: 6261 723b 2074 6875 7320 7468 650a 686f bar; thus the.ho │ │ │ │ +00016210: 6d6f 6c6f 6779 206f 6620 6f6e 6520 636f mology of one co │ │ │ │ +00016220: 6d70 6f73 6974 696f 6e20 6973 2030 2c20 mposition is 0, │ │ │ │ +00016230: 7768 696c 6520 7468 6520 6f74 6865 7220 while the other │ │ │ │ +00016240: 6973 204d 6261 720a 0a2b 2d2d 2d2d 2d2d is Mbar..+------ │ │ │ │ +00016250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000162a0: 2d2d 2b0a 7c69 3138 203a 2070 7275 6e65 --+.|i18 : prune │ │ │ │ -000162b0: 2048 485f 3120 6368 6169 6e43 6f6d 706c HH_1 chainCompl │ │ │ │ -000162c0: 6578 7b64 7561 6c20 2853 6261 722a 2a64 ex{dual (Sbar**d │ │ │ │ -000162d0: 3029 2c20 6475 616c 2853 6261 722a 2a64 0), dual(Sbar**d │ │ │ │ -000162e0: 3129 7d20 3d3d 2030 2020 2020 2020 2020 1)} == 0 │ │ │ │ -000162f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016290: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3820 3a20 -------+.|i18 : │ │ │ │ +000162a0: 7072 756e 6520 4848 5f31 2063 6861 696e prune HH_1 chain │ │ │ │ +000162b0: 436f 6d70 6c65 787b 6475 616c 2028 5362 Complex{dual (Sb │ │ │ │ +000162c0: 6172 2a2a 6430 292c 2064 7561 6c28 5362 ar**d0), dual(Sb │ │ │ │ +000162d0: 6172 2a2a 6431 297d 203d 3d20 3020 2020 ar**d1)} == 0 │ │ │ │ +000162e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000162f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016340: 2020 7c0a 7c6f 3138 203d 2074 7275 6520 |.|o18 = true │ │ │ │ +00016330: 2020 2020 2020 207c 0a7c 6f31 3820 3d20 |.|o18 = │ │ │ │ +00016340: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ 00016350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016390: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00016380: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00016390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000163a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000163b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000163c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000163d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000163e0: 2d2d 2b0a 7c69 3139 203a 204d 6261 7227 --+.|i19 : Mbar' │ │ │ │ -000163f0: 203d 2053 6261 725e 312f 2853 6261 725f = Sbar^1/(Sbar_ │ │ │ │ -00016400: 302c 2053 6261 725f 3129 2a2a 534d 6261 0, Sbar_1)**SMba │ │ │ │ -00016410: 7220 2020 2020 2020 2020 2020 2020 2020 r │ │ │ │ -00016420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016430: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000163d0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3920 3a20 -------+.|i19 : │ │ │ │ +000163e0: 4d62 6172 2720 3d20 5362 6172 5e31 2f28 Mbar' = Sbar^1/( │ │ │ │ +000163f0: 5362 6172 5f30 2c20 5362 6172 5f31 292a Sbar_0, Sbar_1)* │ │ │ │ +00016400: 2a53 4d62 6172 2020 2020 2020 2020 2020 *SMbar │ │ │ │ +00016410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016420: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00016430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016480: 2020 7c0a 7c6f 3139 203d 2063 6f6b 6572 |.|o19 = coker │ │ │ │ -00016490: 6e65 6c20 7c20 785f 3078 5f31 2b32 3478 nel | x_0x_1+24x │ │ │ │ -000164a0: 5f31 5e32 2b34 3978 5f30 785f 322b 3378 _1^2+49x_0x_2+3x │ │ │ │ -000164b0: 5f31 785f 322b 3578 5f32 5e32 2073 5f30 _1x_2+5x_2^2 s_0 │ │ │ │ -000164c0: 2073 5f31 207c 2020 2020 2020 2020 2020 s_1 | │ │ │ │ -000164d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016470: 2020 2020 2020 207c 0a7c 6f31 3920 3d20 |.|o19 = │ │ │ │ +00016480: 636f 6b65 726e 656c 207c 2078 5f30 785f cokernel | x_0x_ │ │ │ │ +00016490: 312b 3234 785f 315e 322b 3439 785f 3078 1+24x_1^2+49x_0x │ │ │ │ +000164a0: 5f32 2b33 785f 3178 5f32 2b35 785f 325e _2+3x_1x_2+5x_2^ │ │ │ │ +000164b0: 3220 735f 3020 735f 3120 7c20 2020 2020 2 s_0 s_1 | │ │ │ │ +000164c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000164d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000164e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000164f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016520: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00016530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016540: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ +00016510: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00016520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016530: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +00016540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016570: 2020 7c0a 7c6f 3139 203a 2053 6261 722d |.|o19 : Sbar- │ │ │ │ -00016580: 6d6f 6475 6c65 2c20 7175 6f74 6965 6e74 module, quotient │ │ │ │ -00016590: 206f 6620 5362 6172 2020 2020 2020 2020 of Sbar │ │ │ │ +00016560: 2020 2020 2020 207c 0a7c 6f31 3920 3a20 |.|o19 : │ │ │ │ +00016570: 5362 6172 2d6d 6f64 756c 652c 2071 756f Sbar-module, quo │ │ │ │ +00016580: 7469 656e 7420 6f66 2053 6261 7220 2020 tient of Sbar │ │ │ │ +00016590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000165a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000165b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000165c0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000165b0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000165c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000165d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000165e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000165f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016610: 2d2d 2b0a 7c69 3230 203a 2069 6465 616c --+.|i20 : ideal │ │ │ │ -00016620: 2070 7265 7365 6e74 6174 696f 6e20 7072 presentation pr │ │ │ │ -00016630: 756e 6520 4848 5f31 2063 6861 696e 436f une HH_1 chainCo │ │ │ │ -00016640: 6d70 6c65 787b 6475 616c 2028 5362 6172 mplex{dual (Sbar │ │ │ │ -00016650: 2a2a 6431 292c 2020 2020 2020 2020 2020 **d1), │ │ │ │ -00016660: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016600: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3020 3a20 -------+.|i20 : │ │ │ │ +00016610: 6964 6561 6c20 7072 6573 656e 7461 7469 ideal presentati │ │ │ │ +00016620: 6f6e 2070 7275 6e65 2048 485f 3120 6368 on prune HH_1 ch │ │ │ │ +00016630: 6169 6e43 6f6d 706c 6578 7b64 7561 6c20 ainComplex{dual │ │ │ │ +00016640: 2853 6261 722a 2a64 3129 2c20 2020 2020 (Sbar**d1), │ │ │ │ +00016650: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00016660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000166a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000166b0: 2020 7c0a 7c6f 3230 203d 2074 7275 6520 |.|o20 = true │ │ │ │ +000166a0: 2020 2020 2020 207c 0a7c 6f32 3020 3d20 |.|o20 = │ │ │ │ +000166b0: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ 000166c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000166d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000166e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000166f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016700: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ +000166f0: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ +00016700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016750: 2d2d 7c0a 7c64 7561 6c28 5362 6172 2a2a --|.|dual(Sbar** │ │ │ │ -00016760: 6430 297d 203d 3d20 6964 6561 6c20 7072 d0)} == ideal pr │ │ │ │ -00016770: 6573 656e 7461 7469 6f6e 204d 6261 7227 esentation Mbar' │ │ │ │ +00016740: 2d2d 2d2d 2d2d 2d7c 0a7c 6475 616c 2853 -------|.|dual(S │ │ │ │ +00016750: 6261 722a 2a64 3029 7d20 3d3d 2069 6465 bar**d0)} == ide │ │ │ │ +00016760: 616c 2070 7265 7365 6e74 6174 696f 6e20 al presentation │ │ │ │ +00016770: 4d62 6172 2720 2020 2020 2020 2020 2020 Mbar' │ │ │ │ 00016780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000167a0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00016790: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000167a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000167b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000167c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000167d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000167e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000167f0: 2d2d 2b0a 0a53 6565 2061 6c73 6f0a 3d3d --+..See also.== │ │ │ │ -00016800: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ -00016810: 6520 4578 743a 2028 4d61 6361 756c 6179 e Ext: (Macaulay │ │ │ │ -00016820: 3244 6f63 2945 7874 2c20 2d2d 2063 6f6d 2Doc)Ext, -- com │ │ │ │ -00016830: 7075 7465 2061 6e20 4578 7420 6d6f 6475 pute an Ext modu │ │ │ │ -00016840: 6c65 0a20 202a 202a 6e6f 7465 206e 6577 le. * *note new │ │ │ │ -00016850: 4578 743a 206e 6577 4578 742c 202d 2d20 Ext: newExt, -- │ │ │ │ -00016860: 476c 6f62 616c 2045 7874 2066 6f72 206d Global Ext for m │ │ │ │ -00016870: 6f64 756c 6573 206f 7665 7220 6120 636f odules over a co │ │ │ │ -00016880: 6d70 6c65 7465 0a20 2020 2049 6e74 6572 mplete. Inter │ │ │ │ -00016890: 7365 6374 696f 6e0a 2020 2a20 2a6e 6f74 section. * *not │ │ │ │ -000168a0: 6520 6d61 6b65 486f 6d6f 746f 7069 6573 e makeHomotopies │ │ │ │ -000168b0: 3a20 6d61 6b65 486f 6d6f 746f 7069 6573 : makeHomotopies │ │ │ │ -000168c0: 2c20 2d2d 2072 6574 7572 6e73 2061 2073 , -- returns a s │ │ │ │ -000168d0: 7973 7465 6d20 6f66 2068 6967 6865 720a ystem of higher. │ │ │ │ -000168e0: 2020 2020 686f 6d6f 746f 7069 6573 0a0a homotopies.. │ │ │ │ -000168f0: 5761 7973 2074 6f20 7573 6520 4569 7365 Ways to use Eise │ │ │ │ -00016900: 6e62 7564 5368 616d 6173 6854 6f74 616c nbudShamashTotal │ │ │ │ -00016910: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -00016920: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00016930: 3d3d 3d0a 0a20 202a 2022 4569 7365 6e62 ===.. * "Eisenb │ │ │ │ -00016940: 7564 5368 616d 6173 6854 6f74 616c 284d udShamashTotal(M │ │ │ │ -00016950: 6f64 756c 6529 220a 0a46 6f72 2074 6865 odule)"..For the │ │ │ │ -00016960: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -00016970: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00016980: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -00016990: 2045 6973 656e 6275 6453 6861 6d61 7368 EisenbudShamash │ │ │ │ -000169a0: 546f 7461 6c3a 2045 6973 656e 6275 6453 Total: EisenbudS │ │ │ │ -000169b0: 6861 6d61 7368 546f 7461 6c2c 2069 7320 hamashTotal, is │ │ │ │ -000169c0: 6120 2a6e 6f74 6520 6d65 7468 6f64 0a66 a *note method.f │ │ │ │ -000169d0: 756e 6374 696f 6e20 7769 7468 206f 7074 unction with opt │ │ │ │ -000169e0: 696f 6e73 3a20 284d 6163 6175 6c61 7932 ions: (Macaulay2 │ │ │ │ -000169f0: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ -00016a00: 6f6e 5769 7468 4f70 7469 6f6e 732c 2e0a onWithOptions,.. │ │ │ │ -00016a10: 1f0a 4669 6c65 3a20 436f 6d70 6c65 7465 ..File: Complete │ │ │ │ -00016a20: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ -00016a30: 6c75 7469 6f6e 732e 696e 666f 2c20 4e6f lutions.info, No │ │ │ │ -00016a40: 6465 3a20 6576 656e 4578 744d 6f64 756c de: evenExtModul │ │ │ │ -00016a50: 652c 204e 6578 743a 2065 7870 6f2c 2050 e, Next: expo, P │ │ │ │ -00016a60: 7265 763a 2045 6973 656e 6275 6453 6861 rev: EisenbudSha │ │ │ │ -00016a70: 6d61 7368 546f 7461 6c2c 2055 703a 2054 mashTotal, Up: T │ │ │ │ -00016a80: 6f70 0a0a 6576 656e 4578 744d 6f64 756c op..evenExtModul │ │ │ │ -00016a90: 6520 2d2d 2065 7665 6e20 7061 7274 206f e -- even part o │ │ │ │ -00016aa0: 6620 4578 745e 2a28 4d2c 6b29 206f 7665 f Ext^*(M,k) ove │ │ │ │ -00016ab0: 7220 6120 636f 6d70 6c65 7465 2069 6e74 r a complete int │ │ │ │ -00016ac0: 6572 7365 6374 696f 6e20 6173 206d 6f64 ersection as mod │ │ │ │ -00016ad0: 756c 6520 6f76 6572 2043 4920 6f70 6572 ule over CI oper │ │ │ │ -00016ae0: 6174 6f72 2072 696e 670a 2a2a 2a2a 2a2a ator ring.****** │ │ │ │ +000167e0: 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 616c -------+..See al │ │ │ │ +000167f0: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ +00016800: 202a 6e6f 7465 2045 7874 3a20 284d 6163 *note Ext: (Mac │ │ │ │ +00016810: 6175 6c61 7932 446f 6329 4578 742c 202d aulay2Doc)Ext, - │ │ │ │ +00016820: 2d20 636f 6d70 7574 6520 616e 2045 7874 - compute an Ext │ │ │ │ +00016830: 206d 6f64 756c 650a 2020 2a20 2a6e 6f74 module. * *not │ │ │ │ +00016840: 6520 6e65 7745 7874 3a20 6e65 7745 7874 e newExt: newExt │ │ │ │ +00016850: 2c20 2d2d 2047 6c6f 6261 6c20 4578 7420 , -- Global Ext │ │ │ │ +00016860: 666f 7220 6d6f 6475 6c65 7320 6f76 6572 for modules over │ │ │ │ +00016870: 2061 2063 6f6d 706c 6574 650a 2020 2020 a complete. │ │ │ │ +00016880: 496e 7465 7273 6563 7469 6f6e 0a20 202a Intersection. * │ │ │ │ +00016890: 202a 6e6f 7465 206d 616b 6548 6f6d 6f74 *note makeHomot │ │ │ │ +000168a0: 6f70 6965 733a 206d 616b 6548 6f6d 6f74 opies: makeHomot │ │ │ │ +000168b0: 6f70 6965 732c 202d 2d20 7265 7475 726e opies, -- return │ │ │ │ +000168c0: 7320 6120 7379 7374 656d 206f 6620 6869 s a system of hi │ │ │ │ +000168d0: 6768 6572 0a20 2020 2068 6f6d 6f74 6f70 gher. homotop │ │ │ │ +000168e0: 6965 730a 0a57 6179 7320 746f 2075 7365 ies..Ways to use │ │ │ │ +000168f0: 2045 6973 656e 6275 6453 6861 6d61 7368 EisenbudShamash │ │ │ │ +00016900: 546f 7461 6c3a 0a3d 3d3d 3d3d 3d3d 3d3d Total:.========= │ │ │ │ +00016910: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00016920: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2245 ========.. * "E │ │ │ │ +00016930: 6973 656e 6275 6453 6861 6d61 7368 546f isenbudShamashTo │ │ │ │ +00016940: 7461 6c28 4d6f 6475 6c65 2922 0a0a 466f tal(Module)"..Fo │ │ │ │ +00016950: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +00016960: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +00016970: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +00016980: 2a6e 6f74 6520 4569 7365 6e62 7564 5368 *note EisenbudSh │ │ │ │ +00016990: 616d 6173 6854 6f74 616c 3a20 4569 7365 amashTotal: Eise │ │ │ │ +000169a0: 6e62 7564 5368 616d 6173 6854 6f74 616c nbudShamashTotal │ │ │ │ +000169b0: 2c20 6973 2061 202a 6e6f 7465 206d 6574 , is a *note met │ │ │ │ +000169c0: 686f 640a 6675 6e63 7469 6f6e 2077 6974 hod.function wit │ │ │ │ +000169d0: 6820 6f70 7469 6f6e 733a 2028 4d61 6361 h options: (Maca │ │ │ │ +000169e0: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ +000169f0: 756e 6374 696f 6e57 6974 684f 7074 696f unctionWithOptio │ │ │ │ +00016a00: 6e73 2c2e 0a1f 0a46 696c 653a 2043 6f6d ns,....File: Com │ │ │ │ +00016a10: 706c 6574 6549 6e74 6572 7365 6374 696f pleteIntersectio │ │ │ │ +00016a20: 6e52 6573 6f6c 7574 696f 6e73 2e69 6e66 nResolutions.inf │ │ │ │ +00016a30: 6f2c 204e 6f64 653a 2065 7665 6e45 7874 o, Node: evenExt │ │ │ │ +00016a40: 4d6f 6475 6c65 2c20 4e65 7874 3a20 6578 Module, Next: ex │ │ │ │ +00016a50: 706f 2c20 5072 6576 3a20 4569 7365 6e62 po, Prev: Eisenb │ │ │ │ +00016a60: 7564 5368 616d 6173 6854 6f74 616c 2c20 udShamashTotal, │ │ │ │ +00016a70: 5570 3a20 546f 700a 0a65 7665 6e45 7874 Up: Top..evenExt │ │ │ │ +00016a80: 4d6f 6475 6c65 202d 2d20 6576 656e 2070 Module -- even p │ │ │ │ +00016a90: 6172 7420 6f66 2045 7874 5e2a 284d 2c6b art of Ext^*(M,k │ │ │ │ +00016aa0: 2920 6f76 6572 2061 2063 6f6d 706c 6574 ) over a complet │ │ │ │ +00016ab0: 6520 696e 7465 7273 6563 7469 6f6e 2061 e intersection a │ │ │ │ +00016ac0: 7320 6d6f 6475 6c65 206f 7665 7220 4349 s module over CI │ │ │ │ +00016ad0: 206f 7065 7261 746f 7220 7269 6e67 0a2a operator ring.* │ │ │ │ +00016ae0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00016af0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00016b00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00016b10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00016b20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00016b30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00016b40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -00016b50: 0a53 796e 6f70 7369 730a 3d3d 3d3d 3d3d .Synopsis.====== │ │ │ │ -00016b60: 3d3d 0a0a 2020 2a20 5573 6167 653a 200a ==.. * Usage: . │ │ │ │ -00016b70: 2020 2020 2020 2020 4520 3d20 6576 656e E = even │ │ │ │ -00016b80: 4578 744d 6f64 756c 6520 4d0a 2020 2a20 ExtModule M. * │ │ │ │ -00016b90: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -00016ba0: 4d2c 2061 202a 6e6f 7465 206d 6f64 756c M, a *note modul │ │ │ │ -00016bb0: 653a 2028 4d61 6361 756c 6179 3244 6f63 e: (Macaulay2Doc │ │ │ │ -00016bc0: 294d 6f64 756c 652c 2c20 6f76 6572 2061 )Module,, over a │ │ │ │ -00016bd0: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ -00016be0: 6563 7469 6f6e 0a20 2020 2020 2020 2072 ection. r │ │ │ │ -00016bf0: 696e 670a 2020 2a20 2a6e 6f74 6520 4f70 ing. * *note Op │ │ │ │ -00016c00: 7469 6f6e 616c 2069 6e70 7574 733a 2028 tional inputs: ( │ │ │ │ -00016c10: 4d61 6361 756c 6179 3244 6f63 2975 7369 Macaulay2Doc)usi │ │ │ │ -00016c20: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ -00016c30: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ -00016c40: 732c 3a0a 2020 2020 2020 2a20 4f75 7452 s,:. * OutR │ │ │ │ -00016c50: 696e 6720 3d3e 202e 2e2e 2c20 6465 6661 ing => ..., defa │ │ │ │ -00016c60: 756c 7420 7661 6c75 6520 300a 2020 2a20 ult value 0. * │ │ │ │ -00016c70: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ -00016c80: 2045 2c20 6120 2a6e 6f74 6520 6d6f 6475 E, a *note modu │ │ │ │ -00016c90: 6c65 3a20 284d 6163 6175 6c61 7932 446f le: (Macaulay2Do │ │ │ │ -00016ca0: 6329 4d6f 6475 6c65 2c2c 206f 7665 7220 c)Module,, over │ │ │ │ -00016cb0: 6120 706f 6c79 6e6f 6d69 616c 2072 696e a polynomial rin │ │ │ │ -00016cc0: 6720 7769 7468 0a20 2020 2020 2020 2067 g with. g │ │ │ │ -00016cd0: 656e 7320 696e 2064 6567 7265 6520 310a ens in degree 1. │ │ │ │ -00016ce0: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ -00016cf0: 3d3d 3d3d 3d3d 3d3d 0a0a 4578 7472 6163 ========..Extrac │ │ │ │ -00016d00: 7473 2074 6865 2065 7665 6e20 6465 6772 ts the even degr │ │ │ │ -00016d10: 6565 2070 6172 7420 6672 6f6d 2045 7874 ee part from Ext │ │ │ │ -00016d20: 4d6f 6475 6c65 204d 2049 6620 7468 6520 Module M If the │ │ │ │ -00016d30: 6f70 7469 6f6e 616c 2061 7267 756d 656e optional argumen │ │ │ │ -00016d40: 7420 4f75 7452 696e 670a 3d3e 2054 2069 t OutRing.=> T i │ │ │ │ -00016d50: 7320 6769 7665 6e2c 2061 6e64 2063 6c61 s given, and cla │ │ │ │ -00016d60: 7373 2054 203d 3d3d 2050 6f6c 796e 6f6d ss T === Polynom │ │ │ │ -00016d70: 6961 6c52 696e 672c 2074 6865 6e20 7468 ialRing, then th │ │ │ │ -00016d80: 6520 6f75 7470 7574 2077 696c 6c20 6265 e output will be │ │ │ │ -00016d90: 2061 206d 6f64 756c 650a 6f76 6572 2054 a module.over T │ │ │ │ -00016da0: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ +00016b40: 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 0a3d ****..Synopsis.= │ │ │ │ +00016b50: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 7361 =======.. * Usa │ │ │ │ +00016b60: 6765 3a20 0a20 2020 2020 2020 2045 203d ge: . E = │ │ │ │ +00016b70: 2065 7665 6e45 7874 4d6f 6475 6c65 204d evenExtModule M │ │ │ │ +00016b80: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +00016b90: 2020 202a 204d 2c20 6120 2a6e 6f74 6520 * M, a *note │ │ │ │ +00016ba0: 6d6f 6475 6c65 3a20 284d 6163 6175 6c61 module: (Macaula │ │ │ │ +00016bb0: 7932 446f 6329 4d6f 6475 6c65 2c2c 206f y2Doc)Module,, o │ │ │ │ +00016bc0: 7665 7220 6120 636f 6d70 6c65 7465 2069 ver a complete i │ │ │ │ +00016bd0: 6e74 6572 7365 6374 696f 6e0a 2020 2020 ntersection. │ │ │ │ +00016be0: 2020 2020 7269 6e67 0a20 202a 202a 6e6f ring. * *no │ │ │ │ +00016bf0: 7465 204f 7074 696f 6e61 6c20 696e 7075 te Optional inpu │ │ │ │ +00016c00: 7473 3a20 284d 6163 6175 6c61 7932 446f ts: (Macaulay2Do │ │ │ │ +00016c10: 6329 7573 696e 6720 6675 6e63 7469 6f6e c)using function │ │ │ │ +00016c20: 7320 7769 7468 206f 7074 696f 6e61 6c20 s with optional │ │ │ │ +00016c30: 696e 7075 7473 2c3a 0a20 2020 2020 202a inputs,:. * │ │ │ │ +00016c40: 204f 7574 5269 6e67 203d 3e20 2e2e 2e2c OutRing => ..., │ │ │ │ +00016c50: 2064 6566 6175 6c74 2076 616c 7565 2030 default value 0 │ │ │ │ +00016c60: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +00016c70: 2020 2020 2a20 452c 2061 202a 6e6f 7465 * E, a *note │ │ │ │ +00016c80: 206d 6f64 756c 653a 2028 4d61 6361 756c module: (Macaul │ │ │ │ +00016c90: 6179 3244 6f63 294d 6f64 756c 652c 2c20 ay2Doc)Module,, │ │ │ │ +00016ca0: 6f76 6572 2061 2070 6f6c 796e 6f6d 6961 over a polynomia │ │ │ │ +00016cb0: 6c20 7269 6e67 2077 6974 680a 2020 2020 l ring with. │ │ │ │ +00016cc0: 2020 2020 6765 6e73 2069 6e20 6465 6772 gens in degr │ │ │ │ +00016cd0: 6565 2031 0a0a 4465 7363 7269 7074 696f ee 1..Descriptio │ │ │ │ +00016ce0: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a45 n.===========..E │ │ │ │ +00016cf0: 7874 7261 6374 7320 7468 6520 6576 656e xtracts the even │ │ │ │ +00016d00: 2064 6567 7265 6520 7061 7274 2066 726f degree part fro │ │ │ │ +00016d10: 6d20 4578 744d 6f64 756c 6520 4d20 4966 m ExtModule M If │ │ │ │ +00016d20: 2074 6865 206f 7074 696f 6e61 6c20 6172 the optional ar │ │ │ │ +00016d30: 6775 6d65 6e74 204f 7574 5269 6e67 0a3d gument OutRing.= │ │ │ │ +00016d40: 3e20 5420 6973 2067 6976 656e 2c20 616e > T is given, an │ │ │ │ +00016d50: 6420 636c 6173 7320 5420 3d3d 3d20 506f d class T === Po │ │ │ │ +00016d60: 6c79 6e6f 6d69 616c 5269 6e67 2c20 7468 lynomialRing, th │ │ │ │ +00016d70: 656e 2074 6865 206f 7574 7075 7420 7769 en the output wi │ │ │ │ +00016d80: 6c6c 2062 6520 6120 6d6f 6475 6c65 0a6f ll be a module.o │ │ │ │ +00016d90: 7665 7220 542e 0a0a 2b2d 2d2d 2d2d 2d2d ver T...+------- │ │ │ │ +00016da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00016de0: 6931 203a 206b 6b3d 205a 5a2f 3130 3120 i1 : kk= ZZ/101 │ │ │ │ +00016dd0: 2d2d 2b0a 7c69 3120 3a20 6b6b 3d20 5a5a --+.|i1 : kk= ZZ │ │ │ │ +00016de0: 2f31 3031 2020 2020 2020 2020 2020 2020 /101 │ │ │ │ 00016df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00016e00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00016e10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00016e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e50: 2020 2020 207c 0a7c 6f31 203d 206b 6b20 |.|o1 = kk │ │ │ │ +00016e40: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ +00016e50: 3d20 6b6b 2020 2020 2020 2020 2020 2020 = kk │ │ │ │ 00016e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016e80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00016e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ec0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00016ed0: 6f31 203a 2051 756f 7469 656e 7452 696e o1 : QuotientRin │ │ │ │ -00016ee0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ -00016ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f00: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00016ec0: 2020 7c0a 7c6f 3120 3a20 5175 6f74 6965 |.|o1 : Quotie │ │ │ │ +00016ed0: 6e74 5269 6e67 2020 2020 2020 2020 2020 ntRing │ │ │ │ +00016ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016ef0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00016f00: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00016f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016f40: 2d2d 2d2d 2d2b 0a7c 6932 203a 2053 203d -----+.|i2 : S = │ │ │ │ -00016f50: 206b 6b5b 782c 792c 7a5d 2020 2020 2020 kk[x,y,z] │ │ │ │ +00016f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ +00016f40: 3a20 5320 3d20 6b6b 5b78 2c79 2c7a 5d20 : S = kk[x,y,z] │ │ │ │ +00016f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016f70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00016f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016fb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00016fc0: 6f32 203d 2053 2020 2020 2020 2020 2020 o2 = S │ │ │ │ +00016fb0: 2020 7c0a 7c6f 3220 3d20 5320 2020 2020 |.|o2 = S │ │ │ │ +00016fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ff0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00016fe0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00016ff0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00017000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017030: 2020 2020 207c 0a7c 6f32 203a 2050 6f6c |.|o2 : Pol │ │ │ │ -00017040: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ +00017020: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ +00017030: 3a20 506f 6c79 6e6f 6d69 616c 5269 6e67 : PolynomialRing │ │ │ │ +00017040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017070: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00017060: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00017070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000170a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000170b0: 6933 203a 2049 3220 3d20 6964 6561 6c22 i3 : I2 = ideal" │ │ │ │ -000170c0: 7833 2c79 7a22 2020 2020 2020 2020 2020 x3,yz" │ │ │ │ -000170d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000170e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000170a0: 2d2d 2b0a 7c69 3320 3a20 4932 203d 2069 --+.|i3 : I2 = i │ │ │ │ +000170b0: 6465 616c 2278 332c 797a 2220 2020 2020 deal"x3,yz" │ │ │ │ +000170c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000170d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000170e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000170f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017120: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00017130: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ +00017110: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00017120: 2020 2020 2020 2020 2020 3320 2020 2020 3 │ │ │ │ +00017130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017160: 207c 0a7c 6f33 203d 2069 6465 616c 2028 |.|o3 = ideal ( │ │ │ │ -00017170: 7820 2c20 792a 7a29 2020 2020 2020 2020 x , y*z) │ │ │ │ +00017150: 2020 2020 2020 7c0a 7c6f 3320 3d20 6964 |.|o3 = id │ │ │ │ +00017160: 6561 6c20 2878 202c 2079 2a7a 2920 2020 eal (x , y*z) │ │ │ │ +00017170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017190: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00017190: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000171a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000171b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000171c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000171d0: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ -000171e0: 2049 6465 616c 206f 6620 5320 2020 2020 Ideal of S │ │ │ │ +000171c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000171d0: 7c6f 3320 3a20 4964 6561 6c20 6f66 2053 |o3 : Ideal of S │ │ │ │ +000171e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000171f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017210: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00017200: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00017210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017250: 2d2b 0a7c 6934 203a 2052 3220 3d20 532f -+.|i4 : R2 = S/ │ │ │ │ -00017260: 4932 2020 2020 2020 2020 2020 2020 2020 I2 │ │ │ │ +00017240: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 5232 ------+.|i4 : R2 │ │ │ │ +00017250: 203d 2053 2f49 3220 2020 2020 2020 2020 = S/I2 │ │ │ │ +00017260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017280: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00017280: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000172a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000172b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000172c0: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ -000172d0: 2052 3220 2020 2020 2020 2020 2020 2020 R2 │ │ │ │ +000172b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000172c0: 7c6f 3420 3d20 5232 2020 2020 2020 2020 |o4 = R2 │ │ │ │ +000172d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000172e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000172f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017300: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000172f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00017300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017340: 207c 0a7c 6f34 203a 2051 756f 7469 656e |.|o4 : Quotien │ │ │ │ -00017350: 7452 696e 6720 2020 2020 2020 2020 2020 tRing │ │ │ │ +00017330: 2020 2020 2020 7c0a 7c6f 3420 3a20 5175 |.|o4 : Qu │ │ │ │ +00017340: 6f74 6965 6e74 5269 6e67 2020 2020 2020 otientRing │ │ │ │ +00017350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017370: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00017370: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00017380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000173a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000173b0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ -000173c0: 204d 3220 3d20 5232 5e31 2f69 6465 616c M2 = R2^1/ideal │ │ │ │ -000173d0: 2278 322c 792c 7a22 2020 2020 2020 2020 "x2,y,z" │ │ │ │ -000173e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000173f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000173a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000173b0: 7c69 3520 3a20 4d32 203d 2052 325e 312f |i5 : M2 = R2^1/ │ │ │ │ +000173c0: 6964 6561 6c22 7832 2c79 2c7a 2220 2020 ideal"x2,y,z" │ │ │ │ +000173d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000173e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000173f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017430: 207c 0a7c 6f35 203d 2063 6f6b 6572 6e65 |.|o5 = cokerne │ │ │ │ -00017440: 6c20 7c20 7832 2079 207a 207c 2020 2020 l | x2 y z | │ │ │ │ +00017420: 2020 2020 2020 7c0a 7c6f 3520 3d20 636f |.|o5 = co │ │ │ │ +00017430: 6b65 726e 656c 207c 2078 3220 7920 7a20 kernel | x2 y z │ │ │ │ +00017440: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00017450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017460: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00017460: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000174a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000174b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000174c0: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ -000174d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000174e0: 2020 2020 207c 0a7c 6f35 203a 2052 322d |.|o5 : R2- │ │ │ │ -000174f0: 6d6f 6475 6c65 2c20 7175 6f74 6965 6e74 module, quotient │ │ │ │ -00017500: 206f 6620 5232 2020 2020 2020 2020 2020 of R2 │ │ │ │ -00017510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017520: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00017490: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000174a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000174b0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +000174c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000174d0: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ +000174e0: 3a20 5232 2d6d 6f64 756c 652c 2071 756f : R2-module, quo │ │ │ │ +000174f0: 7469 656e 7420 6f66 2052 3220 2020 2020 tient of R2 │ │ │ │ +00017500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017510: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00017520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00017560: 6936 203a 2062 6574 7469 2072 6573 2028 i6 : betti res ( │ │ │ │ -00017570: 4d32 2c20 4c65 6e67 7468 4c69 6d69 7420 M2, LengthLimit │ │ │ │ -00017580: 3d3e 3130 2920 2020 2020 2020 2020 2020 =>10) │ │ │ │ -00017590: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00017550: 2d2d 2b0a 7c69 3620 3a20 6265 7474 6920 --+.|i6 : betti │ │ │ │ +00017560: 7265 7320 284d 322c 204c 656e 6774 684c res (M2, LengthL │ │ │ │ +00017570: 696d 6974 203d 3e31 3029 2020 2020 2020 imit =>10) │ │ │ │ +00017580: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00017590: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000175a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000175b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000175c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000175d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000175e0: 2020 2020 3020 3120 3220 3320 3420 2035 0 1 2 3 4 5 │ │ │ │ -000175f0: 2020 3620 2037 2020 3820 2039 2031 3020 6 7 8 9 10 │ │ │ │ -00017600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017610: 207c 0a7c 6f36 203d 2074 6f74 616c 3a20 |.|o6 = total: │ │ │ │ -00017620: 3120 3320 3520 3720 3920 3131 2031 3320 1 3 5 7 9 11 13 │ │ │ │ -00017630: 3135 2031 3720 3139 2032 3120 2020 2020 15 17 19 21 │ │ │ │ -00017640: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00017650: 2020 2020 2020 2020 2030 3a20 3120 3220 0: 1 2 │ │ │ │ -00017660: 3220 3220 3220 2032 2020 3220 2032 2020 2 2 2 2 2 2 │ │ │ │ -00017670: 3220 2032 2020 3220 2020 2020 2020 2020 2 2 2 │ │ │ │ -00017680: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00017690: 2020 2020 2031 3a20 2e20 3120 3320 3420 1: . 1 3 4 │ │ │ │ -000176a0: 3420 2034 2020 3420 2034 2020 3420 2034 4 4 4 4 4 4 │ │ │ │ -000176b0: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -000176c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000176d0: 2032 3a20 2e20 2e20 2e20 3120 3320 2034 2: . . . 1 3 4 │ │ │ │ -000176e0: 2020 3420 2034 2020 3420 2034 2020 3420 4 4 4 4 4 │ │ │ │ -000176f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017700: 207c 0a7c 2020 2020 2020 2020 2033 3a20 |.| 3: │ │ │ │ -00017710: 2e20 2e20 2e20 2e20 2e20 2031 2020 3320 . . . . . 1 3 │ │ │ │ -00017720: 2034 2020 3420 2034 2020 3420 2020 2020 4 4 4 4 │ │ │ │ -00017730: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00017740: 2020 2020 2020 2020 2034 3a20 2e20 2e20 4: . . │ │ │ │ -00017750: 2e20 2e20 2e20 202e 2020 2e20 2031 2020 . . . . . 1 │ │ │ │ -00017760: 3320 2034 2020 3420 2020 2020 2020 2020 3 4 4 │ │ │ │ -00017770: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00017780: 2020 2020 2035 3a20 2e20 2e20 2e20 2e20 5: . . . . │ │ │ │ -00017790: 2e20 202e 2020 2e20 202e 2020 2e20 2031 . . . . . 1 │ │ │ │ -000177a0: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -000177b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000175c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000175d0: 2020 2020 2020 2020 2030 2031 2032 2033 0 1 2 3 │ │ │ │ +000175e0: 2034 2020 3520 2036 2020 3720 2038 2020 4 5 6 7 8 │ │ │ │ +000175f0: 3920 3130 2020 2020 2020 2020 2020 2020 9 10 │ │ │ │ +00017600: 2020 2020 2020 7c0a 7c6f 3620 3d20 746f |.|o6 = to │ │ │ │ +00017610: 7461 6c3a 2031 2033 2035 2037 2039 2031 tal: 1 3 5 7 9 1 │ │ │ │ +00017620: 3120 3133 2031 3520 3137 2031 3920 3231 1 13 15 17 19 21 │ │ │ │ +00017630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017640: 2020 7c0a 7c20 2020 2020 2020 2020 303a |.| 0: │ │ │ │ +00017650: 2031 2032 2032 2032 2032 2020 3220 2032 1 2 2 2 2 2 2 │ │ │ │ +00017660: 2020 3220 2032 2020 3220 2032 2020 2020 2 2 2 2 │ │ │ │ +00017670: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00017680: 7c20 2020 2020 2020 2020 313a 202e 2031 | 1: . 1 │ │ │ │ +00017690: 2033 2034 2034 2020 3420 2034 2020 3420 3 4 4 4 4 4 │ │ │ │ +000176a0: 2034 2020 3420 2034 2020 2020 2020 2020 4 4 4 │ │ │ │ +000176b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000176c0: 2020 2020 2020 323a 202e 202e 202e 2031 2: . . . 1 │ │ │ │ +000176d0: 2033 2020 3420 2034 2020 3420 2034 2020 3 4 4 4 4 │ │ │ │ +000176e0: 3420 2034 2020 2020 2020 2020 2020 2020 4 4 │ │ │ │ +000176f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00017700: 2020 333a 202e 202e 202e 202e 202e 2020 3: . . . . . │ │ │ │ +00017710: 3120 2033 2020 3420 2034 2020 3420 2034 1 3 4 4 4 4 │ │ │ │ +00017720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017730: 2020 7c0a 7c20 2020 2020 2020 2020 343a |.| 4: │ │ │ │ +00017740: 202e 202e 202e 202e 202e 2020 2e20 202e . . . . . . . │ │ │ │ +00017750: 2020 3120 2033 2020 3420 2034 2020 2020 1 3 4 4 │ │ │ │ +00017760: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00017770: 7c20 2020 2020 2020 2020 353a 202e 202e | 5: . . │ │ │ │ +00017780: 202e 202e 202e 2020 2e20 202e 2020 2e20 . . . . . . │ │ │ │ +00017790: 202e 2020 3120 2033 2020 2020 2020 2020 . 1 3 │ │ │ │ +000177a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000177b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000177c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000177d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000177e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000177f0: 207c 0a7c 6f36 203a 2042 6574 7469 5461 |.|o6 : BettiTa │ │ │ │ -00017800: 6c6c 7920 2020 2020 2020 2020 2020 2020 lly │ │ │ │ +000177e0: 2020 2020 2020 7c0a 7c6f 3620 3a20 4265 |.|o6 : Be │ │ │ │ +000177f0: 7474 6954 616c 6c79 2020 2020 2020 2020 ttiTally │ │ │ │ +00017800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017820: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00017820: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00017830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017860: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a ---------+.|i7 : │ │ │ │ -00017870: 2045 203d 2045 7874 4d6f 6475 6c65 204d E = ExtModule M │ │ │ │ -00017880: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00017890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000178a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00017850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00017860: 7c69 3720 3a20 4520 3d20 4578 744d 6f64 |i7 : E = ExtMod │ │ │ │ +00017870: 756c 6520 4d32 2020 2020 2020 2020 2020 ule M2 │ │ │ │ +00017880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017890: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000178a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000178b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000178c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000178d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000178e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000178f0: 2020 2020 2038 2020 2020 2020 2020 2020 8 │ │ │ │ +000178d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000178e0: 2020 2020 2020 2020 2020 3820 2020 2020 8 │ │ │ │ +000178f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017910: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00017920: 6f37 203d 2028 6b6b 5b58 202e 2e58 205d o7 = (kk[X ..X ] │ │ │ │ -00017930: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -00017940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017950: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00017960: 2020 2020 2020 3020 2020 3120 2020 2020 0 1 │ │ │ │ +00017910: 2020 7c0a 7c6f 3720 3d20 286b 6b5b 5820 |.|o7 = (kk[X │ │ │ │ +00017920: 2e2e 5820 5d29 2020 2020 2020 2020 2020 ..X ]) │ │ │ │ +00017930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017940: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00017950: 7c20 2020 2020 2020 2020 2030 2020 2031 | 0 1 │ │ │ │ +00017960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017990: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00017980: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00017990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000179a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000179b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000179c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000179d0: 207c 0a7c 6f37 203a 206b 6b5b 5820 2e2e |.|o7 : kk[X .. │ │ │ │ -000179e0: 5820 5d2d 6d6f 6475 6c65 2c20 6672 6565 X ]-module, free │ │ │ │ -000179f0: 2c20 6465 6772 6565 7320 7b30 2e2e 312c , degrees {0..1, │ │ │ │ -00017a00: 2032 3a31 2c20 333a 322c 2033 7d7c 0a7c 2:1, 3:2, 3}|.| │ │ │ │ -00017a10: 2020 2020 2020 2020 2030 2020 2031 2020 0 1 │ │ │ │ +000179c0: 2020 2020 2020 7c0a 7c6f 3720 3a20 6b6b |.|o7 : kk │ │ │ │ +000179d0: 5b58 202e 2e58 205d 2d6d 6f64 756c 652c [X ..X ]-module, │ │ │ │ +000179e0: 2066 7265 652c 2064 6567 7265 6573 207b free, degrees { │ │ │ │ +000179f0: 302e 2e31 2c20 323a 312c 2033 3a32 2c20 0..1, 2:1, 3:2, │ │ │ │ +00017a00: 337d 7c0a 7c20 2020 2020 2020 2020 3020 3}|.| 0 │ │ │ │ +00017a10: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00017a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017a40: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00017a30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00017a40: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00017a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017a80: 2d2d 2d2d 2d2b 0a7c 6938 203a 2061 7070 -----+.|i8 : app │ │ │ │ -00017a90: 6c79 2874 6f4c 6973 7428 302e 2e31 3029 ly(toList(0..10) │ │ │ │ -00017aa0: 2c20 692d 3e68 696c 6265 7274 4675 6e63 , i->hilbertFunc │ │ │ │ -00017ab0: 7469 6f6e 2869 2c20 4529 2920 2020 2020 tion(i, E)) │ │ │ │ -00017ac0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00017a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 ----------+.|i8 │ │ │ │ +00017a80: 3a20 6170 706c 7928 746f 4c69 7374 2830 : apply(toList(0 │ │ │ │ +00017a90: 2e2e 3130 292c 2069 2d3e 6869 6c62 6572 ..10), i->hilber │ │ │ │ +00017aa0: 7446 756e 6374 696f 6e28 692c 2045 2929 tFunction(i, E)) │ │ │ │ +00017ab0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00017ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017af0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00017b00: 6f38 203d 207b 312c 2033 2c20 352c 2037 o8 = {1, 3, 5, 7 │ │ │ │ -00017b10: 2c20 392c 2031 312c 2031 332c 2031 352c , 9, 11, 13, 15, │ │ │ │ -00017b20: 2031 372c 2031 392c 2032 317d 2020 2020 17, 19, 21} │ │ │ │ -00017b30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00017af0: 2020 7c0a 7c6f 3820 3d20 7b31 2c20 332c |.|o8 = {1, 3, │ │ │ │ +00017b00: 2035 2c20 372c 2039 2c20 3131 2c20 3133 5, 7, 9, 11, 13 │ │ │ │ +00017b10: 2c20 3135 2c20 3137 2c20 3139 2c20 3231 , 15, 17, 19, 21 │ │ │ │ +00017b20: 7d20 2020 2020 2020 2020 2020 2020 7c0a } |. │ │ │ │ +00017b30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00017b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017b70: 2020 2020 207c 0a7c 6f38 203a 204c 6973 |.|o8 : Lis │ │ │ │ -00017b80: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ +00017b60: 2020 2020 2020 2020 2020 7c0a 7c6f 3820 |.|o8 │ │ │ │ +00017b70: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ +00017b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017bb0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00017ba0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00017bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00017bf0: 6939 203a 2045 6576 656e 203d 2065 7665 i9 : Eeven = eve │ │ │ │ -00017c00: 6e45 7874 4d6f 6475 6c65 204d 3220 2020 nExtModule M2 │ │ │ │ -00017c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017c20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00017be0: 2d2d 2b0a 7c69 3920 3a20 4565 7665 6e20 --+.|i9 : Eeven │ │ │ │ +00017bf0: 3d20 6576 656e 4578 744d 6f64 756c 6520 = evenExtModule │ │ │ │ +00017c00: 4d32 2020 2020 2020 2020 2020 2020 2020 M2 │ │ │ │ +00017c10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00017c20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00017c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017c60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00017c70: 2020 2020 2020 2020 2034 2020 2020 2020 4 │ │ │ │ +00017c50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00017c60: 2020 2020 2020 2020 2020 2020 2020 3420 4 │ │ │ │ +00017c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ca0: 207c 0a7c 6f39 203d 2028 6b6b 5b58 202e |.|o9 = (kk[X . │ │ │ │ -00017cb0: 2e58 205d 2920 2020 2020 2020 2020 2020 .X ]) │ │ │ │ +00017c90: 2020 2020 2020 7c0a 7c6f 3920 3d20 286b |.|o9 = (k │ │ │ │ +00017ca0: 6b5b 5820 2e2e 5820 5d29 2020 2020 2020 k[X ..X ]) │ │ │ │ +00017cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017cd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00017ce0: 2020 2020 2020 2020 2020 3020 2020 3120 0 1 │ │ │ │ +00017cd0: 2020 7c0a 7c20 2020 2020 2020 2020 2030 |.| 0 │ │ │ │ +00017ce0: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00017cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017d10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00017d00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00017d10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00017d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017d50: 2020 2020 207c 0a7c 6f39 203a 206b 6b5b |.|o9 : kk[ │ │ │ │ -00017d60: 5820 2e2e 5820 5d2d 6d6f 6475 6c65 2c20 X ..X ]-module, │ │ │ │ -00017d70: 6672 6565 2c20 6465 6772 6565 7320 7b30 free, degrees {0 │ │ │ │ -00017d80: 2e2e 312c 2032 3a31 7d20 2020 2020 2020 ..1, 2:1} │ │ │ │ -00017d90: 207c 0a7c 2020 2020 2020 2020 2030 2020 |.| 0 │ │ │ │ -00017da0: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00017d40: 2020 2020 2020 2020 2020 7c0a 7c6f 3920 |.|o9 │ │ │ │ +00017d50: 3a20 6b6b 5b58 202e 2e58 205d 2d6d 6f64 : kk[X ..X ]-mod │ │ │ │ +00017d60: 756c 652c 2066 7265 652c 2064 6567 7265 ule, free, degre │ │ │ │ +00017d70: 6573 207b 302e 2e31 2c20 323a 317d 2020 es {0..1, 2:1} │ │ │ │ +00017d80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00017d90: 2020 3020 2020 3120 2020 2020 2020 2020 0 1 │ │ │ │ +00017da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017dc0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00017dc0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00017dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017e00: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 ---------+.|i10 │ │ │ │ -00017e10: 3a20 6170 706c 7928 746f 4c69 7374 2830 : apply(toList(0 │ │ │ │ -00017e20: 2e2e 3529 2c20 692d 3e68 696c 6265 7274 ..5), i->hilbert │ │ │ │ -00017e30: 4675 6e63 7469 6f6e 2869 2c20 4565 7665 Function(i, Eeve │ │ │ │ -00017e40: 6e29 2920 207c 0a7c 2020 2020 2020 2020 n)) |.| │ │ │ │ +00017df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00017e00: 7c69 3130 203a 2061 7070 6c79 2874 6f4c |i10 : apply(toL │ │ │ │ +00017e10: 6973 7428 302e 2e35 292c 2069 2d3e 6869 ist(0..5), i->hi │ │ │ │ +00017e20: 6c62 6572 7446 756e 6374 696f 6e28 692c lbertFunction(i, │ │ │ │ +00017e30: 2045 6576 656e 2929 2020 7c0a 7c20 2020 Eeven)) |.| │ │ │ │ +00017e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017e80: 207c 0a7c 6f31 3020 3d20 7b31 2c20 352c |.|o10 = {1, 5, │ │ │ │ -00017e90: 2039 2c20 3133 2c20 3137 2c20 3231 7d20 9, 13, 17, 21} │ │ │ │ +00017e70: 2020 2020 2020 7c0a 7c6f 3130 203d 207b |.|o10 = { │ │ │ │ +00017e80: 312c 2035 2c20 392c 2031 332c 2031 372c 1, 5, 9, 13, 17, │ │ │ │ +00017e90: 2032 317d 2020 2020 2020 2020 2020 2020 21} │ │ │ │ 00017ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017eb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00017eb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ef0: 2020 2020 2020 2020 207c 0a7c 6f31 3020 |.|o10 │ │ │ │ -00017f00: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ +00017ee0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00017ef0: 7c6f 3130 203a 204c 6973 7420 2020 2020 |o10 : List │ │ │ │ +00017f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f30: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00017f20: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00017f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017f70: 2d2b 0a0a 5365 6520 616c 736f 0a3d 3d3d -+..See also.=== │ │ │ │ -00017f80: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -00017f90: 2045 7874 4d6f 6475 6c65 3a20 4578 744d ExtModule: ExtM │ │ │ │ -00017fa0: 6f64 756c 652c 202d 2d20 4578 745e 2a28 odule, -- Ext^*( │ │ │ │ -00017fb0: 4d2c 6b29 206f 7665 7220 6120 636f 6d70 M,k) over a comp │ │ │ │ -00017fc0: 6c65 7465 2069 6e74 6572 7365 6374 696f lete intersectio │ │ │ │ -00017fd0: 6e20 6173 0a20 2020 206d 6f64 756c 6520 n as. module │ │ │ │ -00017fe0: 6f76 6572 2043 4920 6f70 6572 6174 6f72 over CI operator │ │ │ │ -00017ff0: 2072 696e 670a 2020 2a20 2a6e 6f74 6520 ring. * *note │ │ │ │ -00018000: 6f64 6445 7874 4d6f 6475 6c65 3a20 6f64 oddExtModule: od │ │ │ │ -00018010: 6445 7874 4d6f 6475 6c65 2c20 2d2d 206f dExtModule, -- o │ │ │ │ -00018020: 6464 2070 6172 7420 6f66 2045 7874 5e2a dd part of Ext^* │ │ │ │ -00018030: 284d 2c6b 2920 6f76 6572 2061 2063 6f6d (M,k) over a com │ │ │ │ -00018040: 706c 6574 650a 2020 2020 696e 7465 7273 plete. inters │ │ │ │ -00018050: 6563 7469 6f6e 2061 7320 6d6f 6475 6c65 ection as module │ │ │ │ -00018060: 206f 7665 7220 4349 206f 7065 7261 746f over CI operato │ │ │ │ -00018070: 7220 7269 6e67 0a20 202a 202a 6e6f 7465 r ring. * *note │ │ │ │ -00018080: 204f 7574 5269 6e67 3a20 4f75 7452 696e OutRing: OutRin │ │ │ │ -00018090: 672c 202d 2d20 4f70 7469 6f6e 2061 6c6c g, -- Option all │ │ │ │ -000180a0: 6f77 696e 6720 7370 6563 6966 6963 6174 owing specificat │ │ │ │ -000180b0: 696f 6e20 6f66 2074 6865 2072 696e 6720 ion of the ring │ │ │ │ -000180c0: 6f76 6572 0a20 2020 2077 6869 6368 2074 over. which t │ │ │ │ -000180d0: 6865 206f 7574 7075 7420 6973 2064 6566 he output is def │ │ │ │ -000180e0: 696e 6564 0a0a 5761 7973 2074 6f20 7573 ined..Ways to us │ │ │ │ -000180f0: 6520 6576 656e 4578 744d 6f64 756c 653a e evenExtModule: │ │ │ │ -00018100: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -00018110: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -00018120: 2022 6576 656e 4578 744d 6f64 756c 6528 "evenExtModule( │ │ │ │ -00018130: 4d6f 6475 6c65 2922 0a0a 466f 7220 7468 Module)"..For th │ │ │ │ -00018140: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -00018150: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -00018160: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -00018170: 6520 6576 656e 4578 744d 6f64 756c 653a e evenExtModule: │ │ │ │ -00018180: 2065 7665 6e45 7874 4d6f 6475 6c65 2c20 evenExtModule, │ │ │ │ -00018190: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ -000181a0: 6420 6675 6e63 7469 6f6e 2077 6974 680a d function with. │ │ │ │ -000181b0: 6f70 7469 6f6e 733a 2028 4d61 6361 756c options: (Macaul │ │ │ │ -000181c0: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ -000181d0: 6374 696f 6e57 6974 684f 7074 696f 6e73 ctionWithOptions │ │ │ │ -000181e0: 2c2e 0a1f 0a46 696c 653a 2043 6f6d 706c ,....File: Compl │ │ │ │ -000181f0: 6574 6549 6e74 6572 7365 6374 696f 6e52 eteIntersectionR │ │ │ │ -00018200: 6573 6f6c 7574 696f 6e73 2e69 6e66 6f2c esolutions.info, │ │ │ │ -00018210: 204e 6f64 653a 2065 7870 6f2c 204e 6578 Node: expo, Nex │ │ │ │ -00018220: 743a 2065 7874 6572 696f 7245 7874 4d6f t: exteriorExtMo │ │ │ │ -00018230: 6475 6c65 2c20 5072 6576 3a20 6576 656e dule, Prev: even │ │ │ │ -00018240: 4578 744d 6f64 756c 652c 2055 703a 2054 ExtModule, Up: T │ │ │ │ -00018250: 6f70 0a0a 6578 706f 202d 2d20 7265 7475 op..expo -- retu │ │ │ │ -00018260: 726e 7320 6120 7365 7420 636f 7272 6573 rns a set corres │ │ │ │ -00018270: 706f 6e64 696e 6720 746f 2074 6865 2062 ponding to the b │ │ │ │ -00018280: 6173 6973 206f 6620 6120 6469 7669 6465 asis of a divide │ │ │ │ -00018290: 6420 706f 7765 720a 2a2a 2a2a 2a2a 2a2a d power.******** │ │ │ │ +00017f60: 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 ------+..See als │ │ │ │ +00017f70: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ +00017f80: 2a6e 6f74 6520 4578 744d 6f64 756c 653a *note ExtModule: │ │ │ │ +00017f90: 2045 7874 4d6f 6475 6c65 2c20 2d2d 2045 ExtModule, -- E │ │ │ │ +00017fa0: 7874 5e2a 284d 2c6b 2920 6f76 6572 2061 xt^*(M,k) over a │ │ │ │ +00017fb0: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ +00017fc0: 6563 7469 6f6e 2061 730a 2020 2020 6d6f ection as. mo │ │ │ │ +00017fd0: 6475 6c65 206f 7665 7220 4349 206f 7065 dule over CI ope │ │ │ │ +00017fe0: 7261 746f 7220 7269 6e67 0a20 202a 202a rator ring. * * │ │ │ │ +00017ff0: 6e6f 7465 206f 6464 4578 744d 6f64 756c note oddExtModul │ │ │ │ +00018000: 653a 206f 6464 4578 744d 6f64 756c 652c e: oddExtModule, │ │ │ │ +00018010: 202d 2d20 6f64 6420 7061 7274 206f 6620 -- odd part of │ │ │ │ +00018020: 4578 745e 2a28 4d2c 6b29 206f 7665 7220 Ext^*(M,k) over │ │ │ │ +00018030: 6120 636f 6d70 6c65 7465 0a20 2020 2069 a complete. i │ │ │ │ +00018040: 6e74 6572 7365 6374 696f 6e20 6173 206d ntersection as m │ │ │ │ +00018050: 6f64 756c 6520 6f76 6572 2043 4920 6f70 odule over CI op │ │ │ │ +00018060: 6572 6174 6f72 2072 696e 670a 2020 2a20 erator ring. * │ │ │ │ +00018070: 2a6e 6f74 6520 4f75 7452 696e 673a 204f *note OutRing: O │ │ │ │ +00018080: 7574 5269 6e67 2c20 2d2d 204f 7074 696f utRing, -- Optio │ │ │ │ +00018090: 6e20 616c 6c6f 7769 6e67 2073 7065 6369 n allowing speci │ │ │ │ +000180a0: 6669 6361 7469 6f6e 206f 6620 7468 6520 fication of the │ │ │ │ +000180b0: 7269 6e67 206f 7665 720a 2020 2020 7768 ring over. wh │ │ │ │ +000180c0: 6963 6820 7468 6520 6f75 7470 7574 2069 ich the output i │ │ │ │ +000180d0: 7320 6465 6669 6e65 640a 0a57 6179 7320 s defined..Ways │ │ │ │ +000180e0: 746f 2075 7365 2065 7665 6e45 7874 4d6f to use evenExtMo │ │ │ │ +000180f0: 6475 6c65 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d dule:.========== │ │ │ │ +00018100: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00018110: 0a0a 2020 2a20 2265 7665 6e45 7874 4d6f .. * "evenExtMo │ │ │ │ +00018120: 6475 6c65 284d 6f64 756c 6529 220a 0a46 dule(Module)"..F │ │ │ │ +00018130: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +00018140: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +00018150: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +00018160: 202a 6e6f 7465 2065 7665 6e45 7874 4d6f *note evenExtMo │ │ │ │ +00018170: 6475 6c65 3a20 6576 656e 4578 744d 6f64 dule: evenExtMod │ │ │ │ +00018180: 756c 652c 2069 7320 6120 2a6e 6f74 6520 ule, is a *note │ │ │ │ +00018190: 6d65 7468 6f64 2066 756e 6374 696f 6e20 method function │ │ │ │ +000181a0: 7769 7468 0a6f 7074 696f 6e73 3a20 284d with.options: (M │ │ │ │ +000181b0: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ +000181c0: 6f64 4675 6e63 7469 6f6e 5769 7468 4f70 odFunctionWithOp │ │ │ │ +000181d0: 7469 6f6e 732c 2e0a 1f0a 4669 6c65 3a20 tions,....File: │ │ │ │ +000181e0: 436f 6d70 6c65 7465 496e 7465 7273 6563 CompleteIntersec │ │ │ │ +000181f0: 7469 6f6e 5265 736f 6c75 7469 6f6e 732e tionResolutions. │ │ │ │ +00018200: 696e 666f 2c20 4e6f 6465 3a20 6578 706f info, Node: expo │ │ │ │ +00018210: 2c20 4e65 7874 3a20 6578 7465 7269 6f72 , Next: exterior │ │ │ │ +00018220: 4578 744d 6f64 756c 652c 2050 7265 763a ExtModule, Prev: │ │ │ │ +00018230: 2065 7665 6e45 7874 4d6f 6475 6c65 2c20 evenExtModule, │ │ │ │ +00018240: 5570 3a20 546f 700a 0a65 7870 6f20 2d2d Up: Top..expo -- │ │ │ │ +00018250: 2072 6574 7572 6e73 2061 2073 6574 2063 returns a set c │ │ │ │ +00018260: 6f72 7265 7370 6f6e 6469 6e67 2074 6f20 orresponding to │ │ │ │ +00018270: 7468 6520 6261 7369 7320 6f66 2061 2064 the basis of a d │ │ │ │ +00018280: 6976 6964 6564 2070 6f77 6572 0a2a 2a2a ivided power.*** │ │ │ │ +00018290: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000182a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000182b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000182c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000182d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 796e ***********..Syn │ │ │ │ -000182e0: 6f70 7369 730a 3d3d 3d3d 3d3d 3d3d 0a0a opsis.========.. │ │ │ │ -000182f0: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ -00018300: 2020 2020 4220 3d20 6578 706f 2863 2c4e B = expo(c,N │ │ │ │ -00018310: 290a 2020 2020 2020 2020 4220 3d20 6578 ). B = ex │ │ │ │ -00018320: 706f 2863 2c4c 290a 2020 2a20 496e 7075 po(c,L). * Inpu │ │ │ │ -00018330: 7473 3a0a 2020 2020 2020 2a20 4e2c 2061 ts:. * N, a │ │ │ │ -00018340: 6e20 2a6e 6f74 6520 696e 7465 6765 723a n *note integer: │ │ │ │ -00018350: 2028 4d61 6361 756c 6179 3244 6f63 295a (Macaulay2Doc)Z │ │ │ │ -00018360: 5a2c 2c20 0a20 2020 2020 202a 2063 2c20 Z,, . * c, │ │ │ │ -00018370: 616e 202a 6e6f 7465 2069 6e74 6567 6572 an *note integer │ │ │ │ -00018380: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00018390: 5a5a 2c2c 200a 2020 2020 2020 2a20 4c2c ZZ,, . * L, │ │ │ │ -000183a0: 2061 202a 6e6f 7465 206c 6973 743a 2028 a *note list: ( │ │ │ │ -000183b0: 4d61 6361 756c 6179 3244 6f63 294c 6973 Macaulay2Doc)Lis │ │ │ │ -000183c0: 742c 2c20 6f66 2063 206e 6f6e 2d6e 6567 t,, of c non-neg │ │ │ │ -000183d0: 6174 6976 6520 696e 7465 6765 7273 0a20 ative integers. │ │ │ │ -000183e0: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ -000183f0: 2020 2a20 422c 2061 202a 6e6f 7465 206c * B, a *note l │ │ │ │ -00018400: 6973 743a 2028 4d61 6361 756c 6179 3244 ist: (Macaulay2D │ │ │ │ -00018410: 6f63 294c 6973 742c 2c20 7061 7274 6974 oc)List,, partit │ │ │ │ -00018420: 696f 6e73 2077 6974 6820 6320 6e6f 6e2d ions with c non- │ │ │ │ -00018430: 6e65 6761 7469 7665 0a20 2020 2020 2020 negative. │ │ │ │ -00018440: 2070 6172 7473 0a0a 4465 7363 7269 7074 parts..Descript │ │ │ │ -00018450: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -00018460: 0a54 6865 2066 6f72 6d20 6578 706f 2863 .The form expo(c │ │ │ │ -00018470: 2c4e 2920 7265 7475 726e 7320 7061 7274 ,N) returns part │ │ │ │ -00018480: 6974 696f 6e73 206f 6620 4e20 7769 7468 itions of N with │ │ │ │ -00018490: 2063 206e 6f6e 2d6e 6567 6174 6976 6520 c non-negative │ │ │ │ -000184a0: 7061 7274 732e 2054 6865 2066 6f72 6d0a parts. The form. │ │ │ │ -000184b0: 6578 706f 2863 2c20 4c29 2072 6574 7572 expo(c, L) retur │ │ │ │ -000184c0: 6e73 2070 6172 7469 7469 6f6e 7320 7769 ns partitions wi │ │ │ │ -000184d0: 7468 206e 6f6e 2d6e 6567 6174 6976 6520 th non-negative │ │ │ │ -000184e0: 7061 7274 7320 7468 6174 2061 7265 2063 parts that are c │ │ │ │ -000184f0: 6f6d 706f 6e65 6e74 7769 7365 203c 3d0a omponentwise <=. │ │ │ │ -00018500: 4c20 2861 6e64 2061 6e79 2073 756d 203c L (and any sum < │ │ │ │ -00018510: 3d20 7375 6d20 4c29 2e0a 0a54 6865 206c = sum L)...The l │ │ │ │ -00018520: 6973 7420 6578 706f 2863 2c4e 2920 206d ist expo(c,N) m │ │ │ │ -00018530: 6179 2062 6520 7468 6f75 6768 7420 6f66 ay be thought of │ │ │ │ -00018540: 2061 7320 7468 6520 6c69 7374 206f 6620 as the list of │ │ │ │ -00018550: 6578 706f 6e65 6e74 2076 6563 746f 7273 exponent vectors │ │ │ │ -00018560: 206f 6620 7468 650a 6d6f 6e6f 6d69 616c of the.monomial │ │ │ │ -00018570: 7320 6f66 2064 6567 7265 6520 4e20 696e s of degree N in │ │ │ │ -00018580: 2063 2076 6172 6961 626c 6573 2e20 5468 c variables. Th │ │ │ │ -00018590: 6973 2069 7320 7573 6564 2069 6e20 7468 is is used in th │ │ │ │ -000185a0: 6520 636f 6e73 7472 7563 7469 6f6e 206f e construction o │ │ │ │ -000185b0: 6620 7468 650a 4569 7365 6e62 7564 2d53 f the.Eisenbud-S │ │ │ │ -000185c0: 6861 6d61 7368 2072 6573 6f6c 7574 696f hamash resolutio │ │ │ │ -000185d0: 6e2e 0a0a 5468 6520 6c69 7374 2065 7870 n...The list exp │ │ │ │ -000185e0: 6f28 632c 204c 292c 206f 6e20 7468 6520 o(c, L), on the │ │ │ │ -000185f0: 6f74 6865 7220 6861 6e64 2c20 6d61 7920 other hand, may │ │ │ │ -00018600: 6265 2074 686f 7567 6874 206f 6620 6173 be thought of as │ │ │ │ -00018610: 2074 6865 206c 6973 7420 6f66 0a64 6976 the list of.div │ │ │ │ -00018620: 6973 6f72 7320 6f66 2065 5e4c 203d 2065 isors of e^L = e │ │ │ │ -00018630: 5f30 5e7b 4c5f 307d 202e 2e2e 2065 5f63 _0^{L_0} ... e_c │ │ │ │ -00018640: 5e7b 4c5f 637d 2e20 5468 6973 2069 7320 ^{L_c}. This is │ │ │ │ -00018650: 7573 6564 2069 6e20 7468 6520 636f 6e73 used in the cons │ │ │ │ -00018660: 7472 7563 7469 6f6e 206f 660a 7468 6520 truction of.the │ │ │ │ -00018670: 6869 6768 6572 2068 6f6d 6f74 6f70 6965 higher homotopie │ │ │ │ -00018680: 7320 6f6e 2061 2063 6f6d 706c 6578 2e0a s on a complex.. │ │ │ │ -00018690: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000182d0: 0a0a 5379 6e6f 7073 6973 0a3d 3d3d 3d3d ..Synopsis.===== │ │ │ │ +000182e0: 3d3d 3d0a 0a20 202a 2055 7361 6765 3a20 ===.. * Usage: │ │ │ │ +000182f0: 0a20 2020 2020 2020 2042 203d 2065 7870 . B = exp │ │ │ │ +00018300: 6f28 632c 4e29 0a20 2020 2020 2020 2042 o(c,N). B │ │ │ │ +00018310: 203d 2065 7870 6f28 632c 4c29 0a20 202a = expo(c,L). * │ │ │ │ +00018320: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +00018330: 204e 2c20 616e 202a 6e6f 7465 2069 6e74 N, an *note int │ │ │ │ +00018340: 6567 6572 3a20 284d 6163 6175 6c61 7932 eger: (Macaulay2 │ │ │ │ +00018350: 446f 6329 5a5a 2c2c 200a 2020 2020 2020 Doc)ZZ,, . │ │ │ │ +00018360: 2a20 632c 2061 6e20 2a6e 6f74 6520 696e * c, an *note in │ │ │ │ +00018370: 7465 6765 723a 2028 4d61 6361 756c 6179 teger: (Macaulay │ │ │ │ +00018380: 3244 6f63 295a 5a2c 2c20 0a20 2020 2020 2Doc)ZZ,, . │ │ │ │ +00018390: 202a 204c 2c20 6120 2a6e 6f74 6520 6c69 * L, a *note li │ │ │ │ +000183a0: 7374 3a20 284d 6163 6175 6c61 7932 446f st: (Macaulay2Do │ │ │ │ +000183b0: 6329 4c69 7374 2c2c 206f 6620 6320 6e6f c)List,, of c no │ │ │ │ +000183c0: 6e2d 6e65 6761 7469 7665 2069 6e74 6567 n-negative integ │ │ │ │ +000183d0: 6572 730a 2020 2a20 4f75 7470 7574 733a ers. * Outputs: │ │ │ │ +000183e0: 0a20 2020 2020 202a 2042 2c20 6120 2a6e . * B, a *n │ │ │ │ +000183f0: 6f74 6520 6c69 7374 3a20 284d 6163 6175 ote list: (Macau │ │ │ │ +00018400: 6c61 7932 446f 6329 4c69 7374 2c2c 2070 lay2Doc)List,, p │ │ │ │ +00018410: 6172 7469 7469 6f6e 7320 7769 7468 2063 artitions with c │ │ │ │ +00018420: 206e 6f6e 2d6e 6567 6174 6976 650a 2020 non-negative. │ │ │ │ +00018430: 2020 2020 2020 7061 7274 730a 0a44 6573 parts..Des │ │ │ │ +00018440: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ +00018450: 3d3d 3d3d 0a0a 5468 6520 666f 726d 2065 ====..The form e │ │ │ │ +00018460: 7870 6f28 632c 4e29 2072 6574 7572 6e73 xpo(c,N) returns │ │ │ │ +00018470: 2070 6172 7469 7469 6f6e 7320 6f66 204e partitions of N │ │ │ │ +00018480: 2077 6974 6820 6320 6e6f 6e2d 6e65 6761 with c non-nega │ │ │ │ +00018490: 7469 7665 2070 6172 7473 2e20 5468 6520 tive parts. The │ │ │ │ +000184a0: 666f 726d 0a65 7870 6f28 632c 204c 2920 form.expo(c, L) │ │ │ │ +000184b0: 7265 7475 726e 7320 7061 7274 6974 696f returns partitio │ │ │ │ +000184c0: 6e73 2077 6974 6820 6e6f 6e2d 6e65 6761 ns with non-nega │ │ │ │ +000184d0: 7469 7665 2070 6172 7473 2074 6861 7420 tive parts that │ │ │ │ +000184e0: 6172 6520 636f 6d70 6f6e 656e 7477 6973 are componentwis │ │ │ │ +000184f0: 6520 3c3d 0a4c 2028 616e 6420 616e 7920 e <=.L (and any │ │ │ │ +00018500: 7375 6d20 3c3d 2073 756d 204c 292e 0a0a sum <= sum L)... │ │ │ │ +00018510: 5468 6520 6c69 7374 2065 7870 6f28 632c The list expo(c, │ │ │ │ +00018520: 4e29 2020 6d61 7920 6265 2074 686f 7567 N) may be thoug │ │ │ │ +00018530: 6874 206f 6620 6173 2074 6865 206c 6973 ht of as the lis │ │ │ │ +00018540: 7420 6f66 2065 7870 6f6e 656e 7420 7665 t of exponent ve │ │ │ │ +00018550: 6374 6f72 7320 6f66 2074 6865 0a6d 6f6e ctors of the.mon │ │ │ │ +00018560: 6f6d 6961 6c73 206f 6620 6465 6772 6565 omials of degree │ │ │ │ +00018570: 204e 2069 6e20 6320 7661 7269 6162 6c65 N in c variable │ │ │ │ +00018580: 732e 2054 6869 7320 6973 2075 7365 6420 s. This is used │ │ │ │ +00018590: 696e 2074 6865 2063 6f6e 7374 7275 6374 in the construct │ │ │ │ +000185a0: 696f 6e20 6f66 2074 6865 0a45 6973 656e ion of the.Eisen │ │ │ │ +000185b0: 6275 642d 5368 616d 6173 6820 7265 736f bud-Shamash reso │ │ │ │ +000185c0: 6c75 7469 6f6e 2e0a 0a54 6865 206c 6973 lution...The lis │ │ │ │ +000185d0: 7420 6578 706f 2863 2c20 4c29 2c20 6f6e t expo(c, L), on │ │ │ │ +000185e0: 2074 6865 206f 7468 6572 2068 616e 642c the other hand, │ │ │ │ +000185f0: 206d 6179 2062 6520 7468 6f75 6768 7420 may be thought │ │ │ │ +00018600: 6f66 2061 7320 7468 6520 6c69 7374 206f of as the list o │ │ │ │ +00018610: 660a 6469 7669 736f 7273 206f 6620 655e f.divisors of e^ │ │ │ │ +00018620: 4c20 3d20 655f 305e 7b4c 5f30 7d20 2e2e L = e_0^{L_0} .. │ │ │ │ +00018630: 2e20 655f 635e 7b4c 5f63 7d2e 2054 6869 . e_c^{L_c}. Thi │ │ │ │ +00018640: 7320 6973 2075 7365 6420 696e 2074 6865 s is used in the │ │ │ │ +00018650: 2063 6f6e 7374 7275 6374 696f 6e20 6f66 construction of │ │ │ │ +00018660: 0a74 6865 2068 6967 6865 7220 686f 6d6f .the higher homo │ │ │ │ +00018670: 746f 7069 6573 206f 6e20 6120 636f 6d70 topies on a comp │ │ │ │ +00018680: 6c65 782e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d lex...+--------- │ │ │ │ +00018690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000186a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000186b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000186c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000186d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000186e0: 0a7c 6931 203a 2065 7870 6f28 332c 3529 .|i1 : expo(3,5) │ │ │ │ +000186d0: 2d2d 2d2d 2b0a 7c69 3120 3a20 6578 706f ----+.|i1 : expo │ │ │ │ +000186e0: 2833 2c35 2920 2020 2020 2020 2020 2020 (3,5) │ │ │ │ 000186f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018720: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00018730: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00018720: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00018730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018770: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00018780: 0a7c 6f31 203d 207b 7b35 2c20 302c 2030 .|o1 = {{5, 0, 0 │ │ │ │ -00018790: 7d2c 207b 342c 2031 2c20 307d 2c20 7b34 }, {4, 1, 0}, {4 │ │ │ │ -000187a0: 2c20 302c 2031 7d2c 207b 332c 2032 2c20 , 0, 1}, {3, 2, │ │ │ │ -000187b0: 307d 2c20 7b33 2c20 312c 2031 7d2c 207b 0}, {3, 1, 1}, { │ │ │ │ -000187c0: 332c 2030 2c20 327d 2c20 7b32 2c20 207c 3, 0, 2}, {2, | │ │ │ │ -000187d0: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +00018770: 2020 2020 7c0a 7c6f 3120 3d20 7b7b 352c |.|o1 = {{5, │ │ │ │ +00018780: 2030 2c20 307d 2c20 7b34 2c20 312c 2030 0, 0}, {4, 1, 0 │ │ │ │ +00018790: 7d2c 207b 342c 2030 2c20 317d 2c20 7b33 }, {4, 0, 1}, {3 │ │ │ │ +000187a0: 2c20 322c 2030 7d2c 207b 332c 2031 2c20 , 2, 0}, {3, 1, │ │ │ │ +000187b0: 317d 2c20 7b33 2c20 302c 2032 7d2c 207b 1}, {3, 0, 2}, { │ │ │ │ +000187c0: 322c 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2, |.| ---- │ │ │ │ +000187d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000187e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000187f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00018820: 0a7c 2020 2020 2033 2c20 307d 2c20 7b32 .| 3, 0}, {2 │ │ │ │ -00018830: 2c20 322c 2031 7d2c 207b 322c 2031 2c20 , 2, 1}, {2, 1, │ │ │ │ -00018840: 327d 2c20 7b32 2c20 302c 2033 7d2c 207b 2}, {2, 0, 3}, { │ │ │ │ -00018850: 312c 2034 2c20 307d 2c20 7b31 2c20 332c 1, 4, 0}, {1, 3, │ │ │ │ -00018860: 2031 7d2c 207b 312c 2032 2c20 327d 2c7c 1}, {1, 2, 2},| │ │ │ │ -00018870: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +00018810: 2d2d 2d2d 7c0a 7c20 2020 2020 332c 2030 ----|.| 3, 0 │ │ │ │ +00018820: 7d2c 207b 322c 2032 2c20 317d 2c20 7b32 }, {2, 2, 1}, {2 │ │ │ │ +00018830: 2c20 312c 2032 7d2c 207b 322c 2030 2c20 , 1, 2}, {2, 0, │ │ │ │ +00018840: 337d 2c20 7b31 2c20 342c 2030 7d2c 207b 3}, {1, 4, 0}, { │ │ │ │ +00018850: 312c 2033 2c20 317d 2c20 7b31 2c20 322c 1, 3, 1}, {1, 2, │ │ │ │ +00018860: 2032 7d2c 7c0a 7c20 2020 2020 2d2d 2d2d 2},|.| ---- │ │ │ │ +00018870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000188a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000188b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000188c0: 0a7c 2020 2020 207b 312c 2031 2c20 337d .| {1, 1, 3} │ │ │ │ -000188d0: 2c20 7b31 2c20 302c 2034 7d2c 207b 302c , {1, 0, 4}, {0, │ │ │ │ -000188e0: 2035 2c20 307d 2c20 7b30 2c20 342c 2031 5, 0}, {0, 4, 1 │ │ │ │ -000188f0: 7d2c 207b 302c 2033 2c20 327d 2c20 7b30 }, {0, 3, 2}, {0 │ │ │ │ -00018900: 2c20 322c 2033 7d2c 207b 302c 2031 2c7c , 2, 3}, {0, 1,| │ │ │ │ -00018910: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +000188b0: 2d2d 2d2d 7c0a 7c20 2020 2020 7b31 2c20 ----|.| {1, │ │ │ │ +000188c0: 312c 2033 7d2c 207b 312c 2030 2c20 347d 1, 3}, {1, 0, 4} │ │ │ │ +000188d0: 2c20 7b30 2c20 352c 2030 7d2c 207b 302c , {0, 5, 0}, {0, │ │ │ │ +000188e0: 2034 2c20 317d 2c20 7b30 2c20 332c 2032 4, 1}, {0, 3, 2 │ │ │ │ +000188f0: 7d2c 207b 302c 2032 2c20 337d 2c20 7b30 }, {0, 2, 3}, {0 │ │ │ │ +00018900: 2c20 312c 7c0a 7c20 2020 2020 2d2d 2d2d , 1,|.| ---- │ │ │ │ +00018910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00018960: 0a7c 2020 2020 2034 7d2c 207b 302c 2030 .| 4}, {0, 0 │ │ │ │ -00018970: 2c20 357d 7d20 2020 2020 2020 2020 2020 , 5}} │ │ │ │ +00018950: 2d2d 2d2d 7c0a 7c20 2020 2020 347d 2c20 ----|.| 4}, │ │ │ │ +00018960: 7b30 2c20 302c 2035 7d7d 2020 2020 2020 {0, 0, 5}} │ │ │ │ +00018970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000189a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000189b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000189a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000189b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000189c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000189d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000189e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000189f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00018a00: 0a7c 6f31 203a 204c 6973 7420 2020 2020 .|o1 : List │ │ │ │ +000189f0: 2020 2020 7c0a 7c6f 3120 3a20 4c69 7374 |.|o1 : List │ │ │ │ +00018a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018a40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00018a50: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00018a40: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00018a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00018aa0: 0a7c 6932 203a 2065 7870 6f28 332c 207b .|i2 : expo(3, { │ │ │ │ -00018ab0: 332c 322c 317d 2920 2020 2020 2020 2020 3,2,1}) │ │ │ │ +00018a90: 2d2d 2d2d 2b0a 7c69 3220 3a20 6578 706f ----+.|i2 : expo │ │ │ │ +00018aa0: 2833 2c20 7b33 2c32 2c31 7d29 2020 2020 (3, {3,2,1}) │ │ │ │ +00018ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018ae0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00018af0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00018ae0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00018af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018b30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00018b40: 0a7c 6f32 203d 207b 7b30 2c20 302c 2030 .|o2 = {{0, 0, 0 │ │ │ │ -00018b50: 7d2c 207b 312c 2030 2c20 307d 2c20 7b30 }, {1, 0, 0}, {0 │ │ │ │ -00018b60: 2c20 312c 2030 7d2c 207b 302c 2030 2c20 , 1, 0}, {0, 0, │ │ │ │ -00018b70: 317d 2c20 7b32 2c20 302c 2030 7d2c 207b 1}, {2, 0, 0}, { │ │ │ │ -00018b80: 312c 2031 2c20 307d 2c20 7b31 2c20 207c 1, 1, 0}, {1, | │ │ │ │ -00018b90: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +00018b30: 2020 2020 7c0a 7c6f 3220 3d20 7b7b 302c |.|o2 = {{0, │ │ │ │ +00018b40: 2030 2c20 307d 2c20 7b31 2c20 302c 2030 0, 0}, {1, 0, 0 │ │ │ │ +00018b50: 7d2c 207b 302c 2031 2c20 307d 2c20 7b30 }, {0, 1, 0}, {0 │ │ │ │ +00018b60: 2c20 302c 2031 7d2c 207b 322c 2030 2c20 , 0, 1}, {2, 0, │ │ │ │ +00018b70: 307d 2c20 7b31 2c20 312c 2030 7d2c 207b 0}, {1, 1, 0}, { │ │ │ │ +00018b80: 312c 2020 7c0a 7c20 2020 2020 2d2d 2d2d 1, |.| ---- │ │ │ │ +00018b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00018be0: 0a7c 2020 2020 2030 2c20 317d 2c20 7b30 .| 0, 1}, {0 │ │ │ │ -00018bf0: 2c20 322c 2030 7d2c 207b 302c 2031 2c20 , 2, 0}, {0, 1, │ │ │ │ -00018c00: 317d 2c20 7b33 2c20 302c 2030 7d2c 207b 1}, {3, 0, 0}, { │ │ │ │ -00018c10: 322c 2031 2c20 307d 2c20 7b32 2c20 302c 2, 1, 0}, {2, 0, │ │ │ │ -00018c20: 2031 7d2c 207b 312c 2032 2c20 307d 2c7c 1}, {1, 2, 0},| │ │ │ │ -00018c30: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +00018bd0: 2d2d 2d2d 7c0a 7c20 2020 2020 302c 2031 ----|.| 0, 1 │ │ │ │ +00018be0: 7d2c 207b 302c 2032 2c20 307d 2c20 7b30 }, {0, 2, 0}, {0 │ │ │ │ +00018bf0: 2c20 312c 2031 7d2c 207b 332c 2030 2c20 , 1, 1}, {3, 0, │ │ │ │ +00018c00: 307d 2c20 7b32 2c20 312c 2030 7d2c 207b 0}, {2, 1, 0}, { │ │ │ │ +00018c10: 322c 2030 2c20 317d 2c20 7b31 2c20 322c 2, 0, 1}, {1, 2, │ │ │ │ +00018c20: 2030 7d2c 7c0a 7c20 2020 2020 2d2d 2d2d 0},|.| ---- │ │ │ │ +00018c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00018c80: 0a7c 2020 2020 207b 312c 2031 2c20 317d .| {1, 1, 1} │ │ │ │ -00018c90: 2c20 7b30 2c20 322c 2031 7d2c 207b 332c , {0, 2, 1}, {3, │ │ │ │ -00018ca0: 2031 2c20 307d 2c20 7b33 2c20 302c 2031 1, 0}, {3, 0, 1 │ │ │ │ -00018cb0: 7d2c 207b 322c 2032 2c20 307d 2c20 7b32 }, {2, 2, 0}, {2 │ │ │ │ -00018cc0: 2c20 312c 2031 7d2c 207b 312c 2032 2c7c , 1, 1}, {1, 2,| │ │ │ │ -00018cd0: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +00018c70: 2d2d 2d2d 7c0a 7c20 2020 2020 7b31 2c20 ----|.| {1, │ │ │ │ +00018c80: 312c 2031 7d2c 207b 302c 2032 2c20 317d 1, 1}, {0, 2, 1} │ │ │ │ +00018c90: 2c20 7b33 2c20 312c 2030 7d2c 207b 332c , {3, 1, 0}, {3, │ │ │ │ +00018ca0: 2030 2c20 317d 2c20 7b32 2c20 322c 2030 0, 1}, {2, 2, 0 │ │ │ │ +00018cb0: 7d2c 207b 322c 2031 2c20 317d 2c20 7b31 }, {2, 1, 1}, {1 │ │ │ │ +00018cc0: 2c20 322c 7c0a 7c20 2020 2020 2d2d 2d2d , 2,|.| ---- │ │ │ │ +00018cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00018d20: 0a7c 2020 2020 2031 7d2c 207b 332c 2032 .| 1}, {3, 2 │ │ │ │ -00018d30: 2c20 307d 2c20 7b33 2c20 312c 2031 7d2c , 0}, {3, 1, 1}, │ │ │ │ -00018d40: 207b 322c 2032 2c20 317d 7d20 2020 2020 {2, 2, 1}} │ │ │ │ +00018d10: 2d2d 2d2d 7c0a 7c20 2020 2020 317d 2c20 ----|.| 1}, │ │ │ │ +00018d20: 7b33 2c20 322c 2030 7d2c 207b 332c 2031 {3, 2, 0}, {3, 1 │ │ │ │ +00018d30: 2c20 317d 2c20 7b32 2c20 322c 2031 7d7d , 1}, {2, 2, 1}} │ │ │ │ +00018d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018d60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00018d70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00018d60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00018d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018db0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00018dc0: 0a7c 6f32 203a 204c 6973 7420 2020 2020 .|o2 : List │ │ │ │ +00018db0: 2020 2020 7c0a 7c6f 3220 3a20 4c69 7374 |.|o2 : List │ │ │ │ +00018dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018e00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00018e10: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00018e00: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00018e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00018e60: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -00018e70: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2045 ===.. * *note E │ │ │ │ -00018e80: 6973 656e 6275 6453 6861 6d61 7368 3a20 isenbudShamash: │ │ │ │ -00018e90: 4569 7365 6e62 7564 5368 616d 6173 682c EisenbudShamash, │ │ │ │ -00018ea0: 202d 2d20 436f 6d70 7574 6573 2074 6865 -- Computes the │ │ │ │ -00018eb0: 2045 6973 656e 6275 642d 5368 616d 6173 Eisenbud-Shamas │ │ │ │ -00018ec0: 680a 2020 2020 436f 6d70 6c65 780a 2020 h. Complex. │ │ │ │ -00018ed0: 2a20 2a6e 6f74 6520 6d61 6b65 486f 6d6f * *note makeHomo │ │ │ │ -00018ee0: 746f 7069 6573 3a20 6d61 6b65 486f 6d6f topies: makeHomo │ │ │ │ -00018ef0: 746f 7069 6573 2c20 2d2d 2072 6574 7572 topies, -- retur │ │ │ │ -00018f00: 6e73 2061 2073 7973 7465 6d20 6f66 2068 ns a system of h │ │ │ │ -00018f10: 6967 6865 720a 2020 2020 686f 6d6f 746f igher. homoto │ │ │ │ -00018f20: 7069 6573 0a0a 5761 7973 2074 6f20 7573 pies..Ways to us │ │ │ │ -00018f30: 6520 6578 706f 3a0a 3d3d 3d3d 3d3d 3d3d e expo:.======== │ │ │ │ -00018f40: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ -00018f50: 6578 706f 285a 5a2c 4c69 7374 2922 0a20 expo(ZZ,List)". │ │ │ │ -00018f60: 202a 2022 6578 706f 285a 5a2c 5a5a 2922 * "expo(ZZ,ZZ)" │ │ │ │ -00018f70: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ -00018f80: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ -00018f90: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ -00018fa0: 6563 7420 2a6e 6f74 6520 6578 706f 3a20 ect *note expo: │ │ │ │ -00018fb0: 6578 706f 2c20 6973 2061 202a 6e6f 7465 expo, is a *note │ │ │ │ -00018fc0: 206d 6574 686f 6420 6675 6e63 7469 6f6e method function │ │ │ │ -00018fd0: 3a0a 284d 6163 6175 6c61 7932 446f 6329 :.(Macaulay2Doc) │ │ │ │ -00018fe0: 4d65 7468 6f64 4675 6e63 7469 6f6e 2c2e MethodFunction,. │ │ │ │ -00018ff0: 0a1f 0a46 696c 653a 2043 6f6d 706c 6574 ...File: Complet │ │ │ │ -00019000: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ -00019010: 6f6c 7574 696f 6e73 2e69 6e66 6f2c 204e olutions.info, N │ │ │ │ -00019020: 6f64 653a 2065 7874 6572 696f 7245 7874 ode: exteriorExt │ │ │ │ -00019030: 4d6f 6475 6c65 2c20 4e65 7874 3a20 6578 Module, Next: ex │ │ │ │ -00019040: 7465 7269 6f72 486f 6d6f 6c6f 6779 4d6f teriorHomologyMo │ │ │ │ -00019050: 6475 6c65 2c20 5072 6576 3a20 6578 706f dule, Prev: expo │ │ │ │ -00019060: 2c20 5570 3a20 546f 700a 0a65 7874 6572 , Up: Top..exter │ │ │ │ -00019070: 696f 7245 7874 4d6f 6475 6c65 202d 2d20 iorExtModule -- │ │ │ │ -00019080: 4578 7428 4d2c 6b29 206f 7220 4578 7428 Ext(M,k) or Ext( │ │ │ │ -00019090: 4d2c 4e29 2061 7320 6120 6d6f 6475 6c65 M,N) as a module │ │ │ │ -000190a0: 206f 7665 7220 616e 2065 7874 6572 696f over an exterio │ │ │ │ -000190b0: 7220 616c 6765 6272 610a 2a2a 2a2a 2a2a r algebra.****** │ │ │ │ +00018e50: 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 6f0a ----+..See also. │ │ │ │ +00018e60: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +00018e70: 6f74 6520 4569 7365 6e62 7564 5368 616d ote EisenbudSham │ │ │ │ +00018e80: 6173 683a 2045 6973 656e 6275 6453 6861 ash: EisenbudSha │ │ │ │ +00018e90: 6d61 7368 2c20 2d2d 2043 6f6d 7075 7465 mash, -- Compute │ │ │ │ +00018ea0: 7320 7468 6520 4569 7365 6e62 7564 2d53 s the Eisenbud-S │ │ │ │ +00018eb0: 6861 6d61 7368 0a20 2020 2043 6f6d 706c hamash. Compl │ │ │ │ +00018ec0: 6578 0a20 202a 202a 6e6f 7465 206d 616b ex. * *note mak │ │ │ │ +00018ed0: 6548 6f6d 6f74 6f70 6965 733a 206d 616b eHomotopies: mak │ │ │ │ +00018ee0: 6548 6f6d 6f74 6f70 6965 732c 202d 2d20 eHomotopies, -- │ │ │ │ +00018ef0: 7265 7475 726e 7320 6120 7379 7374 656d returns a system │ │ │ │ +00018f00: 206f 6620 6869 6768 6572 0a20 2020 2068 of higher. h │ │ │ │ +00018f10: 6f6d 6f74 6f70 6965 730a 0a57 6179 7320 omotopies..Ways │ │ │ │ +00018f20: 746f 2075 7365 2065 7870 6f3a 0a3d 3d3d to use expo:.=== │ │ │ │ +00018f30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +00018f40: 2020 2a20 2265 7870 6f28 5a5a 2c4c 6973 * "expo(ZZ,Lis │ │ │ │ +00018f50: 7429 220a 2020 2a20 2265 7870 6f28 5a5a t)". * "expo(ZZ │ │ │ │ +00018f60: 2c5a 5a29 220a 0a46 6f72 2074 6865 2070 ,ZZ)"..For the p │ │ │ │ +00018f70: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +00018f80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +00018f90: 6520 6f62 6a65 6374 202a 6e6f 7465 2065 e object *note e │ │ │ │ +00018fa0: 7870 6f3a 2065 7870 6f2c 2069 7320 6120 xpo: expo, is a │ │ │ │ +00018fb0: 2a6e 6f74 6520 6d65 7468 6f64 2066 756e *note method fun │ │ │ │ +00018fc0: 6374 696f 6e3a 0a28 4d61 6361 756c 6179 ction:.(Macaulay │ │ │ │ +00018fd0: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ +00018fe0: 696f 6e2c 2e0a 1f0a 4669 6c65 3a20 436f ion,....File: Co │ │ │ │ +00018ff0: 6d70 6c65 7465 496e 7465 7273 6563 7469 mpleteIntersecti │ │ │ │ +00019000: 6f6e 5265 736f 6c75 7469 6f6e 732e 696e onResolutions.in │ │ │ │ +00019010: 666f 2c20 4e6f 6465 3a20 6578 7465 7269 fo, Node: exteri │ │ │ │ +00019020: 6f72 4578 744d 6f64 756c 652c 204e 6578 orExtModule, Nex │ │ │ │ +00019030: 743a 2065 7874 6572 696f 7248 6f6d 6f6c t: exteriorHomol │ │ │ │ +00019040: 6f67 794d 6f64 756c 652c 2050 7265 763a ogyModule, Prev: │ │ │ │ +00019050: 2065 7870 6f2c 2055 703a 2054 6f70 0a0a expo, Up: Top.. │ │ │ │ +00019060: 6578 7465 7269 6f72 4578 744d 6f64 756c exteriorExtModul │ │ │ │ +00019070: 6520 2d2d 2045 7874 284d 2c6b 2920 6f72 e -- Ext(M,k) or │ │ │ │ +00019080: 2045 7874 284d 2c4e 2920 6173 2061 206d Ext(M,N) as a m │ │ │ │ +00019090: 6f64 756c 6520 6f76 6572 2061 6e20 6578 odule over an ex │ │ │ │ +000190a0: 7465 7269 6f72 2061 6c67 6562 7261 0a2a terior algebra.* │ │ │ │ +000190b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000190c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000190d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000190e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000190f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00019100: 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 ********..Synops │ │ │ │ -00019110: 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a is.========.. * │ │ │ │ -00019120: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -00019130: 2045 203d 2065 7874 6572 696f 7245 7874 E = exteriorExt │ │ │ │ -00019140: 4d6f 6475 6c65 2866 2c4d 290a 2020 2a20 Module(f,M). * │ │ │ │ -00019150: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -00019160: 662c 2061 202a 6e6f 7465 206d 6174 7269 f, a *note matri │ │ │ │ -00019170: 783a 2028 4d61 6361 756c 6179 3244 6f63 x: (Macaulay2Doc │ │ │ │ -00019180: 294d 6174 7269 782c 2c20 3120 7820 632c )Matrix,, 1 x c, │ │ │ │ -00019190: 2065 6e74 7269 6573 206d 7573 7420 6265 entries must be │ │ │ │ -000191a0: 0a20 2020 2020 2020 2068 6f6d 6f74 6f70 . homotop │ │ │ │ -000191b0: 6963 2074 6f20 3020 6f6e 2046 0a20 2020 ic to 0 on F. │ │ │ │ -000191c0: 2020 202a 204d 2c20 6120 2a6e 6f74 6520 * M, a *note │ │ │ │ -000191d0: 6d6f 6475 6c65 3a20 284d 6163 6175 6c61 module: (Macaula │ │ │ │ -000191e0: 7932 446f 6329 4d6f 6475 6c65 2c2c 2061 y2Doc)Module,, a │ │ │ │ -000191f0: 6e6e 6968 696c 6174 6564 2062 7920 7468 nnihilated by th │ │ │ │ -00019200: 6520 656c 656d 656e 7473 0a20 2020 2020 e elements. │ │ │ │ -00019210: 2020 206f 6620 6666 0a20 2020 2020 202a of ff. * │ │ │ │ -00019220: 204e 2c20 6120 2a6e 6f74 6520 6d6f 6475 N, a *note modu │ │ │ │ -00019230: 6c65 3a20 284d 6163 6175 6c61 7932 446f le: (Macaulay2Do │ │ │ │ -00019240: 6329 4d6f 6475 6c65 2c2c 2061 6e6e 6968 c)Module,, annih │ │ │ │ -00019250: 696c 6174 6564 2062 7920 7468 6520 656c ilated by the el │ │ │ │ -00019260: 656d 656e 7473 0a20 2020 2020 2020 206f ements. o │ │ │ │ -00019270: 6620 6666 0a20 202a 204f 7574 7075 7473 f ff. * Outputs │ │ │ │ -00019280: 3a0a 2020 2020 2020 2a20 452c 2061 202a :. * E, a * │ │ │ │ -00019290: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ -000192a0: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ -000192b0: 652c 2c20 4d6f 6475 6c65 206f 7665 7220 e,, Module over │ │ │ │ -000192c0: 616e 2065 7874 6572 696f 720a 2020 2020 an exterior. │ │ │ │ -000192d0: 2020 2020 616c 6765 6272 6120 7769 7468 algebra with │ │ │ │ -000192e0: 2076 6172 6961 626c 6573 2063 6f72 7265 variables corre │ │ │ │ -000192f0: 7370 6f6e 6469 6e67 2074 6f20 656c 656d sponding to elem │ │ │ │ -00019300: 656e 7473 206f 6620 660a 0a44 6573 6372 ents of f..Descr │ │ │ │ -00019310: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ -00019320: 3d3d 0a0a 4966 204d 2c4e 2061 7265 2053 ==..If M,N are S │ │ │ │ -00019330: 2d6d 6f64 756c 6573 2061 6e6e 6968 696c -modules annihil │ │ │ │ -00019340: 6174 6564 2062 7920 7468 6520 656c 656d ated by the elem │ │ │ │ -00019350: 656e 7473 206f 6620 7468 6520 6d61 7472 ents of the matr │ │ │ │ -00019360: 6978 2066 6620 3d20 2866 5f31 2e2e 665f ix ff = (f_1..f_ │ │ │ │ -00019370: 6329 2c0a 616e 6420 6b20 6973 2074 6865 c),.and k is the │ │ │ │ -00019380: 2072 6573 6964 7565 2066 6965 6c64 206f residue field o │ │ │ │ -00019390: 6620 532c 2074 6865 6e20 7468 6520 7363 f S, then the sc │ │ │ │ -000193a0: 7269 7074 2065 7874 6572 696f 7245 7874 ript exteriorExt │ │ │ │ -000193b0: 4d6f 6475 6c65 2866 2c4d 2920 7265 7475 Module(f,M) retu │ │ │ │ -000193c0: 726e 730a 4578 745f 5328 4d2c 206b 2920 rns.Ext_S(M, k) │ │ │ │ -000193d0: 6173 2061 206d 6f64 756c 6520 6f76 6572 as a module over │ │ │ │ -000193e0: 2061 6e20 6578 7465 7269 6f72 2061 6c67 an exterior alg │ │ │ │ -000193f0: 6562 7261 2045 203d 206b 3c65 5f31 2c2e ebra E = k, where t │ │ │ │ -00019410: 6865 0a65 5f69 2068 6176 6520 6465 6772 he.e_i have degr │ │ │ │ -00019420: 6565 2031 2e20 4974 2069 7320 636f 6d70 ee 1. It is comp │ │ │ │ -00019430: 7574 6564 2061 7320 7468 6520 452d 6475 uted as the E-du │ │ │ │ -00019440: 616c 206f 6620 6578 7465 7269 6f72 546f al of exteriorTo │ │ │ │ -00019450: 724d 6f64 756c 652e 0a0a 5468 6520 7363 rModule...The sc │ │ │ │ -00019460: 7269 7074 2065 7874 6572 696f 7254 6f72 ript exteriorTor │ │ │ │ -00019470: 4d6f 6475 6c65 2866 2c4d 2c4e 2920 7265 Module(f,M,N) re │ │ │ │ -00019480: 7475 726e 7320 4578 745f 5328 4d2c 4e29 turns Ext_S(M,N) │ │ │ │ -00019490: 2061 7320 6120 6d6f 6475 6c65 206f 7665 as a module ove │ │ │ │ -000194a0: 7220 610a 6269 6772 6164 6564 2072 696e r a.bigraded rin │ │ │ │ -000194b0: 6720 5345 203d 2053 3c65 5f31 2c2e 2e2c g SE = S, where the │ │ │ │ -000194d0: 655f 6920 6861 7665 2064 6567 7265 6573 e_i have degrees │ │ │ │ -000194e0: 207b 645f 692c 317d 2c20 7768 6572 6520 {d_i,1}, where │ │ │ │ -000194f0: 645f 690a 6973 2074 6865 2064 6567 7265 d_i.is the degre │ │ │ │ -00019500: 6520 6f66 2066 5f69 2e20 5468 6520 6d6f e of f_i. The mo │ │ │ │ -00019510: 6475 6c65 2073 7472 7563 7475 7265 2c20 dule structure, │ │ │ │ -00019520: 696e 2065 6974 6865 7220 6361 7365 2c20 in either case, │ │ │ │ -00019530: 6973 2064 6566 696e 6564 2062 7920 7468 is defined by th │ │ │ │ -00019540: 650a 686f 6d6f 746f 7069 6573 2066 6f72 e.homotopies for │ │ │ │ -00019550: 2074 6865 2066 5f69 206f 6e20 7468 6520 the f_i on the │ │ │ │ -00019560: 7265 736f 6c75 7469 6f6e 206f 6620 4d2c resolution of M, │ │ │ │ -00019570: 2063 6f6d 7075 7465 6420 6279 2074 6865 computed by the │ │ │ │ -00019580: 2073 6372 6970 740a 6d61 6b65 486f 6d6f script.makeHomo │ │ │ │ -00019590: 746f 7069 6573 312e 5468 6520 7363 7269 topies1.The scri │ │ │ │ -000195a0: 7074 2063 616c 6c73 206d 616b 654d 6f64 pt calls makeMod │ │ │ │ -000195b0: 756c 6520 746f 2063 6f6d 7075 7465 2061 ule to compute a │ │ │ │ -000195c0: 2028 6e6f 6e2d 6d69 6e69 6d61 6c29 0a70 (non-minimal).p │ │ │ │ -000195d0: 7265 7365 6e74 6174 696f 6e20 6f66 2074 resentation of t │ │ │ │ -000195e0: 6869 7320 6d6f 6475 6c65 2e0a 0a2b 2d2d his module...+-- │ │ │ │ +000190f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 *************..S │ │ │ │ +00019100: 796e 6f70 7369 730a 3d3d 3d3d 3d3d 3d3d ynopsis.======== │ │ │ │ +00019110: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ +00019120: 2020 2020 2020 4520 3d20 6578 7465 7269 E = exteri │ │ │ │ +00019130: 6f72 4578 744d 6f64 756c 6528 662c 4d29 orExtModule(f,M) │ │ │ │ +00019140: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +00019150: 2020 202a 2066 2c20 6120 2a6e 6f74 6520 * f, a *note │ │ │ │ +00019160: 6d61 7472 6978 3a20 284d 6163 6175 6c61 matrix: (Macaula │ │ │ │ +00019170: 7932 446f 6329 4d61 7472 6978 2c2c 2031 y2Doc)Matrix,, 1 │ │ │ │ +00019180: 2078 2063 2c20 656e 7472 6965 7320 6d75 x c, entries mu │ │ │ │ +00019190: 7374 2062 650a 2020 2020 2020 2020 686f st be. ho │ │ │ │ +000191a0: 6d6f 746f 7069 6320 746f 2030 206f 6e20 motopic to 0 on │ │ │ │ +000191b0: 460a 2020 2020 2020 2a20 4d2c 2061 202a F. * M, a * │ │ │ │ +000191c0: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ +000191d0: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ +000191e0: 652c 2c20 616e 6e69 6869 6c61 7465 6420 e,, annihilated │ │ │ │ +000191f0: 6279 2074 6865 2065 6c65 6d65 6e74 730a by the elements. │ │ │ │ +00019200: 2020 2020 2020 2020 6f66 2066 660a 2020 of ff. │ │ │ │ +00019210: 2020 2020 2a20 4e2c 2061 202a 6e6f 7465 * N, a *note │ │ │ │ +00019220: 206d 6f64 756c 653a 2028 4d61 6361 756c module: (Macaul │ │ │ │ +00019230: 6179 3244 6f63 294d 6f64 756c 652c 2c20 ay2Doc)Module,, │ │ │ │ +00019240: 616e 6e69 6869 6c61 7465 6420 6279 2074 annihilated by t │ │ │ │ +00019250: 6865 2065 6c65 6d65 6e74 730a 2020 2020 he elements. │ │ │ │ +00019260: 2020 2020 6f66 2066 660a 2020 2a20 4f75 of ff. * Ou │ │ │ │ +00019270: 7470 7574 733a 0a20 2020 2020 202a 2045 tputs:. * E │ │ │ │ +00019280: 2c20 6120 2a6e 6f74 6520 6d6f 6475 6c65 , a *note module │ │ │ │ +00019290: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +000192a0: 4d6f 6475 6c65 2c2c 204d 6f64 756c 6520 Module,, Module │ │ │ │ +000192b0: 6f76 6572 2061 6e20 6578 7465 7269 6f72 over an exterior │ │ │ │ +000192c0: 0a20 2020 2020 2020 2061 6c67 6562 7261 . algebra │ │ │ │ +000192d0: 2077 6974 6820 7661 7269 6162 6c65 7320 with variables │ │ │ │ +000192e0: 636f 7272 6573 706f 6e64 696e 6720 746f corresponding to │ │ │ │ +000192f0: 2065 6c65 6d65 6e74 7320 6f66 2066 0a0a elements of f.. │ │ │ │ +00019300: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +00019310: 3d3d 3d3d 3d3d 3d0a 0a49 6620 4d2c 4e20 =======..If M,N │ │ │ │ +00019320: 6172 6520 532d 6d6f 6475 6c65 7320 616e are S-modules an │ │ │ │ +00019330: 6e69 6869 6c61 7465 6420 6279 2074 6865 nihilated by the │ │ │ │ +00019340: 2065 6c65 6d65 6e74 7320 6f66 2074 6865 elements of the │ │ │ │ +00019350: 206d 6174 7269 7820 6666 203d 2028 665f matrix ff = (f_ │ │ │ │ +00019360: 312e 2e66 5f63 292c 0a61 6e64 206b 2069 1..f_c),.and k i │ │ │ │ +00019370: 7320 7468 6520 7265 7369 6475 6520 6669 s the residue fi │ │ │ │ +00019380: 656c 6420 6f66 2053 2c20 7468 656e 2074 eld of S, then t │ │ │ │ +00019390: 6865 2073 6372 6970 7420 6578 7465 7269 he script exteri │ │ │ │ +000193a0: 6f72 4578 744d 6f64 756c 6528 662c 4d29 orExtModule(f,M) │ │ │ │ +000193b0: 2072 6574 7572 6e73 0a45 7874 5f53 284d returns.Ext_S(M │ │ │ │ +000193c0: 2c20 6b29 2061 7320 6120 6d6f 6475 6c65 , k) as a module │ │ │ │ +000193d0: 206f 7665 7220 616e 2065 7874 6572 696f over an exterio │ │ │ │ +000193e0: 7220 616c 6765 6272 6120 4520 3d20 6b3c r algebra E = k< │ │ │ │ +000193f0: 655f 312c 2e2e 2e2c 655f 633e 2c20 7768 e_1,...,e_c>, wh │ │ │ │ +00019400: 6572 6520 7468 650a 655f 6920 6861 7665 ere the.e_i have │ │ │ │ +00019410: 2064 6567 7265 6520 312e 2049 7420 6973 degree 1. It is │ │ │ │ +00019420: 2063 6f6d 7075 7465 6420 6173 2074 6865 computed as the │ │ │ │ +00019430: 2045 2d64 7561 6c20 6f66 2065 7874 6572 E-dual of exter │ │ │ │ +00019440: 696f 7254 6f72 4d6f 6475 6c65 2e0a 0a54 iorTorModule...T │ │ │ │ +00019450: 6865 2073 6372 6970 7420 6578 7465 7269 he script exteri │ │ │ │ +00019460: 6f72 546f 724d 6f64 756c 6528 662c 4d2c orTorModule(f,M, │ │ │ │ +00019470: 4e29 2072 6574 7572 6e73 2045 7874 5f53 N) returns Ext_S │ │ │ │ +00019480: 284d 2c4e 2920 6173 2061 206d 6f64 756c (M,N) as a modul │ │ │ │ +00019490: 6520 6f76 6572 2061 0a62 6967 7261 6465 e over a.bigrade │ │ │ │ +000194a0: 6420 7269 6e67 2053 4520 3d20 533c 655f d ring SE = S, where │ │ │ │ +000194c0: 2074 6865 2065 5f69 2068 6176 6520 6465 the e_i have de │ │ │ │ +000194d0: 6772 6565 7320 7b64 5f69 2c31 7d2c 2077 grees {d_i,1}, w │ │ │ │ +000194e0: 6865 7265 2064 5f69 0a69 7320 7468 6520 here d_i.is the │ │ │ │ +000194f0: 6465 6772 6565 206f 6620 665f 692e 2054 degree of f_i. T │ │ │ │ +00019500: 6865 206d 6f64 756c 6520 7374 7275 6374 he module struct │ │ │ │ +00019510: 7572 652c 2069 6e20 6569 7468 6572 2063 ure, in either c │ │ │ │ +00019520: 6173 652c 2069 7320 6465 6669 6e65 6420 ase, is defined │ │ │ │ +00019530: 6279 2074 6865 0a68 6f6d 6f74 6f70 6965 by the.homotopie │ │ │ │ +00019540: 7320 666f 7220 7468 6520 665f 6920 6f6e s for the f_i on │ │ │ │ +00019550: 2074 6865 2072 6573 6f6c 7574 696f 6e20 the resolution │ │ │ │ +00019560: 6f66 204d 2c20 636f 6d70 7574 6564 2062 of M, computed b │ │ │ │ +00019570: 7920 7468 6520 7363 7269 7074 0a6d 616b y the script.mak │ │ │ │ +00019580: 6548 6f6d 6f74 6f70 6965 7331 2e54 6865 eHomotopies1.The │ │ │ │ +00019590: 2073 6372 6970 7420 6361 6c6c 7320 6d61 script calls ma │ │ │ │ +000195a0: 6b65 4d6f 6475 6c65 2074 6f20 636f 6d70 keModule to comp │ │ │ │ +000195b0: 7574 6520 6120 286e 6f6e 2d6d 696e 696d ute a (non-minim │ │ │ │ +000195c0: 616c 290a 7072 6573 656e 7461 7469 6f6e al).presentation │ │ │ │ +000195d0: 206f 6620 7468 6973 206d 6f64 756c 652e of this module. │ │ │ │ +000195e0: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ 000195f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019620: 2d2d 2d2d 2b0a 7c69 3120 3a20 6b6b 203d ----+.|i1 : kk = │ │ │ │ -00019630: 205a 5a2f 3130 3120 2020 2020 2020 2020 ZZ/101 │ │ │ │ +00019610: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +00019620: 206b 6b20 3d20 5a5a 2f31 3031 2020 2020 kk = ZZ/101 │ │ │ │ +00019630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019650: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00019650: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00019660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019690: 2020 2020 2020 7c0a 7c6f 3120 3d20 6b6b |.|o1 = kk │ │ │ │ +00019680: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00019690: 203d 206b 6b20 2020 2020 2020 2020 2020 = kk │ │ │ │ 000196a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000196b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000196c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000196d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000196c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000196d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000196e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000196f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019700: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ -00019710: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ +000196f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00019700: 6f31 203a 2051 756f 7469 656e 7452 696e o1 : QuotientRin │ │ │ │ +00019710: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ 00019720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019740: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00019730: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00019740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019770: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ -00019780: 3a20 5320 3d20 6b6b 5b61 2c62 2c63 5d20 : S = kk[a,b,c] │ │ │ │ +00019760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00019770: 0a7c 6932 203a 2053 203d 206b 6b5b 612c .|i2 : S = kk[a, │ │ │ │ +00019780: 622c 635d 2020 2020 2020 2020 2020 2020 b,c] │ │ │ │ 00019790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000197a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000197b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000197a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000197b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000197c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000197d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000197e0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000197f0: 3220 3d20 5320 2020 2020 2020 2020 2020 2 = S │ │ │ │ +000197e0: 207c 0a7c 6f32 203d 2053 2020 2020 2020 |.|o2 = S │ │ │ │ +000197f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019820: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00019810: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00019820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019850: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00019860: 7c6f 3220 3a20 506f 6c79 6e6f 6d69 616c |o2 : Polynomial │ │ │ │ -00019870: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ -00019880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019890: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00019850: 2020 207c 0a7c 6f32 203a 2050 6f6c 796e |.|o2 : Polyn │ │ │ │ +00019860: 6f6d 6961 6c52 696e 6720 2020 2020 2020 omialRing │ │ │ │ +00019870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019880: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00019890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000198a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000198b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000198c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000198d0: 2b0a 7c69 3320 3a20 6620 3d20 6d61 7472 +.|i3 : f = matr │ │ │ │ -000198e0: 6978 2261 342c 6234 2c63 3422 2020 2020 ix"a4,b4,c4" │ │ │ │ -000198f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019900: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000198c0: 2d2d 2d2d 2d2b 0a7c 6933 203a 2066 203d -----+.|i3 : f = │ │ │ │ +000198d0: 206d 6174 7269 7822 6134 2c62 342c 6334 matrix"a4,b4,c4 │ │ │ │ +000198e0: 2220 2020 2020 2020 2020 2020 2020 2020 " │ │ │ │ +000198f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00019900: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00019910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019940: 2020 7c0a 7c6f 3320 3d20 7c20 6134 2062 |.|o3 = | a4 b │ │ │ │ -00019950: 3420 6334 207c 2020 2020 2020 2020 2020 4 c4 | │ │ │ │ +00019930: 2020 2020 2020 207c 0a7c 6f33 203d 207c |.|o3 = | │ │ │ │ +00019940: 2061 3420 6234 2063 3420 7c20 2020 2020 a4 b4 c4 | │ │ │ │ +00019950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019970: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00019970: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00019980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000199a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000199b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000199c0: 2020 2020 3120 2020 2020 2033 2020 2020 1 3 │ │ │ │ +000199a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000199b0: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ +000199c0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 000199d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000199e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000199f0: 6f33 203a 204d 6174 7269 7820 5320 203c o3 : Matrix S < │ │ │ │ -00019a00: 2d2d 2053 2020 2020 2020 2020 2020 2020 -- S │ │ │ │ -00019a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019a20: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000199e0: 2020 7c0a 7c6f 3320 3a20 4d61 7472 6978 |.|o3 : Matrix │ │ │ │ +000199f0: 2053 2020 3c2d 2d20 5320 2020 2020 2020 S <-- S │ │ │ │ +00019a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019a10: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00019a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00019a60: 0a7c 6934 203a 2052 203d 2053 2f69 6465 .|i4 : R = S/ide │ │ │ │ -00019a70: 616c 2066 2020 2020 2020 2020 2020 2020 al f │ │ │ │ -00019a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019a90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00019a50: 2d2d 2d2d 2b0a 7c69 3420 3a20 5220 3d20 ----+.|i4 : R = │ │ │ │ +00019a60: 532f 6964 6561 6c20 6620 2020 2020 2020 S/ideal f │ │ │ │ +00019a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019a80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00019a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019ad0: 207c 0a7c 6f34 203d 2052 2020 2020 2020 |.|o4 = R │ │ │ │ +00019ac0: 2020 2020 2020 7c0a 7c6f 3420 3d20 5220 |.|o4 = R │ │ │ │ +00019ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019b00: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00019af0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00019b00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00019b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019b40: 2020 207c 0a7c 6f34 203a 2051 756f 7469 |.|o4 : Quoti │ │ │ │ -00019b50: 656e 7452 696e 6720 2020 2020 2020 2020 entRing │ │ │ │ +00019b30: 2020 2020 2020 2020 7c0a 7c6f 3420 3a20 |.|o4 : │ │ │ │ +00019b40: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ +00019b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019b70: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00019b70: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00019b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019bb0: 2d2d 2d2d 2d2b 0a7c 6935 203a 2070 203d -----+.|i5 : p = │ │ │ │ -00019bc0: 206d 6170 2852 2c53 2920 2020 2020 2020 map(R,S) │ │ │ │ +00019ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ +00019bb0: 3a20 7020 3d20 6d61 7028 522c 5329 2020 : p = map(R,S) │ │ │ │ +00019bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019be0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00019bf0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00019be0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00019bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019c20: 2020 2020 2020 207c 0a7c 6f35 203d 206d |.|o5 = m │ │ │ │ -00019c30: 6170 2028 522c 2053 2c20 7b61 2c20 622c ap (R, S, {a, b, │ │ │ │ -00019c40: 2063 7d29 2020 2020 2020 2020 2020 2020 c}) │ │ │ │ -00019c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019c60: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00019c10: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00019c20: 3520 3d20 6d61 7020 2852 2c20 532c 207b 5 = map (R, S, { │ │ │ │ +00019c30: 612c 2062 2c20 637d 2920 2020 2020 2020 a, b, c}) │ │ │ │ +00019c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019c50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00019c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019c90: 2020 2020 2020 2020 207c 0a7c 6f35 203a |.|o5 : │ │ │ │ -00019ca0: 2052 696e 674d 6170 2052 203c 2d2d 2053 RingMap R <-- S │ │ │ │ +00019c80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00019c90: 7c6f 3520 3a20 5269 6e67 4d61 7020 5220 |o5 : RingMap R │ │ │ │ +00019ca0: 3c2d 2d20 5320 2020 2020 2020 2020 2020 <-- S │ │ │ │ 00019cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019cd0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00019cc0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00019cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 -----------+.|i6 │ │ │ │ -00019d10: 203a 204d 203d 2063 6f6b 6572 206d 6170 : M = coker map │ │ │ │ -00019d20: 2852 5e32 2c20 525e 7b33 3a2d 317d 2c20 (R^2, R^{3:-1}, │ │ │ │ -00019d30: 7b7b 612c 622c 637d 2c7b 622c 632c 617d {{a,b,c},{b,c,a} │ │ │ │ -00019d40: 7d29 2020 7c0a 7c20 2020 2020 2020 2020 }) |.| │ │ │ │ +00019d00: 2b0a 7c69 3620 3a20 4d20 3d20 636f 6b65 +.|i6 : M = coke │ │ │ │ +00019d10: 7220 6d61 7028 525e 322c 2052 5e7b 333a r map(R^2, R^{3: │ │ │ │ +00019d20: 2d31 7d2c 207b 7b61 2c62 2c63 7d2c 7b62 -1}, {{a,b,c},{b │ │ │ │ +00019d30: 2c63 2c61 7d7d 2920 207c 0a7c 2020 2020 ,c,a}}) |.| │ │ │ │ +00019d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019d70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00019d80: 6f36 203d 2063 6f6b 6572 6e65 6c20 7c20 o6 = cokernel | │ │ │ │ -00019d90: 6120 6220 6320 7c20 2020 2020 2020 2020 a b c | │ │ │ │ -00019da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019db0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00019dc0: 2020 2020 2020 207c 2062 2063 2061 207c | b c a | │ │ │ │ +00019d70: 2020 7c0a 7c6f 3620 3d20 636f 6b65 726e |.|o6 = cokern │ │ │ │ +00019d80: 656c 207c 2061 2062 2063 207c 2020 2020 el | a b c | │ │ │ │ +00019d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019da0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00019db0: 2020 2020 2020 2020 2020 2020 7c20 6220 | b │ │ │ │ +00019dc0: 6320 6120 7c20 2020 2020 2020 2020 2020 c a | │ │ │ │ 00019dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019de0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00019df0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00019de0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00019df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019e20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00019e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019e40: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00019e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019e60: 207c 0a7c 6f36 203a 2052 2d6d 6f64 756c |.|o6 : R-modul │ │ │ │ -00019e70: 652c 2071 756f 7469 656e 7420 6f66 2052 e, quotient of R │ │ │ │ -00019e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019e90: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00019e10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00019e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019e30: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00019e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019e50: 2020 2020 2020 7c0a 7c6f 3620 3a20 522d |.|o6 : R- │ │ │ │ +00019e60: 6d6f 6475 6c65 2c20 7175 6f74 6965 6e74 module, quotient │ │ │ │ +00019e70: 206f 6620 5220 2020 2020 2020 2020 2020 of R │ │ │ │ +00019e80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00019e90: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00019ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019ed0: 2d2d 2d2b 0a7c 6937 203a 2062 6574 7469 ---+.|i7 : betti │ │ │ │ -00019ee0: 2028 4646 203d 7265 7328 204d 2c20 4c65 (FF =res( M, Le │ │ │ │ -00019ef0: 6e67 7468 4c69 6d69 7420 3d3e 3629 2920 ngthLimit =>6)) │ │ │ │ -00019f00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00019ec0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 --------+.|i7 : │ │ │ │ +00019ed0: 6265 7474 6920 2846 4620 3d72 6573 2820 betti (FF =res( │ │ │ │ +00019ee0: 4d2c 204c 656e 6774 684c 696d 6974 203d M, LengthLimit = │ │ │ │ +00019ef0: 3e36 2929 2020 2020 2020 2020 2020 2020 >6)) │ │ │ │ +00019f00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00019f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019f40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00019f50: 2020 2020 3020 3120 3220 3320 3420 2035 0 1 2 3 4 5 │ │ │ │ -00019f60: 2020 3620 2020 2020 2020 2020 2020 2020 6 │ │ │ │ -00019f70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00019f80: 7c6f 3720 3d20 746f 7461 6c3a 2032 2033 |o7 = total: 2 3 │ │ │ │ -00019f90: 2034 2036 2039 2031 3320 3138 2020 2020 4 6 9 13 18 │ │ │ │ -00019fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019fb0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00019fc0: 2020 2030 3a20 3220 3320 2e20 2e20 2e20 0: 2 3 . . . │ │ │ │ -00019fd0: 202e 2020 2e20 2020 2020 2020 2020 2020 . . │ │ │ │ -00019fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019ff0: 7c0a 7c20 2020 2020 2020 2020 313a 202e |.| 1: . │ │ │ │ -0001a000: 202e 2031 202e 202e 2020 2e20 202e 2020 . 1 . . . . │ │ │ │ -0001a010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a020: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0001a030: 2020 2020 2032 3a20 2e20 2e20 3320 3320 2: . . 3 3 │ │ │ │ -0001a040: 2e20 202e 2020 2e20 2020 2020 2020 2020 . . . │ │ │ │ -0001a050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a060: 2020 7c0a 7c20 2020 2020 2020 2020 333a |.| 3: │ │ │ │ -0001a070: 202e 202e 202e 2033 2033 2020 2e20 202e . . . 3 3 . . │ │ │ │ +00019f30: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00019f40: 2020 2020 2020 2020 2030 2031 2032 2033 0 1 2 3 │ │ │ │ +00019f50: 2034 2020 3520 2036 2020 2020 2020 2020 4 5 6 │ │ │ │ +00019f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019f70: 2020 207c 0a7c 6f37 203d 2074 6f74 616c |.|o7 = total │ │ │ │ +00019f80: 3a20 3220 3320 3420 3620 3920 3133 2031 : 2 3 4 6 9 13 1 │ │ │ │ +00019f90: 3820 2020 2020 2020 2020 2020 2020 2020 8 │ │ │ │ +00019fa0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00019fb0: 2020 2020 2020 2020 303a 2032 2033 202e 0: 2 3 . │ │ │ │ +00019fc0: 202e 202e 2020 2e20 202e 2020 2020 2020 . . . . │ │ │ │ +00019fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019fe0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00019ff0: 2031 3a20 2e20 2e20 3120 2e20 2e20 202e 1: . . 1 . . . │ │ │ │ +0001a000: 2020 2e20 2020 2020 2020 2020 2020 2020 . │ │ │ │ +0001a010: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001a020: 7c20 2020 2020 2020 2020 323a 202e 202e | 2: . . │ │ │ │ +0001a030: 2033 2033 202e 2020 2e20 202e 2020 2020 3 3 . . . │ │ │ │ +0001a040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a050: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001a060: 2020 2033 3a20 2e20 2e20 2e20 3320 3320 3: . . . 3 3 │ │ │ │ +0001a070: 202e 2020 2e20 2020 2020 2020 2020 2020 . . │ │ │ │ 0001a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a090: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a0a0: 2020 2020 2020 2034 3a20 2e20 2e20 2e20 4: . . . │ │ │ │ -0001a0b0: 2e20 3320 2033 2020 2e20 2020 2020 2020 . 3 3 . │ │ │ │ -0001a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a0d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001a0e0: 353a 202e 202e 202e 202e 2033 2020 3920 5: . . . . 3 9 │ │ │ │ -0001a0f0: 2036 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ -0001a100: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001a110: 2020 2020 2020 2020 2036 3a20 2e20 2e20 6: . . │ │ │ │ -0001a120: 2e20 2e20 2e20 202e 2020 3320 2020 2020 . . . . 3 │ │ │ │ -0001a130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a140: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001a150: 2020 373a 202e 202e 202e 202e 202e 2020 7: . . . . . │ │ │ │ -0001a160: 3120 2039 2020 2020 2020 2020 2020 2020 1 9 │ │ │ │ -0001a170: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001a180: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001a090: 7c0a 7c20 2020 2020 2020 2020 343a 202e |.| 4: . │ │ │ │ +0001a0a0: 202e 202e 202e 2033 2020 3320 202e 2020 . . . 3 3 . │ │ │ │ +0001a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a0c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001a0d0: 2020 2020 2035 3a20 2e20 2e20 2e20 2e20 5: . . . . │ │ │ │ +0001a0e0: 3320 2039 2020 3620 2020 2020 2020 2020 3 9 6 │ │ │ │ +0001a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a100: 2020 7c0a 7c20 2020 2020 2020 2020 363a |.| 6: │ │ │ │ +0001a110: 202e 202e 202e 202e 202e 2020 2e20 2033 . . . . . . 3 │ │ │ │ +0001a120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a130: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001a140: 2020 2020 2020 2037 3a20 2e20 2e20 2e20 7: . . . │ │ │ │ +0001a150: 2e20 2e20 2031 2020 3920 2020 2020 2020 . . 1 9 │ │ │ │ +0001a160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a170: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001a180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a1b0: 2020 2020 2020 2020 7c0a 7c6f 3720 3a20 |.|o7 : │ │ │ │ -0001a1c0: 4265 7474 6954 616c 6c79 2020 2020 2020 BettiTally │ │ │ │ +0001a1a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001a1b0: 6f37 203a 2042 6574 7469 5461 6c6c 7920 o7 : BettiTally │ │ │ │ +0001a1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a1f0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0001a1e0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001a1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a220: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 ----------+.|i8 │ │ │ │ -0001a230: 3a20 4d53 203d 2070 7275 6e65 2070 7573 : MS = prune pus │ │ │ │ -0001a240: 6846 6f72 7761 7264 2870 2c20 636f 6b65 hForward(p, coke │ │ │ │ -0001a250: 7220 4646 2e64 645f 3629 3b20 2020 2020 r FF.dd_6); │ │ │ │ -0001a260: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0001a210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001a220: 0a7c 6938 203a 204d 5320 3d20 7072 756e .|i8 : MS = prun │ │ │ │ +0001a230: 6520 7075 7368 466f 7277 6172 6428 702c e pushForward(p, │ │ │ │ +0001a240: 2063 6f6b 6572 2046 462e 6464 5f36 293b coker FF.dd_6); │ │ │ │ +0001a250: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001a260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0001a2a0: 3920 3a20 7265 7346 6c64 203a 3d20 7075 9 : resFld := pu │ │ │ │ -0001a2b0: 7368 466f 7277 6172 6428 702c 2063 6f6b shForward(p, cok │ │ │ │ -0001a2c0: 6572 2076 6172 7320 5229 3b20 2020 2020 er vars R); │ │ │ │ -0001a2d0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001a290: 2d2b 0a7c 6939 203a 2072 6573 466c 6420 -+.|i9 : resFld │ │ │ │ +0001a2a0: 3a3d 2070 7573 6846 6f72 7761 7264 2870 := pushForward(p │ │ │ │ +0001a2b0: 2c20 636f 6b65 7220 7661 7273 2052 293b , coker vars R); │ │ │ │ +0001a2c0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001a2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0001a310: 7c69 3130 203a 2054 203d 2065 7874 6572 |i10 : T = exter │ │ │ │ -0001a320: 696f 7254 6f72 4d6f 6475 6c65 2866 2c4d iorTorModule(f,M │ │ │ │ -0001a330: 5329 3b20 2020 2020 2020 2020 2020 2020 S); │ │ │ │ -0001a340: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0001a300: 2d2d 2d2b 0a7c 6931 3020 3a20 5420 3d20 ---+.|i10 : T = │ │ │ │ +0001a310: 6578 7465 7269 6f72 546f 724d 6f64 756c exteriorTorModul │ │ │ │ +0001a320: 6528 662c 4d53 293b 2020 2020 2020 2020 e(f,MS); │ │ │ │ +0001a330: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0001a340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a380: 2b0a 7c69 3131 203a 2045 203d 2065 7874 +.|i11 : E = ext │ │ │ │ -0001a390: 6572 696f 7245 7874 4d6f 6475 6c65 2866 eriorExtModule(f │ │ │ │ -0001a3a0: 2c4d 5329 3b20 2020 2020 2020 2020 2020 ,MS); │ │ │ │ -0001a3b0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001a370: 2d2d 2d2d 2d2b 0a7c 6931 3120 3a20 4520 -----+.|i11 : E │ │ │ │ +0001a380: 3d20 6578 7465 7269 6f72 4578 744d 6f64 = exteriorExtMod │ │ │ │ +0001a390: 756c 6528 662c 4d53 293b 2020 2020 2020 ule(f,MS); │ │ │ │ +0001a3a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001a3b0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0001a3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a3f0: 2d2d 2b0a 7c69 3132 203a 2068 6628 2d34 --+.|i12 : hf(-4 │ │ │ │ -0001a400: 2e2e 302c 4529 2020 2020 2020 2020 2020 ..0,E) │ │ │ │ +0001a3e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3220 3a20 -------+.|i12 : │ │ │ │ +0001a3f0: 6866 282d 342e 2e30 2c45 2920 2020 2020 hf(-4..0,E) │ │ │ │ +0001a400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a420: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001a420: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a460: 2020 2020 7c0a 7c6f 3132 203d 207b 302c |.|o12 = {0, │ │ │ │ -0001a470: 2039 2c20 3239 2c20 3333 2c20 3133 7d20 9, 29, 33, 13} │ │ │ │ +0001a450: 2020 2020 2020 2020 207c 0a7c 6f31 3220 |.|o12 │ │ │ │ +0001a460: 3d20 7b30 2c20 392c 2032 392c 2033 332c = {0, 9, 29, 33, │ │ │ │ +0001a470: 2031 337d 2020 2020 2020 2020 2020 2020 13} │ │ │ │ 0001a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a490: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001a490: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a4d0: 2020 2020 2020 7c0a 7c6f 3132 203a 204c |.|o12 : L │ │ │ │ -0001a4e0: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +0001a4c0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0001a4d0: 3220 3a20 4c69 7374 2020 2020 2020 2020 2 : List │ │ │ │ +0001a4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a500: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001a510: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0001a500: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001a510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a540: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3133 203a --------+.|i13 : │ │ │ │ -0001a550: 2062 6574 7469 2072 6573 204d 5320 2020 betti res MS │ │ │ │ +0001a530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0001a540: 6931 3320 3a20 6265 7474 6920 7265 7320 i13 : betti res │ │ │ │ +0001a550: 4d53 2020 2020 2020 2020 2020 2020 2020 MS │ │ │ │ 0001a560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a580: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a570: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001a580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a5b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001a5c0: 2020 2020 2020 2020 2020 2030 2020 3120 0 1 │ │ │ │ -0001a5d0: 2032 2033 2020 2020 2020 2020 2020 2020 2 3 │ │ │ │ -0001a5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a5f0: 2020 207c 0a7c 6f31 3320 3d20 746f 7461 |.|o13 = tota │ │ │ │ -0001a600: 6c3a 2031 3320 3333 2032 3920 3920 2020 l: 13 33 29 9 │ │ │ │ +0001a5a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001a5b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001a5c0: 3020 2031 2020 3220 3320 2020 2020 2020 0 1 2 3 │ │ │ │ +0001a5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a5e0: 2020 2020 2020 2020 7c0a 7c6f 3133 203d |.|o13 = │ │ │ │ +0001a5f0: 2074 6f74 616c 3a20 3133 2033 3320 3239 total: 13 33 29 │ │ │ │ +0001a600: 2039 2020 2020 2020 2020 2020 2020 2020 9 │ │ │ │ 0001a610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a620: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001a630: 2020 2020 2020 2020 2039 3a20 2033 2020 9: 3 │ │ │ │ -0001a640: 2e20 202e 202e 2020 2020 2020 2020 2020 . . . │ │ │ │ -0001a650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a660: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001a670: 2031 303a 2020 3920 2036 2020 2e20 2e20 10: 9 6 . . │ │ │ │ +0001a620: 207c 0a7c 2020 2020 2020 2020 2020 393a |.| 9: │ │ │ │ +0001a630: 2020 3320 202e 2020 2e20 2e20 2020 2020 3 . . . │ │ │ │ +0001a640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a650: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001a660: 2020 2020 2020 3130 3a20 2039 2020 3620 10: 9 6 │ │ │ │ +0001a670: 202e 202e 2020 2020 2020 2020 2020 2020 . . │ │ │ │ 0001a680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a690: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001a6a0: 7c20 2020 2020 2020 2020 3131 3a20 202e | 11: . │ │ │ │ -0001a6b0: 2020 3320 202e 202e 2020 2020 2020 2020 3 . . │ │ │ │ -0001a6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a6d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0001a6e0: 2020 2031 323a 2020 3120 3135 2020 2e20 12: 1 15 . │ │ │ │ -0001a6f0: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ -0001a700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a710: 7c0a 7c20 2020 2020 2020 2020 3133 3a20 |.| 13: │ │ │ │ -0001a720: 202e 2020 3920 2038 202e 2020 2020 2020 . 9 8 . │ │ │ │ -0001a730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a740: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0001a750: 2020 2020 2031 343a 2020 2e20 202e 2020 14: . . │ │ │ │ -0001a760: 3620 2e20 2020 2020 2020 2020 2020 2020 6 . │ │ │ │ -0001a770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a780: 2020 7c0a 7c20 2020 2020 2020 2020 3135 |.| 15 │ │ │ │ -0001a790: 3a20 202e 2020 2e20 3132 202e 2020 2020 : . . 12 . │ │ │ │ +0001a690: 2020 207c 0a7c 2020 2020 2020 2020 2031 |.| 1 │ │ │ │ +0001a6a0: 313a 2020 2e20 2033 2020 2e20 2e20 2020 1: . 3 . . │ │ │ │ +0001a6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a6c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001a6d0: 2020 2020 2020 2020 3132 3a20 2031 2031 12: 1 1 │ │ │ │ +0001a6e0: 3520 202e 202e 2020 2020 2020 2020 2020 5 . . │ │ │ │ +0001a6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a700: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001a710: 2031 333a 2020 2e20 2039 2020 3820 2e20 13: . 9 8 . │ │ │ │ +0001a720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a730: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001a740: 7c20 2020 2020 2020 2020 3134 3a20 202e | 14: . │ │ │ │ +0001a750: 2020 2e20 2036 202e 2020 2020 2020 2020 . 6 . │ │ │ │ +0001a760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a770: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001a780: 2020 2031 353a 2020 2e20 202e 2031 3220 15: . . 12 │ │ │ │ +0001a790: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ 0001a7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a7b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a7c0: 2020 2020 2020 2031 363a 2020 2e20 202e 16: . . │ │ │ │ -0001a7d0: 2020 3320 3320 2020 2020 2020 2020 2020 3 3 │ │ │ │ -0001a7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a7f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001a800: 3137 3a20 202e 2020 2e20 202e 2033 2020 17: . . . 3 │ │ │ │ +0001a7b0: 7c0a 7c20 2020 2020 2020 2020 3136 3a20 |.| 16: │ │ │ │ +0001a7c0: 202e 2020 2e20 2033 2033 2020 2020 2020 . . 3 3 │ │ │ │ +0001a7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a7e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001a7f0: 2020 2020 2031 373a 2020 2e20 202e 2020 17: . . │ │ │ │ +0001a800: 2e20 3320 2020 2020 2020 2020 2020 2020 . 3 │ │ │ │ 0001a810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a820: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001a830: 2020 2020 2020 2020 2031 383a 2020 2e20 18: . │ │ │ │ -0001a840: 202e 2020 2e20 3320 2020 2020 2020 2020 . . 3 │ │ │ │ -0001a850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a860: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001a820: 2020 7c0a 7c20 2020 2020 2020 2020 3138 |.| 18 │ │ │ │ +0001a830: 3a20 202e 2020 2e20 202e 2033 2020 2020 : . . . 3 │ │ │ │ +0001a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a850: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a890: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001a8a0: 0a7c 6f31 3320 3a20 4265 7474 6954 616c .|o13 : BettiTal │ │ │ │ -0001a8b0: 6c79 2020 2020 2020 2020 2020 2020 2020 ly │ │ │ │ -0001a8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a8d0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001a890: 2020 2020 7c0a 7c6f 3133 203a 2042 6574 |.|o13 : Bet │ │ │ │ +0001a8a0: 7469 5461 6c6c 7920 2020 2020 2020 2020 tiTally │ │ │ │ +0001a8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a8c0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0001a8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a910: 2d2b 0a7c 6931 3420 3a20 6265 7474 6920 -+.|i14 : betti │ │ │ │ -0001a920: 7265 7320 2850 4520 3d20 7072 756e 6520 res (PE = prune │ │ │ │ -0001a930: 4529 2020 2020 2020 2020 2020 2020 2020 E) │ │ │ │ -0001a940: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001a900: 2d2d 2d2d 2d2d 2b0a 7c69 3134 203a 2062 ------+.|i14 : b │ │ │ │ +0001a910: 6574 7469 2072 6573 2028 5045 203d 2070 etti res (PE = p │ │ │ │ +0001a920: 7275 6e65 2045 2920 2020 2020 2020 2020 rune E) │ │ │ │ +0001a930: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001a940: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a980: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001a990: 2020 2020 3020 2031 2020 3220 2033 2020 0 1 2 3 │ │ │ │ -0001a9a0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0001a9b0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001a9c0: 3134 203d 2074 6f74 616c 3a20 3136 2031 14 = total: 16 1 │ │ │ │ -0001a9d0: 3320 3235 2034 3920 3831 2020 2020 2020 3 25 49 81 │ │ │ │ -0001a9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a9f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001aa00: 202d 333a 2020 3920 2034 2020 3320 2033 -3: 9 4 3 3 │ │ │ │ -0001aa10: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0001aa20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001aa30: 7c20 2020 2020 2020 2020 2d32 3a20 2036 | -2: 6 │ │ │ │ -0001aa40: 2020 3320 202e 2020 2e20 202e 2020 2020 3 . . . │ │ │ │ -0001aa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0001aa70: 2020 202d 313a 2020 2e20 202e 2020 3720 -1: . . 7 │ │ │ │ -0001aa80: 3138 2033 3320 2020 2020 2020 2020 2020 18 33 │ │ │ │ -0001aa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aaa0: 7c0a 7c20 2020 2020 2020 2020 2030 3a20 |.| 0: │ │ │ │ -0001aab0: 2031 2020 3620 3135 2032 3820 3435 2020 1 6 15 28 45 │ │ │ │ -0001aac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aad0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001a970: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001a980: 2020 2020 2020 2020 2030 2020 3120 2032 0 1 2 │ │ │ │ +0001a990: 2020 3320 2034 2020 2020 2020 2020 2020 3 4 │ │ │ │ +0001a9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a9b0: 207c 0a7c 6f31 3420 3d20 746f 7461 6c3a |.|o14 = total: │ │ │ │ +0001a9c0: 2031 3620 3133 2032 3520 3439 2038 3120 16 13 25 49 81 │ │ │ │ +0001a9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a9e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001a9f0: 2020 2020 2020 2d33 3a20 2039 2020 3420 -3: 9 4 │ │ │ │ +0001aa00: 2033 2020 3320 2033 2020 2020 2020 2020 3 3 3 │ │ │ │ +0001aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aa20: 2020 207c 0a7c 2020 2020 2020 2020 202d |.| - │ │ │ │ +0001aa30: 323a 2020 3620 2033 2020 2e20 202e 2020 2: 6 3 . . │ │ │ │ +0001aa40: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +0001aa50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001aa60: 2020 2020 2020 2020 2d31 3a20 202e 2020 -1: . │ │ │ │ +0001aa70: 2e20 2037 2031 3820 3333 2020 2020 2020 . 7 18 33 │ │ │ │ +0001aa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aa90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001aaa0: 2020 303a 2020 3120 2036 2031 3520 3238 0: 1 6 15 28 │ │ │ │ +0001aab0: 2034 3520 2020 2020 2020 2020 2020 2020 45 │ │ │ │ +0001aac0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001aad0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0001aae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab10: 2020 7c0a 7c6f 3134 203a 2042 6574 7469 |.|o14 : Betti │ │ │ │ -0001ab20: 5461 6c6c 7920 2020 2020 2020 2020 2020 Tally │ │ │ │ +0001ab00: 2020 2020 2020 207c 0a7c 6f31 3420 3a20 |.|o14 : │ │ │ │ +0001ab10: 4265 7474 6954 616c 6c79 2020 2020 2020 BettiTally │ │ │ │ +0001ab20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ab30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab40: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0001ab40: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0001ab50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ab60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ab70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ab80: 2d2d 2d2d 2b0a 7c69 3135 203a 2062 6574 ----+.|i15 : bet │ │ │ │ -0001ab90: 7469 2072 6573 2028 5054 203d 2070 7275 ti res (PT = pru │ │ │ │ -0001aba0: 6e65 2054 2920 2020 2020 2020 2020 2020 ne T) │ │ │ │ -0001abb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001ab70: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3520 ---------+.|i15 │ │ │ │ +0001ab80: 3a20 6265 7474 6920 7265 7320 2850 5420 : betti res (PT │ │ │ │ +0001ab90: 3d20 7072 756e 6520 5429 2020 2020 2020 = prune T) │ │ │ │ +0001aba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001abb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001abc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001abd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001abe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001abf0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001ac00: 2020 2020 2020 2030 2020 3120 2032 2020 0 1 2 │ │ │ │ -0001ac10: 2033 2020 2034 2020 2020 2020 2020 2020 3 4 │ │ │ │ -0001ac20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001ac30: 0a7c 6f31 3520 3d20 746f 7461 6c3a 2033 .|o15 = total: 3 │ │ │ │ -0001ac40: 3120 3535 2038 3720 3132 3720 3137 3520 1 55 87 127 175 │ │ │ │ -0001ac50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ac60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001ac70: 2020 2020 2030 3a20 3133 2032 3420 3339 0: 13 24 39 │ │ │ │ -0001ac80: 2020 3538 2020 3831 2020 2020 2020 2020 58 81 │ │ │ │ -0001ac90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aca0: 207c 0a7c 2020 2020 2020 2020 2020 313a |.| 1: │ │ │ │ -0001acb0: 2031 3820 3331 2034 3820 2036 3920 2039 18 31 48 69 9 │ │ │ │ -0001acc0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0001acd0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001abe0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001abf0: 2020 2020 2020 2020 2020 2020 3020 2031 0 1 │ │ │ │ +0001ac00: 2020 3220 2020 3320 2020 3420 2020 2020 2 3 4 │ │ │ │ +0001ac10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ac20: 2020 2020 7c0a 7c6f 3135 203d 2074 6f74 |.|o15 = tot │ │ │ │ +0001ac30: 616c 3a20 3331 2035 3520 3837 2031 3237 al: 31 55 87 127 │ │ │ │ +0001ac40: 2031 3735 2020 2020 2020 2020 2020 2020 175 │ │ │ │ +0001ac50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001ac60: 2020 2020 2020 2020 2020 303a 2031 3320 0: 13 │ │ │ │ +0001ac70: 3234 2033 3920 2035 3820 2038 3120 2020 24 39 58 81 │ │ │ │ +0001ac80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ac90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001aca0: 2020 2031 3a20 3138 2033 3120 3438 2020 1: 18 31 48 │ │ │ │ +0001acb0: 3639 2020 3934 2020 2020 2020 2020 2020 69 94 │ │ │ │ +0001acc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001acd0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001ace0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001acf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ad00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ad10: 2020 207c 0a7c 6f31 3520 3a20 4265 7474 |.|o15 : Bett │ │ │ │ -0001ad20: 6954 616c 6c79 2020 2020 2020 2020 2020 iTally │ │ │ │ +0001ad00: 2020 2020 2020 2020 7c0a 7c6f 3135 203a |.|o15 : │ │ │ │ +0001ad10: 2042 6574 7469 5461 6c6c 7920 2020 2020 BettiTally │ │ │ │ +0001ad20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ad30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ad40: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0001ad40: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0001ad50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ad60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ad70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ad80: 2d2d 2d2d 2d2b 0a7c 6931 3620 3a20 4531 -----+.|i16 : E1 │ │ │ │ -0001ad90: 203d 2070 7275 6e65 2065 7874 6572 696f = prune exterio │ │ │ │ -0001ada0: 7245 7874 4d6f 6475 6c65 2866 2c20 4d53 rExtModule(f, MS │ │ │ │ -0001adb0: 2c20 7265 7346 6c64 293b 2020 2020 7c0a , resFld); |. │ │ │ │ -0001adc0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0001ad70: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3136 ----------+.|i16 │ │ │ │ +0001ad80: 203a 2045 3120 3d20 7072 756e 6520 6578 : E1 = prune ex │ │ │ │ +0001ad90: 7465 7269 6f72 4578 744d 6f64 756c 6528 teriorExtModule( │ │ │ │ +0001ada0: 662c 204d 532c 2072 6573 466c 6429 3b20 f, MS, resFld); │ │ │ │ +0001adb0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0001adc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001add0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ade0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001adf0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3720 3a20 -------+.|i17 : │ │ │ │ -0001ae00: 7269 6e67 2045 3120 2020 2020 2020 2020 ring E1 │ │ │ │ +0001ade0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0001adf0: 3137 203a 2072 696e 6720 4531 2020 2020 17 : ring E1 │ │ │ │ +0001ae00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ae10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001ae20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001ae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae60: 2020 2020 2020 2020 207c 0a7c 6f31 3720 |.|o17 │ │ │ │ -0001ae70: 3d20 6b6b 5b58 202e 2e58 202c 2065 202e = kk[X ..X , e . │ │ │ │ -0001ae80: 2e65 205d 2020 2020 2020 2020 2020 2020 .e ] │ │ │ │ -0001ae90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aea0: 2020 7c0a 7c20 2020 2020 2020 2020 2030 |.| 0 │ │ │ │ -0001aeb0: 2020 2032 2020 2030 2020 2032 2020 2020 2 0 2 │ │ │ │ +0001ae50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001ae60: 7c6f 3137 203d 206b 6b5b 5820 2e2e 5820 |o17 = kk[X ..X │ │ │ │ +0001ae70: 2c20 6520 2e2e 6520 5d20 2020 2020 2020 , e ..e ] │ │ │ │ +0001ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ae90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001aea0: 2020 2020 3020 2020 3220 2020 3020 2020 0 2 0 │ │ │ │ +0001aeb0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0001aec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aed0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001aed0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001aee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001af00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001af10: 2020 2020 7c0a 7c6f 3137 203a 2050 6f6c |.|o17 : Pol │ │ │ │ -0001af20: 796e 6f6d 6961 6c52 696e 672c 2033 2073 ynomialRing, 3 s │ │ │ │ -0001af30: 6b65 7720 636f 6d6d 7574 6174 6976 6520 kew commutative │ │ │ │ -0001af40: 7661 7269 6162 6c65 2873 2920 207c 0a2b variable(s) |.+ │ │ │ │ +0001af00: 2020 2020 2020 2020 207c 0a7c 6f31 3720 |.|o17 │ │ │ │ +0001af10: 3a20 506f 6c79 6e6f 6d69 616c 5269 6e67 : PolynomialRing │ │ │ │ +0001af20: 2c20 3320 736b 6577 2063 6f6d 6d75 7461 , 3 skew commuta │ │ │ │ +0001af30: 7469 7665 2076 6172 6961 626c 6528 7329 tive variable(s) │ │ │ │ +0001af40: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 0001af50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001af60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001af70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001af80: 2d2d 2d2d 2d2d 2b0a 7c69 3138 203a 2065 ------+.|i18 : e │ │ │ │ -0001af90: 7852 696e 6720 3d20 6b6b 5b65 5f30 2c65 xRing = kk[e_0,e │ │ │ │ -0001afa0: 5f31 2c65 5f32 2c20 536b 6577 436f 6d6d _1,e_2, SkewComm │ │ │ │ -0001afb0: 7574 6174 6976 6520 3d3e 7472 7565 5d7c utative =>true]| │ │ │ │ -0001afc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001af70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +0001af80: 3820 3a20 6578 5269 6e67 203d 206b 6b5b 8 : exRing = kk[ │ │ │ │ +0001af90: 655f 302c 655f 312c 655f 322c 2053 6b65 e_0,e_1,e_2, Ske │ │ │ │ +0001afa0: 7743 6f6d 6d75 7461 7469 7665 203d 3e74 wCommutative =>t │ │ │ │ +0001afb0: 7275 655d 7c0a 7c20 2020 2020 2020 2020 rue]|.| │ │ │ │ +0001afc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001afd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aff0: 2020 2020 2020 2020 7c0a 7c6f 3138 203d |.|o18 = │ │ │ │ -0001b000: 2065 7852 696e 6720 2020 2020 2020 2020 exRing │ │ │ │ +0001afe0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001aff0: 6f31 3820 3d20 6578 5269 6e67 2020 2020 o18 = exRing │ │ │ │ +0001b000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b030: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001b020: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001b030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b060: 2020 2020 2020 2020 2020 7c0a 7c6f 3138 |.|o18 │ │ │ │ -0001b070: 203a 2050 6f6c 796e 6f6d 6961 6c52 696e : PolynomialRin │ │ │ │ -0001b080: 672c 2033 2073 6b65 7720 636f 6d6d 7574 g, 3 skew commut │ │ │ │ -0001b090: 6174 6976 6520 7661 7269 6162 6c65 2873 ative variable(s │ │ │ │ -0001b0a0: 2920 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d ) |.+---------- │ │ │ │ +0001b050: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001b060: 0a7c 6f31 3820 3a20 506f 6c79 6e6f 6d69 .|o18 : Polynomi │ │ │ │ +0001b070: 616c 5269 6e67 2c20 3320 736b 6577 2063 alRing, 3 skew c │ │ │ │ +0001b080: 6f6d 6d75 7461 7469 7665 2076 6172 6961 ommutative varia │ │ │ │ +0001b090: 626c 6528 7329 2020 7c0a 2b2d 2d2d 2d2d ble(s) |.+----- │ │ │ │ +0001b0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 ------------+..W │ │ │ │ -0001b0e0: 6520 6361 6e20 616c 736f 2063 6f6e 7374 e can also const │ │ │ │ -0001b0f0: 7275 6374 2074 6865 2065 7874 6572 696f ruct the exterio │ │ │ │ -0001b100: 7245 7874 4d6f 6475 6c65 2061 7320 6120 rExtModule as a │ │ │ │ -0001b110: 6269 6772 6164 6564 206d 6f64 756c 652c bigraded module, │ │ │ │ -0001b120: 206f 7665 7220 6120 7269 6e67 0a53 4520 over a ring.SE │ │ │ │ -0001b130: 7468 6174 2068 6173 2062 6f74 6820 706f that has both po │ │ │ │ -0001b140: 6c79 6e6f 6d69 616c 2076 6172 6961 626c lynomial variabl │ │ │ │ -0001b150: 6573 206c 696b 6520 5320 616e 6420 6578 es like S and ex │ │ │ │ -0001b160: 7465 7269 6f72 2076 6172 6961 626c 6573 terior variables │ │ │ │ -0001b170: 206c 696b 6520 452e 2054 6865 0a70 6f6c like E. The.pol │ │ │ │ -0001b180: 796e 6f6d 6961 6c20 7661 7269 6162 6c65 ynomial variable │ │ │ │ -0001b190: 7320 6861 7665 2064 6567 7265 6573 207b s have degrees { │ │ │ │ -0001b1a0: 312c 307d 2e20 5468 6520 6578 7465 7269 1,0}. The exteri │ │ │ │ -0001b1b0: 6f72 2076 6172 6961 626c 6573 2068 6176 or variables hav │ │ │ │ -0001b1c0: 6520 6465 6772 6565 730a 7b64 6567 2066 e degrees.{deg f │ │ │ │ -0001b1d0: 665f 692c 2031 7d2e 0a0a 2b2d 2d2d 2d2d f_i, 1}...+----- │ │ │ │ +0001b0d0: 2d2b 0a0a 5765 2063 616e 2061 6c73 6f20 -+..We can also │ │ │ │ +0001b0e0: 636f 6e73 7472 7563 7420 7468 6520 6578 construct the ex │ │ │ │ +0001b0f0: 7465 7269 6f72 4578 744d 6f64 756c 6520 teriorExtModule │ │ │ │ +0001b100: 6173 2061 2062 6967 7261 6465 6420 6d6f as a bigraded mo │ │ │ │ +0001b110: 6475 6c65 2c20 6f76 6572 2061 2072 696e dule, over a rin │ │ │ │ +0001b120: 670a 5345 2074 6861 7420 6861 7320 626f g.SE that has bo │ │ │ │ +0001b130: 7468 2070 6f6c 796e 6f6d 6961 6c20 7661 th polynomial va │ │ │ │ +0001b140: 7269 6162 6c65 7320 6c69 6b65 2053 2061 riables like S a │ │ │ │ +0001b150: 6e64 2065 7874 6572 696f 7220 7661 7269 nd exterior vari │ │ │ │ +0001b160: 6162 6c65 7320 6c69 6b65 2045 2e20 5468 ables like E. Th │ │ │ │ +0001b170: 650a 706f 6c79 6e6f 6d69 616c 2076 6172 e.polynomial var │ │ │ │ +0001b180: 6961 626c 6573 2068 6176 6520 6465 6772 iables have degr │ │ │ │ +0001b190: 6565 7320 7b31 2c30 7d2e 2054 6865 2065 ees {1,0}. The e │ │ │ │ +0001b1a0: 7874 6572 696f 7220 7661 7269 6162 6c65 xterior variable │ │ │ │ +0001b1b0: 7320 6861 7665 2064 6567 7265 6573 0a7b s have degrees.{ │ │ │ │ +0001b1c0: 6465 6720 6666 5f69 2c20 317d 2e0a 0a2b deg ff_i, 1}...+ │ │ │ │ +0001b1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b210: 2d2b 0a7c 6931 3920 3a20 4531 203d 2070 -+.|i19 : E1 = p │ │ │ │ -0001b220: 7275 6e65 2065 7874 6572 696f 7245 7874 rune exteriorExt │ │ │ │ -0001b230: 4d6f 6475 6c65 2866 2c20 4d53 2c20 7265 Module(f, MS, re │ │ │ │ -0001b240: 7346 6c64 293b 2020 2020 7c0a 2b2d 2d2d sFld); |.+--- │ │ │ │ +0001b200: 2d2d 2d2d 2d2d 2b0a 7c69 3139 203a 2045 ------+.|i19 : E │ │ │ │ +0001b210: 3120 3d20 7072 756e 6520 6578 7465 7269 1 = prune exteri │ │ │ │ +0001b220: 6f72 4578 744d 6f64 756c 6528 662c 204d orExtModule(f, M │ │ │ │ +0001b230: 532c 2072 6573 466c 6429 3b20 2020 207c S, resFld); | │ │ │ │ +0001b240: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0001b250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b280: 2d2d 2d2b 0a7c 6932 3020 3a20 7269 6e67 ---+.|i20 : ring │ │ │ │ -0001b290: 2045 3120 2020 2020 2020 2020 2020 2020 E1 │ │ │ │ +0001b270: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3230 203a --------+.|i20 : │ │ │ │ +0001b280: 2072 696e 6720 4531 2020 2020 2020 2020 ring E1 │ │ │ │ +0001b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b2b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b2b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b2f0: 2020 2020 207c 0a7c 6f32 3020 3d20 6b6b |.|o20 = kk │ │ │ │ -0001b300: 5b58 202e 2e58 202c 2065 202e 2e65 205d [X ..X , e ..e ] │ │ │ │ +0001b2e0: 2020 2020 2020 2020 2020 7c0a 7c6f 3230 |.|o20 │ │ │ │ +0001b2f0: 203d 206b 6b5b 5820 2e2e 5820 2c20 6520 = kk[X ..X , e │ │ │ │ +0001b300: 2e2e 6520 5d20 2020 2020 2020 2020 2020 ..e ] │ │ │ │ 0001b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b320: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001b330: 7c20 2020 2020 2020 2020 2030 2020 2032 | 0 2 │ │ │ │ -0001b340: 2020 2030 2020 2032 2020 2020 2020 2020 0 2 │ │ │ │ -0001b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b360: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001b320: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001b330: 3020 2020 3220 2020 3020 2020 3220 2020 0 2 0 2 │ │ │ │ +0001b340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b350: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b3a0: 7c0a 7c6f 3230 203a 2050 6f6c 796e 6f6d |.|o20 : Polynom │ │ │ │ -0001b3b0: 6961 6c52 696e 672c 2033 2073 6b65 7720 ialRing, 3 skew │ │ │ │ -0001b3c0: 636f 6d6d 7574 6174 6976 6520 7661 7269 commutative vari │ │ │ │ -0001b3d0: 6162 6c65 2873 2920 207c 0a2b 2d2d 2d2d able(s) |.+---- │ │ │ │ +0001b390: 2020 2020 207c 0a7c 6f32 3020 3a20 506f |.|o20 : Po │ │ │ │ +0001b3a0: 6c79 6e6f 6d69 616c 5269 6e67 2c20 3320 lynomialRing, 3 │ │ │ │ +0001b3b0: 736b 6577 2063 6f6d 6d75 7461 7469 7665 skew commutative │ │ │ │ +0001b3c0: 2076 6172 6961 626c 6528 7329 2020 7c0a variable(s) |. │ │ │ │ +0001b3d0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0001b3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b410: 2d2d 2b0a 7c69 3231 203a 2065 7852 696e --+.|i21 : exRin │ │ │ │ -0001b420: 6720 3d20 6b6b 5b65 5f30 2c65 5f31 2c65 g = kk[e_0,e_1,e │ │ │ │ -0001b430: 5f32 2c20 536b 6577 436f 6d6d 7574 6174 _2, SkewCommutat │ │ │ │ -0001b440: 6976 6520 3d3e 7472 7565 5d7c 0a7c 2020 ive =>true]|.| │ │ │ │ +0001b400: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3120 3a20 -------+.|i21 : │ │ │ │ +0001b410: 6578 5269 6e67 203d 206b 6b5b 655f 302c exRing = kk[e_0, │ │ │ │ +0001b420: 655f 312c 655f 322c 2053 6b65 7743 6f6d e_1,e_2, SkewCom │ │ │ │ +0001b430: 6d75 7461 7469 7665 203d 3e74 7275 655d mutative =>true] │ │ │ │ +0001b440: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b480: 2020 2020 7c0a 7c6f 3231 203d 2065 7852 |.|o21 = exR │ │ │ │ -0001b490: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ +0001b470: 2020 2020 2020 2020 207c 0a7c 6f32 3120 |.|o21 │ │ │ │ +0001b480: 3d20 6578 5269 6e67 2020 2020 2020 2020 = exRing │ │ │ │ +0001b490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b4b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001b4b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b4f0: 2020 2020 2020 7c0a 7c6f 3231 203a 2050 |.|o21 : P │ │ │ │ -0001b500: 6f6c 796e 6f6d 6961 6c52 696e 672c 2033 olynomialRing, 3 │ │ │ │ -0001b510: 2073 6b65 7720 636f 6d6d 7574 6174 6976 skew commutativ │ │ │ │ -0001b520: 6520 7661 7269 6162 6c65 2873 2920 207c e variable(s) | │ │ │ │ -0001b530: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0001b4e0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +0001b4f0: 3120 3a20 506f 6c79 6e6f 6d69 616c 5269 1 : PolynomialRi │ │ │ │ +0001b500: 6e67 2c20 3320 736b 6577 2063 6f6d 6d75 ng, 3 skew commu │ │ │ │ +0001b510: 7461 7469 7665 2076 6172 6961 626c 6528 tative variable( │ │ │ │ +0001b520: 7329 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d s) |.+--------- │ │ │ │ +0001b530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b560: 2d2d 2d2d 2d2d 2d2d 2b0a 0a54 6f20 7365 --------+..To se │ │ │ │ -0001b570: 6520 7468 6174 2074 6869 7320 6973 2072 e that this is r │ │ │ │ -0001b580: 6561 6c6c 7920 7468 6520 7361 6d65 206d eally the same m │ │ │ │ -0001b590: 6f64 756c 652c 2077 6974 6820 6120 6d6f odule, with a mo │ │ │ │ -0001b5a0: 7265 2063 6f6d 706c 6578 2067 7261 6469 re complex gradi │ │ │ │ -0001b5b0: 6e67 2c20 7765 2063 616e 0a62 7269 6e67 ng, we can.bring │ │ │ │ -0001b5c0: 2069 7420 6f76 6572 2074 6f20 6120 7075 it over to a pu │ │ │ │ -0001b5d0: 7265 2065 7874 6572 696f 7220 616c 6765 re exterior alge │ │ │ │ -0001b5e0: 6272 612e 204e 6f74 6520 7468 6174 2074 bra. Note that t │ │ │ │ -0001b5f0: 6865 206e 6563 6573 7361 7279 206d 6170 he necessary map │ │ │ │ -0001b600: 206f 6620 7269 6e67 730a 6d75 7374 2063 of rings.must c │ │ │ │ -0001b610: 6f6e 7461 696e 2061 2044 6567 7265 654d ontain a DegreeM │ │ │ │ -0001b620: 6170 206f 7074 696f 6e2e 2049 6e20 6765 ap option. In ge │ │ │ │ -0001b630: 6e65 7261 6c20 7765 2063 6f75 6c64 206f neral we could o │ │ │ │ -0001b640: 6e6c 7920 7461 6b65 2074 6865 2064 6567 nly take the deg │ │ │ │ -0001b650: 7265 6573 206f 660a 7468 6520 6765 6e65 rees of.the gene │ │ │ │ -0001b660: 7261 746f 7273 206f 6620 7468 6520 6578 rators of the ex │ │ │ │ -0001b670: 7465 7269 6f72 2061 6c67 6562 7261 2074 terior algebra t │ │ │ │ -0001b680: 6f20 6265 2074 6865 2067 6364 206f 6620 o be the gcd of │ │ │ │ -0001b690: 2074 6865 2064 6567 2066 665f 6920 3b20 the deg ff_i ; │ │ │ │ -0001b6a0: 696e 2074 6865 0a65 7861 6d70 6c65 2061 in the.example a │ │ │ │ -0001b6b0: 626f 7665 2074 6869 7320 6973 2031 2e0a bove this is 1.. │ │ │ │ -0001b6c0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0001b550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +0001b560: 546f 2073 6565 2074 6861 7420 7468 6973 To see that this │ │ │ │ +0001b570: 2069 7320 7265 616c 6c79 2074 6865 2073 is really the s │ │ │ │ +0001b580: 616d 6520 6d6f 6475 6c65 2c20 7769 7468 ame module, with │ │ │ │ +0001b590: 2061 206d 6f72 6520 636f 6d70 6c65 7820 a more complex │ │ │ │ +0001b5a0: 6772 6164 696e 672c 2077 6520 6361 6e0a grading, we can. │ │ │ │ +0001b5b0: 6272 696e 6720 6974 206f 7665 7220 746f bring it over to │ │ │ │ +0001b5c0: 2061 2070 7572 6520 6578 7465 7269 6f72 a pure exterior │ │ │ │ +0001b5d0: 2061 6c67 6562 7261 2e20 4e6f 7465 2074 algebra. Note t │ │ │ │ +0001b5e0: 6861 7420 7468 6520 6e65 6365 7373 6172 hat the necessar │ │ │ │ +0001b5f0: 7920 6d61 7020 6f66 2072 696e 6773 0a6d y map of rings.m │ │ │ │ +0001b600: 7573 7420 636f 6e74 6169 6e20 6120 4465 ust contain a De │ │ │ │ +0001b610: 6772 6565 4d61 7020 6f70 7469 6f6e 2e20 greeMap option. │ │ │ │ +0001b620: 496e 2067 656e 6572 616c 2077 6520 636f In general we co │ │ │ │ +0001b630: 756c 6420 6f6e 6c79 2074 616b 6520 7468 uld only take th │ │ │ │ +0001b640: 6520 6465 6772 6565 7320 6f66 0a74 6865 e degrees of.the │ │ │ │ +0001b650: 2067 656e 6572 6174 6f72 7320 6f66 2074 generators of t │ │ │ │ +0001b660: 6865 2065 7874 6572 696f 7220 616c 6765 he exterior alge │ │ │ │ +0001b670: 6272 6120 746f 2062 6520 7468 6520 6763 bra to be the gc │ │ │ │ +0001b680: 6420 6f66 2020 7468 6520 6465 6720 6666 d of the deg ff │ │ │ │ +0001b690: 5f69 203b 2069 6e20 7468 650a 6578 616d _i ; in the.exam │ │ │ │ +0001b6a0: 706c 6520 6162 6f76 6520 7468 6973 2069 ple above this i │ │ │ │ +0001b6b0: 7320 312e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d s 1...+--------- │ │ │ │ +0001b6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0001b710: 3232 203a 2071 203d 206d 6170 2865 7852 22 : q = map(exR │ │ │ │ -0001b720: 696e 672c 2072 696e 6720 4531 2c20 7b33 ing, ring E1, {3 │ │ │ │ -0001b730: 3a30 2c65 5f30 2c65 5f31 2c65 5f32 7d2c :0,e_0,e_1,e_2}, │ │ │ │ -0001b740: 2044 6567 7265 654d 6170 203d 3e20 6420 DegreeMap => d │ │ │ │ -0001b750: 2d3e 207b 645f 317d 297c 0a7c 2020 2020 -> {d_1})|.| │ │ │ │ +0001b700: 2d2b 0a7c 6932 3220 3a20 7120 3d20 6d61 -+.|i22 : q = ma │ │ │ │ +0001b710: 7028 6578 5269 6e67 2c20 7269 6e67 2045 p(exRing, ring E │ │ │ │ +0001b720: 312c 207b 333a 302c 655f 302c 655f 312c 1, {3:0,e_0,e_1, │ │ │ │ +0001b730: 655f 327d 2c20 4465 6772 6565 4d61 7020 e_2}, DegreeMap │ │ │ │ +0001b740: 3d3e 2064 202d 3e20 7b64 5f31 7d29 7c0a => d -> {d_1})|. │ │ │ │ +0001b750: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0001b760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b7a0: 2020 2020 2020 7c0a 7c6f 3232 203d 206d |.|o22 = m │ │ │ │ -0001b7b0: 6170 2028 6578 5269 6e67 2c20 6b6b 5b58 ap (exRing, kk[X │ │ │ │ -0001b7c0: 202e 2e58 202c 2065 202e 2e65 205d 2c20 ..X , e ..e ], │ │ │ │ -0001b7d0: 7b30 2c20 302c 2030 2c20 6520 2c20 6520 {0, 0, 0, e , e │ │ │ │ -0001b7e0: 2c20 6520 7d29 2020 2020 2020 2020 2020 , e }) │ │ │ │ -0001b7f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001b800: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -0001b810: 2032 2020 2030 2020 2032 2020 2020 2020 2 0 2 │ │ │ │ -0001b820: 2020 2020 2020 2020 3020 2020 3120 2020 0 1 │ │ │ │ -0001b830: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001b840: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001b790: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +0001b7a0: 3220 3d20 6d61 7020 2865 7852 696e 672c 2 = map (exRing, │ │ │ │ +0001b7b0: 206b 6b5b 5820 2e2e 5820 2c20 6520 2e2e kk[X ..X , e .. │ │ │ │ +0001b7c0: 6520 5d2c 207b 302c 2030 2c20 302c 2065 e ], {0, 0, 0, e │ │ │ │ +0001b7d0: 202c 2065 202c 2065 207d 2920 2020 2020 , e , e }) │ │ │ │ +0001b7e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001b7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b800: 2020 3020 2020 3220 2020 3020 2020 3220 0 2 0 2 │ │ │ │ +0001b810: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ +0001b820: 2031 2020 2032 2020 2020 2020 2020 2020 1 2 │ │ │ │ +0001b830: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001b840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b880: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001b890: 6f32 3220 3a20 5269 6e67 4d61 7020 6578 o22 : RingMap ex │ │ │ │ -0001b8a0: 5269 6e67 203c 2d2d 206b 6b5b 5820 2e2e Ring <-- kk[X .. │ │ │ │ -0001b8b0: 5820 2c20 6520 2e2e 6520 5d20 2020 2020 X , e ..e ] │ │ │ │ -0001b8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b8d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001b8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b8f0: 2020 2020 2020 2020 2020 3020 2020 3220 0 2 │ │ │ │ -0001b900: 2020 3020 2020 3220 2020 2020 2020 2020 0 2 │ │ │ │ -0001b910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b920: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0001b880: 2020 7c0a 7c6f 3232 203a 2052 696e 674d |.|o22 : RingM │ │ │ │ +0001b890: 6170 2065 7852 696e 6720 3c2d 2d20 6b6b ap exRing <-- kk │ │ │ │ +0001b8a0: 5b58 202e 2e58 202c 2065 202e 2e65 205d [X ..X , e ..e ] │ │ │ │ +0001b8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b8c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001b8d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001b8e0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +0001b8f0: 2020 2032 2020 2030 2020 2032 2020 2020 2 0 2 │ │ │ │ +0001b900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b910: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0001b920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b970: 2d2d 2d2d 2b0a 7c69 3233 203a 2045 3220 ----+.|i23 : E2 │ │ │ │ -0001b980: 3d20 636f 6b65 7220 7120 7072 6573 656e = coker q presen │ │ │ │ -0001b990: 7461 7469 6f6e 2045 313b 2020 2020 2020 tation E1; │ │ │ │ +0001b960: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3320 ---------+.|i23 │ │ │ │ +0001b970: 3a20 4532 203d 2063 6f6b 6572 2071 2070 : E2 = coker q p │ │ │ │ +0001b980: 7265 7365 6e74 6174 696f 6e20 4531 3b20 resentation E1; │ │ │ │ +0001b990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b9c0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0001b9b0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001b9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ba00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0001ba10: 7c69 3234 203a 2068 6628 2d35 2e2e 352c |i24 : hf(-5..5, │ │ │ │ -0001ba20: 4532 2920 3d3d 2068 6628 2d35 2e2e 352c E2) == hf(-5..5, │ │ │ │ -0001ba30: 4529 2020 2020 2020 2020 2020 2020 2020 E) │ │ │ │ +0001ba00: 2d2d 2d2b 0a7c 6932 3420 3a20 6866 282d ---+.|i24 : hf(- │ │ │ │ +0001ba10: 352e 2e35 2c45 3229 203d 3d20 6866 282d 5..5,E2) == hf(- │ │ │ │ +0001ba20: 352e 2e35 2c45 2920 2020 2020 2020 2020 5..5,E) │ │ │ │ +0001ba30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ba40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ba50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001ba50: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001ba60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ba70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ba80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001baa0: 2020 2020 2020 2020 7c0a 7c6f 3234 203d |.|o24 = │ │ │ │ -0001bab0: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ +0001ba90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001baa0: 6f32 3420 3d20 7472 7565 2020 2020 2020 o24 = true │ │ │ │ +0001bab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001baf0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001bae0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001baf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001bb00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001bb10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001bb20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bb30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bb40: 2d2d 2b0a 0a53 6565 2061 6c73 6f0a 3d3d --+..See also.== │ │ │ │ -0001bb50: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ -0001bb60: 6520 6578 7465 7269 6f72 546f 724d 6f64 e exteriorTorMod │ │ │ │ -0001bb70: 756c 653a 2065 7874 6572 696f 7254 6f72 ule: exteriorTor │ │ │ │ -0001bb80: 4d6f 6475 6c65 2c20 2d2d 2054 6f72 2061 Module, -- Tor a │ │ │ │ -0001bb90: 7320 6120 6d6f 6475 6c65 206f 7665 7220 s a module over │ │ │ │ -0001bba0: 616e 0a20 2020 2065 7874 6572 696f 7220 an. exterior │ │ │ │ -0001bbb0: 616c 6765 6272 6120 6f72 2062 6967 7261 algebra or bigra │ │ │ │ -0001bbc0: 6465 6420 616c 6765 6272 610a 2020 2a20 ded algebra. * │ │ │ │ -0001bbd0: 2a6e 6f74 6520 6d61 6b65 4d6f 6475 6c65 *note makeModule │ │ │ │ -0001bbe0: 3a20 6d61 6b65 4d6f 6475 6c65 2c20 2d2d : makeModule, -- │ │ │ │ -0001bbf0: 206d 616b 6573 2061 204d 6f64 756c 6520 makes a Module │ │ │ │ -0001bc00: 6f75 7420 6f66 2061 2063 6f6c 6c65 6374 out of a collect │ │ │ │ -0001bc10: 696f 6e20 6f66 0a20 2020 206d 6f64 756c ion of. modul │ │ │ │ -0001bc20: 6573 2061 6e64 206d 6170 730a 0a57 6179 es and maps..Way │ │ │ │ -0001bc30: 7320 746f 2075 7365 2065 7874 6572 696f s to use exterio │ │ │ │ -0001bc40: 7245 7874 4d6f 6475 6c65 3a0a 3d3d 3d3d rExtModule:.==== │ │ │ │ -0001bc50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001bc60: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -0001bc70: 2265 7874 6572 696f 7245 7874 4d6f 6475 "exteriorExtModu │ │ │ │ -0001bc80: 6c65 284d 6174 7269 782c 4d6f 6475 6c65 le(Matrix,Module │ │ │ │ -0001bc90: 2922 0a20 202a 2022 6578 7465 7269 6f72 )". * "exterior │ │ │ │ -0001bca0: 4578 744d 6f64 756c 6528 4d61 7472 6978 ExtModule(Matrix │ │ │ │ -0001bcb0: 2c4d 6f64 756c 652c 4d6f 6475 6c65 2922 ,Module,Module)" │ │ │ │ -0001bcc0: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ -0001bcd0: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ -0001bce0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ -0001bcf0: 6563 7420 2a6e 6f74 6520 6578 7465 7269 ect *note exteri │ │ │ │ -0001bd00: 6f72 4578 744d 6f64 756c 653a 2065 7874 orExtModule: ext │ │ │ │ -0001bd10: 6572 696f 7245 7874 4d6f 6475 6c65 2c20 eriorExtModule, │ │ │ │ -0001bd20: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ -0001bd30: 640a 6675 6e63 7469 6f6e 3a20 284d 6163 d.function: (Mac │ │ │ │ -0001bd40: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ -0001bd50: 4675 6e63 7469 6f6e 2c2e 0a1f 0a46 696c Function,....Fil │ │ │ │ -0001bd60: 653a 2043 6f6d 706c 6574 6549 6e74 6572 e: CompleteInter │ │ │ │ -0001bd70: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ -0001bd80: 6e73 2e69 6e66 6f2c 204e 6f64 653a 2065 ns.info, Node: e │ │ │ │ -0001bd90: 7874 6572 696f 7248 6f6d 6f6c 6f67 794d xteriorHomologyM │ │ │ │ -0001bda0: 6f64 756c 652c 204e 6578 743a 2065 7874 odule, Next: ext │ │ │ │ -0001bdb0: 6572 696f 7254 6f72 4d6f 6475 6c65 2c20 eriorTorModule, │ │ │ │ -0001bdc0: 5072 6576 3a20 6578 7465 7269 6f72 4578 Prev: exteriorEx │ │ │ │ -0001bdd0: 744d 6f64 756c 652c 2055 703a 2054 6f70 tModule, Up: Top │ │ │ │ -0001bde0: 0a0a 6578 7465 7269 6f72 486f 6d6f 6c6f ..exteriorHomolo │ │ │ │ -0001bdf0: 6779 4d6f 6475 6c65 202d 2d20 4d61 6b65 gyModule -- Make │ │ │ │ -0001be00: 2074 6865 2068 6f6d 6f6c 6f67 7920 6f66 the homology of │ │ │ │ -0001be10: 2061 2063 6f6d 706c 6578 2069 6e74 6f20 a complex into │ │ │ │ -0001be20: 6120 6d6f 6475 6c65 206f 7665 7220 616e a module over an │ │ │ │ -0001be30: 2065 7874 6572 696f 7220 616c 6765 6272 exterior algebr │ │ │ │ -0001be40: 610a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a a.************** │ │ │ │ +0001bb30: 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 616c -------+..See al │ │ │ │ +0001bb40: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ +0001bb50: 202a 6e6f 7465 2065 7874 6572 696f 7254 *note exteriorT │ │ │ │ +0001bb60: 6f72 4d6f 6475 6c65 3a20 6578 7465 7269 orModule: exteri │ │ │ │ +0001bb70: 6f72 546f 724d 6f64 756c 652c 202d 2d20 orTorModule, -- │ │ │ │ +0001bb80: 546f 7220 6173 2061 206d 6f64 756c 6520 Tor as a module │ │ │ │ +0001bb90: 6f76 6572 2061 6e0a 2020 2020 6578 7465 over an. exte │ │ │ │ +0001bba0: 7269 6f72 2061 6c67 6562 7261 206f 7220 rior algebra or │ │ │ │ +0001bbb0: 6269 6772 6164 6564 2061 6c67 6562 7261 bigraded algebra │ │ │ │ +0001bbc0: 0a20 202a 202a 6e6f 7465 206d 616b 654d . * *note makeM │ │ │ │ +0001bbd0: 6f64 756c 653a 206d 616b 654d 6f64 756c odule: makeModul │ │ │ │ +0001bbe0: 652c 202d 2d20 6d61 6b65 7320 6120 4d6f e, -- makes a Mo │ │ │ │ +0001bbf0: 6475 6c65 206f 7574 206f 6620 6120 636f dule out of a co │ │ │ │ +0001bc00: 6c6c 6563 7469 6f6e 206f 660a 2020 2020 llection of. │ │ │ │ +0001bc10: 6d6f 6475 6c65 7320 616e 6420 6d61 7073 modules and maps │ │ │ │ +0001bc20: 0a0a 5761 7973 2074 6f20 7573 6520 6578 ..Ways to use ex │ │ │ │ +0001bc30: 7465 7269 6f72 4578 744d 6f64 756c 653a teriorExtModule: │ │ │ │ +0001bc40: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +0001bc50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0001bc60: 0a20 202a 2022 6578 7465 7269 6f72 4578 . * "exteriorEx │ │ │ │ +0001bc70: 744d 6f64 756c 6528 4d61 7472 6978 2c4d tModule(Matrix,M │ │ │ │ +0001bc80: 6f64 756c 6529 220a 2020 2a20 2265 7874 odule)". * "ext │ │ │ │ +0001bc90: 6572 696f 7245 7874 4d6f 6475 6c65 284d eriorExtModule(M │ │ │ │ +0001bca0: 6174 7269 782c 4d6f 6475 6c65 2c4d 6f64 atrix,Module,Mod │ │ │ │ +0001bcb0: 756c 6529 220a 0a46 6f72 2074 6865 2070 ule)"..For the p │ │ │ │ +0001bcc0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +0001bcd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +0001bce0: 6520 6f62 6a65 6374 202a 6e6f 7465 2065 e object *note e │ │ │ │ +0001bcf0: 7874 6572 696f 7245 7874 4d6f 6475 6c65 xteriorExtModule │ │ │ │ +0001bd00: 3a20 6578 7465 7269 6f72 4578 744d 6f64 : exteriorExtMod │ │ │ │ +0001bd10: 756c 652c 2069 7320 6120 2a6e 6f74 6520 ule, is a *note │ │ │ │ +0001bd20: 6d65 7468 6f64 0a66 756e 6374 696f 6e3a method.function: │ │ │ │ +0001bd30: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +0001bd40: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ +0001bd50: 1f0a 4669 6c65 3a20 436f 6d70 6c65 7465 ..File: Complete │ │ │ │ +0001bd60: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ +0001bd70: 6c75 7469 6f6e 732e 696e 666f 2c20 4e6f lutions.info, No │ │ │ │ +0001bd80: 6465 3a20 6578 7465 7269 6f72 486f 6d6f de: exteriorHomo │ │ │ │ +0001bd90: 6c6f 6779 4d6f 6475 6c65 2c20 4e65 7874 logyModule, Next │ │ │ │ +0001bda0: 3a20 6578 7465 7269 6f72 546f 724d 6f64 : exteriorTorMod │ │ │ │ +0001bdb0: 756c 652c 2050 7265 763a 2065 7874 6572 ule, Prev: exter │ │ │ │ +0001bdc0: 696f 7245 7874 4d6f 6475 6c65 2c20 5570 iorExtModule, Up │ │ │ │ +0001bdd0: 3a20 546f 700a 0a65 7874 6572 696f 7248 : Top..exteriorH │ │ │ │ +0001bde0: 6f6d 6f6c 6f67 794d 6f64 756c 6520 2d2d omologyModule -- │ │ │ │ +0001bdf0: 204d 616b 6520 7468 6520 686f 6d6f 6c6f Make the homolo │ │ │ │ +0001be00: 6779 206f 6620 6120 636f 6d70 6c65 7820 gy of a complex │ │ │ │ +0001be10: 696e 746f 2061 206d 6f64 756c 6520 6f76 into a module ov │ │ │ │ +0001be20: 6572 2061 6e20 6578 7465 7269 6f72 2061 er an exterior a │ │ │ │ +0001be30: 6c67 6562 7261 0a2a 2a2a 2a2a 2a2a 2a2a lgebra.********* │ │ │ │ +0001be40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001be50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001be60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001be70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001be80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001be90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001bea0: 2a0a 0a53 796e 6f70 7369 730a 3d3d 3d3d *..Synopsis.==== │ │ │ │ -0001beb0: 3d3d 3d3d 0a0a 2020 2a20 5573 6167 653a ====.. * Usage: │ │ │ │ -0001bec0: 200a 2020 2020 2020 2020 4d20 3d20 6578 . M = ex │ │ │ │ -0001bed0: 7465 7269 6f72 486f 6d6f 6c6f 6779 4d6f teriorHomologyMo │ │ │ │ -0001bee0: 6475 6c65 2866 662c 2043 290a 2020 2a20 dule(ff, C). * │ │ │ │ -0001bef0: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -0001bf00: 6666 2c20 6120 2a6e 6f74 6520 6d61 7472 ff, a *note matr │ │ │ │ -0001bf10: 6978 3a20 284d 6163 6175 6c61 7932 446f ix: (Macaulay2Do │ │ │ │ -0001bf20: 6329 4d61 7472 6978 2c2c 204d 6174 7269 c)Matrix,, Matri │ │ │ │ -0001bf30: 7820 6f66 2065 6c65 6d65 6e74 7320 7468 x of elements th │ │ │ │ -0001bf40: 6174 2061 7265 0a20 2020 2020 2020 2068 at are. h │ │ │ │ -0001bf50: 6f6d 6f74 6f70 6963 2074 6f20 3020 6f6e omotopic to 0 on │ │ │ │ -0001bf60: 2043 0a20 2020 2020 202a 2043 2c20 6120 C. * C, a │ │ │ │ -0001bf70: 2a6e 6f74 6520 6368 6169 6e20 636f 6d70 *note chain comp │ │ │ │ -0001bf80: 6c65 783a 2028 4d61 6361 756c 6179 3244 lex: (Macaulay2D │ │ │ │ -0001bf90: 6f63 2943 6861 696e 436f 6d70 6c65 782c oc)ChainComplex, │ │ │ │ -0001bfa0: 2c20 0a20 202a 204f 7574 7075 7473 3a0a , . * Outputs:. │ │ │ │ -0001bfb0: 2020 2020 2020 2a20 4d2c 2061 202a 6e6f * M, a *no │ │ │ │ -0001bfc0: 7465 206d 6f64 756c 653a 2028 4d61 6361 te module: (Maca │ │ │ │ -0001bfd0: 756c 6179 3244 6f63 294d 6f64 756c 652c ulay2Doc)Module, │ │ │ │ -0001bfe0: 2c20 0a0a 4465 7363 7269 7074 696f 6e0a , ..Description. │ │ │ │ -0001bff0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a41 7373 ===========..Ass │ │ │ │ -0001c000: 756d 696e 6720 7468 6174 2074 6865 2065 uming that the e │ │ │ │ -0001c010: 6c65 6d65 6e74 7320 6f66 2074 6865 2031 lements of the 1 │ │ │ │ -0001c020: 7863 206d 6174 7269 7820 6666 2061 7265 xc matrix ff are │ │ │ │ -0001c030: 206e 756c 6c2d 686f 6d6f 746f 7069 6320 null-homotopic │ │ │ │ -0001c040: 6f6e 2043 2c20 7468 650a 7363 7269 7074 on C, the.script │ │ │ │ -0001c050: 2072 6574 7572 6e73 2074 6865 2064 6972 returns the dir │ │ │ │ -0001c060: 6563 7420 7375 6d20 6f66 2074 6865 2068 ect sum of the h │ │ │ │ -0001c070: 6f6d 6f6c 6f67 7920 6f66 2043 2061 7320 omology of C as │ │ │ │ -0001c080: 6120 6d6f 6475 6c65 206f 7665 7220 6120 a module over a │ │ │ │ -0001c090: 6e65 7720 7269 6e67 2c0a 636f 6e73 6973 new ring,.consis │ │ │ │ -0001c0a0: 7469 6e67 206f 6620 7269 6e67 2043 2077 ting of ring C w │ │ │ │ -0001c0b0: 6974 6820 6320 6578 7465 7269 6f72 2076 ith c exterior v │ │ │ │ -0001c0c0: 6172 6961 626c 6573 2061 646a 6f69 6e65 ariables adjoine │ │ │ │ -0001c0d0: 642e 2054 6865 2073 6372 6970 7420 6973 d. The script is │ │ │ │ -0001c0e0: 2074 6865 206d 6169 6e0a 636f 6d70 6f6e the main.compon │ │ │ │ -0001c0f0: 656e 7420 6f66 2065 7874 6572 696f 7254 ent of exteriorT │ │ │ │ -0001c100: 6f72 4d6f 6475 6c65 0a0a 5365 6520 616c orModule..See al │ │ │ │ -0001c110: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ -0001c120: 202a 6e6f 7465 2065 7874 6572 696f 7254 *note exteriorT │ │ │ │ -0001c130: 6f72 4d6f 6475 6c65 3a20 6578 7465 7269 orModule: exteri │ │ │ │ -0001c140: 6f72 546f 724d 6f64 756c 652c 202d 2d20 orTorModule, -- │ │ │ │ -0001c150: 546f 7220 6173 2061 206d 6f64 756c 6520 Tor as a module │ │ │ │ -0001c160: 6f76 6572 2061 6e0a 2020 2020 6578 7465 over an. exte │ │ │ │ -0001c170: 7269 6f72 2061 6c67 6562 7261 206f 7220 rior algebra or │ │ │ │ -0001c180: 6269 6772 6164 6564 2061 6c67 6562 7261 bigraded algebra │ │ │ │ -0001c190: 0a20 202a 202a 6e6f 7465 206d 616b 6548 . * *note makeH │ │ │ │ -0001c1a0: 6f6d 6f74 6f70 6965 734f 6e48 6f6d 6f6c omotopiesOnHomol │ │ │ │ -0001c1b0: 6f67 793a 206d 616b 6548 6f6d 6f74 6f70 ogy: makeHomotop │ │ │ │ -0001c1c0: 6965 734f 6e48 6f6d 6f6c 6f67 792c 202d iesOnHomology, - │ │ │ │ -0001c1d0: 2d20 486f 6d6f 6c6f 6779 206f 6620 610a - Homology of a. │ │ │ │ -0001c1e0: 2020 2020 636f 6d70 6c65 7820 6173 2065 complex as e │ │ │ │ -0001c1f0: 7874 6572 696f 7220 6d6f 6475 6c65 0a0a xterior module.. │ │ │ │ -0001c200: 5761 7973 2074 6f20 7573 6520 6578 7465 Ways to use exte │ │ │ │ -0001c210: 7269 6f72 486f 6d6f 6c6f 6779 4d6f 6475 riorHomologyModu │ │ │ │ -0001c220: 6c65 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d le:.============ │ │ │ │ -0001c230: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001c240: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 6578 =======.. * "ex │ │ │ │ -0001c250: 7465 7269 6f72 486f 6d6f 6c6f 6779 4d6f teriorHomologyMo │ │ │ │ -0001c260: 6475 6c65 284d 6174 7269 782c 4368 6169 dule(Matrix,Chai │ │ │ │ -0001c270: 6e43 6f6d 706c 6578 2922 0a0a 466f 7220 nComplex)"..For │ │ │ │ -0001c280: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -0001c290: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001c2a0: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -0001c2b0: 6f74 6520 6578 7465 7269 6f72 486f 6d6f ote exteriorHomo │ │ │ │ -0001c2c0: 6c6f 6779 4d6f 6475 6c65 3a20 6578 7465 logyModule: exte │ │ │ │ -0001c2d0: 7269 6f72 486f 6d6f 6c6f 6779 4d6f 6475 riorHomologyModu │ │ │ │ -0001c2e0: 6c65 2c20 6973 2061 202a 6e6f 7465 0a6d le, is a *note.m │ │ │ │ -0001c2f0: 6574 686f 6420 6675 6e63 7469 6f6e 3a20 ethod function: │ │ │ │ -0001c300: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ -0001c310: 7468 6f64 4675 6e63 7469 6f6e 2c2e 0a1f thodFunction,... │ │ │ │ -0001c320: 0a46 696c 653a 2043 6f6d 706c 6574 6549 .File: CompleteI │ │ │ │ -0001c330: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ -0001c340: 7574 696f 6e73 2e69 6e66 6f2c 204e 6f64 utions.info, Nod │ │ │ │ -0001c350: 653a 2065 7874 6572 696f 7254 6f72 4d6f e: exteriorTorMo │ │ │ │ -0001c360: 6475 6c65 2c20 4e65 7874 3a20 6578 7449 dule, Next: extI │ │ │ │ -0001c370: 734f 6e65 506f 6c79 6e6f 6d69 616c 2c20 sOnePolynomial, │ │ │ │ -0001c380: 5072 6576 3a20 6578 7465 7269 6f72 486f Prev: exteriorHo │ │ │ │ -0001c390: 6d6f 6c6f 6779 4d6f 6475 6c65 2c20 5570 mologyModule, Up │ │ │ │ -0001c3a0: 3a20 546f 700a 0a65 7874 6572 696f 7254 : Top..exteriorT │ │ │ │ -0001c3b0: 6f72 4d6f 6475 6c65 202d 2d20 546f 7220 orModule -- Tor │ │ │ │ -0001c3c0: 6173 2061 206d 6f64 756c 6520 6f76 6572 as a module over │ │ │ │ -0001c3d0: 2061 6e20 6578 7465 7269 6f72 2061 6c67 an exterior alg │ │ │ │ -0001c3e0: 6562 7261 206f 7220 6269 6772 6164 6564 ebra or bigraded │ │ │ │ -0001c3f0: 2061 6c67 6562 7261 0a2a 2a2a 2a2a 2a2a algebra.******* │ │ │ │ +0001be90: 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 ******..Synopsis │ │ │ │ +0001bea0: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 .========.. * U │ │ │ │ +0001beb0: 7361 6765 3a20 0a20 2020 2020 2020 204d sage: . M │ │ │ │ +0001bec0: 203d 2065 7874 6572 696f 7248 6f6d 6f6c = exteriorHomol │ │ │ │ +0001bed0: 6f67 794d 6f64 756c 6528 6666 2c20 4329 ogyModule(ff, C) │ │ │ │ +0001bee0: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +0001bef0: 2020 202a 2066 662c 2061 202a 6e6f 7465 * ff, a *note │ │ │ │ +0001bf00: 206d 6174 7269 783a 2028 4d61 6361 756c matrix: (Macaul │ │ │ │ +0001bf10: 6179 3244 6f63 294d 6174 7269 782c 2c20 ay2Doc)Matrix,, │ │ │ │ +0001bf20: 4d61 7472 6978 206f 6620 656c 656d 656e Matrix of elemen │ │ │ │ +0001bf30: 7473 2074 6861 7420 6172 650a 2020 2020 ts that are. │ │ │ │ +0001bf40: 2020 2020 686f 6d6f 746f 7069 6320 746f homotopic to │ │ │ │ +0001bf50: 2030 206f 6e20 430a 2020 2020 2020 2a20 0 on C. * │ │ │ │ +0001bf60: 432c 2061 202a 6e6f 7465 2063 6861 696e C, a *note chain │ │ │ │ +0001bf70: 2063 6f6d 706c 6578 3a20 284d 6163 6175 complex: (Macau │ │ │ │ +0001bf80: 6c61 7932 446f 6329 4368 6169 6e43 6f6d lay2Doc)ChainCom │ │ │ │ +0001bf90: 706c 6578 2c2c 200a 2020 2a20 4f75 7470 plex,, . * Outp │ │ │ │ +0001bfa0: 7574 733a 0a20 2020 2020 202a 204d 2c20 uts:. * M, │ │ │ │ +0001bfb0: 6120 2a6e 6f74 6520 6d6f 6475 6c65 3a20 a *note module: │ │ │ │ +0001bfc0: 284d 6163 6175 6c61 7932 446f 6329 4d6f (Macaulay2Doc)Mo │ │ │ │ +0001bfd0: 6475 6c65 2c2c 200a 0a44 6573 6372 6970 dule,, ..Descrip │ │ │ │ +0001bfe0: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ +0001bff0: 0a0a 4173 7375 6d69 6e67 2074 6861 7420 ..Assuming that │ │ │ │ +0001c000: 7468 6520 656c 656d 656e 7473 206f 6620 the elements of │ │ │ │ +0001c010: 7468 6520 3178 6320 6d61 7472 6978 2066 the 1xc matrix f │ │ │ │ +0001c020: 6620 6172 6520 6e75 6c6c 2d68 6f6d 6f74 f are null-homot │ │ │ │ +0001c030: 6f70 6963 206f 6e20 432c 2074 6865 0a73 opic on C, the.s │ │ │ │ +0001c040: 6372 6970 7420 7265 7475 726e 7320 7468 cript returns th │ │ │ │ +0001c050: 6520 6469 7265 6374 2073 756d 206f 6620 e direct sum of │ │ │ │ +0001c060: 7468 6520 686f 6d6f 6c6f 6779 206f 6620 the homology of │ │ │ │ +0001c070: 4320 6173 2061 206d 6f64 756c 6520 6f76 C as a module ov │ │ │ │ +0001c080: 6572 2061 206e 6577 2072 696e 672c 0a63 er a new ring,.c │ │ │ │ +0001c090: 6f6e 7369 7374 696e 6720 6f66 2072 696e onsisting of rin │ │ │ │ +0001c0a0: 6720 4320 7769 7468 2063 2065 7874 6572 g C with c exter │ │ │ │ +0001c0b0: 696f 7220 7661 7269 6162 6c65 7320 6164 ior variables ad │ │ │ │ +0001c0c0: 6a6f 696e 6564 2e20 5468 6520 7363 7269 joined. The scri │ │ │ │ +0001c0d0: 7074 2069 7320 7468 6520 6d61 696e 0a63 pt is the main.c │ │ │ │ +0001c0e0: 6f6d 706f 6e65 6e74 206f 6620 6578 7465 omponent of exte │ │ │ │ +0001c0f0: 7269 6f72 546f 724d 6f64 756c 650a 0a53 riorTorModule..S │ │ │ │ +0001c100: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ +0001c110: 0a0a 2020 2a20 2a6e 6f74 6520 6578 7465 .. * *note exte │ │ │ │ +0001c120: 7269 6f72 546f 724d 6f64 756c 653a 2065 riorTorModule: e │ │ │ │ +0001c130: 7874 6572 696f 7254 6f72 4d6f 6475 6c65 xteriorTorModule │ │ │ │ +0001c140: 2c20 2d2d 2054 6f72 2061 7320 6120 6d6f , -- Tor as a mo │ │ │ │ +0001c150: 6475 6c65 206f 7665 7220 616e 0a20 2020 dule over an. │ │ │ │ +0001c160: 2065 7874 6572 696f 7220 616c 6765 6272 exterior algebr │ │ │ │ +0001c170: 6120 6f72 2062 6967 7261 6465 6420 616c a or bigraded al │ │ │ │ +0001c180: 6765 6272 610a 2020 2a20 2a6e 6f74 6520 gebra. * *note │ │ │ │ +0001c190: 6d61 6b65 486f 6d6f 746f 7069 6573 4f6e makeHomotopiesOn │ │ │ │ +0001c1a0: 486f 6d6f 6c6f 6779 3a20 6d61 6b65 486f Homology: makeHo │ │ │ │ +0001c1b0: 6d6f 746f 7069 6573 4f6e 486f 6d6f 6c6f motopiesOnHomolo │ │ │ │ +0001c1c0: 6779 2c20 2d2d 2048 6f6d 6f6c 6f67 7920 gy, -- Homology │ │ │ │ +0001c1d0: 6f66 2061 0a20 2020 2063 6f6d 706c 6578 of a. complex │ │ │ │ +0001c1e0: 2061 7320 6578 7465 7269 6f72 206d 6f64 as exterior mod │ │ │ │ +0001c1f0: 756c 650a 0a57 6179 7320 746f 2075 7365 ule..Ways to use │ │ │ │ +0001c200: 2065 7874 6572 696f 7248 6f6d 6f6c 6f67 exteriorHomolog │ │ │ │ +0001c210: 794d 6f64 756c 653a 0a3d 3d3d 3d3d 3d3d yModule:.======= │ │ │ │ +0001c220: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001c230: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ +0001c240: 2a20 2265 7874 6572 696f 7248 6f6d 6f6c * "exteriorHomol │ │ │ │ +0001c250: 6f67 794d 6f64 756c 6528 4d61 7472 6978 ogyModule(Matrix │ │ │ │ +0001c260: 2c43 6861 696e 436f 6d70 6c65 7829 220a ,ChainComplex)". │ │ │ │ +0001c270: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +0001c280: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +0001c290: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +0001c2a0: 6374 202a 6e6f 7465 2065 7874 6572 696f ct *note exterio │ │ │ │ +0001c2b0: 7248 6f6d 6f6c 6f67 794d 6f64 756c 653a rHomologyModule: │ │ │ │ +0001c2c0: 2065 7874 6572 696f 7248 6f6d 6f6c 6f67 exteriorHomolog │ │ │ │ +0001c2d0: 794d 6f64 756c 652c 2069 7320 6120 2a6e yModule, is a *n │ │ │ │ +0001c2e0: 6f74 650a 6d65 7468 6f64 2066 756e 6374 ote.method funct │ │ │ │ +0001c2f0: 696f 6e3a 2028 4d61 6361 756c 6179 3244 ion: (Macaulay2D │ │ │ │ +0001c300: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ +0001c310: 6e2c 2e0a 1f0a 4669 6c65 3a20 436f 6d70 n,....File: Comp │ │ │ │ +0001c320: 6c65 7465 496e 7465 7273 6563 7469 6f6e leteIntersection │ │ │ │ +0001c330: 5265 736f 6c75 7469 6f6e 732e 696e 666f Resolutions.info │ │ │ │ +0001c340: 2c20 4e6f 6465 3a20 6578 7465 7269 6f72 , Node: exterior │ │ │ │ +0001c350: 546f 724d 6f64 756c 652c 204e 6578 743a TorModule, Next: │ │ │ │ +0001c360: 2065 7874 4973 4f6e 6550 6f6c 796e 6f6d extIsOnePolynom │ │ │ │ +0001c370: 6961 6c2c 2050 7265 763a 2065 7874 6572 ial, Prev: exter │ │ │ │ +0001c380: 696f 7248 6f6d 6f6c 6f67 794d 6f64 756c iorHomologyModul │ │ │ │ +0001c390: 652c 2055 703a 2054 6f70 0a0a 6578 7465 e, Up: Top..exte │ │ │ │ +0001c3a0: 7269 6f72 546f 724d 6f64 756c 6520 2d2d riorTorModule -- │ │ │ │ +0001c3b0: 2054 6f72 2061 7320 6120 6d6f 6475 6c65 Tor as a module │ │ │ │ +0001c3c0: 206f 7665 7220 616e 2065 7874 6572 696f over an exterio │ │ │ │ +0001c3d0: 7220 616c 6765 6272 6120 6f72 2062 6967 r algebra or big │ │ │ │ +0001c3e0: 7261 6465 6420 616c 6765 6272 610a 2a2a raded algebra.** │ │ │ │ +0001c3f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001c400: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001c410: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001c420: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001c430: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001c440: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f **********..Syno │ │ │ │ -0001c450: 7073 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 psis.========.. │ │ │ │ -0001c460: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ -0001c470: 2020 2054 203d 2065 7874 6572 696f 7254 T = exteriorT │ │ │ │ -0001c480: 6f72 4d6f 6475 6c65 2866 2c46 290a 2020 orModule(f,F). │ │ │ │ -0001c490: 2020 2020 2020 5420 3d20 6578 7465 7269 T = exteri │ │ │ │ -0001c4a0: 6f72 546f 724d 6f64 756c 6528 662c 4d2c orTorModule(f,M, │ │ │ │ -0001c4b0: 4e29 0a20 202a 2049 6e70 7574 733a 0a20 N). * Inputs:. │ │ │ │ -0001c4c0: 2020 2020 202a 2066 2c20 6120 2a6e 6f74 * f, a *not │ │ │ │ -0001c4d0: 6520 6d61 7472 6978 3a20 284d 6163 6175 e matrix: (Macau │ │ │ │ -0001c4e0: 6c61 7932 446f 6329 4d61 7472 6978 2c2c lay2Doc)Matrix,, │ │ │ │ -0001c4f0: 2031 2078 2063 2c20 656e 7472 6965 7320 1 x c, entries │ │ │ │ -0001c500: 6d75 7374 2062 650a 2020 2020 2020 2020 must be. │ │ │ │ -0001c510: 686f 6d6f 746f 7069 6320 746f 2030 206f homotopic to 0 o │ │ │ │ -0001c520: 6e20 460a 2020 2020 2020 2a20 4d2c 2061 n F. * M, a │ │ │ │ -0001c530: 202a 6e6f 7465 206d 6f64 756c 653a 2028 *note module: ( │ │ │ │ -0001c540: 4d61 6361 756c 6179 3244 6f63 294d 6f64 Macaulay2Doc)Mod │ │ │ │ -0001c550: 756c 652c 2c20 532d 6d6f 6475 6c65 2061 ule,, S-module a │ │ │ │ -0001c560: 6e6e 6968 696c 6174 6564 2062 7920 6964 nnihilated by id │ │ │ │ -0001c570: 6561 6c0a 2020 2020 2020 2020 660a 2020 eal. f. │ │ │ │ -0001c580: 2020 2020 2a20 4e2c 2061 202a 6e6f 7465 * N, a *note │ │ │ │ -0001c590: 206d 6f64 756c 653a 2028 4d61 6361 756c module: (Macaul │ │ │ │ -0001c5a0: 6179 3244 6f63 294d 6f64 756c 652c 2c20 ay2Doc)Module,, │ │ │ │ -0001c5b0: 532d 6d6f 6475 6c65 2061 6e6e 6968 696c S-module annihil │ │ │ │ -0001c5c0: 6174 6564 2062 7920 6964 6561 6c0a 2020 ated by ideal. │ │ │ │ -0001c5d0: 2020 2020 2020 660a 2020 2a20 4f75 7470 f. * Outp │ │ │ │ -0001c5e0: 7574 733a 0a20 2020 2020 202a 2054 2c20 uts:. * T, │ │ │ │ -0001c5f0: 6120 2a6e 6f74 6520 6d6f 6475 6c65 3a20 a *note module: │ │ │ │ -0001c600: 284d 6163 6175 6c61 7932 446f 6329 4d6f (Macaulay2Doc)Mo │ │ │ │ -0001c610: 6475 6c65 2c2c 2054 6f72 5e53 284d 2c4e dule,, Tor^S(M,N │ │ │ │ -0001c620: 2920 6173 2061 204d 6f64 756c 6520 6f76 ) as a Module ov │ │ │ │ -0001c630: 6572 0a20 2020 2020 2020 2061 6e20 6578 er. an ex │ │ │ │ -0001c640: 7465 7269 6f72 2061 6c67 6562 7261 0a0a terior algebra.. │ │ │ │ -0001c650: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -0001c660: 3d3d 3d3d 3d3d 3d0a 0a49 6620 4d2c 4e20 =======..If M,N │ │ │ │ -0001c670: 6172 6520 532d 6d6f 6475 6c65 7320 616e are S-modules an │ │ │ │ -0001c680: 6e69 6869 6c61 7465 6420 6279 2074 6865 nihilated by the │ │ │ │ -0001c690: 2065 6c65 6d65 6e74 7320 6f66 2074 6865 elements of the │ │ │ │ -0001c6a0: 206d 6174 7269 7820 6666 203d 2028 665f matrix ff = (f_ │ │ │ │ -0001c6b0: 312e 2e66 5f63 292c 0a61 6e64 206b 2069 1..f_c),.and k i │ │ │ │ -0001c6c0: 7320 7468 6520 7265 7369 6475 6520 6669 s the residue fi │ │ │ │ -0001c6d0: 656c 6420 6f66 2053 2c20 7468 656e 2074 eld of S, then t │ │ │ │ -0001c6e0: 6865 2073 6372 6970 7420 6578 7465 7269 he script exteri │ │ │ │ -0001c6f0: 6f72 546f 724d 6f64 756c 6528 662c 4d29 orTorModule(f,M) │ │ │ │ -0001c700: 2072 6574 7572 6e73 0a54 6f72 5e53 284d returns.Tor^S(M │ │ │ │ -0001c710: 2c20 6b29 2061 7320 6120 6d6f 6475 6c65 , k) as a module │ │ │ │ -0001c720: 206f 7665 7220 616e 2065 7874 6572 696f over an exterio │ │ │ │ -0001c730: 7220 616c 6765 6272 6120 6b3c 655f 312c r algebra k, where │ │ │ │ -0001c750: 7468 6520 655f 690a 6861 7665 2064 6567 the e_i.have deg │ │ │ │ -0001c760: 7265 6520 312c 2077 6869 6c65 2065 7874 ree 1, while ext │ │ │ │ -0001c770: 6572 696f 7254 6f72 4d6f 6475 6c65 2866 eriorTorModule(f │ │ │ │ -0001c780: 2c4d 2c4e 2920 7265 7475 726e 7320 546f ,M,N) returns To │ │ │ │ -0001c790: 725e 5328 4d2c 4e29 2061 7320 6120 6d6f r^S(M,N) as a mo │ │ │ │ -0001c7a0: 6475 6c65 0a6f 7665 7220 6120 6269 6772 dule.over a bigr │ │ │ │ -0001c7b0: 6164 6564 2072 696e 6720 5345 203d 2053 aded ring SE = S │ │ │ │ -0001c7c0: 3c65 5f31 2c2e 2e2c 655f 633e 2c20 7768 , wh │ │ │ │ -0001c7d0: 6572 6520 7468 6520 655f 6920 6861 7665 ere the e_i have │ │ │ │ -0001c7e0: 2064 6567 7265 6573 207b 645f 692c 317d degrees {d_i,1} │ │ │ │ -0001c7f0: 2c0a 7768 6572 6520 645f 6920 6973 2074 ,.where d_i is t │ │ │ │ -0001c800: 6865 2064 6567 7265 6520 6f66 2066 5f69 he degree of f_i │ │ │ │ -0001c810: 2e20 5468 6520 6d6f 6475 6c65 2073 7472 . The module str │ │ │ │ -0001c820: 7563 7475 7265 2c20 696e 2065 6974 6865 ucture, in eithe │ │ │ │ -0001c830: 7220 6361 7365 2c20 6973 0a64 6566 696e r case, is.defin │ │ │ │ -0001c840: 6564 2062 7920 7468 6520 686f 6d6f 746f ed by the homoto │ │ │ │ -0001c850: 7069 6573 2066 6f72 2074 6865 2066 5f69 pies for the f_i │ │ │ │ -0001c860: 206f 6e20 7468 6520 7265 736f 6c75 7469 on the resoluti │ │ │ │ -0001c870: 6f6e 206f 6620 4d2c 2063 6f6d 7075 7465 on of M, compute │ │ │ │ -0001c880: 6420 6279 2074 6865 0a73 6372 6970 7420 d by the.script │ │ │ │ -0001c890: 6d61 6b65 486f 6d6f 746f 7069 6573 312e makeHomotopies1. │ │ │ │ -0001c8a0: 0a0a 5468 6520 7363 7269 7074 7320 6361 ..The scripts ca │ │ │ │ -0001c8b0: 6c6c 206d 616b 654d 6f64 756c 6520 746f ll makeModule to │ │ │ │ -0001c8c0: 2063 6f6d 7075 7465 2061 2028 6e6f 6e2d compute a (non- │ │ │ │ -0001c8d0: 6d69 6e69 6d61 6c29 2070 7265 7365 6e74 minimal) present │ │ │ │ -0001c8e0: 6174 696f 6e20 6f66 2074 6869 730a 6d6f ation of this.mo │ │ │ │ -0001c8f0: 6475 6c65 2e0a 0a46 726f 6d20 7468 6520 dule...From the │ │ │ │ -0001c900: 6465 7363 7269 7074 696f 6e20 6279 206d description by m │ │ │ │ -0001c910: 6174 7269 7820 6661 6374 6f72 697a 6174 atrix factorizat │ │ │ │ -0001c920: 696f 6e73 2061 6e64 2074 6865 2070 6170 ions and the pap │ │ │ │ -0001c930: 6572 2022 546f 7220 6173 2061 206d 6f64 er "Tor as a mod │ │ │ │ -0001c940: 756c 650a 6f76 6572 2061 6e20 6578 7465 ule.over an exte │ │ │ │ -0001c950: 7269 6f72 2061 6c67 6562 7261 2220 6f66 rior algebra" of │ │ │ │ -0001c960: 2045 6973 656e 6275 642c 2050 6565 7661 Eisenbud, Peeva │ │ │ │ -0001c970: 2061 6e64 2053 6368 7265 7965 7220 6974 and Schreyer it │ │ │ │ -0001c980: 2066 6f6c 6c6f 7773 2074 6861 7420 7768 follows that wh │ │ │ │ -0001c990: 656e 0a4d 2069 7320 6120 6869 6768 2073 en.M is a high s │ │ │ │ -0001c9a0: 797a 7967 7920 616e 6420 4620 6973 2069 yzygy and F is i │ │ │ │ -0001c9b0: 7473 2072 6573 6f6c 7574 696f 6e2c 2074 ts resolution, t │ │ │ │ -0001c9c0: 6865 6e20 7468 6520 7072 6573 656e 7461 hen the presenta │ │ │ │ -0001c9d0: 7469 6f6e 206f 660a 546f 7228 4d2c 535e tion of.Tor(M,S^ │ │ │ │ -0001c9e0: 312f 6d6d 2920 616c 7761 7973 2068 6173 1/mm) always has │ │ │ │ -0001c9f0: 2067 656e 6572 6174 6f72 7320 696e 2064 generators in d │ │ │ │ -0001ca00: 6567 7265 6573 2030 2c31 2c20 636f 7272 egrees 0,1, corr │ │ │ │ -0001ca10: 6573 706f 6e64 696e 6720 746f 2074 6865 esponding to the │ │ │ │ -0001ca20: 0a74 6172 6765 7473 2061 6e64 2073 6f75 .targets and sou │ │ │ │ -0001ca30: 7263 6573 206f 6620 7468 6520 7374 6163 rces of the stac │ │ │ │ -0001ca40: 6b20 6f66 206d 6170 7320 4228 6929 2c20 k of maps B(i), │ │ │ │ -0001ca50: 616e 6420 7468 6174 2074 6865 2072 6573 and that the res │ │ │ │ -0001ca60: 6f6c 7574 696f 6e20 6973 0a63 6f6d 706f olution is.compo │ │ │ │ -0001ca70: 6e65 6e74 7769 7365 206c 696e 6561 7220 nentwise linear │ │ │ │ -0001ca80: 696e 2061 2073 7569 7461 626c 6520 7365 in a suitable se │ │ │ │ -0001ca90: 6e73 652e 2049 6e20 7468 6520 666f 6c6c nse. In the foll │ │ │ │ -0001caa0: 6f77 696e 6720 6578 616d 706c 652c 2074 owing example, t │ │ │ │ -0001cab0: 6865 7365 2066 6163 7473 0a61 7265 2076 hese facts.are v │ │ │ │ -0001cac0: 6572 6966 6965 642e 2054 6865 2054 6f72 erified. The Tor │ │ │ │ -0001cad0: 206d 6f64 756c 6520 646f 6573 204e 4f54 module does NOT │ │ │ │ -0001cae0: 2073 706c 6974 2069 6e74 6f20 7468 6520 split into the │ │ │ │ -0001caf0: 6469 7265 6374 2073 756d 206f 6620 7468 direct sum of th │ │ │ │ -0001cb00: 650a 7375 626d 6f64 756c 6573 2067 656e e.submodules gen │ │ │ │ -0001cb10: 6572 6174 6564 2069 6e20 6465 6772 6565 erated in degree │ │ │ │ -0001cb20: 7320 3020 616e 6420 312c 2068 6f77 6576 s 0 and 1, howev │ │ │ │ -0001cb30: 6572 2e0a 0a0a 0a2b 2d2d 2d2d 2d2d 2d2d er.....+-------- │ │ │ │ +0001c430: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +0001c440: 0a53 796e 6f70 7369 730a 3d3d 3d3d 3d3d .Synopsis.====== │ │ │ │ +0001c450: 3d3d 0a0a 2020 2a20 5573 6167 653a 200a ==.. * Usage: . │ │ │ │ +0001c460: 2020 2020 2020 2020 5420 3d20 6578 7465 T = exte │ │ │ │ +0001c470: 7269 6f72 546f 724d 6f64 756c 6528 662c riorTorModule(f, │ │ │ │ +0001c480: 4629 0a20 2020 2020 2020 2054 203d 2065 F). T = e │ │ │ │ +0001c490: 7874 6572 696f 7254 6f72 4d6f 6475 6c65 xteriorTorModule │ │ │ │ +0001c4a0: 2866 2c4d 2c4e 290a 2020 2a20 496e 7075 (f,M,N). * Inpu │ │ │ │ +0001c4b0: 7473 3a0a 2020 2020 2020 2a20 662c 2061 ts:. * f, a │ │ │ │ +0001c4c0: 202a 6e6f 7465 206d 6174 7269 783a 2028 *note matrix: ( │ │ │ │ +0001c4d0: 4d61 6361 756c 6179 3244 6f63 294d 6174 Macaulay2Doc)Mat │ │ │ │ +0001c4e0: 7269 782c 2c20 3120 7820 632c 2065 6e74 rix,, 1 x c, ent │ │ │ │ +0001c4f0: 7269 6573 206d 7573 7420 6265 0a20 2020 ries must be. │ │ │ │ +0001c500: 2020 2020 2068 6f6d 6f74 6f70 6963 2074 homotopic t │ │ │ │ +0001c510: 6f20 3020 6f6e 2046 0a20 2020 2020 202a o 0 on F. * │ │ │ │ +0001c520: 204d 2c20 6120 2a6e 6f74 6520 6d6f 6475 M, a *note modu │ │ │ │ +0001c530: 6c65 3a20 284d 6163 6175 6c61 7932 446f le: (Macaulay2Do │ │ │ │ +0001c540: 6329 4d6f 6475 6c65 2c2c 2053 2d6d 6f64 c)Module,, S-mod │ │ │ │ +0001c550: 756c 6520 616e 6e69 6869 6c61 7465 6420 ule annihilated │ │ │ │ +0001c560: 6279 2069 6465 616c 0a20 2020 2020 2020 by ideal. │ │ │ │ +0001c570: 2066 0a20 2020 2020 202a 204e 2c20 6120 f. * N, a │ │ │ │ +0001c580: 2a6e 6f74 6520 6d6f 6475 6c65 3a20 284d *note module: (M │ │ │ │ +0001c590: 6163 6175 6c61 7932 446f 6329 4d6f 6475 acaulay2Doc)Modu │ │ │ │ +0001c5a0: 6c65 2c2c 2053 2d6d 6f64 756c 6520 616e le,, S-module an │ │ │ │ +0001c5b0: 6e69 6869 6c61 7465 6420 6279 2069 6465 nihilated by ide │ │ │ │ +0001c5c0: 616c 0a20 2020 2020 2020 2066 0a20 202a al. f. * │ │ │ │ +0001c5d0: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ +0001c5e0: 2a20 542c 2061 202a 6e6f 7465 206d 6f64 * T, a *note mod │ │ │ │ +0001c5f0: 756c 653a 2028 4d61 6361 756c 6179 3244 ule: (Macaulay2D │ │ │ │ +0001c600: 6f63 294d 6f64 756c 652c 2c20 546f 725e oc)Module,, Tor^ │ │ │ │ +0001c610: 5328 4d2c 4e29 2061 7320 6120 4d6f 6475 S(M,N) as a Modu │ │ │ │ +0001c620: 6c65 206f 7665 720a 2020 2020 2020 2020 le over. │ │ │ │ +0001c630: 616e 2065 7874 6572 696f 7220 616c 6765 an exterior alge │ │ │ │ +0001c640: 6272 610a 0a44 6573 6372 6970 7469 6f6e bra..Description │ │ │ │ +0001c650: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 4966 .===========..If │ │ │ │ +0001c660: 204d 2c4e 2061 7265 2053 2d6d 6f64 756c M,N are S-modul │ │ │ │ +0001c670: 6573 2061 6e6e 6968 696c 6174 6564 2062 es annihilated b │ │ │ │ +0001c680: 7920 7468 6520 656c 656d 656e 7473 206f y the elements o │ │ │ │ +0001c690: 6620 7468 6520 6d61 7472 6978 2066 6620 f the matrix ff │ │ │ │ +0001c6a0: 3d20 2866 5f31 2e2e 665f 6329 2c0a 616e = (f_1..f_c),.an │ │ │ │ +0001c6b0: 6420 6b20 6973 2074 6865 2072 6573 6964 d k is the resid │ │ │ │ +0001c6c0: 7565 2066 6965 6c64 206f 6620 532c 2074 ue field of S, t │ │ │ │ +0001c6d0: 6865 6e20 7468 6520 7363 7269 7074 2065 hen the script e │ │ │ │ +0001c6e0: 7874 6572 696f 7254 6f72 4d6f 6475 6c65 xteriorTorModule │ │ │ │ +0001c6f0: 2866 2c4d 2920 7265 7475 726e 730a 546f (f,M) returns.To │ │ │ │ +0001c700: 725e 5328 4d2c 206b 2920 6173 2061 206d r^S(M, k) as a m │ │ │ │ +0001c710: 6f64 756c 6520 6f76 6572 2061 6e20 6578 odule over an ex │ │ │ │ +0001c720: 7465 7269 6f72 2061 6c67 6562 7261 206b terior algebra k │ │ │ │ +0001c730: 3c65 5f31 2c2e 2e2e 2c65 5f63 3e2c 2077 , w │ │ │ │ +0001c740: 6865 7265 2074 6865 2065 5f69 0a68 6176 here the e_i.hav │ │ │ │ +0001c750: 6520 6465 6772 6565 2031 2c20 7768 696c e degree 1, whil │ │ │ │ +0001c760: 6520 6578 7465 7269 6f72 546f 724d 6f64 e exteriorTorMod │ │ │ │ +0001c770: 756c 6528 662c 4d2c 4e29 2072 6574 7572 ule(f,M,N) retur │ │ │ │ +0001c780: 6e73 2054 6f72 5e53 284d 2c4e 2920 6173 ns Tor^S(M,N) as │ │ │ │ +0001c790: 2061 206d 6f64 756c 650a 6f76 6572 2061 a module.over a │ │ │ │ +0001c7a0: 2062 6967 7261 6465 6420 7269 6e67 2053 bigraded ring S │ │ │ │ +0001c7b0: 4520 3d20 533c 655f 312c 2e2e 2c65 5f63 E = S, where the e_i │ │ │ │ +0001c7d0: 2068 6176 6520 6465 6772 6565 7320 7b64 have degrees {d │ │ │ │ +0001c7e0: 5f69 2c31 7d2c 0a77 6865 7265 2064 5f69 _i,1},.where d_i │ │ │ │ +0001c7f0: 2069 7320 7468 6520 6465 6772 6565 206f is the degree o │ │ │ │ +0001c800: 6620 665f 692e 2054 6865 206d 6f64 756c f f_i. The modul │ │ │ │ +0001c810: 6520 7374 7275 6374 7572 652c 2069 6e20 e structure, in │ │ │ │ +0001c820: 6569 7468 6572 2063 6173 652c 2069 730a either case, is. │ │ │ │ +0001c830: 6465 6669 6e65 6420 6279 2074 6865 2068 defined by the h │ │ │ │ +0001c840: 6f6d 6f74 6f70 6965 7320 666f 7220 7468 omotopies for th │ │ │ │ +0001c850: 6520 665f 6920 6f6e 2074 6865 2072 6573 e f_i on the res │ │ │ │ +0001c860: 6f6c 7574 696f 6e20 6f66 204d 2c20 636f olution of M, co │ │ │ │ +0001c870: 6d70 7574 6564 2062 7920 7468 650a 7363 mputed by the.sc │ │ │ │ +0001c880: 7269 7074 206d 616b 6548 6f6d 6f74 6f70 ript makeHomotop │ │ │ │ +0001c890: 6965 7331 2e0a 0a54 6865 2073 6372 6970 ies1...The scrip │ │ │ │ +0001c8a0: 7473 2063 616c 6c20 6d61 6b65 4d6f 6475 ts call makeModu │ │ │ │ +0001c8b0: 6c65 2074 6f20 636f 6d70 7574 6520 6120 le to compute a │ │ │ │ +0001c8c0: 286e 6f6e 2d6d 696e 696d 616c 2920 7072 (non-minimal) pr │ │ │ │ +0001c8d0: 6573 656e 7461 7469 6f6e 206f 6620 7468 esentation of th │ │ │ │ +0001c8e0: 6973 0a6d 6f64 756c 652e 0a0a 4672 6f6d is.module...From │ │ │ │ +0001c8f0: 2074 6865 2064 6573 6372 6970 7469 6f6e the description │ │ │ │ +0001c900: 2062 7920 6d61 7472 6978 2066 6163 746f by matrix facto │ │ │ │ +0001c910: 7269 7a61 7469 6f6e 7320 616e 6420 7468 rizations and th │ │ │ │ +0001c920: 6520 7061 7065 7220 2254 6f72 2061 7320 e paper "Tor as │ │ │ │ +0001c930: 6120 6d6f 6475 6c65 0a6f 7665 7220 616e a module.over an │ │ │ │ +0001c940: 2065 7874 6572 696f 7220 616c 6765 6272 exterior algebr │ │ │ │ +0001c950: 6122 206f 6620 4569 7365 6e62 7564 2c20 a" of Eisenbud, │ │ │ │ +0001c960: 5065 6576 6120 616e 6420 5363 6872 6579 Peeva and Schrey │ │ │ │ +0001c970: 6572 2069 7420 666f 6c6c 6f77 7320 7468 er it follows th │ │ │ │ +0001c980: 6174 2077 6865 6e0a 4d20 6973 2061 2068 at when.M is a h │ │ │ │ +0001c990: 6967 6820 7379 7a79 6779 2061 6e64 2046 igh syzygy and F │ │ │ │ +0001c9a0: 2069 7320 6974 7320 7265 736f 6c75 7469 is its resoluti │ │ │ │ +0001c9b0: 6f6e 2c20 7468 656e 2074 6865 2070 7265 on, then the pre │ │ │ │ +0001c9c0: 7365 6e74 6174 696f 6e20 6f66 0a54 6f72 sentation of.Tor │ │ │ │ +0001c9d0: 284d 2c53 5e31 2f6d 6d29 2061 6c77 6179 (M,S^1/mm) alway │ │ │ │ +0001c9e0: 7320 6861 7320 6765 6e65 7261 746f 7273 s has generators │ │ │ │ +0001c9f0: 2069 6e20 6465 6772 6565 7320 302c 312c in degrees 0,1, │ │ │ │ +0001ca00: 2063 6f72 7265 7370 6f6e 6469 6e67 2074 corresponding t │ │ │ │ +0001ca10: 6f20 7468 650a 7461 7267 6574 7320 616e o the.targets an │ │ │ │ +0001ca20: 6420 736f 7572 6365 7320 6f66 2074 6865 d sources of the │ │ │ │ +0001ca30: 2073 7461 636b 206f 6620 6d61 7073 2042 stack of maps B │ │ │ │ +0001ca40: 2869 292c 2061 6e64 2074 6861 7420 7468 (i), and that th │ │ │ │ +0001ca50: 6520 7265 736f 6c75 7469 6f6e 2069 730a e resolution is. │ │ │ │ +0001ca60: 636f 6d70 6f6e 656e 7477 6973 6520 6c69 componentwise li │ │ │ │ +0001ca70: 6e65 6172 2069 6e20 6120 7375 6974 6162 near in a suitab │ │ │ │ +0001ca80: 6c65 2073 656e 7365 2e20 496e 2074 6865 le sense. In the │ │ │ │ +0001ca90: 2066 6f6c 6c6f 7769 6e67 2065 7861 6d70 following examp │ │ │ │ +0001caa0: 6c65 2c20 7468 6573 6520 6661 6374 730a le, these facts. │ │ │ │ +0001cab0: 6172 6520 7665 7269 6669 6564 2e20 5468 are verified. Th │ │ │ │ +0001cac0: 6520 546f 7220 6d6f 6475 6c65 2064 6f65 e Tor module doe │ │ │ │ +0001cad0: 7320 4e4f 5420 7370 6c69 7420 696e 746f s NOT split into │ │ │ │ +0001cae0: 2074 6865 2064 6972 6563 7420 7375 6d20 the direct sum │ │ │ │ +0001caf0: 6f66 2074 6865 0a73 7562 6d6f 6475 6c65 of the.submodule │ │ │ │ +0001cb00: 7320 6765 6e65 7261 7465 6420 696e 2064 s generated in d │ │ │ │ +0001cb10: 6567 7265 6573 2030 2061 6e64 2031 2c20 egrees 0 and 1, │ │ │ │ +0001cb20: 686f 7765 7665 722e 0a0a 0a0a 2b2d 2d2d however.....+--- │ │ │ │ +0001cb30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001cb40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001cb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001cb60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -0001cb80: 203a 206b 6b20 3d20 5a5a 2f31 3031 2020 : kk = ZZ/101 │ │ │ │ +0001cb70: 2b0a 7c69 3120 3a20 6b6b 203d 205a 5a2f +.|i1 : kk = ZZ/ │ │ │ │ +0001cb80: 3130 3120 2020 2020 2020 2020 2020 2020 101 │ │ │ │ 0001cb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cbc0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001cbb0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001cbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cc00: 2020 2020 2020 207c 0a7c 6f31 203d 206b |.|o1 = k │ │ │ │ -0001cc10: 6b20 2020 2020 2020 2020 2020 2020 2020 k │ │ │ │ +0001cbf0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0001cc00: 3120 3d20 6b6b 2020 2020 2020 2020 2020 1 = kk │ │ │ │ +0001cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cc40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001cc40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001cc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cc90: 2020 207c 0a7c 6f31 203a 2051 756f 7469 |.|o1 : Quoti │ │ │ │ -0001cca0: 656e 7452 696e 6720 2020 2020 2020 2020 entRing │ │ │ │ +0001cc80: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ +0001cc90: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ +0001cca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ccb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ccc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ccd0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001ccc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001ccd0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0001cce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ccf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001cd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0001cd20: 0a7c 6932 203a 2053 203d 206b 6b5b 612c .|i2 : S = kk[a, │ │ │ │ -0001cd30: 622c 635d 2020 2020 2020 2020 2020 2020 b,c] │ │ │ │ +0001cd10: 2d2d 2d2d 2b0a 7c69 3220 3a20 5320 3d20 ----+.|i2 : S = │ │ │ │ +0001cd20: 6b6b 5b61 2c62 2c63 5d20 2020 2020 2020 kk[a,b,c] │ │ │ │ +0001cd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cd60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001cd50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001cd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cda0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -0001cdb0: 203d 2053 2020 2020 2020 2020 2020 2020 = S │ │ │ │ +0001cda0: 7c0a 7c6f 3220 3d20 5320 2020 2020 2020 |.|o2 = S │ │ │ │ +0001cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cdf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001cde0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001cdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ce00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ce10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ce20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ce30: 2020 2020 2020 207c 0a7c 6f32 203a 2050 |.|o2 : P │ │ │ │ -0001ce40: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ +0001ce20: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0001ce30: 3220 3a20 506f 6c79 6e6f 6d69 616c 5269 2 : PolynomialRi │ │ │ │ +0001ce40: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ 0001ce50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ce60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ce70: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0001ce70: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 0001ce80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ce90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001cea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ceb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cec0: 2d2d 2d2b 0a7c 6933 203a 2066 203d 206d ---+.|i3 : f = m │ │ │ │ -0001ced0: 6174 7269 7822 6134 2c62 342c 6334 2220 atrix"a4,b4,c4" │ │ │ │ +0001ceb0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ +0001cec0: 6620 3d20 6d61 7472 6978 2261 342c 6234 f = matrix"a4,b4 │ │ │ │ +0001ced0: 2c63 3422 2020 2020 2020 2020 2020 2020 ,c4" │ │ │ │ 0001cee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cf00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001cef0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001cf00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0001cf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cf40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001cf50: 0a7c 6f33 203d 207c 2061 3420 6234 2063 .|o3 = | a4 b4 c │ │ │ │ -0001cf60: 3420 7c20 2020 2020 2020 2020 2020 2020 4 | │ │ │ │ +0001cf40: 2020 2020 7c0a 7c6f 3320 3d20 7c20 6134 |.|o3 = | a4 │ │ │ │ +0001cf50: 2062 3420 6334 207c 2020 2020 2020 2020 b4 c4 | │ │ │ │ +0001cf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cf90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001cf80: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001cf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cfd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001cfe0: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -0001cff0: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0001cfd0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001cfe0: 3120 2020 2020 2033 2020 2020 2020 2020 1 3 │ │ │ │ +0001cff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d020: 207c 0a7c 6f33 203a 204d 6174 7269 7820 |.|o3 : Matrix │ │ │ │ -0001d030: 5320 203c 2d2d 2053 2020 2020 2020 2020 S <-- S │ │ │ │ +0001d010: 2020 2020 2020 7c0a 7c6f 3320 3a20 4d61 |.|o3 : Ma │ │ │ │ +0001d020: 7472 6978 2053 2020 3c2d 2d20 5320 2020 trix S <-- S │ │ │ │ +0001d030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d060: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0001d050: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0001d060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0001d0b0: 6934 203a 2052 203d 2053 2f69 6465 616c i4 : R = S/ideal │ │ │ │ -0001d0c0: 2066 2020 2020 2020 2020 2020 2020 2020 f │ │ │ │ +0001d0a0: 2d2d 2b0a 7c69 3420 3a20 5220 3d20 532f --+.|i4 : R = S/ │ │ │ │ +0001d0b0: 6964 6561 6c20 6620 2020 2020 2020 2020 ideal f │ │ │ │ +0001d0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d0f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001d0e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001d0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d130: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ -0001d140: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +0001d120: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001d130: 7c6f 3420 3d20 5220 2020 2020 2020 2020 |o4 = R │ │ │ │ +0001d140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d170: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001d180: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001d170: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001d180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d1c0: 2020 2020 207c 0a7c 6f34 203a 2051 756f |.|o4 : Quo │ │ │ │ -0001d1d0: 7469 656e 7452 696e 6720 2020 2020 2020 tientRing │ │ │ │ +0001d1b0: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ +0001d1c0: 3a20 5175 6f74 6965 6e74 5269 6e67 2020 : QuotientRing │ │ │ │ +0001d1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d200: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0001d200: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0001d210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d250: 2d2b 0a7c 6935 203a 2070 203d 206d 6170 -+.|i5 : p = map │ │ │ │ -0001d260: 2852 2c53 2920 2020 2020 2020 2020 2020 (R,S) │ │ │ │ +0001d240: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 7020 ------+.|i5 : p │ │ │ │ +0001d250: 3d20 6d61 7028 522c 5329 2020 2020 2020 = map(R,S) │ │ │ │ +0001d260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d290: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001d280: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d2d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001d2e0: 6f35 203d 206d 6170 2028 522c 2053 2c20 o5 = map (R, S, │ │ │ │ -0001d2f0: 7b61 2c20 622c 2063 7d29 2020 2020 2020 {a, b, c}) │ │ │ │ +0001d2d0: 2020 7c0a 7c6f 3520 3d20 6d61 7020 2852 |.|o5 = map (R │ │ │ │ +0001d2e0: 2c20 532c 207b 612c 2062 2c20 637d 2920 , S, {a, b, c}) │ │ │ │ +0001d2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d320: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001d310: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001d320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d360: 2020 2020 2020 2020 207c 0a7c 6f35 203a |.|o5 : │ │ │ │ -0001d370: 2052 696e 674d 6170 2052 203c 2d2d 2053 RingMap R <-- S │ │ │ │ +0001d350: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001d360: 7c6f 3520 3a20 5269 6e67 4d61 7020 5220 |o5 : RingMap R │ │ │ │ +0001d370: 3c2d 2d20 5320 2020 2020 2020 2020 2020 <-- S │ │ │ │ 0001d380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d3a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001d3b0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0001d3a0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001d3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d3f0: 2d2d 2d2d 2d2b 0a7c 6936 203a 204d 203d -----+.|i6 : M = │ │ │ │ -0001d400: 2063 6f6b 6572 206d 6170 2852 5e32 2c20 coker map(R^2, │ │ │ │ -0001d410: 525e 7b33 3a2d 317d 2c20 7b7b 612c 622c R^{3:-1}, {{a,b, │ │ │ │ -0001d420: 637d 2c7b 622c 632c 617d 7d29 2020 2020 c},{b,c,a}}) │ │ │ │ -0001d430: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001d3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 ----------+.|i6 │ │ │ │ +0001d3f0: 3a20 4d20 3d20 636f 6b65 7220 6d61 7028 : M = coker map( │ │ │ │ +0001d400: 525e 322c 2052 5e7b 333a 2d31 7d2c 207b R^2, R^{3:-1}, { │ │ │ │ +0001d410: 7b61 2c62 2c63 7d2c 7b62 2c63 2c61 7d7d {a,b,c},{b,c,a}} │ │ │ │ +0001d420: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0001d430: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001d440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d480: 207c 0a7c 6f36 203d 2063 6f6b 6572 6e65 |.|o6 = cokerne │ │ │ │ -0001d490: 6c20 7c20 6120 6220 6320 7c20 2020 2020 l | a b c | │ │ │ │ +0001d470: 2020 2020 2020 7c0a 7c6f 3620 3d20 636f |.|o6 = co │ │ │ │ +0001d480: 6b65 726e 656c 207c 2061 2062 2063 207c kernel | a b c | │ │ │ │ +0001d490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d4c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0001d4d0: 2020 2020 2020 2020 7c20 6220 6320 6120 | b c a │ │ │ │ -0001d4e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0001d4b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d4c0: 2020 2020 2020 2020 2020 2020 207c 2062 | b │ │ │ │ +0001d4d0: 2063 2061 207c 2020 2020 2020 2020 2020 c a | │ │ │ │ +0001d4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d500: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001d500: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001d510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d550: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001d560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d570: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001d580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d590: 2020 2020 2020 2020 207c 0a7c 6f36 203a |.|o6 : │ │ │ │ -0001d5a0: 2052 2d6d 6f64 756c 652c 2071 756f 7469 R-module, quoti │ │ │ │ -0001d5b0: 656e 7420 6f66 2052 2020 2020 2020 2020 ent of R │ │ │ │ +0001d540: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001d550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d560: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +0001d570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d580: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001d590: 7c6f 3620 3a20 522d 6d6f 6475 6c65 2c20 |o6 : R-module, │ │ │ │ +0001d5a0: 7175 6f74 6965 6e74 206f 6620 5220 2020 quotient of R │ │ │ │ +0001d5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d5d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001d5e0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0001d5d0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001d5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d620: 2d2d 2d2d 2d2b 0a7c 6937 203a 2062 6574 -----+.|i7 : bet │ │ │ │ -0001d630: 7469 2028 4646 203d 7265 7328 204d 2c20 ti (FF =res( M, │ │ │ │ -0001d640: 4c65 6e67 7468 4c69 6d69 7420 3d3e 3629 LengthLimit =>6) │ │ │ │ -0001d650: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -0001d660: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001d610: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 ----------+.|i7 │ │ │ │ +0001d620: 3a20 6265 7474 6920 2846 4620 3d72 6573 : betti (FF =res │ │ │ │ +0001d630: 2820 4d2c 204c 656e 6774 684c 696d 6974 ( M, LengthLimit │ │ │ │ +0001d640: 203d 3e36 2929 2020 2020 2020 2020 2020 =>6)) │ │ │ │ +0001d650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d660: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001d670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d6b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001d6c0: 3020 3120 3220 3320 3420 2035 2020 3620 0 1 2 3 4 5 6 │ │ │ │ +0001d6a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001d6b0: 2020 2020 2030 2031 2032 2033 2034 2020 0 1 2 3 4 │ │ │ │ +0001d6c0: 3520 2036 2020 2020 2020 2020 2020 2020 5 6 │ │ │ │ 0001d6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d6f0: 2020 2020 2020 207c 0a7c 6f37 203d 2074 |.|o7 = t │ │ │ │ -0001d700: 6f74 616c 3a20 3220 3320 3420 3620 3920 otal: 2 3 4 6 9 │ │ │ │ -0001d710: 3133 2031 3820 2020 2020 2020 2020 2020 13 18 │ │ │ │ +0001d6e0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0001d6f0: 3720 3d20 746f 7461 6c3a 2032 2033 2034 7 = total: 2 3 4 │ │ │ │ +0001d700: 2036 2039 2031 3320 3138 2020 2020 2020 6 9 13 18 │ │ │ │ +0001d710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d730: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001d740: 2020 2020 2020 2020 2030 3a20 3220 3320 0: 2 3 │ │ │ │ -0001d750: 2e20 2e20 2e20 202e 2020 2e20 2020 2020 . . . . . │ │ │ │ +0001d730: 2020 7c0a 7c20 2020 2020 2020 2020 303a |.| 0: │ │ │ │ +0001d740: 2032 2033 202e 202e 202e 2020 2e20 202e 2 3 . . . . . │ │ │ │ +0001d750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d780: 2020 207c 0a7c 2020 2020 2020 2020 2031 |.| 1 │ │ │ │ -0001d790: 3a20 2e20 2e20 3120 2e20 2e20 202e 2020 : . . 1 . . . │ │ │ │ -0001d7a0: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ -0001d7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d7c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0001d7d0: 2020 2020 2032 3a20 2e20 2e20 3320 3320 2: . . 3 3 │ │ │ │ -0001d7e0: 2e20 202e 2020 2e20 2020 2020 2020 2020 . . . │ │ │ │ +0001d770: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001d780: 2020 2020 313a 202e 202e 2031 202e 202e 1: . . 1 . . │ │ │ │ +0001d790: 2020 2e20 202e 2020 2020 2020 2020 2020 . . │ │ │ │ +0001d7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d7b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001d7c0: 7c20 2020 2020 2020 2020 323a 202e 202e | 2: . . │ │ │ │ +0001d7d0: 2033 2033 202e 2020 2e20 202e 2020 2020 3 3 . . . │ │ │ │ +0001d7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d800: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001d810: 0a7c 2020 2020 2020 2020 2033 3a20 2e20 .| 3: . │ │ │ │ -0001d820: 2e20 2e20 3320 3320 202e 2020 2e20 2020 . . 3 3 . . │ │ │ │ +0001d800: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001d810: 333a 202e 202e 202e 2033 2033 2020 2e20 3: . . . 3 3 . │ │ │ │ +0001d820: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ 0001d830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d850: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001d860: 2034 3a20 2e20 2e20 2e20 2e20 3320 2033 4: . . . . 3 3 │ │ │ │ -0001d870: 2020 2e20 2020 2020 2020 2020 2020 2020 . │ │ │ │ +0001d840: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001d850: 2020 2020 2020 343a 202e 202e 202e 202e 4: . . . . │ │ │ │ +0001d860: 2033 2020 3320 202e 2020 2020 2020 2020 3 3 . │ │ │ │ +0001d870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d890: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001d8a0: 2020 2020 2020 2035 3a20 2e20 2e20 2e20 5: . . . │ │ │ │ -0001d8b0: 2e20 3320 2039 2020 3620 2020 2020 2020 . 3 9 6 │ │ │ │ +0001d890: 7c0a 7c20 2020 2020 2020 2020 353a 202e |.| 5: . │ │ │ │ +0001d8a0: 202e 202e 202e 2033 2020 3920 2036 2020 . . . 3 9 6 │ │ │ │ +0001d8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d8e0: 207c 0a7c 2020 2020 2020 2020 2036 3a20 |.| 6: │ │ │ │ -0001d8f0: 2e20 2e20 2e20 2e20 2e20 202e 2020 3320 . . . . . . 3 │ │ │ │ +0001d8d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001d8e0: 2020 363a 202e 202e 202e 202e 202e 2020 6: . . . . . │ │ │ │ +0001d8f0: 2e20 2033 2020 2020 2020 2020 2020 2020 . 3 │ │ │ │ 0001d900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d920: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0001d930: 2020 2037 3a20 2e20 2e20 2e20 2e20 2e20 7: . . . . . │ │ │ │ -0001d940: 2031 2020 3920 2020 2020 2020 2020 2020 1 9 │ │ │ │ +0001d910: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d920: 2020 2020 2020 2020 373a 202e 202e 202e 7: . . . │ │ │ │ +0001d930: 202e 202e 2020 3120 2039 2020 2020 2020 . . 1 9 │ │ │ │ +0001d940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d960: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001d960: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001d970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d9b0: 2020 207c 0a7c 6f37 203a 2042 6574 7469 |.|o7 : Betti │ │ │ │ -0001d9c0: 5461 6c6c 7920 2020 2020 2020 2020 2020 Tally │ │ │ │ +0001d9a0: 2020 2020 2020 2020 7c0a 7c6f 3720 3a20 |.|o7 : │ │ │ │ +0001d9b0: 4265 7474 6954 616c 6c79 2020 2020 2020 BettiTally │ │ │ │ +0001d9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d9f0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001d9e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001d9f0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0001da00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001da10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001da20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001da30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0001da40: 0a7c 6938 203a 204d 5320 3d20 7072 756e .|i8 : MS = prun │ │ │ │ -0001da50: 6520 7075 7368 466f 7277 6172 6428 702c e pushForward(p, │ │ │ │ -0001da60: 2063 6f6b 6572 2046 462e 6464 5f36 293b coker FF.dd_6); │ │ │ │ -0001da70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001da80: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001da30: 2d2d 2d2d 2b0a 7c69 3820 3a20 4d53 203d ----+.|i8 : MS = │ │ │ │ +0001da40: 2070 7275 6e65 2070 7573 6846 6f72 7761 prune pushForwa │ │ │ │ +0001da50: 7264 2870 2c20 636f 6b65 7220 4646 2e64 rd(p, coker FF.d │ │ │ │ +0001da60: 645f 3629 3b20 2020 2020 2020 2020 2020 d_6); │ │ │ │ +0001da70: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001da80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001da90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001daa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001dab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6939 -----------+.|i9 │ │ │ │ -0001dad0: 203a 2054 203d 2065 7874 6572 696f 7254 : T = exteriorT │ │ │ │ -0001dae0: 6f72 4d6f 6475 6c65 2866 2c4d 5329 3b20 orModule(f,MS); │ │ │ │ +0001dac0: 2b0a 7c69 3920 3a20 5420 3d20 6578 7465 +.|i9 : T = exte │ │ │ │ +0001dad0: 7269 6f72 546f 724d 6f64 756c 6528 662c riorTorModule(f, │ │ │ │ +0001dae0: 4d53 293b 2020 2020 2020 2020 2020 2020 MS); │ │ │ │ 0001daf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001db00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001db10: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0001db00: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001db10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001db20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001db30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001db40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001db50: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 -------+.|i10 : │ │ │ │ -0001db60: 6265 7474 6920 5420 2020 2020 2020 2020 betti T │ │ │ │ +0001db40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0001db50: 3130 203a 2062 6574 7469 2054 2020 2020 10 : betti T │ │ │ │ +0001db60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001db70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001db80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001db90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001db90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001dba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dbe0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001dbf0: 2020 2020 3020 2020 3120 2020 2020 2020 0 1 │ │ │ │ +0001dbd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001dbe0: 2020 2020 2020 2020 2030 2020 2031 2020 0 1 │ │ │ │ +0001dbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dc20: 2020 2020 2020 2020 207c 0a7c 6f31 3020 |.|o10 │ │ │ │ -0001dc30: 3d20 746f 7461 6c3a 2038 3420 3235 3220 = total: 84 252 │ │ │ │ +0001dc10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001dc20: 7c6f 3130 203d 2074 6f74 616c 3a20 3834 |o10 = total: 84 │ │ │ │ +0001dc30: 2032 3532 2020 2020 2020 2020 2020 2020 252 │ │ │ │ 0001dc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dc60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001dc70: 0a7c 2020 2020 2020 2020 2020 303a 2031 .| 0: 1 │ │ │ │ -0001dc80: 3320 2033 3920 2020 2020 2020 2020 2020 3 39 │ │ │ │ +0001dc60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001dc70: 2030 3a20 3133 2020 3339 2020 2020 2020 0: 13 39 │ │ │ │ +0001dc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dcb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001dcc0: 2020 313a 2033 3320 2039 3920 2020 2020 1: 33 99 │ │ │ │ +0001dca0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001dcb0: 2020 2020 2020 2031 3a20 3333 2020 3939 1: 33 99 │ │ │ │ +0001dcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dcf0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001dd00: 2020 2020 2020 2020 323a 2032 3920 2038 2: 29 8 │ │ │ │ -0001dd10: 3720 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ +0001dcf0: 7c0a 7c20 2020 2020 2020 2020 2032 3a20 |.| 2: │ │ │ │ +0001dd00: 3239 2020 3837 2020 2020 2020 2020 2020 29 87 │ │ │ │ +0001dd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dd40: 207c 0a7c 2020 2020 2020 2020 2020 333a |.| 3: │ │ │ │ -0001dd50: 2020 3920 2032 3720 2020 2020 2020 2020 9 27 │ │ │ │ +0001dd30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001dd40: 2020 2033 3a20 2039 2020 3237 2020 2020 3: 9 27 │ │ │ │ +0001dd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dd80: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001dd70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001dd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ddb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ddc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001ddd0: 6f31 3020 3a20 4265 7474 6954 616c 6c79 o10 : BettiTally │ │ │ │ +0001ddc0: 2020 7c0a 7c6f 3130 203a 2042 6574 7469 |.|o10 : Betti │ │ │ │ +0001ddd0: 5461 6c6c 7920 2020 2020 2020 2020 2020 Tally │ │ │ │ 0001dde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ddf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001de00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001de10: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0001de00: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001de10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001de20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001de30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001de40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001de50: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 ---------+.|i11 │ │ │ │ -0001de60: 3a20 6265 7474 6920 7265 7320 2850 5420 : betti res (PT │ │ │ │ -0001de70: 3d20 7072 756e 6520 5429 2020 2020 2020 = prune T) │ │ │ │ +0001de40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0001de50: 7c69 3131 203a 2062 6574 7469 2072 6573 |i11 : betti res │ │ │ │ +0001de60: 2028 5054 203d 2070 7275 6e65 2054 2920 (PT = prune T) │ │ │ │ +0001de70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001de80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001de90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001dea0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001de90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001dea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001deb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ded0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dee0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001def0: 2020 2020 2020 3020 2031 2020 3220 2020 0 1 2 │ │ │ │ -0001df00: 3320 2020 3420 2020 2020 2020 2020 2020 3 4 │ │ │ │ +0001ded0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001dee0: 2020 2020 2020 2020 2020 2030 2020 3120 0 1 │ │ │ │ +0001def0: 2032 2020 2033 2020 2034 2020 2020 2020 2 3 4 │ │ │ │ +0001df00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001df10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001df20: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -0001df30: 3120 3d20 746f 7461 6c3a 2033 3120 3535 1 = total: 31 55 │ │ │ │ -0001df40: 2038 3720 3132 3720 3137 3520 2020 2020 87 127 175 │ │ │ │ +0001df20: 7c0a 7c6f 3131 203d 2074 6f74 616c 3a20 |.|o11 = total: │ │ │ │ +0001df30: 3331 2035 3520 3837 2031 3237 2031 3735 31 55 87 127 175 │ │ │ │ +0001df40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001df50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001df60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001df70: 207c 0a7c 2020 2020 2020 2020 2020 303a |.| 0: │ │ │ │ -0001df80: 2031 3320 3234 2033 3920 2035 3820 2038 13 24 39 58 8 │ │ │ │ -0001df90: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -0001dfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dfb0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0001dfc0: 2020 2020 313a 2031 3820 3331 2034 3820 1: 18 31 48 │ │ │ │ -0001dfd0: 2036 3920 2039 3420 2020 2020 2020 2020 69 94 │ │ │ │ +0001df60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001df70: 2020 2030 3a20 3133 2032 3420 3339 2020 0: 13 24 39 │ │ │ │ +0001df80: 3538 2020 3831 2020 2020 2020 2020 2020 58 81 │ │ │ │ +0001df90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001dfa0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001dfb0: 2020 2020 2020 2020 2031 3a20 3138 2033 1: 18 3 │ │ │ │ +0001dfc0: 3120 3438 2020 3639 2020 3934 2020 2020 1 48 69 94 │ │ │ │ +0001dfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dff0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001dff0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001e000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e040: 2020 207c 0a7c 6f31 3120 3a20 4265 7474 |.|o11 : Bett │ │ │ │ -0001e050: 6954 616c 6c79 2020 2020 2020 2020 2020 iTally │ │ │ │ +0001e030: 2020 2020 2020 2020 7c0a 7c6f 3131 203a |.|o11 : │ │ │ │ +0001e040: 2042 6574 7469 5461 6c6c 7920 2020 2020 BettiTally │ │ │ │ +0001e050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e080: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001e070: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001e080: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0001e090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0001e0d0: 0a7c 6931 3220 3a20 616e 6e20 5054 2020 .|i12 : ann PT │ │ │ │ +0001e0c0: 2d2d 2d2d 2b0a 7c69 3132 203a 2061 6e6e ----+.|i12 : ann │ │ │ │ +0001e0d0: 2050 5420 2020 2020 2020 2020 2020 2020 PT │ │ │ │ 0001e0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e110: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001e100: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001e110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e150: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -0001e160: 3220 3d20 6964 6561 6c28 6520 6520 6520 2 = ideal(e e e │ │ │ │ -0001e170: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0001e150: 7c0a 7c6f 3132 203d 2069 6465 616c 2865 |.|o12 = ideal(e │ │ │ │ +0001e160: 2065 2065 2029 2020 2020 2020 2020 2020 e e ) │ │ │ │ +0001e170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e1a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001e1b0: 2030 2031 2032 2020 2020 2020 2020 2020 0 1 2 │ │ │ │ +0001e190: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001e1a0: 2020 2020 2020 3020 3120 3220 2020 2020 0 1 2 │ │ │ │ +0001e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e1e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001e1d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e220: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001e230: 6f31 3220 3a20 4964 6561 6c20 6f66 206b o12 : Ideal of k │ │ │ │ -0001e240: 6b5b 6520 2e2e 6520 5d20 2020 2020 2020 k[e ..e ] │ │ │ │ +0001e220: 2020 7c0a 7c6f 3132 203a 2049 6465 616c |.|o12 : Ideal │ │ │ │ +0001e230: 206f 6620 6b6b 5b65 202e 2e65 205d 2020 of kk[e ..e ] │ │ │ │ +0001e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e270: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001e280: 2020 2020 2020 2020 2030 2020 2032 2020 0 2 │ │ │ │ +0001e260: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001e270: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +0001e280: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0001e290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e2b0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001e2a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001e2b0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0001e2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0001e300: 0a7c 6931 3320 3a20 5054 3020 3d20 696d .|i13 : PT0 = im │ │ │ │ -0001e310: 6167 6520 2869 6e64 7563 6564 4d61 7028 age (inducedMap( │ │ │ │ -0001e320: 5054 2c63 6f76 6572 2050 5429 2a20 2828 PT,cover PT)* (( │ │ │ │ -0001e330: 636f 7665 7220 5054 295f 7b30 2e2e 3132 cover PT)_{0..12 │ │ │ │ -0001e340: 7d29 293b 207c 0a2b 2d2d 2d2d 2d2d 2d2d })); |.+-------- │ │ │ │ +0001e2f0: 2d2d 2d2d 2b0a 7c69 3133 203a 2050 5430 ----+.|i13 : PT0 │ │ │ │ +0001e300: 203d 2069 6d61 6765 2028 696e 6475 6365 = image (induce │ │ │ │ +0001e310: 644d 6170 2850 542c 636f 7665 7220 5054 dMap(PT,cover PT │ │ │ │ +0001e320: 292a 2028 2863 6f76 6572 2050 5429 5f7b )* ((cover PT)_{ │ │ │ │ +0001e330: 302e 2e31 327d 2929 3b20 7c0a 2b2d 2d2d 0..12})); |.+--- │ │ │ │ +0001e340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -0001e390: 3420 3a20 5054 3120 3d20 696d 6167 6520 4 : PT1 = image │ │ │ │ -0001e3a0: 2869 6e64 7563 6564 4d61 7028 5054 2c63 (inducedMap(PT,c │ │ │ │ -0001e3b0: 6f76 6572 2050 5429 2a20 2828 636f 7665 over PT)* ((cove │ │ │ │ -0001e3c0: 7220 5054 295f 7b31 332e 2e33 307d 2929 r PT)_{13..30})) │ │ │ │ -0001e3d0: 3b7c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ;|.+------------ │ │ │ │ +0001e380: 2b0a 7c69 3134 203a 2050 5431 203d 2069 +.|i14 : PT1 = i │ │ │ │ +0001e390: 6d61 6765 2028 696e 6475 6365 644d 6170 mage (inducedMap │ │ │ │ +0001e3a0: 2850 542c 636f 7665 7220 5054 292a 2028 (PT,cover PT)* ( │ │ │ │ +0001e3b0: 2863 6f76 6572 2050 5429 5f7b 3133 2e2e (cover PT)_{13.. │ │ │ │ +0001e3c0: 3330 7d29 293b 7c0a 2b2d 2d2d 2d2d 2d2d 30}));|.+------- │ │ │ │ +0001e3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e410: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3520 3a20 -------+.|i15 : │ │ │ │ -0001e420: 6265 7474 6920 7265 7320 7072 756e 6520 betti res prune │ │ │ │ -0001e430: 5054 3020 2020 2020 2020 2020 2020 2020 PT0 │ │ │ │ +0001e400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0001e410: 3135 203a 2062 6574 7469 2072 6573 2070 15 : betti res p │ │ │ │ +0001e420: 7275 6e65 2050 5430 2020 2020 2020 2020 rune PT0 │ │ │ │ +0001e430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e450: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001e450: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e4a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001e4b0: 2020 2020 3020 2031 2020 3220 2033 2020 0 1 2 3 │ │ │ │ -0001e4c0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0001e4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e4e0: 2020 2020 2020 2020 207c 0a7c 6f31 3520 |.|o15 │ │ │ │ -0001e4f0: 3d20 746f 7461 6c3a 2031 3320 3234 2033 = total: 13 24 3 │ │ │ │ -0001e500: 3920 3538 2038 3120 2020 2020 2020 2020 9 58 81 │ │ │ │ +0001e490: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001e4a0: 2020 2020 2020 2020 2030 2020 3120 2032 0 1 2 │ │ │ │ +0001e4b0: 2020 3320 2034 2020 2020 2020 2020 2020 3 4 │ │ │ │ +0001e4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e4d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001e4e0: 7c6f 3135 203d 2074 6f74 616c 3a20 3133 |o15 = total: 13 │ │ │ │ +0001e4f0: 2032 3420 3339 2035 3820 3831 2020 2020 24 39 58 81 │ │ │ │ +0001e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e520: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001e530: 0a7c 2020 2020 2020 2020 2020 303a 2031 .| 0: 1 │ │ │ │ -0001e540: 3320 3234 2033 3920 3538 2038 3120 2020 3 24 39 58 81 │ │ │ │ +0001e520: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001e530: 2030 3a20 3133 2032 3420 3339 2035 3820 0: 13 24 39 58 │ │ │ │ +0001e540: 3831 2020 2020 2020 2020 2020 2020 2020 81 │ │ │ │ 0001e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e570: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001e560: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001e570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e5b0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -0001e5c0: 3520 3a20 4265 7474 6954 616c 6c79 2020 5 : BettiTally │ │ │ │ +0001e5b0: 7c0a 7c6f 3135 203a 2042 6574 7469 5461 |.|o15 : BettiTa │ │ │ │ +0001e5c0: 6c6c 7920 2020 2020 2020 2020 2020 2020 lly │ │ │ │ 0001e5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e600: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0001e5f0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001e600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e640: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3620 3a20 -------+.|i16 : │ │ │ │ -0001e650: 6265 7474 6920 7265 7320 7072 756e 6520 betti res prune │ │ │ │ -0001e660: 5054 3120 2020 2020 2020 2020 2020 2020 PT1 │ │ │ │ +0001e630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0001e640: 3136 203a 2062 6574 7469 2072 6573 2070 16 : betti res p │ │ │ │ +0001e650: 7275 6e65 2050 5431 2020 2020 2020 2020 rune PT1 │ │ │ │ +0001e660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e680: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001e680: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001e690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e6d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001e6e0: 2020 2020 3020 2031 2020 3220 2033 2020 0 1 2 3 │ │ │ │ -0001e6f0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0001e700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e710: 2020 2020 2020 2020 207c 0a7c 6f31 3620 |.|o16 │ │ │ │ -0001e720: 3d20 746f 7461 6c3a 2031 3820 3238 2033 = total: 18 28 3 │ │ │ │ -0001e730: 3920 3531 2036 3420 2020 2020 2020 2020 9 51 64 │ │ │ │ +0001e6c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001e6d0: 2020 2020 2020 2020 2030 2020 3120 2032 0 1 2 │ │ │ │ +0001e6e0: 2020 3320 2034 2020 2020 2020 2020 2020 3 4 │ │ │ │ +0001e6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e700: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001e710: 7c6f 3136 203d 2074 6f74 616c 3a20 3138 |o16 = total: 18 │ │ │ │ +0001e720: 2032 3820 3339 2035 3120 3634 2020 2020 28 39 51 64 │ │ │ │ +0001e730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e750: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001e760: 0a7c 2020 2020 2020 2020 2020 313a 2031 .| 1: 1 │ │ │ │ -0001e770: 3820 3238 2033 3920 3531 2036 3420 2020 8 28 39 51 64 │ │ │ │ +0001e750: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001e760: 2031 3a20 3138 2032 3820 3339 2035 3120 1: 18 28 39 51 │ │ │ │ +0001e770: 3634 2020 2020 2020 2020 2020 2020 2020 64 │ │ │ │ 0001e780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e7a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001e790: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001e7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e7e0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -0001e7f0: 3620 3a20 4265 7474 6954 616c 6c79 2020 6 : BettiTally │ │ │ │ +0001e7e0: 7c0a 7c6f 3136 203a 2042 6574 7469 5461 |.|o16 : BettiTa │ │ │ │ +0001e7f0: 6c6c 7920 2020 2020 2020 2020 2020 2020 lly │ │ │ │ 0001e800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e830: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0001e820: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001e830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e870: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3720 3a20 -------+.|i17 : │ │ │ │ -0001e880: 6265 7474 6920 7265 7320 7072 756e 6520 betti res prune │ │ │ │ -0001e890: 5054 2020 2020 2020 2020 2020 2020 2020 PT │ │ │ │ +0001e860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0001e870: 3137 203a 2062 6574 7469 2072 6573 2070 17 : betti res p │ │ │ │ +0001e880: 7275 6e65 2050 5420 2020 2020 2020 2020 rune PT │ │ │ │ +0001e890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e8b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001e8b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001e8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e900: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001e910: 2020 2020 3020 2031 2020 3220 2020 3320 0 1 2 3 │ │ │ │ -0001e920: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0001e930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e940: 2020 2020 2020 2020 207c 0a7c 6f31 3720 |.|o17 │ │ │ │ -0001e950: 3d20 746f 7461 6c3a 2033 3120 3535 2038 = total: 31 55 8 │ │ │ │ -0001e960: 3720 3132 3720 3137 3520 2020 2020 2020 7 127 175 │ │ │ │ +0001e8f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001e900: 2020 2020 2020 2020 2030 2020 3120 2032 0 1 2 │ │ │ │ +0001e910: 2020 2033 2020 2034 2020 2020 2020 2020 3 4 │ │ │ │ +0001e920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e930: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001e940: 7c6f 3137 203d 2074 6f74 616c 3a20 3331 |o17 = total: 31 │ │ │ │ +0001e950: 2035 3520 3837 2031 3237 2031 3735 2020 55 87 127 175 │ │ │ │ +0001e960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e980: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001e990: 0a7c 2020 2020 2020 2020 2020 303a 2031 .| 0: 1 │ │ │ │ -0001e9a0: 3320 3234 2033 3920 2035 3820 2038 3120 3 24 39 58 81 │ │ │ │ +0001e980: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001e990: 2030 3a20 3133 2032 3420 3339 2020 3538 0: 13 24 39 58 │ │ │ │ +0001e9a0: 2020 3831 2020 2020 2020 2020 2020 2020 81 │ │ │ │ 0001e9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e9d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001e9e0: 2020 313a 2031 3820 3331 2034 3820 2036 1: 18 31 48 6 │ │ │ │ -0001e9f0: 3920 2039 3420 2020 2020 2020 2020 2020 9 94 │ │ │ │ +0001e9c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001e9d0: 2020 2020 2020 2031 3a20 3138 2033 3120 1: 18 31 │ │ │ │ +0001e9e0: 3438 2020 3639 2020 3934 2020 2020 2020 48 69 94 │ │ │ │ +0001e9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ea00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ea10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001ea10: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001ea20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ea30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ea40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ea50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ea60: 207c 0a7c 6f31 3720 3a20 4265 7474 6954 |.|o17 : BettiT │ │ │ │ -0001ea70: 616c 6c79 2020 2020 2020 2020 2020 2020 ally │ │ │ │ +0001ea50: 2020 2020 2020 7c0a 7c6f 3137 203a 2042 |.|o17 : B │ │ │ │ +0001ea60: 6574 7469 5461 6c6c 7920 2020 2020 2020 ettiTally │ │ │ │ +0001ea70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ea80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ea90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001eaa0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0001ea90: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0001eaa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001eab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001eac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ead0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001eae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -0001eaf0: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ -0001eb00: 3d0a 0a20 202a 202a 6e6f 7465 206d 616b =.. * *note mak │ │ │ │ -0001eb10: 654d 6f64 756c 653a 206d 616b 654d 6f64 eModule: makeMod │ │ │ │ -0001eb20: 756c 652c 202d 2d20 6d61 6b65 7320 6120 ule, -- makes a │ │ │ │ -0001eb30: 4d6f 6475 6c65 206f 7574 206f 6620 6120 Module out of a │ │ │ │ -0001eb40: 636f 6c6c 6563 7469 6f6e 206f 660a 2020 collection of. │ │ │ │ -0001eb50: 2020 6d6f 6475 6c65 7320 616e 6420 6d61 modules and ma │ │ │ │ -0001eb60: 7073 0a0a 5761 7973 2074 6f20 7573 6520 ps..Ways to use │ │ │ │ -0001eb70: 6578 7465 7269 6f72 546f 724d 6f64 756c exteriorTorModul │ │ │ │ -0001eb80: 653a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d e:.============= │ │ │ │ -0001eb90: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001eba0: 3d0a 0a20 202a 2022 6578 7465 7269 6f72 =.. * "exterior │ │ │ │ -0001ebb0: 546f 724d 6f64 756c 6528 4d61 7472 6978 TorModule(Matrix │ │ │ │ -0001ebc0: 2c4d 6f64 756c 6529 220a 2020 2a20 2265 ,Module)". * "e │ │ │ │ -0001ebd0: 7874 6572 696f 7254 6f72 4d6f 6475 6c65 xteriorTorModule │ │ │ │ -0001ebe0: 284d 6174 7269 782c 4d6f 6475 6c65 2c4d (Matrix,Module,M │ │ │ │ -0001ebf0: 6f64 756c 6529 220a 0a46 6f72 2074 6865 odule)"..For the │ │ │ │ -0001ec00: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -0001ec10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -0001ec20: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -0001ec30: 2065 7874 6572 696f 7254 6f72 4d6f 6475 exteriorTorModu │ │ │ │ -0001ec40: 6c65 3a20 6578 7465 7269 6f72 546f 724d le: exteriorTorM │ │ │ │ -0001ec50: 6f64 756c 652c 2069 7320 6120 2a6e 6f74 odule, is a *not │ │ │ │ -0001ec60: 6520 6d65 7468 6f64 0a66 756e 6374 696f e method.functio │ │ │ │ -0001ec70: 6e3a 2028 4d61 6361 756c 6179 3244 6f63 n: (Macaulay2Doc │ │ │ │ -0001ec80: 294d 6574 686f 6446 756e 6374 696f 6e2c )MethodFunction, │ │ │ │ -0001ec90: 2e0a 1f0a 4669 6c65 3a20 436f 6d70 6c65 ....File: Comple │ │ │ │ -0001eca0: 7465 496e 7465 7273 6563 7469 6f6e 5265 teIntersectionRe │ │ │ │ -0001ecb0: 736f 6c75 7469 6f6e 732e 696e 666f 2c20 solutions.info, │ │ │ │ -0001ecc0: 4e6f 6465 3a20 6578 7449 734f 6e65 506f Node: extIsOnePo │ │ │ │ -0001ecd0: 6c79 6e6f 6d69 616c 2c20 4e65 7874 3a20 lynomial, Next: │ │ │ │ -0001ece0: 4578 744d 6f64 756c 652c 2050 7265 763a ExtModule, Prev: │ │ │ │ -0001ecf0: 2065 7874 6572 696f 7254 6f72 4d6f 6475 exteriorTorModu │ │ │ │ -0001ed00: 6c65 2c20 5570 3a20 546f 700a 0a65 7874 le, Up: Top..ext │ │ │ │ -0001ed10: 4973 4f6e 6550 6f6c 796e 6f6d 6961 6c20 IsOnePolynomial │ │ │ │ -0001ed20: 2d2d 2063 6865 636b 2077 6865 7468 6572 -- check whether │ │ │ │ -0001ed30: 2074 6865 2048 696c 6265 7274 2066 756e the Hilbert fun │ │ │ │ -0001ed40: 6374 696f 6e20 6f66 2045 7874 284d 2c6b ction of Ext(M,k │ │ │ │ -0001ed50: 2920 6973 206f 6e65 2070 6f6c 796e 6f6d ) is one polynom │ │ │ │ -0001ed60: 6961 6c0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ial.************ │ │ │ │ +0001eae0: 2d2d 2b0a 0a53 6565 2061 6c73 6f0a 3d3d --+..See also.== │ │ │ │ +0001eaf0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ +0001eb00: 6520 6d61 6b65 4d6f 6475 6c65 3a20 6d61 e makeModule: ma │ │ │ │ +0001eb10: 6b65 4d6f 6475 6c65 2c20 2d2d 206d 616b keModule, -- mak │ │ │ │ +0001eb20: 6573 2061 204d 6f64 756c 6520 6f75 7420 es a Module out │ │ │ │ +0001eb30: 6f66 2061 2063 6f6c 6c65 6374 696f 6e20 of a collection │ │ │ │ +0001eb40: 6f66 0a20 2020 206d 6f64 756c 6573 2061 of. modules a │ │ │ │ +0001eb50: 6e64 206d 6170 730a 0a57 6179 7320 746f nd maps..Ways to │ │ │ │ +0001eb60: 2075 7365 2065 7874 6572 696f 7254 6f72 use exteriorTor │ │ │ │ +0001eb70: 4d6f 6475 6c65 3a0a 3d3d 3d3d 3d3d 3d3d Module:.======== │ │ │ │ +0001eb80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001eb90: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2265 7874 ======.. * "ext │ │ │ │ +0001eba0: 6572 696f 7254 6f72 4d6f 6475 6c65 284d eriorTorModule(M │ │ │ │ +0001ebb0: 6174 7269 782c 4d6f 6475 6c65 2922 0a20 atrix,Module)". │ │ │ │ +0001ebc0: 202a 2022 6578 7465 7269 6f72 546f 724d * "exteriorTorM │ │ │ │ +0001ebd0: 6f64 756c 6528 4d61 7472 6978 2c4d 6f64 odule(Matrix,Mod │ │ │ │ +0001ebe0: 756c 652c 4d6f 6475 6c65 2922 0a0a 466f ule,Module)"..Fo │ │ │ │ +0001ebf0: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +0001ec00: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +0001ec10: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +0001ec20: 2a6e 6f74 6520 6578 7465 7269 6f72 546f *note exteriorTo │ │ │ │ +0001ec30: 724d 6f64 756c 653a 2065 7874 6572 696f rModule: exterio │ │ │ │ +0001ec40: 7254 6f72 4d6f 6475 6c65 2c20 6973 2061 rTorModule, is a │ │ │ │ +0001ec50: 202a 6e6f 7465 206d 6574 686f 640a 6675 *note method.fu │ │ │ │ +0001ec60: 6e63 7469 6f6e 3a20 284d 6163 6175 6c61 nction: (Macaula │ │ │ │ +0001ec70: 7932 446f 6329 4d65 7468 6f64 4675 6e63 y2Doc)MethodFunc │ │ │ │ +0001ec80: 7469 6f6e 2c2e 0a1f 0a46 696c 653a 2043 tion,....File: C │ │ │ │ +0001ec90: 6f6d 706c 6574 6549 6e74 6572 7365 6374 ompleteIntersect │ │ │ │ +0001eca0: 696f 6e52 6573 6f6c 7574 696f 6e73 2e69 ionResolutions.i │ │ │ │ +0001ecb0: 6e66 6f2c 204e 6f64 653a 2065 7874 4973 nfo, Node: extIs │ │ │ │ +0001ecc0: 4f6e 6550 6f6c 796e 6f6d 6961 6c2c 204e OnePolynomial, N │ │ │ │ +0001ecd0: 6578 743a 2045 7874 4d6f 6475 6c65 2c20 ext: ExtModule, │ │ │ │ +0001ece0: 5072 6576 3a20 6578 7465 7269 6f72 546f Prev: exteriorTo │ │ │ │ +0001ecf0: 724d 6f64 756c 652c 2055 703a 2054 6f70 rModule, Up: Top │ │ │ │ +0001ed00: 0a0a 6578 7449 734f 6e65 506f 6c79 6e6f ..extIsOnePolyno │ │ │ │ +0001ed10: 6d69 616c 202d 2d20 6368 6563 6b20 7768 mial -- check wh │ │ │ │ +0001ed20: 6574 6865 7220 7468 6520 4869 6c62 6572 ether the Hilber │ │ │ │ +0001ed30: 7420 6675 6e63 7469 6f6e 206f 6620 4578 t function of Ex │ │ │ │ +0001ed40: 7428 4d2c 6b29 2069 7320 6f6e 6520 706f t(M,k) is one po │ │ │ │ +0001ed50: 6c79 6e6f 6d69 616c 0a2a 2a2a 2a2a 2a2a lynomial.******* │ │ │ │ +0001ed60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001ed70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001ed80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001ed90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001eda0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001edb0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f **********..Syno │ │ │ │ -0001edc0: 7073 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 psis.========.. │ │ │ │ -0001edd0: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ -0001ede0: 2020 2028 702c 7429 203d 2065 7874 4973 (p,t) = extIs │ │ │ │ -0001edf0: 4f6e 6550 6f6c 796e 6f6d 6961 6c20 4d0a OnePolynomial M. │ │ │ │ -0001ee00: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ -0001ee10: 2020 2a20 4d2c 2061 202a 6e6f 7465 206d * M, a *note m │ │ │ │ -0001ee20: 6f64 756c 653a 2028 4d61 6361 756c 6179 odule: (Macaulay │ │ │ │ -0001ee30: 3244 6f63 294d 6f64 756c 652c 2c20 6d6f 2Doc)Module,, mo │ │ │ │ -0001ee40: 6475 6c65 206f 7665 7220 6120 636f 6d70 dule over a comp │ │ │ │ -0001ee50: 6c65 7465 0a20 2020 2020 2020 2069 6e74 lete. int │ │ │ │ -0001ee60: 6572 7365 6374 696f 6e0a 2020 2a20 4f75 ersection. * Ou │ │ │ │ -0001ee70: 7470 7574 733a 0a20 2020 2020 202a 2070 tputs:. * p │ │ │ │ -0001ee80: 2c20 6120 2a6e 6f74 6520 7269 6e67 2065 , a *note ring e │ │ │ │ -0001ee90: 6c65 6d65 6e74 3a20 284d 6163 6175 6c61 lement: (Macaula │ │ │ │ -0001eea0: 7932 446f 6329 5269 6e67 456c 656d 656e y2Doc)RingElemen │ │ │ │ -0001eeb0: 742c 2c20 7028 7a29 3d70 6528 7a2f 3229 t,, p(z)=pe(z/2) │ │ │ │ -0001eec0: 2c0a 2020 2020 2020 2020 7768 6572 6520 ,. where │ │ │ │ -0001eed0: 7065 2069 7320 7468 6520 4869 6c62 6572 pe is the Hilber │ │ │ │ -0001eee0: 7420 706f 6c79 206f 6620 4578 745e 7b65 t poly of Ext^{e │ │ │ │ -0001eef0: 7665 6e7d 284d 2c6b 290a 2020 2020 2020 ven}(M,k). │ │ │ │ -0001ef00: 2a20 742c 2061 202a 6e6f 7465 2042 6f6f * t, a *note Boo │ │ │ │ -0001ef10: 6c65 616e 2076 616c 7565 3a20 284d 6163 lean value: (Mac │ │ │ │ -0001ef20: 6175 6c61 7932 446f 6329 426f 6f6c 6561 aulay2Doc)Boolea │ │ │ │ -0001ef30: 6e2c 2c20 7472 7565 2069 6620 7468 6520 n,, true if the │ │ │ │ -0001ef40: 6576 656e 2061 6e64 0a20 2020 2020 2020 even and. │ │ │ │ -0001ef50: 206f 6464 2070 6f6c 796e 6f6d 6961 6c73 odd polynomials │ │ │ │ -0001ef60: 206d 6174 6368 2074 6f20 666f 726d 206f match to form o │ │ │ │ -0001ef70: 6e65 2070 6f6c 796e 6f6d 6961 6c0a 0a44 ne polynomial..D │ │ │ │ -0001ef80: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -0001ef90: 3d3d 3d3d 3d3d 0a0a 436f 6d70 7574 6573 ======..Computes │ │ │ │ -0001efa0: 2074 6865 2048 696c 6265 7274 2070 6f6c the Hilbert pol │ │ │ │ -0001efb0: 796e 6f6d 6961 6c73 2070 6528 7a29 2c20 ynomials pe(z), │ │ │ │ -0001efc0: 706f 287a 2920 6f66 2065 7665 6e45 7874 po(z) of evenExt │ │ │ │ -0001efd0: 4d6f 6475 6c65 2061 6e64 0a6f 6464 4578 Module and.oddEx │ │ │ │ -0001efe0: 744d 6f64 756c 652e 2049 7420 7265 7475 tModule. It retu │ │ │ │ -0001eff0: 726e 7320 7065 287a 2f32 292c 2061 6e64 rns pe(z/2), and │ │ │ │ -0001f000: 2063 6f6d 7061 7265 7320 746f 2073 6565 compares to see │ │ │ │ -0001f010: 2077 6865 7468 6572 2074 6869 7320 6973 whether this is │ │ │ │ -0001f020: 2065 7175 616c 2074 6f0a 706f 287a 2f32 equal to.po(z/2 │ │ │ │ -0001f030: 2d31 2f32 292e 2041 7672 616d 6f76 2c20 -1/2). Avramov, │ │ │ │ -0001f040: 5365 6365 6c65 616e 7520 616e 6420 5a68 Seceleanu and Zh │ │ │ │ -0001f050: 656e 6720 6861 7665 2070 726f 7665 6e20 eng have proven │ │ │ │ -0001f060: 7468 6174 2069 6620 7468 6520 6964 6561 that if the idea │ │ │ │ -0001f070: 6c20 6f66 0a71 7561 6472 6174 6963 206c l of.quadratic l │ │ │ │ -0001f080: 6561 6469 6e67 2066 6f72 6d73 206f 6620 eading forms of │ │ │ │ -0001f090: 6120 636f 6d70 6c65 7465 2069 6e74 6572 a complete inter │ │ │ │ -0001f0a0: 7365 6374 696f 6e20 6f66 2063 6f64 696d section of codim │ │ │ │ -0001f0b0: 656e 7369 6f6e 2063 2067 656e 6572 6174 ension c generat │ │ │ │ -0001f0c0: 6520 616e 0a69 6465 616c 206f 6620 636f e an.ideal of co │ │ │ │ -0001f0d0: 6469 6d65 6e73 696f 6e20 6174 206c 6561 dimension at lea │ │ │ │ -0001f0e0: 7374 2063 2d31 2c20 7468 656e 2074 6865 st c-1, then the │ │ │ │ -0001f0f0: 2042 6574 7469 206e 756d 6265 7273 206f Betti numbers o │ │ │ │ -0001f100: 6620 616e 7920 6d6f 6475 6c65 2067 726f f any module gro │ │ │ │ -0001f110: 772c 0a65 7665 6e74 7561 6c6c 792c 2061 w,.eventually, a │ │ │ │ -0001f120: 7320 6120 7369 6e67 6c65 2070 6f6c 796e s a single polyn │ │ │ │ -0001f130: 6f6d 6961 6c20 2869 6e73 7465 6164 206f omial (instead o │ │ │ │ -0001f140: 6620 7265 7175 6972 696e 6720 7365 7061 f requiring sepa │ │ │ │ -0001f150: 7261 7465 2070 6f6c 796e 6f6d 6961 6c73 rate polynomials │ │ │ │ -0001f160: 0a66 6f72 2065 7665 6e20 616e 6420 6f64 .for even and od │ │ │ │ -0001f170: 6420 7465 726d 732e 2920 5468 6973 2073 d terms.) This s │ │ │ │ -0001f180: 6372 6970 7420 6368 6563 6b73 2074 6865 cript checks the │ │ │ │ -0001f190: 2072 6573 756c 7420 696e 2074 6865 2068 result in the h │ │ │ │ -0001f1a0: 6f6d 6f67 656e 656f 7573 2063 6173 650a omogeneous case. │ │ │ │ -0001f1b0: 2869 6e20 7768 6963 6820 6361 7365 2074 (in which case t │ │ │ │ -0001f1c0: 6865 2063 6f6e 6469 7469 6f6e 2069 7320 he condition is │ │ │ │ -0001f1d0: 6e65 6365 7373 6172 7920 616e 6420 7375 necessary and su │ │ │ │ -0001f1e0: 6666 6963 6965 6e74 2e29 0a0a 2b2d 2d2d fficient.)..+--- │ │ │ │ +0001eda0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +0001edb0: 0a53 796e 6f70 7369 730a 3d3d 3d3d 3d3d .Synopsis.====== │ │ │ │ +0001edc0: 3d3d 0a0a 2020 2a20 5573 6167 653a 200a ==.. * Usage: . │ │ │ │ +0001edd0: 2020 2020 2020 2020 2870 2c74 2920 3d20 (p,t) = │ │ │ │ +0001ede0: 6578 7449 734f 6e65 506f 6c79 6e6f 6d69 extIsOnePolynomi │ │ │ │ +0001edf0: 616c 204d 0a20 202a 2049 6e70 7574 733a al M. * Inputs: │ │ │ │ +0001ee00: 0a20 2020 2020 202a 204d 2c20 6120 2a6e . * M, a *n │ │ │ │ +0001ee10: 6f74 6520 6d6f 6475 6c65 3a20 284d 6163 ote module: (Mac │ │ │ │ +0001ee20: 6175 6c61 7932 446f 6329 4d6f 6475 6c65 aulay2Doc)Module │ │ │ │ +0001ee30: 2c2c 206d 6f64 756c 6520 6f76 6572 2061 ,, module over a │ │ │ │ +0001ee40: 2063 6f6d 706c 6574 650a 2020 2020 2020 complete. │ │ │ │ +0001ee50: 2020 696e 7465 7273 6563 7469 6f6e 0a20 intersection. │ │ │ │ +0001ee60: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ +0001ee70: 2020 2a20 702c 2061 202a 6e6f 7465 2072 * p, a *note r │ │ │ │ +0001ee80: 696e 6720 656c 656d 656e 743a 2028 4d61 ing element: (Ma │ │ │ │ +0001ee90: 6361 756c 6179 3244 6f63 2952 696e 6745 caulay2Doc)RingE │ │ │ │ +0001eea0: 6c65 6d65 6e74 2c2c 2070 287a 293d 7065 lement,, p(z)=pe │ │ │ │ +0001eeb0: 287a 2f32 292c 0a20 2020 2020 2020 2077 (z/2),. w │ │ │ │ +0001eec0: 6865 7265 2070 6520 6973 2074 6865 2048 here pe is the H │ │ │ │ +0001eed0: 696c 6265 7274 2070 6f6c 7920 6f66 2045 ilbert poly of E │ │ │ │ +0001eee0: 7874 5e7b 6576 656e 7d28 4d2c 6b29 0a20 xt^{even}(M,k). │ │ │ │ +0001eef0: 2020 2020 202a 2074 2c20 6120 2a6e 6f74 * t, a *not │ │ │ │ +0001ef00: 6520 426f 6f6c 6561 6e20 7661 6c75 653a e Boolean value: │ │ │ │ +0001ef10: 2028 4d61 6361 756c 6179 3244 6f63 2942 (Macaulay2Doc)B │ │ │ │ +0001ef20: 6f6f 6c65 616e 2c2c 2074 7275 6520 6966 oolean,, true if │ │ │ │ +0001ef30: 2074 6865 2065 7665 6e20 616e 640a 2020 the even and. │ │ │ │ +0001ef40: 2020 2020 2020 6f64 6420 706f 6c79 6e6f odd polyno │ │ │ │ +0001ef50: 6d69 616c 7320 6d61 7463 6820 746f 2066 mials match to f │ │ │ │ +0001ef60: 6f72 6d20 6f6e 6520 706f 6c79 6e6f 6d69 orm one polynomi │ │ │ │ +0001ef70: 616c 0a0a 4465 7363 7269 7074 696f 6e0a al..Description. │ │ │ │ +0001ef80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a43 6f6d ===========..Com │ │ │ │ +0001ef90: 7075 7465 7320 7468 6520 4869 6c62 6572 putes the Hilber │ │ │ │ +0001efa0: 7420 706f 6c79 6e6f 6d69 616c 7320 7065 t polynomials pe │ │ │ │ +0001efb0: 287a 292c 2070 6f28 7a29 206f 6620 6576 (z), po(z) of ev │ │ │ │ +0001efc0: 656e 4578 744d 6f64 756c 6520 616e 640a enExtModule and. │ │ │ │ +0001efd0: 6f64 6445 7874 4d6f 6475 6c65 2e20 4974 oddExtModule. It │ │ │ │ +0001efe0: 2072 6574 7572 6e73 2070 6528 7a2f 3229 returns pe(z/2) │ │ │ │ +0001eff0: 2c20 616e 6420 636f 6d70 6172 6573 2074 , and compares t │ │ │ │ +0001f000: 6f20 7365 6520 7768 6574 6865 7220 7468 o see whether th │ │ │ │ +0001f010: 6973 2069 7320 6571 7561 6c20 746f 0a70 is is equal to.p │ │ │ │ +0001f020: 6f28 7a2f 322d 312f 3229 2e20 4176 7261 o(z/2-1/2). Avra │ │ │ │ +0001f030: 6d6f 762c 2053 6563 656c 6561 6e75 2061 mov, Seceleanu a │ │ │ │ +0001f040: 6e64 205a 6865 6e67 2068 6176 6520 7072 nd Zheng have pr │ │ │ │ +0001f050: 6f76 656e 2074 6861 7420 6966 2074 6865 oven that if the │ │ │ │ +0001f060: 2069 6465 616c 206f 660a 7175 6164 7261 ideal of.quadra │ │ │ │ +0001f070: 7469 6320 6c65 6164 696e 6720 666f 726d tic leading form │ │ │ │ +0001f080: 7320 6f66 2061 2063 6f6d 706c 6574 6520 s of a complete │ │ │ │ +0001f090: 696e 7465 7273 6563 7469 6f6e 206f 6620 intersection of │ │ │ │ +0001f0a0: 636f 6469 6d65 6e73 696f 6e20 6320 6765 codimension c ge │ │ │ │ +0001f0b0: 6e65 7261 7465 2061 6e0a 6964 6561 6c20 nerate an.ideal │ │ │ │ +0001f0c0: 6f66 2063 6f64 696d 656e 7369 6f6e 2061 of codimension a │ │ │ │ +0001f0d0: 7420 6c65 6173 7420 632d 312c 2074 6865 t least c-1, the │ │ │ │ +0001f0e0: 6e20 7468 6520 4265 7474 6920 6e75 6d62 n the Betti numb │ │ │ │ +0001f0f0: 6572 7320 6f66 2061 6e79 206d 6f64 756c ers of any modul │ │ │ │ +0001f100: 6520 6772 6f77 2c0a 6576 656e 7475 616c e grow,.eventual │ │ │ │ +0001f110: 6c79 2c20 6173 2061 2073 696e 676c 6520 ly, as a single │ │ │ │ +0001f120: 706f 6c79 6e6f 6d69 616c 2028 696e 7374 polynomial (inst │ │ │ │ +0001f130: 6561 6420 6f66 2072 6571 7569 7269 6e67 ead of requiring │ │ │ │ +0001f140: 2073 6570 6172 6174 6520 706f 6c79 6e6f separate polyno │ │ │ │ +0001f150: 6d69 616c 730a 666f 7220 6576 656e 2061 mials.for even a │ │ │ │ +0001f160: 6e64 206f 6464 2074 6572 6d73 2e29 2054 nd odd terms.) T │ │ │ │ +0001f170: 6869 7320 7363 7269 7074 2063 6865 636b his script check │ │ │ │ +0001f180: 7320 7468 6520 7265 7375 6c74 2069 6e20 s the result in │ │ │ │ +0001f190: 7468 6520 686f 6d6f 6765 6e65 6f75 7320 the homogeneous │ │ │ │ +0001f1a0: 6361 7365 0a28 696e 2077 6869 6368 2063 case.(in which c │ │ │ │ +0001f1b0: 6173 6520 7468 6520 636f 6e64 6974 696f ase the conditio │ │ │ │ +0001f1c0: 6e20 6973 206e 6563 6573 7361 7279 2061 n is necessary a │ │ │ │ +0001f1d0: 6e64 2073 7566 6669 6369 656e 742e 290a nd sufficient.). │ │ │ │ +0001f1e0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0001f1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f220: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 313d -----+.|i1 : R1= │ │ │ │ -0001f230: 5a5a 2f31 3031 5b61 2c62 2c63 5d2f 6964 ZZ/101[a,b,c]/id │ │ │ │ -0001f240: 6561 6c28 615e 322c 625e 322c 635e 3529 eal(a^2,b^2,c^5) │ │ │ │ -0001f250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f260: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001f210: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ +0001f220: 3a20 5231 3d5a 5a2f 3130 315b 612c 622c : R1=ZZ/101[a,b, │ │ │ │ +0001f230: 635d 2f69 6465 616c 2861 5e32 2c62 5e32 c]/ideal(a^2,b^2 │ │ │ │ +0001f240: 2c63 5e35 2920 2020 2020 2020 2020 2020 ,c^5) │ │ │ │ +0001f250: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001f260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f290: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -0001f2a0: 203d 2052 3120 2020 2020 2020 2020 2020 = R1 │ │ │ │ +0001f290: 7c0a 7c6f 3120 3d20 5231 2020 2020 2020 |.|o1 = R1 │ │ │ │ +0001f2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001f2c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001f2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f310: 207c 0a7c 6f31 203a 2051 756f 7469 656e |.|o1 : Quotien │ │ │ │ -0001f320: 7452 696e 6720 2020 2020 2020 2020 2020 tRing │ │ │ │ +0001f300: 2020 2020 2020 7c0a 7c6f 3120 3a20 5175 |.|o1 : Qu │ │ │ │ +0001f310: 6f74 6965 6e74 5269 6e67 2020 2020 2020 otientRing │ │ │ │ +0001f320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f340: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0001f340: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0001f350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f380: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2052 -------+.|i2 : R │ │ │ │ -0001f390: 323d 5a5a 2f31 3031 5b61 2c62 2c63 5d2f 2=ZZ/101[a,b,c]/ │ │ │ │ -0001f3a0: 6964 6561 6c28 615e 332c 625e 3329 2020 ideal(a^3,b^3) │ │ │ │ -0001f3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f3c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001f370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0001f380: 3220 3a20 5232 3d5a 5a2f 3130 315b 612c 2 : R2=ZZ/101[a, │ │ │ │ +0001f390: 622c 635d 2f69 6465 616c 2861 5e33 2c62 b,c]/ideal(a^3,b │ │ │ │ +0001f3a0: 5e33 2920 2020 2020 2020 2020 2020 2020 ^3) │ │ │ │ +0001f3b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001f3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f3f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001f400: 6f32 203d 2052 3220 2020 2020 2020 2020 o2 = R2 │ │ │ │ +0001f3f0: 2020 7c0a 7c6f 3220 3d20 5232 2020 2020 |.|o2 = R2 │ │ │ │ +0001f400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f430: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001f420: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f470: 2020 207c 0a7c 6f32 203a 2051 756f 7469 |.|o2 : Quoti │ │ │ │ -0001f480: 656e 7452 696e 6720 2020 2020 2020 2020 entRing │ │ │ │ +0001f460: 2020 2020 2020 2020 7c0a 7c6f 3220 3a20 |.|o2 : │ │ │ │ +0001f470: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ +0001f480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f4a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001f4b0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0001f4a0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0001f4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f4e0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ -0001f4f0: 2065 7874 4973 4f6e 6550 6f6c 796e 6f6d extIsOnePolynom │ │ │ │ -0001f500: 6961 6c20 636f 6b65 7220 7261 6e64 6f6d ial coker random │ │ │ │ -0001f510: 2852 315e 7b30 2c31 7d2c 5231 5e7b 333a (R1^{0,1},R1^{3: │ │ │ │ -0001f520: 2d31 7d29 7c0a 7c20 2020 2020 2020 2020 -1})|.| │ │ │ │ +0001f4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0001f4e0: 7c69 3320 3a20 6578 7449 734f 6e65 506f |i3 : extIsOnePo │ │ │ │ +0001f4f0: 6c79 6e6f 6d69 616c 2063 6f6b 6572 2072 lynomial coker r │ │ │ │ +0001f500: 616e 646f 6d28 5231 5e7b 302c 317d 2c52 andom(R1^{0,1},R │ │ │ │ +0001f510: 315e 7b33 3a2d 317d 297c 0a7c 2020 2020 1^{3:-1})|.| │ │ │ │ +0001f520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f550: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001f560: 0a7c 2020 2020 2020 3120 3220 2020 3120 .| 1 2 1 │ │ │ │ +0001f550: 2020 2020 7c0a 7c20 2020 2020 2031 2032 |.| 1 2 │ │ │ │ +0001f560: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 0001f570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f590: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ -0001f5a0: 3d20 282d 7a20 202d 202d 7a20 2b20 332c = (-z - -z + 3, │ │ │ │ -0001f5b0: 2074 7275 6529 2020 2020 2020 2020 2020 true) │ │ │ │ -0001f5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f5d0: 2020 2020 207c 0a7c 2020 2020 2020 3220 |.| 2 │ │ │ │ -0001f5e0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0001f580: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001f590: 0a7c 6f33 203d 2028 2d7a 2020 2d20 2d7a .|o3 = (-z - -z │ │ │ │ +0001f5a0: 202b 2033 2c20 7472 7565 2920 2020 2020 + 3, true) │ │ │ │ +0001f5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f5c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001f5d0: 2020 2032 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ +0001f5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f610: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001f600: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001f610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f640: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ -0001f650: 203a 2053 6571 7565 6e63 6520 2020 2020 : Sequence │ │ │ │ +0001f640: 7c0a 7c6f 3320 3a20 5365 7175 656e 6365 |.|o3 : Sequence │ │ │ │ +0001f650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f680: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001f670: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0001f680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f6c0: 2d2b 0a7c 6934 203a 2065 7874 4973 4f6e -+.|i4 : extIsOn │ │ │ │ -0001f6d0: 6550 6f6c 796e 6f6d 6961 6c20 636f 6b65 ePolynomial coke │ │ │ │ -0001f6e0: 7220 7261 6e64 6f6d 2852 325e 7b30 2c31 r random(R2^{0,1 │ │ │ │ -0001f6f0: 7d2c 5232 5e7b 333a 2d31 7d29 7c0a 7c20 },R2^{3:-1})|.| │ │ │ │ +0001f6b0: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 6578 ------+.|i4 : ex │ │ │ │ +0001f6c0: 7449 734f 6e65 506f 6c79 6e6f 6d69 616c tIsOnePolynomial │ │ │ │ +0001f6d0: 2063 6f6b 6572 2072 616e 646f 6d28 5232 coker random(R2 │ │ │ │ +0001f6e0: 5e7b 302c 317d 2c52 325e 7b33 3a2d 317d ^{0,1},R2^{3:-1} │ │ │ │ +0001f6f0: 297c 0a7c 2020 2020 2020 2020 2020 2020 )|.| │ │ │ │ 0001f700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f730: 2020 2020 2020 207c 0a7c 6f34 203d 2028 |.|o4 = ( │ │ │ │ -0001f740: 337a 202d 2032 2c20 6661 6c73 6529 2020 3z - 2, false) │ │ │ │ +0001f720: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0001f730: 3420 3d20 2833 7a20 2d20 322c 2066 616c 4 = (3z - 2, fal │ │ │ │ +0001f740: 7365 2920 2020 2020 2020 2020 2020 2020 se) │ │ │ │ 0001f750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f770: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001f760: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001f770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f7a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001f7b0: 6f34 203a 2053 6571 7565 6e63 6520 2020 o4 : Sequence │ │ │ │ +0001f7a0: 2020 7c0a 7c6f 3420 3a20 5365 7175 656e |.|o4 : Sequen │ │ │ │ +0001f7b0: 6365 2020 2020 2020 2020 2020 2020 2020 ce │ │ │ │ 0001f7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f7e0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001f7d0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0001f7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f820: 2d2d 2d2b 0a0a 5365 6520 616c 736f 0a3d ---+..See also.= │ │ │ │ -0001f830: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ -0001f840: 7465 2065 7665 6e45 7874 4d6f 6475 6c65 te evenExtModule │ │ │ │ -0001f850: 3a20 6576 656e 4578 744d 6f64 756c 652c : evenExtModule, │ │ │ │ -0001f860: 202d 2d20 6576 656e 2070 6172 7420 6f66 -- even part of │ │ │ │ -0001f870: 2045 7874 5e2a 284d 2c6b 2920 6f76 6572 Ext^*(M,k) over │ │ │ │ -0001f880: 2061 0a20 2020 2063 6f6d 706c 6574 6520 a. complete │ │ │ │ -0001f890: 696e 7465 7273 6563 7469 6f6e 2061 7320 intersection as │ │ │ │ -0001f8a0: 6d6f 6475 6c65 206f 7665 7220 4349 206f module over CI o │ │ │ │ -0001f8b0: 7065 7261 746f 7220 7269 6e67 0a20 202a perator ring. * │ │ │ │ -0001f8c0: 202a 6e6f 7465 206f 6464 4578 744d 6f64 *note oddExtMod │ │ │ │ -0001f8d0: 756c 653a 206f 6464 4578 744d 6f64 756c ule: oddExtModul │ │ │ │ -0001f8e0: 652c 202d 2d20 6f64 6420 7061 7274 206f e, -- odd part o │ │ │ │ -0001f8f0: 6620 4578 745e 2a28 4d2c 6b29 206f 7665 f Ext^*(M,k) ove │ │ │ │ -0001f900: 7220 6120 636f 6d70 6c65 7465 0a20 2020 r a complete. │ │ │ │ -0001f910: 2069 6e74 6572 7365 6374 696f 6e20 6173 intersection as │ │ │ │ -0001f920: 206d 6f64 756c 6520 6f76 6572 2043 4920 module over CI │ │ │ │ -0001f930: 6f70 6572 6174 6f72 2072 696e 670a 0a57 operator ring..W │ │ │ │ -0001f940: 6179 7320 746f 2075 7365 2065 7874 4973 ays to use extIs │ │ │ │ -0001f950: 4f6e 6550 6f6c 796e 6f6d 6961 6c3a 0a3d OnePolynomial:.= │ │ │ │ +0001f810: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ +0001f820: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ +0001f830: 2a20 2a6e 6f74 6520 6576 656e 4578 744d * *note evenExtM │ │ │ │ +0001f840: 6f64 756c 653a 2065 7665 6e45 7874 4d6f odule: evenExtMo │ │ │ │ +0001f850: 6475 6c65 2c20 2d2d 2065 7665 6e20 7061 dule, -- even pa │ │ │ │ +0001f860: 7274 206f 6620 4578 745e 2a28 4d2c 6b29 rt of Ext^*(M,k) │ │ │ │ +0001f870: 206f 7665 7220 610a 2020 2020 636f 6d70 over a. comp │ │ │ │ +0001f880: 6c65 7465 2069 6e74 6572 7365 6374 696f lete intersectio │ │ │ │ +0001f890: 6e20 6173 206d 6f64 756c 6520 6f76 6572 n as module over │ │ │ │ +0001f8a0: 2043 4920 6f70 6572 6174 6f72 2072 696e CI operator rin │ │ │ │ +0001f8b0: 670a 2020 2a20 2a6e 6f74 6520 6f64 6445 g. * *note oddE │ │ │ │ +0001f8c0: 7874 4d6f 6475 6c65 3a20 6f64 6445 7874 xtModule: oddExt │ │ │ │ +0001f8d0: 4d6f 6475 6c65 2c20 2d2d 206f 6464 2070 Module, -- odd p │ │ │ │ +0001f8e0: 6172 7420 6f66 2045 7874 5e2a 284d 2c6b art of Ext^*(M,k │ │ │ │ +0001f8f0: 2920 6f76 6572 2061 2063 6f6d 706c 6574 ) over a complet │ │ │ │ +0001f900: 650a 2020 2020 696e 7465 7273 6563 7469 e. intersecti │ │ │ │ +0001f910: 6f6e 2061 7320 6d6f 6475 6c65 206f 7665 on as module ove │ │ │ │ +0001f920: 7220 4349 206f 7065 7261 746f 7220 7269 r CI operator ri │ │ │ │ +0001f930: 6e67 0a0a 5761 7973 2074 6f20 7573 6520 ng..Ways to use │ │ │ │ +0001f940: 6578 7449 734f 6e65 506f 6c79 6e6f 6d69 extIsOnePolynomi │ │ │ │ +0001f950: 616c 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d al:.============ │ │ │ │ 0001f960: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001f970: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -0001f980: 2020 2a20 2265 7874 4973 4f6e 6550 6f6c * "extIsOnePol │ │ │ │ -0001f990: 796e 6f6d 6961 6c28 4d6f 6475 6c65 2922 ynomial(Module)" │ │ │ │ -0001f9a0: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ -0001f9b0: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ -0001f9c0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ -0001f9d0: 6563 7420 2a6e 6f74 6520 6578 7449 734f ect *note extIsO │ │ │ │ -0001f9e0: 6e65 506f 6c79 6e6f 6d69 616c 3a20 6578 nePolynomial: ex │ │ │ │ -0001f9f0: 7449 734f 6e65 506f 6c79 6e6f 6d69 616c tIsOnePolynomial │ │ │ │ -0001fa00: 2c20 6973 2061 202a 6e6f 7465 206d 6574 , is a *note met │ │ │ │ -0001fa10: 686f 640a 6675 6e63 7469 6f6e 3a20 284d hod.function: (M │ │ │ │ -0001fa20: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ -0001fa30: 6f64 4675 6e63 7469 6f6e 2c2e 0a1f 0a46 odFunction,....F │ │ │ │ -0001fa40: 696c 653a 2043 6f6d 706c 6574 6549 6e74 ile: CompleteInt │ │ │ │ -0001fa50: 6572 7365 6374 696f 6e52 6573 6f6c 7574 ersectionResolut │ │ │ │ -0001fa60: 696f 6e73 2e69 6e66 6f2c 204e 6f64 653a ions.info, Node: │ │ │ │ -0001fa70: 2045 7874 4d6f 6475 6c65 2c20 4e65 7874 ExtModule, Next │ │ │ │ -0001fa80: 3a20 4578 744d 6f64 756c 6544 6174 612c : ExtModuleData, │ │ │ │ -0001fa90: 2050 7265 763a 2065 7874 4973 4f6e 6550 Prev: extIsOneP │ │ │ │ -0001faa0: 6f6c 796e 6f6d 6961 6c2c 2055 703a 2054 olynomial, Up: T │ │ │ │ -0001fab0: 6f70 0a0a 4578 744d 6f64 756c 6520 2d2d op..ExtModule -- │ │ │ │ -0001fac0: 2045 7874 5e2a 284d 2c6b 2920 6f76 6572 Ext^*(M,k) over │ │ │ │ -0001fad0: 2061 2063 6f6d 706c 6574 6520 696e 7465 a complete inte │ │ │ │ -0001fae0: 7273 6563 7469 6f6e 2061 7320 6d6f 6475 rsection as modu │ │ │ │ -0001faf0: 6c65 206f 7665 7220 4349 206f 7065 7261 le over CI opera │ │ │ │ -0001fb00: 746f 7220 7269 6e67 0a2a 2a2a 2a2a 2a2a tor ring.******* │ │ │ │ +0001f970: 3d3d 3d0a 0a20 202a 2022 6578 7449 734f ===.. * "extIsO │ │ │ │ +0001f980: 6e65 506f 6c79 6e6f 6d69 616c 284d 6f64 nePolynomial(Mod │ │ │ │ +0001f990: 756c 6529 220a 0a46 6f72 2074 6865 2070 ule)"..For the p │ │ │ │ +0001f9a0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +0001f9b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +0001f9c0: 6520 6f62 6a65 6374 202a 6e6f 7465 2065 e object *note e │ │ │ │ +0001f9d0: 7874 4973 4f6e 6550 6f6c 796e 6f6d 6961 xtIsOnePolynomia │ │ │ │ +0001f9e0: 6c3a 2065 7874 4973 4f6e 6550 6f6c 796e l: extIsOnePolyn │ │ │ │ +0001f9f0: 6f6d 6961 6c2c 2069 7320 6120 2a6e 6f74 omial, is a *not │ │ │ │ +0001fa00: 6520 6d65 7468 6f64 0a66 756e 6374 696f e method.functio │ │ │ │ +0001fa10: 6e3a 2028 4d61 6361 756c 6179 3244 6f63 n: (Macaulay2Doc │ │ │ │ +0001fa20: 294d 6574 686f 6446 756e 6374 696f 6e2c )MethodFunction, │ │ │ │ +0001fa30: 2e0a 1f0a 4669 6c65 3a20 436f 6d70 6c65 ....File: Comple │ │ │ │ +0001fa40: 7465 496e 7465 7273 6563 7469 6f6e 5265 teIntersectionRe │ │ │ │ +0001fa50: 736f 6c75 7469 6f6e 732e 696e 666f 2c20 solutions.info, │ │ │ │ +0001fa60: 4e6f 6465 3a20 4578 744d 6f64 756c 652c Node: ExtModule, │ │ │ │ +0001fa70: 204e 6578 743a 2045 7874 4d6f 6475 6c65 Next: ExtModule │ │ │ │ +0001fa80: 4461 7461 2c20 5072 6576 3a20 6578 7449 Data, Prev: extI │ │ │ │ +0001fa90: 734f 6e65 506f 6c79 6e6f 6d69 616c 2c20 sOnePolynomial, │ │ │ │ +0001faa0: 5570 3a20 546f 700a 0a45 7874 4d6f 6475 Up: Top..ExtModu │ │ │ │ +0001fab0: 6c65 202d 2d20 4578 745e 2a28 4d2c 6b29 le -- Ext^*(M,k) │ │ │ │ +0001fac0: 206f 7665 7220 6120 636f 6d70 6c65 7465 over a complete │ │ │ │ +0001fad0: 2069 6e74 6572 7365 6374 696f 6e20 6173 intersection as │ │ │ │ +0001fae0: 206d 6f64 756c 6520 6f76 6572 2043 4920 module over CI │ │ │ │ +0001faf0: 6f70 6572 6174 6f72 2072 696e 670a 2a2a operator ring.** │ │ │ │ +0001fb00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fb10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fb20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fb30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fb40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001fb50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 *************..S │ │ │ │ -0001fb60: 796e 6f70 7369 730a 3d3d 3d3d 3d3d 3d3d ynopsis.======== │ │ │ │ -0001fb70: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ -0001fb80: 2020 2020 2020 4520 3d20 4578 744d 6f64 E = ExtMod │ │ │ │ -0001fb90: 756c 6520 4d0a 2020 2a20 496e 7075 7473 ule M. * Inputs │ │ │ │ -0001fba0: 3a0a 2020 2020 2020 2a20 4d2c 2061 202a :. * M, a * │ │ │ │ -0001fbb0: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ -0001fbc0: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ -0001fbd0: 652c 2c20 6f76 6572 2061 2063 6f6d 706c e,, over a compl │ │ │ │ -0001fbe0: 6574 6520 696e 7465 7273 6563 7469 6f6e ete intersection │ │ │ │ -0001fbf0: 0a20 2020 2020 2020 2072 696e 670a 2020 . ring. │ │ │ │ -0001fc00: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ -0001fc10: 202a 2045 2c20 6120 2a6e 6f74 6520 6d6f * E, a *note mo │ │ │ │ -0001fc20: 6475 6c65 3a20 284d 6163 6175 6c61 7932 dule: (Macaulay2 │ │ │ │ -0001fc30: 446f 6329 4d6f 6475 6c65 2c2c 206f 7665 Doc)Module,, ove │ │ │ │ -0001fc40: 7220 6120 706f 6c79 6e6f 6d69 616c 2072 r a polynomial r │ │ │ │ -0001fc50: 696e 6720 7769 7468 0a20 2020 2020 2020 ing with. │ │ │ │ -0001fc60: 2067 656e 7320 696e 2065 7665 6e20 6465 gens in even de │ │ │ │ -0001fc70: 6772 6565 0a0a 4465 7363 7269 7074 696f gree..Descriptio │ │ │ │ -0001fc80: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a55 n.===========..U │ │ │ │ -0001fc90: 7365 7320 636f 6465 206f 6620 4176 7261 ses code of Avra │ │ │ │ -0001fca0: 6d6f 762d 4772 6179 736f 6e20 6465 7363 mov-Grayson desc │ │ │ │ -0001fcb0: 7269 6265 6420 696e 204d 6163 6175 6c61 ribed in Macaula │ │ │ │ -0001fcc0: 7932 2062 6f6f 6b0a 0a2b 2d2d 2d2d 2d2d y2 book..+------ │ │ │ │ +0001fb50: 2a2a 0a0a 5379 6e6f 7073 6973 0a3d 3d3d **..Synopsis.=== │ │ │ │ +0001fb60: 3d3d 3d3d 3d0a 0a20 202a 2055 7361 6765 =====.. * Usage │ │ │ │ +0001fb70: 3a20 0a20 2020 2020 2020 2045 203d 2045 : . E = E │ │ │ │ +0001fb80: 7874 4d6f 6475 6c65 204d 0a20 202a 2049 xtModule M. * I │ │ │ │ +0001fb90: 6e70 7574 733a 0a20 2020 2020 202a 204d nputs:. * M │ │ │ │ +0001fba0: 2c20 6120 2a6e 6f74 6520 6d6f 6475 6c65 , a *note module │ │ │ │ +0001fbb0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0001fbc0: 4d6f 6475 6c65 2c2c 206f 7665 7220 6120 Module,, over a │ │ │ │ +0001fbd0: 636f 6d70 6c65 7465 2069 6e74 6572 7365 complete interse │ │ │ │ +0001fbe0: 6374 696f 6e0a 2020 2020 2020 2020 7269 ction. ri │ │ │ │ +0001fbf0: 6e67 0a20 202a 204f 7574 7075 7473 3a0a ng. * Outputs:. │ │ │ │ +0001fc00: 2020 2020 2020 2a20 452c 2061 202a 6e6f * E, a *no │ │ │ │ +0001fc10: 7465 206d 6f64 756c 653a 2028 4d61 6361 te module: (Maca │ │ │ │ +0001fc20: 756c 6179 3244 6f63 294d 6f64 756c 652c ulay2Doc)Module, │ │ │ │ +0001fc30: 2c20 6f76 6572 2061 2070 6f6c 796e 6f6d , over a polynom │ │ │ │ +0001fc40: 6961 6c20 7269 6e67 2077 6974 680a 2020 ial ring with. │ │ │ │ +0001fc50: 2020 2020 2020 6765 6e73 2069 6e20 6576 gens in ev │ │ │ │ +0001fc60: 656e 2064 6567 7265 650a 0a44 6573 6372 en degree..Descr │ │ │ │ +0001fc70: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ +0001fc80: 3d3d 0a0a 5573 6573 2063 6f64 6520 6f66 ==..Uses code of │ │ │ │ +0001fc90: 2041 7672 616d 6f76 2d47 7261 7973 6f6e Avramov-Grayson │ │ │ │ +0001fca0: 2064 6573 6372 6962 6564 2069 6e20 4d61 described in Ma │ │ │ │ +0001fcb0: 6361 756c 6179 3220 626f 6f6b 0a0a 2b2d caulay2 book..+- │ │ │ │ +0001fcc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fcd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fcf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fd00: 2d2d 2d2d 2b0a 7c69 3120 3a20 6b6b 3d20 ----+.|i1 : kk= │ │ │ │ -0001fd10: 5a5a 2f31 3031 2020 2020 2020 2020 2020 ZZ/101 │ │ │ │ +0001fcf0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +0001fd00: 206b 6b3d 205a 5a2f 3130 3120 2020 2020 kk= ZZ/101 │ │ │ │ +0001fd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fd40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001fd30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001fd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fd70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001fd80: 7c6f 3120 3d20 6b6b 2020 2020 2020 2020 |o1 = kk │ │ │ │ +0001fd70: 2020 207c 0a7c 6f31 203d 206b 6b20 2020 |.|o1 = kk │ │ │ │ +0001fd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fdb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001fdb0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001fdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fdf0: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ -0001fe00: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ +0001fde0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001fdf0: 6f31 203a 2051 756f 7469 656e 7452 696e o1 : QuotientRin │ │ │ │ +0001fe00: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ 0001fe10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fe20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fe30: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001fe20: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001fe30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fe40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fe50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fe60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fe70: 2d2d 2b0a 7c69 3220 3a20 5320 3d20 6b6b --+.|i2 : S = kk │ │ │ │ -0001fe80: 5b78 2c79 2c7a 5d20 2020 2020 2020 2020 [x,y,z] │ │ │ │ +0001fe60: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2053 -------+.|i2 : S │ │ │ │ +0001fe70: 203d 206b 6b5b 782c 792c 7a5d 2020 2020 = kk[x,y,z] │ │ │ │ +0001fe80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fe90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fea0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001feb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001fea0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001feb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fee0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001fef0: 3220 3d20 5320 2020 2020 2020 2020 2020 2 = S │ │ │ │ +0001fee0: 207c 0a7c 6f32 203d 2053 2020 2020 2020 |.|o2 = S │ │ │ │ +0001fef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ff00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ff10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ff20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001ff10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001ff20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0001ff30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ff40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ff50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ff60: 2020 2020 2020 7c0a 7c6f 3220 3a20 506f |.|o2 : Po │ │ │ │ -0001ff70: 6c79 6e6f 6d69 616c 5269 6e67 2020 2020 lynomialRing │ │ │ │ +0001ff50: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +0001ff60: 203a 2050 6f6c 796e 6f6d 6961 6c52 696e : PolynomialRin │ │ │ │ +0001ff70: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ 0001ff80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ff90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ffa0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0001ff90: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001ffa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ffb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ffc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ffd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ffe0: 2b0a 7c69 3320 3a20 4931 203d 2069 6465 +.|i3 : I1 = ide │ │ │ │ -0001fff0: 616c 2022 7833 7922 2020 2020 2020 2020 al "x3y" │ │ │ │ +0001ffd0: 2d2d 2d2d 2d2b 0a7c 6933 203a 2049 3120 -----+.|i3 : I1 │ │ │ │ +0001ffe0: 3d20 6964 6561 6c20 2278 3379 2220 2020 = ideal "x3y" │ │ │ │ +0001fff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020010: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00020010: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00020020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020050: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00020060: 2020 2020 2020 2020 2033 2020 2020 2020 3 │ │ │ │ +00020040: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020050: 0a7c 2020 2020 2020 2020 2020 2020 3320 .| 3 │ │ │ │ +00020060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020090: 2020 2020 2020 207c 0a7c 6f33 203d 2069 |.|o3 = i │ │ │ │ -000200a0: 6465 616c 2878 2079 2920 2020 2020 2020 deal(x y) │ │ │ │ +00020080: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00020090: 3320 3d20 6964 6561 6c28 7820 7929 2020 3 = ideal(x y) │ │ │ │ +000200a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000200b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000200c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000200d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000200c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000200d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000200e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000200f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020110: 207c 0a7c 6f33 203a 2049 6465 616c 206f |.|o3 : Ideal o │ │ │ │ -00020120: 6620 5320 2020 2020 2020 2020 2020 2020 f S │ │ │ │ +00020100: 2020 2020 2020 7c0a 7c6f 3320 3a20 4964 |.|o3 : Id │ │ │ │ +00020110: 6561 6c20 6f66 2053 2020 2020 2020 2020 eal of S │ │ │ │ +00020120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020140: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00020150: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00020140: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00020150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ -00020190: 203a 2052 3120 3d20 532f 4931 2020 2020 : R1 = S/I1 │ │ │ │ +00020180: 2b0a 7c69 3420 3a20 5231 203d 2053 2f49 +.|i4 : R1 = S/I │ │ │ │ +00020190: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 000201a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000201b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000201c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000201b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000201c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000201d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000201e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000201f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020200: 2020 2020 207c 0a7c 6f34 203d 2052 3120 |.|o4 = R1 │ │ │ │ +000201f0: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ +00020200: 3d20 5231 2020 2020 2020 2020 2020 2020 = R1 │ │ │ │ 00020210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020240: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00020230: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00020240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020270: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00020280: 0a7c 6f34 203a 2051 756f 7469 656e 7452 .|o4 : QuotientR │ │ │ │ -00020290: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ +00020270: 2020 2020 7c0a 7c6f 3420 3a20 5175 6f74 |.|o4 : Quot │ │ │ │ +00020280: 6965 6e74 5269 6e67 2020 2020 2020 2020 ientRing │ │ │ │ +00020290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000202a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000202b0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000202b0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 000202c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000202d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000202e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000202f0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ -00020300: 204d 3120 3d20 5231 5e31 2f69 6465 616c M1 = R1^1/ideal │ │ │ │ -00020310: 2878 5e32 2920 2020 2020 2020 2020 2020 (x^2) │ │ │ │ -00020320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020330: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000202e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000202f0: 7c69 3520 3a20 4d31 203d 2052 315e 312f |i5 : M1 = R1^1/ │ │ │ │ +00020300: 6964 6561 6c28 785e 3229 2020 2020 2020 ideal(x^2) │ │ │ │ +00020310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020320: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00020330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020370: 2020 207c 0a7c 6f35 203d 2063 6f6b 6572 |.|o5 = coker │ │ │ │ -00020380: 6e65 6c20 7c20 7832 207c 2020 2020 2020 nel | x2 | │ │ │ │ +00020360: 2020 2020 2020 2020 7c0a 7c6f 3520 3d20 |.|o5 = │ │ │ │ +00020370: 636f 6b65 726e 656c 207c 2078 3220 7c20 cokernel | x2 | │ │ │ │ +00020380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000203a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000203b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000203a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000203b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000203c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000203d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000203e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000203e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000203f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020400: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ -00020410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020420: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ -00020430: 3a20 5231 2d6d 6f64 756c 652c 2071 756f : R1-module, quo │ │ │ │ -00020440: 7469 656e 7420 6f66 2052 3120 2020 2020 tient of R1 │ │ │ │ -00020450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020460: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00020400: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00020410: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020420: 0a7c 6f35 203a 2052 312d 6d6f 6475 6c65 .|o5 : R1-module │ │ │ │ +00020430: 2c20 7175 6f74 6965 6e74 206f 6620 5231 , quotient of R1 │ │ │ │ +00020440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020450: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00020460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000204a0: 2d2d 2d2d 2b0a 7c69 3620 3a20 6265 7474 ----+.|i6 : bett │ │ │ │ -000204b0: 6920 7265 7320 284d 312c 204c 656e 6774 i res (M1, Lengt │ │ │ │ -000204c0: 684c 696d 6974 203d 3e35 2920 2020 2020 hLimit =>5) │ │ │ │ -000204d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000204e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00020490: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a ---------+.|i6 : │ │ │ │ +000204a0: 2062 6574 7469 2072 6573 2028 4d31 2c20 betti res (M1, │ │ │ │ +000204b0: 4c65 6e67 7468 4c69 6d69 7420 3d3e 3529 LengthLimit =>5) │ │ │ │ +000204c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000204d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000204e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000204f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020510: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00020520: 7c20 2020 2020 2020 2020 2020 2030 2031 | 0 1 │ │ │ │ -00020530: 2032 2033 2034 2035 2020 2020 2020 2020 2 3 4 5 │ │ │ │ +00020510: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00020520: 2020 3020 3120 3220 3320 3420 3520 2020 0 1 2 3 4 5 │ │ │ │ +00020530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020550: 2020 2020 2020 2020 2020 207c 0a7c 6f36 |.|o6 │ │ │ │ -00020560: 203d 2074 6f74 616c 3a20 3120 3120 3120 = total: 1 1 1 │ │ │ │ -00020570: 3120 3120 3120 2020 2020 2020 2020 2020 1 1 1 │ │ │ │ -00020580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020590: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000205a0: 2020 2020 303a 2031 202e 202e 202e 202e 0: 1 . . . . │ │ │ │ -000205b0: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ -000205c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000205d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000205e0: 2031 3a20 2e20 3120 2e20 2e20 2e20 2e20 1: . 1 . . . . │ │ │ │ +00020550: 7c0a 7c6f 3620 3d20 746f 7461 6c3a 2031 |.|o6 = total: 1 │ │ │ │ +00020560: 2031 2031 2031 2031 2031 2020 2020 2020 1 1 1 1 1 │ │ │ │ +00020570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020580: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00020590: 2020 2020 2020 2020 2030 3a20 3120 2e20 0: 1 . │ │ │ │ +000205a0: 2e20 2e20 2e20 2e20 2020 2020 2020 2020 . . . . │ │ │ │ +000205b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000205c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000205d0: 2020 2020 2020 313a 202e 2031 202e 202e 1: . 1 . . │ │ │ │ +000205e0: 202e 202e 2020 2020 2020 2020 2020 2020 . . │ │ │ │ 000205f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020610: 2020 7c0a 7c20 2020 2020 2020 2020 323a |.| 2: │ │ │ │ -00020620: 202e 202e 2031 202e 202e 202e 2020 2020 . . 1 . . . │ │ │ │ +00020600: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00020610: 2020 2032 3a20 2e20 2e20 3120 2e20 2e20 2: . . 1 . . │ │ │ │ +00020620: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ 00020630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020640: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00020650: 0a7c 2020 2020 2020 2020 2033 3a20 2e20 .| 3: . │ │ │ │ -00020660: 2e20 2e20 3120 2e20 2e20 2020 2020 2020 . . 1 . . │ │ │ │ +00020640: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00020650: 333a 202e 202e 202e 2031 202e 202e 2020 3: . . . 1 . . │ │ │ │ +00020660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020680: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00020690: 2020 2020 2020 2020 343a 202e 202e 202e 4: . . . │ │ │ │ -000206a0: 202e 2031 202e 2020 2020 2020 2020 2020 . 1 . │ │ │ │ -000206b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000206c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000206d0: 2020 2020 2035 3a20 2e20 2e20 2e20 2e20 5: . . . . │ │ │ │ -000206e0: 2e20 3120 2020 2020 2020 2020 2020 2020 . 1 │ │ │ │ -000206f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020700: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00020680: 207c 0a7c 2020 2020 2020 2020 2034 3a20 |.| 4: │ │ │ │ +00020690: 2e20 2e20 2e20 2e20 3120 2e20 2020 2020 . . . . 1 . │ │ │ │ +000206a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000206b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000206c0: 7c20 2020 2020 2020 2020 353a 202e 202e | 5: . . │ │ │ │ +000206d0: 202e 202e 202e 2031 2020 2020 2020 2020 . . . 1 │ │ │ │ +000206e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000206f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00020700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020740: 2020 207c 0a7c 6f36 203a 2042 6574 7469 |.|o6 : Betti │ │ │ │ -00020750: 5461 6c6c 7920 2020 2020 2020 2020 2020 Tally │ │ │ │ +00020730: 2020 2020 2020 2020 7c0a 7c6f 3620 3a20 |.|o6 : │ │ │ │ +00020740: 4265 7474 6954 616c 6c79 2020 2020 2020 BettiTally │ │ │ │ +00020750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020780: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00020770: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00020780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000207a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000207b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000207c0: 6937 203a 2045 203d 2045 7874 4d6f 6475 i7 : E = ExtModu │ │ │ │ -000207d0: 6c65 204d 3120 2020 2020 2020 2020 2020 le M1 │ │ │ │ -000207e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000207f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000207b0: 2d2d 2b0a 7c69 3720 3a20 4520 3d20 4578 --+.|i7 : E = Ex │ │ │ │ +000207c0: 744d 6f64 756c 6520 4d31 2020 2020 2020 tModule M1 │ │ │ │ +000207d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000207e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000207f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00020800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020830: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00020840: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00020820: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00020830: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00020840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020870: 2020 2020 7c0a 7c6f 3720 3d20 286b 6b5b |.|o7 = (kk[ │ │ │ │ -00020880: 5820 5d29 2020 2020 2020 2020 2020 2020 X ]) │ │ │ │ +00020860: 2020 2020 2020 2020 207c 0a7c 6f37 203d |.|o7 = │ │ │ │ +00020870: 2028 6b6b 5b58 205d 2920 2020 2020 2020 (kk[X ]) │ │ │ │ +00020880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000208a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000208b0: 207c 0a7c 2020 2020 2020 2020 2020 3020 |.| 0 │ │ │ │ +000208a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000208b0: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 000208c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000208d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000208e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000208f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000208e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000208f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020920: 2020 2020 2020 2020 2020 207c 0a7c 6f37 |.|o7 │ │ │ │ -00020930: 203a 206b 6b5b 5820 5d2d 6d6f 6475 6c65 : kk[X ]-module │ │ │ │ -00020940: 2c20 6672 6565 2c20 6465 6772 6565 7320 , free, degrees │ │ │ │ -00020950: 7b30 2e2e 317d 2020 2020 2020 2020 2020 {0..1} │ │ │ │ -00020960: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00020970: 2020 2020 3020 2020 2020 2020 2020 2020 0 │ │ │ │ +00020920: 7c0a 7c6f 3720 3a20 6b6b 5b58 205d 2d6d |.|o7 : kk[X ]-m │ │ │ │ +00020930: 6f64 756c 652c 2066 7265 652c 2064 6567 odule, free, deg │ │ │ │ +00020940: 7265 6573 207b 302e 2e31 7d20 2020 2020 rees {0..1} │ │ │ │ +00020950: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00020960: 2020 2020 2020 2020 2030 2020 2020 2020 0 │ │ │ │ +00020970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000209a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00020990: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000209a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000209b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000209c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000209d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000209e0: 2d2d 2b0a 7c69 3820 3a20 6170 706c 7928 --+.|i8 : apply( │ │ │ │ -000209f0: 746f 4c69 7374 2830 2e2e 3130 292c 2069 toList(0..10), i │ │ │ │ -00020a00: 2d3e 6869 6c62 6572 7446 756e 6374 696f ->hilbertFunctio │ │ │ │ -00020a10: 6e28 692c 2045 2929 2020 2020 2020 207c n(i, E)) | │ │ │ │ -00020a20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000209d0: 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a 2061 -------+.|i8 : a │ │ │ │ +000209e0: 7070 6c79 2874 6f4c 6973 7428 302e 2e31 pply(toList(0..1 │ │ │ │ +000209f0: 3029 2c20 692d 3e68 696c 6265 7274 4675 0), i->hilbertFu │ │ │ │ +00020a00: 6e63 7469 6f6e 2869 2c20 4529 2920 2020 nction(i, E)) │ │ │ │ +00020a10: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00020a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020a50: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00020a60: 3820 3d20 7b31 2c20 312c 2031 2c20 312c 8 = {1, 1, 1, 1, │ │ │ │ -00020a70: 2031 2c20 312c 2031 2c20 312c 2031 2c20 1, 1, 1, 1, 1, │ │ │ │ -00020a80: 312c 2031 7d20 2020 2020 2020 2020 2020 1, 1} │ │ │ │ -00020a90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00020a50: 207c 0a7c 6f38 203d 207b 312c 2031 2c20 |.|o8 = {1, 1, │ │ │ │ +00020a60: 312c 2031 2c20 312c 2031 2c20 312c 2031 1, 1, 1, 1, 1, 1 │ │ │ │ +00020a70: 2c20 312c 2031 2c20 317d 2020 2020 2020 , 1, 1, 1} │ │ │ │ +00020a80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020a90: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00020aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ad0: 2020 2020 2020 7c0a 7c6f 3820 3a20 4c69 |.|o8 : Li │ │ │ │ -00020ae0: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ +00020ac0: 2020 2020 2020 2020 2020 207c 0a7c 6f38 |.|o8 │ │ │ │ +00020ad0: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ +00020ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020b10: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00020b00: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00020b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020b50: 2b0a 7c69 3920 3a20 4565 7665 6e20 3d20 +.|i9 : Eeven = │ │ │ │ -00020b60: 6576 656e 4578 744d 6f64 756c 6528 4d31 evenExtModule(M1 │ │ │ │ -00020b70: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -00020b80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00020b40: 2d2d 2d2d 2d2b 0a7c 6939 203a 2045 6576 -----+.|i9 : Eev │ │ │ │ +00020b50: 656e 203d 2065 7665 6e45 7874 4d6f 6475 en = evenExtModu │ │ │ │ +00020b60: 6c65 284d 3129 2020 2020 2020 2020 2020 le(M1) │ │ │ │ +00020b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020b80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00020b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020bc0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00020bd0: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ +00020bb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020bc0: 0a7c 2020 2020 2020 2020 2020 2020 2031 .| 1 │ │ │ │ +00020bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020c00: 2020 2020 2020 207c 0a7c 6f39 203d 2028 |.|o9 = ( │ │ │ │ -00020c10: 6b6b 5b58 205d 2920 2020 2020 2020 2020 kk[X ]) │ │ │ │ +00020bf0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00020c00: 3920 3d20 286b 6b5b 5820 5d29 2020 2020 9 = (kk[X ]) │ │ │ │ +00020c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020c40: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00020c50: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00020c30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00020c40: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ +00020c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020c80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00020c70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00020c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020cb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00020cc0: 7c6f 3920 3a20 6b6b 5b58 205d 2d6d 6f64 |o9 : kk[X ]-mod │ │ │ │ -00020cd0: 756c 652c 2066 7265 6520 2020 2020 2020 ule, free │ │ │ │ +00020cb0: 2020 207c 0a7c 6f39 203a 206b 6b5b 5820 |.|o9 : kk[X │ │ │ │ +00020cc0: 5d2d 6d6f 6475 6c65 2c20 6672 6565 2020 ]-module, free │ │ │ │ +00020cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020cf0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00020d00: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ +00020cf0: 7c0a 7c20 2020 2020 2020 2020 3020 2020 |.| 0 │ │ │ │ +00020d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020d30: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00020d20: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00020d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020d70: 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 6170 -----+.|i10 : ap │ │ │ │ -00020d80: 706c 7928 746f 4c69 7374 2830 2e2e 3529 ply(toList(0..5) │ │ │ │ -00020d90: 2c20 692d 3e68 696c 6265 7274 4675 6e63 , i->hilbertFunc │ │ │ │ -00020da0: 7469 6f6e 2869 2c20 4565 7665 6e29 2920 tion(i, Eeven)) │ │ │ │ -00020db0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00020d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3130 ----------+.|i10 │ │ │ │ +00020d70: 203a 2061 7070 6c79 2874 6f4c 6973 7428 : apply(toList( │ │ │ │ +00020d80: 302e 2e35 292c 2069 2d3e 6869 6c62 6572 0..5), i->hilber │ │ │ │ +00020d90: 7446 756e 6374 696f 6e28 692c 2045 6576 tFunction(i, Eev │ │ │ │ +00020da0: 656e 2929 2020 207c 0a7c 2020 2020 2020 en)) |.| │ │ │ │ +00020db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020de0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00020df0: 0a7c 6f31 3020 3d20 7b31 2c20 312c 2031 .|o10 = {1, 1, 1 │ │ │ │ -00020e00: 2c20 312c 2031 2c20 317d 2020 2020 2020 , 1, 1, 1} │ │ │ │ +00020de0: 2020 2020 7c0a 7c6f 3130 203d 207b 312c |.|o10 = {1, │ │ │ │ +00020df0: 2031 2c20 312c 2031 2c20 312c 2031 7d20 1, 1, 1, 1, 1} │ │ │ │ +00020e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020e20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00020e20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00020e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020e60: 2020 2020 2020 2020 207c 0a7c 6f31 3020 |.|o10 │ │ │ │ -00020e70: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ +00020e50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020e60: 7c6f 3130 203a 204c 6973 7420 2020 2020 |o10 : List │ │ │ │ +00020e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ea0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00020e90: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00020ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020ee0: 2d2d 2d2b 0a7c 6931 3120 3a20 456f 6464 ---+.|i11 : Eodd │ │ │ │ -00020ef0: 203d 206f 6464 4578 744d 6f64 756c 6528 = oddExtModule( │ │ │ │ -00020f00: 4d31 2920 2020 2020 2020 2020 2020 2020 M1) │ │ │ │ -00020f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020f20: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00020ed0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 203a --------+.|i11 : │ │ │ │ +00020ee0: 2045 6f64 6420 3d20 6f64 6445 7874 4d6f Eodd = oddExtMo │ │ │ │ +00020ef0: 6475 6c65 284d 3129 2020 2020 2020 2020 dule(M1) │ │ │ │ +00020f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020f10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00020f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020f50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00020f60: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +00020f50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00020f60: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00020f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020f90: 2020 2020 2020 2020 2020 7c0a 7c6f 3131 |.|o11 │ │ │ │ -00020fa0: 203d 2028 6b6b 5b58 205d 2920 2020 2020 = (kk[X ]) │ │ │ │ +00020f80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020f90: 0a7c 6f31 3120 3d20 286b 6b5b 5820 5d29 .|o11 = (kk[X ]) │ │ │ │ +00020fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020fd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00020fe0: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ +00020fc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00020fd0: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ +00020fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021010: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00021000: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00021010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021050: 207c 0a7c 6f31 3120 3a20 6b6b 5b58 205d |.|o11 : kk[X ] │ │ │ │ -00021060: 2d6d 6f64 756c 652c 2066 7265 6520 2020 -module, free │ │ │ │ +00021040: 2020 2020 2020 7c0a 7c6f 3131 203a 206b |.|o11 : k │ │ │ │ +00021050: 6b5b 5820 5d2d 6d6f 6475 6c65 2c20 6672 k[X ]-module, fr │ │ │ │ +00021060: 6565 2020 2020 2020 2020 2020 2020 2020 ee │ │ │ │ 00021070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021080: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00021090: 7c20 2020 2020 2020 2020 2030 2020 2020 | 0 │ │ │ │ +00021080: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00021090: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 000210a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000210b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000210c0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000210c0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 000210d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000210e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000210f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021100: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3132 203a --------+.|i12 : │ │ │ │ -00021110: 2061 7070 6c79 2874 6f4c 6973 7428 302e apply(toList(0. │ │ │ │ -00021120: 2e35 292c 2069 2d3e 6869 6c62 6572 7446 .5), i->hilbertF │ │ │ │ -00021130: 756e 6374 696f 6e28 692c 2045 6f64 6429 unction(i, Eodd) │ │ │ │ -00021140: 2920 2020 207c 0a7c 2020 2020 2020 2020 ) |.| │ │ │ │ +000210f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00021100: 6931 3220 3a20 6170 706c 7928 746f 4c69 i12 : apply(toLi │ │ │ │ +00021110: 7374 2830 2e2e 3529 2c20 692d 3e68 696c st(0..5), i->hil │ │ │ │ +00021120: 6265 7274 4675 6e63 7469 6f6e 2869 2c20 bertFunction(i, │ │ │ │ +00021130: 456f 6464 2929 2020 2020 7c0a 7c20 2020 Eodd)) |.| │ │ │ │ +00021140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021180: 2020 7c0a 7c6f 3132 203d 207b 312c 2031 |.|o12 = {1, 1 │ │ │ │ -00021190: 2c20 312c 2031 2c20 312c 2031 7d20 2020 , 1, 1, 1, 1} │ │ │ │ +00021170: 2020 2020 2020 207c 0a7c 6f31 3220 3d20 |.|o12 = │ │ │ │ +00021180: 7b31 2c20 312c 2031 2c20 312c 2031 2c20 {1, 1, 1, 1, 1, │ │ │ │ +00021190: 317d 2020 2020 2020 2020 2020 2020 2020 1} │ │ │ │ 000211a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000211b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000211c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000211b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000211c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000211d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000211e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000211f0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00021200: 3132 203a 204c 6973 7420 2020 2020 2020 12 : List │ │ │ │ +000211f0: 207c 0a7c 6f31 3220 3a20 4c69 7374 2020 |.|o12 : List │ │ │ │ +00021200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021230: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00021220: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00021230: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00021240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021270: 2d2d 2d2d 2d2d 2b0a 7c69 3133 203a 2075 ------+.|i13 : u │ │ │ │ -00021280: 7365 2053 2020 2020 2020 2020 2020 2020 se S │ │ │ │ +00021260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00021270: 3320 3a20 7573 6520 5320 2020 2020 2020 3 : use S │ │ │ │ +00021280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000212a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000212b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000212a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000212b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000212c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000212d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000212e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000212f0: 7c0a 7c6f 3133 203d 2053 2020 2020 2020 |.|o13 = S │ │ │ │ +000212e0: 2020 2020 207c 0a7c 6f31 3320 3d20 5320 |.|o13 = S │ │ │ │ +000212f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021320: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021320: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00021330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021360: 2020 2020 2020 2020 2020 7c0a 7c6f 3133 |.|o13 │ │ │ │ -00021370: 203a 2050 6f6c 796e 6f6d 6961 6c52 696e : PolynomialRin │ │ │ │ -00021380: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ -00021390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000213a0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00021350: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021360: 0a7c 6f31 3320 3a20 506f 6c79 6e6f 6d69 .|o13 : Polynomi │ │ │ │ +00021370: 616c 5269 6e67 2020 2020 2020 2020 2020 alRing │ │ │ │ +00021380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021390: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000213a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000213b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000213c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000213d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000213e0: 2d2d 2d2d 2b0a 7c69 3134 203a 2049 3220 ----+.|i14 : I2 │ │ │ │ -000213f0: 3d20 6964 6561 6c22 7833 2c79 7a22 2020 = ideal"x3,yz" │ │ │ │ +000213d0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3420 ---------+.|i14 │ │ │ │ +000213e0: 3a20 4932 203d 2069 6465 616c 2278 332c : I2 = ideal"x3, │ │ │ │ +000213f0: 797a 2220 2020 2020 2020 2020 2020 2020 yz" │ │ │ │ 00021400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021420: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00021410: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00021420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021450: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00021460: 7c20 2020 2020 2020 2020 2020 2020 2033 | 3 │ │ │ │ +00021450: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00021460: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ 00021470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021490: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -000214a0: 3420 3d20 6964 6561 6c20 2878 202c 2079 4 = ideal (x , y │ │ │ │ -000214b0: 2a7a 2920 2020 2020 2020 2020 2020 2020 *z) │ │ │ │ -000214c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000214d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00021490: 7c0a 7c6f 3134 203d 2069 6465 616c 2028 |.|o14 = ideal ( │ │ │ │ +000214a0: 7820 2c20 792a 7a29 2020 2020 2020 2020 x , y*z) │ │ │ │ +000214b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000214c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000214d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000214e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000214f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021510: 2020 2020 207c 0a7c 6f31 3420 3a20 4964 |.|o14 : Id │ │ │ │ -00021520: 6561 6c20 6f66 2053 2020 2020 2020 2020 eal of S │ │ │ │ +00021500: 2020 2020 2020 2020 2020 7c0a 7c6f 3134 |.|o14 │ │ │ │ +00021510: 203a 2049 6465 616c 206f 6620 5320 2020 : Ideal of S │ │ │ │ +00021520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021550: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00021540: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00021550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00021590: 0a7c 6931 3520 3a20 5232 203d 2053 2f49 .|i15 : R2 = S/I │ │ │ │ -000215a0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00021580: 2d2d 2d2d 2b0a 7c69 3135 203a 2052 3220 ----+.|i15 : R2 │ │ │ │ +00021590: 3d20 532f 4932 2020 2020 2020 2020 2020 = S/I2 │ │ │ │ +000215a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000215b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000215c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000215c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000215d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000215e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000215f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021600: 2020 2020 2020 2020 207c 0a7c 6f31 3520 |.|o15 │ │ │ │ -00021610: 3d20 5232 2020 2020 2020 2020 2020 2020 = R2 │ │ │ │ +000215f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00021600: 7c6f 3135 203d 2052 3220 2020 2020 2020 |o15 = R2 │ │ │ │ +00021610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021640: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00021630: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00021640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021680: 2020 207c 0a7c 6f31 3520 3a20 5175 6f74 |.|o15 : Quot │ │ │ │ -00021690: 6965 6e74 5269 6e67 2020 2020 2020 2020 ientRing │ │ │ │ +00021670: 2020 2020 2020 2020 7c0a 7c6f 3135 203a |.|o15 : │ │ │ │ +00021680: 2051 756f 7469 656e 7452 696e 6720 2020 QuotientRing │ │ │ │ +00021690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000216a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000216b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000216c0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +000216b0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000216c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000216d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000216e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000216f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00021700: 6931 3620 3a20 4d32 203d 2052 325e 312f i16 : M2 = R2^1/ │ │ │ │ -00021710: 6964 6561 6c22 7832 2c79 2c7a 2220 2020 ideal"x2,y,z" │ │ │ │ -00021720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021730: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000216f0: 2d2d 2b0a 7c69 3136 203a 204d 3220 3d20 --+.|i16 : M2 = │ │ │ │ +00021700: 5232 5e31 2f69 6465 616c 2278 322c 792c R2^1/ideal"x2,y, │ │ │ │ +00021710: 7a22 2020 2020 2020 2020 2020 2020 2020 z" │ │ │ │ +00021720: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021730: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021770: 2020 2020 2020 207c 0a7c 6f31 3620 3d20 |.|o16 = │ │ │ │ -00021780: 636f 6b65 726e 656c 207c 2078 3220 7920 cokernel | x2 y │ │ │ │ -00021790: 7a20 7c20 2020 2020 2020 2020 2020 2020 z | │ │ │ │ -000217a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000217b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00021760: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00021770: 3136 203d 2063 6f6b 6572 6e65 6c20 7c20 16 = cokernel | │ │ │ │ +00021780: 7832 2079 207a 207c 2020 2020 2020 2020 x2 y z | │ │ │ │ +00021790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000217a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000217b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000217c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000217d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000217e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000217f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00021800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021810: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00021820: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00021830: 7c6f 3136 203a 2052 322d 6d6f 6475 6c65 |o16 : R2-module │ │ │ │ -00021840: 2c20 7175 6f74 6965 6e74 206f 6620 5232 , quotient of R2 │ │ │ │ +000217e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000217f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021800: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ +00021810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021820: 2020 207c 0a7c 6f31 3620 3a20 5232 2d6d |.|o16 : R2-m │ │ │ │ +00021830: 6f64 756c 652c 2071 756f 7469 656e 7420 odule, quotient │ │ │ │ +00021840: 6f66 2052 3220 2020 2020 2020 2020 2020 of R2 │ │ │ │ 00021850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021860: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00021860: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00021870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000218a0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3137 203a --------+.|i17 : │ │ │ │ -000218b0: 2062 6574 7469 2072 6573 2028 4d32 2c20 betti res (M2, │ │ │ │ -000218c0: 4c65 6e67 7468 4c69 6d69 7420 3d3e 3130 LengthLimit =>10 │ │ │ │ -000218d0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -000218e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00021890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000218a0: 6931 3720 3a20 6265 7474 6920 7265 7320 i17 : betti res │ │ │ │ +000218b0: 284d 322c 204c 656e 6774 684c 696d 6974 (M2, LengthLimit │ │ │ │ +000218c0: 203d 3e31 3029 2020 2020 2020 2020 2020 =>10) │ │ │ │ +000218d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000218e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000218f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021920: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00021930: 2020 3020 3120 3220 3320 3420 2035 2020 0 1 2 3 4 5 │ │ │ │ -00021940: 3620 2037 2020 3820 2039 2031 3020 2020 6 7 8 9 10 │ │ │ │ -00021950: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00021960: 0a7c 6f31 3720 3d20 746f 7461 6c3a 2031 .|o17 = total: 1 │ │ │ │ -00021970: 2033 2035 2037 2039 2031 3120 3133 2031 3 5 7 9 11 13 1 │ │ │ │ -00021980: 3520 3137 2031 3920 3231 2020 2020 2020 5 17 19 21 │ │ │ │ -00021990: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000219a0: 2020 2020 2020 2020 2030 3a20 3120 3220 0: 1 2 │ │ │ │ -000219b0: 3220 3220 3220 2032 2020 3220 2032 2020 2 2 2 2 2 2 │ │ │ │ -000219c0: 3220 2032 2020 3220 2020 2020 2020 2020 2 2 2 │ │ │ │ -000219d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000219e0: 2020 2020 2020 313a 202e 2031 2033 2034 1: . 1 3 4 │ │ │ │ -000219f0: 2034 2020 3420 2034 2020 3420 2034 2020 4 4 4 4 4 │ │ │ │ -00021a00: 3420 2034 2020 2020 2020 2020 2020 2020 4 4 │ │ │ │ -00021a10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00021a20: 2020 2032 3a20 2e20 2e20 2e20 3120 3320 2: . . . 1 3 │ │ │ │ -00021a30: 2034 2020 3420 2034 2020 3420 2034 2020 4 4 4 4 4 │ │ │ │ -00021a40: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00021a50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00021a60: 333a 202e 202e 202e 202e 202e 2020 3120 3: . . . . . 1 │ │ │ │ -00021a70: 2033 2020 3420 2034 2020 3420 2034 2020 3 4 4 4 4 │ │ │ │ -00021a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021a90: 7c0a 7c20 2020 2020 2020 2020 2034 3a20 |.| 4: │ │ │ │ -00021aa0: 2e20 2e20 2e20 2e20 2e20 202e 2020 2e20 . . . . . . . │ │ │ │ -00021ab0: 2031 2020 3320 2034 2020 3420 2020 2020 1 3 4 4 │ │ │ │ -00021ac0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00021ad0: 2020 2020 2020 2020 2020 353a 202e 202e 5: . . │ │ │ │ -00021ae0: 202e 202e 202e 2020 2e20 202e 2020 2e20 . . . . . . │ │ │ │ -00021af0: 202e 2020 3120 2033 2020 2020 2020 2020 . 1 3 │ │ │ │ -00021b00: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00021910: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00021920: 2020 2020 2020 2030 2031 2032 2033 2034 0 1 2 3 4 │ │ │ │ +00021930: 2020 3520 2036 2020 3720 2038 2020 3920 5 6 7 8 9 │ │ │ │ +00021940: 3130 2020 2020 2020 2020 2020 2020 2020 10 │ │ │ │ +00021950: 2020 2020 7c0a 7c6f 3137 203d 2074 6f74 |.|o17 = tot │ │ │ │ +00021960: 616c 3a20 3120 3320 3520 3720 3920 3131 al: 1 3 5 7 9 11 │ │ │ │ +00021970: 2031 3320 3135 2031 3720 3139 2032 3120 13 15 17 19 21 │ │ │ │ +00021980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021990: 207c 0a7c 2020 2020 2020 2020 2020 303a |.| 0: │ │ │ │ +000219a0: 2031 2032 2032 2032 2032 2020 3220 2032 1 2 2 2 2 2 2 │ │ │ │ +000219b0: 2020 3220 2032 2020 3220 2032 2020 2020 2 2 2 2 │ │ │ │ +000219c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000219d0: 7c20 2020 2020 2020 2020 2031 3a20 2e20 | 1: . │ │ │ │ +000219e0: 3120 3320 3420 3420 2034 2020 3420 2034 1 3 4 4 4 4 4 │ │ │ │ +000219f0: 2020 3420 2034 2020 3420 2020 2020 2020 4 4 4 │ │ │ │ +00021a00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00021a10: 2020 2020 2020 2020 323a 202e 202e 202e 2: . . . │ │ │ │ +00021a20: 2031 2033 2020 3420 2034 2020 3420 2034 1 3 4 4 4 4 │ │ │ │ +00021a30: 2020 3420 2034 2020 2020 2020 2020 2020 4 4 │ │ │ │ +00021a40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00021a50: 2020 2020 2033 3a20 2e20 2e20 2e20 2e20 3: . . . . │ │ │ │ +00021a60: 2e20 2031 2020 3320 2034 2020 3420 2034 . 1 3 4 4 4 │ │ │ │ +00021a70: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00021a80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00021a90: 2020 343a 202e 202e 202e 202e 202e 2020 4: . . . . . │ │ │ │ +00021aa0: 2e20 202e 2020 3120 2033 2020 3420 2034 . . 1 3 4 4 │ │ │ │ +00021ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021ac0: 2020 7c0a 7c20 2020 2020 2020 2020 2035 |.| 5 │ │ │ │ +00021ad0: 3a20 2e20 2e20 2e20 2e20 2e20 202e 2020 : . . . . . . │ │ │ │ +00021ae0: 2e20 202e 2020 2e20 2031 2020 3320 2020 . . . 1 3 │ │ │ │ +00021af0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021b00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b40: 2020 2020 2020 207c 0a7c 6f31 3720 3a20 |.|o17 : │ │ │ │ -00021b50: 4265 7474 6954 616c 6c79 2020 2020 2020 BettiTally │ │ │ │ +00021b30: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00021b40: 3137 203a 2042 6574 7469 5461 6c6c 7920 17 : BettiTally │ │ │ │ +00021b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b80: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00021b70: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00021b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021bc0: 2d2b 0a7c 6931 3820 3a20 4520 3d20 4578 -+.|i18 : E = Ex │ │ │ │ -00021bd0: 744d 6f64 756c 6520 4d32 2020 2020 2020 tModule M2 │ │ │ │ +00021bb0: 2d2d 2d2d 2d2d 2b0a 7c69 3138 203a 2045 ------+.|i18 : E │ │ │ │ +00021bc0: 203d 2045 7874 4d6f 6475 6c65 204d 3220 = ExtModule M2 │ │ │ │ +00021bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021bf0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00021c00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00021bf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00021c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021c30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00021c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021c50: 3820 2020 2020 2020 2020 2020 2020 2020 8 │ │ │ │ -00021c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021c70: 2020 2020 2020 2020 7c0a 7c6f 3138 203d |.|o18 = │ │ │ │ -00021c80: 2028 6b6b 5b58 202e 2e58 205d 2920 2020 (kk[X ..X ]) │ │ │ │ +00021c30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00021c40: 2020 2020 2038 2020 2020 2020 2020 2020 8 │ │ │ │ +00021c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021c60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021c70: 6f31 3820 3d20 286b 6b5b 5820 2e2e 5820 o18 = (kk[X ..X │ │ │ │ +00021c80: 5d29 2020 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ 00021c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021cb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00021cc0: 2020 2030 2020 2031 2020 2020 2020 2020 0 1 │ │ │ │ +00021ca0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00021cb0: 2020 2020 2020 2020 3020 2020 3120 2020 0 1 │ │ │ │ +00021cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021cf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00021ce0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00021cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021d20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00021d30: 0a7c 6f31 3820 3a20 6b6b 5b58 202e 2e58 .|o18 : kk[X ..X │ │ │ │ -00021d40: 205d 2d6d 6f64 756c 652c 2066 7265 652c ]-module, free, │ │ │ │ -00021d50: 2064 6567 7265 6573 207b 302e 2e31 2c20 degrees {0..1, │ │ │ │ -00021d60: 323a 312c 2033 3a32 2c20 337d 7c0a 7c20 2:1, 3:2, 3}|.| │ │ │ │ -00021d70: 2020 2020 2020 2020 2030 2020 2031 2020 0 1 │ │ │ │ +00021d20: 2020 2020 7c0a 7c6f 3138 203a 206b 6b5b |.|o18 : kk[ │ │ │ │ +00021d30: 5820 2e2e 5820 5d2d 6d6f 6475 6c65 2c20 X ..X ]-module, │ │ │ │ +00021d40: 6672 6565 2c20 6465 6772 6565 7320 7b30 free, degrees {0 │ │ │ │ +00021d50: 2e2e 312c 2032 3a31 2c20 333a 322c 2033 ..1, 2:1, 3:2, 3 │ │ │ │ +00021d60: 7d7c 0a7c 2020 2020 2020 2020 2020 3020 }|.| 0 │ │ │ │ +00021d70: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00021d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021da0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00021d90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00021da0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00021db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021de0: 2d2d 2d2d 2d2d 2b0a 7c69 3139 203a 2061 ------+.|i19 : a │ │ │ │ -00021df0: 7070 6c79 2874 6f4c 6973 7428 302e 2e31 pply(toList(0..1 │ │ │ │ -00021e00: 3029 2c20 692d 3e68 696c 6265 7274 4675 0), i->hilbertFu │ │ │ │ -00021e10: 6e63 7469 6f6e 2869 2c20 4529 2920 2020 nction(i, E)) │ │ │ │ -00021e20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00021dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00021de0: 3920 3a20 6170 706c 7928 746f 4c69 7374 9 : apply(toList │ │ │ │ +00021df0: 2830 2e2e 3130 292c 2069 2d3e 6869 6c62 (0..10), i->hilb │ │ │ │ +00021e00: 6572 7446 756e 6374 696f 6e28 692c 2045 ertFunction(i, E │ │ │ │ +00021e10: 2929 2020 2020 2020 7c0a 7c20 2020 2020 )) |.| │ │ │ │ +00021e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021e60: 7c0a 7c6f 3139 203d 207b 312c 2033 2c20 |.|o19 = {1, 3, │ │ │ │ -00021e70: 352c 2037 2c20 392c 2031 312c 2031 332c 5, 7, 9, 11, 13, │ │ │ │ -00021e80: 2031 352c 2031 372c 2031 392c 2032 317d 15, 17, 19, 21} │ │ │ │ -00021e90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021e50: 2020 2020 207c 0a7c 6f31 3920 3d20 7b31 |.|o19 = {1 │ │ │ │ +00021e60: 2c20 332c 2035 2c20 372c 2039 2c20 3131 , 3, 5, 7, 9, 11 │ │ │ │ +00021e70: 2c20 3133 2c20 3135 2c20 3137 2c20 3139 , 13, 15, 17, 19 │ │ │ │ +00021e80: 2c20 3231 7d20 2020 2020 2020 2020 2020 , 21} │ │ │ │ +00021e90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00021ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021ed0: 2020 2020 2020 2020 2020 7c0a 7c6f 3139 |.|o19 │ │ │ │ -00021ee0: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ +00021ec0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021ed0: 0a7c 6f31 3920 3a20 4c69 7374 2020 2020 .|o19 : List │ │ │ │ +00021ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021f10: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00021f00: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00021f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021f50: 2d2d 2d2d 2b0a 7c69 3230 203a 2045 6576 ----+.|i20 : Eev │ │ │ │ -00021f60: 656e 203d 2065 7665 6e45 7874 4d6f 6475 en = evenExtModu │ │ │ │ -00021f70: 6c65 204d 3220 2020 2020 2020 2020 2020 le M2 │ │ │ │ -00021f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021f90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00021f40: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3020 ---------+.|i20 │ │ │ │ +00021f50: 3a20 4565 7665 6e20 3d20 6576 656e 4578 : Eeven = evenEx │ │ │ │ +00021f60: 744d 6f64 756c 6520 4d32 2020 2020 2020 tModule M2 │ │ │ │ +00021f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021f80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00021f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021fc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00021fd0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00021fe0: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00021fc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00021fd0: 2020 2020 2020 2020 3420 2020 2020 2020 4 │ │ │ │ +00021fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022000: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -00022010: 3020 3d20 286b 6b5b 5820 2e2e 5820 5d29 0 = (kk[X ..X ]) │ │ │ │ +00022000: 7c0a 7c6f 3230 203d 2028 6b6b 5b58 202e |.|o20 = (kk[X . │ │ │ │ +00022010: 2e58 205d 2920 2020 2020 2020 2020 2020 .X ]) │ │ │ │ 00022020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022040: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00022050: 2020 2020 2020 3020 2020 3120 2020 2020 0 1 │ │ │ │ +00022030: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022040: 2020 2020 2020 2020 2020 2030 2020 2031 0 1 │ │ │ │ +00022050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022080: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022070: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000220a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000220b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000220c0: 2020 7c0a 7c6f 3230 203a 206b 6b5b 5820 |.|o20 : kk[X │ │ │ │ -000220d0: 2e2e 5820 5d2d 6d6f 6475 6c65 2c20 6672 ..X ]-module, fr │ │ │ │ -000220e0: 6565 2c20 6465 6772 6565 7320 7b30 2e2e ee, degrees {0.. │ │ │ │ -000220f0: 312c 2032 3a31 7d20 2020 2020 2020 207c 1, 2:1} | │ │ │ │ -00022100: 0a7c 2020 2020 2020 2020 2020 3020 2020 .| 0 │ │ │ │ -00022110: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +000220b0: 2020 2020 2020 207c 0a7c 6f32 3020 3a20 |.|o20 : │ │ │ │ +000220c0: 6b6b 5b58 202e 2e58 205d 2d6d 6f64 756c kk[X ..X ]-modul │ │ │ │ +000220d0: 652c 2066 7265 652c 2064 6567 7265 6573 e, free, degrees │ │ │ │ +000220e0: 207b 302e 2e31 2c20 323a 317d 2020 2020 {0..1, 2:1} │ │ │ │ +000220f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00022100: 2030 2020 2031 2020 2020 2020 2020 2020 0 1 │ │ │ │ +00022110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022130: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00022130: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00022140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022170: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3120 ---------+.|i21 │ │ │ │ -00022180: 3a20 6170 706c 7928 746f 4c69 7374 2830 : apply(toList(0 │ │ │ │ -00022190: 2e2e 3529 2c20 692d 3e68 696c 6265 7274 ..5), i->hilbert │ │ │ │ -000221a0: 4675 6e63 7469 6f6e 2869 2c20 4565 7665 Function(i, Eeve │ │ │ │ -000221b0: 6e29 2920 2020 7c0a 7c20 2020 2020 2020 n)) |.| │ │ │ │ +00022160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00022170: 7c69 3231 203a 2061 7070 6c79 2874 6f4c |i21 : apply(toL │ │ │ │ +00022180: 6973 7428 302e 2e35 292c 2069 2d3e 6869 ist(0..5), i->hi │ │ │ │ +00022190: 6c62 6572 7446 756e 6374 696f 6e28 692c lbertFunction(i, │ │ │ │ +000221a0: 2045 6576 656e 2929 2020 207c 0a7c 2020 Eeven)) |.| │ │ │ │ +000221b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000221c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000221d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000221e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000221f0: 2020 207c 0a7c 6f32 3120 3d20 7b31 2c20 |.|o21 = {1, │ │ │ │ -00022200: 352c 2039 2c20 3133 2c20 3137 2c20 3231 5, 9, 13, 17, 21 │ │ │ │ -00022210: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ -00022220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022230: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000221e0: 2020 2020 2020 2020 7c0a 7c6f 3231 203d |.|o21 = │ │ │ │ +000221f0: 207b 312c 2035 2c20 392c 2031 332c 2031 {1, 5, 9, 13, 1 │ │ │ │ +00022200: 372c 2032 317d 2020 2020 2020 2020 2020 7, 21} │ │ │ │ +00022210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022220: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022260: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022270: 6f32 3120 3a20 4c69 7374 2020 2020 2020 o21 : List │ │ │ │ +00022260: 2020 7c0a 7c6f 3231 203a 204c 6973 7420 |.|o21 : List │ │ │ │ +00022270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000222a0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00022290: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000222a0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 000222b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000222c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000222d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000222e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3220 3a20 -------+.|i22 : │ │ │ │ -000222f0: 456f 6464 203d 206f 6464 4578 744d 6f64 Eodd = oddExtMod │ │ │ │ -00022300: 756c 6520 4d32 2020 2020 2020 2020 2020 ule M2 │ │ │ │ -00022310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022320: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000222d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000222e0: 3232 203a 2045 6f64 6420 3d20 6f64 6445 22 : Eodd = oddE │ │ │ │ +000222f0: 7874 4d6f 6475 6c65 204d 3220 2020 2020 xtModule M2 │ │ │ │ +00022300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022310: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00022320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022360: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00022370: 2020 2020 2020 3420 2020 2020 2020 2020 4 │ │ │ │ +00022350: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00022360: 2020 2020 2020 2020 2020 2034 2020 2020 4 │ │ │ │ +00022370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022390: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000223a0: 7c6f 3232 203d 2028 6b6b 5b58 202e 2e58 |o22 = (kk[X ..X │ │ │ │ -000223b0: 205d 2920 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ +00022390: 2020 207c 0a7c 6f32 3220 3d20 286b 6b5b |.|o22 = (kk[ │ │ │ │ +000223a0: 5820 2e2e 5820 5d29 2020 2020 2020 2020 X ..X ]) │ │ │ │ +000223b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000223c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000223d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000223e0: 2020 2020 2020 2020 2030 2020 2031 2020 0 1 │ │ │ │ +000223d0: 7c0a 7c20 2020 2020 2020 2020 2020 3020 |.| 0 │ │ │ │ +000223e0: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 000223f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022410: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00022400: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022450: 2020 2020 207c 0a7c 6f32 3220 3a20 6b6b |.|o22 : kk │ │ │ │ -00022460: 5b58 202e 2e58 205d 2d6d 6f64 756c 652c [X ..X ]-module, │ │ │ │ -00022470: 2066 7265 652c 2064 6567 7265 6573 207b free, degrees { │ │ │ │ -00022480: 333a 302c 2031 7d20 2020 2020 2020 2020 3:0, 1} │ │ │ │ -00022490: 2020 7c0a 7c20 2020 2020 2020 2020 2030 |.| 0 │ │ │ │ -000224a0: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00022440: 2020 2020 2020 2020 2020 7c0a 7c6f 3232 |.|o22 │ │ │ │ +00022450: 203a 206b 6b5b 5820 2e2e 5820 5d2d 6d6f : kk[X ..X ]-mo │ │ │ │ +00022460: 6475 6c65 2c20 6672 6565 2c20 6465 6772 dule, free, degr │ │ │ │ +00022470: 6565 7320 7b33 3a30 2c20 317d 2020 2020 ees {3:0, 1} │ │ │ │ +00022480: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00022490: 2020 2020 3020 2020 3120 2020 2020 2020 0 1 │ │ │ │ +000224a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000224b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000224c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000224d0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000224c0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000224d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000224e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000224f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00022510: 3233 203a 2061 7070 6c79 2874 6f4c 6973 23 : apply(toLis │ │ │ │ -00022520: 7428 302e 2e35 292c 2069 2d3e 6869 6c62 t(0..5), i->hilb │ │ │ │ -00022530: 6572 7446 756e 6374 696f 6e28 692c 2045 ertFunction(i, E │ │ │ │ -00022540: 6f64 6429 2920 2020 207c 0a7c 2020 2020 odd)) |.| │ │ │ │ +00022500: 2d2b 0a7c 6932 3320 3a20 6170 706c 7928 -+.|i23 : apply( │ │ │ │ +00022510: 746f 4c69 7374 2830 2e2e 3529 2c20 692d toList(0..5), i- │ │ │ │ +00022520: 3e68 696c 6265 7274 4675 6e63 7469 6f6e >hilbertFunction │ │ │ │ +00022530: 2869 2c20 456f 6464 2929 2020 2020 7c0a (i, Eodd)) |. │ │ │ │ +00022540: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00022550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022580: 2020 2020 2020 7c0a 7c6f 3233 203d 207b |.|o23 = { │ │ │ │ -00022590: 332c 2037 2c20 3131 2c20 3135 2c20 3139 3, 7, 11, 15, 19 │ │ │ │ -000225a0: 2c20 3233 7d20 2020 2020 2020 2020 2020 , 23} │ │ │ │ -000225b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000225c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00022570: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00022580: 3320 3d20 7b33 2c20 372c 2031 312c 2031 3 = {3, 7, 11, 1 │ │ │ │ +00022590: 352c 2031 392c 2032 337d 2020 2020 2020 5, 19, 23} │ │ │ │ +000225a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000225b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000225c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000225d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000225e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000225f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022600: 7c0a 7c6f 3233 203a 204c 6973 7420 2020 |.|o23 : List │ │ │ │ +000225f0: 2020 2020 207c 0a7c 6f32 3320 3a20 4c69 |.|o23 : Li │ │ │ │ +00022600: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ 00022610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022630: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00022630: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00022640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022670: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 ----------+..See │ │ │ │ -00022680: 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a also.========.. │ │ │ │ -00022690: 2020 2a20 2a6e 6f74 6520 6576 656e 4578 * *note evenEx │ │ │ │ -000226a0: 744d 6f64 756c 653a 2065 7665 6e45 7874 tModule: evenExt │ │ │ │ -000226b0: 4d6f 6475 6c65 2c20 2d2d 2065 7665 6e20 Module, -- even │ │ │ │ -000226c0: 7061 7274 206f 6620 4578 745e 2a28 4d2c part of Ext^*(M, │ │ │ │ -000226d0: 6b29 206f 7665 7220 610a 2020 2020 636f k) over a. co │ │ │ │ -000226e0: 6d70 6c65 7465 2069 6e74 6572 7365 6374 mplete intersect │ │ │ │ -000226f0: 696f 6e20 6173 206d 6f64 756c 6520 6f76 ion as module ov │ │ │ │ -00022700: 6572 2043 4920 6f70 6572 6174 6f72 2072 er CI operator r │ │ │ │ -00022710: 696e 670a 2020 2a20 2a6e 6f74 6520 6f64 ing. * *note od │ │ │ │ -00022720: 6445 7874 4d6f 6475 6c65 3a20 6f64 6445 dExtModule: oddE │ │ │ │ -00022730: 7874 4d6f 6475 6c65 2c20 2d2d 206f 6464 xtModule, -- odd │ │ │ │ -00022740: 2070 6172 7420 6f66 2045 7874 5e2a 284d part of Ext^*(M │ │ │ │ -00022750: 2c6b 2920 6f76 6572 2061 2063 6f6d 706c ,k) over a compl │ │ │ │ -00022760: 6574 650a 2020 2020 696e 7465 7273 6563 ete. intersec │ │ │ │ -00022770: 7469 6f6e 2061 7320 6d6f 6475 6c65 206f tion as module o │ │ │ │ -00022780: 7665 7220 4349 206f 7065 7261 746f 7220 ver CI operator │ │ │ │ -00022790: 7269 6e67 0a0a 5761 7973 2074 6f20 7573 ring..Ways to us │ │ │ │ -000227a0: 6520 4578 744d 6f64 756c 653a 0a3d 3d3d e ExtModule:.=== │ │ │ │ -000227b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000227c0: 3d3d 3d0a 0a20 202a 2022 4578 744d 6f64 ===.. * "ExtMod │ │ │ │ -000227d0: 756c 6528 4d6f 6475 6c65 2922 0a0a 466f ule(Module)"..Fo │ │ │ │ -000227e0: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -000227f0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -00022800: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -00022810: 2a6e 6f74 6520 4578 744d 6f64 756c 653a *note ExtModule: │ │ │ │ -00022820: 2045 7874 4d6f 6475 6c65 2c20 6973 2061 ExtModule, is a │ │ │ │ -00022830: 202a 6e6f 7465 206d 6574 686f 6420 6675 *note method fu │ │ │ │ -00022840: 6e63 7469 6f6e 3a0a 284d 6163 6175 6c61 nction:.(Macaula │ │ │ │ -00022850: 7932 446f 6329 4d65 7468 6f64 4675 6e63 y2Doc)MethodFunc │ │ │ │ -00022860: 7469 6f6e 2c2e 0a1f 0a46 696c 653a 2043 tion,....File: C │ │ │ │ -00022870: 6f6d 706c 6574 6549 6e74 6572 7365 6374 ompleteIntersect │ │ │ │ -00022880: 696f 6e52 6573 6f6c 7574 696f 6e73 2e69 ionResolutions.i │ │ │ │ -00022890: 6e66 6f2c 204e 6f64 653a 2045 7874 4d6f nfo, Node: ExtMo │ │ │ │ -000228a0: 6475 6c65 4461 7461 2c20 4e65 7874 3a20 duleData, Next: │ │ │ │ -000228b0: 6578 7456 7343 6f68 6f6d 6f6c 6f67 792c extVsCohomology, │ │ │ │ -000228c0: 2050 7265 763a 2045 7874 4d6f 6475 6c65 Prev: ExtModule │ │ │ │ -000228d0: 2c20 5570 3a20 546f 700a 0a45 7874 4d6f , Up: Top..ExtMo │ │ │ │ -000228e0: 6475 6c65 4461 7461 202d 2d20 4576 656e duleData -- Even │ │ │ │ -000228f0: 2061 6e64 206f 6464 2045 7874 206d 6f64 and odd Ext mod │ │ │ │ -00022900: 756c 6573 2061 6e64 2074 6865 6972 2072 ules and their r │ │ │ │ -00022910: 6567 756c 6172 6974 790a 2a2a 2a2a 2a2a egularity.****** │ │ │ │ +00022660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00022670: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ +00022680: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2065 ===.. * *note e │ │ │ │ +00022690: 7665 6e45 7874 4d6f 6475 6c65 3a20 6576 venExtModule: ev │ │ │ │ +000226a0: 656e 4578 744d 6f64 756c 652c 202d 2d20 enExtModule, -- │ │ │ │ +000226b0: 6576 656e 2070 6172 7420 6f66 2045 7874 even part of Ext │ │ │ │ +000226c0: 5e2a 284d 2c6b 2920 6f76 6572 2061 0a20 ^*(M,k) over a. │ │ │ │ +000226d0: 2020 2063 6f6d 706c 6574 6520 696e 7465 complete inte │ │ │ │ +000226e0: 7273 6563 7469 6f6e 2061 7320 6d6f 6475 rsection as modu │ │ │ │ +000226f0: 6c65 206f 7665 7220 4349 206f 7065 7261 le over CI opera │ │ │ │ +00022700: 746f 7220 7269 6e67 0a20 202a 202a 6e6f tor ring. * *no │ │ │ │ +00022710: 7465 206f 6464 4578 744d 6f64 756c 653a te oddExtModule: │ │ │ │ +00022720: 206f 6464 4578 744d 6f64 756c 652c 202d oddExtModule, - │ │ │ │ +00022730: 2d20 6f64 6420 7061 7274 206f 6620 4578 - odd part of Ex │ │ │ │ +00022740: 745e 2a28 4d2c 6b29 206f 7665 7220 6120 t^*(M,k) over a │ │ │ │ +00022750: 636f 6d70 6c65 7465 0a20 2020 2069 6e74 complete. int │ │ │ │ +00022760: 6572 7365 6374 696f 6e20 6173 206d 6f64 ersection as mod │ │ │ │ +00022770: 756c 6520 6f76 6572 2043 4920 6f70 6572 ule over CI oper │ │ │ │ +00022780: 6174 6f72 2072 696e 670a 0a57 6179 7320 ator ring..Ways │ │ │ │ +00022790: 746f 2075 7365 2045 7874 4d6f 6475 6c65 to use ExtModule │ │ │ │ +000227a0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +000227b0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2245 ========.. * "E │ │ │ │ +000227c0: 7874 4d6f 6475 6c65 284d 6f64 756c 6529 xtModule(Module) │ │ │ │ +000227d0: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ +000227e0: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +000227f0: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +00022800: 6a65 6374 202a 6e6f 7465 2045 7874 4d6f ject *note ExtMo │ │ │ │ +00022810: 6475 6c65 3a20 4578 744d 6f64 756c 652c dule: ExtModule, │ │ │ │ +00022820: 2069 7320 6120 2a6e 6f74 6520 6d65 7468 is a *note meth │ │ │ │ +00022830: 6f64 2066 756e 6374 696f 6e3a 0a28 4d61 od function:.(Ma │ │ │ │ +00022840: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ +00022850: 6446 756e 6374 696f 6e2c 2e0a 1f0a 4669 dFunction,....Fi │ │ │ │ +00022860: 6c65 3a20 436f 6d70 6c65 7465 496e 7465 le: CompleteInte │ │ │ │ +00022870: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ +00022880: 6f6e 732e 696e 666f 2c20 4e6f 6465 3a20 ons.info, Node: │ │ │ │ +00022890: 4578 744d 6f64 756c 6544 6174 612c 204e ExtModuleData, N │ │ │ │ +000228a0: 6578 743a 2065 7874 5673 436f 686f 6d6f ext: extVsCohomo │ │ │ │ +000228b0: 6c6f 6779 2c20 5072 6576 3a20 4578 744d logy, Prev: ExtM │ │ │ │ +000228c0: 6f64 756c 652c 2055 703a 2054 6f70 0a0a odule, Up: Top.. │ │ │ │ +000228d0: 4578 744d 6f64 756c 6544 6174 6120 2d2d ExtModuleData -- │ │ │ │ +000228e0: 2045 7665 6e20 616e 6420 6f64 6420 4578 Even and odd Ex │ │ │ │ +000228f0: 7420 6d6f 6475 6c65 7320 616e 6420 7468 t modules and th │ │ │ │ +00022900: 6569 7220 7265 6775 6c61 7269 7479 0a2a eir regularity.* │ │ │ │ +00022910: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00022920: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00022930: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00022940: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00022950: 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 ********..Synops │ │ │ │ -00022960: 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a is.========.. * │ │ │ │ -00022970: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -00022980: 204c 203d 2045 7874 4d6f 6475 6c65 4461 L = ExtModuleDa │ │ │ │ -00022990: 7461 204d 0a20 202a 2049 6e70 7574 733a ta M. * Inputs: │ │ │ │ -000229a0: 0a20 2020 2020 202a 204d 2c20 6120 2a6e . * M, a *n │ │ │ │ -000229b0: 6f74 6520 6d6f 6475 6c65 3a20 284d 6163 ote module: (Mac │ │ │ │ -000229c0: 6175 6c61 7932 446f 6329 4d6f 6475 6c65 aulay2Doc)Module │ │ │ │ -000229d0: 2c2c 204d 6f64 756c 6520 6f76 6572 2061 ,, Module over a │ │ │ │ -000229e0: 2063 6f6d 706c 6574 650a 2020 2020 2020 complete. │ │ │ │ -000229f0: 2020 696e 7465 7273 6563 7469 6f6e 2053 intersection S │ │ │ │ -00022a00: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ -00022a10: 2020 2020 2a20 4c2c 2061 202a 6e6f 7465 * L, a *note │ │ │ │ -00022a20: 206c 6973 743a 2028 4d61 6361 756c 6179 list: (Macaulay │ │ │ │ -00022a30: 3244 6f63 294c 6973 742c 2c20 4c20 3d20 2Doc)List,, L = │ │ │ │ -00022a40: 5c7b 6576 656e 4578 744d 6f64 756c 652c \{evenExtModule, │ │ │ │ -00022a50: 0a20 2020 2020 2020 206f 6464 4578 744d . oddExtM │ │ │ │ -00022a60: 6f64 756c 652c 2072 6567 302c 2072 6567 odule, reg0, reg │ │ │ │ -00022a70: 315c 7d0a 0a44 6573 6372 6970 7469 6f6e 1\}..Description │ │ │ │ -00022a80: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5375 .===========..Su │ │ │ │ -00022a90: 7070 6f73 6520 7468 6174 204d 2069 7320 ppose that M is │ │ │ │ -00022aa0: 6120 6d6f 6475 6c65 206f 7665 7220 6120 a module over a │ │ │ │ -00022ab0: 636f 6d70 6c65 7465 2069 6e74 6572 7365 complete interse │ │ │ │ -00022ac0: 6374 696f 6e20 5220 736f 2074 6861 740a ction R so that. │ │ │ │ -00022ad0: 0a45 203a 3d20 4578 744d 6f64 756c 6520 .E := ExtModule │ │ │ │ -00022ae0: 4d0a 0a69 7320 6120 6d6f 6475 6c65 2067 M..is a module g │ │ │ │ -00022af0: 656e 6572 6174 6564 2069 6e20 6465 6772 enerated in degr │ │ │ │ -00022b00: 6565 7320 3e3d 3020 6f76 6572 2061 2070 ees >=0 over a p │ │ │ │ -00022b10: 6f6c 796e 6f6d 6961 6c20 7269 6e67 2054 olynomial ring T │ │ │ │ -00022b20: 2720 6765 6e65 7261 7465 6420 696e 0a64 ' generated in.d │ │ │ │ -00022b30: 6567 7265 6520 322c 2061 6e64 0a0a 4530 egree 2, and..E0 │ │ │ │ -00022b40: 203a 3d20 6576 656e 4578 744d 6f64 756c := evenExtModul │ │ │ │ -00022b50: 6520 4d20 616e 6420 4531 203a 3d20 6f64 e M and E1 := od │ │ │ │ -00022b60: 6445 7874 4d6f 6475 6c65 204d 0a0a 6172 dExtModule M..ar │ │ │ │ -00022b70: 6520 6d6f 6475 6c65 7320 6765 6e65 7261 e modules genera │ │ │ │ -00022b80: 7465 6420 696e 2064 6567 7265 6520 3e3d ted in degree >= │ │ │ │ -00022b90: 2030 206f 7665 7220 6120 706f 6c79 6e6f 0 over a polyno │ │ │ │ -00022ba0: 6d69 616c 2072 696e 6720 5420 7769 7468 mial ring T with │ │ │ │ -00022bb0: 2067 656e 6572 6174 6f72 730a 696e 2064 generators.in d │ │ │ │ -00022bc0: 6567 7265 6520 312e 0a0a 5468 6520 7363 egree 1...The sc │ │ │ │ -00022bd0: 7269 7074 2072 6574 7572 6e73 0a0a 4c20 ript returns..L │ │ │ │ -00022be0: 3d20 5c7b 4530 2c45 312c 2072 6567 756c = \{E0,E1, regul │ │ │ │ -00022bf0: 6172 6974 7920 4530 2c20 7265 6775 6c61 arity E0, regula │ │ │ │ -00022c00: 7269 7479 2045 315c 7d0a 0a61 6e64 2070 rity E1\}..and p │ │ │ │ -00022c10: 7269 6e74 7320 6120 6d65 7373 6167 6520 rints a message │ │ │ │ -00022c20: 6966 207c 7265 6730 2d72 6567 317c 3e31 if |reg0-reg1|>1 │ │ │ │ -00022c30: 2e0a 0a49 6620 7765 2073 6574 2072 203d ...If we set r = │ │ │ │ -00022c40: 206d 6178 2832 2a72 6567 302c 2031 2b32 max(2*reg0, 1+2 │ │ │ │ -00022c50: 2a72 6567 3129 2c20 616e 6420 4620 6973 *reg1), and F is │ │ │ │ -00022c60: 2061 2072 6573 6f6c 7574 696f 6e20 6f66 a resolution of │ │ │ │ -00022c70: 204d 2c20 7468 656e 2063 6f6b 6572 0a46 M, then coker.F │ │ │ │ -00022c80: 2e64 645f 7b28 722b 3129 7d20 6973 2074 .dd_{(r+1)} is t │ │ │ │ -00022c90: 6865 2066 6972 7374 2073 7a79 6779 206d he first szygy m │ │ │ │ -00022ca0: 6f64 756c 6520 6f66 204d 2073 7563 6820 odule of M such │ │ │ │ -00022cb0: 7468 6174 2072 6567 756c 6172 6974 7920 that regularity │ │ │ │ -00022cc0: 6576 656e 4578 744d 6f64 756c 650a 4d20 evenExtModule.M │ │ │ │ -00022cd0: 3d30 2041 4e44 2072 6567 756c 6172 6974 =0 AND regularit │ │ │ │ -00022ce0: 7920 6f64 6445 7874 4d6f 6475 6c65 204d y oddExtModule M │ │ │ │ -00022cf0: 203d 300a 0a57 6520 6861 7665 2062 6565 =0..We have bee │ │ │ │ -00022d00: 6e20 7573 696e 6720 7265 6775 6c61 7269 n using regulari │ │ │ │ -00022d10: 7479 2045 7874 4d6f 6475 6c65 204d 2061 ty ExtModule M a │ │ │ │ -00022d20: 7320 6120 7375 6273 7469 7475 7465 2066 s a substitute f │ │ │ │ -00022d30: 6f72 2072 2c20 6275 7420 7468 6174 2773 or r, but that's │ │ │ │ -00022d40: 206e 6f74 0a61 6c77 6179 7320 7468 6520 not.always the │ │ │ │ -00022d50: 7361 6d65 2e0a 0a54 6865 2072 6567 756c same...The regul │ │ │ │ -00022d60: 6172 6974 6965 7320 6f66 2074 6865 2065 arities of the e │ │ │ │ -00022d70: 7665 6e20 616e 6420 6f64 6420 4578 7420 ven and odd Ext │ │ │ │ -00022d80: 6d6f 6475 6c65 7320 2a63 616e 2a20 6469 modules *can* di │ │ │ │ -00022d90: 6666 6572 2062 7920 6d6f 7265 2074 6861 ffer by more tha │ │ │ │ -00022da0: 6e20 312e 0a41 6e20 6578 616d 706c 6520 n 1..An example │ │ │ │ -00022db0: 6361 6e20 6265 2070 726f 6475 6365 6420 can be produced │ │ │ │ -00022dc0: 7769 7468 2073 6574 5261 6e64 6f6d 5365 with setRandomSe │ │ │ │ -00022dd0: 6564 2030 2053 203d 205a 5a2f 3130 315b ed 0 S = ZZ/101[ │ │ │ │ -00022de0: 612c 622c 632c 645d 2066 660a 3d6d 6174 a,b,c,d] ff.=mat │ │ │ │ -00022df0: 7269 7822 6134 2c62 342c 6334 2c64 3422 rix"a4,b4,c4,d4" │ │ │ │ -00022e00: 2052 203d 2053 2f69 6465 616c 2066 6620 R = S/ideal ff │ │ │ │ -00022e10: 4e20 3d20 636f 6b65 7220 7261 6e64 6f6d N = coker random │ │ │ │ -00022e20: 2852 5e7b 302c 317d 2c20 525e 7b20 2d31 (R^{0,1}, R^{ -1 │ │ │ │ -00022e30: 2c2d 322c 2d33 2c2d 347d 290a 2d2d 6769 ,-2,-3,-4}).--gi │ │ │ │ -00022e40: 7665 7320 7265 6720 4578 745e 6576 656e ves reg Ext^even │ │ │ │ -00022e50: 203d 2034 2c20 7265 6720 4578 745e 6f64 = 4, reg Ext^od │ │ │ │ -00022e60: 6420 3d20 3320 4c20 3d20 4578 744d 6f64 d = 3 L = ExtMod │ │ │ │ -00022e70: 756c 6544 6174 6120 4e3b 2062 7574 2074 uleData N; but t │ │ │ │ -00022e80: 616b 6573 2073 6f6d 650a 7469 6d65 2074 akes some.time t │ │ │ │ -00022e90: 6f20 636f 6d70 7574 652e 0a0a 0a0a 2b2d o compute.....+- │ │ │ │ +00022940: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 *************..S │ │ │ │ +00022950: 796e 6f70 7369 730a 3d3d 3d3d 3d3d 3d3d ynopsis.======== │ │ │ │ +00022960: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ +00022970: 2020 2020 2020 4c20 3d20 4578 744d 6f64 L = ExtMod │ │ │ │ +00022980: 756c 6544 6174 6120 4d0a 2020 2a20 496e uleData M. * In │ │ │ │ +00022990: 7075 7473 3a0a 2020 2020 2020 2a20 4d2c puts:. * M, │ │ │ │ +000229a0: 2061 202a 6e6f 7465 206d 6f64 756c 653a a *note module: │ │ │ │ +000229b0: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +000229c0: 6f64 756c 652c 2c20 4d6f 6475 6c65 206f odule,, Module o │ │ │ │ +000229d0: 7665 7220 6120 636f 6d70 6c65 7465 0a20 ver a complete. │ │ │ │ +000229e0: 2020 2020 2020 2069 6e74 6572 7365 6374 intersect │ │ │ │ +000229f0: 696f 6e20 530a 2020 2a20 4f75 7470 7574 ion S. * Output │ │ │ │ +00022a00: 733a 0a20 2020 2020 202a 204c 2c20 6120 s:. * L, a │ │ │ │ +00022a10: 2a6e 6f74 6520 6c69 7374 3a20 284d 6163 *note list: (Mac │ │ │ │ +00022a20: 6175 6c61 7932 446f 6329 4c69 7374 2c2c aulay2Doc)List,, │ │ │ │ +00022a30: 204c 203d 205c 7b65 7665 6e45 7874 4d6f L = \{evenExtMo │ │ │ │ +00022a40: 6475 6c65 2c0a 2020 2020 2020 2020 6f64 dule,. od │ │ │ │ +00022a50: 6445 7874 4d6f 6475 6c65 2c20 7265 6730 dExtModule, reg0 │ │ │ │ +00022a60: 2c20 7265 6731 5c7d 0a0a 4465 7363 7269 , reg1\}..Descri │ │ │ │ +00022a70: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +00022a80: 3d0a 0a53 7570 706f 7365 2074 6861 7420 =..Suppose that │ │ │ │ +00022a90: 4d20 6973 2061 206d 6f64 756c 6520 6f76 M is a module ov │ │ │ │ +00022aa0: 6572 2061 2063 6f6d 706c 6574 6520 696e er a complete in │ │ │ │ +00022ab0: 7465 7273 6563 7469 6f6e 2052 2073 6f20 tersection R so │ │ │ │ +00022ac0: 7468 6174 0a0a 4520 3a3d 2045 7874 4d6f that..E := ExtMo │ │ │ │ +00022ad0: 6475 6c65 204d 0a0a 6973 2061 206d 6f64 dule M..is a mod │ │ │ │ +00022ae0: 756c 6520 6765 6e65 7261 7465 6420 696e ule generated in │ │ │ │ +00022af0: 2064 6567 7265 6573 203e 3d30 206f 7665 degrees >=0 ove │ │ │ │ +00022b00: 7220 6120 706f 6c79 6e6f 6d69 616c 2072 r a polynomial r │ │ │ │ +00022b10: 696e 6720 5427 2067 656e 6572 6174 6564 ing T' generated │ │ │ │ +00022b20: 2069 6e0a 6465 6772 6565 2032 2c20 616e in.degree 2, an │ │ │ │ +00022b30: 640a 0a45 3020 3a3d 2065 7665 6e45 7874 d..E0 := evenExt │ │ │ │ +00022b40: 4d6f 6475 6c65 204d 2061 6e64 2045 3120 Module M and E1 │ │ │ │ +00022b50: 3a3d 206f 6464 4578 744d 6f64 756c 6520 := oddExtModule │ │ │ │ +00022b60: 4d0a 0a61 7265 206d 6f64 756c 6573 2067 M..are modules g │ │ │ │ +00022b70: 656e 6572 6174 6564 2069 6e20 6465 6772 enerated in degr │ │ │ │ +00022b80: 6565 203e 3d20 3020 6f76 6572 2061 2070 ee >= 0 over a p │ │ │ │ +00022b90: 6f6c 796e 6f6d 6961 6c20 7269 6e67 2054 olynomial ring T │ │ │ │ +00022ba0: 2077 6974 6820 6765 6e65 7261 746f 7273 with generators │ │ │ │ +00022bb0: 0a69 6e20 6465 6772 6565 2031 2e0a 0a54 .in degree 1...T │ │ │ │ +00022bc0: 6865 2073 6372 6970 7420 7265 7475 726e he script return │ │ │ │ +00022bd0: 730a 0a4c 203d 205c 7b45 302c 4531 2c20 s..L = \{E0,E1, │ │ │ │ +00022be0: 7265 6775 6c61 7269 7479 2045 302c 2072 regularity E0, r │ │ │ │ +00022bf0: 6567 756c 6172 6974 7920 4531 5c7d 0a0a egularity E1\}.. │ │ │ │ +00022c00: 616e 6420 7072 696e 7473 2061 206d 6573 and prints a mes │ │ │ │ +00022c10: 7361 6765 2069 6620 7c72 6567 302d 7265 sage if |reg0-re │ │ │ │ +00022c20: 6731 7c3e 312e 0a0a 4966 2077 6520 7365 g1|>1...If we se │ │ │ │ +00022c30: 7420 7220 3d20 6d61 7828 322a 7265 6730 t r = max(2*reg0 │ │ │ │ +00022c40: 2c20 312b 322a 7265 6731 292c 2061 6e64 , 1+2*reg1), and │ │ │ │ +00022c50: 2046 2069 7320 6120 7265 736f 6c75 7469 F is a resoluti │ │ │ │ +00022c60: 6f6e 206f 6620 4d2c 2074 6865 6e20 636f on of M, then co │ │ │ │ +00022c70: 6b65 720a 462e 6464 5f7b 2872 2b31 297d ker.F.dd_{(r+1)} │ │ │ │ +00022c80: 2069 7320 7468 6520 6669 7273 7420 737a is the first sz │ │ │ │ +00022c90: 7967 7920 6d6f 6475 6c65 206f 6620 4d20 ygy module of M │ │ │ │ +00022ca0: 7375 6368 2074 6861 7420 7265 6775 6c61 such that regula │ │ │ │ +00022cb0: 7269 7479 2065 7665 6e45 7874 4d6f 6475 rity evenExtModu │ │ │ │ +00022cc0: 6c65 0a4d 203d 3020 414e 4420 7265 6775 le.M =0 AND regu │ │ │ │ +00022cd0: 6c61 7269 7479 206f 6464 4578 744d 6f64 larity oddExtMod │ │ │ │ +00022ce0: 756c 6520 4d20 3d30 0a0a 5765 2068 6176 ule M =0..We hav │ │ │ │ +00022cf0: 6520 6265 656e 2075 7369 6e67 2072 6567 e been using reg │ │ │ │ +00022d00: 756c 6172 6974 7920 4578 744d 6f64 756c ularity ExtModul │ │ │ │ +00022d10: 6520 4d20 6173 2061 2073 7562 7374 6974 e M as a substit │ │ │ │ +00022d20: 7574 6520 666f 7220 722c 2062 7574 2074 ute for r, but t │ │ │ │ +00022d30: 6861 7427 7320 6e6f 740a 616c 7761 7973 hat's not.always │ │ │ │ +00022d40: 2074 6865 2073 616d 652e 0a0a 5468 6520 the same...The │ │ │ │ +00022d50: 7265 6775 6c61 7269 7469 6573 206f 6620 regularities of │ │ │ │ +00022d60: 7468 6520 6576 656e 2061 6e64 206f 6464 the even and odd │ │ │ │ +00022d70: 2045 7874 206d 6f64 756c 6573 202a 6361 Ext modules *ca │ │ │ │ +00022d80: 6e2a 2064 6966 6665 7220 6279 206d 6f72 n* differ by mor │ │ │ │ +00022d90: 6520 7468 616e 2031 2e0a 416e 2065 7861 e than 1..An exa │ │ │ │ +00022da0: 6d70 6c65 2063 616e 2062 6520 7072 6f64 mple can be prod │ │ │ │ +00022db0: 7563 6564 2077 6974 6820 7365 7452 616e uced with setRan │ │ │ │ +00022dc0: 646f 6d53 6565 6420 3020 5320 3d20 5a5a domSeed 0 S = ZZ │ │ │ │ +00022dd0: 2f31 3031 5b61 2c62 2c63 2c64 5d20 6666 /101[a,b,c,d] ff │ │ │ │ +00022de0: 0a3d 6d61 7472 6978 2261 342c 6234 2c63 .=matrix"a4,b4,c │ │ │ │ +00022df0: 342c 6434 2220 5220 3d20 532f 6964 6561 4,d4" R = S/idea │ │ │ │ +00022e00: 6c20 6666 204e 203d 2063 6f6b 6572 2072 l ff N = coker r │ │ │ │ +00022e10: 616e 646f 6d28 525e 7b30 2c31 7d2c 2052 andom(R^{0,1}, R │ │ │ │ +00022e20: 5e7b 202d 312c 2d32 2c2d 332c 2d34 7d29 ^{ -1,-2,-3,-4}) │ │ │ │ +00022e30: 0a2d 2d67 6976 6573 2072 6567 2045 7874 .--gives reg Ext │ │ │ │ +00022e40: 5e65 7665 6e20 3d20 342c 2072 6567 2045 ^even = 4, reg E │ │ │ │ +00022e50: 7874 5e6f 6464 203d 2033 204c 203d 2045 xt^odd = 3 L = E │ │ │ │ +00022e60: 7874 4d6f 6475 6c65 4461 7461 204e 3b20 xtModuleData N; │ │ │ │ +00022e70: 6275 7420 7461 6b65 7320 736f 6d65 0a74 but takes some.t │ │ │ │ +00022e80: 696d 6520 746f 2063 6f6d 7075 7465 2e0a ime to compute.. │ │ │ │ +00022e90: 0a0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ 00022ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00022ed0: 0a7c 6931 203a 2073 6574 5261 6e64 6f6d .|i1 : setRandom │ │ │ │ -00022ee0: 5365 6564 2031 3030 2020 2020 2020 2020 Seed 100 │ │ │ │ -00022ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00022ec0: 2d2d 2d2d 2b0a 7c69 3120 3a20 7365 7452 ----+.|i1 : setR │ │ │ │ +00022ed0: 616e 646f 6d53 6565 6420 3130 3020 2020 andomSeed 100 │ │ │ │ +00022ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022ef0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00022f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f30: 2020 2020 207c 0a7c 6f31 203d 2031 3030 |.|o1 = 100 │ │ │ │ +00022f20: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ +00022f30: 3d20 3130 3020 2020 2020 2020 2020 2020 = 100 │ │ │ │ 00022f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f60: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00022f50: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00022f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -00022fa0: 203a 2053 203d 205a 5a2f 3130 315b 612c : S = ZZ/101[a, │ │ │ │ -00022fb0: 622c 632c 645d 3b20 2020 2020 2020 2020 b,c,d]; │ │ │ │ -00022fc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00022fd0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00022f90: 2b0a 7c69 3220 3a20 5320 3d20 5a5a 2f31 +.|i2 : S = ZZ/1 │ │ │ │ +00022fa0: 3031 5b61 2c62 2c63 2c64 5d3b 2020 2020 01[a,b,c,d]; │ │ │ │ +00022fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022fc0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00022fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023000: 2d2b 0a7c 6933 203a 2066 203d 206d 6170 -+.|i3 : f = map │ │ │ │ -00023010: 2853 5e31 2c20 535e 342c 2028 692c 6a29 (S^1, S^4, (i,j) │ │ │ │ -00023020: 202d 3e20 535f 6a5e 3329 2020 2020 2020 -> S_j^3) │ │ │ │ -00023030: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00022ff0: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 6620 ------+.|i3 : f │ │ │ │ +00023000: 3d20 6d61 7028 535e 312c 2053 5e34 2c20 = map(S^1, S^4, │ │ │ │ +00023010: 2869 2c6a 2920 2d3e 2053 5f6a 5e33 2920 (i,j) -> S_j^3) │ │ │ │ +00023020: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00023030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023060: 2020 2020 2020 207c 0a7c 6f33 203d 207c |.|o3 = | │ │ │ │ -00023070: 2061 3320 6233 2063 3320 6433 207c 2020 a3 b3 c3 d3 | │ │ │ │ -00023080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023090: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00023050: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00023060: 3320 3d20 7c20 6133 2062 3320 6333 2064 3 = | a3 b3 c3 d │ │ │ │ +00023070: 3320 7c20 2020 2020 2020 2020 2020 2020 3 | │ │ │ │ +00023080: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023090: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000230a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000230b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000230c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000230d0: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ -000230e0: 2020 2020 3420 2020 2020 2020 2020 2020 4 │ │ │ │ -000230f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023100: 7c0a 7c6f 3320 3a20 4d61 7472 6978 2053 |.|o3 : Matrix S │ │ │ │ -00023110: 2020 3c2d 2d20 5320 2020 2020 2020 2020 <-- S │ │ │ │ -00023120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023130: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000230c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000230d0: 2020 3120 2020 2020 2034 2020 2020 2020 1 4 │ │ │ │ +000230e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000230f0: 2020 2020 207c 0a7c 6f33 203a 204d 6174 |.|o3 : Mat │ │ │ │ +00023100: 7269 7820 5320 203c 2d2d 2053 2020 2020 rix S <-- S │ │ │ │ +00023110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023120: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00023130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023160: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 5220 ------+.|i4 : R │ │ │ │ -00023170: 3d20 532f 6964 6561 6c20 663b 2020 2020 = S/ideal f; │ │ │ │ -00023180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023190: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00023150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ +00023160: 203a 2052 203d 2053 2f69 6465 616c 2066 : R = S/ideal f │ │ │ │ +00023170: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +00023180: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023190: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000231a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000231b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000231c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000231d0: 3520 3a20 4d20 3d20 525e 312f 6964 6561 5 : M = R^1/idea │ │ │ │ -000231e0: 6c22 6162 322b 6364 3222 3b20 2020 2020 l"ab2+cd2"; │ │ │ │ -000231f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00023200: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000231c0: 2d2b 0a7c 6935 203a 204d 203d 2052 5e31 -+.|i5 : M = R^1 │ │ │ │ +000231d0: 2f69 6465 616c 2261 6232 2b63 6432 223b /ideal"ab2+cd2"; │ │ │ │ +000231e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000231f0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00023200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023230: 2d2d 2b0a 7c69 3620 3a20 6265 7474 6920 --+.|i6 : betti │ │ │ │ -00023240: 2846 203d 2072 6573 284d 2c20 4c65 6e67 (F = res(M, Leng │ │ │ │ -00023250: 7468 4c69 6d69 7420 3d3e 2035 2929 2020 thLimit => 5)) │ │ │ │ -00023260: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023220: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2062 -------+.|i6 : b │ │ │ │ +00023230: 6574 7469 2028 4620 3d20 7265 7328 4d2c etti (F = res(M, │ │ │ │ +00023240: 204c 656e 6774 684c 696d 6974 203d 3e20 LengthLimit => │ │ │ │ +00023250: 3529 2920 2020 2020 2020 7c0a 7c20 2020 5)) |.| │ │ │ │ +00023260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023290: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000232a0: 2020 2020 2020 2030 2031 2032 2020 3320 0 1 2 3 │ │ │ │ -000232b0: 2034 2020 3520 2020 2020 2020 2020 2020 4 5 │ │ │ │ -000232c0: 2020 2020 2020 2020 2020 207c 0a7c 6f36 |.|o6 │ │ │ │ -000232d0: 203d 2074 6f74 616c 3a20 3120 3120 3520 = total: 1 1 5 │ │ │ │ -000232e0: 3136 2033 3520 3634 2020 2020 2020 2020 16 35 64 │ │ │ │ -000232f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00023300: 7c20 2020 2020 2020 2020 303a 2031 202e | 0: 1 . │ │ │ │ -00023310: 202e 2020 2e20 202e 2020 2e20 2020 2020 . . . . │ │ │ │ -00023320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023330: 207c 0a7c 2020 2020 2020 2020 2031 3a20 |.| 1: │ │ │ │ -00023340: 2e20 2e20 2e20 202e 2020 2e20 202e 2020 . . . . . . │ │ │ │ -00023350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023360: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00023370: 323a 202e 2031 202e 2020 2e20 202e 2020 2: . 1 . . . │ │ │ │ -00023380: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ -00023390: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000233a0: 2020 2033 3a20 2e20 2e20 3120 202e 2020 3: . . 1 . │ │ │ │ -000233b0: 2e20 202e 2020 2020 2020 2020 2020 2020 . . │ │ │ │ -000233c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000233d0: 2020 2020 2020 343a 202e 202e 2033 2020 4: . . 3 │ │ │ │ -000233e0: 3820 2035 2020 2e20 2020 2020 2020 2020 8 5 . │ │ │ │ -000233f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00023400: 2020 2020 2020 2020 2035 3a20 2e20 2e20 5: . . │ │ │ │ -00023410: 3120 2038 2032 3520 3332 2020 2020 2020 1 8 25 32 │ │ │ │ -00023420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023430: 7c0a 7c20 2020 2020 2020 2020 363a 202e |.| 6: . │ │ │ │ -00023440: 202e 202e 2020 2e20 2035 2033 3220 2020 . . . 5 32 │ │ │ │ -00023450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023460: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023280: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023290: 2020 2020 2020 2020 2020 2020 3020 3120 0 1 │ │ │ │ +000232a0: 3220 2033 2020 3420 2035 2020 2020 2020 2 3 4 5 │ │ │ │ +000232b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000232c0: 7c0a 7c6f 3620 3d20 746f 7461 6c3a 2031 |.|o6 = total: 1 │ │ │ │ +000232d0: 2031 2035 2031 3620 3335 2036 3420 2020 1 5 16 35 64 │ │ │ │ +000232e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000232f0: 2020 207c 0a7c 2020 2020 2020 2020 2030 |.| 0 │ │ │ │ +00023300: 3a20 3120 2e20 2e20 202e 2020 2e20 202e : 1 . . . . . │ │ │ │ +00023310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023320: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00023330: 2020 313a 202e 202e 202e 2020 2e20 202e 1: . . . . . │ │ │ │ +00023340: 2020 2e20 2020 2020 2020 2020 2020 2020 . │ │ │ │ +00023350: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00023360: 2020 2020 2032 3a20 2e20 3120 2e20 202e 2: . 1 . . │ │ │ │ +00023370: 2020 2e20 202e 2020 2020 2020 2020 2020 . . │ │ │ │ +00023380: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00023390: 2020 2020 2020 2020 333a 202e 202e 2031 3: . . 1 │ │ │ │ +000233a0: 2020 2e20 202e 2020 2e20 2020 2020 2020 . . . │ │ │ │ +000233b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000233c0: 0a7c 2020 2020 2020 2020 2034 3a20 2e20 .| 4: . │ │ │ │ +000233d0: 2e20 3320 2038 2020 3520 202e 2020 2020 . 3 8 5 . │ │ │ │ +000233e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000233f0: 2020 7c0a 7c20 2020 2020 2020 2020 353a |.| 5: │ │ │ │ +00023400: 202e 202e 2031 2020 3820 3235 2033 3220 . . 1 8 25 32 │ │ │ │ +00023410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023420: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023430: 2036 3a20 2e20 2e20 2e20 202e 2020 3520 6: . . . . 5 │ │ │ │ +00023440: 3332 2020 2020 2020 2020 2020 2020 2020 32 │ │ │ │ +00023450: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00023460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023490: 2020 2020 2020 7c0a 7c6f 3620 3a20 4265 |.|o6 : Be │ │ │ │ -000234a0: 7474 6954 616c 6c79 2020 2020 2020 2020 ttiTally │ │ │ │ -000234b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000234c0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00023480: 2020 2020 2020 2020 2020 207c 0a7c 6f36 |.|o6 │ │ │ │ +00023490: 203a 2042 6574 7469 5461 6c6c 7920 2020 : BettiTally │ │ │ │ +000234a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000234b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000234c0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000234d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000234e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000234f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00023500: 3720 3a20 4520 3d20 4578 744d 6f64 756c 7 : E = ExtModul │ │ │ │ -00023510: 6544 6174 6120 4d3b 2020 2020 2020 2020 eData M; │ │ │ │ -00023520: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00023530: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000234f0: 2d2b 0a7c 6937 203a 2045 203d 2045 7874 -+.|i7 : E = Ext │ │ │ │ +00023500: 4d6f 6475 6c65 4461 7461 204d 3b20 2020 ModuleData M; │ │ │ │ +00023510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023520: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00023530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023560: 2d2d 2b0a 7c69 3820 3a20 455f 3220 2020 --+.|i8 : E_2 │ │ │ │ +00023550: 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a 2045 -------+.|i8 : E │ │ │ │ +00023560: 5f32 2020 2020 2020 2020 2020 2020 2020 _2 │ │ │ │ 00023570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023590: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023580: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00023590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000235a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000235b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000235c0: 2020 2020 2020 2020 7c0a 7c6f 3820 3d20 |.|o8 = │ │ │ │ -000235d0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000235b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000235c0: 6f38 203d 2032 2020 2020 2020 2020 2020 o8 = 2 │ │ │ │ +000235d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000235e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000235f0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000235f0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00023600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00023630: 7c69 3920 3a20 455f 3320 2020 2020 2020 |i9 : E_3 │ │ │ │ +00023620: 2d2d 2d2b 0a7c 6939 203a 2045 5f33 2020 ---+.|i9 : E_3 │ │ │ │ +00023630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023660: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023650: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00023660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023690: 2020 2020 7c0a 7c6f 3920 3d20 3120 2020 |.|o9 = 1 │ │ │ │ +00023680: 2020 2020 2020 2020 207c 0a7c 6f39 203d |.|o9 = │ │ │ │ +00023690: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 000236a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000236b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000236c0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000236b0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000236c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000236d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000236e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000236f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3130 ----------+.|i10 │ │ │ │ -00023700: 203a 2072 203d 206d 6178 2832 2a45 5f32 : r = max(2*E_2 │ │ │ │ -00023710: 2c32 2a45 5f33 2b31 2920 2020 2020 2020 ,2*E_3+1) │ │ │ │ -00023720: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000236e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +000236f0: 0a7c 6931 3020 3a20 7220 3d20 6d61 7828 .|i10 : r = max( │ │ │ │ +00023700: 322a 455f 322c 322a 455f 332b 3129 2020 2*E_2,2*E_3+1) │ │ │ │ +00023710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023720: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00023730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023760: 7c0a 7c6f 3130 203d 2034 2020 2020 2020 |.|o10 = 4 │ │ │ │ +00023750: 2020 2020 207c 0a7c 6f31 3020 3d20 3420 |.|o10 = 4 │ │ │ │ +00023760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023790: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00023780: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00023790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000237a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000237b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000237c0: 2d2d 2d2d 2d2d 2b0a 7c69 3131 203a 2045 ------+.|i11 : E │ │ │ │ -000237d0: 7220 3d20 4578 744d 6f64 756c 6544 6174 r = ExtModuleDat │ │ │ │ -000237e0: 6120 636f 6b65 7220 462e 6464 5f72 3b20 a coker F.dd_r; │ │ │ │ -000237f0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000237b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +000237c0: 3120 3a20 4572 203d 2045 7874 4d6f 6475 1 : Er = ExtModu │ │ │ │ +000237d0: 6c65 4461 7461 2063 6f6b 6572 2046 2e64 leData coker F.d │ │ │ │ +000237e0: 645f 723b 2020 2020 2020 2020 2020 7c0a d_r; |. │ │ │ │ +000237f0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00023800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00023830: 3132 203a 2072 6567 756c 6172 6974 7920 12 : regularity │ │ │ │ -00023840: 4572 5f30 2020 2020 2020 2020 2020 2020 Er_0 │ │ │ │ -00023850: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00023860: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00023820: 2d2b 0a7c 6931 3220 3a20 7265 6775 6c61 -+.|i12 : regula │ │ │ │ +00023830: 7269 7479 2045 725f 3020 2020 2020 2020 rity Er_0 │ │ │ │ +00023840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023850: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00023860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023890: 2020 7c0a 7c6f 3132 203d 2030 2020 2020 |.|o12 = 0 │ │ │ │ +00023880: 2020 2020 2020 207c 0a7c 6f31 3220 3d20 |.|o12 = │ │ │ │ +00023890: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 000238a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000238b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000238c0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000238b0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000238c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000238d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000238e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000238f0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3133 203a --------+.|i13 : │ │ │ │ -00023900: 2072 6567 756c 6172 6974 7920 4572 5f31 regularity Er_1 │ │ │ │ +000238e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000238f0: 6931 3320 3a20 7265 6775 6c61 7269 7479 i13 : regularity │ │ │ │ +00023900: 2045 725f 3120 2020 2020 2020 2020 2020 Er_1 │ │ │ │ 00023910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023920: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00023920: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00023930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023950: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00023960: 7c6f 3133 203d 2030 2020 2020 2020 2020 |o13 = 0 │ │ │ │ +00023950: 2020 207c 0a7c 6f31 3320 3d20 3020 2020 |.|o13 = 0 │ │ │ │ +00023960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023990: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00023980: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00023990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000239a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000239b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000239c0: 2d2d 2d2d 2b0a 7c69 3134 203a 2072 6567 ----+.|i14 : reg │ │ │ │ -000239d0: 756c 6172 6974 7920 6576 656e 4578 744d ularity evenExtM │ │ │ │ -000239e0: 6f64 756c 6528 636f 6b65 7220 462e 6464 odule(coker F.dd │ │ │ │ -000239f0: 5f28 722d 3129 297c 0a7c 2020 2020 2020 _(r-1))|.| │ │ │ │ +000239b0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3420 ---------+.|i14 │ │ │ │ +000239c0: 3a20 7265 6775 6c61 7269 7479 2065 7665 : regularity eve │ │ │ │ +000239d0: 6e45 7874 4d6f 6475 6c65 2863 6f6b 6572 nExtModule(coker │ │ │ │ +000239e0: 2046 2e64 645f 2872 2d31 2929 7c0a 7c20 F.dd_(r-1))|.| │ │ │ │ +000239f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a20: 2020 2020 2020 2020 2020 7c0a 7c6f 3134 |.|o14 │ │ │ │ -00023a30: 203d 2031 2020 2020 2020 2020 2020 2020 = 1 │ │ │ │ +00023a10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023a20: 0a7c 6f31 3420 3d20 3120 2020 2020 2020 .|o14 = 1 │ │ │ │ +00023a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a50: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00023a50: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00023a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023a90: 2b0a 7c69 3135 203a 2066 6620 3d20 662a +.|i15 : ff = f* │ │ │ │ -00023aa0: 7261 6e64 6f6d 2873 6f75 7263 6520 662c random(source f, │ │ │ │ -00023ab0: 2073 6f75 7263 6520 6629 3b20 2020 2020 source f); │ │ │ │ -00023ac0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023a80: 2d2d 2d2d 2d2b 0a7c 6931 3520 3a20 6666 -----+.|i15 : ff │ │ │ │ +00023a90: 203d 2066 2a72 616e 646f 6d28 736f 7572 = f*random(sour │ │ │ │ +00023aa0: 6365 2066 2c20 736f 7572 6365 2066 293b ce f, source f); │ │ │ │ +00023ab0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00023ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023af0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00023b00: 2020 2020 2020 2031 2020 2020 2020 3420 1 4 │ │ │ │ -00023b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b20: 2020 2020 2020 2020 207c 0a7c 6f31 3520 |.|o15 │ │ │ │ -00023b30: 3a20 4d61 7472 6978 2053 2020 3c2d 2d20 : Matrix S <-- │ │ │ │ -00023b40: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ -00023b50: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00023ae0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00023af0: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ +00023b00: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00023b10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00023b20: 7c6f 3135 203a 204d 6174 7269 7820 5320 |o15 : Matrix S │ │ │ │ +00023b30: 203c 2d2d 2053 2020 2020 2020 2020 2020 <-- S │ │ │ │ +00023b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023b50: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00023b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00023b90: 0a7c 6931 3620 3a20 6d61 7472 6978 4661 .|i16 : matrixFa │ │ │ │ -00023ba0: 6374 6f72 697a 6174 696f 6e28 6666 2c20 ctorization(ff, │ │ │ │ -00023bb0: 636f 6b65 7220 462e 6464 5f28 722b 3129 coker F.dd_(r+1) │ │ │ │ -00023bc0: 293b 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d );|.+----------- │ │ │ │ +00023b80: 2d2d 2d2d 2b0a 7c69 3136 203a 206d 6174 ----+.|i16 : mat │ │ │ │ +00023b90: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ +00023ba0: 2866 662c 2063 6f6b 6572 2046 2e64 645f (ff, coker F.dd_ │ │ │ │ +00023bb0: 2872 2b31 2929 3b7c 0a2b 2d2d 2d2d 2d2d (r+1));|.+------ │ │ │ │ +00023bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023bf0: 2d2d 2d2d 2d2b 0a0a 5468 6973 2073 7563 -----+..This suc │ │ │ │ -00023c00: 6365 6564 732c 2062 7574 2077 6520 636f ceeds, but we co │ │ │ │ -00023c10: 756c 6420 6765 7420 616e 2065 7272 6f72 uld get an error │ │ │ │ -00023c20: 2066 726f 6d0a 0a6d 6174 7269 7846 6163 from..matrixFac │ │ │ │ -00023c30: 746f 7269 7a61 7469 6f6e 2866 662c 2063 torization(ff, c │ │ │ │ -00023c40: 6f6b 6572 2046 2e64 645f 7229 0a0a 6966 oker F.dd_r)..if │ │ │ │ -00023c50: 206f 6e65 206f 6620 7468 6520 4349 206f one of the CI o │ │ │ │ -00023c60: 7065 7261 746f 7273 2077 6572 6520 6e6f perators were no │ │ │ │ -00023c70: 7420 7375 726a 6563 7469 7665 2e0a 0a43 t surjective...C │ │ │ │ -00023c80: 6176 6561 740a 3d3d 3d3d 3d3d 0a0a 4578 aveat.======..Ex │ │ │ │ -00023c90: 744d 6f64 756c 6520 6372 6561 7465 7320 tModule creates │ │ │ │ -00023ca0: 6120 7269 6e67 2069 6e73 6964 6520 7468 a ring inside th │ │ │ │ -00023cb0: 6520 7363 7269 7074 2c20 736f 2069 6620 e script, so if │ │ │ │ -00023cc0: 6974 2773 2072 756e 2074 7769 6365 2079 it's run twice y │ │ │ │ -00023cd0: 6f75 2067 6574 0a6d 6f64 756c 6573 206f ou get.modules o │ │ │ │ -00023ce0: 7665 7220 6469 6666 6572 656e 7420 7269 ver different ri │ │ │ │ -00023cf0: 6e67 732e 2054 6869 7320 7368 6f75 6c64 ngs. This should │ │ │ │ -00023d00: 2062 6520 6368 616e 6765 642e 0a0a 5365 be changed...Se │ │ │ │ -00023d10: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ -00023d20: 0a20 202a 202a 6e6f 7465 2045 7874 4d6f . * *note ExtMo │ │ │ │ -00023d30: 6475 6c65 3a20 4578 744d 6f64 756c 652c dule: ExtModule, │ │ │ │ -00023d40: 202d 2d20 4578 745e 2a28 4d2c 6b29 206f -- Ext^*(M,k) o │ │ │ │ -00023d50: 7665 7220 6120 636f 6d70 6c65 7465 2069 ver a complete i │ │ │ │ -00023d60: 6e74 6572 7365 6374 696f 6e20 6173 0a20 ntersection as. │ │ │ │ -00023d70: 2020 206d 6f64 756c 6520 6f76 6572 2043 module over C │ │ │ │ -00023d80: 4920 6f70 6572 6174 6f72 2072 696e 670a I operator ring. │ │ │ │ -00023d90: 2020 2a20 2a6e 6f74 6520 6576 656e 4578 * *note evenEx │ │ │ │ -00023da0: 744d 6f64 756c 653a 2065 7665 6e45 7874 tModule: evenExt │ │ │ │ -00023db0: 4d6f 6475 6c65 2c20 2d2d 2065 7665 6e20 Module, -- even │ │ │ │ -00023dc0: 7061 7274 206f 6620 4578 745e 2a28 4d2c part of Ext^*(M, │ │ │ │ -00023dd0: 6b29 206f 7665 7220 610a 2020 2020 636f k) over a. co │ │ │ │ -00023de0: 6d70 6c65 7465 2069 6e74 6572 7365 6374 mplete intersect │ │ │ │ -00023df0: 696f 6e20 6173 206d 6f64 756c 6520 6f76 ion as module ov │ │ │ │ -00023e00: 6572 2043 4920 6f70 6572 6174 6f72 2072 er CI operator r │ │ │ │ -00023e10: 696e 670a 2020 2a20 2a6e 6f74 6520 6f64 ing. * *note od │ │ │ │ -00023e20: 6445 7874 4d6f 6475 6c65 3a20 6f64 6445 dExtModule: oddE │ │ │ │ -00023e30: 7874 4d6f 6475 6c65 2c20 2d2d 206f 6464 xtModule, -- odd │ │ │ │ -00023e40: 2070 6172 7420 6f66 2045 7874 5e2a 284d part of Ext^*(M │ │ │ │ -00023e50: 2c6b 2920 6f76 6572 2061 2063 6f6d 706c ,k) over a compl │ │ │ │ -00023e60: 6574 650a 2020 2020 696e 7465 7273 6563 ete. intersec │ │ │ │ -00023e70: 7469 6f6e 2061 7320 6d6f 6475 6c65 206f tion as module o │ │ │ │ -00023e80: 7665 7220 4349 206f 7065 7261 746f 7220 ver CI operator │ │ │ │ -00023e90: 7269 6e67 0a0a 5761 7973 2074 6f20 7573 ring..Ways to us │ │ │ │ -00023ea0: 6520 4578 744d 6f64 756c 6544 6174 613a e ExtModuleData: │ │ │ │ -00023eb0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -00023ec0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -00023ed0: 2022 4578 744d 6f64 756c 6544 6174 6128 "ExtModuleData( │ │ │ │ -00023ee0: 4d6f 6475 6c65 2922 0a0a 466f 7220 7468 Module)"..For th │ │ │ │ -00023ef0: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -00023f00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -00023f10: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -00023f20: 6520 4578 744d 6f64 756c 6544 6174 613a e ExtModuleData: │ │ │ │ -00023f30: 2045 7874 4d6f 6475 6c65 4461 7461 2c20 ExtModuleData, │ │ │ │ -00023f40: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ -00023f50: 6420 6675 6e63 7469 6f6e 3a0a 284d 6163 d function:.(Mac │ │ │ │ -00023f60: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ -00023f70: 4675 6e63 7469 6f6e 2c2e 0a1f 0a46 696c Function,....Fil │ │ │ │ -00023f80: 653a 2043 6f6d 706c 6574 6549 6e74 6572 e: CompleteInter │ │ │ │ -00023f90: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ -00023fa0: 6e73 2e69 6e66 6f2c 204e 6f64 653a 2065 ns.info, Node: e │ │ │ │ -00023fb0: 7874 5673 436f 686f 6d6f 6c6f 6779 2c20 xtVsCohomology, │ │ │ │ -00023fc0: 4e65 7874 3a20 6669 6e69 7465 4265 7474 Next: finiteBett │ │ │ │ -00023fd0: 694e 756d 6265 7273 2c20 5072 6576 3a20 iNumbers, Prev: │ │ │ │ -00023fe0: 4578 744d 6f64 756c 6544 6174 612c 2055 ExtModuleData, U │ │ │ │ -00023ff0: 703a 2054 6f70 0a0a 6578 7456 7343 6f68 p: Top..extVsCoh │ │ │ │ -00024000: 6f6d 6f6c 6f67 7920 2d2d 2063 6f6d 7061 omology -- compa │ │ │ │ -00024010: 7265 7320 4578 745f 5328 4d2c 6b29 2061 res Ext_S(M,k) a │ │ │ │ -00024020: 7320 6578 7465 7269 6f72 206d 6f64 756c s exterior modul │ │ │ │ -00024030: 6520 7769 7468 2063 6f68 2074 6162 6c65 e with coh table │ │ │ │ -00024040: 206f 6620 7368 6561 6620 4578 745f 5228 of sheaf Ext_R( │ │ │ │ -00024050: 4d2c 6b29 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a M,k).*********** │ │ │ │ +00023be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a54 6869 ----------+..Thi │ │ │ │ +00023bf0: 7320 7375 6363 6565 6473 2c20 6275 7420 s succeeds, but │ │ │ │ +00023c00: 7765 2063 6f75 6c64 2067 6574 2061 6e20 we could get an │ │ │ │ +00023c10: 6572 726f 7220 6672 6f6d 0a0a 6d61 7472 error from..matr │ │ │ │ +00023c20: 6978 4661 6374 6f72 697a 6174 696f 6e28 ixFactorization( │ │ │ │ +00023c30: 6666 2c20 636f 6b65 7220 462e 6464 5f72 ff, coker F.dd_r │ │ │ │ +00023c40: 290a 0a69 6620 6f6e 6520 6f66 2074 6865 )..if one of the │ │ │ │ +00023c50: 2043 4920 6f70 6572 6174 6f72 7320 7765 CI operators we │ │ │ │ +00023c60: 7265 206e 6f74 2073 7572 6a65 6374 6976 re not surjectiv │ │ │ │ +00023c70: 652e 0a0a 4361 7665 6174 0a3d 3d3d 3d3d e...Caveat.===== │ │ │ │ +00023c80: 3d0a 0a45 7874 4d6f 6475 6c65 2063 7265 =..ExtModule cre │ │ │ │ +00023c90: 6174 6573 2061 2072 696e 6720 696e 7369 ates a ring insi │ │ │ │ +00023ca0: 6465 2074 6865 2073 6372 6970 742c 2073 de the script, s │ │ │ │ +00023cb0: 6f20 6966 2069 7427 7320 7275 6e20 7477 o if it's run tw │ │ │ │ +00023cc0: 6963 6520 796f 7520 6765 740a 6d6f 6475 ice you get.modu │ │ │ │ +00023cd0: 6c65 7320 6f76 6572 2064 6966 6665 7265 les over differe │ │ │ │ +00023ce0: 6e74 2072 696e 6773 2e20 5468 6973 2073 nt rings. This s │ │ │ │ +00023cf0: 686f 756c 6420 6265 2063 6861 6e67 6564 hould be changed │ │ │ │ +00023d00: 2e0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d ...See also.==== │ │ │ │ +00023d10: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ +00023d20: 4578 744d 6f64 756c 653a 2045 7874 4d6f ExtModule: ExtMo │ │ │ │ +00023d30: 6475 6c65 2c20 2d2d 2045 7874 5e2a 284d dule, -- Ext^*(M │ │ │ │ +00023d40: 2c6b 2920 6f76 6572 2061 2063 6f6d 706c ,k) over a compl │ │ │ │ +00023d50: 6574 6520 696e 7465 7273 6563 7469 6f6e ete intersection │ │ │ │ +00023d60: 2061 730a 2020 2020 6d6f 6475 6c65 206f as. module o │ │ │ │ +00023d70: 7665 7220 4349 206f 7065 7261 746f 7220 ver CI operator │ │ │ │ +00023d80: 7269 6e67 0a20 202a 202a 6e6f 7465 2065 ring. * *note e │ │ │ │ +00023d90: 7665 6e45 7874 4d6f 6475 6c65 3a20 6576 venExtModule: ev │ │ │ │ +00023da0: 656e 4578 744d 6f64 756c 652c 202d 2d20 enExtModule, -- │ │ │ │ +00023db0: 6576 656e 2070 6172 7420 6f66 2045 7874 even part of Ext │ │ │ │ +00023dc0: 5e2a 284d 2c6b 2920 6f76 6572 2061 0a20 ^*(M,k) over a. │ │ │ │ +00023dd0: 2020 2063 6f6d 706c 6574 6520 696e 7465 complete inte │ │ │ │ +00023de0: 7273 6563 7469 6f6e 2061 7320 6d6f 6475 rsection as modu │ │ │ │ +00023df0: 6c65 206f 7665 7220 4349 206f 7065 7261 le over CI opera │ │ │ │ +00023e00: 746f 7220 7269 6e67 0a20 202a 202a 6e6f tor ring. * *no │ │ │ │ +00023e10: 7465 206f 6464 4578 744d 6f64 756c 653a te oddExtModule: │ │ │ │ +00023e20: 206f 6464 4578 744d 6f64 756c 652c 202d oddExtModule, - │ │ │ │ +00023e30: 2d20 6f64 6420 7061 7274 206f 6620 4578 - odd part of Ex │ │ │ │ +00023e40: 745e 2a28 4d2c 6b29 206f 7665 7220 6120 t^*(M,k) over a │ │ │ │ +00023e50: 636f 6d70 6c65 7465 0a20 2020 2069 6e74 complete. int │ │ │ │ +00023e60: 6572 7365 6374 696f 6e20 6173 206d 6f64 ersection as mod │ │ │ │ +00023e70: 756c 6520 6f76 6572 2043 4920 6f70 6572 ule over CI oper │ │ │ │ +00023e80: 6174 6f72 2072 696e 670a 0a57 6179 7320 ator ring..Ways │ │ │ │ +00023e90: 746f 2075 7365 2045 7874 4d6f 6475 6c65 to use ExtModule │ │ │ │ +00023ea0: 4461 7461 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d Data:.========== │ │ │ │ +00023eb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00023ec0: 0a0a 2020 2a20 2245 7874 4d6f 6475 6c65 .. * "ExtModule │ │ │ │ +00023ed0: 4461 7461 284d 6f64 756c 6529 220a 0a46 Data(Module)"..F │ │ │ │ +00023ee0: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +00023ef0: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +00023f00: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +00023f10: 202a 6e6f 7465 2045 7874 4d6f 6475 6c65 *note ExtModule │ │ │ │ +00023f20: 4461 7461 3a20 4578 744d 6f64 756c 6544 Data: ExtModuleD │ │ │ │ +00023f30: 6174 612c 2069 7320 6120 2a6e 6f74 6520 ata, is a *note │ │ │ │ +00023f40: 6d65 7468 6f64 2066 756e 6374 696f 6e3a method function: │ │ │ │ +00023f50: 0a28 4d61 6361 756c 6179 3244 6f63 294d .(Macaulay2Doc)M │ │ │ │ +00023f60: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ +00023f70: 1f0a 4669 6c65 3a20 436f 6d70 6c65 7465 ..File: Complete │ │ │ │ +00023f80: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ +00023f90: 6c75 7469 6f6e 732e 696e 666f 2c20 4e6f lutions.info, No │ │ │ │ +00023fa0: 6465 3a20 6578 7456 7343 6f68 6f6d 6f6c de: extVsCohomol │ │ │ │ +00023fb0: 6f67 792c 204e 6578 743a 2066 696e 6974 ogy, Next: finit │ │ │ │ +00023fc0: 6542 6574 7469 4e75 6d62 6572 732c 2050 eBettiNumbers, P │ │ │ │ +00023fd0: 7265 763a 2045 7874 4d6f 6475 6c65 4461 rev: ExtModuleDa │ │ │ │ +00023fe0: 7461 2c20 5570 3a20 546f 700a 0a65 7874 ta, Up: Top..ext │ │ │ │ +00023ff0: 5673 436f 686f 6d6f 6c6f 6779 202d 2d20 VsCohomology -- │ │ │ │ +00024000: 636f 6d70 6172 6573 2045 7874 5f53 284d compares Ext_S(M │ │ │ │ +00024010: 2c6b 2920 6173 2065 7874 6572 696f 7220 ,k) as exterior │ │ │ │ +00024020: 6d6f 6475 6c65 2077 6974 6820 636f 6820 module with coh │ │ │ │ +00024030: 7461 626c 6520 6f66 2073 6865 6166 2045 table of sheaf E │ │ │ │ +00024040: 7874 5f52 284d 2c6b 290a 2a2a 2a2a 2a2a xt_R(M,k).****** │ │ │ │ +00024050: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00024060: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00024070: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00024080: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00024090: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000240a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000240b0: 2a0a 0a53 796e 6f70 7369 730a 3d3d 3d3d *..Synopsis.==== │ │ │ │ -000240c0: 3d3d 3d3d 0a0a 2020 2a20 5573 6167 653a ====.. * Usage: │ │ │ │ -000240d0: 200a 2020 2020 2020 2020 2845 2c54 2920 . (E,T) │ │ │ │ -000240e0: 3d20 6578 7456 7343 6f68 6f6d 6f6c 6f67 = extVsCohomolog │ │ │ │ -000240f0: 7928 6666 2c4e 290a 2020 2a20 496e 7075 y(ff,N). * Inpu │ │ │ │ -00024100: 7473 3a0a 2020 2020 2020 2a20 6666 2c20 ts:. * ff, │ │ │ │ -00024110: 6120 2a6e 6f74 6520 6d61 7472 6978 3a20 a *note matrix: │ │ │ │ -00024120: 284d 6163 6175 6c61 7932 446f 6329 4d61 (Macaulay2Doc)Ma │ │ │ │ -00024130: 7472 6978 2c2c 2072 6567 756c 6172 2073 trix,, regular s │ │ │ │ -00024140: 6571 7565 6e63 6520 696e 2061 0a20 2020 equence in a. │ │ │ │ -00024150: 2020 2020 2072 6567 756c 6172 2072 696e regular rin │ │ │ │ -00024160: 6720 530a 2020 2020 2020 2a20 4e2c 2061 g S. * N, a │ │ │ │ -00024170: 202a 6e6f 7465 206d 6f64 756c 653a 2028 *note module: ( │ │ │ │ -00024180: 4d61 6361 756c 6179 3244 6f63 294d 6f64 Macaulay2Doc)Mod │ │ │ │ -00024190: 756c 652c 2c20 6772 6164 6564 206d 6f64 ule,, graded mod │ │ │ │ -000241a0: 756c 6520 6f76 6572 2052 203d 0a20 2020 ule over R =. │ │ │ │ -000241b0: 2020 2020 2053 2f69 6465 616c 2866 6629 S/ideal(ff) │ │ │ │ -000241c0: 2028 7573 7561 6c6c 7920 6120 6869 6768 (usually a high │ │ │ │ -000241d0: 2073 797a 7967 7929 0a20 202a 204f 7574 syzygy). * Out │ │ │ │ -000241e0: 7075 7473 3a0a 2020 2020 2020 2a20 452c puts:. * E, │ │ │ │ -000241f0: 2061 202a 6e6f 7465 206d 6f64 756c 653a a *note module: │ │ │ │ -00024200: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ -00024210: 6f64 756c 652c 2c20 0a20 2020 2020 202a odule,, . * │ │ │ │ -00024220: 2054 2c20 6120 2a6e 6f74 6520 6d6f 6475 T, a *note modu │ │ │ │ -00024230: 6c65 3a20 284d 6163 6175 6c61 7932 446f le: (Macaulay2Do │ │ │ │ -00024240: 6329 4d6f 6475 6c65 2c2c 2045 7874 2061 c)Module,, Ext a │ │ │ │ -00024250: 6e64 2054 6f72 2061 7320 6578 7465 7269 nd Tor as exteri │ │ │ │ -00024260: 6f72 0a20 2020 2020 2020 206d 6f64 756c or. modul │ │ │ │ -00024270: 6573 0a0a 4465 7363 7269 7074 696f 6e0a es..Description. │ │ │ │ -00024280: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a47 6976 ===========..Giv │ │ │ │ -00024290: 656e 2061 206d 6174 7269 7820 6666 2063 en a matrix ff c │ │ │ │ -000242a0: 6f6e 7461 696e 696e 6720 6120 7265 6775 ontaining a regu │ │ │ │ -000242b0: 6c61 7220 7365 7175 656e 6365 2069 6e20 lar sequence in │ │ │ │ -000242c0: 6120 706f 6c79 6e6f 6d69 616c 2072 696e a polynomial rin │ │ │ │ -000242d0: 6720 5320 6f76 6572 206b 2c0a 7365 7420 g S over k,.set │ │ │ │ -000242e0: 5220 3d20 532f 2869 6465 616c 2066 6629 R = S/(ideal ff) │ │ │ │ -000242f0: 2e20 4966 204e 2069 7320 6120 6772 6164 . If N is a grad │ │ │ │ -00024300: 6564 2052 2d6d 6f64 756c 652c 2061 6e64 ed R-module, and │ │ │ │ -00024310: 204d 2069 7320 7468 6520 6d6f 6475 6c65 M is the module │ │ │ │ -00024320: 204e 2072 6567 6172 6465 640a 6173 2061 N regarded.as a │ │ │ │ -00024330: 6e20 532d 6d6f 6475 6c65 2c20 7468 6520 n S-module, the │ │ │ │ -00024340: 7363 7269 7074 2072 6574 7572 6e73 2045 script returns E │ │ │ │ -00024350: 203d 2045 7874 5f53 284d 2c6b 2920 616e = Ext_S(M,k) an │ │ │ │ -00024360: 6420 5420 3d20 546f 725e 5328 4d2c 6b29 d T = Tor^S(M,k) │ │ │ │ -00024370: 2061 7320 6d6f 6475 6c65 730a 6f76 6572 as modules.over │ │ │ │ -00024380: 2061 6e20 6578 7465 7269 6f72 2061 6c67 an exterior alg │ │ │ │ -00024390: 6562 7261 2e0a 0a54 6865 2073 6372 6970 ebra...The scrip │ │ │ │ -000243a0: 7420 7072 696e 7473 2074 6865 2054 6174 t prints the Tat │ │ │ │ -000243b0: 6520 7265 736f 6c75 7469 6f6e 206f 6620 e resolution of │ │ │ │ -000243c0: 453b 2061 6e64 2074 6865 2063 6f68 6f6d E; and the cohom │ │ │ │ -000243d0: 6f6c 6f67 7920 7461 626c 6520 6f66 2074 ology table of t │ │ │ │ -000243e0: 6865 0a73 6865 6166 2061 7373 6f63 6961 he.sheaf associa │ │ │ │ -000243f0: 7465 6420 746f 2045 7874 5f52 284e 2c6b ted to Ext_R(N,k │ │ │ │ -00024400: 2920 6f76 6572 2074 6865 2072 696e 6720 ) over the ring │ │ │ │ -00024410: 6f66 2043 4920 6f70 6572 6174 6f72 732c of CI operators, │ │ │ │ -00024420: 2077 6869 6368 2069 7320 610a 706f 6c79 which is a.poly │ │ │ │ -00024430: 6e6f 6d69 616c 2072 696e 6720 6f76 6572 nomial ring over │ │ │ │ -00024440: 206b 206f 6e20 6320 7661 7269 6162 6c65 k on c variable │ │ │ │ -00024450: 732e 0a0a 5468 6520 6f75 7470 7574 2063 s...The output c │ │ │ │ -00024460: 616e 2062 6520 7573 6564 2074 6f20 2873 an be used to (s │ │ │ │ -00024470: 6f6d 6574 696d 6573 2920 6368 6563 6b20 ometimes) check │ │ │ │ -00024480: 7768 6574 6865 7220 7468 6520 7375 626d whether the subm │ │ │ │ -00024490: 6f64 756c 6520 6f66 2045 7874 5f53 284d odule of Ext_S(M │ │ │ │ -000244a0: 2c6b 290a 6765 6e65 7261 7465 6420 696e ,k).generated in │ │ │ │ -000244b0: 2064 6567 7265 6520 3020 7370 6c69 7473 degree 0 splits │ │ │ │ -000244c0: 2028 6173 2061 6e20 6578 7465 7269 6f72 (as an exterior │ │ │ │ -000244d0: 206d 6f64 756c 650a 0a2b 2d2d 2d2d 2d2d module..+------ │ │ │ │ +000240a0: 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 ******..Synopsis │ │ │ │ +000240b0: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 .========.. * U │ │ │ │ +000240c0: 7361 6765 3a20 0a20 2020 2020 2020 2028 sage: . ( │ │ │ │ +000240d0: 452c 5429 203d 2065 7874 5673 436f 686f E,T) = extVsCoho │ │ │ │ +000240e0: 6d6f 6c6f 6779 2866 662c 4e29 0a20 202a mology(ff,N). * │ │ │ │ +000240f0: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +00024100: 2066 662c 2061 202a 6e6f 7465 206d 6174 ff, a *note mat │ │ │ │ +00024110: 7269 783a 2028 4d61 6361 756c 6179 3244 rix: (Macaulay2D │ │ │ │ +00024120: 6f63 294d 6174 7269 782c 2c20 7265 6775 oc)Matrix,, regu │ │ │ │ +00024130: 6c61 7220 7365 7175 656e 6365 2069 6e20 lar sequence in │ │ │ │ +00024140: 610a 2020 2020 2020 2020 7265 6775 6c61 a. regula │ │ │ │ +00024150: 7220 7269 6e67 2053 0a20 2020 2020 202a r ring S. * │ │ │ │ +00024160: 204e 2c20 6120 2a6e 6f74 6520 6d6f 6475 N, a *note modu │ │ │ │ +00024170: 6c65 3a20 284d 6163 6175 6c61 7932 446f le: (Macaulay2Do │ │ │ │ +00024180: 6329 4d6f 6475 6c65 2c2c 2067 7261 6465 c)Module,, grade │ │ │ │ +00024190: 6420 6d6f 6475 6c65 206f 7665 7220 5220 d module over R │ │ │ │ +000241a0: 3d0a 2020 2020 2020 2020 532f 6964 6561 =. S/idea │ │ │ │ +000241b0: 6c28 6666 2920 2875 7375 616c 6c79 2061 l(ff) (usually a │ │ │ │ +000241c0: 2068 6967 6820 7379 7a79 6779 290a 2020 high syzygy). │ │ │ │ +000241d0: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ +000241e0: 202a 2045 2c20 6120 2a6e 6f74 6520 6d6f * E, a *note mo │ │ │ │ +000241f0: 6475 6c65 3a20 284d 6163 6175 6c61 7932 dule: (Macaulay2 │ │ │ │ +00024200: 446f 6329 4d6f 6475 6c65 2c2c 200a 2020 Doc)Module,, . │ │ │ │ +00024210: 2020 2020 2a20 542c 2061 202a 6e6f 7465 * T, a *note │ │ │ │ +00024220: 206d 6f64 756c 653a 2028 4d61 6361 756c module: (Macaul │ │ │ │ +00024230: 6179 3244 6f63 294d 6f64 756c 652c 2c20 ay2Doc)Module,, │ │ │ │ +00024240: 4578 7420 616e 6420 546f 7220 6173 2065 Ext and Tor as e │ │ │ │ +00024250: 7874 6572 696f 720a 2020 2020 2020 2020 xterior. │ │ │ │ +00024260: 6d6f 6475 6c65 730a 0a44 6573 6372 6970 modules..Descrip │ │ │ │ +00024270: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ +00024280: 0a0a 4769 7665 6e20 6120 6d61 7472 6978 ..Given a matrix │ │ │ │ +00024290: 2066 6620 636f 6e74 6169 6e69 6e67 2061 ff containing a │ │ │ │ +000242a0: 2072 6567 756c 6172 2073 6571 7565 6e63 regular sequenc │ │ │ │ +000242b0: 6520 696e 2061 2070 6f6c 796e 6f6d 6961 e in a polynomia │ │ │ │ +000242c0: 6c20 7269 6e67 2053 206f 7665 7220 6b2c l ring S over k, │ │ │ │ +000242d0: 0a73 6574 2052 203d 2053 2f28 6964 6561 .set R = S/(idea │ │ │ │ +000242e0: 6c20 6666 292e 2049 6620 4e20 6973 2061 l ff). If N is a │ │ │ │ +000242f0: 2067 7261 6465 6420 522d 6d6f 6475 6c65 graded R-module │ │ │ │ +00024300: 2c20 616e 6420 4d20 6973 2074 6865 206d , and M is the m │ │ │ │ +00024310: 6f64 756c 6520 4e20 7265 6761 7264 6564 odule N regarded │ │ │ │ +00024320: 0a61 7320 616e 2053 2d6d 6f64 756c 652c .as an S-module, │ │ │ │ +00024330: 2074 6865 2073 6372 6970 7420 7265 7475 the script retu │ │ │ │ +00024340: 726e 7320 4520 3d20 4578 745f 5328 4d2c rns E = Ext_S(M, │ │ │ │ +00024350: 6b29 2061 6e64 2054 203d 2054 6f72 5e53 k) and T = Tor^S │ │ │ │ +00024360: 284d 2c6b 2920 6173 206d 6f64 756c 6573 (M,k) as modules │ │ │ │ +00024370: 0a6f 7665 7220 616e 2065 7874 6572 696f .over an exterio │ │ │ │ +00024380: 7220 616c 6765 6272 612e 0a0a 5468 6520 r algebra...The │ │ │ │ +00024390: 7363 7269 7074 2070 7269 6e74 7320 7468 script prints th │ │ │ │ +000243a0: 6520 5461 7465 2072 6573 6f6c 7574 696f e Tate resolutio │ │ │ │ +000243b0: 6e20 6f66 2045 3b20 616e 6420 7468 6520 n of E; and the │ │ │ │ +000243c0: 636f 686f 6d6f 6c6f 6779 2074 6162 6c65 cohomology table │ │ │ │ +000243d0: 206f 6620 7468 650a 7368 6561 6620 6173 of the.sheaf as │ │ │ │ +000243e0: 736f 6369 6174 6564 2074 6f20 4578 745f sociated to Ext_ │ │ │ │ +000243f0: 5228 4e2c 6b29 206f 7665 7220 7468 6520 R(N,k) over the │ │ │ │ +00024400: 7269 6e67 206f 6620 4349 206f 7065 7261 ring of CI opera │ │ │ │ +00024410: 746f 7273 2c20 7768 6963 6820 6973 2061 tors, which is a │ │ │ │ +00024420: 0a70 6f6c 796e 6f6d 6961 6c20 7269 6e67 .polynomial ring │ │ │ │ +00024430: 206f 7665 7220 6b20 6f6e 2063 2076 6172 over k on c var │ │ │ │ +00024440: 6961 626c 6573 2e0a 0a54 6865 206f 7574 iables...The out │ │ │ │ +00024450: 7075 7420 6361 6e20 6265 2075 7365 6420 put can be used │ │ │ │ +00024460: 746f 2028 736f 6d65 7469 6d65 7329 2063 to (sometimes) c │ │ │ │ +00024470: 6865 636b 2077 6865 7468 6572 2074 6865 heck whether the │ │ │ │ +00024480: 2073 7562 6d6f 6475 6c65 206f 6620 4578 submodule of Ex │ │ │ │ +00024490: 745f 5328 4d2c 6b29 0a67 656e 6572 6174 t_S(M,k).generat │ │ │ │ +000244a0: 6564 2069 6e20 6465 6772 6565 2030 2073 ed in degree 0 s │ │ │ │ +000244b0: 706c 6974 7320 2861 7320 616e 2065 7874 plits (as an ext │ │ │ │ +000244c0: 6572 696f 7220 6d6f 6475 6c65 0a0a 2b2d erior module..+- │ │ │ │ +000244d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000244e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000244f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024510: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2053 -------+.|i1 : S │ │ │ │ -00024520: 203d 205a 5a2f 3130 315b 612c 622c 635d = ZZ/101[a,b,c] │ │ │ │ +00024500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00024510: 3120 3a20 5320 3d20 5a5a 2f31 3031 5b61 1 : S = ZZ/101[a │ │ │ │ +00024520: 2c62 2c63 5d20 2020 2020 2020 2020 2020 ,b,c] │ │ │ │ 00024530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024550: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00024540: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00024550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024590: 2020 2020 2020 207c 0a7c 6f31 203d 2053 |.|o1 = S │ │ │ │ +00024580: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00024590: 3120 3d20 5320 2020 2020 2020 2020 2020 1 = S │ │ │ │ 000245a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000245b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000245c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000245d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000245c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000245d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000245e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000245f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024610: 2020 2020 2020 207c 0a7c 6f31 203a 2050 |.|o1 : P │ │ │ │ -00024620: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ +00024600: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00024610: 3120 3a20 506f 6c79 6e6f 6d69 616c 5269 1 : PolynomialRi │ │ │ │ +00024620: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ 00024630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024650: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00024640: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00024650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024690: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2066 -------+.|i2 : f │ │ │ │ -000246a0: 6620 3d20 6d61 7472 6978 2022 6132 2c62 f = matrix "a2,b │ │ │ │ -000246b0: 322c 6332 2220 2020 2020 2020 2020 2020 2,c2" │ │ │ │ -000246c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000246d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00024680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00024690: 3220 3a20 6666 203d 206d 6174 7269 7820 2 : ff = matrix │ │ │ │ +000246a0: 2261 322c 6232 2c63 3222 2020 2020 2020 "a2,b2,c2" │ │ │ │ +000246b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000246c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000246d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000246e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000246f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024710: 2020 2020 2020 207c 0a7c 6f32 203d 207c |.|o2 = | │ │ │ │ -00024720: 2061 3220 6232 2063 3220 7c20 2020 2020 a2 b2 c2 | │ │ │ │ +00024700: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00024710: 3220 3d20 7c20 6132 2062 3220 6332 207c 2 = | a2 b2 c2 | │ │ │ │ +00024720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024750: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00024740: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00024750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024790: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000247a0: 2020 2020 2020 2031 2020 2020 2020 3320 1 3 │ │ │ │ +00024780: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00024790: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ +000247a0: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 000247b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000247c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000247d0: 2020 2020 2020 207c 0a7c 6f32 203a 204d |.|o2 : M │ │ │ │ -000247e0: 6174 7269 7820 5320 203c 2d2d 2053 2020 atrix S <-- S │ │ │ │ +000247c0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000247d0: 3220 3a20 4d61 7472 6978 2053 2020 3c2d 2 : Matrix S <- │ │ │ │ +000247e0: 2d20 5320 2020 2020 2020 2020 2020 2020 - S │ │ │ │ 000247f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024810: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00024800: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00024810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024850: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2052 -------+.|i3 : R │ │ │ │ -00024860: 203d 2053 2f28 6964 6561 6c20 6666 2920 = S/(ideal ff) │ │ │ │ +00024840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00024850: 3320 3a20 5220 3d20 532f 2869 6465 616c 3 : R = S/(ideal │ │ │ │ +00024860: 2066 6629 2020 2020 2020 2020 2020 2020 ff) │ │ │ │ 00024870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024890: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00024880: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00024890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000248a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000248b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000248c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000248d0: 2020 2020 2020 207c 0a7c 6f33 203d 2052 |.|o3 = R │ │ │ │ +000248c0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000248d0: 3320 3d20 5220 2020 2020 2020 2020 2020 3 = R │ │ │ │ 000248e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000248f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024910: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00024900: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00024910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024950: 2020 2020 2020 207c 0a7c 6f33 203a 2051 |.|o3 : Q │ │ │ │ -00024960: 756f 7469 656e 7452 696e 6720 2020 2020 uotientRing │ │ │ │ +00024940: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00024950: 3320 3a20 5175 6f74 6965 6e74 5269 6e67 3 : QuotientRing │ │ │ │ +00024960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024990: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00024980: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00024990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000249a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000249b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000249c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000249d0: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 204e -------+.|i4 : N │ │ │ │ -000249e0: 203d 2068 6967 6853 797a 7967 7928 525e = highSyzygy(R^ │ │ │ │ -000249f0: 312f 6964 6561 6c28 612a 622c 6329 2920 1/ideal(a*b,c)) │ │ │ │ -00024a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024a10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000249c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000249d0: 3420 3a20 4e20 3d20 6869 6768 5379 7a79 4 : N = highSyzy │ │ │ │ +000249e0: 6779 2852 5e31 2f69 6465 616c 2861 2a62 gy(R^1/ideal(a*b │ │ │ │ +000249f0: 2c63 2929 2020 2020 2020 2020 2020 2020 ,c)) │ │ │ │ +00024a00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00024a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024a50: 2020 2020 2020 207c 0a7c 6f34 203d 2063 |.|o4 = c │ │ │ │ -00024a60: 6f6b 6572 6e65 6c20 7b34 7d20 7c20 6320 okernel {4} | c │ │ │ │ -00024a70: 2d61 6220 3020 3020 3020 2030 2020 3020 -ab 0 0 0 0 0 │ │ │ │ -00024a80: 2030 2030 2030 2030 2020 3020 3020 2030 0 0 0 0 0 0 0 │ │ │ │ -00024a90: 2020 3020 3020 7c7c 0a7c 2020 2020 2020 0 0 ||.| │ │ │ │ -00024aa0: 2020 2020 2020 2020 7b35 7d20 7c20 3020 {5} | 0 │ │ │ │ -00024ab0: 6320 2020 6220 6120 3020 2030 2020 3020 c b a 0 0 0 │ │ │ │ -00024ac0: 2030 2030 2030 2030 2020 3020 3020 2030 0 0 0 0 0 0 0 │ │ │ │ -00024ad0: 2020 3020 3020 7c7c 0a7c 2020 2020 2020 0 0 ||.| │ │ │ │ -00024ae0: 2020 2020 2020 2020 7b35 7d20 7c20 3020 {5} | 0 │ │ │ │ -00024af0: 3020 2020 6320 3020 2d62 2061 2020 3020 0 c 0 -b a 0 │ │ │ │ -00024b00: 2030 2030 2030 2030 2020 3020 3020 2030 0 0 0 0 0 0 0 │ │ │ │ -00024b10: 2020 3020 3020 7c7c 0a7c 2020 2020 2020 0 0 ||.| │ │ │ │ -00024b20: 2020 2020 2020 2020 7b35 7d20 7c20 3020 {5} | 0 │ │ │ │ -00024b30: 3020 2020 3020 6320 3020 202d 6220 2d61 0 0 c 0 -b -a │ │ │ │ -00024b40: 2030 2030 2030 2030 2020 3020 3020 2030 0 0 0 0 0 0 0 │ │ │ │ -00024b50: 2020 3020 3020 7c7c 0a7c 2020 2020 2020 0 0 ||.| │ │ │ │ -00024b60: 2020 2020 2020 2020 7b35 7d20 7c20 3020 {5} | 0 │ │ │ │ -00024b70: 3020 2020 3020 3020 6320 2030 2020 3020 0 0 0 c 0 0 │ │ │ │ -00024b80: 2062 2061 2030 2030 2020 3020 3020 2030 b a 0 0 0 0 0 │ │ │ │ -00024b90: 2020 3020 3020 7c7c 0a7c 2020 2020 2020 0 0 ||.| │ │ │ │ -00024ba0: 2020 2020 2020 2020 7b35 7d20 7c20 3020 {5} | 0 │ │ │ │ -00024bb0: 3020 2020 3020 3020 3020 2063 2020 3020 0 0 0 0 c 0 │ │ │ │ -00024bc0: 2030 2062 2030 2030 2020 3020 2d61 2030 0 b 0 0 0 -a 0 │ │ │ │ -00024bd0: 2020 3020 3020 7c7c 0a7c 2020 2020 2020 0 0 ||.| │ │ │ │ -00024be0: 2020 2020 2020 2020 7b35 7d20 7c20 3020 {5} | 0 │ │ │ │ -00024bf0: 3020 2020 3020 3020 3020 2030 2020 6320 0 0 0 0 0 c │ │ │ │ -00024c00: 2030 2030 2030 2030 2020 3020 6220 2030 0 0 0 0 0 b 0 │ │ │ │ -00024c10: 2020 6120 3020 7c7c 0a7c 2020 2020 2020 a 0 ||.| │ │ │ │ -00024c20: 2020 2020 2020 2020 7b35 7d20 7c20 3020 {5} | 0 │ │ │ │ -00024c30: 3020 2020 3020 3020 3020 2030 2020 3020 0 0 0 0 0 0 │ │ │ │ -00024c40: 2063 2030 2062 202d 6120 3020 3020 2030 c 0 b -a 0 0 0 │ │ │ │ -00024c50: 2020 3020 3020 7c7c 0a7c 2020 2020 2020 0 0 ||.| │ │ │ │ -00024c60: 2020 2020 2020 2020 7b35 7d20 7c20 3020 {5} | 0 │ │ │ │ -00024c70: 3020 2020 3020 3020 3020 2030 2020 3020 0 0 0 0 0 0 │ │ │ │ -00024c80: 2030 2063 2030 2062 2020 6120 3020 2030 0 c 0 b a 0 0 │ │ │ │ -00024c90: 2020 3020 3020 7c7c 0a7c 2020 2020 2020 0 0 ||.| │ │ │ │ -00024ca0: 2020 2020 2020 2020 7b35 7d20 7c20 3020 {5} | 0 │ │ │ │ -00024cb0: 3020 2020 3020 3020 3020 2030 2020 3020 0 0 0 0 0 0 │ │ │ │ -00024cc0: 2030 2030 2030 2030 2020 6220 6320 202d 0 0 0 0 b c - │ │ │ │ -00024cd0: 6120 3020 3020 7c7c 0a7c 2020 2020 2020 a 0 0 ||.| │ │ │ │ -00024ce0: 2020 2020 2020 2020 7b35 7d20 7c20 3020 {5} | 0 │ │ │ │ -00024cf0: 3020 2020 3020 3020 3020 2030 2020 3020 0 0 0 0 0 0 │ │ │ │ -00024d00: 2030 2030 2030 2030 2020 3020 3020 2062 0 0 0 0 0 0 b │ │ │ │ -00024d10: 2020 6320 6120 7c7c 0a7c 2020 2020 2020 c a ||.| │ │ │ │ +00024a40: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00024a50: 3420 3d20 636f 6b65 726e 656c 207b 347d 4 = cokernel {4} │ │ │ │ +00024a60: 207c 2063 202d 6162 2030 2030 2030 2020 | c -ab 0 0 0 │ │ │ │ +00024a70: 3020 2030 2020 3020 3020 3020 3020 2030 0 0 0 0 0 0 0 │ │ │ │ +00024a80: 2030 2020 3020 2030 2030 207c 7c0a 7c20 0 0 0 0 ||.| │ │ │ │ +00024a90: 2020 2020 2020 2020 2020 2020 207b 357d {5} │ │ │ │ +00024aa0: 207c 2030 2063 2020 2062 2061 2030 2020 | 0 c b a 0 │ │ │ │ +00024ab0: 3020 2030 2020 3020 3020 3020 3020 2030 0 0 0 0 0 0 0 │ │ │ │ +00024ac0: 2030 2020 3020 2030 2030 207c 7c0a 7c20 0 0 0 0 ||.| │ │ │ │ +00024ad0: 2020 2020 2020 2020 2020 2020 207b 357d {5} │ │ │ │ +00024ae0: 207c 2030 2030 2020 2063 2030 202d 6220 | 0 0 c 0 -b │ │ │ │ +00024af0: 6120 2030 2020 3020 3020 3020 3020 2030 a 0 0 0 0 0 0 │ │ │ │ +00024b00: 2030 2020 3020 2030 2030 207c 7c0a 7c20 0 0 0 0 ||.| │ │ │ │ +00024b10: 2020 2020 2020 2020 2020 2020 207b 357d {5} │ │ │ │ +00024b20: 207c 2030 2030 2020 2030 2063 2030 2020 | 0 0 0 c 0 │ │ │ │ +00024b30: 2d62 202d 6120 3020 3020 3020 3020 2030 -b -a 0 0 0 0 0 │ │ │ │ +00024b40: 2030 2020 3020 2030 2030 207c 7c0a 7c20 0 0 0 0 ||.| │ │ │ │ +00024b50: 2020 2020 2020 2020 2020 2020 207b 357d {5} │ │ │ │ +00024b60: 207c 2030 2030 2020 2030 2030 2063 2020 | 0 0 0 0 c │ │ │ │ +00024b70: 3020 2030 2020 6220 6120 3020 3020 2030 0 0 b a 0 0 0 │ │ │ │ +00024b80: 2030 2020 3020 2030 2030 207c 7c0a 7c20 0 0 0 0 ||.| │ │ │ │ +00024b90: 2020 2020 2020 2020 2020 2020 207b 357d {5} │ │ │ │ +00024ba0: 207c 2030 2030 2020 2030 2030 2030 2020 | 0 0 0 0 0 │ │ │ │ +00024bb0: 6320 2030 2020 3020 6220 3020 3020 2030 c 0 0 b 0 0 0 │ │ │ │ +00024bc0: 202d 6120 3020 2030 2030 207c 7c0a 7c20 -a 0 0 0 ||.| │ │ │ │ +00024bd0: 2020 2020 2020 2020 2020 2020 207b 357d {5} │ │ │ │ +00024be0: 207c 2030 2030 2020 2030 2030 2030 2020 | 0 0 0 0 0 │ │ │ │ +00024bf0: 3020 2063 2020 3020 3020 3020 3020 2030 0 c 0 0 0 0 0 │ │ │ │ +00024c00: 2062 2020 3020 2061 2030 207c 7c0a 7c20 b 0 a 0 ||.| │ │ │ │ +00024c10: 2020 2020 2020 2020 2020 2020 207b 357d {5} │ │ │ │ +00024c20: 207c 2030 2030 2020 2030 2030 2030 2020 | 0 0 0 0 0 │ │ │ │ +00024c30: 3020 2030 2020 6320 3020 6220 2d61 2030 0 0 c 0 b -a 0 │ │ │ │ +00024c40: 2030 2020 3020 2030 2030 207c 7c0a 7c20 0 0 0 0 ||.| │ │ │ │ +00024c50: 2020 2020 2020 2020 2020 2020 207b 357d {5} │ │ │ │ +00024c60: 207c 2030 2030 2020 2030 2030 2030 2020 | 0 0 0 0 0 │ │ │ │ +00024c70: 3020 2030 2020 3020 6320 3020 6220 2061 0 0 0 c 0 b a │ │ │ │ +00024c80: 2030 2020 3020 2030 2030 207c 7c0a 7c20 0 0 0 0 ||.| │ │ │ │ +00024c90: 2020 2020 2020 2020 2020 2020 207b 357d {5} │ │ │ │ +00024ca0: 207c 2030 2030 2020 2030 2030 2030 2020 | 0 0 0 0 0 │ │ │ │ +00024cb0: 3020 2030 2020 3020 3020 3020 3020 2062 0 0 0 0 0 0 b │ │ │ │ +00024cc0: 2063 2020 2d61 2030 2030 207c 7c0a 7c20 c -a 0 0 ||.| │ │ │ │ +00024cd0: 2020 2020 2020 2020 2020 2020 207b 357d {5} │ │ │ │ +00024ce0: 207c 2030 2030 2020 2030 2030 2030 2020 | 0 0 0 0 0 │ │ │ │ +00024cf0: 3020 2030 2020 3020 3020 3020 3020 2030 0 0 0 0 0 0 0 │ │ │ │ +00024d00: 2030 2020 6220 2063 2061 207c 7c0a 7c20 0 b c a ||.| │ │ │ │ +00024d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024d50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00024d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024d70: 2020 2020 2020 3131 2020 2020 2020 2020 11 │ │ │ │ -00024d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024d90: 2020 2020 2020 207c 0a7c 6f34 203a 2052 |.|o4 : R │ │ │ │ -00024da0: 2d6d 6f64 756c 652c 2071 756f 7469 656e -module, quotien │ │ │ │ -00024db0: 7420 6f66 2052 2020 2020 2020 2020 2020 t of R │ │ │ │ -00024dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024dd0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00024d40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00024d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024d60: 2020 2020 2020 2020 2020 2031 3120 2020 11 │ │ │ │ +00024d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024d80: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00024d90: 3420 3a20 522d 6d6f 6475 6c65 2c20 7175 4 : R-module, qu │ │ │ │ +00024da0: 6f74 6965 6e74 206f 6620 5220 2020 2020 otient of R │ │ │ │ +00024db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024dc0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00024dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024e10: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2045 -------+.|i5 : E │ │ │ │ -00024e20: 203d 2065 7874 5673 436f 686f 6d6f 6c6f = extVsCohomolo │ │ │ │ -00024e30: 6779 2866 662c 6869 6768 5379 7a79 6779 gy(ff,highSyzygy │ │ │ │ -00024e40: 204e 293b 2020 2020 2020 2020 2020 2020 N); │ │ │ │ -00024e50: 2020 2020 2020 207c 0a7c 5461 7465 2052 |.|Tate R │ │ │ │ -00024e60: 6573 6f6c 7574 696f 6e20 6f66 2045 7874 esolution of Ext │ │ │ │ -00024e70: 5f53 284d 2c6b 2920 6173 2065 7874 6572 _S(M,k) as exter │ │ │ │ -00024e80: 696f 7220 6d6f 6475 6c65 3a20 2020 2020 ior module: │ │ │ │ -00024e90: 2020 2020 2020 207c 0a7c 4e6f 7465 2074 |.|Note t │ │ │ │ -00024ea0: 6861 7420 6d61 7073 2067 6f20 6c65 6674 hat maps go left │ │ │ │ -00024eb0: 2074 6f20 7269 6768 7420 2020 2020 2020 to right │ │ │ │ -00024ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ed0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00024ee0: 202d 3131 202d 3130 2020 2d39 202d 3820 -11 -10 -9 -8 │ │ │ │ -00024ef0: 2d37 202d 3620 2d35 202d 3420 2d33 202d -7 -6 -5 -4 -3 - │ │ │ │ -00024f00: 3220 202d 3120 2020 2020 2020 2020 2020 2 -1 │ │ │ │ -00024f10: 2020 2020 2020 207c 0a7c 746f 7461 6c3a |.|total: │ │ │ │ -00024f20: 2031 3938 2031 3436 2031 3032 2036 3620 198 146 102 66 │ │ │ │ -00024f30: 3338 2031 3820 2039 2031 3620 3336 2036 38 18 9 16 36 6 │ │ │ │ -00024f40: 3420 3130 3020 2020 2020 2020 2020 2020 4 100 │ │ │ │ -00024f50: 2020 2020 2020 207c 0a7c 2020 2020 383a |.| 8: │ │ │ │ -00024f60: 2031 3036 2020 3739 2020 3536 2033 3720 106 79 56 37 │ │ │ │ -00024f70: 3232 2031 3120 2034 2020 3120 2031 2020 22 11 4 1 1 │ │ │ │ -00024f80: 3120 2020 3120 2020 2020 2020 2020 2020 1 1 │ │ │ │ -00024f90: 2020 2020 2020 207c 0a7c 2020 2020 393a |.| 9: │ │ │ │ -00024fa0: 2020 3932 2020 3637 2020 3436 2032 3920 92 67 46 29 │ │ │ │ -00024fb0: 3136 2020 3720 2032 2020 2e20 202e 2020 16 7 2 . . │ │ │ │ -00024fc0: 2e20 2020 2e20 2020 2020 2020 2020 2020 . . │ │ │ │ -00024fd0: 2020 2020 2020 207c 0a7c 2020 2031 303a |.| 10: │ │ │ │ -00024fe0: 2020 202e 2020 202e 2020 202e 2020 2e20 . . . . │ │ │ │ -00024ff0: 202e 2020 2e20 202e 2020 3520 3134 2032 . . . 5 14 2 │ │ │ │ -00025000: 3720 2034 3420 2020 2020 2020 2020 2020 7 44 │ │ │ │ -00025010: 2020 2020 2020 207c 0a7c 2020 2031 313a |.| 11: │ │ │ │ -00025020: 2020 202e 2020 202e 2020 202e 2020 2e20 . . . . │ │ │ │ -00025030: 202e 2020 2e20 2033 2031 3020 3231 2033 . . 3 10 21 3 │ │ │ │ -00025040: 3620 2035 3520 2020 2020 2020 2020 2020 6 55 │ │ │ │ -00025050: 2020 2020 2020 207c 0a7c 2d2d 2d20 2020 |.|--- │ │ │ │ +00024e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00024e10: 3520 3a20 4520 3d20 6578 7456 7343 6f68 5 : E = extVsCoh │ │ │ │ +00024e20: 6f6d 6f6c 6f67 7928 6666 2c68 6967 6853 omology(ff,highS │ │ │ │ +00024e30: 797a 7967 7920 4e29 3b20 2020 2020 2020 yzygy N); │ │ │ │ +00024e40: 2020 2020 2020 2020 2020 2020 7c0a 7c54 |.|T │ │ │ │ +00024e50: 6174 6520 5265 736f 6c75 7469 6f6e 206f ate Resolution o │ │ │ │ +00024e60: 6620 4578 745f 5328 4d2c 6b29 2061 7320 f Ext_S(M,k) as │ │ │ │ +00024e70: 6578 7465 7269 6f72 206d 6f64 756c 653a exterior module: │ │ │ │ +00024e80: 2020 2020 2020 2020 2020 2020 7c0a 7c4e |.|N │ │ │ │ +00024e90: 6f74 6520 7468 6174 206d 6170 7320 676f ote that maps go │ │ │ │ +00024ea0: 206c 6566 7420 746f 2072 6967 6874 2020 left to right │ │ │ │ +00024eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024ec0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00024ed0: 2020 2020 2020 2d31 3120 2d31 3020 202d -11 -10 - │ │ │ │ +00024ee0: 3920 2d38 202d 3720 2d36 202d 3520 2d34 9 -8 -7 -6 -5 -4 │ │ │ │ +00024ef0: 202d 3320 2d32 2020 2d31 2020 2020 2020 -3 -2 -1 │ │ │ │ +00024f00: 2020 2020 2020 2020 2020 2020 7c0a 7c74 |.|t │ │ │ │ +00024f10: 6f74 616c 3a20 3139 3820 3134 3620 3130 otal: 198 146 10 │ │ │ │ +00024f20: 3220 3636 2033 3820 3138 2020 3920 3136 2 66 38 18 9 16 │ │ │ │ +00024f30: 2033 3620 3634 2031 3030 2020 2020 2020 36 64 100 │ │ │ │ +00024f40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00024f50: 2020 2038 3a20 3130 3620 2037 3920 2035 8: 106 79 5 │ │ │ │ +00024f60: 3620 3337 2032 3220 3131 2020 3420 2031 6 37 22 11 4 1 │ │ │ │ +00024f70: 2020 3120 2031 2020 2031 2020 2020 2020 1 1 1 │ │ │ │ +00024f80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00024f90: 2020 2039 3a20 2039 3220 2036 3720 2034 9: 92 67 4 │ │ │ │ +00024fa0: 3620 3239 2031 3620 2037 2020 3220 202e 6 29 16 7 2 . │ │ │ │ +00024fb0: 2020 2e20 202e 2020 202e 2020 2020 2020 . . . │ │ │ │ +00024fc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00024fd0: 2020 3130 3a20 2020 2e20 2020 2e20 2020 10: . . │ │ │ │ +00024fe0: 2e20 202e 2020 2e20 202e 2020 2e20 2035 . . . . . 5 │ │ │ │ +00024ff0: 2031 3420 3237 2020 3434 2020 2020 2020 14 27 44 │ │ │ │ +00025000: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00025010: 2020 3131 3a20 2020 2e20 2020 2e20 2020 11: . . │ │ │ │ +00025020: 2e20 202e 2020 2e20 202e 2020 3320 3130 . . . . 3 10 │ │ │ │ +00025030: 2032 3120 3336 2020 3535 2020 2020 2020 21 36 55 │ │ │ │ +00025040: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ +00025050: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ 00025060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025090: 2020 2020 2020 207c 0a7c 436f 686f 6d6f |.|Cohomo │ │ │ │ -000250a0: 6c6f 6779 2074 6162 6c65 206f 6620 6576 logy table of ev │ │ │ │ -000250b0: 656e 4578 744d 6f64 756c 6520 4d3a 2020 enExtModule M: │ │ │ │ -000250c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250d0: 2020 2020 2020 207c 0a7c 2020 202d 3520 |.| -5 │ │ │ │ -000250e0: 2d34 202d 3320 2d32 202d 3120 2030 2020 -4 -3 -2 -1 0 │ │ │ │ -000250f0: 3120 2032 2020 3320 2034 2020 2035 2020 1 2 3 4 5 │ │ │ │ -00025100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025110: 2020 2020 2020 207c 0a7c 323a 2033 3620 |.|2: 36 │ │ │ │ -00025120: 3231 2031 3020 2033 2020 2e20 202e 2020 21 10 3 . . │ │ │ │ -00025130: 2e20 202e 2020 2e20 202e 2020 202e 2020 . . . . . │ │ │ │ -00025140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025150: 2020 2020 2020 207c 0a7c 313a 2020 2e20 |.|1: . │ │ │ │ -00025160: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ -00025170: 2e20 202e 2020 2e20 202e 2020 202e 2020 . . . . . │ │ │ │ -00025180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025190: 2020 2020 2020 207c 0a7c 303a 2020 3120 |.|0: 1 │ │ │ │ -000251a0: 2031 2020 3120 2032 2020 3720 3136 2032 1 1 2 7 16 2 │ │ │ │ -000251b0: 3920 3436 2036 3720 3932 2031 3231 2020 9 46 67 92 121 │ │ │ │ -000251c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000251d0: 2020 2020 2020 207c 0a7c 2d2d 2d20 2020 |.|--- │ │ │ │ +00025080: 2020 2020 2020 2020 2020 2020 7c0a 7c43 |.|C │ │ │ │ +00025090: 6f68 6f6d 6f6c 6f67 7920 7461 626c 6520 ohomology table │ │ │ │ +000250a0: 6f66 2065 7665 6e45 7874 4d6f 6475 6c65 of evenExtModule │ │ │ │ +000250b0: 204d 3a20 2020 2020 2020 2020 2020 2020 M: │ │ │ │ +000250c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000250d0: 2020 2d35 202d 3420 2d33 202d 3220 2d31 -5 -4 -3 -2 -1 │ │ │ │ +000250e0: 2020 3020 2031 2020 3220 2033 2020 3420 0 1 2 3 4 │ │ │ │ +000250f0: 2020 3520 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +00025100: 2020 2020 2020 2020 2020 2020 7c0a 7c32 |.|2 │ │ │ │ +00025110: 3a20 3336 2032 3120 3130 2020 3320 202e : 36 21 10 3 . │ │ │ │ +00025120: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +00025130: 2020 2e20 2020 2020 2020 2020 2020 2020 . │ │ │ │ +00025140: 2020 2020 2020 2020 2020 2020 7c0a 7c31 |.|1 │ │ │ │ +00025150: 3a20 202e 2020 2e20 202e 2020 2e20 202e : . . . . . │ │ │ │ +00025160: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +00025170: 2020 2e20 2020 2020 2020 2020 2020 2020 . │ │ │ │ +00025180: 2020 2020 2020 2020 2020 2020 7c0a 7c30 |.|0 │ │ │ │ +00025190: 3a20 2031 2020 3120 2031 2020 3220 2037 : 1 1 1 2 7 │ │ │ │ +000251a0: 2031 3620 3239 2034 3620 3637 2039 3220 16 29 46 67 92 │ │ │ │ +000251b0: 3132 3120 2020 2020 2020 2020 2020 2020 121 │ │ │ │ +000251c0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ +000251d0: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ 000251e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000251f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025210: 2020 2020 2020 207c 0a7c 436f 686f 6d6f |.|Cohomo │ │ │ │ -00025220: 6c6f 6779 2074 6162 6c65 206f 6620 6f64 logy table of od │ │ │ │ -00025230: 6445 7874 4d6f 6475 6c65 204d 3a20 2020 dExtModule M: │ │ │ │ -00025240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025250: 2020 2020 2020 207c 0a7c 2020 202d 3520 |.| -5 │ │ │ │ -00025260: 2d34 202d 3320 2d32 202d 3120 2030 2020 -4 -3 -2 -1 0 │ │ │ │ -00025270: 3120 2032 2020 3320 2020 3420 2020 3520 1 2 3 4 5 │ │ │ │ -00025280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025290: 2020 2020 2020 207c 0a7c 323a 2032 3820 |.|2: 28 │ │ │ │ -000252a0: 3135 2020 3620 2031 2020 2e20 202e 2020 15 6 1 . . │ │ │ │ -000252b0: 2e20 202e 2020 2e20 2020 2e20 2020 2e20 . . . . . │ │ │ │ -000252c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000252d0: 2020 2020 2020 207c 0a7c 313a 2020 2e20 |.|1: . │ │ │ │ -000252e0: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ -000252f0: 2e20 202e 2020 2e20 2020 2e20 2020 2e20 . . . . . │ │ │ │ -00025300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025310: 2020 2020 2020 207c 0a7c 303a 2020 3120 |.|0: 1 │ │ │ │ -00025320: 2031 2020 3120 2034 2031 3120 3232 2033 1 1 4 11 22 3 │ │ │ │ -00025330: 3720 3536 2037 3920 3130 3620 3133 3720 7 56 79 106 137 │ │ │ │ -00025340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025350: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00025200: 2020 2020 2020 2020 2020 2020 7c0a 7c43 |.|C │ │ │ │ +00025210: 6f68 6f6d 6f6c 6f67 7920 7461 626c 6520 ohomology table │ │ │ │ +00025220: 6f66 206f 6464 4578 744d 6f64 756c 6520 of oddExtModule │ │ │ │ +00025230: 4d3a 2020 2020 2020 2020 2020 2020 2020 M: │ │ │ │ +00025240: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00025250: 2020 2d35 202d 3420 2d33 202d 3220 2d31 -5 -4 -3 -2 -1 │ │ │ │ +00025260: 2020 3020 2031 2020 3220 2033 2020 2034 0 1 2 3 4 │ │ │ │ +00025270: 2020 2035 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +00025280: 2020 2020 2020 2020 2020 2020 7c0a 7c32 |.|2 │ │ │ │ +00025290: 3a20 3238 2031 3520 2036 2020 3120 202e : 28 15 6 1 . │ │ │ │ +000252a0: 2020 2e20 202e 2020 2e20 202e 2020 202e . . . . . │ │ │ │ +000252b0: 2020 202e 2020 2020 2020 2020 2020 2020 . │ │ │ │ +000252c0: 2020 2020 2020 2020 2020 2020 7c0a 7c31 |.|1 │ │ │ │ +000252d0: 3a20 202e 2020 2e20 202e 2020 2e20 202e : . . . . . │ │ │ │ +000252e0: 2020 2e20 202e 2020 2e20 202e 2020 202e . . . . . │ │ │ │ +000252f0: 2020 202e 2020 2020 2020 2020 2020 2020 . │ │ │ │ +00025300: 2020 2020 2020 2020 2020 2020 7c0a 7c30 |.|0 │ │ │ │ +00025310: 3a20 2031 2020 3120 2031 2020 3420 3131 : 1 1 1 4 11 │ │ │ │ +00025320: 2032 3220 3337 2035 3620 3739 2031 3036 22 37 56 79 106 │ │ │ │ +00025330: 2031 3337 2020 2020 2020 2020 2020 2020 137 │ │ │ │ +00025340: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00025350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025390: 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 616c -------+..See al │ │ │ │ -000253a0: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ -000253b0: 202a 6e6f 7465 2068 6967 6853 797a 7967 *note highSyzyg │ │ │ │ -000253c0: 793a 2068 6967 6853 797a 7967 792c 202d y: highSyzygy, - │ │ │ │ -000253d0: 2d20 5265 7475 726e 7320 6120 7379 7a79 - Returns a syzy │ │ │ │ -000253e0: 6779 206d 6f64 756c 6520 6f6e 6520 6265 gy module one be │ │ │ │ -000253f0: 796f 6e64 2074 6865 0a20 2020 2072 6567 yond the. reg │ │ │ │ -00025400: 756c 6172 6974 7920 6f66 2045 7874 284d ularity of Ext(M │ │ │ │ -00025410: 2c6b 290a 2020 2a20 2a6e 6f74 6520 6578 ,k). * *note ex │ │ │ │ -00025420: 7465 7269 6f72 4578 744d 6f64 756c 653a teriorExtModule: │ │ │ │ -00025430: 2065 7874 6572 696f 7245 7874 4d6f 6475 exteriorExtModu │ │ │ │ -00025440: 6c65 2c20 2d2d 2045 7874 284d 2c6b 2920 le, -- Ext(M,k) │ │ │ │ -00025450: 6f72 2045 7874 284d 2c4e 2920 6173 2061 or Ext(M,N) as a │ │ │ │ -00025460: 0a20 2020 206d 6f64 756c 6520 6f76 6572 . module over │ │ │ │ -00025470: 2061 6e20 6578 7465 7269 6f72 2061 6c67 an exterior alg │ │ │ │ -00025480: 6562 7261 0a0a 5761 7973 2074 6f20 7573 ebra..Ways to us │ │ │ │ -00025490: 6520 6578 7456 7343 6f68 6f6d 6f6c 6f67 e extVsCohomolog │ │ │ │ -000254a0: 793a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d y:.============= │ │ │ │ -000254b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -000254c0: 0a20 202a 2022 6578 7456 7343 6f68 6f6d . * "extVsCohom │ │ │ │ -000254d0: 6f6c 6f67 7928 4d61 7472 6978 2c4d 6f64 ology(Matrix,Mod │ │ │ │ -000254e0: 756c 6529 220a 0a46 6f72 2074 6865 2070 ule)"..For the p │ │ │ │ -000254f0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -00025500: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -00025510: 6520 6f62 6a65 6374 202a 6e6f 7465 2065 e object *note e │ │ │ │ -00025520: 7874 5673 436f 686f 6d6f 6c6f 6779 3a20 xtVsCohomology: │ │ │ │ -00025530: 6578 7456 7343 6f68 6f6d 6f6c 6f67 792c extVsCohomology, │ │ │ │ -00025540: 2069 7320 6120 2a6e 6f74 6520 6d65 7468 is a *note meth │ │ │ │ -00025550: 6f64 2066 756e 6374 696f 6e3a 0a28 4d61 od function:.(Ma │ │ │ │ -00025560: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ -00025570: 6446 756e 6374 696f 6e2c 2e0a 1f0a 4669 dFunction,....Fi │ │ │ │ -00025580: 6c65 3a20 436f 6d70 6c65 7465 496e 7465 le: CompleteInte │ │ │ │ -00025590: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ -000255a0: 6f6e 732e 696e 666f 2c20 4e6f 6465 3a20 ons.info, Node: │ │ │ │ -000255b0: 6669 6e69 7465 4265 7474 694e 756d 6265 finiteBettiNumbe │ │ │ │ -000255c0: 7273 2c20 4e65 7874 3a20 6672 6565 4578 rs, Next: freeEx │ │ │ │ -000255d0: 7465 7269 6f72 5375 6d6d 616e 642c 2050 teriorSummand, P │ │ │ │ -000255e0: 7265 763a 2065 7874 5673 436f 686f 6d6f rev: extVsCohomo │ │ │ │ -000255f0: 6c6f 6779 2c20 5570 3a20 546f 700a 0a66 logy, Up: Top..f │ │ │ │ -00025600: 696e 6974 6542 6574 7469 4e75 6d62 6572 initeBettiNumber │ │ │ │ -00025610: 7320 2d2d 2062 6574 7469 206e 756d 6265 s -- betti numbe │ │ │ │ -00025620: 7273 206f 6620 6669 6e69 7465 2072 6573 rs of finite res │ │ │ │ -00025630: 6f6c 7574 696f 6e20 636f 6d70 7574 6564 olution computed │ │ │ │ -00025640: 2066 726f 6d20 6120 6d61 7472 6978 2066 from a matrix f │ │ │ │ -00025650: 6163 746f 7269 7a61 7469 6f6e 0a2a 2a2a actorization.*** │ │ │ │ +00025380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 ------------+..S │ │ │ │ +00025390: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ +000253a0: 0a0a 2020 2a20 2a6e 6f74 6520 6869 6768 .. * *note high │ │ │ │ +000253b0: 5379 7a79 6779 3a20 6869 6768 5379 7a79 Syzygy: highSyzy │ │ │ │ +000253c0: 6779 2c20 2d2d 2052 6574 7572 6e73 2061 gy, -- Returns a │ │ │ │ +000253d0: 2073 797a 7967 7920 6d6f 6475 6c65 206f syzygy module o │ │ │ │ +000253e0: 6e65 2062 6579 6f6e 6420 7468 650a 2020 ne beyond the. │ │ │ │ +000253f0: 2020 7265 6775 6c61 7269 7479 206f 6620 regularity of │ │ │ │ +00025400: 4578 7428 4d2c 6b29 0a20 202a 202a 6e6f Ext(M,k). * *no │ │ │ │ +00025410: 7465 2065 7874 6572 696f 7245 7874 4d6f te exteriorExtMo │ │ │ │ +00025420: 6475 6c65 3a20 6578 7465 7269 6f72 4578 dule: exteriorEx │ │ │ │ +00025430: 744d 6f64 756c 652c 202d 2d20 4578 7428 tModule, -- Ext( │ │ │ │ +00025440: 4d2c 6b29 206f 7220 4578 7428 4d2c 4e29 M,k) or Ext(M,N) │ │ │ │ +00025450: 2061 7320 610a 2020 2020 6d6f 6475 6c65 as a. module │ │ │ │ +00025460: 206f 7665 7220 616e 2065 7874 6572 696f over an exterio │ │ │ │ +00025470: 7220 616c 6765 6272 610a 0a57 6179 7320 r algebra..Ways │ │ │ │ +00025480: 746f 2075 7365 2065 7874 5673 436f 686f to use extVsCoho │ │ │ │ +00025490: 6d6f 6c6f 6779 3a0a 3d3d 3d3d 3d3d 3d3d mology:.======== │ │ │ │ +000254a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000254b0: 3d3d 3d3d 0a0a 2020 2a20 2265 7874 5673 ====.. * "extVs │ │ │ │ +000254c0: 436f 686f 6d6f 6c6f 6779 284d 6174 7269 Cohomology(Matri │ │ │ │ +000254d0: 782c 4d6f 6475 6c65 2922 0a0a 466f 7220 x,Module)"..For │ │ │ │ +000254e0: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ +000254f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00025500: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ +00025510: 6f74 6520 6578 7456 7343 6f68 6f6d 6f6c ote extVsCohomol │ │ │ │ +00025520: 6f67 793a 2065 7874 5673 436f 686f 6d6f ogy: extVsCohomo │ │ │ │ +00025530: 6c6f 6779 2c20 6973 2061 202a 6e6f 7465 logy, is a *note │ │ │ │ +00025540: 206d 6574 686f 6420 6675 6e63 7469 6f6e method function │ │ │ │ +00025550: 3a0a 284d 6163 6175 6c61 7932 446f 6329 :.(Macaulay2Doc) │ │ │ │ +00025560: 4d65 7468 6f64 4675 6e63 7469 6f6e 2c2e MethodFunction,. │ │ │ │ +00025570: 0a1f 0a46 696c 653a 2043 6f6d 706c 6574 ...File: Complet │ │ │ │ +00025580: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ +00025590: 6f6c 7574 696f 6e73 2e69 6e66 6f2c 204e olutions.info, N │ │ │ │ +000255a0: 6f64 653a 2066 696e 6974 6542 6574 7469 ode: finiteBetti │ │ │ │ +000255b0: 4e75 6d62 6572 732c 204e 6578 743a 2066 Numbers, Next: f │ │ │ │ +000255c0: 7265 6545 7874 6572 696f 7253 756d 6d61 reeExteriorSumma │ │ │ │ +000255d0: 6e64 2c20 5072 6576 3a20 6578 7456 7343 nd, Prev: extVsC │ │ │ │ +000255e0: 6f68 6f6d 6f6c 6f67 792c 2055 703a 2054 ohomology, Up: T │ │ │ │ +000255f0: 6f70 0a0a 6669 6e69 7465 4265 7474 694e op..finiteBettiN │ │ │ │ +00025600: 756d 6265 7273 202d 2d20 6265 7474 6920 umbers -- betti │ │ │ │ +00025610: 6e75 6d62 6572 7320 6f66 2066 696e 6974 numbers of finit │ │ │ │ +00025620: 6520 7265 736f 6c75 7469 6f6e 2063 6f6d e resolution com │ │ │ │ +00025630: 7075 7465 6420 6672 6f6d 2061 206d 6174 puted from a mat │ │ │ │ +00025640: 7269 7820 6661 6374 6f72 697a 6174 696f rix factorizatio │ │ │ │ +00025650: 6e0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a n.************** │ │ │ │ 00025660: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00025670: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00025680: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00025690: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000256a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000256b0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f **********..Syno │ │ │ │ -000256c0: 7073 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 psis.========.. │ │ │ │ -000256d0: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ -000256e0: 2020 204c 203d 2066 696e 6974 6542 6574 L = finiteBet │ │ │ │ -000256f0: 7469 4e75 6d62 6572 7320 4d46 0a20 202a tiNumbers MF. * │ │ │ │ -00025700: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -00025710: 204d 462c 2061 202a 6e6f 7465 206c 6973 MF, a *note lis │ │ │ │ -00025720: 743a 2028 4d61 6361 756c 6179 3244 6f63 t: (Macaulay2Doc │ │ │ │ -00025730: 294c 6973 742c 2c20 4c69 7374 206f 6620 )List,, List of │ │ │ │ -00025740: 4861 7368 5461 626c 6573 2061 7320 636f HashTables as co │ │ │ │ -00025750: 6d70 7574 6564 0a20 2020 2020 2020 2062 mputed. b │ │ │ │ -00025760: 7920 226d 6174 7269 7846 6163 746f 7269 y "matrixFactori │ │ │ │ -00025770: 7a61 7469 6f6e 220a 2020 2a20 4f75 7470 zation". * Outp │ │ │ │ -00025780: 7574 733a 0a20 2020 2020 202a 204c 2c20 uts:. * L, │ │ │ │ -00025790: 6120 2a6e 6f74 6520 6c69 7374 3a20 284d a *note list: (M │ │ │ │ -000257a0: 6163 6175 6c61 7932 446f 6329 4c69 7374 acaulay2Doc)List │ │ │ │ -000257b0: 2c2c 204c 6973 7420 6f66 2062 6574 7469 ,, List of betti │ │ │ │ -000257c0: 206e 756d 6265 7273 0a0a 4465 7363 7269 numbers..Descri │ │ │ │ -000257d0: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -000257e0: 3d0a 0a55 7365 7320 7468 6520 7261 6e6b =..Uses the rank │ │ │ │ -000257f0: 7320 6f66 2074 6865 2042 206d 6174 7269 s of the B matri │ │ │ │ -00025800: 6365 7320 696e 2061 206d 6174 7269 7820 ces in a matrix │ │ │ │ -00025810: 6661 6374 6f72 697a 6174 696f 6e20 666f factorization fo │ │ │ │ -00025820: 7220 6120 6d6f 6475 6c65 204d 206f 7665 r a module M ove │ │ │ │ -00025830: 720a 532f 2866 5f31 2c2e 2e2c 665f 6329 r.S/(f_1,..,f_c) │ │ │ │ -00025840: 2074 6f20 636f 6d70 7574 6520 7468 6520 to compute the │ │ │ │ -00025850: 6265 7474 6920 6e75 6d62 6572 7320 6f66 betti numbers of │ │ │ │ -00025860: 2074 6865 206d 696e 696d 616c 2072 6573 the minimal res │ │ │ │ -00025870: 6f6c 7574 696f 6e20 6f66 204d 206f 7665 olution of M ove │ │ │ │ -00025880: 720a 532c 2077 6869 6368 2069 7320 7468 r.S, which is th │ │ │ │ -00025890: 6520 7375 6d20 6f66 2074 6865 204b 6f73 e sum of the Kos │ │ │ │ -000258a0: 7a75 6c20 636f 6d70 6c65 7865 7320 4b28 zul complexes K( │ │ │ │ -000258b0: 665f 312e 2e66 5f7b 6a2d 317d 2920 7465 f_1..f_{j-1}) te │ │ │ │ -000258c0: 6e73 6f72 6564 2077 6974 6820 4228 6a29 nsored with B(j) │ │ │ │ -000258d0: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ -000258e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000258f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ -00025900: 3a20 7365 7452 616e 646f 6d53 6565 6420 : setRandomSeed │ │ │ │ -00025910: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00025920: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000256a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +000256b0: 0a53 796e 6f70 7369 730a 3d3d 3d3d 3d3d .Synopsis.====== │ │ │ │ +000256c0: 3d3d 0a0a 2020 2a20 5573 6167 653a 200a ==.. * Usage: . │ │ │ │ +000256d0: 2020 2020 2020 2020 4c20 3d20 6669 6e69 L = fini │ │ │ │ +000256e0: 7465 4265 7474 694e 756d 6265 7273 204d teBettiNumbers M │ │ │ │ +000256f0: 460a 2020 2a20 496e 7075 7473 3a0a 2020 F. * Inputs:. │ │ │ │ +00025700: 2020 2020 2a20 4d46 2c20 6120 2a6e 6f74 * MF, a *not │ │ │ │ +00025710: 6520 6c69 7374 3a20 284d 6163 6175 6c61 e list: (Macaula │ │ │ │ +00025720: 7932 446f 6329 4c69 7374 2c2c 204c 6973 y2Doc)List,, Lis │ │ │ │ +00025730: 7420 6f66 2048 6173 6854 6162 6c65 7320 t of HashTables │ │ │ │ +00025740: 6173 2063 6f6d 7075 7465 640a 2020 2020 as computed. │ │ │ │ +00025750: 2020 2020 6279 2022 6d61 7472 6978 4661 by "matrixFa │ │ │ │ +00025760: 6374 6f72 697a 6174 696f 6e22 0a20 202a ctorization". * │ │ │ │ +00025770: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ +00025780: 2a20 4c2c 2061 202a 6e6f 7465 206c 6973 * L, a *note lis │ │ │ │ +00025790: 743a 2028 4d61 6361 756c 6179 3244 6f63 t: (Macaulay2Doc │ │ │ │ +000257a0: 294c 6973 742c 2c20 4c69 7374 206f 6620 )List,, List of │ │ │ │ +000257b0: 6265 7474 6920 6e75 6d62 6572 730a 0a44 betti numbers..D │ │ │ │ +000257c0: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +000257d0: 3d3d 3d3d 3d3d 0a0a 5573 6573 2074 6865 ======..Uses the │ │ │ │ +000257e0: 2072 616e 6b73 206f 6620 7468 6520 4220 ranks of the B │ │ │ │ +000257f0: 6d61 7472 6963 6573 2069 6e20 6120 6d61 matrices in a ma │ │ │ │ +00025800: 7472 6978 2066 6163 746f 7269 7a61 7469 trix factorizati │ │ │ │ +00025810: 6f6e 2066 6f72 2061 206d 6f64 756c 6520 on for a module │ │ │ │ +00025820: 4d20 6f76 6572 0a53 2f28 665f 312c 2e2e M over.S/(f_1,.. │ │ │ │ +00025830: 2c66 5f63 2920 746f 2063 6f6d 7075 7465 ,f_c) to compute │ │ │ │ +00025840: 2074 6865 2062 6574 7469 206e 756d 6265 the betti numbe │ │ │ │ +00025850: 7273 206f 6620 7468 6520 6d69 6e69 6d61 rs of the minima │ │ │ │ +00025860: 6c20 7265 736f 6c75 7469 6f6e 206f 6620 l resolution of │ │ │ │ +00025870: 4d20 6f76 6572 0a53 2c20 7768 6963 6820 M over.S, which │ │ │ │ +00025880: 6973 2074 6865 2073 756d 206f 6620 7468 is the sum of th │ │ │ │ +00025890: 6520 4b6f 737a 756c 2063 6f6d 706c 6578 e Koszul complex │ │ │ │ +000258a0: 6573 204b 2866 5f31 2e2e 665f 7b6a 2d31 es K(f_1..f_{j-1 │ │ │ │ +000258b0: 7d29 2074 656e 736f 7265 6420 7769 7468 }) tensored with │ │ │ │ +000258c0: 2042 286a 290a 0a2b 2d2d 2d2d 2d2d 2d2d B(j)..+-------- │ │ │ │ +000258d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000258e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +000258f0: 0a7c 6931 203a 2073 6574 5261 6e64 6f6d .|i1 : setRandom │ │ │ │ +00025900: 5365 6564 2030 2020 2020 2020 2020 2020 Seed 0 │ │ │ │ +00025910: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00025920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025940: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00025950: 7c6f 3120 3d20 3020 2020 2020 2020 2020 |o1 = 0 │ │ │ │ -00025960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025970: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00025940: 2020 207c 0a7c 6f31 203d 2030 2020 2020 |.|o1 = 0 │ │ │ │ +00025950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025960: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00025970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000259a0: 2d2d 2b0a 7c69 3220 3a20 6b6b 203d 205a --+.|i2 : kk = Z │ │ │ │ -000259b0: 5a2f 3130 3120 2020 2020 2020 2020 2020 Z/101 │ │ │ │ -000259c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00025990: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 206b -------+.|i2 : k │ │ │ │ +000259a0: 6b20 3d20 5a5a 2f31 3031 2020 2020 2020 k = ZZ/101 │ │ │ │ +000259b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000259c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000259d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000259e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000259f0: 2020 2020 2020 7c0a 7c6f 3220 3d20 6b6b |.|o2 = kk │ │ │ │ +000259e0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +000259f0: 203d 206b 6b20 2020 2020 2020 2020 2020 = kk │ │ │ │ 00025a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025a20: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025a40: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -00025a50: 3a20 5175 6f74 6965 6e74 5269 6e67 2020 : QuotientRing │ │ │ │ -00025a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025a70: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00025a10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025a30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025a40: 0a7c 6f32 203a 2051 756f 7469 656e 7452 .|o2 : QuotientR │ │ │ │ +00025a50: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ +00025a60: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00025a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00025aa0: 7c69 3320 3a20 5320 3d20 6b6b 5b61 2c62 |i3 : S = kk[a,b │ │ │ │ -00025ab0: 2c75 2c76 5d20 2020 2020 2020 2020 2020 ,u,v] │ │ │ │ -00025ac0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00025a90: 2d2d 2d2b 0a7c 6933 203a 2053 203d 206b ---+.|i3 : S = k │ │ │ │ +00025aa0: 6b5b 612c 622c 752c 765d 2020 2020 2020 k[a,b,u,v] │ │ │ │ +00025ab0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00025ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025af0: 2020 7c0a 7c6f 3320 3d20 5320 2020 2020 |.|o3 = S │ │ │ │ +00025ae0: 2020 2020 2020 207c 0a7c 6f33 203d 2053 |.|o3 = S │ │ │ │ +00025af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025b10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00025b10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00025b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025b40: 2020 2020 2020 7c0a 7c6f 3320 3a20 506f |.|o3 : Po │ │ │ │ -00025b50: 6c79 6e6f 6d69 616c 5269 6e67 2020 2020 lynomialRing │ │ │ │ -00025b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025b70: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -00025b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ -00025ba0: 3a20 6666 203d 206d 6174 7269 7822 6175 : ff = matrix"au │ │ │ │ -00025bb0: 2c62 7622 2020 2020 2020 2020 2020 2020 ,bv" │ │ │ │ -00025bc0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00025b30: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ +00025b40: 203a 2050 6f6c 796e 6f6d 6961 6c52 696e : PolynomialRin │ │ │ │ +00025b50: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ +00025b60: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00025b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00025b90: 0a7c 6934 203a 2066 6620 3d20 6d61 7472 .|i4 : ff = matr │ │ │ │ +00025ba0: 6978 2261 752c 6276 2220 2020 2020 2020 ix"au,bv" │ │ │ │ +00025bb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00025bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025be0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00025bf0: 7c6f 3420 3d20 7c20 6175 2062 7620 7c20 |o4 = | au bv | │ │ │ │ -00025c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025c10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00025be0: 2020 207c 0a7c 6f34 203d 207c 2061 7520 |.|o4 = | au │ │ │ │ +00025bf0: 6276 207c 2020 2020 2020 2020 2020 2020 bv | │ │ │ │ +00025c00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00025c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025c40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025c50: 2020 3120 2020 2020 2032 2020 2020 2020 1 2 │ │ │ │ -00025c60: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00025c70: 3420 3a20 4d61 7472 6978 2053 2020 3c2d 4 : Matrix S <- │ │ │ │ -00025c80: 2d20 5320 2020 2020 2020 2020 2020 2020 - S │ │ │ │ -00025c90: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00025c30: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00025c40: 2020 2020 2020 2031 2020 2020 2020 3220 1 2 │ │ │ │ +00025c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025c60: 207c 0a7c 6f34 203a 204d 6174 7269 7820 |.|o4 : Matrix │ │ │ │ +00025c70: 5320 203c 2d2d 2053 2020 2020 2020 2020 S <-- S │ │ │ │ +00025c80: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00025c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025cc0: 2b0a 7c69 3520 3a20 5220 3d20 532f 6964 +.|i5 : R = S/id │ │ │ │ -00025cd0: 6561 6c20 6666 2020 2020 2020 2020 2020 eal ff │ │ │ │ -00025ce0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00025cb0: 2d2d 2d2d 2d2b 0a7c 6935 203a 2052 203d -----+.|i5 : R = │ │ │ │ +00025cc0: 2053 2f69 6465 616c 2066 6620 2020 2020 S/ideal ff │ │ │ │ +00025cd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025ce0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025d10: 2020 2020 7c0a 7c6f 3520 3d20 5220 2020 |.|o5 = R │ │ │ │ +00025d00: 2020 2020 2020 2020 207c 0a7c 6f35 203d |.|o5 = │ │ │ │ +00025d10: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 00025d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025d30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00025d40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00025d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025d60: 2020 2020 2020 2020 7c0a 7c6f 3520 3a20 |.|o5 : │ │ │ │ -00025d70: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ -00025d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025d90: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00025d30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025d50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00025d60: 6f35 203a 2051 756f 7469 656e 7452 696e o5 : QuotientRin │ │ │ │ +00025d70: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ +00025d80: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00025d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00025dc0: 3620 3a20 4d30 203d 2052 5e31 2f69 6465 6 : M0 = R^1/ide │ │ │ │ -00025dd0: 616c 2261 2c62 2220 2020 2020 2020 2020 al"a,b" │ │ │ │ -00025de0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00025db0: 2d2b 0a7c 6936 203a 204d 3020 3d20 525e -+.|i6 : M0 = R^ │ │ │ │ +00025dc0: 312f 6964 6561 6c22 612c 6222 2020 2020 1/ideal"a,b" │ │ │ │ +00025dd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00025de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025e10: 7c0a 7c6f 3620 3d20 636f 6b65 726e 656c |.|o6 = cokernel │ │ │ │ -00025e20: 207c 2061 2062 207c 2020 2020 2020 2020 | a b | │ │ │ │ -00025e30: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00025e00: 2020 2020 207c 0a7c 6f36 203d 2063 6f6b |.|o6 = cok │ │ │ │ +00025e10: 6572 6e65 6c20 7c20 6120 6220 7c20 2020 ernel | a b | │ │ │ │ +00025e20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025e30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025e60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00025e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025e80: 2020 2031 2020 2020 2020 2020 2020 7c0a 1 |. │ │ │ │ -00025e90: 7c6f 3620 3a20 522d 6d6f 6475 6c65 2c20 |o6 : R-module, │ │ │ │ -00025ea0: 7175 6f74 6965 6e74 206f 6620 5220 2020 quotient of R │ │ │ │ -00025eb0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00025e50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00025e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025e70: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ +00025e80: 2020 207c 0a7c 6f36 203a 2052 2d6d 6f64 |.|o6 : R-mod │ │ │ │ +00025e90: 756c 652c 2071 756f 7469 656e 7420 6f66 ule, quotient of │ │ │ │ +00025ea0: 2052 2020 2020 2020 2020 2020 207c 0a2b R |.+ │ │ │ │ +00025eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025ee0: 2d2d 2b0a 7c69 3720 3a20 4620 3d20 7265 --+.|i7 : F = re │ │ │ │ -00025ef0: 7328 4d30 2c20 4c65 6e67 7468 4c69 6d69 s(M0, LengthLimi │ │ │ │ -00025f00: 7420 3d3e 3329 2020 2020 2020 7c0a 7c20 t =>3) |.| │ │ │ │ +00025ed0: 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a 2046 -------+.|i7 : F │ │ │ │ +00025ee0: 203d 2072 6573 284d 302c 204c 656e 6774 = res(M0, Lengt │ │ │ │ +00025ef0: 684c 696d 6974 203d 3e33 2920 2020 2020 hLimit =>3) │ │ │ │ +00025f00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00025f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025f30: 2020 2020 2020 7c0a 7c20 2020 2020 2031 |.| 1 │ │ │ │ -00025f40: 2020 2020 2020 3220 2020 2020 2033 2020 2 3 │ │ │ │ -00025f50: 2020 2020 3420 2020 2020 2020 2020 2020 4 │ │ │ │ -00025f60: 7c0a 7c6f 3720 3d20 5220 203c 2d2d 2052 |.|o7 = R <-- R │ │ │ │ -00025f70: 2020 3c2d 2d20 5220 203c 2d2d 2052 2020 <-- R <-- R │ │ │ │ -00025f80: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00025f20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00025f30: 2020 2020 3120 2020 2020 2032 2020 2020 1 2 │ │ │ │ +00025f40: 2020 3320 2020 2020 2034 2020 2020 2020 3 4 │ │ │ │ +00025f50: 2020 2020 207c 0a7c 6f37 203d 2052 2020 |.|o7 = R │ │ │ │ +00025f60: 3c2d 2d20 5220 203c 2d2d 2052 2020 3c2d <-- R <-- R <- │ │ │ │ +00025f70: 2d20 5220 2020 2020 2020 2020 2020 207c - R | │ │ │ │ +00025f80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025fb0: 2020 2020 7c0a 7c20 2020 2020 3020 2020 |.| 0 │ │ │ │ -00025fc0: 2020 2031 2020 2020 2020 3220 2020 2020 1 2 │ │ │ │ -00025fd0: 2033 2020 2020 2020 2020 2020 2020 7c0a 3 |. │ │ │ │ -00025fe0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00025ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026000: 2020 2020 2020 2020 7c0a 7c6f 3720 3a20 |.|o7 : │ │ │ │ -00026010: 4368 6169 6e43 6f6d 706c 6578 2020 2020 ChainComplex │ │ │ │ -00026020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026030: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00025fa0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00025fb0: 2030 2020 2020 2020 3120 2020 2020 2032 0 1 2 │ │ │ │ +00025fc0: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ +00025fd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025ff0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00026000: 6f37 203a 2043 6861 696e 436f 6d70 6c65 o7 : ChainComple │ │ │ │ +00026010: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ +00026020: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00026030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00026060: 3820 3a20 4d20 3d20 636f 6b65 7220 462e 8 : M = coker F. │ │ │ │ -00026070: 6464 5f33 3b20 2020 2020 2020 2020 2020 dd_3; │ │ │ │ -00026080: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00026050: 2d2b 0a7c 6938 203a 204d 203d 2063 6f6b -+.|i8 : M = cok │ │ │ │ +00026060: 6572 2046 2e64 645f 333b 2020 2020 2020 er F.dd_3; │ │ │ │ +00026070: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00026080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000260a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000260b0: 2b0a 7c69 3920 3a20 4d46 203d 206d 6174 +.|i9 : MF = mat │ │ │ │ -000260c0: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ -000260d0: 2866 662c 4d29 3b20 2020 7c0a 2b2d 2d2d (ff,M); |.+--- │ │ │ │ +000260a0: 2d2d 2d2d 2d2b 0a7c 6939 203a 204d 4620 -----+.|i9 : MF │ │ │ │ +000260b0: 3d20 6d61 7472 6978 4661 6374 6f72 697a = matrixFactoriz │ │ │ │ +000260c0: 6174 696f 6e28 6666 2c4d 293b 2020 207c ation(ff,M); | │ │ │ │ +000260d0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 000260e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000260f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026100: 2d2d 2d2d 2b0a 7c69 3130 203a 2062 6574 ----+.|i10 : bet │ │ │ │ -00026110: 7469 2072 6573 2070 7573 6846 6f72 7761 ti res pushForwa │ │ │ │ -00026120: 7264 286d 6170 2852 2c53 292c 4d29 7c0a rd(map(R,S),M)|. │ │ │ │ -00026130: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00026140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026150: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00026160: 2020 2020 2020 2020 3020 3120 3220 2020 0 1 2 │ │ │ │ -00026170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026180: 2020 7c0a 7c6f 3130 203d 2074 6f74 616c |.|o10 = total │ │ │ │ -00026190: 3a20 3320 3520 3220 2020 2020 2020 2020 : 3 5 2 │ │ │ │ -000261a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000261b0: 2020 2020 2020 2020 2032 3a20 3320 3420 2: 3 4 │ │ │ │ -000261c0: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ -000261d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000261e0: 2020 2033 3a20 2e20 3120 3220 2020 2020 3: . 1 2 │ │ │ │ -000261f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026200: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026220: 2020 2020 2020 2020 2020 7c0a 7c6f 3130 |.|o10 │ │ │ │ -00026230: 203a 2042 6574 7469 5461 6c6c 7920 2020 : BettiTally │ │ │ │ -00026240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026250: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000260f0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 ---------+.|i10 │ │ │ │ +00026100: 3a20 6265 7474 6920 7265 7320 7075 7368 : betti res push │ │ │ │ +00026110: 466f 7277 6172 6428 6d61 7028 522c 5329 Forward(map(R,S) │ │ │ │ +00026120: 2c4d 297c 0a7c 2020 2020 2020 2020 2020 ,M)|.| │ │ │ │ +00026130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026140: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00026150: 2020 2020 2020 2020 2020 2020 2030 2031 0 1 │ │ │ │ +00026160: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00026170: 2020 2020 2020 207c 0a7c 6f31 3020 3d20 |.|o10 = │ │ │ │ +00026180: 746f 7461 6c3a 2033 2035 2032 2020 2020 total: 3 5 2 │ │ │ │ +00026190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000261a0: 207c 0a7c 2020 2020 2020 2020 2020 323a |.| 2: │ │ │ │ +000261b0: 2033 2034 202e 2020 2020 2020 2020 2020 3 4 . │ │ │ │ +000261c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000261d0: 2020 2020 2020 2020 333a 202e 2031 2032 3: . 1 2 │ │ │ │ +000261e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000261f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026210: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026220: 0a7c 6f31 3020 3a20 4265 7474 6954 616c .|o10 : BettiTal │ │ │ │ +00026230: 6c79 2020 2020 2020 2020 2020 2020 2020 ly │ │ │ │ +00026240: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00026250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00026280: 7c69 3131 203a 2066 696e 6974 6542 6574 |i11 : finiteBet │ │ │ │ -00026290: 7469 4e75 6d62 6572 7320 4d46 2020 2020 tiNumbers MF │ │ │ │ -000262a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00026270: 2d2d 2d2b 0a7c 6931 3120 3a20 6669 6e69 ---+.|i11 : fini │ │ │ │ +00026280: 7465 4265 7474 694e 756d 6265 7273 204d teBettiNumbers M │ │ │ │ +00026290: 4620 2020 2020 2020 2020 2020 207c 0a7c F |.| │ │ │ │ +000262a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000262b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000262c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000262d0: 2020 7c0a 7c6f 3131 203d 207b 332c 2035 |.|o11 = {3, 5 │ │ │ │ -000262e0: 2c20 327d 2020 2020 2020 2020 2020 2020 , 2} │ │ │ │ -000262f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000262c0: 2020 2020 2020 207c 0a7c 6f31 3120 3d20 |.|o11 = │ │ │ │ +000262d0: 7b33 2c20 352c 2032 7d20 2020 2020 2020 {3, 5, 2} │ │ │ │ +000262e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000262f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00026300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026320: 2020 2020 2020 7c0a 7c6f 3131 203a 204c |.|o11 : L │ │ │ │ -00026330: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ -00026340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026350: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -00026360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026370: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3132 ----------+.|i12 │ │ │ │ -00026380: 203a 2069 6e66 696e 6974 6542 6574 7469 : infiniteBetti │ │ │ │ -00026390: 4e75 6d62 6572 7328 4d46 2c35 2920 2020 Numbers(MF,5) │ │ │ │ -000263a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00026310: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00026320: 3120 3a20 4c69 7374 2020 2020 2020 2020 1 : List │ │ │ │ +00026330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026340: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00026350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00026370: 0a7c 6931 3220 3a20 696e 6669 6e69 7465 .|i12 : infinite │ │ │ │ +00026380: 4265 7474 694e 756d 6265 7273 284d 462c BettiNumbers(MF, │ │ │ │ +00026390: 3529 2020 2020 2020 207c 0a7c 2020 2020 5) |.| │ │ │ │ +000263a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000263b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000263c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000263d0: 7c6f 3132 203d 207b 332c 2034 2c20 352c |o12 = {3, 4, 5, │ │ │ │ -000263e0: 2036 2c20 372c 2038 7d20 2020 2020 2020 6, 7, 8} │ │ │ │ -000263f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000263c0: 2020 207c 0a7c 6f31 3220 3d20 7b33 2c20 |.|o12 = {3, │ │ │ │ +000263d0: 342c 2035 2c20 362c 2037 2c20 387d 2020 4, 5, 6, 7, 8} │ │ │ │ +000263e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000263f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026420: 2020 7c0a 7c6f 3132 203a 204c 6973 7420 |.|o12 : List │ │ │ │ +00026410: 2020 2020 2020 207c 0a7c 6f31 3220 3a20 |.|o12 : │ │ │ │ +00026420: 4c69 7374 2020 2020 2020 2020 2020 2020 List │ │ │ │ 00026430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026440: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00026440: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00026450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026470: 2d2d 2d2d 2d2d 2b0a 7c69 3133 203a 2062 ------+.|i13 : b │ │ │ │ -00026480: 6574 7469 2072 6573 2028 4d2c 204c 656e etti res (M, Len │ │ │ │ -00026490: 6774 684c 696d 6974 203d 3e20 3529 2020 gthLimit => 5) │ │ │ │ -000264a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000264b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000264c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000264d0: 2020 2020 2020 2020 2020 3020 3120 3220 0 1 2 │ │ │ │ -000264e0: 3320 3420 3520 2020 2020 2020 2020 2020 3 4 5 │ │ │ │ -000264f0: 2020 2020 7c0a 7c6f 3133 203d 2074 6f74 |.|o13 = tot │ │ │ │ -00026500: 616c 3a20 3320 3420 3520 3620 3720 3820 al: 3 4 5 6 7 8 │ │ │ │ -00026510: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00026520: 7c20 2020 2020 2020 2020 2032 3a20 3320 | 2: 3 │ │ │ │ -00026530: 3420 3520 3620 3720 3820 2020 2020 2020 4 5 6 7 8 │ │ │ │ -00026540: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00026460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00026470: 3320 3a20 6265 7474 6920 7265 7320 284d 3 : betti res (M │ │ │ │ +00026480: 2c20 4c65 6e67 7468 4c69 6d69 7420 3d3e , LengthLimit => │ │ │ │ +00026490: 2035 2920 207c 0a7c 2020 2020 2020 2020 5) |.| │ │ │ │ +000264a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000264b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000264c0: 0a7c 2020 2020 2020 2020 2020 2020 2030 .| 0 │ │ │ │ +000264d0: 2031 2032 2033 2034 2035 2020 2020 2020 1 2 3 4 5 │ │ │ │ +000264e0: 2020 2020 2020 2020 207c 0a7c 6f31 3320 |.|o13 │ │ │ │ +000264f0: 3d20 746f 7461 6c3a 2033 2034 2035 2036 = total: 3 4 5 6 │ │ │ │ +00026500: 2037 2038 2020 2020 2020 2020 2020 2020 7 8 │ │ │ │ +00026510: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026520: 323a 2033 2034 2035 2036 2037 2038 2020 2: 3 4 5 6 7 8 │ │ │ │ +00026530: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00026540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026570: 2020 7c0a 7c6f 3133 203a 2042 6574 7469 |.|o13 : Betti │ │ │ │ -00026580: 5461 6c6c 7920 2020 2020 2020 2020 2020 Tally │ │ │ │ -00026590: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00026560: 2020 2020 2020 207c 0a7c 6f31 3320 3a20 |.|o13 : │ │ │ │ +00026570: 4265 7474 6954 616c 6c79 2020 2020 2020 BettiTally │ │ │ │ +00026580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026590: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 000265a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000265b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000265c0: 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 ------+..See als │ │ │ │ -000265d0: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ -000265e0: 2a6e 6f74 6520 6d61 7472 6978 4661 6374 *note matrixFact │ │ │ │ -000265f0: 6f72 697a 6174 696f 6e3a 206d 6174 7269 orization: matri │ │ │ │ -00026600: 7846 6163 746f 7269 7a61 7469 6f6e 2c20 xFactorization, │ │ │ │ -00026610: 2d2d 204d 6170 7320 696e 2061 2068 6967 -- Maps in a hig │ │ │ │ -00026620: 6865 720a 2020 2020 636f 6469 6d65 6e73 her. codimens │ │ │ │ -00026630: 696f 6e20 6d61 7472 6978 2066 6163 746f ion matrix facto │ │ │ │ -00026640: 7269 7a61 7469 6f6e 0a20 202a 202a 6e6f rization. * *no │ │ │ │ -00026650: 7465 2069 6e66 696e 6974 6542 6574 7469 te infiniteBetti │ │ │ │ -00026660: 4e75 6d62 6572 733a 2069 6e66 696e 6974 Numbers: infinit │ │ │ │ -00026670: 6542 6574 7469 4e75 6d62 6572 732c 202d eBettiNumbers, - │ │ │ │ -00026680: 2d20 6265 7474 6920 6e75 6d62 6572 7320 - betti numbers │ │ │ │ -00026690: 6f66 0a20 2020 2066 696e 6974 6520 7265 of. finite re │ │ │ │ -000266a0: 736f 6c75 7469 6f6e 2063 6f6d 7075 7465 solution compute │ │ │ │ -000266b0: 6420 6672 6f6d 2061 206d 6174 7269 7820 d from a matrix │ │ │ │ -000266c0: 6661 6374 6f72 697a 6174 696f 6e0a 0a57 factorization..W │ │ │ │ -000266d0: 6179 7320 746f 2075 7365 2066 696e 6974 ays to use finit │ │ │ │ -000266e0: 6542 6574 7469 4e75 6d62 6572 733a 0a3d eBettiNumbers:.= │ │ │ │ +000265b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 -----------+..Se │ │ │ │ +000265c0: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +000265d0: 0a20 202a 202a 6e6f 7465 206d 6174 7269 . * *note matri │ │ │ │ +000265e0: 7846 6163 746f 7269 7a61 7469 6f6e 3a20 xFactorization: │ │ │ │ +000265f0: 6d61 7472 6978 4661 6374 6f72 697a 6174 matrixFactorizat │ │ │ │ +00026600: 696f 6e2c 202d 2d20 4d61 7073 2069 6e20 ion, -- Maps in │ │ │ │ +00026610: 6120 6869 6768 6572 0a20 2020 2063 6f64 a higher. cod │ │ │ │ +00026620: 696d 656e 7369 6f6e 206d 6174 7269 7820 imension matrix │ │ │ │ +00026630: 6661 6374 6f72 697a 6174 696f 6e0a 2020 factorization. │ │ │ │ +00026640: 2a20 2a6e 6f74 6520 696e 6669 6e69 7465 * *note infinite │ │ │ │ +00026650: 4265 7474 694e 756d 6265 7273 3a20 696e BettiNumbers: in │ │ │ │ +00026660: 6669 6e69 7465 4265 7474 694e 756d 6265 finiteBettiNumbe │ │ │ │ +00026670: 7273 2c20 2d2d 2062 6574 7469 206e 756d rs, -- betti num │ │ │ │ +00026680: 6265 7273 206f 660a 2020 2020 6669 6e69 bers of. fini │ │ │ │ +00026690: 7465 2072 6573 6f6c 7574 696f 6e20 636f te resolution co │ │ │ │ +000266a0: 6d70 7574 6564 2066 726f 6d20 6120 6d61 mputed from a ma │ │ │ │ +000266b0: 7472 6978 2066 6163 746f 7269 7a61 7469 trix factorizati │ │ │ │ +000266c0: 6f6e 0a0a 5761 7973 2074 6f20 7573 6520 on..Ways to use │ │ │ │ +000266d0: 6669 6e69 7465 4265 7474 694e 756d 6265 finiteBettiNumbe │ │ │ │ +000266e0: 7273 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d rs:.============ │ │ │ │ 000266f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00026700: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00026710: 2020 2a20 2266 696e 6974 6542 6574 7469 * "finiteBetti │ │ │ │ -00026720: 4e75 6d62 6572 7328 4c69 7374 2922 0a0a Numbers(List)".. │ │ │ │ -00026730: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ -00026740: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ -00026750: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ -00026760: 7420 2a6e 6f74 6520 6669 6e69 7465 4265 t *note finiteBe │ │ │ │ -00026770: 7474 694e 756d 6265 7273 3a20 6669 6e69 ttiNumbers: fini │ │ │ │ -00026780: 7465 4265 7474 694e 756d 6265 7273 2c20 teBettiNumbers, │ │ │ │ -00026790: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ -000267a0: 640a 6675 6e63 7469 6f6e 3a20 284d 6163 d.function: (Mac │ │ │ │ -000267b0: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ -000267c0: 4675 6e63 7469 6f6e 2c2e 0a1f 0a46 696c Function,....Fil │ │ │ │ -000267d0: 653a 2043 6f6d 706c 6574 6549 6e74 6572 e: CompleteInter │ │ │ │ -000267e0: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ -000267f0: 6e73 2e69 6e66 6f2c 204e 6f64 653a 2066 ns.info, Node: f │ │ │ │ -00026800: 7265 6545 7874 6572 696f 7253 756d 6d61 reeExteriorSumma │ │ │ │ -00026810: 6e64 2c20 4e65 7874 3a20 4772 6164 696e nd, Next: Gradin │ │ │ │ -00026820: 672c 2050 7265 763a 2066 696e 6974 6542 g, Prev: finiteB │ │ │ │ -00026830: 6574 7469 4e75 6d62 6572 732c 2055 703a ettiNumbers, Up: │ │ │ │ -00026840: 2054 6f70 0a0a 6672 6565 4578 7465 7269 Top..freeExteri │ │ │ │ -00026850: 6f72 5375 6d6d 616e 6420 2d2d 2066 696e orSummand -- fin │ │ │ │ -00026860: 6420 7468 6520 6672 6565 2073 756d 6d61 d the free summa │ │ │ │ -00026870: 6e64 7320 6f66 2061 206d 6f64 756c 6520 nds of a module │ │ │ │ -00026880: 6f76 6572 2061 6e20 6578 7465 7269 6f72 over an exterior │ │ │ │ -00026890: 2061 6c67 6562 7261 0a2a 2a2a 2a2a 2a2a algebra.******* │ │ │ │ +00026700: 3d3d 3d0a 0a20 202a 2022 6669 6e69 7465 ===.. * "finite │ │ │ │ +00026710: 4265 7474 694e 756d 6265 7273 284c 6973 BettiNumbers(Lis │ │ │ │ +00026720: 7429 220a 0a46 6f72 2074 6865 2070 726f t)"..For the pro │ │ │ │ +00026730: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +00026740: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +00026750: 6f62 6a65 6374 202a 6e6f 7465 2066 696e object *note fin │ │ │ │ +00026760: 6974 6542 6574 7469 4e75 6d62 6572 733a iteBettiNumbers: │ │ │ │ +00026770: 2066 696e 6974 6542 6574 7469 4e75 6d62 finiteBettiNumb │ │ │ │ +00026780: 6572 732c 2069 7320 6120 2a6e 6f74 6520 ers, is a *note │ │ │ │ +00026790: 6d65 7468 6f64 0a66 756e 6374 696f 6e3a method.function: │ │ │ │ +000267a0: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +000267b0: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ +000267c0: 1f0a 4669 6c65 3a20 436f 6d70 6c65 7465 ..File: Complete │ │ │ │ +000267d0: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ +000267e0: 6c75 7469 6f6e 732e 696e 666f 2c20 4e6f lutions.info, No │ │ │ │ +000267f0: 6465 3a20 6672 6565 4578 7465 7269 6f72 de: freeExterior │ │ │ │ +00026800: 5375 6d6d 616e 642c 204e 6578 743a 2047 Summand, Next: G │ │ │ │ +00026810: 7261 6469 6e67 2c20 5072 6576 3a20 6669 rading, Prev: fi │ │ │ │ +00026820: 6e69 7465 4265 7474 694e 756d 6265 7273 niteBettiNumbers │ │ │ │ +00026830: 2c20 5570 3a20 546f 700a 0a66 7265 6545 , Up: Top..freeE │ │ │ │ +00026840: 7874 6572 696f 7253 756d 6d61 6e64 202d xteriorSummand - │ │ │ │ +00026850: 2d20 6669 6e64 2074 6865 2066 7265 6520 - find the free │ │ │ │ +00026860: 7375 6d6d 616e 6473 206f 6620 6120 6d6f summands of a mo │ │ │ │ +00026870: 6475 6c65 206f 7665 7220 616e 2065 7874 dule over an ext │ │ │ │ +00026880: 6572 696f 7220 616c 6765 6272 610a 2a2a erior algebra.** │ │ │ │ +00026890: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000268a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000268b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000268c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000268d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000268e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 796e ***********..Syn │ │ │ │ -000268f0: 6f70 7369 730a 3d3d 3d3d 3d3d 3d3d 0a0a opsis.========.. │ │ │ │ -00026900: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ -00026910: 2020 2020 4620 3d20 6672 6565 4578 7465 F = freeExte │ │ │ │ -00026920: 7269 6f72 5375 6d6d 616e 6420 4d0a 2020 riorSummand M. │ │ │ │ -00026930: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ -00026940: 2a20 4d2c 2061 202a 6e6f 7465 206d 6f64 * M, a *note mod │ │ │ │ -00026950: 756c 653a 2028 4d61 6361 756c 6179 3244 ule: (Macaulay2D │ │ │ │ -00026960: 6f63 294d 6f64 756c 652c 2c20 6f76 6572 oc)Module,, over │ │ │ │ -00026970: 2061 6e20 6578 7465 7269 6f72 2061 6c67 an exterior alg │ │ │ │ -00026980: 6562 7261 0a20 202a 204f 7574 7075 7473 ebra. * Outputs │ │ │ │ -00026990: 3a0a 2020 2020 2020 2a20 462c 2061 202a :. * F, a * │ │ │ │ -000269a0: 6e6f 7465 206d 6174 7269 783a 2028 4d61 note matrix: (Ma │ │ │ │ -000269b0: 6361 756c 6179 3244 6f63 294d 6174 7269 caulay2Doc)Matri │ │ │ │ -000269c0: 782c 2c20 4d61 7020 6672 6f6d 2061 2066 x,, Map from a f │ │ │ │ -000269d0: 7265 6520 6d6f 6475 6c65 2074 6f20 4d2e ree module to M. │ │ │ │ -000269e0: 0a20 2020 2020 2020 2049 6d61 6765 2069 . Image i │ │ │ │ -000269f0: 7320 7468 6520 6c61 7267 6573 7420 6672 s the largest fr │ │ │ │ -00026a00: 6565 2073 756d 6d61 6e64 0a0a 4465 7363 ee summand..Desc │ │ │ │ -00026a10: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ -00026a20: 3d3d 3d0a 0a0a 0a2b 2d2d 2d2d 2d2d 2d2d ===....+-------- │ │ │ │ +000268e0: 0a0a 5379 6e6f 7073 6973 0a3d 3d3d 3d3d ..Synopsis.===== │ │ │ │ +000268f0: 3d3d 3d0a 0a20 202a 2055 7361 6765 3a20 ===.. * Usage: │ │ │ │ +00026900: 0a20 2020 2020 2020 2046 203d 2066 7265 . F = fre │ │ │ │ +00026910: 6545 7874 6572 696f 7253 756d 6d61 6e64 eExteriorSummand │ │ │ │ +00026920: 204d 0a20 202a 2049 6e70 7574 733a 0a20 M. * Inputs:. │ │ │ │ +00026930: 2020 2020 202a 204d 2c20 6120 2a6e 6f74 * M, a *not │ │ │ │ +00026940: 6520 6d6f 6475 6c65 3a20 284d 6163 6175 e module: (Macau │ │ │ │ +00026950: 6c61 7932 446f 6329 4d6f 6475 6c65 2c2c lay2Doc)Module,, │ │ │ │ +00026960: 206f 7665 7220 616e 2065 7874 6572 696f over an exterio │ │ │ │ +00026970: 7220 616c 6765 6272 610a 2020 2a20 4f75 r algebra. * Ou │ │ │ │ +00026980: 7470 7574 733a 0a20 2020 2020 202a 2046 tputs:. * F │ │ │ │ +00026990: 2c20 6120 2a6e 6f74 6520 6d61 7472 6978 , a *note matrix │ │ │ │ +000269a0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +000269b0: 4d61 7472 6978 2c2c 204d 6170 2066 726f Matrix,, Map fro │ │ │ │ +000269c0: 6d20 6120 6672 6565 206d 6f64 756c 6520 m a free module │ │ │ │ +000269d0: 746f 204d 2e0a 2020 2020 2020 2020 496d to M.. Im │ │ │ │ +000269e0: 6167 6520 6973 2074 6865 206c 6172 6765 age is the large │ │ │ │ +000269f0: 7374 2066 7265 6520 7375 6d6d 616e 640a st free summand. │ │ │ │ +00026a00: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +00026a10: 3d3d 3d3d 3d3d 3d3d 0a0a 0a0a 2b2d 2d2d ========....+--- │ │ │ │ +00026a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -00026a60: 203a 206b 6b3d 205a 5a2f 3130 3120 2020 : kk= ZZ/101 │ │ │ │ +00026a50: 2b0a 7c69 3120 3a20 6b6b 3d20 5a5a 2f31 +.|i1 : kk= ZZ/1 │ │ │ │ +00026a60: 3031 2020 2020 2020 2020 2020 2020 2020 01 │ │ │ │ 00026a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026a80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00026a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ac0: 2020 2020 2020 207c 0a7c 6f31 203d 206b |.|o1 = k │ │ │ │ -00026ad0: 6b20 2020 2020 2020 2020 2020 2020 2020 k │ │ │ │ +00026ab0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00026ac0: 3120 3d20 6b6b 2020 2020 2020 2020 2020 1 = kk │ │ │ │ +00026ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026af0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00026af0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00026b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b30: 2020 207c 0a7c 6f31 203a 2051 756f 7469 |.|o1 : Quoti │ │ │ │ -00026b40: 656e 7452 696e 6720 2020 2020 2020 2020 entRing │ │ │ │ -00026b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b60: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00026b20: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ +00026b30: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ +00026b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026b50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00026b60: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00026b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00026ba0: 0a7c 6932 203a 2045 203d 206b 6b5b 652c .|i2 : E = kk[e, │ │ │ │ -00026bb0: 662c 672c 2053 6b65 7743 6f6d 6d75 7461 f,g, SkewCommuta │ │ │ │ -00026bc0: 7469 7665 203d 3e20 7472 7565 5d20 2020 tive => true] │ │ │ │ -00026bd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026b90: 2d2d 2d2d 2b0a 7c69 3220 3a20 4520 3d20 ----+.|i2 : E = │ │ │ │ +00026ba0: 6b6b 5b65 2c66 2c67 2c20 536b 6577 436f kk[e,f,g, SkewCo │ │ │ │ +00026bb0: 6d6d 7574 6174 6976 6520 3d3e 2074 7275 mmutative => tru │ │ │ │ +00026bc0: 655d 2020 2020 2020 2020 7c0a 7c20 2020 e] |.| │ │ │ │ +00026bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026c00: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -00026c10: 203d 2045 2020 2020 2020 2020 2020 2020 = E │ │ │ │ +00026c00: 7c0a 7c6f 3220 3d20 4520 2020 2020 2020 |.|o2 = E │ │ │ │ +00026c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026c40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026c30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00026c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026c70: 2020 2020 2020 207c 0a7c 6f32 203a 2050 |.|o2 : P │ │ │ │ -00026c80: 6f6c 796e 6f6d 6961 6c52 696e 672c 2033 olynomialRing, 3 │ │ │ │ -00026c90: 2073 6b65 7720 636f 6d6d 7574 6174 6976 skew commutativ │ │ │ │ -00026ca0: 6520 7661 7269 6162 6c65 2873 297c 0a2b e variable(s)|.+ │ │ │ │ +00026c60: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00026c70: 3220 3a20 506f 6c79 6e6f 6d69 616c 5269 2 : PolynomialRi │ │ │ │ +00026c80: 6e67 2c20 3320 736b 6577 2063 6f6d 6d75 ng, 3 skew commu │ │ │ │ +00026c90: 7461 7469 7665 2076 6172 6961 626c 6528 tative variable( │ │ │ │ +00026ca0: 7329 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d s)|.+----------- │ │ │ │ 00026cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026ce0: 2d2d 2d2b 0a7c 6933 203a 204d 203d 2045 ---+.|i3 : M = E │ │ │ │ -00026cf0: 5e31 2b2b 6d6f 6475 6c65 2069 6465 616c ^1++module ideal │ │ │ │ -00026d00: 2076 6172 7320 452b 2b45 5e7b 2d31 7d20 vars E++E^{-1} │ │ │ │ -00026d10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00026cd0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ +00026ce0: 4d20 3d20 455e 312b 2b6d 6f64 756c 6520 M = E^1++module │ │ │ │ +00026cf0: 6964 6561 6c20 7661 7273 2045 2b2b 455e ideal vars E++E^ │ │ │ │ +00026d00: 7b2d 317d 2020 2020 2020 2020 2020 7c0a {-1} |. │ │ │ │ +00026d10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00026d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026d40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00026d50: 0a7c 6f33 203d 2069 6d61 6765 207b 307d .|o3 = image {0} │ │ │ │ -00026d60: 207c 2031 2030 2030 2030 2030 207c 2020 | 1 0 0 0 0 | │ │ │ │ -00026d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026d80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00026d90: 2020 207b 307d 207c 2030 2065 2066 2067 {0} | 0 e f g │ │ │ │ -00026da0: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ -00026db0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00026dc0: 2020 2020 2020 2020 207b 317d 207c 2030 {1} | 0 │ │ │ │ -00026dd0: 2030 2030 2030 2031 207c 2020 2020 2020 0 0 0 1 | │ │ │ │ -00026de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026df0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026d40: 2020 2020 7c0a 7c6f 3320 3d20 696d 6167 |.|o3 = imag │ │ │ │ +00026d50: 6520 7b30 7d20 7c20 3120 3020 3020 3020 e {0} | 1 0 0 0 │ │ │ │ +00026d60: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +00026d70: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00026d80: 2020 2020 2020 2020 7b30 7d20 7c20 3020 {0} | 0 │ │ │ │ +00026d90: 6520 6620 6720 3020 7c20 2020 2020 2020 e f g 0 | │ │ │ │ +00026da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026db0: 7c0a 7c20 2020 2020 2020 2020 2020 7b31 |.| {1 │ │ │ │ +00026dc0: 7d20 7c20 3020 3020 3020 3020 3120 7c20 } | 0 0 0 0 1 | │ │ │ │ +00026dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026de0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00026df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026e20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00026e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026e40: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ -00026e50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00026e60: 6f33 203a 2045 2d6d 6f64 756c 652c 2073 o3 : E-module, s │ │ │ │ -00026e70: 7562 6d6f 6475 6c65 206f 6620 4520 2020 ubmodule of E │ │ │ │ -00026e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026e90: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00026e10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00026e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026e30: 2020 2020 2020 2020 2020 2020 3320 2020 3 │ │ │ │ +00026e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026e50: 2020 7c0a 7c6f 3320 3a20 452d 6d6f 6475 |.|o3 : E-modu │ │ │ │ +00026e60: 6c65 2c20 7375 626d 6f64 756c 6520 6f66 le, submodule of │ │ │ │ +00026e70: 2045 2020 2020 2020 2020 2020 2020 2020 E │ │ │ │ +00026e80: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00026e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026ec0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ -00026ed0: 2066 7265 6545 7874 6572 696f 7253 756d freeExteriorSum │ │ │ │ -00026ee0: 6d61 6e64 204d 2020 2020 2020 2020 2020 mand M │ │ │ │ -00026ef0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00026f00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00026eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00026ec0: 7c69 3420 3a20 6672 6565 4578 7465 7269 |i4 : freeExteri │ │ │ │ +00026ed0: 6f72 5375 6d6d 616e 6420 4d20 2020 2020 orSummand M │ │ │ │ +00026ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026ef0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00026f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026f30: 2020 2020 207c 0a7c 6f34 203d 207b 307d |.|o4 = {0} │ │ │ │ -00026f40: 207c 2031 2030 207c 2020 2020 2020 2020 | 1 0 | │ │ │ │ +00026f20: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ +00026f30: 3d20 7b30 7d20 7c20 3120 3020 7c20 2020 = {0} | 1 0 | │ │ │ │ +00026f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026f60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00026f70: 2020 207b 317d 207c 2030 2030 207c 2020 {1} | 0 0 | │ │ │ │ +00026f60: 7c0a 7c20 2020 2020 7b31 7d20 7c20 3020 |.| {1} | 0 │ │ │ │ +00026f70: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ 00026f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026fa0: 207c 0a7c 2020 2020 207b 317d 207c 2030 |.| {1} | 0 │ │ │ │ -00026fb0: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ -00026fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026fd0: 2020 2020 2020 207c 0a7c 2020 2020 207b |.| { │ │ │ │ -00026fe0: 317d 207c 2030 2030 207c 2020 2020 2020 1} | 0 0 | │ │ │ │ +00026f90: 2020 2020 2020 7c0a 7c20 2020 2020 7b31 |.| {1 │ │ │ │ +00026fa0: 7d20 7c20 3020 3020 7c20 2020 2020 2020 } | 0 0 | │ │ │ │ +00026fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026fc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00026fd0: 2020 2020 7b31 7d20 7c20 3020 3020 7c20 {1} | 0 0 | │ │ │ │ +00026fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027000: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00027010: 2020 2020 207b 317d 207c 2030 2031 207c {1} | 0 1 | │ │ │ │ +00027000: 2020 7c0a 7c20 2020 2020 7b31 7d20 7c20 |.| {1} | │ │ │ │ +00027010: 3020 3120 7c20 2020 2020 2020 2020 2020 0 1 | │ │ │ │ 00027020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027040: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00027030: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00027040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027070: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00027080: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00027060: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027070: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00027080: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 00027090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000270a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000270b0: 0a7c 6f34 203a 204d 6174 7269 7820 4d20 .|o4 : Matrix M │ │ │ │ -000270c0: 3c2d 2d20 4520 2020 2020 2020 2020 2020 <-- E │ │ │ │ -000270d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000270e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000270a0: 2020 2020 7c0a 7c6f 3420 3a20 4d61 7472 |.|o4 : Matr │ │ │ │ +000270b0: 6978 204d 203c 2d2d 2045 2020 2020 2020 ix M <-- E │ │ │ │ +000270c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000270d0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000270e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000270f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5761 -----------+..Wa │ │ │ │ -00027120: 7973 2074 6f20 7573 6520 6672 6565 4578 ys to use freeEx │ │ │ │ -00027130: 7465 7269 6f72 5375 6d6d 616e 643a 0a3d teriorSummand:.= │ │ │ │ +00027110: 2b0a 0a57 6179 7320 746f 2075 7365 2066 +..Ways to use f │ │ │ │ +00027120: 7265 6545 7874 6572 696f 7253 756d 6d61 reeExteriorSumma │ │ │ │ +00027130: 6e64 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d nd:.============ │ │ │ │ 00027140: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00027150: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -00027160: 0a20 202a 2022 6672 6565 4578 7465 7269 . * "freeExteri │ │ │ │ -00027170: 6f72 5375 6d6d 616e 6428 4d6f 6475 6c65 orSummand(Module │ │ │ │ -00027180: 2922 0a0a 466f 7220 7468 6520 7072 6f67 )"..For the prog │ │ │ │ -00027190: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ -000271a0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ -000271b0: 626a 6563 7420 2a6e 6f74 6520 6672 6565 bject *note free │ │ │ │ -000271c0: 4578 7465 7269 6f72 5375 6d6d 616e 643a ExteriorSummand: │ │ │ │ -000271d0: 2066 7265 6545 7874 6572 696f 7253 756d freeExteriorSum │ │ │ │ -000271e0: 6d61 6e64 2c20 6973 2061 202a 6e6f 7465 mand, is a *note │ │ │ │ -000271f0: 206d 6574 686f 640a 6675 6e63 7469 6f6e method.function │ │ │ │ -00027200: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00027210: 4d65 7468 6f64 4675 6e63 7469 6f6e 2c2e MethodFunction,. │ │ │ │ -00027220: 0a1f 0a46 696c 653a 2043 6f6d 706c 6574 ...File: Complet │ │ │ │ -00027230: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ -00027240: 6f6c 7574 696f 6e73 2e69 6e66 6f2c 204e olutions.info, N │ │ │ │ -00027250: 6f64 653a 2047 7261 6469 6e67 2c20 4e65 ode: Grading, Ne │ │ │ │ -00027260: 7874 3a20 6866 2c20 5072 6576 3a20 6672 xt: hf, Prev: fr │ │ │ │ -00027270: 6565 4578 7465 7269 6f72 5375 6d6d 616e eeExteriorSumman │ │ │ │ -00027280: 642c 2055 703a 2054 6f70 0a0a 4772 6164 d, Up: Top..Grad │ │ │ │ -00027290: 696e 6720 2d2d 204f 7074 696f 6e20 666f ing -- Option fo │ │ │ │ -000272a0: 7220 4569 7365 6e62 7564 5368 616d 6173 r EisenbudShamas │ │ │ │ -000272b0: 6854 6f74 616c 2c20 6e65 7745 7874 0a2a hTotal, newExt.* │ │ │ │ +00027150: 3d3d 3d3d 0a0a 2020 2a20 2266 7265 6545 ====.. * "freeE │ │ │ │ +00027160: 7874 6572 696f 7253 756d 6d61 6e64 284d xteriorSummand(M │ │ │ │ +00027170: 6f64 756c 6529 220a 0a46 6f72 2074 6865 odule)"..For the │ │ │ │ +00027180: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ +00027190: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +000271a0: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ +000271b0: 2066 7265 6545 7874 6572 696f 7253 756d freeExteriorSum │ │ │ │ +000271c0: 6d61 6e64 3a20 6672 6565 4578 7465 7269 mand: freeExteri │ │ │ │ +000271d0: 6f72 5375 6d6d 616e 642c 2069 7320 6120 orSummand, is a │ │ │ │ +000271e0: 2a6e 6f74 6520 6d65 7468 6f64 0a66 756e *note method.fun │ │ │ │ +000271f0: 6374 696f 6e3a 2028 4d61 6361 756c 6179 ction: (Macaulay │ │ │ │ +00027200: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ +00027210: 696f 6e2c 2e0a 1f0a 4669 6c65 3a20 436f ion,....File: Co │ │ │ │ +00027220: 6d70 6c65 7465 496e 7465 7273 6563 7469 mpleteIntersecti │ │ │ │ +00027230: 6f6e 5265 736f 6c75 7469 6f6e 732e 696e onResolutions.in │ │ │ │ +00027240: 666f 2c20 4e6f 6465 3a20 4772 6164 696e fo, Node: Gradin │ │ │ │ +00027250: 672c 204e 6578 743a 2068 662c 2050 7265 g, Next: hf, Pre │ │ │ │ +00027260: 763a 2066 7265 6545 7874 6572 696f 7253 v: freeExteriorS │ │ │ │ +00027270: 756d 6d61 6e64 2c20 5570 3a20 546f 700a ummand, Up: Top. │ │ │ │ +00027280: 0a47 7261 6469 6e67 202d 2d20 4f70 7469 .Grading -- Opti │ │ │ │ +00027290: 6f6e 2066 6f72 2045 6973 656e 6275 6453 on for EisenbudS │ │ │ │ +000272a0: 6861 6d61 7368 546f 7461 6c2c 206e 6577 hamashTotal, new │ │ │ │ +000272b0: 4578 740a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a Ext.************ │ │ │ │ 000272c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000272d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000272e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000272f0: 2a0a 0a53 796e 6f70 7369 730a 3d3d 3d3d *..Synopsis.==== │ │ │ │ -00027300: 3d3d 3d3d 0a0a 2020 2a20 5573 6167 653a ====.. * Usage: │ │ │ │ -00027310: 200a 2020 2020 2020 2020 4569 7365 6e62 . Eisenb │ │ │ │ -00027320: 7564 5368 616d 6173 6854 6f74 616c 284d udShamashTotal(M │ │ │ │ -00027330: 6261 722c 4772 6164 696e 6720 3d3e 2032 bar,Grading => 2 │ │ │ │ -00027340: 290a 2020 2a20 496e 7075 7473 3a0a 2020 ). * Inputs:. │ │ │ │ -00027350: 2020 2020 2a20 4368 6563 6b2c 2061 6e20 * Check, an │ │ │ │ -00027360: 2a6e 6f74 6520 696e 7465 6765 723a 2028 *note integer: ( │ │ │ │ -00027370: 4d61 6361 756c 6179 3244 6f63 295a 5a2c Macaulay2Doc)ZZ, │ │ │ │ -00027380: 2c20 0a0a 4465 7363 7269 7074 696f 6e0a , ..Description. │ │ │ │ -00027390: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a69 6620 ===========..if │ │ │ │ -000273a0: 4772 6164 696e 6720 3d3e 312c 2074 6865 Grading =>1, the │ │ │ │ -000273b0: 6e20 7468 6520 6f75 7470 7574 2069 7320 n the output is │ │ │ │ -000273c0: 636f 6e76 6572 7465 6420 746f 2073 696e converted to sin │ │ │ │ -000273d0: 676c 652d 6772 6164 696e 672c 2075 7365 gle-grading, use │ │ │ │ -000273e0: 6675 6c20 696e 2074 6865 0a70 6163 6b61 ful in the.packa │ │ │ │ -000273f0: 6765 2043 6c69 6666 6f72 640a 0a53 6565 ge Clifford..See │ │ │ │ -00027400: 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a also.========.. │ │ │ │ -00027410: 2020 2a20 2a6e 6f74 6520 4569 7365 6e62 * *note Eisenb │ │ │ │ -00027420: 7564 5368 616d 6173 6854 6f74 616c 3a20 udShamashTotal: │ │ │ │ -00027430: 4569 7365 6e62 7564 5368 616d 6173 6854 EisenbudShamashT │ │ │ │ -00027440: 6f74 616c 2c20 2d2d 2050 7265 6375 7273 otal, -- Precurs │ │ │ │ -00027450: 6f72 2063 6f6d 706c 6578 206f 660a 2020 or complex of. │ │ │ │ -00027460: 2020 746f 7461 6c20 4578 740a 2020 2a20 total Ext. * │ │ │ │ -00027470: 2a6e 6f74 6520 6e65 7745 7874 3a20 6e65 *note newExt: ne │ │ │ │ -00027480: 7745 7874 2c20 2d2d 2047 6c6f 6261 6c20 wExt, -- Global │ │ │ │ -00027490: 4578 7420 666f 7220 6d6f 6475 6c65 7320 Ext for modules │ │ │ │ -000274a0: 6f76 6572 2061 2063 6f6d 706c 6574 650a over a complete. │ │ │ │ -000274b0: 2020 2020 496e 7465 7273 6563 7469 6f6e Intersection │ │ │ │ -000274c0: 0a0a 4675 6e63 7469 6f6e 7320 7769 7468 ..Functions with │ │ │ │ -000274d0: 206f 7074 696f 6e61 6c20 6172 6775 6d65 optional argume │ │ │ │ -000274e0: 6e74 206e 616d 6564 2047 7261 6469 6e67 nt named Grading │ │ │ │ -000274f0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +000272e0: 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 ******..Synopsis │ │ │ │ +000272f0: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 .========.. * U │ │ │ │ +00027300: 7361 6765 3a20 0a20 2020 2020 2020 2045 sage: . E │ │ │ │ +00027310: 6973 656e 6275 6453 6861 6d61 7368 546f isenbudShamashTo │ │ │ │ +00027320: 7461 6c28 4d62 6172 2c47 7261 6469 6e67 tal(Mbar,Grading │ │ │ │ +00027330: 203d 3e20 3229 0a20 202a 2049 6e70 7574 => 2). * Input │ │ │ │ +00027340: 733a 0a20 2020 2020 202a 2043 6865 636b s:. * Check │ │ │ │ +00027350: 2c20 616e 202a 6e6f 7465 2069 6e74 6567 , an *note integ │ │ │ │ +00027360: 6572 3a20 284d 6163 6175 6c61 7932 446f er: (Macaulay2Do │ │ │ │ +00027370: 6329 5a5a 2c2c 200a 0a44 6573 6372 6970 c)ZZ,, ..Descrip │ │ │ │ +00027380: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ +00027390: 0a0a 6966 2047 7261 6469 6e67 203d 3e31 ..if Grading =>1 │ │ │ │ +000273a0: 2c20 7468 656e 2074 6865 206f 7574 7075 , then the outpu │ │ │ │ +000273b0: 7420 6973 2063 6f6e 7665 7274 6564 2074 t is converted t │ │ │ │ +000273c0: 6f20 7369 6e67 6c65 2d67 7261 6469 6e67 o single-grading │ │ │ │ +000273d0: 2c20 7573 6566 756c 2069 6e20 7468 650a , useful in the. │ │ │ │ +000273e0: 7061 636b 6167 6520 436c 6966 666f 7264 package Clifford │ │ │ │ +000273f0: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ +00027400: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2045 ===.. * *note E │ │ │ │ +00027410: 6973 656e 6275 6453 6861 6d61 7368 546f isenbudShamashTo │ │ │ │ +00027420: 7461 6c3a 2045 6973 656e 6275 6453 6861 tal: EisenbudSha │ │ │ │ +00027430: 6d61 7368 546f 7461 6c2c 202d 2d20 5072 mashTotal, -- Pr │ │ │ │ +00027440: 6563 7572 736f 7220 636f 6d70 6c65 7820 ecursor complex │ │ │ │ +00027450: 6f66 0a20 2020 2074 6f74 616c 2045 7874 of. total Ext │ │ │ │ +00027460: 0a20 202a 202a 6e6f 7465 206e 6577 4578 . * *note newEx │ │ │ │ +00027470: 743a 206e 6577 4578 742c 202d 2d20 476c t: newExt, -- Gl │ │ │ │ +00027480: 6f62 616c 2045 7874 2066 6f72 206d 6f64 obal Ext for mod │ │ │ │ +00027490: 756c 6573 206f 7665 7220 6120 636f 6d70 ules over a comp │ │ │ │ +000274a0: 6c65 7465 0a20 2020 2049 6e74 6572 7365 lete. Interse │ │ │ │ +000274b0: 6374 696f 6e0a 0a46 756e 6374 696f 6e73 ction..Functions │ │ │ │ +000274c0: 2077 6974 6820 6f70 7469 6f6e 616c 2061 with optional a │ │ │ │ +000274d0: 7267 756d 656e 7420 6e61 6d65 6420 4772 rgument named Gr │ │ │ │ +000274e0: 6164 696e 673a 0a3d 3d3d 3d3d 3d3d 3d3d ading:.========= │ │ │ │ +000274f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 00027500: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00027510: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00027520: 3d0a 0a20 202a 2022 4569 7365 6e62 7564 =.. * "Eisenbud │ │ │ │ -00027530: 5368 616d 6173 6854 6f74 616c 282e 2e2e ShamashTotal(... │ │ │ │ -00027540: 2c47 7261 6469 6e67 3d3e 2e2e 2e29 2220 ,Grading=>...)" │ │ │ │ -00027550: 2d2d 2073 6565 202a 6e6f 7465 2045 6973 -- see *note Eis │ │ │ │ -00027560: 656e 6275 6453 6861 6d61 7368 546f 7461 enbudShamashTota │ │ │ │ -00027570: 6c3a 0a20 2020 2045 6973 656e 6275 6453 l:. EisenbudS │ │ │ │ -00027580: 6861 6d61 7368 546f 7461 6c2c 202d 2d20 hamashTotal, -- │ │ │ │ -00027590: 5072 6563 7572 736f 7220 636f 6d70 6c65 Precursor comple │ │ │ │ -000275a0: 7820 6f66 2074 6f74 616c 2045 7874 0a20 x of total Ext. │ │ │ │ -000275b0: 202a 2022 6e65 7745 7874 282e 2e2e 2c47 * "newExt(...,G │ │ │ │ -000275c0: 7261 6469 6e67 3d3e 2e2e 2e29 2220 2d2d rading=>...)" -- │ │ │ │ -000275d0: 2073 6565 202a 6e6f 7465 206e 6577 4578 see *note newEx │ │ │ │ -000275e0: 743a 206e 6577 4578 742c 202d 2d20 476c t: newExt, -- Gl │ │ │ │ -000275f0: 6f62 616c 2045 7874 2066 6f72 0a20 2020 obal Ext for. │ │ │ │ -00027600: 206d 6f64 756c 6573 206f 7665 7220 6120 modules over a │ │ │ │ -00027610: 636f 6d70 6c65 7465 2049 6e74 6572 7365 complete Interse │ │ │ │ -00027620: 6374 696f 6e0a 0a46 6f72 2074 6865 2070 ction..For the p │ │ │ │ -00027630: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -00027640: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -00027650: 6520 6f62 6a65 6374 202a 6e6f 7465 2047 e object *note G │ │ │ │ -00027660: 7261 6469 6e67 3a20 4772 6164 696e 672c rading: Grading, │ │ │ │ -00027670: 2069 7320 6120 2a6e 6f74 6520 7379 6d62 is a *note symb │ │ │ │ -00027680: 6f6c 3a20 284d 6163 6175 6c61 7932 446f ol: (Macaulay2Do │ │ │ │ -00027690: 6329 5379 6d62 6f6c 2c2e 0a1f 0a46 696c c)Symbol,....Fil │ │ │ │ -000276a0: 653a 2043 6f6d 706c 6574 6549 6e74 6572 e: CompleteInter │ │ │ │ -000276b0: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ -000276c0: 6e73 2e69 6e66 6f2c 204e 6f64 653a 2068 ns.info, Node: h │ │ │ │ -000276d0: 662c 204e 6578 743a 2068 664d 6f64 756c f, Next: hfModul │ │ │ │ -000276e0: 6541 7345 7874 2c20 5072 6576 3a20 4772 eAsExt, Prev: Gr │ │ │ │ -000276f0: 6164 696e 672c 2055 703a 2054 6f70 0a0a ading, Up: Top.. │ │ │ │ -00027700: 6866 202d 2d20 436f 6d70 7574 6573 2074 hf -- Computes t │ │ │ │ -00027710: 6865 2068 696c 6265 7274 2066 756e 6374 he hilbert funct │ │ │ │ -00027720: 696f 6e20 696e 2061 2072 616e 6765 206f ion in a range o │ │ │ │ -00027730: 6620 6465 6772 6565 730a 2a2a 2a2a 2a2a f degrees.****** │ │ │ │ +00027510: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2245 6973 ======.. * "Eis │ │ │ │ +00027520: 656e 6275 6453 6861 6d61 7368 546f 7461 enbudShamashTota │ │ │ │ +00027530: 6c28 2e2e 2e2c 4772 6164 696e 673d 3e2e l(...,Grading=>. │ │ │ │ +00027540: 2e2e 2922 202d 2d20 7365 6520 2a6e 6f74 ..)" -- see *not │ │ │ │ +00027550: 6520 4569 7365 6e62 7564 5368 616d 6173 e EisenbudShamas │ │ │ │ +00027560: 6854 6f74 616c 3a0a 2020 2020 4569 7365 hTotal:. Eise │ │ │ │ +00027570: 6e62 7564 5368 616d 6173 6854 6f74 616c nbudShamashTotal │ │ │ │ +00027580: 2c20 2d2d 2050 7265 6375 7273 6f72 2063 , -- Precursor c │ │ │ │ +00027590: 6f6d 706c 6578 206f 6620 746f 7461 6c20 omplex of total │ │ │ │ +000275a0: 4578 740a 2020 2a20 226e 6577 4578 7428 Ext. * "newExt( │ │ │ │ +000275b0: 2e2e 2e2c 4772 6164 696e 673d 3e2e 2e2e ...,Grading=>... │ │ │ │ +000275c0: 2922 202d 2d20 7365 6520 2a6e 6f74 6520 )" -- see *note │ │ │ │ +000275d0: 6e65 7745 7874 3a20 6e65 7745 7874 2c20 newExt: newExt, │ │ │ │ +000275e0: 2d2d 2047 6c6f 6261 6c20 4578 7420 666f -- Global Ext fo │ │ │ │ +000275f0: 720a 2020 2020 6d6f 6475 6c65 7320 6f76 r. modules ov │ │ │ │ +00027600: 6572 2061 2063 6f6d 706c 6574 6520 496e er a complete In │ │ │ │ +00027610: 7465 7273 6563 7469 6f6e 0a0a 466f 7220 tersection..For │ │ │ │ +00027620: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ +00027630: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00027640: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ +00027650: 6f74 6520 4772 6164 696e 673a 2047 7261 ote Grading: Gra │ │ │ │ +00027660: 6469 6e67 2c20 6973 2061 202a 6e6f 7465 ding, is a *note │ │ │ │ +00027670: 2073 796d 626f 6c3a 2028 4d61 6361 756c symbol: (Macaul │ │ │ │ +00027680: 6179 3244 6f63 2953 796d 626f 6c2c 2e0a ay2Doc)Symbol,.. │ │ │ │ +00027690: 1f0a 4669 6c65 3a20 436f 6d70 6c65 7465 ..File: Complete │ │ │ │ +000276a0: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ +000276b0: 6c75 7469 6f6e 732e 696e 666f 2c20 4e6f lutions.info, No │ │ │ │ +000276c0: 6465 3a20 6866 2c20 4e65 7874 3a20 6866 de: hf, Next: hf │ │ │ │ +000276d0: 4d6f 6475 6c65 4173 4578 742c 2050 7265 ModuleAsExt, Pre │ │ │ │ +000276e0: 763a 2047 7261 6469 6e67 2c20 5570 3a20 v: Grading, Up: │ │ │ │ +000276f0: 546f 700a 0a68 6620 2d2d 2043 6f6d 7075 Top..hf -- Compu │ │ │ │ +00027700: 7465 7320 7468 6520 6869 6c62 6572 7420 tes the hilbert │ │ │ │ +00027710: 6675 6e63 7469 6f6e 2069 6e20 6120 7261 function in a ra │ │ │ │ +00027720: 6e67 6520 6f66 2064 6567 7265 6573 0a2a nge of degrees.* │ │ │ │ +00027730: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00027740: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00027750: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00027760: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00027770: 2a2a 2a0a 0a53 796e 6f70 7369 730a 3d3d ***..Synopsis.== │ │ │ │ -00027780: 3d3d 3d3d 3d3d 0a0a 2020 2a20 5573 6167 ======.. * Usag │ │ │ │ -00027790: 653a 200a 2020 2020 2020 2020 4820 3d20 e: . H = │ │ │ │ -000277a0: 6866 2873 2c50 290a 2020 2a20 496e 7075 hf(s,P). * Inpu │ │ │ │ -000277b0: 7473 3a0a 2020 2020 2020 2a20 732c 2061 ts:. * s, a │ │ │ │ -000277c0: 202a 6e6f 7465 2073 6571 7565 6e63 653a *note sequence: │ │ │ │ -000277d0: 2028 4d61 6361 756c 6179 3244 6f63 2953 (Macaulay2Doc)S │ │ │ │ -000277e0: 6571 7565 6e63 652c 2c20 6f72 204c 6973 equence,, or Lis │ │ │ │ -000277f0: 740a 2020 2020 2020 2a20 502c 2061 202a t. * P, a * │ │ │ │ -00027800: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ -00027810: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ -00027820: 652c 2c20 6772 6164 6564 206d 6f64 756c e,, graded modul │ │ │ │ -00027830: 650a 2020 2a20 4f75 7470 7574 733a 0a20 e. * Outputs:. │ │ │ │ -00027840: 2020 2020 202a 2048 2c20 6120 2a6e 6f74 * H, a *not │ │ │ │ -00027850: 6520 6c69 7374 3a20 284d 6163 6175 6c61 e list: (Macaula │ │ │ │ -00027860: 7932 446f 6329 4c69 7374 2c2c 200a 0a57 y2Doc)List,, ..W │ │ │ │ -00027870: 6179 7320 746f 2075 7365 2068 663a 0a3d ays to use hf:.= │ │ │ │ -00027880: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00027890: 2020 2a20 2268 6628 4c69 7374 2c4d 6f64 * "hf(List,Mod │ │ │ │ -000278a0: 756c 6529 220a 2020 2a20 2268 6628 5365 ule)". * "hf(Se │ │ │ │ -000278b0: 7175 656e 6365 2c4d 6f64 756c 6529 220a quence,Module)". │ │ │ │ -000278c0: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ -000278d0: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ -000278e0: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ -000278f0: 6374 202a 6e6f 7465 2068 663a 2068 662c ct *note hf: hf, │ │ │ │ -00027900: 2069 7320 6120 2a6e 6f74 6520 6d65 7468 is a *note meth │ │ │ │ -00027910: 6f64 2066 756e 6374 696f 6e3a 0a28 4d61 od function:.(Ma │ │ │ │ -00027920: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ -00027930: 6446 756e 6374 696f 6e2c 2e0a 1f0a 4669 dFunction,....Fi │ │ │ │ -00027940: 6c65 3a20 436f 6d70 6c65 7465 496e 7465 le: CompleteInte │ │ │ │ -00027950: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ -00027960: 6f6e 732e 696e 666f 2c20 4e6f 6465 3a20 ons.info, Node: │ │ │ │ -00027970: 6866 4d6f 6475 6c65 4173 4578 742c 204e hfModuleAsExt, N │ │ │ │ -00027980: 6578 743a 2068 6967 6853 797a 7967 792c ext: highSyzygy, │ │ │ │ -00027990: 2050 7265 763a 2068 662c 2055 703a 2054 Prev: hf, Up: T │ │ │ │ -000279a0: 6f70 0a0a 6866 4d6f 6475 6c65 4173 4578 op..hfModuleAsEx │ │ │ │ -000279b0: 7420 2d2d 2070 7265 6469 6374 2062 6574 t -- predict bet │ │ │ │ -000279c0: 7469 206e 756d 6265 7273 206f 6620 6d6f ti numbers of mo │ │ │ │ -000279d0: 6475 6c65 4173 4578 7428 4d2c 5229 0a2a duleAsExt(M,R).* │ │ │ │ +00027760: 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 ********..Synops │ │ │ │ +00027770: 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a is.========.. * │ │ │ │ +00027780: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +00027790: 2048 203d 2068 6628 732c 5029 0a20 202a H = hf(s,P). * │ │ │ │ +000277a0: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +000277b0: 2073 2c20 6120 2a6e 6f74 6520 7365 7175 s, a *note sequ │ │ │ │ +000277c0: 656e 6365 3a20 284d 6163 6175 6c61 7932 ence: (Macaulay2 │ │ │ │ +000277d0: 446f 6329 5365 7175 656e 6365 2c2c 206f Doc)Sequence,, o │ │ │ │ +000277e0: 7220 4c69 7374 0a20 2020 2020 202a 2050 r List. * P │ │ │ │ +000277f0: 2c20 6120 2a6e 6f74 6520 6d6f 6475 6c65 , a *note module │ │ │ │ +00027800: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00027810: 4d6f 6475 6c65 2c2c 2067 7261 6465 6420 Module,, graded │ │ │ │ +00027820: 6d6f 6475 6c65 0a20 202a 204f 7574 7075 module. * Outpu │ │ │ │ +00027830: 7473 3a0a 2020 2020 2020 2a20 482c 2061 ts:. * H, a │ │ │ │ +00027840: 202a 6e6f 7465 206c 6973 743a 2028 4d61 *note list: (Ma │ │ │ │ +00027850: 6361 756c 6179 3244 6f63 294c 6973 742c caulay2Doc)List, │ │ │ │ +00027860: 2c20 0a0a 5761 7973 2074 6f20 7573 6520 , ..Ways to use │ │ │ │ +00027870: 6866 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d hf:.============ │ │ │ │ +00027880: 3d3d 3d0a 0a20 202a 2022 6866 284c 6973 ===.. * "hf(Lis │ │ │ │ +00027890: 742c 4d6f 6475 6c65 2922 0a20 202a 2022 t,Module)". * " │ │ │ │ +000278a0: 6866 2853 6571 7565 6e63 652c 4d6f 6475 hf(Sequence,Modu │ │ │ │ +000278b0: 6c65 2922 0a0a 466f 7220 7468 6520 7072 le)"..For the pr │ │ │ │ +000278c0: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ +000278d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ +000278e0: 206f 626a 6563 7420 2a6e 6f74 6520 6866 object *note hf │ │ │ │ +000278f0: 3a20 6866 2c20 6973 2061 202a 6e6f 7465 : hf, is a *note │ │ │ │ +00027900: 206d 6574 686f 6420 6675 6e63 7469 6f6e method function │ │ │ │ +00027910: 3a0a 284d 6163 6175 6c61 7932 446f 6329 :.(Macaulay2Doc) │ │ │ │ +00027920: 4d65 7468 6f64 4675 6e63 7469 6f6e 2c2e MethodFunction,. │ │ │ │ +00027930: 0a1f 0a46 696c 653a 2043 6f6d 706c 6574 ...File: Complet │ │ │ │ +00027940: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ +00027950: 6f6c 7574 696f 6e73 2e69 6e66 6f2c 204e olutions.info, N │ │ │ │ +00027960: 6f64 653a 2068 664d 6f64 756c 6541 7345 ode: hfModuleAsE │ │ │ │ +00027970: 7874 2c20 4e65 7874 3a20 6869 6768 5379 xt, Next: highSy │ │ │ │ +00027980: 7a79 6779 2c20 5072 6576 3a20 6866 2c20 zygy, Prev: hf, │ │ │ │ +00027990: 5570 3a20 546f 700a 0a68 664d 6f64 756c Up: Top..hfModul │ │ │ │ +000279a0: 6541 7345 7874 202d 2d20 7072 6564 6963 eAsExt -- predic │ │ │ │ +000279b0: 7420 6265 7474 6920 6e75 6d62 6572 7320 t betti numbers │ │ │ │ +000279c0: 6f66 206d 6f64 756c 6541 7345 7874 284d of moduleAsExt(M │ │ │ │ +000279d0: 2c52 290a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ,R).************ │ │ │ │ 000279e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000279f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00027a00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00027a10: 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 796e 6f70 *********..Synop │ │ │ │ -00027a20: 7369 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 sis.========.. │ │ │ │ -00027a30: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ -00027a40: 2020 7365 7120 3d20 6866 4d6f 6475 6c65 seq = hfModule │ │ │ │ -00027a50: 4173 4578 7428 6e75 6d56 616c 7565 732c AsExt(numValues, │ │ │ │ -00027a60: 4d2c 6e75 6d67 656e 7352 290a 2020 2a20 M,numgensR). * │ │ │ │ -00027a70: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -00027a80: 6e75 6d56 616c 7565 732c 2061 6e20 2a6e numValues, an *n │ │ │ │ -00027a90: 6f74 6520 696e 7465 6765 723a 2028 4d61 ote integer: (Ma │ │ │ │ -00027aa0: 6361 756c 6179 3244 6f63 295a 5a2c 2c20 caulay2Doc)ZZ,, │ │ │ │ -00027ab0: 6e75 6d62 6572 206f 6620 7661 6c75 6573 number of values │ │ │ │ -00027ac0: 2074 6f0a 2020 2020 2020 2020 636f 6d70 to. comp │ │ │ │ -00027ad0: 7574 650a 2020 2020 2020 2a20 4d2c 2061 ute. * M, a │ │ │ │ -00027ae0: 202a 6e6f 7465 206d 6f64 756c 653a 2028 *note module: ( │ │ │ │ -00027af0: 4d61 6361 756c 6179 3244 6f63 294d 6f64 Macaulay2Doc)Mod │ │ │ │ -00027b00: 756c 652c 2c20 6d6f 6475 6c65 206f 7665 ule,, module ove │ │ │ │ -00027b10: 7220 7468 6520 7269 6e67 206f 660a 2020 r the ring of. │ │ │ │ -00027b20: 2020 2020 2020 6f70 6572 6174 6f72 730a operators. │ │ │ │ -00027b30: 2020 2020 2020 2a20 6e75 6d67 656e 7352 * numgensR │ │ │ │ -00027b40: 2c20 616e 202a 6e6f 7465 2069 6e74 6567 , an *note integ │ │ │ │ -00027b50: 6572 3a20 284d 6163 6175 6c61 7932 446f er: (Macaulay2Do │ │ │ │ -00027b60: 6329 5a5a 2c2c 206e 756d 6265 7220 6f66 c)ZZ,, number of │ │ │ │ -00027b70: 2067 656e 6572 6174 6f72 7320 6f66 0a20 generators of. │ │ │ │ -00027b80: 2020 2020 2020 2074 6865 2074 6172 6765 the targe │ │ │ │ -00027b90: 7420 7269 6e67 0a20 202a 204f 7574 7075 t ring. * Outpu │ │ │ │ -00027ba0: 7473 3a0a 2020 2020 2020 2a20 7365 712c ts:. * seq, │ │ │ │ -00027bb0: 2061 202a 6e6f 7465 2073 6571 7565 6e63 a *note sequenc │ │ │ │ -00027bc0: 653a 2028 4d61 6361 756c 6179 3244 6f63 e: (Macaulay2Doc │ │ │ │ -00027bd0: 2953 6571 7565 6e63 652c 2c20 7365 7175 )Sequence,, sequ │ │ │ │ -00027be0: 656e 6365 206f 6620 6e75 6d56 616c 7565 ence of numValue │ │ │ │ -00027bf0: 730a 2020 2020 2020 2020 696e 7465 6765 s. intege │ │ │ │ -00027c00: 7273 2c20 7468 6520 6578 7065 6374 6564 rs, the expected │ │ │ │ -00027c10: 2074 6f74 616c 2042 6574 7469 206e 756d total Betti num │ │ │ │ -00027c20: 6265 7273 0a0a 4465 7363 7269 7074 696f bers..Descriptio │ │ │ │ -00027c30: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a47 n.===========..G │ │ │ │ -00027c40: 6976 656e 2061 206d 6f64 756c 6520 4d20 iven a module M │ │ │ │ -00027c50: 6f76 6572 2074 6865 2072 696e 6720 6f66 over the ring of │ │ │ │ -00027c60: 206f 7065 7261 746f 7273 2024 6b5b 785f operators $k[x_ │ │ │ │ -00027c70: 312e 2e78 5f63 5d24 2c20 7468 6520 6361 1..x_c]$, the ca │ │ │ │ -00027c80: 6c6c 2024 4e20 3d0a 6d6f 6475 6c65 4173 ll $N =.moduleAs │ │ │ │ -00027c90: 4578 7428 4d2c 5229 2420 7072 6f64 7563 Ext(M,R)$ produc │ │ │ │ -00027ca0: 6573 2061 206d 6f64 756c 6520 4e20 6f76 es a module N ov │ │ │ │ -00027cb0: 6572 2074 6865 2072 696e 6720 5220 7768 er the ring R wh │ │ │ │ -00027cc0: 6f73 6520 6578 7420 6d6f 6475 6c65 2069 ose ext module i │ │ │ │ -00027cd0: 7320 7468 650a 6578 7465 7269 6f72 2061 s the.exterior a │ │ │ │ -00027ce0: 6c67 6562 7261 206f 6e20 6e3d 6e75 6d67 lgebra on n=numg │ │ │ │ -00027cf0: 656e 7352 2067 656e 6572 6174 6f72 7320 ensR generators │ │ │ │ -00027d00: 7465 6e73 6f72 6564 2077 6974 6820 4d2e tensored with M. │ │ │ │ -00027d10: 2054 6869 7320 7363 7269 7074 2063 6f6d This script com │ │ │ │ -00027d20: 7075 7465 730a 6e75 6d56 616c 7565 7320 putes.numValues │ │ │ │ -00027d30: 7661 6c75 6573 206f 6620 7468 6520 4869 values of the Hi │ │ │ │ -00027d40: 6c62 6572 7420 6675 6e63 7469 6f6e 206f lbert function o │ │ │ │ -00027d50: 6620 2424 204d 205c 6f74 696d 6573 205c f $$ M \otimes \ │ │ │ │ -00027d60: 7765 6467 6520 6b5e 6e2c 2024 2420 7768 wedge k^n, $$ wh │ │ │ │ -00027d70: 6963 680a 7368 6f75 6c64 2062 6520 6571 ich.should be eq │ │ │ │ -00027d80: 7561 6c20 746f 2074 6865 2074 6f74 616c ual to the total │ │ │ │ -00027d90: 2062 6574 7469 206e 756d 6265 7273 206f betti numbers o │ │ │ │ -00027da0: 6620 4e2e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d f N...+--------- │ │ │ │ +00027a00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +00027a10: 5379 6e6f 7073 6973 0a3d 3d3d 3d3d 3d3d Synopsis.======= │ │ │ │ +00027a20: 3d0a 0a20 202a 2055 7361 6765 3a20 0a20 =.. * Usage: . │ │ │ │ +00027a30: 2020 2020 2020 2073 6571 203d 2068 664d seq = hfM │ │ │ │ +00027a40: 6f64 756c 6541 7345 7874 286e 756d 5661 oduleAsExt(numVa │ │ │ │ +00027a50: 6c75 6573 2c4d 2c6e 756d 6765 6e73 5229 lues,M,numgensR) │ │ │ │ +00027a60: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +00027a70: 2020 202a 206e 756d 5661 6c75 6573 2c20 * numValues, │ │ │ │ +00027a80: 616e 202a 6e6f 7465 2069 6e74 6567 6572 an *note integer │ │ │ │ +00027a90: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00027aa0: 5a5a 2c2c 206e 756d 6265 7220 6f66 2076 ZZ,, number of v │ │ │ │ +00027ab0: 616c 7565 7320 746f 0a20 2020 2020 2020 alues to. │ │ │ │ +00027ac0: 2063 6f6d 7075 7465 0a20 2020 2020 202a compute. * │ │ │ │ +00027ad0: 204d 2c20 6120 2a6e 6f74 6520 6d6f 6475 M, a *note modu │ │ │ │ +00027ae0: 6c65 3a20 284d 6163 6175 6c61 7932 446f le: (Macaulay2Do │ │ │ │ +00027af0: 6329 4d6f 6475 6c65 2c2c 206d 6f64 756c c)Module,, modul │ │ │ │ +00027b00: 6520 6f76 6572 2074 6865 2072 696e 6720 e over the ring │ │ │ │ +00027b10: 6f66 0a20 2020 2020 2020 206f 7065 7261 of. opera │ │ │ │ +00027b20: 746f 7273 0a20 2020 2020 202a 206e 756d tors. * num │ │ │ │ +00027b30: 6765 6e73 522c 2061 6e20 2a6e 6f74 6520 gensR, an *note │ │ │ │ +00027b40: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ +00027b50: 6179 3244 6f63 295a 5a2c 2c20 6e75 6d62 ay2Doc)ZZ,, numb │ │ │ │ +00027b60: 6572 206f 6620 6765 6e65 7261 746f 7273 er of generators │ │ │ │ +00027b70: 206f 660a 2020 2020 2020 2020 7468 6520 of. the │ │ │ │ +00027b80: 7461 7267 6574 2072 696e 670a 2020 2a20 target ring. * │ │ │ │ +00027b90: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ +00027ba0: 2073 6571 2c20 6120 2a6e 6f74 6520 7365 seq, a *note se │ │ │ │ +00027bb0: 7175 656e 6365 3a20 284d 6163 6175 6c61 quence: (Macaula │ │ │ │ +00027bc0: 7932 446f 6329 5365 7175 656e 6365 2c2c y2Doc)Sequence,, │ │ │ │ +00027bd0: 2073 6571 7565 6e63 6520 6f66 206e 756d sequence of num │ │ │ │ +00027be0: 5661 6c75 6573 0a20 2020 2020 2020 2069 Values. i │ │ │ │ +00027bf0: 6e74 6567 6572 732c 2074 6865 2065 7870 ntegers, the exp │ │ │ │ +00027c00: 6563 7465 6420 746f 7461 6c20 4265 7474 ected total Bett │ │ │ │ +00027c10: 6920 6e75 6d62 6572 730a 0a44 6573 6372 i numbers..Descr │ │ │ │ +00027c20: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ +00027c30: 3d3d 0a0a 4769 7665 6e20 6120 6d6f 6475 ==..Given a modu │ │ │ │ +00027c40: 6c65 204d 206f 7665 7220 7468 6520 7269 le M over the ri │ │ │ │ +00027c50: 6e67 206f 6620 6f70 6572 6174 6f72 7320 ng of operators │ │ │ │ +00027c60: 246b 5b78 5f31 2e2e 785f 635d 242c 2074 $k[x_1..x_c]$, t │ │ │ │ +00027c70: 6865 2063 616c 6c20 244e 203d 0a6d 6f64 he call $N =.mod │ │ │ │ +00027c80: 756c 6541 7345 7874 284d 2c52 2924 2070 uleAsExt(M,R)$ p │ │ │ │ +00027c90: 726f 6475 6365 7320 6120 6d6f 6475 6c65 roduces a module │ │ │ │ +00027ca0: 204e 206f 7665 7220 7468 6520 7269 6e67 N over the ring │ │ │ │ +00027cb0: 2052 2077 686f 7365 2065 7874 206d 6f64 R whose ext mod │ │ │ │ +00027cc0: 756c 6520 6973 2074 6865 0a65 7874 6572 ule is the.exter │ │ │ │ +00027cd0: 696f 7220 616c 6765 6272 6120 6f6e 206e ior algebra on n │ │ │ │ +00027ce0: 3d6e 756d 6765 6e73 5220 6765 6e65 7261 =numgensR genera │ │ │ │ +00027cf0: 746f 7273 2074 656e 736f 7265 6420 7769 tors tensored wi │ │ │ │ +00027d00: 7468 204d 2e20 5468 6973 2073 6372 6970 th M. This scrip │ │ │ │ +00027d10: 7420 636f 6d70 7574 6573 0a6e 756d 5661 t computes.numVa │ │ │ │ +00027d20: 6c75 6573 2076 616c 7565 7320 6f66 2074 lues values of t │ │ │ │ +00027d30: 6865 2048 696c 6265 7274 2066 756e 6374 he Hilbert funct │ │ │ │ +00027d40: 696f 6e20 6f66 2024 2420 4d20 5c6f 7469 ion of $$ M \oti │ │ │ │ +00027d50: 6d65 7320 5c77 6564 6765 206b 5e6e 2c20 mes \wedge k^n, │ │ │ │ +00027d60: 2424 2077 6869 6368 0a73 686f 756c 6420 $$ which.should │ │ │ │ +00027d70: 6265 2065 7175 616c 2074 6f20 7468 6520 be equal to the │ │ │ │ +00027d80: 746f 7461 6c20 6265 7474 6920 6e75 6d62 total betti numb │ │ │ │ +00027d90: 6572 7320 6f66 204e 2e0a 0a2b 2d2d 2d2d ers of N...+---- │ │ │ │ +00027da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027dd0: 2d2d 2d2d 2b0a 7c69 3120 3a20 6b6b 203d ----+.|i1 : kk = │ │ │ │ -00027de0: 205a 5a2f 3130 313b 2020 2020 2020 2020 ZZ/101; │ │ │ │ -00027df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027e00: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00027dc0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +00027dd0: 206b 6b20 3d20 5a5a 2f31 3031 3b20 2020 kk = ZZ/101; │ │ │ │ +00027de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027df0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00027e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027e30: 2d2d 2d2d 2b0a 7c69 3220 3a20 5320 3d20 ----+.|i2 : S = │ │ │ │ -00027e40: 6b6b 5b61 2c62 2c63 5d3b 2020 2020 2020 kk[a,b,c]; │ │ │ │ -00027e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027e60: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00027e20: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ +00027e30: 2053 203d 206b 6b5b 612c 622c 635d 3b20 S = kk[a,b,c]; │ │ │ │ +00027e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027e50: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00027e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027e90: 2d2d 2d2d 2b0a 7c69 3320 3a20 6666 203d ----+.|i3 : ff = │ │ │ │ -00027ea0: 206d 6174 7269 787b 7b61 5e34 2c20 625e matrix{{a^4, b^ │ │ │ │ -00027eb0: 342c 635e 347d 7d3b 2020 2020 2020 2020 4,c^4}}; │ │ │ │ -00027ec0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00027e80: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ +00027e90: 2066 6620 3d20 6d61 7472 6978 7b7b 615e ff = matrix{{a^ │ │ │ │ +00027ea0: 342c 2062 5e34 2c63 5e34 7d7d 3b20 2020 4, b^4,c^4}}; │ │ │ │ +00027eb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00027ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027ef0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00027f00: 2020 2020 3120 2020 2020 2033 2020 2020 1 3 │ │ │ │ -00027f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027f20: 2020 2020 7c0a 7c6f 3320 3a20 4d61 7472 |.|o3 : Matr │ │ │ │ -00027f30: 6978 2053 2020 3c2d 2d20 5320 2020 2020 ix S <-- S │ │ │ │ -00027f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027f50: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00027ee0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00027ef0: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ +00027f00: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00027f10: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ +00027f20: 204d 6174 7269 7820 5320 203c 2d2d 2053 Matrix S <-- S │ │ │ │ +00027f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027f40: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00027f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027f80: 2d2d 2d2d 2b0a 7c69 3420 3a20 5220 3d20 ----+.|i4 : R = │ │ │ │ -00027f90: 532f 6964 6561 6c20 6666 3b20 2020 2020 S/ideal ff; │ │ │ │ -00027fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027fb0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00027f70: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ +00027f80: 2052 203d 2053 2f69 6465 616c 2066 663b R = S/ideal ff; │ │ │ │ +00027f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027fa0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00027fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027fe0: 2d2d 2d2d 2b0a 7c69 3520 3a20 4f70 7320 ----+.|i5 : Ops │ │ │ │ -00027ff0: 3d20 6b6b 5b78 5f31 2c78 5f32 2c78 5f33 = kk[x_1,x_2,x_3 │ │ │ │ -00028000: 5d3b 2020 2020 2020 2020 2020 2020 2020 ]; │ │ │ │ -00028010: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00027fd0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ +00027fe0: 204f 7073 203d 206b 6b5b 785f 312c 785f Ops = kk[x_1,x_ │ │ │ │ +00027ff0: 322c 785f 335d 3b20 2020 2020 2020 2020 2,x_3]; │ │ │ │ +00028000: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00028010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028040: 2d2d 2d2d 2b0a 7c69 3620 3a20 4d4d 203d ----+.|i6 : MM = │ │ │ │ -00028050: 204f 7073 5e31 2f28 785f 312a 6964 6561 Ops^1/(x_1*idea │ │ │ │ -00028060: 6c28 785f 325e 322c 785f 3329 293b 2020 l(x_2^2,x_3)); │ │ │ │ -00028070: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00028030: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a ---------+.|i6 : │ │ │ │ +00028040: 204d 4d20 3d20 4f70 735e 312f 2878 5f31 MM = Ops^1/(x_1 │ │ │ │ +00028050: 2a69 6465 616c 2878 5f32 5e32 2c78 5f33 *ideal(x_2^2,x_3 │ │ │ │ +00028060: 2929 3b20 2020 2020 207c 0a2b 2d2d 2d2d )); |.+---- │ │ │ │ +00028070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000280a0: 2d2d 2d2d 2b0a 7c69 3720 3a20 4e20 3d20 ----+.|i7 : N = │ │ │ │ -000280b0: 6d6f 6475 6c65 4173 4578 7428 4d4d 2c52 moduleAsExt(MM,R │ │ │ │ -000280c0: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ -000280d0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00028090: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a ---------+.|i7 : │ │ │ │ +000280a0: 204e 203d 206d 6f64 756c 6541 7345 7874 N = moduleAsExt │ │ │ │ +000280b0: 284d 4d2c 5229 3b20 2020 2020 2020 2020 (MM,R); │ │ │ │ +000280c0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000280d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000280e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000280f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028100: 2d2d 2d2d 2b0a 7c69 3820 3a20 6265 7474 ----+.|i8 : bett │ │ │ │ -00028110: 6920 7265 7328 204e 2c20 4c65 6e67 7468 i res( N, Length │ │ │ │ -00028120: 4c69 6d69 7420 3d3e 2031 3029 2020 2020 Limit => 10) │ │ │ │ -00028130: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000280f0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a ---------+.|i8 : │ │ │ │ +00028100: 2062 6574 7469 2072 6573 2820 4e2c 204c betti res( N, L │ │ │ │ +00028110: 656e 6774 684c 696d 6974 203d 3e20 3130 engthLimit => 10 │ │ │ │ +00028120: 2920 2020 2020 2020 207c 0a7c 2020 2020 ) |.| │ │ │ │ +00028130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028160: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00028170: 2020 2020 3020 2031 2020 3220 2033 2020 0 1 2 3 │ │ │ │ -00028180: 3420 2035 2020 3620 2037 2020 3820 2039 4 5 6 7 8 9 │ │ │ │ -00028190: 2031 3020 7c0a 7c6f 3820 3d20 746f 7461 10 |.|o8 = tota │ │ │ │ -000281a0: 6c3a 2033 3620 3237 2032 3920 3331 2033 l: 36 27 29 31 3 │ │ │ │ -000281b0: 3320 3335 2033 3720 3339 2034 3120 3433 3 35 37 39 41 43 │ │ │ │ -000281c0: 2034 3520 7c0a 7c20 2020 2020 2020 202d 45 |.| - │ │ │ │ -000281d0: 363a 2031 3820 2036 2020 2e20 202e 2020 6: 18 6 . . │ │ │ │ -000281e0: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ -000281f0: 2020 2e20 7c0a 7c20 2020 2020 2020 202d . |.| - │ │ │ │ -00028200: 353a 2020 2e20 202e 2020 2e20 202e 2020 5: . . . . │ │ │ │ -00028210: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ -00028220: 2020 2e20 7c0a 7c20 2020 2020 2020 202d . |.| - │ │ │ │ -00028230: 343a 2031 3820 3231 2032 3120 2037 2020 4: 18 21 21 7 │ │ │ │ -00028240: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ -00028250: 2020 2e20 7c0a 7c20 2020 2020 2020 202d . |.| - │ │ │ │ -00028260: 333a 2020 2e20 202e 2020 2e20 202e 2020 3: . . . . │ │ │ │ -00028270: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ -00028280: 2020 2e20 7c0a 7c20 2020 2020 2020 202d . |.| - │ │ │ │ -00028290: 323a 2020 2e20 202e 2020 3820 3234 2032 2: . . 8 24 2 │ │ │ │ -000282a0: 3420 2038 2020 2e20 202e 2020 2e20 202e 4 8 . . . . │ │ │ │ -000282b0: 2020 2e20 7c0a 7c20 2020 2020 2020 202d . |.| - │ │ │ │ -000282c0: 313a 2020 2e20 202e 2020 2e20 202e 2020 1: . . . . │ │ │ │ -000282d0: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ -000282e0: 2020 2e20 7c0a 7c20 2020 2020 2020 2020 . |.| │ │ │ │ -000282f0: 303a 2020 2e20 202e 2020 2e20 202e 2020 0: . . . . │ │ │ │ -00028300: 3920 3237 2032 3720 2039 2020 2e20 202e 9 27 27 9 . . │ │ │ │ -00028310: 2020 2e20 7c0a 7c20 2020 2020 2020 2020 . |.| │ │ │ │ -00028320: 313a 2020 2e20 202e 2020 2e20 202e 2020 1: . . . . │ │ │ │ -00028330: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ -00028340: 2020 2e20 7c0a 7c20 2020 2020 2020 2020 . |.| │ │ │ │ -00028350: 323a 2020 2e20 202e 2020 2e20 202e 2020 2: . . . . │ │ │ │ -00028360: 2e20 202e 2031 3020 3330 2033 3020 3130 . . 10 30 30 10 │ │ │ │ -00028370: 2020 2e20 7c0a 7c20 2020 2020 2020 2020 . |.| │ │ │ │ -00028380: 333a 2020 2e20 202e 2020 2e20 202e 2020 3: . . . . │ │ │ │ -00028390: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ -000283a0: 2020 2e20 7c0a 7c20 2020 2020 2020 2020 . |.| │ │ │ │ -000283b0: 343a 2020 2e20 202e 2020 2e20 202e 2020 4: . . . . │ │ │ │ -000283c0: 2e20 202e 2020 2e20 202e 2031 3120 3333 . . . . 11 33 │ │ │ │ -000283d0: 2033 3320 7c0a 7c20 2020 2020 2020 2020 33 |.| │ │ │ │ -000283e0: 353a 2020 2e20 202e 2020 2e20 202e 2020 5: . . . . │ │ │ │ -000283f0: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ -00028400: 2020 2e20 7c0a 7c20 2020 2020 2020 2020 . |.| │ │ │ │ -00028410: 363a 2020 2e20 202e 2020 2e20 202e 2020 6: . . . . │ │ │ │ -00028420: 2e20 202e 2020 2e20 202e 2020 2e20 202e . . . . . . │ │ │ │ -00028430: 2031 3220 7c0a 7c20 2020 2020 2020 2020 12 |.| │ │ │ │ +00028150: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00028160: 2020 2020 2020 2020 2030 2020 3120 2032 0 1 2 │ │ │ │ +00028170: 2020 3320 2034 2020 3520 2036 2020 3720 3 4 5 6 7 │ │ │ │ +00028180: 2038 2020 3920 3130 207c 0a7c 6f38 203d 8 9 10 |.|o8 = │ │ │ │ +00028190: 2074 6f74 616c 3a20 3336 2032 3720 3239 total: 36 27 29 │ │ │ │ +000281a0: 2033 3120 3333 2033 3520 3337 2033 3920 31 33 35 37 39 │ │ │ │ +000281b0: 3431 2034 3320 3435 207c 0a7c 2020 2020 41 43 45 |.| │ │ │ │ +000281c0: 2020 2020 2d36 3a20 3138 2020 3620 202e -6: 18 6 . │ │ │ │ +000281d0: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +000281e0: 202e 2020 2e20 202e 207c 0a7c 2020 2020 . . . |.| │ │ │ │ +000281f0: 2020 2020 2d35 3a20 202e 2020 2e20 202e -5: . . . │ │ │ │ +00028200: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +00028210: 202e 2020 2e20 202e 207c 0a7c 2020 2020 . . . |.| │ │ │ │ +00028220: 2020 2020 2d34 3a20 3138 2032 3120 3231 -4: 18 21 21 │ │ │ │ +00028230: 2020 3720 202e 2020 2e20 202e 2020 2e20 7 . . . . │ │ │ │ +00028240: 202e 2020 2e20 202e 207c 0a7c 2020 2020 . . . |.| │ │ │ │ +00028250: 2020 2020 2d33 3a20 202e 2020 2e20 202e -3: . . . │ │ │ │ +00028260: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +00028270: 202e 2020 2e20 202e 207c 0a7c 2020 2020 . . . |.| │ │ │ │ +00028280: 2020 2020 2d32 3a20 202e 2020 2e20 2038 -2: . . 8 │ │ │ │ +00028290: 2032 3420 3234 2020 3820 202e 2020 2e20 24 24 8 . . │ │ │ │ +000282a0: 202e 2020 2e20 202e 207c 0a7c 2020 2020 . . . |.| │ │ │ │ +000282b0: 2020 2020 2d31 3a20 202e 2020 2e20 202e -1: . . . │ │ │ │ +000282c0: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +000282d0: 202e 2020 2e20 202e 207c 0a7c 2020 2020 . . . |.| │ │ │ │ +000282e0: 2020 2020 2030 3a20 202e 2020 2e20 202e 0: . . . │ │ │ │ +000282f0: 2020 2e20 2039 2032 3720 3237 2020 3920 . 9 27 27 9 │ │ │ │ +00028300: 202e 2020 2e20 202e 207c 0a7c 2020 2020 . . . |.| │ │ │ │ +00028310: 2020 2020 2031 3a20 202e 2020 2e20 202e 1: . . . │ │ │ │ +00028320: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +00028330: 202e 2020 2e20 202e 207c 0a7c 2020 2020 . . . |.| │ │ │ │ +00028340: 2020 2020 2032 3a20 202e 2020 2e20 202e 2: . . . │ │ │ │ +00028350: 2020 2e20 202e 2020 2e20 3130 2033 3020 . . . 10 30 │ │ │ │ +00028360: 3330 2031 3020 202e 207c 0a7c 2020 2020 30 10 . |.| │ │ │ │ +00028370: 2020 2020 2033 3a20 202e 2020 2e20 202e 3: . . . │ │ │ │ +00028380: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +00028390: 202e 2020 2e20 202e 207c 0a7c 2020 2020 . . . |.| │ │ │ │ +000283a0: 2020 2020 2034 3a20 202e 2020 2e20 202e 4: . . . │ │ │ │ +000283b0: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +000283c0: 3131 2033 3320 3333 207c 0a7c 2020 2020 11 33 33 |.| │ │ │ │ +000283d0: 2020 2020 2035 3a20 202e 2020 2e20 202e 5: . . . │ │ │ │ +000283e0: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +000283f0: 202e 2020 2e20 202e 207c 0a7c 2020 2020 . . . |.| │ │ │ │ +00028400: 2020 2020 2036 3a20 202e 2020 2e20 202e 6: . . . │ │ │ │ +00028410: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ +00028420: 202e 2020 2e20 3132 207c 0a7c 2020 2020 . . 12 |.| │ │ │ │ +00028430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028460: 2020 2020 7c0a 7c6f 3820 3a20 4265 7474 |.|o8 : Bett │ │ │ │ -00028470: 6954 616c 6c79 2020 2020 2020 2020 2020 iTally │ │ │ │ -00028480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028490: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00028450: 2020 2020 2020 2020 207c 0a7c 6f38 203a |.|o8 : │ │ │ │ +00028460: 2042 6574 7469 5461 6c6c 7920 2020 2020 BettiTally │ │ │ │ +00028470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028480: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00028490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000284a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000284b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000284c0: 2d2d 2d2d 2b0a 7c69 3920 3a20 6866 4d6f ----+.|i9 : hfMo │ │ │ │ -000284d0: 6475 6c65 4173 4578 7428 3132 2c4d 4d2c duleAsExt(12,MM, │ │ │ │ -000284e0: 3329 2020 2020 2020 2020 2020 2020 2020 3) │ │ │ │ -000284f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000284b0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a ---------+.|i9 : │ │ │ │ +000284c0: 2068 664d 6f64 756c 6541 7345 7874 2831 hfModuleAsExt(1 │ │ │ │ +000284d0: 322c 4d4d 2c33 2920 2020 2020 2020 2020 2,MM,3) │ │ │ │ +000284e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000284f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028520: 2020 2020 7c0a 7c6f 3920 3d20 2832 332c |.|o9 = (23, │ │ │ │ -00028530: 2032 352c 2032 372c 2032 392c 2033 312c 25, 27, 29, 31, │ │ │ │ -00028540: 2033 332c 2033 352c 2033 372c 2033 392c 33, 35, 37, 39, │ │ │ │ -00028550: 2034 3129 7c0a 7c20 2020 2020 2020 2020 41)|.| │ │ │ │ +00028510: 2020 2020 2020 2020 207c 0a7c 6f39 203d |.|o9 = │ │ │ │ +00028520: 2028 3233 2c20 3235 2c20 3237 2c20 3239 (23, 25, 27, 29 │ │ │ │ +00028530: 2c20 3331 2c20 3333 2c20 3335 2c20 3337 , 31, 33, 35, 37 │ │ │ │ +00028540: 2c20 3339 2c20 3431 297c 0a7c 2020 2020 , 39, 41)|.| │ │ │ │ +00028550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028580: 2020 2020 7c0a 7c6f 3920 3a20 5365 7175 |.|o9 : Sequ │ │ │ │ -00028590: 656e 6365 2020 2020 2020 2020 2020 2020 ence │ │ │ │ -000285a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000285b0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00028570: 2020 2020 2020 2020 207c 0a7c 6f39 203a |.|o9 : │ │ │ │ +00028580: 2053 6571 7565 6e63 6520 2020 2020 2020 Sequence │ │ │ │ +00028590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000285a0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000285b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000285c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000285d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000285e0: 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 6f0a ----+..See also. │ │ │ │ -000285f0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ -00028600: 6f74 6520 6d6f 6475 6c65 4173 4578 743a ote moduleAsExt: │ │ │ │ -00028610: 206d 6f64 756c 6541 7345 7874 2c20 2d2d moduleAsExt, -- │ │ │ │ -00028620: 2046 696e 6420 6120 6d6f 6475 6c65 2077 Find a module w │ │ │ │ -00028630: 6974 6820 6769 7665 6e20 6173 796d 7074 ith given asympt │ │ │ │ -00028640: 6f74 6963 0a20 2020 2072 6573 6f6c 7574 otic. resolut │ │ │ │ -00028650: 696f 6e0a 0a57 6179 7320 746f 2075 7365 ion..Ways to use │ │ │ │ -00028660: 2068 664d 6f64 756c 6541 7345 7874 3a0a hfModuleAsExt:. │ │ │ │ -00028670: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00028680: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -00028690: 2268 664d 6f64 756c 6541 7345 7874 285a "hfModuleAsExt(Z │ │ │ │ -000286a0: 5a2c 4d6f 6475 6c65 2c5a 5a29 220a 0a46 Z,Module,ZZ)"..F │ │ │ │ -000286b0: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -000286c0: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -000286d0: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -000286e0: 202a 6e6f 7465 2068 664d 6f64 756c 6541 *note hfModuleA │ │ │ │ -000286f0: 7345 7874 3a20 6866 4d6f 6475 6c65 4173 sExt: hfModuleAs │ │ │ │ -00028700: 4578 742c 2069 7320 6120 2a6e 6f74 6520 Ext, is a *note │ │ │ │ -00028710: 6d65 7468 6f64 2066 756e 6374 696f 6e3a method function: │ │ │ │ -00028720: 0a28 4d61 6361 756c 6179 3244 6f63 294d .(Macaulay2Doc)M │ │ │ │ -00028730: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ -00028740: 1f0a 4669 6c65 3a20 436f 6d70 6c65 7465 ..File: Complete │ │ │ │ -00028750: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ -00028760: 6c75 7469 6f6e 732e 696e 666f 2c20 4e6f lutions.info, No │ │ │ │ -00028770: 6465 3a20 6869 6768 5379 7a79 6779 2c20 de: highSyzygy, │ │ │ │ -00028780: 4e65 7874 3a20 684d 6170 732c 2050 7265 Next: hMaps, Pre │ │ │ │ -00028790: 763a 2068 664d 6f64 756c 6541 7345 7874 v: hfModuleAsExt │ │ │ │ -000287a0: 2c20 5570 3a20 546f 700a 0a68 6967 6853 , Up: Top..highS │ │ │ │ -000287b0: 797a 7967 7920 2d2d 2052 6574 7572 6e73 yzygy -- Returns │ │ │ │ -000287c0: 2061 2073 797a 7967 7920 6d6f 6475 6c65 a syzygy module │ │ │ │ -000287d0: 206f 6e65 2062 6579 6f6e 6420 7468 6520 one beyond the │ │ │ │ -000287e0: 7265 6775 6c61 7269 7479 206f 6620 4578 regularity of Ex │ │ │ │ -000287f0: 7428 4d2c 6b29 0a2a 2a2a 2a2a 2a2a 2a2a t(M,k).********* │ │ │ │ +000285d0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 ---------+..See │ │ │ │ +000285e0: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ +000285f0: 202a 202a 6e6f 7465 206d 6f64 756c 6541 * *note moduleA │ │ │ │ +00028600: 7345 7874 3a20 6d6f 6475 6c65 4173 4578 sExt: moduleAsEx │ │ │ │ +00028610: 742c 202d 2d20 4669 6e64 2061 206d 6f64 t, -- Find a mod │ │ │ │ +00028620: 756c 6520 7769 7468 2067 6976 656e 2061 ule with given a │ │ │ │ +00028630: 7379 6d70 746f 7469 630a 2020 2020 7265 symptotic. re │ │ │ │ +00028640: 736f 6c75 7469 6f6e 0a0a 5761 7973 2074 solution..Ways t │ │ │ │ +00028650: 6f20 7573 6520 6866 4d6f 6475 6c65 4173 o use hfModuleAs │ │ │ │ +00028660: 4578 743a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d Ext:.=========== │ │ │ │ +00028670: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00028680: 0a20 202a 2022 6866 4d6f 6475 6c65 4173 . * "hfModuleAs │ │ │ │ +00028690: 4578 7428 5a5a 2c4d 6f64 756c 652c 5a5a Ext(ZZ,Module,ZZ │ │ │ │ +000286a0: 2922 0a0a 466f 7220 7468 6520 7072 6f67 )"..For the prog │ │ │ │ +000286b0: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ +000286c0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ +000286d0: 626a 6563 7420 2a6e 6f74 6520 6866 4d6f bject *note hfMo │ │ │ │ +000286e0: 6475 6c65 4173 4578 743a 2068 664d 6f64 duleAsExt: hfMod │ │ │ │ +000286f0: 756c 6541 7345 7874 2c20 6973 2061 202a uleAsExt, is a * │ │ │ │ +00028700: 6e6f 7465 206d 6574 686f 6420 6675 6e63 note method func │ │ │ │ +00028710: 7469 6f6e 3a0a 284d 6163 6175 6c61 7932 tion:.(Macaulay2 │ │ │ │ +00028720: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ +00028730: 6f6e 2c2e 0a1f 0a46 696c 653a 2043 6f6d on,....File: Com │ │ │ │ +00028740: 706c 6574 6549 6e74 6572 7365 6374 696f pleteIntersectio │ │ │ │ +00028750: 6e52 6573 6f6c 7574 696f 6e73 2e69 6e66 nResolutions.inf │ │ │ │ +00028760: 6f2c 204e 6f64 653a 2068 6967 6853 797a o, Node: highSyz │ │ │ │ +00028770: 7967 792c 204e 6578 743a 2068 4d61 7073 ygy, Next: hMaps │ │ │ │ +00028780: 2c20 5072 6576 3a20 6866 4d6f 6475 6c65 , Prev: hfModule │ │ │ │ +00028790: 4173 4578 742c 2055 703a 2054 6f70 0a0a AsExt, Up: Top.. │ │ │ │ +000287a0: 6869 6768 5379 7a79 6779 202d 2d20 5265 highSyzygy -- Re │ │ │ │ +000287b0: 7475 726e 7320 6120 7379 7a79 6779 206d turns a syzygy m │ │ │ │ +000287c0: 6f64 756c 6520 6f6e 6520 6265 796f 6e64 odule one beyond │ │ │ │ +000287d0: 2074 6865 2072 6567 756c 6172 6974 7920 the regularity │ │ │ │ +000287e0: 6f66 2045 7874 284d 2c6b 290a 2a2a 2a2a of Ext(M,k).**** │ │ │ │ +000287f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00028800: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00028810: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00028820: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00028830: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00028840: 2a2a 0a0a 5379 6e6f 7073 6973 0a3d 3d3d **..Synopsis.=== │ │ │ │ -00028850: 3d3d 3d3d 3d0a 0a20 202a 2055 7361 6765 =====.. * Usage │ │ │ │ -00028860: 3a20 0a20 2020 2020 2020 204d 203d 2068 : . M = h │ │ │ │ -00028870: 6967 6853 797a 7967 7920 4d30 0a20 202a ighSyzygy M0. * │ │ │ │ -00028880: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -00028890: 204d 302c 2061 202a 6e6f 7465 206d 6f64 M0, a *note mod │ │ │ │ -000288a0: 756c 653a 2028 4d61 6361 756c 6179 3244 ule: (Macaulay2D │ │ │ │ -000288b0: 6f63 294d 6f64 756c 652c 2c20 6f76 6572 oc)Module,, over │ │ │ │ -000288c0: 2061 2063 6f6d 706c 6574 6520 696e 7465 a complete inte │ │ │ │ -000288d0: 7273 6563 7469 6f6e 0a20 2020 2020 2020 rsection. │ │ │ │ -000288e0: 2072 696e 670a 2020 2a20 2a6e 6f74 6520 ring. * *note │ │ │ │ -000288f0: 4f70 7469 6f6e 616c 2069 6e70 7574 733a Optional inputs: │ │ │ │ -00028900: 2028 4d61 6361 756c 6179 3244 6f63 2975 (Macaulay2Doc)u │ │ │ │ -00028910: 7369 6e67 2066 756e 6374 696f 6e73 2077 sing functions w │ │ │ │ -00028920: 6974 6820 6f70 7469 6f6e 616c 2069 6e70 ith optional inp │ │ │ │ -00028930: 7574 732c 3a0a 2020 2020 2020 2a20 4f70 uts,:. * Op │ │ │ │ -00028940: 7469 6d69 736d 203d 3e20 2e2e 2e2c 2064 timism => ..., d │ │ │ │ -00028950: 6566 6175 6c74 2076 616c 7565 2030 0a20 efault value 0. │ │ │ │ -00028960: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ -00028970: 2020 2a20 4d2c 2061 202a 6e6f 7465 206d * M, a *note m │ │ │ │ -00028980: 6f64 756c 653a 2028 4d61 6361 756c 6179 odule: (Macaulay │ │ │ │ -00028990: 3244 6f63 294d 6f64 756c 652c 2c20 6120 2Doc)Module,, a │ │ │ │ -000289a0: 7379 7a79 6779 206d 6f64 756c 6520 6f66 syzygy module of │ │ │ │ -000289b0: 204d 300a 0a44 6573 6372 6970 7469 6f6e M0..Description │ │ │ │ -000289c0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 4120 .===========..A │ │ │ │ -000289d0: 2268 6967 6820 7379 7a79 6779 2220 6f76 "high syzygy" ov │ │ │ │ -000289e0: 6572 2061 2063 6f6d 706c 6574 6520 696e er a complete in │ │ │ │ -000289f0: 7465 7273 6563 7469 6f6e 2069 7320 6f6e tersection is on │ │ │ │ -00028a00: 6520 7375 6368 2074 6861 7420 6765 6e65 e such that gene │ │ │ │ -00028a10: 7261 6c0a 6369 2d6f 7065 7261 746f 7273 ral.ci-operators │ │ │ │ -00028a20: 2068 6176 6520 7370 6c69 7420 6b65 726e have split kern │ │ │ │ -00028a30: 656c 7320 7768 656e 2061 7070 6c69 6564 els when applied │ │ │ │ -00028a40: 2072 6563 7572 7369 7665 6c79 206f 6e20 recursively on │ │ │ │ -00028a50: 636f 7379 7a79 6779 2063 6861 696e 7320 cosyzygy chains │ │ │ │ -00028a60: 6f66 0a70 7265 7669 6f75 7320 6b65 726e of.previous kern │ │ │ │ -00028a70: 656c 732e 0a0a 4966 2070 203d 206d 6642 els...If p = mfB │ │ │ │ -00028a80: 6f75 6e64 204d 302c 2074 6865 6e20 6869 ound M0, then hi │ │ │ │ -00028a90: 6768 5379 7a79 6779 204d 3020 7265 7475 ghSyzygy M0 retu │ │ │ │ -00028aa0: 726e 7320 7468 6520 702d 7468 2073 797a rns the p-th syz │ │ │ │ -00028ab0: 7967 7920 6f66 204d 302e 2028 6966 2046 ygy of M0. (if F │ │ │ │ -00028ac0: 2069 7320 610a 7265 736f 6c75 7469 6f6e is a.resolution │ │ │ │ -00028ad0: 206f 6620 4d20 7468 6973 2069 7320 7468 of M this is th │ │ │ │ -00028ae0: 6520 636f 6b65 726e 656c 206f 6620 462e e cokernel of F. │ │ │ │ -00028af0: 6464 5f7b 702b 317d 292e 204f 7074 696d dd_{p+1}). Optim │ │ │ │ -00028b00: 6973 6d20 3d3e 2072 2061 7320 6f70 7469 ism => r as opti │ │ │ │ -00028b10: 6f6e 616c 0a61 7267 756d 656e 742c 2068 onal.argument, h │ │ │ │ -00028b20: 6967 6853 797a 7967 7928 4d30 2c4f 7074 ighSyzygy(M0,Opt │ │ │ │ -00028b30: 696d 6973 6d3d 3e72 2920 7265 7475 726e imism=>r) return │ │ │ │ -00028b40: 7320 7468 6520 2870 2d72 292d 7468 2073 s the (p-r)-th s │ │ │ │ -00028b50: 797a 7967 792e 2054 6865 2073 6372 6970 yzygy. The scrip │ │ │ │ -00028b60: 7420 6973 0a75 7365 6675 6c20 7769 7468 t is.useful with │ │ │ │ -00028b70: 206d 6174 7269 7846 6163 746f 7269 7a61 matrixFactoriza │ │ │ │ -00028b80: 7469 6f6e 2866 662c 2068 6967 6853 797a tion(ff, highSyz │ │ │ │ -00028b90: 7967 7920 4d30 292e 0a0a 2b2d 2d2d 2d2d ygy M0)...+----- │ │ │ │ +00028830: 2a2a 2a2a 2a2a 2a0a 0a53 796e 6f70 7369 *******..Synopsi │ │ │ │ +00028840: 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 s.========.. * │ │ │ │ +00028850: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +00028860: 4d20 3d20 6869 6768 5379 7a79 6779 204d M = highSyzygy M │ │ │ │ +00028870: 300a 2020 2a20 496e 7075 7473 3a0a 2020 0. * Inputs:. │ │ │ │ +00028880: 2020 2020 2a20 4d30 2c20 6120 2a6e 6f74 * M0, a *not │ │ │ │ +00028890: 6520 6d6f 6475 6c65 3a20 284d 6163 6175 e module: (Macau │ │ │ │ +000288a0: 6c61 7932 446f 6329 4d6f 6475 6c65 2c2c lay2Doc)Module,, │ │ │ │ +000288b0: 206f 7665 7220 6120 636f 6d70 6c65 7465 over a complete │ │ │ │ +000288c0: 2069 6e74 6572 7365 6374 696f 6e0a 2020 intersection. │ │ │ │ +000288d0: 2020 2020 2020 7269 6e67 0a20 202a 202a ring. * * │ │ │ │ +000288e0: 6e6f 7465 204f 7074 696f 6e61 6c20 696e note Optional in │ │ │ │ +000288f0: 7075 7473 3a20 284d 6163 6175 6c61 7932 puts: (Macaulay2 │ │ │ │ +00028900: 446f 6329 7573 696e 6720 6675 6e63 7469 Doc)using functi │ │ │ │ +00028910: 6f6e 7320 7769 7468 206f 7074 696f 6e61 ons with optiona │ │ │ │ +00028920: 6c20 696e 7075 7473 2c3a 0a20 2020 2020 l inputs,:. │ │ │ │ +00028930: 202a 204f 7074 696d 6973 6d20 3d3e 202e * Optimism => . │ │ │ │ +00028940: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ +00028950: 6520 300a 2020 2a20 4f75 7470 7574 733a e 0. * Outputs: │ │ │ │ +00028960: 0a20 2020 2020 202a 204d 2c20 6120 2a6e . * M, a *n │ │ │ │ +00028970: 6f74 6520 6d6f 6475 6c65 3a20 284d 6163 ote module: (Mac │ │ │ │ +00028980: 6175 6c61 7932 446f 6329 4d6f 6475 6c65 aulay2Doc)Module │ │ │ │ +00028990: 2c2c 2061 2073 797a 7967 7920 6d6f 6475 ,, a syzygy modu │ │ │ │ +000289a0: 6c65 206f 6620 4d30 0a0a 4465 7363 7269 le of M0..Descri │ │ │ │ +000289b0: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +000289c0: 3d0a 0a41 2022 6869 6768 2073 797a 7967 =..A "high syzyg │ │ │ │ +000289d0: 7922 206f 7665 7220 6120 636f 6d70 6c65 y" over a comple │ │ │ │ +000289e0: 7465 2069 6e74 6572 7365 6374 696f 6e20 te intersection │ │ │ │ +000289f0: 6973 206f 6e65 2073 7563 6820 7468 6174 is one such that │ │ │ │ +00028a00: 2067 656e 6572 616c 0a63 692d 6f70 6572 general.ci-oper │ │ │ │ +00028a10: 6174 6f72 7320 6861 7665 2073 706c 6974 ators have split │ │ │ │ +00028a20: 206b 6572 6e65 6c73 2077 6865 6e20 6170 kernels when ap │ │ │ │ +00028a30: 706c 6965 6420 7265 6375 7273 6976 656c plied recursivel │ │ │ │ +00028a40: 7920 6f6e 2063 6f73 797a 7967 7920 6368 y on cosyzygy ch │ │ │ │ +00028a50: 6169 6e73 206f 660a 7072 6576 696f 7573 ains of.previous │ │ │ │ +00028a60: 206b 6572 6e65 6c73 2e0a 0a49 6620 7020 kernels...If p │ │ │ │ +00028a70: 3d20 6d66 426f 756e 6420 4d30 2c20 7468 = mfBound M0, th │ │ │ │ +00028a80: 656e 2068 6967 6853 797a 7967 7920 4d30 en highSyzygy M0 │ │ │ │ +00028a90: 2072 6574 7572 6e73 2074 6865 2070 2d74 returns the p-t │ │ │ │ +00028aa0: 6820 7379 7a79 6779 206f 6620 4d30 2e20 h syzygy of M0. │ │ │ │ +00028ab0: 2869 6620 4620 6973 2061 0a72 6573 6f6c (if F is a.resol │ │ │ │ +00028ac0: 7574 696f 6e20 6f66 204d 2074 6869 7320 ution of M this │ │ │ │ +00028ad0: 6973 2074 6865 2063 6f6b 6572 6e65 6c20 is the cokernel │ │ │ │ +00028ae0: 6f66 2046 2e64 645f 7b70 2b31 7d29 2e20 of F.dd_{p+1}). │ │ │ │ +00028af0: 4f70 7469 6d69 736d 203d 3e20 7220 6173 Optimism => r as │ │ │ │ +00028b00: 206f 7074 696f 6e61 6c0a 6172 6775 6d65 optional.argume │ │ │ │ +00028b10: 6e74 2c20 6869 6768 5379 7a79 6779 284d nt, highSyzygy(M │ │ │ │ +00028b20: 302c 4f70 7469 6d69 736d 3d3e 7229 2072 0,Optimism=>r) r │ │ │ │ +00028b30: 6574 7572 6e73 2074 6865 2028 702d 7229 eturns the (p-r) │ │ │ │ +00028b40: 2d74 6820 7379 7a79 6779 2e20 5468 6520 -th syzygy. The │ │ │ │ +00028b50: 7363 7269 7074 2069 730a 7573 6566 756c script is.useful │ │ │ │ +00028b60: 2077 6974 6820 6d61 7472 6978 4661 6374 with matrixFact │ │ │ │ +00028b70: 6f72 697a 6174 696f 6e28 6666 2c20 6869 orization(ff, hi │ │ │ │ +00028b80: 6768 5379 7a79 6779 204d 3029 2e0a 0a2b ghSyzygy M0)...+ │ │ │ │ +00028b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028bd0: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 7365 ------+.|i1 : se │ │ │ │ -00028be0: 7452 616e 646f 6d53 6565 6420 3130 3020 tRandomSeed 100 │ │ │ │ +00028bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00028bd0: 203a 2073 6574 5261 6e64 6f6d 5365 6564 : setRandomSeed │ │ │ │ +00028be0: 2031 3030 2020 2020 2020 2020 2020 2020 100 │ │ │ │ 00028bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c10: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00028c00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00028c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c50: 2020 7c0a 7c6f 3120 3d20 3130 3020 2020 |.|o1 = 100 │ │ │ │ +00028c40: 2020 2020 2020 207c 0a7c 6f31 203d 2031 |.|o1 = 1 │ │ │ │ +00028c50: 3030 2020 2020 2020 2020 2020 2020 2020 00 │ │ │ │ 00028c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c90: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00028c80: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00028c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00028cd0: 7c69 3220 3a20 5320 3d20 5a5a 2f31 3031 |i2 : S = ZZ/101 │ │ │ │ -00028ce0: 5b78 2c79 2c7a 5d20 2020 2020 2020 2020 [x,y,z] │ │ │ │ +00028cc0: 2d2d 2d2b 0a7c 6932 203a 2053 203d 205a ---+.|i2 : S = Z │ │ │ │ +00028cd0: 5a2f 3130 315b 782c 792c 7a5d 2020 2020 Z/101[x,y,z] │ │ │ │ +00028ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00028d00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00028d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d40: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -00028d50: 3d20 5320 2020 2020 2020 2020 2020 2020 = S │ │ │ │ +00028d30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028d40: 0a7c 6f32 203d 2053 2020 2020 2020 2020 .|o2 = S │ │ │ │ +00028d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028d70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00028d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028dc0: 2020 2020 2020 7c0a 7c6f 3220 3a20 506f |.|o2 : Po │ │ │ │ -00028dd0: 6c79 6e6f 6d69 616c 5269 6e67 2020 2020 lynomialRing │ │ │ │ +00028db0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00028dc0: 203a 2050 6f6c 796e 6f6d 6961 6c52 696e : PolynomialRin │ │ │ │ +00028dd0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ 00028de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e00: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00028df0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00028e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028e40: 2d2d 2b0a 7c69 3320 3a20 6620 3d20 6d61 --+.|i3 : f = ma │ │ │ │ -00028e50: 7472 6978 2278 332c 7933 2b78 332c 7a33 trix"x3,y3+x3,z3 │ │ │ │ -00028e60: 2b78 332b 7933 2220 2020 2020 2020 2020 +x3+y3" │ │ │ │ -00028e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00028e30: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2066 -------+.|i3 : f │ │ │ │ +00028e40: 203d 206d 6174 7269 7822 7833 2c79 332b = matrix"x3,y3+ │ │ │ │ +00028e50: 7833 2c7a 332b 7833 2b79 3322 2020 2020 x3,z3+x3+y3" │ │ │ │ +00028e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028e70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00028e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028eb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00028ec0: 7c6f 3320 3d20 7c20 7833 2078 332b 7933 |o3 = | x3 x3+y3 │ │ │ │ -00028ed0: 2078 332b 7933 2b7a 3320 7c20 2020 2020 x3+y3+z3 | │ │ │ │ +00028eb0: 2020 207c 0a7c 6f33 203d 207c 2078 3320 |.|o3 = | x3 │ │ │ │ +00028ec0: 7833 2b79 3320 7833 2b79 332b 7a33 207c x3+y3 x3+y3+z3 | │ │ │ │ +00028ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ef0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00028ef0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00028f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f30: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00028f40: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ -00028f50: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00028f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f70: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ -00028f80: 4d61 7472 6978 2053 2020 3c2d 2d20 5320 Matrix S <-- S │ │ │ │ +00028f20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028f30: 0a7c 2020 2020 2020 2020 2020 2020 2031 .| 1 │ │ │ │ +00028f40: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ +00028f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028f60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00028f70: 6f33 203a 204d 6174 7269 7820 5320 203c o3 : Matrix S < │ │ │ │ +00028f80: 2d2d 2053 2020 2020 2020 2020 2020 2020 -- S │ │ │ │ 00028f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028fb0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00028fa0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00028fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028ff0: 2d2d 2d2d 2b0a 7c69 3420 3a20 6666 203d ----+.|i4 : ff = │ │ │ │ -00029000: 2066 2a72 616e 646f 6d28 736f 7572 6365 f*random(source │ │ │ │ -00029010: 2066 2c20 736f 7572 6365 2066 2920 2020 f, source f) │ │ │ │ -00029020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029030: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00028fe0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ +00028ff0: 2066 6620 3d20 662a 7261 6e64 6f6d 2873 ff = f*random(s │ │ │ │ +00029000: 6f75 7263 6520 662c 2073 6f75 7263 6520 ource f, source │ │ │ │ +00029010: 6629 2020 2020 2020 2020 2020 2020 2020 f) │ │ │ │ +00029020: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00029030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029070: 7c0a 7c6f 3420 3d20 7c20 3130 7833 2d32 |.|o4 = | 10x3-2 │ │ │ │ -00029080: 3279 332d 347a 3320 2d32 3078 332d 3230 2y3-4z3 -20x3-20 │ │ │ │ -00029090: 7933 2d36 7a33 202d 3237 7833 2d34 3179 y3-6z3 -27x3-41y │ │ │ │ -000290a0: 332b 7a33 207c 2020 2020 2020 2020 7c0a 3+z3 | |. │ │ │ │ -000290b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00029060: 2020 2020 207c 0a7c 6f34 203d 207c 2031 |.|o4 = | 1 │ │ │ │ +00029070: 3078 332d 3232 7933 2d34 7a33 202d 3230 0x3-22y3-4z3 -20 │ │ │ │ +00029080: 7833 2d32 3079 332d 367a 3320 2d32 3778 x3-20y3-6z3 -27x │ │ │ │ +00029090: 332d 3431 7933 2b7a 3320 7c20 2020 2020 3-41y3+z3 | │ │ │ │ +000290a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000290b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000290c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000290d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000290e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000290f0: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ -00029100: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00029110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029120: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ -00029130: 3a20 4d61 7472 6978 2053 2020 3c2d 2d20 : Matrix S <-- │ │ │ │ -00029140: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ -00029150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029160: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000290e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000290f0: 2031 2020 2020 2020 3320 2020 2020 2020 1 3 │ │ │ │ +00029100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029110: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029120: 0a7c 6f34 203a 204d 6174 7269 7820 5320 .|o4 : Matrix S │ │ │ │ +00029130: 203c 2d2d 2053 2020 2020 2020 2020 2020 <-- S │ │ │ │ +00029140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029150: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00029160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000291a0: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 5220 ------+.|i5 : R │ │ │ │ -000291b0: 3d20 532f 6964 6561 6c20 6620 2020 2020 = S/ideal f │ │ │ │ +00029190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ +000291a0: 203a 2052 203d 2053 2f69 6465 616c 2066 : R = S/ideal f │ │ │ │ +000291b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000291c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000291d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000291e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000291d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000291e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000291f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029220: 2020 7c0a 7c6f 3520 3d20 5220 2020 2020 |.|o5 = R │ │ │ │ +00029210: 2020 2020 2020 207c 0a7c 6f35 203d 2052 |.|o5 = R │ │ │ │ +00029220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029260: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00029250: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029290: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000292a0: 7c6f 3520 3a20 5175 6f74 6965 6e74 5269 |o5 : QuotientRi │ │ │ │ -000292b0: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ +00029290: 2020 207c 0a7c 6f35 203a 2051 756f 7469 |.|o5 : Quoti │ │ │ │ +000292a0: 656e 7452 696e 6720 2020 2020 2020 2020 entRing │ │ │ │ +000292b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000292c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000292d0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000292d0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 000292e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000292f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029310: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 ----------+.|i6 │ │ │ │ -00029320: 3a20 4d30 203d 2052 5e31 2f69 6465 616c : M0 = R^1/ideal │ │ │ │ -00029330: 2278 327a 322c 7879 7a22 2020 2020 2020 "x2z2,xyz" │ │ │ │ -00029340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029350: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00029300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00029310: 0a7c 6936 203a 204d 3020 3d20 525e 312f .|i6 : M0 = R^1/ │ │ │ │ +00029320: 6964 6561 6c22 7832 7a32 2c78 797a 2220 ideal"x2z2,xyz" │ │ │ │ +00029330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029340: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00029350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029390: 2020 2020 2020 7c0a 7c6f 3620 3d20 636f |.|o6 = co │ │ │ │ -000293a0: 6b65 726e 656c 207c 2078 327a 3220 7879 kernel | x2z2 xy │ │ │ │ -000293b0: 7a20 7c20 2020 2020 2020 2020 2020 2020 z | │ │ │ │ -000293c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000293d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00029380: 2020 2020 2020 2020 2020 207c 0a7c 6f36 |.|o6 │ │ │ │ +00029390: 203d 2063 6f6b 6572 6e65 6c20 7c20 7832 = cokernel | x2 │ │ │ │ +000293a0: 7a32 2078 797a 207c 2020 2020 2020 2020 z2 xyz | │ │ │ │ +000293b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000293c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000293d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000293e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000293f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029410: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00029420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029430: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00029440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029450: 7c0a 7c6f 3620 3a20 522d 6d6f 6475 6c65 |.|o6 : R-module │ │ │ │ -00029460: 2c20 7175 6f74 6965 6e74 206f 6620 5220 , quotient of R │ │ │ │ +00029400: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00029410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029420: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ +00029430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029440: 2020 2020 207c 0a7c 6f36 203a 2052 2d6d |.|o6 : R-m │ │ │ │ +00029450: 6f64 756c 652c 2071 756f 7469 656e 7420 odule, quotient │ │ │ │ +00029460: 6f66 2052 2020 2020 2020 2020 2020 2020 of R │ │ │ │ 00029470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029480: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00029490: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00029480: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00029490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000294a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000294b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000294c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000294d0: 3720 3a20 6265 7474 6920 7265 7320 284d 7 : betti res (M │ │ │ │ -000294e0: 302c 204c 656e 6774 684c 696d 6974 203d 0, LengthLimit = │ │ │ │ -000294f0: 3e20 3729 2020 2020 2020 2020 2020 2020 > 7) │ │ │ │ -00029500: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000294c0: 2d2b 0a7c 6937 203a 2062 6574 7469 2072 -+.|i7 : betti r │ │ │ │ +000294d0: 6573 2028 4d30 2c20 4c65 6e67 7468 4c69 es (M0, LengthLi │ │ │ │ +000294e0: 6d69 7420 3d3e 2037 2920 2020 2020 2020 mit => 7) │ │ │ │ +000294f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029500: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029540: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00029550: 2020 2020 2020 2030 2031 2032 2020 3320 0 1 2 3 │ │ │ │ -00029560: 2034 2020 3520 2036 2020 3720 2020 2020 4 5 6 7 │ │ │ │ -00029570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029580: 2020 2020 2020 7c0a 7c6f 3720 3d20 746f |.|o7 = to │ │ │ │ -00029590: 7461 6c3a 2031 2032 2036 2031 3120 3138 tal: 1 2 6 11 18 │ │ │ │ -000295a0: 2032 3620 3336 2034 3720 2020 2020 2020 26 36 47 │ │ │ │ -000295b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000295c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000295d0: 303a 2031 202e 202e 2020 2e20 202e 2020 0: 1 . . . . │ │ │ │ -000295e0: 2e20 202e 2020 2e20 2020 2020 2020 2020 . . . │ │ │ │ -000295f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029600: 2020 7c0a 7c20 2020 2020 2020 2020 313a |.| 1: │ │ │ │ -00029610: 202e 202e 202e 2020 2e20 202e 2020 2e20 . . . . . . │ │ │ │ -00029620: 202e 2020 2e20 2020 2020 2020 2020 2020 . . │ │ │ │ -00029630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029640: 7c0a 7c20 2020 2020 2020 2020 323a 202e |.| 2: . │ │ │ │ -00029650: 2031 202e 2020 2e20 202e 2020 2e20 202e 1 . . . . . │ │ │ │ -00029660: 2020 2e20 2020 2020 2020 2020 2020 2020 . │ │ │ │ -00029670: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00029680: 7c20 2020 2020 2020 2020 333a 202e 2031 | 3: . 1 │ │ │ │ -00029690: 2036 2020 3620 202e 2020 2e20 202e 2020 6 6 . . . │ │ │ │ -000296a0: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ -000296b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000296c0: 2020 2020 2020 2020 343a 202e 202e 202e 4: . . . │ │ │ │ -000296d0: 2020 3520 3138 2031 3420 202e 2020 2e20 5 18 14 . . │ │ │ │ -000296e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000296f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00029700: 2020 2020 2020 353a 202e 202e 202e 2020 5: . . . │ │ │ │ -00029710: 2e20 202e 2031 3220 3336 2032 3520 2020 . . 12 36 25 │ │ │ │ -00029720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029730: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00029740: 2020 2020 363a 202e 202e 202e 2020 2e20 6: . . . . │ │ │ │ -00029750: 202e 2020 2e20 202e 2032 3220 2020 2020 . . . 22 │ │ │ │ -00029760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029770: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00029530: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00029540: 2020 2020 2020 2020 2020 2020 3020 3120 0 1 │ │ │ │ +00029550: 3220 2033 2020 3420 2035 2020 3620 2037 2 3 4 5 6 7 │ │ │ │ +00029560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029570: 2020 2020 2020 2020 2020 207c 0a7c 6f37 |.|o7 │ │ │ │ +00029580: 203d 2074 6f74 616c 3a20 3120 3220 3620 = total: 1 2 6 │ │ │ │ +00029590: 3131 2031 3820 3236 2033 3620 3437 2020 11 18 26 36 47 │ │ │ │ +000295a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000295b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000295c0: 2020 2020 2030 3a20 3120 2e20 2e20 202e 0: 1 . . . │ │ │ │ +000295d0: 2020 2e20 202e 2020 2e20 202e 2020 2020 . . . . │ │ │ │ +000295e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000295f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00029600: 2020 2031 3a20 2e20 2e20 2e20 202e 2020 1: . . . . │ │ │ │ +00029610: 2e20 202e 2020 2e20 202e 2020 2020 2020 . . . . │ │ │ │ +00029620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029630: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029640: 2032 3a20 2e20 3120 2e20 202e 2020 2e20 2: . 1 . . . │ │ │ │ +00029650: 202e 2020 2e20 202e 2020 2020 2020 2020 . . . │ │ │ │ +00029660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029670: 2020 207c 0a7c 2020 2020 2020 2020 2033 |.| 3 │ │ │ │ +00029680: 3a20 2e20 3120 3620 2036 2020 2e20 202e : . 1 6 6 . . │ │ │ │ +00029690: 2020 2e20 202e 2020 2020 2020 2020 2020 . . │ │ │ │ +000296a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000296b0: 207c 0a7c 2020 2020 2020 2020 2034 3a20 |.| 4: │ │ │ │ +000296c0: 2e20 2e20 2e20 2035 2031 3820 3134 2020 . . . 5 18 14 │ │ │ │ +000296d0: 2e20 202e 2020 2020 2020 2020 2020 2020 . . │ │ │ │ +000296e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000296f0: 0a7c 2020 2020 2020 2020 2035 3a20 2e20 .| 5: . │ │ │ │ +00029700: 2e20 2e20 202e 2020 2e20 3132 2033 3620 . . . . 12 36 │ │ │ │ +00029710: 3235 2020 2020 2020 2020 2020 2020 2020 25 │ │ │ │ +00029720: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00029730: 2020 2020 2020 2020 2036 3a20 2e20 2e20 6: . . │ │ │ │ +00029740: 2e20 202e 2020 2e20 202e 2020 2e20 3232 . . . . . 22 │ │ │ │ +00029750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029760: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00029770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000297a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000297b0: 2020 2020 7c0a 7c6f 3720 3a20 4265 7474 |.|o7 : Bett │ │ │ │ -000297c0: 6954 616c 6c79 2020 2020 2020 2020 2020 iTally │ │ │ │ +000297a0: 2020 2020 2020 2020 207c 0a7c 6f37 203a |.|o7 : │ │ │ │ +000297b0: 2042 6574 7469 5461 6c6c 7920 2020 2020 BettiTally │ │ │ │ +000297c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000297d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000297e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000297f0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000297e0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000297f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029830: 2b0a 7c69 3820 3a20 6d66 426f 756e 6420 +.|i8 : mfBound │ │ │ │ -00029840: 4d30 2020 2020 2020 2020 2020 2020 2020 M0 │ │ │ │ +00029820: 2d2d 2d2d 2d2b 0a7c 6938 203a 206d 6642 -----+.|i8 : mfB │ │ │ │ +00029830: 6f75 6e64 204d 3020 2020 2020 2020 2020 ound M0 │ │ │ │ +00029840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029860: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00029870: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00029860: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00029870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000298a0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000298b0: 3820 3d20 3320 2020 2020 2020 2020 2020 8 = 3 │ │ │ │ +000298a0: 207c 0a7c 6f38 203d 2033 2020 2020 2020 |.|o8 = 3 │ │ │ │ +000298b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000298c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000298d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000298e0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000298d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000298e0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 000298f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029920: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3920 3a20 --------+.|i9 : │ │ │ │ -00029930: 4d20 3d20 6265 7474 6920 7265 7320 6869 M = betti res hi │ │ │ │ -00029940: 6768 5379 7a79 6779 204d 3020 2020 2020 ghSyzygy M0 │ │ │ │ -00029950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029960: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00029910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00029920: 6939 203a 204d 203d 2062 6574 7469 2072 i9 : M = betti r │ │ │ │ +00029930: 6573 2068 6967 6853 797a 7967 7920 4d30 es highSyzygy M0 │ │ │ │ +00029940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029950: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00029960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000299a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000299b0: 2020 2020 3020 2031 2020 3220 2033 2020 0 1 2 3 │ │ │ │ -000299c0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -000299d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000299e0: 2020 7c0a 7c6f 3920 3d20 746f 7461 6c3a |.|o9 = total: │ │ │ │ -000299f0: 2031 3120 3138 2032 3620 3336 2034 3720 11 18 26 36 47 │ │ │ │ +00029990: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000299a0: 2020 2020 2020 2020 2030 2020 3120 2032 0 1 2 │ │ │ │ +000299b0: 2020 3320 2034 2020 2020 2020 2020 2020 3 4 │ │ │ │ +000299c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000299d0: 2020 2020 2020 207c 0a7c 6f39 203d 2074 |.|o9 = t │ │ │ │ +000299e0: 6f74 616c 3a20 3131 2031 3820 3236 2033 otal: 11 18 26 3 │ │ │ │ +000299f0: 3620 3437 2020 2020 2020 2020 2020 2020 6 47 │ │ │ │ 00029a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029a20: 7c0a 7c20 2020 2020 2020 2020 363a 2020 |.| 6: │ │ │ │ -00029a30: 3620 202e 2020 2e20 202e 2020 2e20 2020 6 . . . . │ │ │ │ +00029a10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029a20: 2036 3a20 2036 2020 2e20 202e 2020 2e20 6: 6 . . . │ │ │ │ +00029a30: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ 00029a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029a50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00029a60: 7c20 2020 2020 2020 2020 373a 2020 3520 | 7: 5 │ │ │ │ -00029a70: 3138 2031 3420 202e 2020 2e20 2020 2020 18 14 . . │ │ │ │ +00029a50: 2020 207c 0a7c 2020 2020 2020 2020 2037 |.| 7 │ │ │ │ +00029a60: 3a20 2035 2031 3820 3134 2020 2e20 202e : 5 18 14 . . │ │ │ │ +00029a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029a90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00029aa0: 2020 2020 2020 2020 383a 2020 2e20 202e 8: . . │ │ │ │ -00029ab0: 2031 3220 3336 2032 3520 2020 2020 2020 12 36 25 │ │ │ │ -00029ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ad0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00029ae0: 2020 2020 2020 393a 2020 2e20 202e 2020 9: . . │ │ │ │ -00029af0: 2e20 202e 2032 3220 2020 2020 2020 2020 . . 22 │ │ │ │ -00029b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029b10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00029a90: 207c 0a7c 2020 2020 2020 2020 2038 3a20 |.| 8: │ │ │ │ +00029aa0: 202e 2020 2e20 3132 2033 3620 3235 2020 . . 12 36 25 │ │ │ │ +00029ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029ac0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029ad0: 0a7c 2020 2020 2020 2020 2039 3a20 202e .| 9: . │ │ │ │ +00029ae0: 2020 2e20 202e 2020 2e20 3232 2020 2020 . . . 22 │ │ │ │ +00029af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029b00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00029b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029b50: 2020 2020 2020 7c0a 7c6f 3920 3a20 4265 |.|o9 : Be │ │ │ │ -00029b60: 7474 6954 616c 6c79 2020 2020 2020 2020 ttiTally │ │ │ │ +00029b40: 2020 2020 2020 2020 2020 207c 0a7c 6f39 |.|o9 │ │ │ │ +00029b50: 203a 2042 6574 7469 5461 6c6c 7920 2020 : BettiTally │ │ │ │ +00029b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029b90: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00029b80: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00029b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029bd0: 2d2d 2b0a 7c69 3130 203a 206e 6574 4c69 --+.|i10 : netLi │ │ │ │ -00029be0: 7374 2042 5261 6e6b 7320 6d61 7472 6978 st BRanks matrix │ │ │ │ -00029bf0: 4661 6374 6f72 697a 6174 696f 6e28 6666 Factorization(ff │ │ │ │ -00029c00: 2c20 6869 6768 5379 7a79 6779 204d 3029 , highSyzygy M0) │ │ │ │ -00029c10: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00029bc0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 -------+.|i10 : │ │ │ │ +00029bd0: 6e65 744c 6973 7420 4252 616e 6b73 206d netList BRanks m │ │ │ │ +00029be0: 6174 7269 7846 6163 746f 7269 7a61 7469 atrixFactorizati │ │ │ │ +00029bf0: 6f6e 2866 662c 2068 6967 6853 797a 7967 on(ff, highSyzyg │ │ │ │ +00029c00: 7920 4d30 297c 0a7c 2020 2020 2020 2020 y M0)|.| │ │ │ │ +00029c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029c40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00029c50: 7c20 2020 2020 202b 2d2b 2d2b 2020 2020 | +-+-+ │ │ │ │ +00029c40: 2020 207c 0a7c 2020 2020 2020 2b2d 2b2d |.| +-+- │ │ │ │ +00029c50: 2b20 2020 2020 2020 2020 2020 2020 2020 + │ │ │ │ 00029c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029c80: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00029c90: 3130 203d 207c 367c 367c 2020 2020 2020 10 = |6|6| │ │ │ │ +00029c80: 207c 0a7c 6f31 3020 3d20 7c36 7c36 7c20 |.|o10 = |6|6| │ │ │ │ +00029c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029cc0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00029cd0: 2020 202b 2d2b 2d2b 2020 2020 2020 2020 +-+-+ │ │ │ │ +00029cb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029cc0: 0a7c 2020 2020 2020 2b2d 2b2d 2b20 2020 .| +-+-+ │ │ │ │ +00029cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00029d10: 207c 337c 367c 2020 2020 2020 2020 2020 |3|6| │ │ │ │ +00029cf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00029d00: 2020 2020 2020 7c33 7c36 7c20 2020 2020 |3|6| │ │ │ │ +00029d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d40: 2020 2020 2020 7c0a 7c20 2020 2020 202b |.| + │ │ │ │ -00029d50: 2d2b 2d2b 2020 2020 2020 2020 2020 2020 -+-+ │ │ │ │ +00029d30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00029d40: 2020 2020 2b2d 2b2d 2b20 2020 2020 2020 +-+-+ │ │ │ │ +00029d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d80: 2020 2020 7c0a 7c20 2020 2020 207c 327c |.| |2| │ │ │ │ -00029d90: 367c 2020 2020 2020 2020 2020 2020 2020 6| │ │ │ │ +00029d70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00029d80: 2020 7c32 7c36 7c20 2020 2020 2020 2020 |2|6| │ │ │ │ +00029d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029dc0: 2020 7c0a 7c20 2020 2020 202b 2d2b 2d2b |.| +-+-+ │ │ │ │ +00029db0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00029dc0: 2b2d 2b2d 2b20 2020 2020 2020 2020 2020 +-+-+ │ │ │ │ 00029dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e00: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00029df0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00029e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00029e40: 0a49 6e20 7468 6973 2063 6173 6520 6173 .In this case as │ │ │ │ -00029e50: 2069 6e20 616c 6c20 6f74 6865 7273 2077 in all others w │ │ │ │ -00029e60: 6520 6861 7665 2065 7861 6d69 6e65 642c e have examined, │ │ │ │ -00029e70: 2067 7265 6174 6572 2022 4f70 7469 6d69 greater "Optimi │ │ │ │ -00029e80: 736d 2220 6973 206e 6f74 0a6a 7573 7469 sm" is not.justi │ │ │ │ -00029e90: 6669 6564 2c20 616e 6420 7468 7573 206d fied, and thus m │ │ │ │ -00029ea0: 6174 7269 7846 6163 746f 7269 7a61 7469 atrixFactorizati │ │ │ │ -00029eb0: 6f6e 2866 662c 2068 6967 6853 797a 7967 on(ff, highSyzyg │ │ │ │ -00029ec0: 7928 4d30 2c20 4f70 7469 6d69 736d 3d3e y(M0, Optimism=> │ │ │ │ -00029ed0: 3129 293b 2077 6f75 6c64 0a70 726f 6475 1)); would.produ │ │ │ │ -00029ee0: 6365 2061 6e20 6572 726f 722e 0a0a 4361 ce an error...Ca │ │ │ │ -00029ef0: 7665 6174 0a3d 3d3d 3d3d 3d0a 0a41 2062 veat.======..A b │ │ │ │ -00029f00: 7567 2069 6e20 7468 6520 746f 7461 6c20 ug in the total │ │ │ │ -00029f10: 4578 7420 7363 7269 7074 206d 6561 6e73 Ext script means │ │ │ │ -00029f20: 2074 6861 7420 7468 6520 6f64 6445 7874 that the oddExt │ │ │ │ -00029f30: 4d6f 6475 6c65 2069 7320 736f 6d65 7469 Module is someti │ │ │ │ -00029f40: 6d65 7320 7a65 726f 2c0a 616e 6420 7468 mes zero,.and th │ │ │ │ -00029f50: 6973 2063 616e 2063 6175 7365 2061 2077 is can cause a w │ │ │ │ -00029f60: 726f 6e67 2076 616c 7565 2074 6f20 6265 rong value to be │ │ │ │ -00029f70: 2072 6574 7572 6e65 642e 0a0a 5365 6520 returned...See │ │ │ │ -00029f80: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ -00029f90: 202a 202a 6e6f 7465 2065 7665 6e45 7874 * *note evenExt │ │ │ │ -00029fa0: 4d6f 6475 6c65 3a20 6576 656e 4578 744d Module: evenExtM │ │ │ │ -00029fb0: 6f64 756c 652c 202d 2d20 6576 656e 2070 odule, -- even p │ │ │ │ -00029fc0: 6172 7420 6f66 2045 7874 5e2a 284d 2c6b art of Ext^*(M,k │ │ │ │ -00029fd0: 2920 6f76 6572 2061 0a20 2020 2063 6f6d ) over a. com │ │ │ │ -00029fe0: 706c 6574 6520 696e 7465 7273 6563 7469 plete intersecti │ │ │ │ -00029ff0: 6f6e 2061 7320 6d6f 6475 6c65 206f 7665 on as module ove │ │ │ │ -0002a000: 7220 4349 206f 7065 7261 746f 7220 7269 r CI operator ri │ │ │ │ -0002a010: 6e67 0a20 202a 202a 6e6f 7465 206f 6464 ng. * *note odd │ │ │ │ -0002a020: 4578 744d 6f64 756c 653a 206f 6464 4578 ExtModule: oddEx │ │ │ │ -0002a030: 744d 6f64 756c 652c 202d 2d20 6f64 6420 tModule, -- odd │ │ │ │ -0002a040: 7061 7274 206f 6620 4578 745e 2a28 4d2c part of Ext^*(M, │ │ │ │ -0002a050: 6b29 206f 7665 7220 6120 636f 6d70 6c65 k) over a comple │ │ │ │ -0002a060: 7465 0a20 2020 2069 6e74 6572 7365 6374 te. intersect │ │ │ │ -0002a070: 696f 6e20 6173 206d 6f64 756c 6520 6f76 ion as module ov │ │ │ │ -0002a080: 6572 2043 4920 6f70 6572 6174 6f72 2072 er CI operator r │ │ │ │ -0002a090: 696e 670a 2020 2a20 2a6e 6f74 6520 6d66 ing. * *note mf │ │ │ │ -0002a0a0: 426f 756e 643a 206d 6642 6f75 6e64 2c20 Bound: mfBound, │ │ │ │ -0002a0b0: 2d2d 2064 6574 6572 6d69 6e65 7320 686f -- determines ho │ │ │ │ -0002a0c0: 7720 6869 6768 2061 2073 797a 7967 7920 w high a syzygy │ │ │ │ -0002a0d0: 746f 2074 616b 6520 666f 720a 2020 2020 to take for. │ │ │ │ -0002a0e0: 226d 6174 7269 7846 6163 746f 7269 7a61 "matrixFactoriza │ │ │ │ -0002a0f0: 7469 6f6e 220a 2020 2a20 2a6e 6f74 6520 tion". * *note │ │ │ │ -0002a100: 6d61 7472 6978 4661 6374 6f72 697a 6174 matrixFactorizat │ │ │ │ -0002a110: 696f 6e3a 206d 6174 7269 7846 6163 746f ion: matrixFacto │ │ │ │ -0002a120: 7269 7a61 7469 6f6e 2c20 2d2d 204d 6170 rization, -- Map │ │ │ │ -0002a130: 7320 696e 2061 2068 6967 6865 720a 2020 s in a higher. │ │ │ │ -0002a140: 2020 636f 6469 6d65 6e73 696f 6e20 6d61 codimension ma │ │ │ │ -0002a150: 7472 6978 2066 6163 746f 7269 7a61 7469 trix factorizati │ │ │ │ -0002a160: 6f6e 0a0a 5761 7973 2074 6f20 7573 6520 on..Ways to use │ │ │ │ -0002a170: 6869 6768 5379 7a79 6779 3a0a 3d3d 3d3d highSyzygy:.==== │ │ │ │ -0002a180: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0002a190: 3d3d 3d0a 0a20 202a 2022 6869 6768 5379 ===.. * "highSy │ │ │ │ -0002a1a0: 7a79 6779 284d 6f64 756c 6529 220a 0a46 zygy(Module)"..F │ │ │ │ -0002a1b0: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -0002a1c0: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -0002a1d0: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -0002a1e0: 202a 6e6f 7465 2068 6967 6853 797a 7967 *note highSyzyg │ │ │ │ -0002a1f0: 793a 2068 6967 6853 797a 7967 792c 2069 y: highSyzygy, i │ │ │ │ -0002a200: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ -0002a210: 2066 756e 6374 696f 6e20 7769 7468 0a6f function with.o │ │ │ │ -0002a220: 7074 696f 6e73 3a20 284d 6163 6175 6c61 ptions: (Macaula │ │ │ │ -0002a230: 7932 446f 6329 4d65 7468 6f64 4675 6e63 y2Doc)MethodFunc │ │ │ │ -0002a240: 7469 6f6e 5769 7468 4f70 7469 6f6e 732c tionWithOptions, │ │ │ │ -0002a250: 2e0a 1f0a 4669 6c65 3a20 436f 6d70 6c65 ....File: Comple │ │ │ │ -0002a260: 7465 496e 7465 7273 6563 7469 6f6e 5265 teIntersectionRe │ │ │ │ -0002a270: 736f 6c75 7469 6f6e 732e 696e 666f 2c20 solutions.info, │ │ │ │ -0002a280: 4e6f 6465 3a20 684d 6170 732c 204e 6578 Node: hMaps, Nex │ │ │ │ -0002a290: 743a 2048 6f6d 5769 7468 436f 6d70 6f6e t: HomWithCompon │ │ │ │ -0002a2a0: 656e 7473 2c20 5072 6576 3a20 6869 6768 ents, Prev: high │ │ │ │ -0002a2b0: 5379 7a79 6779 2c20 5570 3a20 546f 700a Syzygy, Up: Top. │ │ │ │ -0002a2c0: 0a68 4d61 7073 202d 2d20 6c69 7374 2074 .hMaps -- list t │ │ │ │ -0002a2d0: 6865 206d 6170 7320 2068 2870 293a 2041 he maps h(p): A │ │ │ │ -0002a2e0: 5f30 2870 292d 2d3e 2041 5f31 2870 2920 _0(p)--> A_1(p) │ │ │ │ -0002a2f0: 696e 2061 206d 6174 7269 7846 6163 746f in a matrixFacto │ │ │ │ -0002a300: 7269 7a61 7469 6f6e 0a2a 2a2a 2a2a 2a2a rization.******* │ │ │ │ +00029e30: 2d2d 2d2b 0a0a 496e 2074 6869 7320 6361 ---+..In this ca │ │ │ │ +00029e40: 7365 2061 7320 696e 2061 6c6c 206f 7468 se as in all oth │ │ │ │ +00029e50: 6572 7320 7765 2068 6176 6520 6578 616d ers we have exam │ │ │ │ +00029e60: 696e 6564 2c20 6772 6561 7465 7220 224f ined, greater "O │ │ │ │ +00029e70: 7074 696d 6973 6d22 2069 7320 6e6f 740a ptimism" is not. │ │ │ │ +00029e80: 6a75 7374 6966 6965 642c 2061 6e64 2074 justified, and t │ │ │ │ +00029e90: 6875 7320 6d61 7472 6978 4661 6374 6f72 hus matrixFactor │ │ │ │ +00029ea0: 697a 6174 696f 6e28 6666 2c20 6869 6768 ization(ff, high │ │ │ │ +00029eb0: 5379 7a79 6779 284d 302c 204f 7074 696d Syzygy(M0, Optim │ │ │ │ +00029ec0: 6973 6d3d 3e31 2929 3b20 776f 756c 640a ism=>1)); would. │ │ │ │ +00029ed0: 7072 6f64 7563 6520 616e 2065 7272 6f72 produce an error │ │ │ │ +00029ee0: 2e0a 0a43 6176 6561 740a 3d3d 3d3d 3d3d ...Caveat.====== │ │ │ │ +00029ef0: 0a0a 4120 6275 6720 696e 2074 6865 2074 ..A bug in the t │ │ │ │ +00029f00: 6f74 616c 2045 7874 2073 6372 6970 7420 otal Ext script │ │ │ │ +00029f10: 6d65 616e 7320 7468 6174 2074 6865 206f means that the o │ │ │ │ +00029f20: 6464 4578 744d 6f64 756c 6520 6973 2073 ddExtModule is s │ │ │ │ +00029f30: 6f6d 6574 696d 6573 207a 6572 6f2c 0a61 ometimes zero,.a │ │ │ │ +00029f40: 6e64 2074 6869 7320 6361 6e20 6361 7573 nd this can caus │ │ │ │ +00029f50: 6520 6120 7772 6f6e 6720 7661 6c75 6520 e a wrong value │ │ │ │ +00029f60: 746f 2062 6520 7265 7475 726e 6564 2e0a to be returned.. │ │ │ │ +00029f70: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ +00029f80: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 6576 ==.. * *note ev │ │ │ │ +00029f90: 656e 4578 744d 6f64 756c 653a 2065 7665 enExtModule: eve │ │ │ │ +00029fa0: 6e45 7874 4d6f 6475 6c65 2c20 2d2d 2065 nExtModule, -- e │ │ │ │ +00029fb0: 7665 6e20 7061 7274 206f 6620 4578 745e ven part of Ext^ │ │ │ │ +00029fc0: 2a28 4d2c 6b29 206f 7665 7220 610a 2020 *(M,k) over a. │ │ │ │ +00029fd0: 2020 636f 6d70 6c65 7465 2069 6e74 6572 complete inter │ │ │ │ +00029fe0: 7365 6374 696f 6e20 6173 206d 6f64 756c section as modul │ │ │ │ +00029ff0: 6520 6f76 6572 2043 4920 6f70 6572 6174 e over CI operat │ │ │ │ +0002a000: 6f72 2072 696e 670a 2020 2a20 2a6e 6f74 or ring. * *not │ │ │ │ +0002a010: 6520 6f64 6445 7874 4d6f 6475 6c65 3a20 e oddExtModule: │ │ │ │ +0002a020: 6f64 6445 7874 4d6f 6475 6c65 2c20 2d2d oddExtModule, -- │ │ │ │ +0002a030: 206f 6464 2070 6172 7420 6f66 2045 7874 odd part of Ext │ │ │ │ +0002a040: 5e2a 284d 2c6b 2920 6f76 6572 2061 2063 ^*(M,k) over a c │ │ │ │ +0002a050: 6f6d 706c 6574 650a 2020 2020 696e 7465 omplete. inte │ │ │ │ +0002a060: 7273 6563 7469 6f6e 2061 7320 6d6f 6475 rsection as modu │ │ │ │ +0002a070: 6c65 206f 7665 7220 4349 206f 7065 7261 le over CI opera │ │ │ │ +0002a080: 746f 7220 7269 6e67 0a20 202a 202a 6e6f tor ring. * *no │ │ │ │ +0002a090: 7465 206d 6642 6f75 6e64 3a20 6d66 426f te mfBound: mfBo │ │ │ │ +0002a0a0: 756e 642c 202d 2d20 6465 7465 726d 696e und, -- determin │ │ │ │ +0002a0b0: 6573 2068 6f77 2068 6967 6820 6120 7379 es how high a sy │ │ │ │ +0002a0c0: 7a79 6779 2074 6f20 7461 6b65 2066 6f72 zygy to take for │ │ │ │ +0002a0d0: 0a20 2020 2022 6d61 7472 6978 4661 6374 . "matrixFact │ │ │ │ +0002a0e0: 6f72 697a 6174 696f 6e22 0a20 202a 202a orization". * * │ │ │ │ +0002a0f0: 6e6f 7465 206d 6174 7269 7846 6163 746f note matrixFacto │ │ │ │ +0002a100: 7269 7a61 7469 6f6e 3a20 6d61 7472 6978 rization: matrix │ │ │ │ +0002a110: 4661 6374 6f72 697a 6174 696f 6e2c 202d Factorization, - │ │ │ │ +0002a120: 2d20 4d61 7073 2069 6e20 6120 6869 6768 - Maps in a high │ │ │ │ +0002a130: 6572 0a20 2020 2063 6f64 696d 656e 7369 er. codimensi │ │ │ │ +0002a140: 6f6e 206d 6174 7269 7820 6661 6374 6f72 on matrix factor │ │ │ │ +0002a150: 697a 6174 696f 6e0a 0a57 6179 7320 746f ization..Ways to │ │ │ │ +0002a160: 2075 7365 2068 6967 6853 797a 7967 793a use highSyzygy: │ │ │ │ +0002a170: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +0002a180: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2268 ========.. * "h │ │ │ │ +0002a190: 6967 6853 797a 7967 7928 4d6f 6475 6c65 ighSyzygy(Module │ │ │ │ +0002a1a0: 2922 0a0a 466f 7220 7468 6520 7072 6f67 )"..For the prog │ │ │ │ +0002a1b0: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ +0002a1c0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ +0002a1d0: 626a 6563 7420 2a6e 6f74 6520 6869 6768 bject *note high │ │ │ │ +0002a1e0: 5379 7a79 6779 3a20 6869 6768 5379 7a79 Syzygy: highSyzy │ │ │ │ +0002a1f0: 6779 2c20 6973 2061 202a 6e6f 7465 206d gy, is a *note m │ │ │ │ +0002a200: 6574 686f 6420 6675 6e63 7469 6f6e 2077 ethod function w │ │ │ │ +0002a210: 6974 680a 6f70 7469 6f6e 733a 2028 4d61 ith.options: (Ma │ │ │ │ +0002a220: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ +0002a230: 6446 756e 6374 696f 6e57 6974 684f 7074 dFunctionWithOpt │ │ │ │ +0002a240: 696f 6e73 2c2e 0a1f 0a46 696c 653a 2043 ions,....File: C │ │ │ │ +0002a250: 6f6d 706c 6574 6549 6e74 6572 7365 6374 ompleteIntersect │ │ │ │ +0002a260: 696f 6e52 6573 6f6c 7574 696f 6e73 2e69 ionResolutions.i │ │ │ │ +0002a270: 6e66 6f2c 204e 6f64 653a 2068 4d61 7073 nfo, Node: hMaps │ │ │ │ +0002a280: 2c20 4e65 7874 3a20 486f 6d57 6974 6843 , Next: HomWithC │ │ │ │ +0002a290: 6f6d 706f 6e65 6e74 732c 2050 7265 763a omponents, Prev: │ │ │ │ +0002a2a0: 2068 6967 6853 797a 7967 792c 2055 703a highSyzygy, Up: │ │ │ │ +0002a2b0: 2054 6f70 0a0a 684d 6170 7320 2d2d 206c Top..hMaps -- l │ │ │ │ +0002a2c0: 6973 7420 7468 6520 6d61 7073 2020 6828 ist the maps h( │ │ │ │ +0002a2d0: 7029 3a20 415f 3028 7029 2d2d 3e20 415f p): A_0(p)--> A_ │ │ │ │ +0002a2e0: 3128 7029 2069 6e20 6120 6d61 7472 6978 1(p) in a matrix │ │ │ │ +0002a2f0: 4661 6374 6f72 697a 6174 696f 6e0a 2a2a Factorization.** │ │ │ │ +0002a300: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002a310: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002a320: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002a330: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002a340: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002a350: 0a0a 5379 6e6f 7073 6973 0a3d 3d3d 3d3d ..Synopsis.===== │ │ │ │ -0002a360: 3d3d 3d0a 0a20 202a 2055 7361 6765 3a20 ===.. * Usage: │ │ │ │ -0002a370: 0a20 2020 2020 2020 2068 4d61 7073 203d . hMaps = │ │ │ │ -0002a380: 2068 4d61 7073 206d 660a 2020 2a20 496e hMaps mf. * In │ │ │ │ -0002a390: 7075 7473 3a0a 2020 2020 2020 2a20 6d66 puts:. * mf │ │ │ │ -0002a3a0: 2c20 6120 2a6e 6f74 6520 6c69 7374 3a20 , a *note list: │ │ │ │ -0002a3b0: 284d 6163 6175 6c61 7932 446f 6329 4c69 (Macaulay2Doc)Li │ │ │ │ -0002a3c0: 7374 2c2c 206f 7574 7075 7420 6f66 2061 st,, output of a │ │ │ │ -0002a3d0: 206d 6174 7269 7846 6163 746f 7269 7a61 matrixFactoriza │ │ │ │ -0002a3e0: 7469 6f6e 0a20 2020 2020 2020 2063 6f6d tion. com │ │ │ │ -0002a3f0: 7075 7461 7469 6f6e 0a20 202a 204f 7574 putation. * Out │ │ │ │ -0002a400: 7075 7473 3a0a 2020 2020 2020 2a20 684d puts:. * hM │ │ │ │ -0002a410: 6170 732c 2061 202a 6e6f 7465 206c 6973 aps, a *note lis │ │ │ │ -0002a420: 743a 2028 4d61 6361 756c 6179 3244 6f63 t: (Macaulay2Doc │ │ │ │ -0002a430: 294c 6973 742c 2c20 6c69 7374 206d 6174 )List,, list mat │ │ │ │ -0002a440: 7269 6365 7320 2468 5f70 3a20 415f 3028 rices $h_p: A_0( │ │ │ │ -0002a450: 7029 5c74 6f0a 2020 2020 2020 2020 415f p)\to. A_ │ │ │ │ -0002a460: 3128 7029 242e 2054 6865 2073 6f75 7263 1(p)$. The sourc │ │ │ │ -0002a470: 6573 2061 6e64 2074 6172 6765 7473 206f es and targets o │ │ │ │ -0002a480: 6620 7468 6573 6520 6d61 7073 2068 6176 f these maps hav │ │ │ │ -0002a490: 6520 7468 6520 636f 6d70 6f6e 656e 7473 e the components │ │ │ │ -0002a4a0: 0a20 2020 2020 2020 2042 5f73 2870 292e . B_s(p). │ │ │ │ -0002a4b0: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ -0002a4c0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a53 6565 2074 =========..See t │ │ │ │ -0002a4d0: 6865 2064 6f63 756d 656e 7461 7469 6f6e he documentation │ │ │ │ -0002a4e0: 2066 6f72 206d 6174 7269 7846 6163 746f for matrixFacto │ │ │ │ -0002a4f0: 7269 7a61 7469 6f6e 2066 6f72 2061 6e20 rization for an │ │ │ │ -0002a500: 6578 616d 706c 652e 0a0a 5365 6520 616c example...See al │ │ │ │ -0002a510: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ -0002a520: 202a 6e6f 7465 206d 6174 7269 7846 6163 *note matrixFac │ │ │ │ -0002a530: 746f 7269 7a61 7469 6f6e 3a20 6d61 7472 torization: matr │ │ │ │ -0002a540: 6978 4661 6374 6f72 697a 6174 696f 6e2c ixFactorization, │ │ │ │ -0002a550: 202d 2d20 4d61 7073 2069 6e20 6120 6869 -- Maps in a hi │ │ │ │ -0002a560: 6768 6572 0a20 2020 2063 6f64 696d 656e gher. codimen │ │ │ │ -0002a570: 7369 6f6e 206d 6174 7269 7820 6661 6374 sion matrix fact │ │ │ │ -0002a580: 6f72 697a 6174 696f 6e0a 2020 2a20 2a6e orization. * *n │ │ │ │ -0002a590: 6f74 6520 644d 6170 733a 2064 4d61 7073 ote dMaps: dMaps │ │ │ │ -0002a5a0: 2c20 2d2d 206c 6973 7420 7468 6520 6d61 , -- list the ma │ │ │ │ -0002a5b0: 7073 2020 6428 7029 3a41 5f31 2870 292d ps d(p):A_1(p)- │ │ │ │ -0002a5c0: 2d3e 2041 5f30 2870 2920 696e 2061 0a20 -> A_0(p) in a. │ │ │ │ -0002a5d0: 2020 206d 6174 7269 7846 6163 746f 7269 matrixFactori │ │ │ │ -0002a5e0: 7a61 7469 6f6e 0a20 202a 202a 6e6f 7465 zation. * *note │ │ │ │ -0002a5f0: 2042 5261 6e6b 733a 2042 5261 6e6b 732c BRanks: BRanks, │ │ │ │ -0002a600: 202d 2d20 7261 6e6b 7320 6f66 2074 6865 -- ranks of the │ │ │ │ -0002a610: 206d 6f64 756c 6573 2042 5f69 2864 2920 modules B_i(d) │ │ │ │ -0002a620: 696e 2061 0a20 2020 206d 6174 7269 7846 in a. matrixF │ │ │ │ -0002a630: 6163 746f 7269 7a61 7469 6f6e 0a20 202a actorization. * │ │ │ │ -0002a640: 202a 6e6f 7465 2062 4d61 7073 3a20 624d *note bMaps: bM │ │ │ │ -0002a650: 6170 732c 202d 2d20 6c69 7374 2074 6865 aps, -- list the │ │ │ │ -0002a660: 206d 6170 7320 2064 5f70 3a42 5f31 2870 maps d_p:B_1(p │ │ │ │ -0002a670: 292d 2d3e 425f 3028 7029 2069 6e20 610a )-->B_0(p) in a. │ │ │ │ -0002a680: 2020 2020 6d61 7472 6978 4661 6374 6f72 matrixFactor │ │ │ │ -0002a690: 697a 6174 696f 6e0a 2020 2a20 2a6e 6f74 ization. * *not │ │ │ │ -0002a6a0: 6520 7073 694d 6170 733a 2070 7369 4d61 e psiMaps: psiMa │ │ │ │ -0002a6b0: 7073 2c20 2d2d 206c 6973 7420 7468 6520 ps, -- list the │ │ │ │ -0002a6c0: 6d61 7073 2020 7073 6928 7029 3a20 425f maps psi(p): B_ │ │ │ │ -0002a6d0: 3128 7029 202d 2d3e 2041 5f30 2870 2d31 1(p) --> A_0(p-1 │ │ │ │ -0002a6e0: 2920 696e 2061 0a20 2020 206d 6174 7269 ) in a. matri │ │ │ │ -0002a6f0: 7846 6163 746f 7269 7a61 7469 6f6e 0a0a xFactorization.. │ │ │ │ -0002a700: 5761 7973 2074 6f20 7573 6520 684d 6170 Ways to use hMap │ │ │ │ -0002a710: 733a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d s:.============= │ │ │ │ -0002a720: 3d3d 3d3d 3d0a 0a20 202a 2022 684d 6170 =====.. * "hMap │ │ │ │ -0002a730: 7328 4c69 7374 2922 0a0a 466f 7220 7468 s(List)"..For th │ │ │ │ -0002a740: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -0002a750: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -0002a760: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -0002a770: 6520 684d 6170 733a 2068 4d61 7073 2c20 e hMaps: hMaps, │ │ │ │ -0002a780: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ -0002a790: 6420 6675 6e63 7469 6f6e 3a0a 284d 6163 d function:.(Mac │ │ │ │ -0002a7a0: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ -0002a7b0: 4675 6e63 7469 6f6e 2c2e 0a1f 0a46 696c Function,....Fil │ │ │ │ -0002a7c0: 653a 2043 6f6d 706c 6574 6549 6e74 6572 e: CompleteInter │ │ │ │ -0002a7d0: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ -0002a7e0: 6e73 2e69 6e66 6f2c 204e 6f64 653a 2048 ns.info, Node: H │ │ │ │ -0002a7f0: 6f6d 5769 7468 436f 6d70 6f6e 656e 7473 omWithComponents │ │ │ │ -0002a800: 2c20 4e65 7874 3a20 696e 6669 6e69 7465 , Next: infinite │ │ │ │ -0002a810: 4265 7474 694e 756d 6265 7273 2c20 5072 BettiNumbers, Pr │ │ │ │ -0002a820: 6576 3a20 684d 6170 732c 2055 703a 2054 ev: hMaps, Up: T │ │ │ │ -0002a830: 6f70 0a0a 486f 6d57 6974 6843 6f6d 706f op..HomWithCompo │ │ │ │ -0002a840: 6e65 6e74 7320 2d2d 2063 6f6d 7075 7465 nents -- compute │ │ │ │ -0002a850: 7320 486f 6d2c 2070 7265 7365 7276 696e s Hom, preservin │ │ │ │ -0002a860: 6720 6469 7265 6374 2073 756d 2069 6e66 g direct sum inf │ │ │ │ -0002a870: 6f72 6d61 7469 6f6e 0a2a 2a2a 2a2a 2a2a ormation.******* │ │ │ │ +0002a340: 2a2a 2a2a 2a0a 0a53 796e 6f70 7369 730a *****..Synopsis. │ │ │ │ +0002a350: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 5573 ========.. * Us │ │ │ │ +0002a360: 6167 653a 200a 2020 2020 2020 2020 684d age: . hM │ │ │ │ +0002a370: 6170 7320 3d20 684d 6170 7320 6d66 0a20 aps = hMaps mf. │ │ │ │ +0002a380: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ +0002a390: 202a 206d 662c 2061 202a 6e6f 7465 206c * mf, a *note l │ │ │ │ +0002a3a0: 6973 743a 2028 4d61 6361 756c 6179 3244 ist: (Macaulay2D │ │ │ │ +0002a3b0: 6f63 294c 6973 742c 2c20 6f75 7470 7574 oc)List,, output │ │ │ │ +0002a3c0: 206f 6620 6120 6d61 7472 6978 4661 6374 of a matrixFact │ │ │ │ +0002a3d0: 6f72 697a 6174 696f 6e0a 2020 2020 2020 orization. │ │ │ │ +0002a3e0: 2020 636f 6d70 7574 6174 696f 6e0a 2020 computation. │ │ │ │ +0002a3f0: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ +0002a400: 202a 2068 4d61 7073 2c20 6120 2a6e 6f74 * hMaps, a *not │ │ │ │ +0002a410: 6520 6c69 7374 3a20 284d 6163 6175 6c61 e list: (Macaula │ │ │ │ +0002a420: 7932 446f 6329 4c69 7374 2c2c 206c 6973 y2Doc)List,, lis │ │ │ │ +0002a430: 7420 6d61 7472 6963 6573 2024 685f 703a t matrices $h_p: │ │ │ │ +0002a440: 2041 5f30 2870 295c 746f 0a20 2020 2020 A_0(p)\to. │ │ │ │ +0002a450: 2020 2041 5f31 2870 2924 2e20 5468 6520 A_1(p)$. The │ │ │ │ +0002a460: 736f 7572 6365 7320 616e 6420 7461 7267 sources and targ │ │ │ │ +0002a470: 6574 7320 6f66 2074 6865 7365 206d 6170 ets of these map │ │ │ │ +0002a480: 7320 6861 7665 2074 6865 2063 6f6d 706f s have the compo │ │ │ │ +0002a490: 6e65 6e74 730a 2020 2020 2020 2020 425f nents. B_ │ │ │ │ +0002a4a0: 7328 7029 2e0a 0a44 6573 6372 6970 7469 s(p)...Descripti │ │ │ │ +0002a4b0: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +0002a4c0: 5365 6520 7468 6520 646f 6375 6d65 6e74 See the document │ │ │ │ +0002a4d0: 6174 696f 6e20 666f 7220 6d61 7472 6978 ation for matrix │ │ │ │ +0002a4e0: 4661 6374 6f72 697a 6174 696f 6e20 666f Factorization fo │ │ │ │ +0002a4f0: 7220 616e 2065 7861 6d70 6c65 2e0a 0a53 r an example...S │ │ │ │ +0002a500: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ +0002a510: 0a0a 2020 2a20 2a6e 6f74 6520 6d61 7472 .. * *note matr │ │ │ │ +0002a520: 6978 4661 6374 6f72 697a 6174 696f 6e3a ixFactorization: │ │ │ │ +0002a530: 206d 6174 7269 7846 6163 746f 7269 7a61 matrixFactoriza │ │ │ │ +0002a540: 7469 6f6e 2c20 2d2d 204d 6170 7320 696e tion, -- Maps in │ │ │ │ +0002a550: 2061 2068 6967 6865 720a 2020 2020 636f a higher. co │ │ │ │ +0002a560: 6469 6d65 6e73 696f 6e20 6d61 7472 6978 dimension matrix │ │ │ │ +0002a570: 2066 6163 746f 7269 7a61 7469 6f6e 0a20 factorization. │ │ │ │ +0002a580: 202a 202a 6e6f 7465 2064 4d61 7073 3a20 * *note dMaps: │ │ │ │ +0002a590: 644d 6170 732c 202d 2d20 6c69 7374 2074 dMaps, -- list t │ │ │ │ +0002a5a0: 6865 206d 6170 7320 2064 2870 293a 415f he maps d(p):A_ │ │ │ │ +0002a5b0: 3128 7029 2d2d 3e20 415f 3028 7029 2069 1(p)--> A_0(p) i │ │ │ │ +0002a5c0: 6e20 610a 2020 2020 6d61 7472 6978 4661 n a. matrixFa │ │ │ │ +0002a5d0: 6374 6f72 697a 6174 696f 6e0a 2020 2a20 ctorization. * │ │ │ │ +0002a5e0: 2a6e 6f74 6520 4252 616e 6b73 3a20 4252 *note BRanks: BR │ │ │ │ +0002a5f0: 616e 6b73 2c20 2d2d 2072 616e 6b73 206f anks, -- ranks o │ │ │ │ +0002a600: 6620 7468 6520 6d6f 6475 6c65 7320 425f f the modules B_ │ │ │ │ +0002a610: 6928 6429 2069 6e20 610a 2020 2020 6d61 i(d) in a. ma │ │ │ │ +0002a620: 7472 6978 4661 6374 6f72 697a 6174 696f trixFactorizatio │ │ │ │ +0002a630: 6e0a 2020 2a20 2a6e 6f74 6520 624d 6170 n. * *note bMap │ │ │ │ +0002a640: 733a 2062 4d61 7073 2c20 2d2d 206c 6973 s: bMaps, -- lis │ │ │ │ +0002a650: 7420 7468 6520 6d61 7073 2020 645f 703a t the maps d_p: │ │ │ │ +0002a660: 425f 3128 7029 2d2d 3e42 5f30 2870 2920 B_1(p)-->B_0(p) │ │ │ │ +0002a670: 696e 2061 0a20 2020 206d 6174 7269 7846 in a. matrixF │ │ │ │ +0002a680: 6163 746f 7269 7a61 7469 6f6e 0a20 202a actorization. * │ │ │ │ +0002a690: 202a 6e6f 7465 2070 7369 4d61 7073 3a20 *note psiMaps: │ │ │ │ +0002a6a0: 7073 694d 6170 732c 202d 2d20 6c69 7374 psiMaps, -- list │ │ │ │ +0002a6b0: 2074 6865 206d 6170 7320 2070 7369 2870 the maps psi(p │ │ │ │ +0002a6c0: 293a 2042 5f31 2870 2920 2d2d 3e20 415f ): B_1(p) --> A_ │ │ │ │ +0002a6d0: 3028 702d 3129 2069 6e20 610a 2020 2020 0(p-1) in a. │ │ │ │ +0002a6e0: 6d61 7472 6978 4661 6374 6f72 697a 6174 matrixFactorizat │ │ │ │ +0002a6f0: 696f 6e0a 0a57 6179 7320 746f 2075 7365 ion..Ways to use │ │ │ │ +0002a700: 2068 4d61 7073 3a0a 3d3d 3d3d 3d3d 3d3d hMaps:.======== │ │ │ │ +0002a710: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +0002a720: 2268 4d61 7073 284c 6973 7429 220a 0a46 "hMaps(List)"..F │ │ │ │ +0002a730: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +0002a740: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +0002a750: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +0002a760: 202a 6e6f 7465 2068 4d61 7073 3a20 684d *note hMaps: hM │ │ │ │ +0002a770: 6170 732c 2069 7320 6120 2a6e 6f74 6520 aps, is a *note │ │ │ │ +0002a780: 6d65 7468 6f64 2066 756e 6374 696f 6e3a method function: │ │ │ │ +0002a790: 0a28 4d61 6361 756c 6179 3244 6f63 294d .(Macaulay2Doc)M │ │ │ │ +0002a7a0: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ +0002a7b0: 1f0a 4669 6c65 3a20 436f 6d70 6c65 7465 ..File: Complete │ │ │ │ +0002a7c0: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ +0002a7d0: 6c75 7469 6f6e 732e 696e 666f 2c20 4e6f lutions.info, No │ │ │ │ +0002a7e0: 6465 3a20 486f 6d57 6974 6843 6f6d 706f de: HomWithCompo │ │ │ │ +0002a7f0: 6e65 6e74 732c 204e 6578 743a 2069 6e66 nents, Next: inf │ │ │ │ +0002a800: 696e 6974 6542 6574 7469 4e75 6d62 6572 initeBettiNumber │ │ │ │ +0002a810: 732c 2050 7265 763a 2068 4d61 7073 2c20 s, Prev: hMaps, │ │ │ │ +0002a820: 5570 3a20 546f 700a 0a48 6f6d 5769 7468 Up: Top..HomWith │ │ │ │ +0002a830: 436f 6d70 6f6e 656e 7473 202d 2d20 636f Components -- co │ │ │ │ +0002a840: 6d70 7574 6573 2048 6f6d 2c20 7072 6573 mputes Hom, pres │ │ │ │ +0002a850: 6572 7669 6e67 2064 6972 6563 7420 7375 erving direct su │ │ │ │ +0002a860: 6d20 696e 666f 726d 6174 696f 6e0a 2a2a m information.** │ │ │ │ +0002a870: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002a880: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002a890: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002a8a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002a8b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 *************..S │ │ │ │ -0002a8c0: 796e 6f70 7369 730a 3d3d 3d3d 3d3d 3d3d ynopsis.======== │ │ │ │ -0002a8d0: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ -0002a8e0: 2020 2020 2020 4820 3d20 486f 6d28 4d2c H = Hom(M, │ │ │ │ -0002a8f0: 4e29 0a20 202a 2049 6e70 7574 733a 0a20 N). * Inputs:. │ │ │ │ -0002a900: 2020 2020 202a 204d 2c20 6120 2a6e 6f74 * M, a *not │ │ │ │ -0002a910: 6520 6d6f 6475 6c65 3a20 284d 6163 6175 e module: (Macau │ │ │ │ -0002a920: 6c61 7932 446f 6329 4d6f 6475 6c65 2c2c lay2Doc)Module,, │ │ │ │ -0002a930: 200a 2020 2020 2020 2a20 4e2c 2061 202a . * N, a * │ │ │ │ -0002a940: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ -0002a950: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ -0002a960: 652c 2c20 0a20 202a 204f 7574 7075 7473 e,, . * Outputs │ │ │ │ -0002a970: 3a0a 2020 2020 2020 2a20 482c 2061 202a :. * H, a * │ │ │ │ -0002a980: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ -0002a990: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ -0002a9a0: 652c 2c20 0a0a 4465 7363 7269 7074 696f e,, ..Descriptio │ │ │ │ -0002a9b0: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a49 n.===========..I │ │ │ │ -0002a9c0: 6620 4d20 616e 642f 6f72 204e 2061 7265 f M and/or N are │ │ │ │ -0002a9d0: 2064 6972 6563 7420 7375 6d20 6d6f 6475 direct sum modu │ │ │ │ -0002a9e0: 6c65 7320 2869 7344 6972 6563 7453 756d les (isDirectSum │ │ │ │ -0002a9f0: 204d 203d 3d20 7472 7565 2920 7468 656e M == true) then │ │ │ │ -0002aa00: 2048 2069 7320 7468 650a 6469 7265 6374 H is the.direct │ │ │ │ -0002aa10: 2073 756d 206f 6620 7468 6520 486f 6d73 sum of the Homs │ │ │ │ -0002aa20: 2062 6574 7765 656e 2074 6865 2063 6f6d between the com │ │ │ │ -0002aa30: 706f 6e65 6e74 732e 2054 6869 7320 5348 ponents. This SH │ │ │ │ -0002aa40: 4f55 4c44 2062 6520 6275 696c 7420 696e OULD be built in │ │ │ │ -0002aa50: 746f 0a48 6f6d 284d 2c4e 292c 2062 7574 to.Hom(M,N), but │ │ │ │ -0002aa60: 2069 736e 2774 2061 7320 6f66 204d 322c isn't as of M2, │ │ │ │ -0002aa70: 2076 2e20 312e 370a 0a53 6565 2061 6c73 v. 1.7..See als │ │ │ │ -0002aa80: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ -0002aa90: 2a6e 6f74 6520 7465 6e73 6f72 5769 7468 *note tensorWith │ │ │ │ -0002aaa0: 436f 6d70 6f6e 656e 7473 3a20 7465 6e73 Components: tens │ │ │ │ -0002aab0: 6f72 5769 7468 436f 6d70 6f6e 656e 7473 orWithComponents │ │ │ │ -0002aac0: 2c20 2d2d 2066 6f72 6d73 2074 6865 2074 , -- forms the t │ │ │ │ -0002aad0: 656e 736f 720a 2020 2020 7072 6f64 7563 ensor. produc │ │ │ │ -0002aae0: 742c 2070 7265 7365 7276 696e 6720 6469 t, preserving di │ │ │ │ -0002aaf0: 7265 6374 2073 756d 2069 6e66 6f72 6d61 rect sum informa │ │ │ │ -0002ab00: 7469 6f6e 0a20 202a 202a 6e6f 7465 2064 tion. * *note d │ │ │ │ -0002ab10: 7561 6c57 6974 6843 6f6d 706f 6e65 6e74 ualWithComponent │ │ │ │ -0002ab20: 733a 2064 7561 6c57 6974 6843 6f6d 706f s: dualWithCompo │ │ │ │ -0002ab30: 6e65 6e74 732c 202d 2d20 6475 616c 206d nents, -- dual m │ │ │ │ -0002ab40: 6f64 756c 6520 7072 6573 6572 7669 6e67 odule preserving │ │ │ │ -0002ab50: 0a20 2020 2064 6972 6563 7420 7375 6d20 . direct sum │ │ │ │ -0002ab60: 696e 666f 726d 6174 696f 6e0a 0a57 6179 information..Way │ │ │ │ -0002ab70: 7320 746f 2075 7365 2048 6f6d 5769 7468 s to use HomWith │ │ │ │ -0002ab80: 436f 6d70 6f6e 656e 7473 3a0a 3d3d 3d3d Components:.==== │ │ │ │ -0002ab90: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0002aba0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -0002abb0: 2248 6f6d 5769 7468 436f 6d70 6f6e 656e "HomWithComponen │ │ │ │ -0002abc0: 7473 284d 6f64 756c 652c 4d6f 6475 6c65 ts(Module,Module │ │ │ │ -0002abd0: 2922 0a0a 466f 7220 7468 6520 7072 6f67 )"..For the prog │ │ │ │ -0002abe0: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ -0002abf0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ -0002ac00: 626a 6563 7420 2a6e 6f74 6520 486f 6d57 bject *note HomW │ │ │ │ -0002ac10: 6974 6843 6f6d 706f 6e65 6e74 733a 2048 ithComponents: H │ │ │ │ -0002ac20: 6f6d 5769 7468 436f 6d70 6f6e 656e 7473 omWithComponents │ │ │ │ -0002ac30: 2c20 6973 2061 202a 6e6f 7465 206d 6574 , is a *note met │ │ │ │ -0002ac40: 686f 640a 6675 6e63 7469 6f6e 3a20 284d hod.function: (M │ │ │ │ -0002ac50: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ -0002ac60: 6f64 4675 6e63 7469 6f6e 2c2e 0a1f 0a46 odFunction,....F │ │ │ │ -0002ac70: 696c 653a 2043 6f6d 706c 6574 6549 6e74 ile: CompleteInt │ │ │ │ -0002ac80: 6572 7365 6374 696f 6e52 6573 6f6c 7574 ersectionResolut │ │ │ │ -0002ac90: 696f 6e73 2e69 6e66 6f2c 204e 6f64 653a ions.info, Node: │ │ │ │ -0002aca0: 2069 6e66 696e 6974 6542 6574 7469 4e75 infiniteBettiNu │ │ │ │ -0002acb0: 6d62 6572 732c 204e 6578 743a 2069 734c mbers, Next: isL │ │ │ │ -0002acc0: 696e 6561 722c 2050 7265 763a 2048 6f6d inear, Prev: Hom │ │ │ │ -0002acd0: 5769 7468 436f 6d70 6f6e 656e 7473 2c20 WithComponents, │ │ │ │ -0002ace0: 5570 3a20 546f 700a 0a69 6e66 696e 6974 Up: Top..infinit │ │ │ │ -0002acf0: 6542 6574 7469 4e75 6d62 6572 7320 2d2d eBettiNumbers -- │ │ │ │ -0002ad00: 2062 6574 7469 206e 756d 6265 7273 206f betti numbers o │ │ │ │ -0002ad10: 6620 6669 6e69 7465 2072 6573 6f6c 7574 f finite resolut │ │ │ │ -0002ad20: 696f 6e20 636f 6d70 7574 6564 2066 726f ion computed fro │ │ │ │ -0002ad30: 6d20 6120 6d61 7472 6978 2066 6163 746f m a matrix facto │ │ │ │ -0002ad40: 7269 7a61 7469 6f6e 0a2a 2a2a 2a2a 2a2a rization.******* │ │ │ │ +0002a8b0: 2a2a 0a0a 5379 6e6f 7073 6973 0a3d 3d3d **..Synopsis.=== │ │ │ │ +0002a8c0: 3d3d 3d3d 3d0a 0a20 202a 2055 7361 6765 =====.. * Usage │ │ │ │ +0002a8d0: 3a20 0a20 2020 2020 2020 2048 203d 2048 : . H = H │ │ │ │ +0002a8e0: 6f6d 284d 2c4e 290a 2020 2a20 496e 7075 om(M,N). * Inpu │ │ │ │ +0002a8f0: 7473 3a0a 2020 2020 2020 2a20 4d2c 2061 ts:. * M, a │ │ │ │ +0002a900: 202a 6e6f 7465 206d 6f64 756c 653a 2028 *note module: ( │ │ │ │ +0002a910: 4d61 6361 756c 6179 3244 6f63 294d 6f64 Macaulay2Doc)Mod │ │ │ │ +0002a920: 756c 652c 2c20 0a20 2020 2020 202a 204e ule,, . * N │ │ │ │ +0002a930: 2c20 6120 2a6e 6f74 6520 6d6f 6475 6c65 , a *note module │ │ │ │ +0002a940: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0002a950: 4d6f 6475 6c65 2c2c 200a 2020 2a20 4f75 Module,, . * Ou │ │ │ │ +0002a960: 7470 7574 733a 0a20 2020 2020 202a 2048 tputs:. * H │ │ │ │ +0002a970: 2c20 6120 2a6e 6f74 6520 6d6f 6475 6c65 , a *note module │ │ │ │ +0002a980: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0002a990: 4d6f 6475 6c65 2c2c 200a 0a44 6573 6372 Module,, ..Descr │ │ │ │ +0002a9a0: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ +0002a9b0: 3d3d 0a0a 4966 204d 2061 6e64 2f6f 7220 ==..If M and/or │ │ │ │ +0002a9c0: 4e20 6172 6520 6469 7265 6374 2073 756d N are direct sum │ │ │ │ +0002a9d0: 206d 6f64 756c 6573 2028 6973 4469 7265 modules (isDire │ │ │ │ +0002a9e0: 6374 5375 6d20 4d20 3d3d 2074 7275 6529 ctSum M == true) │ │ │ │ +0002a9f0: 2074 6865 6e20 4820 6973 2074 6865 0a64 then H is the.d │ │ │ │ +0002aa00: 6972 6563 7420 7375 6d20 6f66 2074 6865 irect sum of the │ │ │ │ +0002aa10: 2048 6f6d 7320 6265 7477 6565 6e20 7468 Homs between th │ │ │ │ +0002aa20: 6520 636f 6d70 6f6e 656e 7473 2e20 5468 e components. Th │ │ │ │ +0002aa30: 6973 2053 484f 554c 4420 6265 2062 7569 is SHOULD be bui │ │ │ │ +0002aa40: 6c74 2069 6e74 6f0a 486f 6d28 4d2c 4e29 lt into.Hom(M,N) │ │ │ │ +0002aa50: 2c20 6275 7420 6973 6e27 7420 6173 206f , but isn't as o │ │ │ │ +0002aa60: 6620 4d32 2c20 762e 2031 2e37 0a0a 5365 f M2, v. 1.7..Se │ │ │ │ +0002aa70: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +0002aa80: 0a20 202a 202a 6e6f 7465 2074 656e 736f . * *note tenso │ │ │ │ +0002aa90: 7257 6974 6843 6f6d 706f 6e65 6e74 733a rWithComponents: │ │ │ │ +0002aaa0: 2074 656e 736f 7257 6974 6843 6f6d 706f tensorWithCompo │ │ │ │ +0002aab0: 6e65 6e74 732c 202d 2d20 666f 726d 7320 nents, -- forms │ │ │ │ +0002aac0: 7468 6520 7465 6e73 6f72 0a20 2020 2070 the tensor. p │ │ │ │ +0002aad0: 726f 6475 6374 2c20 7072 6573 6572 7669 roduct, preservi │ │ │ │ +0002aae0: 6e67 2064 6972 6563 7420 7375 6d20 696e ng direct sum in │ │ │ │ +0002aaf0: 666f 726d 6174 696f 6e0a 2020 2a20 2a6e formation. * *n │ │ │ │ +0002ab00: 6f74 6520 6475 616c 5769 7468 436f 6d70 ote dualWithComp │ │ │ │ +0002ab10: 6f6e 656e 7473 3a20 6475 616c 5769 7468 onents: dualWith │ │ │ │ +0002ab20: 436f 6d70 6f6e 656e 7473 2c20 2d2d 2064 Components, -- d │ │ │ │ +0002ab30: 7561 6c20 6d6f 6475 6c65 2070 7265 7365 ual module prese │ │ │ │ +0002ab40: 7276 696e 670a 2020 2020 6469 7265 6374 rving. direct │ │ │ │ +0002ab50: 2073 756d 2069 6e66 6f72 6d61 7469 6f6e sum information │ │ │ │ +0002ab60: 0a0a 5761 7973 2074 6f20 7573 6520 486f ..Ways to use Ho │ │ │ │ +0002ab70: 6d57 6974 6843 6f6d 706f 6e65 6e74 733a mWithComponents: │ │ │ │ +0002ab80: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +0002ab90: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0002aba0: 0a20 202a 2022 486f 6d57 6974 6843 6f6d . * "HomWithCom │ │ │ │ +0002abb0: 706f 6e65 6e74 7328 4d6f 6475 6c65 2c4d ponents(Module,M │ │ │ │ +0002abc0: 6f64 756c 6529 220a 0a46 6f72 2074 6865 odule)"..For the │ │ │ │ +0002abd0: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ +0002abe0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +0002abf0: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ +0002ac00: 2048 6f6d 5769 7468 436f 6d70 6f6e 656e HomWithComponen │ │ │ │ +0002ac10: 7473 3a20 486f 6d57 6974 6843 6f6d 706f ts: HomWithCompo │ │ │ │ +0002ac20: 6e65 6e74 732c 2069 7320 6120 2a6e 6f74 nents, is a *not │ │ │ │ +0002ac30: 6520 6d65 7468 6f64 0a66 756e 6374 696f e method.functio │ │ │ │ +0002ac40: 6e3a 2028 4d61 6361 756c 6179 3244 6f63 n: (Macaulay2Doc │ │ │ │ +0002ac50: 294d 6574 686f 6446 756e 6374 696f 6e2c )MethodFunction, │ │ │ │ +0002ac60: 2e0a 1f0a 4669 6c65 3a20 436f 6d70 6c65 ....File: Comple │ │ │ │ +0002ac70: 7465 496e 7465 7273 6563 7469 6f6e 5265 teIntersectionRe │ │ │ │ +0002ac80: 736f 6c75 7469 6f6e 732e 696e 666f 2c20 solutions.info, │ │ │ │ +0002ac90: 4e6f 6465 3a20 696e 6669 6e69 7465 4265 Node: infiniteBe │ │ │ │ +0002aca0: 7474 694e 756d 6265 7273 2c20 4e65 7874 ttiNumbers, Next │ │ │ │ +0002acb0: 3a20 6973 4c69 6e65 6172 2c20 5072 6576 : isLinear, Prev │ │ │ │ +0002acc0: 3a20 486f 6d57 6974 6843 6f6d 706f 6e65 : HomWithCompone │ │ │ │ +0002acd0: 6e74 732c 2055 703a 2054 6f70 0a0a 696e nts, Up: Top..in │ │ │ │ +0002ace0: 6669 6e69 7465 4265 7474 694e 756d 6265 finiteBettiNumbe │ │ │ │ +0002acf0: 7273 202d 2d20 6265 7474 6920 6e75 6d62 rs -- betti numb │ │ │ │ +0002ad00: 6572 7320 6f66 2066 696e 6974 6520 7265 ers of finite re │ │ │ │ +0002ad10: 736f 6c75 7469 6f6e 2063 6f6d 7075 7465 solution compute │ │ │ │ +0002ad20: 6420 6672 6f6d 2061 206d 6174 7269 7820 d from a matrix │ │ │ │ +0002ad30: 6661 6374 6f72 697a 6174 696f 6e0a 2a2a factorization.** │ │ │ │ +0002ad40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002ad50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002ad60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002ad70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002ad80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002ad90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002ada0: 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 ********..Synops │ │ │ │ -0002adb0: 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a is.========.. * │ │ │ │ -0002adc0: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -0002add0: 204c 203d 2066 696e 6974 6542 6574 7469 L = finiteBetti │ │ │ │ -0002ade0: 4e75 6d62 6572 7320 284d 462c 6c65 6e29 Numbers (MF,len) │ │ │ │ -0002adf0: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ -0002ae00: 2020 202a 204d 462c 2061 202a 6e6f 7465 * MF, a *note │ │ │ │ -0002ae10: 206c 6973 743a 2028 4d61 6361 756c 6179 list: (Macaulay │ │ │ │ -0002ae20: 3244 6f63 294c 6973 742c 2c20 4c69 7374 2Doc)List,, List │ │ │ │ -0002ae30: 206f 6620 4861 7368 5461 626c 6573 2061 of HashTables a │ │ │ │ -0002ae40: 7320 636f 6d70 7574 6564 0a20 2020 2020 s computed. │ │ │ │ -0002ae50: 2020 2062 7920 226d 6174 7269 7846 6163 by "matrixFac │ │ │ │ -0002ae60: 746f 7269 7a61 7469 6f6e 220a 2020 2020 torization". │ │ │ │ -0002ae70: 2020 2a20 6c65 6e2c 2061 6e20 2a6e 6f74 * len, an *not │ │ │ │ -0002ae80: 6520 696e 7465 6765 723a 2028 4d61 6361 e integer: (Maca │ │ │ │ -0002ae90: 756c 6179 3244 6f63 295a 5a2c 2c20 6c65 ulay2Doc)ZZ,, le │ │ │ │ -0002aea0: 6e67 7468 206f 6620 6265 7474 6920 6e75 ngth of betti nu │ │ │ │ -0002aeb0: 6d62 6572 0a20 2020 2020 2020 2073 6571 mber. seq │ │ │ │ -0002aec0: 7565 6e63 6520 746f 2070 726f 6475 6365 uence to produce │ │ │ │ -0002aed0: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ -0002aee0: 2020 2020 2a20 4c2c 2061 202a 6e6f 7465 * L, a *note │ │ │ │ -0002aef0: 206c 6973 743a 2028 4d61 6361 756c 6179 list: (Macaulay │ │ │ │ -0002af00: 3244 6f63 294c 6973 742c 2c20 4c69 7374 2Doc)List,, List │ │ │ │ -0002af10: 206f 6620 6265 7474 6920 6e75 6d62 6572 of betti number │ │ │ │ -0002af20: 730a 0a44 6573 6372 6970 7469 6f6e 0a3d s..Description.= │ │ │ │ -0002af30: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5573 6573 ==========..Uses │ │ │ │ -0002af40: 2074 6865 2072 616e 6b73 206f 6620 7468 the ranks of th │ │ │ │ -0002af50: 6520 4220 6d61 7472 6963 6573 2069 6e20 e B matrices in │ │ │ │ -0002af60: 6120 6d61 7472 6978 2066 6163 746f 7269 a matrix factori │ │ │ │ -0002af70: 7a61 7469 6f6e 2066 6f72 2061 206d 6f64 zation for a mod │ │ │ │ -0002af80: 756c 6520 4d20 6f76 6572 0a53 2f28 665f ule M over.S/(f_ │ │ │ │ -0002af90: 312c 2e2e 2c66 5f63 2920 746f 2063 6f6d 1,..,f_c) to com │ │ │ │ -0002afa0: 7075 7465 2074 6865 2062 6574 7469 206e pute the betti n │ │ │ │ -0002afb0: 756d 6265 7273 206f 6620 7468 6520 6d69 umbers of the mi │ │ │ │ -0002afc0: 6e69 6d61 6c20 7265 736f 6c75 7469 6f6e nimal resolution │ │ │ │ -0002afd0: 206f 6620 4d20 6f76 6572 0a52 2c20 7768 of M over.R, wh │ │ │ │ -0002afe0: 6963 6820 6973 2074 6865 2073 756d 206f ich is the sum o │ │ │ │ -0002aff0: 6620 7468 6520 6469 7669 6465 6420 706f f the divided po │ │ │ │ -0002b000: 7765 7220 616c 6765 6272 6173 206f 6e20 wer algebras on │ │ │ │ -0002b010: 632d 6a2b 3120 7661 7269 6162 6c65 7320 c-j+1 variables │ │ │ │ -0002b020: 7465 6e73 6f72 6564 0a77 6974 6820 4228 tensored.with B( │ │ │ │ -0002b030: 6a29 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d j)...+---------- │ │ │ │ +0002ad90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 *************..S │ │ │ │ +0002ada0: 796e 6f70 7369 730a 3d3d 3d3d 3d3d 3d3d ynopsis.======== │ │ │ │ +0002adb0: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ +0002adc0: 2020 2020 2020 4c20 3d20 6669 6e69 7465 L = finite │ │ │ │ +0002add0: 4265 7474 694e 756d 6265 7273 2028 4d46 BettiNumbers (MF │ │ │ │ +0002ade0: 2c6c 656e 290a 2020 2a20 496e 7075 7473 ,len). * Inputs │ │ │ │ +0002adf0: 3a0a 2020 2020 2020 2a20 4d46 2c20 6120 :. * MF, a │ │ │ │ +0002ae00: 2a6e 6f74 6520 6c69 7374 3a20 284d 6163 *note list: (Mac │ │ │ │ +0002ae10: 6175 6c61 7932 446f 6329 4c69 7374 2c2c aulay2Doc)List,, │ │ │ │ +0002ae20: 204c 6973 7420 6f66 2048 6173 6854 6162 List of HashTab │ │ │ │ +0002ae30: 6c65 7320 6173 2063 6f6d 7075 7465 640a les as computed. │ │ │ │ +0002ae40: 2020 2020 2020 2020 6279 2022 6d61 7472 by "matr │ │ │ │ +0002ae50: 6978 4661 6374 6f72 697a 6174 696f 6e22 ixFactorization" │ │ │ │ +0002ae60: 0a20 2020 2020 202a 206c 656e 2c20 616e . * len, an │ │ │ │ +0002ae70: 202a 6e6f 7465 2069 6e74 6567 6572 3a20 *note integer: │ │ │ │ +0002ae80: 284d 6163 6175 6c61 7932 446f 6329 5a5a (Macaulay2Doc)ZZ │ │ │ │ +0002ae90: 2c2c 206c 656e 6774 6820 6f66 2062 6574 ,, length of bet │ │ │ │ +0002aea0: 7469 206e 756d 6265 720a 2020 2020 2020 ti number. │ │ │ │ +0002aeb0: 2020 7365 7175 656e 6365 2074 6f20 7072 sequence to pr │ │ │ │ +0002aec0: 6f64 7563 650a 2020 2a20 4f75 7470 7574 oduce. * Output │ │ │ │ +0002aed0: 733a 0a20 2020 2020 202a 204c 2c20 6120 s:. * L, a │ │ │ │ +0002aee0: 2a6e 6f74 6520 6c69 7374 3a20 284d 6163 *note list: (Mac │ │ │ │ +0002aef0: 6175 6c61 7932 446f 6329 4c69 7374 2c2c aulay2Doc)List,, │ │ │ │ +0002af00: 204c 6973 7420 6f66 2062 6574 7469 206e List of betti n │ │ │ │ +0002af10: 756d 6265 7273 0a0a 4465 7363 7269 7074 umbers..Descript │ │ │ │ +0002af20: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ +0002af30: 0a55 7365 7320 7468 6520 7261 6e6b 7320 .Uses the ranks │ │ │ │ +0002af40: 6f66 2074 6865 2042 206d 6174 7269 6365 of the B matrice │ │ │ │ +0002af50: 7320 696e 2061 206d 6174 7269 7820 6661 s in a matrix fa │ │ │ │ +0002af60: 6374 6f72 697a 6174 696f 6e20 666f 7220 ctorization for │ │ │ │ +0002af70: 6120 6d6f 6475 6c65 204d 206f 7665 720a a module M over. │ │ │ │ +0002af80: 532f 2866 5f31 2c2e 2e2c 665f 6329 2074 S/(f_1,..,f_c) t │ │ │ │ +0002af90: 6f20 636f 6d70 7574 6520 7468 6520 6265 o compute the be │ │ │ │ +0002afa0: 7474 6920 6e75 6d62 6572 7320 6f66 2074 tti numbers of t │ │ │ │ +0002afb0: 6865 206d 696e 696d 616c 2072 6573 6f6c he minimal resol │ │ │ │ +0002afc0: 7574 696f 6e20 6f66 204d 206f 7665 720a ution of M over. │ │ │ │ +0002afd0: 522c 2077 6869 6368 2069 7320 7468 6520 R, which is the │ │ │ │ +0002afe0: 7375 6d20 6f66 2074 6865 2064 6976 6964 sum of the divid │ │ │ │ +0002aff0: 6564 2070 6f77 6572 2061 6c67 6562 7261 ed power algebra │ │ │ │ +0002b000: 7320 6f6e 2063 2d6a 2b31 2076 6172 6961 s on c-j+1 varia │ │ │ │ +0002b010: 626c 6573 2074 656e 736f 7265 640a 7769 bles tensored.wi │ │ │ │ +0002b020: 7468 2042 286a 292e 0a0a 2b2d 2d2d 2d2d th B(j)...+----- │ │ │ │ +0002b030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0002b060: 6931 203a 2073 6574 5261 6e64 6f6d 5365 i1 : setRandomSe │ │ │ │ -0002b070: 6564 2030 2020 2020 2020 2020 2020 2020 ed 0 │ │ │ │ -0002b080: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002b050: 2d2d 2b0a 7c69 3120 3a20 7365 7452 616e --+.|i1 : setRan │ │ │ │ +0002b060: 646f 6d53 6565 6420 3020 2020 2020 2020 domSeed 0 │ │ │ │ +0002b070: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002b080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b0b0: 207c 0a7c 6f31 203d 2030 2020 2020 2020 |.|o1 = 0 │ │ │ │ +0002b0a0: 2020 2020 2020 7c0a 7c6f 3120 3d20 3020 |.|o1 = 0 │ │ │ │ +0002b0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b0d0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0002b0d0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0002b0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b100: 2d2d 2d2d 2d2b 0a7c 6932 203a 206b 6b20 -----+.|i2 : kk │ │ │ │ -0002b110: 3d20 5a5a 2f31 3031 2020 2020 2020 2020 = ZZ/101 │ │ │ │ -0002b120: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b130: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0002b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b150: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ -0002b160: 206b 6b20 2020 2020 2020 2020 2020 2020 kk │ │ │ │ -0002b170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b180: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ +0002b100: 3a20 6b6b 203d 205a 5a2f 3130 3120 2020 : kk = ZZ/101 │ │ │ │ +0002b110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b120: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b140: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b150: 7c6f 3220 3d20 6b6b 2020 2020 2020 2020 |o2 = kk │ │ │ │ +0002b160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b170: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002b180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b1a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0002b1b0: 6f32 203a 2051 756f 7469 656e 7452 696e o2 : QuotientRin │ │ │ │ -0002b1c0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ -0002b1d0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002b1a0: 2020 7c0a 7c6f 3220 3a20 5175 6f74 6965 |.|o2 : Quotie │ │ │ │ +0002b1b0: 6e74 5269 6e67 2020 2020 2020 2020 2020 ntRing │ │ │ │ +0002b1c0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002b1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b200: 2d2b 0a7c 6933 203a 2053 203d 206b 6b5b -+.|i3 : S = kk[ │ │ │ │ -0002b210: 612c 622c 752c 765d 2020 2020 2020 2020 a,b,u,v] │ │ │ │ -0002b220: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002b1f0: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 5320 ------+.|i3 : S │ │ │ │ +0002b200: 3d20 6b6b 5b61 2c62 2c75 2c76 5d20 2020 = kk[a,b,u,v] │ │ │ │ +0002b210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b220: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002b230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b250: 2020 2020 207c 0a7c 6f33 203d 2053 2020 |.|o3 = S │ │ │ │ +0002b240: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ +0002b250: 3d20 5320 2020 2020 2020 2020 2020 2020 = S │ │ │ │ 0002b260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b270: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b280: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0002b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b2a0: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ -0002b2b0: 2050 6f6c 796e 6f6d 6961 6c52 696e 6720 PolynomialRing │ │ │ │ -0002b2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b2d0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0002b270: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b290: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b2a0: 7c6f 3320 3a20 506f 6c79 6e6f 6d69 616c |o3 : Polynomial │ │ │ │ +0002b2b0: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ +0002b2c0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0002b2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0002b300: 6934 203a 2066 6620 3d20 6d61 7472 6978 i4 : ff = matrix │ │ │ │ -0002b310: 2261 752c 6276 2220 2020 2020 2020 2020 "au,bv" │ │ │ │ -0002b320: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002b2f0: 2d2d 2b0a 7c69 3420 3a20 6666 203d 206d --+.|i4 : ff = m │ │ │ │ +0002b300: 6174 7269 7822 6175 2c62 7622 2020 2020 atrix"au,bv" │ │ │ │ +0002b310: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002b320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b350: 207c 0a7c 6f34 203d 207c 2061 7520 6276 |.|o4 = | au bv │ │ │ │ -0002b360: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0002b370: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002b340: 2020 2020 2020 7c0a 7c6f 3420 3d20 7c20 |.|o4 = | │ │ │ │ +0002b350: 6175 2062 7620 7c20 2020 2020 2020 2020 au bv | │ │ │ │ +0002b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b370: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002b380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b3a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002b3b0: 2020 2020 2031 2020 2020 2020 3220 2020 1 2 │ │ │ │ -0002b3c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b3d0: 0a7c 6f34 203a 204d 6174 7269 7820 5320 .|o4 : Matrix S │ │ │ │ -0002b3e0: 203c 2d2d 2053 2020 2020 2020 2020 2020 <-- S │ │ │ │ -0002b3f0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0002b390: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002b3a0: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ +0002b3b0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002b3c0: 2020 2020 7c0a 7c6f 3420 3a20 4d61 7472 |.|o4 : Matr │ │ │ │ +0002b3d0: 6978 2053 2020 3c2d 2d20 5320 2020 2020 ix S <-- S │ │ │ │ +0002b3e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b3f0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0002b400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b420: 2d2d 2d2b 0a7c 6935 203a 2052 203d 2053 ---+.|i5 : R = S │ │ │ │ -0002b430: 2f69 6465 616c 2066 6620 2020 2020 2020 /ideal ff │ │ │ │ -0002b440: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002b410: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 --------+.|i5 : │ │ │ │ +0002b420: 5220 3d20 532f 6964 6561 6c20 6666 2020 R = S/ideal ff │ │ │ │ +0002b430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b440: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002b450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b470: 2020 2020 2020 207c 0a7c 6f35 203d 2052 |.|o5 = R │ │ │ │ +0002b460: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002b470: 3520 3d20 5220 2020 2020 2020 2020 2020 5 = R │ │ │ │ 0002b480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b4a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b490: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b4c0: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ -0002b4d0: 203a 2051 756f 7469 656e 7452 696e 6720 : QuotientRing │ │ │ │ -0002b4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b4f0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002b4c0: 7c0a 7c6f 3520 3a20 5175 6f74 6965 6e74 |.|o5 : Quotient │ │ │ │ +0002b4d0: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ +0002b4e0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002b4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002b520: 0a7c 6936 203a 204d 3020 3d20 525e 312f .|i6 : M0 = R^1/ │ │ │ │ -0002b530: 6964 6561 6c22 612c 6222 2020 2020 2020 ideal"a,b" │ │ │ │ -0002b540: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0002b510: 2d2d 2d2d 2b0a 7c69 3620 3a20 4d30 203d ----+.|i6 : M0 = │ │ │ │ +0002b520: 2052 5e31 2f69 6465 616c 2261 2c62 2220 R^1/ideal"a,b" │ │ │ │ +0002b530: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b540: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002b550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b570: 2020 207c 0a7c 6f36 203d 2063 6f6b 6572 |.|o6 = coker │ │ │ │ -0002b580: 6e65 6c20 7c20 6120 6220 7c20 2020 2020 nel | a b | │ │ │ │ -0002b590: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002b560: 2020 2020 2020 2020 7c0a 7c6f 3620 3d20 |.|o6 = │ │ │ │ +0002b570: 636f 6b65 726e 656c 207c 2061 2062 207c cokernel | a b | │ │ │ │ +0002b580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b590: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002b5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b5c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0002b5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b5e0: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ -0002b5f0: 207c 0a7c 6f36 203a 2052 2d6d 6f64 756c |.|o6 : R-modul │ │ │ │ -0002b600: 652c 2071 756f 7469 656e 7420 6f66 2052 e, quotient of R │ │ │ │ -0002b610: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0002b5b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002b5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b5d0: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ +0002b5e0: 2020 2020 2020 7c0a 7c6f 3620 3a20 522d |.|o6 : R- │ │ │ │ +0002b5f0: 6d6f 6475 6c65 2c20 7175 6f74 6965 6e74 module, quotient │ │ │ │ +0002b600: 206f 6620 5220 2020 2020 2020 2020 2020 of R │ │ │ │ +0002b610: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0002b620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b640: 2d2d 2d2d 2d2b 0a7c 6937 203a 2046 203d -----+.|i7 : F = │ │ │ │ -0002b650: 2072 6573 284d 302c 204c 656e 6774 684c res(M0, LengthL │ │ │ │ -0002b660: 696d 6974 203d 3e33 2920 2020 2020 207c imit =>3) | │ │ │ │ -0002b670: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0002b680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b690: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0002b6a0: 2020 3120 2020 2020 2032 2020 2020 2020 1 2 │ │ │ │ -0002b6b0: 3320 2020 2020 2034 2020 2020 2020 2020 3 4 │ │ │ │ -0002b6c0: 2020 207c 0a7c 6f37 203d 2052 2020 3c2d |.|o7 = R <- │ │ │ │ -0002b6d0: 2d20 5220 203c 2d2d 2052 2020 3c2d 2d20 - R <-- R <-- │ │ │ │ -0002b6e0: 5220 2020 2020 2020 2020 2020 207c 0a7c R |.| │ │ │ │ +0002b630: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 ----------+.|i7 │ │ │ │ +0002b640: 3a20 4620 3d20 7265 7328 4d30 2c20 4c65 : F = res(M0, Le │ │ │ │ +0002b650: 6e67 7468 4c69 6d69 7420 3d3e 3329 2020 ngthLimit =>3) │ │ │ │ +0002b660: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b680: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b690: 7c20 2020 2020 2031 2020 2020 2020 3220 | 1 2 │ │ │ │ +0002b6a0: 2020 2020 2033 2020 2020 2020 3420 2020 3 4 │ │ │ │ +0002b6b0: 2020 2020 2020 2020 7c0a 7c6f 3720 3d20 |.|o7 = │ │ │ │ +0002b6c0: 5220 203c 2d2d 2052 2020 3c2d 2d20 5220 R <-- R <-- R │ │ │ │ +0002b6d0: 203c 2d2d 2052 2020 2020 2020 2020 2020 <-- R │ │ │ │ +0002b6e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002b6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b710: 2020 2020 2020 207c 0a7c 2020 2020 2030 |.| 0 │ │ │ │ -0002b720: 2020 2020 2020 3120 2020 2020 2032 2020 1 2 │ │ │ │ -0002b730: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ -0002b740: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b700: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002b710: 2020 2020 3020 2020 2020 2031 2020 2020 0 1 │ │ │ │ +0002b720: 2020 3220 2020 2020 2033 2020 2020 2020 2 3 │ │ │ │ +0002b730: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002b740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b760: 2020 2020 2020 2020 2020 207c 0a7c 6f37 |.|o7 │ │ │ │ -0002b770: 203a 2043 6861 696e 436f 6d70 6c65 7820 : ChainComplex │ │ │ │ -0002b780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b790: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002b760: 7c0a 7c6f 3720 3a20 4368 6169 6e43 6f6d |.|o7 : ChainCom │ │ │ │ +0002b770: 706c 6578 2020 2020 2020 2020 2020 2020 plex │ │ │ │ +0002b780: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002b790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002b7c0: 0a7c 6938 203a 204d 203d 2063 6f6b 6572 .|i8 : M = coker │ │ │ │ -0002b7d0: 2046 2e64 645f 333b 2020 2020 2020 2020 F.dd_3; │ │ │ │ -0002b7e0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0002b7b0: 2d2d 2d2d 2b0a 7c69 3820 3a20 4d20 3d20 ----+.|i8 : M = │ │ │ │ +0002b7c0: 636f 6b65 7220 462e 6464 5f33 3b20 2020 coker F.dd_3; │ │ │ │ +0002b7d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b7e0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0002b7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b810: 2d2d 2d2b 0a7c 6939 203a 204d 4620 3d20 ---+.|i9 : MF = │ │ │ │ -0002b820: 6d61 7472 6978 4661 6374 6f72 697a 6174 matrixFactorizat │ │ │ │ -0002b830: 696f 6e28 6666 2c4d 293b 2020 207c 0a2b ion(ff,M); |.+ │ │ │ │ +0002b800: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3920 3a20 --------+.|i9 : │ │ │ │ +0002b810: 4d46 203d 206d 6174 7269 7846 6163 746f MF = matrixFacto │ │ │ │ +0002b820: 7269 7a61 7469 6f6e 2866 662c 4d29 3b20 rization(ff,M); │ │ │ │ +0002b830: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 0002b840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b860: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 -------+.|i10 : │ │ │ │ -0002b870: 6265 7474 6920 7265 7320 7075 7368 466f betti res pushFo │ │ │ │ -0002b880: 7277 6172 6428 6d61 7028 522c 5329 2c4d rward(map(R,S),M │ │ │ │ -0002b890: 297c 0a7c 2020 2020 2020 2020 2020 2020 )|.| │ │ │ │ +0002b850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0002b860: 3130 203a 2062 6574 7469 2072 6573 2070 10 : betti res p │ │ │ │ +0002b870: 7573 6846 6f72 7761 7264 286d 6170 2852 ushForward(map(R │ │ │ │ +0002b880: 2c53 292c 4d29 7c0a 7c20 2020 2020 2020 ,S),M)|.| │ │ │ │ +0002b890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b8b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002b8c0: 2020 2020 2020 2020 2020 2030 2031 2032 0 1 2 │ │ │ │ -0002b8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b8e0: 2020 2020 207c 0a7c 6f31 3020 3d20 746f |.|o10 = to │ │ │ │ -0002b8f0: 7461 6c3a 2033 2035 2032 2020 2020 2020 tal: 3 5 2 │ │ │ │ -0002b900: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b910: 0a7c 2020 2020 2020 2020 2020 323a 2033 .| 2: 3 │ │ │ │ -0002b920: 2034 202e 2020 2020 2020 2020 2020 2020 4 . │ │ │ │ -0002b930: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0002b940: 2020 2020 2020 333a 202e 2031 2032 2020 3: . 1 2 │ │ │ │ -0002b950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b960: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b8b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b8c0: 3020 3120 3220 2020 2020 2020 2020 2020 0 1 2 │ │ │ │ +0002b8d0: 2020 2020 2020 2020 2020 7c0a 7c6f 3130 |.|o10 │ │ │ │ +0002b8e0: 203d 2074 6f74 616c 3a20 3320 3520 3220 = total: 3 5 2 │ │ │ │ +0002b8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b900: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b910: 2032 3a20 3320 3420 2e20 2020 2020 2020 2: 3 4 . │ │ │ │ +0002b920: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b930: 7c20 2020 2020 2020 2020 2033 3a20 2e20 | 3: . │ │ │ │ +0002b940: 3120 3220 2020 2020 2020 2020 2020 2020 1 2 │ │ │ │ +0002b950: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002b960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b980: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0002b990: 6f31 3020 3a20 4265 7474 6954 616c 6c79 o10 : BettiTally │ │ │ │ -0002b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b9b0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002b980: 2020 7c0a 7c6f 3130 203a 2042 6574 7469 |.|o10 : Betti │ │ │ │ +0002b990: 5461 6c6c 7920 2020 2020 2020 2020 2020 Tally │ │ │ │ +0002b9a0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002b9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b9e0: 2d2b 0a7c 6931 3120 3a20 6669 6e69 7465 -+.|i11 : finite │ │ │ │ -0002b9f0: 4265 7474 694e 756d 6265 7273 204d 4620 BettiNumbers MF │ │ │ │ -0002ba00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002b9d0: 2d2d 2d2d 2d2d 2b0a 7c69 3131 203a 2066 ------+.|i11 : f │ │ │ │ +0002b9e0: 696e 6974 6542 6574 7469 4e75 6d62 6572 initeBettiNumber │ │ │ │ +0002b9f0: 7320 4d46 2020 2020 2020 2020 2020 2020 s MF │ │ │ │ +0002ba00: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002ba10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba30: 2020 2020 207c 0a7c 6f31 3120 3d20 7b33 |.|o11 = {3 │ │ │ │ -0002ba40: 2c20 352c 2032 7d20 2020 2020 2020 2020 , 5, 2} │ │ │ │ -0002ba50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002ba60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0002ba70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba80: 2020 2020 2020 2020 207c 0a7c 6f31 3120 |.|o11 │ │ │ │ -0002ba90: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ -0002baa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bab0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0002ba20: 2020 2020 2020 2020 2020 7c0a 7c6f 3131 |.|o11 │ │ │ │ +0002ba30: 203d 207b 332c 2035 2c20 327d 2020 2020 = {3, 5, 2} │ │ │ │ +0002ba40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ba50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002ba60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ba70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002ba80: 7c6f 3131 203a 204c 6973 7420 2020 2020 |o11 : List │ │ │ │ +0002ba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002baa0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0002bab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0002bae0: 6931 3220 3a20 696e 6669 6e69 7465 4265 i12 : infiniteBe │ │ │ │ -0002baf0: 7474 694e 756d 6265 7273 284d 462c 3529 ttiNumbers(MF,5) │ │ │ │ -0002bb00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002bad0: 2d2d 2b0a 7c69 3132 203a 2069 6e66 696e --+.|i12 : infin │ │ │ │ +0002bae0: 6974 6542 6574 7469 4e75 6d62 6572 7328 iteBettiNumbers( │ │ │ │ +0002baf0: 4d46 2c35 2920 2020 2020 2020 7c0a 7c20 MF,5) |.| │ │ │ │ +0002bb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb30: 207c 0a7c 6f31 3220 3d20 7b33 2c20 342c |.|o12 = {3, 4, │ │ │ │ -0002bb40: 2035 2c20 362c 2037 2c20 387d 2020 2020 5, 6, 7, 8} │ │ │ │ -0002bb50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002bb20: 2020 2020 2020 7c0a 7c6f 3132 203d 207b |.|o12 = { │ │ │ │ +0002bb30: 332c 2034 2c20 352c 2036 2c20 372c 2038 3, 4, 5, 6, 7, 8 │ │ │ │ +0002bb40: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +0002bb50: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002bb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb80: 2020 2020 207c 0a7c 6f31 3220 3a20 4c69 |.|o12 : Li │ │ │ │ -0002bb90: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ -0002bba0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002bbb0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0002bbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bbd0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3320 ---------+.|i13 │ │ │ │ -0002bbe0: 3a20 6265 7474 6920 7265 7320 284d 2c20 : betti res (M, │ │ │ │ -0002bbf0: 4c65 6e67 7468 4c69 6d69 7420 3d3e 2035 LengthLimit => 5 │ │ │ │ -0002bc00: 2920 207c 0a7c 2020 2020 2020 2020 2020 ) |.| │ │ │ │ +0002bb70: 2020 2020 2020 2020 2020 7c0a 7c6f 3132 |.|o12 │ │ │ │ +0002bb80: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ +0002bb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bba0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002bbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0002bbd0: 7c69 3133 203a 2062 6574 7469 2072 6573 |i13 : betti res │ │ │ │ +0002bbe0: 2028 4d2c 204c 656e 6774 684c 696d 6974 (M, LengthLimit │ │ │ │ +0002bbf0: 203d 3e20 3529 2020 7c0a 7c20 2020 2020 => 5) |.| │ │ │ │ +0002bc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0002bc30: 2020 2020 2020 2020 2020 2020 2030 2031 0 1 │ │ │ │ -0002bc40: 2032 2033 2034 2035 2020 2020 2020 2020 2 3 4 5 │ │ │ │ -0002bc50: 2020 2020 2020 207c 0a7c 6f31 3320 3d20 |.|o13 = │ │ │ │ -0002bc60: 746f 7461 6c3a 2033 2034 2035 2036 2037 total: 3 4 5 6 7 │ │ │ │ -0002bc70: 2038 2020 2020 2020 2020 2020 2020 2020 8 │ │ │ │ -0002bc80: 207c 0a7c 2020 2020 2020 2020 2020 323a |.| 2: │ │ │ │ -0002bc90: 2033 2034 2035 2036 2037 2038 2020 2020 3 4 5 6 7 8 │ │ │ │ -0002bca0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002bc20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002bc30: 2020 3020 3120 3220 3320 3420 3520 2020 0 1 2 3 4 5 │ │ │ │ +0002bc40: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002bc50: 3133 203d 2074 6f74 616c 3a20 3320 3420 13 = total: 3 4 │ │ │ │ +0002bc60: 3520 3620 3720 3820 2020 2020 2020 2020 5 6 7 8 │ │ │ │ +0002bc70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002bc80: 2020 2032 3a20 3320 3420 3520 3620 3720 2: 3 4 5 6 7 │ │ │ │ +0002bc90: 3820 2020 2020 2020 2020 2020 2020 2020 8 │ │ │ │ +0002bca0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002bcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bcd0: 2020 2020 207c 0a7c 6f31 3320 3a20 4265 |.|o13 : Be │ │ │ │ -0002bce0: 7474 6954 616c 6c79 2020 2020 2020 2020 ttiTally │ │ │ │ -0002bcf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002bd00: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0002bd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bd20: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 ---------+..See │ │ │ │ -0002bd30: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ -0002bd40: 202a 202a 6e6f 7465 206d 6174 7269 7846 * *note matrixF │ │ │ │ -0002bd50: 6163 746f 7269 7a61 7469 6f6e 3a20 6d61 actorization: ma │ │ │ │ -0002bd60: 7472 6978 4661 6374 6f72 697a 6174 696f trixFactorizatio │ │ │ │ -0002bd70: 6e2c 202d 2d20 4d61 7073 2069 6e20 6120 n, -- Maps in a │ │ │ │ -0002bd80: 6869 6768 6572 0a20 2020 2063 6f64 696d higher. codim │ │ │ │ -0002bd90: 656e 7369 6f6e 206d 6174 7269 7820 6661 ension matrix fa │ │ │ │ -0002bda0: 6374 6f72 697a 6174 696f 6e0a 2020 2a20 ctorization. * │ │ │ │ -0002bdb0: 2a6e 6f74 6520 6669 6e69 7465 4265 7474 *note finiteBett │ │ │ │ -0002bdc0: 694e 756d 6265 7273 3a20 6669 6e69 7465 iNumbers: finite │ │ │ │ -0002bdd0: 4265 7474 694e 756d 6265 7273 2c20 2d2d BettiNumbers, -- │ │ │ │ -0002bde0: 2062 6574 7469 206e 756d 6265 7273 206f betti numbers o │ │ │ │ -0002bdf0: 6620 6669 6e69 7465 0a20 2020 2072 6573 f finite. res │ │ │ │ -0002be00: 6f6c 7574 696f 6e20 636f 6d70 7574 6564 olution computed │ │ │ │ -0002be10: 2066 726f 6d20 6120 6d61 7472 6978 2066 from a matrix f │ │ │ │ -0002be20: 6163 746f 7269 7a61 7469 6f6e 0a0a 5761 actorization..Wa │ │ │ │ -0002be30: 7973 2074 6f20 7573 6520 696e 6669 6e69 ys to use infini │ │ │ │ -0002be40: 7465 4265 7474 694e 756d 6265 7273 3a0a teBettiNumbers:. │ │ │ │ +0002bcc0: 2020 2020 2020 2020 2020 7c0a 7c6f 3133 |.|o13 │ │ │ │ +0002bcd0: 203a 2042 6574 7469 5461 6c6c 7920 2020 : BettiTally │ │ │ │ +0002bce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bcf0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002bd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0002bd20: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ +0002bd30: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 6d61 ==.. * *note ma │ │ │ │ +0002bd40: 7472 6978 4661 6374 6f72 697a 6174 696f trixFactorizatio │ │ │ │ +0002bd50: 6e3a 206d 6174 7269 7846 6163 746f 7269 n: matrixFactori │ │ │ │ +0002bd60: 7a61 7469 6f6e 2c20 2d2d 204d 6170 7320 zation, -- Maps │ │ │ │ +0002bd70: 696e 2061 2068 6967 6865 720a 2020 2020 in a higher. │ │ │ │ +0002bd80: 636f 6469 6d65 6e73 696f 6e20 6d61 7472 codimension matr │ │ │ │ +0002bd90: 6978 2066 6163 746f 7269 7a61 7469 6f6e ix factorization │ │ │ │ +0002bda0: 0a20 202a 202a 6e6f 7465 2066 696e 6974 . * *note finit │ │ │ │ +0002bdb0: 6542 6574 7469 4e75 6d62 6572 733a 2066 eBettiNumbers: f │ │ │ │ +0002bdc0: 696e 6974 6542 6574 7469 4e75 6d62 6572 initeBettiNumber │ │ │ │ +0002bdd0: 732c 202d 2d20 6265 7474 6920 6e75 6d62 s, -- betti numb │ │ │ │ +0002bde0: 6572 7320 6f66 2066 696e 6974 650a 2020 ers of finite. │ │ │ │ +0002bdf0: 2020 7265 736f 6c75 7469 6f6e 2063 6f6d resolution com │ │ │ │ +0002be00: 7075 7465 6420 6672 6f6d 2061 206d 6174 puted from a mat │ │ │ │ +0002be10: 7269 7820 6661 6374 6f72 697a 6174 696f rix factorizatio │ │ │ │ +0002be20: 6e0a 0a57 6179 7320 746f 2075 7365 2069 n..Ways to use i │ │ │ │ +0002be30: 6e66 696e 6974 6542 6574 7469 4e75 6d62 nfiniteBettiNumb │ │ │ │ +0002be40: 6572 733a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d ers:.=========== │ │ │ │ 0002be50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0002be60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0002be70: 3d0a 0a20 202a 2022 696e 6669 6e69 7465 =.. * "infinite │ │ │ │ -0002be80: 4265 7474 694e 756d 6265 7273 284c 6973 BettiNumbers(Lis │ │ │ │ -0002be90: 742c 5a5a 2922 0a0a 466f 7220 7468 6520 t,ZZ)"..For the │ │ │ │ -0002bea0: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -0002beb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -0002bec0: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -0002bed0: 696e 6669 6e69 7465 4265 7474 694e 756d infiniteBettiNum │ │ │ │ -0002bee0: 6265 7273 3a20 696e 6669 6e69 7465 4265 bers: infiniteBe │ │ │ │ -0002bef0: 7474 694e 756d 6265 7273 2c20 6973 2061 ttiNumbers, is a │ │ │ │ -0002bf00: 202a 6e6f 7465 206d 6574 686f 640a 6675 *note method.fu │ │ │ │ -0002bf10: 6e63 7469 6f6e 3a20 284d 6163 6175 6c61 nction: (Macaula │ │ │ │ -0002bf20: 7932 446f 6329 4d65 7468 6f64 4675 6e63 y2Doc)MethodFunc │ │ │ │ -0002bf30: 7469 6f6e 2c2e 0a1f 0a46 696c 653a 2043 tion,....File: C │ │ │ │ -0002bf40: 6f6d 706c 6574 6549 6e74 6572 7365 6374 ompleteIntersect │ │ │ │ -0002bf50: 696f 6e52 6573 6f6c 7574 696f 6e73 2e69 ionResolutions.i │ │ │ │ -0002bf60: 6e66 6f2c 204e 6f64 653a 2069 734c 696e nfo, Node: isLin │ │ │ │ -0002bf70: 6561 722c 204e 6578 743a 2069 7351 7561 ear, Next: isQua │ │ │ │ -0002bf80: 7369 5265 6775 6c61 722c 2050 7265 763a siRegular, Prev: │ │ │ │ -0002bf90: 2069 6e66 696e 6974 6542 6574 7469 4e75 infiniteBettiNu │ │ │ │ -0002bfa0: 6d62 6572 732c 2055 703a 2054 6f70 0a0a mbers, Up: Top.. │ │ │ │ -0002bfb0: 6973 4c69 6e65 6172 202d 2d20 6368 6563 isLinear -- chec │ │ │ │ -0002bfc0: 6b20 7768 6574 6865 7220 6d61 7472 6978 k whether matrix │ │ │ │ -0002bfd0: 2065 6e74 7269 6573 2068 6176 6520 6465 entries have de │ │ │ │ -0002bfe0: 6772 6565 2031 0a2a 2a2a 2a2a 2a2a 2a2a gree 1.********* │ │ │ │ +0002be60: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2269 6e66 ======.. * "inf │ │ │ │ +0002be70: 696e 6974 6542 6574 7469 4e75 6d62 6572 initeBettiNumber │ │ │ │ +0002be80: 7328 4c69 7374 2c5a 5a29 220a 0a46 6f72 s(List,ZZ)"..For │ │ │ │ +0002be90: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ +0002bea0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0002beb0: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ +0002bec0: 6e6f 7465 2069 6e66 696e 6974 6542 6574 note infiniteBet │ │ │ │ +0002bed0: 7469 4e75 6d62 6572 733a 2069 6e66 696e tiNumbers: infin │ │ │ │ +0002bee0: 6974 6542 6574 7469 4e75 6d62 6572 732c iteBettiNumbers, │ │ │ │ +0002bef0: 2069 7320 6120 2a6e 6f74 6520 6d65 7468 is a *note meth │ │ │ │ +0002bf00: 6f64 0a66 756e 6374 696f 6e3a 2028 4d61 od.function: (Ma │ │ │ │ +0002bf10: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ +0002bf20: 6446 756e 6374 696f 6e2c 2e0a 1f0a 4669 dFunction,....Fi │ │ │ │ +0002bf30: 6c65 3a20 436f 6d70 6c65 7465 496e 7465 le: CompleteInte │ │ │ │ +0002bf40: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ +0002bf50: 6f6e 732e 696e 666f 2c20 4e6f 6465 3a20 ons.info, Node: │ │ │ │ +0002bf60: 6973 4c69 6e65 6172 2c20 4e65 7874 3a20 isLinear, Next: │ │ │ │ +0002bf70: 6973 5175 6173 6952 6567 756c 6172 2c20 isQuasiRegular, │ │ │ │ +0002bf80: 5072 6576 3a20 696e 6669 6e69 7465 4265 Prev: infiniteBe │ │ │ │ +0002bf90: 7474 694e 756d 6265 7273 2c20 5570 3a20 ttiNumbers, Up: │ │ │ │ +0002bfa0: 546f 700a 0a69 734c 696e 6561 7220 2d2d Top..isLinear -- │ │ │ │ +0002bfb0: 2063 6865 636b 2077 6865 7468 6572 206d check whether m │ │ │ │ +0002bfc0: 6174 7269 7820 656e 7472 6965 7320 6861 atrix entries ha │ │ │ │ +0002bfd0: 7665 2064 6567 7265 6520 310a 2a2a 2a2a ve degree 1.**** │ │ │ │ +0002bfe0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002bff0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002c000: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002c010: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 *************..S │ │ │ │ -0002c020: 796e 6f70 7369 730a 3d3d 3d3d 3d3d 3d3d ynopsis.======== │ │ │ │ -0002c030: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ -0002c040: 2020 2020 2020 6220 3d20 6973 4c69 6e65 b = isLine │ │ │ │ -0002c050: 6172 204d 0a20 202a 2049 6e70 7574 733a ar M. * Inputs: │ │ │ │ -0002c060: 0a20 2020 2020 202a 204d 2c20 6120 2a6e . * M, a *n │ │ │ │ -0002c070: 6f74 6520 6d61 7472 6978 3a20 284d 6163 ote matrix: (Mac │ │ │ │ -0002c080: 6175 6c61 7932 446f 6329 4d61 7472 6978 aulay2Doc)Matrix │ │ │ │ -0002c090: 2c2c 200a 2020 2a20 4f75 7470 7574 733a ,, . * Outputs: │ │ │ │ -0002c0a0: 0a20 2020 2020 202a 2062 2c20 6120 2a6e . * b, a *n │ │ │ │ -0002c0b0: 6f74 6520 426f 6f6c 6561 6e20 7661 6c75 ote Boolean valu │ │ │ │ -0002c0c0: 653a 2028 4d61 6361 756c 6179 3244 6f63 e: (Macaulay2Doc │ │ │ │ -0002c0d0: 2942 6f6f 6c65 616e 2c2c 200a 0a44 6573 )Boolean,, ..Des │ │ │ │ -0002c0e0: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -0002c0f0: 3d3d 3d3d 0a0a 4e6f 7465 2074 6861 7420 ====..Note that │ │ │ │ -0002c100: 6120 6c69 6e65 6172 206d 6174 7269 782c a linear matrix, │ │ │ │ -0002c110: 2069 6e20 7468 6973 2073 656e 7365 2c20 in this sense, │ │ │ │ -0002c120: 6361 6e20 7374 696c 6c20 6861 7665 2064 can still have d │ │ │ │ -0002c130: 6966 6665 7265 6e74 2074 6172 6765 740a ifferent target. │ │ │ │ -0002c140: 6465 6772 6565 7320 2869 6e20 7768 6963 degrees (in whic │ │ │ │ -0002c150: 6820 6361 7365 2074 6865 2063 6f6b 6572 h case the coker │ │ │ │ -0002c160: 6e65 6c20 6465 636f 6d70 6f73 6573 2069 nel decomposes i │ │ │ │ -0002c170: 6e74 6f20 6120 6469 7265 6374 2073 756d nto a direct sum │ │ │ │ -0002c180: 2062 7920 6765 6e65 7261 746f 720a 6465 by generator.de │ │ │ │ -0002c190: 6772 6565 2e29 0a0a 5761 7973 2074 6f20 gree.)..Ways to │ │ │ │ -0002c1a0: 7573 6520 6973 4c69 6e65 6172 3a0a 3d3d use isLinear:.== │ │ │ │ -0002c1b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0002c1c0: 3d3d 3d0a 0a20 202a 2022 6973 4c69 6e65 ===.. * "isLine │ │ │ │ -0002c1d0: 6172 284d 6174 7269 7829 220a 0a46 6f72 ar(Matrix)"..For │ │ │ │ -0002c1e0: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ -0002c1f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0002c200: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ -0002c210: 6e6f 7465 2069 734c 696e 6561 723a 2069 note isLinear: i │ │ │ │ -0002c220: 734c 696e 6561 722c 2069 7320 6120 2a6e sLinear, is a *n │ │ │ │ -0002c230: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ -0002c240: 696f 6e3a 0a28 4d61 6361 756c 6179 3244 ion:.(Macaulay2D │ │ │ │ -0002c250: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ -0002c260: 6e2c 2e0a 1f0a 4669 6c65 3a20 436f 6d70 n,....File: Comp │ │ │ │ -0002c270: 6c65 7465 496e 7465 7273 6563 7469 6f6e leteIntersection │ │ │ │ -0002c280: 5265 736f 6c75 7469 6f6e 732e 696e 666f Resolutions.info │ │ │ │ -0002c290: 2c20 4e6f 6465 3a20 6973 5175 6173 6952 , Node: isQuasiR │ │ │ │ -0002c2a0: 6567 756c 6172 2c20 4e65 7874 3a20 6973 egular, Next: is │ │ │ │ -0002c2b0: 5374 6162 6c79 5472 6976 6961 6c2c 2050 StablyTrivial, P │ │ │ │ -0002c2c0: 7265 763a 2069 734c 696e 6561 722c 2055 rev: isLinear, U │ │ │ │ -0002c2d0: 703a 2054 6f70 0a0a 6973 5175 6173 6952 p: Top..isQuasiR │ │ │ │ -0002c2e0: 6567 756c 6172 202d 2d20 7465 7374 7320 egular -- tests │ │ │ │ -0002c2f0: 6120 6d61 7472 6978 206f 7220 7365 7175 a matrix or sequ │ │ │ │ -0002c300: 656e 6365 206f 7220 6c69 7374 2066 6f72 ence or list for │ │ │ │ -0002c310: 2071 7561 7369 2d72 6567 756c 6172 6974 quasi-regularit │ │ │ │ -0002c320: 7920 6f6e 2061 206d 6f64 756c 650a 2a2a y on a module.** │ │ │ │ +0002c010: 2a2a 0a0a 5379 6e6f 7073 6973 0a3d 3d3d **..Synopsis.=== │ │ │ │ +0002c020: 3d3d 3d3d 3d0a 0a20 202a 2055 7361 6765 =====.. * Usage │ │ │ │ +0002c030: 3a20 0a20 2020 2020 2020 2062 203d 2069 : . b = i │ │ │ │ +0002c040: 734c 696e 6561 7220 4d0a 2020 2a20 496e sLinear M. * In │ │ │ │ +0002c050: 7075 7473 3a0a 2020 2020 2020 2a20 4d2c puts:. * M, │ │ │ │ +0002c060: 2061 202a 6e6f 7465 206d 6174 7269 783a a *note matrix: │ │ │ │ +0002c070: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +0002c080: 6174 7269 782c 2c20 0a20 202a 204f 7574 atrix,, . * Out │ │ │ │ +0002c090: 7075 7473 3a0a 2020 2020 2020 2a20 622c puts:. * b, │ │ │ │ +0002c0a0: 2061 202a 6e6f 7465 2042 6f6f 6c65 616e a *note Boolean │ │ │ │ +0002c0b0: 2076 616c 7565 3a20 284d 6163 6175 6c61 value: (Macaula │ │ │ │ +0002c0c0: 7932 446f 6329 426f 6f6c 6561 6e2c 2c20 y2Doc)Boolean,, │ │ │ │ +0002c0d0: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +0002c0e0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a4e 6f74 6520 =========..Note │ │ │ │ +0002c0f0: 7468 6174 2061 206c 696e 6561 7220 6d61 that a linear ma │ │ │ │ +0002c100: 7472 6978 2c20 696e 2074 6869 7320 7365 trix, in this se │ │ │ │ +0002c110: 6e73 652c 2063 616e 2073 7469 6c6c 2068 nse, can still h │ │ │ │ +0002c120: 6176 6520 6469 6666 6572 656e 7420 7461 ave different ta │ │ │ │ +0002c130: 7267 6574 0a64 6567 7265 6573 2028 696e rget.degrees (in │ │ │ │ +0002c140: 2077 6869 6368 2063 6173 6520 7468 6520 which case the │ │ │ │ +0002c150: 636f 6b65 726e 656c 2064 6563 6f6d 706f cokernel decompo │ │ │ │ +0002c160: 7365 7320 696e 746f 2061 2064 6972 6563 ses into a direc │ │ │ │ +0002c170: 7420 7375 6d20 6279 2067 656e 6572 6174 t sum by generat │ │ │ │ +0002c180: 6f72 0a64 6567 7265 652e 290a 0a57 6179 or.degree.)..Way │ │ │ │ +0002c190: 7320 746f 2075 7365 2069 734c 696e 6561 s to use isLinea │ │ │ │ +0002c1a0: 723a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r:.============= │ │ │ │ +0002c1b0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2269 ========.. * "i │ │ │ │ +0002c1c0: 734c 696e 6561 7228 4d61 7472 6978 2922 sLinear(Matrix)" │ │ │ │ +0002c1d0: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +0002c1e0: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +0002c1f0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +0002c200: 6563 7420 2a6e 6f74 6520 6973 4c69 6e65 ect *note isLine │ │ │ │ +0002c210: 6172 3a20 6973 4c69 6e65 6172 2c20 6973 ar: isLinear, is │ │ │ │ +0002c220: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ +0002c230: 6675 6e63 7469 6f6e 3a0a 284d 6163 6175 function:.(Macau │ │ │ │ +0002c240: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ +0002c250: 6e63 7469 6f6e 2c2e 0a1f 0a46 696c 653a nction,....File: │ │ │ │ +0002c260: 2043 6f6d 706c 6574 6549 6e74 6572 7365 CompleteInterse │ │ │ │ +0002c270: 6374 696f 6e52 6573 6f6c 7574 696f 6e73 ctionResolutions │ │ │ │ +0002c280: 2e69 6e66 6f2c 204e 6f64 653a 2069 7351 .info, Node: isQ │ │ │ │ +0002c290: 7561 7369 5265 6775 6c61 722c 204e 6578 uasiRegular, Nex │ │ │ │ +0002c2a0: 743a 2069 7353 7461 626c 7954 7269 7669 t: isStablyTrivi │ │ │ │ +0002c2b0: 616c 2c20 5072 6576 3a20 6973 4c69 6e65 al, Prev: isLine │ │ │ │ +0002c2c0: 6172 2c20 5570 3a20 546f 700a 0a69 7351 ar, Up: Top..isQ │ │ │ │ +0002c2d0: 7561 7369 5265 6775 6c61 7220 2d2d 2074 uasiRegular -- t │ │ │ │ +0002c2e0: 6573 7473 2061 206d 6174 7269 7820 6f72 ests a matrix or │ │ │ │ +0002c2f0: 2073 6571 7565 6e63 6520 6f72 206c 6973 sequence or lis │ │ │ │ +0002c300: 7420 666f 7220 7175 6173 692d 7265 6775 t for quasi-regu │ │ │ │ +0002c310: 6c61 7269 7479 206f 6e20 6120 6d6f 6475 larity on a modu │ │ │ │ +0002c320: 6c65 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a le.************* │ │ │ │ 0002c330: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002c340: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002c350: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002c360: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002c370: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002c380: 2a2a 2a0a 0a53 796e 6f70 7369 730a 3d3d ***..Synopsis.== │ │ │ │ -0002c390: 3d3d 3d3d 3d3d 0a0a 2020 2a20 5573 6167 ======.. * Usag │ │ │ │ -0002c3a0: 653a 200a 2020 2020 2020 2020 7420 3d20 e: . t = │ │ │ │ -0002c3b0: 6973 5175 6173 6952 6567 756c 6172 2866 isQuasiRegular(f │ │ │ │ -0002c3c0: 662c 4d29 0a20 202a 2049 6e70 7574 733a f,M). * Inputs: │ │ │ │ -0002c3d0: 0a20 2020 2020 202a 2066 662c 2061 202a . * ff, a * │ │ │ │ -0002c3e0: 6e6f 7465 206d 6174 7269 783a 2028 4d61 note matrix: (Ma │ │ │ │ -0002c3f0: 6361 756c 6179 3244 6f63 294d 6174 7269 caulay2Doc)Matri │ │ │ │ -0002c400: 782c 2c20 0a20 2020 2020 202a 2066 662c x,, . * ff, │ │ │ │ -0002c410: 2061 202a 6e6f 7465 206c 6973 743a 2028 a *note list: ( │ │ │ │ -0002c420: 4d61 6361 756c 6179 3244 6f63 294c 6973 Macaulay2Doc)Lis │ │ │ │ -0002c430: 742c 2c20 0a20 2020 2020 202a 2066 662c t,, . * ff, │ │ │ │ -0002c440: 2061 202a 6e6f 7465 2073 6571 7565 6e63 a *note sequenc │ │ │ │ -0002c450: 653a 2028 4d61 6361 756c 6179 3244 6f63 e: (Macaulay2Doc │ │ │ │ -0002c460: 2953 6571 7565 6e63 652c 2c20 0a20 2020 )Sequence,, . │ │ │ │ -0002c470: 2020 202a 204d 2c20 6120 2a6e 6f74 6520 * M, a *note │ │ │ │ -0002c480: 6d6f 6475 6c65 3a20 284d 6163 6175 6c61 module: (Macaula │ │ │ │ -0002c490: 7932 446f 6329 4d6f 6475 6c65 2c2c 200a y2Doc)Module,, . │ │ │ │ -0002c4a0: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ -0002c4b0: 2020 202a 2074 2c20 6120 2a6e 6f74 6520 * t, a *note │ │ │ │ -0002c4c0: 426f 6f6c 6561 6e20 7661 6c75 653a 2028 Boolean value: ( │ │ │ │ -0002c4d0: 4d61 6361 756c 6179 3244 6f63 2942 6f6f Macaulay2Doc)Boo │ │ │ │ -0002c4e0: 6c65 616e 2c2c 200a 0a44 6573 6372 6970 lean,, ..Descrip │ │ │ │ -0002c4f0: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ -0002c500: 0a0a 6666 2069 7320 7175 6173 692d 7265 ..ff is quasi-re │ │ │ │ -0002c510: 6775 6c61 7220 6966 2074 6865 206c 656e gular if the len │ │ │ │ -0002c520: 6774 6820 6f66 2066 6620 6973 203c 3d20 gth of ff is <= │ │ │ │ -0002c530: 6469 6d20 4d20 616e 6420 7468 6520 616e dim M and the an │ │ │ │ -0002c540: 6e69 6869 6c61 746f 7220 6f66 2066 665f nihilator of ff_ │ │ │ │ -0002c550: 690a 6f6e 204d 2f28 6666 5f30 2e2e 6666 i.on M/(ff_0..ff │ │ │ │ -0002c560: 5f7b 2869 2d31 2929 7d4d 2068 6173 2066 _{(i-1))}M has f │ │ │ │ -0002c570: 696e 6974 6520 6c65 6e67 7468 2066 6f72 inite length for │ │ │ │ -0002c580: 2061 6c6c 2069 3d30 2e2e 286c 656e 6774 all i=0..(lengt │ │ │ │ -0002c590: 6820 6666 292d 312e 0a0a 2b2d 2d2d 2d2d h ff)-1...+----- │ │ │ │ +0002c370: 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 ********..Synops │ │ │ │ +0002c380: 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a is.========.. * │ │ │ │ +0002c390: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +0002c3a0: 2074 203d 2069 7351 7561 7369 5265 6775 t = isQuasiRegu │ │ │ │ +0002c3b0: 6c61 7228 6666 2c4d 290a 2020 2a20 496e lar(ff,M). * In │ │ │ │ +0002c3c0: 7075 7473 3a0a 2020 2020 2020 2a20 6666 puts:. * ff │ │ │ │ +0002c3d0: 2c20 6120 2a6e 6f74 6520 6d61 7472 6978 , a *note matrix │ │ │ │ +0002c3e0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0002c3f0: 4d61 7472 6978 2c2c 200a 2020 2020 2020 Matrix,, . │ │ │ │ +0002c400: 2a20 6666 2c20 6120 2a6e 6f74 6520 6c69 * ff, a *note li │ │ │ │ +0002c410: 7374 3a20 284d 6163 6175 6c61 7932 446f st: (Macaulay2Do │ │ │ │ +0002c420: 6329 4c69 7374 2c2c 200a 2020 2020 2020 c)List,, . │ │ │ │ +0002c430: 2a20 6666 2c20 6120 2a6e 6f74 6520 7365 * ff, a *note se │ │ │ │ +0002c440: 7175 656e 6365 3a20 284d 6163 6175 6c61 quence: (Macaula │ │ │ │ +0002c450: 7932 446f 6329 5365 7175 656e 6365 2c2c y2Doc)Sequence,, │ │ │ │ +0002c460: 200a 2020 2020 2020 2a20 4d2c 2061 202a . * M, a * │ │ │ │ +0002c470: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ +0002c480: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ +0002c490: 652c 2c20 0a20 202a 204f 7574 7075 7473 e,, . * Outputs │ │ │ │ +0002c4a0: 3a0a 2020 2020 2020 2a20 742c 2061 202a :. * t, a * │ │ │ │ +0002c4b0: 6e6f 7465 2042 6f6f 6c65 616e 2076 616c note Boolean val │ │ │ │ +0002c4c0: 7565 3a20 284d 6163 6175 6c61 7932 446f ue: (Macaulay2Do │ │ │ │ +0002c4d0: 6329 426f 6f6c 6561 6e2c 2c20 0a0a 4465 c)Boolean,, ..De │ │ │ │ +0002c4e0: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +0002c4f0: 3d3d 3d3d 3d0a 0a66 6620 6973 2071 7561 =====..ff is qua │ │ │ │ +0002c500: 7369 2d72 6567 756c 6172 2069 6620 7468 si-regular if th │ │ │ │ +0002c510: 6520 6c65 6e67 7468 206f 6620 6666 2069 e length of ff i │ │ │ │ +0002c520: 7320 3c3d 2064 696d 204d 2061 6e64 2074 s <= dim M and t │ │ │ │ +0002c530: 6865 2061 6e6e 6968 696c 6174 6f72 206f he annihilator o │ │ │ │ +0002c540: 6620 6666 5f69 0a6f 6e20 4d2f 2866 665f f ff_i.on M/(ff_ │ │ │ │ +0002c550: 302e 2e66 665f 7b28 692d 3129 297d 4d20 0..ff_{(i-1))}M │ │ │ │ +0002c560: 6861 7320 6669 6e69 7465 206c 656e 6774 has finite lengt │ │ │ │ +0002c570: 6820 666f 7220 616c 6c20 693d 302e 2e28 h for all i=0..( │ │ │ │ +0002c580: 6c65 6e67 7468 2066 6629 2d31 2e0a 0a2b length ff)-1...+ │ │ │ │ +0002c590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c5c0: 2d2d 2d2d 2b0a 7c69 3120 3a20 6b6b 3d5a ----+.|i1 : kk=Z │ │ │ │ -0002c5d0: 5a2f 3130 313b 2020 2020 2020 2020 2020 Z/101; │ │ │ │ -0002c5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c5f0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002c5b0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +0002c5c0: 206b 6b3d 5a5a 2f31 3031 3b20 2020 2020 kk=ZZ/101; │ │ │ │ +0002c5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c5e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002c5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0002c620: 3220 3a20 5320 3d20 6b6b 5b61 2c62 2c63 2 : S = kk[a,b,c │ │ │ │ -0002c630: 5d3b 2020 2020 2020 2020 2020 2020 2020 ]; │ │ │ │ -0002c640: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0002c610: 2d2b 0a7c 6932 203a 2053 203d 206b 6b5b -+.|i2 : S = kk[ │ │ │ │ +0002c620: 612c 622c 635d 3b20 2020 2020 2020 2020 a,b,c]; │ │ │ │ +0002c630: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0002c640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c670: 2d2d 2d2d 2b0a 7c69 3320 3a20 4520 3d20 ----+.|i3 : E = │ │ │ │ -0002c680: 535e 312f 6964 6561 6c22 6162 222b 2b53 S^1/ideal"ab"++S │ │ │ │ -0002c690: 5e31 2f69 6465 616c 2076 6172 7320 533b ^1/ideal vars S; │ │ │ │ -0002c6a0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002c660: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ +0002c670: 2045 203d 2053 5e31 2f69 6465 616c 2261 E = S^1/ideal"a │ │ │ │ +0002c680: 6222 2b2b 535e 312f 6964 6561 6c20 7661 b"++S^1/ideal va │ │ │ │ +0002c690: 7273 2053 3b7c 0a2b 2d2d 2d2d 2d2d 2d2d rs S;|.+-------- │ │ │ │ +0002c6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0002c6d0: 3420 3a20 6631 203d 6d61 7472 6978 2261 4 : f1 =matrix"a │ │ │ │ -0002c6e0: 223b 2020 2020 2020 2020 2020 2020 2020 "; │ │ │ │ -0002c6f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002c6c0: 2d2b 0a7c 6934 203a 2066 3120 3d6d 6174 -+.|i4 : f1 =mat │ │ │ │ +0002c6d0: 7269 7822 6122 3b20 2020 2020 2020 2020 rix"a"; │ │ │ │ +0002c6e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002c6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c720: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002c730: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ -0002c740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c750: 7c0a 7c6f 3420 3a20 4d61 7472 6978 2053 |.|o4 : Matrix S │ │ │ │ -0002c760: 2020 3c2d 2d20 5320 2020 2020 2020 2020 <-- S │ │ │ │ -0002c770: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002c710: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0002c720: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ +0002c730: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0002c740: 2020 2020 207c 0a7c 6f34 203a 204d 6174 |.|o4 : Mat │ │ │ │ +0002c750: 7269 7820 5320 203c 2d2d 2053 2020 2020 rix S <-- S │ │ │ │ +0002c760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c770: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0002c780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c7a0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 --------+.|i5 : │ │ │ │ -0002c7b0: 6632 203d 6d61 7472 6978 2261 2b62 2c63 f2 =matrix"a+b,c │ │ │ │ -0002c7c0: 223b 2020 2020 2020 2020 2020 2020 2020 "; │ │ │ │ -0002c7d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002c790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0002c7a0: 6935 203a 2066 3220 3d6d 6174 7269 7822 i5 : f2 =matrix" │ │ │ │ +0002c7b0: 612b 622c 6322 3b20 2020 2020 2020 2020 a+b,c"; │ │ │ │ +0002c7c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0002c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c800: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002c810: 3120 2020 2020 2032 2020 2020 2020 2020 1 2 │ │ │ │ -0002c820: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0002c830: 3520 3a20 4d61 7472 6978 2053 2020 3c2d 5 : Matrix S <- │ │ │ │ -0002c840: 2d20 5320 2020 2020 2020 2020 2020 2020 - S │ │ │ │ -0002c850: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0002c7f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c800: 2020 2020 2031 2020 2020 2020 3220 2020 1 2 │ │ │ │ +0002c810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c820: 207c 0a7c 6f35 203a 204d 6174 7269 7820 |.|o5 : Matrix │ │ │ │ +0002c830: 5320 203c 2d2d 2053 2020 2020 2020 2020 S <-- S │ │ │ │ +0002c840: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0002c850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c880: 2d2d 2d2d 2b0a 7c69 3620 3a20 6633 203d ----+.|i6 : f3 = │ │ │ │ -0002c890: 206d 6174 7269 7822 612b 6222 3b20 2020 matrix"a+b"; │ │ │ │ -0002c8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c8b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002c870: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a ---------+.|i6 : │ │ │ │ +0002c880: 2066 3320 3d20 6d61 7472 6978 2261 2b62 f3 = matrix"a+b │ │ │ │ +0002c890: 223b 2020 2020 2020 2020 2020 2020 2020 "; │ │ │ │ +0002c8a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c8d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002c8e0: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ -0002c8f0: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -0002c900: 2020 2020 2020 2020 7c0a 7c6f 3620 3a20 |.|o6 : │ │ │ │ -0002c910: 4d61 7472 6978 2053 2020 3c2d 2d20 5320 Matrix S <-- S │ │ │ │ -0002c920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c930: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002c8d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002c8e0: 2031 2020 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ +0002c8f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002c900: 6f36 203a 204d 6174 7269 7820 5320 203c o6 : Matrix S < │ │ │ │ +0002c910: 2d2d 2053 2020 2020 2020 2020 2020 2020 -- S │ │ │ │ +0002c920: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0002c930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c960: 2b0a 7c69 3720 3a20 6634 203d 206d 6174 +.|i7 : f4 = mat │ │ │ │ -0002c970: 7269 7822 612b 622c 2061 322b 6222 3b20 rix"a+b, a2+b"; │ │ │ │ -0002c980: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002c950: 2d2d 2d2d 2d2b 0a7c 6937 203a 2066 3420 -----+.|i7 : f4 │ │ │ │ +0002c960: 3d20 6d61 7472 6978 2261 2b62 2c20 6132 = matrix"a+b, a2 │ │ │ │ +0002c970: 2b62 223b 2020 2020 2020 2020 2020 2020 +b"; │ │ │ │ +0002c980: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002c990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c9b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0002c9c0: 2020 2020 2020 2020 3120 2020 2020 2032 1 2 │ │ │ │ -0002c9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c9e0: 2020 2020 7c0a 7c6f 3720 3a20 4d61 7472 |.|o7 : Matr │ │ │ │ -0002c9f0: 6978 2053 2020 3c2d 2d20 5320 2020 2020 ix S <-- S │ │ │ │ -0002ca00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca10: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002c9a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002c9b0: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +0002c9c0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0002c9d0: 2020 2020 2020 2020 207c 0a7c 6f37 203a |.|o7 : │ │ │ │ +0002c9e0: 204d 6174 7269 7820 5320 203c 2d2d 2053 Matrix S <-- S │ │ │ │ +0002c9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ca00: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002ca10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ca20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ca30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0002ca40: 3820 3a20 6973 5175 6173 6952 6567 756c 8 : isQuasiRegul │ │ │ │ -0002ca50: 6172 2866 312c 4529 2020 2020 2020 2020 ar(f1,E) │ │ │ │ -0002ca60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002ca30: 2d2b 0a7c 6938 203a 2069 7351 7561 7369 -+.|i8 : isQuasi │ │ │ │ +0002ca40: 5265 6775 6c61 7228 6631 2c45 2920 2020 Regular(f1,E) │ │ │ │ +0002ca50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002ca60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ca70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca90: 2020 2020 7c0a 7c6f 3820 3d20 6661 6c73 |.|o8 = fals │ │ │ │ -0002caa0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -0002cab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cac0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002ca80: 2020 2020 2020 2020 207c 0a7c 6f38 203d |.|o8 = │ │ │ │ +0002ca90: 2066 616c 7365 2020 2020 2020 2020 2020 false │ │ │ │ +0002caa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cab0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002cac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0002caf0: 3920 3a20 6973 5175 6173 6952 6567 756c 9 : isQuasiRegul │ │ │ │ -0002cb00: 6172 2866 322c 4529 2020 2020 2020 2020 ar(f2,E) │ │ │ │ -0002cb10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002cae0: 2d2b 0a7c 6939 203a 2069 7351 7561 7369 -+.|i9 : isQuasi │ │ │ │ +0002caf0: 5265 6775 6c61 7228 6632 2c45 2920 2020 Regular(f2,E) │ │ │ │ +0002cb00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002cb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb40: 2020 2020 7c0a 7c6f 3920 3d20 7472 7565 |.|o9 = true │ │ │ │ +0002cb30: 2020 2020 2020 2020 207c 0a7c 6f39 203d |.|o9 = │ │ │ │ +0002cb40: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ 0002cb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb70: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002cb60: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002cb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cb90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0002cba0: 3130 203a 2069 7351 7561 7369 5265 6775 10 : isQuasiRegu │ │ │ │ -0002cbb0: 6c61 7228 6633 2c45 2920 2020 2020 2020 lar(f3,E) │ │ │ │ -0002cbc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002cb90: 2d2b 0a7c 6931 3020 3a20 6973 5175 6173 -+.|i10 : isQuas │ │ │ │ +0002cba0: 6952 6567 756c 6172 2866 332c 4529 2020 iRegular(f3,E) │ │ │ │ +0002cbb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002cbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cbf0: 2020 2020 7c0a 7c6f 3130 203d 2074 7275 |.|o10 = tru │ │ │ │ -0002cc00: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -0002cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc20: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002cbe0: 2020 2020 2020 2020 207c 0a7c 6f31 3020 |.|o10 │ │ │ │ +0002cbf0: 3d20 7472 7565 2020 2020 2020 2020 2020 = true │ │ │ │ +0002cc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cc10: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002cc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0002cc50: 3131 203a 2069 7351 7561 7369 5265 6775 11 : isQuasiRegu │ │ │ │ -0002cc60: 6c61 7228 6634 2c45 2920 2020 2020 2020 lar(f4,E) │ │ │ │ -0002cc70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002cc40: 2d2b 0a7c 6931 3120 3a20 6973 5175 6173 -+.|i11 : isQuas │ │ │ │ +0002cc50: 6952 6567 756c 6172 2866 342c 4529 2020 iRegular(f4,E) │ │ │ │ +0002cc60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002cc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cca0: 2020 2020 7c0a 7c6f 3131 203d 2066 616c |.|o11 = fal │ │ │ │ -0002ccb0: 7365 2020 2020 2020 2020 2020 2020 2020 se │ │ │ │ -0002ccc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ccd0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002cc90: 2020 2020 2020 2020 207c 0a7c 6f31 3120 |.|o11 │ │ │ │ +0002cca0: 3d20 6661 6c73 6520 2020 2020 2020 2020 = false │ │ │ │ +0002ccb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ccc0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002ccd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ccf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 ------------+..W │ │ │ │ -0002cd00: 6179 7320 746f 2075 7365 2069 7351 7561 ays to use isQua │ │ │ │ -0002cd10: 7369 5265 6775 6c61 723a 0a3d 3d3d 3d3d siRegular:.===== │ │ │ │ -0002cd20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0002cd30: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2269 7351 ======.. * "isQ │ │ │ │ -0002cd40: 7561 7369 5265 6775 6c61 7228 4c69 7374 uasiRegular(List │ │ │ │ -0002cd50: 2c4d 6f64 756c 6529 220a 2020 2a20 2269 ,Module)". * "i │ │ │ │ -0002cd60: 7351 7561 7369 5265 6775 6c61 7228 4d61 sQuasiRegular(Ma │ │ │ │ -0002cd70: 7472 6978 2c4d 6f64 756c 6529 220a 2020 trix,Module)". │ │ │ │ -0002cd80: 2a20 2269 7351 7561 7369 5265 6775 6c61 * "isQuasiRegula │ │ │ │ -0002cd90: 7228 5365 7175 656e 6365 2c4d 6f64 756c r(Sequence,Modul │ │ │ │ -0002cda0: 6529 220a 0a46 6f72 2074 6865 2070 726f e)"..For the pro │ │ │ │ -0002cdb0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -0002cdc0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -0002cdd0: 6f62 6a65 6374 202a 6e6f 7465 2069 7351 object *note isQ │ │ │ │ -0002cde0: 7561 7369 5265 6775 6c61 723a 2069 7351 uasiRegular: isQ │ │ │ │ -0002cdf0: 7561 7369 5265 6775 6c61 722c 2069 7320 uasiRegular, is │ │ │ │ -0002ce00: 6120 2a6e 6f74 6520 6d65 7468 6f64 2066 a *note method f │ │ │ │ -0002ce10: 756e 6374 696f 6e3a 0a28 4d61 6361 756c unction:.(Macaul │ │ │ │ -0002ce20: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ -0002ce30: 6374 696f 6e2c 2e0a 1f0a 4669 6c65 3a20 ction,....File: │ │ │ │ -0002ce40: 436f 6d70 6c65 7465 496e 7465 7273 6563 CompleteIntersec │ │ │ │ -0002ce50: 7469 6f6e 5265 736f 6c75 7469 6f6e 732e tionResolutions. │ │ │ │ -0002ce60: 696e 666f 2c20 4e6f 6465 3a20 6973 5374 info, Node: isSt │ │ │ │ -0002ce70: 6162 6c79 5472 6976 6961 6c2c 204e 6578 ablyTrivial, Nex │ │ │ │ -0002ce80: 743a 206b 6f73 7a75 6c45 7874 656e 7369 t: koszulExtensi │ │ │ │ -0002ce90: 6f6e 2c20 5072 6576 3a20 6973 5175 6173 on, Prev: isQuas │ │ │ │ -0002cea0: 6952 6567 756c 6172 2c20 5570 3a20 546f iRegular, Up: To │ │ │ │ -0002ceb0: 700a 0a69 7353 7461 626c 7954 7269 7669 p..isStablyTrivi │ │ │ │ -0002cec0: 616c 202d 2d20 7265 7475 726e 7320 7472 al -- returns tr │ │ │ │ -0002ced0: 7565 2069 6620 7468 6520 6d61 7020 676f ue if the map go │ │ │ │ -0002cee0: 6573 2074 6f20 3020 756e 6465 7220 7374 es to 0 under st │ │ │ │ -0002cef0: 6162 6c65 486f 6d0a 2a2a 2a2a 2a2a 2a2a ableHom.******** │ │ │ │ +0002ccf0: 2d2b 0a0a 5761 7973 2074 6f20 7573 6520 -+..Ways to use │ │ │ │ +0002cd00: 6973 5175 6173 6952 6567 756c 6172 3a0a isQuasiRegular:. │ │ │ │ +0002cd10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0002cd20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +0002cd30: 2022 6973 5175 6173 6952 6567 756c 6172 "isQuasiRegular │ │ │ │ +0002cd40: 284c 6973 742c 4d6f 6475 6c65 2922 0a20 (List,Module)". │ │ │ │ +0002cd50: 202a 2022 6973 5175 6173 6952 6567 756c * "isQuasiRegul │ │ │ │ +0002cd60: 6172 284d 6174 7269 782c 4d6f 6475 6c65 ar(Matrix,Module │ │ │ │ +0002cd70: 2922 0a20 202a 2022 6973 5175 6173 6952 )". * "isQuasiR │ │ │ │ +0002cd80: 6567 756c 6172 2853 6571 7565 6e63 652c egular(Sequence, │ │ │ │ +0002cd90: 4d6f 6475 6c65 2922 0a0a 466f 7220 7468 Module)"..For th │ │ │ │ +0002cda0: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +0002cdb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0002cdc0: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +0002cdd0: 6520 6973 5175 6173 6952 6567 756c 6172 e isQuasiRegular │ │ │ │ +0002cde0: 3a20 6973 5175 6173 6952 6567 756c 6172 : isQuasiRegular │ │ │ │ +0002cdf0: 2c20 6973 2061 202a 6e6f 7465 206d 6574 , is a *note met │ │ │ │ +0002ce00: 686f 6420 6675 6e63 7469 6f6e 3a0a 284d hod function:.(M │ │ │ │ +0002ce10: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ +0002ce20: 6f64 4675 6e63 7469 6f6e 2c2e 0a1f 0a46 odFunction,....F │ │ │ │ +0002ce30: 696c 653a 2043 6f6d 706c 6574 6549 6e74 ile: CompleteInt │ │ │ │ +0002ce40: 6572 7365 6374 696f 6e52 6573 6f6c 7574 ersectionResolut │ │ │ │ +0002ce50: 696f 6e73 2e69 6e66 6f2c 204e 6f64 653a ions.info, Node: │ │ │ │ +0002ce60: 2069 7353 7461 626c 7954 7269 7669 616c isStablyTrivial │ │ │ │ +0002ce70: 2c20 4e65 7874 3a20 6b6f 737a 756c 4578 , Next: koszulEx │ │ │ │ +0002ce80: 7465 6e73 696f 6e2c 2050 7265 763a 2069 tension, Prev: i │ │ │ │ +0002ce90: 7351 7561 7369 5265 6775 6c61 722c 2055 sQuasiRegular, U │ │ │ │ +0002cea0: 703a 2054 6f70 0a0a 6973 5374 6162 6c79 p: Top..isStably │ │ │ │ +0002ceb0: 5472 6976 6961 6c20 2d2d 2072 6574 7572 Trivial -- retur │ │ │ │ +0002cec0: 6e73 2074 7275 6520 6966 2074 6865 206d ns true if the m │ │ │ │ +0002ced0: 6170 2067 6f65 7320 746f 2030 2075 6e64 ap goes to 0 und │ │ │ │ +0002cee0: 6572 2073 7461 626c 6548 6f6d 0a2a 2a2a er stableHom.*** │ │ │ │ +0002cef0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002cf00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002cf10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002cf20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002cf30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 5379 ************..Sy │ │ │ │ -0002cf40: 6e6f 7073 6973 0a3d 3d3d 3d3d 3d3d 3d0a nopsis.========. │ │ │ │ -0002cf50: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ -0002cf60: 2020 2020 2062 203d 2069 7353 7461 626c b = isStabl │ │ │ │ -0002cf70: 7954 7269 7669 616c 2066 0a20 202a 2049 yTrivial f. * I │ │ │ │ -0002cf80: 6e70 7574 733a 0a20 2020 2020 202a 2066 nputs:. * f │ │ │ │ -0002cf90: 2c20 6120 2a6e 6f74 6520 6d61 7472 6978 , a *note matrix │ │ │ │ -0002cfa0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -0002cfb0: 4d61 7472 6978 2c2c 206d 6170 204d 2074 Matrix,, map M t │ │ │ │ -0002cfc0: 6f20 4e0a 2020 2a20 4f75 7470 7574 733a o N. * Outputs: │ │ │ │ -0002cfd0: 0a20 2020 2020 202a 2062 2c20 6120 2a6e . * b, a *n │ │ │ │ -0002cfe0: 6f74 6520 426f 6f6c 6561 6e20 7661 6c75 ote Boolean valu │ │ │ │ -0002cff0: 653a 2028 4d61 6361 756c 6179 3244 6f63 e: (Macaulay2Doc │ │ │ │ -0002d000: 2942 6f6f 6c65 616e 2c2c 2074 7275 6520 )Boolean,, true │ │ │ │ -0002d010: 6966 6620 6620 6661 6374 6f72 730a 2020 iff f factors. │ │ │ │ -0002d020: 2020 2020 2020 7468 726f 7567 6820 6120 through a │ │ │ │ -0002d030: 7072 6f6a 6563 7469 7665 0a0a 4465 7363 projective..Desc │ │ │ │ -0002d040: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ -0002d050: 3d3d 3d0a 0a41 2070 6f73 7369 626c 6520 ===..A possible │ │ │ │ -0002d060: 6f62 7374 7275 6374 696f 6e20 746f 2074 obstruction to t │ │ │ │ -0002d070: 6865 2063 6f6d 6d75 7461 7469 7669 7479 he commutativity │ │ │ │ -0002d080: 206f 6620 7468 6520 4349 206f 7065 7261 of the CI opera │ │ │ │ -0002d090: 746f 7273 2069 6e20 636f 6469 6d20 632c tors in codim c, │ │ │ │ -0002d0a0: 0a65 7665 6e20 6173 796d 7074 6f74 6963 .even asymptotic │ │ │ │ -0002d0b0: 616c 6c79 2c20 776f 756c 6420 6265 2074 ally, would be t │ │ │ │ -0002d0c0: 6865 206e 6f6e 2d74 7269 7669 616c 6974 he non-trivialit │ │ │ │ -0002d0d0: 7920 6f66 2074 6865 206d 6170 204d 5f7b y of the map M_{ │ │ │ │ -0002d0e0: 286b 2b34 297d 202d 2d3e 204d 5f6b 0a5c (k+4)} --> M_k.\ │ │ │ │ -0002d0f0: 6f74 696d 6573 205c 7765 6467 655e 3228 otimes \wedge^2( │ │ │ │ -0002d100: 535e 6329 2069 6e20 7468 6520 7374 6162 S^c) in the stab │ │ │ │ -0002d110: 6c65 2063 6174 6567 6f72 7920 6f66 206d le category of m │ │ │ │ -0002d120: 6178 696d 616c 2043 6f68 656e 2d4d 6163 aximal Cohen-Mac │ │ │ │ -0002d130: 6175 6c61 7920 6d6f 6475 6c65 732e 0a0a aulay modules... │ │ │ │ -0002d140: 496e 2074 6865 2066 6f6c 6c6f 7769 6e67 In the following │ │ │ │ -0002d150: 2065 7861 6d70 6c65 2c20 7374 7564 6965 example, studie │ │ │ │ -0002d160: 6420 696e 2074 6865 2070 6170 6572 2022 d in the paper " │ │ │ │ -0002d170: 546f 7220 6173 2061 206d 6f64 756c 6520 Tor as a module │ │ │ │ -0002d180: 6f76 6572 2061 6e0a 6578 7465 7269 6f72 over an.exterior │ │ │ │ -0002d190: 2061 6c67 6562 7261 2220 6f66 2045 6973 algebra" of Eis │ │ │ │ -0002d1a0: 656e 6275 642c 2050 6565 7661 2061 6e64 enbud, Peeva and │ │ │ │ -0002d1b0: 2053 6368 7265 7965 722c 2074 6865 206d Schreyer, the m │ │ │ │ -0002d1c0: 6170 2069 7320 6e6f 6e2d 7472 6976 6961 ap is non-trivia │ │ │ │ -0002d1d0: 6c2e 2e2e 6275 740a 6974 2069 7320 7374 l...but.it is st │ │ │ │ -0002d1e0: 6162 6c79 2074 7269 7669 616c 2e20 5468 ably trivial. Th │ │ │ │ -0002d1f0: 6520 7361 6d65 2067 6f65 7320 666f 7220 e same goes for │ │ │ │ -0002d200: 6869 6768 6572 2076 616c 7565 7320 6f66 higher values of │ │ │ │ -0002d210: 206b 2028 7768 6963 6820 7461 6b65 206c k (which take l │ │ │ │ -0002d220: 6f6e 6765 720a 746f 2063 6f6d 7075 7465 onger.to compute │ │ │ │ -0002d230: 292e 2028 6e6f 7465 2074 6861 7420 696e ). (note that in │ │ │ │ -0002d240: 2074 6869 7320 6361 7365 2c20 7769 7468 this case, with │ │ │ │ -0002d250: 2063 203d 2033 2c20 7477 6f20 6f66 2074 c = 3, two of t │ │ │ │ -0002d260: 6865 2074 6872 6565 2061 6c74 6572 6e61 he three alterna │ │ │ │ -0002d270: 7469 6e67 0a70 726f 6475 6374 7320 6172 ting.products ar │ │ │ │ -0002d280: 6520 6163 7475 616c 6c79 2065 7175 616c e actually equal │ │ │ │ -0002d290: 2074 6f20 302c 2073 6f20 7765 2074 6573 to 0, so we tes │ │ │ │ -0002d2a0: 7420 6f6e 6c79 2074 6865 2074 6869 7264 t only the third │ │ │ │ -0002d2b0: 2e29 0a0a 4e6f 7465 2074 6861 7420 5420 .)..Note that T │ │ │ │ -0002d2c0: 6973 2077 656c 6c2d 6465 6669 6e65 6420 is well-defined │ │ │ │ -0002d2d0: 7570 2074 6f20 686f 6d6f 746f 7079 3b20 up to homotopy; │ │ │ │ -0002d2e0: 736f 2054 5e32 2069 7320 7765 6c6c 2d64 so T^2 is well-d │ │ │ │ -0002d2f0: 6566 696e 6564 206d 6f64 206d 6d5e 322e efined mod mm^2. │ │ │ │ -0002d300: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ +0002cf30: 2a0a 0a53 796e 6f70 7369 730a 3d3d 3d3d *..Synopsis.==== │ │ │ │ +0002cf40: 3d3d 3d3d 0a0a 2020 2a20 5573 6167 653a ====.. * Usage: │ │ │ │ +0002cf50: 200a 2020 2020 2020 2020 6220 3d20 6973 . b = is │ │ │ │ +0002cf60: 5374 6162 6c79 5472 6976 6961 6c20 660a StablyTrivial f. │ │ │ │ +0002cf70: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +0002cf80: 2020 2a20 662c 2061 202a 6e6f 7465 206d * f, a *note m │ │ │ │ +0002cf90: 6174 7269 783a 2028 4d61 6361 756c 6179 atrix: (Macaulay │ │ │ │ +0002cfa0: 3244 6f63 294d 6174 7269 782c 2c20 6d61 2Doc)Matrix,, ma │ │ │ │ +0002cfb0: 7020 4d20 746f 204e 0a20 202a 204f 7574 p M to N. * Out │ │ │ │ +0002cfc0: 7075 7473 3a0a 2020 2020 2020 2a20 622c puts:. * b, │ │ │ │ +0002cfd0: 2061 202a 6e6f 7465 2042 6f6f 6c65 616e a *note Boolean │ │ │ │ +0002cfe0: 2076 616c 7565 3a20 284d 6163 6175 6c61 value: (Macaula │ │ │ │ +0002cff0: 7932 446f 6329 426f 6f6c 6561 6e2c 2c20 y2Doc)Boolean,, │ │ │ │ +0002d000: 7472 7565 2069 6666 2066 2066 6163 746f true iff f facto │ │ │ │ +0002d010: 7273 0a20 2020 2020 2020 2074 6872 6f75 rs. throu │ │ │ │ +0002d020: 6768 2061 2070 726f 6a65 6374 6976 650a gh a projective. │ │ │ │ +0002d030: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +0002d040: 3d3d 3d3d 3d3d 3d3d 0a0a 4120 706f 7373 ========..A poss │ │ │ │ +0002d050: 6962 6c65 206f 6273 7472 7563 7469 6f6e ible obstruction │ │ │ │ +0002d060: 2074 6f20 7468 6520 636f 6d6d 7574 6174 to the commutat │ │ │ │ +0002d070: 6976 6974 7920 6f66 2074 6865 2043 4920 ivity of the CI │ │ │ │ +0002d080: 6f70 6572 6174 6f72 7320 696e 2063 6f64 operators in cod │ │ │ │ +0002d090: 696d 2063 2c0a 6576 656e 2061 7379 6d70 im c,.even asymp │ │ │ │ +0002d0a0: 746f 7469 6361 6c6c 792c 2077 6f75 6c64 totically, would │ │ │ │ +0002d0b0: 2062 6520 7468 6520 6e6f 6e2d 7472 6976 be the non-triv │ │ │ │ +0002d0c0: 6961 6c69 7479 206f 6620 7468 6520 6d61 iality of the ma │ │ │ │ +0002d0d0: 7020 4d5f 7b28 6b2b 3429 7d20 2d2d 3e20 p M_{(k+4)} --> │ │ │ │ +0002d0e0: 4d5f 6b0a 5c6f 7469 6d65 7320 5c77 6564 M_k.\otimes \wed │ │ │ │ +0002d0f0: 6765 5e32 2853 5e63 2920 696e 2074 6865 ge^2(S^c) in the │ │ │ │ +0002d100: 2073 7461 626c 6520 6361 7465 676f 7279 stable category │ │ │ │ +0002d110: 206f 6620 6d61 7869 6d61 6c20 436f 6865 of maximal Cohe │ │ │ │ +0002d120: 6e2d 4d61 6361 756c 6179 206d 6f64 756c n-Macaulay modul │ │ │ │ +0002d130: 6573 2e0a 0a49 6e20 7468 6520 666f 6c6c es...In the foll │ │ │ │ +0002d140: 6f77 696e 6720 6578 616d 706c 652c 2073 owing example, s │ │ │ │ +0002d150: 7475 6469 6564 2069 6e20 7468 6520 7061 tudied in the pa │ │ │ │ +0002d160: 7065 7220 2254 6f72 2061 7320 6120 6d6f per "Tor as a mo │ │ │ │ +0002d170: 6475 6c65 206f 7665 7220 616e 0a65 7874 dule over an.ext │ │ │ │ +0002d180: 6572 696f 7220 616c 6765 6272 6122 206f erior algebra" o │ │ │ │ +0002d190: 6620 4569 7365 6e62 7564 2c20 5065 6576 f Eisenbud, Peev │ │ │ │ +0002d1a0: 6120 616e 6420 5363 6872 6579 6572 2c20 a and Schreyer, │ │ │ │ +0002d1b0: 7468 6520 6d61 7020 6973 206e 6f6e 2d74 the map is non-t │ │ │ │ +0002d1c0: 7269 7669 616c 2e2e 2e62 7574 0a69 7420 rivial...but.it │ │ │ │ +0002d1d0: 6973 2073 7461 626c 7920 7472 6976 6961 is stably trivia │ │ │ │ +0002d1e0: 6c2e 2054 6865 2073 616d 6520 676f 6573 l. The same goes │ │ │ │ +0002d1f0: 2066 6f72 2068 6967 6865 7220 7661 6c75 for higher valu │ │ │ │ +0002d200: 6573 206f 6620 6b20 2877 6869 6368 2074 es of k (which t │ │ │ │ +0002d210: 616b 6520 6c6f 6e67 6572 0a74 6f20 636f ake longer.to co │ │ │ │ +0002d220: 6d70 7574 6529 2e20 286e 6f74 6520 7468 mpute). (note th │ │ │ │ +0002d230: 6174 2069 6e20 7468 6973 2063 6173 652c at in this case, │ │ │ │ +0002d240: 2077 6974 6820 6320 3d20 332c 2074 776f with c = 3, two │ │ │ │ +0002d250: 206f 6620 7468 6520 7468 7265 6520 616c of the three al │ │ │ │ +0002d260: 7465 726e 6174 696e 670a 7072 6f64 7563 ternating.produc │ │ │ │ +0002d270: 7473 2061 7265 2061 6374 7561 6c6c 7920 ts are actually │ │ │ │ +0002d280: 6571 7561 6c20 746f 2030 2c20 736f 2077 equal to 0, so w │ │ │ │ +0002d290: 6520 7465 7374 206f 6e6c 7920 7468 6520 e test only the │ │ │ │ +0002d2a0: 7468 6972 642e 290a 0a4e 6f74 6520 7468 third.)..Note th │ │ │ │ +0002d2b0: 6174 2054 2069 7320 7765 6c6c 2d64 6566 at T is well-def │ │ │ │ +0002d2c0: 696e 6564 2075 7020 746f 2068 6f6d 6f74 ined up to homot │ │ │ │ +0002d2d0: 6f70 793b 2073 6f20 545e 3220 6973 2077 opy; so T^2 is w │ │ │ │ +0002d2e0: 656c 6c2d 6465 6669 6e65 6420 6d6f 6420 ell-defined mod │ │ │ │ +0002d2f0: 6d6d 5e32 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d mm^2...+-------- │ │ │ │ +0002d300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d350: 2b0a 7c69 3120 3a20 6b6b 203d 205a 5a2f +.|i1 : kk = ZZ/ │ │ │ │ -0002d360: 3130 3120 2020 2020 2020 2020 2020 2020 101 │ │ │ │ +0002d340: 2d2d 2d2d 2d2b 0a7c 6931 203a 206b 6b20 -----+.|i1 : kk │ │ │ │ +0002d350: 3d20 5a5a 2f31 3031 2020 2020 2020 2020 = ZZ/101 │ │ │ │ +0002d360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d3a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002d390: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d3f0: 7c0a 7c6f 3120 3d20 6b6b 2020 2020 2020 |.|o1 = kk │ │ │ │ +0002d3e0: 2020 2020 207c 0a7c 6f31 203d 206b 6b20 |.|o1 = kk │ │ │ │ +0002d3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d440: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002d430: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d490: 7c0a 7c6f 3120 3a20 5175 6f74 6965 6e74 |.|o1 : Quotient │ │ │ │ -0002d4a0: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ +0002d480: 2020 2020 207c 0a7c 6f31 203a 2051 756f |.|o1 : Quo │ │ │ │ +0002d490: 7469 656e 7452 696e 6720 2020 2020 2020 tientRing │ │ │ │ +0002d4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d4e0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002d4d0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002d4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d530: 2b0a 7c69 3220 3a20 5320 3d20 6b6b 5b61 +.|i2 : S = kk[a │ │ │ │ -0002d540: 2c62 2c63 5d20 2020 2020 2020 2020 2020 ,b,c] │ │ │ │ +0002d520: 2d2d 2d2d 2d2b 0a7c 6932 203a 2053 203d -----+.|i2 : S = │ │ │ │ +0002d530: 206b 6b5b 612c 622c 635d 2020 2020 2020 kk[a,b,c] │ │ │ │ +0002d540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d580: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002d570: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d5d0: 7c0a 7c6f 3220 3d20 5320 2020 2020 2020 |.|o2 = S │ │ │ │ +0002d5c0: 2020 2020 207c 0a7c 6f32 203d 2053 2020 |.|o2 = S │ │ │ │ +0002d5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d620: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002d610: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d670: 7c0a 7c6f 3220 3a20 506f 6c79 6e6f 6d69 |.|o2 : Polynomi │ │ │ │ -0002d680: 616c 5269 6e67 2020 2020 2020 2020 2020 alRing │ │ │ │ +0002d660: 2020 2020 207c 0a7c 6f32 203a 2050 6f6c |.|o2 : Pol │ │ │ │ +0002d670: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ +0002d680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d6c0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002d6b0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002d6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d710: 2b0a 7c69 3320 3a20 6666 203d 206d 6174 +.|i3 : ff = mat │ │ │ │ -0002d720: 7269 7822 6132 2c62 322c 6332 2220 2020 rix"a2,b2,c2" │ │ │ │ +0002d700: 2d2d 2d2d 2d2b 0a7c 6933 203a 2066 6620 -----+.|i3 : ff │ │ │ │ +0002d710: 3d20 6d61 7472 6978 2261 322c 6232 2c63 = matrix"a2,b2,c │ │ │ │ +0002d720: 3222 2020 2020 2020 2020 2020 2020 2020 2" │ │ │ │ 0002d730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d760: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002d750: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d7b0: 7c0a 7c6f 3320 3d20 7c20 6132 2062 3220 |.|o3 = | a2 b2 │ │ │ │ -0002d7c0: 6332 207c 2020 2020 2020 2020 2020 2020 c2 | │ │ │ │ +0002d7a0: 2020 2020 207c 0a7c 6f33 203d 207c 2061 |.|o3 = | a │ │ │ │ +0002d7b0: 3220 6232 2063 3220 7c20 2020 2020 2020 2 b2 c2 | │ │ │ │ +0002d7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d800: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002d7f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d850: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002d860: 3120 2020 2020 2033 2020 2020 2020 2020 1 3 │ │ │ │ +0002d840: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d850: 2020 2020 2031 2020 2020 2020 3320 2020 1 3 │ │ │ │ +0002d860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d8a0: 7c0a 7c6f 3320 3a20 4d61 7472 6978 2053 |.|o3 : Matrix S │ │ │ │ -0002d8b0: 2020 3c2d 2d20 5320 2020 2020 2020 2020 <-- S │ │ │ │ +0002d890: 2020 2020 207c 0a7c 6f33 203a 204d 6174 |.|o3 : Mat │ │ │ │ +0002d8a0: 7269 7820 5320 203c 2d2d 2053 2020 2020 rix S <-- S │ │ │ │ +0002d8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d8f0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002d8e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002d8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d940: 2b0a 7c69 3420 3a20 5220 3d20 532f 6964 +.|i4 : R = S/id │ │ │ │ -0002d950: 6561 6c20 6666 2020 2020 2020 2020 2020 eal ff │ │ │ │ +0002d930: 2d2d 2d2d 2d2b 0a7c 6934 203a 2052 203d -----+.|i4 : R = │ │ │ │ +0002d940: 2053 2f69 6465 616c 2066 6620 2020 2020 S/ideal ff │ │ │ │ +0002d950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d990: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002d980: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d9e0: 7c0a 7c6f 3420 3d20 5220 2020 2020 2020 |.|o4 = R │ │ │ │ +0002d9d0: 2020 2020 207c 0a7c 6f34 203d 2052 2020 |.|o4 = R │ │ │ │ +0002d9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002da00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002da10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002da20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002da30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002da20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002da30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002da40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002da50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002da60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002da70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002da80: 7c0a 7c6f 3420 3a20 5175 6f74 6965 6e74 |.|o4 : Quotient │ │ │ │ -0002da90: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ +0002da70: 2020 2020 207c 0a7c 6f34 203a 2051 756f |.|o4 : Quo │ │ │ │ +0002da80: 7469 656e 7452 696e 6720 2020 2020 2020 tientRing │ │ │ │ +0002da90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002daa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dad0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002dac0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002dad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002dae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002daf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002db00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002db10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002db20: 2b0a 7c69 3520 3a20 4d20 3d20 525e 312f +.|i5 : M = R^1/ │ │ │ │ -0002db30: 6964 6561 6c22 612c 6263 2220 2020 2020 ideal"a,bc" │ │ │ │ +0002db10: 2d2d 2d2d 2d2b 0a7c 6935 203a 204d 203d -----+.|i5 : M = │ │ │ │ +0002db20: 2052 5e31 2f69 6465 616c 2261 2c62 6322 R^1/ideal"a,bc" │ │ │ │ +0002db30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002db40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002db50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db70: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002db60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002db70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002db80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002db90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dbc0: 7c0a 7c6f 3520 3d20 636f 6b65 726e 656c |.|o5 = cokernel │ │ │ │ -0002dbd0: 207c 2061 2062 6320 7c20 2020 2020 2020 | a bc | │ │ │ │ +0002dbb0: 2020 2020 207c 0a7c 6f35 203d 2063 6f6b |.|o5 = cok │ │ │ │ +0002dbc0: 6572 6e65 6c20 7c20 6120 6263 207c 2020 ernel | a bc | │ │ │ │ +0002dbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc10: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002dc00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002dc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc60: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002dc70: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +0002dc50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002dc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dc70: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ 0002dc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dcb0: 7c0a 7c6f 3520 3a20 522d 6d6f 6475 6c65 |.|o5 : R-module │ │ │ │ -0002dcc0: 2c20 7175 6f74 6965 6e74 206f 6620 5220 , quotient of R │ │ │ │ +0002dca0: 2020 2020 207c 0a7c 6f35 203a 2052 2d6d |.|o5 : R-m │ │ │ │ +0002dcb0: 6f64 756c 652c 2071 756f 7469 656e 7420 odule, quotient │ │ │ │ +0002dcc0: 6f66 2052 2020 2020 2020 2020 2020 2020 of R │ │ │ │ 0002dcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd00: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002dcf0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002dd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002dd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002dd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002dd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dd50: 2b0a 7c69 3620 3a20 6b20 3d20 3120 2020 +.|i6 : k = 1 │ │ │ │ +0002dd40: 2d2d 2d2d 2d2b 0a7c 6936 203a 206b 203d -----+.|i6 : k = │ │ │ │ +0002dd50: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 0002dd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dda0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002dd90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002dda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ddb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ddc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ddd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ddf0: 7c0a 7c6f 3620 3d20 3120 2020 2020 2020 |.|o6 = 1 │ │ │ │ +0002dde0: 2020 2020 207c 0a7c 6f36 203d 2031 2020 |.|o6 = 1 │ │ │ │ +0002ddf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002de00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002de10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002de20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002de30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002de40: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002de30: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002de40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002de50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002de60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002de70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002de80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002de90: 2b0a 7c69 3720 3a20 6d20 3d20 6b2b 3520 +.|i7 : m = k+5 │ │ │ │ +0002de80: 2d2d 2d2d 2d2b 0a7c 6937 203a 206d 203d -----+.|i7 : m = │ │ │ │ +0002de90: 206b 2b35 2020 2020 2020 2020 2020 2020 k+5 │ │ │ │ 0002dea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002deb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ded0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dee0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002ded0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002dee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002def0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002df00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002df10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002df20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002df30: 7c0a 7c6f 3720 3d20 3620 2020 2020 2020 |.|o7 = 6 │ │ │ │ +0002df20: 2020 2020 207c 0a7c 6f37 203d 2036 2020 |.|o7 = 6 │ │ │ │ +0002df30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002df40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002df50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002df60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002df70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002df80: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002df70: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002df80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002df90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002dfa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002dfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dfc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dfd0: 2b0a 7c69 3820 3a20 4620 3d20 7265 7328 +.|i8 : F = res( │ │ │ │ -0002dfe0: 4d2c 204c 656e 6774 684c 696d 6974 203d M, LengthLimit = │ │ │ │ -0002dff0: 3e20 6d29 2020 2020 2020 2020 2020 2020 > m) │ │ │ │ +0002dfc0: 2d2d 2d2d 2d2b 0a7c 6938 203a 2046 203d -----+.|i8 : F = │ │ │ │ +0002dfd0: 2072 6573 284d 2c20 4c65 6e67 7468 4c69 res(M, LengthLi │ │ │ │ +0002dfe0: 6d69 7420 3d3e 206d 2920 2020 2020 2020 mit => m) │ │ │ │ +0002dff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e020: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002e010: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002e020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e070: 7c0a 7c20 2020 2020 2031 2020 2020 2020 |.| 1 │ │ │ │ -0002e080: 3220 2020 2020 2034 2020 2020 2020 3720 2 4 7 │ │ │ │ -0002e090: 2020 2020 2031 3120 2020 2020 2031 3620 11 16 │ │ │ │ -0002e0a0: 2020 2020 2032 3220 2020 2020 2020 2020 22 │ │ │ │ -0002e0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e0c0: 7c0a 7c6f 3820 3d20 5220 203c 2d2d 2052 |.|o8 = R <-- R │ │ │ │ -0002e0d0: 2020 3c2d 2d20 5220 203c 2d2d 2052 2020 <-- R <-- R │ │ │ │ -0002e0e0: 3c2d 2d20 5220 2020 3c2d 2d20 5220 2020 <-- R <-- R │ │ │ │ -0002e0f0: 3c2d 2d20 5220 2020 2020 2020 2020 2020 <-- R │ │ │ │ -0002e100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e110: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002e060: 2020 2020 207c 0a7c 2020 2020 2020 3120 |.| 1 │ │ │ │ +0002e070: 2020 2020 2032 2020 2020 2020 3420 2020 2 4 │ │ │ │ +0002e080: 2020 2037 2020 2020 2020 3131 2020 2020 7 11 │ │ │ │ +0002e090: 2020 3136 2020 2020 2020 3232 2020 2020 16 22 │ │ │ │ +0002e0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e0b0: 2020 2020 207c 0a7c 6f38 203d 2052 2020 |.|o8 = R │ │ │ │ +0002e0c0: 3c2d 2d20 5220 203c 2d2d 2052 2020 3c2d <-- R <-- R <- │ │ │ │ +0002e0d0: 2d20 5220 203c 2d2d 2052 2020 203c 2d2d - R <-- R <-- │ │ │ │ +0002e0e0: 2052 2020 203c 2d2d 2052 2020 2020 2020 R <-- R │ │ │ │ +0002e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e100: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002e110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e160: 7c0a 7c20 2020 2020 3020 2020 2020 2031 |.| 0 1 │ │ │ │ -0002e170: 2020 2020 2020 3220 2020 2020 2033 2020 2 3 │ │ │ │ -0002e180: 2020 2020 3420 2020 2020 2020 3520 2020 4 5 │ │ │ │ -0002e190: 2020 2020 3620 2020 2020 2020 2020 2020 6 │ │ │ │ -0002e1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e1b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002e150: 2020 2020 207c 0a7c 2020 2020 2030 2020 |.| 0 │ │ │ │ +0002e160: 2020 2020 3120 2020 2020 2032 2020 2020 1 2 │ │ │ │ +0002e170: 2020 3320 2020 2020 2034 2020 2020 2020 3 4 │ │ │ │ +0002e180: 2035 2020 2020 2020 2036 2020 2020 2020 5 6 │ │ │ │ +0002e190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e1a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e200: 7c0a 7c6f 3820 3a20 4368 6169 6e43 6f6d |.|o8 : ChainCom │ │ │ │ -0002e210: 706c 6578 2020 2020 2020 2020 2020 2020 plex │ │ │ │ +0002e1f0: 2020 2020 207c 0a7c 6f38 203a 2043 6861 |.|o8 : Cha │ │ │ │ +0002e200: 696e 436f 6d70 6c65 7820 2020 2020 2020 inComplex │ │ │ │ +0002e210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e250: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002e240: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002e250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e2a0: 2b0a 7c69 3920 3a20 7379 7a79 6769 6573 +.|i9 : syzygies │ │ │ │ -0002e2b0: 203d 2061 7070 6c79 2831 2e2e 6d2c 2069 = apply(1..m, i │ │ │ │ -0002e2c0: 2d3e 636f 6b65 7220 462e 6464 5f69 293b ->coker F.dd_i); │ │ │ │ +0002e290: 2d2d 2d2d 2d2b 0a7c 6939 203a 2073 797a -----+.|i9 : syz │ │ │ │ +0002e2a0: 7967 6965 7320 3d20 6170 706c 7928 312e ygies = apply(1. │ │ │ │ +0002e2b0: 2e6d 2c20 692d 3e63 6f6b 6572 2046 2e64 .m, i->coker F.d │ │ │ │ +0002e2c0: 645f 6929 3b20 2020 2020 2020 2020 2020 d_i); │ │ │ │ 0002e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e2f0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002e2e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002e2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e340: 2b0a 7c69 3130 203a 2074 3120 3d20 6d61 +.|i10 : t1 = ma │ │ │ │ -0002e350: 6b65 5428 6666 2c46 2c6b 2b34 293b 2020 keT(ff,F,k+4); │ │ │ │ +0002e330: 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 7431 -----+.|i10 : t1 │ │ │ │ +0002e340: 203d 206d 616b 6554 2866 662c 462c 6b2b = makeT(ff,F,k+ │ │ │ │ +0002e350: 3429 3b20 2020 2020 2020 2020 2020 2020 4); │ │ │ │ 0002e360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e390: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002e380: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002e390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e3e0: 2b0a 7c69 3131 203a 2074 3220 3d20 6d61 +.|i11 : t2 = ma │ │ │ │ -0002e3f0: 6b65 5428 6666 2c46 2c6b 2b32 293b 2020 keT(ff,F,k+2); │ │ │ │ +0002e3d0: 2d2d 2d2d 2d2b 0a7c 6931 3120 3a20 7432 -----+.|i11 : t2 │ │ │ │ +0002e3e0: 203d 206d 616b 6554 2866 662c 462c 6b2b = makeT(ff,F,k+ │ │ │ │ +0002e3f0: 3229 3b20 2020 2020 2020 2020 2020 2020 2); │ │ │ │ 0002e400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e430: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002e420: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002e430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e480: 2b0a 7c69 3132 203a 2054 3243 6f6d 706f +.|i12 : T2Compo │ │ │ │ -0002e490: 6e65 6e74 7320 3d20 666c 6174 7465 6e20 nents = flatten │ │ │ │ -0002e4a0: 666f 7220 6920 6672 6f6d 2030 2074 6f20 for i from 0 to │ │ │ │ -0002e4b0: 3120 6c69 7374 2866 6f72 206a 2066 726f 1 list(for j fro │ │ │ │ -0002e4c0: 6d20 692b 3120 746f 2032 206c 6973 7420 m i+1 to 2 list │ │ │ │ -0002e4d0: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ +0002e470: 2d2d 2d2d 2d2b 0a7c 6931 3220 3a20 5432 -----+.|i12 : T2 │ │ │ │ +0002e480: 436f 6d70 6f6e 656e 7473 203d 2066 6c61 Components = fla │ │ │ │ +0002e490: 7474 656e 2066 6f72 2069 2066 726f 6d20 tten for i from │ │ │ │ +0002e4a0: 3020 746f 2031 206c 6973 7428 666f 7220 0 to 1 list(for │ │ │ │ +0002e4b0: 6a20 6672 6f6d 2069 2b31 2074 6f20 3220 j from i+1 to 2 │ │ │ │ +0002e4c0: 6c69 7374 207c 0a7c 2d2d 2d2d 2d2d 2d2d list |.|-------- │ │ │ │ +0002e4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e520: 7c0a 7c6d 6170 2846 5f6b 2c20 465f 286b |.|map(F_k, F_(k │ │ │ │ -0002e530: 2b34 292c 2074 325f 692a 7431 5f6a 2d74 +4), t2_i*t1_j-t │ │ │ │ -0002e540: 325f 6a2a 7431 5f69 2929 3b20 2020 2020 2_j*t1_i)); │ │ │ │ +0002e510: 2d2d 2d2d 2d7c 0a7c 6d61 7028 465f 6b2c -----|.|map(F_k, │ │ │ │ +0002e520: 2046 5f28 6b2b 3429 2c20 7432 5f69 2a74 F_(k+4), t2_i*t │ │ │ │ +0002e530: 315f 6a2d 7432 5f6a 2a74 315f 6929 293b 1_j-t2_j*t1_i)); │ │ │ │ +0002e540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e570: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002e560: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002e570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e5c0: 2b0a 7c69 3133 203a 2067 203d 206d 6170 +.|i13 : g = map │ │ │ │ -0002e5d0: 2873 797a 7967 6965 735f 6b2c 2073 797a (syzygies_k, syz │ │ │ │ -0002e5e0: 7967 6965 735f 286b 2b34 292c 2054 3243 ygies_(k+4), T2C │ │ │ │ -0002e5f0: 6f6d 706f 6e65 6e74 735f 3229 2020 2020 omponents_2) │ │ │ │ -0002e600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e610: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002e5b0: 2d2d 2d2d 2d2b 0a7c 6931 3320 3a20 6720 -----+.|i13 : g │ │ │ │ +0002e5c0: 3d20 6d61 7028 7379 7a79 6769 6573 5f6b = map(syzygies_k │ │ │ │ +0002e5d0: 2c20 7379 7a79 6769 6573 5f28 6b2b 3429 , syzygies_(k+4) │ │ │ │ +0002e5e0: 2c20 5432 436f 6d70 6f6e 656e 7473 5f32 , T2Components_2 │ │ │ │ +0002e5f0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0002e600: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002e610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e660: 7c0a 7c6f 3133 203d 207b 317d 207c 2030 |.|o13 = {1} | 0 │ │ │ │ -0002e670: 2030 2030 2030 2030 202d 6320 3020 3020 0 0 0 0 -c 0 0 │ │ │ │ -0002e680: 6220 3020 3020 3020 3020 3020 3020 3020 b 0 0 0 0 0 0 0 │ │ │ │ -0002e690: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0002e6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e6b0: 7c0a 7c20 2020 2020 207b 327d 207c 2030 |.| {2} | 0 │ │ │ │ -0002e6c0: 2030 2030 2030 2030 2030 2020 3020 3020 0 0 0 0 0 0 0 │ │ │ │ -0002e6d0: 3020 3020 3020 3020 3020 3020 3020 3020 0 0 0 0 0 0 0 0 │ │ │ │ -0002e6e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0002e6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e700: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002e650: 2020 2020 207c 0a7c 6f31 3320 3d20 7b31 |.|o13 = {1 │ │ │ │ +0002e660: 7d20 7c20 3020 3020 3020 3020 3020 2d63 } | 0 0 0 0 0 -c │ │ │ │ +0002e670: 2030 2030 2062 2030 2030 2030 2030 2030 0 0 b 0 0 0 0 0 │ │ │ │ +0002e680: 2030 2030 207c 2020 2020 2020 2020 2020 0 0 | │ │ │ │ +0002e690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e6a0: 2020 2020 207c 0a7c 2020 2020 2020 7b32 |.| {2 │ │ │ │ +0002e6b0: 7d20 7c20 3020 3020 3020 3020 3020 3020 } | 0 0 0 0 0 0 │ │ │ │ +0002e6c0: 2030 2030 2030 2030 2030 2030 2030 2030 0 0 0 0 0 0 0 0 │ │ │ │ +0002e6d0: 2030 2030 207c 2020 2020 2020 2020 2020 0 0 | │ │ │ │ +0002e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e6f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002e700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e750: 7c0a 7c6f 3133 203a 204d 6174 7269 7820 |.|o13 : Matrix │ │ │ │ +0002e740: 2020 2020 207c 0a7c 6f31 3320 3a20 4d61 |.|o13 : Ma │ │ │ │ +0002e750: 7472 6978 2020 2020 2020 2020 2020 2020 trix │ │ │ │ 0002e760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e7a0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002e790: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002e7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e7f0: 2b0a 7c69 3134 203a 2069 7353 7461 626c +.|i14 : isStabl │ │ │ │ -0002e800: 7954 7269 7669 616c 2067 2020 2020 2020 yTrivial g │ │ │ │ +0002e7e0: 2d2d 2d2d 2d2b 0a7c 6931 3420 3a20 6973 -----+.|i14 : is │ │ │ │ +0002e7f0: 5374 6162 6c79 5472 6976 6961 6c20 6720 StablyTrivial g │ │ │ │ +0002e800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e840: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002e830: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002e840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e890: 7c0a 7c6f 3134 203d 2074 7275 6520 2020 |.|o14 = true │ │ │ │ +0002e880: 2020 2020 207c 0a7c 6f31 3420 3d20 7472 |.|o14 = tr │ │ │ │ +0002e890: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ 0002e8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e8e0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0002e8d0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002e8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e930: 2b0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d +..See also.==== │ │ │ │ -0002e940: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -0002e950: 7374 6162 6c65 486f 6d3a 2073 7461 626c stableHom: stabl │ │ │ │ -0002e960: 6548 6f6d 2c20 2d2d 206d 6170 2066 726f eHom, -- map fro │ │ │ │ -0002e970: 6d20 486f 6d28 4d2c 4e29 2074 6f20 7468 m Hom(M,N) to th │ │ │ │ -0002e980: 6520 7374 6162 6c65 2048 6f6d 206d 6f64 e stable Hom mod │ │ │ │ -0002e990: 756c 650a 0a57 6179 7320 746f 2075 7365 ule..Ways to use │ │ │ │ -0002e9a0: 2069 7353 7461 626c 7954 7269 7669 616c isStablyTrivial │ │ │ │ -0002e9b0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -0002e9c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -0002e9d0: 2020 2a20 2269 7353 7461 626c 7954 7269 * "isStablyTri │ │ │ │ -0002e9e0: 7669 616c 284d 6174 7269 7829 220a 0a46 vial(Matrix)"..F │ │ │ │ -0002e9f0: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -0002ea00: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -0002ea10: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -0002ea20: 202a 6e6f 7465 2069 7353 7461 626c 7954 *note isStablyT │ │ │ │ -0002ea30: 7269 7669 616c 3a20 6973 5374 6162 6c79 rivial: isStably │ │ │ │ -0002ea40: 5472 6976 6961 6c2c 2069 7320 6120 2a6e Trivial, is a *n │ │ │ │ -0002ea50: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ -0002ea60: 696f 6e3a 0a28 4d61 6361 756c 6179 3244 ion:.(Macaulay2D │ │ │ │ -0002ea70: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ -0002ea80: 6e2c 2e0a 1f0a 4669 6c65 3a20 436f 6d70 n,....File: Comp │ │ │ │ -0002ea90: 6c65 7465 496e 7465 7273 6563 7469 6f6e leteIntersection │ │ │ │ -0002eaa0: 5265 736f 6c75 7469 6f6e 732e 696e 666f Resolutions.info │ │ │ │ -0002eab0: 2c20 4e6f 6465 3a20 6b6f 737a 756c 4578 , Node: koszulEx │ │ │ │ -0002eac0: 7465 6e73 696f 6e2c 204e 6578 743a 204c tension, Next: L │ │ │ │ -0002ead0: 6179 6572 6564 2c20 5072 6576 3a20 6973 ayered, Prev: is │ │ │ │ -0002eae0: 5374 6162 6c79 5472 6976 6961 6c2c 2055 StablyTrivial, U │ │ │ │ -0002eaf0: 703a 2054 6f70 0a0a 6b6f 737a 756c 4578 p: Top..koszulEx │ │ │ │ -0002eb00: 7465 6e73 696f 6e20 2d2d 2063 7265 6174 tension -- creat │ │ │ │ -0002eb10: 6573 2074 6865 204b 6f73 7a75 6c20 6578 es the Koszul ex │ │ │ │ -0002eb20: 7465 6e73 696f 6e20 636f 6d70 6c65 7820 tension complex │ │ │ │ -0002eb30: 6f66 2061 206d 6170 0a2a 2a2a 2a2a 2a2a of a map.******* │ │ │ │ +0002e920: 2d2d 2d2d 2d2b 0a0a 5365 6520 616c 736f -----+..See also │ │ │ │ +0002e930: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ +0002e940: 6e6f 7465 2073 7461 626c 6548 6f6d 3a20 note stableHom: │ │ │ │ +0002e950: 7374 6162 6c65 486f 6d2c 202d 2d20 6d61 stableHom, -- ma │ │ │ │ +0002e960: 7020 6672 6f6d 2048 6f6d 284d 2c4e 2920 p from Hom(M,N) │ │ │ │ +0002e970: 746f 2074 6865 2073 7461 626c 6520 486f to the stable Ho │ │ │ │ +0002e980: 6d20 6d6f 6475 6c65 0a0a 5761 7973 2074 m module..Ways t │ │ │ │ +0002e990: 6f20 7573 6520 6973 5374 6162 6c79 5472 o use isStablyTr │ │ │ │ +0002e9a0: 6976 6961 6c3a 0a3d 3d3d 3d3d 3d3d 3d3d ivial:.========= │ │ │ │ +0002e9b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0002e9c0: 3d3d 3d0a 0a20 202a 2022 6973 5374 6162 ===.. * "isStab │ │ │ │ +0002e9d0: 6c79 5472 6976 6961 6c28 4d61 7472 6978 lyTrivial(Matrix │ │ │ │ +0002e9e0: 2922 0a0a 466f 7220 7468 6520 7072 6f67 )"..For the prog │ │ │ │ +0002e9f0: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ +0002ea00: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ +0002ea10: 626a 6563 7420 2a6e 6f74 6520 6973 5374 bject *note isSt │ │ │ │ +0002ea20: 6162 6c79 5472 6976 6961 6c3a 2069 7353 ablyTrivial: isS │ │ │ │ +0002ea30: 7461 626c 7954 7269 7669 616c 2c20 6973 tablyTrivial, is │ │ │ │ +0002ea40: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ +0002ea50: 6675 6e63 7469 6f6e 3a0a 284d 6163 6175 function:.(Macau │ │ │ │ +0002ea60: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ +0002ea70: 6e63 7469 6f6e 2c2e 0a1f 0a46 696c 653a nction,....File: │ │ │ │ +0002ea80: 2043 6f6d 706c 6574 6549 6e74 6572 7365 CompleteInterse │ │ │ │ +0002ea90: 6374 696f 6e52 6573 6f6c 7574 696f 6e73 ctionResolutions │ │ │ │ +0002eaa0: 2e69 6e66 6f2c 204e 6f64 653a 206b 6f73 .info, Node: kos │ │ │ │ +0002eab0: 7a75 6c45 7874 656e 7369 6f6e 2c20 4e65 zulExtension, Ne │ │ │ │ +0002eac0: 7874 3a20 4c61 7965 7265 642c 2050 7265 xt: Layered, Pre │ │ │ │ +0002ead0: 763a 2069 7353 7461 626c 7954 7269 7669 v: isStablyTrivi │ │ │ │ +0002eae0: 616c 2c20 5570 3a20 546f 700a 0a6b 6f73 al, Up: Top..kos │ │ │ │ +0002eaf0: 7a75 6c45 7874 656e 7369 6f6e 202d 2d20 zulExtension -- │ │ │ │ +0002eb00: 6372 6561 7465 7320 7468 6520 4b6f 737a creates the Kosz │ │ │ │ +0002eb10: 756c 2065 7874 656e 7369 6f6e 2063 6f6d ul extension com │ │ │ │ +0002eb20: 706c 6578 206f 6620 6120 6d61 700a 2a2a plex of a map.** │ │ │ │ +0002eb30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002eb40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002eb50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002eb60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002eb70: 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 796e 6f70 *********..Synop │ │ │ │ -0002eb80: 7369 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 sis.========.. │ │ │ │ -0002eb90: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ -0002eba0: 2020 4d4d 203d 206b 6f73 7a75 6c45 7874 MM = koszulExt │ │ │ │ -0002ebb0: 656e 7369 6f6e 2846 462c 4242 2c70 7369 ension(FF,BB,psi │ │ │ │ -0002ebc0: 312c 6666 290a 2020 2a20 496e 7075 7473 1,ff). * Inputs │ │ │ │ -0002ebd0: 3a0a 2020 2020 2020 2a20 4646 2c20 6120 :. * FF, a │ │ │ │ -0002ebe0: 2a6e 6f74 6520 6368 6169 6e20 636f 6d70 *note chain comp │ │ │ │ -0002ebf0: 6c65 783a 2028 4d61 6361 756c 6179 3244 lex: (Macaulay2D │ │ │ │ -0002ec00: 6f63 2943 6861 696e 436f 6d70 6c65 782c oc)ChainComplex, │ │ │ │ -0002ec10: 2c20 7265 736f 6c75 7469 6f6e 206f 7665 , resolution ove │ │ │ │ -0002ec20: 720a 2020 2020 2020 2020 530a 2020 2020 r. S. │ │ │ │ -0002ec30: 2020 2a20 4242 2c20 6120 2a6e 6f74 6520 * BB, a *note │ │ │ │ -0002ec40: 6368 6169 6e20 636f 6d70 6c65 783a 2028 chain complex: ( │ │ │ │ -0002ec50: 4d61 6361 756c 6179 3244 6f63 2943 6861 Macaulay2Doc)Cha │ │ │ │ -0002ec60: 696e 436f 6d70 6c65 782c 2c20 7477 6f2d inComplex,, two- │ │ │ │ -0002ec70: 7465 726d 0a20 2020 2020 2020 2063 6f6d term. com │ │ │ │ -0002ec80: 706c 6578 2042 425f 312d 2d3e 4242 5f30 plex BB_1-->BB_0 │ │ │ │ -0002ec90: 0a20 2020 2020 202a 2070 7369 312c 2061 . * psi1, a │ │ │ │ -0002eca0: 202a 6e6f 7465 206d 6174 7269 783a 2028 *note matrix: ( │ │ │ │ -0002ecb0: 4d61 6361 756c 6179 3244 6f63 294d 6174 Macaulay2Doc)Mat │ │ │ │ -0002ecc0: 7269 782c 2c20 6672 6f6d 2042 425f 3120 rix,, from BB_1 │ │ │ │ -0002ecd0: 746f 2046 465f 300a 2020 2020 2020 2a20 to FF_0. * │ │ │ │ -0002ece0: 6666 2c20 6120 2a6e 6f74 6520 6d61 7472 ff, a *note matr │ │ │ │ -0002ecf0: 6978 3a20 284d 6163 6175 6c61 7932 446f ix: (Macaulay2Do │ │ │ │ -0002ed00: 6329 4d61 7472 6978 2c2c 2072 6567 756c c)Matrix,, regul │ │ │ │ -0002ed10: 6172 2073 6571 7565 6e63 650a 2020 2020 ar sequence. │ │ │ │ -0002ed20: 2020 2020 616e 6e69 6869 6c61 7469 6e67 annihilating │ │ │ │ -0002ed30: 2074 6865 206d 6f64 756c 6520 7265 736f the module reso │ │ │ │ -0002ed40: 6c76 6564 2062 7920 4646 0a20 202a 204f lved by FF. * O │ │ │ │ -0002ed50: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ -0002ed60: 4d4d 2c20 6120 2a6e 6f74 6520 6368 6169 MM, a *note chai │ │ │ │ -0002ed70: 6e20 636f 6d70 6c65 783a 2028 4d61 6361 n complex: (Maca │ │ │ │ -0002ed80: 756c 6179 3244 6f63 2943 6861 696e 436f ulay2Doc)ChainCo │ │ │ │ -0002ed90: 6d70 6c65 782c 2c20 7468 6520 6d61 7070 mplex,, the mapp │ │ │ │ -0002eda0: 696e 670a 2020 2020 2020 2020 636f 6e65 ing. cone │ │ │ │ -0002edb0: 206f 6620 7468 6520 696e 6475 6365 6420 of the induced │ │ │ │ -0002edc0: 6d61 7020 425b 2d31 5d5c 6f74 696d 6573 map B[-1]\otimes │ │ │ │ -0002edd0: 204b 4b28 6666 2920 746f 2057 2065 7874 KK(ff) to W ext │ │ │ │ -0002ede0: 656e 6469 6e67 2070 7369 0a0a 4465 7363 ending psi..Desc │ │ │ │ -0002edf0: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ -0002ee00: 3d3d 3d0a 0a49 6d70 6c65 6d65 6e74 7320 ===..Implements │ │ │ │ -0002ee10: 7468 6520 636f 6e73 7472 7563 7469 6f6e the construction │ │ │ │ -0002ee20: 2069 6e20 7468 6520 7061 7065 7220 224d in the paper "M │ │ │ │ -0002ee30: 6174 7269 7820 4661 6374 6f72 697a 6174 atrix Factorizat │ │ │ │ -0002ee40: 696f 6e73 2069 6e20 4869 6768 6572 0a43 ions in Higher.C │ │ │ │ -0002ee50: 6f64 696d 656e 7369 6f6e 2220 6279 2045 odimension" by E │ │ │ │ -0002ee60: 6973 656e 6275 6420 616e 6420 5065 6576 isenbud and Peev │ │ │ │ -0002ee70: 612e 0a0a 5365 6520 616c 736f 0a3d 3d3d a...See also.=== │ │ │ │ -0002ee80: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -0002ee90: 206d 616b 6546 696e 6974 6552 6573 6f6c makeFiniteResol │ │ │ │ -0002eea0: 7574 696f 6e3a 206d 616b 6546 696e 6974 ution: makeFinit │ │ │ │ -0002eeb0: 6552 6573 6f6c 7574 696f 6e2c 202d 2d20 eResolution, -- │ │ │ │ -0002eec0: 6669 6e69 7465 2072 6573 6f6c 7574 696f finite resolutio │ │ │ │ -0002eed0: 6e20 6f66 2061 0a20 2020 206d 6174 7269 n of a. matri │ │ │ │ -0002eee0: 7820 6661 6374 6f72 697a 6174 696f 6e20 x factorization │ │ │ │ -0002eef0: 6d6f 6475 6c65 204d 0a0a 5761 7973 2074 module M..Ways t │ │ │ │ -0002ef00: 6f20 7573 6520 6b6f 737a 756c 4578 7465 o use koszulExte │ │ │ │ -0002ef10: 6e73 696f 6e3a 0a3d 3d3d 3d3d 3d3d 3d3d nsion:.========= │ │ │ │ -0002ef20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0002ef30: 3d3d 3d0a 0a20 202a 2022 6b6f 737a 756c ===.. * "koszul │ │ │ │ -0002ef40: 4578 7465 6e73 696f 6e28 4368 6169 6e43 Extension(ChainC │ │ │ │ -0002ef50: 6f6d 706c 6578 2c43 6861 696e 436f 6d70 omplex,ChainComp │ │ │ │ -0002ef60: 6c65 782c 4d61 7472 6978 2c4d 6174 7269 lex,Matrix,Matri │ │ │ │ -0002ef70: 7829 220a 0a46 6f72 2074 6865 2070 726f x)"..For the pro │ │ │ │ -0002ef80: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -0002ef90: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -0002efa0: 6f62 6a65 6374 202a 6e6f 7465 206b 6f73 object *note kos │ │ │ │ -0002efb0: 7a75 6c45 7874 656e 7369 6f6e 3a20 6b6f zulExtension: ko │ │ │ │ -0002efc0: 737a 756c 4578 7465 6e73 696f 6e2c 2069 szulExtension, i │ │ │ │ -0002efd0: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ -0002efe0: 2066 756e 6374 696f 6e3a 0a28 4d61 6361 function:.(Maca │ │ │ │ -0002eff0: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ -0002f000: 756e 6374 696f 6e2c 2e0a 1f0a 4669 6c65 unction,....File │ │ │ │ -0002f010: 3a20 436f 6d70 6c65 7465 496e 7465 7273 : CompleteInters │ │ │ │ -0002f020: 6563 7469 6f6e 5265 736f 6c75 7469 6f6e ectionResolution │ │ │ │ -0002f030: 732e 696e 666f 2c20 4e6f 6465 3a20 4c61 s.info, Node: La │ │ │ │ -0002f040: 7965 7265 642c 204e 6578 743a 206c 6179 yered, Next: lay │ │ │ │ -0002f050: 6572 6564 5265 736f 6c75 7469 6f6e 2c20 eredResolution, │ │ │ │ -0002f060: 5072 6576 3a20 6b6f 737a 756c 4578 7465 Prev: koszulExte │ │ │ │ -0002f070: 6e73 696f 6e2c 2055 703a 2054 6f70 0a0a nsion, Up: Top.. │ │ │ │ -0002f080: 4c61 7965 7265 6420 2d2d 204f 7074 696f Layered -- Optio │ │ │ │ -0002f090: 6e20 666f 7220 6d61 7472 6978 4661 6374 n for matrixFact │ │ │ │ -0002f0a0: 6f72 697a 6174 696f 6e0a 2a2a 2a2a 2a2a orization.****** │ │ │ │ +0002eb60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +0002eb70: 5379 6e6f 7073 6973 0a3d 3d3d 3d3d 3d3d Synopsis.======= │ │ │ │ +0002eb80: 3d0a 0a20 202a 2055 7361 6765 3a20 0a20 =.. * Usage: . │ │ │ │ +0002eb90: 2020 2020 2020 204d 4d20 3d20 6b6f 737a MM = kosz │ │ │ │ +0002eba0: 756c 4578 7465 6e73 696f 6e28 4646 2c42 ulExtension(FF,B │ │ │ │ +0002ebb0: 422c 7073 6931 2c66 6629 0a20 202a 2049 B,psi1,ff). * I │ │ │ │ +0002ebc0: 6e70 7574 733a 0a20 2020 2020 202a 2046 nputs:. * F │ │ │ │ +0002ebd0: 462c 2061 202a 6e6f 7465 2063 6861 696e F, a *note chain │ │ │ │ +0002ebe0: 2063 6f6d 706c 6578 3a20 284d 6163 6175 complex: (Macau │ │ │ │ +0002ebf0: 6c61 7932 446f 6329 4368 6169 6e43 6f6d lay2Doc)ChainCom │ │ │ │ +0002ec00: 706c 6578 2c2c 2072 6573 6f6c 7574 696f plex,, resolutio │ │ │ │ +0002ec10: 6e20 6f76 6572 0a20 2020 2020 2020 2053 n over. S │ │ │ │ +0002ec20: 0a20 2020 2020 202a 2042 422c 2061 202a . * BB, a * │ │ │ │ +0002ec30: 6e6f 7465 2063 6861 696e 2063 6f6d 706c note chain compl │ │ │ │ +0002ec40: 6578 3a20 284d 6163 6175 6c61 7932 446f ex: (Macaulay2Do │ │ │ │ +0002ec50: 6329 4368 6169 6e43 6f6d 706c 6578 2c2c c)ChainComplex,, │ │ │ │ +0002ec60: 2074 776f 2d74 6572 6d0a 2020 2020 2020 two-term. │ │ │ │ +0002ec70: 2020 636f 6d70 6c65 7820 4242 5f31 2d2d complex BB_1-- │ │ │ │ +0002ec80: 3e42 425f 300a 2020 2020 2020 2a20 7073 >BB_0. * ps │ │ │ │ +0002ec90: 6931 2c20 6120 2a6e 6f74 6520 6d61 7472 i1, a *note matr │ │ │ │ +0002eca0: 6978 3a20 284d 6163 6175 6c61 7932 446f ix: (Macaulay2Do │ │ │ │ +0002ecb0: 6329 4d61 7472 6978 2c2c 2066 726f 6d20 c)Matrix,, from │ │ │ │ +0002ecc0: 4242 5f31 2074 6f20 4646 5f30 0a20 2020 BB_1 to FF_0. │ │ │ │ +0002ecd0: 2020 202a 2066 662c 2061 202a 6e6f 7465 * ff, a *note │ │ │ │ +0002ece0: 206d 6174 7269 783a 2028 4d61 6361 756c matrix: (Macaul │ │ │ │ +0002ecf0: 6179 3244 6f63 294d 6174 7269 782c 2c20 ay2Doc)Matrix,, │ │ │ │ +0002ed00: 7265 6775 6c61 7220 7365 7175 656e 6365 regular sequence │ │ │ │ +0002ed10: 0a20 2020 2020 2020 2061 6e6e 6968 696c . annihil │ │ │ │ +0002ed20: 6174 696e 6720 7468 6520 6d6f 6475 6c65 ating the module │ │ │ │ +0002ed30: 2072 6573 6f6c 7665 6420 6279 2046 460a resolved by FF. │ │ │ │ +0002ed40: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ +0002ed50: 2020 202a 204d 4d2c 2061 202a 6e6f 7465 * MM, a *note │ │ │ │ +0002ed60: 2063 6861 696e 2063 6f6d 706c 6578 3a20 chain complex: │ │ │ │ +0002ed70: 284d 6163 6175 6c61 7932 446f 6329 4368 (Macaulay2Doc)Ch │ │ │ │ +0002ed80: 6169 6e43 6f6d 706c 6578 2c2c 2074 6865 ainComplex,, the │ │ │ │ +0002ed90: 206d 6170 7069 6e67 0a20 2020 2020 2020 mapping. │ │ │ │ +0002eda0: 2063 6f6e 6520 6f66 2074 6865 2069 6e64 cone of the ind │ │ │ │ +0002edb0: 7563 6564 206d 6170 2042 5b2d 315d 5c6f uced map B[-1]\o │ │ │ │ +0002edc0: 7469 6d65 7320 4b4b 2866 6629 2074 6f20 times KK(ff) to │ │ │ │ +0002edd0: 5720 6578 7465 6e64 696e 6720 7073 690a W extending psi. │ │ │ │ +0002ede0: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +0002edf0: 3d3d 3d3d 3d3d 3d3d 0a0a 496d 706c 656d ========..Implem │ │ │ │ +0002ee00: 656e 7473 2074 6865 2063 6f6e 7374 7275 ents the constru │ │ │ │ +0002ee10: 6374 696f 6e20 696e 2074 6865 2070 6170 ction in the pap │ │ │ │ +0002ee20: 6572 2022 4d61 7472 6978 2046 6163 746f er "Matrix Facto │ │ │ │ +0002ee30: 7269 7a61 7469 6f6e 7320 696e 2048 6967 rizations in Hig │ │ │ │ +0002ee40: 6865 720a 436f 6469 6d65 6e73 696f 6e22 her.Codimension" │ │ │ │ +0002ee50: 2062 7920 4569 7365 6e62 7564 2061 6e64 by Eisenbud and │ │ │ │ +0002ee60: 2050 6565 7661 2e0a 0a53 6565 2061 6c73 Peeva...See als │ │ │ │ +0002ee70: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ +0002ee80: 2a6e 6f74 6520 6d61 6b65 4669 6e69 7465 *note makeFinite │ │ │ │ +0002ee90: 5265 736f 6c75 7469 6f6e 3a20 6d61 6b65 Resolution: make │ │ │ │ +0002eea0: 4669 6e69 7465 5265 736f 6c75 7469 6f6e FiniteResolution │ │ │ │ +0002eeb0: 2c20 2d2d 2066 696e 6974 6520 7265 736f , -- finite reso │ │ │ │ +0002eec0: 6c75 7469 6f6e 206f 6620 610a 2020 2020 lution of a. │ │ │ │ +0002eed0: 6d61 7472 6978 2066 6163 746f 7269 7a61 matrix factoriza │ │ │ │ +0002eee0: 7469 6f6e 206d 6f64 756c 6520 4d0a 0a57 tion module M..W │ │ │ │ +0002eef0: 6179 7320 746f 2075 7365 206b 6f73 7a75 ays to use koszu │ │ │ │ +0002ef00: 6c45 7874 656e 7369 6f6e 3a0a 3d3d 3d3d lExtension:.==== │ │ │ │ +0002ef10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0002ef20: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 226b ========.. * "k │ │ │ │ +0002ef30: 6f73 7a75 6c45 7874 656e 7369 6f6e 2843 oszulExtension(C │ │ │ │ +0002ef40: 6861 696e 436f 6d70 6c65 782c 4368 6169 hainComplex,Chai │ │ │ │ +0002ef50: 6e43 6f6d 706c 6578 2c4d 6174 7269 782c nComplex,Matrix, │ │ │ │ +0002ef60: 4d61 7472 6978 2922 0a0a 466f 7220 7468 Matrix)"..For th │ │ │ │ +0002ef70: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +0002ef80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0002ef90: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +0002efa0: 6520 6b6f 737a 756c 4578 7465 6e73 696f e koszulExtensio │ │ │ │ +0002efb0: 6e3a 206b 6f73 7a75 6c45 7874 656e 7369 n: koszulExtensi │ │ │ │ +0002efc0: 6f6e 2c20 6973 2061 202a 6e6f 7465 206d on, is a *note m │ │ │ │ +0002efd0: 6574 686f 6420 6675 6e63 7469 6f6e 3a0a ethod function:. │ │ │ │ +0002efe0: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ +0002eff0: 7468 6f64 4675 6e63 7469 6f6e 2c2e 0a1f thodFunction,... │ │ │ │ +0002f000: 0a46 696c 653a 2043 6f6d 706c 6574 6549 .File: CompleteI │ │ │ │ +0002f010: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ +0002f020: 7574 696f 6e73 2e69 6e66 6f2c 204e 6f64 utions.info, Nod │ │ │ │ +0002f030: 653a 204c 6179 6572 6564 2c20 4e65 7874 e: Layered, Next │ │ │ │ +0002f040: 3a20 6c61 7965 7265 6452 6573 6f6c 7574 : layeredResolut │ │ │ │ +0002f050: 696f 6e2c 2050 7265 763a 206b 6f73 7a75 ion, Prev: koszu │ │ │ │ +0002f060: 6c45 7874 656e 7369 6f6e 2c20 5570 3a20 lExtension, Up: │ │ │ │ +0002f070: 546f 700a 0a4c 6179 6572 6564 202d 2d20 Top..Layered -- │ │ │ │ +0002f080: 4f70 7469 6f6e 2066 6f72 206d 6174 7269 Option for matri │ │ │ │ +0002f090: 7846 6163 746f 7269 7a61 7469 6f6e 0a2a xFactorization.* │ │ │ │ +0002f0a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002f0b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002f0c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002f0d0: 2a2a 2a0a 0a53 796e 6f70 7369 730a 3d3d ***..Synopsis.== │ │ │ │ -0002f0e0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 5573 6167 ======.. * Usag │ │ │ │ -0002f0f0: 653a 200a 2020 2020 2020 2020 6d61 7472 e: . matr │ │ │ │ -0002f100: 6978 4661 6374 6f72 697a 6174 696f 6e28 ixFactorization( │ │ │ │ -0002f110: 6666 2c6d 2c4c 6179 6572 6564 203d 3e20 ff,m,Layered => │ │ │ │ -0002f120: 7472 7565 290a 2020 2a20 496e 7075 7473 true). * Inputs │ │ │ │ -0002f130: 3a0a 2020 2020 2020 2a20 4368 6563 6b2c :. * Check, │ │ │ │ -0002f140: 2061 202a 6e6f 7465 2042 6f6f 6c65 616e a *note Boolean │ │ │ │ -0002f150: 2076 616c 7565 3a20 284d 6163 6175 6c61 value: (Macaula │ │ │ │ -0002f160: 7932 446f 6329 426f 6f6c 6561 6e2c 2c20 y2Doc)Boolean,, │ │ │ │ -0002f170: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ -0002f180: 3d3d 3d3d 3d3d 3d3d 3d0a 0a4d 616b 6573 =========..Makes │ │ │ │ -0002f190: 206d 6174 7269 7846 6163 746f 7269 7a61 matrixFactoriza │ │ │ │ -0002f1a0: 7469 6f6e 2075 7365 2074 6865 2022 6c61 tion use the "la │ │ │ │ -0002f1b0: 7965 7265 6422 2061 6c67 6f72 6974 686d yered" algorithm │ │ │ │ -0002f1c0: 2c20 7768 6963 6820 776f 726b 7320 666f , which works fo │ │ │ │ -0002f1d0: 7220 616e 7920 4d43 4d0a 6d6f 6475 6c65 r any MCM.module │ │ │ │ -0002f1e0: 2c20 6275 7420 7265 7475 726e 7320 736f , but returns so │ │ │ │ -0002f1f0: 6d65 7468 696e 6720 6e6f 6e2d 6d69 6e69 mething non-mini │ │ │ │ -0002f200: 6d61 6c20 6966 2074 6865 206d 6f64 756c mal if the modul │ │ │ │ -0002f210: 6520 6973 206e 6f74 2061 2022 6869 6768 e is not a "high │ │ │ │ -0002f220: 2073 797a 7967 7922 0a69 6e20 6120 7375 syzygy".in a su │ │ │ │ -0002f230: 6974 6162 6c65 2073 656e 7365 2e20 4465 itable sense. De │ │ │ │ -0002f240: 6661 756c 7420 6973 2022 7472 7565 222e fault is "true". │ │ │ │ -0002f250: 204e 6f74 6520 7468 6174 2077 6865 6e20 Note that when │ │ │ │ -0002f260: 7468 6520 6d6f 6475 6c65 2069 7320 6120 the module is a │ │ │ │ -0002f270: 6869 6768 0a73 797a 7967 792c 204c 6179 high.syzygy, Lay │ │ │ │ -0002f280: 6572 6564 3d3e 2066 616c 7365 2069 7320 ered=> false is │ │ │ │ -0002f290: 6d75 6368 2066 6173 7465 722e 0a0a 5365 much faster...Se │ │ │ │ -0002f2a0: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ -0002f2b0: 0a20 202a 202a 6e6f 7465 206d 6174 7269 . * *note matri │ │ │ │ -0002f2c0: 7846 6163 746f 7269 7a61 7469 6f6e 3a20 xFactorization: │ │ │ │ -0002f2d0: 6d61 7472 6978 4661 6374 6f72 697a 6174 matrixFactorizat │ │ │ │ -0002f2e0: 696f 6e2c 202d 2d20 4d61 7073 2069 6e20 ion, -- Maps in │ │ │ │ -0002f2f0: 6120 6869 6768 6572 0a20 2020 2063 6f64 a higher. cod │ │ │ │ -0002f300: 696d 656e 7369 6f6e 206d 6174 7269 7820 imension matrix │ │ │ │ -0002f310: 6661 6374 6f72 697a 6174 696f 6e0a 0a46 factorization..F │ │ │ │ -0002f320: 756e 6374 696f 6e73 2077 6974 6820 6f70 unctions with op │ │ │ │ -0002f330: 7469 6f6e 616c 2061 7267 756d 656e 7420 tional argument │ │ │ │ -0002f340: 6e61 6d65 6420 4c61 7965 7265 643a 0a3d named Layered:.= │ │ │ │ +0002f0c0: 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 ********..Synops │ │ │ │ +0002f0d0: 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a is.========.. * │ │ │ │ +0002f0e0: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +0002f0f0: 206d 6174 7269 7846 6163 746f 7269 7a61 matrixFactoriza │ │ │ │ +0002f100: 7469 6f6e 2866 662c 6d2c 4c61 7965 7265 tion(ff,m,Layere │ │ │ │ +0002f110: 6420 3d3e 2074 7275 6529 0a20 202a 2049 d => true). * I │ │ │ │ +0002f120: 6e70 7574 733a 0a20 2020 2020 202a 2043 nputs:. * C │ │ │ │ +0002f130: 6865 636b 2c20 6120 2a6e 6f74 6520 426f heck, a *note Bo │ │ │ │ +0002f140: 6f6c 6561 6e20 7661 6c75 653a 2028 4d61 olean value: (Ma │ │ │ │ +0002f150: 6361 756c 6179 3244 6f63 2942 6f6f 6c65 caulay2Doc)Boole │ │ │ │ +0002f160: 616e 2c2c 200a 0a44 6573 6372 6970 7469 an,, ..Descripti │ │ │ │ +0002f170: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +0002f180: 4d61 6b65 7320 6d61 7472 6978 4661 6374 Makes matrixFact │ │ │ │ +0002f190: 6f72 697a 6174 696f 6e20 7573 6520 7468 orization use th │ │ │ │ +0002f1a0: 6520 226c 6179 6572 6564 2220 616c 676f e "layered" algo │ │ │ │ +0002f1b0: 7269 7468 6d2c 2077 6869 6368 2077 6f72 rithm, which wor │ │ │ │ +0002f1c0: 6b73 2066 6f72 2061 6e79 204d 434d 0a6d ks for any MCM.m │ │ │ │ +0002f1d0: 6f64 756c 652c 2062 7574 2072 6574 7572 odule, but retur │ │ │ │ +0002f1e0: 6e73 2073 6f6d 6574 6869 6e67 206e 6f6e ns something non │ │ │ │ +0002f1f0: 2d6d 696e 696d 616c 2069 6620 7468 6520 -minimal if the │ │ │ │ +0002f200: 6d6f 6475 6c65 2069 7320 6e6f 7420 6120 module is not a │ │ │ │ +0002f210: 2268 6967 6820 7379 7a79 6779 220a 696e "high syzygy".in │ │ │ │ +0002f220: 2061 2073 7569 7461 626c 6520 7365 6e73 a suitable sens │ │ │ │ +0002f230: 652e 2044 6566 6175 6c74 2069 7320 2274 e. Default is "t │ │ │ │ +0002f240: 7275 6522 2e20 4e6f 7465 2074 6861 7420 rue". Note that │ │ │ │ +0002f250: 7768 656e 2074 6865 206d 6f64 756c 6520 when the module │ │ │ │ +0002f260: 6973 2061 2068 6967 680a 7379 7a79 6779 is a high.syzygy │ │ │ │ +0002f270: 2c20 4c61 7965 7265 643d 3e20 6661 6c73 , Layered=> fals │ │ │ │ +0002f280: 6520 6973 206d 7563 6820 6661 7374 6572 e is much faster │ │ │ │ +0002f290: 2e0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d ...See also.==== │ │ │ │ +0002f2a0: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ +0002f2b0: 6d61 7472 6978 4661 6374 6f72 697a 6174 matrixFactorizat │ │ │ │ +0002f2c0: 696f 6e3a 206d 6174 7269 7846 6163 746f ion: matrixFacto │ │ │ │ +0002f2d0: 7269 7a61 7469 6f6e 2c20 2d2d 204d 6170 rization, -- Map │ │ │ │ +0002f2e0: 7320 696e 2061 2068 6967 6865 720a 2020 s in a higher. │ │ │ │ +0002f2f0: 2020 636f 6469 6d65 6e73 696f 6e20 6d61 codimension ma │ │ │ │ +0002f300: 7472 6978 2066 6163 746f 7269 7a61 7469 trix factorizati │ │ │ │ +0002f310: 6f6e 0a0a 4675 6e63 7469 6f6e 7320 7769 on..Functions wi │ │ │ │ +0002f320: 7468 206f 7074 696f 6e61 6c20 6172 6775 th optional argu │ │ │ │ +0002f330: 6d65 6e74 206e 616d 6564 204c 6179 6572 ment named Layer │ │ │ │ +0002f340: 6564 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ed:.============ │ │ │ │ 0002f350: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 0002f360: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0002f370: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -0002f380: 2020 2a20 226d 6174 7269 7846 6163 746f * "matrixFacto │ │ │ │ -0002f390: 7269 7a61 7469 6f6e 282e 2e2e 2c4c 6179 rization(...,Lay │ │ │ │ -0002f3a0: 6572 6564 3d3e 2e2e 2e29 2220 2d2d 2073 ered=>...)" -- s │ │ │ │ -0002f3b0: 6565 202a 6e6f 7465 206d 6174 7269 7846 ee *note matrixF │ │ │ │ -0002f3c0: 6163 746f 7269 7a61 7469 6f6e 3a0a 2020 actorization:. │ │ │ │ -0002f3d0: 2020 6d61 7472 6978 4661 6374 6f72 697a matrixFactoriz │ │ │ │ -0002f3e0: 6174 696f 6e2c 202d 2d20 4d61 7073 2069 ation, -- Maps i │ │ │ │ -0002f3f0: 6e20 6120 6869 6768 6572 2063 6f64 696d n a higher codim │ │ │ │ -0002f400: 656e 7369 6f6e 206d 6174 7269 7820 6661 ension matrix fa │ │ │ │ -0002f410: 6374 6f72 697a 6174 696f 6e0a 0a46 6f72 ctorization..For │ │ │ │ -0002f420: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ -0002f430: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0002f440: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ -0002f450: 6e6f 7465 204c 6179 6572 6564 3a20 4c61 note Layered: La │ │ │ │ -0002f460: 7965 7265 642c 2069 7320 6120 2a6e 6f74 yered, is a *not │ │ │ │ -0002f470: 6520 7379 6d62 6f6c 3a20 284d 6163 6175 e symbol: (Macau │ │ │ │ -0002f480: 6c61 7932 446f 6329 5379 6d62 6f6c 2c2e lay2Doc)Symbol,. │ │ │ │ -0002f490: 0a1f 0a46 696c 653a 2043 6f6d 706c 6574 ...File: Complet │ │ │ │ -0002f4a0: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ -0002f4b0: 6f6c 7574 696f 6e73 2e69 6e66 6f2c 204e olutions.info, N │ │ │ │ -0002f4c0: 6f64 653a 206c 6179 6572 6564 5265 736f ode: layeredReso │ │ │ │ -0002f4d0: 6c75 7469 6f6e 2c20 4e65 7874 3a20 4c69 lution, Next: Li │ │ │ │ -0002f4e0: 6674 2c20 5072 6576 3a20 4c61 7965 7265 ft, Prev: Layere │ │ │ │ -0002f4f0: 642c 2055 703a 2054 6f70 0a0a 6c61 7965 d, Up: Top..laye │ │ │ │ -0002f500: 7265 6452 6573 6f6c 7574 696f 6e20 2d2d redResolution -- │ │ │ │ -0002f510: 206c 6179 6572 6564 2066 696e 6974 6520 layered finite │ │ │ │ -0002f520: 616e 6420 696e 6669 6e69 7465 206c 6179 and infinite lay │ │ │ │ -0002f530: 6572 6564 2072 6573 6f6c 7574 696f 6e73 ered resolutions │ │ │ │ -0002f540: 206f 6620 434d 206d 6f64 756c 6573 0a2a of CM modules.* │ │ │ │ +0002f370: 3d3d 3d0a 0a20 202a 2022 6d61 7472 6978 ===.. * "matrix │ │ │ │ +0002f380: 4661 6374 6f72 697a 6174 696f 6e28 2e2e Factorization(.. │ │ │ │ +0002f390: 2e2c 4c61 7965 7265 643d 3e2e 2e2e 2922 .,Layered=>...)" │ │ │ │ +0002f3a0: 202d 2d20 7365 6520 2a6e 6f74 6520 6d61 -- see *note ma │ │ │ │ +0002f3b0: 7472 6978 4661 6374 6f72 697a 6174 696f trixFactorizatio │ │ │ │ +0002f3c0: 6e3a 0a20 2020 206d 6174 7269 7846 6163 n:. matrixFac │ │ │ │ +0002f3d0: 746f 7269 7a61 7469 6f6e 2c20 2d2d 204d torization, -- M │ │ │ │ +0002f3e0: 6170 7320 696e 2061 2068 6967 6865 7220 aps in a higher │ │ │ │ +0002f3f0: 636f 6469 6d65 6e73 696f 6e20 6d61 7472 codimension matr │ │ │ │ +0002f400: 6978 2066 6163 746f 7269 7a61 7469 6f6e ix factorization │ │ │ │ +0002f410: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +0002f420: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +0002f430: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +0002f440: 6563 7420 2a6e 6f74 6520 4c61 7965 7265 ect *note Layere │ │ │ │ +0002f450: 643a 204c 6179 6572 6564 2c20 6973 2061 d: Layered, is a │ │ │ │ +0002f460: 202a 6e6f 7465 2073 796d 626f 6c3a 2028 *note symbol: ( │ │ │ │ +0002f470: 4d61 6361 756c 6179 3244 6f63 2953 796d Macaulay2Doc)Sym │ │ │ │ +0002f480: 626f 6c2c 2e0a 1f0a 4669 6c65 3a20 436f bol,....File: Co │ │ │ │ +0002f490: 6d70 6c65 7465 496e 7465 7273 6563 7469 mpleteIntersecti │ │ │ │ +0002f4a0: 6f6e 5265 736f 6c75 7469 6f6e 732e 696e onResolutions.in │ │ │ │ +0002f4b0: 666f 2c20 4e6f 6465 3a20 6c61 7965 7265 fo, Node: layere │ │ │ │ +0002f4c0: 6452 6573 6f6c 7574 696f 6e2c 204e 6578 dResolution, Nex │ │ │ │ +0002f4d0: 743a 204c 6966 742c 2050 7265 763a 204c t: Lift, Prev: L │ │ │ │ +0002f4e0: 6179 6572 6564 2c20 5570 3a20 546f 700a ayered, Up: Top. │ │ │ │ +0002f4f0: 0a6c 6179 6572 6564 5265 736f 6c75 7469 .layeredResoluti │ │ │ │ +0002f500: 6f6e 202d 2d20 6c61 7965 7265 6420 6669 on -- layered fi │ │ │ │ +0002f510: 6e69 7465 2061 6e64 2069 6e66 696e 6974 nite and infinit │ │ │ │ +0002f520: 6520 6c61 7965 7265 6420 7265 736f 6c75 e layered resolu │ │ │ │ +0002f530: 7469 6f6e 7320 6f66 2043 4d20 6d6f 6475 tions of CM modu │ │ │ │ +0002f540: 6c65 730a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a les.************ │ │ │ │ 0002f550: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002f560: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002f570: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0002f580: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002f590: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002f5a0: 2a0a 0a53 796e 6f70 7369 730a 3d3d 3d3d *..Synopsis.==== │ │ │ │ -0002f5b0: 3d3d 3d3d 0a0a 2020 2a20 5573 6167 653a ====.. * Usage: │ │ │ │ -0002f5c0: 200a 2020 2020 2020 2020 2846 462c 2061 . (FF, a │ │ │ │ -0002f5d0: 7567 2920 3d20 6c61 7965 7265 6452 6573 ug) = layeredRes │ │ │ │ -0002f5e0: 6f6c 7574 696f 6e28 6666 2c4d 290a 2020 olution(ff,M). │ │ │ │ -0002f5f0: 2020 2020 2020 2846 462c 2061 7567 2920 (FF, aug) │ │ │ │ -0002f600: 3d20 6c61 7965 7265 6452 6573 6f6c 7574 = layeredResolut │ │ │ │ -0002f610: 696f 6e28 6666 2c4d 2c6c 656e 290a 2020 ion(ff,M,len). │ │ │ │ -0002f620: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ -0002f630: 2a20 6666 2c20 6120 2a6e 6f74 6520 6d61 * ff, a *note ma │ │ │ │ -0002f640: 7472 6978 3a20 284d 6163 6175 6c61 7932 trix: (Macaulay2 │ │ │ │ -0002f650: 446f 6329 4d61 7472 6978 2c2c 2031 2078 Doc)Matrix,, 1 x │ │ │ │ -0002f660: 2063 206d 6174 7269 7820 7768 6f73 6520 c matrix whose │ │ │ │ -0002f670: 656e 7472 6965 730a 2020 2020 2020 2020 entries. │ │ │ │ -0002f680: 6172 6520 6120 7265 6775 6c61 7220 7365 are a regular se │ │ │ │ -0002f690: 7175 656e 6365 2069 6e20 7468 6520 476f quence in the Go │ │ │ │ -0002f6a0: 7265 6e73 7465 696e 2072 696e 6720 530a renstein ring S. │ │ │ │ -0002f6b0: 2020 2020 2020 2a20 4d2c 2061 202a 6e6f * M, a *no │ │ │ │ -0002f6c0: 7465 206d 6f64 756c 653a 2028 4d61 6361 te module: (Maca │ │ │ │ -0002f6d0: 756c 6179 3244 6f63 294d 6f64 756c 652c ulay2Doc)Module, │ │ │ │ -0002f6e0: 2c20 4d43 4d20 6d6f 6475 6c65 206f 7665 , MCM module ove │ │ │ │ -0002f6f0: 7220 522c 0a20 2020 2020 2020 2072 6570 r R,. rep │ │ │ │ -0002f700: 7265 7365 6e74 6564 2061 7320 616e 2053 resented as an S │ │ │ │ -0002f710: 2d6d 6f64 756c 6520 696e 2074 6865 2066 -module in the f │ │ │ │ -0002f720: 6972 7374 2063 6173 6520 616e 6420 6173 irst case and as │ │ │ │ -0002f730: 2061 6e20 522d 6d6f 6475 6c65 2069 6e20 an R-module in │ │ │ │ -0002f740: 7468 650a 2020 2020 2020 2020 7365 636f the. seco │ │ │ │ -0002f750: 6e64 0a20 2020 2020 202a 206c 656e 2c20 nd. * len, │ │ │ │ -0002f760: 616e 202a 6e6f 7465 2069 6e74 6567 6572 an *note integer │ │ │ │ -0002f770: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -0002f780: 5a5a 2c2c 206c 656e 6774 6820 6f66 2074 ZZ,, length of t │ │ │ │ -0002f790: 6865 2073 6567 6d65 6e74 206f 6620 7468 he segment of th │ │ │ │ -0002f7a0: 650a 2020 2020 2020 2020 7265 736f 6c75 e. resolu │ │ │ │ -0002f7b0: 7469 6f6e 2074 6f20 6265 2063 6f6d 7075 tion to be compu │ │ │ │ -0002f7c0: 7465 6420 6f76 6572 2052 2c20 696e 2074 ted over R, in t │ │ │ │ -0002f7d0: 6865 2073 6563 6f6e 6420 666f 726d 2e0a he second form.. │ │ │ │ -0002f7e0: 2020 2a20 2a6e 6f74 6520 4f70 7469 6f6e * *note Option │ │ │ │ -0002f7f0: 616c 2069 6e70 7574 733a 2028 4d61 6361 al inputs: (Maca │ │ │ │ -0002f800: 756c 6179 3244 6f63 2975 7369 6e67 2066 ulay2Doc)using f │ │ │ │ -0002f810: 756e 6374 696f 6e73 2077 6974 6820 6f70 unctions with op │ │ │ │ -0002f820: 7469 6f6e 616c 2069 6e70 7574 732c 3a0a tional inputs,:. │ │ │ │ -0002f830: 2020 2020 2020 2a20 4368 6563 6b20 3d3e * Check => │ │ │ │ -0002f840: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ -0002f850: 6c75 6520 6661 6c73 650a 2020 2020 2020 lue false. │ │ │ │ -0002f860: 2a20 5665 7262 6f73 6520 3d3e 202e 2e2e * Verbose => ... │ │ │ │ -0002f870: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -0002f880: 6661 6c73 650a 2020 2a20 4f75 7470 7574 false. * Output │ │ │ │ -0002f890: 733a 0a20 2020 2020 202a 2046 462c 2061 s:. * FF, a │ │ │ │ -0002f8a0: 202a 6e6f 7465 2063 6861 696e 2063 6f6d *note chain com │ │ │ │ -0002f8b0: 706c 6578 3a20 284d 6163 6175 6c61 7932 plex: (Macaulay2 │ │ │ │ -0002f8c0: 446f 6329 4368 6169 6e43 6f6d 706c 6578 Doc)ChainComplex │ │ │ │ -0002f8d0: 2c2c 2072 6573 6f6c 7574 696f 6e20 6f66 ,, resolution of │ │ │ │ -0002f8e0: 204d 0a20 2020 2020 2020 206f 7665 7220 M. over │ │ │ │ -0002f8f0: 5320 696e 2074 6865 2066 6972 7374 2063 S in the first c │ │ │ │ -0002f900: 6173 653b 206c 656e 6774 6820 6c65 6e20 ase; length len │ │ │ │ -0002f910: 7365 676d 656e 7420 6f66 2074 6865 2072 segment of the r │ │ │ │ -0002f920: 6573 6f6c 7574 696f 6e20 6f76 6572 2052 esolution over R │ │ │ │ -0002f930: 0a20 2020 2020 2020 2069 6e20 7468 6520 . in the │ │ │ │ -0002f940: 7365 636f 6e64 2e0a 0a44 6573 6372 6970 second...Descrip │ │ │ │ -0002f950: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ -0002f960: 0a0a 5468 6520 7265 736f 6c75 7469 6f6e ..The resolution │ │ │ │ -0002f970: 7320 636f 6d70 7574 6564 2061 7265 2074 s computed are t │ │ │ │ -0002f980: 686f 7365 2064 6573 6372 6962 6564 2069 hose described i │ │ │ │ -0002f990: 6e20 7468 6520 7061 7065 7220 224c 6179 n the paper "Lay │ │ │ │ -0002f9a0: 6572 6564 2052 6573 6f6c 7574 696f 6e73 ered Resolutions │ │ │ │ -0002f9b0: 0a6f 6620 436f 6865 6e2d 4d61 6361 756c .of Cohen-Macaul │ │ │ │ -0002f9c0: 6179 206d 6f64 756c 6573 2220 6279 2045 ay modules" by E │ │ │ │ -0002f9d0: 6973 656e 6275 6420 616e 6420 5065 6576 isenbud and Peev │ │ │ │ -0002f9e0: 612e 2054 6865 7920 6172 6520 626f 7468 a. They are both │ │ │ │ -0002f9f0: 206d 696e 696d 616c 2077 6865 6e20 4d0a minimal when M. │ │ │ │ -0002fa00: 6973 2061 2073 7566 6669 6369 656e 746c is a sufficientl │ │ │ │ -0002fa10: 7920 6869 6768 2073 797a 7967 7920 6f66 y high syzygy of │ │ │ │ -0002fa20: 2061 206d 6f64 756c 6520 4e2e 2049 6620 a module N. If │ │ │ │ -0002fa30: 7468 6520 6f70 7469 6f6e 2056 6572 626f the option Verbo │ │ │ │ -0002fa40: 7365 3d3e 7472 7565 2069 730a 7365 742c se=>true is.set, │ │ │ │ -0002fa50: 2074 6865 6e20 2869 6e20 7468 6520 6361 then (in the ca │ │ │ │ -0002fa60: 7365 206f 6620 7468 6520 7265 736f 6c75 se of the resolu │ │ │ │ -0002fa70: 7469 6f6e 206f 7665 7220 5329 2074 6865 tion over S) the │ │ │ │ -0002fa80: 2072 616e 6b73 206f 6620 7468 6520 6d6f ranks of the mo │ │ │ │ -0002fa90: 6475 6c65 7320 425f 730a 696e 2074 6865 dules B_s.in the │ │ │ │ -0002faa0: 2072 6573 6f6c 7574 696f 6e20 6172 6520 resolution are │ │ │ │ -0002fab0: 6f75 7470 7574 2e0a 0a48 6572 6520 6973 output...Here is │ │ │ │ -0002fac0: 2061 6e20 6578 616d 706c 6520 636f 6d70 an example comp │ │ │ │ -0002fad0: 7574 696e 6720 3520 7465 726d 7320 6f66 uting 5 terms of │ │ │ │ -0002fae0: 2061 6e20 696e 6669 6e69 7465 2072 6573 an infinite res │ │ │ │ -0002faf0: 6f6c 7574 696f 6e3a 0a0a 2b2d 2d2d 2d2d olution:..+----- │ │ │ │ +0002f590: 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 ******..Synopsis │ │ │ │ +0002f5a0: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 .========.. * U │ │ │ │ +0002f5b0: 7361 6765 3a20 0a20 2020 2020 2020 2028 sage: . ( │ │ │ │ +0002f5c0: 4646 2c20 6175 6729 203d 206c 6179 6572 FF, aug) = layer │ │ │ │ +0002f5d0: 6564 5265 736f 6c75 7469 6f6e 2866 662c edResolution(ff, │ │ │ │ +0002f5e0: 4d29 0a20 2020 2020 2020 2028 4646 2c20 M). (FF, │ │ │ │ +0002f5f0: 6175 6729 203d 206c 6179 6572 6564 5265 aug) = layeredRe │ │ │ │ +0002f600: 736f 6c75 7469 6f6e 2866 662c 4d2c 6c65 solution(ff,M,le │ │ │ │ +0002f610: 6e29 0a20 202a 2049 6e70 7574 733a 0a20 n). * Inputs:. │ │ │ │ +0002f620: 2020 2020 202a 2066 662c 2061 202a 6e6f * ff, a *no │ │ │ │ +0002f630: 7465 206d 6174 7269 783a 2028 4d61 6361 te matrix: (Maca │ │ │ │ +0002f640: 756c 6179 3244 6f63 294d 6174 7269 782c ulay2Doc)Matrix, │ │ │ │ +0002f650: 2c20 3120 7820 6320 6d61 7472 6978 2077 , 1 x c matrix w │ │ │ │ +0002f660: 686f 7365 2065 6e74 7269 6573 0a20 2020 hose entries. │ │ │ │ +0002f670: 2020 2020 2061 7265 2061 2072 6567 756c are a regul │ │ │ │ +0002f680: 6172 2073 6571 7565 6e63 6520 696e 2074 ar sequence in t │ │ │ │ +0002f690: 6865 2047 6f72 656e 7374 6569 6e20 7269 he Gorenstein ri │ │ │ │ +0002f6a0: 6e67 2053 0a20 2020 2020 202a 204d 2c20 ng S. * M, │ │ │ │ +0002f6b0: 6120 2a6e 6f74 6520 6d6f 6475 6c65 3a20 a *note module: │ │ │ │ +0002f6c0: 284d 6163 6175 6c61 7932 446f 6329 4d6f (Macaulay2Doc)Mo │ │ │ │ +0002f6d0: 6475 6c65 2c2c 204d 434d 206d 6f64 756c dule,, MCM modul │ │ │ │ +0002f6e0: 6520 6f76 6572 2052 2c0a 2020 2020 2020 e over R,. │ │ │ │ +0002f6f0: 2020 7265 7072 6573 656e 7465 6420 6173 represented as │ │ │ │ +0002f700: 2061 6e20 532d 6d6f 6475 6c65 2069 6e20 an S-module in │ │ │ │ +0002f710: 7468 6520 6669 7273 7420 6361 7365 2061 the first case a │ │ │ │ +0002f720: 6e64 2061 7320 616e 2052 2d6d 6f64 756c nd as an R-modul │ │ │ │ +0002f730: 6520 696e 2074 6865 0a20 2020 2020 2020 e in the. │ │ │ │ +0002f740: 2073 6563 6f6e 640a 2020 2020 2020 2a20 second. * │ │ │ │ +0002f750: 6c65 6e2c 2061 6e20 2a6e 6f74 6520 696e len, an *note in │ │ │ │ +0002f760: 7465 6765 723a 2028 4d61 6361 756c 6179 teger: (Macaulay │ │ │ │ +0002f770: 3244 6f63 295a 5a2c 2c20 6c65 6e67 7468 2Doc)ZZ,, length │ │ │ │ +0002f780: 206f 6620 7468 6520 7365 676d 656e 7420 of the segment │ │ │ │ +0002f790: 6f66 2074 6865 0a20 2020 2020 2020 2072 of the. r │ │ │ │ +0002f7a0: 6573 6f6c 7574 696f 6e20 746f 2062 6520 esolution to be │ │ │ │ +0002f7b0: 636f 6d70 7574 6564 206f 7665 7220 522c computed over R, │ │ │ │ +0002f7c0: 2069 6e20 7468 6520 7365 636f 6e64 2066 in the second f │ │ │ │ +0002f7d0: 6f72 6d2e 0a20 202a 202a 6e6f 7465 204f orm.. * *note O │ │ │ │ +0002f7e0: 7074 696f 6e61 6c20 696e 7075 7473 3a20 ptional inputs: │ │ │ │ +0002f7f0: 284d 6163 6175 6c61 7932 446f 6329 7573 (Macaulay2Doc)us │ │ │ │ +0002f800: 696e 6720 6675 6e63 7469 6f6e 7320 7769 ing functions wi │ │ │ │ +0002f810: 7468 206f 7074 696f 6e61 6c20 696e 7075 th optional inpu │ │ │ │ +0002f820: 7473 2c3a 0a20 2020 2020 202a 2043 6865 ts,:. * Che │ │ │ │ +0002f830: 636b 203d 3e20 2e2e 2e2c 2064 6566 6175 ck => ..., defau │ │ │ │ +0002f840: 6c74 2076 616c 7565 2066 616c 7365 0a20 lt value false. │ │ │ │ +0002f850: 2020 2020 202a 2056 6572 626f 7365 203d * Verbose = │ │ │ │ +0002f860: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ +0002f870: 616c 7565 2066 616c 7365 0a20 202a 204f alue false. * O │ │ │ │ +0002f880: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ +0002f890: 4646 2c20 6120 2a6e 6f74 6520 6368 6169 FF, a *note chai │ │ │ │ +0002f8a0: 6e20 636f 6d70 6c65 783a 2028 4d61 6361 n complex: (Maca │ │ │ │ +0002f8b0: 756c 6179 3244 6f63 2943 6861 696e 436f ulay2Doc)ChainCo │ │ │ │ +0002f8c0: 6d70 6c65 782c 2c20 7265 736f 6c75 7469 mplex,, resoluti │ │ │ │ +0002f8d0: 6f6e 206f 6620 4d0a 2020 2020 2020 2020 on of M. │ │ │ │ +0002f8e0: 6f76 6572 2053 2069 6e20 7468 6520 6669 over S in the fi │ │ │ │ +0002f8f0: 7273 7420 6361 7365 3b20 6c65 6e67 7468 rst case; length │ │ │ │ +0002f900: 206c 656e 2073 6567 6d65 6e74 206f 6620 len segment of │ │ │ │ +0002f910: 7468 6520 7265 736f 6c75 7469 6f6e 206f the resolution o │ │ │ │ +0002f920: 7665 7220 520a 2020 2020 2020 2020 696e ver R. in │ │ │ │ +0002f930: 2074 6865 2073 6563 6f6e 642e 0a0a 4465 the second...De │ │ │ │ +0002f940: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +0002f950: 3d3d 3d3d 3d0a 0a54 6865 2072 6573 6f6c =====..The resol │ │ │ │ +0002f960: 7574 696f 6e73 2063 6f6d 7075 7465 6420 utions computed │ │ │ │ +0002f970: 6172 6520 7468 6f73 6520 6465 7363 7269 are those descri │ │ │ │ +0002f980: 6265 6420 696e 2074 6865 2070 6170 6572 bed in the paper │ │ │ │ +0002f990: 2022 4c61 7965 7265 6420 5265 736f 6c75 "Layered Resolu │ │ │ │ +0002f9a0: 7469 6f6e 730a 6f66 2043 6f68 656e 2d4d tions.of Cohen-M │ │ │ │ +0002f9b0: 6163 6175 6c61 7920 6d6f 6475 6c65 7322 acaulay modules" │ │ │ │ +0002f9c0: 2062 7920 4569 7365 6e62 7564 2061 6e64 by Eisenbud and │ │ │ │ +0002f9d0: 2050 6565 7661 2e20 5468 6579 2061 7265 Peeva. They are │ │ │ │ +0002f9e0: 2062 6f74 6820 6d69 6e69 6d61 6c20 7768 both minimal wh │ │ │ │ +0002f9f0: 656e 204d 0a69 7320 6120 7375 6666 6963 en M.is a suffic │ │ │ │ +0002fa00: 6965 6e74 6c79 2068 6967 6820 7379 7a79 iently high syzy │ │ │ │ +0002fa10: 6779 206f 6620 6120 6d6f 6475 6c65 204e gy of a module N │ │ │ │ +0002fa20: 2e20 4966 2074 6865 206f 7074 696f 6e20 . If the option │ │ │ │ +0002fa30: 5665 7262 6f73 653d 3e74 7275 6520 6973 Verbose=>true is │ │ │ │ +0002fa40: 0a73 6574 2c20 7468 656e 2028 696e 2074 .set, then (in t │ │ │ │ +0002fa50: 6865 2063 6173 6520 6f66 2074 6865 2072 he case of the r │ │ │ │ +0002fa60: 6573 6f6c 7574 696f 6e20 6f76 6572 2053 esolution over S │ │ │ │ +0002fa70: 2920 7468 6520 7261 6e6b 7320 6f66 2074 ) the ranks of t │ │ │ │ +0002fa80: 6865 206d 6f64 756c 6573 2042 5f73 0a69 he modules B_s.i │ │ │ │ +0002fa90: 6e20 7468 6520 7265 736f 6c75 7469 6f6e n the resolution │ │ │ │ +0002faa0: 2061 7265 206f 7574 7075 742e 0a0a 4865 are output...He │ │ │ │ +0002fab0: 7265 2069 7320 616e 2065 7861 6d70 6c65 re is an example │ │ │ │ +0002fac0: 2063 6f6d 7075 7469 6e67 2035 2074 6572 computing 5 ter │ │ │ │ +0002fad0: 6d73 206f 6620 616e 2069 6e66 696e 6974 ms of an infinit │ │ │ │ +0002fae0: 6520 7265 736f 6c75 7469 6f6e 3a0a 0a2b e resolution:..+ │ │ │ │ +0002faf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002fb00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002fb10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002fb20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002fb30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002fb40: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -0002fb50: 5320 3d20 5a5a 2f31 3031 5b61 2c62 2c63 S = ZZ/101[a,b,c │ │ │ │ -0002fb60: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +0002fb30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0002fb40: 6931 203a 2053 203d 205a 5a2f 3130 315b i1 : S = ZZ/101[ │ │ │ │ +0002fb50: 612c 622c 635d 2020 2020 2020 2020 2020 a,b,c] │ │ │ │ +0002fb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fb90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002fb80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002fb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fbe0: 2020 2020 2020 2020 7c0a 7c6f 3120 3d20 |.|o1 = │ │ │ │ -0002fbf0: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +0002fbd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002fbe0: 6f31 203d 2053 2020 2020 2020 2020 2020 o1 = S │ │ │ │ +0002fbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fc30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002fc20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002fc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fc80: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ -0002fc90: 506f 6c79 6e6f 6d69 616c 5269 6e67 2020 PolynomialRing │ │ │ │ +0002fc70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002fc80: 6f31 203a 2050 6f6c 796e 6f6d 6961 6c52 o1 : PolynomialR │ │ │ │ +0002fc90: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ 0002fca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fcd0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0002fcc0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0002fcd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002fce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002fcf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002fd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002fd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002fd20: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ -0002fd30: 6666 203d 206d 6174 7269 7822 6133 2c20 ff = matrix"a3, │ │ │ │ -0002fd40: 6233 2c20 6333 2220 2020 2020 2020 2020 b3, c3" │ │ │ │ +0002fd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0002fd20: 6932 203a 2066 6620 3d20 6d61 7472 6978 i2 : ff = matrix │ │ │ │ +0002fd30: 2261 332c 2062 332c 2063 3322 2020 2020 "a3, b3, c3" │ │ │ │ +0002fd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fd70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002fd60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002fd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fdc0: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ -0002fdd0: 7c20 6133 2062 3320 6333 207c 2020 2020 | a3 b3 c3 | │ │ │ │ +0002fdb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002fdc0: 6f32 203d 207c 2061 3320 6233 2063 3320 o2 = | a3 b3 c3 │ │ │ │ +0002fdd0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002fde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fe00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fe10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002fe00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002fe10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fe20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fe30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fe40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fe50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fe60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0002fe70: 2020 2020 2020 2020 3120 2020 2020 2033 1 3 │ │ │ │ +0002fe50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002fe60: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +0002fe70: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ 0002fe80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fe90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002feb0: 2020 2020 2020 2020 7c0a 7c6f 3220 3a20 |.|o2 : │ │ │ │ -0002fec0: 4d61 7472 6978 2053 2020 3c2d 2d20 5320 Matrix S <-- S │ │ │ │ +0002fea0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002feb0: 6f32 203a 204d 6174 7269 7820 5320 203c o2 : Matrix S < │ │ │ │ +0002fec0: 2d2d 2053 2020 2020 2020 2020 2020 2020 -- S │ │ │ │ 0002fed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ff00: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0002fef0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0002ff00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ff10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ff20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ff30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ff40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ff50: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ -0002ff60: 5220 3d20 532f 6964 6561 6c20 6666 2020 R = S/ideal ff │ │ │ │ +0002ff40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0002ff50: 6933 203a 2052 203d 2053 2f69 6465 616c i3 : R = S/ideal │ │ │ │ +0002ff60: 2066 6620 2020 2020 2020 2020 2020 2020 ff │ │ │ │ 0002ff70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ff80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ff90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ffa0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002ff90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002ffa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ffb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ffc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ffd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ffe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fff0: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ -00030000: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +0002ffe0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002fff0: 6f33 203d 2052 2020 2020 2020 2020 2020 o3 = R │ │ │ │ +00030000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030040: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00030030: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030090: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ -000300a0: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ +00030080: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030090: 6f33 203a 2051 756f 7469 656e 7452 696e o3 : QuotientRin │ │ │ │ +000300a0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ 000300b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000300c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000300d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000300e0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000300d0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000300e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000300f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030130: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ -00030140: 4d20 3d20 7379 7a79 6779 4d6f 6475 6c65 M = syzygyModule │ │ │ │ -00030150: 2832 2c63 6f6b 6572 2076 6172 7320 5229 (2,coker vars R) │ │ │ │ +00030120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00030130: 6934 203a 204d 203d 2073 797a 7967 794d i4 : M = syzygyM │ │ │ │ +00030140: 6f64 756c 6528 322c 636f 6b65 7220 7661 odule(2,coker va │ │ │ │ +00030150: 7273 2052 2920 2020 2020 2020 2020 2020 rs R) │ │ │ │ 00030160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030180: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00030170: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000301a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000301b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000301c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000301d0: 2020 2020 2020 2020 7c0a 7c6f 3420 3d20 |.|o4 = │ │ │ │ -000301e0: 636f 6b65 726e 656c 207b 327d 207c 2061 cokernel {2} | a │ │ │ │ -000301f0: 2020 3020 2d63 3220 3020 2020 6232 2030 0 -c2 0 b2 0 │ │ │ │ -00030200: 2030 2020 2030 2020 3020 2030 207c 2020 0 0 0 0 | │ │ │ │ -00030210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030220: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00030230: 2020 2020 2020 2020 207b 327d 207c 202d {2} | - │ │ │ │ -00030240: 6220 3020 3020 2020 2d63 3220 3020 2030 b 0 0 -c2 0 0 │ │ │ │ -00030250: 2030 2020 2061 3220 3020 2030 207c 2020 0 a2 0 0 | │ │ │ │ -00030260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030270: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00030280: 2020 2020 2020 2020 207b 327d 207c 2063 {2} | c │ │ │ │ -00030290: 2020 3020 3020 2020 3020 2020 3020 2030 0 0 0 0 0 │ │ │ │ -000302a0: 202d 6232 2030 2020 6132 2030 207c 2020 -b2 0 a2 0 | │ │ │ │ -000302b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000302c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000302d0: 2020 2020 2020 2020 207b 337d 207c 2030 {3} | 0 │ │ │ │ -000302e0: 2020 6320 6220 2020 6120 2020 3020 2030 c b a 0 0 │ │ │ │ -000302f0: 2030 2020 2030 2020 3020 2030 207c 2020 0 0 0 0 | │ │ │ │ -00030300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030310: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00030320: 2020 2020 2020 2020 207b 337d 207c 2030 {3} | 0 │ │ │ │ -00030330: 2020 3020 3020 2020 3020 2020 6320 2062 0 0 0 c b │ │ │ │ -00030340: 2061 2020 2030 2020 3020 2030 207c 2020 a 0 0 0 | │ │ │ │ -00030350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030360: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00030370: 2020 2020 2020 2020 207b 337d 207c 2030 {3} | 0 │ │ │ │ -00030380: 2020 3020 3020 2020 3020 2020 3020 2030 0 0 0 0 0 │ │ │ │ -00030390: 2030 2020 2063 2020 6220 2061 207c 2020 0 c b a | │ │ │ │ -000303a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000303b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000301c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000301d0: 6f34 203d 2063 6f6b 6572 6e65 6c20 7b32 o4 = cokernel {2 │ │ │ │ +000301e0: 7d20 7c20 6120 2030 202d 6332 2030 2020 } | a 0 -c2 0 │ │ │ │ +000301f0: 2062 3220 3020 3020 2020 3020 2030 2020 b2 0 0 0 0 │ │ │ │ +00030200: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +00030210: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030220: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ +00030230: 7d20 7c20 2d62 2030 2030 2020 202d 6332 } | -b 0 0 -c2 │ │ │ │ +00030240: 2030 2020 3020 3020 2020 6132 2030 2020 0 0 0 a2 0 │ │ │ │ +00030250: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +00030260: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030270: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ +00030280: 7d20 7c20 6320 2030 2030 2020 2030 2020 } | c 0 0 0 │ │ │ │ +00030290: 2030 2020 3020 2d62 3220 3020 2061 3220 0 0 -b2 0 a2 │ │ │ │ +000302a0: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +000302b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000302c0: 2020 2020 2020 2020 2020 2020 2020 7b33 {3 │ │ │ │ +000302d0: 7d20 7c20 3020 2063 2062 2020 2061 2020 } | 0 c b a │ │ │ │ +000302e0: 2030 2020 3020 3020 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ +000302f0: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +00030300: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030310: 2020 2020 2020 2020 2020 2020 2020 7b33 {3 │ │ │ │ +00030320: 7d20 7c20 3020 2030 2030 2020 2030 2020 } | 0 0 0 0 │ │ │ │ +00030330: 2063 2020 6220 6120 2020 3020 2030 2020 c b a 0 0 │ │ │ │ +00030340: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +00030350: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030360: 2020 2020 2020 2020 2020 2020 2020 7b33 {3 │ │ │ │ +00030370: 7d20 7c20 3020 2030 2030 2020 2030 2020 } | 0 0 0 0 │ │ │ │ +00030380: 2030 2020 3020 3020 2020 6320 2062 2020 0 0 0 c b │ │ │ │ +00030390: 6120 7c20 2020 2020 2020 2020 2020 2020 a | │ │ │ │ +000303a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000303b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000303c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000303d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000303e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000303f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030400: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00030410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030420: 2020 2020 2020 2036 2020 2020 2020 2020 6 │ │ │ │ +000303f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030410: 2020 2020 2020 2020 2020 2020 3620 2020 6 │ │ │ │ +00030420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030450: 2020 2020 2020 2020 7c0a 7c6f 3420 3a20 |.|o4 : │ │ │ │ -00030460: 522d 6d6f 6475 6c65 2c20 7175 6f74 6965 R-module, quotie │ │ │ │ -00030470: 6e74 206f 6620 5220 2020 2020 2020 2020 nt of R │ │ │ │ +00030440: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030450: 6f34 203a 2052 2d6d 6f64 756c 652c 2071 o4 : R-module, q │ │ │ │ +00030460: 756f 7469 656e 7420 6f66 2052 2020 2020 uotient of R │ │ │ │ +00030470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000304a0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00030490: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000304a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000304b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000304c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000304d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000304e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000304f0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 --------+.|i5 : │ │ │ │ -00030500: 2846 462c 2061 7567 2920 3d20 6c61 7965 (FF, aug) = laye │ │ │ │ -00030510: 7265 6452 6573 6f6c 7574 696f 6e28 6666 redResolution(ff │ │ │ │ -00030520: 2c4d 2c35 2920 2020 2020 2020 2020 2020 ,M,5) │ │ │ │ -00030530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030540: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00030550: 2020 3020 3120 3220 3320 3420 3520 2020 0 1 2 3 4 5 │ │ │ │ +000304e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000304f0: 6935 203a 2028 4646 2c20 6175 6729 203d i5 : (FF, aug) = │ │ │ │ +00030500: 206c 6179 6572 6564 5265 736f 6c75 7469 layeredResoluti │ │ │ │ +00030510: 6f6e 2866 662c 4d2c 3529 2020 2020 2020 on(ff,M,5) │ │ │ │ +00030520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030530: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030540: 2020 2020 2020 2030 2031 2032 2033 2034 0 1 2 3 4 │ │ │ │ +00030550: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ 00030560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030590: 2020 2020 2020 2020 7c0a 7c74 6f74 616c |.|total │ │ │ │ -000305a0: 3a20 3420 3420 3420 3420 3420 3420 2020 : 4 4 4 4 4 4 │ │ │ │ +00030580: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030590: 746f 7461 6c3a 2034 2034 2034 2034 2034 total: 4 4 4 4 4 │ │ │ │ +000305a0: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 000305b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000305c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000305d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000305e0: 2020 2020 2020 2020 7c0a 7c20 2020 2032 |.| 2 │ │ │ │ -000305f0: 3a20 3320 3120 2e20 2e20 2e20 2e20 2020 : 3 1 . . . . │ │ │ │ +000305d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000305e0: 2020 2020 323a 2033 2031 202e 202e 202e 2: 3 1 . . . │ │ │ │ +000305f0: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ 00030600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030630: 2020 2020 2020 2020 7c0a 7c20 2020 2033 |.| 3 │ │ │ │ -00030640: 3a20 3120 3320 3320 3120 2e20 2e20 2020 : 1 3 3 1 . . │ │ │ │ +00030620: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030630: 2020 2020 333a 2031 2033 2033 2031 202e 3: 1 3 3 1 . │ │ │ │ +00030640: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ 00030650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030680: 2020 2020 2020 2020 7c0a 7c20 2020 2034 |.| 4 │ │ │ │ -00030690: 3a20 2e20 2e20 3120 3320 3320 3120 2020 : . . 1 3 3 1 │ │ │ │ +00030670: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030680: 2020 2020 343a 202e 202e 2031 2033 2033 4: . . 1 3 3 │ │ │ │ +00030690: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 000306a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000306b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000306c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000306d0: 2020 2020 2020 2020 7c0a 7c20 2020 2035 |.| 5 │ │ │ │ -000306e0: 3a20 2e20 2e20 2e20 2e20 3120 3320 2020 : . . . . 1 3 │ │ │ │ +000306c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000306d0: 2020 2020 353a 202e 202e 202e 202e 2031 5: . . . . 1 │ │ │ │ +000306e0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 000306f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030720: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00030730: 2020 3020 3120 3220 2033 2020 3420 2035 0 1 2 3 4 5 │ │ │ │ +00030710: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030720: 2020 2020 2020 2030 2031 2032 2020 3320 0 1 2 3 │ │ │ │ +00030730: 2034 2020 3520 2020 2020 2020 2020 2020 4 5 │ │ │ │ 00030740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030770: 2020 2020 2020 2020 7c0a 7c74 6f74 616c |.|total │ │ │ │ -00030780: 3a20 3520 3720 3920 3131 2031 3320 3135 : 5 7 9 11 13 15 │ │ │ │ +00030760: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030770: 746f 7461 6c3a 2035 2037 2039 2031 3120 total: 5 7 9 11 │ │ │ │ +00030780: 3133 2031 3520 2020 2020 2020 2020 2020 13 15 │ │ │ │ 00030790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000307a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000307b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000307c0: 2020 2020 2020 2020 7c0a 7c20 2020 2032 |.| 2 │ │ │ │ -000307d0: 3a20 3320 3120 2e20 202e 2020 2e20 202e : 3 1 . . . . │ │ │ │ +000307b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000307c0: 2020 2020 323a 2033 2031 202e 2020 2e20 2: 3 1 . . │ │ │ │ +000307d0: 202e 2020 2e20 2020 2020 2020 2020 2020 . . │ │ │ │ 000307e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000307f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030810: 2020 2020 2020 2020 7c0a 7c20 2020 2033 |.| 3 │ │ │ │ -00030820: 3a20 3220 3620 3620 2032 2020 2e20 202e : 2 6 6 2 . . │ │ │ │ +00030800: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030810: 2020 2020 333a 2032 2036 2036 2020 3220 3: 2 6 6 2 │ │ │ │ +00030820: 202e 2020 2e20 2020 2020 2020 2020 2020 . . │ │ │ │ 00030830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030860: 2020 2020 2020 2020 7c0a 7c20 2020 2034 |.| 4 │ │ │ │ -00030870: 3a20 2e20 2e20 3320 2039 2020 3920 2033 : . . 3 9 9 3 │ │ │ │ +00030850: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030860: 2020 2020 343a 202e 202e 2033 2020 3920 4: . . 3 9 │ │ │ │ +00030870: 2039 2020 3320 2020 2020 2020 2020 2020 9 3 │ │ │ │ 00030880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000308a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000308b0: 2020 2020 2020 2020 7c0a 7c20 2020 2035 |.| 5 │ │ │ │ -000308c0: 3a20 2e20 2e20 2e20 202e 2020 3420 3132 : . . . . 4 12 │ │ │ │ +000308a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000308b0: 2020 2020 353a 202e 202e 202e 2020 2e20 5: . . . . │ │ │ │ +000308c0: 2034 2031 3220 2020 2020 2020 2020 2020 4 12 │ │ │ │ 000308d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000308e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000308f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030900: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00030910: 2020 3020 2031 2020 3220 2033 2020 3420 0 1 2 3 4 │ │ │ │ -00030920: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +000308f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030900: 2020 2020 2020 2030 2020 3120 2032 2020 0 1 2 │ │ │ │ +00030910: 3320 2034 2020 3520 2020 2020 2020 2020 3 4 5 │ │ │ │ +00030920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030950: 2020 2020 2020 2020 7c0a 7c74 6f74 616c |.|total │ │ │ │ -00030960: 3a20 3620 3130 2031 3520 3231 2032 3820 : 6 10 15 21 28 │ │ │ │ -00030970: 3336 2020 2020 2020 2020 2020 2020 2020 36 │ │ │ │ +00030940: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030950: 746f 7461 6c3a 2036 2031 3020 3135 2032 total: 6 10 15 2 │ │ │ │ +00030960: 3120 3238 2033 3620 2020 2020 2020 2020 1 28 36 │ │ │ │ +00030970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000309a0: 2020 2020 2020 2020 7c0a 7c20 2020 2032 |.| 2 │ │ │ │ -000309b0: 3a20 3320 2031 2020 2e20 202e 2020 2e20 : 3 1 . . . │ │ │ │ -000309c0: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +00030990: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000309a0: 2020 2020 323a 2033 2020 3120 202e 2020 2: 3 1 . │ │ │ │ +000309b0: 2e20 202e 2020 2e20 2020 2020 2020 2020 . . . │ │ │ │ +000309c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000309d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000309e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000309f0: 2020 2020 2020 2020 7c0a 7c20 2020 2033 |.| 3 │ │ │ │ -00030a00: 3a20 3320 2039 2020 3920 2033 2020 2e20 : 3 9 9 3 . │ │ │ │ -00030a10: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +000309e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000309f0: 2020 2020 333a 2033 2020 3920 2039 2020 3: 3 9 9 │ │ │ │ +00030a00: 3320 202e 2020 2e20 2020 2020 2020 2020 3 . . │ │ │ │ +00030a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030a40: 2020 2020 2020 2020 7c0a 7c20 2020 2034 |.| 4 │ │ │ │ -00030a50: 3a20 2e20 202e 2020 3620 3138 2031 3820 : . . 6 18 18 │ │ │ │ -00030a60: 2036 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +00030a30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030a40: 2020 2020 343a 202e 2020 2e20 2036 2031 4: . . 6 1 │ │ │ │ +00030a50: 3820 3138 2020 3620 2020 2020 2020 2020 8 18 6 │ │ │ │ +00030a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030a90: 2020 2020 2020 2020 7c0a 7c20 2020 2035 |.| 5 │ │ │ │ -00030aa0: 3a20 2e20 202e 2020 2e20 202e 2031 3020 : . . . . 10 │ │ │ │ -00030ab0: 3330 2020 2020 2020 2020 2020 2020 2020 30 │ │ │ │ +00030a80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030a90: 2020 2020 353a 202e 2020 2e20 202e 2020 5: . . . │ │ │ │ +00030aa0: 2e20 3130 2033 3020 2020 2020 2020 2020 . 10 30 │ │ │ │ +00030ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030ae0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00030ad0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030b30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00030b40: 2020 3620 2020 2020 2031 3020 2020 2020 6 10 │ │ │ │ -00030b50: 2031 3520 2020 2020 2032 3120 2020 2020 15 21 │ │ │ │ -00030b60: 2032 3820 2020 2020 2033 3620 2020 2020 28 36 │ │ │ │ -00030b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030b80: 2020 2020 2020 2020 7c0a 7c6f 3520 3d20 |.|o5 = │ │ │ │ -00030b90: 2852 2020 3c2d 2d20 5220 2020 3c2d 2d20 (R <-- R <-- │ │ │ │ -00030ba0: 5220 2020 3c2d 2d20 5220 2020 3c2d 2d20 R <-- R <-- │ │ │ │ -00030bb0: 5220 2020 3c2d 2d20 5220 202c 207b 327d R <-- R , {2} │ │ │ │ -00030bc0: 207c 2030 2030 2020 3020 2031 2030 2030 | 0 0 0 1 0 0 │ │ │ │ -00030bd0: 207c 2920 2020 2020 7c0a 7c20 2020 2020 |) |.| │ │ │ │ +00030b20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030b30: 2020 2020 2020 2036 2020 2020 2020 3130 6 10 │ │ │ │ +00030b40: 2020 2020 2020 3135 2020 2020 2020 3231 15 21 │ │ │ │ +00030b50: 2020 2020 2020 3238 2020 2020 2020 3336 28 36 │ │ │ │ +00030b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030b70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030b80: 6f35 203d 2028 5220 203c 2d2d 2052 2020 o5 = (R <-- R │ │ │ │ +00030b90: 203c 2d2d 2052 2020 203c 2d2d 2052 2020 <-- R <-- R │ │ │ │ +00030ba0: 203c 2d2d 2052 2020 203c 2d2d 2052 2020 <-- R <-- R │ │ │ │ +00030bb0: 2c20 7b32 7d20 7c20 3020 3020 2030 2020 , {2} | 0 0 0 │ │ │ │ +00030bc0: 3120 3020 3020 7c29 2020 2020 207c 0a7c 1 0 0 |) |.| │ │ │ │ +00030bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030c00: 2020 2020 2020 2020 2020 2020 207b 327d {2} │ │ │ │ -00030c10: 207c 2030 202d 3120 3020 2030 2030 2030 | 0 -1 0 0 0 0 │ │ │ │ -00030c20: 207c 2020 2020 2020 7c0a 7c20 2020 2020 | |.| │ │ │ │ -00030c30: 2030 2020 2020 2020 3120 2020 2020 2020 0 1 │ │ │ │ -00030c40: 3220 2020 2020 2020 3320 2020 2020 2020 2 3 │ │ │ │ -00030c50: 3420 2020 2020 2020 3520 2020 207b 327d 4 5 {2} │ │ │ │ -00030c60: 207c 2030 2030 2020 2d31 2030 2030 2030 | 0 0 -1 0 0 0 │ │ │ │ -00030c70: 207c 2020 2020 2020 7c0a 7c20 2020 2020 | |.| │ │ │ │ +00030c00: 2020 7b32 7d20 7c20 3020 2d31 2030 2020 {2} | 0 -1 0 │ │ │ │ +00030c10: 3020 3020 3020 7c20 2020 2020 207c 0a7c 0 0 0 | |.| │ │ │ │ +00030c20: 2020 2020 2020 3020 2020 2020 2031 2020 0 1 │ │ │ │ +00030c30: 2020 2020 2032 2020 2020 2020 2033 2020 2 3 │ │ │ │ +00030c40: 2020 2020 2034 2020 2020 2020 2035 2020 4 5 │ │ │ │ +00030c50: 2020 7b32 7d20 7c20 3020 3020 202d 3120 {2} | 0 0 -1 │ │ │ │ +00030c60: 3020 3020 3020 7c20 2020 2020 207c 0a7c 0 0 0 | |.| │ │ │ │ +00030c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030ca0: 2020 2020 2020 2020 2020 2020 207b 337d {3} │ │ │ │ -00030cb0: 207c 2030 2030 2020 3020 2030 2030 2031 | 0 0 0 0 0 1 │ │ │ │ -00030cc0: 207c 2020 2020 2020 7c0a 7c20 2020 2020 | |.| │ │ │ │ +00030ca0: 2020 7b33 7d20 7c20 3020 3020 2030 2020 {3} | 0 0 0 │ │ │ │ +00030cb0: 3020 3020 3120 7c20 2020 2020 207c 0a7c 0 0 1 | |.| │ │ │ │ +00030cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030cf0: 2020 2020 2020 2020 2020 2020 207b 337d {3} │ │ │ │ -00030d00: 207c 2030 2030 2020 3020 2030 2031 2030 | 0 0 0 0 1 0 │ │ │ │ -00030d10: 207c 2020 2020 2020 7c0a 7c20 2020 2020 | |.| │ │ │ │ +00030cf0: 2020 7b33 7d20 7c20 3020 3020 2030 2020 {3} | 0 0 0 │ │ │ │ +00030d00: 3020 3120 3020 7c20 2020 2020 207c 0a7c 0 1 0 | |.| │ │ │ │ +00030d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030d40: 2020 2020 2020 2020 2020 2020 207b 337d {3} │ │ │ │ -00030d50: 207c 2031 2030 2020 3020 2030 2030 2030 | 1 0 0 0 0 0 │ │ │ │ -00030d60: 207c 2020 2020 2020 7c0a 7c20 2020 2020 | |.| │ │ │ │ +00030d40: 2020 7b33 7d20 7c20 3120 3020 2030 2020 {3} | 1 0 0 │ │ │ │ +00030d50: 3020 3020 3020 7c20 2020 2020 207c 0a7c 0 0 0 | |.| │ │ │ │ +00030d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030db0: 2020 2020 2020 2020 7c0a 7c6f 3520 3a20 |.|o5 : │ │ │ │ -00030dc0: 5365 7175 656e 6365 2020 2020 2020 2020 Sequence │ │ │ │ +00030da0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030db0: 6f35 203a 2053 6571 7565 6e63 6520 2020 o5 : Sequence │ │ │ │ +00030dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030e00: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00030df0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00030e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030e50: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ -00030e60: 6265 7474 6920 4646 2020 2020 2020 2020 betti FF │ │ │ │ +00030e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00030e50: 6936 203a 2062 6574 7469 2046 4620 2020 i6 : betti FF │ │ │ │ +00030e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030ea0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00030e90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030ef0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00030f00: 2020 2020 2020 2030 2020 3120 2032 2020 0 1 2 │ │ │ │ -00030f10: 3320 2034 2020 3520 2020 2020 2020 2020 3 4 5 │ │ │ │ +00030ee0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030ef0: 2020 2020 2020 2020 2020 2020 3020 2031 0 1 │ │ │ │ +00030f00: 2020 3220 2033 2020 3420 2035 2020 2020 2 3 4 5 │ │ │ │ +00030f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030f40: 2020 2020 2020 2020 7c0a 7c6f 3620 3d20 |.|o6 = │ │ │ │ -00030f50: 746f 7461 6c3a 2036 2031 3020 3135 2032 total: 6 10 15 2 │ │ │ │ -00030f60: 3120 3238 2033 3620 2020 2020 2020 2020 1 28 36 │ │ │ │ +00030f30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030f40: 6f36 203d 2074 6f74 616c 3a20 3620 3130 o6 = total: 6 10 │ │ │ │ +00030f50: 2031 3520 3231 2032 3820 3336 2020 2020 15 21 28 36 │ │ │ │ +00030f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030f90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00030fa0: 2020 2020 323a 2033 2020 3120 202e 2020 2: 3 1 . │ │ │ │ -00030fb0: 2e20 202e 2020 2e20 2020 2020 2020 2020 . . . │ │ │ │ +00030f80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030f90: 2020 2020 2020 2020 2032 3a20 3320 2031 2: 3 1 │ │ │ │ +00030fa0: 2020 2e20 202e 2020 2e20 202e 2020 2020 . . . . │ │ │ │ +00030fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030fe0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00030ff0: 2020 2020 333a 2033 2020 3920 2039 2020 3: 3 9 9 │ │ │ │ -00031000: 3320 202e 2020 2e20 2020 2020 2020 2020 3 . . │ │ │ │ +00030fd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00030fe0: 2020 2020 2020 2020 2033 3a20 3320 2039 3: 3 9 │ │ │ │ +00030ff0: 2020 3920 2033 2020 2e20 202e 2020 2020 9 3 . . │ │ │ │ +00031000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031030: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00031040: 2020 2020 343a 202e 2020 2e20 2036 2031 4: . . 6 1 │ │ │ │ -00031050: 3820 3138 2020 3620 2020 2020 2020 2020 8 18 6 │ │ │ │ +00031020: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031030: 2020 2020 2020 2020 2034 3a20 2e20 202e 4: . . │ │ │ │ +00031040: 2020 3620 3138 2031 3820 2036 2020 2020 6 18 18 6 │ │ │ │ +00031050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031080: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00031090: 2020 2020 353a 202e 2020 2e20 202e 2020 5: . . . │ │ │ │ -000310a0: 2e20 3130 2033 3020 2020 2020 2020 2020 . 10 30 │ │ │ │ +00031070: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031080: 2020 2020 2020 2020 2035 3a20 2e20 202e 5: . . │ │ │ │ +00031090: 2020 2e20 202e 2031 3020 3330 2020 2020 . . 10 30 │ │ │ │ +000310a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000310b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000310c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000310d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000310c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000310d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000310e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000310f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031120: 2020 2020 2020 2020 7c0a 7c6f 3620 3a20 |.|o6 : │ │ │ │ -00031130: 4265 7474 6954 616c 6c79 2020 2020 2020 BettiTally │ │ │ │ +00031110: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031120: 6f36 203a 2042 6574 7469 5461 6c6c 7920 o6 : BettiTally │ │ │ │ +00031130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031170: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00031160: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00031170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000311a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000311b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000311c0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 --------+.|i7 : │ │ │ │ -000311d0: 6265 7474 6920 7265 7328 4d2c 204c 656e betti res(M, Len │ │ │ │ -000311e0: 6774 684c 696d 6974 3d3e 3529 2020 2020 gthLimit=>5) │ │ │ │ +000311b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000311c0: 6937 203a 2062 6574 7469 2072 6573 284d i7 : betti res(M │ │ │ │ +000311d0: 2c20 4c65 6e67 7468 4c69 6d69 743d 3e35 , LengthLimit=>5 │ │ │ │ +000311e0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 000311f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031210: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00031200: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031260: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00031270: 2020 2020 2020 2030 2020 3120 2032 2020 0 1 2 │ │ │ │ -00031280: 3320 2034 2020 3520 2020 2020 2020 2020 3 4 5 │ │ │ │ +00031250: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031260: 2020 2020 2020 2020 2020 2020 3020 2031 0 1 │ │ │ │ +00031270: 2020 3220 2033 2020 3420 2035 2020 2020 2 3 4 5 │ │ │ │ +00031280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000312a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000312b0: 2020 2020 2020 2020 7c0a 7c6f 3720 3d20 |.|o7 = │ │ │ │ -000312c0: 746f 7461 6c3a 2036 2031 3020 3135 2032 total: 6 10 15 2 │ │ │ │ -000312d0: 3120 3238 2033 3620 2020 2020 2020 2020 1 28 36 │ │ │ │ +000312a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000312b0: 6f37 203d 2074 6f74 616c 3a20 3620 3130 o7 = total: 6 10 │ │ │ │ +000312c0: 2031 3520 3231 2032 3820 3336 2020 2020 15 21 28 36 │ │ │ │ +000312d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000312e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000312f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031300: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00031310: 2020 2020 323a 2033 2020 3120 202e 2020 2: 3 1 . │ │ │ │ -00031320: 2e20 202e 2020 2e20 2020 2020 2020 2020 . . . │ │ │ │ +000312f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031300: 2020 2020 2020 2020 2032 3a20 3320 2031 2: 3 1 │ │ │ │ +00031310: 2020 2e20 202e 2020 2e20 202e 2020 2020 . . . . │ │ │ │ +00031320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031350: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00031360: 2020 2020 333a 2033 2020 3920 2039 2020 3: 3 9 9 │ │ │ │ -00031370: 3320 202e 2020 2e20 2020 2020 2020 2020 3 . . │ │ │ │ +00031340: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031350: 2020 2020 2020 2020 2033 3a20 3320 2039 3: 3 9 │ │ │ │ +00031360: 2020 3920 2033 2020 2e20 202e 2020 2020 9 3 . . │ │ │ │ +00031370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000313a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000313b0: 2020 2020 343a 202e 2020 2e20 2036 2031 4: . . 6 1 │ │ │ │ -000313c0: 3820 3138 2020 3620 2020 2020 2020 2020 8 18 6 │ │ │ │ +00031390: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000313a0: 2020 2020 2020 2020 2034 3a20 2e20 202e 4: . . │ │ │ │ +000313b0: 2020 3620 3138 2031 3820 2036 2020 2020 6 18 18 6 │ │ │ │ +000313c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000313d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000313e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000313f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00031400: 2020 2020 353a 202e 2020 2e20 202e 2020 5: . . . │ │ │ │ -00031410: 2e20 3130 2033 3020 2020 2020 2020 2020 . 10 30 │ │ │ │ +000313e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000313f0: 2020 2020 2020 2020 2035 3a20 2e20 202e 5: . . │ │ │ │ +00031400: 2020 2e20 202e 2031 3020 3330 2020 2020 . . 10 30 │ │ │ │ +00031410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031440: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00031430: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031490: 2020 2020 2020 2020 7c0a 7c6f 3720 3a20 |.|o7 : │ │ │ │ -000314a0: 4265 7474 6954 616c 6c79 2020 2020 2020 BettiTally │ │ │ │ +00031480: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031490: 6f37 203a 2042 6574 7469 5461 6c6c 7920 o7 : BettiTally │ │ │ │ +000314a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000314b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000314c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000314d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000314e0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000314d0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000314e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000314f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031530: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 3a20 --------+.|i8 : │ │ │ │ -00031540: 4320 3d20 6368 6169 6e43 6f6d 706c 6578 C = chainComplex │ │ │ │ -00031550: 2066 6c61 7474 656e 207b 7b61 7567 7d20 flatten {{aug} │ │ │ │ -00031560: 7c61 7070 6c79 2834 2c20 692d 3e20 4646 |apply(4, i-> FF │ │ │ │ -00031570: 2e64 645f 2869 2b31 2929 7d20 2020 2020 .dd_(i+1))} │ │ │ │ -00031580: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00031520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00031530: 6938 203a 2043 203d 2063 6861 696e 436f i8 : C = chainCo │ │ │ │ +00031540: 6d70 6c65 7820 666c 6174 7465 6e20 7b7b mplex flatten {{ │ │ │ │ +00031550: 6175 677d 207c 6170 706c 7928 342c 2069 aug} |apply(4, i │ │ │ │ +00031560: 2d3e 2046 462e 6464 5f28 692b 3129 297d -> FF.dd_(i+1))} │ │ │ │ +00031570: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000315a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000315b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000315c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000315d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000315e0: 2020 2020 2020 2036 2020 2020 2020 3130 6 10 │ │ │ │ -000315f0: 2020 2020 2020 3135 2020 2020 2020 3231 15 21 │ │ │ │ -00031600: 2020 2020 2020 3238 2020 2020 2020 2020 28 │ │ │ │ -00031610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031620: 2020 2020 2020 2020 7c0a 7c6f 3820 3d20 |.|o8 = │ │ │ │ -00031630: 4d20 3c2d 2d20 5220 203c 2d2d 2052 2020 M <-- R <-- R │ │ │ │ -00031640: 203c 2d2d 2052 2020 203c 2d2d 2052 2020 <-- R <-- R │ │ │ │ -00031650: 203c 2d2d 2052 2020 2020 2020 2020 2020 <-- R │ │ │ │ -00031660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031670: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000315c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000315d0: 2020 2020 2020 2020 2020 2020 3620 2020 6 │ │ │ │ +000315e0: 2020 2031 3020 2020 2020 2031 3520 2020 10 15 │ │ │ │ +000315f0: 2020 2032 3120 2020 2020 2032 3820 2020 21 28 │ │ │ │ +00031600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031610: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031620: 6f38 203d 204d 203c 2d2d 2052 2020 3c2d o8 = M <-- R <- │ │ │ │ +00031630: 2d20 5220 2020 3c2d 2d20 5220 2020 3c2d - R <-- R <- │ │ │ │ +00031640: 2d20 5220 2020 3c2d 2d20 5220 2020 2020 - R <-- R │ │ │ │ +00031650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031660: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000316a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000316b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000316c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000316d0: 3020 2020 2020 3120 2020 2020 2032 2020 0 1 2 │ │ │ │ -000316e0: 2020 2020 2033 2020 2020 2020 2034 2020 3 4 │ │ │ │ -000316f0: 2020 2020 2035 2020 2020 2020 2020 2020 5 │ │ │ │ -00031700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031710: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000316b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000316c0: 2020 2020 2030 2020 2020 2031 2020 2020 0 1 │ │ │ │ +000316d0: 2020 3220 2020 2020 2020 3320 2020 2020 2 3 │ │ │ │ +000316e0: 2020 3420 2020 2020 2020 3520 2020 2020 4 5 │ │ │ │ +000316f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031700: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031760: 2020 2020 2020 2020 7c0a 7c6f 3820 3a20 |.|o8 : │ │ │ │ -00031770: 4368 6169 6e43 6f6d 706c 6578 2020 2020 ChainComplex │ │ │ │ +00031750: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031760: 6f38 203a 2043 6861 696e 436f 6d70 6c65 o8 : ChainComple │ │ │ │ +00031770: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ 00031780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000317a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000317b0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000317a0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000317b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000317c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000317d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000317e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000317f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031800: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3920 3a20 --------+.|i9 : │ │ │ │ -00031810: 6170 706c 7928 342c 2069 202d 3e46 462e apply(4, i ->FF. │ │ │ │ -00031820: 6464 5f28 692b 3129 2920 2020 2020 2020 dd_(i+1)) │ │ │ │ +000317f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00031800: 6939 203a 2061 7070 6c79 2834 2c20 6920 i9 : apply(4, i │ │ │ │ +00031810: 2d3e 4646 2e64 645f 2869 2b31 2929 2020 ->FF.dd_(i+1)) │ │ │ │ +00031820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031850: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00031840: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000318a0: 2020 2020 2020 2020 7c0a 7c6f 3920 3d20 |.|o9 = │ │ │ │ -000318b0: 7b7b 337d 207c 2030 2020 6120 2d63 202d {{3} | 0 a -c - │ │ │ │ -000318c0: 6220 3020 2030 2030 2020 3020 3020 2030 b 0 0 0 0 0 0 │ │ │ │ -000318d0: 2020 7c2c 207b 337d 207c 2030 2020 2030 |, {3} | 0 0 │ │ │ │ -000318e0: 2020 2d63 3220 3020 3020 2020 3020 2030 -c2 0 0 0 0 │ │ │ │ -000318f0: 2020 2062 3220 3020 7c0a 7c20 2020 2020 b2 0 |.| │ │ │ │ -00031900: 207b 327d 207c 2062 2020 3020 6132 2030 {2} | b 0 a2 0 │ │ │ │ -00031910: 2020 3020 2030 2030 2020 3020 3020 2063 0 0 0 0 0 c │ │ │ │ -00031920: 3220 7c20 207b 347d 207c 2030 2020 2030 2 | {4} | 0 0 │ │ │ │ -00031930: 2020 3020 2020 3020 3020 2020 3020 2030 0 0 0 0 0 │ │ │ │ -00031940: 2020 2030 2020 3020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ -00031950: 207b 327d 207c 202d 6320 3020 3020 2061 {2} | -c 0 0 a │ │ │ │ -00031960: 3220 3020 2030 2062 3220 3020 3020 2030 2 0 0 b2 0 0 0 │ │ │ │ -00031970: 2020 7c20 207b 347d 207c 202d 6332 2030 | {4} | -c2 0 │ │ │ │ -00031980: 2020 3020 2020 3020 3020 2020 3020 2030 0 0 0 0 0 │ │ │ │ -00031990: 2020 2030 2020 3020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ -000319a0: 207b 327d 207c 2061 2020 3020 3020 2030 {2} | a 0 0 0 │ │ │ │ -000319b0: 2020 6232 2030 2030 2020 3020 6332 2030 b2 0 0 0 c2 0 │ │ │ │ -000319c0: 2020 7c20 207b 347d 207c 2030 2020 2030 | {4} | 0 0 │ │ │ │ -000319d0: 2020 3020 2020 3020 3020 2020 3020 202d 0 0 0 0 - │ │ │ │ -000319e0: 6232 2030 2020 3020 7c0a 7c20 2020 2020 b2 0 0 |.| │ │ │ │ -000319f0: 207b 337d 207c 2030 2020 3020 3020 2030 {3} | 0 0 0 0 │ │ │ │ -00031a00: 2020 6320 2062 2061 2020 3020 3020 2030 c b a 0 0 0 │ │ │ │ -00031a10: 2020 7c20 207b 347d 207c 2030 2020 2030 | {4} | 0 0 │ │ │ │ -00031a20: 2020 3020 2020 3020 6332 2020 3020 2030 0 0 c2 0 0 │ │ │ │ -00031a30: 2020 202d 6120 3020 7c0a 7c20 2020 2020 -a 0 |.| │ │ │ │ -00031a40: 207b 337d 207c 2030 2020 3020 3020 2030 {3} | 0 0 0 0 │ │ │ │ -00031a50: 2020 3020 2030 2030 2020 6320 2d62 2061 0 0 0 c -b a │ │ │ │ -00031a60: 2020 7c20 207b 347d 207c 2030 2020 2030 | {4} | 0 0 │ │ │ │ -00031a70: 2020 3020 2020 3020 3020 2020 3020 2030 0 0 0 0 0 │ │ │ │ -00031a80: 2020 2030 2020 2d61 7c0a 7c20 2020 2020 0 -a|.| │ │ │ │ +00031890: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000318a0: 6f39 203d 207b 7b33 7d20 7c20 3020 2061 o9 = {{3} | 0 a │ │ │ │ +000318b0: 202d 6320 2d62 2030 2020 3020 3020 2030 -c -b 0 0 0 0 │ │ │ │ +000318c0: 2030 2020 3020 207c 2c20 7b33 7d20 7c20 0 0 |, {3} | │ │ │ │ +000318d0: 3020 2020 3020 202d 6332 2030 2030 2020 0 0 -c2 0 0 │ │ │ │ +000318e0: 2030 2020 3020 2020 6232 2030 207c 0a7c 0 0 b2 0 |.| │ │ │ │ +000318f0: 2020 2020 2020 7b32 7d20 7c20 6220 2030 {2} | b 0 │ │ │ │ +00031900: 2061 3220 3020 2030 2020 3020 3020 2030 a2 0 0 0 0 0 │ │ │ │ +00031910: 2030 2020 6332 207c 2020 7b34 7d20 7c20 0 c2 | {4} | │ │ │ │ +00031920: 3020 2020 3020 2030 2020 2030 2030 2020 0 0 0 0 0 │ │ │ │ +00031930: 2030 2020 3020 2020 3020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00031940: 2020 2020 2020 7b32 7d20 7c20 2d63 2030 {2} | -c 0 │ │ │ │ +00031950: 2030 2020 6132 2030 2020 3020 6232 2030 0 a2 0 0 b2 0 │ │ │ │ +00031960: 2030 2020 3020 207c 2020 7b34 7d20 7c20 0 0 | {4} | │ │ │ │ +00031970: 2d63 3220 3020 2030 2020 2030 2030 2020 -c2 0 0 0 0 │ │ │ │ +00031980: 2030 2020 3020 2020 3020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00031990: 2020 2020 2020 7b32 7d20 7c20 6120 2030 {2} | a 0 │ │ │ │ +000319a0: 2030 2020 3020 2062 3220 3020 3020 2030 0 0 b2 0 0 0 │ │ │ │ +000319b0: 2063 3220 3020 207c 2020 7b34 7d20 7c20 c2 0 | {4} | │ │ │ │ +000319c0: 3020 2020 3020 2030 2020 2030 2030 2020 0 0 0 0 0 │ │ │ │ +000319d0: 2030 2020 2d62 3220 3020 2030 207c 0a7c 0 -b2 0 0 |.| │ │ │ │ +000319e0: 2020 2020 2020 7b33 7d20 7c20 3020 2030 {3} | 0 0 │ │ │ │ +000319f0: 2030 2020 3020 2063 2020 6220 6120 2030 0 0 c b a 0 │ │ │ │ +00031a00: 2030 2020 3020 207c 2020 7b34 7d20 7c20 0 0 | {4} | │ │ │ │ +00031a10: 3020 2020 3020 2030 2020 2030 2063 3220 0 0 0 0 c2 │ │ │ │ +00031a20: 2030 2020 3020 2020 2d61 2030 207c 0a7c 0 0 -a 0 |.| │ │ │ │ +00031a30: 2020 2020 2020 7b33 7d20 7c20 3020 2030 {3} | 0 0 │ │ │ │ +00031a40: 2030 2020 3020 2030 2020 3020 3020 2063 0 0 0 0 0 c │ │ │ │ +00031a50: 202d 6220 6120 207c 2020 7b34 7d20 7c20 -b a | {4} | │ │ │ │ +00031a60: 3020 2020 3020 2030 2020 2030 2030 2020 0 0 0 0 0 │ │ │ │ +00031a70: 2030 2020 3020 2020 3020 202d 617c 0a7c 0 0 0 -a|.| │ │ │ │ +00031a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031ab0: 2020 2020 207b 347d 207c 2030 2020 2030 {4} | 0 0 │ │ │ │ -00031ac0: 2020 3020 2020 3020 3020 2020 3020 2061 0 0 0 0 a │ │ │ │ -00031ad0: 3220 2063 2020 6220 7c0a 7c20 2020 2020 2 c b |.| │ │ │ │ +00031aa0: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +00031ab0: 3020 2020 3020 2030 2020 2030 2030 2020 0 0 0 0 0 │ │ │ │ +00031ac0: 2030 2020 6132 2020 6320 2062 207c 0a7c 0 a2 c b |.| │ │ │ │ +00031ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031b00: 2020 2020 207b 347d 207c 2030 2020 202d {4} | 0 - │ │ │ │ -00031b10: 6120 3020 2020 6220 3020 2020 6332 2030 a 0 b 0 c2 0 │ │ │ │ -00031b20: 2020 2030 2020 3020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ +00031af0: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +00031b00: 3020 2020 2d61 2030 2020 2062 2030 2020 0 -a 0 b 0 │ │ │ │ +00031b10: 2063 3220 3020 2020 3020 2030 207c 0a7c c2 0 0 0 |.| │ │ │ │ +00031b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031b50: 2020 2020 207b 347d 207c 2030 2020 2030 {4} | 0 0 │ │ │ │ -00031b60: 2020 6120 2020 6320 2d62 3220 3020 2030 a c -b2 0 0 │ │ │ │ -00031b70: 2020 2030 2020 3020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ +00031b40: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +00031b50: 3020 2020 3020 2061 2020 2063 202d 6232 0 0 a c -b2 │ │ │ │ +00031b60: 2030 2020 3020 2020 3020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00031b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031ba0: 2020 2020 207b 347d 207c 2061 3220 2063 {4} | a2 c │ │ │ │ -00031bb0: 2020 6220 2020 3020 3020 2020 3020 2030 b 0 0 0 0 │ │ │ │ -00031bc0: 2020 2030 2020 3020 7c0a 7c20 2020 2020 0 0 |.| │ │ │ │ +00031b90: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +00031ba0: 6132 2020 6320 2062 2020 2030 2030 2020 a2 c b 0 0 │ │ │ │ +00031bb0: 2030 2020 3020 2020 3020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00031bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031c10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00031c00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031c60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00031c50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031cb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00031ca0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031d00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00031cf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031d50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00031d40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031da0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00031d90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031df0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00031de0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031e40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00031e30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031e90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00031e80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031ee0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00031ed0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031f30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00031f20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031f30: 2020 2020 202d 2d2d 2d2d 2d2d 2d2d 2d2d ----------- │ │ │ │ 00031f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00031f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031f80: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ -00031f90: 3020 2030 2020 3020 2030 2030 2061 3220 0 0 0 0 0 a2 │ │ │ │ -00031fa0: 7c2c 207b 367d 207c 2030 2020 6120 202d |, {6} | 0 a - │ │ │ │ -00031fb0: 6320 2d62 2030 2020 3020 2020 3020 2030 c -b 0 0 0 0 │ │ │ │ -00031fc0: 2030 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00031fd0: 2030 2020 3020 2030 7c0a 7c20 2020 2020 0 0 0|.| │ │ │ │ -00031fe0: 3020 2030 2020 6132 2063 2062 2030 2020 0 0 a2 c b 0 │ │ │ │ -00031ff0: 7c20 207b 357d 207c 2062 2020 3020 2061 | {5} | b 0 a │ │ │ │ -00032000: 3220 3020 2030 2020 3020 2020 3020 2030 2 0 0 0 0 0 │ │ │ │ -00032010: 2030 2020 6332 2030 2020 3020 2030 2020 0 c2 0 0 0 │ │ │ │ -00032020: 2030 2020 3020 2030 7c0a 7c20 2020 2020 0 0 0|.| │ │ │ │ -00032030: 3020 2030 2020 3020 2061 2030 202d 6220 0 0 0 a 0 -b │ │ │ │ -00032040: 7c20 207b 357d 207c 202d 6320 3020 2030 | {5} | -c 0 0 │ │ │ │ -00032050: 2020 6132 2030 2020 3020 2020 6232 2030 a2 0 0 b2 0 │ │ │ │ -00032060: 2030 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00032070: 2030 2020 3020 2030 7c0a 7c20 2020 2020 0 0 0|.| │ │ │ │ -00032080: 3020 2030 2020 3020 2030 2061 2063 2020 0 0 0 0 a c │ │ │ │ -00032090: 7c20 207b 357d 207c 2061 2020 3020 2030 | {5} | a 0 0 │ │ │ │ -000320a0: 2020 3020 2062 3220 3020 2020 3020 2030 0 b2 0 0 0 │ │ │ │ -000320b0: 2063 3220 3020 2030 2020 3020 2030 2020 c2 0 0 0 0 │ │ │ │ -000320c0: 2030 2020 3020 2030 7c0a 7c20 2020 2020 0 0 0|.| │ │ │ │ -000320d0: 6220 2030 2020 3020 2030 2030 2030 2020 b 0 0 0 0 0 │ │ │ │ -000320e0: 7c20 207b 367d 207c 2030 2020 3020 2030 | {6} | 0 0 0 │ │ │ │ -000320f0: 2020 3020 2063 2020 6220 2020 6120 2030 0 c b a 0 │ │ │ │ -00032100: 2030 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00032110: 2030 2020 3020 2030 7c0a 7c20 2020 2020 0 0 0|.| │ │ │ │ -00032120: 2d63 2062 3220 3020 2030 2030 2030 2020 -c b2 0 0 0 0 │ │ │ │ -00032130: 7c20 207b 367d 207c 2030 2020 3020 2030 | {6} | 0 0 0 │ │ │ │ -00032140: 2020 3020 2030 2020 3020 2020 3020 2063 0 0 0 0 c │ │ │ │ -00032150: 202d 6220 6120 2030 2020 3020 2030 2020 -b a 0 0 0 │ │ │ │ -00032160: 2030 2020 3020 2030 7c0a 7c20 2020 2020 0 0 0|.| │ │ │ │ -00032170: 3020 2030 2020 3020 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -00032180: 7c20 207b 367d 207c 2030 2020 3020 2030 | {6} | 0 0 0 │ │ │ │ -00032190: 2020 3020 2030 2020 3020 2020 3020 2030 0 0 0 0 0 │ │ │ │ -000321a0: 2030 2020 3020 2030 2020 6120 202d 6320 0 0 0 a -c │ │ │ │ -000321b0: 202d 6220 3020 2030 7c0a 7c20 2020 2020 -b 0 0|.| │ │ │ │ -000321c0: 3020 2030 2020 3020 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -000321d0: 7c20 207b 357d 207c 2030 2020 3020 2030 | {5} | 0 0 0 │ │ │ │ -000321e0: 2020 3020 2030 2020 3020 2020 6332 2030 0 0 0 c2 0 │ │ │ │ -000321f0: 2030 2020 3020 2062 2020 3020 2061 3220 0 0 b 0 a2 │ │ │ │ -00032200: 2030 2020 3020 2030 7c0a 7c20 2020 2020 0 0 0|.| │ │ │ │ -00032210: 3020 2030 2020 3020 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -00032220: 7c20 207b 357d 207c 2030 2020 3020 2030 | {5} | 0 0 0 │ │ │ │ -00032230: 2020 3020 2030 2020 3020 2020 3020 2030 0 0 0 0 0 │ │ │ │ -00032240: 2030 2020 3020 202d 6320 3020 2030 2020 0 0 -c 0 0 │ │ │ │ -00032250: 2061 3220 3020 2030 7c0a 7c20 2020 2020 a2 0 0|.| │ │ │ │ -00032260: 3020 2030 2020 3020 2030 2030 2030 2020 0 0 0 0 0 0 │ │ │ │ -00032270: 7c20 207b 357d 207c 2030 2020 3020 2030 | {5} | 0 0 0 │ │ │ │ -00032280: 2020 3020 2030 2020 2d63 3220 3020 2030 0 0 -c2 0 0 │ │ │ │ -00032290: 2030 2020 3020 2061 2020 3020 2030 2020 0 0 a 0 0 │ │ │ │ -000322a0: 2030 2020 6232 2030 7c0a 7c20 2020 2020 0 b2 0|.| │ │ │ │ -000322b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000322c0: 2020 207b 367d 207c 2030 2020 3020 2030 {6} | 0 0 0 │ │ │ │ -000322d0: 2020 3020 2030 2020 3020 2020 3020 2030 0 0 0 0 0 │ │ │ │ -000322e0: 2030 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -000322f0: 2030 2020 6320 2062 7c0a 7c20 2020 2020 0 c b|.| │ │ │ │ -00032300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032310: 2020 207b 367d 207c 2030 2020 3020 2030 {6} | 0 0 0 │ │ │ │ -00032320: 2020 3020 2030 2020 3020 2020 3020 2030 0 0 0 0 0 │ │ │ │ -00032330: 2030 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00032340: 2030 2020 3020 2030 7c0a 7c20 2020 2020 0 0 0|.| │ │ │ │ -00032350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032360: 2020 207b 357d 207c 2030 2020 6332 2030 {5} | 0 c2 0 │ │ │ │ -00032370: 2020 3020 2030 2020 3020 2020 3020 2030 0 0 0 0 0 │ │ │ │ -00032380: 2030 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00032390: 2030 2020 3020 2030 7c0a 7c20 2020 2020 0 0 0|.| │ │ │ │ -000323a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000323b0: 2020 207b 357d 207c 2030 2020 3020 2030 {5} | 0 0 0 │ │ │ │ -000323c0: 2020 3020 2030 2020 3020 2020 3020 2030 0 0 0 0 0 │ │ │ │ -000323d0: 2030 2020 3020 2030 2020 6232 2030 2020 0 0 0 b2 0 │ │ │ │ -000323e0: 2030 2020 3020 2030 7c0a 7c20 2020 2020 0 0 0|.| │ │ │ │ -000323f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032400: 2020 207b 357d 207c 2030 2020 3020 2030 {5} | 0 0 0 │ │ │ │ -00032410: 2020 6332 2030 2020 3020 2020 3020 2030 c2 0 0 0 0 │ │ │ │ -00032420: 2030 2020 3020 2030 2020 3020 202d 6232 0 0 0 0 -b2 │ │ │ │ -00032430: 2030 2020 3020 2030 7c0a 7c20 2020 2020 0 0 0|.| │ │ │ │ +00031f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00031f80: 2020 2020 2030 2020 3020 2030 2020 3020 0 0 0 0 │ │ │ │ +00031f90: 3020 6132 207c 2c20 7b36 7d20 7c20 3020 0 a2 |, {6} | 0 │ │ │ │ +00031fa0: 2061 2020 2d63 202d 6220 3020 2030 2020 a -c -b 0 0 │ │ │ │ +00031fb0: 2030 2020 3020 3020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00031fc0: 2020 3020 2020 3020 2030 2020 307c 0a7c 0 0 0 0|.| │ │ │ │ +00031fd0: 2020 2020 2030 2020 3020 2061 3220 6320 0 0 a2 c │ │ │ │ +00031fe0: 6220 3020 207c 2020 7b35 7d20 7c20 6220 b 0 | {5} | b │ │ │ │ +00031ff0: 2030 2020 6132 2030 2020 3020 2030 2020 0 a2 0 0 0 │ │ │ │ +00032000: 2030 2020 3020 3020 2063 3220 3020 2030 0 0 0 c2 0 0 │ │ │ │ +00032010: 2020 3020 2020 3020 2030 2020 307c 0a7c 0 0 0 0|.| │ │ │ │ +00032020: 2020 2020 2030 2020 3020 2030 2020 6120 0 0 0 a │ │ │ │ +00032030: 3020 2d62 207c 2020 7b35 7d20 7c20 2d63 0 -b | {5} | -c │ │ │ │ +00032040: 2030 2020 3020 2061 3220 3020 2030 2020 0 0 a2 0 0 │ │ │ │ +00032050: 2062 3220 3020 3020 2030 2020 3020 2030 b2 0 0 0 0 0 │ │ │ │ +00032060: 2020 3020 2020 3020 2030 2020 307c 0a7c 0 0 0 0|.| │ │ │ │ +00032070: 2020 2020 2030 2020 3020 2030 2020 3020 0 0 0 0 │ │ │ │ +00032080: 6120 6320 207c 2020 7b35 7d20 7c20 6120 a c | {5} | a │ │ │ │ +00032090: 2030 2020 3020 2030 2020 6232 2030 2020 0 0 0 b2 0 │ │ │ │ +000320a0: 2030 2020 3020 6332 2030 2020 3020 2030 0 0 c2 0 0 0 │ │ │ │ +000320b0: 2020 3020 2020 3020 2030 2020 307c 0a7c 0 0 0 0|.| │ │ │ │ +000320c0: 2020 2020 2062 2020 3020 2030 2020 3020 b 0 0 0 │ │ │ │ +000320d0: 3020 3020 207c 2020 7b36 7d20 7c20 3020 0 0 | {6} | 0 │ │ │ │ +000320e0: 2030 2020 3020 2030 2020 6320 2062 2020 0 0 0 c b │ │ │ │ +000320f0: 2061 2020 3020 3020 2030 2020 3020 2030 a 0 0 0 0 0 │ │ │ │ +00032100: 2020 3020 2020 3020 2030 2020 307c 0a7c 0 0 0 0|.| │ │ │ │ +00032110: 2020 2020 202d 6320 6232 2030 2020 3020 -c b2 0 0 │ │ │ │ +00032120: 3020 3020 207c 2020 7b36 7d20 7c20 3020 0 0 | {6} | 0 │ │ │ │ +00032130: 2030 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ +00032140: 2030 2020 6320 2d62 2061 2020 3020 2030 0 c -b a 0 0 │ │ │ │ +00032150: 2020 3020 2020 3020 2030 2020 307c 0a7c 0 0 0 0|.| │ │ │ │ +00032160: 2020 2020 2030 2020 3020 2030 2020 3020 0 0 0 0 │ │ │ │ +00032170: 3020 3020 207c 2020 7b36 7d20 7c20 3020 0 0 | {6} | 0 │ │ │ │ +00032180: 2030 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ +00032190: 2030 2020 3020 3020 2030 2020 3020 2061 0 0 0 0 0 a │ │ │ │ +000321a0: 2020 2d63 2020 2d62 2030 2020 307c 0a7c -c -b 0 0|.| │ │ │ │ +000321b0: 2020 2020 2030 2020 3020 2030 2020 3020 0 0 0 0 │ │ │ │ +000321c0: 3020 3020 207c 2020 7b35 7d20 7c20 3020 0 0 | {5} | 0 │ │ │ │ +000321d0: 2030 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ +000321e0: 2063 3220 3020 3020 2030 2020 6220 2030 c2 0 0 0 b 0 │ │ │ │ +000321f0: 2020 6132 2020 3020 2030 2020 307c 0a7c a2 0 0 0|.| │ │ │ │ +00032200: 2020 2020 2030 2020 3020 2030 2020 3020 0 0 0 0 │ │ │ │ +00032210: 3020 3020 207c 2020 7b35 7d20 7c20 3020 0 0 | {5} | 0 │ │ │ │ +00032220: 2030 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ +00032230: 2030 2020 3020 3020 2030 2020 2d63 2030 0 0 0 0 -c 0 │ │ │ │ +00032240: 2020 3020 2020 6132 2030 2020 307c 0a7c 0 a2 0 0|.| │ │ │ │ +00032250: 2020 2020 2030 2020 3020 2030 2020 3020 0 0 0 0 │ │ │ │ +00032260: 3020 3020 207c 2020 7b35 7d20 7c20 3020 0 0 | {5} | 0 │ │ │ │ +00032270: 2030 2020 3020 2030 2020 3020 202d 6332 0 0 0 0 -c2 │ │ │ │ +00032280: 2030 2020 3020 3020 2030 2020 6120 2030 0 0 0 0 a 0 │ │ │ │ +00032290: 2020 3020 2020 3020 2062 3220 307c 0a7c 0 0 b2 0|.| │ │ │ │ +000322a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000322b0: 2020 2020 2020 2020 7b36 7d20 7c20 3020 {6} | 0 │ │ │ │ +000322c0: 2030 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ +000322d0: 2030 2020 3020 3020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +000322e0: 2020 3020 2020 3020 2063 2020 627c 0a7c 0 0 c b|.| │ │ │ │ +000322f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032300: 2020 2020 2020 2020 7b36 7d20 7c20 3020 {6} | 0 │ │ │ │ +00032310: 2030 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ +00032320: 2030 2020 3020 3020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00032330: 2020 3020 2020 3020 2030 2020 307c 0a7c 0 0 0 0|.| │ │ │ │ +00032340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032350: 2020 2020 2020 2020 7b35 7d20 7c20 3020 {5} | 0 │ │ │ │ +00032360: 2063 3220 3020 2030 2020 3020 2030 2020 c2 0 0 0 0 │ │ │ │ +00032370: 2030 2020 3020 3020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00032380: 2020 3020 2020 3020 2030 2020 307c 0a7c 0 0 0 0|.| │ │ │ │ +00032390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000323a0: 2020 2020 2020 2020 7b35 7d20 7c20 3020 {5} | 0 │ │ │ │ +000323b0: 2030 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ +000323c0: 2030 2020 3020 3020 2030 2020 3020 2062 0 0 0 0 0 b │ │ │ │ +000323d0: 3220 3020 2020 3020 2030 2020 307c 0a7c 2 0 0 0 0|.| │ │ │ │ +000323e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000323f0: 2020 2020 2020 2020 7b35 7d20 7c20 3020 {5} | 0 │ │ │ │ +00032400: 2030 2020 3020 2063 3220 3020 2030 2020 0 0 c2 0 0 │ │ │ │ +00032410: 2030 2020 3020 3020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00032420: 2020 2d62 3220 3020 2030 2020 307c 0a7c -b2 0 0 0|.| │ │ │ │ +00032430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032480: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00032470: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000324a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000324b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000324c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000324d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000324c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000324d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000324e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000324f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032520: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00032510: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032570: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00032560: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000325a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000325b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000325c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000325b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000325c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000325d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000325e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000325f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032610: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00032600: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032610: 2020 2020 202d 2d2d 2d2d 2d2d 2d2d 2d2d ----------- │ │ │ │ 00032620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032660: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ -00032670: 3020 2030 2020 3020 3020 2030 2020 7c2c 0 0 0 0 0 |, │ │ │ │ -00032680: 207b 367d 207c 2030 2020 2030 2020 2d63 {6} | 0 0 -c │ │ │ │ -00032690: 3220 3020 3020 2020 3020 2030 2020 2062 2 0 0 0 0 b │ │ │ │ -000326a0: 3220 3020 2020 3020 2030 2020 3020 2020 2 0 0 0 0 │ │ │ │ -000326b0: 3020 3020 2020 6132 7c0a 7c20 2020 2020 0 0 a2|.| │ │ │ │ -000326c0: 3020 2030 2020 3020 3020 2030 2020 7c20 0 0 0 0 0 | │ │ │ │ -000326d0: 207b 377d 207c 2030 2020 2030 2020 3020 {7} | 0 0 0 │ │ │ │ -000326e0: 2020 3020 3020 2020 3020 2030 2020 2030 0 0 0 0 0 │ │ │ │ -000326f0: 2020 3020 2020 3020 2030 2020 6132 2020 0 0 0 a2 │ │ │ │ -00032700: 6320 6220 2020 3020 7c0a 7c20 2020 2020 c b 0 |.| │ │ │ │ -00032710: 3020 2030 2020 3020 3020 2030 2020 7c20 0 0 0 0 0 | │ │ │ │ -00032720: 207b 377d 207c 202d 6332 2030 2020 3020 {7} | -c2 0 0 │ │ │ │ -00032730: 2020 3020 3020 2020 3020 2030 2020 2030 0 0 0 0 0 │ │ │ │ -00032740: 2020 3020 2020 3020 2030 2020 3020 2020 0 0 0 0 │ │ │ │ -00032750: 6120 3020 2020 2d62 7c0a 7c20 2020 2020 a 0 -b|.| │ │ │ │ -00032760: 3020 2030 2020 3020 3020 2030 2020 7c20 0 0 0 0 0 | │ │ │ │ -00032770: 207b 377d 207c 2030 2020 2030 2020 3020 {7} | 0 0 0 │ │ │ │ -00032780: 2020 3020 3020 2020 3020 202d 6232 2030 0 0 0 -b2 0 │ │ │ │ -00032790: 2020 3020 2020 3020 2030 2020 3020 2020 0 0 0 0 │ │ │ │ -000327a0: 3020 6120 2020 6320 7c0a 7c20 2020 2020 0 a c |.| │ │ │ │ -000327b0: 3020 2030 2020 3020 3020 2030 2020 7c20 0 0 0 0 0 | │ │ │ │ -000327c0: 207b 377d 207c 2030 2020 2030 2020 3020 {7} | 0 0 0 │ │ │ │ -000327d0: 2020 3020 6332 2020 3020 2030 2020 202d 0 c2 0 0 - │ │ │ │ -000327e0: 6120 3020 2020 6220 2030 2020 3020 2020 a 0 b 0 0 │ │ │ │ -000327f0: 3020 3020 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -00032800: 3020 2030 2020 3020 3020 2030 2020 7c20 0 0 0 0 0 | │ │ │ │ -00032810: 207b 377d 207c 2030 2020 2030 2020 3020 {7} | 0 0 0 │ │ │ │ -00032820: 2020 3020 3020 2020 3020 2030 2020 2030 0 0 0 0 0 │ │ │ │ -00032830: 2020 2d61 2020 2d63 2062 3220 3020 2020 -a -c b2 0 │ │ │ │ -00032840: 3020 3020 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -00032850: 3020 2030 2020 3020 3020 2030 2020 7c20 0 0 0 0 0 | │ │ │ │ -00032860: 207b 377d 207c 2030 2020 2030 2020 3020 {7} | 0 0 0 │ │ │ │ -00032870: 2020 3020 3020 2020 3020 2061 3220 2063 0 0 0 a2 c │ │ │ │ -00032880: 2020 6220 2020 3020 2030 2020 3020 2020 b 0 0 0 │ │ │ │ -00032890: 3020 3020 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -000328a0: 3020 2030 2020 3020 3020 2030 2020 7c20 0 0 0 0 0 | │ │ │ │ -000328b0: 207b 377d 207c 2030 2020 202d 6120 3020 {7} | 0 -a 0 │ │ │ │ -000328c0: 2020 6220 3020 2020 6332 2030 2020 2030 b 0 c2 0 0 │ │ │ │ -000328d0: 2020 3020 2020 3020 2030 2020 3020 2020 0 0 0 0 │ │ │ │ -000328e0: 3020 3020 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -000328f0: 6232 2030 2020 3020 3020 2030 2020 7c20 b2 0 0 0 0 | │ │ │ │ -00032900: 207b 377d 207c 2030 2020 2030 2020 6120 {7} | 0 0 a │ │ │ │ -00032910: 2020 6320 2d62 3220 3020 2030 2020 2030 c -b2 0 0 0 │ │ │ │ -00032920: 2020 3020 2020 3020 2030 2020 3020 2020 0 0 0 0 │ │ │ │ -00032930: 3020 3020 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -00032940: 3020 2030 2020 3020 3020 2030 2020 7c20 0 0 0 0 0 | │ │ │ │ -00032950: 207b 377d 207c 2061 3220 2063 2020 6220 {7} | a2 c b │ │ │ │ -00032960: 2020 3020 3020 2020 3020 2030 2020 2030 0 0 0 0 0 │ │ │ │ -00032970: 2020 3020 2020 3020 2030 2020 3020 2020 0 0 0 0 │ │ │ │ -00032980: 3020 3020 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -00032990: 6120 2030 2020 3020 3020 2030 2020 7c20 a 0 0 0 0 | │ │ │ │ -000329a0: 207b 367d 207c 2030 2020 2030 2020 3020 {6} | 0 0 0 │ │ │ │ -000329b0: 2020 3020 3020 2020 3020 2030 2020 2030 0 0 0 0 0 │ │ │ │ -000329c0: 2020 2d63 3220 3020 2030 2020 3020 2020 -c2 0 0 0 │ │ │ │ -000329d0: 3020 3020 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -000329e0: 3020 2030 2020 6120 2d63 202d 6220 7c20 0 0 a -c -b | │ │ │ │ -000329f0: 207b 377d 207c 2030 2020 2030 2020 3020 {7} | 0 0 0 │ │ │ │ -00032a00: 2020 3020 3020 2020 3020 2030 2020 2030 0 0 0 0 0 │ │ │ │ -00032a10: 2020 3020 2020 3020 2030 2020 3020 2020 0 0 0 0 │ │ │ │ -00032a20: 3020 3020 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -00032a30: 3020 2062 2020 3020 6132 2030 2020 7c20 0 b 0 a2 0 | │ │ │ │ -00032a40: 207b 377d 207c 2030 2020 2030 2020 3020 {7} | 0 0 0 │ │ │ │ -00032a50: 2020 3020 3020 2020 3020 202d 6332 2030 0 0 0 -c2 0 │ │ │ │ -00032a60: 2020 3020 2020 3020 2030 2020 3020 2020 0 0 0 0 │ │ │ │ -00032a70: 3020 3020 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -00032a80: 3020 202d 6320 3020 3020 2061 3220 7c20 0 -c 0 0 a2 | │ │ │ │ -00032a90: 207b 377d 207c 2030 2020 2030 2020 3020 {7} | 0 0 0 │ │ │ │ -00032aa0: 2020 3020 3020 2020 3020 2030 2020 2030 0 0 0 0 0 │ │ │ │ -00032ab0: 2020 3020 2020 3020 2030 2020 3020 2020 0 0 0 0 │ │ │ │ -00032ac0: 3020 3020 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -00032ad0: 3020 2061 2020 3020 3020 2030 2020 7c20 0 a 0 0 0 | │ │ │ │ -00032ae0: 207b 377d 207c 2030 2020 2030 2020 3020 {7} | 0 0 0 │ │ │ │ -00032af0: 2020 3020 3020 2020 3020 2030 2020 2030 0 0 0 0 0 │ │ │ │ -00032b00: 2020 3020 2020 3020 2063 3220 3020 2020 0 0 c2 0 │ │ │ │ -00032b10: 3020 3020 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -00032b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032b30: 207b 377d 207c 2030 2020 2030 2020 3020 {7} | 0 0 0 │ │ │ │ -00032b40: 2020 3020 3020 2020 3020 2030 2020 2030 0 0 0 0 0 │ │ │ │ -00032b50: 2020 3020 2020 3020 2030 2020 3020 2020 0 0 0 0 │ │ │ │ -00032b60: 3020 3020 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -00032b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032b80: 207b 377d 207c 2030 2020 2030 2020 3020 {7} | 0 0 0 │ │ │ │ -00032b90: 2020 3020 3020 2020 3020 2030 2020 2030 0 0 0 0 0 │ │ │ │ -00032ba0: 2020 3020 2020 3020 2030 2020 3020 2020 0 0 0 0 │ │ │ │ -00032bb0: 3020 3020 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -00032bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032bd0: 207b 367d 207c 2030 2020 2030 2020 3020 {6} | 0 0 0 │ │ │ │ -00032be0: 2020 3020 3020 2020 3020 2030 2020 2030 0 0 0 0 0 │ │ │ │ -00032bf0: 2020 3020 2020 3020 2030 2020 3020 2020 0 0 0 0 │ │ │ │ -00032c00: 3020 2d63 3220 3020 7c0a 7c20 2020 2020 0 -c2 0 |.| │ │ │ │ -00032c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032c20: 207b 377d 207c 2030 2020 2030 2020 3020 {7} | 0 0 0 │ │ │ │ -00032c30: 2020 3020 3020 2020 3020 2030 2020 2030 0 0 0 0 0 │ │ │ │ -00032c40: 2020 3020 2020 3020 2030 2020 3020 2020 0 0 0 0 │ │ │ │ -00032c50: 3020 3020 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -00032c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032c70: 207b 377d 207c 2030 2020 2030 2020 3020 {7} | 0 0 0 │ │ │ │ -00032c80: 2020 3020 3020 2020 3020 2030 2020 2030 0 0 0 0 0 │ │ │ │ -00032c90: 2020 3020 2020 3020 2030 2020 2d63 3220 0 0 0 -c2 │ │ │ │ -00032ca0: 3020 3020 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ -00032cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032cc0: 207b 377d 207c 2030 2020 2030 2020 3020 {7} | 0 0 0 │ │ │ │ -00032cd0: 2020 3020 3020 2020 3020 2030 2020 2030 0 0 0 0 0 │ │ │ │ -00032ce0: 2020 3020 2020 3020 2030 2020 3020 2020 0 0 0 0 │ │ │ │ -00032cf0: 3020 3020 2020 3020 7c0a 7c20 2020 2020 0 0 0 |.| │ │ │ │ +00032650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00032660: 2020 2020 2030 2020 3020 2030 2030 2020 0 0 0 0 │ │ │ │ +00032670: 3020 207c 2c20 7b36 7d20 7c20 3020 2020 0 |, {6} | 0 │ │ │ │ +00032680: 3020 202d 6332 2030 2030 2020 2030 2020 0 -c2 0 0 0 │ │ │ │ +00032690: 3020 2020 6232 2030 2020 2030 2020 3020 0 b2 0 0 0 │ │ │ │ +000326a0: 2030 2020 2030 2030 2020 2061 327c 0a7c 0 0 0 a2|.| │ │ │ │ +000326b0: 2020 2020 2030 2020 3020 2030 2030 2020 0 0 0 0 │ │ │ │ +000326c0: 3020 207c 2020 7b37 7d20 7c20 3020 2020 0 | {7} | 0 │ │ │ │ +000326d0: 3020 2030 2020 2030 2030 2020 2030 2020 0 0 0 0 0 │ │ │ │ +000326e0: 3020 2020 3020 2030 2020 2030 2020 3020 0 0 0 0 0 │ │ │ │ +000326f0: 2061 3220 2063 2062 2020 2030 207c 0a7c a2 c b 0 |.| │ │ │ │ +00032700: 2020 2020 2030 2020 3020 2030 2030 2020 0 0 0 0 │ │ │ │ +00032710: 3020 207c 2020 7b37 7d20 7c20 2d63 3220 0 | {7} | -c2 │ │ │ │ +00032720: 3020 2030 2020 2030 2030 2020 2030 2020 0 0 0 0 0 │ │ │ │ +00032730: 3020 2020 3020 2030 2020 2030 2020 3020 0 0 0 0 0 │ │ │ │ +00032740: 2030 2020 2061 2030 2020 202d 627c 0a7c 0 a 0 -b|.| │ │ │ │ +00032750: 2020 2020 2030 2020 3020 2030 2030 2020 0 0 0 0 │ │ │ │ +00032760: 3020 207c 2020 7b37 7d20 7c20 3020 2020 0 | {7} | 0 │ │ │ │ +00032770: 3020 2030 2020 2030 2030 2020 2030 2020 0 0 0 0 0 │ │ │ │ +00032780: 2d62 3220 3020 2030 2020 2030 2020 3020 -b2 0 0 0 0 │ │ │ │ +00032790: 2030 2020 2030 2061 2020 2063 207c 0a7c 0 0 a c |.| │ │ │ │ +000327a0: 2020 2020 2030 2020 3020 2030 2030 2020 0 0 0 0 │ │ │ │ +000327b0: 3020 207c 2020 7b37 7d20 7c20 3020 2020 0 | {7} | 0 │ │ │ │ +000327c0: 3020 2030 2020 2030 2063 3220 2030 2020 0 0 0 c2 0 │ │ │ │ +000327d0: 3020 2020 2d61 2030 2020 2062 2020 3020 0 -a 0 b 0 │ │ │ │ +000327e0: 2030 2020 2030 2030 2020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +000327f0: 2020 2020 2030 2020 3020 2030 2030 2020 0 0 0 0 │ │ │ │ +00032800: 3020 207c 2020 7b37 7d20 7c20 3020 2020 0 | {7} | 0 │ │ │ │ +00032810: 3020 2030 2020 2030 2030 2020 2030 2020 0 0 0 0 0 │ │ │ │ +00032820: 3020 2020 3020 202d 6120 202d 6320 6232 0 0 -a -c b2 │ │ │ │ +00032830: 2030 2020 2030 2030 2020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00032840: 2020 2020 2030 2020 3020 2030 2030 2020 0 0 0 0 │ │ │ │ +00032850: 3020 207c 2020 7b37 7d20 7c20 3020 2020 0 | {7} | 0 │ │ │ │ +00032860: 3020 2030 2020 2030 2030 2020 2030 2020 0 0 0 0 0 │ │ │ │ +00032870: 6132 2020 6320 2062 2020 2030 2020 3020 a2 c b 0 0 │ │ │ │ +00032880: 2030 2020 2030 2030 2020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00032890: 2020 2020 2030 2020 3020 2030 2030 2020 0 0 0 0 │ │ │ │ +000328a0: 3020 207c 2020 7b37 7d20 7c20 3020 2020 0 | {7} | 0 │ │ │ │ +000328b0: 2d61 2030 2020 2062 2030 2020 2063 3220 -a 0 b 0 c2 │ │ │ │ +000328c0: 3020 2020 3020 2030 2020 2030 2020 3020 0 0 0 0 0 │ │ │ │ +000328d0: 2030 2020 2030 2030 2020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +000328e0: 2020 2020 2062 3220 3020 2030 2030 2020 b2 0 0 0 │ │ │ │ +000328f0: 3020 207c 2020 7b37 7d20 7c20 3020 2020 0 | {7} | 0 │ │ │ │ +00032900: 3020 2061 2020 2063 202d 6232 2030 2020 0 a c -b2 0 │ │ │ │ +00032910: 3020 2020 3020 2030 2020 2030 2020 3020 0 0 0 0 0 │ │ │ │ +00032920: 2030 2020 2030 2030 2020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00032930: 2020 2020 2030 2020 3020 2030 2030 2020 0 0 0 0 │ │ │ │ +00032940: 3020 207c 2020 7b37 7d20 7c20 6132 2020 0 | {7} | a2 │ │ │ │ +00032950: 6320 2062 2020 2030 2030 2020 2030 2020 c b 0 0 0 │ │ │ │ +00032960: 3020 2020 3020 2030 2020 2030 2020 3020 0 0 0 0 0 │ │ │ │ +00032970: 2030 2020 2030 2030 2020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00032980: 2020 2020 2061 2020 3020 2030 2030 2020 a 0 0 0 │ │ │ │ +00032990: 3020 207c 2020 7b36 7d20 7c20 3020 2020 0 | {6} | 0 │ │ │ │ +000329a0: 3020 2030 2020 2030 2030 2020 2030 2020 0 0 0 0 0 │ │ │ │ +000329b0: 3020 2020 3020 202d 6332 2030 2020 3020 0 0 -c2 0 0 │ │ │ │ +000329c0: 2030 2020 2030 2030 2020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +000329d0: 2020 2020 2030 2020 3020 2061 202d 6320 0 0 a -c │ │ │ │ +000329e0: 2d62 207c 2020 7b37 7d20 7c20 3020 2020 -b | {7} | 0 │ │ │ │ +000329f0: 3020 2030 2020 2030 2030 2020 2030 2020 0 0 0 0 0 │ │ │ │ +00032a00: 3020 2020 3020 2030 2020 2030 2020 3020 0 0 0 0 0 │ │ │ │ +00032a10: 2030 2020 2030 2030 2020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00032a20: 2020 2020 2030 2020 6220 2030 2061 3220 0 b 0 a2 │ │ │ │ +00032a30: 3020 207c 2020 7b37 7d20 7c20 3020 2020 0 | {7} | 0 │ │ │ │ +00032a40: 3020 2030 2020 2030 2030 2020 2030 2020 0 0 0 0 0 │ │ │ │ +00032a50: 2d63 3220 3020 2030 2020 2030 2020 3020 -c2 0 0 0 0 │ │ │ │ +00032a60: 2030 2020 2030 2030 2020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00032a70: 2020 2020 2030 2020 2d63 2030 2030 2020 0 -c 0 0 │ │ │ │ +00032a80: 6132 207c 2020 7b37 7d20 7c20 3020 2020 a2 | {7} | 0 │ │ │ │ +00032a90: 3020 2030 2020 2030 2030 2020 2030 2020 0 0 0 0 0 │ │ │ │ +00032aa0: 3020 2020 3020 2030 2020 2030 2020 3020 0 0 0 0 0 │ │ │ │ +00032ab0: 2030 2020 2030 2030 2020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00032ac0: 2020 2020 2030 2020 6120 2030 2030 2020 0 a 0 0 │ │ │ │ +00032ad0: 3020 207c 2020 7b37 7d20 7c20 3020 2020 0 | {7} | 0 │ │ │ │ +00032ae0: 3020 2030 2020 2030 2030 2020 2030 2020 0 0 0 0 0 │ │ │ │ +00032af0: 3020 2020 3020 2030 2020 2030 2020 6332 0 0 0 0 c2 │ │ │ │ +00032b00: 2030 2020 2030 2030 2020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00032b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032b20: 2020 2020 2020 7b37 7d20 7c20 3020 2020 {7} | 0 │ │ │ │ +00032b30: 3020 2030 2020 2030 2030 2020 2030 2020 0 0 0 0 0 │ │ │ │ +00032b40: 3020 2020 3020 2030 2020 2030 2020 3020 0 0 0 0 0 │ │ │ │ +00032b50: 2030 2020 2030 2030 2020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00032b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032b70: 2020 2020 2020 7b37 7d20 7c20 3020 2020 {7} | 0 │ │ │ │ +00032b80: 3020 2030 2020 2030 2030 2020 2030 2020 0 0 0 0 0 │ │ │ │ +00032b90: 3020 2020 3020 2030 2020 2030 2020 3020 0 0 0 0 0 │ │ │ │ +00032ba0: 2030 2020 2030 2030 2020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00032bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032bc0: 2020 2020 2020 7b36 7d20 7c20 3020 2020 {6} | 0 │ │ │ │ +00032bd0: 3020 2030 2020 2030 2030 2020 2030 2020 0 0 0 0 0 │ │ │ │ +00032be0: 3020 2020 3020 2030 2020 2030 2020 3020 0 0 0 0 0 │ │ │ │ +00032bf0: 2030 2020 2030 202d 6332 2030 207c 0a7c 0 0 -c2 0 |.| │ │ │ │ +00032c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032c10: 2020 2020 2020 7b37 7d20 7c20 3020 2020 {7} | 0 │ │ │ │ +00032c20: 3020 2030 2020 2030 2030 2020 2030 2020 0 0 0 0 0 │ │ │ │ +00032c30: 3020 2020 3020 2030 2020 2030 2020 3020 0 0 0 0 0 │ │ │ │ +00032c40: 2030 2020 2030 2030 2020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00032c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032c60: 2020 2020 2020 7b37 7d20 7c20 3020 2020 {7} | 0 │ │ │ │ +00032c70: 3020 2030 2020 2030 2030 2020 2030 2020 0 0 0 0 0 │ │ │ │ +00032c80: 3020 2020 3020 2030 2020 2030 2020 3020 0 0 0 0 0 │ │ │ │ +00032c90: 202d 6332 2030 2030 2020 2030 207c 0a7c -c2 0 0 0 |.| │ │ │ │ +00032ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032cb0: 2020 2020 2020 7b37 7d20 7c20 3020 2020 {7} | 0 │ │ │ │ +00032cc0: 3020 2030 2020 2030 2030 2020 2030 2020 0 0 0 0 0 │ │ │ │ +00032cd0: 3020 2020 3020 2030 2020 2030 2020 3020 0 0 0 0 0 │ │ │ │ +00032ce0: 2030 2020 2030 2030 2020 2030 207c 0a7c 0 0 0 0 |.| │ │ │ │ +00032cf0: 2020 2020 202d 2d2d 2d2d 2d2d 2d2d 2d2d ----------- │ │ │ │ 00032d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032d40: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ -00032d50: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00032d60: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00032d70: 2030 2030 2020 7c7d 2020 2020 2020 2020 0 0 |} │ │ │ │ -00032d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032d90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00032da0: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00032db0: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00032dc0: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ -00032dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032de0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00032df0: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00032e00: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00032e10: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ -00032e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032e30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00032e40: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00032e50: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00032e60: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ -00032e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032e80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00032e90: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00032ea0: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00032eb0: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ -00032ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032ed0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00032ee0: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00032ef0: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00032f00: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ -00032f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032f20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00032f30: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00032f40: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00032f50: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ -00032f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032f70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00032f80: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00032f90: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00032fa0: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ -00032fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032fc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00032fd0: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00032fe0: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00032ff0: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ -00033000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033010: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00033020: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00033030: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00033040: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ -00033050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033060: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00033070: 3020 2020 6232 2030 2020 3020 2030 2020 0 b2 0 0 0 │ │ │ │ -00033080: 3020 2020 3020 2030 2061 3220 3020 2030 0 0 0 a2 0 0 │ │ │ │ -00033090: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ -000330a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000330b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000330c0: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -000330d0: 6132 2020 6320 2062 2030 2020 3020 2030 a2 c b 0 0 0 │ │ │ │ -000330e0: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ -000330f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033100: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00033110: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00033120: 3020 2020 6120 2030 202d 6220 3020 2030 0 a 0 -b 0 0 │ │ │ │ -00033130: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ -00033140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033150: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00033160: 2d62 3220 3020 2030 2020 3020 2030 2020 -b2 0 0 0 0 │ │ │ │ -00033170: 3020 2020 3020 2061 2063 2020 3020 2030 0 0 a c 0 0 │ │ │ │ -00033180: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ -00033190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000331a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000331b0: 3020 2020 2d61 2030 2020 6220 2030 2020 0 -a 0 b 0 │ │ │ │ -000331c0: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -000331d0: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ -000331e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000331f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00033200: 3020 2020 3020 202d 6120 2d63 2062 3220 0 0 -a -c b2 │ │ │ │ -00033210: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00033220: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ -00033230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033240: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00033250: 6132 2020 6320 2062 2020 3020 2030 2020 a2 c b 0 0 │ │ │ │ -00033260: 3020 2020 3020 2030 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00033270: 2030 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ -00033280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033290: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000332a0: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -000332b0: 3020 2020 6232 2030 2030 2020 3020 2030 0 b2 0 0 0 0 │ │ │ │ -000332c0: 2030 2061 3220 7c20 2020 2020 2020 2020 0 a2 | │ │ │ │ -000332d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000332e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000332f0: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00033300: 3020 2020 3020 2030 2030 2020 6132 2063 0 0 0 0 a2 c │ │ │ │ -00033310: 2062 2030 2020 7c20 2020 2020 2020 2020 b 0 | │ │ │ │ -00033320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033330: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00033340: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00033350: 3020 2020 3020 2030 2030 2020 3020 2061 0 0 0 0 0 a │ │ │ │ -00033360: 2030 202d 6220 7c20 2020 2020 2020 2020 0 -b | │ │ │ │ -00033370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033380: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00033390: 3020 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -000333a0: 2d62 3220 3020 2030 2030 2020 3020 2030 -b2 0 0 0 0 0 │ │ │ │ -000333b0: 2061 2063 2020 7c20 2020 2020 2020 2020 a c | │ │ │ │ -000333c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000333d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00032d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00032d40: 2020 2020 2030 2020 2030 2020 3020 2030 0 0 0 0 │ │ │ │ +00032d50: 2020 3020 2030 2020 2030 2020 3020 3020 0 0 0 0 0 │ │ │ │ +00032d60: 2030 2020 3020 3020 3020 207c 7d20 2020 0 0 0 0 |} │ │ │ │ +00032d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032d80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032d90: 2020 2020 2030 2020 2030 2020 3020 2030 0 0 0 0 │ │ │ │ +00032da0: 2020 3020 2030 2020 2030 2020 3020 3020 0 0 0 0 0 │ │ │ │ +00032db0: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00032dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032dd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032de0: 2020 2020 2030 2020 2030 2020 3020 2030 0 0 0 0 │ │ │ │ +00032df0: 2020 3020 2030 2020 2030 2020 3020 3020 0 0 0 0 0 │ │ │ │ +00032e00: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00032e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032e20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032e30: 2020 2020 2030 2020 2030 2020 3020 2030 0 0 0 0 │ │ │ │ +00032e40: 2020 3020 2030 2020 2030 2020 3020 3020 0 0 0 0 0 │ │ │ │ +00032e50: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00032e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032e70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032e80: 2020 2020 2030 2020 2030 2020 3020 2030 0 0 0 0 │ │ │ │ +00032e90: 2020 3020 2030 2020 2030 2020 3020 3020 0 0 0 0 0 │ │ │ │ +00032ea0: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00032eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032ec0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032ed0: 2020 2020 2030 2020 2030 2020 3020 2030 0 0 0 0 │ │ │ │ +00032ee0: 2020 3020 2030 2020 2030 2020 3020 3020 0 0 0 0 0 │ │ │ │ +00032ef0: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00032f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032f10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032f20: 2020 2020 2030 2020 2030 2020 3020 2030 0 0 0 0 │ │ │ │ +00032f30: 2020 3020 2030 2020 2030 2020 3020 3020 0 0 0 0 0 │ │ │ │ +00032f40: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00032f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032f60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032f70: 2020 2020 2030 2020 2030 2020 3020 2030 0 0 0 0 │ │ │ │ +00032f80: 2020 3020 2030 2020 2030 2020 3020 3020 0 0 0 0 0 │ │ │ │ +00032f90: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00032fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032fb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032fc0: 2020 2020 2030 2020 2030 2020 3020 2030 0 0 0 0 │ │ │ │ +00032fd0: 2020 3020 2030 2020 2030 2020 3020 3020 0 0 0 0 0 │ │ │ │ +00032fe0: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00032ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033000: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033010: 2020 2020 2030 2020 2030 2020 3020 2030 0 0 0 0 │ │ │ │ +00033020: 2020 3020 2030 2020 2030 2020 3020 3020 0 0 0 0 0 │ │ │ │ +00033030: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00033040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033050: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033060: 2020 2020 2030 2020 2062 3220 3020 2030 0 b2 0 0 │ │ │ │ +00033070: 2020 3020 2030 2020 2030 2020 3020 6132 0 0 0 0 a2 │ │ │ │ +00033080: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00033090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000330a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000330b0: 2020 2020 2030 2020 2030 2020 3020 2030 0 0 0 0 │ │ │ │ +000330c0: 2020 3020 2061 3220 2063 2020 6220 3020 0 a2 c b 0 │ │ │ │ +000330d0: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +000330e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000330f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033100: 2020 2020 2030 2020 2030 2020 3020 2030 0 0 0 0 │ │ │ │ +00033110: 2020 3020 2030 2020 2061 2020 3020 2d62 0 0 a 0 -b │ │ │ │ +00033120: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00033130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033140: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033150: 2020 2020 202d 6232 2030 2020 3020 2030 -b2 0 0 0 │ │ │ │ +00033160: 2020 3020 2030 2020 2030 2020 6120 6320 0 0 0 a c │ │ │ │ +00033170: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00033180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033190: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000331a0: 2020 2020 2030 2020 202d 6120 3020 2062 0 -a 0 b │ │ │ │ +000331b0: 2020 3020 2030 2020 2030 2020 3020 3020 0 0 0 0 0 │ │ │ │ +000331c0: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +000331d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000331e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000331f0: 2020 2020 2030 2020 2030 2020 2d61 202d 0 0 -a - │ │ │ │ +00033200: 6320 6232 2030 2020 2030 2020 3020 3020 c b2 0 0 0 0 │ │ │ │ +00033210: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00033220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033230: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033240: 2020 2020 2061 3220 2063 2020 6220 2030 a2 c b 0 │ │ │ │ +00033250: 2020 3020 2030 2020 2030 2020 3020 3020 0 0 0 0 0 │ │ │ │ +00033260: 2030 2020 3020 3020 3020 207c 2020 2020 0 0 0 0 | │ │ │ │ +00033270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033280: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033290: 2020 2020 2030 2020 2030 2020 3020 2030 0 0 0 0 │ │ │ │ +000332a0: 2020 3020 2030 2020 2062 3220 3020 3020 0 0 b2 0 0 │ │ │ │ +000332b0: 2030 2020 3020 3020 6132 207c 2020 2020 0 0 0 a2 | │ │ │ │ +000332c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000332d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000332e0: 2020 2020 2030 2020 2030 2020 3020 2030 0 0 0 0 │ │ │ │ +000332f0: 2020 3020 2030 2020 2030 2020 3020 3020 0 0 0 0 0 │ │ │ │ +00033300: 2061 3220 6320 6220 3020 207c 2020 2020 a2 c b 0 | │ │ │ │ +00033310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033320: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033330: 2020 2020 2030 2020 2030 2020 3020 2030 0 0 0 0 │ │ │ │ +00033340: 2020 3020 2030 2020 2030 2020 3020 3020 0 0 0 0 0 │ │ │ │ +00033350: 2030 2020 6120 3020 2d62 207c 2020 2020 0 a 0 -b | │ │ │ │ +00033360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033370: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033380: 2020 2020 2030 2020 2030 2020 3020 2030 0 0 0 0 │ │ │ │ +00033390: 2020 3020 202d 6232 2030 2020 3020 3020 0 -b2 0 0 0 │ │ │ │ +000333a0: 2030 2020 3020 6120 6320 207c 2020 2020 0 0 a c | │ │ │ │ +000333b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000333c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000333d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000333e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000333f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033420: 2020 2020 2020 2020 7c0a 7c6f 3920 3a20 |.|o9 : │ │ │ │ -00033430: 4c69 7374 2020 2020 2020 2020 2020 2020 List │ │ │ │ +00033410: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033420: 6f39 203a 204c 6973 7420 2020 2020 2020 o9 : List │ │ │ │ +00033430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033470: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00033460: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00033470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000334a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000334b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000334c0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3130 203a --------+.|i10 : │ │ │ │ -000334d0: 2061 7070 6c79 2835 2c20 6a2d 3e20 7072 apply(5, j-> pr │ │ │ │ -000334e0: 756e 6520 4848 5f6a 2043 203d 3d20 3029 une HH_j C == 0) │ │ │ │ +000334b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000334c0: 6931 3020 3a20 6170 706c 7928 352c 206a i10 : apply(5, j │ │ │ │ +000334d0: 2d3e 2070 7275 6e65 2048 485f 6a20 4320 -> prune HH_j C │ │ │ │ +000334e0: 3d3d 2030 2920 2020 2020 2020 2020 2020 == 0) │ │ │ │ 000334f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033510: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00033500: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033560: 2020 2020 2020 2020 7c0a 7c6f 3130 203d |.|o10 = │ │ │ │ -00033570: 207b 7472 7565 2c20 7472 7565 2c20 7472 {true, true, tr │ │ │ │ -00033580: 7565 2c20 7472 7565 2c20 7472 7565 7d20 ue, true, true} │ │ │ │ +00033550: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033560: 6f31 3020 3d20 7b74 7275 652c 2074 7275 o10 = {true, tru │ │ │ │ +00033570: 652c 2074 7275 652c 2074 7275 652c 2074 e, true, true, t │ │ │ │ +00033580: 7275 657d 2020 2020 2020 2020 2020 2020 rue} │ │ │ │ 00033590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000335a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000335b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000335a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000335b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000335c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000335d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000335e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000335f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033600: 2020 2020 2020 2020 7c0a 7c6f 3130 203a |.|o10 : │ │ │ │ -00033610: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ +000335f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033600: 6f31 3020 3a20 4c69 7374 2020 2020 2020 o10 : List │ │ │ │ +00033610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033650: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00033640: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00033650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000336a0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a41 6e64 206f --------+..And o │ │ │ │ -000336b0: 6e65 2063 6f6d 7075 7469 6e67 2074 6865 ne computing the │ │ │ │ -000336c0: 2077 686f 6c65 2066 696e 6974 6520 7265 whole finite re │ │ │ │ -000336d0: 736f 6c75 7469 6f6e 3a0a 0a2b 2d2d 2d2d solution:..+---- │ │ │ │ +00033690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +000336a0: 416e 6420 6f6e 6520 636f 6d70 7574 696e And one computin │ │ │ │ +000336b0: 6720 7468 6520 7768 6f6c 6520 6669 6e69 g the whole fini │ │ │ │ +000336c0: 7465 2072 6573 6f6c 7574 696f 6e3a 0a0a te resolution:.. │ │ │ │ +000336d0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000336e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000336f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033720: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 203a --------+.|i11 : │ │ │ │ -00033730: 204d 5320 3d20 7075 7368 466f 7277 6172 MS = pushForwar │ │ │ │ -00033740: 6428 6d61 7028 522c 5329 2c20 4d29 3b20 d(map(R,S), M); │ │ │ │ +00033710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00033720: 6931 3120 3a20 4d53 203d 2070 7573 6846 i11 : MS = pushF │ │ │ │ +00033730: 6f72 7761 7264 286d 6170 2852 2c53 292c orward(map(R,S), │ │ │ │ +00033740: 204d 293b 2020 2020 2020 2020 2020 2020 M); │ │ │ │ 00033750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033770: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00033760: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00033770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000337a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000337b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000337c0: 2d2d 2d2d 2d2d 2b0a 7c69 3132 203a 2028 ------+.|i12 : ( │ │ │ │ -000337d0: 4747 2c20 6175 6729 203d 206c 6179 6572 GG, aug) = layer │ │ │ │ -000337e0: 6564 5265 736f 6c75 7469 6f6e 2866 662c edResolution(ff, │ │ │ │ -000337f0: 4d53 2920 2020 2020 2020 2020 2020 2020 MS) │ │ │ │ -00033800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033810: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000337b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +000337c0: 3220 3a20 2847 472c 2061 7567 2920 3d20 2 : (GG, aug) = │ │ │ │ +000337d0: 6c61 7965 7265 6452 6573 6f6c 7574 696f layeredResolutio │ │ │ │ +000337e0: 6e28 6666 2c4d 5329 2020 2020 2020 2020 n(ff,MS) │ │ │ │ +000337f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033800: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00033810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033860: 2020 2020 7c0a 7c20 2020 2020 2020 2036 |.| 6 │ │ │ │ -00033870: 2020 2020 2020 3133 2020 2020 2020 3130 13 10 │ │ │ │ -00033880: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ +00033850: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00033860: 2020 2020 3620 2020 2020 2031 3320 2020 6 13 │ │ │ │ +00033870: 2020 2031 3020 2020 2020 2033 2020 2020 10 3 │ │ │ │ +00033880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000338a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000338b0: 2020 207c 0a7c 6f31 3220 3d20 2853 2020 |.|o12 = (S │ │ │ │ -000338c0: 3c2d 2d20 5320 2020 3c2d 2d20 5320 2020 <-- S <-- S │ │ │ │ -000338d0: 3c2d 2d20 5320 2c20 7b32 7d20 7c20 3020 <-- S , {2} | 0 │ │ │ │ -000338e0: 3020 2030 2020 3120 3020 3020 7c29 2020 0 0 1 0 0 |) │ │ │ │ -000338f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033900: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00033910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033920: 2020 2020 2020 207b 327d 207c 2030 202d {2} | 0 - │ │ │ │ -00033930: 3120 3020 2030 2030 2030 207c 2020 2020 1 0 0 0 0 | │ │ │ │ -00033940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033950: 207c 0a7c 2020 2020 2020 2030 2020 2020 |.| 0 │ │ │ │ -00033960: 2020 3120 2020 2020 2020 3220 2020 2020 1 2 │ │ │ │ -00033970: 2020 3320 2020 7b32 7d20 7c20 3020 3020 3 {2} | 0 0 │ │ │ │ -00033980: 202d 3120 3020 3020 3020 7c20 2020 2020 -1 0 0 0 | │ │ │ │ -00033990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000339a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000339b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000339c0: 2020 2020 207b 337d 207c 2030 2030 2020 {3} | 0 0 │ │ │ │ -000339d0: 3020 2030 2030 2031 207c 2020 2020 2020 0 0 0 1 | │ │ │ │ -000339e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000339f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00033a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033a10: 2020 2020 7b33 7d20 7c20 3020 3020 2030 {3} | 0 0 0 │ │ │ │ -00033a20: 2020 3020 3120 3020 7c20 2020 2020 2020 0 1 0 | │ │ │ │ -00033a30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00033a40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00033a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033a60: 2020 207b 337d 207c 2031 2030 2020 3020 {3} | 1 0 0 │ │ │ │ -00033a70: 2030 2030 2030 207c 2020 2020 2020 2020 0 0 0 | │ │ │ │ -00033a80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000338a0: 2020 2020 2020 2020 7c0a 7c6f 3132 203d |.|o12 = │ │ │ │ +000338b0: 2028 5320 203c 2d2d 2053 2020 203c 2d2d (S <-- S <-- │ │ │ │ +000338c0: 2053 2020 203c 2d2d 2053 202c 207b 327d S <-- S , {2} │ │ │ │ +000338d0: 207c 2030 2030 2020 3020 2031 2030 2030 | 0 0 0 1 0 0 │ │ │ │ +000338e0: 207c 2920 2020 2020 2020 2020 2020 2020 |) │ │ │ │ +000338f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00033900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033910: 2020 2020 2020 2020 2020 2020 7b32 7d20 {2} │ │ │ │ +00033920: 7c20 3020 2d31 2030 2020 3020 3020 3020 | 0 -1 0 0 0 0 │ │ │ │ +00033930: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00033940: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00033950: 3020 2020 2020 2031 2020 2020 2020 2032 0 1 2 │ │ │ │ +00033960: 2020 2020 2020 2033 2020 207b 327d 207c 3 {2} | │ │ │ │ +00033970: 2030 2030 2020 2d31 2030 2030 2030 207c 0 0 -1 0 0 0 | │ │ │ │ +00033980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033990: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000339a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000339b0: 2020 2020 2020 2020 2020 7b33 7d20 7c20 {3} | │ │ │ │ +000339c0: 3020 3020 2030 2020 3020 3020 3120 7c20 0 0 0 0 0 1 | │ │ │ │ +000339d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000339e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000339f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033a00: 2020 2020 2020 2020 207b 337d 207c 2030 {3} | 0 │ │ │ │ +00033a10: 2030 2020 3020 2030 2031 2030 207c 2020 0 0 0 1 0 | │ │ │ │ +00033a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033a30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00033a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033a50: 2020 2020 2020 2020 7b33 7d20 7c20 3120 {3} | 1 │ │ │ │ +00033a60: 3020 2030 2020 3020 3020 3020 7c20 2020 0 0 0 0 0 | │ │ │ │ +00033a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033a80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00033a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033ad0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00033ae0: 3132 203a 2053 6571 7565 6e63 6520 2020 12 : Sequence │ │ │ │ +00033ad0: 207c 0a7c 6f31 3220 3a20 5365 7175 656e |.|o12 : Sequen │ │ │ │ +00033ae0: 6365 2020 2020 2020 2020 2020 2020 2020 ce │ │ │ │ 00033af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033b20: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00033b20: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00033b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3133 ----------+.|i13 │ │ │ │ -00033b80: 203a 2028 4747 2c20 6175 6729 203d 206c : (GG, aug) = l │ │ │ │ -00033b90: 6179 6572 6564 5265 736f 6c75 7469 6f6e ayeredResolution │ │ │ │ -00033ba0: 2866 662c 4d53 2c20 5665 7262 6f73 6520 (ff,MS, Verbose │ │ │ │ -00033bb0: 3d3e 7472 7565 2920 2020 2020 2020 2020 =>true) │ │ │ │ -00033bc0: 2020 2020 2020 2020 207c 0a7c 7b33 2c20 |.|{3, │ │ │ │ -00033bd0: 317d 2069 6e20 636f 6469 6d65 6e73 696f 1} in codimensio │ │ │ │ -00033be0: 6e20 3320 2020 2020 2020 2020 2020 2020 n 3 │ │ │ │ +00033b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00033b70: 0a7c 6931 3320 3a20 2847 472c 2061 7567 .|i13 : (GG, aug │ │ │ │ +00033b80: 2920 3d20 6c61 7965 7265 6452 6573 6f6c ) = layeredResol │ │ │ │ +00033b90: 7574 696f 6e28 6666 2c4d 532c 2056 6572 ution(ff,MS, Ver │ │ │ │ +00033ba0: 626f 7365 203d 3e74 7275 6529 2020 2020 bose =>true) │ │ │ │ +00033bb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00033bc0: 7c7b 332c 2031 7d20 696e 2063 6f64 696d |{3, 1} in codim │ │ │ │ +00033bd0: 656e 7369 6f6e 2033 2020 2020 2020 2020 ension 3 │ │ │ │ +00033be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033c10: 2020 2020 2020 2020 7c0a 7c7b 332c 2031 |.|{3, 1 │ │ │ │ -00033c20: 7d20 696e 2063 6f64 696d 656e 7369 6f6e } in codimension │ │ │ │ -00033c30: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00033c00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00033c10: 7b33 2c20 317d 2069 6e20 636f 6469 6d65 {3, 1} in codime │ │ │ │ +00033c20: 6e73 696f 6e20 3220 2020 2020 2020 2020 nsion 2 │ │ │ │ +00033c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033c60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00033c50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00033c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033cb0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00033cc0: 2036 2020 2020 2020 3133 2020 2020 2020 6 13 │ │ │ │ -00033cd0: 3130 2020 2020 2020 3320 2020 2020 2020 10 3 │ │ │ │ +00033ca0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00033cb0: 2020 2020 2020 3620 2020 2020 2031 3320 6 13 │ │ │ │ +00033cc0: 2020 2020 2031 3020 2020 2020 2033 2020 10 3 │ │ │ │ +00033cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033d00: 2020 2020 207c 0a7c 6f31 3320 3d20 2853 |.|o13 = (S │ │ │ │ -00033d10: 2020 3c2d 2d20 5320 2020 3c2d 2d20 5320 <-- S <-- S │ │ │ │ -00033d20: 2020 3c2d 2d20 5320 2c20 7b32 7d20 7c20 <-- S , {2} | │ │ │ │ -00033d30: 3020 3020 2030 2020 3120 3020 3020 7c29 0 0 0 1 0 0 |) │ │ │ │ -00033d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033d50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00033d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033d70: 2020 2020 2020 2020 207b 327d 207c 2030 {2} | 0 │ │ │ │ -00033d80: 202d 3120 3020 2030 2030 2030 207c 2020 -1 0 0 0 0 | │ │ │ │ -00033d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033da0: 2020 207c 0a7c 2020 2020 2020 2030 2020 |.| 0 │ │ │ │ -00033db0: 2020 2020 3120 2020 2020 2020 3220 2020 1 2 │ │ │ │ -00033dc0: 2020 2020 3320 2020 7b32 7d20 7c20 3020 3 {2} | 0 │ │ │ │ -00033dd0: 3020 202d 3120 3020 3020 3020 7c20 2020 0 -1 0 0 0 | │ │ │ │ -00033de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033df0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00033e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033e10: 2020 2020 2020 207b 337d 207c 2030 2030 {3} | 0 0 │ │ │ │ -00033e20: 2020 3020 2030 2030 2031 207c 2020 2020 0 0 0 1 | │ │ │ │ -00033e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033e40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00033e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033e60: 2020 2020 2020 7b33 7d20 7c20 3020 3020 {3} | 0 0 │ │ │ │ -00033e70: 2030 2020 3020 3120 3020 7c20 2020 2020 0 0 1 0 | │ │ │ │ -00033e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033e90: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00033ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033eb0: 2020 2020 207b 337d 207c 2031 2030 2020 {3} | 1 0 │ │ │ │ -00033ec0: 3020 2030 2030 2030 207c 2020 2020 2020 0 0 0 0 | │ │ │ │ -00033ed0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00033ee0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00033cf0: 2020 2020 2020 2020 2020 7c0a 7c6f 3133 |.|o13 │ │ │ │ +00033d00: 203d 2028 5320 203c 2d2d 2053 2020 203c = (S <-- S < │ │ │ │ +00033d10: 2d2d 2053 2020 203c 2d2d 2053 202c 207b -- S <-- S , { │ │ │ │ +00033d20: 327d 207c 2030 2030 2020 3020 2031 2030 2} | 0 0 0 1 0 │ │ │ │ +00033d30: 2030 207c 2920 2020 2020 2020 2020 2020 0 |) │ │ │ │ +00033d40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00033d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033d60: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ +00033d70: 7d20 7c20 3020 2d31 2030 2020 3020 3020 } | 0 -1 0 0 0 │ │ │ │ +00033d80: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +00033d90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00033da0: 2020 3020 2020 2020 2031 2020 2020 2020 0 1 │ │ │ │ +00033db0: 2032 2020 2020 2020 2033 2020 207b 327d 2 3 {2} │ │ │ │ +00033dc0: 207c 2030 2030 2020 2d31 2030 2030 2030 | 0 0 -1 0 0 0 │ │ │ │ +00033dd0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00033de0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00033df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033e00: 2020 2020 2020 2020 2020 2020 7b33 7d20 {3} │ │ │ │ +00033e10: 7c20 3020 3020 2030 2020 3020 3020 3120 | 0 0 0 0 0 1 │ │ │ │ +00033e20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00033e30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00033e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033e50: 2020 2020 2020 2020 2020 207b 337d 207c {3} | │ │ │ │ +00033e60: 2030 2030 2020 3020 2030 2031 2030 207c 0 0 0 0 1 0 | │ │ │ │ +00033e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033e80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00033e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033ea0: 2020 2020 2020 2020 2020 7b33 7d20 7c20 {3} | │ │ │ │ +00033eb0: 3120 3020 2030 2020 3020 3020 3020 7c20 1 0 0 0 0 0 | │ │ │ │ +00033ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033ed0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00033ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033f20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00033f30: 7c6f 3133 203a 2053 6571 7565 6e63 6520 |o13 : Sequence │ │ │ │ +00033f20: 2020 207c 0a7c 6f31 3320 3a20 5365 7175 |.|o13 : Sequ │ │ │ │ +00033f30: 656e 6365 2020 2020 2020 2020 2020 2020 ence │ │ │ │ 00033f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033f70: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00033f70: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00033f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00033fd0: 3134 203a 2062 6574 7469 2047 4720 2020 14 : betti GG │ │ │ │ +00033fc0: 2d2b 0a7c 6931 3420 3a20 6265 7474 6920 -+.|i14 : betti │ │ │ │ +00033fd0: 4747 2020 2020 2020 2020 2020 2020 2020 GG │ │ │ │ 00033fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034010: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00034010: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00034020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034060: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00034070: 2020 2020 2020 2020 2020 3020 2031 2020 0 1 │ │ │ │ -00034080: 3220 3320 2020 2020 2020 2020 2020 2020 2 3 │ │ │ │ +00034050: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00034060: 0a7c 2020 2020 2020 2020 2020 2020 2030 .| 0 │ │ │ │ +00034070: 2020 3120 2032 2033 2020 2020 2020 2020 1 2 3 │ │ │ │ +00034080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000340a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000340b0: 2020 2020 2020 2020 207c 0a7c 6f31 3420 |.|o14 │ │ │ │ -000340c0: 3d20 746f 7461 6c3a 2036 2031 3320 3130 = total: 6 13 10 │ │ │ │ -000340d0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +000340a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000340b0: 7c6f 3134 203d 2074 6f74 616c 3a20 3620 |o14 = total: 6 │ │ │ │ +000340c0: 3133 2031 3020 3320 2020 2020 2020 2020 13 10 3 │ │ │ │ +000340d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000340e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000340f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034100: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00034110: 2020 2020 2032 3a20 3320 2031 2020 2e20 2: 3 1 . │ │ │ │ -00034120: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +000340f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034100: 2020 2020 2020 2020 2020 323a 2033 2020 2: 3 │ │ │ │ +00034110: 3120 202e 202e 2020 2020 2020 2020 2020 1 . . │ │ │ │ +00034120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034150: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00034160: 2020 2020 333a 2033 2020 3920 202e 202e 3: 3 9 . . │ │ │ │ +00034140: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00034150: 2020 2020 2020 2020 2033 3a20 3320 2039 3: 3 9 │ │ │ │ +00034160: 2020 2e20 2e20 2020 2020 2020 2020 2020 . . │ │ │ │ 00034170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000341a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000341b0: 2020 2034 3a20 2e20 202e 2020 2e20 2e20 4: . . . . │ │ │ │ +00034190: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000341a0: 2020 2020 2020 2020 343a 202e 2020 2e20 4: . . │ │ │ │ +000341b0: 202e 202e 2020 2020 2020 2020 2020 2020 . . │ │ │ │ 000341c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000341d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000341e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000341f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00034200: 2020 353a 202e 2020 3320 2039 202e 2020 5: . 3 9 . │ │ │ │ +000341e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000341f0: 2020 2020 2020 2035 3a20 2e20 2033 2020 5: . 3 │ │ │ │ +00034200: 3920 2e20 2020 2020 2020 2020 2020 2020 9 . │ │ │ │ 00034210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034240: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00034250: 2036 3a20 2e20 202e 2020 2e20 2e20 2020 6: . . . . │ │ │ │ +00034230: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00034240: 2020 2020 2020 363a 202e 2020 2e20 202e 6: . . . │ │ │ │ +00034250: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ 00034260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034290: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000342a0: 373a 202e 2020 2e20 2031 2033 2020 2020 7: . . 1 3 │ │ │ │ +00034280: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00034290: 2020 2020 2037 3a20 2e20 202e 2020 3120 7: . . 1 │ │ │ │ +000342a0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 000342b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000342c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000342d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000342e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000342d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000342e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000342f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034330: 207c 0a7c 6f31 3420 3a20 4265 7474 6954 |.|o14 : BettiT │ │ │ │ -00034340: 616c 6c79 2020 2020 2020 2020 2020 2020 ally │ │ │ │ +00034320: 2020 2020 2020 7c0a 7c6f 3134 203a 2042 |.|o14 : B │ │ │ │ +00034330: 6574 7469 5461 6c6c 7920 2020 2020 2020 ettiTally │ │ │ │ +00034340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034380: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00034370: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00034380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000343a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000343b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000343c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000343d0: 0a7c 6931 3520 3a20 6265 7474 6920 7265 .|i15 : betti re │ │ │ │ -000343e0: 7320 4d53 2020 2020 2020 2020 2020 2020 s MS │ │ │ │ +000343c0: 2d2d 2d2d 2b0a 7c69 3135 203a 2062 6574 ----+.|i15 : bet │ │ │ │ +000343d0: 7469 2072 6573 204d 5320 2020 2020 2020 ti res MS │ │ │ │ +000343e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000343f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034410: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00034420: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00034410: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00034420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034460: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00034470: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -00034480: 3120 2032 2033 2020 2020 2020 2020 2020 1 2 3 │ │ │ │ +00034460: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00034470: 2020 3020 2031 2020 3220 3320 2020 2020 0 1 2 3 │ │ │ │ +00034480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000344a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000344b0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000344c0: 3135 203d 2074 6f74 616c 3a20 3620 3133 15 = total: 6 13 │ │ │ │ -000344d0: 2031 3020 3320 2020 2020 2020 2020 2020 10 3 │ │ │ │ +000344b0: 207c 0a7c 6f31 3520 3d20 746f 7461 6c3a |.|o15 = total: │ │ │ │ +000344c0: 2036 2031 3320 3130 2033 2020 2020 2020 6 13 10 3 │ │ │ │ +000344d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000344e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000344f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034500: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00034510: 2020 2020 2020 2020 323a 2033 2020 3120 2: 3 1 │ │ │ │ -00034520: 202e 202e 2020 2020 2020 2020 2020 2020 . . │ │ │ │ +00034500: 7c0a 7c20 2020 2020 2020 2020 2032 3a20 |.| 2: │ │ │ │ +00034510: 3320 2031 2020 2e20 2e20 2020 2020 2020 3 1 . . │ │ │ │ +00034520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034550: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00034560: 2020 2020 2020 2033 3a20 3320 2039 2020 3: 3 9 │ │ │ │ -00034570: 2e20 2e20 2020 2020 2020 2020 2020 2020 . . │ │ │ │ +00034540: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00034550: 0a7c 2020 2020 2020 2020 2020 333a 2033 .| 3: 3 │ │ │ │ +00034560: 2020 3920 202e 202e 2020 2020 2020 2020 9 . . │ │ │ │ +00034570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000345a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000345b0: 2020 2020 2020 343a 202e 2020 2e20 202e 4: . . . │ │ │ │ -000345c0: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +00034590: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000345a0: 7c20 2020 2020 2020 2020 2034 3a20 2e20 | 4: . │ │ │ │ +000345b0: 202e 2020 2e20 2e20 2020 2020 2020 2020 . . . │ │ │ │ +000345c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000345d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000345e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000345f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00034600: 2020 2020 2035 3a20 2e20 2033 2020 3920 5: . 3 9 │ │ │ │ -00034610: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +000345e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000345f0: 2020 2020 2020 2020 2020 353a 202e 2020 5: . │ │ │ │ +00034600: 3320 2039 202e 2020 2020 2020 2020 2020 3 9 . │ │ │ │ +00034610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034640: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00034650: 2020 2020 363a 202e 2020 2e20 202e 202e 6: . . . . │ │ │ │ +00034630: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00034640: 2020 2020 2020 2020 2036 3a20 2e20 202e 6: . . │ │ │ │ +00034650: 2020 2e20 2e20 2020 2020 2020 2020 2020 . . │ │ │ │ 00034660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034690: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000346a0: 2020 2037 3a20 2e20 202e 2020 3120 3320 7: . . 1 3 │ │ │ │ +00034680: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00034690: 2020 2020 2020 2020 373a 202e 2020 2e20 7: . . │ │ │ │ +000346a0: 2031 2033 2020 2020 2020 2020 2020 2020 1 3 │ │ │ │ 000346b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000346c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000346d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000346e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000346d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000346e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000346f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034730: 2020 2020 7c0a 7c6f 3135 203a 2042 6574 |.|o15 : Bet │ │ │ │ -00034740: 7469 5461 6c6c 7920 2020 2020 2020 2020 tiTally │ │ │ │ +00034720: 2020 2020 2020 2020 207c 0a7c 6f31 3520 |.|o15 │ │ │ │ +00034730: 3a20 4265 7474 6954 616c 6c79 2020 2020 : BettiTally │ │ │ │ +00034740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034780: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00034770: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00034780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000347a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000347b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000347c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000347d0: 2d2d 2b0a 7c69 3136 203a 2043 203d 2063 --+.|i16 : C = c │ │ │ │ -000347e0: 6861 696e 436f 6d70 6c65 7820 666c 6174 hainComplex flat │ │ │ │ -000347f0: 7465 6e20 7b7b 6175 677d 207c 6170 706c ten {{aug} |appl │ │ │ │ -00034800: 7928 6c65 6e67 7468 2047 4720 2d31 2c20 y(length GG -1, │ │ │ │ -00034810: 692d 3e20 4747 2e64 645f 2869 2b31 2929 i-> GG.dd_(i+1)) │ │ │ │ -00034820: 7d7c 0a7c 2020 2020 2020 2020 2020 2020 }|.| │ │ │ │ +000347c0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3620 3a20 -------+.|i16 : │ │ │ │ +000347d0: 4320 3d20 6368 6169 6e43 6f6d 706c 6578 C = chainComplex │ │ │ │ +000347e0: 2066 6c61 7474 656e 207b 7b61 7567 7d20 flatten {{aug} │ │ │ │ +000347f0: 7c61 7070 6c79 286c 656e 6774 6820 4747 |apply(length GG │ │ │ │ +00034800: 202d 312c 2069 2d3e 2047 472e 6464 5f28 -1, i-> GG.dd_( │ │ │ │ +00034810: 692b 3129 297d 7c0a 7c20 2020 2020 2020 i+1))}|.| │ │ │ │ +00034820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034870: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00034880: 2036 2020 2020 2020 3133 2020 2020 2020 6 13 │ │ │ │ -00034890: 3130 2020 2020 2020 2020 2020 2020 2020 10 │ │ │ │ +00034860: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00034870: 2020 2020 2020 3620 2020 2020 2031 3320 6 13 │ │ │ │ +00034880: 2020 2020 2031 3020 2020 2020 2020 2020 10 │ │ │ │ +00034890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000348a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000348b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000348c0: 0a7c 6f31 3620 3d20 4d53 203c 2d2d 2053 .|o16 = MS <-- S │ │ │ │ -000348d0: 2020 3c2d 2d20 5320 2020 3c2d 2d20 5320 <-- S <-- S │ │ │ │ +000348b0: 2020 2020 7c0a 7c6f 3136 203d 204d 5320 |.|o16 = MS │ │ │ │ +000348c0: 3c2d 2d20 5320 203c 2d2d 2053 2020 203c <-- S <-- S < │ │ │ │ +000348d0: 2d2d 2053 2020 2020 2020 2020 2020 2020 -- S │ │ │ │ 000348e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000348f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034900: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00034910: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00034900: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00034910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034950: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00034960: 2020 2020 2020 3020 2020 2020 2031 2020 0 1 │ │ │ │ -00034970: 2020 2020 3220 2020 2020 2020 3320 2020 2 3 │ │ │ │ +00034950: 2020 7c0a 7c20 2020 2020 2030 2020 2020 |.| 0 │ │ │ │ +00034960: 2020 3120 2020 2020 2032 2020 2020 2020 1 2 │ │ │ │ +00034970: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 00034980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000349a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000349a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000349b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000349c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000349d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000349e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000349f0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -00034a00: 3620 3a20 4368 6169 6e43 6f6d 706c 6578 6 : ChainComplex │ │ │ │ +000349f0: 7c0a 7c6f 3136 203a 2043 6861 696e 436f |.|o16 : ChainCo │ │ │ │ +00034a00: 6d70 6c65 7820 2020 2020 2020 2020 2020 mplex │ │ │ │ 00034a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034a40: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00034a30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00034a40: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00034a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034a90: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3720 ---------+.|i17 │ │ │ │ -00034aa0: 3a20 6170 706c 7928 6c65 6e67 7468 2047 : apply(length G │ │ │ │ -00034ab0: 4720 2b31 202c 206a 2d3e 2070 7275 6e65 G +1 , j-> prune │ │ │ │ -00034ac0: 2048 485f 6a20 4320 3d3d 2030 2920 2020 HH_j C == 0) │ │ │ │ -00034ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034ae0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00034a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00034a90: 7c69 3137 203a 2061 7070 6c79 286c 656e |i17 : apply(len │ │ │ │ +00034aa0: 6774 6820 4747 202b 3120 2c20 6a2d 3e20 gth GG +1 , j-> │ │ │ │ +00034ab0: 7072 756e 6520 4848 5f6a 2043 203d 3d20 prune HH_j C == │ │ │ │ +00034ac0: 3029 2020 2020 2020 2020 2020 2020 2020 0) │ │ │ │ +00034ad0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034b30: 2020 2020 2020 207c 0a7c 6f31 3720 3d20 |.|o17 = │ │ │ │ -00034b40: 7b74 7275 652c 2074 7275 652c 2074 7275 {true, true, tru │ │ │ │ -00034b50: 652c 2066 616c 7365 7d20 2020 2020 2020 e, false} │ │ │ │ +00034b20: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00034b30: 3137 203d 207b 7472 7565 2c20 7472 7565 17 = {true, true │ │ │ │ +00034b40: 2c20 7472 7565 2c20 6661 6c73 657d 2020 , true, false} │ │ │ │ +00034b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034b80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00034b70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00034b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034bd0: 2020 2020 207c 0a7c 6f31 3720 3a20 4c69 |.|o17 : Li │ │ │ │ -00034be0: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ +00034bc0: 2020 2020 2020 2020 2020 7c0a 7c6f 3137 |.|o17 │ │ │ │ +00034bd0: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ +00034be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034c20: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00034c10: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00034c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034c70: 2d2d 2d2b 0a0a 5761 7973 2074 6f20 7573 ---+..Ways to us │ │ │ │ -00034c80: 6520 6c61 7965 7265 6452 6573 6f6c 7574 e layeredResolut │ │ │ │ -00034c90: 696f 6e3a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d ion:.=========== │ │ │ │ -00034ca0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00034cb0: 3d3d 3d0a 0a20 202a 2022 6c61 7965 7265 ===.. * "layere │ │ │ │ -00034cc0: 6452 6573 6f6c 7574 696f 6e28 4d61 7472 dResolution(Matr │ │ │ │ -00034cd0: 6978 2c4d 6f64 756c 6529 220a 2020 2a20 ix,Module)". * │ │ │ │ -00034ce0: 226c 6179 6572 6564 5265 736f 6c75 7469 "layeredResoluti │ │ │ │ -00034cf0: 6f6e 284d 6174 7269 782c 4d6f 6475 6c65 on(Matrix,Module │ │ │ │ -00034d00: 2c5a 5a29 220a 0a46 6f72 2074 6865 2070 ,ZZ)"..For the p │ │ │ │ -00034d10: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -00034d20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -00034d30: 6520 6f62 6a65 6374 202a 6e6f 7465 206c e object *note l │ │ │ │ -00034d40: 6179 6572 6564 5265 736f 6c75 7469 6f6e ayeredResolution │ │ │ │ -00034d50: 3a20 6c61 7965 7265 6452 6573 6f6c 7574 : layeredResolut │ │ │ │ -00034d60: 696f 6e2c 2069 7320 6120 2a6e 6f74 6520 ion, is a *note │ │ │ │ -00034d70: 6d65 7468 6f64 0a66 756e 6374 696f 6e20 method.function │ │ │ │ -00034d80: 7769 7468 206f 7074 696f 6e73 3a20 284d with options: (M │ │ │ │ -00034d90: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ -00034da0: 6f64 4675 6e63 7469 6f6e 5769 7468 4f70 odFunctionWithOp │ │ │ │ -00034db0: 7469 6f6e 732c 2e0a 1f0a 4669 6c65 3a20 tions,....File: │ │ │ │ -00034dc0: 436f 6d70 6c65 7465 496e 7465 7273 6563 CompleteIntersec │ │ │ │ -00034dd0: 7469 6f6e 5265 736f 6c75 7469 6f6e 732e tionResolutions. │ │ │ │ -00034de0: 696e 666f 2c20 4e6f 6465 3a20 4c69 6674 info, Node: Lift │ │ │ │ -00034df0: 2c20 4e65 7874 3a20 6d61 6b65 4669 6e69 , Next: makeFini │ │ │ │ -00034e00: 7465 5265 736f 6c75 7469 6f6e 2c20 5072 teResolution, Pr │ │ │ │ -00034e10: 6576 3a20 6c61 7965 7265 6452 6573 6f6c ev: layeredResol │ │ │ │ -00034e20: 7574 696f 6e2c 2055 703a 2054 6f70 0a0a ution, Up: Top.. │ │ │ │ -00034e30: 4c69 6674 202d 2d20 4f70 7469 6f6e 2066 Lift -- Option f │ │ │ │ -00034e40: 6f72 206e 6577 4578 740a 2a2a 2a2a 2a2a or newExt.****** │ │ │ │ -00034e50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00034e60: 2a2a 2a0a 0a53 796e 6f70 7369 730a 3d3d ***..Synopsis.== │ │ │ │ -00034e70: 3d3d 3d3d 3d3d 0a0a 2020 2a20 5573 6167 ======.. * Usag │ │ │ │ -00034e80: 653a 200a 2020 2020 2020 2020 6e65 7745 e: . newE │ │ │ │ -00034e90: 7874 284d 2c4e 2c43 6865 636b 203d 3e74 xt(M,N,Check =>t │ │ │ │ -00034ea0: 7275 6529 0a20 202a 2049 6e70 7574 733a rue). * Inputs: │ │ │ │ -00034eb0: 0a20 2020 2020 202a 2043 6865 636b 2c20 . * Check, │ │ │ │ -00034ec0: 6120 2a6e 6f74 6520 426f 6f6c 6561 6e20 a *note Boolean │ │ │ │ -00034ed0: 7661 6c75 653a 2028 4d61 6361 756c 6179 value: (Macaulay │ │ │ │ -00034ee0: 3244 6f63 2942 6f6f 6c65 616e 2c2c 200a 2Doc)Boolean,, . │ │ │ │ -00034ef0: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ -00034f00: 3d3d 3d3d 3d3d 3d3d 0a0a 4d61 6b65 7320 ========..Makes │ │ │ │ -00034f10: 6e65 7745 7874 2070 6572 666f 726d 2076 newExt perform v │ │ │ │ -00034f20: 6172 696f 7573 2063 6865 636b 7320 6173 arious checks as │ │ │ │ -00034f30: 2069 7420 636f 6d70 7574 6573 2e0a 0a53 it computes...S │ │ │ │ -00034f40: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ -00034f50: 0a0a 2020 2a20 2a6e 6f74 6520 6e65 7745 .. * *note newE │ │ │ │ -00034f60: 7874 3a20 6e65 7745 7874 2c20 2d2d 2047 xt: newExt, -- G │ │ │ │ -00034f70: 6c6f 6261 6c20 4578 7420 666f 7220 6d6f lobal Ext for mo │ │ │ │ -00034f80: 6475 6c65 7320 6f76 6572 2061 2063 6f6d dules over a com │ │ │ │ -00034f90: 706c 6574 650a 2020 2020 496e 7465 7273 plete. Inters │ │ │ │ -00034fa0: 6563 7469 6f6e 0a0a 4675 6e63 7469 6f6e ection..Function │ │ │ │ -00034fb0: 7320 7769 7468 206f 7074 696f 6e61 6c20 s with optional │ │ │ │ -00034fc0: 6172 6775 6d65 6e74 206e 616d 6564 204c argument named L │ │ │ │ -00034fd0: 6966 743a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d ift:.=========== │ │ │ │ +00034c60: 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 6179 7320 --------+..Ways │ │ │ │ +00034c70: 746f 2075 7365 206c 6179 6572 6564 5265 to use layeredRe │ │ │ │ +00034c80: 736f 6c75 7469 6f6e 3a0a 3d3d 3d3d 3d3d solution:.====== │ │ │ │ +00034c90: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00034ca0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 226c ========.. * "l │ │ │ │ +00034cb0: 6179 6572 6564 5265 736f 6c75 7469 6f6e ayeredResolution │ │ │ │ +00034cc0: 284d 6174 7269 782c 4d6f 6475 6c65 2922 (Matrix,Module)" │ │ │ │ +00034cd0: 0a20 202a 2022 6c61 7965 7265 6452 6573 . * "layeredRes │ │ │ │ +00034ce0: 6f6c 7574 696f 6e28 4d61 7472 6978 2c4d olution(Matrix,M │ │ │ │ +00034cf0: 6f64 756c 652c 5a5a 2922 0a0a 466f 7220 odule,ZZ)"..For │ │ │ │ +00034d00: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ +00034d10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00034d20: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ +00034d30: 6f74 6520 6c61 7965 7265 6452 6573 6f6c ote layeredResol │ │ │ │ +00034d40: 7574 696f 6e3a 206c 6179 6572 6564 5265 ution: layeredRe │ │ │ │ +00034d50: 736f 6c75 7469 6f6e 2c20 6973 2061 202a solution, is a * │ │ │ │ +00034d60: 6e6f 7465 206d 6574 686f 640a 6675 6e63 note method.func │ │ │ │ +00034d70: 7469 6f6e 2077 6974 6820 6f70 7469 6f6e tion with option │ │ │ │ +00034d80: 733a 2028 4d61 6361 756c 6179 3244 6f63 s: (Macaulay2Doc │ │ │ │ +00034d90: 294d 6574 686f 6446 756e 6374 696f 6e57 )MethodFunctionW │ │ │ │ +00034da0: 6974 684f 7074 696f 6e73 2c2e 0a1f 0a46 ithOptions,....F │ │ │ │ +00034db0: 696c 653a 2043 6f6d 706c 6574 6549 6e74 ile: CompleteInt │ │ │ │ +00034dc0: 6572 7365 6374 696f 6e52 6573 6f6c 7574 ersectionResolut │ │ │ │ +00034dd0: 696f 6e73 2e69 6e66 6f2c 204e 6f64 653a ions.info, Node: │ │ │ │ +00034de0: 204c 6966 742c 204e 6578 743a 206d 616b Lift, Next: mak │ │ │ │ +00034df0: 6546 696e 6974 6552 6573 6f6c 7574 696f eFiniteResolutio │ │ │ │ +00034e00: 6e2c 2050 7265 763a 206c 6179 6572 6564 n, Prev: layered │ │ │ │ +00034e10: 5265 736f 6c75 7469 6f6e 2c20 5570 3a20 Resolution, Up: │ │ │ │ +00034e20: 546f 700a 0a4c 6966 7420 2d2d 204f 7074 Top..Lift -- Opt │ │ │ │ +00034e30: 696f 6e20 666f 7220 6e65 7745 7874 0a2a ion for newExt.* │ │ │ │ +00034e40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00034e50: 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 ********..Synops │ │ │ │ +00034e60: 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a is.========.. * │ │ │ │ +00034e70: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +00034e80: 206e 6577 4578 7428 4d2c 4e2c 4368 6563 newExt(M,N,Chec │ │ │ │ +00034e90: 6b20 3d3e 7472 7565 290a 2020 2a20 496e k =>true). * In │ │ │ │ +00034ea0: 7075 7473 3a0a 2020 2020 2020 2a20 4368 puts:. * Ch │ │ │ │ +00034eb0: 6563 6b2c 2061 202a 6e6f 7465 2042 6f6f eck, a *note Boo │ │ │ │ +00034ec0: 6c65 616e 2076 616c 7565 3a20 284d 6163 lean value: (Mac │ │ │ │ +00034ed0: 6175 6c61 7932 446f 6329 426f 6f6c 6561 aulay2Doc)Boolea │ │ │ │ +00034ee0: 6e2c 2c20 0a0a 4465 7363 7269 7074 696f n,, ..Descriptio │ │ │ │ +00034ef0: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a4d n.===========..M │ │ │ │ +00034f00: 616b 6573 206e 6577 4578 7420 7065 7266 akes newExt perf │ │ │ │ +00034f10: 6f72 6d20 7661 7269 6f75 7320 6368 6563 orm various chec │ │ │ │ +00034f20: 6b73 2061 7320 6974 2063 6f6d 7075 7465 ks as it compute │ │ │ │ +00034f30: 732e 0a0a 5365 6520 616c 736f 0a3d 3d3d s...See also.=== │ │ │ │ +00034f40: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ +00034f50: 206e 6577 4578 743a 206e 6577 4578 742c newExt: newExt, │ │ │ │ +00034f60: 202d 2d20 476c 6f62 616c 2045 7874 2066 -- Global Ext f │ │ │ │ +00034f70: 6f72 206d 6f64 756c 6573 206f 7665 7220 or modules over │ │ │ │ +00034f80: 6120 636f 6d70 6c65 7465 0a20 2020 2049 a complete. I │ │ │ │ +00034f90: 6e74 6572 7365 6374 696f 6e0a 0a46 756e ntersection..Fun │ │ │ │ +00034fa0: 6374 696f 6e73 2077 6974 6820 6f70 7469 ctions with opti │ │ │ │ +00034fb0: 6f6e 616c 2061 7267 756d 656e 7420 6e61 onal argument na │ │ │ │ +00034fc0: 6d65 6420 4c69 6674 3a0a 3d3d 3d3d 3d3d med Lift:.====== │ │ │ │ +00034fd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 00034fe0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00034ff0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00035000: 3d0a 0a20 202a 2022 6e65 7745 7874 282e =.. * "newExt(. │ │ │ │ -00035010: 2e2e 2c4c 6966 743d 3e2e 2e2e 2922 202d ..,Lift=>...)" - │ │ │ │ -00035020: 2d20 7365 6520 2a6e 6f74 6520 6e65 7745 - see *note newE │ │ │ │ -00035030: 7874 3a20 6e65 7745 7874 2c20 2d2d 2047 xt: newExt, -- G │ │ │ │ -00035040: 6c6f 6261 6c20 4578 7420 666f 720a 2020 lobal Ext for. │ │ │ │ -00035050: 2020 6d6f 6475 6c65 7320 6f76 6572 2061 modules over a │ │ │ │ -00035060: 2063 6f6d 706c 6574 6520 496e 7465 7273 complete Inters │ │ │ │ -00035070: 6563 7469 6f6e 0a0a 466f 7220 7468 6520 ection..For the │ │ │ │ -00035080: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -00035090: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -000350a0: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -000350b0: 4c69 6674 3a20 4c69 6674 2c20 6973 2061 Lift: Lift, is a │ │ │ │ -000350c0: 202a 6e6f 7465 2073 796d 626f 6c3a 2028 *note symbol: ( │ │ │ │ -000350d0: 4d61 6361 756c 6179 3244 6f63 2953 796d Macaulay2Doc)Sym │ │ │ │ -000350e0: 626f 6c2c 2e0a 1f0a 4669 6c65 3a20 436f bol,....File: Co │ │ │ │ -000350f0: 6d70 6c65 7465 496e 7465 7273 6563 7469 mpleteIntersecti │ │ │ │ -00035100: 6f6e 5265 736f 6c75 7469 6f6e 732e 696e onResolutions.in │ │ │ │ -00035110: 666f 2c20 4e6f 6465 3a20 6d61 6b65 4669 fo, Node: makeFi │ │ │ │ -00035120: 6e69 7465 5265 736f 6c75 7469 6f6e 2c20 niteResolution, │ │ │ │ -00035130: 4e65 7874 3a20 6d61 6b65 4669 6e69 7465 Next: makeFinite │ │ │ │ -00035140: 5265 736f 6c75 7469 6f6e 436f 6469 6d32 ResolutionCodim2 │ │ │ │ -00035150: 2c20 5072 6576 3a20 4c69 6674 2c20 5570 , Prev: Lift, Up │ │ │ │ -00035160: 3a20 546f 700a 0a6d 616b 6546 696e 6974 : Top..makeFinit │ │ │ │ -00035170: 6552 6573 6f6c 7574 696f 6e20 2d2d 2066 eResolution -- f │ │ │ │ -00035180: 696e 6974 6520 7265 736f 6c75 7469 6f6e inite resolution │ │ │ │ -00035190: 206f 6620 6120 6d61 7472 6978 2066 6163 of a matrix fac │ │ │ │ -000351a0: 746f 7269 7a61 7469 6f6e 206d 6f64 756c torization modul │ │ │ │ -000351b0: 6520 4d0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a e M.************ │ │ │ │ +00034ff0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 226e 6577 ======.. * "new │ │ │ │ +00035000: 4578 7428 2e2e 2e2c 4c69 6674 3d3e 2e2e Ext(...,Lift=>.. │ │ │ │ +00035010: 2e29 2220 2d2d 2073 6565 202a 6e6f 7465 .)" -- see *note │ │ │ │ +00035020: 206e 6577 4578 743a 206e 6577 4578 742c newExt: newExt, │ │ │ │ +00035030: 202d 2d20 476c 6f62 616c 2045 7874 2066 -- Global Ext f │ │ │ │ +00035040: 6f72 0a20 2020 206d 6f64 756c 6573 206f or. modules o │ │ │ │ +00035050: 7665 7220 6120 636f 6d70 6c65 7465 2049 ver a complete I │ │ │ │ +00035060: 6e74 6572 7365 6374 696f 6e0a 0a46 6f72 ntersection..For │ │ │ │ +00035070: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ +00035080: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00035090: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ +000350a0: 6e6f 7465 204c 6966 743a 204c 6966 742c note Lift: Lift, │ │ │ │ +000350b0: 2069 7320 6120 2a6e 6f74 6520 7379 6d62 is a *note symb │ │ │ │ +000350c0: 6f6c 3a20 284d 6163 6175 6c61 7932 446f ol: (Macaulay2Do │ │ │ │ +000350d0: 6329 5379 6d62 6f6c 2c2e 0a1f 0a46 696c c)Symbol,....Fil │ │ │ │ +000350e0: 653a 2043 6f6d 706c 6574 6549 6e74 6572 e: CompleteInter │ │ │ │ +000350f0: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ +00035100: 6e73 2e69 6e66 6f2c 204e 6f64 653a 206d ns.info, Node: m │ │ │ │ +00035110: 616b 6546 696e 6974 6552 6573 6f6c 7574 akeFiniteResolut │ │ │ │ +00035120: 696f 6e2c 204e 6578 743a 206d 616b 6546 ion, Next: makeF │ │ │ │ +00035130: 696e 6974 6552 6573 6f6c 7574 696f 6e43 initeResolutionC │ │ │ │ +00035140: 6f64 696d 322c 2050 7265 763a 204c 6966 odim2, Prev: Lif │ │ │ │ +00035150: 742c 2055 703a 2054 6f70 0a0a 6d61 6b65 t, Up: Top..make │ │ │ │ +00035160: 4669 6e69 7465 5265 736f 6c75 7469 6f6e FiniteResolution │ │ │ │ +00035170: 202d 2d20 6669 6e69 7465 2072 6573 6f6c -- finite resol │ │ │ │ +00035180: 7574 696f 6e20 6f66 2061 206d 6174 7269 ution of a matri │ │ │ │ +00035190: 7820 6661 6374 6f72 697a 6174 696f 6e20 x factorization │ │ │ │ +000351a0: 6d6f 6475 6c65 204d 0a2a 2a2a 2a2a 2a2a module M.******* │ │ │ │ +000351b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000351c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000351d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000351e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000351f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00035200: 0a0a 5379 6e6f 7073 6973 0a3d 3d3d 3d3d ..Synopsis.===== │ │ │ │ -00035210: 3d3d 3d0a 0a20 202a 2055 7361 6765 3a20 ===.. * Usage: │ │ │ │ -00035220: 0a20 2020 2020 2020 2041 203d 206d 616b . A = mak │ │ │ │ -00035230: 6546 696e 6974 6552 6573 6f6c 7574 696f eFiniteResolutio │ │ │ │ -00035240: 6e28 6666 2c6d 6629 0a20 202a 2049 6e70 n(ff,mf). * Inp │ │ │ │ -00035250: 7574 733a 0a20 2020 2020 202a 206d 662c uts:. * mf, │ │ │ │ -00035260: 2061 202a 6e6f 7465 206c 6973 743a 2028 a *note list: ( │ │ │ │ -00035270: 4d61 6361 756c 6179 3244 6f63 294c 6973 Macaulay2Doc)Lis │ │ │ │ -00035280: 742c 2c20 6f75 7470 7574 206f 6620 6d61 t,, output of ma │ │ │ │ -00035290: 7472 6978 4661 6374 6f72 697a 6174 696f trixFactorizatio │ │ │ │ -000352a0: 6e0a 2020 2020 2020 2a20 6666 2c20 6120 n. * ff, a │ │ │ │ -000352b0: 2a6e 6f74 6520 6d61 7472 6978 3a20 284d *note matrix: (M │ │ │ │ -000352c0: 6163 6175 6c61 7932 446f 6329 4d61 7472 acaulay2Doc)Matr │ │ │ │ -000352d0: 6978 2c2c 2074 6865 2072 6567 756c 6172 ix,, the regular │ │ │ │ -000352e0: 2073 6571 7565 6e63 6520 7573 6564 0a20 sequence used. │ │ │ │ -000352f0: 2020 2020 2020 2066 6f72 2074 6865 206d for the m │ │ │ │ -00035300: 6174 7269 7846 6163 746f 7269 7a61 7469 atrixFactorizati │ │ │ │ -00035310: 6f6e 2063 6f6d 7075 7461 7469 6f6e 0a20 on computation. │ │ │ │ -00035320: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ -00035330: 2020 2a20 412c 2061 202a 6e6f 7465 2063 * A, a *note c │ │ │ │ -00035340: 6861 696e 2063 6f6d 706c 6578 3a20 284d hain complex: (M │ │ │ │ -00035350: 6163 6175 6c61 7932 446f 6329 4368 6169 acaulay2Doc)Chai │ │ │ │ -00035360: 6e43 6f6d 706c 6578 2c2c 2041 2069 7320 nComplex,, A is │ │ │ │ -00035370: 7468 6520 6d69 6e69 6d61 6c0a 2020 2020 the minimal. │ │ │ │ -00035380: 2020 2020 6669 6e69 7465 2072 6573 6f6c finite resol │ │ │ │ -00035390: 7574 696f 6e20 6f66 204d 206f 7665 7220 ution of M over │ │ │ │ -000353a0: 522e 0a0a 4465 7363 7269 7074 696f 6e0a R...Description. │ │ │ │ -000353b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a53 7570 ===========..Sup │ │ │ │ -000353c0: 706f 7365 2074 6861 7420 665f 312e 2e66 pose that f_1..f │ │ │ │ -000353d0: 5f63 2069 7320 6120 686f 6d6f 6765 6e65 _c is a homogene │ │ │ │ -000353e0: 6f75 7320 7265 6775 6c61 7220 7365 7175 ous regular sequ │ │ │ │ -000353f0: 656e 6365 206f 6620 666f 726d 7320 6f66 ence of forms of │ │ │ │ -00035400: 2074 6865 2073 616d 650a 6465 6772 6565 the same.degree │ │ │ │ -00035410: 2069 6e20 6120 706f 6c79 6e6f 6d69 616c in a polynomial │ │ │ │ -00035420: 2072 696e 6720 5320 616e 6420 4d20 6973 ring S and M is │ │ │ │ -00035430: 2061 2068 6967 6820 7379 7a79 6779 206d a high syzygy m │ │ │ │ -00035440: 6f64 756c 6520 6f76 6572 2053 2f28 665f odule over S/(f_ │ │ │ │ -00035450: 312c 2e2e 2c66 5f63 290a 3d20 5228 6329 1,..,f_c).= R(c) │ │ │ │ -00035460: 2c20 616e 6420 6d66 203d 2028 642c 6829 , and mf = (d,h) │ │ │ │ -00035470: 2069 7320 7468 6520 6f75 7470 7574 206f is the output o │ │ │ │ -00035480: 6620 6d61 7472 6978 4661 6374 6f72 697a f matrixFactoriz │ │ │ │ -00035490: 6174 696f 6e28 4d2c 6666 292e 2049 6620 ation(M,ff). If │ │ │ │ -000354a0: 7468 650a 636f 6d70 6c65 7869 7479 206f the.complexity o │ │ │ │ -000354b0: 6620 4d20 6973 2063 272c 2074 6865 6e20 f M is c', then │ │ │ │ -000354c0: 4d20 6861 7320 6120 6669 6e69 7465 2066 M has a finite f │ │ │ │ -000354d0: 7265 6520 7265 736f 6c75 7469 6f6e 206f ree resolution o │ │ │ │ -000354e0: 7665 7220 5220 3d0a 532f 2866 5f31 2c2e ver R =.S/(f_1,. │ │ │ │ -000354f0: 2e2c 665f 7b28 632d 6327 297d 2920 2861 .,f_{(c-c')}) (a │ │ │ │ -00035500: 6e64 2c20 6d6f 7265 2067 656e 6572 616c nd, more general │ │ │ │ -00035510: 6c79 2c20 6861 7320 636f 6d70 6c65 7869 ly, has complexi │ │ │ │ -00035520: 7479 2063 2d64 206f 7665 720a 532f 2866 ty c-d over.S/(f │ │ │ │ -00035530: 5f31 2c2e 2e2c 665f 7b28 632d 6429 7d29 _1,..,f_{(c-d)}) │ │ │ │ -00035540: 2066 6f72 2064 3e3d 6327 292e 0a0a 5468 for d>=c')...Th │ │ │ │ -00035550: 6520 636f 6d70 6c65 7820 4120 6973 2074 e complex A is t │ │ │ │ -00035560: 6865 206d 696e 696d 616c 2066 696e 6974 he minimal finit │ │ │ │ -00035570: 6520 6672 6565 2072 6573 6f6c 7574 696f e free resolutio │ │ │ │ -00035580: 6e20 6f66 204d 206f 7665 7220 412c 2063 n of M over A, c │ │ │ │ -00035590: 6f6e 7374 7275 6374 6564 2061 730a 616e onstructed as.an │ │ │ │ -000355a0: 2069 7465 7261 7465 6420 4b6f 737a 756c iterated Koszul │ │ │ │ -000355b0: 2065 7874 656e 7369 6f6e 2c20 6d61 6465 extension, made │ │ │ │ -000355c0: 2066 726f 6d20 7468 6520 6d61 7073 2069 from the maps i │ │ │ │ -000355d0: 6e20 624d 6170 7320 6d66 2061 6e64 2070 n bMaps mf and p │ │ │ │ -000355e0: 7369 4d61 7073 206d 662c 2061 730a 6465 siMaps mf, as.de │ │ │ │ -000355f0: 7363 7269 6265 6420 696e 2045 6973 656e scribed in Eisen │ │ │ │ -00035600: 6275 642d 5065 6576 612e 0a0a 2b2d 2d2d bud-Peeva...+--- │ │ │ │ +000351f0: 2a2a 2a2a 2a0a 0a53 796e 6f70 7369 730a *****..Synopsis. │ │ │ │ +00035200: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 5573 ========.. * Us │ │ │ │ +00035210: 6167 653a 200a 2020 2020 2020 2020 4120 age: . A │ │ │ │ +00035220: 3d20 6d61 6b65 4669 6e69 7465 5265 736f = makeFiniteReso │ │ │ │ +00035230: 6c75 7469 6f6e 2866 662c 6d66 290a 2020 lution(ff,mf). │ │ │ │ +00035240: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ +00035250: 2a20 6d66 2c20 6120 2a6e 6f74 6520 6c69 * mf, a *note li │ │ │ │ +00035260: 7374 3a20 284d 6163 6175 6c61 7932 446f st: (Macaulay2Do │ │ │ │ +00035270: 6329 4c69 7374 2c2c 206f 7574 7075 7420 c)List,, output │ │ │ │ +00035280: 6f66 206d 6174 7269 7846 6163 746f 7269 of matrixFactori │ │ │ │ +00035290: 7a61 7469 6f6e 0a20 2020 2020 202a 2066 zation. * f │ │ │ │ +000352a0: 662c 2061 202a 6e6f 7465 206d 6174 7269 f, a *note matri │ │ │ │ +000352b0: 783a 2028 4d61 6361 756c 6179 3244 6f63 x: (Macaulay2Doc │ │ │ │ +000352c0: 294d 6174 7269 782c 2c20 7468 6520 7265 )Matrix,, the re │ │ │ │ +000352d0: 6775 6c61 7220 7365 7175 656e 6365 2075 gular sequence u │ │ │ │ +000352e0: 7365 640a 2020 2020 2020 2020 666f 7220 sed. for │ │ │ │ +000352f0: 7468 6520 6d61 7472 6978 4661 6374 6f72 the matrixFactor │ │ │ │ +00035300: 697a 6174 696f 6e20 636f 6d70 7574 6174 ization computat │ │ │ │ +00035310: 696f 6e0a 2020 2a20 4f75 7470 7574 733a ion. * Outputs: │ │ │ │ +00035320: 0a20 2020 2020 202a 2041 2c20 6120 2a6e . * A, a *n │ │ │ │ +00035330: 6f74 6520 6368 6169 6e20 636f 6d70 6c65 ote chain comple │ │ │ │ +00035340: 783a 2028 4d61 6361 756c 6179 3244 6f63 x: (Macaulay2Doc │ │ │ │ +00035350: 2943 6861 696e 436f 6d70 6c65 782c 2c20 )ChainComplex,, │ │ │ │ +00035360: 4120 6973 2074 6865 206d 696e 696d 616c A is the minimal │ │ │ │ +00035370: 0a20 2020 2020 2020 2066 696e 6974 6520 . finite │ │ │ │ +00035380: 7265 736f 6c75 7469 6f6e 206f 6620 4d20 resolution of M │ │ │ │ +00035390: 6f76 6572 2052 2e0a 0a44 6573 6372 6970 over R...Descrip │ │ │ │ +000353a0: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ +000353b0: 0a0a 5375 7070 6f73 6520 7468 6174 2066 ..Suppose that f │ │ │ │ +000353c0: 5f31 2e2e 665f 6320 6973 2061 2068 6f6d _1..f_c is a hom │ │ │ │ +000353d0: 6f67 656e 656f 7573 2072 6567 756c 6172 ogeneous regular │ │ │ │ +000353e0: 2073 6571 7565 6e63 6520 6f66 2066 6f72 sequence of for │ │ │ │ +000353f0: 6d73 206f 6620 7468 6520 7361 6d65 0a64 ms of the same.d │ │ │ │ +00035400: 6567 7265 6520 696e 2061 2070 6f6c 796e egree in a polyn │ │ │ │ +00035410: 6f6d 6961 6c20 7269 6e67 2053 2061 6e64 omial ring S and │ │ │ │ +00035420: 204d 2069 7320 6120 6869 6768 2073 797a M is a high syz │ │ │ │ +00035430: 7967 7920 6d6f 6475 6c65 206f 7665 7220 ygy module over │ │ │ │ +00035440: 532f 2866 5f31 2c2e 2e2c 665f 6329 0a3d S/(f_1,..,f_c).= │ │ │ │ +00035450: 2052 2863 292c 2061 6e64 206d 6620 3d20 R(c), and mf = │ │ │ │ +00035460: 2864 2c68 2920 6973 2074 6865 206f 7574 (d,h) is the out │ │ │ │ +00035470: 7075 7420 6f66 206d 6174 7269 7846 6163 put of matrixFac │ │ │ │ +00035480: 746f 7269 7a61 7469 6f6e 284d 2c66 6629 torization(M,ff) │ │ │ │ +00035490: 2e20 4966 2074 6865 0a63 6f6d 706c 6578 . If the.complex │ │ │ │ +000354a0: 6974 7920 6f66 204d 2069 7320 6327 2c20 ity of M is c', │ │ │ │ +000354b0: 7468 656e 204d 2068 6173 2061 2066 696e then M has a fin │ │ │ │ +000354c0: 6974 6520 6672 6565 2072 6573 6f6c 7574 ite free resolut │ │ │ │ +000354d0: 696f 6e20 6f76 6572 2052 203d 0a53 2f28 ion over R =.S/( │ │ │ │ +000354e0: 665f 312c 2e2e 2c66 5f7b 2863 2d63 2729 f_1,..,f_{(c-c') │ │ │ │ +000354f0: 7d29 2028 616e 642c 206d 6f72 6520 6765 }) (and, more ge │ │ │ │ +00035500: 6e65 7261 6c6c 792c 2068 6173 2063 6f6d nerally, has com │ │ │ │ +00035510: 706c 6578 6974 7920 632d 6420 6f76 6572 plexity c-d over │ │ │ │ +00035520: 0a53 2f28 665f 312c 2e2e 2c66 5f7b 2863 .S/(f_1,..,f_{(c │ │ │ │ +00035530: 2d64 297d 2920 666f 7220 643e 3d63 2729 -d)}) for d>=c') │ │ │ │ +00035540: 2e0a 0a54 6865 2063 6f6d 706c 6578 2041 ...The complex A │ │ │ │ +00035550: 2069 7320 7468 6520 6d69 6e69 6d61 6c20 is the minimal │ │ │ │ +00035560: 6669 6e69 7465 2066 7265 6520 7265 736f finite free reso │ │ │ │ +00035570: 6c75 7469 6f6e 206f 6620 4d20 6f76 6572 lution of M over │ │ │ │ +00035580: 2041 2c20 636f 6e73 7472 7563 7465 6420 A, constructed │ │ │ │ +00035590: 6173 0a61 6e20 6974 6572 6174 6564 204b as.an iterated K │ │ │ │ +000355a0: 6f73 7a75 6c20 6578 7465 6e73 696f 6e2c oszul extension, │ │ │ │ +000355b0: 206d 6164 6520 6672 6f6d 2074 6865 206d made from the m │ │ │ │ +000355c0: 6170 7320 696e 2062 4d61 7073 206d 6620 aps in bMaps mf │ │ │ │ +000355d0: 616e 6420 7073 694d 6170 7320 6d66 2c20 and psiMaps mf, │ │ │ │ +000355e0: 6173 0a64 6573 6372 6962 6564 2069 6e20 as.described in │ │ │ │ +000355f0: 4569 7365 6e62 7564 2d50 6565 7661 2e0a Eisenbud-Peeva.. │ │ │ │ +00035600: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00035610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035650: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ -00035660: 3a20 7365 7452 616e 646f 6d53 6565 6420 : setRandomSeed │ │ │ │ -00035670: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00035640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00035650: 0a7c 6931 203a 2073 6574 5261 6e64 6f6d .|i1 : setRandom │ │ │ │ +00035660: 5365 6564 2030 2020 2020 2020 2020 2020 Seed 0 │ │ │ │ +00035670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000356a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00035690: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000356a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000356b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000356c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000356d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000356e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000356f0: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ -00035700: 3d20 3020 2020 2020 2020 2020 2020 2020 = 0 │ │ │ │ +000356e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000356f0: 0a7c 6f31 203d 2030 2020 2020 2020 2020 .|o1 = 0 │ │ │ │ +00035700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035740: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00035730: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035740: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00035750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035790: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ -000357a0: 3a20 5320 3d20 5a5a 2f31 3031 5b61 2c62 : S = ZZ/101[a,b │ │ │ │ -000357b0: 2c63 5d3b 2020 2020 2020 2020 2020 2020 ,c]; │ │ │ │ +00035780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00035790: 0a7c 6932 203a 2053 203d 205a 5a2f 3130 .|i2 : S = ZZ/10 │ │ │ │ +000357a0: 315b 612c 622c 635d 3b20 2020 2020 2020 1[a,b,c]; │ │ │ │ +000357b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000357c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000357d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000357e0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000357d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000357e0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 000357f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035830: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ -00035840: 3a20 6666 203d 206d 6174 7269 7822 6133 : ff = matrix"a3 │ │ │ │ -00035850: 2c62 3322 3b20 2020 2020 2020 2020 2020 ,b3"; │ │ │ │ +00035820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00035830: 0a7c 6933 203a 2066 6620 3d20 6d61 7472 .|i3 : ff = matr │ │ │ │ +00035840: 6978 2261 332c 6233 223b 2020 2020 2020 ix"a3,b3"; │ │ │ │ +00035850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035880: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00035870: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035880: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00035890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000358a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000358b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000358c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000358d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000358e0: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ -000358f0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000358c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000358d0: 0a7c 2020 2020 2020 2020 2020 2020 2031 .| 1 │ │ │ │ +000358e0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000358f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035920: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ -00035930: 3a20 4d61 7472 6978 2053 2020 3c2d 2d20 : Matrix S <-- │ │ │ │ -00035940: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +00035910: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035920: 0a7c 6f33 203a 204d 6174 7269 7820 5320 .|o3 : Matrix S │ │ │ │ +00035930: 203c 2d2d 2053 2020 2020 2020 2020 2020 <-- S │ │ │ │ +00035940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035970: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00035960: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035970: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00035980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000359a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000359b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000359c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ -000359d0: 3a20 5220 3d20 532f 6964 6561 6c20 6666 : R = S/ideal ff │ │ │ │ -000359e0: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +000359b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +000359c0: 0a7c 6934 203a 2052 203d 2053 2f69 6465 .|i4 : R = S/ide │ │ │ │ +000359d0: 616c 2066 663b 2020 2020 2020 2020 2020 al ff; │ │ │ │ +000359e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000359f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035a10: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00035a00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035a10: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00035a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ -00035a70: 3a20 4d20 3d20 6869 6768 5379 7a79 6779 : M = highSyzygy │ │ │ │ -00035a80: 2028 525e 312f 6964 6561 6c20 7661 7273 (R^1/ideal vars │ │ │ │ -00035a90: 2052 293b 2020 2020 2020 2020 2020 2020 R); │ │ │ │ -00035aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035ab0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00035a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00035a60: 0a7c 6935 203a 204d 203d 2068 6967 6853 .|i5 : M = highS │ │ │ │ +00035a70: 797a 7967 7920 2852 5e31 2f69 6465 616c yzygy (R^1/ideal │ │ │ │ +00035a80: 2076 6172 7320 5229 3b20 2020 2020 2020 vars R); │ │ │ │ +00035a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035aa0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035ab0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00035ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 ----------+.|i6 │ │ │ │ -00035b10: 3a20 6d66 203d 206d 6174 7269 7846 6163 : mf = matrixFac │ │ │ │ -00035b20: 746f 7269 7a61 7469 6f6e 2028 6666 2c20 torization (ff, │ │ │ │ -00035b30: 4d29 2020 2020 2020 2020 2020 2020 2020 M) │ │ │ │ -00035b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035b50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00035af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00035b00: 0a7c 6936 203a 206d 6620 3d20 6d61 7472 .|i6 : mf = matr │ │ │ │ +00035b10: 6978 4661 6374 6f72 697a 6174 696f 6e20 ixFactorization │ │ │ │ +00035b20: 2866 662c 204d 2920 2020 2020 2020 2020 (ff, M) │ │ │ │ +00035b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035b40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035b50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00035b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035ba0: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ -00035bb0: 3d20 7b7b 347d 207c 202d 6320 6220 3020 = {{4} | -c b 0 │ │ │ │ -00035bc0: 2061 3220 3020 2030 2020 3020 2030 2020 a2 0 0 0 0 │ │ │ │ -00035bd0: 3020 2020 7c2c 207b 357d 207c 2030 2061 0 |, {5} | 0 a │ │ │ │ -00035be0: 3220 3020 202d 6220 3020 2030 2020 2030 2 0 -b 0 0 0 │ │ │ │ -00035bf0: 2020 2030 2030 2020 3020 7c0a 7c20 2020 0 0 0 |.| │ │ │ │ -00035c00: 2020 207b 347d 207c 2061 2020 3020 6220 {4} | a 0 b │ │ │ │ -00035c10: 2030 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00035c20: 3020 2020 7c20 207b 357d 207c 2030 2030 0 | {5} | 0 0 │ │ │ │ -00035c30: 2020 6132 202d 6320 6232 2030 2020 2030 a2 -c b2 0 0 │ │ │ │ -00035c40: 2020 2030 2030 2020 3020 7c0a 7c20 2020 0 0 0 |.| │ │ │ │ -00035c50: 2020 207b 347d 207c 2030 2020 6120 6320 {4} | 0 a c │ │ │ │ -00035c60: 2030 2020 3020 2030 2020 3020 2030 2020 0 0 0 0 0 │ │ │ │ -00035c70: 2d62 3220 7c20 207b 357d 207c 2030 2030 -b2 | {5} | 0 0 │ │ │ │ -00035c80: 2020 3020 2061 2020 3020 2062 3220 2030 0 a 0 b2 0 │ │ │ │ -00035c90: 2020 2030 2030 2020 3020 7c0a 7c20 2020 0 0 0 |.| │ │ │ │ -00035ca0: 2020 207b 337d 207c 2030 2020 3020 6132 {3} | 0 0 a2 │ │ │ │ -00035cb0: 2030 2020 3020 2062 3220 3020 2030 2020 0 0 b2 0 0 │ │ │ │ -00035cc0: 3020 2020 7c20 207b 367d 207c 2061 2063 0 | {6} | a c │ │ │ │ -00035cd0: 2020 2d62 2030 2020 3020 2030 2020 2030 -b 0 0 0 0 │ │ │ │ -00035ce0: 2020 2030 2030 2020 3020 7c0a 7c20 2020 0 0 0 |.| │ │ │ │ -00035cf0: 2020 207b 347d 207c 2030 2020 3020 3020 {4} | 0 0 0 │ │ │ │ -00035d00: 2030 2020 6220 202d 6120 3020 2030 2020 0 b -a 0 0 │ │ │ │ -00035d10: 3020 2020 7c20 207b 357d 207c 2030 2030 0 | {5} | 0 0 │ │ │ │ -00035d20: 2020 3020 2030 2020 3020 2030 2020 2030 0 0 0 0 0 │ │ │ │ -00035d30: 2020 2061 2062 3220 3020 7c0a 7c20 2020 a b2 0 |.| │ │ │ │ -00035d40: 2020 207b 347d 207c 2030 2020 3020 3020 {4} | 0 0 0 │ │ │ │ -00035d50: 2030 2020 2d63 2030 2020 6120 2062 3220 0 -c 0 a b2 │ │ │ │ -00035d60: 3020 2020 7c20 207b 357d 207c 2030 2030 0 | {5} | 0 0 │ │ │ │ -00035d70: 2020 3020 2030 2020 3020 202d 6132 2030 0 0 0 -a2 0 │ │ │ │ -00035d80: 2020 2062 2030 2020 3020 7c0a 7c20 2020 b 0 0 |.| │ │ │ │ -00035d90: 2020 207b 347d 207c 2030 2020 3020 3020 {4} | 0 0 0 │ │ │ │ -00035da0: 2030 2020 3020 2063 2020 2d62 2030 2020 0 0 c -b 0 │ │ │ │ -00035db0: 6132 2020 7c20 207b 357d 207c 2030 2030 a2 | {5} | 0 0 │ │ │ │ -00035dc0: 2020 3020 2030 2020 3020 2030 2020 202d 0 0 0 0 - │ │ │ │ -00035dd0: 6132 2063 2030 2020 3020 7c0a 7c20 2020 a2 c 0 0 |.| │ │ │ │ +00035b90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035ba0: 0a7c 6f36 203d 207b 7b34 7d20 7c20 2d63 .|o6 = {{4} | -c │ │ │ │ +00035bb0: 2062 2030 2020 6132 2030 2020 3020 2030 b 0 a2 0 0 0 │ │ │ │ +00035bc0: 2020 3020 2030 2020 207c 2c20 7b35 7d20 0 0 |, {5} │ │ │ │ +00035bd0: 7c20 3020 6132 2030 2020 2d62 2030 2020 | 0 a2 0 -b 0 │ │ │ │ +00035be0: 3020 2020 3020 2020 3020 3020 2030 207c 0 0 0 0 0 | │ │ │ │ +00035bf0: 0a7c 2020 2020 2020 7b34 7d20 7c20 6120 .| {4} | a │ │ │ │ +00035c00: 2030 2062 2020 3020 2030 2020 3020 2030 0 b 0 0 0 0 │ │ │ │ +00035c10: 2020 3020 2030 2020 207c 2020 7b35 7d20 0 0 | {5} │ │ │ │ +00035c20: 7c20 3020 3020 2061 3220 2d63 2062 3220 | 0 0 a2 -c b2 │ │ │ │ +00035c30: 3020 2020 3020 2020 3020 3020 2030 207c 0 0 0 0 0 | │ │ │ │ +00035c40: 0a7c 2020 2020 2020 7b34 7d20 7c20 3020 .| {4} | 0 │ │ │ │ +00035c50: 2061 2063 2020 3020 2030 2020 3020 2030 a c 0 0 0 0 │ │ │ │ +00035c60: 2020 3020 202d 6232 207c 2020 7b35 7d20 0 -b2 | {5} │ │ │ │ +00035c70: 7c20 3020 3020 2030 2020 6120 2030 2020 | 0 0 0 a 0 │ │ │ │ +00035c80: 6232 2020 3020 2020 3020 3020 2030 207c b2 0 0 0 0 | │ │ │ │ +00035c90: 0a7c 2020 2020 2020 7b33 7d20 7c20 3020 .| {3} | 0 │ │ │ │ +00035ca0: 2030 2061 3220 3020 2030 2020 6232 2030 0 a2 0 0 b2 0 │ │ │ │ +00035cb0: 2020 3020 2030 2020 207c 2020 7b36 7d20 0 0 | {6} │ │ │ │ +00035cc0: 7c20 6120 6320 202d 6220 3020 2030 2020 | a c -b 0 0 │ │ │ │ +00035cd0: 3020 2020 3020 2020 3020 3020 2030 207c 0 0 0 0 0 | │ │ │ │ +00035ce0: 0a7c 2020 2020 2020 7b34 7d20 7c20 3020 .| {4} | 0 │ │ │ │ +00035cf0: 2030 2030 2020 3020 2062 2020 2d61 2030 0 0 0 b -a 0 │ │ │ │ +00035d00: 2020 3020 2030 2020 207c 2020 7b35 7d20 0 0 | {5} │ │ │ │ +00035d10: 7c20 3020 3020 2030 2020 3020 2030 2020 | 0 0 0 0 0 │ │ │ │ +00035d20: 3020 2020 3020 2020 6120 6232 2030 207c 0 0 a b2 0 | │ │ │ │ +00035d30: 0a7c 2020 2020 2020 7b34 7d20 7c20 3020 .| {4} | 0 │ │ │ │ +00035d40: 2030 2030 2020 3020 202d 6320 3020 2061 0 0 0 -c 0 a │ │ │ │ +00035d50: 2020 6232 2030 2020 207c 2020 7b35 7d20 b2 0 | {5} │ │ │ │ +00035d60: 7c20 3020 3020 2030 2020 3020 2030 2020 | 0 0 0 0 0 │ │ │ │ +00035d70: 2d61 3220 3020 2020 6220 3020 2030 207c -a2 0 b 0 0 | │ │ │ │ +00035d80: 0a7c 2020 2020 2020 7b34 7d20 7c20 3020 .| {4} | 0 │ │ │ │ +00035d90: 2030 2030 2020 3020 2030 2020 6320 202d 0 0 0 0 c - │ │ │ │ +00035da0: 6220 3020 2061 3220 207c 2020 7b35 7d20 b 0 a2 | {5} │ │ │ │ +00035db0: 7c20 3020 3020 2030 2020 3020 2030 2020 | 0 0 0 0 0 │ │ │ │ +00035dc0: 3020 2020 2d61 3220 6320 3020 2030 207c 0 -a2 c 0 0 | │ │ │ │ +00035dd0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00035de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035e00: 2020 2020 2020 207b 367d 207c 2030 2030 {6} | 0 0 │ │ │ │ -00035e10: 2020 3020 2030 2020 3020 2030 2020 2030 0 0 0 0 0 │ │ │ │ -00035e20: 2020 2030 2063 2020 6220 7c0a 7c20 2020 0 c b |.| │ │ │ │ +00035df0: 2020 2020 2020 2020 2020 2020 7b36 7d20 {6} │ │ │ │ +00035e00: 7c20 3020 3020 2030 2020 3020 2030 2020 | 0 0 0 0 0 │ │ │ │ +00035e10: 3020 2020 3020 2020 3020 6320 2062 207c 0 0 0 c b | │ │ │ │ +00035e20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00035e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035e50: 2020 2020 2020 207b 367d 207c 2030 2030 {6} | 0 0 │ │ │ │ -00035e60: 2020 3020 2030 2020 6120 2063 2020 202d 0 0 a c - │ │ │ │ -00035e70: 6220 2030 2030 2020 3020 7c0a 7c20 2020 b 0 0 0 |.| │ │ │ │ -00035e80: 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d -------------- │ │ │ │ +00035e40: 2020 2020 2020 2020 2020 2020 7b36 7d20 {6} │ │ │ │ +00035e50: 7c20 3020 3020 2030 2020 3020 2061 2020 | 0 0 0 0 a │ │ │ │ +00035e60: 6320 2020 2d62 2020 3020 3020 2030 207c c -b 0 0 0 | │ │ │ │ +00035e70: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +00035e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 ----------|.| │ │ │ │ -00035ed0: 2020 3020 2020 7c2c 207b 337d 207c 2030 0 |, {3} | 0 │ │ │ │ -00035ee0: 2030 2030 2020 3120 3020 3020 3020 7c7d 0 0 1 0 0 0 |} │ │ │ │ +00035eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00035ec0: 0a7c 2020 2020 2030 2020 207c 2c20 7b33 .| 0 |, {3 │ │ │ │ +00035ed0: 7d20 7c20 3020 3020 3020 2031 2030 2030 } | 0 0 0 1 0 0 │ │ │ │ +00035ee0: 2030 207c 7d20 2020 2020 2020 2020 2020 0 |} │ │ │ │ 00035ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035f10: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00035f20: 2020 3020 2020 7c20 207b 347d 207c 2030 0 | {4} | 0 │ │ │ │ -00035f30: 2030 2030 2020 3020 3120 3020 3020 7c20 0 0 0 1 0 0 | │ │ │ │ +00035f00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035f10: 0a7c 2020 2020 2030 2020 207c 2020 7b34 .| 0 | {4 │ │ │ │ +00035f20: 7d20 7c20 3020 3020 3020 2030 2031 2030 } | 0 0 0 0 1 0 │ │ │ │ +00035f30: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ 00035f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035f60: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00035f70: 2020 3020 2020 7c20 207b 347d 207c 2030 0 | {4} | 0 │ │ │ │ -00035f80: 2030 2030 2020 3020 3020 3120 3020 7c20 0 0 0 0 1 0 | │ │ │ │ +00035f50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035f60: 0a7c 2020 2020 2030 2020 207c 2020 7b34 .| 0 | {4 │ │ │ │ +00035f70: 7d20 7c20 3020 3020 3020 2030 2030 2031 } | 0 0 0 0 0 1 │ │ │ │ +00035f80: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ 00035f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035fb0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00035fc0: 2020 3020 2020 7c20 207b 347d 207c 2030 0 | {4} | 0 │ │ │ │ -00035fd0: 2030 2030 2020 3020 3020 3020 3120 7c20 0 0 0 0 0 1 | │ │ │ │ +00035fa0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00035fb0: 0a7c 2020 2020 2030 2020 207c 2020 7b34 .| 0 | {4 │ │ │ │ +00035fc0: 7d20 7c20 3020 3020 3020 2030 2030 2030 } | 0 0 0 0 0 0 │ │ │ │ +00035fd0: 2031 207c 2020 2020 2020 2020 2020 2020 1 | │ │ │ │ 00035fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036000: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00036010: 2020 3020 2020 7c20 207b 347d 207c 2030 0 | {4} | 0 │ │ │ │ -00036020: 2031 2030 2020 3020 3020 3020 3020 7c20 1 0 0 0 0 0 | │ │ │ │ +00035ff0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036000: 0a7c 2020 2020 2030 2020 207c 2020 7b34 .| 0 | {4 │ │ │ │ +00036010: 7d20 7c20 3020 3120 3020 2030 2030 2030 } | 0 1 0 0 0 0 │ │ │ │ +00036020: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ 00036030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036050: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00036060: 2020 3020 2020 7c20 207b 347d 207c 2030 0 | {4} | 0 │ │ │ │ -00036070: 2030 202d 3120 3020 3020 3020 3020 7c20 0 -1 0 0 0 0 | │ │ │ │ +00036040: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036050: 0a7c 2020 2020 2030 2020 207c 2020 7b34 .| 0 | {4 │ │ │ │ +00036060: 7d20 7c20 3020 3020 2d31 2030 2030 2030 } | 0 0 -1 0 0 0 │ │ │ │ +00036070: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ 00036080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000360a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000360b0: 2020 2d62 3220 7c20 207b 347d 207c 2031 -b2 | {4} | 1 │ │ │ │ -000360c0: 2030 2030 2020 3020 3020 3020 3020 7c20 0 0 0 0 0 0 | │ │ │ │ +00036090: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000360a0: 0a7c 2020 2020 202d 6232 207c 2020 7b34 .| -b2 | {4 │ │ │ │ +000360b0: 7d20 7c20 3120 3020 3020 2030 2030 2030 } | 1 0 0 0 0 0 │ │ │ │ +000360c0: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ 000360d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000360e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000360f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00036100: 2020 6120 2020 7c20 2020 2020 2020 2020 a | │ │ │ │ +000360e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000360f0: 0a7c 2020 2020 2061 2020 207c 2020 2020 .| a | │ │ │ │ +00036100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036140: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00036150: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ +00036130: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036140: 0a7c 2020 2020 2030 2020 207c 2020 2020 .| 0 | │ │ │ │ +00036150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036190: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00036180: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036190: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000361a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000361b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000361c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000361d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000361e0: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ -000361f0: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ +000361d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000361e0: 0a7c 6f36 203a 204c 6973 7420 2020 2020 .|o6 : List │ │ │ │ +000361f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036230: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00036220: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036230: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00036240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036280: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 ----------+.|i7 │ │ │ │ -00036290: 3a20 4720 3d20 6d61 6b65 4669 6e69 7465 : G = makeFinite │ │ │ │ -000362a0: 5265 736f 6c75 7469 6f6e 2866 662c 6d66 Resolution(ff,mf │ │ │ │ -000362b0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -000362c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000362d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00036270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00036280: 0a7c 6937 203a 2047 203d 206d 616b 6546 .|i7 : G = makeF │ │ │ │ +00036290: 696e 6974 6552 6573 6f6c 7574 696f 6e28 initeResolution( │ │ │ │ +000362a0: 6666 2c6d 6629 2020 2020 2020 2020 2020 ff,mf) │ │ │ │ +000362b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000362c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000362d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000362e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000362f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036320: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00036330: 2020 2037 2020 2020 2020 3132 2020 2020 7 12 │ │ │ │ -00036340: 2020 3520 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +00036310: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036320: 0a7c 2020 2020 2020 3720 2020 2020 2031 .| 7 1 │ │ │ │ +00036330: 3220 2020 2020 2035 2020 2020 2020 2020 2 5 │ │ │ │ +00036340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036370: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ -00036380: 3d20 5320 203c 2d2d 2053 2020 203c 2d2d = S <-- S <-- │ │ │ │ -00036390: 2053 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +00036360: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036370: 0a7c 6f37 203d 2053 2020 3c2d 2d20 5320 .|o7 = S <-- S │ │ │ │ +00036380: 2020 3c2d 2d20 5320 2020 2020 2020 2020 <-- S │ │ │ │ +00036390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000363a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000363b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000363c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000363b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000363c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000363d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000363e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000363f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036410: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00036420: 2020 3020 2020 2020 2031 2020 2020 2020 0 1 │ │ │ │ -00036430: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00036400: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036410: 0a7c 2020 2020 2030 2020 2020 2020 3120 .| 0 1 │ │ │ │ +00036420: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00036430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036460: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00036450: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036460: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00036470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000364a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000364b0: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ -000364c0: 3a20 4368 6169 6e43 6f6d 706c 6578 2020 : ChainComplex │ │ │ │ +000364a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000364b0: 0a7c 6f37 203a 2043 6861 696e 436f 6d70 .|o7 : ChainComp │ │ │ │ +000364c0: 6c65 7820 2020 2020 2020 2020 2020 2020 lex │ │ │ │ 000364d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000364e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000364f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036500: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000364f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036500: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00036510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036550: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 ----------+.|i8 │ │ │ │ -00036560: 3a20 4620 3d20 7265 7320 7075 7368 466f : F = res pushFo │ │ │ │ -00036570: 7277 6172 6428 6d61 7028 522c 5329 2c4d rward(map(R,S),M │ │ │ │ -00036580: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -00036590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000365a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00036540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00036550: 0a7c 6938 203a 2046 203d 2072 6573 2070 .|i8 : F = res p │ │ │ │ +00036560: 7573 6846 6f72 7761 7264 286d 6170 2852 ushForward(map(R │ │ │ │ +00036570: 2c53 292c 4d29 2020 2020 2020 2020 2020 ,S),M) │ │ │ │ +00036580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036590: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000365a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000365b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000365c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000365d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000365e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000365f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00036600: 2020 2037 2020 2020 2020 3132 2020 2020 7 12 │ │ │ │ -00036610: 2020 3520 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +000365e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000365f0: 0a7c 2020 2020 2020 3720 2020 2020 2031 .| 7 1 │ │ │ │ +00036600: 3220 2020 2020 2035 2020 2020 2020 2020 2 5 │ │ │ │ +00036610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036640: 2020 2020 2020 2020 2020 7c0a 7c6f 3820 |.|o8 │ │ │ │ -00036650: 3d20 5320 203c 2d2d 2053 2020 203c 2d2d = S <-- S <-- │ │ │ │ -00036660: 2053 2020 3c2d 2d20 3020 2020 2020 2020 S <-- 0 │ │ │ │ +00036630: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036640: 0a7c 6f38 203d 2053 2020 3c2d 2d20 5320 .|o8 = S <-- S │ │ │ │ +00036650: 2020 3c2d 2d20 5320 203c 2d2d 2030 2020 <-- S <-- 0 │ │ │ │ +00036660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036690: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00036680: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036690: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000366a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000366b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000366c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000366d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000366e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000366f0: 2020 3020 2020 2020 2031 2020 2020 2020 0 1 │ │ │ │ -00036700: 2032 2020 2020 2020 3320 2020 2020 2020 2 3 │ │ │ │ +000366d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000366e0: 0a7c 2020 2020 2030 2020 2020 2020 3120 .| 0 1 │ │ │ │ +000366f0: 2020 2020 2020 3220 2020 2020 2033 2020 2 3 │ │ │ │ +00036700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036730: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00036720: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036730: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00036740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036780: 2020 2020 2020 2020 2020 7c0a 7c6f 3820 |.|o8 │ │ │ │ -00036790: 3a20 4368 6169 6e43 6f6d 706c 6578 2020 : ChainComplex │ │ │ │ +00036770: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036780: 0a7c 6f38 203a 2043 6861 696e 436f 6d70 .|o8 : ChainComp │ │ │ │ +00036790: 6c65 7820 2020 2020 2020 2020 2020 2020 lex │ │ │ │ 000367a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000367b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000367c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000367d0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000367c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000367d0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 000367e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000367f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036820: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3920 ----------+.|i9 │ │ │ │ -00036830: 3a20 472e 6464 5f31 2020 2020 2020 2020 : G.dd_1 │ │ │ │ +00036810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00036820: 0a7c 6939 203a 2047 2e64 645f 3120 2020 .|i9 : G.dd_1 │ │ │ │ +00036830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036870: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00036860: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036870: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00036880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000368a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000368b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000368c0: 2020 2020 2020 2020 2020 7c0a 7c6f 3920 |.|o9 │ │ │ │ -000368d0: 3d20 7b34 7d20 7c20 2d63 2062 2030 2020 = {4} | -c b 0 │ │ │ │ -000368e0: 6132 2030 2020 3020 2030 2020 3020 2030 a2 0 0 0 0 0 │ │ │ │ -000368f0: 2020 2030 2020 2030 2020 2030 2020 207c 0 0 0 | │ │ │ │ -00036900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036910: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00036920: 2020 7b34 7d20 7c20 6120 2030 2062 2020 {4} | a 0 b │ │ │ │ -00036930: 3020 2030 2020 3020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ -00036940: 2020 2030 2020 2030 2020 2030 2020 207c 0 0 0 | │ │ │ │ -00036950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036960: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00036970: 2020 7b34 7d20 7c20 3020 2061 2063 2020 {4} | 0 a c │ │ │ │ -00036980: 3020 2030 2020 3020 2030 2020 3020 202d 0 0 0 0 0 - │ │ │ │ -00036990: 6232 2030 2020 2030 2020 2030 2020 207c b2 0 0 0 | │ │ │ │ -000369a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000369b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000369c0: 2020 7b33 7d20 7c20 3020 2030 2061 3220 {3} | 0 0 a2 │ │ │ │ -000369d0: 3020 2030 2020 6232 2030 2020 3020 2030 0 0 b2 0 0 0 │ │ │ │ -000369e0: 2020 2030 2020 2030 2020 2030 2020 207c 0 0 0 | │ │ │ │ -000369f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036a00: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00036a10: 2020 7b34 7d20 7c20 3020 2030 2030 2020 {4} | 0 0 0 │ │ │ │ -00036a20: 3020 2062 2020 2d61 2030 2020 3020 2030 0 b -a 0 0 0 │ │ │ │ -00036a30: 2020 202d 6133 2030 2020 2030 2020 207c -a3 0 0 | │ │ │ │ -00036a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036a50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00036a60: 2020 7b34 7d20 7c20 3020 2030 2030 2020 {4} | 0 0 0 │ │ │ │ -00036a70: 3020 202d 6320 3020 2061 2020 6232 2030 0 -c 0 a b2 0 │ │ │ │ -00036a80: 2020 2030 2020 202d 6133 2030 2020 207c 0 -a3 0 | │ │ │ │ -00036a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036aa0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00036ab0: 2020 7b34 7d20 7c20 3020 2030 2030 2020 {4} | 0 0 0 │ │ │ │ -00036ac0: 3020 2030 2020 6320 202d 6220 3020 2061 0 0 c -b 0 a │ │ │ │ -00036ad0: 3220 2030 2020 2030 2020 202d 6133 207c 2 0 0 -a3 | │ │ │ │ -00036ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036af0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000368b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000368c0: 0a7c 6f39 203d 207b 347d 207c 202d 6320 .|o9 = {4} | -c │ │ │ │ +000368d0: 6220 3020 2061 3220 3020 2030 2020 3020 b 0 a2 0 0 0 │ │ │ │ +000368e0: 2030 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +000368f0: 3020 2020 7c20 2020 2020 2020 2020 2020 0 | │ │ │ │ +00036900: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036910: 0a7c 2020 2020 207b 347d 207c 2061 2020 .| {4} | a │ │ │ │ +00036920: 3020 6220 2030 2020 3020 2030 2020 3020 0 b 0 0 0 0 │ │ │ │ +00036930: 2030 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +00036940: 3020 2020 7c20 2020 2020 2020 2020 2020 0 | │ │ │ │ +00036950: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036960: 0a7c 2020 2020 207b 347d 207c 2030 2020 .| {4} | 0 │ │ │ │ +00036970: 6120 6320 2030 2020 3020 2030 2020 3020 a c 0 0 0 0 │ │ │ │ +00036980: 2030 2020 2d62 3220 3020 2020 3020 2020 0 -b2 0 0 │ │ │ │ +00036990: 3020 2020 7c20 2020 2020 2020 2020 2020 0 | │ │ │ │ +000369a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000369b0: 0a7c 2020 2020 207b 337d 207c 2030 2020 .| {3} | 0 │ │ │ │ +000369c0: 3020 6132 2030 2020 3020 2062 3220 3020 0 a2 0 0 b2 0 │ │ │ │ +000369d0: 2030 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +000369e0: 3020 2020 7c20 2020 2020 2020 2020 2020 0 | │ │ │ │ +000369f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036a00: 0a7c 2020 2020 207b 347d 207c 2030 2020 .| {4} | 0 │ │ │ │ +00036a10: 3020 3020 2030 2020 6220 202d 6120 3020 0 0 0 b -a 0 │ │ │ │ +00036a20: 2030 2020 3020 2020 2d61 3320 3020 2020 0 0 -a3 0 │ │ │ │ +00036a30: 3020 2020 7c20 2020 2020 2020 2020 2020 0 | │ │ │ │ +00036a40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036a50: 0a7c 2020 2020 207b 347d 207c 2030 2020 .| {4} | 0 │ │ │ │ +00036a60: 3020 3020 2030 2020 2d63 2030 2020 6120 0 0 0 -c 0 a │ │ │ │ +00036a70: 2062 3220 3020 2020 3020 2020 2d61 3320 b2 0 0 -a3 │ │ │ │ +00036a80: 3020 2020 7c20 2020 2020 2020 2020 2020 0 | │ │ │ │ +00036a90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036aa0: 0a7c 2020 2020 207b 347d 207c 2030 2020 .| {4} | 0 │ │ │ │ +00036ab0: 3020 3020 2030 2020 3020 2063 2020 2d62 0 0 0 0 c -b │ │ │ │ +00036ac0: 2030 2020 6132 2020 3020 2020 3020 2020 0 a2 0 0 │ │ │ │ +00036ad0: 2d61 3320 7c20 2020 2020 2020 2020 2020 -a3 | │ │ │ │ +00036ae0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036af0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00036b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036b40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00036b50: 2020 2020 2020 2020 2020 3720 2020 2020 7 │ │ │ │ -00036b60: 2031 3220 2020 2020 2020 2020 2020 2020 12 │ │ │ │ +00036b30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036b40: 0a7c 2020 2020 2020 2020 2020 2020 2037 .| 7 │ │ │ │ +00036b50: 2020 2020 2020 3132 2020 2020 2020 2020 12 │ │ │ │ +00036b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036b90: 2020 2020 2020 2020 2020 7c0a 7c6f 3920 |.|o9 │ │ │ │ -00036ba0: 3a20 4d61 7472 6978 2053 2020 3c2d 2d20 : Matrix S <-- │ │ │ │ -00036bb0: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +00036b80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036b90: 0a7c 6f39 203a 204d 6174 7269 7820 5320 .|o9 : Matrix S │ │ │ │ +00036ba0: 203c 2d2d 2053 2020 2020 2020 2020 2020 <-- S │ │ │ │ +00036bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036be0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00036bd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036be0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00036bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3130 ----------+.|i10 │ │ │ │ -00036c40: 203a 2046 2e64 645f 3120 2020 2020 2020 : F.dd_1 │ │ │ │ +00036c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00036c30: 0a7c 6931 3020 3a20 462e 6464 5f31 2020 .|i10 : F.dd_1 │ │ │ │ +00036c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036c80: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00036c70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036c80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00036c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036cd0: 2020 2020 2020 2020 2020 7c0a 7c6f 3130 |.|o10 │ │ │ │ -00036ce0: 203d 207b 337d 207c 2061 3220 6232 2030 = {3} | a2 b2 0 │ │ │ │ -00036cf0: 2020 3020 2030 2020 3020 2030 2020 3020 0 0 0 0 0 │ │ │ │ -00036d00: 2030 2020 3020 2030 2020 3020 207c 2020 0 0 0 0 | │ │ │ │ -00036d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036d20: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00036d30: 2020 207b 347d 207c 2030 2020 2d61 2030 {4} | 0 -a 0 │ │ │ │ -00036d40: 2020 3020 2030 2020 6220 2030 2020 3020 0 0 b 0 0 │ │ │ │ -00036d50: 2030 2020 3020 2030 2020 3020 207c 2020 0 0 0 0 | │ │ │ │ -00036d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036d70: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00036d80: 2020 207b 347d 207c 2030 2020 3020 2061 {4} | 0 0 a │ │ │ │ -00036d90: 2020 3020 2030 2020 2d63 2030 2020 3020 0 0 -c 0 0 │ │ │ │ -00036da0: 2062 3220 3020 2030 2020 3020 207c 2020 b2 0 0 0 | │ │ │ │ -00036db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036dc0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00036dd0: 2020 207b 347d 207c 2030 2020 6320 202d {4} | 0 c - │ │ │ │ -00036de0: 6220 3020 2030 2020 3020 2061 3220 3020 b 0 0 0 a2 0 │ │ │ │ -00036df0: 2030 2020 3020 2030 2020 3020 207c 2020 0 0 0 0 | │ │ │ │ -00036e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036e10: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00036e20: 2020 207b 347d 207c 2062 2020 3020 2030 {4} | b 0 0 │ │ │ │ -00036e30: 2020 6120 2030 2020 3020 2030 2020 3020 a 0 0 0 0 │ │ │ │ -00036e40: 2030 2020 6233 2030 2020 3020 207c 2020 0 b3 0 0 | │ │ │ │ -00036e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036e60: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00036e70: 2020 207b 347d 207c 202d 6320 3020 2030 {4} | -c 0 0 │ │ │ │ -00036e80: 2020 3020 2061 2020 3020 2062 3220 3020 0 a 0 b2 0 │ │ │ │ -00036e90: 2030 2020 3020 2062 3320 3020 207c 2020 0 0 b3 0 | │ │ │ │ -00036ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036eb0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00036ec0: 2020 207b 347d 207c 2030 2020 3020 2030 {4} | 0 0 0 │ │ │ │ -00036ed0: 2020 2d63 202d 6220 3020 2030 2020 6132 -c -b 0 0 a2 │ │ │ │ -00036ee0: 2030 2020 3020 2030 2020 6233 207c 2020 0 0 0 b3 | │ │ │ │ -00036ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036f00: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00036cc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036cd0: 0a7c 6f31 3020 3d20 7b33 7d20 7c20 6132 .|o10 = {3} | a2 │ │ │ │ +00036ce0: 2062 3220 3020 2030 2020 3020 2030 2020 b2 0 0 0 0 │ │ │ │ +00036cf0: 3020 2030 2020 3020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00036d00: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00036d10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036d20: 0a7c 2020 2020 2020 7b34 7d20 7c20 3020 .| {4} | 0 │ │ │ │ +00036d30: 202d 6120 3020 2030 2020 3020 2062 2020 -a 0 0 0 b │ │ │ │ +00036d40: 3020 2030 2020 3020 2030 2020 3020 2030 0 0 0 0 0 0 │ │ │ │ +00036d50: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00036d60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036d70: 0a7c 2020 2020 2020 7b34 7d20 7c20 3020 .| {4} | 0 │ │ │ │ +00036d80: 2030 2020 6120 2030 2020 3020 202d 6320 0 a 0 0 -c │ │ │ │ +00036d90: 3020 2030 2020 6232 2030 2020 3020 2030 0 0 b2 0 0 0 │ │ │ │ +00036da0: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00036db0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036dc0: 0a7c 2020 2020 2020 7b34 7d20 7c20 3020 .| {4} | 0 │ │ │ │ +00036dd0: 2063 2020 2d62 2030 2020 3020 2030 2020 c -b 0 0 0 │ │ │ │ +00036de0: 6132 2030 2020 3020 2030 2020 3020 2030 a2 0 0 0 0 0 │ │ │ │ +00036df0: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00036e00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036e10: 0a7c 2020 2020 2020 7b34 7d20 7c20 6220 .| {4} | b │ │ │ │ +00036e20: 2030 2020 3020 2061 2020 3020 2030 2020 0 0 a 0 0 │ │ │ │ +00036e30: 3020 2030 2020 3020 2062 3320 3020 2030 0 0 0 b3 0 0 │ │ │ │ +00036e40: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00036e50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036e60: 0a7c 2020 2020 2020 7b34 7d20 7c20 2d63 .| {4} | -c │ │ │ │ +00036e70: 2030 2020 3020 2030 2020 6120 2030 2020 0 0 0 a 0 │ │ │ │ +00036e80: 6232 2030 2020 3020 2030 2020 6233 2030 b2 0 0 0 b3 0 │ │ │ │ +00036e90: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00036ea0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036eb0: 0a7c 2020 2020 2020 7b34 7d20 7c20 3020 .| {4} | 0 │ │ │ │ +00036ec0: 2030 2020 3020 202d 6320 2d62 2030 2020 0 0 -c -b 0 │ │ │ │ +00036ed0: 3020 2061 3220 3020 2030 2020 3020 2062 0 a2 0 0 0 b │ │ │ │ +00036ee0: 3320 7c20 2020 2020 2020 2020 2020 2020 3 | │ │ │ │ +00036ef0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036f00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00036f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036f50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00036f60: 2020 2020 2020 2020 2020 2037 2020 2020 7 │ │ │ │ -00036f70: 2020 3132 2020 2020 2020 2020 2020 2020 12 │ │ │ │ +00036f40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036f50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00036f60: 3720 2020 2020 2031 3220 2020 2020 2020 7 12 │ │ │ │ +00036f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036fa0: 2020 2020 2020 2020 2020 7c0a 7c6f 3130 |.|o10 │ │ │ │ -00036fb0: 203a 204d 6174 7269 7820 5320 203c 2d2d : Matrix S <-- │ │ │ │ -00036fc0: 2053 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +00036f90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036fa0: 0a7c 6f31 3020 3a20 4d61 7472 6978 2053 .|o10 : Matrix S │ │ │ │ +00036fb0: 2020 3c2d 2d20 5320 2020 2020 2020 2020 <-- S │ │ │ │ +00036fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036ff0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00036fe0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00036ff0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00037000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037040: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 ----------+.|i11 │ │ │ │ -00037050: 203a 2047 2e64 645f 3220 2020 2020 2020 : G.dd_2 │ │ │ │ +00037030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00037040: 0a7c 6931 3120 3a20 472e 6464 5f32 2020 .|i11 : G.dd_2 │ │ │ │ +00037050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037090: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00037080: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037090: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000370a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000370b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000370c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000370d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000370e0: 2020 2020 2020 2020 2020 7c0a 7c6f 3131 |.|o11 │ │ │ │ -000370f0: 203d 207b 357d 207c 2030 2020 202d 6233 = {5} | 0 -b3 │ │ │ │ -00037100: 2020 3020 2020 3020 2020 3020 2020 2020 0 0 0 │ │ │ │ -00037110: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00037120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037130: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00037140: 2020 207b 357d 207c 2030 2020 202d 6232 {5} | 0 -b2 │ │ │ │ -00037150: 6320 3020 2020 3020 2020 2d61 3262 3220 c 0 0 -a2b2 │ │ │ │ -00037160: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00037170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037180: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00037190: 2020 207b 357d 207c 2030 2020 2061 6232 {5} | 0 ab2 │ │ │ │ -000371a0: 2020 3020 2020 3020 2020 3020 2020 2020 0 0 0 │ │ │ │ -000371b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000371c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000371d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000371e0: 2020 207b 367d 207c 2030 2020 2030 2020 {6} | 0 0 │ │ │ │ -000371f0: 2020 3020 2020 3020 2020 6233 2020 2020 0 0 b3 │ │ │ │ -00037200: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00037210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037220: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00037230: 2020 207b 357d 207c 202d 6133 2030 2020 {5} | -a3 0 │ │ │ │ -00037240: 2020 3020 2020 3020 2020 3020 2020 2020 0 0 0 │ │ │ │ -00037250: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00037260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037270: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00037280: 2020 207b 357d 207c 2030 2020 202d 6133 {5} | 0 -a3 │ │ │ │ -00037290: 2020 3020 2020 3020 2020 3020 2020 2020 0 0 0 │ │ │ │ -000372a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000372b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000372c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000372d0: 2020 207b 357d 207c 2030 2020 2030 2020 {5} | 0 0 │ │ │ │ -000372e0: 2020 2d61 3320 3020 2020 3020 2020 2020 -a3 0 0 │ │ │ │ -000372f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00037300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037310: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00037320: 2020 207b 367d 207c 2030 2020 2030 2020 {6} | 0 0 │ │ │ │ -00037330: 2020 3020 2020 2d61 3320 3020 2020 2020 0 -a3 0 │ │ │ │ -00037340: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00037350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037360: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00037370: 2020 207b 367d 207c 2030 2020 2030 2020 {6} | 0 0 │ │ │ │ -00037380: 2020 3020 2020 3020 2020 2d61 3320 2020 0 0 -a3 │ │ │ │ -00037390: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000373a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000373b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000373c0: 2020 207b 377d 207c 202d 6220 2061 2020 {7} | -b a │ │ │ │ -000373d0: 2020 3020 2020 3020 2020 3020 2020 2020 0 0 0 │ │ │ │ -000373e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000373f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037400: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00037410: 2020 207b 377d 207c 2063 2020 2030 2020 {7} | c 0 │ │ │ │ -00037420: 2020 2d61 2020 2d62 3220 3020 2020 2020 -a -b2 0 │ │ │ │ -00037430: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00037440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037450: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00037460: 2020 207b 377d 207c 2030 2020 202d 6320 {7} | 0 -c │ │ │ │ -00037470: 2020 6220 2020 3020 2020 2d61 3220 2020 b 0 -a2 │ │ │ │ -00037480: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00037490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000374a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000370d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000370e0: 0a7c 6f31 3120 3d20 7b35 7d20 7c20 3020 .|o11 = {5} | 0 │ │ │ │ +000370f0: 2020 2d62 3320 2030 2020 2030 2020 2030 -b3 0 0 0 │ │ │ │ +00037100: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ +00037110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037120: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037130: 0a7c 2020 2020 2020 7b35 7d20 7c20 3020 .| {5} | 0 │ │ │ │ +00037140: 2020 2d62 3263 2030 2020 2030 2020 202d -b2c 0 0 - │ │ │ │ +00037150: 6132 6232 207c 2020 2020 2020 2020 2020 a2b2 | │ │ │ │ +00037160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037170: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037180: 0a7c 2020 2020 2020 7b35 7d20 7c20 3020 .| {5} | 0 │ │ │ │ +00037190: 2020 6162 3220 2030 2020 2030 2020 2030 ab2 0 0 0 │ │ │ │ +000371a0: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ +000371b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000371c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000371d0: 0a7c 2020 2020 2020 7b36 7d20 7c20 3020 .| {6} | 0 │ │ │ │ +000371e0: 2020 3020 2020 2030 2020 2030 2020 2062 0 0 0 b │ │ │ │ +000371f0: 3320 2020 207c 2020 2020 2020 2020 2020 3 | │ │ │ │ +00037200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037210: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037220: 0a7c 2020 2020 2020 7b35 7d20 7c20 2d61 .| {5} | -a │ │ │ │ +00037230: 3320 3020 2020 2030 2020 2030 2020 2030 3 0 0 0 0 │ │ │ │ +00037240: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ +00037250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037260: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037270: 0a7c 2020 2020 2020 7b35 7d20 7c20 3020 .| {5} | 0 │ │ │ │ +00037280: 2020 2d61 3320 2030 2020 2030 2020 2030 -a3 0 0 0 │ │ │ │ +00037290: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ +000372a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000372b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000372c0: 0a7c 2020 2020 2020 7b35 7d20 7c20 3020 .| {5} | 0 │ │ │ │ +000372d0: 2020 3020 2020 202d 6133 2030 2020 2030 0 -a3 0 0 │ │ │ │ +000372e0: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ +000372f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037300: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037310: 0a7c 2020 2020 2020 7b36 7d20 7c20 3020 .| {6} | 0 │ │ │ │ +00037320: 2020 3020 2020 2030 2020 202d 6133 2030 0 0 -a3 0 │ │ │ │ +00037330: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ +00037340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037350: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037360: 0a7c 2020 2020 2020 7b36 7d20 7c20 3020 .| {6} | 0 │ │ │ │ +00037370: 2020 3020 2020 2030 2020 2030 2020 202d 0 0 0 - │ │ │ │ +00037380: 6133 2020 207c 2020 2020 2020 2020 2020 a3 | │ │ │ │ +00037390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000373a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000373b0: 0a7c 2020 2020 2020 7b37 7d20 7c20 2d62 .| {7} | -b │ │ │ │ +000373c0: 2020 6120 2020 2030 2020 2030 2020 2030 a 0 0 0 │ │ │ │ +000373d0: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ +000373e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000373f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037400: 0a7c 2020 2020 2020 7b37 7d20 7c20 6320 .| {7} | c │ │ │ │ +00037410: 2020 3020 2020 202d 6120 202d 6232 2030 0 -a -b2 0 │ │ │ │ +00037420: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ +00037430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037440: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037450: 0a7c 2020 2020 2020 7b37 7d20 7c20 3020 .| {7} | 0 │ │ │ │ +00037460: 2020 2d63 2020 2062 2020 2030 2020 202d -c b 0 - │ │ │ │ +00037470: 6132 2020 207c 2020 2020 2020 2020 2020 a2 | │ │ │ │ +00037480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037490: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000374a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000374b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000374c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000374d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000374e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000374f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00037500: 2020 2020 2020 2020 2020 2031 3220 2020 12 │ │ │ │ -00037510: 2020 2035 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +000374e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000374f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00037500: 3132 2020 2020 2020 3520 2020 2020 2020 12 5 │ │ │ │ +00037510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037540: 2020 2020 2020 2020 2020 7c0a 7c6f 3131 |.|o11 │ │ │ │ -00037550: 203a 204d 6174 7269 7820 5320 2020 3c2d : Matrix S <- │ │ │ │ -00037560: 2d20 5320 2020 2020 2020 2020 2020 2020 - S │ │ │ │ +00037530: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037540: 0a7c 6f31 3120 3a20 4d61 7472 6978 2053 .|o11 : Matrix S │ │ │ │ +00037550: 2020 203c 2d2d 2053 2020 2020 2020 2020 <-- S │ │ │ │ +00037560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037590: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00037580: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037590: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 000375a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000375b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000375c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000375d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000375e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3132 ----------+.|i12 │ │ │ │ -000375f0: 203a 2046 2e64 645f 3220 2020 2020 2020 : F.dd_2 │ │ │ │ +000375d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +000375e0: 0a7c 6931 3220 3a20 462e 6464 5f32 2020 .|i12 : F.dd_2 │ │ │ │ +000375f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037630: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00037620: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037630: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00037640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037680: 2020 2020 2020 2020 2020 7c0a 7c6f 3132 |.|o12 │ │ │ │ -00037690: 203d 207b 357d 207c 2062 3320 2020 3020 = {5} | b3 0 │ │ │ │ -000376a0: 2020 3020 2020 3020 2020 2020 3020 2020 0 0 0 │ │ │ │ -000376b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000376c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000376d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000376e0: 2020 207b 357d 207c 202d 6132 6220 3020 {5} | -a2b 0 │ │ │ │ -000376f0: 2020 3020 2020 3020 2020 2020 3020 2020 0 0 0 │ │ │ │ -00037700: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00037710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037720: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00037730: 2020 207b 357d 207c 202d 6132 6320 3020 {5} | -a2c 0 │ │ │ │ -00037740: 2020 3020 2020 2d61 3262 3220 3020 2020 0 -a2b2 0 │ │ │ │ -00037750: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00037760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037770: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00037780: 2020 207b 357d 207c 2030 2020 2020 2d62 {5} | 0 -b │ │ │ │ -00037790: 3320 3020 2020 3020 2020 2020 3020 2020 3 0 0 0 │ │ │ │ -000377a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000377b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000377c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000377d0: 2020 207b 357d 207c 2030 2020 2020 3020 {5} | 0 0 │ │ │ │ -000377e0: 2020 2d62 3320 3020 2020 2020 3020 2020 -b3 0 0 │ │ │ │ -000377f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00037800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037810: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00037820: 2020 207b 357d 207c 202d 6133 2020 3020 {5} | -a3 0 │ │ │ │ -00037830: 2020 3020 2020 3020 2020 2020 3020 2020 0 0 0 │ │ │ │ -00037840: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00037850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037860: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00037870: 2020 207b 367d 207c 2030 2020 2020 3020 {6} | 0 0 │ │ │ │ -00037880: 2020 3020 2020 2d62 3320 2020 3020 2020 0 -b3 0 │ │ │ │ -00037890: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000378a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000378b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000378c0: 2020 207b 367d 207c 2030 2020 2020 3020 {6} | 0 0 │ │ │ │ -000378d0: 2020 3020 2020 3020 2020 2020 2d62 3320 0 0 -b3 │ │ │ │ -000378e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000378f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037900: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00037910: 2020 207b 367d 207c 2030 2020 2020 3020 {6} | 0 0 │ │ │ │ -00037920: 2020 3020 2020 6133 2020 2020 3020 2020 0 a3 0 │ │ │ │ -00037930: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00037940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037950: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00037960: 2020 207b 377d 207c 202d 6220 2020 6120 {7} | -b a │ │ │ │ -00037970: 2020 3020 2020 3020 2020 2020 3020 2020 0 0 0 │ │ │ │ -00037980: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00037990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000379a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000379b0: 2020 207b 377d 207c 2063 2020 2020 3020 {7} | c 0 │ │ │ │ -000379c0: 2020 6120 2020 6232 2020 2020 3020 2020 a b2 0 │ │ │ │ -000379d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000379e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000379f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00037a00: 2020 207b 377d 207c 2030 2020 2020 2d63 {7} | 0 -c │ │ │ │ -00037a10: 2020 2d62 2020 3020 2020 2020 6132 2020 -b 0 a2 │ │ │ │ -00037a20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00037a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037a40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00037670: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037680: 0a7c 6f31 3220 3d20 7b35 7d20 7c20 6233 .|o12 = {5} | b3 │ │ │ │ +00037690: 2020 2030 2020 2030 2020 2030 2020 2020 0 0 0 │ │ │ │ +000376a0: 2030 2020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +000376b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000376c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000376d0: 0a7c 2020 2020 2020 7b35 7d20 7c20 2d61 .| {5} | -a │ │ │ │ +000376e0: 3262 2030 2020 2030 2020 2030 2020 2020 2b 0 0 0 │ │ │ │ +000376f0: 2030 2020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +00037700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037710: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037720: 0a7c 2020 2020 2020 7b35 7d20 7c20 2d61 .| {5} | -a │ │ │ │ +00037730: 3263 2030 2020 2030 2020 202d 6132 6232 2c 0 0 -a2b2 │ │ │ │ +00037740: 2030 2020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +00037750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037760: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037770: 0a7c 2020 2020 2020 7b35 7d20 7c20 3020 .| {5} | 0 │ │ │ │ +00037780: 2020 202d 6233 2030 2020 2030 2020 2020 -b3 0 0 │ │ │ │ +00037790: 2030 2020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +000377a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000377b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000377c0: 0a7c 2020 2020 2020 7b35 7d20 7c20 3020 .| {5} | 0 │ │ │ │ +000377d0: 2020 2030 2020 202d 6233 2030 2020 2020 0 -b3 0 │ │ │ │ +000377e0: 2030 2020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +000377f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037800: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037810: 0a7c 2020 2020 2020 7b35 7d20 7c20 2d61 .| {5} | -a │ │ │ │ +00037820: 3320 2030 2020 2030 2020 2030 2020 2020 3 0 0 0 │ │ │ │ +00037830: 2030 2020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +00037840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037850: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037860: 0a7c 2020 2020 2020 7b36 7d20 7c20 3020 .| {6} | 0 │ │ │ │ +00037870: 2020 2030 2020 2030 2020 202d 6233 2020 0 0 -b3 │ │ │ │ +00037880: 2030 2020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +00037890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000378a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000378b0: 0a7c 2020 2020 2020 7b36 7d20 7c20 3020 .| {6} | 0 │ │ │ │ +000378c0: 2020 2030 2020 2030 2020 2030 2020 2020 0 0 0 │ │ │ │ +000378d0: 202d 6233 207c 2020 2020 2020 2020 2020 -b3 | │ │ │ │ +000378e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000378f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037900: 0a7c 2020 2020 2020 7b36 7d20 7c20 3020 .| {6} | 0 │ │ │ │ +00037910: 2020 2030 2020 2030 2020 2061 3320 2020 0 0 a3 │ │ │ │ +00037920: 2030 2020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +00037930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037940: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037950: 0a7c 2020 2020 2020 7b37 7d20 7c20 2d62 .| {7} | -b │ │ │ │ +00037960: 2020 2061 2020 2030 2020 2030 2020 2020 a 0 0 │ │ │ │ +00037970: 2030 2020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +00037980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037990: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000379a0: 0a7c 2020 2020 2020 7b37 7d20 7c20 6320 .| {7} | c │ │ │ │ +000379b0: 2020 2030 2020 2061 2020 2062 3220 2020 0 a b2 │ │ │ │ +000379c0: 2030 2020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ +000379d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000379e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000379f0: 0a7c 2020 2020 2020 7b37 7d20 7c20 3020 .| {7} | 0 │ │ │ │ +00037a00: 2020 202d 6320 202d 6220 2030 2020 2020 -c -b 0 │ │ │ │ +00037a10: 2061 3220 207c 2020 2020 2020 2020 2020 a2 | │ │ │ │ +00037a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037a30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037a40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00037a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037a90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00037aa0: 2020 2020 2020 2020 2020 2031 3220 2020 12 │ │ │ │ -00037ab0: 2020 2035 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +00037a80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037a90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00037aa0: 3132 2020 2020 2020 3520 2020 2020 2020 12 5 │ │ │ │ +00037ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037ae0: 2020 2020 2020 2020 2020 7c0a 7c6f 3132 |.|o12 │ │ │ │ -00037af0: 203a 204d 6174 7269 7820 5320 2020 3c2d : Matrix S <- │ │ │ │ -00037b00: 2d20 5320 2020 2020 2020 2020 2020 2020 - S │ │ │ │ +00037ad0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037ae0: 0a7c 6f31 3220 3a20 4d61 7472 6978 2053 .|o12 : Matrix S │ │ │ │ +00037af0: 2020 203c 2d2d 2053 2020 2020 2020 2020 <-- S │ │ │ │ +00037b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037b30: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00037b20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037b30: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00037b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a49 6620 ----------+..If │ │ │ │ -00037b90: 7468 6520 636f 6d70 6c65 7869 7479 206f the complexity o │ │ │ │ -00037ba0: 6620 4d20 6973 206e 6f74 206d 6178 696d f M is not maxim │ │ │ │ -00037bb0: 616c 2c20 7468 656e 2074 6865 2066 696e al, then the fin │ │ │ │ -00037bc0: 6974 6520 7265 736f 6c75 7469 6f6e 2074 ite resolution t │ │ │ │ -00037bd0: 616b 6573 2070 6c61 6365 0a6f 7665 7220 akes place.over │ │ │ │ -00037be0: 616e 2069 6e74 6572 6d65 6469 6174 6520 an intermediate │ │ │ │ -00037bf0: 636f 6d70 6c65 7465 2069 6e74 6572 7365 complete interse │ │ │ │ -00037c00: 6374 696f 6e3a 0a0a 2b2d 2d2d 2d2d 2d2d ction:..+------- │ │ │ │ +00037b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00037b80: 0a0a 4966 2074 6865 2063 6f6d 706c 6578 ..If the complex │ │ │ │ +00037b90: 6974 7920 6f66 204d 2069 7320 6e6f 7420 ity of M is not │ │ │ │ +00037ba0: 6d61 7869 6d61 6c2c 2074 6865 6e20 7468 maximal, then th │ │ │ │ +00037bb0: 6520 6669 6e69 7465 2072 6573 6f6c 7574 e finite resolut │ │ │ │ +00037bc0: 696f 6e20 7461 6b65 7320 706c 6163 650a ion takes place. │ │ │ │ +00037bd0: 6f76 6572 2061 6e20 696e 7465 726d 6564 over an intermed │ │ │ │ +00037be0: 6961 7465 2063 6f6d 706c 6574 6520 696e iate complete in │ │ │ │ +00037bf0: 7465 7273 6563 7469 6f6e 3a0a 0a2b 2d2d tersection:..+-- │ │ │ │ +00037c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037c50: 2d2d 2d2d 2d2d 2b0a 7c69 3133 203a 2053 ------+.|i13 : S │ │ │ │ -00037c60: 203d 205a 5a2f 3130 315b 612c 622c 632c = ZZ/101[a,b,c, │ │ │ │ -00037c70: 645d 2020 2020 2020 2020 2020 2020 2020 d] │ │ │ │ +00037c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00037c50: 3320 3a20 5320 3d20 5a5a 2f31 3031 5b61 3 : S = ZZ/101[a │ │ │ │ +00037c60: 2c62 2c63 2c64 5d20 2020 2020 2020 2020 ,b,c,d] │ │ │ │ +00037c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037ca0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00037c90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00037ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037cf0: 2020 2020 2020 7c0a 7c6f 3133 203d 2053 |.|o13 = S │ │ │ │ +00037ce0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00037cf0: 3320 3d20 5320 2020 2020 2020 2020 2020 3 = S │ │ │ │ 00037d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037d40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00037d30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00037d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037d90: 2020 2020 2020 7c0a 7c6f 3133 203a 2050 |.|o13 : P │ │ │ │ -00037da0: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ +00037d80: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00037d90: 3320 3a20 506f 6c79 6e6f 6d69 616c 5269 3 : PolynomialRi │ │ │ │ +00037da0: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ 00037db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037de0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00037dd0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00037de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037e30: 2d2d 2d2d 2d2d 2b0a 7c69 3134 203a 2066 ------+.|i14 : f │ │ │ │ -00037e40: 6631 203d 206d 6174 7269 7822 6133 2c62 f1 = matrix"a3,b │ │ │ │ -00037e50: 332c 6333 2c64 3322 2020 2020 2020 2020 3,c3,d3" │ │ │ │ +00037e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00037e30: 3420 3a20 6666 3120 3d20 6d61 7472 6978 4 : ff1 = matrix │ │ │ │ +00037e40: 2261 332c 6233 2c63 332c 6433 2220 2020 "a3,b3,c3,d3" │ │ │ │ +00037e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037e80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00037e70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00037e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037ed0: 2020 2020 2020 7c0a 7c6f 3134 203d 207c |.|o14 = | │ │ │ │ -00037ee0: 2061 3320 6233 2063 3320 6433 207c 2020 a3 b3 c3 d3 | │ │ │ │ +00037ec0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00037ed0: 3420 3d20 7c20 6133 2062 3320 6333 2064 4 = | a3 b3 c3 d │ │ │ │ +00037ee0: 3320 7c20 2020 2020 2020 2020 2020 2020 3 | │ │ │ │ 00037ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037f20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00037f10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00037f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037f70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00037f80: 2020 2020 2020 2031 2020 2020 2020 3420 1 4 │ │ │ │ +00037f60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00037f70: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ +00037f80: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 00037f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037fc0: 2020 2020 2020 7c0a 7c6f 3134 203a 204d |.|o14 : M │ │ │ │ -00037fd0: 6174 7269 7820 5320 203c 2d2d 2053 2020 atrix S <-- S │ │ │ │ +00037fb0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00037fc0: 3420 3a20 4d61 7472 6978 2053 2020 3c2d 4 : Matrix S <- │ │ │ │ +00037fd0: 2d20 5320 2020 2020 2020 2020 2020 2020 - S │ │ │ │ 00037fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038010: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00038000: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00038010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038060: 2d2d 2d2d 2d2d 2b0a 7c69 3135 203a 2066 ------+.|i15 : f │ │ │ │ -00038070: 6620 3d66 6631 2a72 616e 646f 6d28 736f f =ff1*random(so │ │ │ │ -00038080: 7572 6365 2066 6631 2c20 736f 7572 6365 urce ff1, source │ │ │ │ -00038090: 2066 6631 2920 2020 2020 2020 2020 2020 ff1) │ │ │ │ -000380a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000380b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00038050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00038060: 3520 3a20 6666 203d 6666 312a 7261 6e64 5 : ff =ff1*rand │ │ │ │ +00038070: 6f6d 2873 6f75 7263 6520 6666 312c 2073 om(source ff1, s │ │ │ │ +00038080: 6f75 7263 6520 6666 3129 2020 2020 2020 ource ff1) │ │ │ │ +00038090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000380a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000380b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000380c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000380d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000380e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000380f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038100: 2020 2020 2020 7c0a 7c6f 3135 203d 207c |.|o15 = | │ │ │ │ -00038110: 2032 3461 332d 3336 6233 2d33 3063 332d 24a3-36b3-30c3- │ │ │ │ -00038120: 3239 6433 2031 3961 332b 3139 6233 2d31 29d3 19a3+19b3-1 │ │ │ │ -00038130: 3063 332d 3239 6433 202d 3861 332d 3232 0c3-29d3 -8a3-22 │ │ │ │ -00038140: 6233 2d32 3963 332d 3234 6433 2020 2020 b3-29c3-24d3 │ │ │ │ -00038150: 2020 2020 2020 7c0a 7c20 2020 2020 202d |.| - │ │ │ │ +000380f0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00038100: 3520 3d20 7c20 3234 6133 2d33 3662 332d 5 = | 24a3-36b3- │ │ │ │ +00038110: 3330 6333 2d32 3964 3320 3139 6133 2b31 30c3-29d3 19a3+1 │ │ │ │ +00038120: 3962 332d 3130 6333 2d32 3964 3320 2d38 9b3-10c3-29d3 -8 │ │ │ │ +00038130: 6133 2d32 3262 332d 3239 6333 2d32 3464 a3-22b3-29c3-24d │ │ │ │ +00038140: 3320 2020 2020 2020 2020 207c 0a7c 2020 3 |.| │ │ │ │ +00038150: 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ------------ │ │ │ │ 00038160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000381a0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 202d ------|.| - │ │ │ │ -000381b0: 3338 6133 2d31 3662 332b 3339 6333 2b32 38a3-16b3+39c3+2 │ │ │ │ -000381c0: 3164 3320 7c20 2020 2020 2020 2020 2020 1d3 | │ │ │ │ +00038190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +000381a0: 2020 2020 2d33 3861 332d 3136 6233 2b33 -38a3-16b3+3 │ │ │ │ +000381b0: 3963 332b 3231 6433 207c 2020 2020 2020 9c3+21d3 | │ │ │ │ +000381c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000381d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000381e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000381f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000381e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000381f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038240: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00038250: 2020 2020 2020 2031 2020 2020 2020 3420 1 4 │ │ │ │ +00038230: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00038240: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ +00038250: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 00038260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038290: 2020 2020 2020 7c0a 7c6f 3135 203a 204d |.|o15 : M │ │ │ │ -000382a0: 6174 7269 7820 5320 203c 2d2d 2053 2020 atrix S <-- S │ │ │ │ +00038280: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00038290: 3520 3a20 4d61 7472 6978 2053 2020 3c2d 5 : Matrix S <- │ │ │ │ +000382a0: 2d20 5320 2020 2020 2020 2020 2020 2020 - S │ │ │ │ 000382b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000382c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000382d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000382e0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000382d0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000382e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000382f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038330: 2d2d 2d2d 2d2d 2b0a 7c69 3136 203a 2052 ------+.|i16 : R │ │ │ │ -00038340: 203d 2053 2f69 6465 616c 2066 6620 2020 = S/ideal ff │ │ │ │ +00038320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00038330: 3620 3a20 5220 3d20 532f 6964 6561 6c20 6 : R = S/ideal │ │ │ │ +00038340: 6666 2020 2020 2020 2020 2020 2020 2020 ff │ │ │ │ 00038350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038380: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00038370: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00038380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000383a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000383b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000383c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000383d0: 2020 2020 2020 7c0a 7c6f 3136 203d 2052 |.|o16 = R │ │ │ │ +000383c0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +000383d0: 3620 3d20 5220 2020 2020 2020 2020 2020 6 = R │ │ │ │ 000383e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000383f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038420: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00038410: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00038420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038470: 2020 2020 2020 7c0a 7c6f 3136 203a 2051 |.|o16 : Q │ │ │ │ -00038480: 756f 7469 656e 7452 696e 6720 2020 2020 uotientRing │ │ │ │ +00038460: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00038470: 3620 3a20 5175 6f74 6965 6e74 5269 6e67 6 : QuotientRing │ │ │ │ +00038480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000384a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000384b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000384c0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000384b0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000384c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000384d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000384e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000384f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038510: 2d2d 2d2d 2d2d 2b0a 7c69 3137 203a 204d ------+.|i17 : M │ │ │ │ -00038520: 203d 2068 6967 6853 797a 7967 7920 2852 = highSyzygy (R │ │ │ │ -00038530: 5e31 2f69 6465 616c 2261 3262 3222 2920 ^1/ideal"a2b2") │ │ │ │ +00038500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00038510: 3720 3a20 4d20 3d20 6869 6768 5379 7a79 7 : M = highSyzy │ │ │ │ +00038520: 6779 2028 525e 312f 6964 6561 6c22 6132 gy (R^1/ideal"a2 │ │ │ │ +00038530: 6232 2229 2020 2020 2020 2020 2020 2020 b2") │ │ │ │ 00038540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038560: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00038550: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00038560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000385a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000385b0: 2020 2020 2020 7c0a 7c6f 3137 203d 2063 |.|o17 = c │ │ │ │ -000385c0: 6f6b 6572 6e65 6c20 7b36 7d20 7c20 6232 okernel {6} | b2 │ │ │ │ -000385d0: 2030 202d 6132 2030 207c 2020 2020 2020 0 -a2 0 | │ │ │ │ +000385a0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +000385b0: 3720 3d20 636f 6b65 726e 656c 207b 367d 7 = cokernel {6} │ │ │ │ +000385c0: 207c 2062 3220 3020 2d61 3220 3020 7c20 | b2 0 -a2 0 | │ │ │ │ +000385d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000385e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000385f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038600: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00038610: 2020 2020 2020 2020 7b37 7d20 7c20 6120 {7} | a │ │ │ │ -00038620: 2062 2030 2020 2030 207c 2020 2020 2020 b 0 0 | │ │ │ │ +000385f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00038600: 2020 2020 2020 2020 2020 2020 207b 377d {7} │ │ │ │ +00038610: 207c 2061 2020 6220 3020 2020 3020 7c20 | a b 0 0 | │ │ │ │ +00038620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038650: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00038660: 2020 2020 2020 2020 7b37 7d20 7c20 3020 {7} | 0 │ │ │ │ -00038670: 2030 2062 2020 2061 207c 2020 2020 2020 0 b a | │ │ │ │ +00038640: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00038650: 2020 2020 2020 2020 2020 2020 207b 377d {7} │ │ │ │ +00038660: 207c 2030 2020 3020 6220 2020 6120 7c20 | 0 0 b a | │ │ │ │ +00038670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000386a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00038690: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000386a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000386b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000386c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000386d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000386e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000386f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00038700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038710: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ +000386e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000386f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00038700: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ +00038710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038740: 2020 2020 2020 7c0a 7c6f 3137 203a 2052 |.|o17 : R │ │ │ │ -00038750: 2d6d 6f64 756c 652c 2071 756f 7469 656e -module, quotien │ │ │ │ -00038760: 7420 6f66 2052 2020 2020 2020 2020 2020 t of R │ │ │ │ +00038730: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00038740: 3720 3a20 522d 6d6f 6475 6c65 2c20 7175 7 : R-module, qu │ │ │ │ +00038750: 6f74 6965 6e74 206f 6620 5220 2020 2020 otient of R │ │ │ │ +00038760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038790: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00038780: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00038790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000387a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000387b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000387c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000387d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000387e0: 2d2d 2d2d 2d2d 2b0a 7c69 3138 203a 2063 ------+.|i18 : c │ │ │ │ -000387f0: 6f6d 706c 6578 6974 7920 4d20 2020 2020 omplexity M │ │ │ │ +000387d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +000387e0: 3820 3a20 636f 6d70 6c65 7869 7479 204d 8 : complexity M │ │ │ │ +000387f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038830: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00038820: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00038830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038880: 2020 2020 2020 7c0a 7c6f 3138 203d 2032 |.|o18 = 2 │ │ │ │ +00038870: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00038880: 3820 3d20 3220 2020 2020 2020 2020 2020 8 = 2 │ │ │ │ 00038890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000388a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000388b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000388c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000388d0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000388c0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000388d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000388e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000388f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038920: 2d2d 2d2d 2d2d 2b0a 7c69 3139 203a 206d ------+.|i19 : m │ │ │ │ -00038930: 6620 3d20 6d61 7472 6978 4661 6374 6f72 f = matrixFactor │ │ │ │ -00038940: 697a 6174 696f 6e20 2866 662c 204d 2920 ization (ff, M) │ │ │ │ +00038910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00038920: 3920 3a20 6d66 203d 206d 6174 7269 7846 9 : mf = matrixF │ │ │ │ +00038930: 6163 746f 7269 7a61 7469 6f6e 2028 6666 actorization (ff │ │ │ │ +00038940: 2c20 4d29 2020 2020 2020 2020 2020 2020 , M) │ │ │ │ 00038950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038970: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00038960: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00038970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000389a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000389b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000389c0: 2020 2020 2020 7c0a 7c6f 3139 203d 207b |.|o19 = { │ │ │ │ -000389d0: 7b37 7d20 7c20 2d61 202d 3336 6220 3020 {7} | -a -36b 0 │ │ │ │ -000389e0: 6120 7c2c 207b 387d 207c 2033 3561 3220 a |, {8} | 35a2 │ │ │ │ -000389f0: 2034 3862 2020 3020 2020 2020 2d33 3362 48b 0 -33b │ │ │ │ -00038a00: 2030 2020 2020 207c 2c20 7b36 7d20 7c20 0 |, {6} | │ │ │ │ -00038a10: 3020 2020 3336 7c0a 7c20 2020 2020 2020 0 36|.| │ │ │ │ -00038a20: 7b36 7d20 7c20 6232 2061 3220 2020 3020 {6} | b2 a2 0 │ │ │ │ -00038a30: 3020 7c20 207b 387d 207c 202d 3335 6232 0 | {8} | -35b2 │ │ │ │ -00038a40: 202d 3335 6120 3020 2020 2020 3020 2020 -35a 0 0 │ │ │ │ -00038a50: 2030 2020 2020 207c 2020 7b37 7d20 7c20 0 | {7} | │ │ │ │ -00038a60: 2d33 3620 3020 7c0a 7c20 2020 2020 2020 -36 0 |.| │ │ │ │ -00038a70: 7b37 7d20 7c20 3020 2030 2020 2020 6220 {7} | 0 0 b │ │ │ │ -00038a80: 6120 7c20 207b 387d 207c 2030 2020 2020 a | {8} | 0 │ │ │ │ -00038a90: 2030 2020 2020 3333 6232 2020 3333 6120 0 33b2 33a │ │ │ │ -00038aa0: 202d 3333 6232 207c 2020 7b37 7d20 7c20 -33b2 | {7} | │ │ │ │ -00038ab0: 3120 2020 3020 7c0a 7c20 2020 2020 2020 1 0 |.| │ │ │ │ -00038ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038ad0: 2020 2020 207b 387d 207c 2030 2020 2020 {8} | 0 │ │ │ │ -00038ae0: 2030 2020 2020 2d34 3361 3220 2d33 3362 0 -43a2 -33b │ │ │ │ -00038af0: 2030 2020 2020 207c 2020 2020 2020 2020 0 | │ │ │ │ -00038b00: 2020 2020 2020 7c0a 7c20 2020 2020 202d |.| - │ │ │ │ +000389b0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +000389c0: 3920 3d20 7b7b 377d 207c 202d 6120 2d33 9 = {{7} | -a -3 │ │ │ │ +000389d0: 3662 2030 2061 207c 2c20 7b38 7d20 7c20 6b 0 a |, {8} | │ │ │ │ +000389e0: 3335 6132 2020 3438 6220 2030 2020 2020 35a2 48b 0 │ │ │ │ +000389f0: 202d 3333 6220 3020 2020 2020 7c2c 207b -33b 0 |, { │ │ │ │ +00038a00: 367d 207c 2030 2020 2033 367c 0a7c 2020 6} | 0 36|.| │ │ │ │ +00038a10: 2020 2020 207b 367d 207c 2062 3220 6132 {6} | b2 a2 │ │ │ │ +00038a20: 2020 2030 2030 207c 2020 7b38 7d20 7c20 0 0 | {8} | │ │ │ │ +00038a30: 2d33 3562 3220 2d33 3561 2030 2020 2020 -35b2 -35a 0 │ │ │ │ +00038a40: 2030 2020 2020 3020 2020 2020 7c20 207b 0 0 | { │ │ │ │ +00038a50: 377d 207c 202d 3336 2030 207c 0a7c 2020 7} | -36 0 |.| │ │ │ │ +00038a60: 2020 2020 207b 377d 207c 2030 2020 3020 {7} | 0 0 │ │ │ │ +00038a70: 2020 2062 2061 207c 2020 7b38 7d20 7c20 b a | {8} | │ │ │ │ +00038a80: 3020 2020 2020 3020 2020 2033 3362 3220 0 0 33b2 │ │ │ │ +00038a90: 2033 3361 2020 2d33 3362 3220 7c20 207b 33a -33b2 | { │ │ │ │ +00038aa0: 377d 207c 2031 2020 2030 207c 0a7c 2020 7} | 1 0 |.| │ │ │ │ +00038ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00038ac0: 2020 2020 2020 2020 2020 7b38 7d20 7c20 {8} | │ │ │ │ +00038ad0: 3020 2020 2020 3020 2020 202d 3433 6132 0 0 -43a2 │ │ │ │ +00038ae0: 202d 3333 6220 3020 2020 2020 7c20 2020 -33b 0 | │ │ │ │ +00038af0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00038b00: 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ------------ │ │ │ │ 00038b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038b50: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2030 ------|.| 0 │ │ │ │ -00038b60: 2020 7c7d 2020 2020 2020 2020 2020 2020 |} │ │ │ │ +00038b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00038b50: 2020 2020 3020 207c 7d20 2020 2020 2020 0 |} │ │ │ │ +00038b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038ba0: 2020 2020 2020 7c0a 7c20 2020 2020 2033 |.| 3 │ │ │ │ -00038bb0: 3620 7c20 2020 2020 2020 2020 2020 2020 6 | │ │ │ │ +00038b90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00038ba0: 2020 2020 3336 207c 2020 2020 2020 2020 36 | │ │ │ │ +00038bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038bf0: 2020 2020 2020 7c0a 7c20 2020 2020 2030 |.| 0 │ │ │ │ -00038c00: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00038be0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00038bf0: 2020 2020 3020 207c 2020 2020 2020 2020 0 | │ │ │ │ +00038c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038c40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00038c30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00038c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038c90: 2020 2020 2020 7c0a 7c6f 3139 203a 204c |.|o19 : L │ │ │ │ -00038ca0: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +00038c80: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00038c90: 3920 3a20 4c69 7374 2020 2020 2020 2020 9 : List │ │ │ │ +00038ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038ce0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00038cd0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00038ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038d30: 2d2d 2d2d 2d2d 2b0a 7c69 3230 203a 2063 ------+.|i20 : c │ │ │ │ -00038d40: 6f6d 706c 6578 6974 7920 6d66 2020 2020 omplexity mf │ │ │ │ +00038d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +00038d30: 3020 3a20 636f 6d70 6c65 7869 7479 206d 0 : complexity m │ │ │ │ +00038d40: 6620 2020 2020 2020 2020 2020 2020 2020 f │ │ │ │ 00038d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038d80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00038d70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00038d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038dd0: 2020 2020 2020 7c0a 7c6f 3230 203d 2032 |.|o20 = 2 │ │ │ │ +00038dc0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00038dd0: 3020 3d20 3220 2020 2020 2020 2020 2020 0 = 2 │ │ │ │ 00038de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038e20: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00038e10: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00038e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038e70: 2d2d 2d2d 2d2d 2b0a 7c69 3231 203a 2042 ------+.|i21 : B │ │ │ │ -00038e80: 5261 6e6b 7320 6d66 2020 2020 2020 2020 Ranks mf │ │ │ │ +00038e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +00038e70: 3120 3a20 4252 616e 6b73 206d 6620 2020 1 : BRanks mf │ │ │ │ +00038e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038ec0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00038eb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00038ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038f10: 2020 2020 2020 7c0a 7c6f 3231 203d 207b |.|o21 = { │ │ │ │ -00038f20: 7b32 2c20 327d 2c20 7b31 2c20 327d 7d20 {2, 2}, {1, 2}} │ │ │ │ +00038f00: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00038f10: 3120 3d20 7b7b 322c 2032 7d2c 207b 312c 1 = {{2, 2}, {1, │ │ │ │ +00038f20: 2032 7d7d 2020 2020 2020 2020 2020 2020 2}} │ │ │ │ 00038f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038f60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00038f50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00038f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038fb0: 2020 2020 2020 7c0a 7c6f 3231 203a 204c |.|o21 : L │ │ │ │ -00038fc0: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +00038fa0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00038fb0: 3120 3a20 4c69 7374 2020 2020 2020 2020 1 : List │ │ │ │ +00038fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039000: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00038ff0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00039000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039050: 2d2d 2d2d 2d2d 2b0a 7c69 3232 203a 2047 ------+.|i22 : G │ │ │ │ -00039060: 203d 206d 616b 6546 696e 6974 6552 6573 = makeFiniteRes │ │ │ │ -00039070: 6f6c 7574 696f 6e28 6666 2c6d 6629 3b20 olution(ff,mf); │ │ │ │ +00039040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +00039050: 3220 3a20 4720 3d20 6d61 6b65 4669 6e69 2 : G = makeFini │ │ │ │ +00039060: 7465 5265 736f 6c75 7469 6f6e 2866 662c teResolution(ff, │ │ │ │ +00039070: 6d66 293b 2020 2020 2020 2020 2020 2020 mf); │ │ │ │ 00039080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000390a0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00039090: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000390a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000390b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000390c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000390d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000390e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000390f0: 2d2d 2d2d 2d2d 2b0a 7c69 3233 203a 2063 ------+.|i23 : c │ │ │ │ -00039100: 6f64 696d 2072 696e 6720 4720 2020 2020 odim ring G │ │ │ │ +000390e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +000390f0: 3320 3a20 636f 6469 6d20 7269 6e67 2047 3 : codim ring G │ │ │ │ +00039100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039140: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00039130: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00039140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039190: 2020 2020 2020 7c0a 7c6f 3233 203d 2032 |.|o23 = 2 │ │ │ │ +00039180: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00039190: 3320 3d20 3220 2020 2020 2020 2020 2020 3 = 2 │ │ │ │ 000391a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000391b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000391c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000391d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000391e0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000391d0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000391e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000391f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039230: 2d2d 2d2d 2d2d 2b0a 7c69 3234 203a 2052 ------+.|i24 : R │ │ │ │ -00039240: 3120 3d20 7269 6e67 2047 2020 2020 2020 1 = ring G │ │ │ │ +00039220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +00039230: 3420 3a20 5231 203d 2072 696e 6720 4720 4 : R1 = ring G │ │ │ │ +00039240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039280: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00039270: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00039280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000392a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000392b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000392c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000392d0: 2020 2020 2020 7c0a 7c6f 3234 203d 2052 |.|o24 = R │ │ │ │ -000392e0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +000392c0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +000392d0: 3420 3d20 5231 2020 2020 2020 2020 2020 4 = R1 │ │ │ │ +000392e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000392f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039320: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00039310: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00039320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039370: 2020 2020 2020 7c0a 7c6f 3234 203a 2051 |.|o24 : Q │ │ │ │ -00039380: 756f 7469 656e 7452 696e 6720 2020 2020 uotientRing │ │ │ │ +00039360: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00039370: 3420 3a20 5175 6f74 6965 6e74 5269 6e67 4 : QuotientRing │ │ │ │ +00039380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000393a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000393b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000393c0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000393b0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000393c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000393d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000393e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000393f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039410: 2d2d 2d2d 2d2d 2b0a 7c69 3235 203a 2046 ------+.|i25 : F │ │ │ │ -00039420: 203d 2072 6573 2070 7275 6e65 2070 7573 = res prune pus │ │ │ │ -00039430: 6846 6f72 7761 7264 286d 6170 2852 2c52 hForward(map(R,R │ │ │ │ -00039440: 3129 2c4d 2920 2020 2020 2020 2020 2020 1),M) │ │ │ │ -00039450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039460: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00039400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +00039410: 3520 3a20 4620 3d20 7265 7320 7072 756e 5 : F = res prun │ │ │ │ +00039420: 6520 7075 7368 466f 7277 6172 6428 6d61 e pushForward(ma │ │ │ │ +00039430: 7028 522c 5231 292c 4d29 2020 2020 2020 p(R,R1),M) │ │ │ │ +00039440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039450: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00039460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000394a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000394b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000394c0: 2033 2020 2020 2020 2035 2020 2020 2020 3 5 │ │ │ │ -000394d0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000394a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000394b0: 2020 2020 2020 3320 2020 2020 2020 3520 3 5 │ │ │ │ +000394c0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000394d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000394e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000394f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039500: 2020 2020 2020 7c0a 7c6f 3235 203d 2052 |.|o25 = R │ │ │ │ -00039510: 3120 203c 2d2d 2052 3120 203c 2d2d 2052 1 <-- R1 <-- R │ │ │ │ -00039520: 3120 203c 2d2d 2030 2020 2020 2020 2020 1 <-- 0 │ │ │ │ +000394f0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00039500: 3520 3d20 5231 2020 3c2d 2d20 5231 2020 5 = R1 <-- R1 │ │ │ │ +00039510: 3c2d 2d20 5231 2020 3c2d 2d20 3020 2020 <-- R1 <-- 0 │ │ │ │ +00039520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039550: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00039540: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00039550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000395a0: 2020 2020 2020 7c0a 7c20 2020 2020 2030 |.| 0 │ │ │ │ -000395b0: 2020 2020 2020 2031 2020 2020 2020 2032 1 2 │ │ │ │ -000395c0: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ +00039590: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000395a0: 2020 2020 3020 2020 2020 2020 3120 2020 0 1 │ │ │ │ +000395b0: 2020 2020 3220 2020 2020 2020 3320 2020 2 3 │ │ │ │ +000395c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000395d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000395e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000395f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000395e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000395f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039640: 2020 2020 2020 7c0a 7c6f 3235 203a 2043 |.|o25 : C │ │ │ │ -00039650: 6861 696e 436f 6d70 6c65 7820 2020 2020 hainComplex │ │ │ │ +00039630: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00039640: 3520 3a20 4368 6169 6e43 6f6d 706c 6578 5 : ChainComplex │ │ │ │ +00039650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039690: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00039680: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00039690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000396a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000396b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000396c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000396d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000396e0: 2d2d 2d2d 2d2d 2b0a 7c69 3236 203a 2062 ------+.|i26 : b │ │ │ │ -000396f0: 6574 7469 2046 2020 2020 2020 2020 2020 etti F │ │ │ │ +000396d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +000396e0: 3620 3a20 6265 7474 6920 4620 2020 2020 6 : betti F │ │ │ │ +000396f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039730: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00039720: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00039730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039780: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00039790: 2020 2020 2020 3020 3120 3220 2020 2020 0 1 2 │ │ │ │ +00039770: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00039780: 2020 2020 2020 2020 2020 2030 2031 2032 0 1 2 │ │ │ │ +00039790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000397a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000397b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000397c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000397d0: 2020 2020 2020 7c0a 7c6f 3236 203d 2074 |.|o26 = t │ │ │ │ -000397e0: 6f74 616c 3a20 3320 3520 3220 2020 2020 otal: 3 5 2 │ │ │ │ +000397c0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +000397d0: 3620 3d20 746f 7461 6c3a 2033 2035 2032 6 = total: 3 5 2 │ │ │ │ +000397e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000397f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039820: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00039830: 2020 2036 3a20 3120 2e20 2e20 2020 2020 6: 1 . . │ │ │ │ +00039810: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00039820: 2020 2020 2020 2020 363a 2031 202e 202e 6: 1 . . │ │ │ │ +00039830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039870: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00039880: 2020 2037 3a20 3220 3420 2e20 2020 2020 7: 2 4 . │ │ │ │ +00039860: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00039870: 2020 2020 2020 2020 373a 2032 2034 202e 7: 2 4 . │ │ │ │ +00039880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000398a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000398b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000398c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000398d0: 2020 2038 3a20 2e20 2e20 2e20 2020 2020 8: . . . │ │ │ │ +000398b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000398c0: 2020 2020 2020 2020 383a 202e 202e 202e 8: . . . │ │ │ │ +000398d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000398e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000398f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039910: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00039920: 2020 2039 3a20 2e20 3120 3220 2020 2020 9: . 1 2 │ │ │ │ +00039900: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00039910: 2020 2020 2020 2020 393a 202e 2031 2032 9: . 1 2 │ │ │ │ +00039920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039960: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00039950: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00039960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000399a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000399b0: 2020 2020 2020 7c0a 7c6f 3236 203a 2042 |.|o26 : B │ │ │ │ -000399c0: 6574 7469 5461 6c6c 7920 2020 2020 2020 ettiTally │ │ │ │ +000399a0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +000399b0: 3620 3a20 4265 7474 6954 616c 6c79 2020 6 : BettiTally │ │ │ │ +000399c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000399d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000399e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000399f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039a00: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000399f0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00039a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039a50: 2d2d 2d2d 2d2d 2b0a 7c69 3237 203a 2062 ------+.|i27 : b │ │ │ │ -00039a60: 6574 7469 2047 2020 2020 2020 2020 2020 etti G │ │ │ │ +00039a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +00039a50: 3720 3a20 6265 7474 6920 4720 2020 2020 7 : betti G │ │ │ │ +00039a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039aa0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00039a90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00039aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039af0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00039b00: 2020 2020 2020 3020 3120 3220 2020 2020 0 1 2 │ │ │ │ +00039ae0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00039af0: 2020 2020 2020 2020 2020 2030 2031 2032 0 1 2 │ │ │ │ +00039b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039b40: 2020 2020 2020 7c0a 7c6f 3237 203d 2074 |.|o27 = t │ │ │ │ -00039b50: 6f74 616c 3a20 3320 3520 3220 2020 2020 otal: 3 5 2 │ │ │ │ +00039b30: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00039b40: 3720 3d20 746f 7461 6c3a 2033 2035 2032 7 = total: 3 5 2 │ │ │ │ +00039b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039b90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00039ba0: 2020 2036 3a20 3120 2e20 2e20 2020 2020 6: 1 . . │ │ │ │ +00039b80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00039b90: 2020 2020 2020 2020 363a 2031 202e 202e 6: 1 . . │ │ │ │ +00039ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039be0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00039bf0: 2020 2037 3a20 3220 3420 2e20 2020 2020 7: 2 4 . │ │ │ │ +00039bd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00039be0: 2020 2020 2020 2020 373a 2032 2034 202e 7: 2 4 . │ │ │ │ +00039bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039c30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00039c40: 2020 2038 3a20 2e20 2e20 2e20 2020 2020 8: . . . │ │ │ │ +00039c20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00039c30: 2020 2020 2020 2020 383a 202e 202e 202e 8: . . . │ │ │ │ +00039c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039c80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00039c90: 2020 2039 3a20 2e20 3120 3220 2020 2020 9: . 1 2 │ │ │ │ +00039c70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00039c80: 2020 2020 2020 2020 393a 202e 2031 2032 9: . 1 2 │ │ │ │ +00039c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039cd0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00039cc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00039cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039d20: 2020 2020 2020 7c0a 7c6f 3237 203a 2042 |.|o27 : B │ │ │ │ -00039d30: 6574 7469 5461 6c6c 7920 2020 2020 2020 ettiTally │ │ │ │ +00039d10: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00039d20: 3720 3a20 4265 7474 6954 616c 6c79 2020 7 : BettiTally │ │ │ │ +00039d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039d70: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00039d60: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00039d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039dc0: 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 ------+..See als │ │ │ │ -00039dd0: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ -00039de0: 2a6e 6f74 6520 6d61 7472 6978 4661 6374 *note matrixFact │ │ │ │ -00039df0: 6f72 697a 6174 696f 6e3a 206d 6174 7269 orization: matri │ │ │ │ -00039e00: 7846 6163 746f 7269 7a61 7469 6f6e 2c20 xFactorization, │ │ │ │ -00039e10: 2d2d 204d 6170 7320 696e 2061 2068 6967 -- Maps in a hig │ │ │ │ -00039e20: 6865 720a 2020 2020 636f 6469 6d65 6e73 her. codimens │ │ │ │ -00039e30: 696f 6e20 6d61 7472 6978 2066 6163 746f ion matrix facto │ │ │ │ -00039e40: 7269 7a61 7469 6f6e 0a20 202a 202a 6e6f rization. * *no │ │ │ │ -00039e50: 7465 2062 4d61 7073 3a20 624d 6170 732c te bMaps: bMaps, │ │ │ │ -00039e60: 202d 2d20 6c69 7374 2074 6865 206d 6170 -- list the map │ │ │ │ -00039e70: 7320 2064 5f70 3a42 5f31 2870 292d 2d3e s d_p:B_1(p)--> │ │ │ │ -00039e80: 425f 3028 7029 2069 6e20 610a 2020 2020 B_0(p) in a. │ │ │ │ -00039e90: 6d61 7472 6978 4661 6374 6f72 697a 6174 matrixFactorizat │ │ │ │ -00039ea0: 696f 6e0a 2020 2a20 2a6e 6f74 6520 7073 ion. * *note ps │ │ │ │ -00039eb0: 694d 6170 733a 2070 7369 4d61 7073 2c20 iMaps: psiMaps, │ │ │ │ -00039ec0: 2d2d 206c 6973 7420 7468 6520 6d61 7073 -- list the maps │ │ │ │ -00039ed0: 2020 7073 6928 7029 3a20 425f 3128 7029 psi(p): B_1(p) │ │ │ │ -00039ee0: 202d 2d3e 2041 5f30 2870 2d31 2920 696e --> A_0(p-1) in │ │ │ │ -00039ef0: 2061 0a20 2020 206d 6174 7269 7846 6163 a. matrixFac │ │ │ │ -00039f00: 746f 7269 7a61 7469 6f6e 0a20 202a 202a torization. * * │ │ │ │ -00039f10: 6e6f 7465 2068 4d61 7073 3a20 684d 6170 note hMaps: hMap │ │ │ │ -00039f20: 732c 202d 2d20 6c69 7374 2074 6865 206d s, -- list the m │ │ │ │ -00039f30: 6170 7320 2068 2870 293a 2041 5f30 2870 aps h(p): A_0(p │ │ │ │ -00039f40: 292d 2d3e 2041 5f31 2870 2920 696e 2061 )--> A_1(p) in a │ │ │ │ -00039f50: 0a20 2020 206d 6174 7269 7846 6163 746f . matrixFacto │ │ │ │ -00039f60: 7269 7a61 7469 6f6e 0a20 202a 202a 6e6f rization. * *no │ │ │ │ -00039f70: 7465 2063 6f6d 706c 6578 6974 793a 2063 te complexity: c │ │ │ │ -00039f80: 6f6d 706c 6578 6974 792c 202d 2d20 636f omplexity, -- co │ │ │ │ -00039f90: 6d70 6c65 7869 7479 206f 6620 6120 6d6f mplexity of a mo │ │ │ │ -00039fa0: 6475 6c65 206f 7665 7220 6120 636f 6d70 dule over a comp │ │ │ │ -00039fb0: 6c65 7465 0a20 2020 2069 6e74 6572 7365 lete. interse │ │ │ │ -00039fc0: 6374 696f 6e0a 0a57 6179 7320 746f 2075 ction..Ways to u │ │ │ │ -00039fd0: 7365 206d 616b 6546 696e 6974 6552 6573 se makeFiniteRes │ │ │ │ -00039fe0: 6f6c 7574 696f 6e3a 0a3d 3d3d 3d3d 3d3d olution:.======= │ │ │ │ -00039ff0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0003a000: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -0003a010: 226d 616b 6546 696e 6974 6552 6573 6f6c "makeFiniteResol │ │ │ │ -0003a020: 7574 696f 6e28 4d61 7472 6978 2c4c 6973 ution(Matrix,Lis │ │ │ │ -0003a030: 7429 220a 0a46 6f72 2074 6865 2070 726f t)"..For the pro │ │ │ │ -0003a040: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -0003a050: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -0003a060: 6f62 6a65 6374 202a 6e6f 7465 206d 616b object *note mak │ │ │ │ -0003a070: 6546 696e 6974 6552 6573 6f6c 7574 696f eFiniteResolutio │ │ │ │ -0003a080: 6e3a 206d 616b 6546 696e 6974 6552 6573 n: makeFiniteRes │ │ │ │ -0003a090: 6f6c 7574 696f 6e2c 2069 7320 6120 2a6e olution, is a *n │ │ │ │ -0003a0a0: 6f74 6520 6d65 7468 6f64 0a66 756e 6374 ote method.funct │ │ │ │ -0003a0b0: 696f 6e3a 2028 4d61 6361 756c 6179 3244 ion: (Macaulay2D │ │ │ │ -0003a0c0: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ -0003a0d0: 6e2c 2e0a 1f0a 4669 6c65 3a20 436f 6d70 n,....File: Comp │ │ │ │ -0003a0e0: 6c65 7465 496e 7465 7273 6563 7469 6f6e leteIntersection │ │ │ │ -0003a0f0: 5265 736f 6c75 7469 6f6e 732e 696e 666f Resolutions.info │ │ │ │ -0003a100: 2c20 4e6f 6465 3a20 6d61 6b65 4669 6e69 , Node: makeFini │ │ │ │ -0003a110: 7465 5265 736f 6c75 7469 6f6e 436f 6469 teResolutionCodi │ │ │ │ -0003a120: 6d32 2c20 4e65 7874 3a20 6d61 6b65 486f m2, Next: makeHo │ │ │ │ -0003a130: 6d6f 746f 7069 6573 2c20 5072 6576 3a20 motopies, Prev: │ │ │ │ -0003a140: 6d61 6b65 4669 6e69 7465 5265 736f 6c75 makeFiniteResolu │ │ │ │ -0003a150: 7469 6f6e 2c20 5570 3a20 546f 700a 0a6d tion, Up: Top..m │ │ │ │ -0003a160: 616b 6546 696e 6974 6552 6573 6f6c 7574 akeFiniteResolut │ │ │ │ -0003a170: 696f 6e43 6f64 696d 3220 2d2d 204d 6170 ionCodim2 -- Map │ │ │ │ -0003a180: 7320 6173 736f 6369 6174 6564 2074 6f20 s associated to │ │ │ │ -0003a190: 7468 6520 6669 6e69 7465 2072 6573 6f6c the finite resol │ │ │ │ -0003a1a0: 7574 696f 6e20 6f66 2061 2068 6967 6820 ution of a high │ │ │ │ -0003a1b0: 7379 7a79 6779 206d 6f64 756c 6520 696e syzygy module in │ │ │ │ -0003a1c0: 2063 6f64 696d 2032 0a2a 2a2a 2a2a 2a2a codim 2.******* │ │ │ │ +00039db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 -----------+..Se │ │ │ │ +00039dc0: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +00039dd0: 0a20 202a 202a 6e6f 7465 206d 6174 7269 . * *note matri │ │ │ │ +00039de0: 7846 6163 746f 7269 7a61 7469 6f6e 3a20 xFactorization: │ │ │ │ +00039df0: 6d61 7472 6978 4661 6374 6f72 697a 6174 matrixFactorizat │ │ │ │ +00039e00: 696f 6e2c 202d 2d20 4d61 7073 2069 6e20 ion, -- Maps in │ │ │ │ +00039e10: 6120 6869 6768 6572 0a20 2020 2063 6f64 a higher. cod │ │ │ │ +00039e20: 696d 656e 7369 6f6e 206d 6174 7269 7820 imension matrix │ │ │ │ +00039e30: 6661 6374 6f72 697a 6174 696f 6e0a 2020 factorization. │ │ │ │ +00039e40: 2a20 2a6e 6f74 6520 624d 6170 733a 2062 * *note bMaps: b │ │ │ │ +00039e50: 4d61 7073 2c20 2d2d 206c 6973 7420 7468 Maps, -- list th │ │ │ │ +00039e60: 6520 6d61 7073 2020 645f 703a 425f 3128 e maps d_p:B_1( │ │ │ │ +00039e70: 7029 2d2d 3e42 5f30 2870 2920 696e 2061 p)-->B_0(p) in a │ │ │ │ +00039e80: 0a20 2020 206d 6174 7269 7846 6163 746f . matrixFacto │ │ │ │ +00039e90: 7269 7a61 7469 6f6e 0a20 202a 202a 6e6f rization. * *no │ │ │ │ +00039ea0: 7465 2070 7369 4d61 7073 3a20 7073 694d te psiMaps: psiM │ │ │ │ +00039eb0: 6170 732c 202d 2d20 6c69 7374 2074 6865 aps, -- list the │ │ │ │ +00039ec0: 206d 6170 7320 2070 7369 2870 293a 2042 maps psi(p): B │ │ │ │ +00039ed0: 5f31 2870 2920 2d2d 3e20 415f 3028 702d _1(p) --> A_0(p- │ │ │ │ +00039ee0: 3129 2069 6e20 610a 2020 2020 6d61 7472 1) in a. matr │ │ │ │ +00039ef0: 6978 4661 6374 6f72 697a 6174 696f 6e0a ixFactorization. │ │ │ │ +00039f00: 2020 2a20 2a6e 6f74 6520 684d 6170 733a * *note hMaps: │ │ │ │ +00039f10: 2068 4d61 7073 2c20 2d2d 206c 6973 7420 hMaps, -- list │ │ │ │ +00039f20: 7468 6520 6d61 7073 2020 6828 7029 3a20 the maps h(p): │ │ │ │ +00039f30: 415f 3028 7029 2d2d 3e20 415f 3128 7029 A_0(p)--> A_1(p) │ │ │ │ +00039f40: 2069 6e20 610a 2020 2020 6d61 7472 6978 in a. matrix │ │ │ │ +00039f50: 4661 6374 6f72 697a 6174 696f 6e0a 2020 Factorization. │ │ │ │ +00039f60: 2a20 2a6e 6f74 6520 636f 6d70 6c65 7869 * *note complexi │ │ │ │ +00039f70: 7479 3a20 636f 6d70 6c65 7869 7479 2c20 ty: complexity, │ │ │ │ +00039f80: 2d2d 2063 6f6d 706c 6578 6974 7920 6f66 -- complexity of │ │ │ │ +00039f90: 2061 206d 6f64 756c 6520 6f76 6572 2061 a module over a │ │ │ │ +00039fa0: 2063 6f6d 706c 6574 650a 2020 2020 696e complete. in │ │ │ │ +00039fb0: 7465 7273 6563 7469 6f6e 0a0a 5761 7973 tersection..Ways │ │ │ │ +00039fc0: 2074 6f20 7573 6520 6d61 6b65 4669 6e69 to use makeFini │ │ │ │ +00039fd0: 7465 5265 736f 6c75 7469 6f6e 3a0a 3d3d teResolution:.== │ │ │ │ +00039fe0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00039ff0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0003a000: 0a20 202a 2022 6d61 6b65 4669 6e69 7465 . * "makeFinite │ │ │ │ +0003a010: 5265 736f 6c75 7469 6f6e 284d 6174 7269 Resolution(Matri │ │ │ │ +0003a020: 782c 4c69 7374 2922 0a0a 466f 7220 7468 x,List)"..For th │ │ │ │ +0003a030: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +0003a040: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0003a050: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +0003a060: 6520 6d61 6b65 4669 6e69 7465 5265 736f e makeFiniteReso │ │ │ │ +0003a070: 6c75 7469 6f6e 3a20 6d61 6b65 4669 6e69 lution: makeFini │ │ │ │ +0003a080: 7465 5265 736f 6c75 7469 6f6e 2c20 6973 teResolution, is │ │ │ │ +0003a090: 2061 202a 6e6f 7465 206d 6574 686f 640a a *note method. │ │ │ │ +0003a0a0: 6675 6e63 7469 6f6e 3a20 284d 6163 6175 function: (Macau │ │ │ │ +0003a0b0: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ +0003a0c0: 6e63 7469 6f6e 2c2e 0a1f 0a46 696c 653a nction,....File: │ │ │ │ +0003a0d0: 2043 6f6d 706c 6574 6549 6e74 6572 7365 CompleteInterse │ │ │ │ +0003a0e0: 6374 696f 6e52 6573 6f6c 7574 696f 6e73 ctionResolutions │ │ │ │ +0003a0f0: 2e69 6e66 6f2c 204e 6f64 653a 206d 616b .info, Node: mak │ │ │ │ +0003a100: 6546 696e 6974 6552 6573 6f6c 7574 696f eFiniteResolutio │ │ │ │ +0003a110: 6e43 6f64 696d 322c 204e 6578 743a 206d nCodim2, Next: m │ │ │ │ +0003a120: 616b 6548 6f6d 6f74 6f70 6965 732c 2050 akeHomotopies, P │ │ │ │ +0003a130: 7265 763a 206d 616b 6546 696e 6974 6552 rev: makeFiniteR │ │ │ │ +0003a140: 6573 6f6c 7574 696f 6e2c 2055 703a 2054 esolution, Up: T │ │ │ │ +0003a150: 6f70 0a0a 6d61 6b65 4669 6e69 7465 5265 op..makeFiniteRe │ │ │ │ +0003a160: 736f 6c75 7469 6f6e 436f 6469 6d32 202d solutionCodim2 - │ │ │ │ +0003a170: 2d20 4d61 7073 2061 7373 6f63 6961 7465 - Maps associate │ │ │ │ +0003a180: 6420 746f 2074 6865 2066 696e 6974 6520 d to the finite │ │ │ │ +0003a190: 7265 736f 6c75 7469 6f6e 206f 6620 6120 resolution of a │ │ │ │ +0003a1a0: 6869 6768 2073 797a 7967 7920 6d6f 6475 high syzygy modu │ │ │ │ +0003a1b0: 6c65 2069 6e20 636f 6469 6d20 320a 2a2a le in codim 2.** │ │ │ │ +0003a1c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0003a1d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0003a1e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0003a1f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0003a200: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0003a210: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0003a220: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0003a230: 2a2a 0a0a 5379 6e6f 7073 6973 0a3d 3d3d **..Synopsis.=== │ │ │ │ -0003a240: 3d3d 3d3d 3d0a 0a20 202a 2055 7361 6765 =====.. * Usage │ │ │ │ -0003a250: 3a20 0a20 2020 2020 2020 206d 6170 7320 : . maps │ │ │ │ -0003a260: 3d20 6d61 6b65 4669 6e69 7465 5265 736f = makeFiniteReso │ │ │ │ -0003a270: 6c75 7469 6f6e 436f 6469 6d32 2866 662c lutionCodim2(ff, │ │ │ │ -0003a280: 6d66 290a 2020 2a20 496e 7075 7473 3a0a mf). * Inputs:. │ │ │ │ -0003a290: 2020 2020 2020 2a20 6d66 2c20 6120 2a6e * mf, a *n │ │ │ │ -0003a2a0: 6f74 6520 6c69 7374 3a20 284d 6163 6175 ote list: (Macau │ │ │ │ -0003a2b0: 6c61 7932 446f 6329 4c69 7374 2c2c 206d lay2Doc)List,, m │ │ │ │ -0003a2c0: 6174 7269 7820 6661 6374 6f72 697a 6174 atrix factorizat │ │ │ │ -0003a2d0: 696f 6e0a 2020 2020 2020 2a20 6666 2c20 ion. * ff, │ │ │ │ -0003a2e0: 6120 2a6e 6f74 6520 6d61 7472 6978 3a20 a *note matrix: │ │ │ │ -0003a2f0: 284d 6163 6175 6c61 7932 446f 6329 4d61 (Macaulay2Doc)Ma │ │ │ │ -0003a300: 7472 6978 2c2c 2072 6567 756c 6172 2073 trix,, regular s │ │ │ │ -0003a310: 6571 7565 6e63 650a 2020 2a20 2a6e 6f74 equence. * *not │ │ │ │ -0003a320: 6520 4f70 7469 6f6e 616c 2069 6e70 7574 e Optional input │ │ │ │ -0003a330: 733a 2028 4d61 6361 756c 6179 3244 6f63 s: (Macaulay2Doc │ │ │ │ -0003a340: 2975 7369 6e67 2066 756e 6374 696f 6e73 )using functions │ │ │ │ -0003a350: 2077 6974 6820 6f70 7469 6f6e 616c 2069 with optional i │ │ │ │ -0003a360: 6e70 7574 732c 3a0a 2020 2020 2020 2a20 nputs,:. * │ │ │ │ -0003a370: 4368 6563 6b20 3d3e 202e 2e2e 2c20 6465 Check => ..., de │ │ │ │ -0003a380: 6661 756c 7420 7661 6c75 6520 6661 6c73 fault value fals │ │ │ │ -0003a390: 650a 2020 2a20 4f75 7470 7574 733a 0a20 e. * Outputs:. │ │ │ │ -0003a3a0: 2020 2020 202a 206d 6170 732c 2061 202a * maps, a * │ │ │ │ -0003a3b0: 6e6f 7465 2068 6173 6820 7461 626c 653a note hash table: │ │ │ │ -0003a3c0: 2028 4d61 6361 756c 6179 3244 6f63 2948 (Macaulay2Doc)H │ │ │ │ -0003a3d0: 6173 6854 6162 6c65 2c2c 206d 616e 7920 ashTable,, many │ │ │ │ -0003a3e0: 6d61 7073 0a0a 4465 7363 7269 7074 696f maps..Descriptio │ │ │ │ -0003a3f0: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a47 n.===========..G │ │ │ │ -0003a400: 6976 656e 2061 2063 6f64 696d 2032 206d iven a codim 2 m │ │ │ │ -0003a410: 6174 7269 7820 6661 6374 6f72 697a 6174 atrix factorizat │ │ │ │ -0003a420: 696f 6e2c 206d 616b 6573 2061 6c6c 2074 ion, makes all t │ │ │ │ -0003a430: 6865 2063 6f6d 706f 6e65 6e74 7320 6f66 he components of │ │ │ │ -0003a440: 2074 6865 0a64 6966 6665 7265 6e74 6961 the.differentia │ │ │ │ -0003a450: 6c20 616e 6420 6f66 2074 6865 2068 6f6d l and of the hom │ │ │ │ -0003a460: 6f74 6f70 6965 7320 7468 6174 2061 7265 otopies that are │ │ │ │ -0003a470: 2072 656c 6576 616e 7420 746f 2074 6865 relevant to the │ │ │ │ -0003a480: 2066 696e 6974 6520 7265 736f 6c75 7469 finite resoluti │ │ │ │ -0003a490: 6f6e 2c0a 6173 2069 6e20 342e 322e 3320 on,.as in 4.2.3 │ │ │ │ -0003a4a0: 6f66 2045 6973 656e 6275 642d 5065 6576 of Eisenbud-Peev │ │ │ │ -0003a4b0: 6120 224d 696e 696d 616c 2046 7265 6520 a "Minimal Free │ │ │ │ -0003a4c0: 5265 736f 6c75 7469 6f6e 7320 616e 6420 Resolutions and │ │ │ │ -0003a4d0: 4869 6768 6572 204d 6174 7269 780a 4661 Higher Matrix.Fa │ │ │ │ -0003a4e0: 6374 6f72 697a 6174 696f 6e73 220a 0a2b ctorizations"..+ │ │ │ │ +0003a220: 2a2a 2a2a 2a2a 2a0a 0a53 796e 6f70 7369 *******..Synopsi │ │ │ │ +0003a230: 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 s.========.. * │ │ │ │ +0003a240: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +0003a250: 6d61 7073 203d 206d 616b 6546 696e 6974 maps = makeFinit │ │ │ │ +0003a260: 6552 6573 6f6c 7574 696f 6e43 6f64 696d eResolutionCodim │ │ │ │ +0003a270: 3228 6666 2c6d 6629 0a20 202a 2049 6e70 2(ff,mf). * Inp │ │ │ │ +0003a280: 7574 733a 0a20 2020 2020 202a 206d 662c uts:. * mf, │ │ │ │ +0003a290: 2061 202a 6e6f 7465 206c 6973 743a 2028 a *note list: ( │ │ │ │ +0003a2a0: 4d61 6361 756c 6179 3244 6f63 294c 6973 Macaulay2Doc)Lis │ │ │ │ +0003a2b0: 742c 2c20 6d61 7472 6978 2066 6163 746f t,, matrix facto │ │ │ │ +0003a2c0: 7269 7a61 7469 6f6e 0a20 2020 2020 202a rization. * │ │ │ │ +0003a2d0: 2066 662c 2061 202a 6e6f 7465 206d 6174 ff, a *note mat │ │ │ │ +0003a2e0: 7269 783a 2028 4d61 6361 756c 6179 3244 rix: (Macaulay2D │ │ │ │ +0003a2f0: 6f63 294d 6174 7269 782c 2c20 7265 6775 oc)Matrix,, regu │ │ │ │ +0003a300: 6c61 7220 7365 7175 656e 6365 0a20 202a lar sequence. * │ │ │ │ +0003a310: 202a 6e6f 7465 204f 7074 696f 6e61 6c20 *note Optional │ │ │ │ +0003a320: 696e 7075 7473 3a20 284d 6163 6175 6c61 inputs: (Macaula │ │ │ │ +0003a330: 7932 446f 6329 7573 696e 6720 6675 6e63 y2Doc)using func │ │ │ │ +0003a340: 7469 6f6e 7320 7769 7468 206f 7074 696f tions with optio │ │ │ │ +0003a350: 6e61 6c20 696e 7075 7473 2c3a 0a20 2020 nal inputs,:. │ │ │ │ +0003a360: 2020 202a 2043 6865 636b 203d 3e20 2e2e * Check => .. │ │ │ │ +0003a370: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ +0003a380: 2066 616c 7365 0a20 202a 204f 7574 7075 false. * Outpu │ │ │ │ +0003a390: 7473 3a0a 2020 2020 2020 2a20 6d61 7073 ts:. * maps │ │ │ │ +0003a3a0: 2c20 6120 2a6e 6f74 6520 6861 7368 2074 , a *note hash t │ │ │ │ +0003a3b0: 6162 6c65 3a20 284d 6163 6175 6c61 7932 able: (Macaulay2 │ │ │ │ +0003a3c0: 446f 6329 4861 7368 5461 626c 652c 2c20 Doc)HashTable,, │ │ │ │ +0003a3d0: 6d61 6e79 206d 6170 730a 0a44 6573 6372 many maps..Descr │ │ │ │ +0003a3e0: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ +0003a3f0: 3d3d 0a0a 4769 7665 6e20 6120 636f 6469 ==..Given a codi │ │ │ │ +0003a400: 6d20 3220 6d61 7472 6978 2066 6163 746f m 2 matrix facto │ │ │ │ +0003a410: 7269 7a61 7469 6f6e 2c20 6d61 6b65 7320 rization, makes │ │ │ │ +0003a420: 616c 6c20 7468 6520 636f 6d70 6f6e 656e all the componen │ │ │ │ +0003a430: 7473 206f 6620 7468 650a 6469 6666 6572 ts of the.differ │ │ │ │ +0003a440: 656e 7469 616c 2061 6e64 206f 6620 7468 ential and of th │ │ │ │ +0003a450: 6520 686f 6d6f 746f 7069 6573 2074 6861 e homotopies tha │ │ │ │ +0003a460: 7420 6172 6520 7265 6c65 7661 6e74 2074 t are relevant t │ │ │ │ +0003a470: 6f20 7468 6520 6669 6e69 7465 2072 6573 o the finite res │ │ │ │ +0003a480: 6f6c 7574 696f 6e2c 0a61 7320 696e 2034 olution,.as in 4 │ │ │ │ +0003a490: 2e32 2e33 206f 6620 4569 7365 6e62 7564 .2.3 of Eisenbud │ │ │ │ +0003a4a0: 2d50 6565 7661 2022 4d69 6e69 6d61 6c20 -Peeva "Minimal │ │ │ │ +0003a4b0: 4672 6565 2052 6573 6f6c 7574 696f 6e73 Free Resolutions │ │ │ │ +0003a4c0: 2061 6e64 2048 6967 6865 7220 4d61 7472 and Higher Matr │ │ │ │ +0003a4d0: 6978 0a46 6163 746f 7269 7a61 7469 6f6e ix.Factorization │ │ │ │ +0003a4e0: 7322 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d s"..+----------- │ │ │ │ 0003a4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a530: 2b0a 7c69 3120 3a20 6b6b 3d5a 5a2f 3130 +.|i1 : kk=ZZ/10 │ │ │ │ -0003a540: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0003a520: 2d2d 2d2d 2d2b 0a7c 6931 203a 206b 6b3d -----+.|i1 : kk= │ │ │ │ +0003a530: 5a5a 2f31 3031 2020 2020 2020 2020 2020 ZZ/101 │ │ │ │ +0003a540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a570: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003a560: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003a570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a5b0: 2020 2020 2020 7c0a 7c6f 3120 3d20 6b6b |.|o1 = kk │ │ │ │ +0003a5a0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0003a5b0: 203d 206b 6b20 2020 2020 2020 2020 2020 = kk │ │ │ │ 0003a5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a5f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003a5e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0003a5f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0003a600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a630: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003a640: 3120 3a20 5175 6f74 6965 6e74 5269 6e67 1 : QuotientRing │ │ │ │ +0003a630: 207c 0a7c 6f31 203a 2051 756f 7469 656e |.|o1 : Quotien │ │ │ │ +0003a640: 7452 696e 6720 2020 2020 2020 2020 2020 tRing │ │ │ │ 0003a650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a670: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0003a680: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0003a670: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0003a680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a6c0: 2d2d 2b0a 7c69 3220 3a20 5320 3d20 6b6b --+.|i2 : S = kk │ │ │ │ -0003a6d0: 5b61 2c62 5d20 2020 2020 2020 2020 2020 [a,b] │ │ │ │ +0003a6b0: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2053 -------+.|i2 : S │ │ │ │ +0003a6c0: 203d 206b 6b5b 612c 625d 2020 2020 2020 = kk[a,b] │ │ │ │ +0003a6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a700: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003a6f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003a700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a740: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ -0003a750: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +0003a730: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0003a740: 6f32 203d 2053 2020 2020 2020 2020 2020 o2 = S │ │ │ │ +0003a750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a780: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0003a780: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003a790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a7c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0003a7d0: 7c6f 3220 3a20 506f 6c79 6e6f 6d69 616c |o2 : Polynomial │ │ │ │ -0003a7e0: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ +0003a7c0: 2020 207c 0a7c 6f32 203a 2050 6f6c 796e |.|o2 : Polyn │ │ │ │ +0003a7d0: 6f6d 6961 6c52 696e 6720 2020 2020 2020 omialRing │ │ │ │ +0003a7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a810: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0003a800: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0003a810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a850: 2d2d 2d2d 2b0a 7c69 3320 3a20 6666 203d ----+.|i3 : ff = │ │ │ │ -0003a860: 206d 6174 7269 7822 6134 2c62 3422 2020 matrix"a4,b4" │ │ │ │ +0003a840: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ +0003a850: 2066 6620 3d20 6d61 7472 6978 2261 342c ff = matrix"a4, │ │ │ │ +0003a860: 6234 2220 2020 2020 2020 2020 2020 2020 b4" │ │ │ │ 0003a870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a890: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0003a880: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003a890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a8d0: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ -0003a8e0: 3d20 7c20 6134 2062 3420 7c20 2020 2020 = | a4 b4 | │ │ │ │ +0003a8c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0003a8d0: 0a7c 6f33 203d 207c 2061 3420 6234 207c .|o3 = | a4 b4 | │ │ │ │ +0003a8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a910: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0003a910: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003a920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a960: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003a970: 3120 2020 2020 2032 2020 2020 2020 2020 1 2 │ │ │ │ +0003a950: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003a960: 2020 2020 2031 2020 2020 2020 3220 2020 1 2 │ │ │ │ +0003a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a9a0: 2020 207c 0a7c 6f33 203a 204d 6174 7269 |.|o3 : Matri │ │ │ │ -0003a9b0: 7820 5320 203c 2d2d 2053 2020 2020 2020 x S <-- S │ │ │ │ +0003a990: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ +0003a9a0: 4d61 7472 6978 2053 2020 3c2d 2d20 5320 Matrix S <-- S │ │ │ │ +0003a9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a9e0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0003a9d0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0003a9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003aa00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003aa10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003aa20: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ -0003aa30: 2052 203d 2053 2f69 6465 616c 2066 6620 R = S/ideal ff │ │ │ │ +0003aa10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0003aa20: 7c69 3420 3a20 5220 3d20 532f 6964 6561 |i4 : R = S/idea │ │ │ │ +0003aa30: 6c20 6666 2020 2020 2020 2020 2020 2020 l ff │ │ │ │ 0003aa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003aa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003aa60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003aa60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003aa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003aa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003aa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003aaa0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0003aab0: 0a7c 6f34 203d 2052 2020 2020 2020 2020 .|o4 = R │ │ │ │ +0003aaa0: 2020 2020 7c0a 7c6f 3420 3d20 5220 2020 |.|o4 = R │ │ │ │ +0003aab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003aac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003aae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003aaf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003aae0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0003aaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ab10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ab20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ab30: 2020 2020 207c 0a7c 6f34 203a 2051 756f |.|o4 : Quo │ │ │ │ -0003ab40: 7469 656e 7452 696e 6720 2020 2020 2020 tientRing │ │ │ │ +0003ab20: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ +0003ab30: 3a20 5175 6f74 6965 6e74 5269 6e67 2020 : QuotientRing │ │ │ │ +0003ab40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ab50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ab60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ab70: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0003ab60: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0003ab70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ab80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ab90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003aba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003abb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ -0003abc0: 203a 204e 203d 2052 5e31 2f69 6465 616c : N = R^1/ideal │ │ │ │ -0003abd0: 2261 322c 2061 622c 2062 3322 2020 2020 "a2, ab, b3" │ │ │ │ +0003abb0: 2b0a 7c69 3520 3a20 4e20 3d20 525e 312f +.|i5 : N = R^1/ │ │ │ │ +0003abc0: 6964 6561 6c22 6132 2c20 6162 2c20 6233 ideal"a2, ab, b3 │ │ │ │ +0003abd0: 2220 2020 2020 2020 2020 2020 2020 2020 " │ │ │ │ 0003abe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003abf0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0003ac00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0003abf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003ac00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ac10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ac20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ac30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ac40: 207c 0a7c 6f35 203d 2063 6f6b 6572 6e65 |.|o5 = cokerne │ │ │ │ -0003ac50: 6c20 7c20 6132 2061 6220 6233 207c 2020 l | a2 ab b3 | │ │ │ │ +0003ac30: 2020 2020 2020 7c0a 7c6f 3520 3d20 636f |.|o5 = co │ │ │ │ +0003ac40: 6b65 726e 656c 207c 2061 3220 6162 2062 kernel | a2 ab b │ │ │ │ +0003ac50: 3320 7c20 2020 2020 2020 2020 2020 2020 3 | │ │ │ │ 0003ac60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ac70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ac80: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0003ac70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003ac80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ac90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003aca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003acb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003acc0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0003acd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ace0: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ -0003acf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ad00: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ -0003ad10: 3a20 522d 6d6f 6475 6c65 2c20 7175 6f74 : R-module, quot │ │ │ │ -0003ad20: 6965 6e74 206f 6620 5220 2020 2020 2020 ient of R │ │ │ │ +0003acb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003acc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003acd0: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ +0003ace0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003acf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0003ad00: 0a7c 6f35 203a 2052 2d6d 6f64 756c 652c .|o5 : R-module, │ │ │ │ +0003ad10: 2071 756f 7469 656e 7420 6f66 2052 2020 quotient of R │ │ │ │ +0003ad20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ad30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ad40: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0003ad40: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 0003ad50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ad60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ad70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ad80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ad90: 2b0a 7c69 3620 3a20 4e20 3d20 636f 6b65 +.|i6 : N = coke │ │ │ │ -0003ada0: 7220 7661 7273 2052 2020 2020 2020 2020 r vars R │ │ │ │ +0003ad80: 2d2d 2d2d 2d2b 0a7c 6936 203a 204e 203d -----+.|i6 : N = │ │ │ │ +0003ad90: 2063 6f6b 6572 2076 6172 7320 5220 2020 coker vars R │ │ │ │ +0003ada0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003adb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003adc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003add0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003adc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003adf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ae00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ae10: 2020 2020 2020 7c0a 7c6f 3620 3d20 636f |.|o6 = co │ │ │ │ -0003ae20: 6b65 726e 656c 207c 2061 2062 207c 2020 kernel | a b | │ │ │ │ +0003ae00: 2020 2020 2020 2020 2020 207c 0a7c 6f36 |.|o6 │ │ │ │ +0003ae10: 203d 2063 6f6b 6572 6e65 6c20 7c20 6120 = cokernel | a │ │ │ │ +0003ae20: 6220 7c20 2020 2020 2020 2020 2020 2020 b | │ │ │ │ 0003ae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ae50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003ae40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0003ae50: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0003ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ae90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003ae90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003aea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003aeb0: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ +0003aeb0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 0003aec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003aed0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0003aee0: 0a7c 6f36 203a 2052 2d6d 6f64 756c 652c .|o6 : R-module, │ │ │ │ -0003aef0: 2071 756f 7469 656e 7420 6f66 2052 2020 quotient of R │ │ │ │ +0003aed0: 2020 2020 7c0a 7c6f 3620 3a20 522d 6d6f |.|o6 : R-mo │ │ │ │ +0003aee0: 6475 6c65 2c20 7175 6f74 6965 6e74 206f dule, quotient o │ │ │ │ +0003aef0: 6620 5220 2020 2020 2020 2020 2020 2020 f R │ │ │ │ 0003af00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003af10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003af20: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0003af10: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0003af20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003af30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003af40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003af50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003af60: 2d2d 2d2d 2d2b 0a7c 6937 203a 204d 203d -----+.|i7 : M = │ │ │ │ -0003af70: 2068 6967 6853 797a 7967 7920 4e20 2020 highSyzygy N │ │ │ │ +0003af50: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 ----------+.|i7 │ │ │ │ +0003af60: 3a20 4d20 3d20 6869 6768 5379 7a79 6779 : M = highSyzygy │ │ │ │ +0003af70: 204e 2020 2020 2020 2020 2020 2020 2020 N │ │ │ │ 0003af80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003af90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003afa0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003af90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0003afa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003afb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003afc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003afd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003afe0: 2020 2020 2020 2020 2020 207c 0a7c 6f37 |.|o7 │ │ │ │ -0003aff0: 203d 2063 6f6b 6572 6e65 6c20 7b32 7d20 = cokernel {2} │ │ │ │ -0003b000: 7c20 3020 2d62 3320 6133 2030 207c 2020 | 0 -b3 a3 0 | │ │ │ │ +0003afe0: 7c0a 7c6f 3720 3d20 636f 6b65 726e 656c |.|o7 = cokernel │ │ │ │ +0003aff0: 207b 327d 207c 2030 202d 6233 2061 3320 {2} | 0 -b3 a3 │ │ │ │ +0003b000: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ 0003b010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b020: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0003b030: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ -0003b040: 347d 207c 2062 2061 2020 2030 2020 3020 4} | b a 0 0 │ │ │ │ -0003b050: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003b060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b070: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003b080: 2020 7b34 7d20 7c20 3020 3020 2020 6220 {4} | 0 0 b │ │ │ │ -0003b090: 2061 207c 2020 2020 2020 2020 2020 2020 a | │ │ │ │ -0003b0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b0b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0003b020: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003b030: 2020 2020 7b34 7d20 7c20 6220 6120 2020 {4} | b a │ │ │ │ +0003b040: 3020 2030 207c 2020 2020 2020 2020 2020 0 0 | │ │ │ │ +0003b050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b060: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0003b070: 2020 2020 2020 207b 347d 207c 2030 2030 {4} | 0 0 │ │ │ │ +0003b080: 2020 2062 2020 6120 7c20 2020 2020 2020 b a | │ │ │ │ +0003b090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b0a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003b0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b0f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0003b100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b110: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ -0003b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b130: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ -0003b140: 3a20 522d 6d6f 6475 6c65 2c20 7175 6f74 : R-module, quot │ │ │ │ -0003b150: 6965 6e74 206f 6620 5220 2020 2020 2020 ient of R │ │ │ │ +0003b0e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b100: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ +0003b110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b120: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0003b130: 0a7c 6f37 203a 2052 2d6d 6f64 756c 652c .|o7 : R-module, │ │ │ │ +0003b140: 2071 756f 7469 656e 7420 6f66 2052 2020 quotient of R │ │ │ │ +0003b150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b170: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0003b170: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 0003b180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b1c0: 2b0a 7c69 3820 3a20 4d53 203d 2070 7573 +.|i8 : MS = pus │ │ │ │ -0003b1d0: 6846 6f72 7761 7264 286d 6170 2852 2c53 hForward(map(R,S │ │ │ │ -0003b1e0: 292c 4d29 2020 2020 2020 2020 2020 2020 ),M) │ │ │ │ -0003b1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b200: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003b1b0: 2d2d 2d2d 2d2b 0a7c 6938 203a 204d 5320 -----+.|i8 : MS │ │ │ │ +0003b1c0: 3d20 7075 7368 466f 7277 6172 6428 6d61 = pushForward(ma │ │ │ │ +0003b1d0: 7028 522c 5329 2c4d 2920 2020 2020 2020 p(R,S),M) │ │ │ │ +0003b1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b1f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003b200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b240: 2020 2020 2020 7c0a 7c6f 3820 3d20 636f |.|o8 = co │ │ │ │ -0003b250: 6b65 726e 656c 207b 327d 207c 2030 2062 kernel {2} | 0 b │ │ │ │ -0003b260: 3320 6133 2030 2030 2020 7c20 2020 2020 3 a3 0 0 | │ │ │ │ -0003b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b280: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0003b290: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ -0003b2a0: 6220 2d61 2030 2020 3020 3020 207c 2020 b -a 0 0 0 | │ │ │ │ +0003b230: 2020 2020 2020 2020 2020 207c 0a7c 6f38 |.|o8 │ │ │ │ +0003b240: 203d 2063 6f6b 6572 6e65 6c20 7b32 7d20 = cokernel {2} │ │ │ │ +0003b250: 7c20 3020 6233 2061 3320 3020 3020 207c | 0 b3 a3 0 0 | │ │ │ │ +0003b260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b270: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0003b280: 7c20 2020 2020 2020 2020 2020 2020 207b | { │ │ │ │ +0003b290: 347d 207c 2062 202d 6120 3020 2030 2030 4} | b -a 0 0 0 │ │ │ │ +0003b2a0: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0003b2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b2c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003b2d0: 2020 2020 2020 2020 2020 2020 207b 347d {4} │ │ │ │ -0003b2e0: 207c 2030 2030 2020 6220 2061 2062 3420 | 0 0 b a b4 │ │ │ │ -0003b2f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003b300: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0003b310: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0003b2c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003b2d0: 2020 7b34 7d20 7c20 3020 3020 2062 2020 {4} | 0 0 b │ │ │ │ +0003b2e0: 6120 6234 207c 2020 2020 2020 2020 2020 a b4 | │ │ │ │ +0003b2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b300: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0003b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b350: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b370: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0003b380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b390: 2020 2020 207c 0a7c 6f38 203a 2053 2d6d |.|o8 : S-m │ │ │ │ -0003b3a0: 6f64 756c 652c 2071 756f 7469 656e 7420 odule, quotient │ │ │ │ -0003b3b0: 6f66 2053 2020 2020 2020 2020 2020 2020 of S │ │ │ │ -0003b3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b3d0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0003b340: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0003b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b360: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ +0003b370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b380: 2020 2020 2020 2020 2020 7c0a 7c6f 3820 |.|o8 │ │ │ │ +0003b390: 3a20 532d 6d6f 6475 6c65 2c20 7175 6f74 : S-module, quot │ │ │ │ +0003b3a0: 6965 6e74 206f 6620 5320 2020 2020 2020 ient of S │ │ │ │ +0003b3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b3c0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0003b3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6939 -----------+.|i9 │ │ │ │ -0003b420: 203a 206d 6620 3d20 6d61 7472 6978 4661 : mf = matrixFa │ │ │ │ -0003b430: 6374 6f72 697a 6174 696f 6e28 6666 2c20 ctorization(ff, │ │ │ │ -0003b440: 4d29 2020 2020 2020 2020 2020 2020 2020 M) │ │ │ │ -0003b450: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0003b460: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0003b410: 2b0a 7c69 3920 3a20 6d66 203d 206d 6174 +.|i9 : mf = mat │ │ │ │ +0003b420: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ +0003b430: 2866 662c 204d 2920 2020 2020 2020 2020 (ff, M) │ │ │ │ +0003b440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b450: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b4a0: 207c 0a7c 6f39 203d 207b 7b34 7d20 7c20 |.|o9 = {{4} | │ │ │ │ -0003b4b0: 6120 2d62 2030 2030 2020 7c2c 207b 357d a -b 0 0 |, {5} │ │ │ │ -0003b4c0: 207c 2061 3320 6220 3020 2020 3020 2030 | a3 b 0 0 0 │ │ │ │ -0003b4d0: 2020 7c2c 207b 327d 207c 2030 202d 3120 |, {2} | 0 -1 │ │ │ │ -0003b4e0: 3020 7c7d 7c0a 7c20 2020 2020 207b 327d 0 |}|.| {2} │ │ │ │ -0003b4f0: 207c 2030 2061 3320 3020 6233 207c 2020 | 0 a3 0 b3 | │ │ │ │ -0003b500: 7b35 7d20 7c20 3020 2061 202d 6233 2030 {5} | 0 a -b3 0 │ │ │ │ -0003b510: 2020 3020 207c 2020 7b34 7d20 7c20 3020 0 | {4} | 0 │ │ │ │ -0003b520: 3020 2031 207c 207c 0a7c 2020 2020 2020 0 1 | |.| │ │ │ │ -0003b530: 7b34 7d20 7c20 3020 3020 2062 2061 2020 {4} | 0 0 b a │ │ │ │ -0003b540: 7c20 207b 357d 207c 2030 2020 3020 3020 | {5} | 0 0 0 │ │ │ │ -0003b550: 2020 2d61 2062 3320 7c20 207b 347d 207c -a b3 | {4} | │ │ │ │ -0003b560: 2031 2030 2020 3020 7c20 7c0a 7c20 2020 1 0 0 | |.| │ │ │ │ -0003b570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b580: 2020 2020 2020 7b35 7d20 7c20 3020 2030 {5} | 0 0 │ │ │ │ -0003b590: 2061 3320 2062 2020 3020 207c 2020 2020 a3 b 0 | │ │ │ │ -0003b5a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0003b490: 2020 2020 2020 7c0a 7c6f 3920 3d20 7b7b |.|o9 = {{ │ │ │ │ +0003b4a0: 347d 207c 2061 202d 6220 3020 3020 207c 4} | a -b 0 0 | │ │ │ │ +0003b4b0: 2c20 7b35 7d20 7c20 6133 2062 2030 2020 , {5} | a3 b 0 │ │ │ │ +0003b4c0: 2030 2020 3020 207c 2c20 7b32 7d20 7c20 0 0 |, {2} | │ │ │ │ +0003b4d0: 3020 2d31 2030 207c 7d7c 0a7c 2020 2020 0 -1 0 |}|.| │ │ │ │ +0003b4e0: 2020 7b32 7d20 7c20 3020 6133 2030 2062 {2} | 0 a3 0 b │ │ │ │ +0003b4f0: 3320 7c20 207b 357d 207c 2030 2020 6120 3 | {5} | 0 a │ │ │ │ +0003b500: 2d62 3320 3020 2030 2020 7c20 207b 347d -b3 0 0 | {4} │ │ │ │ +0003b510: 207c 2030 2030 2020 3120 7c20 7c0a 7c20 | 0 0 1 | |.| │ │ │ │ +0003b520: 2020 2020 207b 347d 207c 2030 2030 2020 {4} | 0 0 │ │ │ │ +0003b530: 6220 6120 207c 2020 7b35 7d20 7c20 3020 b a | {5} | 0 │ │ │ │ +0003b540: 2030 2030 2020 202d 6120 6233 207c 2020 0 0 -a b3 | │ │ │ │ +0003b550: 7b34 7d20 7c20 3120 3020 2030 207c 207c {4} | 1 0 0 | | │ │ │ │ +0003b560: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0003b570: 2020 2020 2020 2020 2020 207b 357d 207c {5} | │ │ │ │ +0003b580: 2030 2020 3020 6133 2020 6220 2030 2020 0 0 a3 b 0 │ │ │ │ +0003b590: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0003b5a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b5f0: 7c0a 7c6f 3920 3a20 4c69 7374 2020 2020 |.|o9 : List │ │ │ │ +0003b5e0: 2020 2020 207c 0a7c 6f39 203a 204c 6973 |.|o9 : Lis │ │ │ │ +0003b5f0: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ 0003b600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b630: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0003b620: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0003b630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b670: 2d2d 2d2d 2d2d 2b0a 7c69 3130 203a 2047 ------+.|i10 : G │ │ │ │ -0003b680: 203d 206d 616b 6546 696e 6974 6552 6573 = makeFiniteRes │ │ │ │ -0003b690: 6f6c 7574 696f 6e43 6f64 696d 3228 6666 olutionCodim2(ff │ │ │ │ -0003b6a0: 2c6d 6629 2020 2020 2020 2020 2020 2020 ,mf) │ │ │ │ -0003b6b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003b660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +0003b670: 3020 3a20 4720 3d20 6d61 6b65 4669 6e69 0 : G = makeFini │ │ │ │ +0003b680: 7465 5265 736f 6c75 7469 6f6e 436f 6469 teResolutionCodi │ │ │ │ +0003b690: 6d32 2866 662c 6d66 2920 2020 2020 2020 m2(ff,mf) │ │ │ │ +0003b6a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0003b6b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0003b6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b6f0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003b700: 3130 203d 2048 6173 6854 6162 6c65 7b22 10 = HashTable{" │ │ │ │ -0003b710: 616c 7068 6122 203d 3e20 7b35 7d20 7c20 alpha" => {5} | │ │ │ │ -0003b720: 3020 2020 3020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ -0003b730: 2020 2020 207d 2020 2020 2020 2020 207c } | │ │ │ │ -0003b740: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0003b750: 2020 2020 2020 2020 2020 2020 207b 357d {5} │ │ │ │ -0003b760: 207c 202d 6233 2030 207c 2020 2020 2020 | -b3 0 | │ │ │ │ -0003b770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b780: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003b790: 2020 2020 2022 6222 203d 3e20 7b34 7d20 "b" => {4} │ │ │ │ -0003b7a0: 7c20 6220 6120 7c20 2020 2020 2020 2020 | b a | │ │ │ │ -0003b7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b7c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0003b7d0: 2020 2020 2020 2020 2268 3127 2220 3d3e "h1'" => │ │ │ │ -0003b7e0: 207b 357d 207c 2030 2020 2030 2020 3020 {5} | 0 0 0 │ │ │ │ -0003b7f0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003b800: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0003b810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b820: 2020 2020 7b35 7d20 7c20 2d62 3320 3020 {5} | -b3 0 │ │ │ │ -0003b830: 2030 2020 7c20 2020 2020 2020 2020 2020 0 | │ │ │ │ -0003b840: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0003b850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b860: 2020 2020 2020 207b 357d 207c 2030 2020 {5} | 0 │ │ │ │ -0003b870: 202d 6120 6233 207c 2020 2020 2020 2020 -a b3 | │ │ │ │ -0003b880: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0003b890: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003b8a0: 2020 2020 2020 2020 2020 7b35 7d20 7c20 {5} | │ │ │ │ -0003b8b0: 6133 2020 6220 2030 2020 7c20 2020 2020 a3 b 0 | │ │ │ │ -0003b8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b8d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003b8e0: 2020 2020 2268 3122 203d 3e20 7b35 7d20 "h1" => {5} │ │ │ │ -0003b8f0: 7c20 3020 2020 3020 2030 2020 7c20 2020 | 0 0 0 | │ │ │ │ -0003b900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b910: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0003b920: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -0003b930: 357d 207c 202d 6233 2030 2020 3020 207c 5} | -b3 0 0 | │ │ │ │ -0003b940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b950: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0003b960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b970: 2020 7b35 7d20 7c20 3020 2020 2d61 2062 {5} | 0 -a b │ │ │ │ -0003b980: 3320 7c20 2020 2020 2020 2020 2020 2020 3 | │ │ │ │ -0003b990: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0003b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b9b0: 2020 2020 207b 357d 207c 2061 3320 2062 {5} | a3 b │ │ │ │ -0003b9c0: 2020 3020 207c 2020 2020 2020 2020 2020 0 | │ │ │ │ -0003b9d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0003b9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b9f0: 226d 7522 203d 3e20 7b35 7d20 7c20 6133 "mu" => {5} | a3 │ │ │ │ -0003ba00: 2062 207c 2020 2020 2020 2020 2020 2020 b | │ │ │ │ -0003ba10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ba20: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003ba30: 2020 2020 2020 2020 2020 207b 357d 207c {5} | │ │ │ │ -0003ba40: 2030 2020 6120 7c20 2020 2020 2020 2020 0 a | │ │ │ │ -0003ba50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ba60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003ba70: 2020 2020 2020 2270 6172 7469 616c 2220 "partial" │ │ │ │ -0003ba80: 3d3e 207b 347d 207c 2061 202d 6220 7c20 => {4} | a -b | │ │ │ │ -0003ba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003baa0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0003bab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bac0: 2020 2020 2020 7b32 7d20 7c20 3020 6133 {2} | 0 a3 │ │ │ │ -0003bad0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003bae0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0003baf0: 2020 2020 2020 2020 2020 2020 2270 7369 "psi │ │ │ │ -0003bb00: 2220 3d3e 207b 347d 207c 2030 2030 2020 " => {4} | 0 0 │ │ │ │ -0003bb10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003bb20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003bb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bb40: 2020 2020 2020 2020 7b32 7d20 7c20 3020 {2} | 0 │ │ │ │ -0003bb50: 6233 207c 2020 2020 2020 2020 2020 2020 b3 | │ │ │ │ -0003bb60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0003bb70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0003bb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bb90: 2020 2033 2020 2020 2020 3520 2020 2020 3 5 │ │ │ │ -0003bba0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0003bbb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003bbc0: 2020 2020 2022 7265 736f 6c75 7469 6f6e "resolution │ │ │ │ -0003bbd0: 2220 3d3e 2053 2020 3c2d 2d20 5320 203c " => S <-- S < │ │ │ │ -0003bbe0: 2d2d 2053 2020 3c2d 2d20 3020 2020 2020 -- S <-- 0 │ │ │ │ -0003bbf0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003b6f0: 207c 0a7c 6f31 3020 3d20 4861 7368 5461 |.|o10 = HashTa │ │ │ │ +0003b700: 626c 657b 2261 6c70 6861 2220 3d3e 207b ble{"alpha" => { │ │ │ │ +0003b710: 357d 207c 2030 2020 2030 207c 2020 2020 5} | 0 0 | │ │ │ │ +0003b720: 2020 2020 2020 2020 2020 7d20 2020 2020 } │ │ │ │ +0003b730: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0003b740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b750: 2020 7b35 7d20 7c20 2d62 3320 3020 7c20 {5} | -b3 0 | │ │ │ │ +0003b760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b770: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0003b780: 2020 2020 2020 2020 2020 2262 2220 3d3e "b" => │ │ │ │ +0003b790: 207b 347d 207c 2062 2061 207c 2020 2020 {4} | b a | │ │ │ │ +0003b7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b7b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003b7c0: 2020 2020 2020 2020 2020 2020 2022 6831 "h1 │ │ │ │ +0003b7d0: 2722 203d 3e20 7b35 7d20 7c20 3020 2020 '" => {5} | 0 │ │ │ │ +0003b7e0: 3020 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ +0003b7f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0003b800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b810: 2020 2020 2020 2020 207b 357d 207c 202d {5} | - │ │ │ │ +0003b820: 6233 2030 2020 3020 207c 2020 2020 2020 b3 0 0 | │ │ │ │ +0003b830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b840: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003b850: 2020 2020 2020 2020 2020 2020 7b35 7d20 {5} │ │ │ │ +0003b860: 7c20 3020 2020 2d61 2062 3320 7c20 2020 | 0 -a b3 | │ │ │ │ +0003b870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b880: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003b890: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ +0003b8a0: 357d 207c 2061 3320 2062 2020 3020 207c 5} | a3 b 0 | │ │ │ │ +0003b8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b8c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0003b8d0: 2020 2020 2020 2020 2022 6831 2220 3d3e "h1" => │ │ │ │ +0003b8e0: 207b 357d 207c 2030 2020 2030 2020 3020 {5} | 0 0 0 │ │ │ │ +0003b8f0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0003b900: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003b910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b920: 2020 2020 7b35 7d20 7c20 2d62 3320 3020 {5} | -b3 0 │ │ │ │ +0003b930: 2030 2020 7c20 2020 2020 2020 2020 2020 0 | │ │ │ │ +0003b940: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b960: 2020 2020 2020 207b 357d 207c 2030 2020 {5} | 0 │ │ │ │ +0003b970: 202d 6120 6233 207c 2020 2020 2020 2020 -a b3 | │ │ │ │ +0003b980: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0003b990: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0003b9a0: 2020 2020 2020 2020 2020 7b35 7d20 7c20 {5} | │ │ │ │ +0003b9b0: 6133 2020 6220 2030 2020 7c20 2020 2020 a3 b 0 | │ │ │ │ +0003b9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b9d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003b9e0: 2020 2020 2022 6d75 2220 3d3e 207b 357d "mu" => {5} │ │ │ │ +0003b9f0: 207c 2061 3320 6220 7c20 2020 2020 2020 | a3 b | │ │ │ │ +0003ba00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ba10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003ba20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ba30: 7b35 7d20 7c20 3020 2061 207c 2020 2020 {5} | 0 a | │ │ │ │ +0003ba40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ba50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003ba60: 2020 2020 2020 2020 2020 2022 7061 7274 "part │ │ │ │ +0003ba70: 6961 6c22 203d 3e20 7b34 7d20 7c20 6120 ial" => {4} | a │ │ │ │ +0003ba80: 2d62 207c 2020 2020 2020 2020 2020 2020 -b | │ │ │ │ +0003ba90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0003baa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003bab0: 2020 2020 2020 2020 2020 207b 327d 207c {2} | │ │ │ │ +0003bac0: 2030 2061 3320 7c20 2020 2020 2020 2020 0 a3 | │ │ │ │ +0003bad0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0003bae0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0003baf0: 2022 7073 6922 203d 3e20 7b34 7d20 7c20 "psi" => {4} | │ │ │ │ +0003bb00: 3020 3020 207c 2020 2020 2020 2020 2020 0 0 | │ │ │ │ +0003bb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003bb20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003bb30: 2020 2020 2020 2020 2020 2020 207b 327d {2} │ │ │ │ +0003bb40: 207c 2030 2062 3320 7c20 2020 2020 2020 | 0 b3 | │ │ │ │ +0003bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003bb60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0003bb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003bb80: 2020 2020 2020 2020 3320 2020 2020 2035 3 5 │ │ │ │ +0003bb90: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +0003bba0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0003bbb0: 2020 2020 2020 2020 2020 2272 6573 6f6c "resol │ │ │ │ +0003bbc0: 7574 696f 6e22 203d 3e20 5320 203c 2d2d ution" => S <-- │ │ │ │ +0003bbd0: 2053 2020 3c2d 2d20 5320 203c 2d2d 2030 S <-- S <-- 0 │ │ │ │ +0003bbe0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003bbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bc30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003bc20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0003bc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bc50: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ -0003bc60: 2020 3120 2020 2020 2032 2020 2020 2020 1 2 │ │ │ │ -0003bc70: 3320 2020 2020 2020 2020 207c 0a7c 2020 3 |.| │ │ │ │ -0003bc80: 2020 2020 2020 2020 2020 2020 2020 2273 "s │ │ │ │ -0003bc90: 6967 6d61 2220 3d3e 207b 357d 207c 2062 igma" => {5} | b │ │ │ │ -0003bca0: 3320 7c20 2020 2020 2020 2020 2020 2020 3 | │ │ │ │ -0003bcb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0003bcc0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003bcd0: 2020 2020 2020 2020 2020 2020 7b35 7d20 {5} │ │ │ │ -0003bce0: 7c20 3020 207c 2020 2020 2020 2020 2020 | 0 | │ │ │ │ -0003bcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bd00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003bd10: 2020 2020 2274 6175 2220 3d3e 2030 2020 "tau" => 0 │ │ │ │ +0003bc50: 3020 2020 2020 2031 2020 2020 2020 3220 0 1 2 │ │ │ │ +0003bc60: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ +0003bc70: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003bc80: 2020 2022 7369 676d 6122 203d 3e20 7b35 "sigma" => {5 │ │ │ │ +0003bc90: 7d20 7c20 6233 207c 2020 2020 2020 2020 } | b3 | │ │ │ │ +0003bca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003bcb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003bcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003bcd0: 207b 357d 207c 2030 2020 7c20 2020 2020 {5} | 0 | │ │ │ │ +0003bce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003bcf0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0003bd00: 2020 2020 2020 2020 2022 7461 7522 203d "tau" = │ │ │ │ +0003bd10: 3e20 3020 2020 2020 2020 2020 2020 2020 > 0 │ │ │ │ 0003bd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bd40: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0003bd50: 2020 2020 2020 2022 7522 203d 3e20 7b38 "u" => {8 │ │ │ │ -0003bd60: 7d20 7c20 3120 3020 7c20 2020 2020 2020 } | 1 0 | │ │ │ │ -0003bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bd80: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0003bd90: 2020 2020 2020 2020 2020 2276 2220 3d3e "v" => │ │ │ │ -0003bda0: 207b 397d 207c 2030 202d 3120 7c20 2020 {9} | 0 -1 | │ │ │ │ -0003bdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bdc0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0003bdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bde0: 2020 2020 7b39 7d20 7c20 3120 3020 207c {9} | 1 0 | │ │ │ │ +0003bd30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003bd40: 2020 2020 2020 2020 2020 2020 2275 2220 "u" │ │ │ │ +0003bd50: 3d3e 207b 387d 207c 2031 2030 207c 2020 => {8} | 1 0 | │ │ │ │ +0003bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003bd70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003bd80: 2020 2020 2020 2020 2020 2020 2020 2022 " │ │ │ │ +0003bd90: 7622 203d 3e20 7b39 7d20 7c20 3020 2d31 v" => {9} | 0 -1 │ │ │ │ +0003bda0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0003bdb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0003bdc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0003bdd0: 2020 2020 2020 2020 207b 397d 207c 2031 {9} | 1 │ │ │ │ +0003bde0: 2030 2020 7c20 2020 2020 2020 2020 2020 0 | │ │ │ │ 0003bdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003be00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0003be10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003be20: 2258 2220 3d3e 2030 2020 2020 2020 2020 "X" => 0 │ │ │ │ +0003be00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003be10: 2020 2020 2022 5822 203d 3e20 3020 2020 "X" => 0 │ │ │ │ +0003be20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003be30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003be40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003be50: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003be60: 2020 2022 5922 203d 3e20 3020 2020 2020 "Y" => 0 │ │ │ │ +0003be40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003be50: 2020 2020 2020 2020 2259 2220 3d3e 2030 "Y" => 0 │ │ │ │ +0003be60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003be70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003be80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003be90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003be80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bed0: 2020 2020 2020 7c0a 7c6f 3130 203a 2048 |.|o10 : H │ │ │ │ -0003bee0: 6173 6854 6162 6c65 2020 2020 2020 2020 ashTable │ │ │ │ +0003bec0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0003bed0: 3020 3a20 4861 7368 5461 626c 6520 2020 0 : HashTable │ │ │ │ +0003bee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bf10: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0003bf00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0003bf10: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0003bf20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003bf30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003bf40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003bf50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0003bf60: 3131 203a 2046 203d 2047 2322 7265 736f 11 : F = G#"reso │ │ │ │ -0003bf70: 6c75 7469 6f6e 2220 2020 2020 2020 2020 lution" │ │ │ │ +0003bf50: 2d2b 0a7c 6931 3120 3a20 4620 3d20 4723 -+.|i11 : F = G# │ │ │ │ +0003bf60: 2272 6573 6f6c 7574 696f 6e22 2020 2020 "resolution" │ │ │ │ +0003bf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bf90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0003bfa0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0003bf90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0003bfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bfe0: 2020 7c0a 7c20 2020 2020 2020 3320 2020 |.| 3 │ │ │ │ -0003bff0: 2020 2035 2020 2020 2020 3220 2020 2020 5 2 │ │ │ │ +0003bfd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0003bfe0: 2033 2020 2020 2020 3520 2020 2020 2032 3 5 2 │ │ │ │ +0003bff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c020: 2020 2020 207c 0a7c 6f31 3120 3d20 5320 |.|o11 = S │ │ │ │ -0003c030: 203c 2d2d 2053 2020 3c2d 2d20 5320 203c <-- S <-- S < │ │ │ │ -0003c040: 2d2d 2030 2020 2020 2020 2020 2020 2020 -- 0 │ │ │ │ -0003c050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c060: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003c010: 2020 2020 2020 2020 2020 7c0a 7c6f 3131 |.|o11 │ │ │ │ +0003c020: 203d 2053 2020 3c2d 2d20 5320 203c 2d2d = S <-- S <-- │ │ │ │ +0003c030: 2053 2020 3c2d 2d20 3020 2020 2020 2020 S <-- 0 │ │ │ │ +0003c040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003c050: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0003c060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c0a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0003c0b0: 2020 2020 3020 2020 2020 2031 2020 2020 0 1 │ │ │ │ -0003c0c0: 2020 3220 2020 2020 2033 2020 2020 2020 2 3 │ │ │ │ +0003c0a0: 7c0a 7c20 2020 2020 2030 2020 2020 2020 |.| 0 │ │ │ │ +0003c0b0: 3120 2020 2020 2032 2020 2020 2020 3320 1 2 3 │ │ │ │ +0003c0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c0e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0003c0f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0003c0e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003c0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c130: 207c 0a7c 6f31 3120 3a20 4368 6169 6e43 |.|o11 : ChainC │ │ │ │ -0003c140: 6f6d 706c 6578 2020 2020 2020 2020 2020 omplex │ │ │ │ +0003c120: 2020 2020 2020 7c0a 7c6f 3131 203a 2043 |.|o11 : C │ │ │ │ +0003c130: 6861 696e 436f 6d70 6c65 7820 2020 2020 hainComplex │ │ │ │ +0003c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c170: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0003c160: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0003c170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c1b0: 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 616c -------+..See al │ │ │ │ -0003c1c0: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ -0003c1d0: 202a 6e6f 7465 206d 616b 6546 696e 6974 *note makeFinit │ │ │ │ -0003c1e0: 6552 6573 6f6c 7574 696f 6e3a 206d 616b eResolution: mak │ │ │ │ -0003c1f0: 6546 696e 6974 6552 6573 6f6c 7574 696f eFiniteResolutio │ │ │ │ -0003c200: 6e2c 202d 2d20 6669 6e69 7465 2072 6573 n, -- finite res │ │ │ │ -0003c210: 6f6c 7574 696f 6e20 6f66 2061 0a20 2020 olution of a. │ │ │ │ -0003c220: 206d 6174 7269 7820 6661 6374 6f72 697a matrix factoriz │ │ │ │ -0003c230: 6174 696f 6e20 6d6f 6475 6c65 204d 0a0a ation module M.. │ │ │ │ -0003c240: 5761 7973 2074 6f20 7573 6520 6d61 6b65 Ways to use make │ │ │ │ -0003c250: 4669 6e69 7465 5265 736f 6c75 7469 6f6e FiniteResolution │ │ │ │ -0003c260: 436f 6469 6d32 3a0a 3d3d 3d3d 3d3d 3d3d Codim2:.======== │ │ │ │ +0003c1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 ------------+..S │ │ │ │ +0003c1b0: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ +0003c1c0: 0a0a 2020 2a20 2a6e 6f74 6520 6d61 6b65 .. * *note make │ │ │ │ +0003c1d0: 4669 6e69 7465 5265 736f 6c75 7469 6f6e FiniteResolution │ │ │ │ +0003c1e0: 3a20 6d61 6b65 4669 6e69 7465 5265 736f : makeFiniteReso │ │ │ │ +0003c1f0: 6c75 7469 6f6e 2c20 2d2d 2066 696e 6974 lution, -- finit │ │ │ │ +0003c200: 6520 7265 736f 6c75 7469 6f6e 206f 6620 e resolution of │ │ │ │ +0003c210: 610a 2020 2020 6d61 7472 6978 2066 6163 a. matrix fac │ │ │ │ +0003c220: 746f 7269 7a61 7469 6f6e 206d 6f64 756c torization modul │ │ │ │ +0003c230: 6520 4d0a 0a57 6179 7320 746f 2075 7365 e M..Ways to use │ │ │ │ +0003c240: 206d 616b 6546 696e 6974 6552 6573 6f6c makeFiniteResol │ │ │ │ +0003c250: 7574 696f 6e43 6f64 696d 323a 0a3d 3d3d utionCodim2:.=== │ │ │ │ +0003c260: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 0003c270: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0003c280: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -0003c290: 0a20 202a 2022 6d61 6b65 4669 6e69 7465 . * "makeFinite │ │ │ │ -0003c2a0: 5265 736f 6c75 7469 6f6e 436f 6469 6d32 ResolutionCodim2 │ │ │ │ -0003c2b0: 284d 6174 7269 782c 4c69 7374 2922 0a0a (Matrix,List)".. │ │ │ │ -0003c2c0: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ -0003c2d0: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ -0003c2e0: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ -0003c2f0: 7420 2a6e 6f74 6520 6d61 6b65 4669 6e69 t *note makeFini │ │ │ │ -0003c300: 7465 5265 736f 6c75 7469 6f6e 436f 6469 teResolutionCodi │ │ │ │ -0003c310: 6d32 3a20 6d61 6b65 4669 6e69 7465 5265 m2: makeFiniteRe │ │ │ │ -0003c320: 736f 6c75 7469 6f6e 436f 6469 6d32 2c20 solutionCodim2, │ │ │ │ -0003c330: 6973 2061 0a2a 6e6f 7465 206d 6574 686f is a.*note metho │ │ │ │ -0003c340: 6420 6675 6e63 7469 6f6e 2077 6974 6820 d function with │ │ │ │ -0003c350: 6f70 7469 6f6e 733a 2028 4d61 6361 756c options: (Macaul │ │ │ │ -0003c360: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ -0003c370: 6374 696f 6e57 6974 684f 7074 696f 6e73 ctionWithOptions │ │ │ │ -0003c380: 2c2e 0a1f 0a46 696c 653a 2043 6f6d 706c ,....File: Compl │ │ │ │ -0003c390: 6574 6549 6e74 6572 7365 6374 696f 6e52 eteIntersectionR │ │ │ │ -0003c3a0: 6573 6f6c 7574 696f 6e73 2e69 6e66 6f2c esolutions.info, │ │ │ │ -0003c3b0: 204e 6f64 653a 206d 616b 6548 6f6d 6f74 Node: makeHomot │ │ │ │ -0003c3c0: 6f70 6965 732c 204e 6578 743a 206d 616b opies, Next: mak │ │ │ │ -0003c3d0: 6548 6f6d 6f74 6f70 6965 7331 2c20 5072 eHomotopies1, Pr │ │ │ │ -0003c3e0: 6576 3a20 6d61 6b65 4669 6e69 7465 5265 ev: makeFiniteRe │ │ │ │ -0003c3f0: 736f 6c75 7469 6f6e 436f 6469 6d32 2c20 solutionCodim2, │ │ │ │ -0003c400: 5570 3a20 546f 700a 0a6d 616b 6548 6f6d Up: Top..makeHom │ │ │ │ -0003c410: 6f74 6f70 6965 7320 2d2d 2072 6574 7572 otopies -- retur │ │ │ │ -0003c420: 6e73 2061 2073 7973 7465 6d20 6f66 2068 ns a system of h │ │ │ │ -0003c430: 6967 6865 7220 686f 6d6f 746f 7069 6573 igher homotopies │ │ │ │ -0003c440: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ +0003c280: 3d3d 3d3d 0a0a 2020 2a20 226d 616b 6546 ====.. * "makeF │ │ │ │ +0003c290: 696e 6974 6552 6573 6f6c 7574 696f 6e43 initeResolutionC │ │ │ │ +0003c2a0: 6f64 696d 3228 4d61 7472 6978 2c4c 6973 odim2(Matrix,Lis │ │ │ │ +0003c2b0: 7429 220a 0a46 6f72 2074 6865 2070 726f t)"..For the pro │ │ │ │ +0003c2c0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +0003c2d0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +0003c2e0: 6f62 6a65 6374 202a 6e6f 7465 206d 616b object *note mak │ │ │ │ +0003c2f0: 6546 696e 6974 6552 6573 6f6c 7574 696f eFiniteResolutio │ │ │ │ +0003c300: 6e43 6f64 696d 323a 206d 616b 6546 696e nCodim2: makeFin │ │ │ │ +0003c310: 6974 6552 6573 6f6c 7574 696f 6e43 6f64 iteResolutionCod │ │ │ │ +0003c320: 696d 322c 2069 7320 610a 2a6e 6f74 6520 im2, is a.*note │ │ │ │ +0003c330: 6d65 7468 6f64 2066 756e 6374 696f 6e20 method function │ │ │ │ +0003c340: 7769 7468 206f 7074 696f 6e73 3a20 284d with options: (M │ │ │ │ +0003c350: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ +0003c360: 6f64 4675 6e63 7469 6f6e 5769 7468 4f70 odFunctionWithOp │ │ │ │ +0003c370: 7469 6f6e 732c 2e0a 1f0a 4669 6c65 3a20 tions,....File: │ │ │ │ +0003c380: 436f 6d70 6c65 7465 496e 7465 7273 6563 CompleteIntersec │ │ │ │ +0003c390: 7469 6f6e 5265 736f 6c75 7469 6f6e 732e tionResolutions. │ │ │ │ +0003c3a0: 696e 666f 2c20 4e6f 6465 3a20 6d61 6b65 info, Node: make │ │ │ │ +0003c3b0: 486f 6d6f 746f 7069 6573 2c20 4e65 7874 Homotopies, Next │ │ │ │ +0003c3c0: 3a20 6d61 6b65 486f 6d6f 746f 7069 6573 : makeHomotopies │ │ │ │ +0003c3d0: 312c 2050 7265 763a 206d 616b 6546 696e 1, Prev: makeFin │ │ │ │ +0003c3e0: 6974 6552 6573 6f6c 7574 696f 6e43 6f64 iteResolutionCod │ │ │ │ +0003c3f0: 696d 322c 2055 703a 2054 6f70 0a0a 6d61 im2, Up: Top..ma │ │ │ │ +0003c400: 6b65 486f 6d6f 746f 7069 6573 202d 2d20 keHomotopies -- │ │ │ │ +0003c410: 7265 7475 726e 7320 6120 7379 7374 656d returns a system │ │ │ │ +0003c420: 206f 6620 6869 6768 6572 2068 6f6d 6f74 of higher homot │ │ │ │ +0003c430: 6f70 6965 730a 2a2a 2a2a 2a2a 2a2a 2a2a opies.********** │ │ │ │ +0003c440: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0003c450: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0003c460: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0003c470: 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 ********..Synops │ │ │ │ -0003c480: 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a is.========.. * │ │ │ │ -0003c490: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -0003c4a0: 2048 203d 206d 616b 6548 6f6d 6f74 6f70 H = makeHomotop │ │ │ │ -0003c4b0: 6965 7328 662c 462c 6229 0a20 202a 2049 ies(f,F,b). * I │ │ │ │ -0003c4c0: 6e70 7574 733a 0a20 2020 2020 202a 2066 nputs:. * f │ │ │ │ -0003c4d0: 2c20 6120 2a6e 6f74 6520 6d61 7472 6978 , a *note matrix │ │ │ │ -0003c4e0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -0003c4f0: 4d61 7472 6978 2c2c 2031 786e 206d 6174 Matrix,, 1xn mat │ │ │ │ -0003c500: 7269 7820 6f66 2065 6c65 6d65 6e74 7320 rix of elements │ │ │ │ -0003c510: 6f66 2053 0a20 2020 2020 202a 2046 2c20 of S. * F, │ │ │ │ -0003c520: 6120 2a6e 6f74 6520 6368 6169 6e20 636f a *note chain co │ │ │ │ -0003c530: 6d70 6c65 783a 2028 4d61 6361 756c 6179 mplex: (Macaulay │ │ │ │ -0003c540: 3244 6f63 2943 6861 696e 436f 6d70 6c65 2Doc)ChainComple │ │ │ │ -0003c550: 782c 2c20 6164 6d69 7474 696e 670a 2020 x,, admitting. │ │ │ │ -0003c560: 2020 2020 2020 686f 6d6f 746f 7069 6573 homotopies │ │ │ │ -0003c570: 2066 6f72 2074 6865 2065 6e74 7269 6573 for the entries │ │ │ │ -0003c580: 206f 6620 660a 2020 2020 2020 2a20 622c of f. * b, │ │ │ │ -0003c590: 2061 6e20 2a6e 6f74 6520 696e 7465 6765 an *note intege │ │ │ │ -0003c5a0: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ -0003c5b0: 295a 5a2c 2c20 686f 7720 6661 7220 6261 )ZZ,, how far ba │ │ │ │ -0003c5c0: 636b 2074 6f20 636f 6d70 7574 6520 7468 ck to compute th │ │ │ │ -0003c5d0: 650a 2020 2020 2020 2020 686f 6d6f 746f e. homoto │ │ │ │ -0003c5e0: 7069 6573 2028 6465 6661 756c 7473 2074 pies (defaults t │ │ │ │ -0003c5f0: 6f20 6c65 6e67 7468 206f 6620 4629 0a20 o length of F). │ │ │ │ -0003c600: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ -0003c610: 2020 2a20 482c 2061 202a 6e6f 7465 2068 * H, a *note h │ │ │ │ -0003c620: 6173 6820 7461 626c 653a 2028 4d61 6361 ash table: (Maca │ │ │ │ -0003c630: 756c 6179 3244 6f63 2948 6173 6854 6162 ulay2Doc)HashTab │ │ │ │ -0003c640: 6c65 2c2c 2067 6976 6573 2074 6865 2068 le,, gives the h │ │ │ │ -0003c650: 6967 6865 720a 2020 2020 2020 2020 686f igher. ho │ │ │ │ -0003c660: 6d6f 746f 7079 2066 726f 6d20 465f 6920 motopy from F_i │ │ │ │ -0003c670: 636f 7272 6573 706f 6e64 696e 6720 746f corresponding to │ │ │ │ -0003c680: 2061 206d 6f6e 6f6d 6961 6c20 7769 7468 a monomial with │ │ │ │ -0003c690: 2065 7870 6f6e 656e 7420 7665 6374 6f72 exponent vector │ │ │ │ -0003c6a0: 204c 2061 730a 2020 2020 2020 2020 7468 L as. th │ │ │ │ -0003c6b0: 6520 7661 6c75 6520 2448 235c 7b4c 2c69 e value $H#\{L,i │ │ │ │ -0003c6c0: 5c7d 240a 0a44 6573 6372 6970 7469 6f6e \}$..Description │ │ │ │ -0003c6d0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 4769 .===========..Gi │ │ │ │ -0003c6e0: 7665 6e20 6120 2431 5c74 696d 6573 206e ven a $1\times n │ │ │ │ -0003c6f0: 2420 6d61 7472 6978 2066 2c20 616e 6420 $ matrix f, and │ │ │ │ -0003c700: 6120 6368 6169 6e20 636f 6d70 6c65 7820 a chain complex │ │ │ │ -0003c710: 462c 2074 6865 2073 6372 6970 7420 6174 F, the script at │ │ │ │ -0003c720: 7465 6d70 7473 2074 6f0a 6d61 6b65 2061 tempts to.make a │ │ │ │ -0003c730: 2066 616d 696c 7920 6f66 2068 6967 6865 family of highe │ │ │ │ -0003c740: 7220 686f 6d6f 746f 7069 6573 206f 6e20 r homotopies on │ │ │ │ -0003c750: 4620 666f 7220 7468 6520 656c 656d 656e F for the elemen │ │ │ │ -0003c760: 7473 206f 6620 662c 2069 6e20 7468 6520 ts of f, in the │ │ │ │ -0003c770: 7365 6e73 650a 6465 7363 7269 6265 642c sense.described, │ │ │ │ -0003c780: 2066 6f72 2065 7861 6d70 6c65 2c20 696e for example, in │ │ │ │ -0003c790: 2045 6973 656e 6275 6420 2245 6e72 6963 Eisenbud "Enric │ │ │ │ -0003c7a0: 6865 6420 4672 6565 2052 6573 6f6c 7574 hed Free Resolut │ │ │ │ -0003c7b0: 696f 6e73 2061 6e64 2043 6861 6e67 6520 ions and Change │ │ │ │ -0003c7c0: 6f66 0a52 696e 6773 222e 0a0a 5468 6520 of.Rings"...The │ │ │ │ -0003c7d0: 6f75 7470 7574 2069 7320 6120 6861 7368 output is a hash │ │ │ │ -0003c7e0: 2074 6162 6c65 2077 6974 6820 656e 7472 table with entr │ │ │ │ -0003c7f0: 6965 7320 6f66 2074 6865 2066 6f72 6d20 ies of the form │ │ │ │ -0003c800: 245c 7b4a 2c69 5c7d 3d3e 7324 2c20 7768 $\{J,i\}=>s$, wh │ │ │ │ -0003c810: 6572 6520 4a20 6973 2061 0a6c 6973 7420 ere J is a.list │ │ │ │ -0003c820: 6f66 206e 6f6e 2d6e 6567 6174 6976 6520 of non-negative │ │ │ │ -0003c830: 696e 7465 6765 7273 2c20 6f66 206c 656e integers, of len │ │ │ │ -0003c840: 6774 6820 6e20 616e 6420 2448 5c23 5c7b gth n and $H\#\{ │ │ │ │ -0003c850: 4a2c 695c 7d3a 2046 5f69 2d3e 465f 7b69 J,i\}: F_i->F_{i │ │ │ │ -0003c860: 2b32 7c4a 7c2d 317d 240a 6172 6520 6d61 +2|J|-1}$.are ma │ │ │ │ -0003c870: 7073 2073 6174 6973 6679 696e 6720 7468 ps satisfying th │ │ │ │ -0003c880: 6520 636f 6e64 6974 696f 6e73 2024 2420 e conditions $$ │ │ │ │ -0003c890: 485c 235c 7b65 302c 695c 7d20 3d20 643b H\#\{e0,i\} = d; │ │ │ │ -0003c8a0: 2024 2420 616e 6420 2424 0a48 235c 7b65 $$ and $$.H#\{e │ │ │ │ -0003c8b0: 302c 692b 315c 7d2a 4823 5c7b 652c 695c 0,i+1\}*H#\{e,i\ │ │ │ │ -0003c8c0: 7d2b 4823 5c7b 652c 692d 315c 7d48 235c }+H#\{e,i-1\}H#\ │ │ │ │ -0003c8d0: 7b65 302c 695c 7d20 3d20 665f 692c 2024 {e0,i\} = f_i, $ │ │ │ │ -0003c8e0: 2420 7768 6572 6520 2465 3020 3d0a 5c7b $ where $e0 =.\{ │ │ │ │ -0003c8f0: 302c 5c64 6f74 732c 305c 7d24 2061 6e64 0,\dots,0\}$ and │ │ │ │ -0003c900: 2024 6524 2069 7320 7468 6520 696e 6465 $e$ is the inde │ │ │ │ -0003c910: 7820 6f66 2064 6567 7265 6520 3120 7769 x of degree 1 wi │ │ │ │ -0003c920: 7468 2061 2031 2069 6e20 7468 6520 2469 th a 1 in the $i │ │ │ │ -0003c930: 242d 7468 2070 6c61 6365 3b0a 616e 642c $-th place;.and, │ │ │ │ -0003c940: 2066 6f72 2065 6163 6820 696e 6465 7820 for each index │ │ │ │ -0003c950: 6c69 7374 2049 2077 6974 6820 7c49 7c3c list I with |I|< │ │ │ │ -0003c960: 3d64 2c20 2424 2073 756d 5f7b 4a3c 497d =d, $$ sum_{Js │ │ │ │ +0003c800: 242c 2077 6865 7265 204a 2069 7320 610a $, where J is a. │ │ │ │ +0003c810: 6c69 7374 206f 6620 6e6f 6e2d 6e65 6761 list of non-nega │ │ │ │ +0003c820: 7469 7665 2069 6e74 6567 6572 732c 206f tive integers, o │ │ │ │ +0003c830: 6620 6c65 6e67 7468 206e 2061 6e64 2024 f length n and $ │ │ │ │ +0003c840: 485c 235c 7b4a 2c69 5c7d 3a20 465f 692d H\#\{J,i\}: F_i- │ │ │ │ +0003c850: 3e46 5f7b 692b 327c 4a7c 2d31 7d24 0a61 >F_{i+2|J|-1}$.a │ │ │ │ +0003c860: 7265 206d 6170 7320 7361 7469 7366 7969 re maps satisfyi │ │ │ │ +0003c870: 6e67 2074 6865 2063 6f6e 6469 7469 6f6e ng the condition │ │ │ │ +0003c880: 7320 2424 2048 5c23 5c7b 6530 2c69 5c7d s $$ H\#\{e0,i\} │ │ │ │ +0003c890: 203d 2064 3b20 2424 2061 6e64 2024 240a = d; $$ and $$. │ │ │ │ +0003c8a0: 4823 5c7b 6530 2c69 2b31 5c7d 2a48 235c H#\{e0,i+1\}*H#\ │ │ │ │ +0003c8b0: 7b65 2c69 5c7d 2b48 235c 7b65 2c69 2d31 {e,i\}+H#\{e,i-1 │ │ │ │ +0003c8c0: 5c7d 4823 5c7b 6530 2c69 5c7d 203d 2066 \}H#\{e0,i\} = f │ │ │ │ +0003c8d0: 5f69 2c20 2424 2077 6865 7265 2024 6530 _i, $$ where $e0 │ │ │ │ +0003c8e0: 203d 0a5c 7b30 2c5c 646f 7473 2c30 5c7d =.\{0,\dots,0\} │ │ │ │ +0003c8f0: 2420 616e 6420 2465 2420 6973 2074 6865 $ and $e$ is the │ │ │ │ +0003c900: 2069 6e64 6578 206f 6620 6465 6772 6565 index of degree │ │ │ │ +0003c910: 2031 2077 6974 6820 6120 3120 696e 2074 1 with a 1 in t │ │ │ │ +0003c920: 6865 2024 6924 2d74 6820 706c 6163 653b he $i$-th place; │ │ │ │ +0003c930: 0a61 6e64 2c20 666f 7220 6561 6368 2069 .and, for each i │ │ │ │ +0003c940: 6e64 6578 206c 6973 7420 4920 7769 7468 ndex list I with │ │ │ │ +0003c950: 207c 497c 3c3d 642c 2024 2420 7375 6d5f |I|<=d, $$ sum_ │ │ │ │ +0003c960: 7b4a 3c49 7d20 4823 5c7b 495c 7365 746d {J 0 │ │ │ │ -0003d1c0: 2020 2020 2020 2020 2020 2020 2020 207d } │ │ │ │ -0003d1d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003d1e0: 2020 7b7b 302c 2030 2c20 307d 2c20 317d {{0, 0, 0}, 1} │ │ │ │ -0003d1f0: 203d 3e20 7c20 6120 6220 6320 6420 7c20 => | a b c d | │ │ │ │ -0003d200: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0003d210: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003d220: 7b7b 302c 2030 2c20 307d 2c20 327d 203d {{0, 0, 0}, 2} = │ │ │ │ -0003d230: 3e20 7b31 7d20 7c20 2d62 202d 6320 3020 > {1} | -b -c 0 │ │ │ │ -0003d240: 202d 6420 3020 2030 2020 7c20 7c0a 7c20 -d 0 0 | |.| │ │ │ │ +0003d180: 2020 2020 2020 207c 0a7c 6f35 203d 2048 |.|o5 = H │ │ │ │ +0003d190: 6173 6854 6162 6c65 7b7b 7b30 2c20 302c ashTable{{{0, 0, │ │ │ │ +0003d1a0: 2030 7d2c 2030 7d20 3d3e 2030 2020 2020 0}, 0} => 0 │ │ │ │ +0003d1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d1c0: 2020 2020 7d7c 0a7c 2020 2020 2020 2020 }|.| │ │ │ │ +0003d1d0: 2020 2020 2020 207b 7b30 2c20 302c 2030 {{0, 0, 0 │ │ │ │ +0003d1e0: 7d2c 2031 7d20 3d3e 207c 2061 2062 2063 }, 1} => | a b c │ │ │ │ +0003d1f0: 2064 207c 2020 2020 2020 2020 2020 2020 d | │ │ │ │ +0003d200: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003d210: 2020 2020 207b 7b30 2c20 302c 2030 7d2c {{0, 0, 0}, │ │ │ │ +0003d220: 2032 7d20 3d3e 207b 317d 207c 202d 6220 2} => {1} | -b │ │ │ │ +0003d230: 2d63 2030 2020 2d64 2030 2020 3020 207c -c 0 -d 0 0 | │ │ │ │ +0003d240: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d270: 7b31 7d20 7c20 6120 2030 2020 2d63 2030 {1} | a 0 -c 0 │ │ │ │ -0003d280: 2020 2d64 2030 2020 7c20 7c0a 7c20 2020 -d 0 | |.| │ │ │ │ +0003d260: 2020 2020 207b 317d 207c 2061 2020 3020 {1} | a 0 │ │ │ │ +0003d270: 202d 6320 3020 202d 6420 3020 207c 207c -c 0 -d 0 | | │ │ │ │ +0003d280: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0003d290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d2a0: 2020 2020 2020 2020 2020 2020 2020 7b31 {1 │ │ │ │ -0003d2b0: 7d20 7c20 3020 2061 2020 6220 2030 2020 } | 0 a b 0 │ │ │ │ -0003d2c0: 3020 202d 6420 7c20 7c0a 7c20 2020 2020 0 -d | |.| │ │ │ │ +0003d2a0: 2020 207b 317d 207c 2030 2020 6120 2062 {1} | 0 a b │ │ │ │ +0003d2b0: 2020 3020 2030 2020 2d64 207c 207c 0a7c 0 0 -d | |.| │ │ │ │ +0003d2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d2e0: 2020 2020 2020 2020 2020 2020 7b31 7d20 {1} │ │ │ │ -0003d2f0: 7c20 3020 2030 2020 3020 2061 2020 6220 | 0 0 0 a b │ │ │ │ -0003d300: 2063 2020 7c20 7c0a 7c20 2020 2020 2020 c | |.| │ │ │ │ -0003d310: 2020 2020 2020 2020 7b7b 302c 2030 2c20 {{0, 0, │ │ │ │ -0003d320: 307d 2c20 337d 203d 3e20 7b32 7d20 7c20 0}, 3} => {2} | │ │ │ │ -0003d330: 6320 2064 2020 3020 2030 2020 7c20 2020 c d 0 0 | │ │ │ │ -0003d340: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0003d350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d360: 2020 2020 2020 2020 7b32 7d20 7c20 2d62 {2} | -b │ │ │ │ -0003d370: 2030 2020 6420 2030 2020 7c20 2020 2020 0 d 0 | │ │ │ │ -0003d380: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003d390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d3a0: 2020 2020 2020 7b32 7d20 7c20 6120 2030 {2} | a 0 │ │ │ │ -0003d3b0: 2020 3020 2064 2020 7c20 2020 2020 2020 0 d | │ │ │ │ -0003d3c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003d3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d3e0: 2020 2020 7b32 7d20 7c20 3020 202d 6220 {2} | 0 -b │ │ │ │ -0003d3f0: 2d63 2030 2020 7c20 2020 2020 2020 7c0a -c 0 | |. │ │ │ │ -0003d400: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003d410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d420: 2020 7b32 7d20 7c20 3020 2061 2020 3020 {2} | 0 a 0 │ │ │ │ -0003d430: 202d 6320 7c20 2020 2020 2020 7c0a 7c20 -c | |.| │ │ │ │ +0003d2e0: 207b 317d 207c 2030 2020 3020 2030 2020 {1} | 0 0 0 │ │ │ │ +0003d2f0: 6120 2062 2020 6320 207c 207c 0a7c 2020 a b c | |.| │ │ │ │ +0003d300: 2020 2020 2020 2020 2020 2020 207b 7b30 {{0 │ │ │ │ +0003d310: 2c20 302c 2030 7d2c 2033 7d20 3d3e 207b , 0, 0}, 3} => { │ │ │ │ +0003d320: 327d 207c 2063 2020 6420 2030 2020 3020 2} | c d 0 0 │ │ │ │ +0003d330: 207c 2020 2020 2020 207c 0a7c 2020 2020 | |.| │ │ │ │ +0003d340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d350: 2020 2020 2020 2020 2020 2020 207b 327d {2} │ │ │ │ +0003d360: 207c 202d 6220 3020 2064 2020 3020 207c | -b 0 d 0 | │ │ │ │ +0003d370: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0003d380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d390: 2020 2020 2020 2020 2020 207b 327d 207c {2} | │ │ │ │ +0003d3a0: 2061 2020 3020 2030 2020 6420 207c 2020 a 0 0 d | │ │ │ │ +0003d3b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003d3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d3d0: 2020 2020 2020 2020 207b 327d 207c 2030 {2} | 0 │ │ │ │ +0003d3e0: 2020 2d62 202d 6320 3020 207c 2020 2020 -b -c 0 | │ │ │ │ +0003d3f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003d400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d410: 2020 2020 2020 207b 327d 207c 2030 2020 {2} | 0 │ │ │ │ +0003d420: 6120 2030 2020 2d63 207c 2020 2020 2020 a 0 -c | │ │ │ │ +0003d430: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d460: 7b32 7d20 7c20 3020 2030 2020 6120 2062 {2} | 0 0 a b │ │ │ │ -0003d470: 2020 7c20 2020 2020 2020 7c0a 7c20 2020 | |.| │ │ │ │ -0003d480: 2020 2020 2020 2020 2020 2020 7b7b 302c {{0, │ │ │ │ -0003d490: 2030 2c20 317d 2c20 2d31 7d20 3d3e 2030 0, 1}, -1} => 0 │ │ │ │ -0003d4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d4b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0003d4c0: 2020 2020 2020 2020 2020 7b7b 302c 2030 {{0, 0 │ │ │ │ -0003d4d0: 2c20 317d 2c20 307d 203d 3e20 7b31 7d20 , 1}, 0} => {1} │ │ │ │ -0003d4e0: 7c20 3020 7c20 2020 2020 2020 2020 2020 | 0 | │ │ │ │ -0003d4f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0003d500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d510: 2020 2020 2020 2020 2020 7b31 7d20 7c20 {1} | │ │ │ │ -0003d520: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ -0003d530: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0003d540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d550: 2020 2020 2020 2020 7b31 7d20 7c20 3120 {1} | 1 │ │ │ │ -0003d560: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003d570: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003d580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d590: 2020 2020 2020 7b31 7d20 7c20 3020 7c20 {1} | 0 | │ │ │ │ -0003d5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d5b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003d5c0: 2020 7b7b 302c 2030 2c20 317d 2c20 317d {{0, 0, 1}, 1} │ │ │ │ -0003d5d0: 203d 3e20 7b32 7d20 7c20 3020 2030 2020 => {2} | 0 0 │ │ │ │ -0003d5e0: 3020 3020 7c20 2020 2020 2020 2020 7c0a 0 0 | |. │ │ │ │ -0003d5f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003d600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d610: 2020 7b32 7d20 7c20 2d31 2030 2020 3020 {2} | -1 0 0 │ │ │ │ -0003d620: 3020 7c20 2020 2020 2020 2020 7c0a 7c20 0 | |.| │ │ │ │ +0003d450: 2020 2020 207b 327d 207c 2030 2020 3020 {2} | 0 0 │ │ │ │ +0003d460: 2061 2020 6220 207c 2020 2020 2020 207c a b | | │ │ │ │ +0003d470: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0003d480: 207b 7b30 2c20 302c 2031 7d2c 202d 317d {{0, 0, 1}, -1} │ │ │ │ +0003d490: 203d 3e20 3020 2020 2020 2020 2020 2020 => 0 │ │ │ │ +0003d4a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0003d4b0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ +0003d4c0: 7b30 2c20 302c 2031 7d2c 2030 7d20 3d3e {0, 0, 1}, 0} => │ │ │ │ +0003d4d0: 207b 317d 207c 2030 207c 2020 2020 2020 {1} | 0 | │ │ │ │ +0003d4e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0003d4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d500: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ +0003d510: 317d 207c 2030 207c 2020 2020 2020 2020 1} | 0 | │ │ │ │ +0003d520: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d540: 2020 2020 2020 2020 2020 2020 207b 317d {1} │ │ │ │ +0003d550: 207c 2031 207c 2020 2020 2020 2020 2020 | 1 | │ │ │ │ +0003d560: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0003d570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d580: 2020 2020 2020 2020 2020 207b 317d 207c {1} | │ │ │ │ +0003d590: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +0003d5a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003d5b0: 2020 2020 2020 207b 7b30 2c20 302c 2031 {{0, 0, 1 │ │ │ │ +0003d5c0: 7d2c 2031 7d20 3d3e 207b 327d 207c 2030 }, 1} => {2} | 0 │ │ │ │ +0003d5d0: 2020 3020 2030 2030 207c 2020 2020 2020 0 0 0 | │ │ │ │ +0003d5e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003d5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d600: 2020 2020 2020 207b 327d 207c 202d 3120 {2} | -1 │ │ │ │ +0003d610: 3020 2030 2030 207c 2020 2020 2020 2020 0 0 0 | │ │ │ │ +0003d620: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d650: 7b32 7d20 7c20 3020 202d 3120 3020 3020 {2} | 0 -1 0 0 │ │ │ │ -0003d660: 7c20 2020 2020 2020 2020 7c0a 7c20 2020 | |.| │ │ │ │ +0003d640: 2020 2020 207b 327d 207c 2030 2020 2d31 {2} | 0 -1 │ │ │ │ +0003d650: 2030 2030 207c 2020 2020 2020 2020 207c 0 0 | | │ │ │ │ +0003d660: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0003d670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d680: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ -0003d690: 7d20 7c20 3020 2030 2020 3020 3020 7c20 } | 0 0 0 0 | │ │ │ │ -0003d6a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003d680: 2020 207b 327d 207c 2030 2020 3020 2030 {2} | 0 0 0 │ │ │ │ +0003d690: 2030 207c 2020 2020 2020 2020 207c 0a7c 0 | |.| │ │ │ │ +0003d6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d6c0: 2020 2020 2020 2020 2020 2020 7b32 7d20 {2} │ │ │ │ -0003d6d0: 7c20 3020 2030 2020 3020 3020 7c20 2020 | 0 0 0 0 | │ │ │ │ -0003d6e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0003d6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d700: 2020 2020 2020 2020 2020 7b32 7d20 7c20 {2} | │ │ │ │ -0003d710: 3020 2030 2020 3020 3120 7c20 2020 2020 0 0 0 1 | │ │ │ │ -0003d720: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0003d730: 2020 2020 2020 7b7b 302c 2030 2c20 317d {{0, 0, 1} │ │ │ │ -0003d740: 2c20 327d 203d 3e20 7b33 7d20 7c20 3120 , 2} => {3} | 1 │ │ │ │ -0003d750: 3020 3020 3020 2030 2020 3020 7c20 2020 0 0 0 0 0 | │ │ │ │ -0003d760: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003d770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d780: 2020 2020 2020 7b33 7d20 7c20 3020 3020 {3} | 0 0 │ │ │ │ -0003d790: 3020 3020 2030 2020 3020 7c20 2020 2020 0 0 0 0 | │ │ │ │ -0003d7a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003d7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d7c0: 2020 2020 7b33 7d20 7c20 3020 3020 3020 {3} | 0 0 0 │ │ │ │ -0003d7d0: 2d31 2030 2020 3020 7c20 2020 2020 7c0a -1 0 0 | |. │ │ │ │ -0003d7e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003d7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d800: 2020 7b33 7d20 7c20 3020 3020 3020 3020 {3} | 0 0 0 0 │ │ │ │ -0003d810: 202d 3120 3020 7c20 2020 2020 7c0a 7c20 -1 0 | |.| │ │ │ │ -0003d820: 2020 2020 2020 2020 2020 2020 2020 7b7b {{ │ │ │ │ -0003d830: 302c 2030 2c20 327d 2c20 2d31 7d20 3d3e 0, 0, 2}, -1} => │ │ │ │ -0003d840: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -0003d850: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0003d860: 2020 2020 2020 2020 2020 2020 7b7b 302c {{0, │ │ │ │ -0003d870: 2031 2c20 307d 2c20 2d31 7d20 3d3e 2030 1, 0}, -1} => 0 │ │ │ │ -0003d880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d890: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0003d8a0: 2020 2020 2020 2020 2020 7b7b 302c 2031 {{0, 1 │ │ │ │ -0003d8b0: 2c20 307d 2c20 307d 203d 3e20 7b31 7d20 , 0}, 0} => {1} │ │ │ │ -0003d8c0: 7c20 3020 7c20 2020 2020 2020 2020 2020 | 0 | │ │ │ │ -0003d8d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0003d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d8f0: 2020 2020 2020 2020 2020 7b31 7d20 7c20 {1} | │ │ │ │ -0003d900: 3120 7c20 2020 2020 2020 2020 2020 2020 1 | │ │ │ │ -0003d910: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0003d920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d930: 2020 2020 2020 2020 7b31 7d20 7c20 3020 {1} | 0 │ │ │ │ -0003d940: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003d950: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003d960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d970: 2020 2020 2020 7b31 7d20 7c20 3020 7c20 {1} | 0 | │ │ │ │ -0003d980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d990: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003d9a0: 2020 7b7b 302c 2031 2c20 307d 2c20 317d {{0, 1, 0}, 1} │ │ │ │ -0003d9b0: 203d 3e20 7b32 7d20 7c20 2d31 2030 2030 => {2} | -1 0 0 │ │ │ │ -0003d9c0: 2030 207c 2020 2020 2020 2020 2020 7c0a 0 | |. │ │ │ │ -0003d9d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003d9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d9f0: 2020 7b32 7d20 7c20 3020 2030 2030 2030 {2} | 0 0 0 0 │ │ │ │ -0003da00: 207c 2020 2020 2020 2020 2020 7c0a 7c20 | |.| │ │ │ │ +0003d6c0: 207b 327d 207c 2030 2020 3020 2030 2030 {2} | 0 0 0 0 │ │ │ │ +0003d6d0: 207c 2020 2020 2020 2020 207c 0a7c 2020 | |.| │ │ │ │ +0003d6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d6f0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ +0003d700: 327d 207c 2030 2020 3020 2030 2031 207c 2} | 0 0 0 1 | │ │ │ │ +0003d710: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d720: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003d730: 302c 2031 7d2c 2032 7d20 3d3e 207b 337d 0, 1}, 2} => {3} │ │ │ │ +0003d740: 207c 2031 2030 2030 2030 2020 3020 2030 | 1 0 0 0 0 0 │ │ │ │ +0003d750: 207c 2020 2020 207c 0a7c 2020 2020 2020 | |.| │ │ │ │ +0003d760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d770: 2020 2020 2020 2020 2020 207b 337d 207c {3} | │ │ │ │ +0003d780: 2030 2030 2030 2030 2020 3020 2030 207c 0 0 0 0 0 0 | │ │ │ │ +0003d790: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003d7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d7b0: 2020 2020 2020 2020 207b 337d 207c 2030 {3} | 0 │ │ │ │ +0003d7c0: 2030 2030 202d 3120 3020 2030 207c 2020 0 0 -1 0 0 | │ │ │ │ +0003d7d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003d7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d7f0: 2020 2020 2020 207b 337d 207c 2030 2030 {3} | 0 0 │ │ │ │ +0003d800: 2030 2030 2020 2d31 2030 207c 2020 2020 0 0 -1 0 | │ │ │ │ +0003d810: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003d820: 2020 207b 7b30 2c20 302c 2032 7d2c 202d {{0, 0, 2}, - │ │ │ │ +0003d830: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +0003d840: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0003d850: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0003d860: 207b 7b30 2c20 312c 2030 7d2c 202d 317d {{0, 1, 0}, -1} │ │ │ │ +0003d870: 203d 3e20 3020 2020 2020 2020 2020 2020 => 0 │ │ │ │ +0003d880: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0003d890: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ +0003d8a0: 7b30 2c20 312c 2030 7d2c 2030 7d20 3d3e {0, 1, 0}, 0} => │ │ │ │ +0003d8b0: 207b 317d 207c 2030 207c 2020 2020 2020 {1} | 0 | │ │ │ │ +0003d8c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0003d8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d8e0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ +0003d8f0: 317d 207c 2031 207c 2020 2020 2020 2020 1} | 1 | │ │ │ │ +0003d900: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d920: 2020 2020 2020 2020 2020 2020 207b 317d {1} │ │ │ │ +0003d930: 207c 2030 207c 2020 2020 2020 2020 2020 | 0 | │ │ │ │ +0003d940: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0003d950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d960: 2020 2020 2020 2020 2020 207b 317d 207c {1} | │ │ │ │ +0003d970: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +0003d980: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003d990: 2020 2020 2020 207b 7b30 2c20 312c 2030 {{0, 1, 0 │ │ │ │ +0003d9a0: 7d2c 2031 7d20 3d3e 207b 327d 207c 202d }, 1} => {2} | - │ │ │ │ +0003d9b0: 3120 3020 3020 3020 7c20 2020 2020 2020 1 0 0 0 | │ │ │ │ +0003d9c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003d9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d9e0: 2020 2020 2020 207b 327d 207c 2030 2020 {2} | 0 │ │ │ │ +0003d9f0: 3020 3020 3020 7c20 2020 2020 2020 2020 0 0 0 | │ │ │ │ +0003da00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003da10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003da20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003da30: 7b32 7d20 7c20 3020 2030 2031 2030 207c {2} | 0 0 1 0 | │ │ │ │ -0003da40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003da20: 2020 2020 207b 327d 207c 2030 2020 3020 {2} | 0 0 │ │ │ │ +0003da30: 3120 3020 7c20 2020 2020 2020 2020 207c 1 0 | | │ │ │ │ +0003da40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0003da50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003da60: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ -0003da70: 7d20 7c20 3020 2030 2030 2030 207c 2020 } | 0 0 0 0 | │ │ │ │ -0003da80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003da60: 2020 207b 327d 207c 2030 2020 3020 3020 {2} | 0 0 0 │ │ │ │ +0003da70: 3020 7c20 2020 2020 2020 2020 207c 0a7c 0 | |.| │ │ │ │ +0003da80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003da90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003daa0: 2020 2020 2020 2020 2020 2020 7b32 7d20 {2} │ │ │ │ -0003dab0: 7c20 3020 2030 2030 2031 207c 2020 2020 | 0 0 0 1 | │ │ │ │ -0003dac0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0003dad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dae0: 2020 2020 2020 2020 2020 7b32 7d20 7c20 {2} | │ │ │ │ -0003daf0: 3020 2030 2030 2030 207c 2020 2020 2020 0 0 0 0 | │ │ │ │ -0003db00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0003db10: 2020 2020 2020 7b7b 302c 2031 2c20 307d {{0, 1, 0} │ │ │ │ -0003db20: 2c20 327d 203d 3e20 7b33 7d20 7c20 3020 , 2} => {3} | 0 │ │ │ │ -0003db30: 2d31 2030 2030 2020 3020 3020 7c20 2020 -1 0 0 0 0 | │ │ │ │ -0003db40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003db50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003db60: 2020 2020 2020 7b33 7d20 7c20 3020 3020 {3} | 0 0 │ │ │ │ -0003db70: 2030 202d 3120 3020 3020 7c20 2020 2020 0 -1 0 0 | │ │ │ │ -0003db80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003db90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dba0: 2020 2020 7b33 7d20 7c20 3020 3020 2030 {3} | 0 0 0 │ │ │ │ -0003dbb0: 2030 2020 3020 3020 7c20 2020 2020 7c0a 0 0 0 | |. │ │ │ │ -0003dbc0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003dbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dbe0: 2020 7b33 7d20 7c20 3020 3020 2030 2030 {3} | 0 0 0 0 │ │ │ │ -0003dbf0: 2020 3020 3120 7c20 2020 2020 7c0a 7c20 0 1 | |.| │ │ │ │ -0003dc00: 2020 2020 2020 2020 2020 2020 2020 7b7b {{ │ │ │ │ -0003dc10: 302c 2031 2c20 317d 2c20 2d31 7d20 3d3e 0, 1, 1}, -1} => │ │ │ │ -0003dc20: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -0003dc30: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0003dc40: 2020 2020 2020 2020 2020 2020 7b7b 302c {{0, │ │ │ │ -0003dc50: 2032 2c20 307d 2c20 2d31 7d20 3d3e 2030 2, 0}, -1} => 0 │ │ │ │ -0003dc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dc70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0003dc80: 2020 2020 2020 2020 2020 7b7b 312c 2030 {{1, 0 │ │ │ │ -0003dc90: 2c20 307d 2c20 2d31 7d20 3d3e 2030 2020 , 0}, -1} => 0 │ │ │ │ -0003dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dcb0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0003dcc0: 2020 2020 2020 2020 7b7b 312c 2030 2c20 {{1, 0, │ │ │ │ -0003dcd0: 307d 2c20 307d 203d 3e20 7b31 7d20 7c20 0}, 0} => {1} | │ │ │ │ -0003dce0: 3120 7c20 2020 2020 2020 2020 2020 2020 1 | │ │ │ │ -0003dcf0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0003dd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dd10: 2020 2020 2020 2020 7b31 7d20 7c20 3020 {1} | 0 │ │ │ │ -0003dd20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003dd30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003dd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dd50: 2020 2020 2020 7b31 7d20 7c20 3020 7c20 {1} | 0 | │ │ │ │ -0003dd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dd70: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003dd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dd90: 2020 2020 7b31 7d20 7c20 3020 7c20 2020 {1} | 0 | │ │ │ │ -0003dda0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0003ddb0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003ddc0: 7b7b 312c 2030 2c20 307d 2c20 317d 203d {{1, 0, 0}, 1} = │ │ │ │ -0003ddd0: 3e20 7b32 7d20 7c20 3020 3120 3020 3020 > {2} | 0 1 0 0 │ │ │ │ -0003dde0: 7c20 2020 2020 2020 2020 2020 7c0a 7c20 | |.| │ │ │ │ +0003daa0: 207b 327d 207c 2030 2020 3020 3020 3120 {2} | 0 0 0 1 │ │ │ │ +0003dab0: 7c20 2020 2020 2020 2020 207c 0a7c 2020 | |.| │ │ │ │ +0003dac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003dad0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ +0003dae0: 327d 207c 2030 2020 3020 3020 3020 7c20 2} | 0 0 0 0 | │ │ │ │ +0003daf0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003db00: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003db10: 312c 2030 7d2c 2032 7d20 3d3e 207b 337d 1, 0}, 2} => {3} │ │ │ │ +0003db20: 207c 2030 202d 3120 3020 3020 2030 2030 | 0 -1 0 0 0 0 │ │ │ │ +0003db30: 207c 2020 2020 207c 0a7c 2020 2020 2020 | |.| │ │ │ │ +0003db40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003db50: 2020 2020 2020 2020 2020 207b 337d 207c {3} | │ │ │ │ +0003db60: 2030 2030 2020 3020 2d31 2030 2030 207c 0 0 0 -1 0 0 | │ │ │ │ +0003db70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003db80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003db90: 2020 2020 2020 2020 207b 337d 207c 2030 {3} | 0 │ │ │ │ +0003dba0: 2030 2020 3020 3020 2030 2030 207c 2020 0 0 0 0 0 | │ │ │ │ +0003dbb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003dbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003dbd0: 2020 2020 2020 207b 337d 207c 2030 2030 {3} | 0 0 │ │ │ │ +0003dbe0: 2020 3020 3020 2030 2031 207c 2020 2020 0 0 0 1 | │ │ │ │ +0003dbf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003dc00: 2020 207b 7b30 2c20 312c 2031 7d2c 202d {{0, 1, 1}, - │ │ │ │ +0003dc10: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +0003dc20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0003dc30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0003dc40: 207b 7b30 2c20 322c 2030 7d2c 202d 317d {{0, 2, 0}, -1} │ │ │ │ +0003dc50: 203d 3e20 3020 2020 2020 2020 2020 2020 => 0 │ │ │ │ +0003dc60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0003dc70: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ +0003dc80: 7b31 2c20 302c 2030 7d2c 202d 317d 203d {1, 0, 0}, -1} = │ │ │ │ +0003dc90: 3e20 3020 2020 2020 2020 2020 2020 2020 > 0 │ │ │ │ +0003dca0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0003dcb0: 2020 2020 2020 2020 2020 2020 207b 7b31 {{1 │ │ │ │ +0003dcc0: 2c20 302c 2030 7d2c 2030 7d20 3d3e 207b , 0, 0}, 0} => { │ │ │ │ +0003dcd0: 317d 207c 2031 207c 2020 2020 2020 2020 1} | 1 | │ │ │ │ +0003dce0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003dcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003dd00: 2020 2020 2020 2020 2020 2020 207b 317d {1} │ │ │ │ +0003dd10: 207c 2030 207c 2020 2020 2020 2020 2020 | 0 | │ │ │ │ +0003dd20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0003dd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003dd40: 2020 2020 2020 2020 2020 207b 317d 207c {1} | │ │ │ │ +0003dd50: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +0003dd60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003dd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003dd80: 2020 2020 2020 2020 207b 317d 207c 2030 {1} | 0 │ │ │ │ +0003dd90: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0003dda0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003ddb0: 2020 2020 207b 7b31 2c20 302c 2030 7d2c {{1, 0, 0}, │ │ │ │ +0003ddc0: 2031 7d20 3d3e 207b 327d 207c 2030 2031 1} => {2} | 0 1 │ │ │ │ +0003ddd0: 2030 2030 207c 2020 2020 2020 2020 2020 0 0 | │ │ │ │ +0003dde0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003ddf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003de00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003de10: 7b32 7d20 7c20 3020 3020 3120 3020 7c20 {2} | 0 0 1 0 | │ │ │ │ -0003de20: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003de00: 2020 2020 207b 327d 207c 2030 2030 2031 {2} | 0 0 1 │ │ │ │ +0003de10: 2030 207c 2020 2020 2020 2020 2020 207c 0 | | │ │ │ │ +0003de20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0003de30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003de40: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ -0003de50: 7d20 7c20 3020 3020 3020 3020 7c20 2020 } | 0 0 0 0 | │ │ │ │ -0003de60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003de40: 2020 207b 327d 207c 2030 2030 2030 2030 {2} | 0 0 0 0 │ │ │ │ +0003de50: 207c 2020 2020 2020 2020 2020 207c 0a7c | |.| │ │ │ │ +0003de60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003de70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003de80: 2020 2020 2020 2020 2020 2020 7b32 7d20 {2} │ │ │ │ -0003de90: 7c20 3020 3020 3020 3120 7c20 2020 2020 | 0 0 0 1 | │ │ │ │ -0003dea0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0003deb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dec0: 2020 2020 2020 2020 2020 7b32 7d20 7c20 {2} | │ │ │ │ -0003ded0: 3020 3020 3020 3020 7c20 2020 2020 2020 0 0 0 0 | │ │ │ │ -0003dee0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0003def0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003df00: 2020 2020 2020 2020 7b32 7d20 7c20 3020 {2} | 0 │ │ │ │ -0003df10: 3020 3020 3020 7c20 2020 2020 2020 2020 0 0 0 | │ │ │ │ -0003df20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003df30: 2020 2020 7b7b 312c 2030 2c20 307d 2c20 {{1, 0, 0}, │ │ │ │ -0003df40: 327d 203d 3e20 7b33 7d20 7c20 3020 3020 2} => {3} | 0 0 │ │ │ │ -0003df50: 3120 3020 3020 3020 7c20 2020 2020 2020 1 0 0 0 | │ │ │ │ -0003df60: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003df70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003df80: 2020 2020 7b33 7d20 7c20 3020 3020 3020 {3} | 0 0 0 │ │ │ │ -0003df90: 3020 3120 3020 7c20 2020 2020 2020 7c0a 0 1 0 | |. │ │ │ │ -0003dfa0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0003dfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dfc0: 2020 7b33 7d20 7c20 3020 3020 3020 3020 {3} | 0 0 0 0 │ │ │ │ -0003dfd0: 3020 3120 7c20 2020 2020 2020 7c0a 7c20 0 1 | |.| │ │ │ │ +0003de80: 207b 327d 207c 2030 2030 2030 2031 207c {2} | 0 0 0 1 | │ │ │ │ +0003de90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0003dea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003deb0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ +0003dec0: 327d 207c 2030 2030 2030 2030 207c 2020 2} | 0 0 0 0 | │ │ │ │ +0003ded0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003dee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003def0: 2020 2020 2020 2020 2020 2020 207b 327d {2} │ │ │ │ +0003df00: 207c 2030 2030 2030 2030 207c 2020 2020 | 0 0 0 0 | │ │ │ │ +0003df10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0003df20: 2020 2020 2020 2020 207b 7b31 2c20 302c {{1, 0, │ │ │ │ +0003df30: 2030 7d2c 2032 7d20 3d3e 207b 337d 207c 0}, 2} => {3} | │ │ │ │ +0003df40: 2030 2030 2031 2030 2030 2030 207c 2020 0 0 1 0 0 0 | │ │ │ │ +0003df50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0003df60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003df70: 2020 2020 2020 2020 207b 337d 207c 2030 {3} | 0 │ │ │ │ +0003df80: 2030 2030 2030 2031 2030 207c 2020 2020 0 0 0 1 0 | │ │ │ │ +0003df90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003dfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003dfb0: 2020 2020 2020 207b 337d 207c 2030 2030 {3} | 0 0 │ │ │ │ +0003dfc0: 2030 2030 2030 2031 207c 2020 2020 2020 0 0 0 1 | │ │ │ │ +0003dfd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003dfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e000: 7b33 7d20 7c20 3020 3020 3020 3020 3020 {3} | 0 0 0 0 0 │ │ │ │ -0003e010: 3020 7c20 2020 2020 2020 7c0a 7c20 2020 0 | |.| │ │ │ │ -0003e020: 2020 2020 2020 2020 2020 2020 7b7b 312c {{1, │ │ │ │ -0003e030: 2030 2c20 317d 2c20 2d31 7d20 3d3e 2030 0, 1}, -1} => 0 │ │ │ │ -0003e040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e050: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0003e060: 2020 2020 2020 2020 2020 7b7b 312c 2031 {{1, 1 │ │ │ │ -0003e070: 2c20 307d 2c20 2d31 7d20 3d3e 2030 2020 , 0}, -1} => 0 │ │ │ │ -0003e080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e090: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0003e0a0: 2020 2020 2020 2020 7b7b 322c 2030 2c20 {{2, 0, │ │ │ │ -0003e0b0: 307d 2c20 2d31 7d20 3d3e 2030 2020 2020 0}, -1} => 0 │ │ │ │ -0003e0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e0d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0003dff0: 2020 2020 207b 337d 207c 2030 2030 2030 {3} | 0 0 0 │ │ │ │ +0003e000: 2030 2030 2030 207c 2020 2020 2020 207c 0 0 0 | | │ │ │ │ +0003e010: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0003e020: 207b 7b31 2c20 302c 2031 7d2c 202d 317d {{1, 0, 1}, -1} │ │ │ │ +0003e030: 203d 3e20 3020 2020 2020 2020 2020 2020 => 0 │ │ │ │ +0003e040: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0003e050: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ +0003e060: 7b31 2c20 312c 2030 7d2c 202d 317d 203d {1, 1, 0}, -1} = │ │ │ │ +0003e070: 3e20 3020 2020 2020 2020 2020 2020 2020 > 0 │ │ │ │ +0003e080: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0003e090: 2020 2020 2020 2020 2020 2020 207b 7b32 {{2 │ │ │ │ +0003e0a0: 2c20 302c 2030 7d2c 202d 317d 203d 3e20 , 0, 0}, -1} => │ │ │ │ +0003e0b0: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +0003e0c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003e0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e110: 2020 7c0a 7c6f 3520 3a20 4861 7368 5461 |.|o5 : HashTa │ │ │ │ -0003e120: 626c 6520 2020 2020 2020 2020 2020 2020 ble │ │ │ │ +0003e100: 2020 2020 2020 207c 0a7c 6f35 203a 2048 |.|o5 : H │ │ │ │ +0003e110: 6173 6854 6162 6c65 2020 2020 2020 2020 ashTable │ │ │ │ +0003e120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e150: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0003e140: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0003e150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0003e190: 0a49 6e20 7468 6973 2063 6173 6520 7468 .In this case th │ │ │ │ -0003e1a0: 6520 6869 6768 6572 2068 6f6d 6f74 6f70 e higher homotop │ │ │ │ -0003e1b0: 6965 7320 6172 6520 303a 0a0a 2b2d 2d2d ies are 0:..+--- │ │ │ │ +0003e180: 2d2d 2d2b 0a0a 496e 2074 6869 7320 6361 ---+..In this ca │ │ │ │ +0003e190: 7365 2074 6865 2068 6967 6865 7220 686f se the higher ho │ │ │ │ +0003e1a0: 6d6f 746f 7069 6573 2061 7265 2030 3a0a motopies are 0:. │ │ │ │ +0003e1b0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0003e1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0003e200: 6936 203a 204c 203d 2073 6f72 7420 7365 i6 : L = sort se │ │ │ │ -0003e210: 6c65 6374 286b 6579 7320 686f 6d6f 742c lect(keys homot, │ │ │ │ -0003e220: 206b 2d3e 2868 6f6d 6f74 236b 213d 3020 k->(homot#k!=0 │ │ │ │ -0003e230: 616e 6420 7375 6d28 6b5f 3029 3e31 2929 and sum(k_0)>1)) │ │ │ │ -0003e240: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003e1f0: 2d2d 2b0a 7c69 3620 3a20 4c20 3d20 736f --+.|i6 : L = so │ │ │ │ +0003e200: 7274 2073 656c 6563 7428 6b65 7973 2068 rt select(keys h │ │ │ │ +0003e210: 6f6d 6f74 2c20 6b2d 3e28 686f 6d6f 7423 omot, k->(homot# │ │ │ │ +0003e220: 6b21 3d30 2061 6e64 2073 756d 286b 5f30 k!=0 and sum(k_0 │ │ │ │ +0003e230: 293e 3129 297c 0a7c 2020 2020 2020 2020 )>1))|.| │ │ │ │ +0003e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e280: 2020 207c 0a7c 6f36 203d 207b 7d20 2020 |.|o6 = {} │ │ │ │ +0003e270: 2020 2020 2020 2020 7c0a 7c6f 3620 3d20 |.|o6 = │ │ │ │ +0003e280: 7b7d 2020 2020 2020 2020 2020 2020 2020 {} │ │ │ │ 0003e290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e2c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0003e2b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0003e2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e300: 2020 2020 2020 2020 207c 0a7c 6f36 203a |.|o6 : │ │ │ │ -0003e310: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ +0003e2f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0003e300: 7c6f 3620 3a20 4c69 7374 2020 2020 2020 |o6 : List │ │ │ │ +0003e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e340: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0003e340: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0003e350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0003e390: 0a0a 4f6e 2074 6865 206f 7468 6572 2068 ..On the other h │ │ │ │ -0003e3a0: 616e 642c 2069 6620 7765 2074 616b 6520 and, if we take │ │ │ │ -0003e3b0: 6120 636f 6d70 6c65 7465 2069 6e74 6572 a complete inter │ │ │ │ -0003e3c0: 7365 6374 696f 6e20 616e 6420 736f 6d65 section and some │ │ │ │ -0003e3d0: 7468 696e 6720 636f 6e74 6169 6e65 640a thing contained. │ │ │ │ -0003e3e0: 696e 2069 7420 696e 2061 206d 6f72 6520 in it in a more │ │ │ │ -0003e3f0: 636f 6d70 6c69 6361 7465 6420 7369 7475 complicated situ │ │ │ │ -0003e400: 6174 696f 6e2c 2074 6865 2070 726f 6772 ation, the progr │ │ │ │ -0003e410: 616d 2067 6976 6573 206e 6f6e 7a65 726f am gives nonzero │ │ │ │ -0003e420: 2068 6967 6865 720a 686f 6d6f 746f 7069 higher.homotopi │ │ │ │ -0003e430: 6573 3a0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d es:..+---------- │ │ │ │ +0003e380: 2d2d 2d2d 2b0a 0a4f 6e20 7468 6520 6f74 ----+..On the ot │ │ │ │ +0003e390: 6865 7220 6861 6e64 2c20 6966 2077 6520 her hand, if we │ │ │ │ +0003e3a0: 7461 6b65 2061 2063 6f6d 706c 6574 6520 take a complete │ │ │ │ +0003e3b0: 696e 7465 7273 6563 7469 6f6e 2061 6e64 intersection and │ │ │ │ +0003e3c0: 2073 6f6d 6574 6869 6e67 2063 6f6e 7461 something conta │ │ │ │ +0003e3d0: 696e 6564 0a69 6e20 6974 2069 6e20 6120 ined.in it in a │ │ │ │ +0003e3e0: 6d6f 7265 2063 6f6d 706c 6963 6174 6564 more complicated │ │ │ │ +0003e3f0: 2073 6974 7561 7469 6f6e 2c20 7468 6520 situation, the │ │ │ │ +0003e400: 7072 6f67 7261 6d20 6769 7665 7320 6e6f program gives no │ │ │ │ +0003e410: 6e7a 6572 6f20 6869 6768 6572 0a68 6f6d nzero higher.hom │ │ │ │ +0003e420: 6f74 6f70 6965 733a 0a0a 2b2d 2d2d 2d2d otopies:..+----- │ │ │ │ +0003e430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e480: 2d2d 2d2b 0a7c 6937 203a 206b 6b3d 205a ---+.|i7 : kk= Z │ │ │ │ -0003e490: 5a2f 3332 3030 333b 2020 2020 2020 2020 Z/32003; │ │ │ │ +0003e470: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 --------+.|i7 : │ │ │ │ +0003e480: 6b6b 3d20 5a5a 2f33 3230 3033 3b20 2020 kk= ZZ/32003; │ │ │ │ +0003e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e4d0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0003e4c0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0003e4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e520: 2d2d 2d2b 0a7c 6938 203a 2053 203d 206b ---+.|i8 : S = k │ │ │ │ -0003e530: 6b5b 612c 622c 632c 645d 3b20 2020 2020 k[a,b,c,d]; │ │ │ │ +0003e510: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 3a20 --------+.|i8 : │ │ │ │ +0003e520: 5320 3d20 6b6b 5b61 2c62 2c63 2c64 5d3b S = kk[a,b,c,d]; │ │ │ │ +0003e530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e570: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0003e560: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0003e570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e5c0: 2d2d 2d2b 0a7c 6939 203a 204d 203d 2053 ---+.|i9 : M = S │ │ │ │ -0003e5d0: 5e31 2f28 6964 6561 6c22 6132 2c62 322c ^1/(ideal"a2,b2, │ │ │ │ -0003e5e0: 6332 2c64 3222 293b 2020 2020 2020 2020 c2,d2"); │ │ │ │ +0003e5b0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3920 3a20 --------+.|i9 : │ │ │ │ +0003e5c0: 4d20 3d20 535e 312f 2869 6465 616c 2261 M = S^1/(ideal"a │ │ │ │ +0003e5d0: 322c 6232 2c63 322c 6432 2229 3b20 2020 2,b2,c2,d2"); │ │ │ │ +0003e5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e610: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0003e600: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0003e610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e660: 2d2d 2d2b 0a7c 6931 3020 3a20 4620 3d20 ---+.|i10 : F = │ │ │ │ -0003e670: 7265 7320 4d20 2020 2020 2020 2020 2020 res M │ │ │ │ +0003e650: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3130 203a --------+.|i10 : │ │ │ │ +0003e660: 2046 203d 2072 6573 204d 2020 2020 2020 F = res M │ │ │ │ +0003e670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e6b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003e6a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003e6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e700: 2020 207c 0a7c 2020 2020 2020 2031 2020 |.| 1 │ │ │ │ -0003e710: 2020 2020 3420 2020 2020 2036 2020 2020 4 6 │ │ │ │ -0003e720: 2020 3420 2020 2020 2031 2020 2020 2020 4 1 │ │ │ │ +0003e6f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003e700: 2020 3120 2020 2020 2034 2020 2020 2020 1 4 │ │ │ │ +0003e710: 3620 2020 2020 2034 2020 2020 2020 3120 6 4 1 │ │ │ │ +0003e720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e750: 2020 207c 0a7c 6f31 3020 3d20 5320 203c |.|o10 = S < │ │ │ │ -0003e760: 2d2d 2053 2020 3c2d 2d20 5320 203c 2d2d -- S <-- S <-- │ │ │ │ -0003e770: 2053 2020 3c2d 2d20 5320 203c 2d2d 2030 S <-- S <-- 0 │ │ │ │ +0003e740: 2020 2020 2020 2020 7c0a 7c6f 3130 203d |.|o10 = │ │ │ │ +0003e750: 2053 2020 3c2d 2d20 5320 203c 2d2d 2053 S <-- S <-- S │ │ │ │ +0003e760: 2020 3c2d 2d20 5320 203c 2d2d 2053 2020 <-- S <-- S │ │ │ │ +0003e770: 3c2d 2d20 3020 2020 2020 2020 2020 2020 <-- 0 │ │ │ │ 0003e780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e7a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003e790: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003e7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e7f0: 2020 207c 0a7c 2020 2020 2020 3020 2020 |.| 0 │ │ │ │ -0003e800: 2020 2031 2020 2020 2020 3220 2020 2020 1 2 │ │ │ │ -0003e810: 2033 2020 2020 2020 3420 2020 2020 2035 3 4 5 │ │ │ │ +0003e7e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003e7f0: 2030 2020 2020 2020 3120 2020 2020 2032 0 1 2 │ │ │ │ +0003e800: 2020 2020 2020 3320 2020 2020 2034 2020 3 4 │ │ │ │ +0003e810: 2020 2020 3520 2020 2020 2020 2020 2020 5 │ │ │ │ 0003e820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e840: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003e830: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003e840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e890: 2020 207c 0a7c 6f31 3020 3a20 4368 6169 |.|o10 : Chai │ │ │ │ -0003e8a0: 6e43 6f6d 706c 6578 2020 2020 2020 2020 nComplex │ │ │ │ +0003e880: 2020 2020 2020 2020 7c0a 7c6f 3130 203a |.|o10 : │ │ │ │ +0003e890: 2043 6861 696e 436f 6d70 6c65 7820 2020 ChainComplex │ │ │ │ +0003e8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e8e0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0003e8d0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0003e8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e930: 2d2d 2d2b 0a7c 6931 3120 3a20 7365 7452 ---+.|i11 : setR │ │ │ │ -0003e940: 616e 646f 6d53 6565 6420 3020 2020 2020 andomSeed 0 │ │ │ │ +0003e920: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 203a --------+.|i11 : │ │ │ │ +0003e930: 2073 6574 5261 6e64 6f6d 5365 6564 2030 setRandomSeed 0 │ │ │ │ +0003e940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e980: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003e970: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003e980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e9d0: 2020 207c 0a7c 6f31 3120 3d20 3020 2020 |.|o11 = 0 │ │ │ │ +0003e9c0: 2020 2020 2020 2020 7c0a 7c6f 3131 203d |.|o11 = │ │ │ │ +0003e9d0: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 0003e9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ea00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ea10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ea20: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0003ea10: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0003ea20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ea30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ea40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ea50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ea60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ea70: 2d2d 2d2b 0a7c 6931 3220 3a20 6620 3d20 ---+.|i12 : f = │ │ │ │ -0003ea80: 7261 6e64 6f6d 2853 5e31 2c53 5e7b 323a random(S^1,S^{2: │ │ │ │ -0003ea90: 2d35 7d29 3b20 2020 2020 2020 2020 2020 -5}); │ │ │ │ +0003ea60: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3132 203a --------+.|i12 : │ │ │ │ +0003ea70: 2066 203d 2072 616e 646f 6d28 535e 312c f = random(S^1, │ │ │ │ +0003ea80: 535e 7b32 3a2d 357d 293b 2020 2020 2020 S^{2:-5}); │ │ │ │ +0003ea90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003eaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eac0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003eab0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003eac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ead0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003eae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003eaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eb10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003eb20: 2020 2020 3120 2020 2020 2032 2020 2020 1 2 │ │ │ │ +0003eb00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003eb10: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ +0003eb20: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0003eb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003eb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eb60: 2020 207c 0a7c 6f31 3220 3a20 4d61 7472 |.|o12 : Matr │ │ │ │ -0003eb70: 6978 2053 2020 3c2d 2d20 5320 2020 2020 ix S <-- S │ │ │ │ +0003eb50: 2020 2020 2020 2020 7c0a 7c6f 3132 203a |.|o12 : │ │ │ │ +0003eb60: 204d 6174 7269 7820 5320 203c 2d2d 2053 Matrix S <-- S │ │ │ │ +0003eb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003eb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003eb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ebb0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0003eba0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0003ebb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ebc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ebd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ebe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ebf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ec00: 2d2d 2d2b 0a7c 6931 3320 3a20 686f 6d6f ---+.|i13 : homo │ │ │ │ -0003ec10: 7420 3d20 6d61 6b65 486f 6d6f 746f 7069 t = makeHomotopi │ │ │ │ -0003ec20: 6573 2866 2c46 2c35 2920 2020 2020 2020 es(f,F,5) │ │ │ │ +0003ebf0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3133 203a --------+.|i13 : │ │ │ │ +0003ec00: 2068 6f6d 6f74 203d 206d 616b 6548 6f6d homot = makeHom │ │ │ │ +0003ec10: 6f74 6f70 6965 7328 662c 462c 3529 2020 otopies(f,F,5) │ │ │ │ +0003ec20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ec30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ec40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ec50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003ec40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003ec50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ec60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ec70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ec80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ec90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eca0: 2020 207c 0a7c 6f31 3320 3d20 4861 7368 |.|o13 = Hash │ │ │ │ -0003ecb0: 5461 626c 657b 7b7b 302c 2030 7d2c 2030 Table{{{0, 0}, 0 │ │ │ │ -0003ecc0: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +0003ec90: 2020 2020 2020 2020 7c0a 7c6f 3133 203d |.|o13 = │ │ │ │ +0003eca0: 2048 6173 6854 6162 6c65 7b7b 7b30 2c20 HashTable{{{0, │ │ │ │ +0003ecb0: 307d 2c20 307d 203d 3e20 3020 2020 2020 0}, 0} => 0 │ │ │ │ +0003ecc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ecd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ece0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ecf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003ed00: 2020 2020 2020 7b7b 302c 2030 7d2c 2031 {{0, 0}, 1 │ │ │ │ -0003ed10: 7d20 3d3e 207c 2061 3220 2020 2020 2020 } => | a2 │ │ │ │ +0003ece0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003ecf0: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003ed00: 307d 2c20 317d 203d 3e20 7c20 6132 2020 0}, 1} => | a2 │ │ │ │ +0003ed10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ed20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ed30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ed40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003ed50: 2020 2020 2020 7b7b 302c 2030 7d2c 2032 {{0, 0}, 2 │ │ │ │ -0003ed60: 7d20 3d3e 207b 327d 207c 2020 2020 2020 } => {2} | │ │ │ │ +0003ed30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003ed40: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003ed50: 307d 2c20 327d 203d 3e20 7b32 7d20 7c20 0}, 2} => {2} | │ │ │ │ +0003ed60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ed70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ed80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ed90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003eda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003edb0: 2020 2020 207b 327d 207c 2020 2020 2020 {2} | │ │ │ │ +0003ed80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003ed90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003eda0: 2020 2020 2020 2020 2020 7b32 7d20 7c20 {2} | │ │ │ │ +0003edb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003edc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003edd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ede0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003edf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ee00: 2020 2020 207b 327d 207c 2020 2020 2020 {2} | │ │ │ │ +0003edd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003ede0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003edf0: 2020 2020 2020 2020 2020 7b32 7d20 7c20 {2} | │ │ │ │ +0003ee00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ee10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ee20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ee30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003ee40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ee50: 2020 2020 207b 327d 207c 2020 2020 2020 {2} | │ │ │ │ +0003ee20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003ee30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ee40: 2020 2020 2020 2020 2020 7b32 7d20 7c20 {2} | │ │ │ │ +0003ee50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ee60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ee70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ee80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003ee90: 2020 2020 2020 7b7b 302c 2030 7d2c 2033 {{0, 0}, 3 │ │ │ │ -0003eea0: 7d20 3d3e 207b 347d 207c 2020 2020 2020 } => {4} | │ │ │ │ +0003ee70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003ee80: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003ee90: 307d 2c20 337d 203d 3e20 7b34 7d20 7c20 0}, 3} => {4} | │ │ │ │ +0003eea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003eeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eed0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003eee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eef0: 2020 2020 207b 347d 207c 2020 2020 2020 {4} | │ │ │ │ +0003eec0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003eed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003eee0: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +0003eef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ef00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ef10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ef20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003ef30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ef40: 2020 2020 207b 347d 207c 2020 2020 2020 {4} | │ │ │ │ +0003ef10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003ef20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ef30: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +0003ef40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ef60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ef70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003ef80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ef90: 2020 2020 207b 347d 207c 2020 2020 2020 {4} | │ │ │ │ +0003ef60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003ef70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ef80: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +0003ef90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003efb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003efc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003efd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003efe0: 2020 2020 207b 347d 207c 2020 2020 2020 {4} | │ │ │ │ +0003efb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003efc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003efd0: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +0003efe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003eff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f010: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f030: 2020 2020 207b 347d 207c 2020 2020 2020 {4} | │ │ │ │ +0003f000: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f020: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +0003f030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f060: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f070: 2020 2020 2020 7b7b 302c 2030 7d2c 2034 {{0, 0}, 4 │ │ │ │ -0003f080: 7d20 3d3e 207b 367d 207c 2020 2020 2020 } => {6} | │ │ │ │ +0003f050: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f060: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003f070: 307d 2c20 347d 203d 3e20 7b36 7d20 7c20 0}, 4} => {6} | │ │ │ │ +0003f080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f0b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f0d0: 2020 2020 207b 367d 207c 2020 2020 2020 {6} | │ │ │ │ +0003f0a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f0c0: 2020 2020 2020 2020 2020 7b36 7d20 7c20 {6} | │ │ │ │ +0003f0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f100: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f120: 2020 2020 207b 367d 207c 2020 2020 2020 {6} | │ │ │ │ +0003f0f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f110: 2020 2020 2020 2020 2020 7b36 7d20 7c20 {6} | │ │ │ │ +0003f120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f150: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f170: 2020 2020 207b 367d 207c 2020 2020 2020 {6} | │ │ │ │ +0003f140: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f160: 2020 2020 2020 2020 2020 7b36 7d20 7c20 {6} | │ │ │ │ +0003f170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f1a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f1b0: 2020 2020 2020 7b7b 302c 2030 7d2c 2035 {{0, 0}, 5 │ │ │ │ -0003f1c0: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +0003f190: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f1a0: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003f1b0: 307d 2c20 357d 203d 3e20 3020 2020 2020 0}, 5} => 0 │ │ │ │ +0003f1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f1f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f200: 2020 2020 2020 7b7b 302c 2030 7d2c 2036 {{0, 0}, 6 │ │ │ │ -0003f210: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +0003f1e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f1f0: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003f200: 307d 2c20 367d 203d 3e20 3020 2020 2020 0}, 6} => 0 │ │ │ │ +0003f210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f240: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f250: 2020 2020 2020 7b7b 302c 2031 7d2c 202d {{0, 1}, - │ │ │ │ -0003f260: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +0003f230: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f240: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003f250: 317d 2c20 2d31 7d20 3d3e 2030 2020 2020 1}, -1} => 0 │ │ │ │ +0003f260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f290: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f2a0: 2020 2020 2020 7b7b 302c 2031 7d2c 2030 {{0, 1}, 0 │ │ │ │ -0003f2b0: 7d20 3d3e 207b 327d 207c 2020 2020 2020 } => {2} | │ │ │ │ +0003f280: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f290: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003f2a0: 317d 2c20 307d 203d 3e20 7b32 7d20 7c20 1}, 0} => {2} | │ │ │ │ +0003f2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f2e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f300: 2020 2020 207b 327d 207c 2020 2020 2020 {2} | │ │ │ │ +0003f2d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f2f0: 2020 2020 2020 2020 2020 7b32 7d20 7c20 {2} | │ │ │ │ +0003f300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f330: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f350: 2020 2020 207b 327d 207c 2020 2020 2020 {2} | │ │ │ │ +0003f320: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f340: 2020 2020 2020 2020 2020 7b32 7d20 7c20 {2} | │ │ │ │ +0003f350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f380: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f3a0: 2020 2020 207b 327d 207c 2020 2020 2020 {2} | │ │ │ │ +0003f370: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f390: 2020 2020 2020 2020 2020 7b32 7d20 7c20 {2} | │ │ │ │ +0003f3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f3d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f3e0: 2020 2020 2020 7b7b 302c 2031 7d2c 2031 {{0, 1}, 1 │ │ │ │ -0003f3f0: 7d20 3d3e 207b 347d 207c 2020 2020 2020 } => {4} | │ │ │ │ +0003f3c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f3d0: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003f3e0: 317d 2c20 317d 203d 3e20 7b34 7d20 7c20 1}, 1} => {4} | │ │ │ │ +0003f3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f420: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f440: 2020 2020 207b 347d 207c 2020 2020 2020 {4} | │ │ │ │ +0003f410: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f430: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +0003f440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f470: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f490: 2020 2020 207b 347d 207c 2020 2020 2020 {4} | │ │ │ │ +0003f460: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f480: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +0003f490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f4c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f4e0: 2020 2020 207b 347d 207c 2020 2020 2020 {4} | │ │ │ │ +0003f4b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f4d0: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +0003f4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f510: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f530: 2020 2020 207b 347d 207c 2020 2020 2020 {4} | │ │ │ │ +0003f500: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f520: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +0003f530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f560: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f580: 2020 2020 207b 347d 207c 2020 2020 2020 {4} | │ │ │ │ +0003f550: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f570: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +0003f580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f5b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f5c0: 2020 2020 2020 7b7b 302c 2031 7d2c 2032 {{0, 1}, 2 │ │ │ │ -0003f5d0: 7d20 3d3e 207b 367d 207c 2020 2020 2020 } => {6} | │ │ │ │ +0003f5a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f5b0: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003f5c0: 317d 2c20 327d 203d 3e20 7b36 7d20 7c20 1}, 2} => {6} | │ │ │ │ +0003f5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f600: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f620: 2020 2020 207b 367d 207c 2020 2020 2020 {6} | │ │ │ │ +0003f5f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f610: 2020 2020 2020 2020 2020 7b36 7d20 7c20 {6} | │ │ │ │ +0003f620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f650: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f670: 2020 2020 207b 367d 207c 2020 2020 2020 {6} | │ │ │ │ +0003f640: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f660: 2020 2020 2020 2020 2020 7b36 7d20 7c20 {6} | │ │ │ │ +0003f670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f6a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f6c0: 2020 2020 207b 367d 207c 2020 2020 2020 {6} | │ │ │ │ +0003f690: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f6b0: 2020 2020 2020 2020 2020 7b36 7d20 7c20 {6} | │ │ │ │ +0003f6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f6f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f700: 2020 2020 2020 7b7b 302c 2031 7d2c 2033 {{0, 1}, 3 │ │ │ │ -0003f710: 7d20 3d3e 207b 387d 207c 2020 2020 2020 } => {8} | │ │ │ │ +0003f6e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f6f0: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003f700: 317d 2c20 337d 203d 3e20 7b38 7d20 7c20 1}, 3} => {8} | │ │ │ │ +0003f710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f740: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f750: 2020 2020 2020 7b7b 302c 2031 7d2c 2034 {{0, 1}, 4 │ │ │ │ -0003f760: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +0003f730: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f740: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003f750: 317d 2c20 347d 203d 3e20 3020 2020 2020 1}, 4} => 0 │ │ │ │ +0003f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f790: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f7a0: 2020 2020 2020 7b7b 302c 2031 7d2c 2035 {{0, 1}, 5 │ │ │ │ -0003f7b0: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +0003f780: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f790: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003f7a0: 317d 2c20 357d 203d 3e20 3020 2020 2020 1}, 5} => 0 │ │ │ │ +0003f7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f7e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f7f0: 2020 2020 2020 7b7b 302c 2032 7d2c 202d {{0, 2}, - │ │ │ │ -0003f800: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +0003f7d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f7e0: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003f7f0: 327d 2c20 2d31 7d20 3d3e 2030 2020 2020 2}, -1} => 0 │ │ │ │ +0003f800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f830: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f840: 2020 2020 2020 7b7b 302c 2032 7d2c 2030 {{0, 2}, 0 │ │ │ │ -0003f850: 7d20 3d3e 207b 367d 207c 2020 2020 2020 } => {6} | │ │ │ │ +0003f820: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f830: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003f840: 327d 2c20 307d 203d 3e20 7b36 7d20 7c20 2}, 0} => {6} | │ │ │ │ +0003f850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f880: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f8a0: 2020 2020 207b 367d 207c 2020 2020 2020 {6} | │ │ │ │ +0003f870: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f890: 2020 2020 2020 2020 2020 7b36 7d20 7c20 {6} | │ │ │ │ +0003f8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f8d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f8f0: 2020 2020 207b 367d 207c 2020 2020 2020 {6} | │ │ │ │ +0003f8c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f8e0: 2020 2020 2020 2020 2020 7b36 7d20 7c20 {6} | │ │ │ │ +0003f8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f920: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f940: 2020 2020 207b 367d 207c 2020 2020 2020 {6} | │ │ │ │ +0003f910: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f930: 2020 2020 2020 2020 2020 7b36 7d20 7c20 {6} | │ │ │ │ +0003f940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f970: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f980: 2020 2020 2020 7b7b 302c 2032 7d2c 2031 {{0, 2}, 1 │ │ │ │ -0003f990: 7d20 3d3e 207b 387d 207c 2020 2020 2020 } => {8} | │ │ │ │ +0003f960: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f970: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003f980: 327d 2c20 317d 203d 3e20 7b38 7d20 7c20 2}, 1} => {8} | │ │ │ │ +0003f990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f9c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f9d0: 2020 2020 2020 7b7b 302c 2032 7d2c 2032 {{0, 2}, 2 │ │ │ │ -0003f9e0: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +0003f9b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003f9c0: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003f9d0: 327d 2c20 327d 203d 3e20 3020 2020 2020 2}, 2} => 0 │ │ │ │ +0003f9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fa10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003fa20: 2020 2020 2020 7b7b 302c 2033 7d2c 202d {{0, 3}, - │ │ │ │ -0003fa30: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +0003fa00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003fa10: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003fa20: 337d 2c20 2d31 7d20 3d3e 2030 2020 2020 3}, -1} => 0 │ │ │ │ +0003fa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fa60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003fa70: 2020 2020 2020 7b7b 302c 2033 7d2c 2030 {{0, 3}, 0 │ │ │ │ -0003fa80: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +0003fa50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003fa60: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003fa70: 337d 2c20 307d 203d 3e20 3020 2020 2020 3}, 0} => 0 │ │ │ │ +0003fa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003faa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fab0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003fac0: 2020 2020 2020 7b7b 302c 2034 7d2c 202d {{0, 4}, - │ │ │ │ -0003fad0: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +0003faa0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003fab0: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003fac0: 347d 2c20 2d31 7d20 3d3e 2030 2020 2020 4}, -1} => 0 │ │ │ │ +0003fad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003faf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fb00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003fb10: 2020 2020 2020 7b7b 302c 2035 7d2c 202d {{0, 5}, - │ │ │ │ -0003fb20: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +0003faf0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003fb00: 2020 2020 2020 2020 2020 207b 7b30 2c20 {{0, │ │ │ │ +0003fb10: 357d 2c20 2d31 7d20 3d3e 2030 2020 2020 5}, -1} => 0 │ │ │ │ +0003fb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fb50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003fb60: 2020 2020 2020 7b7b 312c 2030 7d2c 202d {{1, 0}, - │ │ │ │ -0003fb70: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +0003fb40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003fb50: 2020 2020 2020 2020 2020 207b 7b31 2c20 {{1, │ │ │ │ +0003fb60: 307d 2c20 2d31 7d20 3d3e 2030 2020 2020 0}, -1} => 0 │ │ │ │ +0003fb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fba0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003fbb0: 2020 2020 2020 7b7b 312c 2030 7d2c 2030 {{1, 0}, 0 │ │ │ │ -0003fbc0: 7d20 3d3e 207b 327d 207c 2020 2020 2020 } => {2} | │ │ │ │ +0003fb90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003fba0: 2020 2020 2020 2020 2020 207b 7b31 2c20 {{1, │ │ │ │ +0003fbb0: 307d 2c20 307d 203d 3e20 7b32 7d20 7c20 0}, 0} => {2} | │ │ │ │ +0003fbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fbf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003fc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fc10: 2020 2020 207b 327d 207c 2020 2020 2020 {2} | │ │ │ │ +0003fbe0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003fbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003fc00: 2020 2020 2020 2020 2020 7b32 7d20 7c20 {2} | │ │ │ │ +0003fc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fc40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003fc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fc60: 2020 2020 207b 327d 207c 2020 2020 2020 {2} | │ │ │ │ +0003fc30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003fc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003fc50: 2020 2020 2020 2020 2020 7b32 7d20 7c20 {2} | │ │ │ │ +0003fc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fc90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003fca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fcb0: 2020 2020 207b 327d 207c 2020 2020 2020 {2} | │ │ │ │ +0003fc80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003fc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003fca0: 2020 2020 2020 2020 2020 7b32 7d20 7c20 {2} | │ │ │ │ +0003fcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fce0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003fcf0: 2020 2020 2020 7b7b 312c 2030 7d2c 2031 {{1, 0}, 1 │ │ │ │ -0003fd00: 7d20 3d3e 207b 347d 207c 2020 2020 2020 } => {4} | │ │ │ │ +0003fcd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003fce0: 2020 2020 2020 2020 2020 207b 7b31 2c20 {{1, │ │ │ │ +0003fcf0: 307d 2c20 317d 203d 3e20 7b34 7d20 7c20 0}, 1} => {4} | │ │ │ │ +0003fd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fd30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003fd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fd50: 2020 2020 207b 347d 207c 2020 2020 2020 {4} | │ │ │ │ +0003fd20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003fd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003fd40: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +0003fd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fd80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003fd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fda0: 2020 2020 207b 347d 207c 2020 2020 2020 {4} | │ │ │ │ +0003fd70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003fd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003fd90: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +0003fda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fdd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003fde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fdf0: 2020 2020 207b 347d 207c 2020 2020 2020 {4} | │ │ │ │ +0003fdc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003fdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003fde0: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +0003fdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fe00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fe10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fe20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003fe30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fe40: 2020 2020 207b 347d 207c 2020 2020 2020 {4} | │ │ │ │ +0003fe10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003fe20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003fe30: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +0003fe40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fe50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fe60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fe70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003fe80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fe90: 2020 2020 207b 347d 207c 2020 2020 2020 {4} | │ │ │ │ +0003fe60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003fe70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003fe80: 2020 2020 2020 2020 2020 7b34 7d20 7c20 {4} | │ │ │ │ +0003fe90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003feb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fec0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003fed0: 2020 2020 2020 7b7b 312c 2030 7d2c 2032 {{1, 0}, 2 │ │ │ │ -0003fee0: 7d20 3d3e 207b 367d 207c 2020 2020 2020 } => {6} | │ │ │ │ +0003feb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003fec0: 2020 2020 2020 2020 2020 207b 7b31 2c20 {{1, │ │ │ │ +0003fed0: 307d 2c20 327d 203d 3e20 7b36 7d20 7c20 0}, 2} => {6} | │ │ │ │ +0003fee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ff00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ff10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003ff20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ff30: 2020 2020 207b 367d 207c 2020 2020 2020 {6} | │ │ │ │ +0003ff00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003ff10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ff20: 2020 2020 2020 2020 2020 7b36 7d20 7c20 {6} | │ │ │ │ +0003ff30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ff40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ff50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ff60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003ff70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ff80: 2020 2020 207b 367d 207c 2020 2020 2020 {6} | │ │ │ │ +0003ff50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003ff60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ff70: 2020 2020 2020 2020 2020 7b36 7d20 7c20 {6} | │ │ │ │ +0003ff80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ff90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ffa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ffb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003ffc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ffd0: 2020 2020 207b 367d 207c 2020 2020 2020 {6} | │ │ │ │ +0003ffa0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0003ffb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ffc0: 2020 2020 2020 2020 2020 7b36 7d20 7c20 {6} | │ │ │ │ +0003ffd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ffe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040000: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040010: 2020 2020 2020 7b7b 312c 2030 7d2c 2033 {{1, 0}, 3 │ │ │ │ -00040020: 7d20 3d3e 207b 387d 207c 2020 2020 2020 } => {8} | │ │ │ │ +0003fff0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040000: 2020 2020 2020 2020 2020 207b 7b31 2c20 {{1, │ │ │ │ +00040010: 307d 2c20 337d 203d 3e20 7b38 7d20 7c20 0}, 3} => {8} | │ │ │ │ +00040020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040050: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040060: 2020 2020 2020 7b7b 312c 2030 7d2c 2034 {{1, 0}, 4 │ │ │ │ -00040070: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +00040040: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040050: 2020 2020 2020 2020 2020 207b 7b31 2c20 {{1, │ │ │ │ +00040060: 307d 2c20 347d 203d 3e20 3020 2020 2020 0}, 4} => 0 │ │ │ │ +00040070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000400a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000400b0: 2020 2020 2020 7b7b 312c 2030 7d2c 2035 {{1, 0}, 5 │ │ │ │ -000400c0: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +00040090: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000400a0: 2020 2020 2020 2020 2020 207b 7b31 2c20 {{1, │ │ │ │ +000400b0: 307d 2c20 357d 203d 3e20 3020 2020 2020 0}, 5} => 0 │ │ │ │ +000400c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000400d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000400e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000400f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040100: 2020 2020 2020 7b7b 312c 2031 7d2c 202d {{1, 1}, - │ │ │ │ -00040110: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +000400e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000400f0: 2020 2020 2020 2020 2020 207b 7b31 2c20 {{1, │ │ │ │ +00040100: 317d 2c20 2d31 7d20 3d3e 2030 2020 2020 1}, -1} => 0 │ │ │ │ +00040110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040140: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040150: 2020 2020 2020 7b7b 312c 2031 7d2c 2030 {{1, 1}, 0 │ │ │ │ -00040160: 7d20 3d3e 207b 367d 207c 2020 2020 2020 } => {6} | │ │ │ │ +00040130: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040140: 2020 2020 2020 2020 2020 207b 7b31 2c20 {{1, │ │ │ │ +00040150: 317d 2c20 307d 203d 3e20 7b36 7d20 7c20 1}, 0} => {6} | │ │ │ │ +00040160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040190: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000401a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000401b0: 2020 2020 207b 367d 207c 2020 2020 2020 {6} | │ │ │ │ +00040180: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000401a0: 2020 2020 2020 2020 2020 7b36 7d20 7c20 {6} | │ │ │ │ +000401b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000401c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000401d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000401e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000401f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040200: 2020 2020 207b 367d 207c 2020 2020 2020 {6} | │ │ │ │ +000401d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000401e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000401f0: 2020 2020 2020 2020 2020 7b36 7d20 7c20 {6} | │ │ │ │ +00040200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040230: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040250: 2020 2020 207b 367d 207c 2020 2020 2020 {6} | │ │ │ │ +00040220: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040240: 2020 2020 2020 2020 2020 7b36 7d20 7c20 {6} | │ │ │ │ +00040250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040280: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040290: 2020 2020 2020 7b7b 312c 2031 7d2c 2031 {{1, 1}, 1 │ │ │ │ -000402a0: 7d20 3d3e 207b 387d 207c 2020 2020 2020 } => {8} | │ │ │ │ +00040270: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040280: 2020 2020 2020 2020 2020 207b 7b31 2c20 {{1, │ │ │ │ +00040290: 317d 2c20 317d 203d 3e20 7b38 7d20 7c20 1}, 1} => {8} | │ │ │ │ +000402a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000402b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000402c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000402d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000402e0: 2020 2020 2020 7b7b 312c 2031 7d2c 2032 {{1, 1}, 2 │ │ │ │ -000402f0: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +000402c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000402d0: 2020 2020 2020 2020 2020 207b 7b31 2c20 {{1, │ │ │ │ +000402e0: 317d 2c20 327d 203d 3e20 3020 2020 2020 1}, 2} => 0 │ │ │ │ +000402f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040320: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040330: 2020 2020 2020 7b7b 312c 2032 7d2c 202d {{1, 2}, - │ │ │ │ -00040340: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +00040310: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040320: 2020 2020 2020 2020 2020 207b 7b31 2c20 {{1, │ │ │ │ +00040330: 327d 2c20 2d31 7d20 3d3e 2030 2020 2020 2}, -1} => 0 │ │ │ │ +00040340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040370: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040380: 2020 2020 2020 7b7b 312c 2032 7d2c 2030 {{1, 2}, 0 │ │ │ │ -00040390: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +00040360: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040370: 2020 2020 2020 2020 2020 207b 7b31 2c20 {{1, │ │ │ │ +00040380: 327d 2c20 307d 203d 3e20 3020 2020 2020 2}, 0} => 0 │ │ │ │ +00040390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000403a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000403b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000403c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000403d0: 2020 2020 2020 7b7b 312c 2033 7d2c 202d {{1, 3}, - │ │ │ │ -000403e0: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +000403b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000403c0: 2020 2020 2020 2020 2020 207b 7b31 2c20 {{1, │ │ │ │ +000403d0: 337d 2c20 2d31 7d20 3d3e 2030 2020 2020 3}, -1} => 0 │ │ │ │ +000403e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000403f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040410: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040420: 2020 2020 2020 7b7b 312c 2034 7d2c 202d {{1, 4}, - │ │ │ │ -00040430: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +00040400: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040410: 2020 2020 2020 2020 2020 207b 7b31 2c20 {{1, │ │ │ │ +00040420: 347d 2c20 2d31 7d20 3d3e 2030 2020 2020 4}, -1} => 0 │ │ │ │ +00040430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040460: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040470: 2020 2020 2020 7b7b 322c 2030 7d2c 202d {{2, 0}, - │ │ │ │ -00040480: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +00040450: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040460: 2020 2020 2020 2020 2020 207b 7b32 2c20 {{2, │ │ │ │ +00040470: 307d 2c20 2d31 7d20 3d3e 2030 2020 2020 0}, -1} => 0 │ │ │ │ +00040480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000404a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000404b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000404c0: 2020 2020 2020 7b7b 322c 2030 7d2c 2030 {{2, 0}, 0 │ │ │ │ -000404d0: 7d20 3d3e 207b 367d 207c 2020 2020 2020 } => {6} | │ │ │ │ +000404a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000404b0: 2020 2020 2020 2020 2020 207b 7b32 2c20 {{2, │ │ │ │ +000404c0: 307d 2c20 307d 203d 3e20 7b36 7d20 7c20 0}, 0} => {6} | │ │ │ │ +000404d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000404e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000404f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040500: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040520: 2020 2020 207b 367d 207c 2020 2020 2020 {6} | │ │ │ │ +000404f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040510: 2020 2020 2020 2020 2020 7b36 7d20 7c20 {6} | │ │ │ │ +00040520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040550: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040570: 2020 2020 207b 367d 207c 2020 2020 2020 {6} | │ │ │ │ +00040540: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040560: 2020 2020 2020 2020 2020 7b36 7d20 7c20 {6} | │ │ │ │ +00040570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000405a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000405b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000405c0: 2020 2020 207b 367d 207c 2020 2020 2020 {6} | │ │ │ │ +00040590: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000405a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000405b0: 2020 2020 2020 2020 2020 7b36 7d20 7c20 {6} | │ │ │ │ +000405c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000405d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000405e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000405f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040600: 2020 2020 2020 7b7b 322c 2030 7d2c 2031 {{2, 0}, 1 │ │ │ │ -00040610: 7d20 3d3e 207b 387d 207c 2020 2020 2020 } => {8} | │ │ │ │ +000405e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000405f0: 2020 2020 2020 2020 2020 207b 7b32 2c20 {{2, │ │ │ │ +00040600: 307d 2c20 317d 203d 3e20 7b38 7d20 7c20 0}, 1} => {8} | │ │ │ │ +00040610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040640: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040650: 2020 2020 2020 7b7b 322c 2030 7d2c 2032 {{2, 0}, 2 │ │ │ │ -00040660: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +00040630: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040640: 2020 2020 2020 2020 2020 207b 7b32 2c20 {{2, │ │ │ │ +00040650: 307d 2c20 327d 203d 3e20 3020 2020 2020 0}, 2} => 0 │ │ │ │ +00040660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040690: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000406a0: 2020 2020 2020 7b7b 322c 2031 7d2c 202d {{2, 1}, - │ │ │ │ -000406b0: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +00040680: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040690: 2020 2020 2020 2020 2020 207b 7b32 2c20 {{2, │ │ │ │ +000406a0: 317d 2c20 2d31 7d20 3d3e 2030 2020 2020 1}, -1} => 0 │ │ │ │ +000406b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000406c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000406d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000406e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000406f0: 2020 2020 2020 7b7b 322c 2031 7d2c 2030 {{2, 1}, 0 │ │ │ │ -00040700: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +000406d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000406e0: 2020 2020 2020 2020 2020 207b 7b32 2c20 {{2, │ │ │ │ +000406f0: 317d 2c20 307d 203d 3e20 3020 2020 2020 1}, 0} => 0 │ │ │ │ +00040700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040730: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040740: 2020 2020 2020 7b7b 322c 2032 7d2c 202d {{2, 2}, - │ │ │ │ -00040750: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +00040720: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040730: 2020 2020 2020 2020 2020 207b 7b32 2c20 {{2, │ │ │ │ +00040740: 327d 2c20 2d31 7d20 3d3e 2030 2020 2020 2}, -1} => 0 │ │ │ │ +00040750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040780: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040790: 2020 2020 2020 7b7b 322c 2033 7d2c 202d {{2, 3}, - │ │ │ │ -000407a0: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +00040770: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040780: 2020 2020 2020 2020 2020 207b 7b32 2c20 {{2, │ │ │ │ +00040790: 337d 2c20 2d31 7d20 3d3e 2030 2020 2020 3}, -1} => 0 │ │ │ │ +000407a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000407b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000407c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000407d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000407e0: 2020 2020 2020 7b7b 332c 2030 7d2c 202d {{3, 0}, - │ │ │ │ -000407f0: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +000407c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000407d0: 2020 2020 2020 2020 2020 207b 7b33 2c20 {{3, │ │ │ │ +000407e0: 307d 2c20 2d31 7d20 3d3e 2030 2020 2020 0}, -1} => 0 │ │ │ │ +000407f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040820: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040830: 2020 2020 2020 7b7b 332c 2030 7d2c 2030 {{3, 0}, 0 │ │ │ │ -00040840: 7d20 3d3e 2030 2020 2020 2020 2020 2020 } => 0 │ │ │ │ +00040810: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040820: 2020 2020 2020 2020 2020 207b 7b33 2c20 {{3, │ │ │ │ +00040830: 307d 2c20 307d 203d 3e20 3020 2020 2020 0}, 0} => 0 │ │ │ │ +00040840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040870: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040880: 2020 2020 2020 7b7b 332c 2031 7d2c 202d {{3, 1}, - │ │ │ │ -00040890: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +00040860: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040870: 2020 2020 2020 2020 2020 207b 7b33 2c20 {{3, │ │ │ │ +00040880: 317d 2c20 2d31 7d20 3d3e 2030 2020 2020 1}, -1} => 0 │ │ │ │ +00040890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000408a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000408b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000408c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000408d0: 2020 2020 2020 7b7b 332c 2032 7d2c 202d {{3, 2}, - │ │ │ │ -000408e0: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +000408b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000408c0: 2020 2020 2020 2020 2020 207b 7b33 2c20 {{3, │ │ │ │ +000408d0: 327d 2c20 2d31 7d20 3d3e 2030 2020 2020 2}, -1} => 0 │ │ │ │ +000408e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000408f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040910: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040920: 2020 2020 2020 7b7b 342c 2030 7d2c 202d {{4, 0}, - │ │ │ │ -00040930: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +00040900: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040910: 2020 2020 2020 2020 2020 207b 7b34 2c20 {{4, │ │ │ │ +00040920: 307d 2c20 2d31 7d20 3d3e 2030 2020 2020 0}, -1} => 0 │ │ │ │ +00040930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040960: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040970: 2020 2020 2020 7b7b 342c 2031 7d2c 202d {{4, 1}, - │ │ │ │ -00040980: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +00040950: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040960: 2020 2020 2020 2020 2020 207b 7b34 2c20 {{4, │ │ │ │ +00040970: 317d 2c20 2d31 7d20 3d3e 2030 2020 2020 1}, -1} => 0 │ │ │ │ +00040980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000409a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000409b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000409c0: 2020 2020 2020 7b7b 352c 2030 7d2c 202d {{5, 0}, - │ │ │ │ -000409d0: 317d 203d 3e20 3020 2020 2020 2020 2020 1} => 0 │ │ │ │ +000409a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000409b0: 2020 2020 2020 2020 2020 207b 7b35 2c20 {{5, │ │ │ │ +000409c0: 307d 2c20 2d31 7d20 3d3e 2030 2020 2020 0}, -1} => 0 │ │ │ │ +000409d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000409e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000409f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040a00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000409f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040a50: 2020 207c 0a7c 6f31 3320 3a20 4861 7368 |.|o13 : Hash │ │ │ │ -00040a60: 5461 626c 6520 2020 2020 2020 2020 2020 Table │ │ │ │ +00040a40: 2020 2020 2020 2020 7c0a 7c6f 3133 203a |.|o13 : │ │ │ │ +00040a50: 2048 6173 6854 6162 6c65 2020 2020 2020 HashTable │ │ │ │ +00040a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040aa0: 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d |.|---------- │ │ │ │ +00040a90: 2020 2020 2020 2020 7c0a 7c2d 2d2d 2d2d |.|----- │ │ │ │ +00040aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040af0: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ +00040ae0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +00040af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040b40: 2020 207c 0a7c 6232 2063 3220 6432 207c |.|b2 c2 d2 | │ │ │ │ +00040b30: 2020 2020 2020 2020 7c0a 7c62 3220 6332 |.|b2 c2 │ │ │ │ +00040b40: 2064 3220 7c20 2020 2020 2020 2020 2020 d2 | │ │ │ │ 00040b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040b90: 2020 207c 0a7c 202d 6232 202d 6332 2030 |.| -b2 -c2 0 │ │ │ │ -00040ba0: 2020 202d 6432 2030 2020 2030 2020 207c -d2 0 0 | │ │ │ │ +00040b80: 2020 2020 2020 2020 7c0a 7c20 2d62 3220 |.| -b2 │ │ │ │ +00040b90: 2d63 3220 3020 2020 2d64 3220 3020 2020 -c2 0 -d2 0 │ │ │ │ +00040ba0: 3020 2020 7c20 2020 2020 2020 2020 2020 0 | │ │ │ │ 00040bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040be0: 2020 207c 0a7c 2061 3220 2030 2020 202d |.| a2 0 - │ │ │ │ -00040bf0: 6332 2030 2020 202d 6432 2030 2020 207c c2 0 -d2 0 | │ │ │ │ +00040bd0: 2020 2020 2020 2020 7c0a 7c20 6132 2020 |.| a2 │ │ │ │ +00040be0: 3020 2020 2d63 3220 3020 2020 2d64 3220 0 -c2 0 -d2 │ │ │ │ +00040bf0: 3020 2020 7c20 2020 2020 2020 2020 2020 0 | │ │ │ │ 00040c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040c30: 2020 207c 0a7c 2030 2020 2061 3220 2062 |.| 0 a2 b │ │ │ │ -00040c40: 3220 2030 2020 2030 2020 202d 6432 207c 2 0 0 -d2 | │ │ │ │ +00040c20: 2020 2020 2020 2020 7c0a 7c20 3020 2020 |.| 0 │ │ │ │ +00040c30: 6132 2020 6232 2020 3020 2020 3020 2020 a2 b2 0 0 │ │ │ │ +00040c40: 2d64 3220 7c20 2020 2020 2020 2020 2020 -d2 | │ │ │ │ 00040c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040c80: 2020 207c 0a7c 2030 2020 2030 2020 2030 |.| 0 0 0 │ │ │ │ -00040c90: 2020 2061 3220 2062 3220 2063 3220 207c a2 b2 c2 | │ │ │ │ +00040c70: 2020 2020 2020 2020 7c0a 7c20 3020 2020 |.| 0 │ │ │ │ +00040c80: 3020 2020 3020 2020 6132 2020 6232 2020 0 0 a2 b2 │ │ │ │ +00040c90: 6332 2020 7c20 2020 2020 2020 2020 2020 c2 | │ │ │ │ 00040ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040cd0: 2020 207c 0a7c 2063 3220 2064 3220 2030 |.| c2 d2 0 │ │ │ │ -00040ce0: 2020 2030 2020 207c 2020 2020 2020 2020 0 | │ │ │ │ +00040cc0: 2020 2020 2020 2020 7c0a 7c20 6332 2020 |.| c2 │ │ │ │ +00040cd0: 6432 2020 3020 2020 3020 2020 7c20 2020 d2 0 0 | │ │ │ │ +00040ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040d20: 2020 207c 0a7c 202d 6232 2030 2020 2064 |.| -b2 0 d │ │ │ │ -00040d30: 3220 2030 2020 207c 2020 2020 2020 2020 2 0 | │ │ │ │ +00040d10: 2020 2020 2020 2020 7c0a 7c20 2d62 3220 |.| -b2 │ │ │ │ +00040d20: 3020 2020 6432 2020 3020 2020 7c20 2020 0 d2 0 | │ │ │ │ +00040d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040d70: 2020 207c 0a7c 2061 3220 2030 2020 2030 |.| a2 0 0 │ │ │ │ -00040d80: 2020 2064 3220 207c 2020 2020 2020 2020 d2 | │ │ │ │ +00040d60: 2020 2020 2020 2020 7c0a 7c20 6132 2020 |.| a2 │ │ │ │ +00040d70: 3020 2020 3020 2020 6432 2020 7c20 2020 0 0 d2 | │ │ │ │ +00040d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040dc0: 2020 207c 0a7c 2030 2020 202d 6232 202d |.| 0 -b2 - │ │ │ │ -00040dd0: 6332 2030 2020 207c 2020 2020 2020 2020 c2 0 | │ │ │ │ +00040db0: 2020 2020 2020 2020 7c0a 7c20 3020 2020 |.| 0 │ │ │ │ +00040dc0: 2d62 3220 2d63 3220 3020 2020 7c20 2020 -b2 -c2 0 | │ │ │ │ +00040dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040e10: 2020 207c 0a7c 2030 2020 2061 3220 2030 |.| 0 a2 0 │ │ │ │ -00040e20: 2020 202d 6332 207c 2020 2020 2020 2020 -c2 | │ │ │ │ +00040e00: 2020 2020 2020 2020 7c0a 7c20 3020 2020 |.| 0 │ │ │ │ +00040e10: 6132 2020 3020 2020 2d63 3220 7c20 2020 a2 0 -c2 | │ │ │ │ +00040e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040e60: 2020 207c 0a7c 2030 2020 2030 2020 2061 |.| 0 0 a │ │ │ │ -00040e70: 3220 2062 3220 207c 2020 2020 2020 2020 2 b2 | │ │ │ │ +00040e50: 2020 2020 2020 2020 7c0a 7c20 3020 2020 |.| 0 │ │ │ │ +00040e60: 3020 2020 6132 2020 6232 2020 7c20 2020 0 a2 b2 | │ │ │ │ +00040e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040eb0: 2020 207c 0a7c 202d 6432 207c 2020 2020 |.| -d2 | │ │ │ │ +00040ea0: 2020 2020 2020 2020 7c0a 7c20 2d64 3220 |.| -d2 │ │ │ │ +00040eb0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00040ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040f00: 2020 207c 0a7c 2063 3220 207c 2020 2020 |.| c2 | │ │ │ │ +00040ef0: 2020 2020 2020 2020 7c0a 7c20 6332 2020 |.| c2 │ │ │ │ +00040f00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00040f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040f50: 2020 207c 0a7c 202d 6232 207c 2020 2020 |.| -b2 | │ │ │ │ +00040f40: 2020 2020 2020 2020 7c0a 7c20 2d62 3220 |.| -b2 │ │ │ │ +00040f50: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00040f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040fa0: 2020 207c 0a7c 2061 3220 207c 2020 2020 |.| a2 | │ │ │ │ +00040f90: 2020 2020 2020 2020 7c0a 7c20 6132 2020 |.| a2 │ │ │ │ +00040fa0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00040fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040ff0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00040fe0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00040ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041040: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00041030: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00041040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041090: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00041080: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00041090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000410a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000410b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000410c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000410d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000410e0: 2020 207c 0a7c 2031 3233 3661 332b 3839 |.| 1236a3+89 │ │ │ │ -000410f0: 3232 6132 622d 3335 3839 6162 322b 3839 22a2b-3589ab2+89 │ │ │ │ -00041100: 3731 6233 2d35 3030 3661 3263 2d35 3539 71b3-5006a2c-559 │ │ │ │ -00041110: 3961 6263 2d31 3431 3635 6232 632b 3838 9abc-14165b2c+88 │ │ │ │ -00041120: 3830 6132 642b 3432 3539 6162 642d 3330 80a2d+4259abd-30 │ │ │ │ -00041130: 3032 627c 0a7c 2031 3033 3730 6162 322d 02b|.| 10370ab2- │ │ │ │ -00041140: 3730 3932 6233 2d39 3730 3261 6263 2d36 7092b3-9702abc-6 │ │ │ │ -00041150: 3632 3762 3263 2b38 3838 3661 6264 2b34 627b2c+8886abd+4 │ │ │ │ -00041160: 3730 3062 3264 2d31 3561 6364 2b35 3936 700b2d-15acd+596 │ │ │ │ -00041170: 3962 6364 2020 2020 2020 2020 2020 2020 9bcd │ │ │ │ -00041180: 2020 207c 0a7c 2031 3337 3037 6133 2b32 |.| 13707a3+2 │ │ │ │ -00041190: 3137 3761 3262 2d37 3032 3861 6232 2b39 177a2b-7028ab2+9 │ │ │ │ -000411a0: 3739 3762 332d 3730 3231 6132 632b 3633 797b3-7021a2c+63 │ │ │ │ -000411b0: 3737 6162 632b 3538 3734 6232 632d 3736 77abc+5874b2c-76 │ │ │ │ -000411c0: 3030 6163 322d 3131 3732 3662 6332 2b31 00ac2-11726bc2+1 │ │ │ │ -000411d0: 3134 307c 0a7c 202d 3939 3461 332d 3139 140|.| -994a3-19 │ │ │ │ -000411e0: 3436 6132 622d 3637 3233 6162 322d 3534 46a2b-6723ab2-54 │ │ │ │ -000411f0: 3833 6233 2d36 3435 3361 3263 2d31 3139 83b3-6453a2c-119 │ │ │ │ -00041200: 3261 6263 2d31 3532 3530 6232 632d 3331 2abc-15250b2c-31 │ │ │ │ -00041210: 3634 6163 322b 3239 3562 6332 2d37 3635 64ac2+295bc2-765 │ │ │ │ -00041220: 3063 337c 0a7c 202d 3130 3337 3061 6232 0c3|.| -10370ab2 │ │ │ │ -00041230: 2b37 3039 3262 332b 3937 3032 6162 632b +7092b3+9702abc+ │ │ │ │ -00041240: 3636 3237 6232 632b 3730 3238 6163 322d 6627b2c+7028ac2- │ │ │ │ -00041250: 3937 3937 6263 322d 3538 3734 6333 2d38 9797bc2-5874c3-8 │ │ │ │ -00041260: 3838 3661 6264 2d34 3730 3062 3264 2b31 886abd-4700b2d+1 │ │ │ │ -00041270: 3561 637c 0a7c 202d 3133 3730 3761 332d 5ac|.| -13707a3- │ │ │ │ -00041280: 3231 3737 6132 622b 3730 3231 6132 632d 2177a2b+7021a2c- │ │ │ │ -00041290: 3633 3737 6162 632b 3736 3030 6163 322b 6377abc+7600ac2+ │ │ │ │ -000412a0: 3131 3732 3662 6332 2d31 3134 3063 332d 11726bc2-1140c3- │ │ │ │ -000412b0: 3132 3036 6132 642b 3131 3433 3561 6264 1206a2d+11435abd │ │ │ │ -000412c0: 2b36 307c 0a7c 2037 3032 3861 332d 3937 +60|.| 7028a3-97 │ │ │ │ -000412d0: 3937 6132 622d 3538 3734 6132 632d 3930 97a2b-5874a2c-90 │ │ │ │ -000412e0: 3734 6132 6420 2020 2020 2020 2020 2020 74a2d │ │ │ │ +000410d0: 2020 2020 2020 2020 7c0a 7c20 3132 3336 |.| 1236 │ │ │ │ +000410e0: 6133 2b38 3932 3261 3262 2d33 3538 3961 a3+8922a2b-3589a │ │ │ │ +000410f0: 6232 2b38 3937 3162 332d 3530 3036 6132 b2+8971b3-5006a2 │ │ │ │ +00041100: 632d 3535 3939 6162 632d 3134 3136 3562 c-5599abc-14165b │ │ │ │ +00041110: 3263 2b38 3838 3061 3264 2b34 3235 3961 2c+8880a2d+4259a │ │ │ │ +00041120: 6264 2d33 3030 3262 7c0a 7c20 3130 3337 bd-3002b|.| 1037 │ │ │ │ +00041130: 3061 6232 2d37 3039 3262 332d 3937 3032 0ab2-7092b3-9702 │ │ │ │ +00041140: 6162 632d 3636 3237 6232 632b 3838 3836 abc-6627b2c+8886 │ │ │ │ +00041150: 6162 642b 3437 3030 6232 642d 3135 6163 abd+4700b2d-15ac │ │ │ │ +00041160: 642b 3539 3639 6263 6420 2020 2020 2020 d+5969bcd │ │ │ │ +00041170: 2020 2020 2020 2020 7c0a 7c20 3133 3730 |.| 1370 │ │ │ │ +00041180: 3761 332b 3231 3737 6132 622d 3730 3238 7a3+2177a2b-7028 │ │ │ │ +00041190: 6162 322b 3937 3937 6233 2d37 3032 3161 ab2+9797b3-7021a │ │ │ │ +000411a0: 3263 2b36 3337 3761 6263 2b35 3837 3462 2c+6377abc+5874b │ │ │ │ +000411b0: 3263 2d37 3630 3061 6332 2d31 3137 3236 2c-7600ac2-11726 │ │ │ │ +000411c0: 6263 322b 3131 3430 7c0a 7c20 2d39 3934 bc2+1140|.| -994 │ │ │ │ +000411d0: 6133 2d31 3934 3661 3262 2d36 3732 3361 a3-1946a2b-6723a │ │ │ │ +000411e0: 6232 2d35 3438 3362 332d 3634 3533 6132 b2-5483b3-6453a2 │ │ │ │ +000411f0: 632d 3131 3932 6162 632d 3135 3235 3062 c-1192abc-15250b │ │ │ │ +00041200: 3263 2d33 3136 3461 6332 2b32 3935 6263 2c-3164ac2+295bc │ │ │ │ +00041210: 322d 3736 3530 6333 7c0a 7c20 2d31 3033 2-7650c3|.| -103 │ │ │ │ +00041220: 3730 6162 322b 3730 3932 6233 2b39 3730 70ab2+7092b3+970 │ │ │ │ +00041230: 3261 6263 2b36 3632 3762 3263 2b37 3032 2abc+6627b2c+702 │ │ │ │ +00041240: 3861 6332 2d39 3739 3762 6332 2d35 3837 8ac2-9797bc2-587 │ │ │ │ +00041250: 3463 332d 3838 3836 6162 642d 3437 3030 4c3-8886abd-4700 │ │ │ │ +00041260: 6232 642b 3135 6163 7c0a 7c20 2d31 3337 b2d+15ac|.| -137 │ │ │ │ +00041270: 3037 6133 2d32 3137 3761 3262 2b37 3032 07a3-2177a2b+702 │ │ │ │ +00041280: 3161 3263 2d36 3337 3761 6263 2b37 3630 1a2c-6377abc+760 │ │ │ │ +00041290: 3061 6332 2b31 3137 3236 6263 322d 3131 0ac2+11726bc2-11 │ │ │ │ +000412a0: 3430 6333 2d31 3230 3661 3264 2b31 3134 40c3-1206a2d+114 │ │ │ │ +000412b0: 3335 6162 642b 3630 7c0a 7c20 3730 3238 35abd+60|.| 7028 │ │ │ │ +000412c0: 6133 2d39 3739 3761 3262 2d35 3837 3461 a3-9797a2b-5874a │ │ │ │ +000412d0: 3263 2d39 3037 3461 3264 2020 2020 2020 2c-9074a2d │ │ │ │ +000412e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000412f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041310: 2020 207c 0a7c 2039 3934 6133 2b31 3934 |.| 994a3+194 │ │ │ │ -00041320: 3661 3262 2b36 3435 3361 3263 2b31 3139 6a2b+6453a2c+119 │ │ │ │ -00041330: 3261 6263 2b31 3130 3435 6132 642b 3135 2abc+11045a2d+15 │ │ │ │ -00041340: 3333 3361 6264 2b33 3536 3061 6364 2d32 333abd+3560acd-2 │ │ │ │ -00041350: 3239 3262 6364 2b37 3139 3461 6432 2d36 292bcd+7194ad2-6 │ │ │ │ -00041360: 3234 357c 0a7c 2036 3732 3361 332b 3534 245|.| 6723a3+54 │ │ │ │ -00041370: 3833 6132 622b 3135 3235 3061 3263 2d31 83a2b+15250a2c-1 │ │ │ │ -00041380: 3035 3637 6132 6420 2020 2020 2020 2020 0567a2d │ │ │ │ +00041300: 2020 2020 2020 2020 7c0a 7c20 3939 3461 |.| 994a │ │ │ │ +00041310: 332b 3139 3436 6132 622b 3634 3533 6132 3+1946a2b+6453a2 │ │ │ │ +00041320: 632b 3131 3932 6162 632b 3131 3034 3561 c+1192abc+11045a │ │ │ │ +00041330: 3264 2b31 3533 3333 6162 642b 3335 3630 2d+15333abd+3560 │ │ │ │ +00041340: 6163 642d 3232 3932 6263 642b 3731 3934 acd-2292bcd+7194 │ │ │ │ +00041350: 6164 322d 3632 3435 7c0a 7c20 3637 3233 ad2-6245|.| 6723 │ │ │ │ +00041360: 6133 2b35 3438 3361 3262 2b31 3532 3530 a3+5483a2b+15250 │ │ │ │ +00041370: 6132 632d 3130 3536 3761 3264 2020 2020 a2c-10567a2d │ │ │ │ +00041380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000413a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000413b0: 2020 207c 0a7c 2033 3136 3461 332d 3239 |.| 3164a3-29 │ │ │ │ -000413c0: 3561 3262 2b37 3635 3061 3263 2d31 3433 5a2b+7650a2c-143 │ │ │ │ -000413d0: 3838 6132 6420 2020 2020 2020 2020 2020 88a2d │ │ │ │ +000413a0: 2020 2020 2020 2020 7c0a 7c20 3331 3634 |.| 3164 │ │ │ │ +000413b0: 6133 2d32 3935 6132 622b 3736 3530 6132 a3-295a2b+7650a2 │ │ │ │ +000413c0: 632d 3134 3338 3861 3264 2020 2020 2020 c-14388a2d │ │ │ │ +000413d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000413e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000413f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041400: 2020 207c 0a7c 2031 3337 3037 6133 2b32 |.| 13707a3+2 │ │ │ │ -00041410: 3137 3761 3262 2d37 3032 3161 3263 2b36 177a2b-7021a2c+6 │ │ │ │ -00041420: 3337 3761 6263 2d37 3630 3061 6332 2d31 377abc-7600ac2-1 │ │ │ │ -00041430: 3137 3236 6263 322b 3131 3430 6333 2b31 1726bc2+1140c3+1 │ │ │ │ -00041440: 3230 3661 3264 2d31 3134 3335 6162 642d 206a2d-11435abd- │ │ │ │ -00041450: 3630 347c 0a7c 202d 3939 3461 332d 3139 604|.| -994a3-19 │ │ │ │ -00041460: 3436 6132 622d 3634 3533 6132 632d 3131 46a2b-6453a2c-11 │ │ │ │ -00041470: 3932 6162 632d 3131 3034 3561 3264 2d31 92abc-11045a2d-1 │ │ │ │ -00041480: 3533 3333 6162 642d 3335 3630 6163 642b 5333abd-3560acd+ │ │ │ │ -00041490: 3232 3932 6263 642d 3731 3934 6164 322b 2292bcd-7194ad2+ │ │ │ │ -000414a0: 3632 347c 0a7c 2030 2020 2020 2020 2020 624|.| 0 │ │ │ │ +000413f0: 2020 2020 2020 2020 7c0a 7c20 3133 3730 |.| 1370 │ │ │ │ +00041400: 3761 332b 3231 3737 6132 622d 3730 3231 7a3+2177a2b-7021 │ │ │ │ +00041410: 6132 632b 3633 3737 6162 632d 3736 3030 a2c+6377abc-7600 │ │ │ │ +00041420: 6163 322d 3131 3732 3662 6332 2b31 3134 ac2-11726bc2+114 │ │ │ │ +00041430: 3063 332b 3132 3036 6132 642d 3131 3433 0c3+1206a2d-1143 │ │ │ │ +00041440: 3561 6264 2d36 3034 7c0a 7c20 2d39 3934 5abd-604|.| -994 │ │ │ │ +00041450: 6133 2d31 3934 3661 3262 2d36 3435 3361 a3-1946a2b-6453a │ │ │ │ +00041460: 3263 2d31 3139 3261 6263 2d31 3130 3435 2c-1192abc-11045 │ │ │ │ +00041470: 6132 642d 3135 3333 3361 6264 2d33 3536 a2d-15333abd-356 │ │ │ │ +00041480: 3061 6364 2b32 3239 3262 6364 2d37 3139 0acd+2292bcd-719 │ │ │ │ +00041490: 3461 6432 2b36 3234 7c0a 7c20 3020 2020 4ad2+624|.| 0 │ │ │ │ +000414a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000414b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000414c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000414d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000414e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000414f0: 2020 207c 0a7c 2030 2020 2020 2020 2020 |.| 0 │ │ │ │ +000414e0: 2020 2020 2020 2020 7c0a 7c20 3020 2020 |.| 0 │ │ │ │ +000414f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041540: 2020 207c 0a7c 2039 3934 6133 2b31 3934 |.| 994a3+194 │ │ │ │ -00041550: 3661 3262 2b36 3732 3361 6232 2b36 3435 6a2b+6723ab2+645 │ │ │ │ -00041560: 3361 3263 2b31 3139 3261 6263 2b31 3130 3a2c+1192abc+110 │ │ │ │ -00041570: 3435 6132 642b 3135 3333 3361 6264 2b33 45a2d+15333abd+3 │ │ │ │ -00041580: 3536 3061 6364 2d32 3239 3262 6364 2b37 560acd-2292bcd+7 │ │ │ │ -00041590: 3139 347c 0a7c 2020 2020 2020 2020 2020 194|.| │ │ │ │ +00041530: 2020 2020 2020 2020 7c0a 7c20 3939 3461 |.| 994a │ │ │ │ +00041540: 332b 3139 3436 6132 622b 3637 3233 6162 3+1946a2b+6723ab │ │ │ │ +00041550: 322b 3634 3533 6132 632b 3131 3932 6162 2+6453a2c+1192ab │ │ │ │ +00041560: 632b 3131 3034 3561 3264 2b31 3533 3333 c+11045a2d+15333 │ │ │ │ +00041570: 6162 642b 3335 3630 6163 642d 3232 3932 abd+3560acd-2292 │ │ │ │ +00041580: 6263 642b 3731 3934 7c0a 7c20 2020 2020 bcd+7194|.| │ │ │ │ +00041590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000415a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000415b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000415c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000415d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000415e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000415d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000415e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000415f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041630: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00041620: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00041630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041680: 2020 207c 0a7c 202d 3133 3739 3561 342b |.| -13795a4+ │ │ │ │ -00041690: 3230 3139 6133 622b 3133 3736 3961 3262 2019a3b+13769a2b │ │ │ │ -000416a0: 322b 3735 3836 6162 332b 3836 3439 6234 2+7586ab3+8649b4 │ │ │ │ -000416b0: 2b36 3435 3461 3363 2d31 3031 3837 6132 +6454a3c-10187a2 │ │ │ │ -000416c0: 6263 2d31 3738 3361 6232 632b 3932 3139 bc-1783ab2c+9219 │ │ │ │ -000416d0: 6233 637c 0a7c 2031 3131 3532 6134 2d31 b3c|.| 11152a4-1 │ │ │ │ -000416e0: 3333 3661 3362 2b31 3138 3436 6132 6232 336a3b+11846a2b2 │ │ │ │ -000416f0: 2b31 3032 3634 6162 332b 3631 3862 342d +10264ab3+618b4- │ │ │ │ -00041700: 3131 3035 3161 3363 2b31 3231 3239 6132 11051a3c+12129a2 │ │ │ │ -00041710: 6263 2b35 3932 3761 6232 632b 3438 3962 bc+5927ab2c+489b │ │ │ │ -00041720: 3363 2d7c 0a7c 202d 3633 3338 6134 2b31 3c-|.| -6338a4+1 │ │ │ │ -00041730: 3030 3235 6133 622b 3134 3938 3761 3363 0025a3b+14987a3c │ │ │ │ -00041740: 2d39 3935 3961 3262 632d 3131 3639 3161 -9959a2bc-11691a │ │ │ │ -00041750: 3263 322b 3132 3333 3661 6263 322d 3737 2c2+12336abc2-77 │ │ │ │ -00041760: 3836 6133 642d 3131 3536 6132 6264 2b34 86a3d-1156a2bd+4 │ │ │ │ -00041770: 3936 307c 0a7c 2032 3237 3561 342d 3233 960|.| 2275a4-23 │ │ │ │ -00041780: 3961 3362 2b31 3435 3934 6132 6232 2d38 9a3b+14594a2b2-8 │ │ │ │ -00041790: 3135 3361 6233 2d31 3139 3435 6234 2d38 153ab3-11945b4-8 │ │ │ │ -000417a0: 3431 3661 3363 2b36 3235 3161 3262 632d 416a3c+6251a2bc- │ │ │ │ -000417b0: 3330 3233 6162 3263 2b35 3933 3362 3363 3023ab2c+5933b3c │ │ │ │ -000417c0: 2b39 327c 0a7c 202d 3935 3736 6134 2d39 +92|.| -9576a4-9 │ │ │ │ -000417d0: 3935 3761 3362 2b39 3830 3461 3262 322b 957a3b+9804a2b2+ │ │ │ │ -000417e0: 3134 3039 3161 3363 2b31 3331 3434 6132 14091a3c+13144a2 │ │ │ │ -000417f0: 6263 2b31 3338 3939 6132 6332 2d31 3035 bc+13899a2c2-105 │ │ │ │ -00041800: 3039 6162 6332 2b31 3535 3033 6163 332b 09abc2+15503ac3+ │ │ │ │ -00041810: 3132 317c 0a7c 2020 2020 2020 2020 2020 121|.| │ │ │ │ +00041670: 2020 2020 2020 2020 7c0a 7c20 2d31 3337 |.| -137 │ │ │ │ +00041680: 3935 6134 2b32 3031 3961 3362 2b31 3337 95a4+2019a3b+137 │ │ │ │ +00041690: 3639 6132 6232 2b37 3538 3661 6233 2b38 69a2b2+7586ab3+8 │ │ │ │ +000416a0: 3634 3962 342b 3634 3534 6133 632d 3130 649b4+6454a3c-10 │ │ │ │ +000416b0: 3138 3761 3262 632d 3137 3833 6162 3263 187a2bc-1783ab2c │ │ │ │ +000416c0: 2b39 3231 3962 3363 7c0a 7c20 3131 3135 +9219b3c|.| 1115 │ │ │ │ +000416d0: 3261 342d 3133 3336 6133 622b 3131 3834 2a4-1336a3b+1184 │ │ │ │ +000416e0: 3661 3262 322b 3130 3236 3461 6233 2b36 6a2b2+10264ab3+6 │ │ │ │ +000416f0: 3138 6234 2d31 3130 3531 6133 632b 3132 18b4-11051a3c+12 │ │ │ │ +00041700: 3132 3961 3262 632b 3539 3237 6162 3263 129a2bc+5927ab2c │ │ │ │ +00041710: 2b34 3839 6233 632d 7c0a 7c20 2d36 3333 +489b3c-|.| -633 │ │ │ │ +00041720: 3861 342b 3130 3032 3561 3362 2b31 3439 8a4+10025a3b+149 │ │ │ │ +00041730: 3837 6133 632d 3939 3539 6132 6263 2d31 87a3c-9959a2bc-1 │ │ │ │ +00041740: 3136 3931 6132 6332 2b31 3233 3336 6162 1691a2c2+12336ab │ │ │ │ +00041750: 6332 2d37 3738 3661 3364 2d31 3135 3661 c2-7786a3d-1156a │ │ │ │ +00041760: 3262 642b 3439 3630 7c0a 7c20 3232 3735 2bd+4960|.| 2275 │ │ │ │ +00041770: 6134 2d32 3339 6133 622b 3134 3539 3461 a4-239a3b+14594a │ │ │ │ +00041780: 3262 322d 3831 3533 6162 332d 3131 3934 2b2-8153ab3-1194 │ │ │ │ +00041790: 3562 342d 3834 3136 6133 632b 3632 3531 5b4-8416a3c+6251 │ │ │ │ +000417a0: 6132 6263 2d33 3032 3361 6232 632b 3539 a2bc-3023ab2c+59 │ │ │ │ +000417b0: 3333 6233 632b 3932 7c0a 7c20 2d39 3537 33b3c+92|.| -957 │ │ │ │ +000417c0: 3661 342d 3939 3537 6133 622b 3938 3034 6a4-9957a3b+9804 │ │ │ │ +000417d0: 6132 6232 2b31 3430 3931 6133 632b 3133 a2b2+14091a3c+13 │ │ │ │ +000417e0: 3134 3461 3262 632b 3133 3839 3961 3263 144a2bc+13899a2c │ │ │ │ +000417f0: 322d 3130 3530 3961 6263 322b 3135 3530 2-10509abc2+1550 │ │ │ │ +00041800: 3361 6333 2b31 3231 7c0a 7c20 2020 2020 3ac3+121|.| │ │ │ │ +00041810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041860: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00041850: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00041860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000418a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000418b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000418a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000418b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000418c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000418d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000418e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000418f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041900: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000418f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00041900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041950: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00041940: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00041950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000419a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00041990: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000419a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000419b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000419c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000419d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000419e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000419f0: 2020 207c 0a7c 2031 3037 6133 2b34 3337 |.| 107a3+437 │ │ │ │ -00041a00: 3661 3262 2b33 3738 3361 6232 2b31 3033 6a2b+3783ab2+103 │ │ │ │ -00041a10: 3539 6233 2d35 3537 3061 3263 2d35 3330 59b3-5570a2c-530 │ │ │ │ -00041a20: 3761 6263 2d37 3436 3462 3263 2b33 3138 7abc-7464b2c+318 │ │ │ │ -00041a30: 3761 3264 2b38 3537 3061 6264 2d38 3235 7a2d+8570abd-825 │ │ │ │ -00041a40: 3162 327c 0a7c 2038 3233 3161 6232 2b31 1b2|.| 8231ab2+1 │ │ │ │ -00041a50: 3331 3737 6233 2b35 3836 3461 6263 2b31 3177b3+5864abc+1 │ │ │ │ -00041a60: 3339 3930 6232 632b 3530 3236 6162 642d 3990b2c+5026abd- │ │ │ │ -00041a70: 3131 3532 3162 3264 2d37 3530 3161 6364 11521b2d-7501acd │ │ │ │ -00041a80: 2d31 3737 3962 6364 2020 2020 2020 2020 -1779bcd │ │ │ │ -00041a90: 2020 207c 0a7c 202d 3135 3334 3461 332b |.| -15344a3+ │ │ │ │ -00041aa0: 3236 3533 6132 622b 3130 3235 3961 6232 2653a2b+10259ab2 │ │ │ │ -00041ab0: 2d31 3330 3962 332b 3132 3336 3561 3263 -1309b3+12365a2c │ │ │ │ -00041ac0: 2d37 3231 3661 6263 2b35 3339 3862 3263 -7216abc+5398b2c │ │ │ │ -00041ad0: 2b36 3233 3061 6332 2d35 3332 3662 6332 +6230ac2-5326bc2 │ │ │ │ -00041ae0: 2b31 307c 0a7c 202d 3130 3438 3061 332d +10|.| -10480a3- │ │ │ │ -00041af0: 3632 3033 6132 622b 3935 3334 6162 322b 6203a2b+9534ab2+ │ │ │ │ -00041b00: 3130 3836 3662 332d 3934 3830 6132 632b 10866b3-9480a2c+ │ │ │ │ -00041b10: 3732 3536 6162 632d 3730 3631 6232 632b 7256abc-7061b2c+ │ │ │ │ -00041b20: 3531 3037 6163 322b 3536 3739 6263 322d 5107ac2+5679bc2- │ │ │ │ -00041b30: 3633 327c 0a7c 202d 3832 3331 6162 322d 632|.| -8231ab2- │ │ │ │ -00041b40: 3133 3137 3762 332d 3538 3634 6162 632d 13177b3-5864abc- │ │ │ │ -00041b50: 3133 3939 3062 3263 2d31 3032 3539 6163 13990b2c-10259ac │ │ │ │ -00041b60: 322b 3133 3039 6263 322d 3533 3938 6333 2+1309bc2-5398c3 │ │ │ │ -00041b70: 2d35 3032 3661 6264 2b31 3135 3231 6232 -5026abd+11521b2 │ │ │ │ -00041b80: 642b 377c 0a7c 2031 3533 3434 6133 2d32 d+7|.| 15344a3-2 │ │ │ │ -00041b90: 3635 3361 3262 2d31 3233 3635 6132 632b 653a2b-12365a2c+ │ │ │ │ -00041ba0: 3732 3136 6162 632d 3632 3330 6163 322b 7216abc-6230ac2+ │ │ │ │ -00041bb0: 3533 3236 6263 322d 3130 3331 6333 2b31 5326bc2-1031c3+1 │ │ │ │ -00041bc0: 3335 3038 6132 642b 3130 3132 3561 6264 3508a2d+10125abd │ │ │ │ -00041bd0: 2d39 307c 0a7c 202d 3130 3235 3961 332b -90|.| -10259a3+ │ │ │ │ -00041be0: 3133 3039 6132 622d 3533 3938 6132 632d 1309a2b-5398a2c- │ │ │ │ -00041bf0: 3535 3439 6132 6420 2020 2020 2020 2020 5549a2d │ │ │ │ +000419e0: 2020 2020 2020 2020 7c0a 7c20 3130 3761 |.| 107a │ │ │ │ +000419f0: 332b 3433 3736 6132 622b 3337 3833 6162 3+4376a2b+3783ab │ │ │ │ +00041a00: 322b 3130 3335 3962 332d 3535 3730 6132 2+10359b3-5570a2 │ │ │ │ +00041a10: 632d 3533 3037 6162 632d 3734 3634 6232 c-5307abc-7464b2 │ │ │ │ +00041a20: 632b 3331 3837 6132 642b 3835 3730 6162 c+3187a2d+8570ab │ │ │ │ +00041a30: 642d 3832 3531 6232 7c0a 7c20 3832 3331 d-8251b2|.| 8231 │ │ │ │ +00041a40: 6162 322b 3133 3137 3762 332b 3538 3634 ab2+13177b3+5864 │ │ │ │ +00041a50: 6162 632b 3133 3939 3062 3263 2b35 3032 abc+13990b2c+502 │ │ │ │ +00041a60: 3661 6264 2d31 3135 3231 6232 642d 3735 6abd-11521b2d-75 │ │ │ │ +00041a70: 3031 6163 642d 3137 3739 6263 6420 2020 01acd-1779bcd │ │ │ │ +00041a80: 2020 2020 2020 2020 7c0a 7c20 2d31 3533 |.| -153 │ │ │ │ +00041a90: 3434 6133 2b32 3635 3361 3262 2b31 3032 44a3+2653a2b+102 │ │ │ │ +00041aa0: 3539 6162 322d 3133 3039 6233 2b31 3233 59ab2-1309b3+123 │ │ │ │ +00041ab0: 3635 6132 632d 3732 3136 6162 632b 3533 65a2c-7216abc+53 │ │ │ │ +00041ac0: 3938 6232 632b 3632 3330 6163 322d 3533 98b2c+6230ac2-53 │ │ │ │ +00041ad0: 3236 6263 322b 3130 7c0a 7c20 2d31 3034 26bc2+10|.| -104 │ │ │ │ +00041ae0: 3830 6133 2d36 3230 3361 3262 2b39 3533 80a3-6203a2b+953 │ │ │ │ +00041af0: 3461 6232 2b31 3038 3636 6233 2d39 3438 4ab2+10866b3-948 │ │ │ │ +00041b00: 3061 3263 2b37 3235 3661 6263 2d37 3036 0a2c+7256abc-706 │ │ │ │ +00041b10: 3162 3263 2b35 3130 3761 6332 2b35 3637 1b2c+5107ac2+567 │ │ │ │ +00041b20: 3962 6332 2d36 3332 7c0a 7c20 2d38 3233 9bc2-632|.| -823 │ │ │ │ +00041b30: 3161 6232 2d31 3331 3737 6233 2d35 3836 1ab2-13177b3-586 │ │ │ │ +00041b40: 3461 6263 2d31 3339 3930 6232 632d 3130 4abc-13990b2c-10 │ │ │ │ +00041b50: 3235 3961 6332 2b31 3330 3962 6332 2d35 259ac2+1309bc2-5 │ │ │ │ +00041b60: 3339 3863 332d 3530 3236 6162 642b 3131 398c3-5026abd+11 │ │ │ │ +00041b70: 3532 3162 3264 2b37 7c0a 7c20 3135 3334 521b2d+7|.| 1534 │ │ │ │ +00041b80: 3461 332d 3236 3533 6132 622d 3132 3336 4a3-2653a2b-1236 │ │ │ │ +00041b90: 3561 3263 2b37 3231 3661 6263 2d36 3233 5a2c+7216abc-623 │ │ │ │ +00041ba0: 3061 6332 2b35 3332 3662 6332 2d31 3033 0ac2+5326bc2-103 │ │ │ │ +00041bb0: 3163 332b 3133 3530 3861 3264 2b31 3031 1c3+13508a2d+101 │ │ │ │ +00041bc0: 3235 6162 642d 3930 7c0a 7c20 2d31 3032 25abd-90|.| -102 │ │ │ │ +00041bd0: 3539 6133 2b31 3330 3961 3262 2d35 3339 59a3+1309a2b-539 │ │ │ │ +00041be0: 3861 3263 2d35 3534 3961 3264 2020 2020 8a2c-5549a2d │ │ │ │ +00041bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041c20: 2020 207c 0a7c 2031 3034 3830 6133 2b36 |.| 10480a3+6 │ │ │ │ -00041c30: 3230 3361 3262 2b39 3438 3061 3263 2d37 203a2b+9480a2c-7 │ │ │ │ -00041c40: 3235 3661 6263 2b31 3139 3530 6132 642b 256abc+11950a2d+ │ │ │ │ -00041c50: 3533 3231 6162 642b 3339 3936 6163 642b 5321abd+3996acd+ │ │ │ │ -00041c60: 3731 3532 6263 642d 3933 3938 6164 322d 7152bcd-9398ad2- │ │ │ │ -00041c70: 3135 337c 0a7c 202d 3935 3334 6133 2d31 153|.| -9534a3-1 │ │ │ │ -00041c80: 3038 3636 6132 622b 3730 3631 6132 632d 0866a2b+7061a2c- │ │ │ │ -00041c90: 3236 3237 6132 6420 2020 2020 2020 2020 2627a2d │ │ │ │ +00041c10: 2020 2020 2020 2020 7c0a 7c20 3130 3438 |.| 1048 │ │ │ │ +00041c20: 3061 332b 3632 3033 6132 622b 3934 3830 0a3+6203a2b+9480 │ │ │ │ +00041c30: 6132 632d 3732 3536 6162 632b 3131 3935 a2c-7256abc+1195 │ │ │ │ +00041c40: 3061 3264 2b35 3332 3161 6264 2b33 3939 0a2d+5321abd+399 │ │ │ │ +00041c50: 3661 6364 2b37 3135 3262 6364 2d39 3339 6acd+7152bcd-939 │ │ │ │ +00041c60: 3861 6432 2d31 3533 7c0a 7c20 2d39 3533 8ad2-153|.| -953 │ │ │ │ +00041c70: 3461 332d 3130 3836 3661 3262 2b37 3036 4a3-10866a2b+706 │ │ │ │ +00041c80: 3161 3263 2d32 3632 3761 3264 2020 2020 1a2c-2627a2d │ │ │ │ +00041c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041cc0: 2020 207c 0a7c 202d 3531 3037 6133 2d35 |.| -5107a3-5 │ │ │ │ -00041cd0: 3637 3961 3262 2b36 3332 3561 3263 2b31 679a2b+6325a2c+1 │ │ │ │ -00041ce0: 3137 3430 6132 6420 2020 2020 2020 2020 1740a2d │ │ │ │ +00041cb0: 2020 2020 2020 2020 7c0a 7c20 2d35 3130 |.| -510 │ │ │ │ +00041cc0: 3761 332d 3536 3739 6132 622b 3633 3235 7a3-5679a2b+6325 │ │ │ │ +00041cd0: 6132 632b 3131 3734 3061 3264 2020 2020 a2c+11740a2d │ │ │ │ +00041ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041d10: 2020 207c 0a7c 202d 3135 3334 3461 332b |.| -15344a3+ │ │ │ │ -00041d20: 3236 3533 6132 622b 3132 3336 3561 3263 2653a2b+12365a2c │ │ │ │ -00041d30: 2d37 3231 3661 6263 2b36 3233 3061 6332 -7216abc+6230ac2 │ │ │ │ -00041d40: 2d35 3332 3662 6332 2b31 3033 3163 332d -5326bc2+1031c3- │ │ │ │ -00041d50: 3133 3530 3861 3264 2d31 3031 3235 6162 13508a2d-10125ab │ │ │ │ -00041d60: 642b 397c 0a7c 202d 3130 3438 3061 332d d+9|.| -10480a3- │ │ │ │ -00041d70: 3632 3033 6132 622d 3934 3830 6132 632b 6203a2b-9480a2c+ │ │ │ │ -00041d80: 3732 3536 6162 632d 3131 3935 3061 3264 7256abc-11950a2d │ │ │ │ -00041d90: 2d35 3332 3161 6264 2d33 3939 3661 6364 -5321abd-3996acd │ │ │ │ -00041da0: 2d37 3135 3262 6364 2b39 3339 3861 6432 -7152bcd+9398ad2 │ │ │ │ -00041db0: 2b31 357c 0a7c 2030 2020 2020 2020 2020 +15|.| 0 │ │ │ │ +00041d00: 2020 2020 2020 2020 7c0a 7c20 2d31 3533 |.| -153 │ │ │ │ +00041d10: 3434 6133 2b32 3635 3361 3262 2b31 3233 44a3+2653a2b+123 │ │ │ │ +00041d20: 3635 6132 632d 3732 3136 6162 632b 3632 65a2c-7216abc+62 │ │ │ │ +00041d30: 3330 6163 322d 3533 3236 6263 322b 3130 30ac2-5326bc2+10 │ │ │ │ +00041d40: 3331 6333 2d31 3335 3038 6132 642d 3130 31c3-13508a2d-10 │ │ │ │ +00041d50: 3132 3561 6264 2b39 7c0a 7c20 2d31 3034 125abd+9|.| -104 │ │ │ │ +00041d60: 3830 6133 2d36 3230 3361 3262 2d39 3438 80a3-6203a2b-948 │ │ │ │ +00041d70: 3061 3263 2b37 3235 3661 6263 2d31 3139 0a2c+7256abc-119 │ │ │ │ +00041d80: 3530 6132 642d 3533 3231 6162 642d 3339 50a2d-5321abd-39 │ │ │ │ +00041d90: 3936 6163 642d 3731 3532 6263 642b 3933 96acd-7152bcd+93 │ │ │ │ +00041da0: 3938 6164 322b 3135 7c0a 7c20 3020 2020 98ad2+15|.| 0 │ │ │ │ +00041db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041e00: 2020 207c 0a7c 2030 2020 2020 2020 2020 |.| 0 │ │ │ │ +00041df0: 2020 2020 2020 2020 7c0a 7c20 3020 2020 |.| 0 │ │ │ │ +00041e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041e50: 2020 207c 0a7c 2031 3034 3830 6133 2b36 |.| 10480a3+6 │ │ │ │ -00041e60: 3230 3361 3262 2d39 3533 3461 6232 2b39 203a2b-9534ab2+9 │ │ │ │ -00041e70: 3438 3061 3263 2d37 3235 3661 6263 2b31 480a2c-7256abc+1 │ │ │ │ -00041e80: 3139 3530 6132 642b 3533 3231 6162 642b 1950a2d+5321abd+ │ │ │ │ -00041e90: 3339 3936 6163 642b 3731 3532 6263 642d 3996acd+7152bcd- │ │ │ │ -00041ea0: 3933 397c 0a7c 2020 2020 2020 2020 2020 939|.| │ │ │ │ +00041e40: 2020 2020 2020 2020 7c0a 7c20 3130 3438 |.| 1048 │ │ │ │ +00041e50: 3061 332b 3632 3033 6132 622d 3935 3334 0a3+6203a2b-9534 │ │ │ │ +00041e60: 6162 322b 3934 3830 6132 632d 3732 3536 ab2+9480a2c-7256 │ │ │ │ +00041e70: 6162 632b 3131 3935 3061 3264 2b35 3332 abc+11950a2d+532 │ │ │ │ +00041e80: 3161 6264 2b33 3939 3661 6364 2b37 3135 1abd+3996acd+715 │ │ │ │ +00041e90: 3262 6364 2d39 3339 7c0a 7c20 2020 2020 2bcd-939|.| │ │ │ │ +00041ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041ef0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00041ee0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00041ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041f40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00041f30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00041f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041f90: 2020 207c 0a7c 202d 3839 3931 6134 2b38 |.| -8991a4+8 │ │ │ │ -00041fa0: 3938 3261 3362 2b31 3333 3230 6132 6232 982a3b+13320a2b2 │ │ │ │ -00041fb0: 2d37 3232 3961 6233 2b37 3637 3262 342d -7229ab3+7672b4- │ │ │ │ -00041fc0: 3133 3638 3961 3363 2b31 3030 3635 6132 13689a3c+10065a2 │ │ │ │ -00041fd0: 6263 2d38 3738 3761 6232 632d 3137 3236 bc-8787ab2c-1726 │ │ │ │ -00041fe0: 6233 637c 0a7c 202d 3833 3735 6134 2d32 b3c|.| -8375a4-2 │ │ │ │ -00041ff0: 3235 6133 622d 3131 3033 3961 3262 322d 25a3b-11039a2b2- │ │ │ │ -00042000: 3130 3139 3661 6233 2b34 3637 3662 342b 10196ab3+4676b4+ │ │ │ │ -00042010: 3236 3935 6133 632d 3839 3737 6132 6263 2695a3c-8977a2bc │ │ │ │ -00042020: 2d31 3539 3530 6162 3263 2d37 3432 3162 -15950ab2c-7421b │ │ │ │ -00042030: 3363 2d7c 0a7c 202d 3130 3835 3761 342b 3c-|.| -10857a4+ │ │ │ │ -00042040: 3134 3136 3661 3362 2d38 3538 6133 632b 14166a3b-858a3c+ │ │ │ │ -00042050: 3533 3335 6132 6263 2d35 3531 3361 3263 5335a2bc-5513a2c │ │ │ │ -00042060: 322b 3531 3030 6162 6332 2d31 3037 3233 2+5100abc2-10723 │ │ │ │ -00042070: 6133 642d 3138 3730 6132 6264 2d39 3832 a3d-1870a2bd-982 │ │ │ │ -00042080: 3261 327c 0a7c 202d 3535 3038 6134 2b31 2a2|.| -5508a4+1 │ │ │ │ -00042090: 3336 3630 6133 622b 3135 3333 3661 3262 3660a3b+15336a2b │ │ │ │ -000420a0: 322d 3133 3934 3361 6233 2d38 3432 6234 2-13943ab3-842b4 │ │ │ │ -000420b0: 2b31 3931 3061 3363 2b31 3232 3330 6132 +1910a3c+12230a2 │ │ │ │ -000420c0: 6263 2d39 3235 3261 6232 632d 3634 3438 bc-9252ab2c-6448 │ │ │ │ -000420d0: 6233 637c 0a7c 2035 3232 3461 342d 3833 b3c|.| 5224a4-83 │ │ │ │ -000420e0: 3330 6133 622d 3133 3135 3361 3262 322b 30a3b-13153a2b2+ │ │ │ │ -000420f0: 3132 3230 3661 3363 2b31 3331 3338 6132 12206a3c+13138a2 │ │ │ │ -00042100: 6263 2b34 3439 3861 3263 322b 3133 3836 bc+4498a2c2+1386 │ │ │ │ -00042110: 3461 6263 322d 3937 3861 6333 2d34 3036 4abc2-978ac3-406 │ │ │ │ -00042120: 3261 337c 0a7c 2020 2020 2020 2020 2020 2a3|.| │ │ │ │ +00041f80: 2020 2020 2020 2020 7c0a 7c20 2d38 3939 |.| -899 │ │ │ │ +00041f90: 3161 342b 3839 3832 6133 622b 3133 3332 1a4+8982a3b+1332 │ │ │ │ +00041fa0: 3061 3262 322d 3732 3239 6162 332b 3736 0a2b2-7229ab3+76 │ │ │ │ +00041fb0: 3732 6234 2d31 3336 3839 6133 632b 3130 72b4-13689a3c+10 │ │ │ │ +00041fc0: 3036 3561 3262 632d 3837 3837 6162 3263 065a2bc-8787ab2c │ │ │ │ +00041fd0: 2d31 3732 3662 3363 7c0a 7c20 2d38 3337 -1726b3c|.| -837 │ │ │ │ +00041fe0: 3561 342d 3232 3561 3362 2d31 3130 3339 5a4-225a3b-11039 │ │ │ │ +00041ff0: 6132 6232 2d31 3031 3936 6162 332b 3436 a2b2-10196ab3+46 │ │ │ │ +00042000: 3736 6234 2b32 3639 3561 3363 2d38 3937 76b4+2695a3c-897 │ │ │ │ +00042010: 3761 3262 632d 3135 3935 3061 6232 632d 7a2bc-15950ab2c- │ │ │ │ +00042020: 3734 3231 6233 632d 7c0a 7c20 2d31 3038 7421b3c-|.| -108 │ │ │ │ +00042030: 3537 6134 2b31 3431 3636 6133 622d 3835 57a4+14166a3b-85 │ │ │ │ +00042040: 3861 3363 2b35 3333 3561 3262 632d 3535 8a3c+5335a2bc-55 │ │ │ │ +00042050: 3133 6132 6332 2b35 3130 3061 6263 322d 13a2c2+5100abc2- │ │ │ │ +00042060: 3130 3732 3361 3364 2d31 3837 3061 3262 10723a3d-1870a2b │ │ │ │ +00042070: 642d 3938 3232 6132 7c0a 7c20 2d35 3530 d-9822a2|.| -550 │ │ │ │ +00042080: 3861 342b 3133 3636 3061 3362 2b31 3533 8a4+13660a3b+153 │ │ │ │ +00042090: 3336 6132 6232 2d31 3339 3433 6162 332d 36a2b2-13943ab3- │ │ │ │ +000420a0: 3834 3262 342b 3139 3130 6133 632b 3132 842b4+1910a3c+12 │ │ │ │ +000420b0: 3233 3061 3262 632d 3932 3532 6162 3263 230a2bc-9252ab2c │ │ │ │ +000420c0: 2d36 3434 3862 3363 7c0a 7c20 3532 3234 -6448b3c|.| 5224 │ │ │ │ +000420d0: 6134 2d38 3333 3061 3362 2d31 3331 3533 a4-8330a3b-13153 │ │ │ │ +000420e0: 6132 6232 2b31 3232 3036 6133 632b 3133 a2b2+12206a3c+13 │ │ │ │ +000420f0: 3133 3861 3262 632b 3434 3938 6132 6332 138a2bc+4498a2c2 │ │ │ │ +00042100: 2b31 3338 3634 6162 6332 2d39 3738 6163 +13864abc2-978ac │ │ │ │ +00042110: 332d 3430 3632 6133 7c0a 7c20 2020 2020 3-4062a3|.| │ │ │ │ +00042120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042170: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042160: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00042170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000421a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000421b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000421c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000421b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000421c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000421d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000421e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000421f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042210: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042200: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00042210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042260: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042250: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00042260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000422a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000422b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000422a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000422b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000422c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000422d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000422e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000422f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042300: 2020 207c 0a7c 2039 3631 3161 342b 3133 |.| 9611a4+13 │ │ │ │ -00042310: 3132 3761 3362 2d39 3438 3961 3262 322d 127a3b-9489a2b2- │ │ │ │ -00042320: 3436 3461 6233 2b39 3334 3162 342d 3135 464ab3+9341b4-15 │ │ │ │ -00042330: 3734 3361 3363 2d39 3533 3061 3262 632b 743a3c-9530a2bc+ │ │ │ │ -00042340: 3134 3933 3561 6232 632d 3133 3930 3162 14935ab2c-13901b │ │ │ │ -00042350: 3363 2b7c 0a7c 202d 3339 3538 6134 2d35 3c+|.| -3958a4-5 │ │ │ │ -00042360: 3734 6133 622d 3731 3031 6132 6232 2b31 74a3b-7101a2b2+1 │ │ │ │ -00042370: 3536 3734 6162 332b 3633 3433 6234 2b31 5674ab3+6343b4+1 │ │ │ │ -00042380: 3134 3261 3363 2b39 3832 3061 3262 632d 142a3c+9820a2bc- │ │ │ │ -00042390: 3438 3231 6162 3263 2b35 3733 3762 3363 4821ab2c+5737b3c │ │ │ │ -000423a0: 2b35 307c 0a7c 2032 3339 3861 342b 3937 +50|.| 2398a4+97 │ │ │ │ -000423b0: 3334 6133 622d 3335 6133 632d 3439 3739 34a3b-35a3c-4979 │ │ │ │ -000423c0: 6132 6263 2d35 3035 3361 3263 322d 3433 a2bc-5053a2c2-43 │ │ │ │ -000423d0: 3732 6162 6332 2b31 3034 3232 6133 642d 72abc2+10422a3d- │ │ │ │ -000423e0: 3532 3631 6132 6264 2d32 3735 3061 3263 5261a2bd-2750a2c │ │ │ │ -000423f0: 642d 397c 0a7c 2036 3934 3561 342b 3132 d-9|.| 6945a4+12 │ │ │ │ -00042400: 3039 3861 3362 2d38 3937 3861 3262 322b 098a3b-8978a2b2+ │ │ │ │ -00042410: 3132 3039 3961 6233 2b39 3136 3962 342d 12099ab3+9169b4- │ │ │ │ -00042420: 3135 3933 3661 3363 2d31 3937 3561 3262 15936a3c-1975a2b │ │ │ │ -00042430: 632b 3130 3537 3361 6232 632b 3930 3531 c+10573ab2c+9051 │ │ │ │ -00042440: 6233 637c 0a7c 2031 3237 3938 6134 2d36 b3c|.| 12798a4-6 │ │ │ │ -00042450: 3034 3061 3362 2d37 3234 3761 3262 322d 040a3b-7247a2b2- │ │ │ │ -00042460: 3331 3238 6133 632d 3134 3136 3561 3262 3128a3c-14165a2b │ │ │ │ -00042470: 632d 3436 3237 6132 6332 2d31 3036 3737 c-4627a2c2-10677 │ │ │ │ -00042480: 6162 6332 2d34 3633 3361 6333 2b33 3333 abc2-4633ac3+333 │ │ │ │ -00042490: 3861 337c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 8a3|.|---------- │ │ │ │ +000422f0: 2020 2020 2020 2020 7c0a 7c20 3936 3131 |.| 9611 │ │ │ │ +00042300: 6134 2b31 3331 3237 6133 622d 3934 3839 a4+13127a3b-9489 │ │ │ │ +00042310: 6132 6232 2d34 3634 6162 332b 3933 3431 a2b2-464ab3+9341 │ │ │ │ +00042320: 6234 2d31 3537 3433 6133 632d 3935 3330 b4-15743a3c-9530 │ │ │ │ +00042330: 6132 6263 2b31 3439 3335 6162 3263 2d31 a2bc+14935ab2c-1 │ │ │ │ +00042340: 3339 3031 6233 632b 7c0a 7c20 2d33 3935 3901b3c+|.| -395 │ │ │ │ +00042350: 3861 342d 3537 3461 3362 2d37 3130 3161 8a4-574a3b-7101a │ │ │ │ +00042360: 3262 322b 3135 3637 3461 6233 2b36 3334 2b2+15674ab3+634 │ │ │ │ +00042370: 3362 342b 3131 3432 6133 632b 3938 3230 3b4+1142a3c+9820 │ │ │ │ +00042380: 6132 6263 2d34 3832 3161 6232 632b 3537 a2bc-4821ab2c+57 │ │ │ │ +00042390: 3337 6233 632b 3530 7c0a 7c20 3233 3938 37b3c+50|.| 2398 │ │ │ │ +000423a0: 6134 2b39 3733 3461 3362 2d33 3561 3363 a4+9734a3b-35a3c │ │ │ │ +000423b0: 2d34 3937 3961 3262 632d 3530 3533 6132 -4979a2bc-5053a2 │ │ │ │ +000423c0: 6332 2d34 3337 3261 6263 322b 3130 3432 c2-4372abc2+1042 │ │ │ │ +000423d0: 3261 3364 2d35 3236 3161 3262 642d 3237 2a3d-5261a2bd-27 │ │ │ │ +000423e0: 3530 6132 6364 2d39 7c0a 7c20 3639 3435 50a2cd-9|.| 6945 │ │ │ │ +000423f0: 6134 2b31 3230 3938 6133 622d 3839 3738 a4+12098a3b-8978 │ │ │ │ +00042400: 6132 6232 2b31 3230 3939 6162 332b 3931 a2b2+12099ab3+91 │ │ │ │ +00042410: 3639 6234 2d31 3539 3336 6133 632d 3139 69b4-15936a3c-19 │ │ │ │ +00042420: 3735 6132 6263 2b31 3035 3733 6162 3263 75a2bc+10573ab2c │ │ │ │ +00042430: 2b39 3035 3162 3363 7c0a 7c20 3132 3739 +9051b3c|.| 1279 │ │ │ │ +00042440: 3861 342d 3630 3430 6133 622d 3732 3437 8a4-6040a3b-7247 │ │ │ │ +00042450: 6132 6232 2d33 3132 3861 3363 2d31 3431 a2b2-3128a3c-141 │ │ │ │ +00042460: 3635 6132 6263 2d34 3632 3761 3263 322d 65a2bc-4627a2c2- │ │ │ │ +00042470: 3130 3637 3761 6263 322d 3436 3333 6163 10677abc2-4633ac │ │ │ │ +00042480: 332b 3333 3338 6133 7c0a 7c2d 2d2d 2d2d 3+3338a3|.|----- │ │ │ │ +00042490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000424a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000424b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000424c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000424d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000424e0: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ +000424d0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +000424e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000424f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042530: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042520: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00042530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042580: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042570: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00042580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000425a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000425b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000425c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000425d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000425c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000425d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000425e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000425f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042620: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042610: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00042620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042670: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042660: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00042670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000426a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000426b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000426c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000426b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000426c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000426d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000426e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000426f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042710: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042700: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00042710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042760: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042750: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00042760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000427a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000427b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000427a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000427b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000427c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000427d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000427e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000427f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042800: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000427f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00042800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042850: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042840: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00042850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000428a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042890: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000428a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000428b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000428c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000428d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000428e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000428f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000428e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000428f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042940: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042930: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00042940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042990: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042980: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00042990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000429a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000429b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000429c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000429d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000429e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000429d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000429e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000429f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042a30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042a20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00042a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042a80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042a70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00042a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042ad0: 2020 207c 0a7c 3264 2d31 3338 3932 6163 |.|2d-13892ac │ │ │ │ -00042ae0: 642d 3130 3532 3162 6364 2020 2020 2020 d-10521bcd │ │ │ │ +00042ac0: 2020 2020 2020 2020 7c0a 7c32 642d 3133 |.|2d-13 │ │ │ │ +00042ad0: 3839 3261 6364 2d31 3035 3231 6263 6420 892acd-10521bcd │ │ │ │ +00042ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042b20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042b10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00042b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042b70: 2020 207c 0a7c 6333 2b31 3230 3661 3264 |.|c3+1206a2d │ │ │ │ -00042b80: 2d31 3134 3335 6162 642b 3930 3734 6232 -11435abd+9074b2 │ │ │ │ -00042b90: 642d 3630 3430 6163 642b 3830 3232 6263 d-6040acd+8022bc │ │ │ │ -00042ba0: 642b 3339 3638 6332 6420 2020 2020 2020 d+3968c2d │ │ │ │ -00042bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042bc0: 2020 207c 0a7c 2d31 3130 3435 6132 642d |.|-11045a2d- │ │ │ │ -00042bd0: 3135 3333 3361 6264 2b31 3035 3637 6232 15333abd+10567b2 │ │ │ │ -00042be0: 642d 3335 3630 6163 642b 3232 3932 6263 d-3560acd+2292bc │ │ │ │ -00042bf0: 642b 3134 3338 3863 3264 2d37 3139 3461 d+14388c2d-7194a │ │ │ │ -00042c00: 6432 2b36 3234 3562 6432 2d38 3633 3963 d2+6245bd2-8639c │ │ │ │ -00042c10: 6432 2b7c 0a7c 642d 3539 3639 6263 642d d2+|.|d-5969bcd- │ │ │ │ -00042c20: 3930 3734 6332 642b 3637 3233 6164 322b 9074c2d+6723ad2+ │ │ │ │ -00042c30: 3534 3833 6264 322b 3135 3235 3063 6432 5483bd2+15250cd2 │ │ │ │ -00042c40: 2d31 3035 3637 6433 2020 2031 3233 3661 -10567d3 1236a │ │ │ │ -00042c50: 332b 3839 3232 6132 622d 3335 3839 6162 3+8922a2b-3589ab │ │ │ │ -00042c60: 322b 387c 0a7c 3430 6163 642d 3830 3232 2+8|.|40acd-8022 │ │ │ │ -00042c70: 6263 642d 3339 3638 6332 642b 3331 3634 bcd-3968c2d+3164 │ │ │ │ -00042c80: 6164 322d 3239 3562 6432 2b37 3635 3063 ad2-295bd2+7650c │ │ │ │ -00042c90: 6432 2d31 3433 3838 6433 2030 2020 2020 d2-14388d3 0 │ │ │ │ -00042ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042cb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042b60: 2020 2020 2020 2020 7c0a 7c63 332b 3132 |.|c3+12 │ │ │ │ +00042b70: 3036 6132 642d 3131 3433 3561 6264 2b39 06a2d-11435abd+9 │ │ │ │ +00042b80: 3037 3462 3264 2d36 3034 3061 6364 2b38 074b2d-6040acd+8 │ │ │ │ +00042b90: 3032 3262 6364 2b33 3936 3863 3264 2020 022bcd+3968c2d │ │ │ │ +00042ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00042bb0: 2020 2020 2020 2020 7c0a 7c2d 3131 3034 |.|-1104 │ │ │ │ +00042bc0: 3561 3264 2d31 3533 3333 6162 642b 3130 5a2d-15333abd+10 │ │ │ │ +00042bd0: 3536 3762 3264 2d33 3536 3061 6364 2b32 567b2d-3560acd+2 │ │ │ │ +00042be0: 3239 3262 6364 2b31 3433 3838 6332 642d 292bcd+14388c2d- │ │ │ │ +00042bf0: 3731 3934 6164 322b 3632 3435 6264 322d 7194ad2+6245bd2- │ │ │ │ +00042c00: 3836 3339 6364 322b 7c0a 7c64 2d35 3936 8639cd2+|.|d-596 │ │ │ │ +00042c10: 3962 6364 2d39 3037 3463 3264 2b36 3732 9bcd-9074c2d+672 │ │ │ │ +00042c20: 3361 6432 2b35 3438 3362 6432 2b31 3532 3ad2+5483bd2+152 │ │ │ │ +00042c30: 3530 6364 322d 3130 3536 3764 3320 2020 50cd2-10567d3 │ │ │ │ +00042c40: 3132 3336 6133 2b38 3932 3261 3262 2d33 1236a3+8922a2b-3 │ │ │ │ +00042c50: 3538 3961 6232 2b38 7c0a 7c34 3061 6364 589ab2+8|.|40acd │ │ │ │ +00042c60: 2d38 3032 3262 6364 2d33 3936 3863 3264 -8022bcd-3968c2d │ │ │ │ +00042c70: 2b33 3136 3461 6432 2d32 3935 6264 322b +3164ad2-295bd2+ │ │ │ │ +00042c80: 3736 3530 6364 322d 3134 3338 3864 3320 7650cd2-14388d3 │ │ │ │ +00042c90: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00042ca0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00042cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042ce0: 2020 2020 2020 2020 2020 202d 3133 3730 -1370 │ │ │ │ -00042cf0: 3761 332d 3231 3737 6132 622b 3730 3238 7a3-2177a2b+7028 │ │ │ │ -00042d00: 6162 327c 0a7c 6264 322b 3836 3339 6364 ab2|.|bd2+8639cd │ │ │ │ -00042d10: 322d 3934 3236 6433 2020 2020 2020 2020 2-9426d3 │ │ │ │ +00042ce0: 2d31 3337 3037 6133 2d32 3137 3761 3262 -13707a3-2177a2b │ │ │ │ +00042cf0: 2b37 3032 3861 6232 7c0a 7c62 6432 2b38 +7028ab2|.|bd2+8 │ │ │ │ +00042d00: 3633 3963 6432 2d39 3432 3664 3320 2020 639cd2-9426d3 │ │ │ │ +00042d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042d30: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ -00042d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042d50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042d30: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00042d40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00042d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042d80: 2020 2020 2020 2020 2020 2039 3934 6133 994a3 │ │ │ │ -00042d90: 2b31 3934 3661 3262 2b36 3732 3361 6232 +1946a2b+6723ab2 │ │ │ │ -00042da0: 2b35 347c 0a7c 2020 2020 2020 2020 2020 +54|.| │ │ │ │ +00042d80: 3939 3461 332b 3139 3436 6132 622b 3637 994a3+1946a2b+67 │ │ │ │ +00042d90: 3233 6162 322b 3534 7c0a 7c20 2020 2020 23ab2+54|.| │ │ │ │ +00042da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042dd0: 2020 2020 2020 2020 2020 2033 3136 3461 3164a │ │ │ │ -00042de0: 6232 2d32 3935 6233 2b37 3635 3062 3263 b2-295b3+7650b2c │ │ │ │ -00042df0: 2d31 347c 0a7c 3061 6364 2b38 3032 3262 -14|.|0acd+8022b │ │ │ │ -00042e00: 6364 2b33 3936 3863 3264 2d33 3136 3461 cd+3968c2d-3164a │ │ │ │ -00042e10: 6432 2b32 3935 6264 322d 3736 3530 6364 d2+295bd2-7650cd │ │ │ │ -00042e20: 322b 3134 3338 3864 3320 2d31 3033 3730 2+14388d3 -10370 │ │ │ │ -00042e30: 6162 322b 3730 3932 6233 2b39 3730 3261 ab2+7092b3+9702a │ │ │ │ -00042e40: 6263 2b7c 0a7c 3562 6432 2d38 3633 3963 bc+|.|5bd2-8639c │ │ │ │ -00042e50: 6432 2b39 3432 3664 3320 2020 2020 2020 d2+9426d3 │ │ │ │ -00042e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042e70: 2020 2020 2020 2020 2020 3637 3233 6163 6723ac │ │ │ │ -00042e80: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00042e90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042dd0: 3331 3634 6162 322d 3239 3562 332b 3736 3164ab2-295b3+76 │ │ │ │ +00042de0: 3530 6232 632d 3134 7c0a 7c30 6163 642b 50b2c-14|.|0acd+ │ │ │ │ +00042df0: 3830 3232 6263 642b 3339 3638 6332 642d 8022bcd+3968c2d- │ │ │ │ +00042e00: 3331 3634 6164 322b 3239 3562 6432 2d37 3164ad2+295bd2-7 │ │ │ │ +00042e10: 3635 3063 6432 2b31 3433 3838 6433 202d 650cd2+14388d3 - │ │ │ │ +00042e20: 3130 3337 3061 6232 2b37 3039 3262 332b 10370ab2+7092b3+ │ │ │ │ +00042e30: 3937 3032 6162 632b 7c0a 7c35 6264 322d 9702abc+|.|5bd2- │ │ │ │ +00042e40: 3836 3339 6364 322b 3934 3236 6433 2020 8639cd2+9426d3 │ │ │ │ +00042e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00042e60: 2020 2020 2020 2020 2020 2020 2020 2036 6 │ │ │ │ +00042e70: 3732 3361 6332 2020 2020 2020 2020 2020 723ac2 │ │ │ │ +00042e80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00042e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042ec0: 2020 2020 2020 2020 2020 2d39 3934 6133 -994a3 │ │ │ │ -00042ed0: 2d31 3934 3661 3262 2d36 3732 3361 6232 -1946a2b-6723ab2 │ │ │ │ -00042ee0: 2d36 347c 0a7c 2020 2020 2020 2020 2020 -64|.| │ │ │ │ +00042eb0: 2020 2020 2020 2020 2020 2020 2020 202d - │ │ │ │ +00042ec0: 3939 3461 332d 3139 3436 6132 622d 3637 994a3-1946a2b-67 │ │ │ │ +00042ed0: 3233 6162 322d 3634 7c0a 7c20 2020 2020 23ab2-64|.| │ │ │ │ +00042ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042f10: 2020 2020 2020 2020 2020 2d35 3438 3361 -5483a │ │ │ │ -00042f20: 3262 2d31 3532 3530 6132 632b 3130 3536 2b-15250a2c+1056 │ │ │ │ -00042f30: 3761 327c 0a7c 6164 322d 3632 3435 6264 7a2|.|ad2-6245bd │ │ │ │ -00042f40: 322b 3836 3339 6364 322d 3934 3236 6433 2+8639cd2-9426d3 │ │ │ │ -00042f50: 2031 3337 3037 6133 2b32 3137 3761 3262 13707a3+2177a2b │ │ │ │ -00042f60: 2d37 3032 3861 6232 2d37 3032 3161 3263 -7028ab2-7021a2c │ │ │ │ -00042f70: 2b36 3337 3761 6263 2d37 3630 3061 6332 +6377abc-7600ac2 │ │ │ │ -00042f80: 2d31 317c 0a7c 2020 2020 2020 2020 2020 -11|.| │ │ │ │ +00042f00: 2020 2020 2020 2020 2020 2020 2020 202d - │ │ │ │ +00042f10: 3534 3833 6132 622d 3135 3235 3061 3263 5483a2b-15250a2c │ │ │ │ +00042f20: 2b31 3035 3637 6132 7c0a 7c61 6432 2d36 +10567a2|.|ad2-6 │ │ │ │ +00042f30: 3234 3562 6432 2b38 3633 3963 6432 2d39 245bd2+8639cd2-9 │ │ │ │ +00042f40: 3432 3664 3320 3133 3730 3761 332b 3231 426d3 13707a3+21 │ │ │ │ +00042f50: 3737 6132 622d 3730 3238 6162 322d 3730 77a2b-7028ab2-70 │ │ │ │ +00042f60: 3231 6132 632b 3633 3737 6162 632d 3736 21a2c+6377abc-76 │ │ │ │ +00042f70: 3030 6163 322d 3131 7c0a 7c20 2020 2020 00ac2-11|.| │ │ │ │ +00042f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042fd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00042fc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00042fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043020: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043010: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00043020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043070: 2020 207c 0a7c 2b35 3531 3361 3263 322b |.|+5513a2c2+ │ │ │ │ -00043080: 3130 3535 3861 6263 322b 3235 3930 6232 10558abc2+2590b2 │ │ │ │ -00043090: 6332 2b31 3136 3234 6133 642d 3536 3033 c2+11624a3d-5603 │ │ │ │ -000430a0: 6132 6264 2b31 3430 3538 6162 3264 2d31 a2bd+14058ab2d-1 │ │ │ │ -000430b0: 3236 3135 6233 642b 3738 3639 6132 6364 2615b3d+7869a2cd │ │ │ │ -000430c0: 2d32 307c 0a7c 3135 3338 3361 3263 322b -20|.|15383a2c2+ │ │ │ │ -000430d0: 3530 3761 6263 322d 3133 3830 3462 3263 507abc2-13804b2c │ │ │ │ -000430e0: 322d 3834 3136 6163 332b 3932 6334 2d31 2-8416ac3+92c4-1 │ │ │ │ -000430f0: 3130 3537 6133 642d 3531 3133 6132 6264 1057a3d-5113a2bd │ │ │ │ -00043100: 2d32 3736 3261 6232 642b 3134 3039 3562 -2762ab2d+14095b │ │ │ │ -00043110: 3364 2d7c 0a7c 6132 6364 2d35 3538 3961 3d-|.|a2cd-5589a │ │ │ │ -00043120: 6263 642d 3831 3633 6163 3264 2d31 3839 bcd-8163ac2d-189 │ │ │ │ -00043130: 3562 6332 642b 3934 3634 6132 6432 2d37 5bc2d+9464a2d2-7 │ │ │ │ -00043140: 3235 3361 6264 322b 3132 3634 3261 6364 253abd2+12642acd │ │ │ │ -00043150: 322d 3139 3538 6263 6432 2020 2020 2020 2-1958bcd2 │ │ │ │ -00043160: 2020 207c 0a7c 6132 6332 2b35 3334 3361 |.|a2c2+5343a │ │ │ │ -00043170: 6263 322b 3337 3938 6232 6332 2d31 3539 bc2+3798b2c2-159 │ │ │ │ -00043180: 3638 6133 642b 3437 3361 3262 642b 3133 68a3d+473a2bd+13 │ │ │ │ -00043190: 3239 3361 6232 642d 3337 3631 6233 642d 293ab2d-3761b3d- │ │ │ │ -000431a0: 3737 3137 6132 6364 2d37 3338 3961 6263 7717a2cd-7389abc │ │ │ │ -000431b0: 642b 347c 0a7c 3239 6133 642b 3134 3738 d+4|.|29a3d+1478 │ │ │ │ -000431c0: 3461 3262 642d 3130 3630 3861 3263 642d 4a2bd-10608a2cd- │ │ │ │ -000431d0: 3338 3136 6162 6364 2d31 3336 3338 6163 3816abcd-13638ac │ │ │ │ -000431e0: 3264 2d36 3135 3961 3264 322d 3134 3634 2d-6159a2d2-1464 │ │ │ │ -000431f0: 3861 6264 322b 3330 3732 6163 6432 2d31 8abd2+3072acd2-1 │ │ │ │ -00043200: 3432 367c 0a7c 2020 2020 2020 2020 2020 426|.| │ │ │ │ +00043060: 2020 2020 2020 2020 7c0a 7c2b 3535 3133 |.|+5513 │ │ │ │ +00043070: 6132 6332 2b31 3035 3538 6162 6332 2b32 a2c2+10558abc2+2 │ │ │ │ +00043080: 3539 3062 3263 322b 3131 3632 3461 3364 590b2c2+11624a3d │ │ │ │ +00043090: 2d35 3630 3361 3262 642b 3134 3035 3861 -5603a2bd+14058a │ │ │ │ +000430a0: 6232 642d 3132 3631 3562 3364 2b37 3836 b2d-12615b3d+786 │ │ │ │ +000430b0: 3961 3263 642d 3230 7c0a 7c31 3533 3833 9a2cd-20|.|15383 │ │ │ │ +000430c0: 6132 6332 2b35 3037 6162 6332 2d31 3338 a2c2+507abc2-138 │ │ │ │ +000430d0: 3034 6232 6332 2d38 3431 3661 6333 2b39 04b2c2-8416ac3+9 │ │ │ │ +000430e0: 3263 342d 3131 3035 3761 3364 2d35 3131 2c4-11057a3d-511 │ │ │ │ +000430f0: 3361 3262 642d 3237 3632 6162 3264 2b31 3a2bd-2762ab2d+1 │ │ │ │ +00043100: 3430 3935 6233 642d 7c0a 7c61 3263 642d 4095b3d-|.|a2cd- │ │ │ │ +00043110: 3535 3839 6162 6364 2d38 3136 3361 6332 5589abcd-8163ac2 │ │ │ │ +00043120: 642d 3138 3935 6263 3264 2b39 3436 3461 d-1895bc2d+9464a │ │ │ │ +00043130: 3264 322d 3732 3533 6162 6432 2b31 3236 2d2-7253abd2+126 │ │ │ │ +00043140: 3432 6163 6432 2d31 3935 3862 6364 3220 42acd2-1958bcd2 │ │ │ │ +00043150: 2020 2020 2020 2020 7c0a 7c61 3263 322b |.|a2c2+ │ │ │ │ +00043160: 3533 3433 6162 6332 2b33 3739 3862 3263 5343abc2+3798b2c │ │ │ │ +00043170: 322d 3135 3936 3861 3364 2b34 3733 6132 2-15968a3d+473a2 │ │ │ │ +00043180: 6264 2b31 3332 3933 6162 3264 2d33 3736 bd+13293ab2d-376 │ │ │ │ +00043190: 3162 3364 2d37 3731 3761 3263 642d 3733 1b3d-7717a2cd-73 │ │ │ │ +000431a0: 3839 6162 6364 2b34 7c0a 7c32 3961 3364 89abcd+4|.|29a3d │ │ │ │ +000431b0: 2b31 3437 3834 6132 6264 2d31 3036 3038 +14784a2bd-10608 │ │ │ │ +000431c0: 6132 6364 2d33 3831 3661 6263 642d 3133 a2cd-3816abcd-13 │ │ │ │ +000431d0: 3633 3861 6332 642d 3631 3539 6132 6432 638ac2d-6159a2d2 │ │ │ │ +000431e0: 2d31 3436 3438 6162 6432 2b33 3037 3261 -14648abd2+3072a │ │ │ │ +000431f0: 6364 322d 3134 3236 7c0a 7c20 2020 2020 cd2-1426|.| │ │ │ │ +00043200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043250: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043240: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00043250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000432a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043290: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000432a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000432b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000432c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000432d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000432e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000432f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000432e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000432f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043340: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043330: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00043340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043390: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043380: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00043390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000433a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000433b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000433c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000433d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000433e0: 2020 207c 0a7c 642b 3834 3434 6163 642b |.|d+8444acd+ │ │ │ │ -000433f0: 3530 3731 6263 6420 2020 2020 2020 2020 5071bcd │ │ │ │ +000433d0: 2020 2020 2020 2020 7c0a 7c64 2b38 3434 |.|d+844 │ │ │ │ +000433e0: 3461 6364 2b35 3037 3162 6364 2020 2020 4acd+5071bcd │ │ │ │ +000433f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043430: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043420: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00043430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043480: 2020 207c 0a7c 3331 6333 2d31 3335 3038 |.|31c3-13508 │ │ │ │ -00043490: 6132 642d 3130 3132 3561 6264 2b35 3534 a2d-10125abd+554 │ │ │ │ -000434a0: 3962 3264 2b39 3033 3361 6364 2b32 3939 9b2d+9033acd+299 │ │ │ │ -000434b0: 3862 6364 2d32 3033 3663 3264 2020 2020 8bcd-2036c2d │ │ │ │ -000434c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000434d0: 2020 207c 0a7c 3563 332d 3131 3935 3061 |.|5c3-11950a │ │ │ │ -000434e0: 3264 2d35 3332 3161 6264 2b32 3632 3762 2d-5321abd+2627b │ │ │ │ -000434f0: 3264 2d33 3939 3661 6364 2d37 3135 3262 2d-3996acd-7152b │ │ │ │ -00043500: 6364 2d31 3137 3430 6332 642b 3933 3938 cd-11740c2d+9398 │ │ │ │ -00043510: 6164 322b 3135 3331 3762 6432 2d36 3932 ad2+15317bd2-692 │ │ │ │ -00043520: 3263 647c 0a7c 3530 3161 6364 2b31 3737 2cd|.|501acd+177 │ │ │ │ -00043530: 3962 6364 2d35 3534 3963 3264 2d39 3533 9bcd-5549c2d-953 │ │ │ │ -00043540: 3461 6432 2d31 3038 3636 6264 322b 3730 4ad2-10866bd2+70 │ │ │ │ -00043550: 3631 6364 322d 3236 3237 6433 2031 3037 61cd2-2627d3 107 │ │ │ │ -00043560: 6133 2b34 3337 3661 3262 2b33 3738 3361 a3+4376a2b+3783a │ │ │ │ -00043570: 6232 2b7c 0a7c 3333 6163 642d 3239 3938 b2+|.|33acd-2998 │ │ │ │ -00043580: 6263 642b 3230 3336 6332 642d 3531 3037 bcd+2036c2d-5107 │ │ │ │ -00043590: 6164 322d 3536 3739 6264 322b 3633 3235 ad2-5679bd2+6325 │ │ │ │ -000435a0: 6364 322b 3131 3734 3064 3320 2030 2020 cd2+11740d3 0 │ │ │ │ -000435b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000435c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043470: 2020 2020 2020 2020 7c0a 7c33 3163 332d |.|31c3- │ │ │ │ +00043480: 3133 3530 3861 3264 2d31 3031 3235 6162 13508a2d-10125ab │ │ │ │ +00043490: 642b 3535 3439 6232 642b 3930 3333 6163 d+5549b2d+9033ac │ │ │ │ +000434a0: 642b 3239 3938 6263 642d 3230 3336 6332 d+2998bcd-2036c2 │ │ │ │ +000434b0: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ +000434c0: 2020 2020 2020 2020 7c0a 7c35 6333 2d31 |.|5c3-1 │ │ │ │ +000434d0: 3139 3530 6132 642d 3533 3231 6162 642b 1950a2d-5321abd+ │ │ │ │ +000434e0: 3236 3237 6232 642d 3339 3936 6163 642d 2627b2d-3996acd- │ │ │ │ +000434f0: 3731 3532 6263 642d 3131 3734 3063 3264 7152bcd-11740c2d │ │ │ │ +00043500: 2b39 3339 3861 6432 2b31 3533 3137 6264 +9398ad2+15317bd │ │ │ │ +00043510: 322d 3639 3232 6364 7c0a 7c35 3031 6163 2-6922cd|.|501ac │ │ │ │ +00043520: 642b 3137 3739 6263 642d 3535 3439 6332 d+1779bcd-5549c2 │ │ │ │ +00043530: 642d 3935 3334 6164 322d 3130 3836 3662 d-9534ad2-10866b │ │ │ │ +00043540: 6432 2b37 3036 3163 6432 2d32 3632 3764 d2+7061cd2-2627d │ │ │ │ +00043550: 3320 3130 3761 332b 3433 3736 6132 622b 3 107a3+4376a2b+ │ │ │ │ +00043560: 3337 3833 6162 322b 7c0a 7c33 3361 6364 3783ab2+|.|33acd │ │ │ │ +00043570: 2d32 3939 3862 6364 2b32 3033 3663 3264 -2998bcd+2036c2d │ │ │ │ +00043580: 2d35 3130 3761 6432 2d35 3637 3962 6432 -5107ad2-5679bd2 │ │ │ │ +00043590: 2b36 3332 3563 6432 2b31 3137 3430 6433 +6325cd2+11740d3 │ │ │ │ +000435a0: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000435b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000435c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000435d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000435e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000435f0: 2020 2020 2020 2020 2020 2020 2031 3533 153 │ │ │ │ -00043600: 3434 6133 2d32 3635 3361 3262 2d31 3032 44a3-2653a2b-102 │ │ │ │ -00043610: 3539 617c 0a7c 3137 6264 322b 3639 3232 59a|.|17bd2+6922 │ │ │ │ -00043620: 6364 322b 3530 3830 6433 2020 2020 2020 cd2+5080d3 │ │ │ │ +000435f0: 2020 3135 3334 3461 332d 3236 3533 6132 15344a3-2653a2 │ │ │ │ +00043600: 622d 3130 3235 3961 7c0a 7c31 3762 6432 b-10259a|.|17bd2 │ │ │ │ +00043610: 2b36 3932 3263 6432 2b35 3038 3064 3320 +6922cd2+5080d3 │ │ │ │ +00043620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043640: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -00043650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043660: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043640: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00043650: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00043660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043690: 2020 2020 2020 2020 2020 2020 2031 3034 104 │ │ │ │ -000436a0: 3830 6133 2b36 3230 3361 3262 2d39 3533 80a3+6203a2b-953 │ │ │ │ -000436b0: 3461 627c 0a7c 2020 2020 2020 2020 2020 4ab|.| │ │ │ │ +00043690: 2020 3130 3438 3061 332b 3632 3033 6132 10480a3+6203a2 │ │ │ │ +000436a0: 622d 3935 3334 6162 7c0a 7c20 2020 2020 b-9534ab|.| │ │ │ │ +000436b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000436c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000436d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000436e0: 2020 2020 2020 2020 2020 2020 202d 3531 -51 │ │ │ │ -000436f0: 3037 6162 322d 3536 3739 6233 2b36 3332 07ab2-5679b3+632 │ │ │ │ -00043700: 3562 327c 0a7c 3033 3361 6364 2b32 3939 5b2|.|033acd+299 │ │ │ │ -00043710: 3862 6364 2d32 3033 3663 3264 2b35 3130 8bcd-2036c2d+510 │ │ │ │ -00043720: 3761 6432 2b35 3637 3962 6432 2d36 3332 7ad2+5679bd2-632 │ │ │ │ -00043730: 3563 6432 2d31 3137 3430 6433 202d 3832 5cd2-11740d3 -82 │ │ │ │ -00043740: 3331 6162 322d 3133 3137 3762 332d 3538 31ab2-13177b3-58 │ │ │ │ -00043750: 3634 617c 0a7c 3331 3762 6432 2d36 3932 64a|.|317bd2-692 │ │ │ │ -00043760: 3263 6432 2d35 3038 3064 3320 2020 2020 2cd2-5080d3 │ │ │ │ +000436e0: 2020 2d35 3130 3761 6232 2d35 3637 3962 -5107ab2-5679b │ │ │ │ +000436f0: 332b 3633 3235 6232 7c0a 7c30 3333 6163 3+6325b2|.|033ac │ │ │ │ +00043700: 642b 3239 3938 6263 642d 3230 3336 6332 d+2998bcd-2036c2 │ │ │ │ +00043710: 642b 3531 3037 6164 322b 3536 3739 6264 d+5107ad2+5679bd │ │ │ │ +00043720: 322d 3633 3235 6364 322d 3131 3734 3064 2-6325cd2-11740d │ │ │ │ +00043730: 3320 2d38 3233 3161 6232 2d31 3331 3737 3 -8231ab2-13177 │ │ │ │ +00043740: 6233 2d35 3836 3461 7c0a 7c33 3137 6264 b3-5864a|.|317bd │ │ │ │ +00043750: 322d 3639 3232 6364 322d 3530 3830 6433 2-6922cd2-5080d3 │ │ │ │ +00043760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043780: 2020 2020 2020 2020 2020 2020 202d 3935 -95 │ │ │ │ -00043790: 3334 6163 3220 2020 2020 2020 2020 2020 34ac2 │ │ │ │ -000437a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043780: 2020 2d39 3533 3461 6332 2020 2020 2020 -9534ac2 │ │ │ │ +00043790: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000437a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000437b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000437c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000437d0: 2020 2020 2020 2020 2020 2020 202d 3130 -10 │ │ │ │ -000437e0: 3438 3061 332d 3632 3033 6132 622b 3935 480a3-6203a2b+95 │ │ │ │ -000437f0: 3334 617c 0a7c 2020 2020 2020 2020 2020 34a|.| │ │ │ │ +000437d0: 2020 2d31 3034 3830 6133 2d36 3230 3361 -10480a3-6203a │ │ │ │ +000437e0: 3262 2b39 3533 3461 7c0a 7c20 2020 2020 2b+9534a|.| │ │ │ │ +000437f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043820: 2020 2020 2020 2020 2020 2020 2031 3038 108 │ │ │ │ -00043830: 3636 6132 622d 3730 3631 6132 632b 3236 66a2b-7061a2c+26 │ │ │ │ -00043840: 3237 617c 0a7c 3861 6432 2d31 3533 3137 27a|.|8ad2-15317 │ │ │ │ -00043850: 6264 322b 3639 3232 6364 322b 3530 3830 bd2+6922cd2+5080 │ │ │ │ -00043860: 6433 202d 3135 3334 3461 332b 3236 3533 d3 -15344a3+2653 │ │ │ │ -00043870: 6132 622b 3130 3235 3961 6232 2b31 3233 a2b+10259ab2+123 │ │ │ │ -00043880: 3635 6132 632d 3732 3136 6162 632b 3632 65a2c-7216abc+62 │ │ │ │ -00043890: 3330 617c 0a7c 2020 2020 2020 2020 2020 30a|.| │ │ │ │ +00043820: 2020 3130 3836 3661 3262 2d37 3036 3161 10866a2b-7061a │ │ │ │ +00043830: 3263 2b32 3632 3761 7c0a 7c38 6164 322d 2c+2627a|.|8ad2- │ │ │ │ +00043840: 3135 3331 3762 6432 2b36 3932 3263 6432 15317bd2+6922cd2 │ │ │ │ +00043850: 2b35 3038 3064 3320 2d31 3533 3434 6133 +5080d3 -15344a3 │ │ │ │ +00043860: 2b32 3635 3361 3262 2b31 3032 3539 6162 +2653a2b+10259ab │ │ │ │ +00043870: 322b 3132 3336 3561 3263 2d37 3231 3661 2+12365a2c-7216a │ │ │ │ +00043880: 6263 2b36 3233 3061 7c0a 7c20 2020 2020 bc+6230a|.| │ │ │ │ +00043890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000438a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000438b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000438c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000438d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000438e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000438d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000438e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000438f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043930: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043920: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00043930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043980: 2020 207c 0a7c 2b39 3033 3361 3263 322d |.|+9033a2c2- │ │ │ │ -00043990: 3134 3936 3661 6263 322d 3639 3239 6232 14966abc2-6929b2 │ │ │ │ -000439a0: 6332 2b31 3139 3933 6133 642b 3133 3539 c2+11993a3d+1359 │ │ │ │ -000439b0: 3361 3262 642b 3831 3033 6162 3264 2d31 3a2bd+8103ab2d-1 │ │ │ │ -000439c0: 3430 3534 6233 642d 3432 3430 6132 6364 4054b3d-4240a2cd │ │ │ │ -000439d0: 2d39 317c 0a7c 3134 3931 3961 3263 322d -91|.|14919a2c2- │ │ │ │ -000439e0: 3131 3334 3661 6263 322b 3134 3137 3262 11346abc2+14172b │ │ │ │ -000439f0: 3263 322b 3139 3130 6163 332b 3131 3635 2c2+1910ac3+1165 │ │ │ │ -00043a00: 3662 6333 2d38 3532 3763 342d 3839 3739 6bc3-8527c4-8979 │ │ │ │ -00043a10: 6133 642d 3831 3034 6132 6264 2b38 3733 a3d-8104a2bd+873 │ │ │ │ -00043a20: 3461 627c 0a7c 6364 2b32 3736 3061 6263 4ab|.|cd+2760abc │ │ │ │ -00043a30: 642b 3431 3139 6163 3264 2b35 3537 3462 d+4119ac2d+5574b │ │ │ │ -00043a40: 6332 642b 3838 3331 6132 6432 2d31 3433 c2d+8831a2d2-143 │ │ │ │ -00043a50: 3733 6162 6432 2b31 3336 3736 6163 6432 73abd2+13676acd2 │ │ │ │ -00043a60: 2b31 3136 3731 6263 6432 2020 2020 2020 +11671bcd2 │ │ │ │ -00043a70: 2020 207c 0a7c 2d38 3532 3761 3263 322d |.|-8527a2c2- │ │ │ │ -00043a80: 3739 3938 6162 6332 2d31 3336 3233 6232 7998abc2-13623b2 │ │ │ │ -00043a90: 6332 2d35 3934 3261 3364 2d31 3131 3530 c2-5942a3d-11150 │ │ │ │ -00043aa0: 6132 6264 2d31 3237 3931 6162 3264 2d31 a2bd-12791ab2d-1 │ │ │ │ -00043ab0: 3234 3031 6233 642b 3636 3338 6132 6364 2401b3d+6638a2cd │ │ │ │ -00043ac0: 2b31 337c 0a7c 642b 3131 3938 3261 3262 +13|.|d+11982a2b │ │ │ │ -00043ad0: 642b 3934 3732 6132 6364 2b31 3030 3535 d+9472a2cd+10055 │ │ │ │ -00043ae0: 6162 6364 2b35 3839 3061 6332 642d 3933 abcd+5890ac2d-93 │ │ │ │ -00043af0: 3037 6132 6432 2b31 3137 3337 6162 6432 07a2d2+11737abd2 │ │ │ │ -00043b00: 2b31 3333 3761 6364 322d 3131 3739 3361 +1337acd2-11793a │ │ │ │ -00043b10: 6433 207c 0a7c 2020 2020 2020 2020 2020 d3 |.| │ │ │ │ +00043970: 2020 2020 2020 2020 7c0a 7c2b 3930 3333 |.|+9033 │ │ │ │ +00043980: 6132 6332 2d31 3439 3636 6162 6332 2d36 a2c2-14966abc2-6 │ │ │ │ +00043990: 3932 3962 3263 322b 3131 3939 3361 3364 929b2c2+11993a3d │ │ │ │ +000439a0: 2b31 3335 3933 6132 6264 2b38 3130 3361 +13593a2bd+8103a │ │ │ │ +000439b0: 6232 642d 3134 3035 3462 3364 2d34 3234 b2d-14054b3d-424 │ │ │ │ +000439c0: 3061 3263 642d 3931 7c0a 7c31 3439 3139 0a2cd-91|.|14919 │ │ │ │ +000439d0: 6132 6332 2d31 3133 3436 6162 6332 2b31 a2c2-11346abc2+1 │ │ │ │ +000439e0: 3431 3732 6232 6332 2b31 3931 3061 6333 4172b2c2+1910ac3 │ │ │ │ +000439f0: 2b31 3136 3536 6263 332d 3835 3237 6334 +11656bc3-8527c4 │ │ │ │ +00043a00: 2d38 3937 3961 3364 2d38 3130 3461 3262 -8979a3d-8104a2b │ │ │ │ +00043a10: 642b 3837 3334 6162 7c0a 7c63 642b 3237 d+8734ab|.|cd+27 │ │ │ │ +00043a20: 3630 6162 6364 2b34 3131 3961 6332 642b 60abcd+4119ac2d+ │ │ │ │ +00043a30: 3535 3734 6263 3264 2b38 3833 3161 3264 5574bc2d+8831a2d │ │ │ │ +00043a40: 322d 3134 3337 3361 6264 322b 3133 3637 2-14373abd2+1367 │ │ │ │ +00043a50: 3661 6364 322b 3131 3637 3162 6364 3220 6acd2+11671bcd2 │ │ │ │ +00043a60: 2020 2020 2020 2020 7c0a 7c2d 3835 3237 |.|-8527 │ │ │ │ +00043a70: 6132 6332 2d37 3939 3861 6263 322d 3133 a2c2-7998abc2-13 │ │ │ │ +00043a80: 3632 3362 3263 322d 3539 3432 6133 642d 623b2c2-5942a3d- │ │ │ │ +00043a90: 3131 3135 3061 3262 642d 3132 3739 3161 11150a2bd-12791a │ │ │ │ +00043aa0: 6232 642d 3132 3430 3162 3364 2b36 3633 b2d-12401b3d+663 │ │ │ │ +00043ab0: 3861 3263 642b 3133 7c0a 7c64 2b31 3139 8a2cd+13|.|d+119 │ │ │ │ +00043ac0: 3832 6132 6264 2b39 3437 3261 3263 642b 82a2bd+9472a2cd+ │ │ │ │ +00043ad0: 3130 3035 3561 6263 642b 3538 3930 6163 10055abcd+5890ac │ │ │ │ +00043ae0: 3264 2d39 3330 3761 3264 322b 3131 3733 2d-9307a2d2+1173 │ │ │ │ +00043af0: 3761 6264 322b 3133 3337 6163 6432 2d31 7abd2+1337acd2-1 │ │ │ │ +00043b00: 3137 3933 6164 3320 7c0a 7c20 2020 2020 1793ad3 |.| │ │ │ │ +00043b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043b60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043b50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00043b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043bb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043ba0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00043bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043c00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043bf0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00043c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043c50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043c40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00043c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043ca0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043c90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00043ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043cf0: 2020 207c 0a7c 3135 3936 3061 3263 322d |.|15960a2c2- │ │ │ │ -00043d00: 3435 3031 6162 6332 2b31 3130 3562 3263 4501abc2+1105b2c │ │ │ │ -00043d10: 322b 3630 3536 6133 642d 3131 3835 3761 2+6056a3d-11857a │ │ │ │ -00043d20: 3262 642b 3133 3734 3861 6232 642d 3131 2bd+13748ab2d-11 │ │ │ │ -00043d30: 3735 3262 3364 2d31 3233 3435 6132 6364 752b3d-12345a2cd │ │ │ │ -00043d40: 2d31 347c 0a7c 3238 6132 6332 2b39 3331 -14|.|28a2c2+931 │ │ │ │ -00043d50: 3261 6263 322b 3136 3130 6232 6332 2d31 2abc2+1610b2c2-1 │ │ │ │ -00043d60: 3539 3336 6163 332b 3533 3835 6263 332b 5936ac3+5385bc3+ │ │ │ │ -00043d70: 3533 3735 6334 2b37 3037 3361 3364 2b31 5375c4+7073a3d+1 │ │ │ │ -00043d80: 3230 3932 6132 6264 2b38 3234 3161 6232 2092a2bd+8241ab2 │ │ │ │ -00043d90: 642d 347c 0a7c 3638 3061 6263 642b 3437 d-4|.|680abcd+47 │ │ │ │ -00043da0: 3037 6163 3264 2d37 3036 3962 6332 642d 07ac2d-7069bc2d- │ │ │ │ -00043db0: 3338 3733 6132 6432 2b35 3633 3261 6264 3873a2d2+5632abd │ │ │ │ -00043dc0: 322b 3132 3733 3461 6364 322d 3739 3630 2+12734acd2-7960 │ │ │ │ -00043dd0: 6263 6432 2020 2020 2020 2020 2020 2020 bcd2 │ │ │ │ -00043de0: 2020 207c 0a7c 2b35 3337 3561 3263 322b |.|+5375a2c2+ │ │ │ │ -00043df0: 3136 3737 6162 6332 2b31 3534 3562 3263 1677abc2+1545b2c │ │ │ │ -00043e00: 322b 3130 3330 3561 3364 2d36 3932 3161 2+10305a3d-6921a │ │ │ │ -00043e10: 3262 642d 3331 3335 6162 3264 2d39 3130 2bd-3135ab2d-910 │ │ │ │ -00043e20: 3562 3364 2d31 3036 3739 6132 6364 2d31 5b3d-10679a2cd-1 │ │ │ │ -00043e30: 3430 367c 0a7c 642d 3430 3235 6132 6264 406|.|d-4025a2bd │ │ │ │ -00043e40: 2b31 3039 3933 6132 6364 2b36 3235 3861 +10993a2cd+6258a │ │ │ │ -00043e50: 6263 642d 3134 3539 3761 6332 642b 3133 bcd-14597ac2d+13 │ │ │ │ -00043e60: 3831 3261 3264 322b 3738 3633 6162 6432 812a2d2+7863abd2 │ │ │ │ -00043e70: 2b31 3037 3537 6163 6432 2d31 3637 6164 +10757acd2-167ad │ │ │ │ -00043e80: 3320 2d7c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 3 -|.|---------- │ │ │ │ +00043ce0: 2020 2020 2020 2020 7c0a 7c31 3539 3630 |.|15960 │ │ │ │ +00043cf0: 6132 6332 2d34 3530 3161 6263 322b 3131 a2c2-4501abc2+11 │ │ │ │ +00043d00: 3035 6232 6332 2b36 3035 3661 3364 2d31 05b2c2+6056a3d-1 │ │ │ │ +00043d10: 3138 3537 6132 6264 2b31 3337 3438 6162 1857a2bd+13748ab │ │ │ │ +00043d20: 3264 2d31 3137 3532 6233 642d 3132 3334 2d-11752b3d-1234 │ │ │ │ +00043d30: 3561 3263 642d 3134 7c0a 7c32 3861 3263 5a2cd-14|.|28a2c │ │ │ │ +00043d40: 322b 3933 3132 6162 6332 2b31 3631 3062 2+9312abc2+1610b │ │ │ │ +00043d50: 3263 322d 3135 3933 3661 6333 2b35 3338 2c2-15936ac3+538 │ │ │ │ +00043d60: 3562 6333 2b35 3337 3563 342b 3730 3733 5bc3+5375c4+7073 │ │ │ │ +00043d70: 6133 642b 3132 3039 3261 3262 642b 3832 a3d+12092a2bd+82 │ │ │ │ +00043d80: 3431 6162 3264 2d34 7c0a 7c36 3830 6162 41ab2d-4|.|680ab │ │ │ │ +00043d90: 6364 2b34 3730 3761 6332 642d 3730 3639 cd+4707ac2d-7069 │ │ │ │ +00043da0: 6263 3264 2d33 3837 3361 3264 322b 3536 bc2d-3873a2d2+56 │ │ │ │ +00043db0: 3332 6162 6432 2b31 3237 3334 6163 6432 32abd2+12734acd2 │ │ │ │ +00043dc0: 2d37 3936 3062 6364 3220 2020 2020 2020 -7960bcd2 │ │ │ │ +00043dd0: 2020 2020 2020 2020 7c0a 7c2b 3533 3735 |.|+5375 │ │ │ │ +00043de0: 6132 6332 2b31 3637 3761 6263 322b 3135 a2c2+1677abc2+15 │ │ │ │ +00043df0: 3435 6232 6332 2b31 3033 3035 6133 642d 45b2c2+10305a3d- │ │ │ │ +00043e00: 3639 3231 6132 6264 2d33 3133 3561 6232 6921a2bd-3135ab2 │ │ │ │ +00043e10: 642d 3931 3035 6233 642d 3130 3637 3961 d-9105b3d-10679a │ │ │ │ +00043e20: 3263 642d 3134 3036 7c0a 7c64 2d34 3032 2cd-1406|.|d-402 │ │ │ │ +00043e30: 3561 3262 642b 3130 3939 3361 3263 642b 5a2bd+10993a2cd+ │ │ │ │ +00043e40: 3632 3538 6162 6364 2d31 3435 3937 6163 6258abcd-14597ac │ │ │ │ +00043e50: 3264 2b31 3338 3132 6132 6432 2b37 3836 2d+13812a2d2+786 │ │ │ │ +00043e60: 3361 6264 322b 3130 3735 3761 6364 322d 3abd2+10757acd2- │ │ │ │ +00043e70: 3136 3761 6433 202d 7c0a 7c2d 2d2d 2d2d 167ad3 -|.|----- │ │ │ │ +00043e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00043ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00043ed0: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ +00043ec0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +00043ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043f20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043f10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00043f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043f70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043f60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00043f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043fc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00043fb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00043fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044010: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00044000: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044060: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00044050: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000440a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000440b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000440a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000440b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000440c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000440d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000440e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000440f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044100: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000440f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044150: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00044140: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000441a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00044190: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000441a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000441b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000441c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000441d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000441e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000441f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000441e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000441f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044240: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00044230: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044290: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00044280: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000442a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000442b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000442c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000442d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000442e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000442d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000442e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000442f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044330: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00044320: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044380: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00044370: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000443a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000443b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000443c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000443d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000443c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000443d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000443e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000443f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044420: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00044410: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044470: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00044460: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000444a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000444b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000444c0: 2020 207c 0a7c 2020 2020 2020 207c 2020 |.| | │ │ │ │ +000444b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000444c0: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000444d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000444e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000444f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044510: 2020 207c 0a7c 2020 2020 2020 207c 2020 |.| | │ │ │ │ +00044500: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044510: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00044520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044560: 2020 207c 0a7c 2020 2020 2020 207c 2020 |.| | │ │ │ │ +00044550: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044560: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00044570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000445a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000445b0: 2020 207c 0a7c 3934 3236 6433 207c 2020 |.|9426d3 | │ │ │ │ +000445a0: 2020 2020 2020 2020 7c0a 7c39 3432 3664 |.|9426d │ │ │ │ +000445b0: 3320 7c20 2020 2020 2020 2020 2020 2020 3 | │ │ │ │ 000445c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000445d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000445e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000445f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044600: 2020 207c 0a7c 3937 3162 332d 3530 3036 |.|971b3-5006 │ │ │ │ -00044610: 6132 632d 3535 3939 6162 632d 3134 3136 a2c-5599abc-1416 │ │ │ │ -00044620: 3562 3263 2b38 3838 3061 3264 2b34 3235 5b2c+8880a2d+425 │ │ │ │ -00044630: 3961 6264 2d33 3030 3262 3264 2d31 3338 9abd-3002b2d-138 │ │ │ │ -00044640: 3932 6163 642d 3130 3532 3162 6364 2020 92acd-10521bcd │ │ │ │ -00044650: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000445f0: 2020 2020 2020 2020 7c0a 7c39 3731 6233 |.|971b3 │ │ │ │ +00044600: 2d35 3030 3661 3263 2d35 3539 3961 6263 -5006a2c-5599abc │ │ │ │ +00044610: 2d31 3431 3635 6232 632b 3838 3830 6132 -14165b2c+8880a2 │ │ │ │ +00044620: 642b 3432 3539 6162 642d 3330 3032 6232 d+4259abd-3002b2 │ │ │ │ +00044630: 642d 3133 3839 3261 6364 2d31 3035 3231 d-13892acd-10521 │ │ │ │ +00044640: 6263 6420 2020 2020 7c0a 7c20 2020 2020 bcd |.| │ │ │ │ +00044650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000446a0: 2020 207c 0a7c 2d39 3739 3762 332b 3730 |.|-9797b3+70 │ │ │ │ -000446b0: 3231 6132 632d 3633 3737 6162 632d 3538 21a2c-6377abc-58 │ │ │ │ -000446c0: 3734 6232 632b 3736 3030 6163 322b 3131 74b2c+7600ac2+11 │ │ │ │ -000446d0: 3732 3662 6332 2d31 3134 3063 332d 3132 726bc2-1140c3-12 │ │ │ │ -000446e0: 3036 6132 642b 3131 3433 3561 6264 2d39 06a2d+11435abd-9 │ │ │ │ -000446f0: 3037 347c 0a7c 2020 2020 2020 2020 2020 074|.| │ │ │ │ +00044690: 2020 2020 2020 2020 7c0a 7c2d 3937 3937 |.|-9797 │ │ │ │ +000446a0: 6233 2b37 3032 3161 3263 2d36 3337 3761 b3+7021a2c-6377a │ │ │ │ +000446b0: 6263 2d35 3837 3462 3263 2b37 3630 3061 bc-5874b2c+7600a │ │ │ │ +000446c0: 6332 2b31 3137 3236 6263 322d 3131 3430 c2+11726bc2-1140 │ │ │ │ +000446d0: 6333 2d31 3230 3661 3264 2b31 3134 3335 c3-1206a2d+11435 │ │ │ │ +000446e0: 6162 642d 3930 3734 7c0a 7c20 2020 2020 abd-9074|.| │ │ │ │ +000446f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044740: 2020 207c 0a7c 3833 6233 2b36 3435 3361 |.|83b3+6453a │ │ │ │ -00044750: 3263 2b31 3139 3261 6263 2b31 3532 3530 2c+1192abc+15250 │ │ │ │ -00044760: 6232 632b 3131 3034 3561 3264 2b31 3533 b2c+11045a2d+153 │ │ │ │ -00044770: 3333 6162 642d 3130 3536 3762 3264 2b33 33abd-10567b2d+3 │ │ │ │ -00044780: 3536 3061 6364 2d32 3239 3262 6364 2b37 560acd-2292bcd+7 │ │ │ │ -00044790: 3139 347c 0a7c 3338 3862 3264 2020 2020 194|.|388b2d │ │ │ │ +00044730: 2020 2020 2020 2020 7c0a 7c38 3362 332b |.|83b3+ │ │ │ │ +00044740: 3634 3533 6132 632b 3131 3932 6162 632b 6453a2c+1192abc+ │ │ │ │ +00044750: 3135 3235 3062 3263 2b31 3130 3435 6132 15250b2c+11045a2 │ │ │ │ +00044760: 642b 3135 3333 3361 6264 2d31 3035 3637 d+15333abd-10567 │ │ │ │ +00044770: 6232 642b 3335 3630 6163 642d 3232 3932 b2d+3560acd-2292 │ │ │ │ +00044780: 6263 642b 3731 3934 7c0a 7c33 3838 6232 bcd+7194|.|388b2 │ │ │ │ +00044790: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ 000447a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000447b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000447c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000447d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000447e0: 2020 207c 0a7c 3636 3237 6232 632b 3730 |.|6627b2c+70 │ │ │ │ -000447f0: 3238 6163 322d 3937 3937 6263 322d 3538 28ac2-9797bc2-58 │ │ │ │ -00044800: 3734 6333 2d38 3838 3661 6264 2d34 3730 74c3-8886abd-470 │ │ │ │ -00044810: 3062 3264 2b31 3561 6364 2d35 3936 3962 0b2d+15acd-5969b │ │ │ │ -00044820: 6364 2d39 3037 3463 3264 2b35 3438 3362 cd-9074c2d+5483b │ │ │ │ -00044830: 6432 2b7c 0a7c 2020 2020 2020 2020 2020 d2+|.| │ │ │ │ +000447d0: 2020 2020 2020 2020 7c0a 7c36 3632 3762 |.|6627b │ │ │ │ +000447e0: 3263 2b37 3032 3861 6332 2d39 3739 3762 2c+7028ac2-9797b │ │ │ │ +000447f0: 6332 2d35 3837 3463 332d 3838 3836 6162 c2-5874c3-8886ab │ │ │ │ +00044800: 642d 3437 3030 6232 642b 3135 6163 642d d-4700b2d+15acd- │ │ │ │ +00044810: 3539 3639 6263 642d 3930 3734 6332 642b 5969bcd-9074c2d+ │ │ │ │ +00044820: 3534 3833 6264 322b 7c0a 7c20 2020 2020 5483bd2+|.| │ │ │ │ +00044830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044880: 2020 207c 0a7c 3533 6132 632d 3131 3932 |.|53a2c-1192 │ │ │ │ -00044890: 6162 632d 3131 3034 3561 3264 2d31 3533 abc-11045a2d-153 │ │ │ │ -000448a0: 3333 6162 642d 3335 3630 6163 642b 3232 33abd-3560acd+22 │ │ │ │ -000448b0: 3932 6263 642d 3731 3934 6164 322b 3632 92bcd-7194ad2+62 │ │ │ │ -000448c0: 3435 6264 322d 3836 3339 6364 322b 3934 45bd2-8639cd2+94 │ │ │ │ -000448d0: 3236 647c 0a7c 6420 2020 2020 2020 2020 26d|.|d │ │ │ │ +00044870: 2020 2020 2020 2020 7c0a 7c35 3361 3263 |.|53a2c │ │ │ │ +00044880: 2d31 3139 3261 6263 2d31 3130 3435 6132 -1192abc-11045a2 │ │ │ │ +00044890: 642d 3135 3333 3361 6264 2d33 3536 3061 d-15333abd-3560a │ │ │ │ +000448a0: 6364 2b32 3239 3262 6364 2d37 3139 3461 cd+2292bcd-7194a │ │ │ │ +000448b0: 6432 2b36 3234 3562 6432 2d38 3633 3963 d2+6245bd2-8639c │ │ │ │ +000448c0: 6432 2b39 3432 3664 7c0a 7c64 2020 2020 d2+9426d|.|d │ │ │ │ +000448d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000448e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000448f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044920: 2020 207c 0a7c 3732 3662 6332 2b31 3134 |.|726bc2+114 │ │ │ │ -00044930: 3063 332b 3132 3036 6132 642d 3131 3433 0c3+1206a2d-1143 │ │ │ │ -00044940: 3561 6264 2d36 3034 3061 6364 2b38 3032 5abd-6040acd+802 │ │ │ │ -00044950: 3262 6364 2b33 3936 3863 3264 2d33 3136 2bcd+3968c2d-316 │ │ │ │ -00044960: 3461 6432 2b32 3935 6264 322d 3736 3530 4ad2+295bd2-7650 │ │ │ │ -00044970: 6364 327c 0a7c 2020 2020 2020 2020 2020 cd2|.| │ │ │ │ +00044910: 2020 2020 2020 2020 7c0a 7c37 3236 6263 |.|726bc │ │ │ │ +00044920: 322b 3131 3430 6333 2b31 3230 3661 3264 2+1140c3+1206a2d │ │ │ │ +00044930: 2d31 3134 3335 6162 642d 3630 3430 6163 -11435abd-6040ac │ │ │ │ +00044940: 642b 3830 3232 6263 642b 3339 3638 6332 d+8022bcd+3968c2 │ │ │ │ +00044950: 642d 3331 3634 6164 322b 3239 3562 6432 d-3164ad2+295bd2 │ │ │ │ +00044960: 2d37 3635 3063 6432 7c0a 7c20 2020 2020 -7650cd2|.| │ │ │ │ +00044970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000449a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000449b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000449c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000449b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000449c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000449d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000449e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000449f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044a10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00044a00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044a60: 2020 207c 0a7c 3532 6162 6364 2d31 3833 |.|52abcd-183 │ │ │ │ -00044a70: 3162 3263 642b 3630 3432 6163 3264 2d32 1b2cd+6042ac2d-2 │ │ │ │ -00044a80: 3536 3162 6332 642d 3837 3039 6132 6432 561bc2d-8709a2d2 │ │ │ │ -00044a90: 2d31 3332 3139 6162 6432 2b34 3230 3962 -13219abd2+4209b │ │ │ │ -00044aa0: 3264 322b 3132 3232 3561 6364 322d 3236 2d2+12225acd2-26 │ │ │ │ -00044ab0: 3035 627c 0a7c 3135 3838 6132 6364 2b32 05b|.|1588a2cd+2 │ │ │ │ -00044ac0: 3030 3061 6263 642d 3230 3830 6232 6364 000abcd-2080b2cd │ │ │ │ -00044ad0: 2b39 3137 3561 6332 642d 3634 3962 6332 +9175ac2d-649bc2 │ │ │ │ -00044ae0: 642b 3838 3239 6333 642b 3231 3634 6132 d+8829c3d+2164a2 │ │ │ │ -00044af0: 6432 2b38 3633 3561 6264 322d 3731 3631 d2+8635abd2-7161 │ │ │ │ -00044b00: 6232 647c 0a7c 2020 2020 2020 2020 2020 b2d|.| │ │ │ │ +00044a50: 2020 2020 2020 2020 7c0a 7c35 3261 6263 |.|52abc │ │ │ │ +00044a60: 642d 3138 3331 6232 6364 2b36 3034 3261 d-1831b2cd+6042a │ │ │ │ +00044a70: 6332 642d 3235 3631 6263 3264 2d38 3730 c2d-2561bc2d-870 │ │ │ │ +00044a80: 3961 3264 322d 3133 3231 3961 6264 322b 9a2d2-13219abd2+ │ │ │ │ +00044a90: 3432 3039 6232 6432 2b31 3232 3235 6163 4209b2d2+12225ac │ │ │ │ +00044aa0: 6432 2d32 3630 3562 7c0a 7c31 3538 3861 d2-2605b|.|1588a │ │ │ │ +00044ab0: 3263 642b 3230 3030 6162 6364 2d32 3038 2cd+2000abcd-208 │ │ │ │ +00044ac0: 3062 3263 642b 3931 3735 6163 3264 2d36 0b2cd+9175ac2d-6 │ │ │ │ +00044ad0: 3439 6263 3264 2b38 3832 3963 3364 2b32 49bc2d+8829c3d+2 │ │ │ │ +00044ae0: 3136 3461 3264 322b 3836 3335 6162 6432 164a2d2+8635abd2 │ │ │ │ +00044af0: 2d37 3136 3162 3264 7c0a 7c20 2020 2020 -7161b2d|.| │ │ │ │ +00044b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044b50: 2020 207c 0a7c 3732 3362 3263 642d 3133 |.|723b2cd-13 │ │ │ │ -00044b60: 3236 3261 6332 642b 3534 3331 6263 3264 262ac2d+5431bc2d │ │ │ │ -00044b70: 2b31 3132 3734 6132 6432 2d32 3137 6162 +11274a2d2-217ab │ │ │ │ -00044b80: 6432 2b31 3236 3162 3264 322b 3832 3031 d2+1261b2d2+8201 │ │ │ │ -00044b90: 6163 6432 2d31 3430 3830 6263 6432 2020 acd2-14080bcd2 │ │ │ │ -00044ba0: 2020 207c 0a7c 3361 6433 202d 3232 3735 |.|3ad3 -2275 │ │ │ │ -00044bb0: 6132 6232 2b32 3339 6162 332b 3938 3034 a2b2+239ab3+9804 │ │ │ │ -00044bc0: 6234 2b38 3431 3661 6232 632d 3932 6232 b4+8416ab2c-92b2 │ │ │ │ -00044bd0: 6332 2b31 3539 3638 6162 3264 2b31 3438 c2+15968ab2d+148 │ │ │ │ -00044be0: 3630 6233 642d 3838 3239 6232 6364 2d31 60b3d-8829b2cd-1 │ │ │ │ -00044bf0: 3132 377c 0a7c 2020 2020 2020 2020 2020 127|.| │ │ │ │ +00044b40: 2020 2020 2020 2020 7c0a 7c37 3233 6232 |.|723b2 │ │ │ │ +00044b50: 6364 2d31 3332 3632 6163 3264 2b35 3433 cd-13262ac2d+543 │ │ │ │ +00044b60: 3162 6332 642b 3131 3237 3461 3264 322d 1bc2d+11274a2d2- │ │ │ │ +00044b70: 3231 3761 6264 322b 3132 3631 6232 6432 217abd2+1261b2d2 │ │ │ │ +00044b80: 2b38 3230 3161 6364 322d 3134 3038 3062 +8201acd2-14080b │ │ │ │ +00044b90: 6364 3220 2020 2020 7c0a 7c33 6164 3320 cd2 |.|3ad3 │ │ │ │ +00044ba0: 2d32 3237 3561 3262 322b 3233 3961 6233 -2275a2b2+239ab3 │ │ │ │ +00044bb0: 2b39 3830 3462 342b 3834 3136 6162 3263 +9804b4+8416ab2c │ │ │ │ +00044bc0: 2d39 3262 3263 322b 3135 3936 3861 6232 -92b2c2+15968ab2 │ │ │ │ +00044bd0: 642b 3134 3836 3062 3364 2d38 3832 3962 d+14860b3d-8829b │ │ │ │ +00044be0: 3263 642d 3131 3237 7c0a 7c20 2020 2020 2cd-1127|.| │ │ │ │ +00044bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044c40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00044c30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044c90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00044c80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044ce0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00044cd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044d30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00044d20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044d80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00044d70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044dd0: 2020 207c 0a7c 2020 2020 2020 2020 207c |.| | │ │ │ │ +00044dc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044dd0: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ 00044de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044e20: 2020 207c 0a7c 2020 2020 2020 2020 207c |.| | │ │ │ │ +00044e10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044e20: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ 00044e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044e70: 2020 207c 0a7c 2020 2020 2020 2020 207c |.| | │ │ │ │ +00044e60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00044e70: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ 00044e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044ec0: 2020 207c 0a7c 322d 3530 3830 6433 207c |.|2-5080d3 | │ │ │ │ +00044eb0: 2020 2020 2020 2020 7c0a 7c32 2d35 3038 |.|2-508 │ │ │ │ +00044ec0: 3064 3320 7c20 2020 2020 2020 2020 2020 0d3 | │ │ │ │ 00044ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044f10: 2020 207c 0a7c 3130 3335 3962 332d 3535 |.|10359b3-55 │ │ │ │ -00044f20: 3730 6132 632d 3533 3037 6162 632d 3734 70a2c-5307abc-74 │ │ │ │ -00044f30: 3634 6232 632b 3331 3837 6132 642b 3835 64b2c+3187a2d+85 │ │ │ │ -00044f40: 3730 6162 642d 3832 3531 6232 642b 3834 70abd-8251b2d+84 │ │ │ │ -00044f50: 3434 6163 642b 3530 3731 6263 6420 2020 44acd+5071bcd │ │ │ │ -00044f60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00044f00: 2020 2020 2020 2020 7c0a 7c31 3033 3539 |.|10359 │ │ │ │ +00044f10: 6233 2d35 3537 3061 3263 2d35 3330 3761 b3-5570a2c-5307a │ │ │ │ +00044f20: 6263 2d37 3436 3462 3263 2b33 3138 3761 bc-7464b2c+3187a │ │ │ │ +00044f30: 3264 2b38 3537 3061 6264 2d38 3235 3162 2d+8570abd-8251b │ │ │ │ +00044f40: 3264 2b38 3434 3461 6364 2b35 3037 3162 2d+8444acd+5071b │ │ │ │ +00044f50: 6364 2020 2020 2020 7c0a 7c20 2020 2020 cd |.| │ │ │ │ +00044f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044fb0: 2020 207c 0a7c 6232 2b31 3330 3962 332d |.|b2+1309b3- │ │ │ │ -00044fc0: 3132 3336 3561 3263 2b37 3231 3661 6263 12365a2c+7216abc │ │ │ │ -00044fd0: 2d35 3339 3862 3263 2d36 3233 3061 6332 -5398b2c-6230ac2 │ │ │ │ -00044fe0: 2b35 3332 3662 6332 2d31 3033 3163 332b +5326bc2-1031c3+ │ │ │ │ -00044ff0: 3133 3530 3861 3264 2b31 3031 3235 6162 13508a2d+10125ab │ │ │ │ -00045000: 642d 357c 0a7c 2020 2020 2020 2020 2020 d-5|.| │ │ │ │ +00044fa0: 2020 2020 2020 2020 7c0a 7c62 322b 3133 |.|b2+13 │ │ │ │ +00044fb0: 3039 6233 2d31 3233 3635 6132 632b 3732 09b3-12365a2c+72 │ │ │ │ +00044fc0: 3136 6162 632d 3533 3938 6232 632d 3632 16abc-5398b2c-62 │ │ │ │ +00044fd0: 3330 6163 322b 3533 3236 6263 322d 3130 30ac2+5326bc2-10 │ │ │ │ +00044fe0: 3331 6333 2b31 3335 3038 6132 642b 3130 31c3+13508a2d+10 │ │ │ │ +00044ff0: 3132 3561 6264 2d35 7c0a 7c20 2020 2020 125abd-5|.| │ │ │ │ +00045000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045050: 2020 207c 0a7c 322d 3130 3836 3662 332b |.|2-10866b3+ │ │ │ │ -00045060: 3934 3830 6132 632d 3732 3536 6162 632b 9480a2c-7256abc+ │ │ │ │ -00045070: 3730 3631 6232 632b 3131 3935 3061 3264 7061b2c+11950a2d │ │ │ │ -00045080: 2b35 3332 3161 6264 2d32 3632 3762 3264 +5321abd-2627b2d │ │ │ │ -00045090: 2b33 3939 3661 6364 2b37 3135 3262 6364 +3996acd+7152bcd │ │ │ │ -000450a0: 2d39 337c 0a7c 632b 3131 3734 3062 3264 -93|.|c+11740b2d │ │ │ │ +00045040: 2020 2020 2020 2020 7c0a 7c32 2d31 3038 |.|2-108 │ │ │ │ +00045050: 3636 6233 2b39 3438 3061 3263 2d37 3235 66b3+9480a2c-725 │ │ │ │ +00045060: 3661 6263 2b37 3036 3162 3263 2b31 3139 6abc+7061b2c+119 │ │ │ │ +00045070: 3530 6132 642b 3533 3231 6162 642d 3236 50a2d+5321abd-26 │ │ │ │ +00045080: 3237 6232 642b 3339 3936 6163 642b 3731 27b2d+3996acd+71 │ │ │ │ +00045090: 3532 6263 642d 3933 7c0a 7c63 2b31 3137 52bcd-93|.|c+117 │ │ │ │ +000450a0: 3430 6232 6420 2020 2020 2020 2020 2020 40b2d │ │ │ │ 000450b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000450c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000450d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000450e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000450f0: 2020 207c 0a7c 6263 2d31 3339 3930 6232 |.|bc-13990b2 │ │ │ │ -00045100: 632d 3130 3235 3961 6332 2b31 3330 3962 c-10259ac2+1309b │ │ │ │ -00045110: 6332 2d35 3339 3863 332d 3530 3236 6162 c2-5398c3-5026ab │ │ │ │ -00045120: 642b 3131 3532 3162 3264 2b37 3530 3161 d+11521b2d+7501a │ │ │ │ -00045130: 6364 2b31 3737 3962 6364 2d35 3534 3963 cd+1779bcd-5549c │ │ │ │ -00045140: 3264 2d7c 0a7c 2020 2020 2020 2020 2020 2d-|.| │ │ │ │ +000450e0: 2020 2020 2020 2020 7c0a 7c62 632d 3133 |.|bc-13 │ │ │ │ +000450f0: 3939 3062 3263 2d31 3032 3539 6163 322b 990b2c-10259ac2+ │ │ │ │ +00045100: 3133 3039 6263 322d 3533 3938 6333 2d35 1309bc2-5398c3-5 │ │ │ │ +00045110: 3032 3661 6264 2b31 3135 3231 6232 642b 026abd+11521b2d+ │ │ │ │ +00045120: 3735 3031 6163 642b 3137 3739 6263 642d 7501acd+1779bcd- │ │ │ │ +00045130: 3535 3439 6332 642d 7c0a 7c20 2020 2020 5549c2d-|.| │ │ │ │ +00045140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045190: 2020 207c 0a7c 6232 2d39 3438 3061 3263 |.|b2-9480a2c │ │ │ │ -000451a0: 2b37 3235 3661 6263 2d31 3139 3530 6132 +7256abc-11950a2 │ │ │ │ -000451b0: 642d 3533 3231 6162 642d 3339 3936 6163 d-5321abd-3996ac │ │ │ │ -000451c0: 642d 3731 3532 6263 642b 3933 3938 6164 d-7152bcd+9398ad │ │ │ │ -000451d0: 322b 3135 3331 3762 6432 2d36 3932 3263 2+15317bd2-6922c │ │ │ │ -000451e0: 6432 2d7c 0a7c 3264 2020 2020 2020 2020 d2-|.|2d │ │ │ │ +00045180: 2020 2020 2020 2020 7c0a 7c62 322d 3934 |.|b2-94 │ │ │ │ +00045190: 3830 6132 632b 3732 3536 6162 632d 3131 80a2c+7256abc-11 │ │ │ │ +000451a0: 3935 3061 3264 2d35 3332 3161 6264 2d33 950a2d-5321abd-3 │ │ │ │ +000451b0: 3939 3661 6364 2d37 3135 3262 6364 2b39 996acd-7152bcd+9 │ │ │ │ +000451c0: 3339 3861 6432 2b31 3533 3137 6264 322d 398ad2+15317bd2- │ │ │ │ +000451d0: 3639 3232 6364 322d 7c0a 7c32 6420 2020 6922cd2-|.|2d │ │ │ │ +000451e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000451f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045230: 2020 207c 0a7c 6332 2d35 3332 3662 6332 |.|c2-5326bc2 │ │ │ │ -00045240: 2b31 3033 3163 332d 3133 3530 3861 3264 +1031c3-13508a2d │ │ │ │ -00045250: 2d31 3031 3235 6162 642b 3930 3333 6163 -10125abd+9033ac │ │ │ │ -00045260: 642b 3239 3938 6263 642d 3230 3336 6332 d+2998bcd-2036c2 │ │ │ │ -00045270: 642b 3531 3037 6164 322b 3536 3739 6264 d+5107ad2+5679bd │ │ │ │ -00045280: 322d 367c 0a7c 2020 2020 2020 2020 2020 2-6|.| │ │ │ │ +00045220: 2020 2020 2020 2020 7c0a 7c63 322d 3533 |.|c2-53 │ │ │ │ +00045230: 3236 6263 322b 3130 3331 6333 2d31 3335 26bc2+1031c3-135 │ │ │ │ +00045240: 3038 6132 642d 3130 3132 3561 6264 2b39 08a2d-10125abd+9 │ │ │ │ +00045250: 3033 3361 6364 2b32 3939 3862 6364 2d32 033acd+2998bcd-2 │ │ │ │ +00045260: 3033 3663 3264 2b35 3130 3761 6432 2b35 036c2d+5107ad2+5 │ │ │ │ +00045270: 3637 3962 6432 2d36 7c0a 7c20 2020 2020 679bd2-6|.| │ │ │ │ +00045280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000452a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000452b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000452c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000452d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000452c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000452d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000452e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000452f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045320: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045310: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045370: 2020 207c 0a7c 3837 6162 6364 2d31 3436 |.|87abcd-146 │ │ │ │ -00045380: 3835 6232 6364 2d31 3035 3831 6163 3264 85b2cd-10581ac2d │ │ │ │ -00045390: 2b35 3232 3862 6332 642d 3135 3836 3661 +5228bc2d-15866a │ │ │ │ -000453a0: 3264 322d 3137 3933 6162 6432 2d31 3232 2d2-1793abd2-122 │ │ │ │ -000453b0: 3435 6232 6432 2b31 3232 3833 6163 6432 45b2d2+12283acd2 │ │ │ │ -000453c0: 2b36 377c 0a7c 3264 2b35 3231 3862 3364 +67|.|2d+5218b3d │ │ │ │ -000453d0: 2d31 3238 3032 6132 6364 2d31 3236 3138 -12802a2cd-12618 │ │ │ │ -000453e0: 6162 6364 2d35 3732 3862 3263 642b 3533 abcd-5728b2cd+53 │ │ │ │ -000453f0: 3437 6163 3264 2b31 3333 3934 6263 3264 47ac2d+13394bc2d │ │ │ │ -00045400: 2b32 3936 6333 642b 3734 3436 6132 6432 +296c3d+7446a2d2 │ │ │ │ -00045410: 2b31 307c 0a7c 2020 2020 2020 2020 2020 +10|.| │ │ │ │ +00045360: 2020 2020 2020 2020 7c0a 7c38 3761 6263 |.|87abc │ │ │ │ +00045370: 642d 3134 3638 3562 3263 642d 3130 3538 d-14685b2cd-1058 │ │ │ │ +00045380: 3161 6332 642b 3532 3238 6263 3264 2d31 1ac2d+5228bc2d-1 │ │ │ │ +00045390: 3538 3636 6132 6432 2d31 3739 3361 6264 5866a2d2-1793abd │ │ │ │ +000453a0: 322d 3132 3234 3562 3264 322b 3132 3238 2-12245b2d2+1228 │ │ │ │ +000453b0: 3361 6364 322b 3637 7c0a 7c32 642b 3532 3acd2+67|.|2d+52 │ │ │ │ +000453c0: 3138 6233 642d 3132 3830 3261 3263 642d 18b3d-12802a2cd- │ │ │ │ +000453d0: 3132 3631 3861 6263 642d 3537 3238 6232 12618abcd-5728b2 │ │ │ │ +000453e0: 6364 2b35 3334 3761 6332 642b 3133 3339 cd+5347ac2d+1339 │ │ │ │ +000453f0: 3462 6332 642b 3239 3663 3364 2b37 3434 4bc2d+296c3d+744 │ │ │ │ +00045400: 3661 3264 322b 3130 7c0a 7c20 2020 2020 6a2d2+10|.| │ │ │ │ +00045410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045460: 2020 207c 0a7c 3433 3961 6263 642d 3132 |.|439abcd-12 │ │ │ │ -00045470: 3337 3162 3263 642b 3133 3761 6332 642d 371b2cd+137ac2d- │ │ │ │ -00045480: 3134 3331 3362 6332 642d 3830 3834 6132 14313bc2d-8084a2 │ │ │ │ -00045490: 6432 2d34 3535 3261 6264 322b 3635 3634 d2-4552abd2+6564 │ │ │ │ -000454a0: 6232 6432 2b35 3831 3361 6364 322d 3135 b2d2+5813acd2-15 │ │ │ │ -000454b0: 3334 357c 0a7c 3535 3038 6132 6232 2d31 345|.|5508a2b2-1 │ │ │ │ -000454c0: 3336 3630 6162 332d 3133 3135 3362 342d 3660ab3-13153b4- │ │ │ │ -000454d0: 3139 3130 6162 3263 2d31 3136 3536 6233 1910ab2c-11656b3 │ │ │ │ -000454e0: 632b 3835 3237 6232 6332 2b35 3934 3261 c+8527b2c2+5942a │ │ │ │ -000454f0: 6232 642b 3134 3932 3562 3364 2d32 3936 b2d+14925b3d-296 │ │ │ │ -00045500: 6232 637c 0a7c 2020 2020 2020 2020 2020 b2c|.| │ │ │ │ +00045450: 2020 2020 2020 2020 7c0a 7c34 3339 6162 |.|439ab │ │ │ │ +00045460: 6364 2d31 3233 3731 6232 6364 2b31 3337 cd-12371b2cd+137 │ │ │ │ +00045470: 6163 3264 2d31 3433 3133 6263 3264 2d38 ac2d-14313bc2d-8 │ │ │ │ +00045480: 3038 3461 3264 322d 3435 3532 6162 6432 084a2d2-4552abd2 │ │ │ │ +00045490: 2b36 3536 3462 3264 322b 3538 3133 6163 +6564b2d2+5813ac │ │ │ │ +000454a0: 6432 2d31 3533 3435 7c0a 7c35 3530 3861 d2-15345|.|5508a │ │ │ │ +000454b0: 3262 322d 3133 3636 3061 6233 2d31 3331 2b2-13660ab3-131 │ │ │ │ +000454c0: 3533 6234 2d31 3931 3061 6232 632d 3131 53b4-1910ab2c-11 │ │ │ │ +000454d0: 3635 3662 3363 2b38 3532 3762 3263 322b 656b3c+8527b2c2+ │ │ │ │ +000454e0: 3539 3432 6162 3264 2b31 3439 3235 6233 5942ab2d+14925b3 │ │ │ │ +000454f0: 642d 3239 3662 3263 7c0a 7c20 2020 2020 d-296b2c|.| │ │ │ │ +00045500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045550: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045540: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000455a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045590: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000455a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000455b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000455c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000455d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000455e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000455f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000455e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000455f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045640: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045630: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045690: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045680: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000456a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000456b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000456c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000456d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000456e0: 2020 207c 0a7c 3930 3861 6263 642d 3938 |.|908abcd-98 │ │ │ │ -000456f0: 3934 6232 6364 2b38 3434 3061 6332 642b 94b2cd+8440ac2d+ │ │ │ │ -00045700: 3130 3639 3362 6332 642b 3132 3036 3261 10693bc2d+12062a │ │ │ │ -00045710: 3264 322d 3133 3632 3661 6264 322b 3432 2d2-13626abd2+42 │ │ │ │ -00045720: 3437 6232 6432 2d31 3237 3033 6163 6432 47b2d2-12703acd2 │ │ │ │ -00045730: 2b32 397c 0a7c 3432 3062 3364 2b35 3233 +29|.|420b3d+523 │ │ │ │ -00045740: 3461 3263 642b 3730 3036 6162 6364 2d31 4a2cd+7006abcd-1 │ │ │ │ -00045750: 3439 3231 6232 6364 2b38 3831 3061 6332 4921b2cd+8810ac2 │ │ │ │ -00045760: 642d 3332 3731 6263 3264 2d31 3036 3633 d-3271bc2d-10663 │ │ │ │ -00045770: 6333 642d 3132 3533 3761 3264 322b 3135 c3d-12537a2d2+15 │ │ │ │ -00045780: 3238 317c 0a7c 2020 2020 2020 2020 2020 281|.| │ │ │ │ +000456d0: 2020 2020 2020 2020 7c0a 7c39 3038 6162 |.|908ab │ │ │ │ +000456e0: 6364 2d39 3839 3462 3263 642b 3834 3430 cd-9894b2cd+8440 │ │ │ │ +000456f0: 6163 3264 2b31 3036 3933 6263 3264 2b31 ac2d+10693bc2d+1 │ │ │ │ +00045700: 3230 3632 6132 6432 2d31 3336 3236 6162 2062a2d2-13626ab │ │ │ │ +00045710: 6432 2b34 3234 3762 3264 322d 3132 3730 d2+4247b2d2-1270 │ │ │ │ +00045720: 3361 6364 322b 3239 7c0a 7c34 3230 6233 3acd2+29|.|420b3 │ │ │ │ +00045730: 642b 3532 3334 6132 6364 2b37 3030 3661 d+5234a2cd+7006a │ │ │ │ +00045740: 6263 642d 3134 3932 3162 3263 642b 3838 bcd-14921b2cd+88 │ │ │ │ +00045750: 3130 6163 3264 2d33 3237 3162 6332 642d 10ac2d-3271bc2d- │ │ │ │ +00045760: 3130 3636 3363 3364 2d31 3235 3337 6132 10663c3d-12537a2 │ │ │ │ +00045770: 6432 2b31 3532 3831 7c0a 7c20 2020 2020 d2+15281|.| │ │ │ │ +00045780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000457a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000457b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000457c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000457d0: 2020 207c 0a7c 3561 6263 642b 3632 3937 |.|5abcd+6297 │ │ │ │ -000457e0: 6232 6364 2b31 3533 3739 6163 3264 2d31 b2cd+15379ac2d-1 │ │ │ │ -000457f0: 3238 3831 6263 3264 2d36 3334 3161 3264 2881bc2d-6341a2d │ │ │ │ -00045800: 322b 3832 3932 6162 6432 2b31 3138 3632 2+8292abd2+11862 │ │ │ │ -00045810: 6232 6432 2d31 3035 3136 6163 6432 2d31 b2d2-10516acd2-1 │ │ │ │ -00045820: 3234 397c 0a7c 3639 3435 6132 6232 2d31 249|.|6945a2b2-1 │ │ │ │ -00045830: 3230 3938 6162 332d 3732 3437 6234 2b31 2098ab3-7247b4+1 │ │ │ │ -00045840: 3539 3336 6162 3263 2d35 3338 3562 3363 5936ab2c-5385b3c │ │ │ │ -00045850: 2d35 3337 3562 3263 322d 3130 3330 3561 -5375b2c2-10305a │ │ │ │ -00045860: 6232 642b 3832 3937 6233 642b 3130 3636 b2d+8297b3d+1066 │ │ │ │ -00045870: 3362 327c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 3b2|.|---------- │ │ │ │ +000457c0: 2020 2020 2020 2020 7c0a 7c35 6162 6364 |.|5abcd │ │ │ │ +000457d0: 2b36 3239 3762 3263 642b 3135 3337 3961 +6297b2cd+15379a │ │ │ │ +000457e0: 6332 642d 3132 3838 3162 6332 642d 3633 c2d-12881bc2d-63 │ │ │ │ +000457f0: 3431 6132 6432 2b38 3239 3261 6264 322b 41a2d2+8292abd2+ │ │ │ │ +00045800: 3131 3836 3262 3264 322d 3130 3531 3661 11862b2d2-10516a │ │ │ │ +00045810: 6364 322d 3132 3439 7c0a 7c36 3934 3561 cd2-1249|.|6945a │ │ │ │ +00045820: 3262 322d 3132 3039 3861 6233 2d37 3234 2b2-12098ab3-724 │ │ │ │ +00045830: 3762 342b 3135 3933 3661 6232 632d 3533 7b4+15936ab2c-53 │ │ │ │ +00045840: 3835 6233 632d 3533 3735 6232 6332 2d31 85b3c-5375b2c2-1 │ │ │ │ +00045850: 3033 3035 6162 3264 2b38 3239 3762 3364 0305ab2d+8297b3d │ │ │ │ +00045860: 2b31 3036 3633 6232 7c0a 7c2d 2d2d 2d2d +10663b2|.|----- │ │ │ │ +00045870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00045880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00045890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000458a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000458b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000458c0: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ +000458b0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +000458c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000458d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000458e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000458f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045910: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045900: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045960: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045950: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000459a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000459b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000459a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000459b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000459c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000459d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000459e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000459f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045a00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000459f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045a50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045a40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045aa0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045a90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045af0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045ae0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045b40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045b30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045b90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045b80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045be0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045bd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045c30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045c20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045c80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045c70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045cd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045cc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045d20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045d10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045d70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045d60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045dc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045db0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045e10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045e00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045e60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045e50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045eb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045ea0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045f00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045ef0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045f50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045f40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045fa0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045f90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045ff0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045fe0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046030: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00046040: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00046020: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ +00046030: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046080: 2031 3233 3661 332b 3839 3232 6132 622d 1236a3+8922a2b- │ │ │ │ -00046090: 3335 387c 0a7c 6232 642b 3630 3430 6163 358|.|b2d+6040ac │ │ │ │ -000460a0: 642d 3830 3232 6263 642d 3339 3638 6332 d-8022bcd-3968c2 │ │ │ │ -000460b0: 642b 3331 3634 6164 322d 3239 3562 6432 d+3164ad2-295bd2 │ │ │ │ -000460c0: 2b37 3635 3063 6432 2d31 3433 3838 6433 +7650cd2-14388d3 │ │ │ │ -000460d0: 2031 3033 3730 6162 322d 3730 3932 6233 10370ab2-7092b3 │ │ │ │ -000460e0: 2d39 377c 0a7c 2020 2020 2020 2020 2020 -97|.| │ │ │ │ +00046070: 2020 2020 2020 3132 3336 6133 2b38 3932 1236a3+892 │ │ │ │ +00046080: 3261 3262 2d33 3538 7c0a 7c62 3264 2b36 2a2b-358|.|b2d+6 │ │ │ │ +00046090: 3034 3061 6364 2d38 3032 3262 6364 2d33 040acd-8022bcd-3 │ │ │ │ +000460a0: 3936 3863 3264 2b33 3136 3461 6432 2d32 968c2d+3164ad2-2 │ │ │ │ +000460b0: 3935 6264 322b 3736 3530 6364 322d 3134 95bd2+7650cd2-14 │ │ │ │ +000460c0: 3338 3864 3320 3130 3337 3061 6232 2d37 388d3 10370ab2-7 │ │ │ │ +000460d0: 3039 3262 332d 3937 7c0a 7c20 2020 2020 092b3-97|.| │ │ │ │ +000460e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000460f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046120: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00046130: 2020 207c 0a7c 6164 322d 3632 3435 6264 |.|ad2-6245bd │ │ │ │ -00046140: 322b 3836 3339 6364 322d 3934 3236 6433 2+8639cd2-9426d3 │ │ │ │ +00046110: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ +00046120: 2020 2020 2020 2020 7c0a 7c61 6432 2d36 |.|ad2-6 │ │ │ │ +00046130: 3234 3562 6432 2b38 3633 3963 6432 2d39 245bd2+8639cd2-9 │ │ │ │ +00046140: 3432 3664 3320 2020 2020 2020 2020 2020 426d3 │ │ │ │ 00046150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046170: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00046180: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00046160: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ +00046170: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000461a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000461b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000461c0: 2039 3934 6133 2b31 3934 3661 3262 2b36 994a3+1946a2b+6 │ │ │ │ -000461d0: 3732 337c 0a7c 3135 3235 3063 6432 2d31 723|.|15250cd2-1 │ │ │ │ -000461e0: 3035 3637 6433 2031 3233 3661 332b 3839 0567d3 1236a3+89 │ │ │ │ -000461f0: 3232 6132 622d 3335 3839 6162 322b 3839 22a2b-3589ab2+89 │ │ │ │ -00046200: 3731 6233 2d35 3030 3661 3263 2d35 3539 71b3-5006a2c-559 │ │ │ │ -00046210: 3961 6263 2d31 3431 3635 6232 632b 3838 9abc-14165b2c+88 │ │ │ │ -00046220: 3830 617c 0a7c 2020 2020 2020 2020 2020 80a|.| │ │ │ │ -00046230: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ +000461b0: 2020 2020 2020 3939 3461 332b 3139 3436 994a3+1946 │ │ │ │ +000461c0: 6132 622b 3637 3233 7c0a 7c31 3532 3530 a2b+6723|.|15250 │ │ │ │ +000461d0: 6364 322d 3130 3536 3764 3320 3132 3336 cd2-10567d3 1236 │ │ │ │ +000461e0: 6133 2b38 3932 3261 3262 2d33 3538 3961 a3+8922a2b-3589a │ │ │ │ +000461f0: 6232 2b38 3937 3162 332d 3530 3036 6132 b2+8971b3-5006a2 │ │ │ │ +00046200: 632d 3535 3939 6162 632d 3134 3136 3562 c-5599abc-14165b │ │ │ │ +00046210: 3263 2b38 3838 3061 7c0a 7c20 2020 2020 2c+8880a|.| │ │ │ │ +00046220: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +00046230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046270: 2020 207c 0a7c 3320 2020 2020 2020 2020 |.|3 │ │ │ │ -00046280: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ +00046260: 2020 2020 2020 2020 7c0a 7c33 2020 2020 |.|3 │ │ │ │ +00046270: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +00046280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000462a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000462b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000462c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000462d0: 2020 2020 2020 202d 3939 3461 332d 3139 -994a3-19 │ │ │ │ -000462e0: 3436 6132 622d 3637 3233 6162 322d 3534 46a2b-6723ab2-54 │ │ │ │ -000462f0: 3833 6233 2d36 3435 3361 3263 2d31 3139 83b3-6453a2c-119 │ │ │ │ -00046300: 3261 6263 2d31 3532 3530 6232 632d 3131 2abc-15250b2c-11 │ │ │ │ -00046310: 3034 357c 0a7c 2b31 3433 3838 6433 202d 045|.|+14388d3 - │ │ │ │ -00046320: 3130 3337 3061 6232 2b37 3039 3262 332b 10370ab2+7092b3+ │ │ │ │ -00046330: 3937 3032 6162 632b 3636 3237 6232 632d 9702abc+6627b2c- │ │ │ │ -00046340: 3937 3937 6263 322d 3538 3734 6333 2d38 9797bc2-5874c3-8 │ │ │ │ -00046350: 3838 3661 6264 2d34 3730 3062 3264 2b31 886abd-4700b2d+1 │ │ │ │ -00046360: 3561 637c 0a7c 2020 2020 2020 2020 2020 5ac|.| │ │ │ │ +000462b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000462c0: 2020 2020 2020 2020 2020 2020 2d39 3934 -994 │ │ │ │ +000462d0: 6133 2d31 3934 3661 3262 2d36 3732 3361 a3-1946a2b-6723a │ │ │ │ +000462e0: 6232 2d35 3438 3362 332d 3634 3533 6132 b2-5483b3-6453a2 │ │ │ │ +000462f0: 632d 3131 3932 6162 632d 3135 3235 3062 c-1192abc-15250b │ │ │ │ +00046300: 3263 2d31 3130 3435 7c0a 7c2b 3134 3338 2c-11045|.|+1438 │ │ │ │ +00046310: 3864 3320 2d31 3033 3730 6162 322b 3730 8d3 -10370ab2+70 │ │ │ │ +00046320: 3932 6233 2b39 3730 3261 6263 2b36 3632 92b3+9702abc+662 │ │ │ │ +00046330: 3762 3263 2d39 3739 3762 6332 2d35 3837 7b2c-9797bc2-587 │ │ │ │ +00046340: 3463 332d 3838 3836 6162 642d 3437 3030 4c3-8886abd-4700 │ │ │ │ +00046350: 6232 642b 3135 6163 7c0a 7c20 2020 2020 b2d+15ac|.| │ │ │ │ +00046360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000463a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000463b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000463a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000463b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000463c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000463d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000463e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000463f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046400: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000463f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046450: 2020 207c 0a7c 6364 322d 3932 6332 6432 |.|cd2-92c2d2 │ │ │ │ -00046460: 2b31 3539 3638 6164 332b 3134 3836 3062 +15968ad3+14860b │ │ │ │ -00046470: 6433 2d38 3832 3963 6433 2d31 3132 3734 d3-8829cd3-11274 │ │ │ │ -00046480: 6434 207c 2020 2020 2020 2020 2020 2020 d4 | │ │ │ │ -00046490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000464a0: 2020 207c 0a7c 322b 3939 3761 6364 322b |.|2+997acd2+ │ │ │ │ -000464b0: 3330 3135 6263 6432 2b31 3132 3734 6332 3015bcd2+11274c2 │ │ │ │ -000464c0: 6432 2020 2020 2020 2020 2020 2020 2020 d2 │ │ │ │ -000464d0: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000464e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000464f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00046440: 2020 2020 2020 2020 7c0a 7c63 6432 2d39 |.|cd2-9 │ │ │ │ +00046450: 3263 3264 322b 3135 3936 3861 6433 2b31 2c2d2+15968ad3+1 │ │ │ │ +00046460: 3438 3630 6264 332d 3838 3239 6364 332d 4860bd3-8829cd3- │ │ │ │ +00046470: 3131 3237 3464 3420 7c20 2020 2020 2020 11274d4 | │ │ │ │ +00046480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00046490: 2020 2020 2020 2020 7c0a 7c32 2b39 3937 |.|2+997 │ │ │ │ +000464a0: 6163 6432 2b33 3031 3562 6364 322b 3131 acd2+3015bcd2+11 │ │ │ │ +000464b0: 3237 3463 3264 3220 2020 2020 2020 2020 274c2d2 │ │ │ │ +000464c0: 2020 2020 2020 2020 7c20 2020 2020 2020 | │ │ │ │ +000464d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000464e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000464f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046520: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00046530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046540: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00046510: 2020 2020 2020 2020 7c20 2020 2020 2020 | │ │ │ │ +00046520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00046530: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046570: 2020 207c 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00046580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046590: 2020 207c 0a7c 3462 3264 3220 2d37 3634 |.|4b2d2 -764 │ │ │ │ -000465a0: 3861 3362 2d31 3332 3631 6132 6232 2b33 8a3b-13261a2b2+3 │ │ │ │ -000465b0: 3335 3861 6233 2d36 3138 6234 2d37 3637 358ab3-618b4-767 │ │ │ │ -000465c0: 6133 632d 3535 3830 6132 6263 2d31 3535 a3c-5580a2bc-155 │ │ │ │ -000465d0: 3630 6162 3263 2d34 3839 6233 632b 3135 60ab2c-489b3c+15 │ │ │ │ -000465e0: 3338 337c 0a7c 2020 2020 2020 2020 2020 383|.| │ │ │ │ +00046560: 2020 2020 2020 2020 7c20 2020 2020 2020 | │ │ │ │ +00046570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00046580: 2020 2020 2020 2020 7c0a 7c34 6232 6432 |.|4b2d2 │ │ │ │ +00046590: 202d 3736 3438 6133 622d 3133 3236 3161 -7648a3b-13261a │ │ │ │ +000465a0: 3262 322b 3333 3538 6162 332d 3631 3862 2b2+3358ab3-618b │ │ │ │ +000465b0: 342d 3736 3761 3363 2d35 3538 3061 3262 4-767a3c-5580a2b │ │ │ │ +000465c0: 632d 3135 3536 3061 6232 632d 3438 3962 c-15560ab2c-489b │ │ │ │ +000465d0: 3363 2b31 3533 3833 7c0a 7c20 2020 2020 3c+15383|.| │ │ │ │ +000465e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000465f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046630: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00046620: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046680: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00046670: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000466a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000466b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000466c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000466d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000466c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000466d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000466e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000466f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046720: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00046710: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046770: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00046760: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000467a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000467b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000467c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000467b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000467c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000467d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000467e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000467f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046810: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00046800: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046860: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00046850: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000468a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000468b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000468a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000468b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000468c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000468d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000468e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000468f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046900: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000468f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046940: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ -00046950: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00046930: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ +00046940: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046990: 2020 2020 2031 3037 6133 2b34 3337 3661 107a3+4376a │ │ │ │ -000469a0: 3262 2b7c 0a7c 3534 3962 3264 2d39 3033 2b+|.|549b2d-903 │ │ │ │ -000469b0: 3361 6364 2d32 3939 3862 6364 2b32 3033 3acd-2998bcd+203 │ │ │ │ -000469c0: 3663 3264 2d35 3130 3761 6432 2d35 3637 6c2d-5107ad2-567 │ │ │ │ -000469d0: 3962 6432 2b36 3332 3563 6432 2b31 3137 9bd2+6325cd2+117 │ │ │ │ -000469e0: 3430 6433 2038 3233 3161 6232 2b31 3331 40d3 8231ab2+131 │ │ │ │ -000469f0: 3737 627c 0a7c 2020 2020 2020 2020 2020 77b|.| │ │ │ │ +00046980: 2020 2020 2020 2020 2020 3130 3761 332b 107a3+ │ │ │ │ +00046990: 3433 3736 6132 622b 7c0a 7c35 3439 6232 4376a2b+|.|549b2 │ │ │ │ +000469a0: 642d 3930 3333 6163 642d 3239 3938 6263 d-9033acd-2998bc │ │ │ │ +000469b0: 642b 3230 3336 6332 642d 3531 3037 6164 d+2036c2d-5107ad │ │ │ │ +000469c0: 322d 3536 3739 6264 322b 3633 3235 6364 2-5679bd2+6325cd │ │ │ │ +000469d0: 322b 3131 3734 3064 3320 3832 3331 6162 2+11740d3 8231ab │ │ │ │ +000469e0: 322b 3133 3137 3762 7c0a 7c20 2020 2020 2+13177b|.| │ │ │ │ +000469f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046a30: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ -00046a40: 2020 207c 0a7c 3938 6164 322d 3135 3331 |.|98ad2-1531 │ │ │ │ -00046a50: 3762 6432 2b36 3932 3263 6432 2b35 3038 7bd2+6922cd2+508 │ │ │ │ -00046a60: 3064 3320 2020 2020 2020 2020 2020 2020 0d3 │ │ │ │ -00046a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046a80: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ -00046a90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00046a20: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ +00046a30: 2020 2020 2020 2020 7c0a 7c39 3861 6432 |.|98ad2 │ │ │ │ +00046a40: 2d31 3533 3137 6264 322b 3639 3232 6364 -15317bd2+6922cd │ │ │ │ +00046a50: 322b 3530 3830 6433 2020 2020 2020 2020 2+5080d3 │ │ │ │ +00046a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00046a70: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ +00046a80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046ad0: 2020 2020 2031 3034 3830 6133 2b36 3230 10480a3+620 │ │ │ │ -00046ae0: 3361 327c 0a7c 3130 3836 3662 6432 2b37 3a2|.|10866bd2+7 │ │ │ │ -00046af0: 3036 3163 6432 2d32 3632 3764 3320 3130 061cd2-2627d3 10 │ │ │ │ -00046b00: 3761 332b 3433 3736 6132 622b 3337 3833 7a3+4376a2b+3783 │ │ │ │ -00046b10: 6162 322b 3130 3335 3962 332d 3535 3730 ab2+10359b3-5570 │ │ │ │ -00046b20: 6132 632d 3533 3037 6162 632d 3734 3634 a2c-5307abc-7464 │ │ │ │ -00046b30: 6232 637c 0a7c 2020 2020 2020 2020 2020 b2c|.| │ │ │ │ -00046b40: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +00046ac0: 2020 2020 2020 2020 2020 3130 3438 3061 10480a │ │ │ │ +00046ad0: 332b 3632 3033 6132 7c0a 7c31 3038 3636 3+6203a2|.|10866 │ │ │ │ +00046ae0: 6264 322b 3730 3631 6364 322d 3236 3237 bd2+7061cd2-2627 │ │ │ │ +00046af0: 6433 2031 3037 6133 2b34 3337 3661 3262 d3 107a3+4376a2b │ │ │ │ +00046b00: 2b33 3738 3361 6232 2b31 3033 3539 6233 +3783ab2+10359b3 │ │ │ │ +00046b10: 2d35 3537 3061 3263 2d35 3330 3761 6263 -5570a2c-5307abc │ │ │ │ +00046b20: 2d37 3436 3462 3263 7c0a 7c20 2020 2020 -7464b2c|.| │ │ │ │ +00046b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00046b40: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 00046b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046b80: 2020 207c 0a7c 3530 3830 6433 2020 2020 |.|5080d3 │ │ │ │ -00046b90: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +00046b70: 2020 2020 2020 2020 7c0a 7c35 3038 3064 |.|5080d │ │ │ │ +00046b80: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00046b90: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 00046ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046bd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00046be0: 2020 2020 2020 2020 2020 2020 2020 2d31 -1 │ │ │ │ -00046bf0: 3034 3830 6133 2d36 3230 3361 3262 2b39 0480a3-6203a2b+9 │ │ │ │ -00046c00: 3533 3461 6232 2b31 3038 3636 6233 2d39 534ab2+10866b3-9 │ │ │ │ -00046c10: 3438 3061 3263 2b37 3235 3661 6263 2d37 480a2c+7256abc-7 │ │ │ │ -00046c20: 3036 317c 0a7c 3332 3563 6432 2d31 3137 061|.|325cd2-117 │ │ │ │ -00046c30: 3430 6433 202d 3832 3331 6162 322d 3133 40d3 -8231ab2-13 │ │ │ │ -00046c40: 3137 3762 332d 3538 3634 6162 632d 3133 177b3-5864abc-13 │ │ │ │ -00046c50: 3939 3062 3263 2b31 3330 3962 6332 2d35 990b2c+1309bc2-5 │ │ │ │ -00046c60: 3339 3863 332d 3530 3236 6162 642b 3131 398c3-5026abd+11 │ │ │ │ -00046c70: 3532 317c 0a7c 2020 2020 2020 2020 2020 521|.| │ │ │ │ +00046bc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00046be0: 2020 202d 3130 3438 3061 332d 3632 3033 -10480a3-6203 │ │ │ │ +00046bf0: 6132 622b 3935 3334 6162 322b 3130 3836 a2b+9534ab2+1086 │ │ │ │ +00046c00: 3662 332d 3934 3830 6132 632b 3732 3536 6b3-9480a2c+7256 │ │ │ │ +00046c10: 6162 632d 3730 3631 7c0a 7c33 3235 6364 abc-7061|.|325cd │ │ │ │ +00046c20: 322d 3131 3734 3064 3320 2d38 3233 3161 2-11740d3 -8231a │ │ │ │ +00046c30: 6232 2d31 3331 3737 6233 2d35 3836 3461 b2-13177b3-5864a │ │ │ │ +00046c40: 6263 2d31 3339 3930 6232 632b 3133 3039 bc-13990b2c+1309 │ │ │ │ +00046c50: 6263 322d 3533 3938 6333 2d35 3032 3661 bc2-5398c3-5026a │ │ │ │ +00046c60: 6264 2b31 3135 3231 7c0a 7c20 2020 2020 bd+11521|.| │ │ │ │ +00046c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046cc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00046cb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046d10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00046d00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046d60: 2020 207c 0a7c 3330 6263 6432 2b38 3532 |.|30bcd2+852 │ │ │ │ -00046d70: 3763 3264 322b 3539 3432 6164 332b 3134 7c2d2+5942ad3+14 │ │ │ │ -00046d80: 3932 3562 6433 2d32 3936 6364 332b 3830 925bd3-296cd3+80 │ │ │ │ -00046d90: 3834 6434 207c 2020 2020 2020 2020 2020 84d4 | │ │ │ │ -00046da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046db0: 2020 207c 0a7c 3034 3661 6264 322b 3633 |.|046abd2+63 │ │ │ │ -00046dc0: 3432 6232 6432 2d37 3438 3061 6364 322d 42b2d2-7480acd2- │ │ │ │ -00046dd0: 3738 3433 6263 6432 2d38 3038 3463 3264 7843bcd2-8084c2d │ │ │ │ -00046de0: 3220 2020 207c 2020 2020 2020 2020 2020 2 | │ │ │ │ -00046df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046e00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00046d50: 2020 2020 2020 2020 7c0a 7c33 3062 6364 |.|30bcd │ │ │ │ +00046d60: 322b 3835 3237 6332 6432 2b35 3934 3261 2+8527c2d2+5942a │ │ │ │ +00046d70: 6433 2b31 3439 3235 6264 332d 3239 3663 d3+14925bd3-296c │ │ │ │ +00046d80: 6433 2b38 3038 3464 3420 7c20 2020 2020 d3+8084d4 | │ │ │ │ +00046d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00046da0: 2020 2020 2020 2020 7c0a 7c30 3436 6162 |.|046ab │ │ │ │ +00046db0: 6432 2b36 3334 3262 3264 322d 3734 3830 d2+6342b2d2-7480 │ │ │ │ +00046dc0: 6163 6432 2d37 3834 3362 6364 322d 3830 acd2-7843bcd2-80 │ │ │ │ +00046dd0: 3834 6332 6432 2020 2020 7c20 2020 2020 84c2d2 | │ │ │ │ +00046de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00046df0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046e30: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ -00046e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046e50: 2020 207c 0a7c 6263 6432 2020 2020 2020 |.|bcd2 │ │ │ │ +00046e20: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +00046e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00046e40: 2020 2020 2020 2020 7c0a 7c62 6364 3220 |.|bcd2 │ │ │ │ +00046e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046e80: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ -00046e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046ea0: 2020 207c 0a7c 642b 3830 3834 6232 6432 |.|d+8084b2d2 │ │ │ │ -00046eb0: 202d 3130 3439 3261 3362 2b31 3339 3936 -10492a3b+13996 │ │ │ │ -00046ec0: 6132 6232 2d39 3333 3861 6233 2d34 3637 a2b2-9338ab3-467 │ │ │ │ -00046ed0: 3662 342d 3938 3236 6133 632b 3437 3331 6b4-9826a3c+4731 │ │ │ │ -00046ee0: 6132 6263 2d31 3237 3335 6162 3263 2b37 a2bc-12735ab2c+7 │ │ │ │ -00046ef0: 3432 317c 0a7c 2020 2020 2020 2020 2020 421|.| │ │ │ │ +00046e70: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +00046e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00046e90: 2020 2020 2020 2020 7c0a 7c64 2b38 3038 |.|d+808 │ │ │ │ +00046ea0: 3462 3264 3220 2d31 3034 3932 6133 622b 4b2d2 -10492a3b+ │ │ │ │ +00046eb0: 3133 3939 3661 3262 322d 3933 3338 6162 13996a2b2-9338ab │ │ │ │ +00046ec0: 332d 3436 3736 6234 2d39 3832 3661 3363 3-4676b4-9826a3c │ │ │ │ +00046ed0: 2b34 3733 3161 3262 632d 3132 3733 3561 +4731a2bc-12735a │ │ │ │ +00046ee0: 6232 632b 3734 3231 7c0a 7c20 2020 2020 b2c+7421|.| │ │ │ │ +00046ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046f40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00046f30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046f90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00046f80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046fe0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00046fd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047030: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047020: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047080: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047070: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000470a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000470b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000470c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000470d0: 2020 207c 0a7c 3537 6263 6432 2d35 3337 |.|57bcd2-537 │ │ │ │ -000470e0: 3563 3264 322d 3130 3330 3561 6433 2b38 5c2d2-10305ad3+8 │ │ │ │ -000470f0: 3239 3762 6433 2b31 3036 3633 6364 332b 297bd3+10663cd3+ │ │ │ │ -00047100: 3633 3431 6434 207c 2020 2020 2020 2020 6341d4 | │ │ │ │ -00047110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047120: 2020 207c 0a7c 6162 6432 2d39 3334 3662 |.|abd2-9346b │ │ │ │ -00047130: 3264 322b 3433 3039 6163 6432 2b38 3236 2d2+4309acd2+826 │ │ │ │ -00047140: 3962 6364 322d 3633 3431 6332 6432 2020 9bcd2-6341c2d2 │ │ │ │ -00047150: 2020 2020 2020 207c 2020 2020 2020 2020 | │ │ │ │ -00047160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047170: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000470c0: 2020 2020 2020 2020 7c0a 7c35 3762 6364 |.|57bcd │ │ │ │ +000470d0: 322d 3533 3735 6332 6432 2d31 3033 3035 2-5375c2d2-10305 │ │ │ │ +000470e0: 6164 332b 3832 3937 6264 332b 3130 3636 ad3+8297bd3+1066 │ │ │ │ +000470f0: 3363 6433 2b36 3334 3164 3420 7c20 2020 3cd3+6341d4 | │ │ │ │ +00047100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00047110: 2020 2020 2020 2020 7c0a 7c61 6264 322d |.|abd2- │ │ │ │ +00047120: 3933 3436 6232 6432 2b34 3330 3961 6364 9346b2d2+4309acd │ │ │ │ +00047130: 322b 3832 3639 6263 6432 2d36 3334 3163 2+8269bcd2-6341c │ │ │ │ +00047140: 3264 3220 2020 2020 2020 2020 7c20 2020 2d2 | │ │ │ │ +00047150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00047160: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000471a0: 2020 2020 2020 207c 2020 2020 2020 2020 | │ │ │ │ -000471b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000471c0: 2020 207c 0a7c 3962 6364 3220 2020 2020 |.|9bcd2 │ │ │ │ +00047190: 2020 2020 2020 2020 2020 2020 7c20 2020 | │ │ │ │ +000471a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000471b0: 2020 2020 2020 2020 7c0a 7c39 6263 6432 |.|9bcd2 │ │ │ │ +000471c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000471d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000471e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000471f0: 2020 2020 2020 207c 2020 2020 2020 2020 | │ │ │ │ -00047200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047210: 2020 207c 0a7c 6364 2b36 3334 3162 3264 |.|cd+6341b2d │ │ │ │ -00047220: 3220 2d31 3035 3534 6133 622b 3638 3432 2 -10554a3b+6842 │ │ │ │ -00047230: 6132 6232 2d31 3432 3236 6162 332d 3633 a2b2-14226ab3-63 │ │ │ │ -00047240: 3433 6234 2d31 3235 3435 6133 632d 3130 43b4-12545a3c-10 │ │ │ │ -00047250: 3031 3561 3262 632d 3134 3238 3661 6232 015a2bc-14286ab2 │ │ │ │ -00047260: 632d 357c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d c-5|.|---------- │ │ │ │ +000471e0: 2020 2020 2020 2020 2020 2020 7c20 2020 | │ │ │ │ +000471f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00047200: 2020 2020 2020 2020 7c0a 7c63 642b 3633 |.|cd+63 │ │ │ │ +00047210: 3431 6232 6432 202d 3130 3535 3461 3362 41b2d2 -10554a3b │ │ │ │ +00047220: 2b36 3834 3261 3262 322d 3134 3232 3661 +6842a2b2-14226a │ │ │ │ +00047230: 6233 2d36 3334 3362 342d 3132 3534 3561 b3-6343b4-12545a │ │ │ │ +00047240: 3363 2d31 3030 3135 6132 6263 2d31 3432 3c-10015a2bc-142 │ │ │ │ +00047250: 3836 6162 3263 2d35 7c0a 7c2d 2d2d 2d2d 86ab2c-5|.|----- │ │ │ │ +00047260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000472a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000472b0: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ +000472a0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +000472b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000472c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000472d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000472e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000472f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047300: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000472f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047350: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047340: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000473a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047390: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000473a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000473b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000473c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000473d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000473e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000473f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000473e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000473f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047440: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047430: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047490: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047480: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000474a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000474b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000474c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000474d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000474e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000474d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000474e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000474f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047530: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047520: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047580: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047570: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000475a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000475b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000475c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000475d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000475c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000475d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000475e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000475f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047620: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047610: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047670: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047660: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000476a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000476b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000476c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000476b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000476c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000476d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000476e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000476f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047710: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047700: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047760: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047750: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000477a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000477b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000477a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000477b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000477c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000477d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000477e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000477f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047800: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000477f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047850: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047840: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000478a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047890: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000478a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000478b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000478c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000478d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000478e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000478f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000478e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000478f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047940: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047930: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047990: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047980: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000479a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000479b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000479c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000479d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000479e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000479d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000479e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000479f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047a30: 2020 207c 0a7c 3961 6232 2b38 3937 3162 |.|9ab2+8971b │ │ │ │ -00047a40: 332d 3530 3036 6132 632d 3535 3939 6162 3-5006a2c-5599ab │ │ │ │ -00047a50: 632d 3134 3136 3562 3263 2b38 3838 3061 c-14165b2c+8880a │ │ │ │ -00047a60: 3264 2b34 3235 3961 6264 2d33 3030 3262 2d+4259abd-3002b │ │ │ │ -00047a70: 3264 2d31 3338 3932 6163 642d 3130 3532 2d-13892acd-1052 │ │ │ │ -00047a80: 3162 637c 0a7c 3032 6162 632d 3636 3237 1bc|.|02abc-6627 │ │ │ │ -00047a90: 6232 632b 3838 3836 6162 642b 3437 3030 b2c+8886abd+4700 │ │ │ │ -00047aa0: 6232 642d 3135 6163 642b 3539 3639 6263 b2d-15acd+5969bc │ │ │ │ -00047ab0: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ -00047ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047ad0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047a20: 2020 2020 2020 2020 7c0a 7c39 6162 322b |.|9ab2+ │ │ │ │ +00047a30: 3839 3731 6233 2d35 3030 3661 3263 2d35 8971b3-5006a2c-5 │ │ │ │ +00047a40: 3539 3961 6263 2d31 3431 3635 6232 632b 599abc-14165b2c+ │ │ │ │ +00047a50: 3838 3830 6132 642b 3432 3539 6162 642d 8880a2d+4259abd- │ │ │ │ +00047a60: 3330 3032 6232 642d 3133 3839 3261 6364 3002b2d-13892acd │ │ │ │ +00047a70: 2d31 3035 3231 6263 7c0a 7c30 3261 6263 -10521bc|.|02abc │ │ │ │ +00047a80: 2d36 3632 3762 3263 2b38 3838 3661 6264 -6627b2c+8886abd │ │ │ │ +00047a90: 2b34 3730 3062 3264 2d31 3561 6364 2b35 +4700b2d-15acd+5 │ │ │ │ +00047aa0: 3936 3962 6364 2020 2020 2020 2020 2020 969bcd │ │ │ │ +00047ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00047ac0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047b20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047b10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047b70: 2020 207c 0a7c 6162 322b 3534 3833 6233 |.|ab2+5483b3 │ │ │ │ -00047b80: 2b36 3435 3361 3263 2b31 3139 3261 6263 +6453a2c+1192abc │ │ │ │ -00047b90: 2b31 3532 3530 6232 632b 3331 3634 6163 +15250b2c+3164ac │ │ │ │ -00047ba0: 322d 3239 3562 6332 2b37 3635 3063 332b 2-295bc2+7650c3+ │ │ │ │ -00047bb0: 3131 3034 3561 3264 2b31 3533 3333 6162 11045a2d+15333ab │ │ │ │ -00047bc0: 642d 317c 0a7c 3264 2b34 3235 3961 6264 d-1|.|2d+4259abd │ │ │ │ -00047bd0: 2d33 3030 3262 3264 2d31 3338 3932 6163 -3002b2d-13892ac │ │ │ │ -00047be0: 642d 3130 3532 3162 6364 2020 2020 2020 d-10521bcd │ │ │ │ +00047b60: 2020 2020 2020 2020 7c0a 7c61 6232 2b35 |.|ab2+5 │ │ │ │ +00047b70: 3438 3362 332b 3634 3533 6132 632b 3131 483b3+6453a2c+11 │ │ │ │ +00047b80: 3932 6162 632b 3135 3235 3062 3263 2b33 92abc+15250b2c+3 │ │ │ │ +00047b90: 3136 3461 6332 2d32 3935 6263 322b 3736 164ac2-295bc2+76 │ │ │ │ +00047ba0: 3530 6333 2b31 3130 3435 6132 642b 3135 50c3+11045a2d+15 │ │ │ │ +00047bb0: 3333 3361 6264 2d31 7c0a 7c32 642b 3432 333abd-1|.|2d+42 │ │ │ │ +00047bc0: 3539 6162 642d 3330 3032 6232 642d 3133 59abd-3002b2d-13 │ │ │ │ +00047bd0: 3839 3261 6364 2d31 3035 3231 6263 6420 892acd-10521bcd │ │ │ │ +00047be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047c00: 2020 2020 2020 2020 2020 2037 3032 3861 7028a │ │ │ │ -00047c10: 6432 207c 0a7c 2020 2020 2020 2020 2020 d2 |.| │ │ │ │ +00047c00: 3730 3238 6164 3220 7c0a 7c20 2020 2020 7028ad2 |.| │ │ │ │ +00047c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047c50: 2020 2020 2020 2020 2020 202d 3130 3337 -1037 │ │ │ │ -00047c60: 3061 627c 0a7c 2020 2020 2020 2020 2020 0ab|.| │ │ │ │ +00047c50: 2d31 3033 3730 6162 7c0a 7c20 2020 2020 -10370ab|.| │ │ │ │ +00047c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047ca0: 2020 2020 2020 2020 2020 202d 3133 3730 -1370 │ │ │ │ -00047cb0: 3761 337c 0a7c 6132 642d 3135 3333 3361 7a3|.|a2d-15333a │ │ │ │ -00047cc0: 6264 2b31 3035 3637 6232 642d 3335 3630 bd+10567b2d-3560 │ │ │ │ -00047cd0: 6163 642b 3232 3932 6263 642d 3731 3934 acd+2292bcd-7194 │ │ │ │ -00047ce0: 6164 322b 3632 3435 6264 322d 3836 3339 ad2+6245bd2-8639 │ │ │ │ -00047cf0: 6364 322b 3934 3236 6433 202d 3937 3937 cd2+9426d3 -9797 │ │ │ │ -00047d00: 6132 627c 0a7c 642d 3539 3639 6263 642d a2b|.|d-5969bcd- │ │ │ │ -00047d10: 3930 3734 6332 642b 3534 3833 6264 322b 9074c2d+5483bd2+ │ │ │ │ -00047d20: 3135 3235 3063 6432 2d31 3035 3637 6433 15250cd2-10567d3 │ │ │ │ -00047d30: 2031 3233 3661 332b 3839 3232 6132 622d 1236a3+8922a2b- │ │ │ │ -00047d40: 3335 3839 6162 322b 3839 3731 6233 2d35 3589ab2+8971b3-5 │ │ │ │ -00047d50: 3030 367c 0a7c 2020 2020 2020 2020 2020 006|.| │ │ │ │ +00047ca0: 2d31 3337 3037 6133 7c0a 7c61 3264 2d31 -13707a3|.|a2d-1 │ │ │ │ +00047cb0: 3533 3333 6162 642b 3130 3536 3762 3264 5333abd+10567b2d │ │ │ │ +00047cc0: 2d33 3536 3061 6364 2b32 3239 3262 6364 -3560acd+2292bcd │ │ │ │ +00047cd0: 2d37 3139 3461 6432 2b36 3234 3562 6432 -7194ad2+6245bd2 │ │ │ │ +00047ce0: 2d38 3633 3963 6432 2b39 3432 3664 3320 -8639cd2+9426d3 │ │ │ │ +00047cf0: 2d39 3739 3761 3262 7c0a 7c64 2d35 3936 -9797a2b|.|d-596 │ │ │ │ +00047d00: 3962 6364 2d39 3037 3463 3264 2b35 3438 9bcd-9074c2d+548 │ │ │ │ +00047d10: 3362 6432 2b31 3532 3530 6364 322d 3130 3bd2+15250cd2-10 │ │ │ │ +00047d20: 3536 3764 3320 3132 3336 6133 2b38 3932 567d3 1236a3+892 │ │ │ │ +00047d30: 3261 3262 2d33 3538 3961 6232 2b38 3937 2a2b-3589ab2+897 │ │ │ │ +00047d40: 3162 332d 3530 3036 7c0a 7c20 2020 2020 1b3-5006|.| │ │ │ │ +00047d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047da0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047d90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047df0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047de0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047e40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047e30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047e90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047e80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047ee0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047ed0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047f30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047f20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00047f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047f80: 2020 207c 0a7c 6132 6332 2d35 3037 6162 |.|a2c2-507ab │ │ │ │ -00047f90: 6332 2b31 3338 3034 6232 6332 2b38 3431 c2+13804b2c2+841 │ │ │ │ -00047fa0: 3661 6333 2d39 3263 342d 3335 3838 6133 6ac3-92c4-3588a3 │ │ │ │ -00047fb0: 642b 3134 3534 3161 3262 642d 3836 3835 d+14541a2bd-8685 │ │ │ │ -00047fc0: 6162 3264 2d31 3430 3935 6233 642b 3132 ab2d-14095b3d+12 │ │ │ │ -00047fd0: 3735 307c 0a7c 2020 2020 2020 2020 2020 750|.| │ │ │ │ +00047f70: 2020 2020 2020 2020 7c0a 7c61 3263 322d |.|a2c2- │ │ │ │ +00047f80: 3530 3761 6263 322b 3133 3830 3462 3263 507abc2+13804b2c │ │ │ │ +00047f90: 322b 3834 3136 6163 332d 3932 6334 2d33 2+8416ac3-92c4-3 │ │ │ │ +00047fa0: 3538 3861 3364 2b31 3435 3431 6132 6264 588a3d+14541a2bd │ │ │ │ +00047fb0: 2d38 3638 3561 6232 642d 3134 3039 3562 -8685ab2d-14095b │ │ │ │ +00047fc0: 3364 2b31 3237 3530 7c0a 7c20 2020 2020 3d+12750|.| │ │ │ │ +00047fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048020: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048010: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048070: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048060: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000480a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000480b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000480c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000480b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000480c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000480d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000480e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000480f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048110: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048100: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048160: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048150: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000481a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000481b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000481a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000481b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000481c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000481d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000481e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000481f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048200: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000481f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048250: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048240: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000482a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048290: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000482a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000482b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000482c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000482d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000482e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000482f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000482e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000482f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048340: 2020 207c 0a7c 3337 3833 6162 322b 3130 |.|3783ab2+10 │ │ │ │ -00048350: 3335 3962 332d 3535 3730 6132 632d 3533 359b3-5570a2c-53 │ │ │ │ -00048360: 3037 6162 632d 3734 3634 6232 632b 3331 07abc-7464b2c+31 │ │ │ │ -00048370: 3837 6132 642b 3835 3730 6162 642d 3832 87a2d+8570abd-82 │ │ │ │ -00048380: 3531 6232 642b 3834 3434 6163 642b 3530 51b2d+8444acd+50 │ │ │ │ -00048390: 3731 627c 0a7c 332b 3538 3634 6162 632b 71b|.|3+5864abc+ │ │ │ │ -000483a0: 3133 3939 3062 3263 2b35 3032 3661 6264 13990b2c+5026abd │ │ │ │ -000483b0: 2d31 3135 3231 6232 642d 3735 3031 6163 -11521b2d-7501ac │ │ │ │ -000483c0: 642d 3137 3739 6263 6420 2020 2020 2020 d-1779bcd │ │ │ │ -000483d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000483e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048330: 2020 2020 2020 2020 7c0a 7c33 3738 3361 |.|3783a │ │ │ │ +00048340: 6232 2b31 3033 3539 6233 2d35 3537 3061 b2+10359b3-5570a │ │ │ │ +00048350: 3263 2d35 3330 3761 6263 2d37 3436 3462 2c-5307abc-7464b │ │ │ │ +00048360: 3263 2b33 3138 3761 3264 2b38 3537 3061 2c+3187a2d+8570a │ │ │ │ +00048370: 6264 2d38 3235 3162 3264 2b38 3434 3461 bd-8251b2d+8444a │ │ │ │ +00048380: 6364 2b35 3037 3162 7c0a 7c33 2b35 3836 cd+5071b|.|3+586 │ │ │ │ +00048390: 3461 6263 2b31 3339 3930 6232 632b 3530 4abc+13990b2c+50 │ │ │ │ +000483a0: 3236 6162 642d 3131 3532 3162 3264 2d37 26abd-11521b2d-7 │ │ │ │ +000483b0: 3530 3161 6364 2d31 3737 3962 6364 2020 501acd-1779bcd │ │ │ │ +000483c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000483d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000483e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000483f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048430: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048420: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048480: 2020 207c 0a7c 622d 3935 3334 6162 322d |.|b-9534ab2- │ │ │ │ -00048490: 3130 3836 3662 332b 3934 3830 6132 632d 10866b3+9480a2c- │ │ │ │ -000484a0: 3732 3536 6162 632b 3730 3631 6232 632d 7256abc+7061b2c- │ │ │ │ -000484b0: 3531 3037 6163 322d 3536 3739 6263 322b 5107ac2-5679bc2+ │ │ │ │ -000484c0: 3633 3235 6333 2b31 3139 3530 6132 642b 6325c3+11950a2d+ │ │ │ │ -000484d0: 3533 327c 0a7c 2b33 3138 3761 3264 2b38 532|.|+3187a2d+8 │ │ │ │ -000484e0: 3537 3061 6264 2d38 3235 3162 3264 2b38 570abd-8251b2d+8 │ │ │ │ -000484f0: 3434 3461 6364 2b35 3037 3162 6364 2020 444acd+5071bcd │ │ │ │ +00048470: 2020 2020 2020 2020 7c0a 7c62 2d39 3533 |.|b-953 │ │ │ │ +00048480: 3461 6232 2d31 3038 3636 6233 2b39 3438 4ab2-10866b3+948 │ │ │ │ +00048490: 3061 3263 2d37 3235 3661 6263 2b37 3036 0a2c-7256abc+706 │ │ │ │ +000484a0: 3162 3263 2d35 3130 3761 6332 2d35 3637 1b2c-5107ac2-567 │ │ │ │ +000484b0: 3962 6332 2b36 3332 3563 332b 3131 3935 9bc2+6325c3+1195 │ │ │ │ +000484c0: 3061 3264 2b35 3332 7c0a 7c2b 3331 3837 0a2d+532|.|+3187 │ │ │ │ +000484d0: 6132 642b 3835 3730 6162 642d 3832 3531 a2d+8570abd-8251 │ │ │ │ +000484e0: 6232 642b 3834 3434 6163 642b 3530 3731 b2d+8444acd+5071 │ │ │ │ +000484f0: 6263 6420 2020 2020 2020 2020 2020 2020 bcd │ │ │ │ 00048500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048520: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048510: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048570: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048560: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000485a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000485b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000485c0: 2020 207c 0a7c 6232 632d 3131 3935 3061 |.|b2c-11950a │ │ │ │ -000485d0: 3264 2d35 3332 3161 6264 2b32 3632 3762 2d-5321abd+2627b │ │ │ │ -000485e0: 3264 2d33 3939 3661 6364 2d37 3135 3262 2d-3996acd-7152b │ │ │ │ -000485f0: 6364 2b39 3339 3861 6432 2b31 3533 3137 cd+9398ad2+15317 │ │ │ │ -00048600: 6264 322d 3639 3232 6364 322d 3530 3830 bd2-6922cd2-5080 │ │ │ │ -00048610: 6433 207c 0a7c 6232 642b 3735 3031 6163 d3 |.|b2d+7501ac │ │ │ │ -00048620: 642b 3137 3739 6263 642d 3535 3439 6332 d+1779bcd-5549c2 │ │ │ │ -00048630: 642d 3130 3836 3662 6432 2b37 3036 3163 d-10866bd2+7061c │ │ │ │ -00048640: 6432 2d32 3632 3764 3320 3130 3761 332b d2-2627d3 107a3+ │ │ │ │ -00048650: 3433 3736 6132 622b 3337 3833 6162 322b 4376a2b+3783ab2+ │ │ │ │ -00048660: 3130 337c 0a7c 2020 2020 2020 2020 2020 103|.| │ │ │ │ +000485b0: 2020 2020 2020 2020 7c0a 7c62 3263 2d31 |.|b2c-1 │ │ │ │ +000485c0: 3139 3530 6132 642d 3533 3231 6162 642b 1950a2d-5321abd+ │ │ │ │ +000485d0: 3236 3237 6232 642d 3339 3936 6163 642d 2627b2d-3996acd- │ │ │ │ +000485e0: 3731 3532 6263 642b 3933 3938 6164 322b 7152bcd+9398ad2+ │ │ │ │ +000485f0: 3135 3331 3762 6432 2d36 3932 3263 6432 15317bd2-6922cd2 │ │ │ │ +00048600: 2d35 3038 3064 3320 7c0a 7c62 3264 2b37 -5080d3 |.|b2d+7 │ │ │ │ +00048610: 3530 3161 6364 2b31 3737 3962 6364 2d35 501acd+1779bcd-5 │ │ │ │ +00048620: 3534 3963 3264 2d31 3038 3636 6264 322b 549c2d-10866bd2+ │ │ │ │ +00048630: 3730 3631 6364 322d 3236 3237 6433 2031 7061cd2-2627d3 1 │ │ │ │ +00048640: 3037 6133 2b34 3337 3661 3262 2b33 3738 07a3+4376a2b+378 │ │ │ │ +00048650: 3361 6232 2b31 3033 7c0a 7c20 2020 2020 3ab2+103|.| │ │ │ │ +00048660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000486a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000486b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000486a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000486b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000486c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000486d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000486e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000486f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048700: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000486f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048750: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048740: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000487a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048790: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000487a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000487b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000487c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000487d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000487e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000487f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000487e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000487f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048840: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048830: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048890: 2020 207c 0a7c 6233 632b 3134 3931 3961 |.|b3c+14919a │ │ │ │ -000488a0: 3263 322b 3131 3334 3661 6263 322d 3134 2c2+11346abc2-14 │ │ │ │ -000488b0: 3137 3262 3263 322d 3139 3130 6163 332d 172b2c2-1910ac3- │ │ │ │ -000488c0: 3131 3635 3662 6333 2b38 3532 3763 342b 11656bc3+8527c4+ │ │ │ │ -000488d0: 3637 3730 6133 642d 3931 3037 6132 6264 6770a3d-9107a2bd │ │ │ │ -000488e0: 2d38 387c 0a7c 2020 2020 2020 2020 2020 -88|.| │ │ │ │ +00048880: 2020 2020 2020 2020 7c0a 7c62 3363 2b31 |.|b3c+1 │ │ │ │ +00048890: 3439 3139 6132 6332 2b31 3133 3436 6162 4919a2c2+11346ab │ │ │ │ +000488a0: 6332 2d31 3431 3732 6232 6332 2d31 3931 c2-14172b2c2-191 │ │ │ │ +000488b0: 3061 6333 2d31 3136 3536 6263 332b 3835 0ac3-11656bc3+85 │ │ │ │ +000488c0: 3237 6334 2b36 3737 3061 3364 2d39 3130 27c4+6770a3d-910 │ │ │ │ +000488d0: 3761 3262 642d 3838 7c0a 7c20 2020 2020 7a2bd-88|.| │ │ │ │ +000488e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000488f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048930: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048920: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048980: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048970: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000489a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000489b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000489c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000489d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000489c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000489d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000489e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000489f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048a20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048a10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048a70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048a60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048ac0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048ab0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048b10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048b00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048b60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048b50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048bb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048ba0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048c00: 2020 207c 0a7c 3733 3762 3363 2d35 3032 |.|737b3c-502 │ │ │ │ -00048c10: 3861 3263 322d 3933 3132 6162 6332 2d31 8a2c2-9312abc2-1 │ │ │ │ -00048c20: 3631 3062 3263 322b 3135 3933 3661 6333 610b2c2+15936ac3 │ │ │ │ -00048c30: 2d35 3338 3562 6333 2d35 3337 3563 342b -5385bc3-5375c4+ │ │ │ │ -00048c40: 3639 3338 6133 642d 3933 3731 6132 6264 6938a3d-9371a2bd │ │ │ │ -00048c50: 2d39 397c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d -99|.|---------- │ │ │ │ +00048bf0: 2020 2020 2020 2020 7c0a 7c37 3337 6233 |.|737b3 │ │ │ │ +00048c00: 632d 3530 3238 6132 6332 2d39 3331 3261 c-5028a2c2-9312a │ │ │ │ +00048c10: 6263 322d 3136 3130 6232 6332 2b31 3539 bc2-1610b2c2+159 │ │ │ │ +00048c20: 3336 6163 332d 3533 3835 6263 332d 3533 36ac3-5385bc3-53 │ │ │ │ +00048c30: 3735 6334 2b36 3933 3861 3364 2d39 3337 75c4+6938a3d-937 │ │ │ │ +00048c40: 3161 3262 642d 3939 7c0a 7c2d 2d2d 2d2d 1a2bd-99|.|----- │ │ │ │ +00048c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00048c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00048ca0: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ +00048c90: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +00048ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048cf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048ce0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048d40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048d30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048d90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048d80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048de0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048dd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048e30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048e20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048e80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048e70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048ed0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048ec0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048f20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048f10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048f70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048f60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048fc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00048fb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00048fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049010: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049000: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049060: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049050: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000490a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000490b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000490a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000490b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000490c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000490d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000490e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000490f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049100: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000490f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049150: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049140: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000491a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049190: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000491a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000491b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000491c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000491d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000491e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000491f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000491e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000491f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049240: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049230: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049290: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049280: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000492a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000492b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000492c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000492d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000492e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000492d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000492e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000492f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049330: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049320: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049380: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049370: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000493a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000493b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000493c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000493d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000493c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000493d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000493e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000493f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049410: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ -00049420: 2020 207c 0a7c 6420 2020 2020 2020 2020 |.|d │ │ │ │ +00049400: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +00049410: 2020 2020 2020 2020 7c0a 7c64 2020 2020 |.|d │ │ │ │ +00049420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049460: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ -00049470: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049450: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +00049460: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000494a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000494b0: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ -000494c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000494a0: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +000494b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000494c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000494d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000494e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000494f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049500: 2020 2020 2020 3132 3336 6133 2b38 3932 1236a3+892 │ │ │ │ -00049510: 3261 327c 0a7c 2020 2020 2020 2020 2020 2a2|.| │ │ │ │ +000494f0: 2020 2020 2020 2020 2020 2031 3233 3661 1236a │ │ │ │ +00049500: 332b 3839 3232 6132 7c0a 7c20 2020 2020 3+8922a2|.| │ │ │ │ +00049510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049550: 2020 2020 2020 3130 3337 3061 6232 2d37 10370ab2-7 │ │ │ │ -00049560: 3039 327c 0a7c 3035 3637 6232 642b 3335 092|.|0567b2d+35 │ │ │ │ -00049570: 3630 6163 642d 3232 3932 6263 642d 3134 60acd-2292bcd-14 │ │ │ │ -00049580: 3338 3863 3264 2b37 3139 3461 6432 2d36 388c2d+7194ad2-6 │ │ │ │ -00049590: 3234 3562 6432 2b38 3633 3963 6432 2d39 245bd2+8639cd2-9 │ │ │ │ -000495a0: 3432 3664 3320 3133 3730 3761 332b 3231 426d3 13707a3+21 │ │ │ │ -000495b0: 3737 617c 0a7c 2020 2020 2020 2020 2020 77a|.| │ │ │ │ +00049540: 2020 2020 2020 2020 2020 2031 3033 3730 10370 │ │ │ │ +00049550: 6162 322d 3730 3932 7c0a 7c30 3536 3762 ab2-7092|.|0567b │ │ │ │ +00049560: 3264 2b33 3536 3061 6364 2d32 3239 3262 2d+3560acd-2292b │ │ │ │ +00049570: 6364 2d31 3433 3838 6332 642b 3731 3934 cd-14388c2d+7194 │ │ │ │ +00049580: 6164 322d 3632 3435 6264 322b 3836 3339 ad2-6245bd2+8639 │ │ │ │ +00049590: 6364 322d 3934 3236 6433 2031 3337 3037 cd2-9426d3 13707 │ │ │ │ +000495a0: 6133 2b32 3137 3761 7c0a 7c20 2020 2020 a3+2177a|.| │ │ │ │ +000495b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000495c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000495d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000495e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000495f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049600: 2020 207c 0a7c 322b 3730 3932 6233 2b39 |.|2+7092b3+9 │ │ │ │ -00049610: 3730 3261 6263 2b36 3632 3762 3263 2d39 702abc+6627b2c-9 │ │ │ │ -00049620: 3739 3762 6332 2d35 3837 3463 332d 3838 797bc2-5874c3-88 │ │ │ │ -00049630: 3836 6162 642d 3437 3030 6232 642b 3135 86abd-4700b2d+15 │ │ │ │ -00049640: 6163 642d 3539 3639 6263 642d 3930 3734 acd-5969bcd-9074 │ │ │ │ -00049650: 6332 647c 0a7c 2d32 3137 3761 3262 2b37 c2d|.|-2177a2b+7 │ │ │ │ -00049660: 3032 3861 6232 2b37 3032 3161 3263 2d36 028ab2+7021a2c-6 │ │ │ │ -00049670: 3337 3761 6263 2b37 3630 3061 6332 2b31 377abc+7600ac2+1 │ │ │ │ -00049680: 3137 3236 6263 322d 3131 3430 6333 2d31 1726bc2-1140c3-1 │ │ │ │ -00049690: 3230 3661 3264 2b31 3134 3335 6162 642b 206a2d+11435abd+ │ │ │ │ -000496a0: 3630 347c 0a7c 2d35 3837 3461 3263 2d39 604|.|-5874a2c-9 │ │ │ │ -000496b0: 3037 3461 3264 2020 2020 2020 2020 2020 074a2d │ │ │ │ +000495f0: 2020 2020 2020 2020 7c0a 7c32 2b37 3039 |.|2+709 │ │ │ │ +00049600: 3262 332b 3937 3032 6162 632b 3636 3237 2b3+9702abc+6627 │ │ │ │ +00049610: 6232 632d 3937 3937 6263 322d 3538 3734 b2c-9797bc2-5874 │ │ │ │ +00049620: 6333 2d38 3838 3661 6264 2d34 3730 3062 c3-8886abd-4700b │ │ │ │ +00049630: 3264 2b31 3561 6364 2d35 3936 3962 6364 2d+15acd-5969bcd │ │ │ │ +00049640: 2d39 3037 3463 3264 7c0a 7c2d 3231 3737 -9074c2d|.|-2177 │ │ │ │ +00049650: 6132 622b 3730 3238 6162 322b 3730 3231 a2b+7028ab2+7021 │ │ │ │ +00049660: 6132 632d 3633 3737 6162 632b 3736 3030 a2c-6377abc+7600 │ │ │ │ +00049670: 6163 322b 3131 3732 3662 6332 2d31 3134 ac2+11726bc2-114 │ │ │ │ +00049680: 3063 332d 3132 3036 6132 642b 3131 3433 0c3-1206a2d+1143 │ │ │ │ +00049690: 3561 6264 2b36 3034 7c0a 7c2d 3538 3734 5abd+604|.|-5874 │ │ │ │ +000496a0: 6132 632d 3930 3734 6132 6420 2020 2020 a2c-9074a2d │ │ │ │ +000496b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000496c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000496d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000496e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000496f0: 2020 207c 0a7c 6132 632d 3535 3939 6162 |.|a2c-5599ab │ │ │ │ -00049700: 632d 3134 3136 3562 3263 2b38 3838 3061 c-14165b2c+8880a │ │ │ │ -00049710: 3264 2b34 3235 3961 6264 2d33 3030 3262 2d+4259abd-3002b │ │ │ │ -00049720: 3264 2d31 3338 3932 6163 642d 3130 3532 2d-13892acd-1052 │ │ │ │ -00049730: 3162 6364 207c 2020 2020 2020 2020 2020 1bcd | │ │ │ │ -00049740: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000496e0: 2020 2020 2020 2020 7c0a 7c61 3263 2d35 |.|a2c-5 │ │ │ │ +000496f0: 3539 3961 6263 2d31 3431 3635 6232 632b 599abc-14165b2c+ │ │ │ │ +00049700: 3838 3830 6132 642b 3432 3539 6162 642d 8880a2d+4259abd- │ │ │ │ +00049710: 3330 3032 6232 642d 3133 3839 3261 6364 3002b2d-13892acd │ │ │ │ +00049720: 2d31 3035 3231 6263 6420 7c20 2020 2020 -10521bcd | │ │ │ │ +00049730: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049790: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049780: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000497a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000497b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000497c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000497d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000497e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000497d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000497e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000497f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049830: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049820: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049880: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049870: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000498a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000498b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000498c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000498d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000498c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000498d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000498e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000498f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049920: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049910: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049970: 2020 207c 0a7c 6132 6364 2b34 3035 3361 |.|a2cd+4053a │ │ │ │ -00049980: 6263 642b 3230 3830 6232 6364 2d39 3137 bcd+2080b2cd-917 │ │ │ │ -00049990: 3561 6332 642b 3634 3962 6332 642d 3838 5ac2d+649bc2d-88 │ │ │ │ -000499a0: 3239 6333 642d 3231 3634 6132 6432 2d38 29c3d-2164a2d2-8 │ │ │ │ -000499b0: 3633 3561 6264 322b 3731 3631 6232 6432 635abd2+7161b2d2 │ │ │ │ -000499c0: 2d39 397c 0a7c 2020 2020 2020 2020 2020 -99|.| │ │ │ │ +00049960: 2020 2020 2020 2020 7c0a 7c61 3263 642b |.|a2cd+ │ │ │ │ +00049970: 3430 3533 6162 6364 2b32 3038 3062 3263 4053abcd+2080b2c │ │ │ │ +00049980: 642d 3931 3735 6163 3264 2b36 3439 6263 d-9175ac2d+649bc │ │ │ │ +00049990: 3264 2d38 3832 3963 3364 2d32 3136 3461 2d-8829c3d-2164a │ │ │ │ +000499a0: 3264 322d 3836 3335 6162 6432 2b37 3136 2d2-8635abd2+716 │ │ │ │ +000499b0: 3162 3264 322d 3939 7c0a 7c20 2020 2020 1b2d2-99|.| │ │ │ │ +000499c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000499d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000499e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000499f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049a10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049a00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049a60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049a50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049ab0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049aa0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049b00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049af0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049b50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049b40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049ba0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049b90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049bf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049be0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049c40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049c30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049c90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049c80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049ce0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049cd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00049ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049d20: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ -00049d30: 2020 207c 0a7c 6364 2020 2020 2020 2020 |.|cd │ │ │ │ +00049d20: 2030 2020 2020 2020 7c0a 7c63 6420 2020 0 |.|cd │ │ │ │ +00049d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049d70: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ -00049d80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049d70: 2030 2020 2020 2020 7c0a 7c20 2020 2020 0 |.| │ │ │ │ +00049d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049dc0: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ -00049dd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049dc0: 2030 2020 2020 2020 7c0a 7c20 2020 2020 0 |.| │ │ │ │ +00049dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049e10: 2020 2020 2020 2020 2020 2020 3130 3761 107a │ │ │ │ -00049e20: 332b 347c 0a7c 2020 2020 2020 2020 2020 3+4|.| │ │ │ │ +00049e10: 2031 3037 6133 2b34 7c0a 7c20 2020 2020 107a3+4|.| │ │ │ │ +00049e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049e60: 2020 2020 2020 2020 2020 2020 3832 3331 8231 │ │ │ │ -00049e70: 6162 327c 0a7c 3161 6264 2d32 3632 3762 ab2|.|1abd-2627b │ │ │ │ -00049e80: 3264 2b33 3939 3661 6364 2b37 3135 3262 2d+3996acd+7152b │ │ │ │ -00049e90: 6364 2b31 3137 3430 6332 642d 3933 3938 cd+11740c2d-9398 │ │ │ │ -00049ea0: 6164 322d 3135 3331 3762 6432 2b36 3932 ad2-15317bd2+692 │ │ │ │ -00049eb0: 3263 6432 2b35 3038 3064 3320 2d31 3533 2cd2+5080d3 -153 │ │ │ │ -00049ec0: 3434 617c 0a7c 2d31 3032 3539 6164 3220 44a|.|-10259ad2 │ │ │ │ +00049e60: 2038 3233 3161 6232 7c0a 7c31 6162 642d 8231ab2|.|1abd- │ │ │ │ +00049e70: 3236 3237 6232 642b 3339 3936 6163 642b 2627b2d+3996acd+ │ │ │ │ +00049e80: 3731 3532 6263 642b 3131 3734 3063 3264 7152bcd+11740c2d │ │ │ │ +00049e90: 2d39 3339 3861 6432 2d31 3533 3137 6264 -9398ad2-15317bd │ │ │ │ +00049ea0: 322b 3639 3232 6364 322b 3530 3830 6433 2+6922cd2+5080d3 │ │ │ │ +00049eb0: 202d 3135 3334 3461 7c0a 7c2d 3130 3235 -15344a|.|-1025 │ │ │ │ +00049ec0: 3961 6432 2020 2020 2020 2020 2020 2020 9ad2 │ │ │ │ 00049ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049f10: 2020 207c 0a7c 2d38 3233 3161 6232 2d31 |.|-8231ab2-1 │ │ │ │ -00049f20: 3331 3737 6233 2d35 3836 3461 6263 2d31 3177b3-5864abc-1 │ │ │ │ -00049f30: 3339 3930 6232 632b 3133 3039 6263 322d 3990b2c+1309bc2- │ │ │ │ -00049f40: 3533 3938 6333 2d35 3032 3661 6264 2b31 5398c3-5026abd+1 │ │ │ │ -00049f50: 3135 3231 6232 642b 3735 3031 6163 642b 1521b2d+7501acd+ │ │ │ │ -00049f60: 3137 377c 0a7c 3135 3334 3461 332d 3236 177|.|15344a3-26 │ │ │ │ -00049f70: 3533 6132 622d 3130 3235 3961 6232 2d31 53a2b-10259ab2-1 │ │ │ │ -00049f80: 3233 3635 6132 632b 3732 3136 6162 632d 2365a2c+7216abc- │ │ │ │ -00049f90: 3632 3330 6163 322b 3533 3236 6263 322d 6230ac2+5326bc2- │ │ │ │ -00049fa0: 3130 3331 6333 2b31 3335 3038 6132 642b 1031c3+13508a2d+ │ │ │ │ -00049fb0: 3130 317c 0a7c 3133 3039 6132 622d 3533 101|.|1309a2b-53 │ │ │ │ -00049fc0: 3938 6132 632d 3535 3439 6132 6420 2020 98a2c-5549a2d │ │ │ │ +00049f00: 2020 2020 2020 2020 7c0a 7c2d 3832 3331 |.|-8231 │ │ │ │ +00049f10: 6162 322d 3133 3137 3762 332d 3538 3634 ab2-13177b3-5864 │ │ │ │ +00049f20: 6162 632d 3133 3939 3062 3263 2b31 3330 abc-13990b2c+130 │ │ │ │ +00049f30: 3962 6332 2d35 3339 3863 332d 3530 3236 9bc2-5398c3-5026 │ │ │ │ +00049f40: 6162 642b 3131 3532 3162 3264 2b37 3530 abd+11521b2d+750 │ │ │ │ +00049f50: 3161 6364 2b31 3737 7c0a 7c31 3533 3434 1acd+177|.|15344 │ │ │ │ +00049f60: 6133 2d32 3635 3361 3262 2d31 3032 3539 a3-2653a2b-10259 │ │ │ │ +00049f70: 6162 322d 3132 3336 3561 3263 2b37 3231 ab2-12365a2c+721 │ │ │ │ +00049f80: 3661 6263 2d36 3233 3061 6332 2b35 3332 6abc-6230ac2+532 │ │ │ │ +00049f90: 3662 6332 2d31 3033 3163 332b 3133 3530 6bc2-1031c3+1350 │ │ │ │ +00049fa0: 3861 3264 2b31 3031 7c0a 7c31 3330 3961 8a2d+101|.|1309a │ │ │ │ +00049fb0: 3262 2d35 3339 3861 3263 2d35 3534 3961 2b-5398a2c-5549a │ │ │ │ +00049fc0: 3264 2020 2020 2020 2020 2020 2020 2020 2d │ │ │ │ 00049fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a000: 2020 207c 0a7c 3539 6233 2d35 3537 3061 |.|59b3-5570a │ │ │ │ -0004a010: 3263 2d35 3330 3761 6263 2d37 3436 3462 2c-5307abc-7464b │ │ │ │ -0004a020: 3263 2b33 3138 3761 3264 2b38 3537 3061 2c+3187a2d+8570a │ │ │ │ -0004a030: 6264 2d38 3235 3162 3264 2b38 3434 3461 bd-8251b2d+8444a │ │ │ │ -0004a040: 6364 2b35 3037 3162 6364 207c 2020 2020 cd+5071bcd | │ │ │ │ -0004a050: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00049ff0: 2020 2020 2020 2020 7c0a 7c35 3962 332d |.|59b3- │ │ │ │ +0004a000: 3535 3730 6132 632d 3533 3037 6162 632d 5570a2c-5307abc- │ │ │ │ +0004a010: 3734 3634 6232 632b 3331 3837 6132 642b 7464b2c+3187a2d+ │ │ │ │ +0004a020: 3835 3730 6162 642d 3832 3531 6232 642b 8570abd-8251b2d+ │ │ │ │ +0004a030: 3834 3434 6163 642b 3530 3731 6263 6420 8444acd+5071bcd │ │ │ │ +0004a040: 7c20 2020 2020 2020 7c0a 7c20 2020 2020 | |.| │ │ │ │ +0004a050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a0a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a090: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a0f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a0e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a140: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a130: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a190: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a180: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a1e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a1d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a230: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a220: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a280: 2020 207c 0a7c 3436 6162 3264 2d35 3231 |.|46ab2d-521 │ │ │ │ -0004a290: 3862 3364 2d38 3032 6132 6364 2d36 3333 8b3d-802a2cd-633 │ │ │ │ -0004a2a0: 3261 6263 642b 3537 3238 6232 6364 2d35 2abcd+5728b2cd-5 │ │ │ │ -0004a2b0: 3334 3761 6332 642d 3133 3339 3462 6332 347ac2d-13394bc2 │ │ │ │ -0004a2c0: 642d 3239 3663 3364 2d37 3434 3661 3264 d-296c3d-7446a2d │ │ │ │ -0004a2d0: 322d 317c 0a7c 2020 2020 2020 2020 2020 2-1|.| │ │ │ │ +0004a270: 2020 2020 2020 2020 7c0a 7c34 3661 6232 |.|46ab2 │ │ │ │ +0004a280: 642d 3532 3138 6233 642d 3830 3261 3263 d-5218b3d-802a2c │ │ │ │ +0004a290: 642d 3633 3332 6162 6364 2b35 3732 3862 d-6332abcd+5728b │ │ │ │ +0004a2a0: 3263 642d 3533 3437 6163 3264 2d31 3333 2cd-5347ac2d-133 │ │ │ │ +0004a2b0: 3934 6263 3264 2d32 3936 6333 642d 3734 94bc2d-296c3d-74 │ │ │ │ +0004a2c0: 3436 6132 6432 2d31 7c0a 7c20 2020 2020 46a2d2-1|.| │ │ │ │ +0004a2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a320: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a310: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a370: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a360: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a3c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a3b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a410: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a400: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a460: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a450: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a4b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a4a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a500: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a4f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a550: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a540: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a5a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a590: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a5f0: 2020 207c 0a7c 3031 6162 3264 2b34 3432 |.|01ab2d+442 │ │ │ │ -0004a600: 3062 3364 2b31 3233 3137 6132 6364 2b31 0b3d+12317a2cd+1 │ │ │ │ -0004a610: 3533 3738 6162 6364 2b31 3439 3231 6232 5378abcd+14921b2 │ │ │ │ -0004a620: 6364 2d38 3831 3061 6332 642b 3332 3731 cd-8810ac2d+3271 │ │ │ │ -0004a630: 6263 3264 2b31 3036 3633 6333 642b 3132 bc2d+10663c3d+12 │ │ │ │ -0004a640: 3533 377c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 537|.|---------- │ │ │ │ +0004a5e0: 2020 2020 2020 2020 7c0a 7c30 3161 6232 |.|01ab2 │ │ │ │ +0004a5f0: 642b 3434 3230 6233 642b 3132 3331 3761 d+4420b3d+12317a │ │ │ │ +0004a600: 3263 642b 3135 3337 3861 6263 642b 3134 2cd+15378abcd+14 │ │ │ │ +0004a610: 3932 3162 3263 642d 3838 3130 6163 3264 921b2cd-8810ac2d │ │ │ │ +0004a620: 2b33 3237 3162 6332 642b 3130 3636 3363 +3271bc2d+10663c │ │ │ │ +0004a630: 3364 2b31 3235 3337 7c0a 7c2d 2d2d 2d2d 3d+12537|.|----- │ │ │ │ +0004a640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004a680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004a690: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ +0004a680: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0004a690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a6e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a6d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a730: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a720: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a780: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a770: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a7d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a7c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a820: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a810: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a870: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a860: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a8c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a8b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a910: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a900: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a960: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a950: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a9b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a9a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004a9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004aa00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004a9f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004aa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004aa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004aa50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004aa40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004aa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004aa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004aaa0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004aa90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004aaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004aae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004aaf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004aae0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004aaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ab10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ab20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ab30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ab40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ab30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ab40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ab50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ab60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ab70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ab80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ab90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ab80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ab90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004abb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004abc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004abd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004abe0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004abd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004abe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004abf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ac00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ac10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ac20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ac30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ac20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ac30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ac40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ac50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ac60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ac70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ac80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ac70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ac80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ac90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004acb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004acc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004acd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004acc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004acd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ace0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004acf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ad00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ad10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ad20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ad10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ad20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ad30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ad40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ad50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ad60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ad70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ad60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ad70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ad80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ad90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ada0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004adb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004adc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004adb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004adc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004adf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ae00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ae10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ae00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ae10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ae20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ae50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ae60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ae50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ae90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004aea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004aeb0: 2020 207c 0a7c 622d 3335 3839 6162 322b |.|b-3589ab2+ │ │ │ │ -0004aec0: 3839 3731 6233 2d35 3030 3661 3263 2d35 8971b3-5006a2c-5 │ │ │ │ -0004aed0: 3539 3961 6263 2d31 3431 3635 6232 632b 599abc-14165b2c+ │ │ │ │ -0004aee0: 3838 3830 6132 642b 3432 3539 6162 642d 8880a2d+4259abd- │ │ │ │ -0004aef0: 3330 3032 6232 642d 3133 3839 3261 6364 3002b2d-13892acd │ │ │ │ -0004af00: 2d31 307c 0a7c 6233 2d39 3730 3261 6263 -10|.|b3-9702abc │ │ │ │ -0004af10: 2d36 3632 3762 3263 2b38 3838 3661 6264 -6627b2c+8886abd │ │ │ │ -0004af20: 2b34 3730 3062 3264 2d31 3561 6364 2b35 +4700b2d-15acd+5 │ │ │ │ -0004af30: 3936 3962 6364 2020 2020 2020 2020 2020 969bcd │ │ │ │ -0004af40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004af50: 2020 207c 0a7c 3262 2d37 3032 3861 6232 |.|2b-7028ab2 │ │ │ │ -0004af60: 2b39 3739 3762 332d 3730 3231 6132 632b +9797b3-7021a2c+ │ │ │ │ -0004af70: 3633 3737 6162 632b 3538 3734 6232 632d 6377abc+5874b2c- │ │ │ │ -0004af80: 3736 3030 6163 322d 3131 3732 3662 6332 7600ac2-11726bc2 │ │ │ │ -0004af90: 2b31 3134 3063 332b 3132 3036 6132 642d +1140c3+1206a2d- │ │ │ │ -0004afa0: 3131 347c 0a7c 2020 2020 2020 2020 2020 114|.| │ │ │ │ +0004aea0: 2020 2020 2020 2020 7c0a 7c62 2d33 3538 |.|b-358 │ │ │ │ +0004aeb0: 3961 6232 2b38 3937 3162 332d 3530 3036 9ab2+8971b3-5006 │ │ │ │ +0004aec0: 6132 632d 3535 3939 6162 632d 3134 3136 a2c-5599abc-1416 │ │ │ │ +0004aed0: 3562 3263 2b38 3838 3061 3264 2b34 3235 5b2c+8880a2d+425 │ │ │ │ +0004aee0: 3961 6264 2d33 3030 3262 3264 2d31 3338 9abd-3002b2d-138 │ │ │ │ +0004aef0: 3932 6163 642d 3130 7c0a 7c62 332d 3937 92acd-10|.|b3-97 │ │ │ │ +0004af00: 3032 6162 632d 3636 3237 6232 632b 3838 02abc-6627b2c+88 │ │ │ │ +0004af10: 3836 6162 642b 3437 3030 6232 642d 3135 86abd+4700b2d-15 │ │ │ │ +0004af20: 6163 642b 3539 3639 6263 6420 2020 2020 acd+5969bcd │ │ │ │ +0004af30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0004af40: 2020 2020 2020 2020 7c0a 7c32 622d 3730 |.|2b-70 │ │ │ │ +0004af50: 3238 6162 322b 3937 3937 6233 2d37 3032 28ab2+9797b3-702 │ │ │ │ +0004af60: 3161 3263 2b36 3337 3761 6263 2b35 3837 1a2c+6377abc+587 │ │ │ │ +0004af70: 3462 3263 2d37 3630 3061 6332 2d31 3137 4b2c-7600ac2-117 │ │ │ │ +0004af80: 3236 6263 322b 3131 3430 6333 2b31 3230 26bc2+1140c3+120 │ │ │ │ +0004af90: 3661 3264 2d31 3134 7c0a 7c20 2020 2020 6a2d-114|.| │ │ │ │ +0004afa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004afb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004afc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004afd0: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ -0004afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004aff0: 2020 207c 0a7c 2b36 3732 3361 6432 2b35 |.|+6723ad2+5 │ │ │ │ -0004b000: 3438 3362 6432 2b31 3532 3530 6364 322d 483bd2+15250cd2- │ │ │ │ -0004b010: 3130 3536 3764 3320 2020 2020 2020 2020 10567d3 │ │ │ │ -0004b020: 2020 2020 2020 2020 2020 3132 3336 6133 1236a3 │ │ │ │ -0004b030: 2b38 3932 3261 3262 2d33 3538 3961 6232 +8922a2b-3589ab2 │ │ │ │ -0004b040: 2b38 397c 0a7c 3061 6364 2d38 3032 3262 +89|.|0acd-8022b │ │ │ │ -0004b050: 6364 2d33 3936 3863 3264 2b33 3136 3461 cd-3968c2d+3164a │ │ │ │ -0004b060: 6432 2d32 3935 6264 322b 3736 3530 6364 d2-295bd2+7650cd │ │ │ │ -0004b070: 322d 3134 3338 3864 3320 3020 2020 2020 2-14388d3 0 │ │ │ │ -0004b080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b090: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004afc0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +0004afd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0004afe0: 2020 2020 2020 2020 7c0a 7c2b 3637 3233 |.|+6723 │ │ │ │ +0004aff0: 6164 322b 3534 3833 6264 322b 3135 3235 ad2+5483bd2+1525 │ │ │ │ +0004b000: 3063 6432 2d31 3035 3637 6433 2020 2020 0cd2-10567d3 │ │ │ │ +0004b010: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +0004b020: 3233 3661 332b 3839 3232 6132 622d 3335 236a3+8922a2b-35 │ │ │ │ +0004b030: 3839 6162 322b 3839 7c0a 7c30 6163 642d 89ab2+89|.|0acd- │ │ │ │ +0004b040: 3830 3232 6263 642d 3339 3638 6332 642b 8022bcd-3968c2d+ │ │ │ │ +0004b050: 3331 3634 6164 322d 3239 3562 6432 2b37 3164ad2-295bd2+7 │ │ │ │ +0004b060: 3635 3063 6432 2d31 3433 3838 6433 2030 650cd2-14388d3 0 │ │ │ │ +0004b070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0004b080: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b0c0: 2020 2020 2020 2020 2020 2d31 3337 3037 -13707 │ │ │ │ -0004b0d0: 6133 2d32 3137 3761 3262 2b37 3032 3861 a3-2177a2b+7028a │ │ │ │ -0004b0e0: 6232 2d7c 0a7c 2020 2020 2020 2020 2020 b2-|.| │ │ │ │ +0004b0b0: 2020 2020 2020 2020 2020 2020 2020 202d - │ │ │ │ +0004b0c0: 3133 3730 3761 332d 3231 3737 6132 622b 13707a3-2177a2b+ │ │ │ │ +0004b0d0: 3730 3238 6162 322d 7c0a 7c20 2020 2020 7028ab2-|.| │ │ │ │ +0004b0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b130: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b120: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b180: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b170: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b1d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b1c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b220: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b210: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b270: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b260: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b2c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b2b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b310: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b300: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b360: 2020 207c 0a7c 3761 6364 322d 3330 3135 |.|7acd2-3015 │ │ │ │ -0004b370: 6263 6432 2d31 3132 3734 6332 6432 2031 bcd2-11274c2d2 1 │ │ │ │ -0004b380: 3139 3538 6133 622b 3836 3431 6132 6232 1958a3b+8641a2b2 │ │ │ │ -0004b390: 2b39 3836 3461 6233 2b38 3634 3962 342d +9864ab3+8649b4- │ │ │ │ -0004b3a0: 3434 3137 6133 632b 3337 3331 6132 6263 4417a3c+3731a2bc │ │ │ │ -0004b3b0: 2b37 397c 0a7c 2020 2020 2020 2020 2020 +79|.| │ │ │ │ +0004b350: 2020 2020 2020 2020 7c0a 7c37 6163 6432 |.|7acd2 │ │ │ │ +0004b360: 2d33 3031 3562 6364 322d 3131 3237 3463 -3015bcd2-11274c │ │ │ │ +0004b370: 3264 3220 3131 3935 3861 3362 2b38 3634 2d2 11958a3b+864 │ │ │ │ +0004b380: 3161 3262 322b 3938 3634 6162 332b 3836 1a2b2+9864ab3+86 │ │ │ │ +0004b390: 3439 6234 2d34 3431 3761 3363 2b33 3733 49b4-4417a3c+373 │ │ │ │ +0004b3a0: 3161 3262 632b 3739 7c0a 7c20 2020 2020 1a2bc+79|.| │ │ │ │ +0004b3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b400: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b3f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b450: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b440: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b4a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b490: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b4f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b4e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b540: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b530: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b590: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b580: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b5e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b5d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b630: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b620: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b680: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b670: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b6d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b6c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b720: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b710: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b770: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b760: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b7c0: 2020 207c 0a7c 3337 3661 3262 2b33 3738 |.|376a2b+378 │ │ │ │ -0004b7d0: 3361 6232 2b31 3033 3539 6233 2d35 3537 3ab2+10359b3-557 │ │ │ │ -0004b7e0: 3061 3263 2d35 3330 3761 6263 2d37 3436 0a2c-5307abc-746 │ │ │ │ -0004b7f0: 3462 3263 2b33 3138 3761 3264 2b38 3537 4b2c+3187a2d+857 │ │ │ │ -0004b800: 3061 6264 2d38 3235 3162 3264 2b38 3434 0abd-8251b2d+844 │ │ │ │ -0004b810: 3461 637c 0a7c 2b31 3331 3737 6233 2b35 4ac|.|+13177b3+5 │ │ │ │ -0004b820: 3836 3461 6263 2b31 3339 3930 6232 632b 864abc+13990b2c+ │ │ │ │ -0004b830: 3530 3236 6162 642d 3131 3532 3162 3264 5026abd-11521b2d │ │ │ │ -0004b840: 2d37 3530 3161 6364 2d31 3737 3962 6364 -7501acd-1779bcd │ │ │ │ -0004b850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b860: 2020 207c 0a7c 332b 3236 3533 6132 622b |.|3+2653a2b+ │ │ │ │ -0004b870: 3130 3235 3961 6232 2d31 3330 3962 332b 10259ab2-1309b3+ │ │ │ │ -0004b880: 3132 3336 3561 3263 2d37 3231 3661 6263 12365a2c-7216abc │ │ │ │ -0004b890: 2b35 3339 3862 3263 2b36 3233 3061 6332 +5398b2c+6230ac2 │ │ │ │ -0004b8a0: 2d35 3332 3662 6332 2b31 3033 3163 332d -5326bc2+1031c3- │ │ │ │ -0004b8b0: 3133 357c 0a7c 2020 2020 2020 2020 2020 135|.| │ │ │ │ +0004b7b0: 2020 2020 2020 2020 7c0a 7c33 3736 6132 |.|376a2 │ │ │ │ +0004b7c0: 622b 3337 3833 6162 322b 3130 3335 3962 b+3783ab2+10359b │ │ │ │ +0004b7d0: 332d 3535 3730 6132 632d 3533 3037 6162 3-5570a2c-5307ab │ │ │ │ +0004b7e0: 632d 3734 3634 6232 632b 3331 3837 6132 c-7464b2c+3187a2 │ │ │ │ +0004b7f0: 642b 3835 3730 6162 642d 3832 3531 6232 d+8570abd-8251b2 │ │ │ │ +0004b800: 642b 3834 3434 6163 7c0a 7c2b 3133 3137 d+8444ac|.|+1317 │ │ │ │ +0004b810: 3762 332b 3538 3634 6162 632b 3133 3939 7b3+5864abc+1399 │ │ │ │ +0004b820: 3062 3263 2b35 3032 3661 6264 2d31 3135 0b2c+5026abd-115 │ │ │ │ +0004b830: 3231 6232 642d 3735 3031 6163 642d 3137 21b2d-7501acd-17 │ │ │ │ +0004b840: 3739 6263 6420 2020 2020 2020 2020 2020 79bcd │ │ │ │ +0004b850: 2020 2020 2020 2020 7c0a 7c33 2b32 3635 |.|3+265 │ │ │ │ +0004b860: 3361 3262 2b31 3032 3539 6162 322d 3133 3a2b+10259ab2-13 │ │ │ │ +0004b870: 3039 6233 2b31 3233 3635 6132 632d 3732 09b3+12365a2c-72 │ │ │ │ +0004b880: 3136 6162 632b 3533 3938 6232 632b 3632 16abc+5398b2c+62 │ │ │ │ +0004b890: 3330 6163 322d 3533 3236 6263 322b 3130 30ac2-5326bc2+10 │ │ │ │ +0004b8a0: 3331 6333 2d31 3335 7c0a 7c20 2020 2020 31c3-135|.| │ │ │ │ +0004b8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b8f0: 2020 2020 3020 2020 2020 2020 2020 2020 0 │ │ │ │ -0004b900: 2020 207c 0a7c 3962 6364 2d35 3534 3963 |.|9bcd-5549c │ │ │ │ -0004b910: 3264 2d39 3533 3461 6432 2d31 3038 3636 2d-9534ad2-10866 │ │ │ │ -0004b920: 6264 322b 3730 3631 6364 322d 3236 3237 bd2+7061cd2-2627 │ │ │ │ -0004b930: 6433 2020 2020 2020 2020 2020 2020 2020 d3 │ │ │ │ -0004b940: 2020 2020 3130 3761 332b 3433 3736 6132 107a3+4376a2 │ │ │ │ -0004b950: 622b 337c 0a7c 3235 6162 642d 3930 3333 b+3|.|25abd-9033 │ │ │ │ -0004b960: 6163 642d 3239 3938 6263 642b 3230 3336 acd-2998bcd+2036 │ │ │ │ -0004b970: 6332 642d 3531 3037 6164 322d 3536 3739 c2d-5107ad2-5679 │ │ │ │ -0004b980: 6264 322b 3633 3235 6364 322b 3131 3734 bd2+6325cd2+1174 │ │ │ │ -0004b990: 3064 3320 3020 2020 2020 2020 2020 2020 0d3 0 │ │ │ │ -0004b9a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b8e0: 2020 2020 2020 2020 2030 2020 2020 2020 0 │ │ │ │ +0004b8f0: 2020 2020 2020 2020 7c0a 7c39 6263 642d |.|9bcd- │ │ │ │ +0004b900: 3535 3439 6332 642d 3935 3334 6164 322d 5549c2d-9534ad2- │ │ │ │ +0004b910: 3130 3836 3662 6432 2b37 3036 3163 6432 10866bd2+7061cd2 │ │ │ │ +0004b920: 2d32 3632 3764 3320 2020 2020 2020 2020 -2627d3 │ │ │ │ +0004b930: 2020 2020 2020 2020 2031 3037 6133 2b34 107a3+4 │ │ │ │ +0004b940: 3337 3661 3262 2b33 7c0a 7c32 3561 6264 376a2b+3|.|25abd │ │ │ │ +0004b950: 2d39 3033 3361 6364 2d32 3939 3862 6364 -9033acd-2998bcd │ │ │ │ +0004b960: 2b32 3033 3663 3264 2d35 3130 3761 6432 +2036c2d-5107ad2 │ │ │ │ +0004b970: 2d35 3637 3962 6432 2b36 3332 3563 6432 -5679bd2+6325cd2 │ │ │ │ +0004b980: 2b31 3137 3430 6433 2030 2020 2020 2020 +11740d3 0 │ │ │ │ +0004b990: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b9e0: 2020 2020 3135 3334 3461 332d 3236 3533 15344a3-2653 │ │ │ │ -0004b9f0: 6132 627c 0a7c 2020 2020 2020 2020 2020 a2b|.| │ │ │ │ +0004b9d0: 2020 2020 2020 2020 2031 3533 3434 6133 15344a3 │ │ │ │ +0004b9e0: 2d32 3635 3361 3262 7c0a 7c20 2020 2020 -2653a2b|.| │ │ │ │ +0004b9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ba00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ba10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ba20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ba30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ba40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ba30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ba40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ba50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ba60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ba70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ba80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ba90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ba80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004baa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bae0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bad0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004bae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004baf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bb30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bb20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004bb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bb80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bb70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004bb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bbd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bbc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004bbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bc20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bc10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004bc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bc70: 2020 207c 0a7c 3030 3436 6162 6432 2d36 |.|0046abd2-6 │ │ │ │ -0004bc80: 3334 3262 3264 322b 3734 3830 6163 6432 342b2d2+7480acd2 │ │ │ │ -0004bc90: 2b37 3834 3362 6364 322b 3830 3834 6332 +7843bcd2+8084c2 │ │ │ │ -0004bca0: 6432 2036 3430 3961 3362 2d31 3031 3531 d2 6409a3b-10151 │ │ │ │ -0004bcb0: 6132 6232 2d33 3836 3361 6233 2b37 3637 a2b2-3863ab3+767 │ │ │ │ -0004bcc0: 3262 347c 0a7c 2020 2020 2020 2020 2020 2b4|.| │ │ │ │ +0004bc60: 2020 2020 2020 2020 7c0a 7c30 3034 3661 |.|0046a │ │ │ │ +0004bc70: 6264 322d 3633 3432 6232 6432 2b37 3438 bd2-6342b2d2+748 │ │ │ │ +0004bc80: 3061 6364 322b 3738 3433 6263 6432 2b38 0acd2+7843bcd2+8 │ │ │ │ +0004bc90: 3038 3463 3264 3220 3634 3039 6133 622d 084c2d2 6409a3b- │ │ │ │ +0004bca0: 3130 3135 3161 3262 322d 3338 3633 6162 10151a2b2-3863ab │ │ │ │ +0004bcb0: 332b 3736 3732 6234 7c0a 7c20 2020 2020 3+7672b4|.| │ │ │ │ +0004bcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bd10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bd00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004bd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bd60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bd50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bdb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bda0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004bdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004be00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bdf0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004be00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004be10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004be20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004be30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004be40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004be50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004be40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004be50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004be60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004be70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004be80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bea0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004be90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004bea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bef0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bee0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004bef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bf40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bf30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004bf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bf90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bf80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004bf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bfe0: 2020 207c 0a7c 6132 6432 2d31 3532 3831 |.|a2d2-15281 │ │ │ │ -0004bff0: 6162 6432 2b39 3334 3662 3264 322d 3433 abd2+9346b2d2-43 │ │ │ │ -0004c000: 3039 6163 6432 2d38 3236 3962 6364 322b 09acd2-8269bcd2+ │ │ │ │ -0004c010: 3633 3431 6332 6432 202d 3132 3035 3161 6341c2d2 -12051a │ │ │ │ -0004c020: 3362 2b33 3533 6132 6232 2b38 3531 3861 3b+353a2b2+8518a │ │ │ │ -0004c030: 6233 2b7c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d b3+|.|---------- │ │ │ │ +0004bfd0: 2020 2020 2020 2020 7c0a 7c61 3264 322d |.|a2d2- │ │ │ │ +0004bfe0: 3135 3238 3161 6264 322b 3933 3436 6232 15281abd2+9346b2 │ │ │ │ +0004bff0: 6432 2d34 3330 3961 6364 322d 3832 3639 d2-4309acd2-8269 │ │ │ │ +0004c000: 6263 6432 2b36 3334 3163 3264 3220 2d31 bcd2+6341c2d2 -1 │ │ │ │ +0004c010: 3230 3531 6133 622b 3335 3361 3262 322b 2051a3b+353a2b2+ │ │ │ │ +0004c020: 3835 3138 6162 332b 7c0a 7c2d 2d2d 2d2d 8518ab3+|.|----- │ │ │ │ +0004c030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004c040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004c050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004c060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004c070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004c080: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ +0004c070: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0004c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c0d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c0c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c120: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c110: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c170: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c160: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c1c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c1b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c210: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c200: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c260: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c250: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c2b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c2a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c300: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c2f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c350: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c340: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c3a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c390: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c3f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c3e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c440: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c430: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c490: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c480: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c4e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c4d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c530: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c520: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c580: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c570: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c5d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c5c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c620: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c610: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c670: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c660: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c6c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c6b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c710: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c700: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c760: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c750: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c7b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c7a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c7d0: 2020 2020 2020 2020 2020 2020 7c20 2020 | │ │ │ │ +0004c7d0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0004c7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c800: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c7f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c820: 2020 2020 2020 2020 2020 2020 7c20 2020 | │ │ │ │ +0004c820: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0004c830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c850: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c840: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c870: 2020 2020 2020 2020 2020 2020 7c20 2020 | │ │ │ │ +0004c870: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0004c880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c8a0: 2020 207c 0a7c 3532 3162 6364 2020 2020 |.|521bcd │ │ │ │ +0004c890: 2020 2020 2020 2020 7c0a 7c35 3231 6263 |.|521bc │ │ │ │ +0004c8a0: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ 0004c8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c8c0: 2020 2020 2020 2020 2020 2020 7c20 2020 | │ │ │ │ +0004c8c0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0004c8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c8f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c8e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c910: 2020 2020 2020 2020 2020 2020 7c20 2020 | │ │ │ │ +0004c910: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0004c920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c940: 2020 207c 0a7c 3335 6162 642b 3930 3734 |.|35abd+9074 │ │ │ │ -0004c950: 6232 642d 3630 3430 6163 642b 3830 3232 b2d-6040acd+8022 │ │ │ │ -0004c960: 6263 642b 3339 3638 6332 6420 7c20 2020 bcd+3968c2d | │ │ │ │ +0004c930: 2020 2020 2020 2020 7c0a 7c33 3561 6264 |.|35abd │ │ │ │ +0004c940: 2b39 3037 3462 3264 2d36 3034 3061 6364 +9074b2d-6040acd │ │ │ │ +0004c950: 2b38 3032 3262 6364 2b33 3936 3863 3264 +8022bcd+3968c2d │ │ │ │ +0004c960: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0004c970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c990: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c980: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004c990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c9e0: 2020 207c 0a7c 3731 6233 2d35 3030 3661 |.|71b3-5006a │ │ │ │ -0004c9f0: 3263 2d35 3539 3961 6263 2d31 3431 3635 2c-5599abc-14165 │ │ │ │ -0004ca00: 6232 632b 3838 3830 6132 642b 3432 3539 b2c+8880a2d+4259 │ │ │ │ -0004ca10: 6162 642d 3330 3032 6232 642d 3133 3839 abd-3002b2d-1389 │ │ │ │ -0004ca20: 3261 6364 2d31 3035 3231 6263 6420 2020 2acd-10521bcd │ │ │ │ -0004ca30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004c9d0: 2020 2020 2020 2020 7c0a 7c37 3162 332d |.|71b3- │ │ │ │ +0004c9e0: 3530 3036 6132 632d 3535 3939 6162 632d 5006a2c-5599abc- │ │ │ │ +0004c9f0: 3134 3136 3562 3263 2b38 3838 3061 3264 14165b2c+8880a2d │ │ │ │ +0004ca00: 2b34 3235 3961 6264 2d33 3030 3262 3264 +4259abd-3002b2d │ │ │ │ +0004ca10: 2d31 3338 3932 6163 642d 3130 3532 3162 -13892acd-10521b │ │ │ │ +0004ca20: 6364 2020 2020 2020 7c0a 7c20 2020 2020 cd |.| │ │ │ │ +0004ca30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ca50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ca60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ca70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ca80: 2020 207c 0a7c 3937 3937 6233 2b37 3032 |.|9797b3+702 │ │ │ │ -0004ca90: 3161 3263 2d36 3337 3761 6263 2d35 3837 1a2c-6377abc-587 │ │ │ │ -0004caa0: 3462 3263 2b37 3630 3061 6332 2b31 3137 4b2c+7600ac2+117 │ │ │ │ -0004cab0: 3236 6263 322d 3131 3430 6333 2d31 3230 26bc2-1140c3-120 │ │ │ │ -0004cac0: 3661 3264 2b31 3134 3335 6162 642d 3930 6a2d+11435abd-90 │ │ │ │ -0004cad0: 3734 627c 0a7c 2020 2020 2020 2020 2020 74b|.| │ │ │ │ +0004ca70: 2020 2020 2020 2020 7c0a 7c39 3739 3762 |.|9797b │ │ │ │ +0004ca80: 332b 3730 3231 6132 632d 3633 3737 6162 3+7021a2c-6377ab │ │ │ │ +0004ca90: 632d 3538 3734 6232 632b 3736 3030 6163 c-5874b2c+7600ac │ │ │ │ +0004caa0: 322b 3131 3732 3662 6332 2d31 3134 3063 2+11726bc2-1140c │ │ │ │ +0004cab0: 332d 3132 3036 6132 642b 3131 3433 3561 3-1206a2d+11435a │ │ │ │ +0004cac0: 6264 2d39 3037 3462 7c0a 7c20 2020 2020 bd-9074b|.| │ │ │ │ +0004cad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004caf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cb20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004cb10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004cb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cb70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004cb60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004cb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cbc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004cbb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004cbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cc10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004cc00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cc60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004cc50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004cc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ccb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004cca0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ccb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ccc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ccd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ccf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cd00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ccf0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004cd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cd50: 2020 207c 0a7c 3330 6162 3263 2b39 3231 |.|30ab2c+921 │ │ │ │ -0004cd60: 3962 3363 2b35 3531 3361 3263 322b 3130 9b3c+5513a2c2+10 │ │ │ │ -0004cd70: 3535 3861 6263 322b 3235 3930 6232 6332 558abc2+2590b2c2 │ │ │ │ -0004cd80: 2b31 3434 3134 6133 642b 3338 3434 6132 +14414a3d+3844a2 │ │ │ │ -0004cd90: 6264 2b35 3937 3961 6232 642d 3132 3631 bd+5979ab2d-1261 │ │ │ │ -0004cda0: 3562 337c 0a7c 2020 2020 2020 2020 2020 5b3|.| │ │ │ │ +0004cd40: 2020 2020 2020 2020 7c0a 7c33 3061 6232 |.|30ab2 │ │ │ │ +0004cd50: 632b 3932 3139 6233 632b 3535 3133 6132 c+9219b3c+5513a2 │ │ │ │ +0004cd60: 6332 2b31 3035 3538 6162 6332 2b32 3539 c2+10558abc2+259 │ │ │ │ +0004cd70: 3062 3263 322b 3134 3431 3461 3364 2b33 0b2c2+14414a3d+3 │ │ │ │ +0004cd80: 3834 3461 3262 642b 3539 3739 6162 3264 844a2bd+5979ab2d │ │ │ │ +0004cd90: 2d31 3236 3135 6233 7c0a 7c20 2020 2020 -12615b3|.| │ │ │ │ +0004cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cdf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004cde0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004cdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ce00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ce10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ce20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ce30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ce40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ce30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ce40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ce50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ce60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ce70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ce80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ce90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ce80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ce90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ceb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ced0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cee0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ced0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004cee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cf30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004cf20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004cf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cf80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004cf70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004cf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cfd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004cfc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004cfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d020: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d010: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d070: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d060: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d0c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d0b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d0f0: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ -0004d100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d110: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d0e0: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +0004d0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0004d100: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d140: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ -0004d150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d160: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d130: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +0004d140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0004d150: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d190: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ -0004d1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d1b0: 2020 207c 0a7c 642b 3530 3731 6263 6420 |.|d+5071bcd │ │ │ │ +0004d180: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +0004d190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0004d1a0: 2020 2020 2020 2020 7c0a 7c64 2b35 3037 |.|d+507 │ │ │ │ +0004d1b0: 3162 6364 2020 2020 2020 2020 2020 2020 1bcd │ │ │ │ 0004d1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d1e0: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ -0004d1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d200: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d1d0: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +0004d1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0004d1f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d230: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ -0004d240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d250: 2020 207c 0a7c 3038 6132 642d 3130 3132 |.|08a2d-1012 │ │ │ │ -0004d260: 3561 6264 2b35 3534 3962 3264 2b39 3033 5abd+5549b2d+903 │ │ │ │ -0004d270: 3361 6364 2b32 3939 3862 6364 2d32 3033 3acd+2998bcd-203 │ │ │ │ -0004d280: 3663 3264 207c 2020 2020 2020 2020 2020 6c2d | │ │ │ │ -0004d290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d2a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d220: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +0004d230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0004d240: 2020 2020 2020 2020 7c0a 7c30 3861 3264 |.|08a2d │ │ │ │ +0004d250: 2d31 3031 3235 6162 642b 3535 3439 6232 -10125abd+5549b2 │ │ │ │ +0004d260: 642b 3930 3333 6163 642b 3239 3938 6263 d+9033acd+2998bc │ │ │ │ +0004d270: 642d 3230 3336 6332 6420 7c20 2020 2020 d-2036c2d | │ │ │ │ +0004d280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0004d290: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d2f0: 2020 207c 0a7c 3738 3361 6232 2b31 3033 |.|783ab2+103 │ │ │ │ -0004d300: 3539 6233 2d35 3537 3061 3263 2d35 3330 59b3-5570a2c-530 │ │ │ │ -0004d310: 3761 6263 2d37 3436 3462 3263 2b33 3138 7abc-7464b2c+318 │ │ │ │ -0004d320: 3761 3264 2b38 3537 3061 6264 2d38 3235 7a2d+8570abd-825 │ │ │ │ -0004d330: 3162 3264 2b38 3434 3461 6364 2b35 3037 1b2d+8444acd+507 │ │ │ │ -0004d340: 3162 637c 0a7c 2020 2020 2020 2020 2020 1bc|.| │ │ │ │ +0004d2e0: 2020 2020 2020 2020 7c0a 7c37 3833 6162 |.|783ab │ │ │ │ +0004d2f0: 322b 3130 3335 3962 332d 3535 3730 6132 2+10359b3-5570a2 │ │ │ │ +0004d300: 632d 3533 3037 6162 632d 3734 3634 6232 c-5307abc-7464b2 │ │ │ │ +0004d310: 632b 3331 3837 6132 642b 3835 3730 6162 c+3187a2d+8570ab │ │ │ │ +0004d320: 642d 3832 3531 6232 642b 3834 3434 6163 d-8251b2d+8444ac │ │ │ │ +0004d330: 642b 3530 3731 6263 7c0a 7c20 2020 2020 d+5071bc|.| │ │ │ │ +0004d340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d390: 2020 207c 0a7c 2d31 3032 3539 6162 322b |.|-10259ab2+ │ │ │ │ -0004d3a0: 3133 3039 6233 2d31 3233 3635 6132 632b 1309b3-12365a2c+ │ │ │ │ -0004d3b0: 3732 3136 6162 632d 3533 3938 6232 632d 7216abc-5398b2c- │ │ │ │ -0004d3c0: 3632 3330 6163 322b 3533 3236 6263 322d 6230ac2+5326bc2- │ │ │ │ -0004d3d0: 3130 3331 6333 2b31 3335 3038 6132 642b 1031c3+13508a2d+ │ │ │ │ -0004d3e0: 3130 317c 0a7c 2020 2020 2020 2020 2020 101|.| │ │ │ │ +0004d380: 2020 2020 2020 2020 7c0a 7c2d 3130 3235 |.|-1025 │ │ │ │ +0004d390: 3961 6232 2b31 3330 3962 332d 3132 3336 9ab2+1309b3-1236 │ │ │ │ +0004d3a0: 3561 3263 2b37 3231 3661 6263 2d35 3339 5a2c+7216abc-539 │ │ │ │ +0004d3b0: 3862 3263 2d36 3233 3061 6332 2b35 3332 8b2c-6230ac2+532 │ │ │ │ +0004d3c0: 3662 6332 2d31 3033 3163 332b 3133 3530 6bc2-1031c3+1350 │ │ │ │ +0004d3d0: 3861 3264 2b31 3031 7c0a 7c20 2020 2020 8a2d+101|.| │ │ │ │ +0004d3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d430: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d420: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d480: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d470: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d4d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d4c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d520: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d510: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d570: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d560: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d5c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d5b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d610: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d600: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d660: 2020 207c 0a7c 2b33 3736 3261 3363 2d39 |.|+3762a3c-9 │ │ │ │ -0004d670: 3238 3061 3262 632b 3132 3235 3361 6232 280a2bc+12253ab2 │ │ │ │ -0004d680: 632d 3137 3236 6233 632b 3930 3333 6132 c-1726b3c+9033a2 │ │ │ │ -0004d690: 6332 2d31 3439 3636 6162 6332 2d36 3932 c2-14966abc2-692 │ │ │ │ -0004d6a0: 3962 3263 322d 3131 3235 3361 3364 2b34 9b2c2-11253a3d+4 │ │ │ │ -0004d6b0: 3932 317c 0a7c 2020 2020 2020 2020 2020 921|.| │ │ │ │ +0004d650: 2020 2020 2020 2020 7c0a 7c2b 3337 3632 |.|+3762 │ │ │ │ +0004d660: 6133 632d 3932 3830 6132 6263 2b31 3232 a3c-9280a2bc+122 │ │ │ │ +0004d670: 3533 6162 3263 2d31 3732 3662 3363 2b39 53ab2c-1726b3c+9 │ │ │ │ +0004d680: 3033 3361 3263 322d 3134 3936 3661 6263 033a2c2-14966abc │ │ │ │ +0004d690: 322d 3639 3239 6232 6332 2d31 3132 3533 2-6929b2c2-11253 │ │ │ │ +0004d6a0: 6133 642b 3439 3231 7c0a 7c20 2020 2020 a3d+4921|.| │ │ │ │ +0004d6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d700: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d6f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d750: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d740: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d7a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d790: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d7f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d7e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d840: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d830: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d890: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d880: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d8e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d8d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d930: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d920: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d980: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d970: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004d980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d9d0: 2020 207c 0a7c 3933 3431 6234 2b31 3533 |.|9341b4+153 │ │ │ │ -0004d9e0: 3261 3363 2d32 3132 3061 3262 632b 3439 2a3c-2120a2bc+49 │ │ │ │ -0004d9f0: 3332 6162 3263 2d31 3339 3031 6233 632b 32ab2c-13901b3c+ │ │ │ │ -0004da00: 3135 3936 3061 3263 322d 3435 3031 6162 15960a2c2-4501ab │ │ │ │ -0004da10: 6332 2b31 3130 3562 3263 322d 3134 3331 c2+1105b2c2-1431 │ │ │ │ -0004da20: 3461 337c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 4a3|.|---------- │ │ │ │ +0004d9c0: 2020 2020 2020 2020 7c0a 7c39 3334 3162 |.|9341b │ │ │ │ +0004d9d0: 342b 3135 3332 6133 632d 3231 3230 6132 4+1532a3c-2120a2 │ │ │ │ +0004d9e0: 6263 2b34 3933 3261 6232 632d 3133 3930 bc+4932ab2c-1390 │ │ │ │ +0004d9f0: 3162 3363 2b31 3539 3630 6132 6332 2d34 1b3c+15960a2c2-4 │ │ │ │ +0004da00: 3530 3161 6263 322b 3131 3035 6232 6332 501abc2+1105b2c2 │ │ │ │ +0004da10: 2d31 3433 3134 6133 7c0a 7c2d 2d2d 2d2d -14314a3|.|----- │ │ │ │ +0004da20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004da30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004da40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004da50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004da60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004da70: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ +0004da60: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0004da70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004da80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004da90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004daa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dac0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004dab0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004dac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004daf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004db00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004db10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004db00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004db10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004db20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004db30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004db40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004db50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004db60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004db50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004db60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004db70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004db80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004db90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dbb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004dba0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004dbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dc00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004dbf0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004dc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dc50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004dc40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004dc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dca0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004dc90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dcf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004dce0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004dcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dd40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004dd30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004dd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dd90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004dd80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004dd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ddb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ddc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ddd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dde0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ddd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004dde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ddf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004de00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004de10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004de20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004de30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004de20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004de30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004de40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004de50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004de60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004de70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004de80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004de70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004de80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004de90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004deb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ded0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004dec0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ded0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004def0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004df00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004df10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004df20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004df10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004df20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004df30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004df40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004df50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004df60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004df70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004df60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004df70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004df80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004df90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dfc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004dfb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004dfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e010: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e000: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e060: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e050: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e0b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e0a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e100: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e0f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e150: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e140: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e1a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e190: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e1f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e1e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e240: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e230: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e290: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e280: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e2e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e2d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e330: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e320: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e380: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e370: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e3c0: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -0004e3d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e3b0: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ +0004e3c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e410: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -0004e420: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e400: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ +0004e410: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e460: 3132 3336 6133 2b38 3932 3261 3262 2d33 1236a3+8922a2b-3 │ │ │ │ -0004e470: 3538 397c 0a7c 3264 2b36 3034 3061 6364 589|.|2d+6040acd │ │ │ │ -0004e480: 2d38 3032 3262 6364 2d33 3936 3863 3264 -8022bcd-3968c2d │ │ │ │ -0004e490: 2b33 3136 3461 6432 2d32 3935 6264 322b +3164ad2-295bd2+ │ │ │ │ -0004e4a0: 3736 3530 6364 322d 3134 3338 3864 3320 7650cd2-14388d3 │ │ │ │ -0004e4b0: 3130 3337 3061 6232 2d37 3039 3262 332d 10370ab2-7092b3- │ │ │ │ -0004e4c0: 3937 307c 0a7c 2020 2020 2020 2020 2020 970|.| │ │ │ │ +0004e450: 2020 2020 2031 3233 3661 332b 3839 3232 1236a3+8922 │ │ │ │ +0004e460: 6132 622d 3335 3839 7c0a 7c32 642b 3630 a2b-3589|.|2d+60 │ │ │ │ +0004e470: 3430 6163 642d 3830 3232 6263 642d 3339 40acd-8022bcd-39 │ │ │ │ +0004e480: 3638 6332 642b 3331 3634 6164 322d 3239 68c2d+3164ad2-29 │ │ │ │ +0004e490: 3562 6432 2b37 3635 3063 6432 2d31 3433 5bd2+7650cd2-143 │ │ │ │ +0004e4a0: 3838 6433 2031 3033 3730 6162 322d 3730 88d3 10370ab2-70 │ │ │ │ +0004e4b0: 3932 6233 2d39 3730 7c0a 7c20 2020 2020 92b3-970|.| │ │ │ │ +0004e4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e510: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e500: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e560: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e550: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e5b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e5a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e600: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e5f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e650: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e640: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e6a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e690: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e6f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e6e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e740: 2020 207c 0a7c 642d 3135 3935 3761 3263 |.|d-15957a2c │ │ │ │ -0004e750: 642b 3135 3239 3361 6263 642d 3138 3331 d+15293abcd-1831 │ │ │ │ -0004e760: 6232 6364 2b36 3034 3261 6332 642d 3235 b2cd+6042ac2d-25 │ │ │ │ -0004e770: 3631 6263 3264 2d38 3730 3961 3264 322d 61bc2d-8709a2d2- │ │ │ │ -0004e780: 3133 3231 3961 6264 322b 3432 3039 6232 13219abd2+4209b2 │ │ │ │ -0004e790: 6432 2b7c 0a7c 2020 2020 2020 2020 2020 d2+|.| │ │ │ │ +0004e730: 2020 2020 2020 2020 7c0a 7c64 2d31 3539 |.|d-159 │ │ │ │ +0004e740: 3537 6132 6364 2b31 3532 3933 6162 6364 57a2cd+15293abcd │ │ │ │ +0004e750: 2d31 3833 3162 3263 642b 3630 3432 6163 -1831b2cd+6042ac │ │ │ │ +0004e760: 3264 2d32 3536 3162 6332 642d 3837 3039 2d-2561bc2d-8709 │ │ │ │ +0004e770: 6132 6432 2d31 3332 3139 6162 6432 2b34 a2d2-13219abd2+4 │ │ │ │ +0004e780: 3230 3962 3264 322b 7c0a 7c20 2020 2020 209b2d2+|.| │ │ │ │ +0004e790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e7e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e7d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e830: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e820: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e880: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e870: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e8d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e8c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e920: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e910: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e970: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e960: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e9c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004e9b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004e9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ea00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ea10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ea00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ea10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ea20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ea30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ea40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ea50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ea60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ea50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ea60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ea70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ea80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ea90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004eaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004eab0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004eaa0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004eab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ead0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004eaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004eb00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004eaf0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004eb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004eb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004eb50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004eb40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004eb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004eb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004eba0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004eb90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004eba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ebb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ebc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ebd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ebe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ebf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ebe0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ebf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ec00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ec10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ec20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ec30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ec40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ec30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ec40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ec50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ec60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ec70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ec80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ec90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ec80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ec90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ecb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ecc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ecd0: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ -0004ece0: 2020 207c 0a7c 6420 2020 2020 2020 2020 |.|d │ │ │ │ +0004ecd0: 2030 2020 2020 2020 7c0a 7c64 2020 2020 0 |.|d │ │ │ │ +0004ece0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ecf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ed00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ed10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ed20: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ -0004ed30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ed20: 2030 2020 2020 2020 7c0a 7c20 2020 2020 0 |.| │ │ │ │ +0004ed30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ed40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ed50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ed60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ed70: 2020 2020 2020 2020 2020 2020 3130 3761 107a │ │ │ │ -0004ed80: 332b 347c 0a7c 3235 6162 642d 3535 3439 3+4|.|25abd-5549 │ │ │ │ -0004ed90: 6232 642d 3930 3333 6163 642d 3239 3938 b2d-9033acd-2998 │ │ │ │ -0004eda0: 6263 642b 3230 3336 6332 642d 3531 3037 bcd+2036c2d-5107 │ │ │ │ -0004edb0: 6164 322d 3536 3739 6264 322b 3633 3235 ad2-5679bd2+6325 │ │ │ │ -0004edc0: 6364 322b 3131 3734 3064 3320 3832 3331 cd2+11740d3 8231 │ │ │ │ -0004edd0: 6162 327c 0a7c 2020 2020 2020 2020 2020 ab2|.| │ │ │ │ +0004ed70: 2031 3037 6133 2b34 7c0a 7c32 3561 6264 107a3+4|.|25abd │ │ │ │ +0004ed80: 2d35 3534 3962 3264 2d39 3033 3361 6364 -5549b2d-9033acd │ │ │ │ +0004ed90: 2d32 3939 3862 6364 2b32 3033 3663 3264 -2998bcd+2036c2d │ │ │ │ +0004eda0: 2d35 3130 3761 6432 2d35 3637 3962 6432 -5107ad2-5679bd2 │ │ │ │ +0004edb0: 2b36 3332 3563 6432 2b31 3137 3430 6433 +6325cd2+11740d3 │ │ │ │ +0004edc0: 2038 3233 3161 6232 7c0a 7c20 2020 2020 8231ab2|.| │ │ │ │ +0004edd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ede0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004edf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ee00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ee10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ee20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ee10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ee20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ee30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ee40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ee50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ee60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ee70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ee60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ee70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ee80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ee90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004eeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004eec0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004eeb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004eec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ef00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ef10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ef00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ef10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ef20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ef30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ef40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ef60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ef50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ef60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ef70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ef80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ef90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004efb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004efa0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004efb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004efc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004efd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004efe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004eff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f000: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004eff0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f050: 2020 207c 0a7c 6132 6264 2d31 3138 3630 |.|a2bd-11860 │ │ │ │ -0004f060: 6162 3264 2d31 3430 3534 6233 642b 3135 ab2d-14054b3d+15 │ │ │ │ -0004f070: 3239 3961 3263 642d 3731 3861 6263 642d 299a2cd-718abcd- │ │ │ │ -0004f080: 3134 3638 3562 3263 642d 3130 3538 3161 14685b2cd-10581a │ │ │ │ -0004f090: 6332 642b 3532 3238 6263 3264 2d31 3538 c2d+5228bc2d-158 │ │ │ │ -0004f0a0: 3636 617c 0a7c 2020 2020 2020 2020 2020 66a|.| │ │ │ │ +0004f040: 2020 2020 2020 2020 7c0a 7c61 3262 642d |.|a2bd- │ │ │ │ +0004f050: 3131 3836 3061 6232 642d 3134 3035 3462 11860ab2d-14054b │ │ │ │ +0004f060: 3364 2b31 3532 3939 6132 6364 2d37 3138 3d+15299a2cd-718 │ │ │ │ +0004f070: 6162 6364 2d31 3436 3835 6232 6364 2d31 abcd-14685b2cd-1 │ │ │ │ +0004f080: 3035 3831 6163 3264 2b35 3232 3862 6332 0581ac2d+5228bc2 │ │ │ │ +0004f090: 642d 3135 3836 3661 7c0a 7c20 2020 2020 d-15866a|.| │ │ │ │ +0004f0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f0f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f0e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f140: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f130: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f190: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f180: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f1e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f1d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f230: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f220: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f280: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f270: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f2d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f2c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f320: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f310: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f370: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f360: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f3c0: 2020 207c 0a7c 642b 3132 3735 3761 3262 |.|d+12757a2b │ │ │ │ -0004f3d0: 642b 3132 3832 3261 6232 642d 3131 3735 d+12822ab2d-1175 │ │ │ │ -0004f3e0: 3262 3364 2d37 3232 3061 3263 642d 3134 2b3d-7220a2cd-14 │ │ │ │ -0004f3f0: 3139 6162 6364 2d39 3839 3462 3263 642b 19abcd-9894b2cd+ │ │ │ │ -0004f400: 3834 3430 6163 3264 2b31 3036 3933 6263 8440ac2d+10693bc │ │ │ │ -0004f410: 3264 2b7c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d+|.|---------- │ │ │ │ +0004f3b0: 2020 2020 2020 2020 7c0a 7c64 2b31 3237 |.|d+127 │ │ │ │ +0004f3c0: 3537 6132 6264 2b31 3238 3232 6162 3264 57a2bd+12822ab2d │ │ │ │ +0004f3d0: 2d31 3137 3532 6233 642d 3732 3230 6132 -11752b3d-7220a2 │ │ │ │ +0004f3e0: 6364 2d31 3431 3961 6263 642d 3938 3934 cd-1419abcd-9894 │ │ │ │ +0004f3f0: 6232 6364 2b38 3434 3061 6332 642b 3130 b2cd+8440ac2d+10 │ │ │ │ +0004f400: 3639 3362 6332 642b 7c0a 7c2d 2d2d 2d2d 693bc2d+|.|----- │ │ │ │ +0004f410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004f420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004f430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004f440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004f450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004f460: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ +0004f450: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0004f460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f4b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f4a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f500: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f4f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f550: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f540: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f5a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f590: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f5f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f5e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f640: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f630: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f690: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f680: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f6e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f6d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f730: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f720: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f780: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f770: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f7d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f7c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f820: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f810: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f870: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f860: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f8c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f8b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f910: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f900: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f960: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f950: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f9b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f9a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004f9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fa00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f9f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004fa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fa50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fa40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004fa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004faa0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fa90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004faa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004faf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fae0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004faf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fb40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fb30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004fb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fb90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fb80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004fb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fbe0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fbd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004fbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fc30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fc20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004fc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fc80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fc70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004fc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fcd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fcc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004fcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fd20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fd10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004fd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fd70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fd60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004fd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fdc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fdb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004fdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fe00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fe10: 2020 207c 0a7c 6162 322b 3839 3731 6233 |.|ab2+8971b3 │ │ │ │ -0004fe20: 2d35 3030 3661 3263 2d35 3539 3961 6263 -5006a2c-5599abc │ │ │ │ -0004fe30: 2d31 3431 3635 6232 632b 3838 3830 6132 -14165b2c+8880a2 │ │ │ │ -0004fe40: 642b 3432 3539 6162 642d 3330 3032 6232 d+4259abd-3002b2 │ │ │ │ -0004fe50: 642d 3133 3839 3261 6364 2d31 3035 3231 d-13892acd-10521 │ │ │ │ -0004fe60: 6263 647c 0a7c 3261 6263 2d36 3632 3762 bcd|.|2abc-6627b │ │ │ │ -0004fe70: 3263 2b38 3838 3661 6264 2b34 3730 3062 2c+8886abd+4700b │ │ │ │ -0004fe80: 3264 2d31 3561 6364 2b35 3936 3962 6364 2d-15acd+5969bcd │ │ │ │ +0004fe00: 2020 2020 2020 2020 7c0a 7c61 6232 2b38 |.|ab2+8 │ │ │ │ +0004fe10: 3937 3162 332d 3530 3036 6132 632d 3535 971b3-5006a2c-55 │ │ │ │ +0004fe20: 3939 6162 632d 3134 3136 3562 3263 2b38 99abc-14165b2c+8 │ │ │ │ +0004fe30: 3838 3061 3264 2b34 3235 3961 6264 2d33 880a2d+4259abd-3 │ │ │ │ +0004fe40: 3030 3262 3264 2d31 3338 3932 6163 642d 002b2d-13892acd- │ │ │ │ +0004fe50: 3130 3532 3162 6364 7c0a 7c32 6162 632d 10521bcd|.|2abc- │ │ │ │ +0004fe60: 3636 3237 6232 632b 3838 3836 6162 642b 6627b2c+8886abd+ │ │ │ │ +0004fe70: 3437 3030 6232 642d 3135 6163 642b 3539 4700b2d-15acd+59 │ │ │ │ +0004fe80: 3639 6263 6420 2020 2020 2020 2020 2020 69bcd │ │ │ │ 0004fe90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004feb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fea0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004feb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ff00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fef0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ff00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ff10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ff20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ff30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ff40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ff50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ff40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ff50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ff60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ff70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ff80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ff90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ffa0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ff90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004ffa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ffb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ffc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ffd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ffe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fff0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ffe0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0004fff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050040: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050030: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050090: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050080: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000500a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000500b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000500c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000500d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000500e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000500d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000500e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000500f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050130: 2020 207c 0a7c 3132 3232 3561 6364 322d |.|12225acd2- │ │ │ │ -00050140: 3236 3035 6263 6432 2d39 3263 3264 322b 2605bcd2-92c2d2+ │ │ │ │ -00050150: 3135 3936 3861 6433 2b31 3438 3630 6264 15968ad3+14860bd │ │ │ │ -00050160: 332d 3838 3239 6364 332d 3131 3237 3464 3-8829cd3-11274d │ │ │ │ -00050170: 3420 7c20 2020 2020 2020 2020 2020 2020 4 | │ │ │ │ -00050180: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050120: 2020 2020 2020 2020 7c0a 7c31 3232 3235 |.|12225 │ │ │ │ +00050130: 6163 6432 2d32 3630 3562 6364 322d 3932 acd2-2605bcd2-92 │ │ │ │ +00050140: 6332 6432 2b31 3539 3638 6164 332b 3134 c2d2+15968ad3+14 │ │ │ │ +00050150: 3836 3062 6433 2d38 3832 3963 6433 2d31 860bd3-8829cd3-1 │ │ │ │ +00050160: 3132 3734 6434 207c 2020 2020 2020 2020 1274d4 | │ │ │ │ +00050170: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000501a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000501b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000501c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000501d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000501c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000501d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000501e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000501f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050220: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050210: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050270: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050260: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000502a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000502b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000502c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000502b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000502c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000502d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000502e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000502f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050310: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050300: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050360: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050350: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000503a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000503b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000503a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000503b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000503c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000503d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000503e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000503f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050400: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000503f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050450: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050440: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000504a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050490: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000504a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000504b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000504c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000504d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000504e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000504f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000504e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000504f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050540: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050530: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050590: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050580: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000505a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000505b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000505c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000505d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000505e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000505d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000505e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000505f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050630: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050620: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050680: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050670: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000506a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000506b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000506c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000506d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000506c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000506d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000506e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000506f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050720: 2020 207c 0a7c 3337 3661 3262 2b33 3738 |.|376a2b+378 │ │ │ │ -00050730: 3361 6232 2b31 3033 3539 6233 2d35 3537 3ab2+10359b3-557 │ │ │ │ -00050740: 3061 3263 2d35 3330 3761 6263 2d37 3436 0a2c-5307abc-746 │ │ │ │ -00050750: 3462 3263 2b33 3138 3761 3264 2b38 3537 4b2c+3187a2d+857 │ │ │ │ -00050760: 3061 6264 2d38 3235 3162 3264 2b38 3434 0abd-8251b2d+844 │ │ │ │ -00050770: 3461 637c 0a7c 2b31 3331 3737 6233 2b35 4ac|.|+13177b3+5 │ │ │ │ -00050780: 3836 3461 6263 2b31 3339 3930 6232 632b 864abc+13990b2c+ │ │ │ │ -00050790: 3530 3236 6162 642d 3131 3532 3162 3264 5026abd-11521b2d │ │ │ │ -000507a0: 2d37 3530 3161 6364 2d31 3737 3962 6364 -7501acd-1779bcd │ │ │ │ -000507b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000507c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050710: 2020 2020 2020 2020 7c0a 7c33 3736 6132 |.|376a2 │ │ │ │ +00050720: 622b 3337 3833 6162 322b 3130 3335 3962 b+3783ab2+10359b │ │ │ │ +00050730: 332d 3535 3730 6132 632d 3533 3037 6162 3-5570a2c-5307ab │ │ │ │ +00050740: 632d 3734 3634 6232 632b 3331 3837 6132 c-7464b2c+3187a2 │ │ │ │ +00050750: 642b 3835 3730 6162 642d 3832 3531 6232 d+8570abd-8251b2 │ │ │ │ +00050760: 642b 3834 3434 6163 7c0a 7c2b 3133 3137 d+8444ac|.|+1317 │ │ │ │ +00050770: 3762 332b 3538 3634 6162 632b 3133 3939 7b3+5864abc+1399 │ │ │ │ +00050780: 3062 3263 2b35 3032 3661 6264 2d31 3135 0b2c+5026abd-115 │ │ │ │ +00050790: 3231 6232 642d 3735 3031 6163 642d 3137 21b2d-7501acd-17 │ │ │ │ +000507a0: 3739 6263 6420 2020 2020 2020 2020 2020 79bcd │ │ │ │ +000507b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000507c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000507d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000507e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000507f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050810: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050800: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050860: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050850: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000508a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000508b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000508a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000508b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000508c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000508d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000508e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000508f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050900: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000508f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050950: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050940: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000509a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050990: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000509a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000509b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000509c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000509d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000509e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000509f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000509e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000509f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050a40: 2020 207c 0a7c 3264 322d 3137 3933 6162 |.|2d2-1793ab │ │ │ │ -00050a50: 6432 2d31 3232 3435 6232 6432 2b31 3232 d2-12245b2d2+122 │ │ │ │ -00050a60: 3833 6163 6432 2b36 3733 3062 6364 322b 83acd2+6730bcd2+ │ │ │ │ -00050a70: 3835 3237 6332 6432 2b35 3934 3261 6433 8527c2d2+5942ad3 │ │ │ │ -00050a80: 2b31 3439 3235 6264 332d 3239 3663 6433 +14925bd3-296cd3 │ │ │ │ -00050a90: 2b38 307c 0a7c 2020 2020 2020 2020 2020 +80|.| │ │ │ │ +00050a30: 2020 2020 2020 2020 7c0a 7c32 6432 2d31 |.|2d2-1 │ │ │ │ +00050a40: 3739 3361 6264 322d 3132 3234 3562 3264 793abd2-12245b2d │ │ │ │ +00050a50: 322b 3132 3238 3361 6364 322b 3637 3330 2+12283acd2+6730 │ │ │ │ +00050a60: 6263 6432 2b38 3532 3763 3264 322b 3539 bcd2+8527c2d2+59 │ │ │ │ +00050a70: 3432 6164 332b 3134 3932 3562 6433 2d32 42ad3+14925bd3-2 │ │ │ │ +00050a80: 3936 6364 332b 3830 7c0a 7c20 2020 2020 96cd3+80|.| │ │ │ │ +00050a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050ae0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050ad0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050b30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050b20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050b80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050b70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050bd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050bc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050c20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050c10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050c70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050c60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050cc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050cb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050d10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050d00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050d60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050d50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050db0: 2020 207c 0a7c 3132 3036 3261 3264 322d |.|12062a2d2- │ │ │ │ -00050dc0: 3133 3632 3661 6264 322b 3432 3437 6232 13626abd2+4247b2 │ │ │ │ -00050dd0: 6432 2d31 3237 3033 6163 6432 2b32 3935 d2-12703acd2+295 │ │ │ │ -00050de0: 3762 6364 322d 3533 3735 6332 6432 2d31 7bcd2-5375c2d2-1 │ │ │ │ -00050df0: 3033 3035 6164 332b 3832 3937 6264 332b 0305ad3+8297bd3+ │ │ │ │ -00050e00: 3130 367c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 106|.|---------- │ │ │ │ +00050da0: 2020 2020 2020 2020 7c0a 7c31 3230 3632 |.|12062 │ │ │ │ +00050db0: 6132 6432 2d31 3336 3236 6162 6432 2b34 a2d2-13626abd2+4 │ │ │ │ +00050dc0: 3234 3762 3264 322d 3132 3730 3361 6364 247b2d2-12703acd │ │ │ │ +00050dd0: 322b 3239 3537 6263 6432 2d35 3337 3563 2+2957bcd2-5375c │ │ │ │ +00050de0: 3264 322d 3130 3330 3561 6433 2b38 3239 2d2-10305ad3+829 │ │ │ │ +00050df0: 3762 6433 2b31 3036 7c0a 7c2d 2d2d 2d2d 7bd3+106|.|----- │ │ │ │ +00050e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00050e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00050e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00050e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00050e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00050e50: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ -00050e60: 2020 2020 7d20 2020 2020 2020 2020 2020 } │ │ │ │ +00050e40: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +00050e50: 2020 2020 2020 2020 207d 2020 2020 2020 } │ │ │ │ +00050e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050ea0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050e90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050ef0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050ee0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050f40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050f30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050f90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050f80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050fe0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050fd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00050fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051030: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051020: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051080: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051070: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000510a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000510b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000510c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000510d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000510c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000510d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000510e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000510f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051120: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051110: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051170: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051160: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000511a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000511b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000511c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000511b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000511c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000511d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000511e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000511f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051210: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051200: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051260: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051250: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000512a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000512b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000512a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000512b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000512c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000512d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000512e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000512f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051300: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000512f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051350: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051340: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000513a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051390: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000513a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000513b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000513c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000513d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000513e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000513f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000513e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000513f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051440: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051430: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051490: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051480: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000514a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000514b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000514c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000514d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000514e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000514d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000514e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000514f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051530: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051520: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051580: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051570: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000515a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000515b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000515c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000515d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000515c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000515d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000515e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000515f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051620: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051610: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051670: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051660: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000516a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000516b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000516c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000516b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000516c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000516d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000516e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000516f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051710: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051700: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051760: 2020 207c 0a7c 207c 2020 2020 2020 2020 |.| | │ │ │ │ +00051750: 2020 2020 2020 2020 7c0a 7c20 7c20 2020 |.| | │ │ │ │ +00051760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000517a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000517b0: 2020 207c 0a7c 207c 2020 2020 2020 2020 |.| | │ │ │ │ +000517a0: 2020 2020 2020 2020 7c0a 7c20 7c20 2020 |.| | │ │ │ │ +000517b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000517c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000517d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000517e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000517f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051800: 2020 207c 0a7c 207c 2020 2020 2020 2020 |.| | │ │ │ │ +000517f0: 2020 2020 2020 2020 7c0a 7c20 7c20 2020 |.| | │ │ │ │ +00051800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051850: 2020 207c 0a7c 207c 2020 2020 2020 2020 |.| | │ │ │ │ +00051840: 2020 2020 2020 2020 7c0a 7c20 7c20 2020 |.| | │ │ │ │ +00051850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000518a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051890: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000518a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000518b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000518c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000518d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000518e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000518f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000518e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000518f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051940: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051930: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051990: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051980: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000519a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000519b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000519c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000519d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000519e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000519d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000519e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000519f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051a30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051a20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051a80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051a70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051ad0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051ac0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051b20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051b10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051b70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051b60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051bc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051bb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051c10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051c00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051c60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051c50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051cb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051ca0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051d00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051cf0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051d50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051d40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051da0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051d90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051df0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051de0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051e40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051e30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051e90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051e80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051ee0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051ed0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051f30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051f20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051f80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051f70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051fd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00051fc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00051fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052020: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00052010: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00052020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052070: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00052080: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00052060: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00052070: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ +00052080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000520a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000520b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000520c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000520d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000520b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000520c0: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ +000520d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000520e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000520f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052110: 2020 207c 0a7c 642b 3530 3731 6263 6420 |.|d+5071bcd │ │ │ │ -00052120: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00052100: 2020 2020 2020 2020 7c0a 7c64 2b35 3037 |.|d+507 │ │ │ │ +00052110: 3162 6364 207c 2020 2020 2020 2020 2020 1bcd | │ │ │ │ +00052120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052160: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00052170: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00052150: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00052160: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ +00052170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000521a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000521b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000521a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000521b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000521c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000521d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000521e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000521f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052200: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000521f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00052200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052250: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00052240: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00052250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000522a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00052290: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000522a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000522b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000522c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000522d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000522e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000522f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000522e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000522f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052340: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00052330: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00052340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052390: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00052380: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00052390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000523a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000523b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000523c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000523d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000523e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000523d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000523e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000523f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052430: 2020 207c 0a7c 3834 6434 207c 2020 2020 |.|84d4 | │ │ │ │ +00052420: 2020 2020 2020 2020 7c0a 7c38 3464 3420 |.|84d4 │ │ │ │ +00052430: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00052440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052480: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00052470: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00052480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000524a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000524b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000524c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000524d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000524c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000524d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000524e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000524f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052520: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00052510: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00052520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052570: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00052560: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00052570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000525a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000525b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000525c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000525b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000525c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000525d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000525e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000525f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052610: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00052600: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00052610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052660: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00052650: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00052660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000526a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000526b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000526a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000526b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000526c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000526d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000526e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000526f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052700: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000526f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00052700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052750: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00052740: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00052750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000527a0: 2020 207c 0a7c 3633 6364 332b 3633 3431 |.|63cd3+6341 │ │ │ │ -000527b0: 6434 207c 2020 2020 2020 2020 2020 2020 d4 | │ │ │ │ +00052790: 2020 2020 2020 2020 7c0a 7c36 3363 6433 |.|63cd3 │ │ │ │ +000527a0: 2b36 3334 3164 3420 7c20 2020 2020 2020 +6341d4 | │ │ │ │ +000527b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000527c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000527d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000527e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000527f0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000527e0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000527f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052840: 2d2d 2d2b 0a0a 5765 2063 616e 2073 6565 ---+..We can see │ │ │ │ -00052850: 2074 6861 7420 616c 6c20 3620 706f 7465 that all 6 pote │ │ │ │ -00052860: 6e74 6961 6c20 6869 6768 6572 2068 6f6d ntial higher hom │ │ │ │ -00052870: 6f74 6f70 6965 7320 6172 6520 6e6f 6e74 otopies are nont │ │ │ │ -00052880: 7269 7669 616c 3a0a 0a2b 2d2d 2d2d 2d2d rivial:..+------ │ │ │ │ +00052830: 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 6520 6361 --------+..We ca │ │ │ │ +00052840: 6e20 7365 6520 7468 6174 2061 6c6c 2036 n see that all 6 │ │ │ │ +00052850: 2070 6f74 656e 7469 616c 2068 6967 6865 potential highe │ │ │ │ +00052860: 7220 686f 6d6f 746f 7069 6573 2061 7265 r homotopies are │ │ │ │ +00052870: 206e 6f6e 7472 6976 6961 6c3a 0a0a 2b2d nontrivial:..+- │ │ │ │ +00052880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000528a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000528b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000528c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000528d0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3420 3a20 -------+.|i14 : │ │ │ │ -000528e0: 4c20 3d20 736f 7274 2073 656c 6563 7428 L = sort select( │ │ │ │ -000528f0: 6b65 7973 2068 6f6d 6f74 2c20 6b2d 3e28 keys homot, k->( │ │ │ │ -00052900: 686f 6d6f 7423 6b21 3d30 2061 6e64 2073 homot#k!=0 and s │ │ │ │ -00052910: 756d 286b 5f30 293e 3129 2920 2020 2020 um(k_0)>1)) │ │ │ │ -00052920: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000528c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000528d0: 3134 203a 204c 203d 2073 6f72 7420 7365 14 : L = sort se │ │ │ │ +000528e0: 6c65 6374 286b 6579 7320 686f 6d6f 742c lect(keys homot, │ │ │ │ +000528f0: 206b 2d3e 2868 6f6d 6f74 236b 213d 3020 k->(homot#k!=0 │ │ │ │ +00052900: 616e 6420 7375 6d28 6b5f 3029 3e31 2929 and sum(k_0)>1)) │ │ │ │ +00052910: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00052920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052970: 2020 2020 2020 207c 0a7c 6f31 3420 3d20 |.|o14 = │ │ │ │ -00052980: 7b7b 7b30 2c20 327d 2c20 307d 2c20 7b7b {{{0, 2}, 0}, {{ │ │ │ │ -00052990: 302c 2032 7d2c 2031 7d2c 207b 7b31 2c20 0, 2}, 1}, {{1, │ │ │ │ -000529a0: 317d 2c20 307d 2c20 7b7b 312c 2031 7d2c 1}, 0}, {{1, 1}, │ │ │ │ -000529b0: 2031 7d2c 207b 7b32 2c20 307d 2c20 307d 1}, {{2, 0}, 0} │ │ │ │ -000529c0: 2c20 7b7b 322c 207c 0a7c 2020 2020 2020 , {{2, |.| │ │ │ │ +00052960: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00052970: 3134 203d 207b 7b7b 302c 2032 7d2c 2030 14 = {{{0, 2}, 0 │ │ │ │ +00052980: 7d2c 207b 7b30 2c20 327d 2c20 317d 2c20 }, {{0, 2}, 1}, │ │ │ │ +00052990: 7b7b 312c 2031 7d2c 2030 7d2c 207b 7b31 {{1, 1}, 0}, {{1 │ │ │ │ +000529a0: 2c20 317d 2c20 317d 2c20 7b7b 322c 2030 , 1}, 1}, {{2, 0 │ │ │ │ +000529b0: 7d2c 2030 7d2c 207b 7b32 2c20 7c0a 7c20 }, 0}, {{2, |.| │ │ │ │ +000529c0: 2020 2020 202d 2d2d 2d2d 2d2d 2d2d 2d2d ----------- │ │ │ │ 000529d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000529e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000529f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052a10: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 -------|.| │ │ │ │ -00052a20: 307d 2c20 317d 7d20 2020 2020 2020 2020 0}, 1}} │ │ │ │ +00052a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +00052a10: 2020 2020 2030 7d2c 2031 7d7d 2020 2020 0}, 1}} │ │ │ │ +00052a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052a60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00052a50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00052a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052ab0: 2020 2020 2020 207c 0a7c 6f31 3420 3a20 |.|o14 : │ │ │ │ -00052ac0: 4c69 7374 2020 2020 2020 2020 2020 2020 List │ │ │ │ +00052aa0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00052ab0: 3134 203a 204c 6973 7420 2020 2020 2020 14 : List │ │ │ │ +00052ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052b00: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00052af0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00052b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052b50: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3520 3a20 -------+.|i15 : │ │ │ │ -00052b60: 234c 2020 2020 2020 2020 2020 2020 2020 #L │ │ │ │ +00052b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00052b50: 3135 203a 2023 4c20 2020 2020 2020 2020 15 : #L │ │ │ │ +00052b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052ba0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00052b90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00052ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052bf0: 2020 2020 2020 207c 0a7c 6f31 3520 3d20 |.|o15 = │ │ │ │ -00052c00: 3620 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +00052be0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00052bf0: 3135 203d 2036 2020 2020 2020 2020 2020 15 = 6 │ │ │ │ +00052c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052c40: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00052c30: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00052c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052c90: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3620 3a20 -------+.|i16 : │ │ │ │ -00052ca0: 6e65 744c 6973 7420 4c20 2020 2020 2020 netList L │ │ │ │ +00052c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00052c90: 3136 203a 206e 6574 4c69 7374 204c 2020 16 : netList L │ │ │ │ +00052ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052ce0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00052cd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00052ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052d30: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00052d40: 2b2d 2d2d 2d2d 2d2b 2d2b 2020 2020 2020 +------+-+ │ │ │ │ +00052d20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00052d30: 2020 2020 202b 2d2d 2d2d 2d2d 2b2d 2b20 +------+-+ │ │ │ │ +00052d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052d80: 2020 2020 2020 207c 0a7c 6f31 3620 3d20 |.|o16 = │ │ │ │ -00052d90: 7c7b 302c 2032 7d7c 307c 2020 2020 2020 |{0, 2}|0| │ │ │ │ +00052d70: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00052d80: 3136 203d 207c 7b30 2c20 327d 7c30 7c20 16 = |{0, 2}|0| │ │ │ │ +00052d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052dd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00052de0: 2b2d 2d2d 2d2d 2d2b 2d2b 2020 2020 2020 +------+-+ │ │ │ │ +00052dc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00052dd0: 2020 2020 202b 2d2d 2d2d 2d2d 2b2d 2b20 +------+-+ │ │ │ │ +00052de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052e20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00052e30: 7c7b 302c 2032 7d7c 317c 2020 2020 2020 |{0, 2}|1| │ │ │ │ +00052e10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00052e20: 2020 2020 207c 7b30 2c20 327d 7c31 7c20 |{0, 2}|1| │ │ │ │ +00052e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052e70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00052e80: 2b2d 2d2d 2d2d 2d2b 2d2b 2020 2020 2020 +------+-+ │ │ │ │ +00052e60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00052e70: 2020 2020 202b 2d2d 2d2d 2d2d 2b2d 2b20 +------+-+ │ │ │ │ +00052e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052ec0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00052ed0: 7c7b 312c 2031 7d7c 307c 2020 2020 2020 |{1, 1}|0| │ │ │ │ +00052eb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00052ec0: 2020 2020 207c 7b31 2c20 317d 7c30 7c20 |{1, 1}|0| │ │ │ │ +00052ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052f10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00052f20: 2b2d 2d2d 2d2d 2d2b 2d2b 2020 2020 2020 +------+-+ │ │ │ │ +00052f00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00052f10: 2020 2020 202b 2d2d 2d2d 2d2d 2b2d 2b20 +------+-+ │ │ │ │ +00052f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052f60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00052f70: 7c7b 312c 2031 7d7c 317c 2020 2020 2020 |{1, 1}|1| │ │ │ │ +00052f50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00052f60: 2020 2020 207c 7b31 2c20 317d 7c31 7c20 |{1, 1}|1| │ │ │ │ +00052f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052fb0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00052fc0: 2b2d 2d2d 2d2d 2d2b 2d2b 2020 2020 2020 +------+-+ │ │ │ │ +00052fa0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00052fb0: 2020 2020 202b 2d2d 2d2d 2d2d 2b2d 2b20 +------+-+ │ │ │ │ +00052fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053000: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00053010: 7c7b 322c 2030 7d7c 307c 2020 2020 2020 |{2, 0}|0| │ │ │ │ +00052ff0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00053000: 2020 2020 207c 7b32 2c20 307d 7c30 7c20 |{2, 0}|0| │ │ │ │ +00053010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053050: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00053060: 2b2d 2d2d 2d2d 2d2b 2d2b 2020 2020 2020 +------+-+ │ │ │ │ +00053040: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00053050: 2020 2020 202b 2d2d 2d2d 2d2d 2b2d 2b20 +------+-+ │ │ │ │ +00053060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000530a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000530b0: 7c7b 322c 2030 7d7c 317c 2020 2020 2020 |{2, 0}|1| │ │ │ │ +00053090: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000530a0: 2020 2020 207c 7b32 2c20 307d 7c31 7c20 |{2, 0}|1| │ │ │ │ +000530b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000530c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000530d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000530e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000530f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00053100: 2b2d 2d2d 2d2d 2d2b 2d2b 2020 2020 2020 +------+-+ │ │ │ │ +000530e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000530f0: 2020 2020 202b 2d2d 2d2d 2d2d 2b2d 2b20 +------+-+ │ │ │ │ +00053100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053140: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00053130: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00053140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053190: 2d2d 2d2d 2d2d 2d2b 0a0a 466f 7220 6578 -------+..For ex │ │ │ │ -000531a0: 616d 706c 6520 7765 2068 6176 653a 0a0a ample we have:.. │ │ │ │ -000531b0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00053180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a46 ------------+..F │ │ │ │ +00053190: 6f72 2065 7861 6d70 6c65 2077 6520 6861 or example we ha │ │ │ │ +000531a0: 7665 3a0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d ve:..+---------- │ │ │ │ +000531b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000531c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000531d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000531e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000531f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00053200: 7c69 3137 203a 2068 6f6d 6f74 2328 4c5f |i17 : homot#(L_ │ │ │ │ -00053210: 3029 2020 2020 2020 2020 2020 2020 2020 0) │ │ │ │ +000531f0: 2d2d 2d2b 0a7c 6931 3720 3a20 686f 6d6f ---+.|i17 : homo │ │ │ │ +00053200: 7423 284c 5f30 2920 2020 2020 2020 2020 t#(L_0) │ │ │ │ +00053210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053240: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00053250: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00053240: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00053250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053290: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000532a0: 7c6f 3137 203d 207b 367d 207c 202d 3133 |o17 = {6} | -13 │ │ │ │ -000532b0: 3739 3561 342b 3230 3139 6133 622b 3133 795a4+2019a3b+13 │ │ │ │ -000532c0: 3736 3961 3262 322b 3735 3836 6162 332b 769a2b2+7586ab3+ │ │ │ │ -000532d0: 3836 3439 6234 2b36 3435 3461 3363 2d31 8649b4+6454a3c-1 │ │ │ │ -000532e0: 3031 3837 6132 6263 2d31 3738 3361 7c0a 0187a2bc-1783a|. │ │ │ │ -000532f0: 7c20 2020 2020 207b 367d 207c 2031 3131 | {6} | 111 │ │ │ │ -00053300: 3532 6134 2d31 3333 3661 3362 2b31 3138 52a4-1336a3b+118 │ │ │ │ -00053310: 3436 6132 6232 2b31 3032 3634 6162 332b 46a2b2+10264ab3+ │ │ │ │ -00053320: 3631 3862 342d 3131 3035 3161 3363 2b31 618b4-11051a3c+1 │ │ │ │ -00053330: 3231 3239 6132 6263 2b35 3932 3761 7c0a 2129a2bc+5927a|. │ │ │ │ -00053340: 7c20 2020 2020 207b 367d 207c 202d 3633 | {6} | -63 │ │ │ │ -00053350: 3338 6134 2b31 3030 3235 6133 622b 3134 38a4+10025a3b+14 │ │ │ │ -00053360: 3938 3761 3363 2d39 3935 3961 3262 632d 987a3c-9959a2bc- │ │ │ │ -00053370: 3131 3639 3161 3263 322b 3132 3333 3661 11691a2c2+12336a │ │ │ │ -00053380: 6263 322d 3737 3836 6133 642d 3131 7c0a bc2-7786a3d-11|. │ │ │ │ -00053390: 7c20 2020 2020 207b 367d 207c 2032 3237 | {6} | 227 │ │ │ │ -000533a0: 3561 342d 3233 3961 3362 2b31 3435 3934 5a4-239a3b+14594 │ │ │ │ -000533b0: 6132 6232 2d38 3135 3361 6233 2d31 3139 a2b2-8153ab3-119 │ │ │ │ -000533c0: 3435 6234 2d38 3431 3661 3363 2b36 3235 45b4-8416a3c+625 │ │ │ │ -000533d0: 3161 3262 632d 3330 3233 6162 3263 7c0a 1a2bc-3023ab2c|. │ │ │ │ -000533e0: 7c20 2020 2020 202d 2d2d 2d2d 2d2d 2d2d | --------- │ │ │ │ +00053290: 2020 207c 0a7c 6f31 3720 3d20 7b36 7d20 |.|o17 = {6} │ │ │ │ +000532a0: 7c20 2d31 3337 3935 6134 2b32 3031 3961 | -13795a4+2019a │ │ │ │ +000532b0: 3362 2b31 3337 3639 6132 6232 2b37 3538 3b+13769a2b2+758 │ │ │ │ +000532c0: 3661 6233 2b38 3634 3962 342b 3634 3534 6ab3+8649b4+6454 │ │ │ │ +000532d0: 6133 632d 3130 3138 3761 3262 632d 3137 a3c-10187a2bc-17 │ │ │ │ +000532e0: 3833 617c 0a7c 2020 2020 2020 7b36 7d20 83a|.| {6} │ │ │ │ +000532f0: 7c20 3131 3135 3261 342d 3133 3336 6133 | 11152a4-1336a3 │ │ │ │ +00053300: 622b 3131 3834 3661 3262 322b 3130 3236 b+11846a2b2+1026 │ │ │ │ +00053310: 3461 6233 2b36 3138 6234 2d31 3130 3531 4ab3+618b4-11051 │ │ │ │ +00053320: 6133 632b 3132 3132 3961 3262 632b 3539 a3c+12129a2bc+59 │ │ │ │ +00053330: 3237 617c 0a7c 2020 2020 2020 7b36 7d20 27a|.| {6} │ │ │ │ +00053340: 7c20 2d36 3333 3861 342b 3130 3032 3561 | -6338a4+10025a │ │ │ │ +00053350: 3362 2b31 3439 3837 6133 632d 3939 3539 3b+14987a3c-9959 │ │ │ │ +00053360: 6132 6263 2d31 3136 3931 6132 6332 2b31 a2bc-11691a2c2+1 │ │ │ │ +00053370: 3233 3336 6162 6332 2d37 3738 3661 3364 2336abc2-7786a3d │ │ │ │ +00053380: 2d31 317c 0a7c 2020 2020 2020 7b36 7d20 -11|.| {6} │ │ │ │ +00053390: 7c20 3232 3735 6134 2d32 3339 6133 622b | 2275a4-239a3b+ │ │ │ │ +000533a0: 3134 3539 3461 3262 322d 3831 3533 6162 14594a2b2-8153ab │ │ │ │ +000533b0: 332d 3131 3934 3562 342d 3834 3136 6133 3-11945b4-8416a3 │ │ │ │ +000533c0: 632b 3632 3531 6132 6263 2d33 3032 3361 c+6251a2bc-3023a │ │ │ │ +000533d0: 6232 637c 0a7c 2020 2020 2020 2d2d 2d2d b2c|.| ---- │ │ │ │ +000533e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000533f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00053430: 7c20 2020 2020 2062 3263 2b39 3231 3962 | b2c+9219b │ │ │ │ -00053440: 3363 2b35 3531 3361 3263 322b 3130 3535 3c+5513a2c2+1055 │ │ │ │ -00053450: 3861 6263 322b 3235 3930 6232 6332 2b31 8abc2+2590b2c2+1 │ │ │ │ -00053460: 3136 3234 6133 642d 3536 3033 6132 6264 1624a3d-5603a2bd │ │ │ │ -00053470: 2b31 3430 3538 6162 3264 2d31 3236 7c0a +14058ab2d-126|. │ │ │ │ -00053480: 7c20 2020 2020 2062 3263 2b34 3839 6233 | b2c+489b3 │ │ │ │ -00053490: 632d 3135 3338 3361 3263 322b 3530 3761 c-15383a2c2+507a │ │ │ │ -000534a0: 6263 322d 3133 3830 3462 3263 322d 3834 bc2-13804b2c2-84 │ │ │ │ -000534b0: 3136 6163 332b 3932 6334 2d31 3130 3537 16ac3+92c4-11057 │ │ │ │ -000534c0: 6133 642d 3531 3133 6132 6264 2d32 7c0a a3d-5113a2bd-2|. │ │ │ │ -000534d0: 7c20 2020 2020 2035 3661 3262 642b 3439 | 56a2bd+49 │ │ │ │ -000534e0: 3630 6132 6364 2d35 3538 3961 6263 642d 60a2cd-5589abcd- │ │ │ │ -000534f0: 3831 3633 6163 3264 2d31 3839 3562 6332 8163ac2d-1895bc2 │ │ │ │ -00053500: 642b 3934 3634 6132 6432 2d37 3235 3361 d+9464a2d2-7253a │ │ │ │ -00053510: 6264 322b 3132 3634 3261 6364 322d 7c0a bd2+12642acd2-|. │ │ │ │ -00053520: 7c20 2020 2020 202b 3539 3333 6233 632b | +5933b3c+ │ │ │ │ -00053530: 3932 6132 6332 2b35 3334 3361 6263 322b 92a2c2+5343abc2+ │ │ │ │ -00053540: 3337 3938 6232 6332 2d31 3539 3638 6133 3798b2c2-15968a3 │ │ │ │ -00053550: 642b 3437 3361 3262 642b 3133 3239 3361 d+473a2bd+13293a │ │ │ │ -00053560: 6232 642d 3337 3631 6233 642d 3737 7c0a b2d-3761b3d-77|. │ │ │ │ -00053570: 7c20 2020 2020 202d 2d2d 2d2d 2d2d 2d2d | --------- │ │ │ │ +00053420: 2d2d 2d7c 0a7c 2020 2020 2020 6232 632b ---|.| b2c+ │ │ │ │ +00053430: 3932 3139 6233 632b 3535 3133 6132 6332 9219b3c+5513a2c2 │ │ │ │ +00053440: 2b31 3035 3538 6162 6332 2b32 3539 3062 +10558abc2+2590b │ │ │ │ +00053450: 3263 322b 3131 3632 3461 3364 2d35 3630 2c2+11624a3d-560 │ │ │ │ +00053460: 3361 3262 642b 3134 3035 3861 6232 642d 3a2bd+14058ab2d- │ │ │ │ +00053470: 3132 367c 0a7c 2020 2020 2020 6232 632b 126|.| b2c+ │ │ │ │ +00053480: 3438 3962 3363 2d31 3533 3833 6132 6332 489b3c-15383a2c2 │ │ │ │ +00053490: 2b35 3037 6162 6332 2d31 3338 3034 6232 +507abc2-13804b2 │ │ │ │ +000534a0: 6332 2d38 3431 3661 6333 2b39 3263 342d c2-8416ac3+92c4- │ │ │ │ +000534b0: 3131 3035 3761 3364 2d35 3131 3361 3262 11057a3d-5113a2b │ │ │ │ +000534c0: 642d 327c 0a7c 2020 2020 2020 3536 6132 d-2|.| 56a2 │ │ │ │ +000534d0: 6264 2b34 3936 3061 3263 642d 3535 3839 bd+4960a2cd-5589 │ │ │ │ +000534e0: 6162 6364 2d38 3136 3361 6332 642d 3138 abcd-8163ac2d-18 │ │ │ │ +000534f0: 3935 6263 3264 2b39 3436 3461 3264 322d 95bc2d+9464a2d2- │ │ │ │ +00053500: 3732 3533 6162 6432 2b31 3236 3432 6163 7253abd2+12642ac │ │ │ │ +00053510: 6432 2d7c 0a7c 2020 2020 2020 2b35 3933 d2-|.| +593 │ │ │ │ +00053520: 3362 3363 2b39 3261 3263 322b 3533 3433 3b3c+92a2c2+5343 │ │ │ │ +00053530: 6162 6332 2b33 3739 3862 3263 322d 3135 abc2+3798b2c2-15 │ │ │ │ +00053540: 3936 3861 3364 2b34 3733 6132 6264 2b31 968a3d+473a2bd+1 │ │ │ │ +00053550: 3332 3933 6162 3264 2d33 3736 3162 3364 3293ab2d-3761b3d │ │ │ │ +00053560: 2d37 377c 0a7c 2020 2020 2020 2d2d 2d2d -77|.| ---- │ │ │ │ +00053570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000535a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000535b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -000535c0: 7c20 2020 2020 2031 3562 3364 2b37 3836 | 15b3d+786 │ │ │ │ -000535d0: 3961 3263 642d 3230 3532 6162 6364 2d31 9a2cd-2052abcd-1 │ │ │ │ -000535e0: 3833 3162 3263 642b 3630 3432 6163 3264 831b2cd+6042ac2d │ │ │ │ -000535f0: 2d32 3536 3162 6332 642d 3837 3039 6132 -2561bc2d-8709a2 │ │ │ │ -00053600: 6432 2d31 3332 3139 6162 6432 2b34 7c0a d2-13219abd2+4|. │ │ │ │ -00053610: 7c20 2020 2020 2037 3632 6162 3264 2b31 | 762ab2d+1 │ │ │ │ -00053620: 3430 3935 6233 642d 3135 3838 6132 6364 4095b3d-1588a2cd │ │ │ │ -00053630: 2b32 3030 3061 6263 642d 3230 3830 6232 +2000abcd-2080b2 │ │ │ │ -00053640: 6364 2b39 3137 3561 6332 642d 3634 3962 cd+9175ac2d-649b │ │ │ │ -00053650: 6332 642b 3838 3239 6333 642b 3231 7c0a c2d+8829c3d+21|. │ │ │ │ -00053660: 7c20 2020 2020 2031 3935 3862 6364 3220 | 1958bcd2 │ │ │ │ +000535b0: 2d2d 2d7c 0a7c 2020 2020 2020 3135 6233 ---|.| 15b3 │ │ │ │ +000535c0: 642b 3738 3639 6132 6364 2d32 3035 3261 d+7869a2cd-2052a │ │ │ │ +000535d0: 6263 642d 3138 3331 6232 6364 2b36 3034 bcd-1831b2cd+604 │ │ │ │ +000535e0: 3261 6332 642d 3235 3631 6263 3264 2d38 2ac2d-2561bc2d-8 │ │ │ │ +000535f0: 3730 3961 3264 322d 3133 3231 3961 6264 709a2d2-13219abd │ │ │ │ +00053600: 322b 347c 0a7c 2020 2020 2020 3736 3261 2+4|.| 762a │ │ │ │ +00053610: 6232 642b 3134 3039 3562 3364 2d31 3538 b2d+14095b3d-158 │ │ │ │ +00053620: 3861 3263 642b 3230 3030 6162 6364 2d32 8a2cd+2000abcd-2 │ │ │ │ +00053630: 3038 3062 3263 642b 3931 3735 6163 3264 080b2cd+9175ac2d │ │ │ │ +00053640: 2d36 3439 6263 3264 2b38 3832 3963 3364 -649bc2d+8829c3d │ │ │ │ +00053650: 2b32 317c 0a7c 2020 2020 2020 3139 3538 +21|.| 1958 │ │ │ │ +00053660: 6263 6432 2020 2020 2020 2020 2020 2020 bcd2 │ │ │ │ 00053670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000536a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000536b0: 7c20 2020 2020 2031 3761 3263 642d 3733 | 17a2cd-73 │ │ │ │ -000536c0: 3839 6162 6364 2b34 3732 3362 3263 642d 89abcd+4723b2cd- │ │ │ │ -000536d0: 3133 3236 3261 6332 642b 3534 3331 6263 13262ac2d+5431bc │ │ │ │ -000536e0: 3264 2b31 3132 3734 6132 6432 2d32 3137 2d+11274a2d2-217 │ │ │ │ -000536f0: 6162 6432 2b31 3236 3162 3264 322b 7c0a abd2+1261b2d2+|. │ │ │ │ -00053700: 7c20 2020 2020 202d 2d2d 2d2d 2d2d 2d2d | --------- │ │ │ │ +000536a0: 2020 207c 0a7c 2020 2020 2020 3137 6132 |.| 17a2 │ │ │ │ +000536b0: 6364 2d37 3338 3961 6263 642b 3437 3233 cd-7389abcd+4723 │ │ │ │ +000536c0: 6232 6364 2d31 3332 3632 6163 3264 2b35 b2cd-13262ac2d+5 │ │ │ │ +000536d0: 3433 3162 6332 642b 3131 3237 3461 3264 431bc2d+11274a2d │ │ │ │ +000536e0: 322d 3231 3761 6264 322b 3132 3631 6232 2-217abd2+1261b2 │ │ │ │ +000536f0: 6432 2b7c 0a7c 2020 2020 2020 2d2d 2d2d d2+|.| ---- │ │ │ │ +00053700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00053750: 7c20 2020 2020 2032 3039 6232 6432 2b31 | 209b2d2+1 │ │ │ │ -00053760: 3232 3235 6163 6432 2d32 3630 3562 6364 2225acd2-2605bcd │ │ │ │ -00053770: 322d 3932 6332 6432 2b31 3539 3638 6164 2-92c2d2+15968ad │ │ │ │ -00053780: 332b 3134 3836 3062 6433 2d38 3832 3963 3+14860bd3-8829c │ │ │ │ -00053790: 6433 2d31 3132 3734 6434 207c 2020 7c0a d3-11274d4 | |. │ │ │ │ -000537a0: 7c20 2020 2020 2036 3461 3264 322b 3836 | 64a2d2+86 │ │ │ │ -000537b0: 3335 6162 6432 2d37 3136 3162 3264 322b 35abd2-7161b2d2+ │ │ │ │ -000537c0: 3939 3761 6364 322b 3330 3135 6263 6432 997acd2+3015bcd2 │ │ │ │ -000537d0: 2b31 3132 3734 6332 6432 2020 2020 2020 +11274c2d2 │ │ │ │ -000537e0: 2020 2020 2020 2020 2020 207c 2020 7c0a | |. │ │ │ │ -000537f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00053740: 2d2d 2d7c 0a7c 2020 2020 2020 3230 3962 ---|.| 209b │ │ │ │ +00053750: 3264 322b 3132 3232 3561 6364 322d 3236 2d2+12225acd2-26 │ │ │ │ +00053760: 3035 6263 6432 2d39 3263 3264 322b 3135 05bcd2-92c2d2+15 │ │ │ │ +00053770: 3936 3861 6433 2b31 3438 3630 6264 332d 968ad3+14860bd3- │ │ │ │ +00053780: 3838 3239 6364 332d 3131 3237 3464 3420 8829cd3-11274d4 │ │ │ │ +00053790: 7c20 207c 0a7c 2020 2020 2020 3634 6132 | |.| 64a2 │ │ │ │ +000537a0: 6432 2b38 3633 3561 6264 322d 3731 3631 d2+8635abd2-7161 │ │ │ │ +000537b0: 6232 6432 2b39 3937 6163 6432 2b33 3031 b2d2+997acd2+301 │ │ │ │ +000537c0: 3562 6364 322b 3131 3237 3463 3264 3220 5bcd2+11274c2d2 │ │ │ │ +000537d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000537e0: 7c20 207c 0a7c 2020 2020 2020 2020 2020 | |.| │ │ │ │ +000537f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053830: 2020 2020 2020 2020 2020 207c 2020 7c0a | |. │ │ │ │ -00053840: 7c20 2020 2020 2038 3230 3161 6364 322d | 8201acd2- │ │ │ │ -00053850: 3134 3038 3062 6364 3220 2020 2020 2020 14080bcd2 │ │ │ │ +00053830: 7c20 207c 0a7c 2020 2020 2020 3832 3031 | |.| 8201 │ │ │ │ +00053840: 6163 6432 2d31 3430 3830 6263 6432 2020 acd2-14080bcd2 │ │ │ │ +00053850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053880: 2020 2020 2020 2020 2020 207c 2020 7c0a | |. │ │ │ │ -00053890: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00053880: 7c20 207c 0a7c 2020 2020 2020 2020 2020 | |.| │ │ │ │ +00053890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000538a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000538b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000538c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000538d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000538e0: 7c20 2020 2020 2020 2020 2020 2020 2034 | 4 │ │ │ │ -000538f0: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ +000538d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000538e0: 2020 2020 3420 2020 2020 2031 2020 2020 4 1 │ │ │ │ +000538f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053920: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00053930: 7c6f 3137 203a 204d 6174 7269 7820 5320 |o17 : Matrix S │ │ │ │ -00053940: 203c 2d2d 2053 2020 2020 2020 2020 2020 <-- S │ │ │ │ +00053920: 2020 207c 0a7c 6f31 3720 3a20 4d61 7472 |.|o17 : Matr │ │ │ │ +00053930: 6978 2053 2020 3c2d 2d20 5320 2020 2020 ix S <-- S │ │ │ │ +00053940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053970: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00053980: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00053970: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00053980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000539a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000539b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000539c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000539d0: 0a42 7574 2061 6c6c 2074 6865 2068 6f6d .But all the hom │ │ │ │ -000539e0: 6f74 6f70 6965 7320 6172 6520 6d69 6e69 otopies are mini │ │ │ │ -000539f0: 6d61 6c20 696e 2074 6869 7320 6361 7365 mal in this case │ │ │ │ -00053a00: 3a0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d :..+------------ │ │ │ │ +000539c0: 2d2d 2d2b 0a0a 4275 7420 616c 6c20 7468 ---+..But all th │ │ │ │ +000539d0: 6520 686f 6d6f 746f 7069 6573 2061 7265 e homotopies are │ │ │ │ +000539e0: 206d 696e 696d 616c 2069 6e20 7468 6973 minimal in this │ │ │ │ +000539f0: 2063 6173 653a 0a0a 2b2d 2d2d 2d2d 2d2d case:..+------- │ │ │ │ +00053a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053a30: 2b0a 7c69 3138 203a 206b 3120 3d20 535e +.|i18 : k1 = S^ │ │ │ │ -00053a40: 312f 2869 6465 616c 2076 6172 7320 5329 1/(ideal vars S) │ │ │ │ -00053a50: 3b20 2020 2020 2020 2020 2020 2020 207c ; | │ │ │ │ -00053a60: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00053a20: 2d2d 2d2d 2d2b 0a7c 6931 3820 3a20 6b31 -----+.|i18 : k1 │ │ │ │ +00053a30: 203d 2053 5e31 2f28 6964 6561 6c20 7661 = S^1/(ideal va │ │ │ │ +00053a40: 7273 2053 293b 2020 2020 2020 2020 2020 rs S); │ │ │ │ +00053a50: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00053a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00053a90: 7c69 3139 203a 2073 656c 6563 7428 6b65 |i19 : select(ke │ │ │ │ -00053aa0: 7973 2068 6f6d 6f74 2c6b 2d3e 286b 312a ys homot,k->(k1* │ │ │ │ -00053ab0: 2a68 6f6d 6f74 236b 2921 3d30 297c 0a7c *homot#k)!=0)|.| │ │ │ │ +00053a80: 2d2d 2d2b 0a7c 6931 3920 3a20 7365 6c65 ---+.|i19 : sele │ │ │ │ +00053a90: 6374 286b 6579 7320 686f 6d6f 742c 6b2d ct(keys homot,k- │ │ │ │ +00053aa0: 3e28 6b31 2a2a 686f 6d6f 7423 6b29 213d >(k1**homot#k)!= │ │ │ │ +00053ab0: 3029 7c0a 7c20 2020 2020 2020 2020 2020 0)|.| │ │ │ │ 00053ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053ae0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00053af0: 3139 203d 207b 7d20 2020 2020 2020 2020 19 = {} │ │ │ │ +00053ae0: 207c 0a7c 6f31 3920 3d20 7b7d 2020 2020 |.|o19 = {} │ │ │ │ +00053af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053b10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00053b10: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053b40: 2020 2020 2020 2020 2020 7c0a 7c6f 3139 |.|o19 │ │ │ │ -00053b50: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ -00053b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053b70: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00053b30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00053b40: 0a7c 6f31 3920 3a20 4c69 7374 2020 2020 .|o19 : List │ │ │ │ +00053b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00053b60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00053b70: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00053b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053ba0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ -00053bb0: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ -00053bc0: 2a20 2a6e 6f74 6520 6d61 6b65 486f 6d6f * *note makeHomo │ │ │ │ -00053bd0: 746f 7069 6573 313a 206d 616b 6548 6f6d topies1: makeHom │ │ │ │ -00053be0: 6f74 6f70 6965 7331 2c20 2d2d 2072 6574 otopies1, -- ret │ │ │ │ -00053bf0: 7572 6e73 2061 2073 7973 7465 6d20 6f66 urns a system of │ │ │ │ -00053c00: 2066 6972 7374 0a20 2020 2068 6f6d 6f74 first. homot │ │ │ │ -00053c10: 6f70 6965 730a 0a57 6179 7320 746f 2075 opies..Ways to u │ │ │ │ -00053c20: 7365 206d 616b 6548 6f6d 6f74 6f70 6965 se makeHomotopie │ │ │ │ -00053c30: 733a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d s:.============= │ │ │ │ -00053c40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00053c50: 2020 2a20 226d 616b 6548 6f6d 6f74 6f70 * "makeHomotop │ │ │ │ -00053c60: 6965 7328 4d61 7472 6978 2c43 6861 696e ies(Matrix,Chain │ │ │ │ -00053c70: 436f 6d70 6c65 7829 220a 2020 2a20 226d Complex)". * "m │ │ │ │ -00053c80: 616b 6548 6f6d 6f74 6f70 6965 7328 4d61 akeHomotopies(Ma │ │ │ │ -00053c90: 7472 6978 2c43 6861 696e 436f 6d70 6c65 trix,ChainComple │ │ │ │ -00053ca0: 782c 5a5a 2922 0a0a 466f 7220 7468 6520 x,ZZ)"..For the │ │ │ │ -00053cb0: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -00053cc0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -00053cd0: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -00053ce0: 6d61 6b65 486f 6d6f 746f 7069 6573 3a20 makeHomotopies: │ │ │ │ -00053cf0: 6d61 6b65 486f 6d6f 746f 7069 6573 2c20 makeHomotopies, │ │ │ │ -00053d00: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ -00053d10: 6420 6675 6e63 7469 6f6e 3a0a 284d 6163 d function:.(Mac │ │ │ │ -00053d20: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ -00053d30: 4675 6e63 7469 6f6e 2c2e 0a1f 0a46 696c Function,....Fil │ │ │ │ -00053d40: 653a 2043 6f6d 706c 6574 6549 6e74 6572 e: CompleteInter │ │ │ │ -00053d50: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ -00053d60: 6e73 2e69 6e66 6f2c 204e 6f64 653a 206d ns.info, Node: m │ │ │ │ -00053d70: 616b 6548 6f6d 6f74 6f70 6965 7331 2c20 akeHomotopies1, │ │ │ │ -00053d80: 4e65 7874 3a20 6d61 6b65 486f 6d6f 746f Next: makeHomoto │ │ │ │ -00053d90: 7069 6573 4f6e 486f 6d6f 6c6f 6779 2c20 piesOnHomology, │ │ │ │ -00053da0: 5072 6576 3a20 6d61 6b65 486f 6d6f 746f Prev: makeHomoto │ │ │ │ -00053db0: 7069 6573 2c20 5570 3a20 546f 700a 0a6d pies, Up: Top..m │ │ │ │ -00053dc0: 616b 6548 6f6d 6f74 6f70 6965 7331 202d akeHomotopies1 - │ │ │ │ -00053dd0: 2d20 7265 7475 726e 7320 6120 7379 7374 - returns a syst │ │ │ │ -00053de0: 656d 206f 6620 6669 7273 7420 686f 6d6f em of first homo │ │ │ │ -00053df0: 746f 7069 6573 0a2a 2a2a 2a2a 2a2a 2a2a topies.********* │ │ │ │ +00053b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +00053ba0: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ +00053bb0: 3d0a 0a20 202a 202a 6e6f 7465 206d 616b =.. * *note mak │ │ │ │ +00053bc0: 6548 6f6d 6f74 6f70 6965 7331 3a20 6d61 eHomotopies1: ma │ │ │ │ +00053bd0: 6b65 486f 6d6f 746f 7069 6573 312c 202d keHomotopies1, - │ │ │ │ +00053be0: 2d20 7265 7475 726e 7320 6120 7379 7374 - returns a syst │ │ │ │ +00053bf0: 656d 206f 6620 6669 7273 740a 2020 2020 em of first. │ │ │ │ +00053c00: 686f 6d6f 746f 7069 6573 0a0a 5761 7973 homotopies..Ways │ │ │ │ +00053c10: 2074 6f20 7573 6520 6d61 6b65 486f 6d6f to use makeHomo │ │ │ │ +00053c20: 746f 7069 6573 3a0a 3d3d 3d3d 3d3d 3d3d topies:.======== │ │ │ │ +00053c30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00053c40: 3d3d 3d0a 0a20 202a 2022 6d61 6b65 486f ===.. * "makeHo │ │ │ │ +00053c50: 6d6f 746f 7069 6573 284d 6174 7269 782c motopies(Matrix, │ │ │ │ +00053c60: 4368 6169 6e43 6f6d 706c 6578 2922 0a20 ChainComplex)". │ │ │ │ +00053c70: 202a 2022 6d61 6b65 486f 6d6f 746f 7069 * "makeHomotopi │ │ │ │ +00053c80: 6573 284d 6174 7269 782c 4368 6169 6e43 es(Matrix,ChainC │ │ │ │ +00053c90: 6f6d 706c 6578 2c5a 5a29 220a 0a46 6f72 omplex,ZZ)"..For │ │ │ │ +00053ca0: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ +00053cb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00053cc0: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ +00053cd0: 6e6f 7465 206d 616b 6548 6f6d 6f74 6f70 note makeHomotop │ │ │ │ +00053ce0: 6965 733a 206d 616b 6548 6f6d 6f74 6f70 ies: makeHomotop │ │ │ │ +00053cf0: 6965 732c 2069 7320 6120 2a6e 6f74 6520 ies, is a *note │ │ │ │ +00053d00: 6d65 7468 6f64 2066 756e 6374 696f 6e3a method function: │ │ │ │ +00053d10: 0a28 4d61 6361 756c 6179 3244 6f63 294d .(Macaulay2Doc)M │ │ │ │ +00053d20: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ +00053d30: 1f0a 4669 6c65 3a20 436f 6d70 6c65 7465 ..File: Complete │ │ │ │ +00053d40: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ +00053d50: 6c75 7469 6f6e 732e 696e 666f 2c20 4e6f lutions.info, No │ │ │ │ +00053d60: 6465 3a20 6d61 6b65 486f 6d6f 746f 7069 de: makeHomotopi │ │ │ │ +00053d70: 6573 312c 204e 6578 743a 206d 616b 6548 es1, Next: makeH │ │ │ │ +00053d80: 6f6d 6f74 6f70 6965 734f 6e48 6f6d 6f6c omotopiesOnHomol │ │ │ │ +00053d90: 6f67 792c 2050 7265 763a 206d 616b 6548 ogy, Prev: makeH │ │ │ │ +00053da0: 6f6d 6f74 6f70 6965 732c 2055 703a 2054 omotopies, Up: T │ │ │ │ +00053db0: 6f70 0a0a 6d61 6b65 486f 6d6f 746f 7069 op..makeHomotopi │ │ │ │ +00053dc0: 6573 3120 2d2d 2072 6574 7572 6e73 2061 es1 -- returns a │ │ │ │ +00053dd0: 2073 7973 7465 6d20 6f66 2066 6972 7374 system of first │ │ │ │ +00053de0: 2068 6f6d 6f74 6f70 6965 730a 2a2a 2a2a homotopies.**** │ │ │ │ +00053df0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00053e00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00053e10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00053e20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -00053e30: 5379 6e6f 7073 6973 0a3d 3d3d 3d3d 3d3d Synopsis.======= │ │ │ │ -00053e40: 3d0a 0a20 202a 2055 7361 6765 3a20 0a20 =.. * Usage: . │ │ │ │ -00053e50: 2020 2020 2020 2048 203d 206d 616b 6548 H = makeH │ │ │ │ -00053e60: 6f6d 6f74 6f70 6965 7331 2866 2c46 2c64 omotopies1(f,F,d │ │ │ │ -00053e70: 290a 2020 2a20 496e 7075 7473 3a0a 2020 ). * Inputs:. │ │ │ │ -00053e80: 2020 2020 2a20 662c 2061 202a 6e6f 7465 * f, a *note │ │ │ │ -00053e90: 206d 6174 7269 783a 2028 4d61 6361 756c matrix: (Macaul │ │ │ │ -00053ea0: 6179 3244 6f63 294d 6174 7269 782c 2c20 ay2Doc)Matrix,, │ │ │ │ -00053eb0: 3178 6e20 6d61 7472 6978 206f 6620 656c 1xn matrix of el │ │ │ │ -00053ec0: 656d 656e 7473 206f 6620 530a 2020 2020 ements of S. │ │ │ │ -00053ed0: 2020 2a20 462c 2061 202a 6e6f 7465 2063 * F, a *note c │ │ │ │ -00053ee0: 6861 696e 2063 6f6d 706c 6578 3a20 284d hain complex: (M │ │ │ │ -00053ef0: 6163 6175 6c61 7932 446f 6329 4368 6169 acaulay2Doc)Chai │ │ │ │ -00053f00: 6e43 6f6d 706c 6578 2c2c 2061 646d 6974 nComplex,, admit │ │ │ │ -00053f10: 7469 6e67 0a20 2020 2020 2020 2068 6f6d ting. hom │ │ │ │ -00053f20: 6f74 6f70 6965 7320 666f 7220 7468 6520 otopies for the │ │ │ │ -00053f30: 656e 7472 6965 7320 6f66 2066 0a20 2020 entries of f. │ │ │ │ -00053f40: 2020 202a 2064 2c20 616e 202a 6e6f 7465 * d, an *note │ │ │ │ -00053f50: 2069 6e74 6567 6572 3a20 284d 6163 6175 integer: (Macau │ │ │ │ -00053f60: 6c61 7932 446f 6329 5a5a 2c2c 2068 6f77 lay2Doc)ZZ,, how │ │ │ │ -00053f70: 2066 6172 2062 6163 6b20 746f 2063 6f6d far back to com │ │ │ │ -00053f80: 7075 7465 2074 6865 0a20 2020 2020 2020 pute the. │ │ │ │ -00053f90: 2068 6f6d 6f74 6f70 6965 7320 2864 6566 homotopies (def │ │ │ │ -00053fa0: 6175 6c74 7320 746f 206c 656e 6774 6820 aults to length │ │ │ │ -00053fb0: 6f66 2046 290a 2020 2a20 4f75 7470 7574 of F). * Output │ │ │ │ -00053fc0: 733a 0a20 2020 2020 202a 2048 2c20 6120 s:. * H, a │ │ │ │ -00053fd0: 2a6e 6f74 6520 6861 7368 2074 6162 6c65 *note hash table │ │ │ │ -00053fe0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00053ff0: 4861 7368 5461 626c 652c 2c20 6769 7665 HashTable,, give │ │ │ │ -00054000: 7320 7468 6520 686f 6d6f 746f 7079 0a20 s the homotopy. │ │ │ │ -00054010: 2020 2020 2020 2066 726f 6d20 465f 6920 from F_i │ │ │ │ -00054020: 636f 7272 6573 706f 6e64 696e 6720 746f corresponding to │ │ │ │ -00054030: 2066 5f6a 2061 7320 7468 6520 7661 6c75 f_j as the valu │ │ │ │ -00054040: 6520 2448 235c 7b6a 2c69 5c7d 240a 0a44 e $H#\{j,i\}$..D │ │ │ │ -00054050: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -00054060: 3d3d 3d3d 3d3d 0a0a 5361 6d65 2061 7320 ======..Same as │ │ │ │ -00054070: 6d61 6b65 486f 6d6f 746f 7069 6573 2c20 makeHomotopies, │ │ │ │ -00054080: 6275 7420 6f6e 6c79 2063 6f6d 7075 7465 but only compute │ │ │ │ -00054090: 7320 7468 6520 6f72 6469 6e61 7279 2068 s the ordinary h │ │ │ │ -000540a0: 6f6d 6f74 6f70 6965 732c 206e 6f74 2074 omotopies, not t │ │ │ │ -000540b0: 6865 0a68 6967 6865 7220 6f6e 6573 2e20 he.higher ones. │ │ │ │ -000540c0: 5573 6564 2069 6e20 6578 7465 7269 6f72 Used in exterior │ │ │ │ -000540d0: 546f 724d 6f64 756c 650a 0a53 6565 2061 TorModule..See a │ │ │ │ -000540e0: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ -000540f0: 2a20 2a6e 6f74 6520 6d61 6b65 486f 6d6f * *note makeHomo │ │ │ │ -00054100: 746f 7069 6573 3a20 6d61 6b65 486f 6d6f topies: makeHomo │ │ │ │ -00054110: 746f 7069 6573 2c20 2d2d 2072 6574 7572 topies, -- retur │ │ │ │ -00054120: 6e73 2061 2073 7973 7465 6d20 6f66 2068 ns a system of h │ │ │ │ -00054130: 6967 6865 720a 2020 2020 686f 6d6f 746f igher. homoto │ │ │ │ -00054140: 7069 6573 0a20 202a 202a 6e6f 7465 2065 pies. * *note e │ │ │ │ -00054150: 7874 6572 696f 7254 6f72 4d6f 6475 6c65 xteriorTorModule │ │ │ │ -00054160: 3a20 6578 7465 7269 6f72 546f 724d 6f64 : exteriorTorMod │ │ │ │ -00054170: 756c 652c 202d 2d20 546f 7220 6173 2061 ule, -- Tor as a │ │ │ │ -00054180: 206d 6f64 756c 6520 6f76 6572 2061 6e0a module over an. │ │ │ │ -00054190: 2020 2020 6578 7465 7269 6f72 2061 6c67 exterior alg │ │ │ │ -000541a0: 6562 7261 206f 7220 6269 6772 6164 6564 ebra or bigraded │ │ │ │ -000541b0: 2061 6c67 6562 7261 0a0a 5761 7973 2074 algebra..Ways t │ │ │ │ -000541c0: 6f20 7573 6520 6d61 6b65 486f 6d6f 746f o use makeHomoto │ │ │ │ -000541d0: 7069 6573 313a 0a3d 3d3d 3d3d 3d3d 3d3d pies1:.========= │ │ │ │ -000541e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000541f0: 3d3d 3d0a 0a20 202a 2022 6d61 6b65 486f ===.. * "makeHo │ │ │ │ -00054200: 6d6f 746f 7069 6573 3128 4d61 7472 6978 motopies1(Matrix │ │ │ │ -00054210: 2c43 6861 696e 436f 6d70 6c65 7829 220a ,ChainComplex)". │ │ │ │ -00054220: 2020 2a20 226d 616b 6548 6f6d 6f74 6f70 * "makeHomotop │ │ │ │ -00054230: 6965 7331 284d 6174 7269 782c 4368 6169 ies1(Matrix,Chai │ │ │ │ -00054240: 6e43 6f6d 706c 6578 2c5a 5a29 220a 0a46 nComplex,ZZ)"..F │ │ │ │ -00054250: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -00054260: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -00054270: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -00054280: 202a 6e6f 7465 206d 616b 6548 6f6d 6f74 *note makeHomot │ │ │ │ -00054290: 6f70 6965 7331 3a20 6d61 6b65 486f 6d6f opies1: makeHomo │ │ │ │ -000542a0: 746f 7069 6573 312c 2069 7320 6120 2a6e topies1, is a *n │ │ │ │ -000542b0: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ -000542c0: 696f 6e3a 0a28 4d61 6361 756c 6179 3244 ion:.(Macaulay2D │ │ │ │ -000542d0: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ -000542e0: 6e2c 2e0a 1f0a 4669 6c65 3a20 436f 6d70 n,....File: Comp │ │ │ │ -000542f0: 6c65 7465 496e 7465 7273 6563 7469 6f6e leteIntersection │ │ │ │ -00054300: 5265 736f 6c75 7469 6f6e 732e 696e 666f Resolutions.info │ │ │ │ -00054310: 2c20 4e6f 6465 3a20 6d61 6b65 486f 6d6f , Node: makeHomo │ │ │ │ -00054320: 746f 7069 6573 4f6e 486f 6d6f 6c6f 6779 topiesOnHomology │ │ │ │ -00054330: 2c20 4e65 7874 3a20 6d61 6b65 4d6f 6475 , Next: makeModu │ │ │ │ -00054340: 6c65 2c20 5072 6576 3a20 6d61 6b65 486f le, Prev: makeHo │ │ │ │ -00054350: 6d6f 746f 7069 6573 312c 2055 703a 2054 motopies1, Up: T │ │ │ │ -00054360: 6f70 0a0a 6d61 6b65 486f 6d6f 746f 7069 op..makeHomotopi │ │ │ │ -00054370: 6573 4f6e 486f 6d6f 6c6f 6779 202d 2d20 esOnHomology -- │ │ │ │ -00054380: 486f 6d6f 6c6f 6779 206f 6620 6120 636f Homology of a co │ │ │ │ -00054390: 6d70 6c65 7820 6173 2065 7874 6572 696f mplex as exterio │ │ │ │ -000543a0: 7220 6d6f 6475 6c65 0a2a 2a2a 2a2a 2a2a r module.******* │ │ │ │ +00053e20: 2a2a 2a0a 0a53 796e 6f70 7369 730a 3d3d ***..Synopsis.== │ │ │ │ +00053e30: 3d3d 3d3d 3d3d 0a0a 2020 2a20 5573 6167 ======.. * Usag │ │ │ │ +00053e40: 653a 200a 2020 2020 2020 2020 4820 3d20 e: . H = │ │ │ │ +00053e50: 6d61 6b65 486f 6d6f 746f 7069 6573 3128 makeHomotopies1( │ │ │ │ +00053e60: 662c 462c 6429 0a20 202a 2049 6e70 7574 f,F,d). * Input │ │ │ │ +00053e70: 733a 0a20 2020 2020 202a 2066 2c20 6120 s:. * f, a │ │ │ │ +00053e80: 2a6e 6f74 6520 6d61 7472 6978 3a20 284d *note matrix: (M │ │ │ │ +00053e90: 6163 6175 6c61 7932 446f 6329 4d61 7472 acaulay2Doc)Matr │ │ │ │ +00053ea0: 6978 2c2c 2031 786e 206d 6174 7269 7820 ix,, 1xn matrix │ │ │ │ +00053eb0: 6f66 2065 6c65 6d65 6e74 7320 6f66 2053 of elements of S │ │ │ │ +00053ec0: 0a20 2020 2020 202a 2046 2c20 6120 2a6e . * F, a *n │ │ │ │ +00053ed0: 6f74 6520 6368 6169 6e20 636f 6d70 6c65 ote chain comple │ │ │ │ +00053ee0: 783a 2028 4d61 6361 756c 6179 3244 6f63 x: (Macaulay2Doc │ │ │ │ +00053ef0: 2943 6861 696e 436f 6d70 6c65 782c 2c20 )ChainComplex,, │ │ │ │ +00053f00: 6164 6d69 7474 696e 670a 2020 2020 2020 admitting. │ │ │ │ +00053f10: 2020 686f 6d6f 746f 7069 6573 2066 6f72 homotopies for │ │ │ │ +00053f20: 2074 6865 2065 6e74 7269 6573 206f 6620 the entries of │ │ │ │ +00053f30: 660a 2020 2020 2020 2a20 642c 2061 6e20 f. * d, an │ │ │ │ +00053f40: 2a6e 6f74 6520 696e 7465 6765 723a 2028 *note integer: ( │ │ │ │ +00053f50: 4d61 6361 756c 6179 3244 6f63 295a 5a2c Macaulay2Doc)ZZ, │ │ │ │ +00053f60: 2c20 686f 7720 6661 7220 6261 636b 2074 , how far back t │ │ │ │ +00053f70: 6f20 636f 6d70 7574 6520 7468 650a 2020 o compute the. │ │ │ │ +00053f80: 2020 2020 2020 686f 6d6f 746f 7069 6573 homotopies │ │ │ │ +00053f90: 2028 6465 6661 756c 7473 2074 6f20 6c65 (defaults to le │ │ │ │ +00053fa0: 6e67 7468 206f 6620 4629 0a20 202a 204f ngth of F). * O │ │ │ │ +00053fb0: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ +00053fc0: 482c 2061 202a 6e6f 7465 2068 6173 6820 H, a *note hash │ │ │ │ +00053fd0: 7461 626c 653a 2028 4d61 6361 756c 6179 table: (Macaulay │ │ │ │ +00053fe0: 3244 6f63 2948 6173 6854 6162 6c65 2c2c 2Doc)HashTable,, │ │ │ │ +00053ff0: 2067 6976 6573 2074 6865 2068 6f6d 6f74 gives the homot │ │ │ │ +00054000: 6f70 790a 2020 2020 2020 2020 6672 6f6d opy. from │ │ │ │ +00054010: 2046 5f69 2063 6f72 7265 7370 6f6e 6469 F_i correspondi │ │ │ │ +00054020: 6e67 2074 6f20 665f 6a20 6173 2074 6865 ng to f_j as the │ │ │ │ +00054030: 2076 616c 7565 2024 4823 5c7b 6a2c 695c value $H#\{j,i\ │ │ │ │ +00054040: 7d24 0a0a 4465 7363 7269 7074 696f 6e0a }$..Description. │ │ │ │ +00054050: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a53 616d ===========..Sam │ │ │ │ +00054060: 6520 6173 206d 616b 6548 6f6d 6f74 6f70 e as makeHomotop │ │ │ │ +00054070: 6965 732c 2062 7574 206f 6e6c 7920 636f ies, but only co │ │ │ │ +00054080: 6d70 7574 6573 2074 6865 206f 7264 696e mputes the ordin │ │ │ │ +00054090: 6172 7920 686f 6d6f 746f 7069 6573 2c20 ary homotopies, │ │ │ │ +000540a0: 6e6f 7420 7468 650a 6869 6768 6572 206f not the.higher o │ │ │ │ +000540b0: 6e65 732e 2055 7365 6420 696e 2065 7874 nes. Used in ext │ │ │ │ +000540c0: 6572 696f 7254 6f72 4d6f 6475 6c65 0a0a eriorTorModule.. │ │ │ │ +000540d0: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ +000540e0: 3d0a 0a20 202a 202a 6e6f 7465 206d 616b =.. * *note mak │ │ │ │ +000540f0: 6548 6f6d 6f74 6f70 6965 733a 206d 616b eHomotopies: mak │ │ │ │ +00054100: 6548 6f6d 6f74 6f70 6965 732c 202d 2d20 eHomotopies, -- │ │ │ │ +00054110: 7265 7475 726e 7320 6120 7379 7374 656d returns a system │ │ │ │ +00054120: 206f 6620 6869 6768 6572 0a20 2020 2068 of higher. h │ │ │ │ +00054130: 6f6d 6f74 6f70 6965 730a 2020 2a20 2a6e omotopies. * *n │ │ │ │ +00054140: 6f74 6520 6578 7465 7269 6f72 546f 724d ote exteriorTorM │ │ │ │ +00054150: 6f64 756c 653a 2065 7874 6572 696f 7254 odule: exteriorT │ │ │ │ +00054160: 6f72 4d6f 6475 6c65 2c20 2d2d 2054 6f72 orModule, -- Tor │ │ │ │ +00054170: 2061 7320 6120 6d6f 6475 6c65 206f 7665 as a module ove │ │ │ │ +00054180: 7220 616e 0a20 2020 2065 7874 6572 696f r an. exterio │ │ │ │ +00054190: 7220 616c 6765 6272 6120 6f72 2062 6967 r algebra or big │ │ │ │ +000541a0: 7261 6465 6420 616c 6765 6272 610a 0a57 raded algebra..W │ │ │ │ +000541b0: 6179 7320 746f 2075 7365 206d 616b 6548 ays to use makeH │ │ │ │ +000541c0: 6f6d 6f74 6f70 6965 7331 3a0a 3d3d 3d3d omotopies1:.==== │ │ │ │ +000541d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000541e0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 226d ========.. * "m │ │ │ │ +000541f0: 616b 6548 6f6d 6f74 6f70 6965 7331 284d akeHomotopies1(M │ │ │ │ +00054200: 6174 7269 782c 4368 6169 6e43 6f6d 706c atrix,ChainCompl │ │ │ │ +00054210: 6578 2922 0a20 202a 2022 6d61 6b65 486f ex)". * "makeHo │ │ │ │ +00054220: 6d6f 746f 7069 6573 3128 4d61 7472 6978 motopies1(Matrix │ │ │ │ +00054230: 2c43 6861 696e 436f 6d70 6c65 782c 5a5a ,ChainComplex,ZZ │ │ │ │ +00054240: 2922 0a0a 466f 7220 7468 6520 7072 6f67 )"..For the prog │ │ │ │ +00054250: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ +00054260: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ +00054270: 626a 6563 7420 2a6e 6f74 6520 6d61 6b65 bject *note make │ │ │ │ +00054280: 486f 6d6f 746f 7069 6573 313a 206d 616b Homotopies1: mak │ │ │ │ +00054290: 6548 6f6d 6f74 6f70 6965 7331 2c20 6973 eHomotopies1, is │ │ │ │ +000542a0: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ +000542b0: 6675 6e63 7469 6f6e 3a0a 284d 6163 6175 function:.(Macau │ │ │ │ +000542c0: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ +000542d0: 6e63 7469 6f6e 2c2e 0a1f 0a46 696c 653a nction,....File: │ │ │ │ +000542e0: 2043 6f6d 706c 6574 6549 6e74 6572 7365 CompleteInterse │ │ │ │ +000542f0: 6374 696f 6e52 6573 6f6c 7574 696f 6e73 ctionResolutions │ │ │ │ +00054300: 2e69 6e66 6f2c 204e 6f64 653a 206d 616b .info, Node: mak │ │ │ │ +00054310: 6548 6f6d 6f74 6f70 6965 734f 6e48 6f6d eHomotopiesOnHom │ │ │ │ +00054320: 6f6c 6f67 792c 204e 6578 743a 206d 616b ology, Next: mak │ │ │ │ +00054330: 654d 6f64 756c 652c 2050 7265 763a 206d eModule, Prev: m │ │ │ │ +00054340: 616b 6548 6f6d 6f74 6f70 6965 7331 2c20 akeHomotopies1, │ │ │ │ +00054350: 5570 3a20 546f 700a 0a6d 616b 6548 6f6d Up: Top..makeHom │ │ │ │ +00054360: 6f74 6f70 6965 734f 6e48 6f6d 6f6c 6f67 otopiesOnHomolog │ │ │ │ +00054370: 7920 2d2d 2048 6f6d 6f6c 6f67 7920 6f66 y -- Homology of │ │ │ │ +00054380: 2061 2063 6f6d 706c 6578 2061 7320 6578 a complex as ex │ │ │ │ +00054390: 7465 7269 6f72 206d 6f64 756c 650a 2a2a terior module.** │ │ │ │ +000543a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000543b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000543c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000543d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000543e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 *************..S │ │ │ │ -000543f0: 796e 6f70 7369 730a 3d3d 3d3d 3d3d 3d3d ynopsis.======== │ │ │ │ -00054400: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ -00054410: 2020 2020 2020 2848 2c68 2920 3d20 6d61 (H,h) = ma │ │ │ │ -00054420: 6b65 486f 6d6f 746f 7069 6573 4f6e 486f keHomotopiesOnHo │ │ │ │ -00054430: 6d6f 6c6f 6779 2866 662c 2043 290a 2020 mology(ff, C). │ │ │ │ -00054440: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ -00054450: 2a20 6666 2c20 6120 2a6e 6f74 6520 6d61 * ff, a *note ma │ │ │ │ -00054460: 7472 6978 3a20 284d 6163 6175 6c61 7932 trix: (Macaulay2 │ │ │ │ -00054470: 446f 6329 4d61 7472 6978 2c2c 206d 6174 Doc)Matrix,, mat │ │ │ │ -00054480: 7269 7820 6f66 2065 6c65 6d65 6e74 7320 rix of elements │ │ │ │ -00054490: 686f 6d6f 746f 7069 630a 2020 2020 2020 homotopic. │ │ │ │ -000544a0: 2020 746f 2030 206f 6e20 430a 2020 2020 to 0 on C. │ │ │ │ -000544b0: 2020 2a20 432c 2061 202a 6e6f 7465 2063 * C, a *note c │ │ │ │ -000544c0: 6861 696e 2063 6f6d 706c 6578 3a20 284d hain complex: (M │ │ │ │ -000544d0: 6163 6175 6c61 7932 446f 6329 4368 6169 acaulay2Doc)Chai │ │ │ │ -000544e0: 6e43 6f6d 706c 6578 2c2c 200a 2020 2a20 nComplex,, . * │ │ │ │ -000544f0: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ -00054500: 2048 2c20 6120 2a6e 6f74 6520 6861 7368 H, a *note hash │ │ │ │ -00054510: 2074 6162 6c65 3a20 284d 6163 6175 6c61 table: (Macaula │ │ │ │ -00054520: 7932 446f 6329 4861 7368 5461 626c 652c y2Doc)HashTable, │ │ │ │ -00054530: 2c20 486f 6d6f 6c6f 6779 206f 6620 432c , Homology of C, │ │ │ │ -00054540: 2069 6e64 6578 6564 0a20 2020 2020 2020 indexed. │ │ │ │ -00054550: 2062 7920 706c 6163 6573 2069 6e20 7468 by places in th │ │ │ │ -00054560: 6520 430a 2020 2020 2020 2a20 682c 2061 e C. * h, a │ │ │ │ -00054570: 202a 6e6f 7465 2068 6173 6820 7461 626c *note hash tabl │ │ │ │ -00054580: 653a 2028 4d61 6361 756c 6179 3244 6f63 e: (Macaulay2Doc │ │ │ │ -00054590: 2948 6173 6854 6162 6c65 2c2c 2068 6f6d )HashTable,, hom │ │ │ │ -000545a0: 6f74 6f70 6965 7320 666f 720a 2020 2020 otopies for. │ │ │ │ -000545b0: 2020 2020 656c 656d 656e 7473 206f 6620 elements of │ │ │ │ -000545c0: 6620 6f6e 2074 6865 2068 6f6d 6f6c 6f67 f on the homolog │ │ │ │ -000545d0: 7920 6f66 2043 0a0a 4465 7363 7269 7074 y of C..Descript │ │ │ │ -000545e0: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -000545f0: 0a54 6865 2073 6372 6970 7420 6361 6c6c .The script call │ │ │ │ -00054600: 7320 6d61 6b65 486f 6d6f 746f 7069 6573 s makeHomotopies │ │ │ │ -00054610: 3120 746f 2070 726f 6475 6365 2068 6f6d 1 to produce hom │ │ │ │ -00054620: 6f74 6f70 6965 7320 666f 7220 7468 6520 otopies for the │ │ │ │ -00054630: 6666 5f69 206f 6e20 432c 2061 6e64 0a74 ff_i on C, and.t │ │ │ │ -00054640: 6865 6e20 636f 6d70 7574 6573 2074 6865 hen computes the │ │ │ │ -00054650: 6972 2061 6374 696f 6e20 6f6e 2074 6865 ir action on the │ │ │ │ -00054660: 2048 6f6d 6f6c 6f67 7920 6f66 2043 2e0a Homology of C.. │ │ │ │ -00054670: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ -00054680: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 6578 ==.. * *note ex │ │ │ │ -00054690: 7465 7269 6f72 546f 724d 6f64 756c 653a teriorTorModule: │ │ │ │ -000546a0: 2065 7874 6572 696f 7254 6f72 4d6f 6475 exteriorTorModu │ │ │ │ -000546b0: 6c65 2c20 2d2d 2054 6f72 2061 7320 6120 le, -- Tor as a │ │ │ │ -000546c0: 6d6f 6475 6c65 206f 7665 7220 616e 0a20 module over an. │ │ │ │ -000546d0: 2020 2065 7874 6572 696f 7220 616c 6765 exterior alge │ │ │ │ -000546e0: 6272 6120 6f72 2062 6967 7261 6465 6420 bra or bigraded │ │ │ │ -000546f0: 616c 6765 6272 610a 2020 2a20 2a6e 6f74 algebra. * *not │ │ │ │ -00054700: 6520 6578 7465 7269 6f72 4578 744d 6f64 e exteriorExtMod │ │ │ │ -00054710: 756c 653a 2065 7874 6572 696f 7245 7874 ule: exteriorExt │ │ │ │ -00054720: 4d6f 6475 6c65 2c20 2d2d 2045 7874 284d Module, -- Ext(M │ │ │ │ -00054730: 2c6b 2920 6f72 2045 7874 284d 2c4e 2920 ,k) or Ext(M,N) │ │ │ │ -00054740: 6173 2061 0a20 2020 206d 6f64 756c 6520 as a. module │ │ │ │ -00054750: 6f76 6572 2061 6e20 6578 7465 7269 6f72 over an exterior │ │ │ │ -00054760: 2061 6c67 6562 7261 0a0a 5761 7973 2074 algebra..Ways t │ │ │ │ -00054770: 6f20 7573 6520 6d61 6b65 486f 6d6f 746f o use makeHomoto │ │ │ │ -00054780: 7069 6573 4f6e 486f 6d6f 6c6f 6779 3a0a piesOnHomology:. │ │ │ │ +000543e0: 2a2a 0a0a 5379 6e6f 7073 6973 0a3d 3d3d **..Synopsis.=== │ │ │ │ +000543f0: 3d3d 3d3d 3d0a 0a20 202a 2055 7361 6765 =====.. * Usage │ │ │ │ +00054400: 3a20 0a20 2020 2020 2020 2028 482c 6829 : . (H,h) │ │ │ │ +00054410: 203d 206d 616b 6548 6f6d 6f74 6f70 6965 = makeHomotopie │ │ │ │ +00054420: 734f 6e48 6f6d 6f6c 6f67 7928 6666 2c20 sOnHomology(ff, │ │ │ │ +00054430: 4329 0a20 202a 2049 6e70 7574 733a 0a20 C). * Inputs:. │ │ │ │ +00054440: 2020 2020 202a 2066 662c 2061 202a 6e6f * ff, a *no │ │ │ │ +00054450: 7465 206d 6174 7269 783a 2028 4d61 6361 te matrix: (Maca │ │ │ │ +00054460: 756c 6179 3244 6f63 294d 6174 7269 782c ulay2Doc)Matrix, │ │ │ │ +00054470: 2c20 6d61 7472 6978 206f 6620 656c 656d , matrix of elem │ │ │ │ +00054480: 656e 7473 2068 6f6d 6f74 6f70 6963 0a20 ents homotopic. │ │ │ │ +00054490: 2020 2020 2020 2074 6f20 3020 6f6e 2043 to 0 on C │ │ │ │ +000544a0: 0a20 2020 2020 202a 2043 2c20 6120 2a6e . * C, a *n │ │ │ │ +000544b0: 6f74 6520 6368 6169 6e20 636f 6d70 6c65 ote chain comple │ │ │ │ +000544c0: 783a 2028 4d61 6361 756c 6179 3244 6f63 x: (Macaulay2Doc │ │ │ │ +000544d0: 2943 6861 696e 436f 6d70 6c65 782c 2c20 )ChainComplex,, │ │ │ │ +000544e0: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +000544f0: 2020 2020 2a20 482c 2061 202a 6e6f 7465 * H, a *note │ │ │ │ +00054500: 2068 6173 6820 7461 626c 653a 2028 4d61 hash table: (Ma │ │ │ │ +00054510: 6361 756c 6179 3244 6f63 2948 6173 6854 caulay2Doc)HashT │ │ │ │ +00054520: 6162 6c65 2c2c 2048 6f6d 6f6c 6f67 7920 able,, Homology │ │ │ │ +00054530: 6f66 2043 2c20 696e 6465 7865 640a 2020 of C, indexed. │ │ │ │ +00054540: 2020 2020 2020 6279 2070 6c61 6365 7320 by places │ │ │ │ +00054550: 696e 2074 6865 2043 0a20 2020 2020 202a in the C. * │ │ │ │ +00054560: 2068 2c20 6120 2a6e 6f74 6520 6861 7368 h, a *note hash │ │ │ │ +00054570: 2074 6162 6c65 3a20 284d 6163 6175 6c61 table: (Macaula │ │ │ │ +00054580: 7932 446f 6329 4861 7368 5461 626c 652c y2Doc)HashTable, │ │ │ │ +00054590: 2c20 686f 6d6f 746f 7069 6573 2066 6f72 , homotopies for │ │ │ │ +000545a0: 0a20 2020 2020 2020 2065 6c65 6d65 6e74 . element │ │ │ │ +000545b0: 7320 6f66 2066 206f 6e20 7468 6520 686f s of f on the ho │ │ │ │ +000545c0: 6d6f 6c6f 6779 206f 6620 430a 0a44 6573 mology of C..Des │ │ │ │ +000545d0: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ +000545e0: 3d3d 3d3d 0a0a 5468 6520 7363 7269 7074 ====..The script │ │ │ │ +000545f0: 2063 616c 6c73 206d 616b 6548 6f6d 6f74 calls makeHomot │ │ │ │ +00054600: 6f70 6965 7331 2074 6f20 7072 6f64 7563 opies1 to produc │ │ │ │ +00054610: 6520 686f 6d6f 746f 7069 6573 2066 6f72 e homotopies for │ │ │ │ +00054620: 2074 6865 2066 665f 6920 6f6e 2043 2c20 the ff_i on C, │ │ │ │ +00054630: 616e 640a 7468 656e 2063 6f6d 7075 7465 and.then compute │ │ │ │ +00054640: 7320 7468 6569 7220 6163 7469 6f6e 206f s their action o │ │ │ │ +00054650: 6e20 7468 6520 486f 6d6f 6c6f 6779 206f n the Homology o │ │ │ │ +00054660: 6620 432e 0a0a 5365 6520 616c 736f 0a3d f C...See also.= │ │ │ │ +00054670: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ +00054680: 7465 2065 7874 6572 696f 7254 6f72 4d6f te exteriorTorMo │ │ │ │ +00054690: 6475 6c65 3a20 6578 7465 7269 6f72 546f dule: exteriorTo │ │ │ │ +000546a0: 724d 6f64 756c 652c 202d 2d20 546f 7220 rModule, -- Tor │ │ │ │ +000546b0: 6173 2061 206d 6f64 756c 6520 6f76 6572 as a module over │ │ │ │ +000546c0: 2061 6e0a 2020 2020 6578 7465 7269 6f72 an. exterior │ │ │ │ +000546d0: 2061 6c67 6562 7261 206f 7220 6269 6772 algebra or bigr │ │ │ │ +000546e0: 6164 6564 2061 6c67 6562 7261 0a20 202a aded algebra. * │ │ │ │ +000546f0: 202a 6e6f 7465 2065 7874 6572 696f 7245 *note exteriorE │ │ │ │ +00054700: 7874 4d6f 6475 6c65 3a20 6578 7465 7269 xtModule: exteri │ │ │ │ +00054710: 6f72 4578 744d 6f64 756c 652c 202d 2d20 orExtModule, -- │ │ │ │ +00054720: 4578 7428 4d2c 6b29 206f 7220 4578 7428 Ext(M,k) or Ext( │ │ │ │ +00054730: 4d2c 4e29 2061 7320 610a 2020 2020 6d6f M,N) as a. mo │ │ │ │ +00054740: 6475 6c65 206f 7665 7220 616e 2065 7874 dule over an ext │ │ │ │ +00054750: 6572 696f 7220 616c 6765 6272 610a 0a57 erior algebra..W │ │ │ │ +00054760: 6179 7320 746f 2075 7365 206d 616b 6548 ays to use makeH │ │ │ │ +00054770: 6f6d 6f74 6f70 6965 734f 6e48 6f6d 6f6c omotopiesOnHomol │ │ │ │ +00054780: 6f67 793a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d ogy:.=========== │ │ │ │ 00054790: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000547a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000547b0: 3d3d 3d3d 3d0a 0a20 202a 2022 6d61 6b65 =====.. * "make │ │ │ │ -000547c0: 486f 6d6f 746f 7069 6573 4f6e 486f 6d6f HomotopiesOnHomo │ │ │ │ -000547d0: 6c6f 6779 284d 6174 7269 782c 4368 6169 logy(Matrix,Chai │ │ │ │ -000547e0: 6e43 6f6d 706c 6578 2922 0a0a 466f 7220 nComplex)"..For │ │ │ │ -000547f0: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -00054800: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00054810: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -00054820: 6f74 6520 6d61 6b65 486f 6d6f 746f 7069 ote makeHomotopi │ │ │ │ -00054830: 6573 4f6e 486f 6d6f 6c6f 6779 3a20 6d61 esOnHomology: ma │ │ │ │ -00054840: 6b65 486f 6d6f 746f 7069 6573 4f6e 486f keHomotopiesOnHo │ │ │ │ -00054850: 6d6f 6c6f 6779 2c20 6973 2061 202a 6e6f mology, is a *no │ │ │ │ -00054860: 7465 0a6d 6574 686f 6420 6675 6e63 7469 te.method functi │ │ │ │ -00054870: 6f6e 3a20 284d 6163 6175 6c61 7932 446f on: (Macaulay2Do │ │ │ │ -00054880: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ -00054890: 2c2e 0a1f 0a46 696c 653a 2043 6f6d 706c ,....File: Compl │ │ │ │ -000548a0: 6574 6549 6e74 6572 7365 6374 696f 6e52 eteIntersectionR │ │ │ │ -000548b0: 6573 6f6c 7574 696f 6e73 2e69 6e66 6f2c esolutions.info, │ │ │ │ -000548c0: 204e 6f64 653a 206d 616b 654d 6f64 756c Node: makeModul │ │ │ │ -000548d0: 652c 204e 6578 743a 206d 616b 6554 2c20 e, Next: makeT, │ │ │ │ -000548e0: 5072 6576 3a20 6d61 6b65 486f 6d6f 746f Prev: makeHomoto │ │ │ │ -000548f0: 7069 6573 4f6e 486f 6d6f 6c6f 6779 2c20 piesOnHomology, │ │ │ │ -00054900: 5570 3a20 546f 700a 0a6d 616b 654d 6f64 Up: Top..makeMod │ │ │ │ -00054910: 756c 6520 2d2d 206d 616b 6573 2061 204d ule -- makes a M │ │ │ │ -00054920: 6f64 756c 6520 6f75 7420 6f66 2061 2063 odule out of a c │ │ │ │ -00054930: 6f6c 6c65 6374 696f 6e20 6f66 206d 6f64 ollection of mod │ │ │ │ -00054940: 756c 6573 2061 6e64 206d 6170 730a 2a2a ules and maps.** │ │ │ │ +000547a0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +000547b0: 226d 616b 6548 6f6d 6f74 6f70 6965 734f "makeHomotopiesO │ │ │ │ +000547c0: 6e48 6f6d 6f6c 6f67 7928 4d61 7472 6978 nHomology(Matrix │ │ │ │ +000547d0: 2c43 6861 696e 436f 6d70 6c65 7829 220a ,ChainComplex)". │ │ │ │ +000547e0: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +000547f0: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +00054800: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +00054810: 6374 202a 6e6f 7465 206d 616b 6548 6f6d ct *note makeHom │ │ │ │ +00054820: 6f74 6f70 6965 734f 6e48 6f6d 6f6c 6f67 otopiesOnHomolog │ │ │ │ +00054830: 793a 206d 616b 6548 6f6d 6f74 6f70 6965 y: makeHomotopie │ │ │ │ +00054840: 734f 6e48 6f6d 6f6c 6f67 792c 2069 7320 sOnHomology, is │ │ │ │ +00054850: 6120 2a6e 6f74 650a 6d65 7468 6f64 2066 a *note.method f │ │ │ │ +00054860: 756e 6374 696f 6e3a 2028 4d61 6361 756c unction: (Macaul │ │ │ │ +00054870: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ +00054880: 6374 696f 6e2c 2e0a 1f0a 4669 6c65 3a20 ction,....File: │ │ │ │ +00054890: 436f 6d70 6c65 7465 496e 7465 7273 6563 CompleteIntersec │ │ │ │ +000548a0: 7469 6f6e 5265 736f 6c75 7469 6f6e 732e tionResolutions. │ │ │ │ +000548b0: 696e 666f 2c20 4e6f 6465 3a20 6d61 6b65 info, Node: make │ │ │ │ +000548c0: 4d6f 6475 6c65 2c20 4e65 7874 3a20 6d61 Module, Next: ma │ │ │ │ +000548d0: 6b65 542c 2050 7265 763a 206d 616b 6548 keT, Prev: makeH │ │ │ │ +000548e0: 6f6d 6f74 6f70 6965 734f 6e48 6f6d 6f6c omotopiesOnHomol │ │ │ │ +000548f0: 6f67 792c 2055 703a 2054 6f70 0a0a 6d61 ogy, Up: Top..ma │ │ │ │ +00054900: 6b65 4d6f 6475 6c65 202d 2d20 6d61 6b65 keModule -- make │ │ │ │ +00054910: 7320 6120 4d6f 6475 6c65 206f 7574 206f s a Module out o │ │ │ │ +00054920: 6620 6120 636f 6c6c 6563 7469 6f6e 206f f a collection o │ │ │ │ +00054930: 6620 6d6f 6475 6c65 7320 616e 6420 6d61 f modules and ma │ │ │ │ +00054940: 7073 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ps.************* │ │ │ │ 00054950: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00054960: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00054970: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00054980: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00054990: 2a2a 0a0a 5379 6e6f 7073 6973 0a3d 3d3d **..Synopsis.=== │ │ │ │ -000549a0: 3d3d 3d3d 3d0a 0a20 202a 2055 7361 6765 =====.. * Usage │ │ │ │ -000549b0: 3a20 0a20 2020 2020 2020 204d 203d 206d : . M = m │ │ │ │ -000549c0: 616b 654d 6f64 756c 6528 482c 452c 7068 akeModule(H,E,ph │ │ │ │ -000549d0: 6929 0a20 202a 2049 6e70 7574 733a 0a20 i). * Inputs:. │ │ │ │ -000549e0: 2020 2020 202a 2048 2c20 6120 2a6e 6f74 * H, a *not │ │ │ │ -000549f0: 6520 6861 7368 2074 6162 6c65 3a20 284d e hash table: (M │ │ │ │ -00054a00: 6163 6175 6c61 7932 446f 6329 4861 7368 acaulay2Doc)Hash │ │ │ │ -00054a10: 5461 626c 652c 2c20 6772 6164 6564 2063 Table,, graded c │ │ │ │ -00054a20: 6f6d 706f 6e65 6e74 7320 7468 6174 0a20 omponents that. │ │ │ │ -00054a30: 2020 2020 2020 2061 7265 206d 6f64 756c are modul │ │ │ │ -00054a40: 6573 2c20 746f 206d 616b 6520 696e 746f es, to make into │ │ │ │ -00054a50: 2061 7320 7369 6e67 6c65 206d 6f64 756c as single modul │ │ │ │ -00054a60: 650a 2020 2020 2020 2a20 452c 2061 202a e. * E, a * │ │ │ │ -00054a70: 6e6f 7465 206d 6174 7269 783a 2028 4d61 note matrix: (Ma │ │ │ │ -00054a80: 6361 756c 6179 3244 6f63 294d 6174 7269 caulay2Doc)Matri │ │ │ │ -00054a90: 782c 2c20 4d61 7472 6978 206f 6620 7661 x,, Matrix of va │ │ │ │ -00054aa0: 7269 6162 6c65 7320 7768 6f73 650a 2020 riables whose. │ │ │ │ -00054ab0: 2020 2020 2020 6163 7469 6f6e 2077 696c action wil │ │ │ │ -00054ac0: 6c20 6465 6669 6e65 640a 2020 2020 2020 l defined. │ │ │ │ -00054ad0: 2a20 7068 692c 2061 202a 6e6f 7465 2068 * phi, a *note h │ │ │ │ -00054ae0: 6173 6820 7461 626c 653a 2028 4d61 6361 ash table: (Maca │ │ │ │ -00054af0: 756c 6179 3244 6f63 2948 6173 6854 6162 ulay2Doc)HashTab │ │ │ │ -00054b00: 6c65 2c2c 206d 6170 7320 6265 7477 6565 le,, maps betwee │ │ │ │ -00054b10: 6e20 7468 650a 2020 2020 2020 2020 6772 n the. gr │ │ │ │ -00054b20: 6164 6564 2063 6f6d 706f 6e65 6e74 7320 aded components │ │ │ │ -00054b30: 7468 6174 2077 696c 6c20 6265 2074 6865 that will be the │ │ │ │ -00054b40: 2061 6374 696f 6e20 6f66 2074 6865 2076 action of the v │ │ │ │ -00054b50: 6172 6961 626c 6573 2069 6e20 450a 2020 ariables in E. │ │ │ │ -00054b60: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ -00054b70: 202a 204d 2c20 6120 2a6e 6f74 6520 6d6f * M, a *note mo │ │ │ │ -00054b80: 6475 6c65 3a20 284d 6163 6175 6c61 7932 dule: (Macaulay2 │ │ │ │ -00054b90: 446f 6329 4d6f 6475 6c65 2c2c 2067 7261 Doc)Module,, gra │ │ │ │ -00054ba0: 6465 6420 6d6f 6475 6c65 7320 7768 6f73 ded modules whos │ │ │ │ -00054bb0: 650a 2020 2020 2020 2020 636f 6d70 6f6e e. compon │ │ │ │ -00054bc0: 656e 7473 2061 7265 2067 6976 656e 2062 ents are given b │ │ │ │ -00054bd0: 7920 480a 0a44 6573 6372 6970 7469 6f6e y H..Description │ │ │ │ -00054be0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 .===========..Th │ │ │ │ -00054bf0: 6520 4861 7368 7461 626c 6520 4820 7368 e Hashtable H sh │ │ │ │ -00054c00: 6f75 6c64 2068 6176 6520 636f 6e73 6563 ould have consec │ │ │ │ -00054c10: 7574 6976 6520 696e 7465 6765 7220 6b65 utive integer ke │ │ │ │ -00054c20: 7973 2069 5f30 2e2e 695f 302c 2073 6179 ys i_0..i_0, say │ │ │ │ -00054c30: 2c20 7769 7468 2076 616c 7565 730a 4823 , with values.H# │ │ │ │ -00054c40: 6920 7468 6174 2061 7265 206d 6f64 756c i that are modul │ │ │ │ -00054c50: 6573 206f 7665 7220 6120 7269 6e67 2053 es over a ring S │ │ │ │ -00054c60: 4520 7768 6f73 6520 7661 7269 6162 6c65 E whose variable │ │ │ │ -00054c70: 7320 696e 636c 7564 6520 7468 6520 656c s include the el │ │ │ │ -00054c80: 656d 656e 7473 206f 6620 452e 0a45 3a20 ements of E..E: │ │ │ │ -00054c90: 5c6f 706c 7573 2053 455e 7b64 5f69 7d20 \oplus SE^{d_i} │ │ │ │ -00054ca0: 5c74 6f20 5345 5e31 2069 7320 6120 6d61 \to SE^1 is a ma │ │ │ │ -00054cb0: 7472 6978 206f 6620 6320 7661 7269 6162 trix of c variab │ │ │ │ -00054cc0: 6c65 7320 6672 6f6d 2053 4520 4820 6973 les from SE H is │ │ │ │ -00054cd0: 2061 2068 6173 6854 6162 6c65 0a6f 6620 a hashTable.of │ │ │ │ -00054ce0: 6d20 7061 6972 7320 7b69 2c20 745f 697d m pairs {i, t_i} │ │ │ │ -00054cf0: 2c20 7768 6572 6520 7468 6520 745f 6920 , where the t_i │ │ │ │ -00054d00: 6172 6520 5245 2d6d 6f64 756c 6573 2c20 are RE-modules, │ │ │ │ -00054d10: 616e 6420 7468 6520 6920 6172 6520 636f and the i are co │ │ │ │ -00054d20: 6e73 6563 7574 6976 650a 696e 7465 6765 nsecutive.intege │ │ │ │ -00054d30: 722e 2070 6869 2069 7320 6120 6861 7368 r. phi is a hash │ │ │ │ -00054d40: 2d74 6162 6c65 206f 6620 686f 6d6f 6765 -table of homoge │ │ │ │ -00054d50: 6e65 6f75 7320 6d61 7073 2070 6869 237b neous maps phi#{ │ │ │ │ -00054d60: 6a2c 697d 3a20 4823 692a 2a46 5f6a 5c74 j,i}: H#i**F_j\t │ │ │ │ -00054d70: 6f20 4823 2869 2b31 290a 7768 6572 6520 o H#(i+1).where │ │ │ │ -00054d80: 465f 6a20 3d20 736f 7572 6365 2028 455f F_j = source (E_ │ │ │ │ -00054d90: 7b6a 7d20 3d20 6d61 7472 6978 207b 7b65 {j} = matrix {{e │ │ │ │ -00054da0: 5f6a 7d7d 292e 2054 6875 7320 7468 6520 _j}}). Thus the │ │ │ │ -00054db0: 6d61 7073 2070 237b 6a2c 697d 203d 2028 maps p#{j,i} = ( │ │ │ │ -00054dc0: 455f 6a20 7c7c 0a2d 7068 6923 7b6a 2c69 E_j ||.-phi#{j,i │ │ │ │ -00054dd0: 7d29 3a20 745f 692a 2a46 5f6a 205c 746f }): t_i**F_j \to │ │ │ │ -00054de0: 2074 5f69 2b2b 745f 7b28 692b 3129 7d2c t_i++t_{(i+1)}, │ │ │ │ -00054df0: 2061 7265 2068 6f6d 6f67 656e 656f 7573 are homogeneous │ │ │ │ -00054e00: 2e20 5468 6520 7363 7269 7074 2072 6574 . The script ret │ │ │ │ -00054e10: 7572 6e73 204d 0a3d 205c 6f70 6c75 735f urns M.= \oplus_ │ │ │ │ -00054e20: 6920 545f 2061 7320 616e 2053 452d 6d6f i T_ as an SE-mo │ │ │ │ -00054e30: 6475 6c65 2c20 636f 6d70 7574 6564 2061 dule, computed a │ │ │ │ -00054e40: 7320 7468 6520 7175 6f74 6965 6e74 206f s the quotient o │ │ │ │ -00054e50: 6620 5020 3a3d 205c 6f70 6c75 7320 545f f P := \oplus T_ │ │ │ │ -00054e60: 690a 6f62 7461 696e 6564 2062 7920 6661 i.obtained by fa │ │ │ │ -00054e70: 6374 6f72 696e 6720 6f75 7420 7468 6520 ctoring out the │ │ │ │ -00054e80: 7375 6d20 6f66 2074 6865 2069 6d61 6765 sum of the image │ │ │ │ -00054e90: 7320 6f66 2074 6865 206d 6170 7320 7023 s of the maps p# │ │ │ │ -00054ea0: 7b6a 2c69 7d0a 0a54 6865 2048 6173 6874 {j,i}..The Hasht │ │ │ │ -00054eb0: 6162 6c65 2070 6869 2068 6173 206b 6579 able phi has key │ │ │ │ -00054ec0: 7320 6f66 2074 6865 2066 6f72 6d20 7b6a s of the form {j │ │ │ │ -00054ed0: 2c69 7d20 7768 6572 6520 6a20 7275 6e73 ,i} where j runs │ │ │ │ -00054ee0: 2066 726f 6d20 3020 746f 2063 2d31 2c20 from 0 to c-1, │ │ │ │ -00054ef0: 6920 616e 640a 692b 3120 6172 6520 6b65 i and.i+1 are ke │ │ │ │ -00054f00: 7973 206f 6620 482c 2061 6e64 2070 6869 ys of H, and phi │ │ │ │ -00054f10: 237b 6a2c 697d 2069 7320 7468 6520 6d61 #{j,i} is the ma │ │ │ │ -00054f20: 7020 6672 6f6d 2028 736f 7572 6365 2045 p from (source E │ │ │ │ -00054f30: 5f7b 697d 292a 2a48 2369 2074 6f20 4823 _{i})**H#i to H# │ │ │ │ -00054f40: 2869 2b31 290a 7468 6174 2077 696c 6c20 (i+1).that will │ │ │ │ -00054f50: 6265 2069 6465 6e74 6966 6965 6420 7769 be identified wi │ │ │ │ -00054f60: 7468 2074 6865 2061 6374 696f 6e20 6f66 th the action of │ │ │ │ -00054f70: 2045 5f7b 6a7d 2e0a 0a54 6865 2073 6372 E_{j}...The scr │ │ │ │ -00054f80: 6970 7420 6973 2075 7365 6420 696e 2062 ipt is used in b │ │ │ │ -00054f90: 6f74 6820 7468 6520 7369 6e67 6c79 2067 oth the singly g │ │ │ │ -00054fa0: 7261 6465 6420 6361 7365 2c20 666f 7220 raded case, for │ │ │ │ -00054fb0: 6578 616d 706c 6520 696e 0a65 7874 6572 example in.exter │ │ │ │ -00054fc0: 696f 7254 6f72 4d6f 6475 6c65 2866 662c iorTorModule(ff, │ │ │ │ -00054fd0: 4d29 2061 6e64 2069 6e20 7468 6520 6269 M) and in the bi │ │ │ │ -00054fe0: 6772 6164 6564 2063 6173 652c 2066 6f72 graded case, for │ │ │ │ -00054ff0: 2065 7861 6d70 6c65 2069 6e0a 6578 7465 example in.exte │ │ │ │ -00055000: 7269 6f72 546f 724d 6f64 756c 6528 6666 riorTorModule(ff │ │ │ │ -00055010: 2c4d 2c4e 292e 0a0a 496e 2074 6865 2066 ,M,N)...In the f │ │ │ │ -00055020: 6f6c 6c6f 7769 6e67 2077 6520 7573 6520 ollowing we use │ │ │ │ -00055030: 6d61 6b65 4d6f 6475 6c65 2074 6f20 636f makeModule to co │ │ │ │ -00055040: 6e73 7472 7563 7420 6279 2068 616e 6420 nstruct by hand │ │ │ │ -00055050: 6120 6672 6565 206d 6f64 756c 6520 6f66 a free module of │ │ │ │ -00055060: 2072 616e 6b20 310a 6f76 6572 2074 6865 rank 1.over the │ │ │ │ -00055070: 2065 7874 6572 696f 7220 616c 6765 6272 exterior algebr │ │ │ │ -00055080: 6120 6f6e 2078 2c79 2c20 7374 6172 7469 a on x,y, starti │ │ │ │ -00055090: 6e67 2077 6974 6820 7468 6520 636f 6e73 ng with the cons │ │ │ │ -000550a0: 7472 7563 7469 6f6e 206f 6620 6120 6d6f truction of a mo │ │ │ │ -000550b0: 6475 6c65 0a6f 7665 7220 6120 6269 686f dule.over a biho │ │ │ │ -000550c0: 6d6f 6765 6e65 6f75 7320 7269 6e67 2e0a mogeneous ring.. │ │ │ │ -000550d0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00054980: 2a2a 2a2a 2a2a 2a0a 0a53 796e 6f70 7369 *******..Synopsi │ │ │ │ +00054990: 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 s.========.. * │ │ │ │ +000549a0: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +000549b0: 4d20 3d20 6d61 6b65 4d6f 6475 6c65 2848 M = makeModule(H │ │ │ │ +000549c0: 2c45 2c70 6869 290a 2020 2a20 496e 7075 ,E,phi). * Inpu │ │ │ │ +000549d0: 7473 3a0a 2020 2020 2020 2a20 482c 2061 ts:. * H, a │ │ │ │ +000549e0: 202a 6e6f 7465 2068 6173 6820 7461 626c *note hash tabl │ │ │ │ +000549f0: 653a 2028 4d61 6361 756c 6179 3244 6f63 e: (Macaulay2Doc │ │ │ │ +00054a00: 2948 6173 6854 6162 6c65 2c2c 2067 7261 )HashTable,, gra │ │ │ │ +00054a10: 6465 6420 636f 6d70 6f6e 656e 7473 2074 ded components t │ │ │ │ +00054a20: 6861 740a 2020 2020 2020 2020 6172 6520 hat. are │ │ │ │ +00054a30: 6d6f 6475 6c65 732c 2074 6f20 6d61 6b65 modules, to make │ │ │ │ +00054a40: 2069 6e74 6f20 6173 2073 696e 676c 6520 into as single │ │ │ │ +00054a50: 6d6f 6475 6c65 0a20 2020 2020 202a 2045 module. * E │ │ │ │ +00054a60: 2c20 6120 2a6e 6f74 6520 6d61 7472 6978 , a *note matrix │ │ │ │ +00054a70: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00054a80: 4d61 7472 6978 2c2c 204d 6174 7269 7820 Matrix,, Matrix │ │ │ │ +00054a90: 6f66 2076 6172 6961 626c 6573 2077 686f of variables who │ │ │ │ +00054aa0: 7365 0a20 2020 2020 2020 2061 6374 696f se. actio │ │ │ │ +00054ab0: 6e20 7769 6c6c 2064 6566 696e 6564 0a20 n will defined. │ │ │ │ +00054ac0: 2020 2020 202a 2070 6869 2c20 6120 2a6e * phi, a *n │ │ │ │ +00054ad0: 6f74 6520 6861 7368 2074 6162 6c65 3a20 ote hash table: │ │ │ │ +00054ae0: 284d 6163 6175 6c61 7932 446f 6329 4861 (Macaulay2Doc)Ha │ │ │ │ +00054af0: 7368 5461 626c 652c 2c20 6d61 7073 2062 shTable,, maps b │ │ │ │ +00054b00: 6574 7765 656e 2074 6865 0a20 2020 2020 etween the. │ │ │ │ +00054b10: 2020 2067 7261 6465 6420 636f 6d70 6f6e graded compon │ │ │ │ +00054b20: 656e 7473 2074 6861 7420 7769 6c6c 2062 ents that will b │ │ │ │ +00054b30: 6520 7468 6520 6163 7469 6f6e 206f 6620 e the action of │ │ │ │ +00054b40: 7468 6520 7661 7269 6162 6c65 7320 696e the variables in │ │ │ │ +00054b50: 2045 0a20 202a 204f 7574 7075 7473 3a0a E. * Outputs:. │ │ │ │ +00054b60: 2020 2020 2020 2a20 4d2c 2061 202a 6e6f * M, a *no │ │ │ │ +00054b70: 7465 206d 6f64 756c 653a 2028 4d61 6361 te module: (Maca │ │ │ │ +00054b80: 756c 6179 3244 6f63 294d 6f64 756c 652c ulay2Doc)Module, │ │ │ │ +00054b90: 2c20 6772 6164 6564 206d 6f64 756c 6573 , graded modules │ │ │ │ +00054ba0: 2077 686f 7365 0a20 2020 2020 2020 2063 whose. c │ │ │ │ +00054bb0: 6f6d 706f 6e65 6e74 7320 6172 6520 6769 omponents are gi │ │ │ │ +00054bc0: 7665 6e20 6279 2048 0a0a 4465 7363 7269 ven by H..Descri │ │ │ │ +00054bd0: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +00054be0: 3d0a 0a54 6865 2048 6173 6874 6162 6c65 =..The Hashtable │ │ │ │ +00054bf0: 2048 2073 686f 756c 6420 6861 7665 2063 H should have c │ │ │ │ +00054c00: 6f6e 7365 6375 7469 7665 2069 6e74 6567 onsecutive integ │ │ │ │ +00054c10: 6572 206b 6579 7320 695f 302e 2e69 5f30 er keys i_0..i_0 │ │ │ │ +00054c20: 2c20 7361 792c 2077 6974 6820 7661 6c75 , say, with valu │ │ │ │ +00054c30: 6573 0a48 2369 2074 6861 7420 6172 6520 es.H#i that are │ │ │ │ +00054c40: 6d6f 6475 6c65 7320 6f76 6572 2061 2072 modules over a r │ │ │ │ +00054c50: 696e 6720 5345 2077 686f 7365 2076 6172 ing SE whose var │ │ │ │ +00054c60: 6961 626c 6573 2069 6e63 6c75 6465 2074 iables include t │ │ │ │ +00054c70: 6865 2065 6c65 6d65 6e74 7320 6f66 2045 he elements of E │ │ │ │ +00054c80: 2e0a 453a 205c 6f70 6c75 7320 5345 5e7b ..E: \oplus SE^{ │ │ │ │ +00054c90: 645f 697d 205c 746f 2053 455e 3120 6973 d_i} \to SE^1 is │ │ │ │ +00054ca0: 2061 206d 6174 7269 7820 6f66 2063 2076 a matrix of c v │ │ │ │ +00054cb0: 6172 6961 626c 6573 2066 726f 6d20 5345 ariables from SE │ │ │ │ +00054cc0: 2048 2069 7320 6120 6861 7368 5461 626c H is a hashTabl │ │ │ │ +00054cd0: 650a 6f66 206d 2070 6169 7273 207b 692c e.of m pairs {i, │ │ │ │ +00054ce0: 2074 5f69 7d2c 2077 6865 7265 2074 6865 t_i}, where the │ │ │ │ +00054cf0: 2074 5f69 2061 7265 2052 452d 6d6f 6475 t_i are RE-modu │ │ │ │ +00054d00: 6c65 732c 2061 6e64 2074 6865 2069 2061 les, and the i a │ │ │ │ +00054d10: 7265 2063 6f6e 7365 6375 7469 7665 0a69 re consecutive.i │ │ │ │ +00054d20: 6e74 6567 6572 2e20 7068 6920 6973 2061 nteger. phi is a │ │ │ │ +00054d30: 2068 6173 682d 7461 626c 6520 6f66 2068 hash-table of h │ │ │ │ +00054d40: 6f6d 6f67 656e 656f 7573 206d 6170 7320 omogeneous maps │ │ │ │ +00054d50: 7068 6923 7b6a 2c69 7d3a 2048 2369 2a2a phi#{j,i}: H#i** │ │ │ │ +00054d60: 465f 6a5c 746f 2048 2328 692b 3129 0a77 F_j\to H#(i+1).w │ │ │ │ +00054d70: 6865 7265 2046 5f6a 203d 2073 6f75 7263 here F_j = sourc │ │ │ │ +00054d80: 6520 2845 5f7b 6a7d 203d 206d 6174 7269 e (E_{j} = matri │ │ │ │ +00054d90: 7820 7b7b 655f 6a7d 7d29 2e20 5468 7573 x {{e_j}}). Thus │ │ │ │ +00054da0: 2074 6865 206d 6170 7320 7023 7b6a 2c69 the maps p#{j,i │ │ │ │ +00054db0: 7d20 3d20 2845 5f6a 207c 7c0a 2d70 6869 } = (E_j ||.-phi │ │ │ │ +00054dc0: 237b 6a2c 697d 293a 2074 5f69 2a2a 465f #{j,i}): t_i**F_ │ │ │ │ +00054dd0: 6a20 5c74 6f20 745f 692b 2b74 5f7b 2869 j \to t_i++t_{(i │ │ │ │ +00054de0: 2b31 297d 2c20 6172 6520 686f 6d6f 6765 +1)}, are homoge │ │ │ │ +00054df0: 6e65 6f75 732e 2054 6865 2073 6372 6970 neous. The scrip │ │ │ │ +00054e00: 7420 7265 7475 726e 7320 4d0a 3d20 5c6f t returns M.= \o │ │ │ │ +00054e10: 706c 7573 5f69 2054 5f20 6173 2061 6e20 plus_i T_ as an │ │ │ │ +00054e20: 5345 2d6d 6f64 756c 652c 2063 6f6d 7075 SE-module, compu │ │ │ │ +00054e30: 7465 6420 6173 2074 6865 2071 756f 7469 ted as the quoti │ │ │ │ +00054e40: 656e 7420 6f66 2050 203a 3d20 5c6f 706c ent of P := \opl │ │ │ │ +00054e50: 7573 2054 5f69 0a6f 6274 6169 6e65 6420 us T_i.obtained │ │ │ │ +00054e60: 6279 2066 6163 746f 7269 6e67 206f 7574 by factoring out │ │ │ │ +00054e70: 2074 6865 2073 756d 206f 6620 7468 6520 the sum of the │ │ │ │ +00054e80: 696d 6167 6573 206f 6620 7468 6520 6d61 images of the ma │ │ │ │ +00054e90: 7073 2070 237b 6a2c 697d 0a0a 5468 6520 ps p#{j,i}..The │ │ │ │ +00054ea0: 4861 7368 7461 626c 6520 7068 6920 6861 Hashtable phi ha │ │ │ │ +00054eb0: 7320 6b65 7973 206f 6620 7468 6520 666f s keys of the fo │ │ │ │ +00054ec0: 726d 207b 6a2c 697d 2077 6865 7265 206a rm {j,i} where j │ │ │ │ +00054ed0: 2072 756e 7320 6672 6f6d 2030 2074 6f20 runs from 0 to │ │ │ │ +00054ee0: 632d 312c 2069 2061 6e64 0a69 2b31 2061 c-1, i and.i+1 a │ │ │ │ +00054ef0: 7265 206b 6579 7320 6f66 2048 2c20 616e re keys of H, an │ │ │ │ +00054f00: 6420 7068 6923 7b6a 2c69 7d20 6973 2074 d phi#{j,i} is t │ │ │ │ +00054f10: 6865 206d 6170 2066 726f 6d20 2873 6f75 he map from (sou │ │ │ │ +00054f20: 7263 6520 455f 7b69 7d29 2a2a 4823 6920 rce E_{i})**H#i │ │ │ │ +00054f30: 746f 2048 2328 692b 3129 0a74 6861 7420 to H#(i+1).that │ │ │ │ +00054f40: 7769 6c6c 2062 6520 6964 656e 7469 6669 will be identifi │ │ │ │ +00054f50: 6564 2077 6974 6820 7468 6520 6163 7469 ed with the acti │ │ │ │ +00054f60: 6f6e 206f 6620 455f 7b6a 7d2e 0a0a 5468 on of E_{j}...Th │ │ │ │ +00054f70: 6520 7363 7269 7074 2069 7320 7573 6564 e script is used │ │ │ │ +00054f80: 2069 6e20 626f 7468 2074 6865 2073 696e in both the sin │ │ │ │ +00054f90: 676c 7920 6772 6164 6564 2063 6173 652c gly graded case, │ │ │ │ +00054fa0: 2066 6f72 2065 7861 6d70 6c65 2069 6e0a for example in. │ │ │ │ +00054fb0: 6578 7465 7269 6f72 546f 724d 6f64 756c exteriorTorModul │ │ │ │ +00054fc0: 6528 6666 2c4d 2920 616e 6420 696e 2074 e(ff,M) and in t │ │ │ │ +00054fd0: 6865 2062 6967 7261 6465 6420 6361 7365 he bigraded case │ │ │ │ +00054fe0: 2c20 666f 7220 6578 616d 706c 6520 696e , for example in │ │ │ │ +00054ff0: 0a65 7874 6572 696f 7254 6f72 4d6f 6475 .exteriorTorModu │ │ │ │ +00055000: 6c65 2866 662c 4d2c 4e29 2e0a 0a49 6e20 le(ff,M,N)...In │ │ │ │ +00055010: 7468 6520 666f 6c6c 6f77 696e 6720 7765 the following we │ │ │ │ +00055020: 2075 7365 206d 616b 654d 6f64 756c 6520 use makeModule │ │ │ │ +00055030: 746f 2063 6f6e 7374 7275 6374 2062 7920 to construct by │ │ │ │ +00055040: 6861 6e64 2061 2066 7265 6520 6d6f 6475 hand a free modu │ │ │ │ +00055050: 6c65 206f 6620 7261 6e6b 2031 0a6f 7665 le of rank 1.ove │ │ │ │ +00055060: 7220 7468 6520 6578 7465 7269 6f72 2061 r the exterior a │ │ │ │ +00055070: 6c67 6562 7261 206f 6e20 782c 792c 2073 lgebra on x,y, s │ │ │ │ +00055080: 7461 7274 696e 6720 7769 7468 2074 6865 tarting with the │ │ │ │ +00055090: 2063 6f6e 7374 7275 6374 696f 6e20 6f66 construction of │ │ │ │ +000550a0: 2061 206d 6f64 756c 650a 6f76 6572 2061 a module.over a │ │ │ │ +000550b0: 2062 6968 6f6d 6f67 656e 656f 7573 2072 bihomogeneous r │ │ │ │ +000550c0: 696e 672e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ing...+--------- │ │ │ │ +000550d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000550e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000550f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00055100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00055110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00055120: 0a7c 6931 203a 2053 4520 3d20 5a5a 2f31 .|i1 : SE = ZZ/1 │ │ │ │ -00055130: 3031 5b61 2c62 2c63 2c78 2c79 2c44 6567 01[a,b,c,x,y,Deg │ │ │ │ -00055140: 7265 6573 3d3e 746f 4c69 7374 2833 3a7b rees=>toList(3:{ │ │ │ │ -00055150: 312c 307d 297c 746f 4c69 7374 2832 3a7b 1,0})|toList(2:{ │ │ │ │ -00055160: 312c 317d 292c 2020 2020 2020 2020 207c 1,1}), | │ │ │ │ -00055170: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00055110: 2d2d 2d2d 2b0a 7c69 3120 3a20 5345 203d ----+.|i1 : SE = │ │ │ │ +00055120: 205a 5a2f 3130 315b 612c 622c 632c 782c ZZ/101[a,b,c,x, │ │ │ │ +00055130: 792c 4465 6772 6565 733d 3e74 6f4c 6973 y,Degrees=>toLis │ │ │ │ +00055140: 7428 333a 7b31 2c30 7d29 7c74 6f4c 6973 t(3:{1,0})|toLis │ │ │ │ +00055150: 7428 323a 7b31 2c31 7d29 2c20 2020 2020 t(2:{1,1}), │ │ │ │ +00055160: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00055170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000551a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000551b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000551c0: 0a7c 6f31 203d 2053 4520 2020 2020 2020 .|o1 = SE │ │ │ │ +000551b0: 2020 2020 7c0a 7c6f 3120 3d20 5345 2020 |.|o1 = SE │ │ │ │ +000551c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000551d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000551e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000551f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055200: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055210: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00055200: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00055210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055250: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055260: 0a7c 6f31 203a 2050 6f6c 796e 6f6d 6961 .|o1 : Polynomia │ │ │ │ -00055270: 6c52 696e 672c 2032 2073 6b65 7720 636f lRing, 2 skew co │ │ │ │ -00055280: 6d6d 7574 6174 6976 6520 7661 7269 6162 mmutative variab │ │ │ │ -00055290: 6c65 2873 2920 2020 2020 2020 2020 2020 le(s) │ │ │ │ -000552a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000552b0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00055250: 2020 2020 7c0a 7c6f 3120 3a20 506f 6c79 |.|o1 : Poly │ │ │ │ +00055260: 6e6f 6d69 616c 5269 6e67 2c20 3220 736b nomialRing, 2 sk │ │ │ │ +00055270: 6577 2063 6f6d 6d75 7461 7469 7665 2076 ew commutative v │ │ │ │ +00055280: 6172 6961 626c 6528 7329 2020 2020 2020 ariable(s) │ │ │ │ +00055290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000552a0: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ +000552b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000552c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000552d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000552e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000552f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00055300: 0a7c 536b 6577 436f 6d6d 7574 6174 6976 .|SkewCommutativ │ │ │ │ -00055310: 653d 3e7b 782c 797d 5d20 2020 2020 2020 e=>{x,y}] │ │ │ │ +000552f0: 2d2d 2d2d 7c0a 7c53 6b65 7743 6f6d 6d75 ----|.|SkewCommu │ │ │ │ +00055300: 7461 7469 7665 3d3e 7b78 2c79 7d5d 2020 tative=>{x,y}] │ │ │ │ +00055310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055340: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055350: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00055340: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00055350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00055360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00055370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00055380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00055390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000553a0: 0a7c 6932 203a 2052 4520 3d20 5345 2f69 .|i2 : RE = SE/i │ │ │ │ -000553b0: 6465 616c 2261 322c 6232 2c63 3222 2020 deal"a2,b2,c2" │ │ │ │ +00055390: 2d2d 2d2d 2b0a 7c69 3220 3a20 5245 203d ----+.|i2 : RE = │ │ │ │ +000553a0: 2053 452f 6964 6561 6c22 6132 2c62 322c SE/ideal"a2,b2, │ │ │ │ +000553b0: 6332 2220 2020 2020 2020 2020 2020 2020 c2" │ │ │ │ 000553c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000553d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000553e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000553f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000553e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000553f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055430: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055440: 0a7c 6f32 203d 2052 4520 2020 2020 2020 .|o2 = RE │ │ │ │ +00055430: 2020 2020 7c0a 7c6f 3220 3d20 5245 2020 |.|o2 = RE │ │ │ │ +00055440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055480: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055490: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00055480: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00055490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000554a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000554b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000554c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000554d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000554e0: 0a7c 6f32 203a 2051 756f 7469 656e 7452 .|o2 : QuotientR │ │ │ │ -000554f0: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ +000554d0: 2020 2020 7c0a 7c6f 3220 3a20 5175 6f74 |.|o2 : Quot │ │ │ │ +000554e0: 6965 6e74 5269 6e67 2020 2020 2020 2020 ientRing │ │ │ │ +000554f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055520: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055530: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00055520: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00055530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00055540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00055550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00055560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00055570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00055580: 0a7c 6933 203a 2054 203d 2068 6173 6854 .|i3 : T = hashT │ │ │ │ -00055590: 6162 6c65 207b 7b30 2c52 455e 317d 2c7b able {{0,RE^1},{ │ │ │ │ -000555a0: 312c 5245 5e7b 323a 7b20 2d31 2c2d 317d 1,RE^{2:{ -1,-1} │ │ │ │ -000555b0: 7d7d 2c20 7b32 2c52 455e 7b7b 202d 322c }}, {2,RE^{{ -2, │ │ │ │ -000555c0: 2d32 7d7d 7d7d 2020 2020 2020 2020 207c -2}}}} | │ │ │ │ -000555d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00055570: 2d2d 2d2d 2b0a 7c69 3320 3a20 5420 3d20 ----+.|i3 : T = │ │ │ │ +00055580: 6861 7368 5461 626c 6520 7b7b 302c 5245 hashTable {{0,RE │ │ │ │ +00055590: 5e31 7d2c 7b31 2c52 455e 7b32 3a7b 202d ^1},{1,RE^{2:{ - │ │ │ │ +000555a0: 312c 2d31 7d7d 7d2c 207b 322c 5245 5e7b 1,-1}}}, {2,RE^{ │ │ │ │ +000555b0: 7b20 2d32 2c2d 327d 7d7d 7d20 2020 2020 { -2,-2}}}} │ │ │ │ +000555c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000555d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000555e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000555f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055610: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055620: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00055630: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ +00055610: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00055620: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +00055630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055660: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055670: 0a7c 6f33 203d 2048 6173 6854 6162 6c65 .|o3 = HashTable │ │ │ │ -00055680: 7b30 203d 3e20 5245 207d 2020 2020 2020 {0 => RE } │ │ │ │ +00055660: 2020 2020 7c0a 7c6f 3320 3d20 4861 7368 |.|o3 = Hash │ │ │ │ +00055670: 5461 626c 657b 3020 3d3e 2052 4520 7d20 Table{0 => RE } │ │ │ │ +00055680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000556a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000556b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000556c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000556d0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +000556b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000556c0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000556d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000556e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000556f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055700: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055710: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00055720: 2031 203d 3e20 5245 2020 2020 2020 2020 1 => RE │ │ │ │ +00055700: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00055710: 2020 2020 2020 3120 3d3e 2052 4520 2020 1 => RE │ │ │ │ +00055720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055750: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055760: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00055770: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ +00055750: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00055760: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +00055770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000557a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000557b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000557c0: 2032 203d 3e20 5245 2020 2020 2020 2020 2 => RE │ │ │ │ +000557a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000557b0: 2020 2020 2020 3220 3d3e 2052 4520 2020 2 => RE │ │ │ │ +000557c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000557d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000557e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000557f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055800: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000557f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00055800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055840: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055850: 0a7c 6f33 203a 2048 6173 6854 6162 6c65 .|o3 : HashTable │ │ │ │ +00055840: 2020 2020 7c0a 7c6f 3320 3a20 4861 7368 |.|o3 : Hash │ │ │ │ +00055850: 5461 626c 6520 2020 2020 2020 2020 2020 Table │ │ │ │ 00055860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055890: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000558a0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00055890: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000558a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000558b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000558c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000558d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000558e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000558f0: 0a7c 6934 203a 2045 203d 206d 6174 7269 .|i4 : E = matri │ │ │ │ -00055900: 787b 7b78 2c79 7d7d 2020 2020 2020 2020 x{{x,y}} │ │ │ │ +000558e0: 2d2d 2d2d 2b0a 7c69 3420 3a20 4520 3d20 ----+.|i4 : E = │ │ │ │ +000558f0: 6d61 7472 6978 7b7b 782c 797d 7d20 2020 matrix{{x,y}} │ │ │ │ +00055900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055930: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055940: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00055930: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00055940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055980: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055990: 0a7c 6f34 203d 207c 2078 2079 207c 2020 .|o4 = | x y | │ │ │ │ +00055980: 2020 2020 7c0a 7c6f 3420 3d20 7c20 7820 |.|o4 = | x │ │ │ │ +00055990: 7920 7c20 2020 2020 2020 2020 2020 2020 y | │ │ │ │ 000559a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000559b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000559c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000559d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000559e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000559d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000559e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000559f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055a20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055a30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00055a40: 3120 2020 2020 2020 3220 2020 2020 2020 1 2 │ │ │ │ +00055a20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00055a30: 2020 2020 2031 2020 2020 2020 2032 2020 1 2 │ │ │ │ +00055a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055a70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055a80: 0a7c 6f34 203a 204d 6174 7269 7820 5245 .|o4 : Matrix RE │ │ │ │ -00055a90: 2020 3c2d 2d20 5245 2020 2020 2020 2020 <-- RE │ │ │ │ +00055a70: 2020 2020 7c0a 7c6f 3420 3a20 4d61 7472 |.|o4 : Matr │ │ │ │ +00055a80: 6978 2052 4520 203c 2d2d 2052 4520 2020 ix RE <-- RE │ │ │ │ +00055a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055ac0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055ad0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00055ac0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00055ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00055ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00055af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00055b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00055b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00055b20: 0a7c 6935 203a 2046 3d61 7070 6c79 2832 .|i5 : F=apply(2 │ │ │ │ -00055b30: 2c20 6a2d 3e20 736f 7572 6365 2045 5f7b , j-> source E_{ │ │ │ │ -00055b40: 6a7d 2920 2020 2020 2020 2020 2020 2020 j}) │ │ │ │ +00055b10: 2d2d 2d2d 2b0a 7c69 3520 3a20 463d 6170 ----+.|i5 : F=ap │ │ │ │ +00055b20: 706c 7928 322c 206a 2d3e 2073 6f75 7263 ply(2, j-> sourc │ │ │ │ +00055b30: 6520 455f 7b6a 7d29 2020 2020 2020 2020 e E_{j}) │ │ │ │ +00055b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055b60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055b70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00055b60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00055b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055bb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055bc0: 0a7c 2020 2020 2020 2020 3120 2020 2031 .| 1 1 │ │ │ │ +00055bb0: 2020 2020 7c0a 7c20 2020 2020 2020 2031 |.| 1 │ │ │ │ +00055bc0: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ 00055bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055c00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055c10: 0a7c 6f35 203d 207b 5245 202c 2052 4520 .|o5 = {RE , RE │ │ │ │ -00055c20: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +00055c00: 2020 2020 7c0a 7c6f 3520 3d20 7b52 4520 |.|o5 = {RE │ │ │ │ +00055c10: 2c20 5245 207d 2020 2020 2020 2020 2020 , RE } │ │ │ │ +00055c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055c50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055c60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00055c50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00055c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055ca0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055cb0: 0a7c 6f35 203a 204c 6973 7420 2020 2020 .|o5 : List │ │ │ │ +00055ca0: 2020 2020 7c0a 7c6f 3520 3a20 4c69 7374 |.|o5 : List │ │ │ │ +00055cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055cf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055d00: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00055cf0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00055d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00055d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00055d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00055d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00055d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00055d50: 0a7c 6936 203a 2070 6869 203d 2068 6173 .|i6 : phi = has │ │ │ │ -00055d60: 6854 6162 6c65 7b20 7b7b 302c 307d 2c20 hTable{ {{0,0}, │ │ │ │ -00055d70: 6d61 7028 5423 312c 2046 5f30 2a2a 5423 map(T#1, F_0**T# │ │ │ │ -00055d80: 302c 2054 2331 5f7b 307d 297d 2c7b 7b31 0, T#1_{0})},{{1 │ │ │ │ -00055d90: 2c30 7d2c 206d 6170 2854 2331 2c20 207c ,0}, map(T#1, | │ │ │ │ -00055da0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00055d40: 2d2d 2d2d 2b0a 7c69 3620 3a20 7068 6920 ----+.|i6 : phi │ │ │ │ +00055d50: 3d20 6861 7368 5461 626c 657b 207b 7b30 = hashTable{ {{0 │ │ │ │ +00055d60: 2c30 7d2c 206d 6170 2854 2331 2c20 465f ,0}, map(T#1, F_ │ │ │ │ +00055d70: 302a 2a54 2330 2c20 5423 315f 7b30 7d29 0**T#0, T#1_{0}) │ │ │ │ +00055d80: 7d2c 7b7b 312c 307d 2c20 6d61 7028 5423 },{{1,0}, map(T# │ │ │ │ +00055d90: 312c 2020 7c0a 7c20 2020 2020 2020 2020 1, |.| │ │ │ │ +00055da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055de0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055df0: 0a7c 6f36 203d 2048 6173 6854 6162 6c65 .|o6 = HashTable │ │ │ │ -00055e00: 7b7b 302c 2030 7d20 3d3e 207b 312c 2031 {{0, 0} => {1, 1 │ │ │ │ -00055e10: 7d20 7c20 3120 7c20 2020 7d20 2020 2020 } | 1 | } │ │ │ │ +00055de0: 2020 2020 7c0a 7c6f 3620 3d20 4861 7368 |.|o6 = Hash │ │ │ │ +00055df0: 5461 626c 657b 7b30 2c20 307d 203d 3e20 Table{{0, 0} => │ │ │ │ +00055e00: 7b31 2c20 317d 207c 2031 207c 2020 207d {1, 1} | 1 | } │ │ │ │ +00055e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055e30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055e40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00055e50: 2020 2020 2020 2020 2020 207b 312c 2031 {1, 1 │ │ │ │ -00055e60: 7d20 7c20 3020 7c20 2020 2020 2020 2020 } | 0 | │ │ │ │ +00055e30: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00055e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00055e50: 7b31 2c20 317d 207c 2030 207c 2020 2020 {1, 1} | 0 | │ │ │ │ +00055e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055e80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055e90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00055ea0: 207b 302c 2031 7d20 3d3e 207b 322c 2032 {0, 1} => {2, 2 │ │ │ │ -00055eb0: 7d20 7c20 3020 3120 7c20 2020 2020 2020 } | 0 1 | │ │ │ │ +00055e80: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00055e90: 2020 2020 2020 7b30 2c20 317d 203d 3e20 {0, 1} => │ │ │ │ +00055ea0: 7b32 2c20 327d 207c 2030 2031 207c 2020 {2, 2} | 0 1 | │ │ │ │ +00055eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055ed0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055ee0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00055ef0: 207b 312c 2030 7d20 3d3e 207b 312c 2031 {1, 0} => {1, 1 │ │ │ │ -00055f00: 7d20 7c20 3020 7c20 2020 2020 2020 2020 } | 0 | │ │ │ │ +00055ed0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00055ee0: 2020 2020 2020 7b31 2c20 307d 203d 3e20 {1, 0} => │ │ │ │ +00055ef0: 7b31 2c20 317d 207c 2030 207c 2020 2020 {1, 1} | 0 | │ │ │ │ +00055f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055f20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055f30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00055f40: 2020 2020 2020 2020 2020 207b 312c 2031 {1, 1 │ │ │ │ -00055f50: 7d20 7c20 3120 7c20 2020 2020 2020 2020 } | 1 | │ │ │ │ +00055f20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00055f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00055f40: 7b31 2c20 317d 207c 2031 207c 2020 2020 {1, 1} | 1 | │ │ │ │ +00055f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055f70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055f80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00055f90: 207b 312c 2031 7d20 3d3e 207b 322c 2032 {1, 1} => {2, 2 │ │ │ │ -00055fa0: 7d20 7c20 2d31 2030 207c 2020 2020 2020 } | -1 0 | │ │ │ │ +00055f70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00055f80: 2020 2020 2020 7b31 2c20 317d 203d 3e20 {1, 1} => │ │ │ │ +00055f90: 7b32 2c20 327d 207c 202d 3120 3020 7c20 {2, 2} | -1 0 | │ │ │ │ +00055fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055fc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00055fd0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00055fc0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00055fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056010: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056020: 0a7c 6f36 203a 2048 6173 6854 6162 6c65 .|o6 : HashTable │ │ │ │ +00056010: 2020 2020 7c0a 7c6f 3620 3a20 4861 7368 |.|o6 : Hash │ │ │ │ +00056020: 5461 626c 6520 2020 2020 2020 2020 2020 Table │ │ │ │ 00056030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056060: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056070: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00056060: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ +00056070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000560a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000560b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000560c0: 0a7c 465f 312a 2a54 2330 2c20 5423 315f .|F_1**T#0, T#1_ │ │ │ │ -000560d0: 7b31 7d29 7d2c 7b7b 302c 317d 2c20 6d61 {1})},{{0,1}, ma │ │ │ │ -000560e0: 7028 5423 322c 2046 5f30 2a2a 5423 312c p(T#2, F_0**T#1, │ │ │ │ -000560f0: 2054 2331 5e7b 317d 297d 2c20 7b7b 312c T#1^{1})}, {{1, │ │ │ │ -00056100: 317d 2c20 2d6d 6170 2854 2332 2c20 207c 1}, -map(T#2, | │ │ │ │ -00056110: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +000560b0: 2d2d 2d2d 7c0a 7c46 5f31 2a2a 5423 302c ----|.|F_1**T#0, │ │ │ │ +000560c0: 2054 2331 5f7b 317d 297d 2c7b 7b30 2c31 T#1_{1})},{{0,1 │ │ │ │ +000560d0: 7d2c 206d 6170 2854 2332 2c20 465f 302a }, map(T#2, F_0* │ │ │ │ +000560e0: 2a54 2331 2c20 5423 315e 7b31 7d29 7d2c *T#1, T#1^{1})}, │ │ │ │ +000560f0: 207b 7b31 2c31 7d2c 202d 6d61 7028 5423 {{1,1}, -map(T# │ │ │ │ +00056100: 322c 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2, |.|--------- │ │ │ │ +00056110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00056150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00056160: 0a7c 465f 312a 2a54 2331 2c20 5423 315e .|F_1**T#1, T#1^ │ │ │ │ -00056170: 7b30 7d29 7d7d 2020 2020 2020 2020 2020 {0})}} │ │ │ │ +00056150: 2d2d 2d2d 7c0a 7c46 5f31 2a2a 5423 312c ----|.|F_1**T#1, │ │ │ │ +00056160: 2054 2331 5e7b 307d 297d 7d20 2020 2020 T#1^{0})}} │ │ │ │ +00056170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000561a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000561b0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000561a0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000561b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000561c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000561d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000561e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000561f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00056200: 0a7c 6937 203a 2061 7070 6c79 286b 6579 .|i7 : apply(key │ │ │ │ -00056210: 7320 7068 692c 206b 2d3e 6973 486f 6d6f s phi, k->isHomo │ │ │ │ -00056220: 6765 6e65 6f75 7320 7068 6923 6b29 2020 geneous phi#k) │ │ │ │ +000561f0: 2d2d 2d2d 2b0a 7c69 3720 3a20 6170 706c ----+.|i7 : appl │ │ │ │ +00056200: 7928 6b65 7973 2070 6869 2c20 6b2d 3e69 y(keys phi, k->i │ │ │ │ +00056210: 7348 6f6d 6f67 656e 656f 7573 2070 6869 sHomogeneous phi │ │ │ │ +00056220: 236b 2920 2020 2020 2020 2020 2020 2020 #k) │ │ │ │ 00056230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056240: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056250: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00056240: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00056250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056290: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000562a0: 0a7c 6f37 203d 207b 7472 7565 2c20 7472 .|o7 = {true, tr │ │ │ │ -000562b0: 7565 2c20 7472 7565 2c20 7472 7565 7d20 ue, true, true} │ │ │ │ +00056290: 2020 2020 7c0a 7c6f 3720 3d20 7b74 7275 |.|o7 = {tru │ │ │ │ +000562a0: 652c 2074 7275 652c 2074 7275 652c 2074 e, true, true, t │ │ │ │ +000562b0: 7275 657d 2020 2020 2020 2020 2020 2020 rue} │ │ │ │ 000562c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000562d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000562e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000562f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000562e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000562f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056330: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056340: 0a7c 6f37 203a 204c 6973 7420 2020 2020 .|o7 : List │ │ │ │ +00056330: 2020 2020 7c0a 7c6f 3720 3a20 4c69 7374 |.|o7 : List │ │ │ │ +00056340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056380: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056390: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00056380: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00056390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000563a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000563b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000563c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000563d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000563e0: 0a7c 6938 203a 2058 203d 206d 616b 654d .|i8 : X = makeM │ │ │ │ -000563f0: 6f64 756c 6528 542c 452c 7068 6929 2020 odule(T,E,phi) │ │ │ │ +000563d0: 2d2d 2d2d 2b0a 7c69 3820 3a20 5820 3d20 ----+.|i8 : X = │ │ │ │ +000563e0: 6d61 6b65 4d6f 6475 6c65 2854 2c45 2c70 makeModule(T,E,p │ │ │ │ +000563f0: 6869 2920 2020 2020 2020 2020 2020 2020 hi) │ │ │ │ 00056400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056420: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056430: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00056420: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00056430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056470: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056480: 0a7c 6f38 203d 2063 6f6b 6572 6e65 6c20 .|o8 = cokernel │ │ │ │ -00056490: 7b30 2c20 307d 207c 202d 7820 3020 2030 {0, 0} | -x 0 0 │ │ │ │ -000564a0: 2020 2d79 2030 2020 3020 207c 2020 2020 -y 0 0 | │ │ │ │ +00056470: 2020 2020 7c0a 7c6f 3820 3d20 636f 6b65 |.|o8 = coke │ │ │ │ +00056480: 726e 656c 207b 302c 2030 7d20 7c20 2d78 rnel {0, 0} | -x │ │ │ │ +00056490: 2030 2020 3020 202d 7920 3020 2030 2020 0 0 -y 0 0 │ │ │ │ +000564a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000564b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000564c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000564d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000564e0: 7b31 2c20 317d 207c 2031 2020 2d78 2030 {1, 1} | 1 -x 0 │ │ │ │ -000564f0: 2020 3020 202d 7920 3020 207c 2020 2020 0 -y 0 | │ │ │ │ +000564c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000564d0: 2020 2020 207b 312c 2031 7d20 7c20 3120 {1, 1} | 1 │ │ │ │ +000564e0: 202d 7820 3020 2030 2020 2d79 2030 2020 -x 0 0 -y 0 │ │ │ │ +000564f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00056500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056510: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056520: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00056530: 7b31 2c20 317d 207c 2030 2020 3020 202d {1, 1} | 0 0 - │ │ │ │ -00056540: 7820 3120 2030 2020 2d79 207c 2020 2020 x 1 0 -y | │ │ │ │ +00056510: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00056520: 2020 2020 207b 312c 2031 7d20 7c20 3020 {1, 1} | 0 │ │ │ │ +00056530: 2030 2020 2d78 2031 2020 3020 202d 7920 0 -x 1 0 -y │ │ │ │ +00056540: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00056550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056560: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056570: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00056580: 7b32 2c20 327d 207c 2030 2020 3020 2031 {2, 2} | 0 0 1 │ │ │ │ -00056590: 2020 3020 202d 3120 3020 207c 2020 2020 0 -1 0 | │ │ │ │ +00056560: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00056570: 2020 2020 207b 322c 2032 7d20 7c20 3020 {2, 2} | 0 │ │ │ │ +00056580: 2030 2020 3120 2030 2020 2d31 2030 2020 0 1 0 -1 0 │ │ │ │ +00056590: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000565a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000565b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000565c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000565b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000565c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000565d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000565e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000565f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056600: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056610: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00056620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056630: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00056600: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00056610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00056620: 2020 2020 2034 2020 2020 2020 2020 2020 4 │ │ │ │ +00056630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056650: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056660: 0a7c 6f38 203a 2052 452d 6d6f 6475 6c65 .|o8 : RE-module │ │ │ │ -00056670: 2c20 7175 6f74 6965 6e74 206f 6620 5245 , quotient of RE │ │ │ │ +00056650: 2020 2020 7c0a 7c6f 3820 3a20 5245 2d6d |.|o8 : RE-m │ │ │ │ +00056660: 6f64 756c 652c 2071 756f 7469 656e 7420 odule, quotient │ │ │ │ +00056670: 6f66 2052 4520 2020 2020 2020 2020 2020 of RE │ │ │ │ 00056680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000566a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000566b0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000566a0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000566b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000566c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000566d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000566e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000566f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00056700: 0a7c 6939 203a 2069 7348 6f6d 6f67 656e .|i9 : isHomogen │ │ │ │ -00056710: 656f 7573 2058 2020 2020 2020 2020 2020 eous X │ │ │ │ +000566f0: 2d2d 2d2d 2b0a 7c69 3920 3a20 6973 486f ----+.|i9 : isHo │ │ │ │ +00056700: 6d6f 6765 6e65 6f75 7320 5820 2020 2020 mogeneous X │ │ │ │ +00056710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056740: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056750: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00056740: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00056750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056790: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000567a0: 0a7c 6f39 203d 2074 7275 6520 2020 2020 .|o9 = true │ │ │ │ +00056790: 2020 2020 7c0a 7c6f 3920 3d20 7472 7565 |.|o9 = true │ │ │ │ +000567a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000567b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000567c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000567d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000567e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000567f0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000567e0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000567f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00056830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00056840: 0a7c 6931 3020 3a20 7120 3d20 6d61 7028 .|i10 : q = map( │ │ │ │ -00056850: 5a5a 2f31 3031 5b78 2c79 2c20 536b 6577 ZZ/101[x,y, Skew │ │ │ │ -00056860: 436f 6d6d 7574 6174 6976 6520 3d3e 2074 Commutative => t │ │ │ │ -00056870: 7275 652c 2044 6567 7265 654d 6170 203d rue, DegreeMap = │ │ │ │ -00056880: 3e20 642d 3e7b 645f 317d 5d2c 2020 207c > d->{d_1}], | │ │ │ │ -00056890: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00056830: 2d2d 2d2d 2b0a 7c69 3130 203a 2071 203d ----+.|i10 : q = │ │ │ │ +00056840: 206d 6170 285a 5a2f 3130 315b 782c 792c map(ZZ/101[x,y, │ │ │ │ +00056850: 2053 6b65 7743 6f6d 6d75 7461 7469 7665 SkewCommutative │ │ │ │ +00056860: 203d 3e20 7472 7565 2c20 4465 6772 6565 => true, Degree │ │ │ │ +00056870: 4d61 7020 3d3e 2064 2d3e 7b64 5f31 7d5d Map => d->{d_1}] │ │ │ │ +00056880: 2c20 2020 7c0a 7c20 2020 2020 2020 2020 , |.| │ │ │ │ +00056890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000568a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000568b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000568c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000568d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000568e0: 0a7c 2020 2020 2020 2020 2020 2020 5a5a .| ZZ │ │ │ │ +000568d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000568e0: 2020 205a 5a20 2020 2020 2020 2020 2020 ZZ │ │ │ │ 000568f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056920: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056930: 0a7c 6f31 3020 3d20 6d61 7020 282d 2d2d .|o10 = map (--- │ │ │ │ -00056940: 5b78 2e2e 795d 2c20 5245 2c20 7b30 2c20 [x..y], RE, {0, │ │ │ │ -00056950: 302c 2030 2c20 782c 2079 7d29 2020 2020 0, 0, x, y}) │ │ │ │ +00056920: 2020 2020 7c0a 7c6f 3130 203d 206d 6170 |.|o10 = map │ │ │ │ +00056930: 2028 2d2d 2d5b 782e 2e79 5d2c 2052 452c (---[x..y], RE, │ │ │ │ +00056940: 207b 302c 2030 2c20 302c 2078 2c20 797d {0, 0, 0, x, y} │ │ │ │ +00056950: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00056960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056970: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056980: 0a7c 2020 2020 2020 2020 2020 2031 3031 .| 101 │ │ │ │ +00056970: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00056980: 2020 3130 3120 2020 2020 2020 2020 2020 101 │ │ │ │ 00056990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000569a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000569b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000569c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000569d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000569c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000569d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000569e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000569f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056a10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056a20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00056a30: 205a 5a20 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +00056a10: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00056a20: 2020 2020 2020 5a5a 2020 2020 2020 2020 ZZ │ │ │ │ +00056a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056a60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056a70: 0a7c 6f31 3020 3a20 5269 6e67 4d61 7020 .|o10 : RingMap │ │ │ │ -00056a80: 2d2d 2d5b 782e 2e79 5d20 3c2d 2d20 5245 ---[x..y] <-- RE │ │ │ │ +00056a60: 2020 2020 7c0a 7c6f 3130 203a 2052 696e |.|o10 : Rin │ │ │ │ +00056a70: 674d 6170 202d 2d2d 5b78 2e2e 795d 203c gMap ---[x..y] < │ │ │ │ +00056a80: 2d2d 2052 4520 2020 2020 2020 2020 2020 -- RE │ │ │ │ 00056a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056ab0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056ac0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00056ad0: 3130 3120 2020 2020 2020 2020 2020 2020 101 │ │ │ │ +00056ab0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00056ac0: 2020 2020 2031 3031 2020 2020 2020 2020 101 │ │ │ │ +00056ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056b00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056b10: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00056b00: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ +00056b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00056b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00056b60: 0a7c 7269 6e67 2058 2c20 7b33 3a30 2c78 .|ring X, {3:0,x │ │ │ │ -00056b70: 2c79 7d29 2020 2020 2020 2020 2020 2020 ,y}) │ │ │ │ +00056b50: 2d2d 2d2d 7c0a 7c72 696e 6720 582c 207b ----|.|ring X, { │ │ │ │ +00056b60: 333a 302c 782c 797d 2920 2020 2020 2020 3:0,x,y}) │ │ │ │ +00056b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056ba0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056bb0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00056ba0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00056bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00056bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00056c00: 0a7c 6931 3120 3a20 7072 756e 6520 636f .|i11 : prune co │ │ │ │ -00056c10: 6b65 7220 7120 7072 6573 656e 7461 7469 ker q presentati │ │ │ │ -00056c20: 6f6e 2058 2020 2020 2020 2020 2020 2020 on X │ │ │ │ +00056bf0: 2d2d 2d2d 2b0a 7c69 3131 203a 2070 7275 ----+.|i11 : pru │ │ │ │ +00056c00: 6e65 2063 6f6b 6572 2071 2070 7265 7365 ne coker q prese │ │ │ │ +00056c10: 6e74 6174 696f 6e20 5820 2020 2020 2020 ntation X │ │ │ │ +00056c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056c40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056c50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00056c40: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00056c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056c90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056ca0: 0a7c 2020 2020 2020 2020 5a5a 2020 2020 .| ZZ │ │ │ │ -00056cb0: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00056c90: 2020 2020 7c0a 7c20 2020 2020 2020 205a |.| Z │ │ │ │ +00056ca0: 5a20 2020 2020 2020 3120 2020 2020 2020 Z 1 │ │ │ │ +00056cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056ce0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056cf0: 0a7c 6f31 3120 3d20 282d 2d2d 5b78 2e2e .|o11 = (---[x.. │ │ │ │ -00056d00: 795d 2920 2020 2020 2020 2020 2020 2020 y]) │ │ │ │ +00056ce0: 2020 2020 7c0a 7c6f 3131 203d 2028 2d2d |.|o11 = (-- │ │ │ │ +00056cf0: 2d5b 782e 2e79 5d29 2020 2020 2020 2020 -[x..y]) │ │ │ │ +00056d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056d30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056d40: 0a7c 2020 2020 2020 2031 3031 2020 2020 .| 101 │ │ │ │ +00056d30: 2020 2020 7c0a 7c20 2020 2020 2020 3130 |.| 10 │ │ │ │ +00056d40: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00056d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056d80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056d90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00056d80: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00056d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056dd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056de0: 0a7c 2020 2020 2020 205a 5a20 2020 2020 .| ZZ │ │ │ │ +00056dd0: 2020 2020 7c0a 7c20 2020 2020 2020 5a5a |.| ZZ │ │ │ │ +00056de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056e20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056e30: 0a7c 6f31 3120 3a20 2d2d 2d5b 782e 2e79 .|o11 : ---[x..y │ │ │ │ -00056e40: 5d2d 6d6f 6475 6c65 2c20 6672 6565 2020 ]-module, free │ │ │ │ +00056e20: 2020 2020 7c0a 7c6f 3131 203a 202d 2d2d |.|o11 : --- │ │ │ │ +00056e30: 5b78 2e2e 795d 2d6d 6f64 756c 652c 2066 [x..y]-module, f │ │ │ │ +00056e40: 7265 6520 2020 2020 2020 2020 2020 2020 ree │ │ │ │ 00056e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056e70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056e80: 0a7c 2020 2020 2020 3130 3120 2020 2020 .| 101 │ │ │ │ +00056e70: 2020 2020 7c0a 7c20 2020 2020 2031 3031 |.| 101 │ │ │ │ +00056e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056ec0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00056ed0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00056ec0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00056ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00056f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00056f20: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -00056f30: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2065 ===.. * *note e │ │ │ │ -00056f40: 7874 6572 696f 7248 6f6d 6f6c 6f67 794d xteriorHomologyM │ │ │ │ -00056f50: 6f64 756c 653a 2065 7874 6572 696f 7248 odule: exteriorH │ │ │ │ -00056f60: 6f6d 6f6c 6f67 794d 6f64 756c 652c 202d omologyModule, - │ │ │ │ -00056f70: 2d20 4d61 6b65 2074 6865 2068 6f6d 6f6c - Make the homol │ │ │ │ -00056f80: 6f67 790a 2020 2020 6f66 2061 2063 6f6d ogy. of a com │ │ │ │ -00056f90: 706c 6578 2069 6e74 6f20 6120 6d6f 6475 plex into a modu │ │ │ │ -00056fa0: 6c65 206f 7665 7220 616e 2065 7874 6572 le over an exter │ │ │ │ -00056fb0: 696f 7220 616c 6765 6272 610a 2020 2a20 ior algebra. * │ │ │ │ -00056fc0: 2a6e 6f74 6520 6578 7465 7269 6f72 546f *note exteriorTo │ │ │ │ -00056fd0: 724d 6f64 756c 653a 2065 7874 6572 696f rModule: exterio │ │ │ │ -00056fe0: 7254 6f72 4d6f 6475 6c65 2c20 2d2d 2054 rTorModule, -- T │ │ │ │ -00056ff0: 6f72 2061 7320 6120 6d6f 6475 6c65 206f or as a module o │ │ │ │ -00057000: 7665 7220 616e 0a20 2020 2065 7874 6572 ver an. exter │ │ │ │ -00057010: 696f 7220 616c 6765 6272 6120 6f72 2062 ior algebra or b │ │ │ │ -00057020: 6967 7261 6465 6420 616c 6765 6272 610a igraded algebra. │ │ │ │ -00057030: 2020 2a20 2a6e 6f74 6520 6578 7465 7269 * *note exteri │ │ │ │ -00057040: 6f72 4578 744d 6f64 756c 653a 2065 7874 orExtModule: ext │ │ │ │ -00057050: 6572 696f 7245 7874 4d6f 6475 6c65 2c20 eriorExtModule, │ │ │ │ -00057060: 2d2d 2045 7874 284d 2c6b 2920 6f72 2045 -- Ext(M,k) or E │ │ │ │ -00057070: 7874 284d 2c4e 2920 6173 2061 0a20 2020 xt(M,N) as a. │ │ │ │ -00057080: 206d 6f64 756c 6520 6f76 6572 2061 6e20 module over an │ │ │ │ -00057090: 6578 7465 7269 6f72 2061 6c67 6562 7261 exterior algebra │ │ │ │ -000570a0: 0a0a 5761 7973 2074 6f20 7573 6520 6d61 ..Ways to use ma │ │ │ │ -000570b0: 6b65 4d6f 6475 6c65 3a0a 3d3d 3d3d 3d3d keModule:.====== │ │ │ │ -000570c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000570d0: 3d0a 0a20 202a 2022 6d61 6b65 4d6f 6475 =.. * "makeModu │ │ │ │ -000570e0: 6c65 2848 6173 6854 6162 6c65 2c4d 6174 le(HashTable,Mat │ │ │ │ -000570f0: 7269 782c 4861 7368 5461 626c 6529 220a rix,HashTable)". │ │ │ │ -00057100: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ -00057110: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ -00057120: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ -00057130: 6374 202a 6e6f 7465 206d 616b 654d 6f64 ct *note makeMod │ │ │ │ -00057140: 756c 653a 206d 616b 654d 6f64 756c 652c ule: makeModule, │ │ │ │ -00057150: 2069 7320 6120 2a6e 6f74 6520 6d65 7468 is a *note meth │ │ │ │ -00057160: 6f64 2066 756e 6374 696f 6e3a 0a28 4d61 od function:.(Ma │ │ │ │ -00057170: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ -00057180: 6446 756e 6374 696f 6e2c 2e0a 1f0a 4669 dFunction,....Fi │ │ │ │ -00057190: 6c65 3a20 436f 6d70 6c65 7465 496e 7465 le: CompleteInte │ │ │ │ -000571a0: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ -000571b0: 6f6e 732e 696e 666f 2c20 4e6f 6465 3a20 ons.info, Node: │ │ │ │ -000571c0: 6d61 6b65 542c 204e 6578 743a 206d 6174 makeT, Next: mat │ │ │ │ -000571d0: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ -000571e0: 2c20 5072 6576 3a20 6d61 6b65 4d6f 6475 , Prev: makeModu │ │ │ │ -000571f0: 6c65 2c20 5570 3a20 546f 700a 0a6d 616b le, Up: Top..mak │ │ │ │ -00057200: 6554 202d 2d20 6d61 6b65 2074 6865 2043 eT -- make the C │ │ │ │ -00057210: 4920 6f70 6572 6174 6f72 7320 6f6e 2061 I operators on a │ │ │ │ -00057220: 2063 6f6d 706c 6578 0a2a 2a2a 2a2a 2a2a complex.******* │ │ │ │ +00056f10: 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 6f0a ----+..See also. │ │ │ │ +00056f20: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +00056f30: 6f74 6520 6578 7465 7269 6f72 486f 6d6f ote exteriorHomo │ │ │ │ +00056f40: 6c6f 6779 4d6f 6475 6c65 3a20 6578 7465 logyModule: exte │ │ │ │ +00056f50: 7269 6f72 486f 6d6f 6c6f 6779 4d6f 6475 riorHomologyModu │ │ │ │ +00056f60: 6c65 2c20 2d2d 204d 616b 6520 7468 6520 le, -- Make the │ │ │ │ +00056f70: 686f 6d6f 6c6f 6779 0a20 2020 206f 6620 homology. of │ │ │ │ +00056f80: 6120 636f 6d70 6c65 7820 696e 746f 2061 a complex into a │ │ │ │ +00056f90: 206d 6f64 756c 6520 6f76 6572 2061 6e20 module over an │ │ │ │ +00056fa0: 6578 7465 7269 6f72 2061 6c67 6562 7261 exterior algebra │ │ │ │ +00056fb0: 0a20 202a 202a 6e6f 7465 2065 7874 6572 . * *note exter │ │ │ │ +00056fc0: 696f 7254 6f72 4d6f 6475 6c65 3a20 6578 iorTorModule: ex │ │ │ │ +00056fd0: 7465 7269 6f72 546f 724d 6f64 756c 652c teriorTorModule, │ │ │ │ +00056fe0: 202d 2d20 546f 7220 6173 2061 206d 6f64 -- Tor as a mod │ │ │ │ +00056ff0: 756c 6520 6f76 6572 2061 6e0a 2020 2020 ule over an. │ │ │ │ +00057000: 6578 7465 7269 6f72 2061 6c67 6562 7261 exterior algebra │ │ │ │ +00057010: 206f 7220 6269 6772 6164 6564 2061 6c67 or bigraded alg │ │ │ │ +00057020: 6562 7261 0a20 202a 202a 6e6f 7465 2065 ebra. * *note e │ │ │ │ +00057030: 7874 6572 696f 7245 7874 4d6f 6475 6c65 xteriorExtModule │ │ │ │ +00057040: 3a20 6578 7465 7269 6f72 4578 744d 6f64 : exteriorExtMod │ │ │ │ +00057050: 756c 652c 202d 2d20 4578 7428 4d2c 6b29 ule, -- Ext(M,k) │ │ │ │ +00057060: 206f 7220 4578 7428 4d2c 4e29 2061 7320 or Ext(M,N) as │ │ │ │ +00057070: 610a 2020 2020 6d6f 6475 6c65 206f 7665 a. module ove │ │ │ │ +00057080: 7220 616e 2065 7874 6572 696f 7220 616c r an exterior al │ │ │ │ +00057090: 6765 6272 610a 0a57 6179 7320 746f 2075 gebra..Ways to u │ │ │ │ +000570a0: 7365 206d 616b 654d 6f64 756c 653a 0a3d se makeModule:.= │ │ │ │ +000570b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000570c0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 226d 616b ======.. * "mak │ │ │ │ +000570d0: 654d 6f64 756c 6528 4861 7368 5461 626c eModule(HashTabl │ │ │ │ +000570e0: 652c 4d61 7472 6978 2c48 6173 6854 6162 e,Matrix,HashTab │ │ │ │ +000570f0: 6c65 2922 0a0a 466f 7220 7468 6520 7072 le)"..For the pr │ │ │ │ +00057100: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ +00057110: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ +00057120: 206f 626a 6563 7420 2a6e 6f74 6520 6d61 object *note ma │ │ │ │ +00057130: 6b65 4d6f 6475 6c65 3a20 6d61 6b65 4d6f keModule: makeMo │ │ │ │ +00057140: 6475 6c65 2c20 6973 2061 202a 6e6f 7465 dule, is a *note │ │ │ │ +00057150: 206d 6574 686f 6420 6675 6e63 7469 6f6e method function │ │ │ │ +00057160: 3a0a 284d 6163 6175 6c61 7932 446f 6329 :.(Macaulay2Doc) │ │ │ │ +00057170: 4d65 7468 6f64 4675 6e63 7469 6f6e 2c2e MethodFunction,. │ │ │ │ +00057180: 0a1f 0a46 696c 653a 2043 6f6d 706c 6574 ...File: Complet │ │ │ │ +00057190: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ +000571a0: 6f6c 7574 696f 6e73 2e69 6e66 6f2c 204e olutions.info, N │ │ │ │ +000571b0: 6f64 653a 206d 616b 6554 2c20 4e65 7874 ode: makeT, Next │ │ │ │ +000571c0: 3a20 6d61 7472 6978 4661 6374 6f72 697a : matrixFactoriz │ │ │ │ +000571d0: 6174 696f 6e2c 2050 7265 763a 206d 616b ation, Prev: mak │ │ │ │ +000571e0: 654d 6f64 756c 652c 2055 703a 2054 6f70 eModule, Up: Top │ │ │ │ +000571f0: 0a0a 6d61 6b65 5420 2d2d 206d 616b 6520 ..makeT -- make │ │ │ │ +00057200: 7468 6520 4349 206f 7065 7261 746f 7273 the CI operators │ │ │ │ +00057210: 206f 6e20 6120 636f 6d70 6c65 780a 2a2a on a complex.** │ │ │ │ +00057220: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00057230: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00057240: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00057250: 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 0a3d ****..Synopsis.= │ │ │ │ -00057260: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 7361 =======.. * Usa │ │ │ │ -00057270: 6765 3a20 0a20 2020 2020 2020 2054 203d ge: . T = │ │ │ │ -00057280: 206d 616b 6554 2866 662c 462c 6929 0a20 makeT(ff,F,i). │ │ │ │ -00057290: 2020 2020 2020 2054 203d 206d 616b 6554 T = makeT │ │ │ │ -000572a0: 2866 662c 462c 7430 2c69 290a 2020 2a20 (ff,F,t0,i). * │ │ │ │ -000572b0: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -000572c0: 6666 2c20 6120 2a6e 6f74 6520 6d61 7472 ff, a *note matr │ │ │ │ -000572d0: 6978 3a20 284d 6163 6175 6c61 7932 446f ix: (Macaulay2Do │ │ │ │ -000572e0: 6329 4d61 7472 6978 2c2c 2031 7863 206d c)Matrix,, 1xc m │ │ │ │ -000572f0: 6174 7269 7820 7768 6f73 6520 656e 7472 atrix whose entr │ │ │ │ -00057300: 6965 7320 6172 650a 2020 2020 2020 2020 ies are. │ │ │ │ -00057310: 6120 636f 6d70 6c65 7465 2069 6e74 6572 a complete inter │ │ │ │ -00057320: 7365 6374 696f 6e20 696e 2053 0a20 2020 section in S. │ │ │ │ -00057330: 2020 202a 2046 2c20 6120 2a6e 6f74 6520 * F, a *note │ │ │ │ -00057340: 6368 6169 6e20 636f 6d70 6c65 783a 2028 chain complex: ( │ │ │ │ -00057350: 4d61 6361 756c 6179 3244 6f63 2943 6861 Macaulay2Doc)Cha │ │ │ │ -00057360: 696e 436f 6d70 6c65 782c 2c20 6f76 6572 inComplex,, over │ │ │ │ -00057370: 2053 2f69 6465 616c 2066 660a 2020 2020 S/ideal ff. │ │ │ │ -00057380: 2020 2a20 7430 2c20 6120 2a6e 6f74 6520 * t0, a *note │ │ │ │ -00057390: 6d61 7472 6978 3a20 284d 6163 6175 6c61 matrix: (Macaula │ │ │ │ -000573a0: 7932 446f 6329 4d61 7472 6978 2c2c 2043 y2Doc)Matrix,, C │ │ │ │ -000573b0: 492d 6f70 6572 6174 6f72 206f 6e20 4620 I-operator on F │ │ │ │ -000573c0: 666f 7220 6666 5f30 2074 6f0a 2020 2020 for ff_0 to. │ │ │ │ -000573d0: 2020 2020 6265 2070 7265 7365 7276 6564 be preserved │ │ │ │ -000573e0: 0a20 2020 2020 202a 2069 2c20 616e 202a . * i, an * │ │ │ │ -000573f0: 6e6f 7465 2069 6e74 6567 6572 3a20 284d note integer: (M │ │ │ │ -00057400: 6163 6175 6c61 7932 446f 6329 5a5a 2c2c acaulay2Doc)ZZ,, │ │ │ │ -00057410: 2064 6566 696e 6520 4349 206f 7065 7261 define CI opera │ │ │ │ -00057420: 746f 7273 2066 726f 6d20 465f 690a 2020 tors from F_i. │ │ │ │ -00057430: 2020 2020 2020 5c74 6f20 465f 7b69 2d32 \to F_{i-2 │ │ │ │ -00057440: 7d0a 2020 2a20 4f75 7470 7574 733a 0a20 }. * Outputs:. │ │ │ │ -00057450: 2020 2020 202a 204c 2c20 6120 2a6e 6f74 * L, a *not │ │ │ │ -00057460: 6520 6c69 7374 3a20 284d 6163 6175 6c61 e list: (Macaula │ │ │ │ -00057470: 7932 446f 6329 4c69 7374 2c2c 206f 6620 y2Doc)List,, of │ │ │ │ -00057480: 4349 206f 7065 7261 746f 7273 2046 5f69 CI operators F_i │ │ │ │ -00057490: 205c 746f 2046 5f7b 692d 327d 0a20 2020 \to F_{i-2}. │ │ │ │ -000574a0: 2020 2020 2063 6f72 7265 7370 6f6e 6469 correspondi │ │ │ │ -000574b0: 6e67 2074 6f20 656e 7472 6965 7320 6f66 ng to entries of │ │ │ │ -000574c0: 2066 660a 0a44 6573 6372 6970 7469 6f6e ff..Description │ │ │ │ -000574d0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 7375 .===========..su │ │ │ │ -000574e0: 6273 7469 7475 7465 206d 6174 7269 6365 bstitute matrice │ │ │ │ -000574f0: 7320 6f66 2074 776f 2064 6966 6665 7265 s of two differe │ │ │ │ -00057500: 6e74 6961 6c73 206f 6620 4620 696e 746f ntials of F into │ │ │ │ -00057510: 2053 203d 2072 696e 6720 6666 2c20 636f S = ring ff, co │ │ │ │ -00057520: 6d70 6f73 6520 7468 656d 2c0a 616e 6420 mpose them,.and │ │ │ │ -00057530: 6469 7669 6465 2062 7920 656e 7472 6965 divide by entrie │ │ │ │ -00057540: 7320 6f66 2066 662c 2069 6e20 6f72 6465 s of ff, in orde │ │ │ │ -00057550: 722e 2049 6620 7468 6520 7365 636f 6e64 r. If the second │ │ │ │ -00057560: 204d 6174 7269 7820 6172 6775 6d65 6e74 Matrix argument │ │ │ │ -00057570: 2074 3020 6973 0a70 7265 7365 6e74 2c20 t0 is.present, │ │ │ │ -00057580: 7573 6520 6974 2061 7320 7468 6520 6669 use it as the fi │ │ │ │ -00057590: 7273 7420 4349 206f 7065 7261 746f 722e rst CI operator. │ │ │ │ -000575a0: 0a0a 5468 6520 6465 6772 6565 7320 6f66 ..The degrees of │ │ │ │ -000575b0: 2074 6865 2074 6172 6765 7473 206f 6620 the targets of │ │ │ │ -000575c0: 7468 6520 545f 6a20 6172 6520 6368 616e the T_j are chan │ │ │ │ -000575d0: 6765 6420 6279 2074 6865 2064 6567 7265 ged by the degre │ │ │ │ -000575e0: 6573 206f 6620 7468 6520 665f 6a20 746f es of the f_j to │ │ │ │ -000575f0: 0a6d 616b 6520 7468 6520 545f 6a20 686f .make the T_j ho │ │ │ │ -00057600: 6d6f 6765 6e65 6f75 732e 0a0a 2b2d 2d2d mogeneous...+--- │ │ │ │ +00057240: 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 796e 6f70 *********..Synop │ │ │ │ +00057250: 7369 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 sis.========.. │ │ │ │ +00057260: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ +00057270: 2020 5420 3d20 6d61 6b65 5428 6666 2c46 T = makeT(ff,F │ │ │ │ +00057280: 2c69 290a 2020 2020 2020 2020 5420 3d20 ,i). T = │ │ │ │ +00057290: 6d61 6b65 5428 6666 2c46 2c74 302c 6929 makeT(ff,F,t0,i) │ │ │ │ +000572a0: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +000572b0: 2020 202a 2066 662c 2061 202a 6e6f 7465 * ff, a *note │ │ │ │ +000572c0: 206d 6174 7269 783a 2028 4d61 6361 756c matrix: (Macaul │ │ │ │ +000572d0: 6179 3244 6f63 294d 6174 7269 782c 2c20 ay2Doc)Matrix,, │ │ │ │ +000572e0: 3178 6320 6d61 7472 6978 2077 686f 7365 1xc matrix whose │ │ │ │ +000572f0: 2065 6e74 7269 6573 2061 7265 0a20 2020 entries are. │ │ │ │ +00057300: 2020 2020 2061 2063 6f6d 706c 6574 6520 a complete │ │ │ │ +00057310: 696e 7465 7273 6563 7469 6f6e 2069 6e20 intersection in │ │ │ │ +00057320: 530a 2020 2020 2020 2a20 462c 2061 202a S. * F, a * │ │ │ │ +00057330: 6e6f 7465 2063 6861 696e 2063 6f6d 706c note chain compl │ │ │ │ +00057340: 6578 3a20 284d 6163 6175 6c61 7932 446f ex: (Macaulay2Do │ │ │ │ +00057350: 6329 4368 6169 6e43 6f6d 706c 6578 2c2c c)ChainComplex,, │ │ │ │ +00057360: 206f 7665 7220 532f 6964 6561 6c20 6666 over S/ideal ff │ │ │ │ +00057370: 0a20 2020 2020 202a 2074 302c 2061 202a . * t0, a * │ │ │ │ +00057380: 6e6f 7465 206d 6174 7269 783a 2028 4d61 note matrix: (Ma │ │ │ │ +00057390: 6361 756c 6179 3244 6f63 294d 6174 7269 caulay2Doc)Matri │ │ │ │ +000573a0: 782c 2c20 4349 2d6f 7065 7261 746f 7220 x,, CI-operator │ │ │ │ +000573b0: 6f6e 2046 2066 6f72 2066 665f 3020 746f on F for ff_0 to │ │ │ │ +000573c0: 0a20 2020 2020 2020 2062 6520 7072 6573 . be pres │ │ │ │ +000573d0: 6572 7665 640a 2020 2020 2020 2a20 692c erved. * i, │ │ │ │ +000573e0: 2061 6e20 2a6e 6f74 6520 696e 7465 6765 an *note intege │ │ │ │ +000573f0: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ +00057400: 295a 5a2c 2c20 6465 6669 6e65 2043 4920 )ZZ,, define CI │ │ │ │ +00057410: 6f70 6572 6174 6f72 7320 6672 6f6d 2046 operators from F │ │ │ │ +00057420: 5f69 0a20 2020 2020 2020 205c 746f 2046 _i. \to F │ │ │ │ +00057430: 5f7b 692d 327d 0a20 202a 204f 7574 7075 _{i-2}. * Outpu │ │ │ │ +00057440: 7473 3a0a 2020 2020 2020 2a20 4c2c 2061 ts:. * L, a │ │ │ │ +00057450: 202a 6e6f 7465 206c 6973 743a 2028 4d61 *note list: (Ma │ │ │ │ +00057460: 6361 756c 6179 3244 6f63 294c 6973 742c caulay2Doc)List, │ │ │ │ +00057470: 2c20 6f66 2043 4920 6f70 6572 6174 6f72 , of CI operator │ │ │ │ +00057480: 7320 465f 6920 5c74 6f20 465f 7b69 2d32 s F_i \to F_{i-2 │ │ │ │ +00057490: 7d0a 2020 2020 2020 2020 636f 7272 6573 }. corres │ │ │ │ +000574a0: 706f 6e64 696e 6720 746f 2065 6e74 7269 ponding to entri │ │ │ │ +000574b0: 6573 206f 6620 6666 0a0a 4465 7363 7269 es of ff..Descri │ │ │ │ +000574c0: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +000574d0: 3d0a 0a73 7562 7374 6974 7574 6520 6d61 =..substitute ma │ │ │ │ +000574e0: 7472 6963 6573 206f 6620 7477 6f20 6469 trices of two di │ │ │ │ +000574f0: 6666 6572 656e 7469 616c 7320 6f66 2046 fferentials of F │ │ │ │ +00057500: 2069 6e74 6f20 5320 3d20 7269 6e67 2066 into S = ring f │ │ │ │ +00057510: 662c 2063 6f6d 706f 7365 2074 6865 6d2c f, compose them, │ │ │ │ +00057520: 0a61 6e64 2064 6976 6964 6520 6279 2065 .and divide by e │ │ │ │ +00057530: 6e74 7269 6573 206f 6620 6666 2c20 696e ntries of ff, in │ │ │ │ +00057540: 206f 7264 6572 2e20 4966 2074 6865 2073 order. If the s │ │ │ │ +00057550: 6563 6f6e 6420 4d61 7472 6978 2061 7267 econd Matrix arg │ │ │ │ +00057560: 756d 656e 7420 7430 2069 730a 7072 6573 ument t0 is.pres │ │ │ │ +00057570: 656e 742c 2075 7365 2069 7420 6173 2074 ent, use it as t │ │ │ │ +00057580: 6865 2066 6972 7374 2043 4920 6f70 6572 he first CI oper │ │ │ │ +00057590: 6174 6f72 2e0a 0a54 6865 2064 6567 7265 ator...The degre │ │ │ │ +000575a0: 6573 206f 6620 7468 6520 7461 7267 6574 es of the target │ │ │ │ +000575b0: 7320 6f66 2074 6865 2054 5f6a 2061 7265 s of the T_j are │ │ │ │ +000575c0: 2063 6861 6e67 6564 2062 7920 7468 6520 changed by the │ │ │ │ +000575d0: 6465 6772 6565 7320 6f66 2074 6865 2066 degrees of the f │ │ │ │ +000575e0: 5f6a 2074 6f0a 6d61 6b65 2074 6865 2054 _j to.make the T │ │ │ │ +000575f0: 5f6a 2068 6f6d 6f67 656e 656f 7573 2e0a _j homogeneous.. │ │ │ │ +00057600: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00057610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057630: 2b0a 7c69 3120 3a20 5320 3d20 5a5a 2f31 +.|i1 : S = ZZ/1 │ │ │ │ -00057640: 3031 5b78 2c79 2c7a 5d3b 2020 2020 2020 01[x,y,z]; │ │ │ │ -00057650: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00057620: 2d2d 2d2d 2d2b 0a7c 6931 203a 2053 203d -----+.|i1 : S = │ │ │ │ +00057630: 205a 5a2f 3130 315b 782c 792c 7a5d 3b20 ZZ/101[x,y,z]; │ │ │ │ +00057640: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00057650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00057680: 3220 3a20 6666 203d 206d 6174 7269 7822 2 : ff = matrix" │ │ │ │ -00057690: 7833 2c79 332c 7a33 223b 2020 2020 2020 x3,y3,z3"; │ │ │ │ -000576a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000576b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000576c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000576d0: 2020 2020 2020 2020 3120 2020 2020 2033 1 3 │ │ │ │ -000576e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000576f0: 7c6f 3220 3a20 4d61 7472 6978 2053 2020 |o2 : Matrix S │ │ │ │ -00057700: 3c2d 2d20 5320 2020 2020 2020 2020 2020 <-- S │ │ │ │ -00057710: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00057720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057730: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ -00057740: 3a20 5220 3d20 532f 6964 6561 6c20 6666 : R = S/ideal ff │ │ │ │ -00057750: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ -00057760: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -00057770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057780: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 4d20 ------+.|i4 : M │ │ │ │ -00057790: 3d20 636f 6b65 7220 6d61 7472 6978 2278 = coker matrix"x │ │ │ │ -000577a0: 2c79 2c7a 3b79 2c7a 2c78 223b 7c0a 2b2d ,y,z;y,z,x";|.+- │ │ │ │ +00057670: 2d2b 0a7c 6932 203a 2066 6620 3d20 6d61 -+.|i2 : ff = ma │ │ │ │ +00057680: 7472 6978 2278 332c 7933 2c7a 3322 3b20 trix"x3,y3,z3"; │ │ │ │ +00057690: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000576a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000576b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000576c0: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +000576d0: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ +000576e0: 2020 207c 0a7c 6f32 203a 204d 6174 7269 |.|o2 : Matri │ │ │ │ +000576f0: 7820 5320 203c 2d2d 2053 2020 2020 2020 x S <-- S │ │ │ │ +00057700: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00057710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00057720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00057730: 0a7c 6933 203a 2052 203d 2053 2f69 6465 .|i3 : R = S/ide │ │ │ │ +00057740: 616c 2066 663b 2020 2020 2020 2020 2020 al ff; │ │ │ │ +00057750: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00057760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00057770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ +00057780: 203a 204d 203d 2063 6f6b 6572 206d 6174 : M = coker mat │ │ │ │ +00057790: 7269 7822 782c 792c 7a3b 792c 7a2c 7822 rix"x,y,z;y,z,x" │ │ │ │ +000577a0: 3b7c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ;|.+------------ │ │ │ │ 000577b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000577c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000577d0: 2d2d 2b0a 7c69 3520 3a20 6265 7474 6920 --+.|i5 : betti │ │ │ │ -000577e0: 2846 203d 2072 6573 204d 2920 2020 2020 (F = res M) │ │ │ │ -000577f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000577c0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2062 -------+.|i5 : b │ │ │ │ +000577d0: 6574 7469 2028 4620 3d20 7265 7320 4d29 etti (F = res M) │ │ │ │ +000577e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000577f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057810: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00057820: 7c20 2020 2020 2020 2020 2020 2030 2031 | 0 1 │ │ │ │ -00057830: 2032 2033 2034 2020 2020 2020 2020 2020 2 3 4 │ │ │ │ -00057840: 2020 2020 7c0a 7c6f 3520 3d20 746f 7461 |.|o5 = tota │ │ │ │ -00057850: 6c3a 2032 2033 2035 2036 2038 2020 2020 l: 2 3 5 6 8 │ │ │ │ -00057860: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00057870: 2020 2020 2020 303a 2032 2033 202e 202e 0: 2 3 . . │ │ │ │ -00057880: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ -00057890: 7c0a 7c20 2020 2020 2020 2020 313a 202e |.| 1: . │ │ │ │ -000578a0: 202e 2035 2036 202e 2020 2020 2020 2020 . 5 6 . │ │ │ │ -000578b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000578c0: 2020 323a 202e 202e 202e 202e 2038 2020 2: . . . . 8 │ │ │ │ -000578d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00057810: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00057820: 2020 3020 3120 3220 3320 3420 2020 2020 0 1 2 3 4 │ │ │ │ +00057830: 2020 2020 2020 2020 207c 0a7c 6f35 203d |.|o5 = │ │ │ │ +00057840: 2074 6f74 616c 3a20 3220 3320 3520 3620 total: 2 3 5 6 │ │ │ │ +00057850: 3820 2020 2020 2020 2020 2020 2020 207c 8 | │ │ │ │ +00057860: 0a7c 2020 2020 2020 2020 2030 3a20 3220 .| 0: 2 │ │ │ │ +00057870: 3320 2e20 2e20 2e20 2020 2020 2020 2020 3 . . . │ │ │ │ +00057880: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00057890: 2031 3a20 2e20 2e20 3520 3620 2e20 2020 1: . . 5 6 . │ │ │ │ +000578a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000578b0: 2020 2020 2020 2032 3a20 2e20 2e20 2e20 2: . . . │ │ │ │ +000578c0: 2e20 3820 2020 2020 2020 2020 2020 2020 . 8 │ │ │ │ +000578d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000578e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000578f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057900: 2020 7c0a 7c6f 3520 3a20 4265 7474 6954 |.|o5 : BettiT │ │ │ │ -00057910: 616c 6c79 2020 2020 2020 2020 2020 2020 ally │ │ │ │ -00057920: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000578f0: 2020 2020 2020 207c 0a7c 6f35 203a 2042 |.|o5 : B │ │ │ │ +00057900: 6574 7469 5461 6c6c 7920 2020 2020 2020 ettiTally │ │ │ │ +00057910: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00057920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00057950: 7c69 3620 3a20 5420 3d20 6d61 6b65 5428 |i6 : T = makeT( │ │ │ │ -00057960: 6666 2c46 2c33 293b 2020 2020 2020 2020 ff,F,3); │ │ │ │ -00057970: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00057980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057990: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 ----------+.|i7 │ │ │ │ -000579a0: 3a20 6e65 744c 6973 7420 5420 2020 2020 : netList T │ │ │ │ -000579b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000579c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000579d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000579e0: 2020 2020 2020 7c0a 7c20 2020 2020 2b2d |.| +- │ │ │ │ -000579f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057a00: 2d2d 2d2d 2d2d 2d2b 2020 2020 7c0a 7c6f -------+ |.|o │ │ │ │ -00057a10: 3720 3d20 7c7b 347d 207c 2030 2030 2030 7 = |{4} | 0 0 0 │ │ │ │ -00057a20: 2030 2020 3120 3020 7c20 2020 207c 2020 0 1 0 | | │ │ │ │ -00057a30: 2020 7c0a 7c20 2020 2020 7c7b 347d 207c |.| |{4} | │ │ │ │ -00057a40: 2030 2030 2030 202d 3120 3020 3020 7c20 0 0 0 -1 0 0 | │ │ │ │ -00057a50: 2020 207c 2020 2020 7c0a 7c20 2020 2020 | |.| │ │ │ │ -00057a60: 7c7b 347d 207c 2030 2030 2030 2030 2020 |{4} | 0 0 0 0 │ │ │ │ -00057a70: 3020 3120 7c20 2020 207c 2020 2020 7c0a 0 1 | | |. │ │ │ │ -00057a80: 7c20 2020 2020 2b2d 2d2d 2d2d 2d2d 2d2d | +--------- │ │ │ │ -00057a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00057aa0: 2020 2020 7c0a 7c20 2020 2020 7c7b 347d |.| |{4} │ │ │ │ -00057ab0: 207c 2030 2031 2030 2030 2030 2030 207c | 0 1 0 0 0 0 | │ │ │ │ -00057ac0: 2020 2020 207c 2020 2020 7c0a 7c20 2020 | |.| │ │ │ │ -00057ad0: 2020 7c7b 347d 207c 2031 2030 2030 2030 |{4} | 1 0 0 0 │ │ │ │ -00057ae0: 2030 2030 207c 2020 2020 207c 2020 2020 0 0 | | │ │ │ │ -00057af0: 7c0a 7c20 2020 2020 7c7b 347d 207c 2030 |.| |{4} | 0 │ │ │ │ -00057b00: 2030 2031 2030 2030 2030 207c 2020 2020 0 1 0 0 0 | │ │ │ │ -00057b10: 207c 2020 2020 7c0a 7c20 2020 2020 2b2d | |.| +- │ │ │ │ -00057b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057b30: 2d2d 2d2d 2d2d 2d2b 2020 2020 7c0a 7c20 -------+ |.| │ │ │ │ -00057b40: 2020 2020 7c7b 347d 207c 2030 2020 2d31 |{4} | 0 -1 │ │ │ │ -00057b50: 2030 2020 3020 2d31 2030 2020 7c7c 2020 0 0 -1 0 || │ │ │ │ -00057b60: 2020 7c0a 7c20 2020 2020 7c7b 347d 207c |.| |{4} | │ │ │ │ -00057b70: 202d 3120 3020 2030 2020 3120 3020 2030 -1 0 0 1 0 0 │ │ │ │ -00057b80: 2020 7c7c 2020 2020 7c0a 7c20 2020 2020 || |.| │ │ │ │ -00057b90: 7c7b 347d 207c 2030 2020 3020 202d 3120 |{4} | 0 0 -1 │ │ │ │ -00057ba0: 3020 3020 202d 3120 7c7c 2020 2020 7c0a 0 0 -1 || |. │ │ │ │ -00057bb0: 7c20 2020 2020 2b2d 2d2d 2d2d 2d2d 2d2d | +--------- │ │ │ │ -00057bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00057bd0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00057be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 ----------+.|i8 │ │ │ │ -00057c00: 3a20 6973 486f 6d6f 6765 6e65 6f75 7320 : isHomogeneous │ │ │ │ -00057c10: 545f 3220 2020 2020 2020 2020 2020 2020 T_2 │ │ │ │ -00057c20: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00057c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057c40: 2020 2020 2020 7c0a 7c6f 3820 3d20 7472 |.|o8 = tr │ │ │ │ -00057c50: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ -00057c60: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00057940: 2d2d 2d2b 0a7c 6936 203a 2054 203d 206d ---+.|i6 : T = m │ │ │ │ +00057950: 616b 6554 2866 662c 462c 3329 3b20 2020 akeT(ff,F,3); │ │ │ │ +00057960: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00057970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00057980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00057990: 0a7c 6937 203a 206e 6574 4c69 7374 2054 .|i7 : netList T │ │ │ │ +000579a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000579b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000579c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000579d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000579e0: 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +------------ │ │ │ │ +000579f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 2020 ------------+ │ │ │ │ +00057a00: 207c 0a7c 6f37 203d 207c 7b34 7d20 7c20 |.|o7 = |{4} | │ │ │ │ +00057a10: 3020 3020 3020 3020 2031 2030 207c 2020 0 0 0 0 1 0 | │ │ │ │ +00057a20: 2020 7c20 2020 207c 0a7c 2020 2020 207c | |.| | │ │ │ │ +00057a30: 7b34 7d20 7c20 3020 3020 3020 2d31 2030 {4} | 0 0 0 -1 0 │ │ │ │ +00057a40: 2030 207c 2020 2020 7c20 2020 207c 0a7c 0 | | |.| │ │ │ │ +00057a50: 2020 2020 207c 7b34 7d20 7c20 3020 3020 |{4} | 0 0 │ │ │ │ +00057a60: 3020 3020 2030 2031 207c 2020 2020 7c20 0 0 0 1 | | │ │ │ │ +00057a70: 2020 207c 0a7c 2020 2020 202b 2d2d 2d2d |.| +---- │ │ │ │ +00057a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00057a90: 2d2d 2d2d 2b20 2020 207c 0a7c 2020 2020 ----+ |.| │ │ │ │ +00057aa0: 207c 7b34 7d20 7c20 3020 3120 3020 3020 |{4} | 0 1 0 0 │ │ │ │ +00057ab0: 3020 3020 7c20 2020 2020 7c20 2020 207c 0 0 | | | │ │ │ │ +00057ac0: 0a7c 2020 2020 207c 7b34 7d20 7c20 3120 .| |{4} | 1 │ │ │ │ +00057ad0: 3020 3020 3020 3020 3020 7c20 2020 2020 0 0 0 0 0 | │ │ │ │ +00057ae0: 7c20 2020 207c 0a7c 2020 2020 207c 7b34 | |.| |{4 │ │ │ │ +00057af0: 7d20 7c20 3020 3020 3120 3020 3020 3020 } | 0 0 1 0 0 0 │ │ │ │ +00057b00: 7c20 2020 2020 7c20 2020 207c 0a7c 2020 | | |.| │ │ │ │ +00057b10: 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +------------ │ │ │ │ +00057b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 2020 ------------+ │ │ │ │ +00057b30: 207c 0a7c 2020 2020 207c 7b34 7d20 7c20 |.| |{4} | │ │ │ │ +00057b40: 3020 202d 3120 3020 2030 202d 3120 3020 0 -1 0 0 -1 0 │ │ │ │ +00057b50: 207c 7c20 2020 207c 0a7c 2020 2020 207c || |.| | │ │ │ │ +00057b60: 7b34 7d20 7c20 2d31 2030 2020 3020 2031 {4} | -1 0 0 1 │ │ │ │ +00057b70: 2030 2020 3020 207c 7c20 2020 207c 0a7c 0 0 || |.| │ │ │ │ +00057b80: 2020 2020 207c 7b34 7d20 7c20 3020 2030 |{4} | 0 0 │ │ │ │ +00057b90: 2020 2d31 2030 2030 2020 2d31 207c 7c20 -1 0 0 -1 || │ │ │ │ +00057ba0: 2020 207c 0a7c 2020 2020 202b 2d2d 2d2d |.| +---- │ │ │ │ +00057bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00057bc0: 2d2d 2d2d 2b20 2020 207c 0a2b 2d2d 2d2d ----+ |.+---- │ │ │ │ +00057bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00057be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00057bf0: 0a7c 6938 203a 2069 7348 6f6d 6f67 656e .|i8 : isHomogen │ │ │ │ +00057c00: 656f 7573 2054 5f32 2020 2020 2020 2020 eous T_2 │ │ │ │ +00057c10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00057c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00057c30: 2020 2020 2020 2020 2020 207c 0a7c 6f38 |.|o8 │ │ │ │ +00057c40: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ +00057c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00057c60: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00057c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057c90: 2d2d 2b0a 0a43 6176 6561 740a 3d3d 3d3d --+..Caveat.==== │ │ │ │ -00057ca0: 3d3d 0a0a 5363 7269 7074 2061 7373 756d ==..Script assum │ │ │ │ -00057cb0: 6573 2074 6861 7420 7269 6e67 2046 203d es that ring F = │ │ │ │ -00057cc0: 3d20 2872 696e 6720 6666 292f 2869 6465 = (ring ff)/(ide │ │ │ │ -00057cd0: 616c 2066 6629 2e20 4974 206d 6967 6874 al ff). It might │ │ │ │ -00057ce0: 2062 6520 6d6f 7265 2075 7365 6675 6c20 be more useful │ │ │ │ -00057cf0: 746f 0a72 6574 7572 6e20 7468 6520 6f70 to.return the op │ │ │ │ -00057d00: 6572 6174 6f72 7320 6173 206d 6174 7269 erators as matri │ │ │ │ -00057d10: 6365 7320 6f76 6572 2053 2072 6174 6865 ces over S rathe │ │ │ │ -00057d20: 7220 7468 616e 206f 7665 7220 522c 2073 r than over R, s │ │ │ │ -00057d30: 696e 6365 2074 6869 7320 6973 2077 6861 ince this is wha │ │ │ │ -00057d40: 740a 7765 2764 206e 6565 6420 666f 7220 t.we'd need for │ │ │ │ -00057d50: 7468 696e 6773 206c 696b 6520 6d61 7472 things like matr │ │ │ │ -00057d60: 6978 4661 6374 6f72 697a 6174 696f 6e20 ixFactorization │ │ │ │ -00057d70: 2877 6865 7265 2074 6869 7320 7072 6f63 (where this proc │ │ │ │ -00057d80: 6573 7320 6375 7272 656e 746c 790a 646f ess currently.do │ │ │ │ -00057d90: 6e65 206f 6e20 7468 6520 666c 792c 206e ne on the fly, n │ │ │ │ -00057da0: 6f74 2063 616c 6c69 6e67 206d 616b 6554 ot calling makeT │ │ │ │ -00057db0: 290a 0a57 6179 7320 746f 2075 7365 206d )..Ways to use m │ │ │ │ -00057dc0: 616b 6554 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d akeT:.========== │ │ │ │ -00057dd0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 226d ========.. * "m │ │ │ │ -00057de0: 616b 6554 284d 6174 7269 782c 4368 6169 akeT(Matrix,Chai │ │ │ │ -00057df0: 6e43 6f6d 706c 6578 2c5a 5a29 220a 0a46 nComplex,ZZ)"..F │ │ │ │ -00057e00: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -00057e10: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -00057e20: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -00057e30: 202a 6e6f 7465 206d 616b 6554 3a20 6d61 *note makeT: ma │ │ │ │ -00057e40: 6b65 542c 2069 7320 6120 2a6e 6f74 6520 keT, is a *note │ │ │ │ -00057e50: 6d65 7468 6f64 2066 756e 6374 696f 6e3a method function: │ │ │ │ -00057e60: 0a28 4d61 6361 756c 6179 3244 6f63 294d .(Macaulay2Doc)M │ │ │ │ -00057e70: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ -00057e80: 1f0a 4669 6c65 3a20 436f 6d70 6c65 7465 ..File: Complete │ │ │ │ -00057e90: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ -00057ea0: 6c75 7469 6f6e 732e 696e 666f 2c20 4e6f lutions.info, No │ │ │ │ -00057eb0: 6465 3a20 6d61 7472 6978 4661 6374 6f72 de: matrixFactor │ │ │ │ -00057ec0: 697a 6174 696f 6e2c 204e 6578 743a 206d ization, Next: m │ │ │ │ -00057ed0: 6642 6f75 6e64 2c20 5072 6576 3a20 6d61 fBound, Prev: ma │ │ │ │ -00057ee0: 6b65 542c 2055 703a 2054 6f70 0a0a 6d61 keT, Up: Top..ma │ │ │ │ -00057ef0: 7472 6978 4661 6374 6f72 697a 6174 696f trixFactorizatio │ │ │ │ -00057f00: 6e20 2d2d 204d 6170 7320 696e 2061 2068 n -- Maps in a h │ │ │ │ -00057f10: 6967 6865 7220 636f 6469 6d65 6e73 696f igher codimensio │ │ │ │ -00057f20: 6e20 6d61 7472 6978 2066 6163 746f 7269 n matrix factori │ │ │ │ -00057f30: 7a61 7469 6f6e 0a2a 2a2a 2a2a 2a2a 2a2a zation.********* │ │ │ │ +00057c80: 2d2d 2d2d 2d2d 2d2b 0a0a 4361 7665 6174 -------+..Caveat │ │ │ │ +00057c90: 0a3d 3d3d 3d3d 3d0a 0a53 6372 6970 7420 .======..Script │ │ │ │ +00057ca0: 6173 7375 6d65 7320 7468 6174 2072 696e assumes that rin │ │ │ │ +00057cb0: 6720 4620 3d3d 2028 7269 6e67 2066 6629 g F == (ring ff) │ │ │ │ +00057cc0: 2f28 6964 6561 6c20 6666 292e 2049 7420 /(ideal ff). It │ │ │ │ +00057cd0: 6d69 6768 7420 6265 206d 6f72 6520 7573 might be more us │ │ │ │ +00057ce0: 6566 756c 2074 6f0a 7265 7475 726e 2074 eful to.return t │ │ │ │ +00057cf0: 6865 206f 7065 7261 746f 7273 2061 7320 he operators as │ │ │ │ +00057d00: 6d61 7472 6963 6573 206f 7665 7220 5320 matrices over S │ │ │ │ +00057d10: 7261 7468 6572 2074 6861 6e20 6f76 6572 rather than over │ │ │ │ +00057d20: 2052 2c20 7369 6e63 6520 7468 6973 2069 R, since this i │ │ │ │ +00057d30: 7320 7768 6174 0a77 6527 6420 6e65 6564 s what.we'd need │ │ │ │ +00057d40: 2066 6f72 2074 6869 6e67 7320 6c69 6b65 for things like │ │ │ │ +00057d50: 206d 6174 7269 7846 6163 746f 7269 7a61 matrixFactoriza │ │ │ │ +00057d60: 7469 6f6e 2028 7768 6572 6520 7468 6973 tion (where this │ │ │ │ +00057d70: 2070 726f 6365 7373 2063 7572 7265 6e74 process current │ │ │ │ +00057d80: 6c79 0a64 6f6e 6520 6f6e 2074 6865 2066 ly.done on the f │ │ │ │ +00057d90: 6c79 2c20 6e6f 7420 6361 6c6c 696e 6720 ly, not calling │ │ │ │ +00057da0: 6d61 6b65 5429 0a0a 5761 7973 2074 6f20 makeT)..Ways to │ │ │ │ +00057db0: 7573 6520 6d61 6b65 543a 0a3d 3d3d 3d3d use makeT:.===== │ │ │ │ +00057dc0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +00057dd0: 202a 2022 6d61 6b65 5428 4d61 7472 6978 * "makeT(Matrix │ │ │ │ +00057de0: 2c43 6861 696e 436f 6d70 6c65 782c 5a5a ,ChainComplex,ZZ │ │ │ │ +00057df0: 2922 0a0a 466f 7220 7468 6520 7072 6f67 )"..For the prog │ │ │ │ +00057e00: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ +00057e10: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ +00057e20: 626a 6563 7420 2a6e 6f74 6520 6d61 6b65 bject *note make │ │ │ │ +00057e30: 543a 206d 616b 6554 2c20 6973 2061 202a T: makeT, is a * │ │ │ │ +00057e40: 6e6f 7465 206d 6574 686f 6420 6675 6e63 note method func │ │ │ │ +00057e50: 7469 6f6e 3a0a 284d 6163 6175 6c61 7932 tion:.(Macaulay2 │ │ │ │ +00057e60: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ +00057e70: 6f6e 2c2e 0a1f 0a46 696c 653a 2043 6f6d on,....File: Com │ │ │ │ +00057e80: 706c 6574 6549 6e74 6572 7365 6374 696f pleteIntersectio │ │ │ │ +00057e90: 6e52 6573 6f6c 7574 696f 6e73 2e69 6e66 nResolutions.inf │ │ │ │ +00057ea0: 6f2c 204e 6f64 653a 206d 6174 7269 7846 o, Node: matrixF │ │ │ │ +00057eb0: 6163 746f 7269 7a61 7469 6f6e 2c20 4e65 actorization, Ne │ │ │ │ +00057ec0: 7874 3a20 6d66 426f 756e 642c 2050 7265 xt: mfBound, Pre │ │ │ │ +00057ed0: 763a 206d 616b 6554 2c20 5570 3a20 546f v: makeT, Up: To │ │ │ │ +00057ee0: 700a 0a6d 6174 7269 7846 6163 746f 7269 p..matrixFactori │ │ │ │ +00057ef0: 7a61 7469 6f6e 202d 2d20 4d61 7073 2069 zation -- Maps i │ │ │ │ +00057f00: 6e20 6120 6869 6768 6572 2063 6f64 696d n a higher codim │ │ │ │ +00057f10: 656e 7369 6f6e 206d 6174 7269 7820 6661 ension matrix fa │ │ │ │ +00057f20: 6374 6f72 697a 6174 696f 6e0a 2a2a 2a2a ctorization.**** │ │ │ │ +00057f30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00057f40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00057f50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00057f60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00057f70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -00057f80: 0a53 796e 6f70 7369 730a 3d3d 3d3d 3d3d .Synopsis.====== │ │ │ │ -00057f90: 3d3d 0a0a 2020 2a20 5573 6167 653a 200a ==.. * Usage: . │ │ │ │ -00057fa0: 2020 2020 2020 2020 4d46 203d 206d 6174 MF = mat │ │ │ │ -00057fb0: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ -00057fc0: 2866 662c 4d29 0a20 202a 2049 6e70 7574 (ff,M). * Input │ │ │ │ -00057fd0: 733a 0a20 2020 2020 202a 2066 662c 2061 s:. * ff, a │ │ │ │ -00057fe0: 202a 6e6f 7465 206d 6174 7269 783a 2028 *note matrix: ( │ │ │ │ -00057ff0: 4d61 6361 756c 6179 3244 6f63 294d 6174 Macaulay2Doc)Mat │ │ │ │ -00058000: 7269 782c 2c20 6120 7375 6666 6963 6965 rix,, a sufficie │ │ │ │ -00058010: 6e74 6c79 2067 656e 6572 616c 0a20 2020 ntly general. │ │ │ │ -00058020: 2020 2020 2072 6567 756c 6172 2073 6571 regular seq │ │ │ │ -00058030: 7565 6e63 6520 696e 2061 2072 696e 6720 uence in a ring │ │ │ │ -00058040: 530a 2020 2020 2020 2a20 4d2c 2061 202a S. * M, a * │ │ │ │ -00058050: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ -00058060: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ -00058070: 652c 2c20 6120 6d61 7869 6d61 6c20 436f e,, a maximal Co │ │ │ │ -00058080: 6865 6e2d 4d61 6361 756c 6179 0a20 2020 hen-Macaulay. │ │ │ │ -00058090: 2020 2020 206d 6f64 756c 6520 6f76 6572 module over │ │ │ │ -000580a0: 2053 2f69 6465 616c 2066 660a 2020 2a20 S/ideal ff. * │ │ │ │ -000580b0: 2a6e 6f74 6520 4f70 7469 6f6e 616c 2069 *note Optional i │ │ │ │ -000580c0: 6e70 7574 733a 2028 4d61 6361 756c 6179 nputs: (Macaulay │ │ │ │ -000580d0: 3244 6f63 2975 7369 6e67 2066 756e 6374 2Doc)using funct │ │ │ │ -000580e0: 696f 6e73 2077 6974 6820 6f70 7469 6f6e ions with option │ │ │ │ -000580f0: 616c 2069 6e70 7574 732c 3a0a 2020 2020 al inputs,:. │ │ │ │ -00058100: 2020 2a20 4175 676d 656e 7461 7469 6f6e * Augmentation │ │ │ │ -00058110: 203d 3e20 2e2e 2e2c 2064 6566 6175 6c74 => ..., default │ │ │ │ -00058120: 2076 616c 7565 2074 7275 650a 2020 2020 value true. │ │ │ │ -00058130: 2020 2a20 4368 6563 6b20 3d3e 202e 2e2e * Check => ... │ │ │ │ -00058140: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -00058150: 6661 6c73 650a 2020 2020 2020 2a20 4c61 false. * La │ │ │ │ -00058160: 7965 7265 6420 3d3e 202e 2e2e 2c20 6465 yered => ..., de │ │ │ │ -00058170: 6661 756c 7420 7661 6c75 6520 7472 7565 fault value true │ │ │ │ -00058180: 0a20 2020 2020 202a 2056 6572 626f 7365 . * Verbose │ │ │ │ -00058190: 203d 3e20 2e2e 2e2c 2064 6566 6175 6c74 => ..., default │ │ │ │ -000581a0: 2076 616c 7565 2066 616c 7365 0a20 202a value false. * │ │ │ │ -000581b0: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ -000581c0: 2a20 4d46 2c20 6120 2a6e 6f74 6520 6c69 * MF, a *note li │ │ │ │ -000581d0: 7374 3a20 284d 6163 6175 6c61 7932 446f st: (Macaulay2Do │ │ │ │ -000581e0: 6329 4c69 7374 2c2c 205c 7b64 2c68 2c67 c)List,, \{d,h,g │ │ │ │ -000581f0: 616d 6d61 5c7d 2c20 7768 6572 6520 643a amma\}, where d: │ │ │ │ -00058200: 415f 3120 5c74 6f0a 2020 2020 2020 2020 A_1 \to. │ │ │ │ -00058210: 415f 3020 616e 6420 683a 205c 6f70 6c75 A_0 and h: \oplu │ │ │ │ -00058220: 7320 415f 3028 7029 205c 746f 2041 5f31 s A_0(p) \to A_1 │ │ │ │ -00058230: 2069 7320 7468 6520 6469 7265 6374 2073 is the direct s │ │ │ │ -00058240: 756d 206f 6620 7061 7274 6961 6c0a 2020 um of partial. │ │ │ │ -00058250: 2020 2020 2020 686f 6d6f 746f 7069 6573 homotopies │ │ │ │ -00058260: 2c20 616e 6420 6761 6d6d 613a 2041 5f30 , and gamma: A_0 │ │ │ │ -00058270: 202d 3e4d 2069 7320 7468 6520 6175 676d ->M is the augm │ │ │ │ -00058280: 656e 7461 7469 6f6e 2028 7265 7475 726e entation (return │ │ │ │ -00058290: 6564 206f 6e6c 7920 6966 0a20 2020 2020 ed only if. │ │ │ │ -000582a0: 2020 2041 7567 6d65 6e74 6174 696f 6e20 Augmentation │ │ │ │ -000582b0: 3d3e 7472 7565 290a 0a44 6573 6372 6970 =>true)..Descrip │ │ │ │ -000582c0: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ -000582d0: 0a0a 5468 6520 696e 7075 7420 6d6f 6475 ..The input modu │ │ │ │ -000582e0: 6c65 204d 2073 686f 756c 6420 6265 2061 le M should be a │ │ │ │ -000582f0: 206d 6178 696d 616c 2043 6f68 656e 2d4d maximal Cohen-M │ │ │ │ -00058300: 6163 6175 6c61 7920 6d6f 6475 6c65 206f acaulay module o │ │ │ │ -00058310: 7665 7220 5220 3d20 532f 6964 6561 6c0a ver R = S/ideal. │ │ │ │ -00058320: 6666 2e20 2049 6620 4d20 6973 2069 6e20 ff. If M is in │ │ │ │ -00058330: 6661 6374 2061 2022 6869 6768 2073 797a fact a "high syz │ │ │ │ -00058340: 7967 7922 2c20 7468 656e 2074 6865 2066 ygy", then the f │ │ │ │ -00058350: 756e 6374 696f 6e0a 6d61 7472 6978 4661 unction.matrixFa │ │ │ │ -00058360: 6374 6f72 697a 6174 696f 6e28 6666 2c4d ctorization(ff,M │ │ │ │ -00058370: 2c4c 6179 6572 6564 3d3e 6661 6c73 6529 ,Layered=>false) │ │ │ │ -00058380: 2075 7365 7320 6120 6469 6666 6572 656e uses a differen │ │ │ │ -00058390: 742c 2066 6173 7465 7220 616c 676f 7269 t, faster algori │ │ │ │ -000583a0: 7468 6d0a 7768 6963 6820 6f6e 6c79 2077 thm.which only w │ │ │ │ -000583b0: 6f72 6b73 2069 6e20 7468 6520 6869 6768 orks in the high │ │ │ │ -000583c0: 2073 797a 7967 7920 6361 7365 2e0a 0a49 syzygy case...I │ │ │ │ -000583d0: 6e20 616c 6c20 6578 616d 706c 6573 2077 n all examples w │ │ │ │ -000583e0: 6520 6b6e 6f77 2c20 4d20 6361 6e20 6265 e know, M can be │ │ │ │ -000583f0: 2063 6f6e 7369 6465 7265 6420 6120 2268 considered a "h │ │ │ │ -00058400: 6967 6820 7379 7a79 6779 2220 6173 206c igh syzygy" as l │ │ │ │ -00058410: 6f6e 6720 6173 0a45 7874 5e7b 6576 656e ong as.Ext^{even │ │ │ │ -00058420: 7d5f 5228 4d2c 6b29 2061 6e64 2045 7874 }_R(M,k) and Ext │ │ │ │ -00058430: 5e7b 6f64 647d 5f52 284d 2c6b 2920 6861 ^{odd}_R(M,k) ha │ │ │ │ -00058440: 7665 206e 6567 6174 6976 6520 7265 6775 ve negative regu │ │ │ │ -00058450: 6c61 7269 7479 206f 7665 7220 7468 6520 larity over the │ │ │ │ -00058460: 7269 6e67 0a6f 6620 4349 206f 7065 7261 ring.of CI opera │ │ │ │ -00058470: 746f 7273 2028 7265 6772 6164 6564 2077 tors (regraded w │ │ │ │ -00058480: 6974 6820 7661 7269 6162 6c65 7320 6f66 ith variables of │ │ │ │ -00058490: 2064 6567 7265 6520 312e 2048 6f77 6576 degree 1. Howev │ │ │ │ -000584a0: 6572 2c20 7468 6520 6265 7374 2072 6573 er, the best res │ │ │ │ -000584b0: 756c 740a 7765 2063 616e 2070 726f 7665 ult.we can prove │ │ │ │ -000584c0: 2069 7320 7468 6174 2069 7420 7375 6666 is that it suff │ │ │ │ -000584d0: 6963 6573 2074 6f20 6861 7665 2072 6567 ices to have reg │ │ │ │ -000584e0: 756c 6172 6974 7920 3c20 2d28 322a 6469 ularity < -(2*di │ │ │ │ -000584f0: 6d20 522b 3129 2e0a 0a57 6865 6e20 7468 m R+1)...When th │ │ │ │ -00058500: 6520 6f70 7469 6f6e 616c 2069 6e70 7574 e optional input │ │ │ │ -00058510: 2043 6865 636b 3d3d 7472 7565 2028 7468 Check==true (th │ │ │ │ -00058520: 6520 6465 6661 756c 7420 6973 2043 6865 e default is Che │ │ │ │ -00058530: 636b 3d3d 6661 6c73 6529 2c20 7468 650a ck==false), the. │ │ │ │ -00058540: 7072 6f70 6572 7469 6573 2069 6e20 7468 properties in th │ │ │ │ -00058550: 6520 6465 6669 6e69 7469 6f6e 206f 6620 e definition of │ │ │ │ -00058560: 4d61 7472 6978 2046 6163 746f 7269 7a61 Matrix Factoriza │ │ │ │ -00058570: 7469 6f6e 2061 7265 2076 6572 6966 6965 tion are verifie │ │ │ │ -00058580: 640a 0a54 6865 206f 7574 7075 7420 6973 d..The output is │ │ │ │ -00058590: 2061 206c 6973 7420 6f66 206d 6170 7320 a list of maps │ │ │ │ -000585a0: 5c7b 642c 685c 7d20 6f72 205c 7b64 2c68 \{d,h\} or \{d,h │ │ │ │ -000585b0: 2c67 616d 6d61 5c7d 2c20 7768 6572 6520 ,gamma\}, where │ │ │ │ -000585c0: 6761 6d6d 6120 6973 2061 6e0a 6175 676d gamma is an.augm │ │ │ │ -000585d0: 656e 7461 7469 6f6e 2c20 7468 6174 2069 entation, that i │ │ │ │ -000585e0: 732c 2061 206d 6170 2066 726f 6d20 7461 s, a map from ta │ │ │ │ -000585f0: 7267 6574 2064 2074 6f20 4d2e 0a0a 5468 rget d to M...Th │ │ │ │ -00058600: 6520 6d61 7020 6420 6973 2061 2073 7065 e map d is a spe │ │ │ │ -00058610: 6369 616c 206c 6966 7469 6e67 2074 6f20 cial lifting to │ │ │ │ -00058620: 5320 6f66 2061 2070 7265 7365 6e74 6174 S of a presentat │ │ │ │ -00058630: 696f 6e20 6f66 204d 206f 7665 7220 522e ion of M over R. │ │ │ │ -00058640: 2054 6f20 6578 706c 6169 6e0a 7468 6520 To explain.the │ │ │ │ -00058650: 636f 6e74 656e 7473 2c20 7765 2069 6e74 contents, we int │ │ │ │ -00058660: 726f 6475 6365 2073 6f6d 6520 6e6f 7461 roduce some nota │ │ │ │ -00058670: 7469 6f6e 2028 6672 6f6d 2045 6973 656e tion (from Eisen │ │ │ │ -00058680: 6275 6420 616e 6420 5065 6576 612c 2022 bud and Peeva, " │ │ │ │ -00058690: 4d69 6e69 6d61 6c0a 6672 6565 2072 6573 Minimal.free res │ │ │ │ -000586a0: 6f6c 7574 696f 6e73 206f 7665 7220 636f olutions over co │ │ │ │ -000586b0: 6d70 6c65 7465 2069 6e74 6572 7365 6374 mplete intersect │ │ │ │ -000586c0: 696f 6e73 2220 4c65 6374 7572 6520 4e6f ions" Lecture No │ │ │ │ -000586d0: 7465 7320 696e 204d 6174 6865 6d61 7469 tes in Mathemati │ │ │ │ -000586e0: 6373 2c0a 3231 3532 2e20 5370 7269 6e67 cs,.2152. Spring │ │ │ │ -000586f0: 6572 2c20 4368 616d 2c20 3230 3136 2e20 er, Cham, 2016. │ │ │ │ -00058700: 782b 3130 3720 7070 2e20 4953 424e 3a20 x+107 pp. ISBN: │ │ │ │ -00058710: 3937 382d 332d 3331 392d 3236 3433 362d 978-3-319-26436- │ │ │ │ -00058720: 333b 0a39 3738 2d33 2d33 3139 2d32 3634 3;.978-3-319-264 │ │ │ │ -00058730: 3337 2d30 292e 0a0a 5228 6929 203d 2053 37-0)...R(i) = S │ │ │ │ -00058740: 2f28 6666 5f30 2c2e 2e2c 6666 5f7b 692d /(ff_0,..,ff_{i- │ │ │ │ -00058750: 317d 292e 2048 6572 6520 303c 3d20 6920 1}). Here 0<= i │ │ │ │ -00058760: 3c3d 2063 2c20 616e 6420 5220 3d20 5228 <= c, and R = R( │ │ │ │ -00058770: 6329 2061 6e64 2053 203d 2052 2830 292e c) and S = R(0). │ │ │ │ -00058780: 0a0a 4228 6929 203d 2074 6865 206d 6174 ..B(i) = the mat │ │ │ │ -00058790: 7269 7820 286f 7665 7220 5329 2072 6570 rix (over S) rep │ │ │ │ -000587a0: 7265 7365 6e74 696e 6720 645f 693a 2042 resenting d_i: B │ │ │ │ -000587b0: 5f31 2869 2920 5c74 6f20 425f 3028 6929 _1(i) \to B_0(i) │ │ │ │ -000587c0: 0a0a 6428 6929 3a20 415f 3128 6929 205c ..d(i): A_1(i) \ │ │ │ │ -000587d0: 746f 2041 5f30 2869 2920 7468 6520 7265 to A_0(i) the re │ │ │ │ -000587e0: 7374 7269 6374 696f 6e20 6f66 2064 203d striction of d = │ │ │ │ -000587f0: 2064 2863 292e 2077 6865 7265 2041 2869 d(c). where A(i │ │ │ │ -00058800: 2920 3d0a 5c6f 706c 7573 5f7b 693d 317d ) =.\oplus_{i=1} │ │ │ │ -00058810: 5e70 2042 2869 290a 0a0a 0a54 6865 206d ^p B(i)....The m │ │ │ │ -00058820: 6170 2068 2069 7320 6120 6469 7265 6374 ap h is a direct │ │ │ │ -00058830: 2073 756d 206f 6620 6d61 7073 2074 6172 sum of maps tar │ │ │ │ -00058840: 6765 7420 6428 7029 205c 746f 2073 6f75 get d(p) \to sou │ │ │ │ -00058850: 7263 6520 6428 7029 2074 6861 7420 6172 rce d(p) that ar │ │ │ │ -00058860: 650a 686f 6d6f 746f 7069 6573 2066 6f72 e.homotopies for │ │ │ │ -00058870: 2066 665f 7020 6f6e 2074 6865 2072 6573 ff_p on the res │ │ │ │ -00058880: 7472 6963 7469 6f6e 2064 2870 293a 206f triction d(p): o │ │ │ │ -00058890: 7665 7220 7468 6520 7269 6e67 2052 2328 ver the ring R#( │ │ │ │ -000588a0: 702d 3129 203d 0a53 2f28 6666 2331 2e2e p-1) =.S/(ff#1.. │ │ │ │ -000588b0: 6666 2328 702d 3129 2c20 736f 2064 2870 ff#(p-1), so d(p │ │ │ │ -000588c0: 2920 2a20 6823 7020 3d20 6666 2370 206d ) * h#p = ff#p m │ │ │ │ -000588d0: 6f64 2028 6666 2331 2e2e 6666 2328 702d od (ff#1..ff#(p- │ │ │ │ -000588e0: 3129 2e0a 0a49 6e20 6164 6469 7469 6f6e 1)...In addition │ │ │ │ -000588f0: 2c20 6823 7020 2a20 6428 7029 2069 6e64 , h#p * d(p) ind │ │ │ │ -00058900: 7563 6573 2066 6623 7020 6f6e 2042 3123 uces ff#p on B1# │ │ │ │ -00058910: 7020 6d6f 6420 2866 6623 312e 2e66 6623 p mod (ff#1..ff# │ │ │ │ -00058920: 2870 2d31 292e 0a0a 4865 7265 2069 7320 (p-1)...Here is │ │ │ │ -00058930: 6120 7369 6d70 6c65 2065 7861 6d70 6c65 a simple example │ │ │ │ -00058940: 3a0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d :..+------------ │ │ │ │ +00057f70: 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 0a3d ****..Synopsis.= │ │ │ │ +00057f80: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 7361 =======.. * Usa │ │ │ │ +00057f90: 6765 3a20 0a20 2020 2020 2020 204d 4620 ge: . MF │ │ │ │ +00057fa0: 3d20 6d61 7472 6978 4661 6374 6f72 697a = matrixFactoriz │ │ │ │ +00057fb0: 6174 696f 6e28 6666 2c4d 290a 2020 2a20 ation(ff,M). * │ │ │ │ +00057fc0: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ +00057fd0: 6666 2c20 6120 2a6e 6f74 6520 6d61 7472 ff, a *note matr │ │ │ │ +00057fe0: 6978 3a20 284d 6163 6175 6c61 7932 446f ix: (Macaulay2Do │ │ │ │ +00057ff0: 6329 4d61 7472 6978 2c2c 2061 2073 7566 c)Matrix,, a suf │ │ │ │ +00058000: 6669 6369 656e 746c 7920 6765 6e65 7261 ficiently genera │ │ │ │ +00058010: 6c0a 2020 2020 2020 2020 7265 6775 6c61 l. regula │ │ │ │ +00058020: 7220 7365 7175 656e 6365 2069 6e20 6120 r sequence in a │ │ │ │ +00058030: 7269 6e67 2053 0a20 2020 2020 202a 204d ring S. * M │ │ │ │ +00058040: 2c20 6120 2a6e 6f74 6520 6d6f 6475 6c65 , a *note module │ │ │ │ +00058050: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00058060: 4d6f 6475 6c65 2c2c 2061 206d 6178 696d Module,, a maxim │ │ │ │ +00058070: 616c 2043 6f68 656e 2d4d 6163 6175 6c61 al Cohen-Macaula │ │ │ │ +00058080: 790a 2020 2020 2020 2020 6d6f 6475 6c65 y. module │ │ │ │ +00058090: 206f 7665 7220 532f 6964 6561 6c20 6666 over S/ideal ff │ │ │ │ +000580a0: 0a20 202a 202a 6e6f 7465 204f 7074 696f . * *note Optio │ │ │ │ +000580b0: 6e61 6c20 696e 7075 7473 3a20 284d 6163 nal inputs: (Mac │ │ │ │ +000580c0: 6175 6c61 7932 446f 6329 7573 696e 6720 aulay2Doc)using │ │ │ │ +000580d0: 6675 6e63 7469 6f6e 7320 7769 7468 206f functions with o │ │ │ │ +000580e0: 7074 696f 6e61 6c20 696e 7075 7473 2c3a ptional inputs,: │ │ │ │ +000580f0: 0a20 2020 2020 202a 2041 7567 6d65 6e74 . * Augment │ │ │ │ +00058100: 6174 696f 6e20 3d3e 202e 2e2e 2c20 6465 ation => ..., de │ │ │ │ +00058110: 6661 756c 7420 7661 6c75 6520 7472 7565 fault value true │ │ │ │ +00058120: 0a20 2020 2020 202a 2043 6865 636b 203d . * Check = │ │ │ │ +00058130: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ +00058140: 616c 7565 2066 616c 7365 0a20 2020 2020 alue false. │ │ │ │ +00058150: 202a 204c 6179 6572 6564 203d 3e20 2e2e * Layered => .. │ │ │ │ +00058160: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ +00058170: 2074 7275 650a 2020 2020 2020 2a20 5665 true. * Ve │ │ │ │ +00058180: 7262 6f73 6520 3d3e 202e 2e2e 2c20 6465 rbose => ..., de │ │ │ │ +00058190: 6661 756c 7420 7661 6c75 6520 6661 6c73 fault value fals │ │ │ │ +000581a0: 650a 2020 2a20 4f75 7470 7574 733a 0a20 e. * Outputs:. │ │ │ │ +000581b0: 2020 2020 202a 204d 462c 2061 202a 6e6f * MF, a *no │ │ │ │ +000581c0: 7465 206c 6973 743a 2028 4d61 6361 756c te list: (Macaul │ │ │ │ +000581d0: 6179 3244 6f63 294c 6973 742c 2c20 5c7b ay2Doc)List,, \{ │ │ │ │ +000581e0: 642c 682c 6761 6d6d 615c 7d2c 2077 6865 d,h,gamma\}, whe │ │ │ │ +000581f0: 7265 2064 3a41 5f31 205c 746f 0a20 2020 re d:A_1 \to. │ │ │ │ +00058200: 2020 2020 2041 5f30 2061 6e64 2068 3a20 A_0 and h: │ │ │ │ +00058210: 5c6f 706c 7573 2041 5f30 2870 2920 5c74 \oplus A_0(p) \t │ │ │ │ +00058220: 6f20 415f 3120 6973 2074 6865 2064 6972 o A_1 is the dir │ │ │ │ +00058230: 6563 7420 7375 6d20 6f66 2070 6172 7469 ect sum of parti │ │ │ │ +00058240: 616c 0a20 2020 2020 2020 2068 6f6d 6f74 al. homot │ │ │ │ +00058250: 6f70 6965 732c 2061 6e64 2067 616d 6d61 opies, and gamma │ │ │ │ +00058260: 3a20 415f 3020 2d3e 4d20 6973 2074 6865 : A_0 ->M is the │ │ │ │ +00058270: 2061 7567 6d65 6e74 6174 696f 6e20 2872 augmentation (r │ │ │ │ +00058280: 6574 7572 6e65 6420 6f6e 6c79 2069 660a eturned only if. │ │ │ │ +00058290: 2020 2020 2020 2020 4175 676d 656e 7461 Augmenta │ │ │ │ +000582a0: 7469 6f6e 203d 3e74 7275 6529 0a0a 4465 tion =>true)..De │ │ │ │ +000582b0: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +000582c0: 3d3d 3d3d 3d0a 0a54 6865 2069 6e70 7574 =====..The input │ │ │ │ +000582d0: 206d 6f64 756c 6520 4d20 7368 6f75 6c64 module M should │ │ │ │ +000582e0: 2062 6520 6120 6d61 7869 6d61 6c20 436f be a maximal Co │ │ │ │ +000582f0: 6865 6e2d 4d61 6361 756c 6179 206d 6f64 hen-Macaulay mod │ │ │ │ +00058300: 756c 6520 6f76 6572 2052 203d 2053 2f69 ule over R = S/i │ │ │ │ +00058310: 6465 616c 0a66 662e 2020 4966 204d 2069 deal.ff. If M i │ │ │ │ +00058320: 7320 696e 2066 6163 7420 6120 2268 6967 s in fact a "hig │ │ │ │ +00058330: 6820 7379 7a79 6779 222c 2074 6865 6e20 h syzygy", then │ │ │ │ +00058340: 7468 6520 6675 6e63 7469 6f6e 0a6d 6174 the function.mat │ │ │ │ +00058350: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ +00058360: 2866 662c 4d2c 4c61 7965 7265 643d 3e66 (ff,M,Layered=>f │ │ │ │ +00058370: 616c 7365 2920 7573 6573 2061 2064 6966 alse) uses a dif │ │ │ │ +00058380: 6665 7265 6e74 2c20 6661 7374 6572 2061 ferent, faster a │ │ │ │ +00058390: 6c67 6f72 6974 686d 0a77 6869 6368 206f lgorithm.which o │ │ │ │ +000583a0: 6e6c 7920 776f 726b 7320 696e 2074 6865 nly works in the │ │ │ │ +000583b0: 2068 6967 6820 7379 7a79 6779 2063 6173 high syzygy cas │ │ │ │ +000583c0: 652e 0a0a 496e 2061 6c6c 2065 7861 6d70 e...In all examp │ │ │ │ +000583d0: 6c65 7320 7765 206b 6e6f 772c 204d 2063 les we know, M c │ │ │ │ +000583e0: 616e 2062 6520 636f 6e73 6964 6572 6564 an be considered │ │ │ │ +000583f0: 2061 2022 6869 6768 2073 797a 7967 7922 a "high syzygy" │ │ │ │ +00058400: 2061 7320 6c6f 6e67 2061 730a 4578 745e as long as.Ext^ │ │ │ │ +00058410: 7b65 7665 6e7d 5f52 284d 2c6b 2920 616e {even}_R(M,k) an │ │ │ │ +00058420: 6420 4578 745e 7b6f 6464 7d5f 5228 4d2c d Ext^{odd}_R(M, │ │ │ │ +00058430: 6b29 2068 6176 6520 6e65 6761 7469 7665 k) have negative │ │ │ │ +00058440: 2072 6567 756c 6172 6974 7920 6f76 6572 regularity over │ │ │ │ +00058450: 2074 6865 2072 696e 670a 6f66 2043 4920 the ring.of CI │ │ │ │ +00058460: 6f70 6572 6174 6f72 7320 2872 6567 7261 operators (regra │ │ │ │ +00058470: 6465 6420 7769 7468 2076 6172 6961 626c ded with variabl │ │ │ │ +00058480: 6573 206f 6620 6465 6772 6565 2031 2e20 es of degree 1. │ │ │ │ +00058490: 486f 7765 7665 722c 2074 6865 2062 6573 However, the bes │ │ │ │ +000584a0: 7420 7265 7375 6c74 0a77 6520 6361 6e20 t result.we can │ │ │ │ +000584b0: 7072 6f76 6520 6973 2074 6861 7420 6974 prove is that it │ │ │ │ +000584c0: 2073 7566 6669 6365 7320 746f 2068 6176 suffices to hav │ │ │ │ +000584d0: 6520 7265 6775 6c61 7269 7479 203c 202d e regularity < - │ │ │ │ +000584e0: 2832 2a64 696d 2052 2b31 292e 0a0a 5768 (2*dim R+1)...Wh │ │ │ │ +000584f0: 656e 2074 6865 206f 7074 696f 6e61 6c20 en the optional │ │ │ │ +00058500: 696e 7075 7420 4368 6563 6b3d 3d74 7275 input Check==tru │ │ │ │ +00058510: 6520 2874 6865 2064 6566 6175 6c74 2069 e (the default i │ │ │ │ +00058520: 7320 4368 6563 6b3d 3d66 616c 7365 292c s Check==false), │ │ │ │ +00058530: 2074 6865 0a70 726f 7065 7274 6965 7320 the.properties │ │ │ │ +00058540: 696e 2074 6865 2064 6566 696e 6974 696f in the definitio │ │ │ │ +00058550: 6e20 6f66 204d 6174 7269 7820 4661 6374 n of Matrix Fact │ │ │ │ +00058560: 6f72 697a 6174 696f 6e20 6172 6520 7665 orization are ve │ │ │ │ +00058570: 7269 6669 6564 0a0a 5468 6520 6f75 7470 rified..The outp │ │ │ │ +00058580: 7574 2069 7320 6120 6c69 7374 206f 6620 ut is a list of │ │ │ │ +00058590: 6d61 7073 205c 7b64 2c68 5c7d 206f 7220 maps \{d,h\} or │ │ │ │ +000585a0: 5c7b 642c 682c 6761 6d6d 615c 7d2c 2077 \{d,h,gamma\}, w │ │ │ │ +000585b0: 6865 7265 2067 616d 6d61 2069 7320 616e here gamma is an │ │ │ │ +000585c0: 0a61 7567 6d65 6e74 6174 696f 6e2c 2074 .augmentation, t │ │ │ │ +000585d0: 6861 7420 6973 2c20 6120 6d61 7020 6672 hat is, a map fr │ │ │ │ +000585e0: 6f6d 2074 6172 6765 7420 6420 746f 204d om target d to M │ │ │ │ +000585f0: 2e0a 0a54 6865 206d 6170 2064 2069 7320 ...The map d is │ │ │ │ +00058600: 6120 7370 6563 6961 6c20 6c69 6674 696e a special liftin │ │ │ │ +00058610: 6720 746f 2053 206f 6620 6120 7072 6573 g to S of a pres │ │ │ │ +00058620: 656e 7461 7469 6f6e 206f 6620 4d20 6f76 entation of M ov │ │ │ │ +00058630: 6572 2052 2e20 546f 2065 7870 6c61 696e er R. To explain │ │ │ │ +00058640: 0a74 6865 2063 6f6e 7465 6e74 732c 2077 .the contents, w │ │ │ │ +00058650: 6520 696e 7472 6f64 7563 6520 736f 6d65 e introduce some │ │ │ │ +00058660: 206e 6f74 6174 696f 6e20 2866 726f 6d20 notation (from │ │ │ │ +00058670: 4569 7365 6e62 7564 2061 6e64 2050 6565 Eisenbud and Pee │ │ │ │ +00058680: 7661 2c20 224d 696e 696d 616c 0a66 7265 va, "Minimal.fre │ │ │ │ +00058690: 6520 7265 736f 6c75 7469 6f6e 7320 6f76 e resolutions ov │ │ │ │ +000586a0: 6572 2063 6f6d 706c 6574 6520 696e 7465 er complete inte │ │ │ │ +000586b0: 7273 6563 7469 6f6e 7322 204c 6563 7475 rsections" Lectu │ │ │ │ +000586c0: 7265 204e 6f74 6573 2069 6e20 4d61 7468 re Notes in Math │ │ │ │ +000586d0: 656d 6174 6963 732c 0a32 3135 322e 2053 ematics,.2152. S │ │ │ │ +000586e0: 7072 696e 6765 722c 2043 6861 6d2c 2032 pringer, Cham, 2 │ │ │ │ +000586f0: 3031 362e 2078 2b31 3037 2070 702e 2049 016. x+107 pp. I │ │ │ │ +00058700: 5342 4e3a 2039 3738 2d33 2d33 3139 2d32 SBN: 978-3-319-2 │ │ │ │ +00058710: 3634 3336 2d33 3b0a 3937 382d 332d 3331 6436-3;.978-3-31 │ │ │ │ +00058720: 392d 3236 3433 372d 3029 2e0a 0a52 2869 9-26437-0)...R(i │ │ │ │ +00058730: 2920 3d20 532f 2866 665f 302c 2e2e 2c66 ) = S/(ff_0,..,f │ │ │ │ +00058740: 665f 7b69 2d31 7d29 2e20 4865 7265 2030 f_{i-1}). Here 0 │ │ │ │ +00058750: 3c3d 2069 203c 3d20 632c 2061 6e64 2052 <= i <= c, and R │ │ │ │ +00058760: 203d 2052 2863 2920 616e 6420 5320 3d20 = R(c) and S = │ │ │ │ +00058770: 5228 3029 2e0a 0a42 2869 2920 3d20 7468 R(0)...B(i) = th │ │ │ │ +00058780: 6520 6d61 7472 6978 2028 6f76 6572 2053 e matrix (over S │ │ │ │ +00058790: 2920 7265 7072 6573 656e 7469 6e67 2064 ) representing d │ │ │ │ +000587a0: 5f69 3a20 425f 3128 6929 205c 746f 2042 _i: B_1(i) \to B │ │ │ │ +000587b0: 5f30 2869 290a 0a64 2869 293a 2041 5f31 _0(i)..d(i): A_1 │ │ │ │ +000587c0: 2869 2920 5c74 6f20 415f 3028 6929 2074 (i) \to A_0(i) t │ │ │ │ +000587d0: 6865 2072 6573 7472 6963 7469 6f6e 206f he restriction o │ │ │ │ +000587e0: 6620 6420 3d20 6428 6329 2e20 7768 6572 f d = d(c). wher │ │ │ │ +000587f0: 6520 4128 6929 203d 0a5c 6f70 6c75 735f e A(i) =.\oplus_ │ │ │ │ +00058800: 7b69 3d31 7d5e 7020 4228 6929 0a0a 0a0a {i=1}^p B(i).... │ │ │ │ +00058810: 5468 6520 6d61 7020 6820 6973 2061 2064 The map h is a d │ │ │ │ +00058820: 6972 6563 7420 7375 6d20 6f66 206d 6170 irect sum of map │ │ │ │ +00058830: 7320 7461 7267 6574 2064 2870 2920 5c74 s target d(p) \t │ │ │ │ +00058840: 6f20 736f 7572 6365 2064 2870 2920 7468 o source d(p) th │ │ │ │ +00058850: 6174 2061 7265 0a68 6f6d 6f74 6f70 6965 at are.homotopie │ │ │ │ +00058860: 7320 666f 7220 6666 5f70 206f 6e20 7468 s for ff_p on th │ │ │ │ +00058870: 6520 7265 7374 7269 6374 696f 6e20 6428 e restriction d( │ │ │ │ +00058880: 7029 3a20 6f76 6572 2074 6865 2072 696e p): over the rin │ │ │ │ +00058890: 6720 5223 2870 2d31 2920 3d0a 532f 2866 g R#(p-1) =.S/(f │ │ │ │ +000588a0: 6623 312e 2e66 6623 2870 2d31 292c 2073 f#1..ff#(p-1), s │ │ │ │ +000588b0: 6f20 6428 7029 202a 2068 2370 203d 2066 o d(p) * h#p = f │ │ │ │ +000588c0: 6623 7020 6d6f 6420 2866 6623 312e 2e66 f#p mod (ff#1..f │ │ │ │ +000588d0: 6623 2870 2d31 292e 0a0a 496e 2061 6464 f#(p-1)...In add │ │ │ │ +000588e0: 6974 696f 6e2c 2068 2370 202a 2064 2870 ition, h#p * d(p │ │ │ │ +000588f0: 2920 696e 6475 6365 7320 6666 2370 206f ) induces ff#p o │ │ │ │ +00058900: 6e20 4231 2370 206d 6f64 2028 6666 2331 n B1#p mod (ff#1 │ │ │ │ +00058910: 2e2e 6666 2328 702d 3129 2e0a 0a48 6572 ..ff#(p-1)...Her │ │ │ │ +00058920: 6520 6973 2061 2073 696d 706c 6520 6578 e is a simple ex │ │ │ │ +00058930: 616d 706c 653a 0a0a 2b2d 2d2d 2d2d 2d2d ample:..+------- │ │ │ │ +00058940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00058950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -00058970: 203a 2073 6574 5261 6e64 6f6d 5365 6564 : setRandomSeed │ │ │ │ -00058980: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00058990: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00058960: 2b0a 7c69 3120 3a20 7365 7452 616e 646f +.|i1 : setRando │ │ │ │ +00058970: 6d53 6565 6420 3020 2020 2020 2020 2020 mSeed 0 │ │ │ │ +00058980: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00058990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000589a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000589b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000589c0: 0a7c 6f31 203d 2030 2020 2020 2020 2020 .|o1 = 0 │ │ │ │ -000589d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000589e0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000589b0: 2020 2020 7c0a 7c6f 3120 3d20 3020 2020 |.|o1 = 0 │ │ │ │ +000589c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000589d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000589e0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000589f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058a10: 2d2d 2d2b 0a7c 6932 203a 206b 6b20 3d20 ---+.|i2 : kk = │ │ │ │ -00058a20: 5a5a 2f31 3031 2020 2020 2020 2020 2020 ZZ/101 │ │ │ │ -00058a30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00058a00: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ +00058a10: 6b6b 203d 205a 5a2f 3130 3120 2020 2020 kk = ZZ/101 │ │ │ │ +00058a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00058a30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00058a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058a60: 2020 2020 2020 207c 0a7c 6f32 203d 206b |.|o2 = k │ │ │ │ -00058a70: 6b20 2020 2020 2020 2020 2020 2020 2020 k │ │ │ │ -00058a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058a90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00058a50: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00058a60: 3220 3d20 6b6b 2020 2020 2020 2020 2020 2 = kk │ │ │ │ +00058a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00058a80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00058a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00058aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058ab0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -00058ac0: 203a 2051 756f 7469 656e 7452 696e 6720 : QuotientRing │ │ │ │ -00058ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058ae0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00058ab0: 7c0a 7c6f 3220 3a20 5175 6f74 6965 6e74 |.|o2 : Quotient │ │ │ │ +00058ac0: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ +00058ad0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00058ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00058af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00058b10: 0a7c 6933 203a 2053 203d 206b 6b5b 612c .|i3 : S = kk[a, │ │ │ │ -00058b20: 622c 752c 765d 2020 2020 2020 2020 2020 b,u,v] │ │ │ │ -00058b30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00058b00: 2d2d 2d2d 2b0a 7c69 3320 3a20 5320 3d20 ----+.|i3 : S = │ │ │ │ +00058b10: 6b6b 5b61 2c62 2c75 2c76 5d20 2020 2020 kk[a,b,u,v] │ │ │ │ +00058b20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00058b30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00058b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058b60: 2020 207c 0a7c 6f33 203d 2053 2020 2020 |.|o3 = S │ │ │ │ +00058b50: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ +00058b60: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ 00058b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058b80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00058b80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00058b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058bb0: 2020 2020 2020 207c 0a7c 6f33 203a 2050 |.|o3 : P │ │ │ │ -00058bc0: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ -00058bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058be0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00058ba0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00058bb0: 3320 3a20 506f 6c79 6e6f 6d69 616c 5269 3 : PolynomialRi │ │ │ │ +00058bc0: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ +00058bd0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00058be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00058bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ -00058c10: 203a 2066 6620 3d20 6d61 7472 6978 2261 : ff = matrix"a │ │ │ │ -00058c20: 752c 6276 2220 2020 2020 2020 2020 2020 u,bv" │ │ │ │ -00058c30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00058c00: 2b0a 7c69 3420 3a20 6666 203d 206d 6174 +.|i4 : ff = mat │ │ │ │ +00058c10: 7269 7822 6175 2c62 7622 2020 2020 2020 rix"au,bv" │ │ │ │ +00058c20: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00058c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00058c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058c50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00058c60: 0a7c 6f34 203d 207c 2061 7520 6276 207c .|o4 = | au bv | │ │ │ │ -00058c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058c80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00058c50: 2020 2020 7c0a 7c6f 3420 3d20 7c20 6175 |.|o4 = | au │ │ │ │ +00058c60: 2062 7620 7c20 2020 2020 2020 2020 2020 bv | │ │ │ │ +00058c70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00058c80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00058c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058cb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00058cc0: 2020 2031 2020 2020 2020 3220 2020 2020 1 2 │ │ │ │ -00058cd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00058ce0: 6f34 203a 204d 6174 7269 7820 5320 203c o4 : Matrix S < │ │ │ │ -00058cf0: 2d2d 2053 2020 2020 2020 2020 2020 2020 -- S │ │ │ │ -00058d00: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00058ca0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00058cb0: 2020 2020 2020 2020 3120 2020 2020 2032 1 2 │ │ │ │ +00058cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00058cd0: 2020 7c0a 7c6f 3420 3a20 4d61 7472 6978 |.|o4 : Matrix │ │ │ │ +00058ce0: 2053 2020 3c2d 2d20 5320 2020 2020 2020 S <-- S │ │ │ │ +00058cf0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00058d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00058d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058d30: 2d2b 0a7c 6935 203a 2052 203d 2053 2f69 -+.|i5 : R = S/i │ │ │ │ -00058d40: 6465 616c 2066 6620 2020 2020 2020 2020 deal ff │ │ │ │ -00058d50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00058d20: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 5220 ------+.|i5 : R │ │ │ │ +00058d30: 3d20 532f 6964 6561 6c20 6666 2020 2020 = S/ideal ff │ │ │ │ +00058d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00058d50: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00058d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058d80: 2020 2020 207c 0a7c 6f35 203d 2052 2020 |.|o5 = R │ │ │ │ +00058d70: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ +00058d80: 3d20 5220 2020 2020 2020 2020 2020 2020 = R │ │ │ │ 00058d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00058db0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00058dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058dd0: 2020 2020 2020 2020 207c 0a7c 6f35 203a |.|o5 : │ │ │ │ -00058de0: 2051 756f 7469 656e 7452 696e 6720 2020 QuotientRing │ │ │ │ -00058df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058e00: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00058da0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00058db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00058dc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00058dd0: 7c6f 3520 3a20 5175 6f74 6965 6e74 5269 |o5 : QuotientRi │ │ │ │ +00058de0: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ +00058df0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00058e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00058e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00058e30: 6936 203a 204d 3020 3d20 525e 312f 6964 i6 : M0 = R^1/id │ │ │ │ -00058e40: 6561 6c22 612c 6222 2020 2020 2020 2020 eal"a,b" │ │ │ │ -00058e50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00058e20: 2d2d 2b0a 7c69 3620 3a20 4d30 203d 2052 --+.|i6 : M0 = R │ │ │ │ +00058e30: 5e31 2f69 6465 616c 2261 2c62 2220 2020 ^1/ideal"a,b" │ │ │ │ +00058e40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00058e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00058e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058e80: 207c 0a7c 6f36 203d 2063 6f6b 6572 6e65 |.|o6 = cokerne │ │ │ │ -00058e90: 6c20 7c20 6120 6220 7c20 2020 2020 2020 l | a b | │ │ │ │ -00058ea0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00058e70: 2020 2020 2020 7c0a 7c6f 3620 3d20 636f |.|o6 = co │ │ │ │ +00058e80: 6b65 726e 656c 207c 2061 2062 207c 2020 kernel | a b | │ │ │ │ +00058e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00058ea0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00058eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058ed0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00058ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058ef0: 2020 2020 3120 2020 2020 2020 2020 207c 1 | │ │ │ │ -00058f00: 0a7c 6f36 203a 2052 2d6d 6f64 756c 652c .|o6 : R-module, │ │ │ │ -00058f10: 2071 756f 7469 656e 7420 6f66 2052 2020 quotient of R │ │ │ │ -00058f20: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00058ec0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00058ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00058ee0: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ +00058ef0: 2020 2020 7c0a 7c6f 3620 3a20 522d 6d6f |.|o6 : R-mo │ │ │ │ +00058f00: 6475 6c65 2c20 7175 6f74 6965 6e74 206f dule, quotient o │ │ │ │ +00058f10: 6620 5220 2020 2020 2020 2020 2020 7c0a f R |. │ │ │ │ +00058f20: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00058f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058f50: 2d2d 2d2b 0a7c 6937 203a 204d 203d 2068 ---+.|i7 : M = h │ │ │ │ -00058f60: 6967 6853 797a 7967 7920 4d30 2020 2020 ighSyzygy M0 │ │ │ │ -00058f70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00058f40: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 --------+.|i7 : │ │ │ │ +00058f50: 4d20 3d20 6869 6768 5379 7a79 6779 204d M = highSyzygy M │ │ │ │ +00058f60: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00058f70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00058f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058fa0: 2020 2020 2020 207c 0a7c 6f37 203d 2063 |.|o7 = c │ │ │ │ -00058fb0: 6f6b 6572 6e65 6c20 7b32 7d20 7c20 6220 okernel {2} | b │ │ │ │ -00058fc0: 2d61 2030 2030 207c 2020 2020 2020 2020 -a 0 0 | │ │ │ │ -00058fd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00058fe0: 2020 7b32 7d20 7c20 3020 3020 2061 2062 {2} | 0 0 a b │ │ │ │ -00058ff0: 207c 2020 2020 2020 2020 207c 0a7c 2020 | |.| │ │ │ │ -00059000: 2020 2020 2020 2020 2020 2020 7b32 7d20 {2} │ │ │ │ -00059010: 7c20 3020 7620 2030 2075 207c 2020 2020 | 0 v 0 u | │ │ │ │ -00059020: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00058f90: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00058fa0: 3720 3d20 636f 6b65 726e 656c 207b 327d 7 = cokernel {2} │ │ │ │ +00058fb0: 207c 2062 202d 6120 3020 3020 7c20 2020 | b -a 0 0 | │ │ │ │ +00058fc0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00058fd0: 2020 2020 2020 207b 327d 207c 2030 2030 {2} | 0 0 │ │ │ │ +00058fe0: 2020 6120 6220 7c20 2020 2020 2020 2020 a b | │ │ │ │ +00058ff0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00059000: 207b 327d 207c 2030 2076 2020 3020 7520 {2} | 0 v 0 u │ │ │ │ +00059010: 7c20 2020 2020 2020 2020 7c0a 7c20 2020 | |.| │ │ │ │ +00059020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059040: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00059050: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00059060: 2020 2020 2020 2020 2020 2020 2020 3320 3 │ │ │ │ -00059070: 2020 2020 2020 2020 207c 0a7c 6f37 203a |.|o7 : │ │ │ │ -00059080: 2052 2d6d 6f64 756c 652c 2071 756f 7469 R-module, quoti │ │ │ │ -00059090: 656e 7420 6f66 2052 2020 2020 2020 2020 ent of R │ │ │ │ -000590a0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00059040: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00059050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00059060: 2020 2033 2020 2020 2020 2020 2020 7c0a 3 |. │ │ │ │ +00059070: 7c6f 3720 3a20 522d 6d6f 6475 6c65 2c20 |o7 : R-module, │ │ │ │ +00059080: 7175 6f74 6965 6e74 206f 6620 5220 2020 quotient of R │ │ │ │ +00059090: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000590a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000590b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000590c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000590d0: 6938 203a 204d 4620 3d20 6d61 7472 6978 i8 : MF = matrix │ │ │ │ -000590e0: 4661 6374 6f72 697a 6174 696f 6e28 6666 Factorization(ff │ │ │ │ -000590f0: 2c4d 293b 2020 207c 0a2b 2d2d 2d2d 2d2d ,M); |.+------ │ │ │ │ +000590c0: 2d2d 2b0a 7c69 3820 3a20 4d46 203d 206d --+.|i8 : MF = m │ │ │ │ +000590d0: 6174 7269 7846 6163 746f 7269 7a61 7469 atrixFactorizati │ │ │ │ +000590e0: 6f6e 2866 662c 4d29 3b20 2020 7c0a 2b2d on(ff,M); |.+- │ │ │ │ +000590f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00059100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00059110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00059120: 2d2b 0a7c 6939 203a 206e 6574 4c69 7374 -+.|i9 : netList │ │ │ │ -00059130: 2042 5261 6e6b 7320 4d46 2020 2020 2020 BRanks MF │ │ │ │ -00059140: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00059110: 2d2d 2d2d 2d2d 2b0a 7c69 3920 3a20 6e65 ------+.|i9 : ne │ │ │ │ +00059120: 744c 6973 7420 4252 616e 6b73 204d 4620 tList BRanks MF │ │ │ │ +00059130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00059140: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00059150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059170: 2020 2020 207c 0a7c 2020 2020 202b 2d2b |.| +-+ │ │ │ │ -00059180: 2d2b 2020 2020 2020 2020 2020 2020 2020 -+ │ │ │ │ -00059190: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000591a0: 0a7c 6f39 203d 207c 327c 327c 2020 2020 .|o9 = |2|2| │ │ │ │ -000591b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000591c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000591d0: 202b 2d2b 2d2b 2020 2020 2020 2020 2020 +-+-+ │ │ │ │ -000591e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000591f0: 2020 207c 0a7c 2020 2020 207c 317c 327c |.| |1|2| │ │ │ │ +00059160: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00059170: 2020 2b2d 2b2d 2b20 2020 2020 2020 2020 +-+-+ │ │ │ │ +00059180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00059190: 2020 2020 7c0a 7c6f 3920 3d20 7c32 7c32 |.|o9 = |2|2 │ │ │ │ +000591a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000591b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000591c0: 7c20 2020 2020 2b2d 2b2d 2b20 2020 2020 | +-+-+ │ │ │ │ +000591d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000591e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000591f0: 7c31 7c32 7c20 2020 2020 2020 2020 2020 |1|2| │ │ │ │ 00059200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059210: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00059220: 2020 2020 202b 2d2b 2d2b 2020 2020 2020 +-+-+ │ │ │ │ -00059230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059240: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00059210: 2020 7c0a 7c20 2020 2020 2b2d 2b2d 2b20 |.| +-+-+ │ │ │ │ +00059220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00059230: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00059240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00059250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00059260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00059270: 2d2b 0a7c 6931 3020 3a20 6e65 744c 6973 -+.|i10 : netLis │ │ │ │ -00059280: 7420 624d 6170 7320 4d46 2020 2020 2020 t bMaps MF │ │ │ │ -00059290: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00059260: 2d2d 2d2d 2d2d 2b0a 7c69 3130 203a 206e ------+.|i10 : n │ │ │ │ +00059270: 6574 4c69 7374 2062 4d61 7073 204d 4620 etList bMaps MF │ │ │ │ +00059280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00059290: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000592a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000592b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000592c0: 2020 2020 207c 0a7c 2020 2020 2020 2b2d |.| +- │ │ │ │ -000592d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 2020 2020 ----------+ │ │ │ │ -000592e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000592f0: 0a7c 6f31 3020 3d20 7c7b 327d 207c 2061 .|o10 = |{2} | a │ │ │ │ -00059300: 2062 207c 7c20 2020 2020 2020 2020 2020 b || │ │ │ │ -00059310: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00059320: 2020 7c7b 327d 207c 2030 2075 207c 7c20 |{2} | 0 u || │ │ │ │ -00059330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059340: 2020 207c 0a7c 2020 2020 2020 2b2d 2d2d |.| +--- │ │ │ │ -00059350: 2d2d 2d2d 2d2d 2d2d 2b20 2020 2020 2020 --------+ │ │ │ │ -00059360: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00059370: 2020 2020 2020 7c7b 327d 207c 2062 2061 |{2} | b a │ │ │ │ -00059380: 207c 7c20 2020 2020 2020 2020 2020 2020 || │ │ │ │ -00059390: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000593a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 2020 +-----------+ │ │ │ │ -000593b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000593c0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000592b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000592c0: 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b +-----------+ │ │ │ │ +000592d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000592e0: 2020 2020 7c0a 7c6f 3130 203d 207c 7b32 |.|o10 = |{2 │ │ │ │ +000592f0: 7d20 7c20 6120 6220 7c7c 2020 2020 2020 } | a b || │ │ │ │ +00059300: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00059310: 7c20 2020 2020 207c 7b32 7d20 7c20 3020 | |{2} | 0 │ │ │ │ +00059320: 7520 7c7c 2020 2020 2020 2020 2020 2020 u || │ │ │ │ +00059330: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00059340: 202b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 2020 +-----------+ │ │ │ │ +00059350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00059360: 2020 7c0a 7c20 2020 2020 207c 7b32 7d20 |.| |{2} │ │ │ │ +00059370: 7c20 6220 6120 7c7c 2020 2020 2020 2020 | b a || │ │ │ │ +00059380: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00059390: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ +000593a0: 2d2b 2020 2020 2020 2020 2020 2020 2020 -+ │ │ │ │ +000593b0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000593c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000593d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000593e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -000593f0: 3120 3a20 6265 7474 6920 7265 7328 4d2c 1 : betti res(M, │ │ │ │ -00059400: 204c 656e 6774 684c 696d 6974 203d 3e20 LengthLimit => │ │ │ │ -00059410: 3729 2020 207c 0a7c 2020 2020 2020 2020 7) |.| │ │ │ │ +000593e0: 2b0a 7c69 3131 203a 2062 6574 7469 2072 +.|i11 : betti r │ │ │ │ +000593f0: 6573 284d 2c20 4c65 6e67 7468 4c69 6d69 es(M, LengthLimi │ │ │ │ +00059400: 7420 3d3e 2037 2920 2020 7c0a 7c20 2020 t => 7) |.| │ │ │ │ +00059410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059430: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00059440: 0a7c 2020 2020 2020 2020 2020 2020 2030 .| 0 │ │ │ │ -00059450: 2031 2032 2033 2034 2035 2036 2020 3720 1 2 3 4 5 6 7 │ │ │ │ -00059460: 2020 2020 2020 2020 207c 0a7c 6f31 3120 |.|o11 │ │ │ │ -00059470: 3d20 746f 7461 6c3a 2033 2034 2035 2036 = total: 3 4 5 6 │ │ │ │ -00059480: 2037 2038 2039 2031 3020 2020 2020 2020 7 8 9 10 │ │ │ │ -00059490: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000594a0: 323a 2033 2034 2035 2036 2037 2038 2039 2: 3 4 5 6 7 8 9 │ │ │ │ -000594b0: 2031 3020 2020 2020 2020 2020 207c 0a7c 10 |.| │ │ │ │ +00059430: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00059440: 2020 2020 3020 3120 3220 3320 3420 3520 0 1 2 3 4 5 │ │ │ │ +00059450: 3620 2037 2020 2020 2020 2020 2020 7c0a 6 7 |. │ │ │ │ +00059460: 7c6f 3131 203d 2074 6f74 616c 3a20 3320 |o11 = total: 3 │ │ │ │ +00059470: 3420 3520 3620 3720 3820 3920 3130 2020 4 5 6 7 8 9 10 │ │ │ │ +00059480: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00059490: 2020 2020 2032 3a20 3320 3420 3520 3620 2: 3 4 5 6 │ │ │ │ +000594a0: 3720 3820 3920 3130 2020 2020 2020 2020 7 8 9 10 │ │ │ │ +000594b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000594c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000594d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000594e0: 2020 2020 2020 207c 0a7c 6f31 3120 3a20 |.|o11 : │ │ │ │ -000594f0: 4265 7474 6954 616c 6c79 2020 2020 2020 BettiTally │ │ │ │ -00059500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059510: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000594d0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000594e0: 3131 203a 2042 6574 7469 5461 6c6c 7920 11 : BettiTally │ │ │ │ +000594f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00059500: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00059510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00059520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00059530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -00059540: 3220 3a20 696e 6669 6e69 7465 4265 7474 2 : infiniteBett │ │ │ │ -00059550: 694e 756d 6265 7273 2028 4d46 2c37 2920 iNumbers (MF,7) │ │ │ │ -00059560: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00059530: 2b0a 7c69 3132 203a 2069 6e66 696e 6974 +.|i12 : infinit │ │ │ │ +00059540: 6542 6574 7469 4e75 6d62 6572 7320 284d eBettiNumbers (M │ │ │ │ +00059550: 462c 3729 2020 2020 2020 7c0a 7c20 2020 F,7) |.| │ │ │ │ +00059560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059580: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00059590: 0a7c 6f31 3220 3d20 7b33 2c20 342c 2035 .|o12 = {3, 4, 5 │ │ │ │ -000595a0: 2c20 362c 2037 2c20 382c 2039 2c20 3130 , 6, 7, 8, 9, 10 │ │ │ │ -000595b0: 7d20 2020 2020 2020 207c 0a7c 2020 2020 } |.| │ │ │ │ +00059580: 2020 2020 7c0a 7c6f 3132 203d 207b 332c |.|o12 = {3, │ │ │ │ +00059590: 2034 2c20 352c 2036 2c20 372c 2038 2c20 4, 5, 6, 7, 8, │ │ │ │ +000595a0: 392c 2031 307d 2020 2020 2020 2020 7c0a 9, 10} |. │ │ │ │ +000595b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000595c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000595d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000595e0: 2020 207c 0a7c 6f31 3220 3a20 4c69 7374 |.|o12 : List │ │ │ │ +000595d0: 2020 2020 2020 2020 7c0a 7c6f 3132 203a |.|o12 : │ │ │ │ +000595e0: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ 000595f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059600: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00059600: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00059610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00059620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00059630: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3320 3a20 -------+.|i13 : │ │ │ │ -00059640: 6265 7474 6920 7265 7320 7075 7368 466f betti res pushFo │ │ │ │ -00059650: 7277 6172 6428 6d61 7028 522c 5329 2c4d rward(map(R,S),M │ │ │ │ -00059660: 297c 0a7c 2020 2020 2020 2020 2020 2020 )|.| │ │ │ │ +00059620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00059630: 3133 203a 2062 6574 7469 2072 6573 2070 13 : betti res p │ │ │ │ +00059640: 7573 6846 6f72 7761 7264 286d 6170 2852 ushForward(map(R │ │ │ │ +00059650: 2c53 292c 4d29 7c0a 7c20 2020 2020 2020 ,S),M)|.| │ │ │ │ +00059660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059680: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00059690: 2020 2020 2020 2020 2020 2030 2031 2032 0 1 2 │ │ │ │ -000596a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000596b0: 2020 2020 207c 0a7c 6f31 3320 3d20 746f |.|o13 = to │ │ │ │ -000596c0: 7461 6c3a 2033 2035 2032 2020 2020 2020 tal: 3 5 2 │ │ │ │ -000596d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000596e0: 0a7c 2020 2020 2020 2020 2020 323a 2033 .| 2: 3 │ │ │ │ -000596f0: 2034 202e 2020 2020 2020 2020 2020 2020 4 . │ │ │ │ -00059700: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00059710: 2020 2020 2020 333a 202e 2031 2032 2020 3: . 1 2 │ │ │ │ -00059720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059730: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00059680: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00059690: 3020 3120 3220 2020 2020 2020 2020 2020 0 1 2 │ │ │ │ +000596a0: 2020 2020 2020 2020 2020 7c0a 7c6f 3133 |.|o13 │ │ │ │ +000596b0: 203d 2074 6f74 616c 3a20 3320 3520 3220 = total: 3 5 2 │ │ │ │ +000596c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000596d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000596e0: 2032 3a20 3320 3420 2e20 2020 2020 2020 2: 3 4 . │ │ │ │ +000596f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00059700: 7c20 2020 2020 2020 2020 2033 3a20 2e20 | 3: . │ │ │ │ +00059710: 3120 3220 2020 2020 2020 2020 2020 2020 1 2 │ │ │ │ +00059720: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00059730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059750: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00059760: 6f31 3320 3a20 4265 7474 6954 616c 6c79 o13 : BettiTally │ │ │ │ -00059770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059780: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00059750: 2020 7c0a 7c6f 3133 203a 2042 6574 7469 |.|o13 : Betti │ │ │ │ +00059760: 5461 6c6c 7920 2020 2020 2020 2020 2020 Tally │ │ │ │ +00059770: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00059780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00059790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000597a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000597b0: 2d2b 0a7c 6931 3420 3a20 6669 6e69 7465 -+.|i14 : finite │ │ │ │ -000597c0: 4265 7474 694e 756d 6265 7273 204d 4620 BettiNumbers MF │ │ │ │ -000597d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000597a0: 2d2d 2d2d 2d2d 2b0a 7c69 3134 203a 2066 ------+.|i14 : f │ │ │ │ +000597b0: 696e 6974 6542 6574 7469 4e75 6d62 6572 initeBettiNumber │ │ │ │ +000597c0: 7320 4d46 2020 2020 2020 2020 2020 2020 s MF │ │ │ │ +000597d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000597e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000597f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059800: 2020 2020 207c 0a7c 6f31 3420 3d20 7b33 |.|o14 = {3 │ │ │ │ -00059810: 2c20 352c 2032 7d20 2020 2020 2020 2020 , 5, 2} │ │ │ │ -00059820: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00059830: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00059840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059850: 2020 2020 2020 2020 207c 0a7c 6f31 3420 |.|o14 │ │ │ │ -00059860: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ -00059870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059880: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000597f0: 2020 2020 2020 2020 2020 7c0a 7c6f 3134 |.|o14 │ │ │ │ +00059800: 203d 207b 332c 2035 2c20 327d 2020 2020 = {3, 5, 2} │ │ │ │ +00059810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00059820: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00059830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00059840: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00059850: 7c6f 3134 203a 204c 6973 7420 2020 2020 |o14 : List │ │ │ │ +00059860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00059870: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00059880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00059890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000598a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -000598b0: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ -000598c0: 3d0a 0a20 202a 202a 6e6f 7465 2066 696e =.. * *note fin │ │ │ │ -000598d0: 6974 6542 6574 7469 4e75 6d62 6572 733a iteBettiNumbers: │ │ │ │ -000598e0: 2066 696e 6974 6542 6574 7469 4e75 6d62 finiteBettiNumb │ │ │ │ -000598f0: 6572 732c 202d 2d20 6265 7474 6920 6e75 ers, -- betti nu │ │ │ │ -00059900: 6d62 6572 7320 6f66 2066 696e 6974 650a mbers of finite. │ │ │ │ -00059910: 2020 2020 7265 736f 6c75 7469 6f6e 2063 resolution c │ │ │ │ -00059920: 6f6d 7075 7465 6420 6672 6f6d 2061 206d omputed from a m │ │ │ │ -00059930: 6174 7269 7820 6661 6374 6f72 697a 6174 atrix factorizat │ │ │ │ -00059940: 696f 6e0a 2020 2a20 2a6e 6f74 6520 696e ion. * *note in │ │ │ │ -00059950: 6669 6e69 7465 4265 7474 694e 756d 6265 finiteBettiNumbe │ │ │ │ -00059960: 7273 3a20 696e 6669 6e69 7465 4265 7474 rs: infiniteBett │ │ │ │ -00059970: 694e 756d 6265 7273 2c20 2d2d 2062 6574 iNumbers, -- bet │ │ │ │ -00059980: 7469 206e 756d 6265 7273 206f 660a 2020 ti numbers of. │ │ │ │ -00059990: 2020 6669 6e69 7465 2072 6573 6f6c 7574 finite resolut │ │ │ │ -000599a0: 696f 6e20 636f 6d70 7574 6564 2066 726f ion computed fro │ │ │ │ -000599b0: 6d20 6120 6d61 7472 6978 2066 6163 746f m a matrix facto │ │ │ │ -000599c0: 7269 7a61 7469 6f6e 0a20 202a 202a 6e6f rization. * *no │ │ │ │ -000599d0: 7465 2068 6967 6853 797a 7967 793a 2068 te highSyzygy: h │ │ │ │ -000599e0: 6967 6853 797a 7967 792c 202d 2d20 5265 ighSyzygy, -- Re │ │ │ │ -000599f0: 7475 726e 7320 6120 7379 7a79 6779 206d turns a syzygy m │ │ │ │ -00059a00: 6f64 756c 6520 6f6e 6520 6265 796f 6e64 odule one beyond │ │ │ │ -00059a10: 2074 6865 0a20 2020 2072 6567 756c 6172 the. regular │ │ │ │ -00059a20: 6974 7920 6f66 2045 7874 284d 2c6b 290a ity of Ext(M,k). │ │ │ │ -00059a30: 2020 2a20 2a6e 6f74 6520 624d 6170 733a * *note bMaps: │ │ │ │ -00059a40: 2062 4d61 7073 2c20 2d2d 206c 6973 7420 bMaps, -- list │ │ │ │ -00059a50: 7468 6520 6d61 7073 2020 645f 703a 425f the maps d_p:B_ │ │ │ │ -00059a60: 3128 7029 2d2d 3e42 5f30 2870 2920 696e 1(p)-->B_0(p) in │ │ │ │ -00059a70: 2061 0a20 2020 206d 6174 7269 7846 6163 a. matrixFac │ │ │ │ -00059a80: 746f 7269 7a61 7469 6f6e 0a20 202a 202a torization. * * │ │ │ │ -00059a90: 6e6f 7465 2042 5261 6e6b 733a 2042 5261 note BRanks: BRa │ │ │ │ -00059aa0: 6e6b 732c 202d 2d20 7261 6e6b 7320 6f66 nks, -- ranks of │ │ │ │ -00059ab0: 2074 6865 206d 6f64 756c 6573 2042 5f69 the modules B_i │ │ │ │ -00059ac0: 2864 2920 696e 2061 0a20 2020 206d 6174 (d) in a. mat │ │ │ │ -00059ad0: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ -00059ae0: 0a0a 5761 7973 2074 6f20 7573 6520 6d61 ..Ways to use ma │ │ │ │ -00059af0: 7472 6978 4661 6374 6f72 697a 6174 696f trixFactorizatio │ │ │ │ -00059b00: 6e3a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d n:.============= │ │ │ │ -00059b10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00059b20: 3d3d 3d0a 0a20 202a 2022 6d61 7472 6978 ===.. * "matrix │ │ │ │ -00059b30: 4661 6374 6f72 697a 6174 696f 6e28 4d61 Factorization(Ma │ │ │ │ -00059b40: 7472 6978 2c4d 6f64 756c 6529 220a 0a46 trix,Module)"..F │ │ │ │ -00059b50: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -00059b60: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -00059b70: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -00059b80: 202a 6e6f 7465 206d 6174 7269 7846 6163 *note matrixFac │ │ │ │ -00059b90: 746f 7269 7a61 7469 6f6e 3a20 6d61 7472 torization: matr │ │ │ │ -00059ba0: 6978 4661 6374 6f72 697a 6174 696f 6e2c ixFactorization, │ │ │ │ -00059bb0: 2069 7320 6120 2a6e 6f74 6520 6d65 7468 is a *note meth │ │ │ │ -00059bc0: 6f64 0a66 756e 6374 696f 6e20 7769 7468 od.function with │ │ │ │ -00059bd0: 206f 7074 696f 6e73 3a20 284d 6163 6175 options: (Macau │ │ │ │ -00059be0: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ -00059bf0: 6e63 7469 6f6e 5769 7468 4f70 7469 6f6e nctionWithOption │ │ │ │ -00059c00: 732c 2e0a 1f0a 4669 6c65 3a20 436f 6d70 s,....File: Comp │ │ │ │ -00059c10: 6c65 7465 496e 7465 7273 6563 7469 6f6e leteIntersection │ │ │ │ -00059c20: 5265 736f 6c75 7469 6f6e 732e 696e 666f Resolutions.info │ │ │ │ -00059c30: 2c20 4e6f 6465 3a20 6d66 426f 756e 642c , Node: mfBound, │ │ │ │ -00059c40: 204e 6578 743a 206d 6f64 756c 6541 7345 Next: moduleAsE │ │ │ │ -00059c50: 7874 2c20 5072 6576 3a20 6d61 7472 6978 xt, Prev: matrix │ │ │ │ -00059c60: 4661 6374 6f72 697a 6174 696f 6e2c 2055 Factorization, U │ │ │ │ -00059c70: 703a 2054 6f70 0a0a 6d66 426f 756e 6420 p: Top..mfBound │ │ │ │ -00059c80: 2d2d 2064 6574 6572 6d69 6e65 7320 686f -- determines ho │ │ │ │ -00059c90: 7720 6869 6768 2061 2073 797a 7967 7920 w high a syzygy │ │ │ │ -00059ca0: 746f 2074 616b 6520 666f 7220 226d 6174 to take for "mat │ │ │ │ -00059cb0: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ -00059cc0: 220a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ".************** │ │ │ │ +000598a0: 2d2d 2b0a 0a53 6565 2061 6c73 6f0a 3d3d --+..See also.== │ │ │ │ +000598b0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ +000598c0: 6520 6669 6e69 7465 4265 7474 694e 756d e finiteBettiNum │ │ │ │ +000598d0: 6265 7273 3a20 6669 6e69 7465 4265 7474 bers: finiteBett │ │ │ │ +000598e0: 694e 756d 6265 7273 2c20 2d2d 2062 6574 iNumbers, -- bet │ │ │ │ +000598f0: 7469 206e 756d 6265 7273 206f 6620 6669 ti numbers of fi │ │ │ │ +00059900: 6e69 7465 0a20 2020 2072 6573 6f6c 7574 nite. resolut │ │ │ │ +00059910: 696f 6e20 636f 6d70 7574 6564 2066 726f ion computed fro │ │ │ │ +00059920: 6d20 6120 6d61 7472 6978 2066 6163 746f m a matrix facto │ │ │ │ +00059930: 7269 7a61 7469 6f6e 0a20 202a 202a 6e6f rization. * *no │ │ │ │ +00059940: 7465 2069 6e66 696e 6974 6542 6574 7469 te infiniteBetti │ │ │ │ +00059950: 4e75 6d62 6572 733a 2069 6e66 696e 6974 Numbers: infinit │ │ │ │ +00059960: 6542 6574 7469 4e75 6d62 6572 732c 202d eBettiNumbers, - │ │ │ │ +00059970: 2d20 6265 7474 6920 6e75 6d62 6572 7320 - betti numbers │ │ │ │ +00059980: 6f66 0a20 2020 2066 696e 6974 6520 7265 of. finite re │ │ │ │ +00059990: 736f 6c75 7469 6f6e 2063 6f6d 7075 7465 solution compute │ │ │ │ +000599a0: 6420 6672 6f6d 2061 206d 6174 7269 7820 d from a matrix │ │ │ │ +000599b0: 6661 6374 6f72 697a 6174 696f 6e0a 2020 factorization. │ │ │ │ +000599c0: 2a20 2a6e 6f74 6520 6869 6768 5379 7a79 * *note highSyzy │ │ │ │ +000599d0: 6779 3a20 6869 6768 5379 7a79 6779 2c20 gy: highSyzygy, │ │ │ │ +000599e0: 2d2d 2052 6574 7572 6e73 2061 2073 797a -- Returns a syz │ │ │ │ +000599f0: 7967 7920 6d6f 6475 6c65 206f 6e65 2062 ygy module one b │ │ │ │ +00059a00: 6579 6f6e 6420 7468 650a 2020 2020 7265 eyond the. re │ │ │ │ +00059a10: 6775 6c61 7269 7479 206f 6620 4578 7428 gularity of Ext( │ │ │ │ +00059a20: 4d2c 6b29 0a20 202a 202a 6e6f 7465 2062 M,k). * *note b │ │ │ │ +00059a30: 4d61 7073 3a20 624d 6170 732c 202d 2d20 Maps: bMaps, -- │ │ │ │ +00059a40: 6c69 7374 2074 6865 206d 6170 7320 2064 list the maps d │ │ │ │ +00059a50: 5f70 3a42 5f31 2870 292d 2d3e 425f 3028 _p:B_1(p)-->B_0( │ │ │ │ +00059a60: 7029 2069 6e20 610a 2020 2020 6d61 7472 p) in a. matr │ │ │ │ +00059a70: 6978 4661 6374 6f72 697a 6174 696f 6e0a ixFactorization. │ │ │ │ +00059a80: 2020 2a20 2a6e 6f74 6520 4252 616e 6b73 * *note BRanks │ │ │ │ +00059a90: 3a20 4252 616e 6b73 2c20 2d2d 2072 616e : BRanks, -- ran │ │ │ │ +00059aa0: 6b73 206f 6620 7468 6520 6d6f 6475 6c65 ks of the module │ │ │ │ +00059ab0: 7320 425f 6928 6429 2069 6e20 610a 2020 s B_i(d) in a. │ │ │ │ +00059ac0: 2020 6d61 7472 6978 4661 6374 6f72 697a matrixFactoriz │ │ │ │ +00059ad0: 6174 696f 6e0a 0a57 6179 7320 746f 2075 ation..Ways to u │ │ │ │ +00059ae0: 7365 206d 6174 7269 7846 6163 746f 7269 se matrixFactori │ │ │ │ +00059af0: 7a61 7469 6f6e 3a0a 3d3d 3d3d 3d3d 3d3d zation:.======== │ │ │ │ +00059b00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00059b10: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 226d ========.. * "m │ │ │ │ +00059b20: 6174 7269 7846 6163 746f 7269 7a61 7469 atrixFactorizati │ │ │ │ +00059b30: 6f6e 284d 6174 7269 782c 4d6f 6475 6c65 on(Matrix,Module │ │ │ │ +00059b40: 2922 0a0a 466f 7220 7468 6520 7072 6f67 )"..For the prog │ │ │ │ +00059b50: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ +00059b60: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ +00059b70: 626a 6563 7420 2a6e 6f74 6520 6d61 7472 bject *note matr │ │ │ │ +00059b80: 6978 4661 6374 6f72 697a 6174 696f 6e3a ixFactorization: │ │ │ │ +00059b90: 206d 6174 7269 7846 6163 746f 7269 7a61 matrixFactoriza │ │ │ │ +00059ba0: 7469 6f6e 2c20 6973 2061 202a 6e6f 7465 tion, is a *note │ │ │ │ +00059bb0: 206d 6574 686f 640a 6675 6e63 7469 6f6e method.function │ │ │ │ +00059bc0: 2077 6974 6820 6f70 7469 6f6e 733a 2028 with options: ( │ │ │ │ +00059bd0: 4d61 6361 756c 6179 3244 6f63 294d 6574 Macaulay2Doc)Met │ │ │ │ +00059be0: 686f 6446 756e 6374 696f 6e57 6974 684f hodFunctionWithO │ │ │ │ +00059bf0: 7074 696f 6e73 2c2e 0a1f 0a46 696c 653a ptions,....File: │ │ │ │ +00059c00: 2043 6f6d 706c 6574 6549 6e74 6572 7365 CompleteInterse │ │ │ │ +00059c10: 6374 696f 6e52 6573 6f6c 7574 696f 6e73 ctionResolutions │ │ │ │ +00059c20: 2e69 6e66 6f2c 204e 6f64 653a 206d 6642 .info, Node: mfB │ │ │ │ +00059c30: 6f75 6e64 2c20 4e65 7874 3a20 6d6f 6475 ound, Next: modu │ │ │ │ +00059c40: 6c65 4173 4578 742c 2050 7265 763a 206d leAsExt, Prev: m │ │ │ │ +00059c50: 6174 7269 7846 6163 746f 7269 7a61 7469 atrixFactorizati │ │ │ │ +00059c60: 6f6e 2c20 5570 3a20 546f 700a 0a6d 6642 on, Up: Top..mfB │ │ │ │ +00059c70: 6f75 6e64 202d 2d20 6465 7465 726d 696e ound -- determin │ │ │ │ +00059c80: 6573 2068 6f77 2068 6967 6820 6120 7379 es how high a sy │ │ │ │ +00059c90: 7a79 6779 2074 6f20 7461 6b65 2066 6f72 zygy to take for │ │ │ │ +00059ca0: 2022 6d61 7472 6978 4661 6374 6f72 697a "matrixFactoriz │ │ │ │ +00059cb0: 6174 696f 6e22 0a2a 2a2a 2a2a 2a2a 2a2a ation".********* │ │ │ │ +00059cc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00059cd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00059ce0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00059cf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00059d00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 796e ***********..Syn │ │ │ │ -00059d10: 6f70 7369 730a 3d3d 3d3d 3d3d 3d3d 0a0a opsis.========.. │ │ │ │ -00059d20: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ -00059d30: 2020 2020 7020 3d20 6d66 426f 756e 6420 p = mfBound │ │ │ │ -00059d40: 4d0a 2020 2a20 496e 7075 7473 3a0a 2020 M. * Inputs:. │ │ │ │ -00059d50: 2020 2020 2a20 4d2c 2061 202a 6e6f 7465 * M, a *note │ │ │ │ -00059d60: 206d 6f64 756c 653a 2028 4d61 6361 756c module: (Macaul │ │ │ │ -00059d70: 6179 3244 6f63 294d 6f64 756c 652c 2c20 ay2Doc)Module,, │ │ │ │ -00059d80: 6f76 6572 2061 2063 6f6d 706c 6574 6520 over a complete │ │ │ │ -00059d90: 696e 7465 7273 6563 7469 6f6e 0a20 202a intersection. * │ │ │ │ -00059da0: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ -00059db0: 2a20 702c 2061 6e20 2a6e 6f74 6520 696e * p, an *note in │ │ │ │ -00059dc0: 7465 6765 723a 2028 4d61 6361 756c 6179 teger: (Macaulay │ │ │ │ -00059dd0: 3244 6f63 295a 5a2c 2c20 0a0a 4465 7363 2Doc)ZZ,, ..Desc │ │ │ │ -00059de0: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ -00059df0: 3d3d 3d0a 0a49 6620 7020 3d20 6d66 426f ===..If p = mfBo │ │ │ │ -00059e00: 756e 6420 4d2c 2074 6865 6e20 7468 6520 und M, then the │ │ │ │ -00059e10: 702d 7468 2073 797a 7967 7920 6f66 204d p-th syzygy of M │ │ │ │ -00059e20: 2c20 7768 6963 6820 6973 2063 6f6d 7075 , which is compu │ │ │ │ -00059e30: 7465 6420 6279 0a68 6967 6853 797a 7967 ted by.highSyzyg │ │ │ │ -00059e40: 7928 4d29 2c20 7368 6f75 6c64 2028 7468 y(M), should (th │ │ │ │ -00059e50: 6973 2069 7320 6120 636f 6e6a 6563 7475 is is a conjectu │ │ │ │ -00059e60: 7265 2920 6265 2061 2022 6869 6768 2053 re) be a "high S │ │ │ │ -00059e70: 797a 7967 7922 2069 6e20 7468 6520 7365 yzygy" in the se │ │ │ │ -00059e80: 6e73 650a 7265 7175 6972 6564 2066 6f72 nse.required for │ │ │ │ -00059e90: 206d 6174 7269 7846 6163 746f 7269 7a61 matrixFactoriza │ │ │ │ -00059ea0: 7469 6f6e 2e20 496e 2065 7861 6d70 6c65 tion. In example │ │ │ │ -00059eb0: 732c 2074 6865 2065 7374 696d 6174 6520 s, the estimate │ │ │ │ -00059ec0: 7365 656d 7320 7368 6172 7020 2865 7863 seems sharp (exc │ │ │ │ -00059ed0: 6570 740a 7768 656e 204d 2069 7320 616c ept.when M is al │ │ │ │ -00059ee0: 7265 6164 7920 6120 6869 6768 2073 797a ready a high syz │ │ │ │ -00059ef0: 7967 7929 2e0a 0a54 6865 2061 6374 7561 ygy)...The actua │ │ │ │ -00059f00: 6c20 666f 726d 756c 6120 7573 6564 2069 l formula used i │ │ │ │ -00059f10: 733a 0a0a 6d66 426f 756e 6420 4d20 3d20 s:..mfBound M = │ │ │ │ -00059f20: 6d61 7828 322a 725f 7b65 7665 6e7d 2c20 max(2*r_{even}, │ │ │ │ -00059f30: 312b 322a 725f 7b6f 6464 7d29 0a0a 7768 1+2*r_{odd})..wh │ │ │ │ -00059f40: 6572 6520 725f 7b65 7665 6e7d 203d 2072 ere r_{even} = r │ │ │ │ -00059f50: 6567 756c 6172 6974 7920 6576 656e 4578 egularity evenEx │ │ │ │ -00059f60: 744d 6f64 756c 6520 4d20 616e 6420 725f tModule M and r_ │ │ │ │ -00059f70: 7b6f 6464 7d20 3d20 7265 6775 6c61 7269 {odd} = regulari │ │ │ │ -00059f80: 7479 0a6f 6464 4578 744d 6f64 756c 6520 ty.oddExtModule │ │ │ │ -00059f90: 4d2e 2048 6572 6520 6576 656e 4578 744d M. Here evenExtM │ │ │ │ -00059fa0: 6f64 756c 6520 4d20 6973 2074 6865 2065 odule M is the e │ │ │ │ -00059fb0: 7665 6e20 6465 6772 6565 2070 6172 7420 ven degree part │ │ │ │ -00059fc0: 6f66 2045 7874 284d 2c20 2872 6573 6964 of Ext(M, (resid │ │ │ │ -00059fd0: 7565 0a63 6c61 7373 2066 6965 6c64 2929 ue.class field)) │ │ │ │ -00059fe0: 2e0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d ...See also.==== │ │ │ │ -00059ff0: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -0005a000: 6869 6768 5379 7a79 6779 3a20 6869 6768 highSyzygy: high │ │ │ │ -0005a010: 5379 7a79 6779 2c20 2d2d 2052 6574 7572 Syzygy, -- Retur │ │ │ │ -0005a020: 6e73 2061 2073 797a 7967 7920 6d6f 6475 ns a syzygy modu │ │ │ │ -0005a030: 6c65 206f 6e65 2062 6579 6f6e 6420 7468 le one beyond th │ │ │ │ -0005a040: 650a 2020 2020 7265 6775 6c61 7269 7479 e. regularity │ │ │ │ -0005a050: 206f 6620 4578 7428 4d2c 6b29 0a20 202a of Ext(M,k). * │ │ │ │ -0005a060: 202a 6e6f 7465 2065 7665 6e45 7874 4d6f *note evenExtMo │ │ │ │ -0005a070: 6475 6c65 3a20 6576 656e 4578 744d 6f64 dule: evenExtMod │ │ │ │ -0005a080: 756c 652c 202d 2d20 6576 656e 2070 6172 ule, -- even par │ │ │ │ -0005a090: 7420 6f66 2045 7874 5e2a 284d 2c6b 2920 t of Ext^*(M,k) │ │ │ │ -0005a0a0: 6f76 6572 2061 0a20 2020 2063 6f6d 706c over a. compl │ │ │ │ -0005a0b0: 6574 6520 696e 7465 7273 6563 7469 6f6e ete intersection │ │ │ │ -0005a0c0: 2061 7320 6d6f 6475 6c65 206f 7665 7220 as module over │ │ │ │ -0005a0d0: 4349 206f 7065 7261 746f 7220 7269 6e67 CI operator ring │ │ │ │ -0005a0e0: 0a20 202a 202a 6e6f 7465 206f 6464 4578 . * *note oddEx │ │ │ │ -0005a0f0: 744d 6f64 756c 653a 206f 6464 4578 744d tModule: oddExtM │ │ │ │ -0005a100: 6f64 756c 652c 202d 2d20 6f64 6420 7061 odule, -- odd pa │ │ │ │ -0005a110: 7274 206f 6620 4578 745e 2a28 4d2c 6b29 rt of Ext^*(M,k) │ │ │ │ -0005a120: 206f 7665 7220 6120 636f 6d70 6c65 7465 over a complete │ │ │ │ -0005a130: 0a20 2020 2069 6e74 6572 7365 6374 696f . intersectio │ │ │ │ -0005a140: 6e20 6173 206d 6f64 756c 6520 6f76 6572 n as module over │ │ │ │ -0005a150: 2043 4920 6f70 6572 6174 6f72 2072 696e CI operator rin │ │ │ │ -0005a160: 670a 2020 2a20 2a6e 6f74 6520 6d61 7472 g. * *note matr │ │ │ │ -0005a170: 6978 4661 6374 6f72 697a 6174 696f 6e3a ixFactorization: │ │ │ │ -0005a180: 206d 6174 7269 7846 6163 746f 7269 7a61 matrixFactoriza │ │ │ │ -0005a190: 7469 6f6e 2c20 2d2d 204d 6170 7320 696e tion, -- Maps in │ │ │ │ -0005a1a0: 2061 2068 6967 6865 720a 2020 2020 636f a higher. co │ │ │ │ -0005a1b0: 6469 6d65 6e73 696f 6e20 6d61 7472 6978 dimension matrix │ │ │ │ -0005a1c0: 2066 6163 746f 7269 7a61 7469 6f6e 0a0a factorization.. │ │ │ │ -0005a1d0: 5761 7973 2074 6f20 7573 6520 6d66 426f Ways to use mfBo │ │ │ │ -0005a1e0: 756e 643a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d und:.=========== │ │ │ │ -0005a1f0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ -0005a200: 6d66 426f 756e 6428 4d6f 6475 6c65 2922 mfBound(Module)" │ │ │ │ -0005a210: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ -0005a220: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ -0005a230: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ -0005a240: 6563 7420 2a6e 6f74 6520 6d66 426f 756e ect *note mfBoun │ │ │ │ -0005a250: 643a 206d 6642 6f75 6e64 2c20 6973 2061 d: mfBound, is a │ │ │ │ -0005a260: 202a 6e6f 7465 206d 6574 686f 6420 6675 *note method fu │ │ │ │ -0005a270: 6e63 7469 6f6e 3a0a 284d 6163 6175 6c61 nction:.(Macaula │ │ │ │ -0005a280: 7932 446f 6329 4d65 7468 6f64 4675 6e63 y2Doc)MethodFunc │ │ │ │ -0005a290: 7469 6f6e 2c2e 0a1f 0a46 696c 653a 2043 tion,....File: C │ │ │ │ -0005a2a0: 6f6d 706c 6574 6549 6e74 6572 7365 6374 ompleteIntersect │ │ │ │ -0005a2b0: 696f 6e52 6573 6f6c 7574 696f 6e73 2e69 ionResolutions.i │ │ │ │ -0005a2c0: 6e66 6f2c 204e 6f64 653a 206d 6f64 756c nfo, Node: modul │ │ │ │ -0005a2d0: 6541 7345 7874 2c20 4e65 7874 3a20 6e65 eAsExt, Next: ne │ │ │ │ -0005a2e0: 7745 7874 2c20 5072 6576 3a20 6d66 426f wExt, Prev: mfBo │ │ │ │ -0005a2f0: 756e 642c 2055 703a 2054 6f70 0a0a 6d6f und, Up: Top..mo │ │ │ │ -0005a300: 6475 6c65 4173 4578 7420 2d2d 2046 696e duleAsExt -- Fin │ │ │ │ -0005a310: 6420 6120 6d6f 6475 6c65 2077 6974 6820 d a module with │ │ │ │ -0005a320: 6769 7665 6e20 6173 796d 7074 6f74 6963 given asymptotic │ │ │ │ -0005a330: 2072 6573 6f6c 7574 696f 6e0a 2a2a 2a2a resolution.**** │ │ │ │ +00059d00: 0a0a 5379 6e6f 7073 6973 0a3d 3d3d 3d3d ..Synopsis.===== │ │ │ │ +00059d10: 3d3d 3d0a 0a20 202a 2055 7361 6765 3a20 ===.. * Usage: │ │ │ │ +00059d20: 0a20 2020 2020 2020 2070 203d 206d 6642 . p = mfB │ │ │ │ +00059d30: 6f75 6e64 204d 0a20 202a 2049 6e70 7574 ound M. * Input │ │ │ │ +00059d40: 733a 0a20 2020 2020 202a 204d 2c20 6120 s:. * M, a │ │ │ │ +00059d50: 2a6e 6f74 6520 6d6f 6475 6c65 3a20 284d *note module: (M │ │ │ │ +00059d60: 6163 6175 6c61 7932 446f 6329 4d6f 6475 acaulay2Doc)Modu │ │ │ │ +00059d70: 6c65 2c2c 206f 7665 7220 6120 636f 6d70 le,, over a comp │ │ │ │ +00059d80: 6c65 7465 2069 6e74 6572 7365 6374 696f lete intersectio │ │ │ │ +00059d90: 6e0a 2020 2a20 4f75 7470 7574 733a 0a20 n. * Outputs:. │ │ │ │ +00059da0: 2020 2020 202a 2070 2c20 616e 202a 6e6f * p, an *no │ │ │ │ +00059db0: 7465 2069 6e74 6567 6572 3a20 284d 6163 te integer: (Mac │ │ │ │ +00059dc0: 6175 6c61 7932 446f 6329 5a5a 2c2c 200a aulay2Doc)ZZ,, . │ │ │ │ +00059dd0: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +00059de0: 3d3d 3d3d 3d3d 3d3d 0a0a 4966 2070 203d ========..If p = │ │ │ │ +00059df0: 206d 6642 6f75 6e64 204d 2c20 7468 656e mfBound M, then │ │ │ │ +00059e00: 2074 6865 2070 2d74 6820 7379 7a79 6779 the p-th syzygy │ │ │ │ +00059e10: 206f 6620 4d2c 2077 6869 6368 2069 7320 of M, which is │ │ │ │ +00059e20: 636f 6d70 7574 6564 2062 790a 6869 6768 computed by.high │ │ │ │ +00059e30: 5379 7a79 6779 284d 292c 2073 686f 756c Syzygy(M), shoul │ │ │ │ +00059e40: 6420 2874 6869 7320 6973 2061 2063 6f6e d (this is a con │ │ │ │ +00059e50: 6a65 6374 7572 6529 2062 6520 6120 2268 jecture) be a "h │ │ │ │ +00059e60: 6967 6820 5379 7a79 6779 2220 696e 2074 igh Syzygy" in t │ │ │ │ +00059e70: 6865 2073 656e 7365 0a72 6571 7569 7265 he sense.require │ │ │ │ +00059e80: 6420 666f 7220 6d61 7472 6978 4661 6374 d for matrixFact │ │ │ │ +00059e90: 6f72 697a 6174 696f 6e2e 2049 6e20 6578 orization. In ex │ │ │ │ +00059ea0: 616d 706c 6573 2c20 7468 6520 6573 7469 amples, the esti │ │ │ │ +00059eb0: 6d61 7465 2073 6565 6d73 2073 6861 7270 mate seems sharp │ │ │ │ +00059ec0: 2028 6578 6365 7074 0a77 6865 6e20 4d20 (except.when M │ │ │ │ +00059ed0: 6973 2061 6c72 6561 6479 2061 2068 6967 is already a hig │ │ │ │ +00059ee0: 6820 7379 7a79 6779 292e 0a0a 5468 6520 h syzygy)...The │ │ │ │ +00059ef0: 6163 7475 616c 2066 6f72 6d75 6c61 2075 actual formula u │ │ │ │ +00059f00: 7365 6420 6973 3a0a 0a6d 6642 6f75 6e64 sed is:..mfBound │ │ │ │ +00059f10: 204d 203d 206d 6178 2832 2a72 5f7b 6576 M = max(2*r_{ev │ │ │ │ +00059f20: 656e 7d2c 2031 2b32 2a72 5f7b 6f64 647d en}, 1+2*r_{odd} │ │ │ │ +00059f30: 290a 0a77 6865 7265 2072 5f7b 6576 656e )..where r_{even │ │ │ │ +00059f40: 7d20 3d20 7265 6775 6c61 7269 7479 2065 } = regularity e │ │ │ │ +00059f50: 7665 6e45 7874 4d6f 6475 6c65 204d 2061 venExtModule M a │ │ │ │ +00059f60: 6e64 2072 5f7b 6f64 647d 203d 2072 6567 nd r_{odd} = reg │ │ │ │ +00059f70: 756c 6172 6974 790a 6f64 6445 7874 4d6f ularity.oddExtMo │ │ │ │ +00059f80: 6475 6c65 204d 2e20 4865 7265 2065 7665 dule M. Here eve │ │ │ │ +00059f90: 6e45 7874 4d6f 6475 6c65 204d 2069 7320 nExtModule M is │ │ │ │ +00059fa0: 7468 6520 6576 656e 2064 6567 7265 6520 the even degree │ │ │ │ +00059fb0: 7061 7274 206f 6620 4578 7428 4d2c 2028 part of Ext(M, ( │ │ │ │ +00059fc0: 7265 7369 6475 650a 636c 6173 7320 6669 residue.class fi │ │ │ │ +00059fd0: 656c 6429 292e 0a0a 5365 6520 616c 736f eld))...See also │ │ │ │ +00059fe0: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ +00059ff0: 6e6f 7465 2068 6967 6853 797a 7967 793a note highSyzygy: │ │ │ │ +0005a000: 2068 6967 6853 797a 7967 792c 202d 2d20 highSyzygy, -- │ │ │ │ +0005a010: 5265 7475 726e 7320 6120 7379 7a79 6779 Returns a syzygy │ │ │ │ +0005a020: 206d 6f64 756c 6520 6f6e 6520 6265 796f module one beyo │ │ │ │ +0005a030: 6e64 2074 6865 0a20 2020 2072 6567 756c nd the. regul │ │ │ │ +0005a040: 6172 6974 7920 6f66 2045 7874 284d 2c6b arity of Ext(M,k │ │ │ │ +0005a050: 290a 2020 2a20 2a6e 6f74 6520 6576 656e ). * *note even │ │ │ │ +0005a060: 4578 744d 6f64 756c 653a 2065 7665 6e45 ExtModule: evenE │ │ │ │ +0005a070: 7874 4d6f 6475 6c65 2c20 2d2d 2065 7665 xtModule, -- eve │ │ │ │ +0005a080: 6e20 7061 7274 206f 6620 4578 745e 2a28 n part of Ext^*( │ │ │ │ +0005a090: 4d2c 6b29 206f 7665 7220 610a 2020 2020 M,k) over a. │ │ │ │ +0005a0a0: 636f 6d70 6c65 7465 2069 6e74 6572 7365 complete interse │ │ │ │ +0005a0b0: 6374 696f 6e20 6173 206d 6f64 756c 6520 ction as module │ │ │ │ +0005a0c0: 6f76 6572 2043 4920 6f70 6572 6174 6f72 over CI operator │ │ │ │ +0005a0d0: 2072 696e 670a 2020 2a20 2a6e 6f74 6520 ring. * *note │ │ │ │ +0005a0e0: 6f64 6445 7874 4d6f 6475 6c65 3a20 6f64 oddExtModule: od │ │ │ │ +0005a0f0: 6445 7874 4d6f 6475 6c65 2c20 2d2d 206f dExtModule, -- o │ │ │ │ +0005a100: 6464 2070 6172 7420 6f66 2045 7874 5e2a dd part of Ext^* │ │ │ │ +0005a110: 284d 2c6b 2920 6f76 6572 2061 2063 6f6d (M,k) over a com │ │ │ │ +0005a120: 706c 6574 650a 2020 2020 696e 7465 7273 plete. inters │ │ │ │ +0005a130: 6563 7469 6f6e 2061 7320 6d6f 6475 6c65 ection as module │ │ │ │ +0005a140: 206f 7665 7220 4349 206f 7065 7261 746f over CI operato │ │ │ │ +0005a150: 7220 7269 6e67 0a20 202a 202a 6e6f 7465 r ring. * *note │ │ │ │ +0005a160: 206d 6174 7269 7846 6163 746f 7269 7a61 matrixFactoriza │ │ │ │ +0005a170: 7469 6f6e 3a20 6d61 7472 6978 4661 6374 tion: matrixFact │ │ │ │ +0005a180: 6f72 697a 6174 696f 6e2c 202d 2d20 4d61 orization, -- Ma │ │ │ │ +0005a190: 7073 2069 6e20 6120 6869 6768 6572 0a20 ps in a higher. │ │ │ │ +0005a1a0: 2020 2063 6f64 696d 656e 7369 6f6e 206d codimension m │ │ │ │ +0005a1b0: 6174 7269 7820 6661 6374 6f72 697a 6174 atrix factorizat │ │ │ │ +0005a1c0: 696f 6e0a 0a57 6179 7320 746f 2075 7365 ion..Ways to use │ │ │ │ +0005a1d0: 206d 6642 6f75 6e64 3a0a 3d3d 3d3d 3d3d mfBound:.====== │ │ │ │ +0005a1e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +0005a1f0: 2020 2a20 226d 6642 6f75 6e64 284d 6f64 * "mfBound(Mod │ │ │ │ +0005a200: 756c 6529 220a 0a46 6f72 2074 6865 2070 ule)"..For the p │ │ │ │ +0005a210: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +0005a220: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +0005a230: 6520 6f62 6a65 6374 202a 6e6f 7465 206d e object *note m │ │ │ │ +0005a240: 6642 6f75 6e64 3a20 6d66 426f 756e 642c fBound: mfBound, │ │ │ │ +0005a250: 2069 7320 6120 2a6e 6f74 6520 6d65 7468 is a *note meth │ │ │ │ +0005a260: 6f64 2066 756e 6374 696f 6e3a 0a28 4d61 od function:.(Ma │ │ │ │ +0005a270: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ +0005a280: 6446 756e 6374 696f 6e2c 2e0a 1f0a 4669 dFunction,....Fi │ │ │ │ +0005a290: 6c65 3a20 436f 6d70 6c65 7465 496e 7465 le: CompleteInte │ │ │ │ +0005a2a0: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ +0005a2b0: 6f6e 732e 696e 666f 2c20 4e6f 6465 3a20 ons.info, Node: │ │ │ │ +0005a2c0: 6d6f 6475 6c65 4173 4578 742c 204e 6578 moduleAsExt, Nex │ │ │ │ +0005a2d0: 743a 206e 6577 4578 742c 2050 7265 763a t: newExt, Prev: │ │ │ │ +0005a2e0: 206d 6642 6f75 6e64 2c20 5570 3a20 546f mfBound, Up: To │ │ │ │ +0005a2f0: 700a 0a6d 6f64 756c 6541 7345 7874 202d p..moduleAsExt - │ │ │ │ +0005a300: 2d20 4669 6e64 2061 206d 6f64 756c 6520 - Find a module │ │ │ │ +0005a310: 7769 7468 2067 6976 656e 2061 7379 6d70 with given asymp │ │ │ │ +0005a320: 746f 7469 6320 7265 736f 6c75 7469 6f6e totic resolution │ │ │ │ +0005a330: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ 0005a340: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0005a350: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0005a360: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0005a370: 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 796e 6f70 *********..Synop │ │ │ │ -0005a380: 7369 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 sis.========.. │ │ │ │ -0005a390: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ -0005a3a0: 2020 4d20 3d20 6d6f 6475 6c65 4173 4578 M = moduleAsEx │ │ │ │ -0005a3b0: 7428 4d4d 2c52 290a 2020 2a20 496e 7075 t(MM,R). * Inpu │ │ │ │ -0005a3c0: 7473 3a0a 2020 2020 2020 2a20 4d2c 2061 ts:. * M, a │ │ │ │ -0005a3d0: 202a 6e6f 7465 206d 6f64 756c 653a 2028 *note module: ( │ │ │ │ -0005a3e0: 4d61 6361 756c 6179 3244 6f63 294d 6f64 Macaulay2Doc)Mod │ │ │ │ -0005a3f0: 756c 652c 2c20 6d6f 6475 6c65 206f 7665 ule,, module ove │ │ │ │ -0005a400: 7220 706f 6c79 6e6f 6d69 616c 2072 696e r polynomial rin │ │ │ │ -0005a410: 670a 2020 2020 2020 2020 7769 7468 2063 g. with c │ │ │ │ -0005a420: 2076 6172 6961 626c 6573 0a20 2020 2020 variables. │ │ │ │ -0005a430: 202a 2052 2c20 6120 2a6e 6f74 6520 7269 * R, a *note ri │ │ │ │ -0005a440: 6e67 3a20 284d 6163 6175 6c61 7932 446f ng: (Macaulay2Do │ │ │ │ -0005a450: 6329 5269 6e67 2c2c 2028 6772 6164 6564 c)Ring,, (graded │ │ │ │ -0005a460: 2920 636f 6d70 6c65 7465 2069 6e74 6572 ) complete inter │ │ │ │ -0005a470: 7365 6374 696f 6e0a 2020 2020 2020 2020 section. │ │ │ │ -0005a480: 7269 6e67 206f 6620 636f 6469 6d65 6e73 ring of codimens │ │ │ │ -0005a490: 696f 6e20 632c 2065 6d62 6564 6469 6e67 ion c, embedding │ │ │ │ -0005a4a0: 2064 696d 656e 7369 6f6e 206e 0a20 202a dimension n. * │ │ │ │ -0005a4b0: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ -0005a4c0: 2a20 4e2c 2061 202a 6e6f 7465 206d 6f64 * N, a *note mod │ │ │ │ -0005a4d0: 756c 653a 2028 4d61 6361 756c 6179 3244 ule: (Macaulay2D │ │ │ │ -0005a4e0: 6f63 294d 6f64 756c 652c 2c20 6d6f 6475 oc)Module,, modu │ │ │ │ -0005a4f0: 6c65 206f 7665 7220 5220 7375 6368 2074 le over R such t │ │ │ │ -0005a500: 6861 740a 2020 2020 2020 2020 4578 745f hat. Ext_ │ │ │ │ -0005a510: 5228 4e2c 6b29 203d 204d 5c6f 7469 6d65 R(N,k) = M\otime │ │ │ │ -0005a520: 7320 5c77 6564 6765 286b 5e6e 2920 696e s \wedge(k^n) in │ │ │ │ -0005a530: 206c 6172 6765 2068 6f6d 6f6c 6f67 6963 large homologic │ │ │ │ -0005a540: 616c 2064 6567 7265 652e 0a0a 4465 7363 al degree...Desc │ │ │ │ -0005a550: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ -0005a560: 3d3d 3d0a 0a54 6865 2072 6f75 7469 6e65 ===..The routine │ │ │ │ -0005a570: 2060 606d 6f64 756c 6541 7345 7874 2727 ``moduleAsExt'' │ │ │ │ -0005a580: 2069 7320 6120 7061 7274 6961 6c20 696e is a partial in │ │ │ │ -0005a590: 7665 7273 6520 746f 2074 6865 2072 6f75 verse to the rou │ │ │ │ -0005a5a0: 7469 6e65 2045 7874 4d6f 6475 6c65 2c0a tine ExtModule,. │ │ │ │ -0005a5b0: 636f 6d70 7574 6564 2066 6f6c 6c6f 7769 computed followi │ │ │ │ -0005a5c0: 6e67 2069 6465 6173 206f 6620 4176 7261 ng ideas of Avra │ │ │ │ -0005a5d0: 6d6f 7620 616e 6420 4a6f 7267 656e 7365 mov and Jorgense │ │ │ │ -0005a5e0: 6e3a 2067 6976 656e 2061 206d 6f64 756c n: given a modul │ │ │ │ -0005a5f0: 6520 4520 6f76 6572 2061 0a70 6f6c 796e e E over a.polyn │ │ │ │ -0005a600: 6f6d 6961 6c20 7269 6e67 206b 5b78 5f31 omial ring k[x_1 │ │ │ │ -0005a610: 2e2e 785f 635d 2c20 6974 2070 726f 7669 ..x_c], it provi │ │ │ │ -0005a620: 6465 7320 6120 6d6f 6475 6c65 204e 206f des a module N o │ │ │ │ -0005a630: 7665 7220 6120 7370 6563 6966 6965 6420 ver a specified │ │ │ │ -0005a640: 706f 6c79 6e6f 6d69 616c 0a72 696e 6720 polynomial.ring │ │ │ │ -0005a650: 696e 206e 2076 6172 6961 626c 6573 2073 in n variables s │ │ │ │ -0005a660: 7563 6820 7468 6174 2045 7874 284e 2c6b uch that Ext(N,k │ │ │ │ -0005a670: 2920 6167 7265 6573 2077 6974 6820 2445 ) agrees with $E │ │ │ │ -0005a680: 273d 455c 6f74 696d 6573 205c 7765 6467 '=E\otimes \wedg │ │ │ │ -0005a690: 6528 6b5e 6e29 240a 6166 7465 7220 7472 e(k^n)$.after tr │ │ │ │ -0005a6a0: 756e 6361 7469 6f6e 2e20 4865 7265 2074 uncation. Here t │ │ │ │ -0005a6b0: 6865 2067 7261 6469 6e67 206f 6e20 4520 he grading on E │ │ │ │ -0005a6c0: 6973 2074 616b 656e 2074 6f20 6265 2065 is taken to be e │ │ │ │ -0005a6d0: 7665 6e2c 2077 6869 6c65 0a24 5c77 6564 ven, while.$\wed │ │ │ │ -0005a6e0: 6765 286b 5e6e 2924 2068 6173 2067 656e ge(k^n)$ has gen │ │ │ │ -0005a6f0: 6572 6174 6f72 7320 696e 2064 6567 7265 erators in degre │ │ │ │ -0005a700: 6520 312e 2054 6865 2072 6f75 7469 6e65 e 1. The routine │ │ │ │ -0005a710: 2068 664d 6f64 756c 6541 7345 7874 2063 hfModuleAsExt c │ │ │ │ -0005a720: 6f6d 7075 7465 730a 7468 6520 7265 7375 omputes.the resu │ │ │ │ -0005a730: 6c74 696e 6720 6869 6c62 6572 7420 6675 lting hilbert fu │ │ │ │ -0005a740: 6e63 7469 6f6e 2066 6f72 2045 272e 2054 nction for E'. T │ │ │ │ -0005a750: 6869 7320 7573 6573 2069 6465 6173 206f his uses ideas o │ │ │ │ -0005a760: 6620 4176 7261 6d6f 7620 616e 640a 4a6f f Avramov and.Jo │ │ │ │ -0005a770: 7267 656e 7365 6e2e 204e 6f74 6520 7468 rgensen. Note th │ │ │ │ -0005a780: 6174 2074 6865 206d 6f64 756c 6520 4578 at the module Ex │ │ │ │ -0005a790: 7428 4e2c 6b29 2028 7472 756e 6361 7465 t(N,k) (truncate │ │ │ │ -0005a7a0: 6429 2077 696c 6c20 6175 746f 6d61 7469 d) will automati │ │ │ │ -0005a7b0: 6361 6c6c 7920 6265 2066 7265 650a 6f76 cally be free.ov │ │ │ │ -0005a7c0: 6572 2074 6865 2065 7874 6572 696f 7220 er the exterior │ │ │ │ -0005a7d0: 616c 6765 6272 6120 245c 7765 6467 6528 algebra $\wedge( │ │ │ │ -0005a7e0: 6b5e 6e29 2420 6765 6e65 7261 7465 6420 k^n)$ generated │ │ │ │ -0005a7f0: 6279 2045 7874 5e31 286b 2c6b 293b 206e by Ext^1(k,k); n │ │ │ │ -0005a800: 6f74 2061 2074 7970 6963 616c 0a45 7874 ot a typical.Ext │ │ │ │ -0005a810: 206d 6f64 756c 652e 0a0a 4d6f 7265 2070 module...More p │ │ │ │ -0005a820: 7265 6369 7365 6c79 3a0a 0a53 7570 706f recisely:..Suppo │ │ │ │ -0005a830: 7365 2074 6861 7420 2452 203d 206b 5b61 se that $R = k[a │ │ │ │ -0005a840: 5f31 2c5c 646f 7473 2c20 615f 6e5d 2f28 _1,\dots, a_n]/( │ │ │ │ -0005a850: 665f 312c 5c64 6f74 732c 665f 6329 2420 f_1,\dots,f_c)$ │ │ │ │ -0005a860: 6c65 7420 244b 4b20 3d0a 6b5b 785f 312c let $KK =.k[x_1, │ │ │ │ -0005a870: 5c64 6f74 732c 785f 635d 242c 2061 6e64 \dots,x_c]$, and │ │ │ │ -0005a880: 206c 6574 2024 5c4c 616d 6264 6120 3d20 let $\Lambda = │ │ │ │ -0005a890: 5c77 6564 6765 206b 5e6e 242e 2024 4520 \wedge k^n$. $E │ │ │ │ -0005a8a0: 3d20 4b4b 5c6f 7469 6d65 735c 4c61 6d62 = KK\otimes\Lamb │ │ │ │ -0005a8b0: 6461 242c 2073 6f0a 7468 6174 2074 6865 da$, so.that the │ │ │ │ -0005a8c0: 206d 696e 696d 616c 2024 5224 2d66 7265 minimal $R$-fre │ │ │ │ -0005a8d0: 6520 7265 736f 6c75 7469 6f6e 206f 6620 e resolution of │ │ │ │ -0005a8e0: 246b 2420 6861 7320 756e 6465 726c 7969 $k$ has underlyi │ │ │ │ -0005a8f0: 6e67 206d 6f64 756c 6520 2452 5c6f 7469 ng module $R\oti │ │ │ │ -0005a900: 6d65 730a 455e 2a24 2c20 7768 6572 6520 mes.E^*$, where │ │ │ │ -0005a910: 2445 5e2a 2420 6973 2074 6865 2067 7261 $E^*$ is the gra │ │ │ │ -0005a920: 6465 6420 7665 6374 6f72 2073 7061 6365 ded vector space │ │ │ │ -0005a930: 2064 7561 6c20 6f66 2024 4524 2e0a 0a4c dual of $E$...L │ │ │ │ -0005a940: 6574 204d 4d20 6265 2074 6865 2072 6573 et MM be the res │ │ │ │ -0005a950: 756c 7420 6f66 2074 7275 6e63 6174 696e ult of truncatin │ │ │ │ -0005a960: 6720 4d20 6174 2069 7473 2072 6567 756c g M at its regul │ │ │ │ -0005a970: 6172 6974 7920 616e 6420 7368 6966 7469 arity and shifti │ │ │ │ -0005a980: 6e67 2069 7420 736f 2074 6861 740a 6974 ng it so that.it │ │ │ │ -0005a990: 2069 7320 6765 6e65 7261 7465 6420 696e is generated in │ │ │ │ -0005a9a0: 2064 6567 7265 6520 302e 204c 6574 2024 degree 0. Let $ │ │ │ │ -0005a9b0: 4624 2062 6520 6120 244b 4b24 2d66 7265 F$ be a $KK$-fre │ │ │ │ -0005a9c0: 6520 7265 736f 6c75 7469 6f6e 206f 6620 e resolution of │ │ │ │ -0005a9d0: 244d 4d24 2c20 616e 640a 7772 6974 6520 $MM$, and.write │ │ │ │ -0005a9e0: 2446 5f69 203d 204b 4b5c 6f74 696d 6573 $F_i = KK\otimes │ │ │ │ -0005a9f0: 2056 5f69 2e24 2053 696e 6365 206c 696e V_i.$ Since lin │ │ │ │ -0005aa00: 6561 7220 666f 726d 7320 6f76 6572 2024 ear forms over $ │ │ │ │ -0005aa10: 4b4b 2420 636f 7272 6573 706f 6e64 2074 KK$ correspond t │ │ │ │ -0005aa20: 6f20 4349 0a6f 7065 7261 746f 7273 206f o CI.operators o │ │ │ │ -0005aa30: 6620 6465 6772 6565 202d 3220 6f6e 2074 f degree -2 on t │ │ │ │ -0005aa40: 6865 2072 6573 6f6c 7574 696f 6e20 4720 he resolution G │ │ │ │ -0005aa50: 6f66 206b 206f 7665 7220 522c 2077 6520 of k over R, we │ │ │ │ -0005aa60: 6d61 7920 666f 726d 2061 206d 6170 2024 may form a map $ │ │ │ │ -0005aa70: 240a 645f 312b 645f 323a 205c 7375 6d5f $.d_1+d_2: \sum_ │ │ │ │ -0005aa80: 7b69 3d30 7d5e 6d20 475f 7b69 2b31 7d5c {i=0}^m G_{i+1}\ │ │ │ │ -0005aa90: 6f74 696d 6573 2056 5f7b 6d2d 697d 5e2a otimes V_{m-i}^* │ │ │ │ -0005aaa0: 205c 746f 205c 7375 6d5f 7b69 3d30 7d5e \to \sum_{i=0}^ │ │ │ │ -0005aab0: 6d20 475f 695c 6f74 696d 6573 0a56 5f7b m G_i\otimes.V_{ │ │ │ │ -0005aac0: 6d2d 697d 5e2a 2024 2420 7768 6572 6520 m-i}^* $$ where │ │ │ │ -0005aad0: 2464 5f31 2420 6973 2074 6865 2064 6972 $d_1$ is the dir │ │ │ │ -0005aae0: 6563 7420 7375 6d20 6f66 2074 6865 2064 ect sum of the d │ │ │ │ -0005aaf0: 6966 6665 7265 6e74 6961 6c73 2024 2847 ifferentials $(G │ │ │ │ -0005ab00: 5f7b 692b 317d 5c74 6f0a 475f 6929 5c6f _{i+1}\to.G_i)\o │ │ │ │ -0005ab10: 7469 6d65 7320 565f 695e 2a24 2061 6e64 times V_i^*$ and │ │ │ │ -0005ab20: 2024 645f 3224 2069 7320 7468 6520 6469 $d_2$ is the di │ │ │ │ -0005ab30: 7265 6374 2073 756d 206f 6620 7468 6520 rect sum of the │ │ │ │ -0005ab40: 6d61 7073 2024 5c70 6869 5f69 2420 6465 maps $\phi_i$ de │ │ │ │ -0005ab50: 6669 6e65 640a 6672 6f6d 2074 6865 2064 fined.from the d │ │ │ │ -0005ab60: 6966 6665 7265 6e74 6961 6c73 206f 6620 ifferentials of │ │ │ │ -0005ab70: 2446 2420 6279 2073 7562 7374 6974 7574 $F$ by substitut │ │ │ │ -0005ab80: 696e 6720 4349 206f 7065 7261 746f 7273 ing CI operators │ │ │ │ -0005ab90: 2066 6f72 206c 696e 6561 7220 666f 726d for linear form │ │ │ │ -0005aba0: 732c 0a24 5c70 6869 5f69 3a20 475f 7b69 s,.$\phi_i: G_{i │ │ │ │ -0005abb0: 2b31 7d5c 6f74 696d 6573 2056 5f69 205c +1}\otimes V_i \ │ │ │ │ -0005abc0: 746f 2047 5f7b 692d 317d 5c6f 7469 6d65 to G_{i-1}\otime │ │ │ │ -0005abd0: 7320 565f 7b69 2d31 7d24 2e20 5468 6520 s V_{i-1}$. The │ │ │ │ -0005abe0: 7363 7269 7074 2072 6574 7572 6e73 2074 script returns t │ │ │ │ -0005abf0: 6865 0a6d 6f64 756c 6520 4e20 7468 6174 he.module N that │ │ │ │ -0005ac00: 2069 7320 7468 6520 636f 6b65 726e 656c is the cokernel │ │ │ │ -0005ac10: 206f 6620 2464 5f31 2b64 5f32 242e 0a0a of $d_1+d_2$... │ │ │ │ -0005ac20: 5468 6520 6d6f 6475 6c65 2024 4578 745f The module $Ext_ │ │ │ │ -0005ac30: 5228 4e2c 6b29 2420 6167 7265 6573 2c20 R(N,k)$ agrees, │ │ │ │ -0005ac40: 6166 7465 7220 6120 6665 7720 7374 6570 after a few step │ │ │ │ -0005ac50: 732c 2077 6974 6820 7468 6520 6d6f 6475 s, with the modu │ │ │ │ -0005ac60: 6c65 2064 6572 6976 6564 2066 726f 6d0a le derived from. │ │ │ │ -0005ac70: 244d 4d24 2062 7920 7465 6e73 6f72 696e $MM$ by tensorin │ │ │ │ -0005ac80: 6720 6974 2077 6974 6820 245c 4c61 6d62 g it with $\Lamb │ │ │ │ -0005ac90: 6461 242c 2074 6861 7420 6973 2c20 7769 da$, that is, wi │ │ │ │ -0005aca0: 7468 2074 6865 206d 6f64 756c 65c3 9f20 th the module.. │ │ │ │ -0005acb0: 2424 204d 4d27 203d 205c 7375 6d5f 6a0a $$ MM' = \sum_j. │ │ │ │ -0005acc0: 284d 4d27 286a 295c 6f74 696d 6573 205c (MM'(j)\otimes \ │ │ │ │ -0005acd0: 4c61 6d62 6461 5f6a 2920 2424 2073 6f20 Lambda_j) $$ so │ │ │ │ -0005ace0: 7468 6174 2024 4d4d 275f 7020 3d20 284d that $MM'_p = (M │ │ │ │ -0005acf0: 4d5f 705c 6f74 696d 6573 204c 616d 6264 M_p\otimes Lambd │ │ │ │ -0005ad00: 615f 3029 205c 6f70 6c75 730a 284d 4d5f a_0) \oplus.(MM_ │ │ │ │ -0005ad10: 7b70 2d31 7d5c 6f74 696d 6573 204c 616d {p-1}\otimes Lam │ │ │ │ -0005ad20: 6264 615f 3129 205c 6f70 6c75 735c 6364 bda_1) \oplus\cd │ │ │ │ -0005ad30: 6f74 7324 2e0a 0a54 6865 2066 756e 6374 ots$...The funct │ │ │ │ -0005ad40: 696f 6e20 6866 4d6f 6475 6c65 4173 4578 ion hfModuleAsEx │ │ │ │ -0005ad50: 7420 636f 6d70 7574 6573 2074 6865 2048 t computes the H │ │ │ │ -0005ad60: 696c 6265 7274 2066 756e 6374 696f 6e20 ilbert function │ │ │ │ -0005ad70: 6f66 204d 4d27 206e 756d 6572 6963 616c of MM' numerical │ │ │ │ -0005ad80: 6c79 0a66 726f 6d20 7468 6174 206f 6620 ly.from that of │ │ │ │ -0005ad90: 4d4d 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d MM...+---------- │ │ │ │ +0005a360: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +0005a370: 5379 6e6f 7073 6973 0a3d 3d3d 3d3d 3d3d Synopsis.======= │ │ │ │ +0005a380: 3d0a 0a20 202a 2055 7361 6765 3a20 0a20 =.. * Usage: . │ │ │ │ +0005a390: 2020 2020 2020 204d 203d 206d 6f64 756c M = modul │ │ │ │ +0005a3a0: 6541 7345 7874 284d 4d2c 5229 0a20 202a eAsExt(MM,R). * │ │ │ │ +0005a3b0: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +0005a3c0: 204d 2c20 6120 2a6e 6f74 6520 6d6f 6475 M, a *note modu │ │ │ │ +0005a3d0: 6c65 3a20 284d 6163 6175 6c61 7932 446f le: (Macaulay2Do │ │ │ │ +0005a3e0: 6329 4d6f 6475 6c65 2c2c 206d 6f64 756c c)Module,, modul │ │ │ │ +0005a3f0: 6520 6f76 6572 2070 6f6c 796e 6f6d 6961 e over polynomia │ │ │ │ +0005a400: 6c20 7269 6e67 0a20 2020 2020 2020 2077 l ring. w │ │ │ │ +0005a410: 6974 6820 6320 7661 7269 6162 6c65 730a ith c variables. │ │ │ │ +0005a420: 2020 2020 2020 2a20 522c 2061 202a 6e6f * R, a *no │ │ │ │ +0005a430: 7465 2072 696e 673a 2028 4d61 6361 756c te ring: (Macaul │ │ │ │ +0005a440: 6179 3244 6f63 2952 696e 672c 2c20 2867 ay2Doc)Ring,, (g │ │ │ │ +0005a450: 7261 6465 6429 2063 6f6d 706c 6574 6520 raded) complete │ │ │ │ +0005a460: 696e 7465 7273 6563 7469 6f6e 0a20 2020 intersection. │ │ │ │ +0005a470: 2020 2020 2072 696e 6720 6f66 2063 6f64 ring of cod │ │ │ │ +0005a480: 696d 656e 7369 6f6e 2063 2c20 656d 6265 imension c, embe │ │ │ │ +0005a490: 6464 696e 6720 6469 6d65 6e73 696f 6e20 dding dimension │ │ │ │ +0005a4a0: 6e0a 2020 2a20 4f75 7470 7574 733a 0a20 n. * Outputs:. │ │ │ │ +0005a4b0: 2020 2020 202a 204e 2c20 6120 2a6e 6f74 * N, a *not │ │ │ │ +0005a4c0: 6520 6d6f 6475 6c65 3a20 284d 6163 6175 e module: (Macau │ │ │ │ +0005a4d0: 6c61 7932 446f 6329 4d6f 6475 6c65 2c2c lay2Doc)Module,, │ │ │ │ +0005a4e0: 206d 6f64 756c 6520 6f76 6572 2052 2073 module over R s │ │ │ │ +0005a4f0: 7563 6820 7468 6174 0a20 2020 2020 2020 uch that. │ │ │ │ +0005a500: 2045 7874 5f52 284e 2c6b 2920 3d20 4d5c Ext_R(N,k) = M\ │ │ │ │ +0005a510: 6f74 696d 6573 205c 7765 6467 6528 6b5e otimes \wedge(k^ │ │ │ │ +0005a520: 6e29 2069 6e20 6c61 7267 6520 686f 6d6f n) in large homo │ │ │ │ +0005a530: 6c6f 6769 6361 6c20 6465 6772 6565 2e0a logical degree.. │ │ │ │ +0005a540: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +0005a550: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 726f ========..The ro │ │ │ │ +0005a560: 7574 696e 6520 6060 6d6f 6475 6c65 4173 utine ``moduleAs │ │ │ │ +0005a570: 4578 7427 2720 6973 2061 2070 6172 7469 Ext'' is a parti │ │ │ │ +0005a580: 616c 2069 6e76 6572 7365 2074 6f20 7468 al inverse to th │ │ │ │ +0005a590: 6520 726f 7574 696e 6520 4578 744d 6f64 e routine ExtMod │ │ │ │ +0005a5a0: 756c 652c 0a63 6f6d 7075 7465 6420 666f ule,.computed fo │ │ │ │ +0005a5b0: 6c6c 6f77 696e 6720 6964 6561 7320 6f66 llowing ideas of │ │ │ │ +0005a5c0: 2041 7672 616d 6f76 2061 6e64 204a 6f72 Avramov and Jor │ │ │ │ +0005a5d0: 6765 6e73 656e 3a20 6769 7665 6e20 6120 gensen: given a │ │ │ │ +0005a5e0: 6d6f 6475 6c65 2045 206f 7665 7220 610a module E over a. │ │ │ │ +0005a5f0: 706f 6c79 6e6f 6d69 616c 2072 696e 6720 polynomial ring │ │ │ │ +0005a600: 6b5b 785f 312e 2e78 5f63 5d2c 2069 7420 k[x_1..x_c], it │ │ │ │ +0005a610: 7072 6f76 6964 6573 2061 206d 6f64 756c provides a modul │ │ │ │ +0005a620: 6520 4e20 6f76 6572 2061 2073 7065 6369 e N over a speci │ │ │ │ +0005a630: 6669 6564 2070 6f6c 796e 6f6d 6961 6c0a fied polynomial. │ │ │ │ +0005a640: 7269 6e67 2069 6e20 6e20 7661 7269 6162 ring in n variab │ │ │ │ +0005a650: 6c65 7320 7375 6368 2074 6861 7420 4578 les such that Ex │ │ │ │ +0005a660: 7428 4e2c 6b29 2061 6772 6565 7320 7769 t(N,k) agrees wi │ │ │ │ +0005a670: 7468 2024 4527 3d45 5c6f 7469 6d65 7320 th $E'=E\otimes │ │ │ │ +0005a680: 5c77 6564 6765 286b 5e6e 2924 0a61 6674 \wedge(k^n)$.aft │ │ │ │ +0005a690: 6572 2074 7275 6e63 6174 696f 6e2e 2048 er truncation. H │ │ │ │ +0005a6a0: 6572 6520 7468 6520 6772 6164 696e 6720 ere the grading │ │ │ │ +0005a6b0: 6f6e 2045 2069 7320 7461 6b65 6e20 746f on E is taken to │ │ │ │ +0005a6c0: 2062 6520 6576 656e 2c20 7768 696c 650a be even, while. │ │ │ │ +0005a6d0: 245c 7765 6467 6528 6b5e 6e29 2420 6861 $\wedge(k^n)$ ha │ │ │ │ +0005a6e0: 7320 6765 6e65 7261 746f 7273 2069 6e20 s generators in │ │ │ │ +0005a6f0: 6465 6772 6565 2031 2e20 5468 6520 726f degree 1. The ro │ │ │ │ +0005a700: 7574 696e 6520 6866 4d6f 6475 6c65 4173 utine hfModuleAs │ │ │ │ +0005a710: 4578 7420 636f 6d70 7574 6573 0a74 6865 Ext computes.the │ │ │ │ +0005a720: 2072 6573 756c 7469 6e67 2068 696c 6265 resulting hilbe │ │ │ │ +0005a730: 7274 2066 756e 6374 696f 6e20 666f 7220 rt function for │ │ │ │ +0005a740: 4527 2e20 5468 6973 2075 7365 7320 6964 E'. This uses id │ │ │ │ +0005a750: 6561 7320 6f66 2041 7672 616d 6f76 2061 eas of Avramov a │ │ │ │ +0005a760: 6e64 0a4a 6f72 6765 6e73 656e 2e20 4e6f nd.Jorgensen. No │ │ │ │ +0005a770: 7465 2074 6861 7420 7468 6520 6d6f 6475 te that the modu │ │ │ │ +0005a780: 6c65 2045 7874 284e 2c6b 2920 2874 7275 le Ext(N,k) (tru │ │ │ │ +0005a790: 6e63 6174 6564 2920 7769 6c6c 2061 7574 ncated) will aut │ │ │ │ +0005a7a0: 6f6d 6174 6963 616c 6c79 2062 6520 6672 omatically be fr │ │ │ │ +0005a7b0: 6565 0a6f 7665 7220 7468 6520 6578 7465 ee.over the exte │ │ │ │ +0005a7c0: 7269 6f72 2061 6c67 6562 7261 2024 5c77 rior algebra $\w │ │ │ │ +0005a7d0: 6564 6765 286b 5e6e 2924 2067 656e 6572 edge(k^n)$ gener │ │ │ │ +0005a7e0: 6174 6564 2062 7920 4578 745e 3128 6b2c ated by Ext^1(k, │ │ │ │ +0005a7f0: 6b29 3b20 6e6f 7420 6120 7479 7069 6361 k); not a typica │ │ │ │ +0005a800: 6c0a 4578 7420 6d6f 6475 6c65 2e0a 0a4d l.Ext module...M │ │ │ │ +0005a810: 6f72 6520 7072 6563 6973 656c 793a 0a0a ore precisely:.. │ │ │ │ +0005a820: 5375 7070 6f73 6520 7468 6174 2024 5220 Suppose that $R │ │ │ │ +0005a830: 3d20 6b5b 615f 312c 5c64 6f74 732c 2061 = k[a_1,\dots, a │ │ │ │ +0005a840: 5f6e 5d2f 2866 5f31 2c5c 646f 7473 2c66 _n]/(f_1,\dots,f │ │ │ │ +0005a850: 5f63 2924 206c 6574 2024 4b4b 203d 0a6b _c)$ let $KK =.k │ │ │ │ +0005a860: 5b78 5f31 2c5c 646f 7473 2c78 5f63 5d24 [x_1,\dots,x_c]$ │ │ │ │ +0005a870: 2c20 616e 6420 6c65 7420 245c 4c61 6d62 , and let $\Lamb │ │ │ │ +0005a880: 6461 203d 205c 7765 6467 6520 6b5e 6e24 da = \wedge k^n$ │ │ │ │ +0005a890: 2e20 2445 203d 204b 4b5c 6f74 696d 6573 . $E = KK\otimes │ │ │ │ +0005a8a0: 5c4c 616d 6264 6124 2c20 736f 0a74 6861 \Lambda$, so.tha │ │ │ │ +0005a8b0: 7420 7468 6520 6d69 6e69 6d61 6c20 2452 t the minimal $R │ │ │ │ +0005a8c0: 242d 6672 6565 2072 6573 6f6c 7574 696f $-free resolutio │ │ │ │ +0005a8d0: 6e20 6f66 2024 6b24 2068 6173 2075 6e64 n of $k$ has und │ │ │ │ +0005a8e0: 6572 6c79 696e 6720 6d6f 6475 6c65 2024 erlying module $ │ │ │ │ +0005a8f0: 525c 6f74 696d 6573 0a45 5e2a 242c 2077 R\otimes.E^*$, w │ │ │ │ +0005a900: 6865 7265 2024 455e 2a24 2069 7320 7468 here $E^*$ is th │ │ │ │ +0005a910: 6520 6772 6164 6564 2076 6563 746f 7220 e graded vector │ │ │ │ +0005a920: 7370 6163 6520 6475 616c 206f 6620 2445 space dual of $E │ │ │ │ +0005a930: 242e 0a0a 4c65 7420 4d4d 2062 6520 7468 $...Let MM be th │ │ │ │ +0005a940: 6520 7265 7375 6c74 206f 6620 7472 756e e result of trun │ │ │ │ +0005a950: 6361 7469 6e67 204d 2061 7420 6974 7320 cating M at its │ │ │ │ +0005a960: 7265 6775 6c61 7269 7479 2061 6e64 2073 regularity and s │ │ │ │ +0005a970: 6869 6674 696e 6720 6974 2073 6f20 7468 hifting it so th │ │ │ │ +0005a980: 6174 0a69 7420 6973 2067 656e 6572 6174 at.it is generat │ │ │ │ +0005a990: 6564 2069 6e20 6465 6772 6565 2030 2e20 ed in degree 0. │ │ │ │ +0005a9a0: 4c65 7420 2446 2420 6265 2061 2024 4b4b Let $F$ be a $KK │ │ │ │ +0005a9b0: 242d 6672 6565 2072 6573 6f6c 7574 696f $-free resolutio │ │ │ │ +0005a9c0: 6e20 6f66 2024 4d4d 242c 2061 6e64 0a77 n of $MM$, and.w │ │ │ │ +0005a9d0: 7269 7465 2024 465f 6920 3d20 4b4b 5c6f rite $F_i = KK\o │ │ │ │ +0005a9e0: 7469 6d65 7320 565f 692e 2420 5369 6e63 times V_i.$ Sinc │ │ │ │ +0005a9f0: 6520 6c69 6e65 6172 2066 6f72 6d73 206f e linear forms o │ │ │ │ +0005aa00: 7665 7220 244b 4b24 2063 6f72 7265 7370 ver $KK$ corresp │ │ │ │ +0005aa10: 6f6e 6420 746f 2043 490a 6f70 6572 6174 ond to CI.operat │ │ │ │ +0005aa20: 6f72 7320 6f66 2064 6567 7265 6520 2d32 ors of degree -2 │ │ │ │ +0005aa30: 206f 6e20 7468 6520 7265 736f 6c75 7469 on the resoluti │ │ │ │ +0005aa40: 6f6e 2047 206f 6620 6b20 6f76 6572 2052 on G of k over R │ │ │ │ +0005aa50: 2c20 7765 206d 6179 2066 6f72 6d20 6120 , we may form a │ │ │ │ +0005aa60: 6d61 7020 2424 0a64 5f31 2b64 5f32 3a20 map $$.d_1+d_2: │ │ │ │ +0005aa70: 5c73 756d 5f7b 693d 307d 5e6d 2047 5f7b \sum_{i=0}^m G_{ │ │ │ │ +0005aa80: 692b 317d 5c6f 7469 6d65 7320 565f 7b6d i+1}\otimes V_{m │ │ │ │ +0005aa90: 2d69 7d5e 2a20 5c74 6f20 5c73 756d 5f7b -i}^* \to \sum_{ │ │ │ │ +0005aaa0: 693d 307d 5e6d 2047 5f69 5c6f 7469 6d65 i=0}^m G_i\otime │ │ │ │ +0005aab0: 730a 565f 7b6d 2d69 7d5e 2a20 2424 2077 s.V_{m-i}^* $$ w │ │ │ │ +0005aac0: 6865 7265 2024 645f 3124 2069 7320 7468 here $d_1$ is th │ │ │ │ +0005aad0: 6520 6469 7265 6374 2073 756d 206f 6620 e direct sum of │ │ │ │ +0005aae0: 7468 6520 6469 6666 6572 656e 7469 616c the differential │ │ │ │ +0005aaf0: 7320 2428 475f 7b69 2b31 7d5c 746f 0a47 s $(G_{i+1}\to.G │ │ │ │ +0005ab00: 5f69 295c 6f74 696d 6573 2056 5f69 5e2a _i)\otimes V_i^* │ │ │ │ +0005ab10: 2420 616e 6420 2464 5f32 2420 6973 2074 $ and $d_2$ is t │ │ │ │ +0005ab20: 6865 2064 6972 6563 7420 7375 6d20 6f66 he direct sum of │ │ │ │ +0005ab30: 2074 6865 206d 6170 7320 245c 7068 695f the maps $\phi_ │ │ │ │ +0005ab40: 6924 2064 6566 696e 6564 0a66 726f 6d20 i$ defined.from │ │ │ │ +0005ab50: 7468 6520 6469 6666 6572 656e 7469 616c the differential │ │ │ │ +0005ab60: 7320 6f66 2024 4624 2062 7920 7375 6273 s of $F$ by subs │ │ │ │ +0005ab70: 7469 7475 7469 6e67 2043 4920 6f70 6572 tituting CI oper │ │ │ │ +0005ab80: 6174 6f72 7320 666f 7220 6c69 6e65 6172 ators for linear │ │ │ │ +0005ab90: 2066 6f72 6d73 2c0a 245c 7068 695f 693a forms,.$\phi_i: │ │ │ │ +0005aba0: 2047 5f7b 692b 317d 5c6f 7469 6d65 7320 G_{i+1}\otimes │ │ │ │ +0005abb0: 565f 6920 5c74 6f20 475f 7b69 2d31 7d5c V_i \to G_{i-1}\ │ │ │ │ +0005abc0: 6f74 696d 6573 2056 5f7b 692d 317d 242e otimes V_{i-1}$. │ │ │ │ +0005abd0: 2054 6865 2073 6372 6970 7420 7265 7475 The script retu │ │ │ │ +0005abe0: 726e 7320 7468 650a 6d6f 6475 6c65 204e rns the.module N │ │ │ │ +0005abf0: 2074 6861 7420 6973 2074 6865 2063 6f6b that is the cok │ │ │ │ +0005ac00: 6572 6e65 6c20 6f66 2024 645f 312b 645f ernel of $d_1+d_ │ │ │ │ +0005ac10: 3224 2e0a 0a54 6865 206d 6f64 756c 6520 2$...The module │ │ │ │ +0005ac20: 2445 7874 5f52 284e 2c6b 2924 2061 6772 $Ext_R(N,k)$ agr │ │ │ │ +0005ac30: 6565 732c 2061 6674 6572 2061 2066 6577 ees, after a few │ │ │ │ +0005ac40: 2073 7465 7073 2c20 7769 7468 2074 6865 steps, with the │ │ │ │ +0005ac50: 206d 6f64 756c 6520 6465 7269 7665 6420 module derived │ │ │ │ +0005ac60: 6672 6f6d 0a24 4d4d 2420 6279 2074 656e from.$MM$ by ten │ │ │ │ +0005ac70: 736f 7269 6e67 2069 7420 7769 7468 2024 soring it with $ │ │ │ │ +0005ac80: 5c4c 616d 6264 6124 2c20 7468 6174 2069 \Lambda$, that i │ │ │ │ +0005ac90: 732c 2077 6974 6820 7468 6520 6d6f 6475 s, with the modu │ │ │ │ +0005aca0: 6c65 c39f 2024 2420 4d4d 2720 3d20 5c73 le.. $$ MM' = \s │ │ │ │ +0005acb0: 756d 5f6a 0a28 4d4d 2728 6a29 5c6f 7469 um_j.(MM'(j)\oti │ │ │ │ +0005acc0: 6d65 7320 5c4c 616d 6264 615f 6a29 2024 mes \Lambda_j) $ │ │ │ │ +0005acd0: 2420 736f 2074 6861 7420 244d 4d27 5f70 $ so that $MM'_p │ │ │ │ +0005ace0: 203d 2028 4d4d 5f70 5c6f 7469 6d65 7320 = (MM_p\otimes │ │ │ │ +0005acf0: 4c61 6d62 6461 5f30 2920 5c6f 706c 7573 Lambda_0) \oplus │ │ │ │ +0005ad00: 0a28 4d4d 5f7b 702d 317d 5c6f 7469 6d65 .(MM_{p-1}\otime │ │ │ │ +0005ad10: 7320 4c61 6d62 6461 5f31 2920 5c6f 706c s Lambda_1) \opl │ │ │ │ +0005ad20: 7573 5c63 646f 7473 242e 0a0a 5468 6520 us\cdots$...The │ │ │ │ +0005ad30: 6675 6e63 7469 6f6e 2068 664d 6f64 756c function hfModul │ │ │ │ +0005ad40: 6541 7345 7874 2063 6f6d 7075 7465 7320 eAsExt computes │ │ │ │ +0005ad50: 7468 6520 4869 6c62 6572 7420 6675 6e63 the Hilbert func │ │ │ │ +0005ad60: 7469 6f6e 206f 6620 4d4d 2720 6e75 6d65 tion of MM' nume │ │ │ │ +0005ad70: 7269 6361 6c6c 790a 6672 6f6d 2074 6861 rically.from tha │ │ │ │ +0005ad80: 7420 6f66 204d 4d2e 0a0a 2b2d 2d2d 2d2d t of MM...+----- │ │ │ │ +0005ad90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ada0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005adb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005adc0: 2d2d 2d2b 0a7c 6931 203a 206b 6b20 3d20 ---+.|i1 : kk = │ │ │ │ -0005add0: 5a5a 2f31 3031 3b20 2020 2020 2020 2020 ZZ/101; │ │ │ │ -0005ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005adf0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0005adb0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ +0005adc0: 6b6b 203d 205a 5a2f 3130 313b 2020 2020 kk = ZZ/101; │ │ │ │ +0005add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ade0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0005adf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ae00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ae10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ae20: 2d2d 2d2b 0a7c 6932 203a 2053 203d 206b ---+.|i2 : S = k │ │ │ │ -0005ae30: 6b5b 612c 622c 635d 3b20 2020 2020 2020 k[a,b,c]; │ │ │ │ -0005ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ae50: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0005ae10: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ +0005ae20: 5320 3d20 6b6b 5b61 2c62 2c63 5d3b 2020 S = kk[a,b,c]; │ │ │ │ +0005ae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ae40: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0005ae50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ae60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ae70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ae80: 2d2d 2d2b 0a7c 6933 203a 2066 6620 3d20 ---+.|i3 : ff = │ │ │ │ -0005ae90: 6d61 7472 6978 7b7b 615e 342c 2062 5e34 matrix{{a^4, b^4 │ │ │ │ -0005aea0: 2c63 5e34 7d7d 3b20 2020 2020 2020 2020 ,c^4}}; │ │ │ │ -0005aeb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005ae70: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ +0005ae80: 6666 203d 206d 6174 7269 787b 7b61 5e34 ff = matrix{{a^4 │ │ │ │ +0005ae90: 2c20 625e 342c 635e 347d 7d3b 2020 2020 , b^4,c^4}}; │ │ │ │ +0005aea0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0005aeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005aec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005aed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005aee0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0005aef0: 2020 2031 2020 2020 2020 3320 2020 2020 1 3 │ │ │ │ -0005af00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005af10: 2020 207c 0a7c 6f33 203a 204d 6174 7269 |.|o3 : Matri │ │ │ │ -0005af20: 7820 5320 203c 2d2d 2053 2020 2020 2020 x S <-- S │ │ │ │ -0005af30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005af40: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0005aed0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0005aee0: 2020 2020 2020 2020 3120 2020 2020 2033 1 3 │ │ │ │ +0005aef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005af00: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ +0005af10: 4d61 7472 6978 2053 2020 3c2d 2d20 5320 Matrix S <-- S │ │ │ │ +0005af20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005af30: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0005af40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005af50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005af60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005af70: 2d2d 2d2b 0a7c 6934 203a 2052 203d 2053 ---+.|i4 : R = S │ │ │ │ -0005af80: 2f69 6465 616c 2066 663b 2020 2020 2020 /ideal ff; │ │ │ │ -0005af90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005afa0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0005af60: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ +0005af70: 5220 3d20 532f 6964 6561 6c20 6666 3b20 R = S/ideal ff; │ │ │ │ +0005af80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005af90: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0005afa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005afb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005afc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005afd0: 2d2d 2d2b 0a7c 6935 203a 204f 7073 203d ---+.|i5 : Ops = │ │ │ │ -0005afe0: 206b 6b5b 785f 312c 785f 322c 785f 335d kk[x_1,x_2,x_3] │ │ │ │ -0005aff0: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ -0005b000: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0005afc0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 --------+.|i5 : │ │ │ │ +0005afd0: 4f70 7320 3d20 6b6b 5b78 5f31 2c78 5f32 Ops = kk[x_1,x_2 │ │ │ │ +0005afe0: 2c78 5f33 5d3b 2020 2020 2020 2020 2020 ,x_3]; │ │ │ │ +0005aff0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0005b000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005b010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005b020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005b030: 2d2d 2d2b 0a7c 6936 203a 204d 4d20 3d20 ---+.|i6 : MM = │ │ │ │ -0005b040: 4f70 735e 312f 2878 5f31 2a69 6465 616c Ops^1/(x_1*ideal │ │ │ │ -0005b050: 2878 5f32 5e32 2c78 5f33 2929 3b20 2020 (x_2^2,x_3)); │ │ │ │ -0005b060: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0005b020: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ +0005b030: 4d4d 203d 204f 7073 5e31 2f28 785f 312a MM = Ops^1/(x_1* │ │ │ │ +0005b040: 6964 6561 6c28 785f 325e 322c 785f 3329 ideal(x_2^2,x_3) │ │ │ │ +0005b050: 293b 2020 2020 2020 7c0a 2b2d 2d2d 2d2d ); |.+----- │ │ │ │ +0005b060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005b070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005b080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005b090: 2d2d 2d2b 0a7c 6937 203a 204e 203d 206d ---+.|i7 : N = m │ │ │ │ -0005b0a0: 6f64 756c 6541 7345 7874 284d 4d2c 5229 oduleAsExt(MM,R) │ │ │ │ -0005b0b0: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ -0005b0c0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0005b080: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 --------+.|i7 : │ │ │ │ +0005b090: 4e20 3d20 6d6f 6475 6c65 4173 4578 7428 N = moduleAsExt( │ │ │ │ +0005b0a0: 4d4d 2c52 293b 2020 2020 2020 2020 2020 MM,R); │ │ │ │ +0005b0b0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0005b0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005b0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005b0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005b0f0: 2d2d 2d2b 0a7c 6938 203a 2062 6574 7469 ---+.|i8 : betti │ │ │ │ -0005b100: 2072 6573 2820 4e2c 204c 656e 6774 684c res( N, LengthL │ │ │ │ -0005b110: 696d 6974 203d 3e20 3130 2920 2020 2020 imit => 10) │ │ │ │ -0005b120: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005b0e0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 3a20 --------+.|i8 : │ │ │ │ +0005b0f0: 6265 7474 6920 7265 7328 204e 2c20 4c65 betti res( N, Le │ │ │ │ +0005b100: 6e67 7468 4c69 6d69 7420 3d3e 2031 3029 ngthLimit => 10) │ │ │ │ +0005b110: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0005b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b150: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0005b160: 2020 2030 2020 3120 2032 2020 3320 2034 0 1 2 3 4 │ │ │ │ -0005b170: 2020 3520 2036 2020 3720 2038 2020 3920 5 6 7 8 9 │ │ │ │ -0005b180: 3130 207c 0a7c 6f38 203d 2074 6f74 616c 10 |.|o8 = total │ │ │ │ -0005b190: 3a20 3336 2032 3720 3239 2033 3120 3333 : 36 27 29 31 33 │ │ │ │ -0005b1a0: 2033 3520 3337 2033 3920 3431 2034 3320 35 37 39 41 43 │ │ │ │ -0005b1b0: 3435 207c 0a7c 2020 2020 2020 2020 2d36 45 |.| -6 │ │ │ │ -0005b1c0: 3a20 3138 2020 3620 202e 2020 2e20 202e : 18 6 . . . │ │ │ │ -0005b1d0: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ -0005b1e0: 202e 207c 0a7c 2020 2020 2020 2020 2d35 . |.| -5 │ │ │ │ -0005b1f0: 3a20 202e 2020 2e20 202e 2020 2e20 202e : . . . . . │ │ │ │ -0005b200: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ -0005b210: 202e 207c 0a7c 2020 2020 2020 2020 2d34 . |.| -4 │ │ │ │ -0005b220: 3a20 3138 2032 3120 3231 2020 3720 202e : 18 21 21 7 . │ │ │ │ -0005b230: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ -0005b240: 202e 207c 0a7c 2020 2020 2020 2020 2d33 . |.| -3 │ │ │ │ -0005b250: 3a20 202e 2020 2e20 202e 2020 2e20 202e : . . . . . │ │ │ │ -0005b260: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ -0005b270: 202e 207c 0a7c 2020 2020 2020 2020 2d32 . |.| -2 │ │ │ │ -0005b280: 3a20 202e 2020 2e20 2038 2032 3420 3234 : . . 8 24 24 │ │ │ │ -0005b290: 2020 3820 202e 2020 2e20 202e 2020 2e20 8 . . . . │ │ │ │ -0005b2a0: 202e 207c 0a7c 2020 2020 2020 2020 2d31 . |.| -1 │ │ │ │ -0005b2b0: 3a20 202e 2020 2e20 202e 2020 2e20 202e : . . . . . │ │ │ │ -0005b2c0: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ -0005b2d0: 202e 207c 0a7c 2020 2020 2020 2020 2030 . |.| 0 │ │ │ │ -0005b2e0: 3a20 202e 2020 2e20 202e 2020 2e20 2039 : . . . . 9 │ │ │ │ -0005b2f0: 2032 3720 3237 2020 3920 202e 2020 2e20 27 27 9 . . │ │ │ │ -0005b300: 202e 207c 0a7c 2020 2020 2020 2020 2031 . |.| 1 │ │ │ │ -0005b310: 3a20 202e 2020 2e20 202e 2020 2e20 202e : . . . . . │ │ │ │ -0005b320: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ -0005b330: 202e 207c 0a7c 2020 2020 2020 2020 2032 . |.| 2 │ │ │ │ -0005b340: 3a20 202e 2020 2e20 202e 2020 2e20 202e : . . . . . │ │ │ │ -0005b350: 2020 2e20 3130 2033 3020 3330 2031 3020 . 10 30 30 10 │ │ │ │ -0005b360: 202e 207c 0a7c 2020 2020 2020 2020 2033 . |.| 3 │ │ │ │ -0005b370: 3a20 202e 2020 2e20 202e 2020 2e20 202e : . . . . . │ │ │ │ -0005b380: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ -0005b390: 202e 207c 0a7c 2020 2020 2020 2020 2034 . |.| 4 │ │ │ │ -0005b3a0: 3a20 202e 2020 2e20 202e 2020 2e20 202e : . . . . . │ │ │ │ -0005b3b0: 2020 2e20 202e 2020 2e20 3131 2033 3320 . . . 11 33 │ │ │ │ -0005b3c0: 3333 207c 0a7c 2020 2020 2020 2020 2035 33 |.| 5 │ │ │ │ -0005b3d0: 3a20 202e 2020 2e20 202e 2020 2e20 202e : . . . . . │ │ │ │ -0005b3e0: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ -0005b3f0: 202e 207c 0a7c 2020 2020 2020 2020 2036 . |.| 6 │ │ │ │ -0005b400: 3a20 202e 2020 2e20 202e 2020 2e20 202e : . . . . . │ │ │ │ -0005b410: 2020 2e20 202e 2020 2e20 202e 2020 2e20 . . . . . │ │ │ │ -0005b420: 3132 207c 0a7c 2020 2020 2020 2020 2020 12 |.| │ │ │ │ +0005b140: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0005b150: 2020 2020 2020 2020 3020 2031 2020 3220 0 1 2 │ │ │ │ +0005b160: 2033 2020 3420 2035 2020 3620 2037 2020 3 4 5 6 7 │ │ │ │ +0005b170: 3820 2039 2031 3020 7c0a 7c6f 3820 3d20 8 9 10 |.|o8 = │ │ │ │ +0005b180: 746f 7461 6c3a 2033 3620 3237 2032 3920 total: 36 27 29 │ │ │ │ +0005b190: 3331 2033 3320 3335 2033 3720 3339 2034 31 33 35 37 39 4 │ │ │ │ +0005b1a0: 3120 3433 2034 3520 7c0a 7c20 2020 2020 1 43 45 |.| │ │ │ │ +0005b1b0: 2020 202d 363a 2031 3820 2036 2020 2e20 -6: 18 6 . │ │ │ │ +0005b1c0: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ +0005b1d0: 2e20 202e 2020 2e20 7c0a 7c20 2020 2020 . . . |.| │ │ │ │ +0005b1e0: 2020 202d 353a 2020 2e20 202e 2020 2e20 -5: . . . │ │ │ │ +0005b1f0: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ +0005b200: 2e20 202e 2020 2e20 7c0a 7c20 2020 2020 . . . |.| │ │ │ │ +0005b210: 2020 202d 343a 2031 3820 3231 2032 3120 -4: 18 21 21 │ │ │ │ +0005b220: 2037 2020 2e20 202e 2020 2e20 202e 2020 7 . . . . │ │ │ │ +0005b230: 2e20 202e 2020 2e20 7c0a 7c20 2020 2020 . . . |.| │ │ │ │ +0005b240: 2020 202d 333a 2020 2e20 202e 2020 2e20 -3: . . . │ │ │ │ +0005b250: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ +0005b260: 2e20 202e 2020 2e20 7c0a 7c20 2020 2020 . . . |.| │ │ │ │ +0005b270: 2020 202d 323a 2020 2e20 202e 2020 3820 -2: . . 8 │ │ │ │ +0005b280: 3234 2032 3420 2038 2020 2e20 202e 2020 24 24 8 . . │ │ │ │ +0005b290: 2e20 202e 2020 2e20 7c0a 7c20 2020 2020 . . . |.| │ │ │ │ +0005b2a0: 2020 202d 313a 2020 2e20 202e 2020 2e20 -1: . . . │ │ │ │ +0005b2b0: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ +0005b2c0: 2e20 202e 2020 2e20 7c0a 7c20 2020 2020 . . . |.| │ │ │ │ +0005b2d0: 2020 2020 303a 2020 2e20 202e 2020 2e20 0: . . . │ │ │ │ +0005b2e0: 202e 2020 3920 3237 2032 3720 2039 2020 . 9 27 27 9 │ │ │ │ +0005b2f0: 2e20 202e 2020 2e20 7c0a 7c20 2020 2020 . . . |.| │ │ │ │ +0005b300: 2020 2020 313a 2020 2e20 202e 2020 2e20 1: . . . │ │ │ │ +0005b310: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ +0005b320: 2e20 202e 2020 2e20 7c0a 7c20 2020 2020 . . . |.| │ │ │ │ +0005b330: 2020 2020 323a 2020 2e20 202e 2020 2e20 2: . . . │ │ │ │ +0005b340: 202e 2020 2e20 202e 2031 3020 3330 2033 . . . 10 30 3 │ │ │ │ +0005b350: 3020 3130 2020 2e20 7c0a 7c20 2020 2020 0 10 . |.| │ │ │ │ +0005b360: 2020 2020 333a 2020 2e20 202e 2020 2e20 3: . . . │ │ │ │ +0005b370: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ +0005b380: 2e20 202e 2020 2e20 7c0a 7c20 2020 2020 . . . |.| │ │ │ │ +0005b390: 2020 2020 343a 2020 2e20 202e 2020 2e20 4: . . . │ │ │ │ +0005b3a0: 202e 2020 2e20 202e 2020 2e20 202e 2031 . . . . . 1 │ │ │ │ +0005b3b0: 3120 3333 2033 3320 7c0a 7c20 2020 2020 1 33 33 |.| │ │ │ │ +0005b3c0: 2020 2020 353a 2020 2e20 202e 2020 2e20 5: . . . │ │ │ │ +0005b3d0: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ +0005b3e0: 2e20 202e 2020 2e20 7c0a 7c20 2020 2020 . . . |.| │ │ │ │ +0005b3f0: 2020 2020 363a 2020 2e20 202e 2020 2e20 6: . . . │ │ │ │ +0005b400: 202e 2020 2e20 202e 2020 2e20 202e 2020 . . . . . │ │ │ │ +0005b410: 2e20 202e 2031 3220 7c0a 7c20 2020 2020 . . 12 |.| │ │ │ │ +0005b420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005b430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b450: 2020 207c 0a7c 6f38 203a 2042 6574 7469 |.|o8 : Betti │ │ │ │ -0005b460: 5461 6c6c 7920 2020 2020 2020 2020 2020 Tally │ │ │ │ -0005b470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b480: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0005b440: 2020 2020 2020 2020 7c0a 7c6f 3820 3a20 |.|o8 : │ │ │ │ +0005b450: 4265 7474 6954 616c 6c79 2020 2020 2020 BettiTally │ │ │ │ +0005b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005b470: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0005b480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005b490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005b4a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005b4b0: 2d2d 2d2b 0a7c 6939 203a 2068 664d 6f64 ---+.|i9 : hfMod │ │ │ │ -0005b4c0: 756c 6541 7345 7874 2831 322c 4d4d 2c33 uleAsExt(12,MM,3 │ │ │ │ -0005b4d0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -0005b4e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005b4a0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3920 3a20 --------+.|i9 : │ │ │ │ +0005b4b0: 6866 4d6f 6475 6c65 4173 4578 7428 3132 hfModuleAsExt(12 │ │ │ │ +0005b4c0: 2c4d 4d2c 3329 2020 2020 2020 2020 2020 ,MM,3) │ │ │ │ +0005b4d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0005b4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005b4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b510: 2020 207c 0a7c 6f39 203d 2028 3233 2c20 |.|o9 = (23, │ │ │ │ -0005b520: 3235 2c20 3237 2c20 3239 2c20 3331 2c20 25, 27, 29, 31, │ │ │ │ -0005b530: 3333 2c20 3335 2c20 3337 2c20 3339 2c20 33, 35, 37, 39, │ │ │ │ -0005b540: 3431 297c 0a7c 2020 2020 2020 2020 2020 41)|.| │ │ │ │ +0005b500: 2020 2020 2020 2020 7c0a 7c6f 3920 3d20 |.|o9 = │ │ │ │ +0005b510: 2832 332c 2032 352c 2032 372c 2032 392c (23, 25, 27, 29, │ │ │ │ +0005b520: 2033 312c 2033 332c 2033 352c 2033 372c 31, 33, 35, 37, │ │ │ │ +0005b530: 2033 392c 2034 3129 7c0a 7c20 2020 2020 39, 41)|.| │ │ │ │ +0005b540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005b550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b570: 2020 207c 0a7c 6f39 203a 2053 6571 7565 |.|o9 : Seque │ │ │ │ -0005b580: 6e63 6520 2020 2020 2020 2020 2020 2020 nce │ │ │ │ -0005b590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b5a0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0005b560: 2020 2020 2020 2020 7c0a 7c6f 3920 3a20 |.|o9 : │ │ │ │ +0005b570: 5365 7175 656e 6365 2020 2020 2020 2020 Sequence │ │ │ │ +0005b580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005b590: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0005b5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005b5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005b5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005b5d0: 2d2d 2d2b 0a0a 4361 7665 6174 0a3d 3d3d ---+..Caveat.=== │ │ │ │ -0005b5e0: 3d3d 3d0a 0a54 6865 2065 6c65 6d65 6e74 ===..The element │ │ │ │ -0005b5f0: 7320 665f 312e 2e66 5f63 206d 7573 7420 s f_1..f_c must │ │ │ │ -0005b600: 6265 2068 6f6d 6f67 656e 656f 7573 206f be homogeneous o │ │ │ │ -0005b610: 6620 7468 6520 7361 6d65 2064 6567 7265 f the same degre │ │ │ │ -0005b620: 652e 2054 6865 2073 6372 6970 7420 636f e. The script co │ │ │ │ -0005b630: 756c 640a 6265 2072 6577 7269 7474 656e uld.be rewritten │ │ │ │ -0005b640: 2074 6f20 6163 636f 6d6d 6f64 6174 6520 to accommodate │ │ │ │ -0005b650: 6469 6666 6572 656e 7420 6465 6772 6565 different degree │ │ │ │ -0005b660: 732c 2062 7574 206f 6e6c 7920 6279 2067 s, but only by g │ │ │ │ -0005b670: 6f69 6e67 2074 6f20 7468 6520 6c6f 6361 oing to the loca │ │ │ │ -0005b680: 6c0a 6361 7465 676f 7279 0a0a 5365 6520 l.category..See │ │ │ │ -0005b690: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ -0005b6a0: 202a 202a 6e6f 7465 2045 7874 4d6f 6475 * *note ExtModu │ │ │ │ -0005b6b0: 6c65 3a20 4578 744d 6f64 756c 652c 202d le: ExtModule, - │ │ │ │ -0005b6c0: 2d20 4578 745e 2a28 4d2c 6b29 206f 7665 - Ext^*(M,k) ove │ │ │ │ -0005b6d0: 7220 6120 636f 6d70 6c65 7465 2069 6e74 r a complete int │ │ │ │ -0005b6e0: 6572 7365 6374 696f 6e20 6173 0a20 2020 ersection as. │ │ │ │ -0005b6f0: 206d 6f64 756c 6520 6f76 6572 2043 4920 module over CI │ │ │ │ -0005b700: 6f70 6572 6174 6f72 2072 696e 670a 2020 operator ring. │ │ │ │ -0005b710: 2a20 2a6e 6f74 6520 6576 656e 4578 744d * *note evenExtM │ │ │ │ -0005b720: 6f64 756c 653a 2065 7665 6e45 7874 4d6f odule: evenExtMo │ │ │ │ -0005b730: 6475 6c65 2c20 2d2d 2065 7665 6e20 7061 dule, -- even pa │ │ │ │ -0005b740: 7274 206f 6620 4578 745e 2a28 4d2c 6b29 rt of Ext^*(M,k) │ │ │ │ -0005b750: 206f 7665 7220 610a 2020 2020 636f 6d70 over a. comp │ │ │ │ -0005b760: 6c65 7465 2069 6e74 6572 7365 6374 696f lete intersectio │ │ │ │ -0005b770: 6e20 6173 206d 6f64 756c 6520 6f76 6572 n as module over │ │ │ │ -0005b780: 2043 4920 6f70 6572 6174 6f72 2072 696e CI operator rin │ │ │ │ -0005b790: 670a 2020 2a20 2a6e 6f74 6520 6f64 6445 g. * *note oddE │ │ │ │ -0005b7a0: 7874 4d6f 6475 6c65 3a20 6f64 6445 7874 xtModule: oddExt │ │ │ │ -0005b7b0: 4d6f 6475 6c65 2c20 2d2d 206f 6464 2070 Module, -- odd p │ │ │ │ -0005b7c0: 6172 7420 6f66 2045 7874 5e2a 284d 2c6b art of Ext^*(M,k │ │ │ │ -0005b7d0: 2920 6f76 6572 2061 2063 6f6d 706c 6574 ) over a complet │ │ │ │ -0005b7e0: 650a 2020 2020 696e 7465 7273 6563 7469 e. intersecti │ │ │ │ -0005b7f0: 6f6e 2061 7320 6d6f 6475 6c65 206f 7665 on as module ove │ │ │ │ -0005b800: 7220 4349 206f 7065 7261 746f 7220 7269 r CI operator ri │ │ │ │ -0005b810: 6e67 0a20 202a 202a 6e6f 7465 2045 7874 ng. * *note Ext │ │ │ │ -0005b820: 4d6f 6475 6c65 4461 7461 3a20 4578 744d ModuleData: ExtM │ │ │ │ -0005b830: 6f64 756c 6544 6174 612c 202d 2d20 4576 oduleData, -- Ev │ │ │ │ -0005b840: 656e 2061 6e64 206f 6464 2045 7874 206d en and odd Ext m │ │ │ │ -0005b850: 6f64 756c 6573 2061 6e64 2074 6865 6972 odules and their │ │ │ │ -0005b860: 0a20 2020 2072 6567 756c 6172 6974 790a . regularity. │ │ │ │ -0005b870: 2020 2a20 2a6e 6f74 6520 6866 4d6f 6475 * *note hfModu │ │ │ │ -0005b880: 6c65 4173 4578 743a 2068 664d 6f64 756c leAsExt: hfModul │ │ │ │ -0005b890: 6541 7345 7874 2c20 2d2d 2070 7265 6469 eAsExt, -- predi │ │ │ │ -0005b8a0: 6374 2062 6574 7469 206e 756d 6265 7273 ct betti numbers │ │ │ │ -0005b8b0: 206f 660a 2020 2020 6d6f 6475 6c65 4173 of. moduleAs │ │ │ │ -0005b8c0: 4578 7428 4d2c 5229 0a0a 5761 7973 2074 Ext(M,R)..Ways t │ │ │ │ -0005b8d0: 6f20 7573 6520 6d6f 6475 6c65 4173 4578 o use moduleAsEx │ │ │ │ -0005b8e0: 743a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d t:.============= │ │ │ │ -0005b8f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -0005b900: 2022 6d6f 6475 6c65 4173 4578 7428 4d6f "moduleAsExt(Mo │ │ │ │ -0005b910: 6475 6c65 2c52 696e 6729 220a 0a46 6f72 dule,Ring)"..For │ │ │ │ -0005b920: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ -0005b930: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0005b940: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ -0005b950: 6e6f 7465 206d 6f64 756c 6541 7345 7874 note moduleAsExt │ │ │ │ -0005b960: 3a20 6d6f 6475 6c65 4173 4578 742c 2069 : moduleAsExt, i │ │ │ │ -0005b970: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ -0005b980: 2066 756e 6374 696f 6e3a 0a28 4d61 6361 function:.(Maca │ │ │ │ -0005b990: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ -0005b9a0: 756e 6374 696f 6e2c 2e0a 1f0a 4669 6c65 unction,....File │ │ │ │ -0005b9b0: 3a20 436f 6d70 6c65 7465 496e 7465 7273 : CompleteInters │ │ │ │ -0005b9c0: 6563 7469 6f6e 5265 736f 6c75 7469 6f6e ectionResolution │ │ │ │ -0005b9d0: 732e 696e 666f 2c20 4e6f 6465 3a20 6e65 s.info, Node: ne │ │ │ │ -0005b9e0: 7745 7874 2c20 4e65 7874 3a20 6f64 6445 wExt, Next: oddE │ │ │ │ -0005b9f0: 7874 4d6f 6475 6c65 2c20 5072 6576 3a20 xtModule, Prev: │ │ │ │ -0005ba00: 6d6f 6475 6c65 4173 4578 742c 2055 703a moduleAsExt, Up: │ │ │ │ -0005ba10: 2054 6f70 0a0a 6e65 7745 7874 202d 2d20 Top..newExt -- │ │ │ │ -0005ba20: 476c 6f62 616c 2045 7874 2066 6f72 206d Global Ext for m │ │ │ │ -0005ba30: 6f64 756c 6573 206f 7665 7220 6120 636f odules over a co │ │ │ │ -0005ba40: 6d70 6c65 7465 2049 6e74 6572 7365 6374 mplete Intersect │ │ │ │ -0005ba50: 696f 6e0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ion.************ │ │ │ │ +0005b5c0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a43 6176 6561 --------+..Cavea │ │ │ │ +0005b5d0: 740a 3d3d 3d3d 3d3d 0a0a 5468 6520 656c t.======..The el │ │ │ │ +0005b5e0: 656d 656e 7473 2066 5f31 2e2e 665f 6320 ements f_1..f_c │ │ │ │ +0005b5f0: 6d75 7374 2062 6520 686f 6d6f 6765 6e65 must be homogene │ │ │ │ +0005b600: 6f75 7320 6f66 2074 6865 2073 616d 6520 ous of the same │ │ │ │ +0005b610: 6465 6772 6565 2e20 5468 6520 7363 7269 degree. The scri │ │ │ │ +0005b620: 7074 2063 6f75 6c64 0a62 6520 7265 7772 pt could.be rewr │ │ │ │ +0005b630: 6974 7465 6e20 746f 2061 6363 6f6d 6d6f itten to accommo │ │ │ │ +0005b640: 6461 7465 2064 6966 6665 7265 6e74 2064 date different d │ │ │ │ +0005b650: 6567 7265 6573 2c20 6275 7420 6f6e 6c79 egrees, but only │ │ │ │ +0005b660: 2062 7920 676f 696e 6720 746f 2074 6865 by going to the │ │ │ │ +0005b670: 206c 6f63 616c 0a63 6174 6567 6f72 790a local.category. │ │ │ │ +0005b680: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ +0005b690: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 4578 ==.. * *note Ex │ │ │ │ +0005b6a0: 744d 6f64 756c 653a 2045 7874 4d6f 6475 tModule: ExtModu │ │ │ │ +0005b6b0: 6c65 2c20 2d2d 2045 7874 5e2a 284d 2c6b le, -- Ext^*(M,k │ │ │ │ +0005b6c0: 2920 6f76 6572 2061 2063 6f6d 706c 6574 ) over a complet │ │ │ │ +0005b6d0: 6520 696e 7465 7273 6563 7469 6f6e 2061 e intersection a │ │ │ │ +0005b6e0: 730a 2020 2020 6d6f 6475 6c65 206f 7665 s. module ove │ │ │ │ +0005b6f0: 7220 4349 206f 7065 7261 746f 7220 7269 r CI operator ri │ │ │ │ +0005b700: 6e67 0a20 202a 202a 6e6f 7465 2065 7665 ng. * *note eve │ │ │ │ +0005b710: 6e45 7874 4d6f 6475 6c65 3a20 6576 656e nExtModule: even │ │ │ │ +0005b720: 4578 744d 6f64 756c 652c 202d 2d20 6576 ExtModule, -- ev │ │ │ │ +0005b730: 656e 2070 6172 7420 6f66 2045 7874 5e2a en part of Ext^* │ │ │ │ +0005b740: 284d 2c6b 2920 6f76 6572 2061 0a20 2020 (M,k) over a. │ │ │ │ +0005b750: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ +0005b760: 6563 7469 6f6e 2061 7320 6d6f 6475 6c65 ection as module │ │ │ │ +0005b770: 206f 7665 7220 4349 206f 7065 7261 746f over CI operato │ │ │ │ +0005b780: 7220 7269 6e67 0a20 202a 202a 6e6f 7465 r ring. * *note │ │ │ │ +0005b790: 206f 6464 4578 744d 6f64 756c 653a 206f oddExtModule: o │ │ │ │ +0005b7a0: 6464 4578 744d 6f64 756c 652c 202d 2d20 ddExtModule, -- │ │ │ │ +0005b7b0: 6f64 6420 7061 7274 206f 6620 4578 745e odd part of Ext^ │ │ │ │ +0005b7c0: 2a28 4d2c 6b29 206f 7665 7220 6120 636f *(M,k) over a co │ │ │ │ +0005b7d0: 6d70 6c65 7465 0a20 2020 2069 6e74 6572 mplete. inter │ │ │ │ +0005b7e0: 7365 6374 696f 6e20 6173 206d 6f64 756c section as modul │ │ │ │ +0005b7f0: 6520 6f76 6572 2043 4920 6f70 6572 6174 e over CI operat │ │ │ │ +0005b800: 6f72 2072 696e 670a 2020 2a20 2a6e 6f74 or ring. * *not │ │ │ │ +0005b810: 6520 4578 744d 6f64 756c 6544 6174 613a e ExtModuleData: │ │ │ │ +0005b820: 2045 7874 4d6f 6475 6c65 4461 7461 2c20 ExtModuleData, │ │ │ │ +0005b830: 2d2d 2045 7665 6e20 616e 6420 6f64 6420 -- Even and odd │ │ │ │ +0005b840: 4578 7420 6d6f 6475 6c65 7320 616e 6420 Ext modules and │ │ │ │ +0005b850: 7468 6569 720a 2020 2020 7265 6775 6c61 their. regula │ │ │ │ +0005b860: 7269 7479 0a20 202a 202a 6e6f 7465 2068 rity. * *note h │ │ │ │ +0005b870: 664d 6f64 756c 6541 7345 7874 3a20 6866 fModuleAsExt: hf │ │ │ │ +0005b880: 4d6f 6475 6c65 4173 4578 742c 202d 2d20 ModuleAsExt, -- │ │ │ │ +0005b890: 7072 6564 6963 7420 6265 7474 6920 6e75 predict betti nu │ │ │ │ +0005b8a0: 6d62 6572 7320 6f66 0a20 2020 206d 6f64 mbers of. mod │ │ │ │ +0005b8b0: 756c 6541 7345 7874 284d 2c52 290a 0a57 uleAsExt(M,R)..W │ │ │ │ +0005b8c0: 6179 7320 746f 2075 7365 206d 6f64 756c ays to use modul │ │ │ │ +0005b8d0: 6541 7345 7874 3a0a 3d3d 3d3d 3d3d 3d3d eAsExt:.======== │ │ │ │ +0005b8e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0005b8f0: 0a0a 2020 2a20 226d 6f64 756c 6541 7345 .. * "moduleAsE │ │ │ │ +0005b900: 7874 284d 6f64 756c 652c 5269 6e67 2922 xt(Module,Ring)" │ │ │ │ +0005b910: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +0005b920: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +0005b930: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +0005b940: 6563 7420 2a6e 6f74 6520 6d6f 6475 6c65 ect *note module │ │ │ │ +0005b950: 4173 4578 743a 206d 6f64 756c 6541 7345 AsExt: moduleAsE │ │ │ │ +0005b960: 7874 2c20 6973 2061 202a 6e6f 7465 206d xt, is a *note m │ │ │ │ +0005b970: 6574 686f 6420 6675 6e63 7469 6f6e 3a0a ethod function:. │ │ │ │ +0005b980: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ +0005b990: 7468 6f64 4675 6e63 7469 6f6e 2c2e 0a1f thodFunction,... │ │ │ │ +0005b9a0: 0a46 696c 653a 2043 6f6d 706c 6574 6549 .File: CompleteI │ │ │ │ +0005b9b0: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ +0005b9c0: 7574 696f 6e73 2e69 6e66 6f2c 204e 6f64 utions.info, Nod │ │ │ │ +0005b9d0: 653a 206e 6577 4578 742c 204e 6578 743a e: newExt, Next: │ │ │ │ +0005b9e0: 206f 6464 4578 744d 6f64 756c 652c 2050 oddExtModule, P │ │ │ │ +0005b9f0: 7265 763a 206d 6f64 756c 6541 7345 7874 rev: moduleAsExt │ │ │ │ +0005ba00: 2c20 5570 3a20 546f 700a 0a6e 6577 4578 , Up: Top..newEx │ │ │ │ +0005ba10: 7420 2d2d 2047 6c6f 6261 6c20 4578 7420 t -- Global Ext │ │ │ │ +0005ba20: 666f 7220 6d6f 6475 6c65 7320 6f76 6572 for modules over │ │ │ │ +0005ba30: 2061 2063 6f6d 706c 6574 6520 496e 7465 a complete Inte │ │ │ │ +0005ba40: 7273 6563 7469 6f6e 0a2a 2a2a 2a2a 2a2a rsection.******* │ │ │ │ +0005ba50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0005ba60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0005ba70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0005ba80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0005ba90: 2a0a 0a53 796e 6f70 7369 730a 3d3d 3d3d *..Synopsis.==== │ │ │ │ -0005baa0: 3d3d 3d3d 0a0a 2020 2a20 5573 6167 653a ====.. * Usage: │ │ │ │ -0005bab0: 200a 2020 2020 2020 2020 4520 3d20 6e65 . E = ne │ │ │ │ -0005bac0: 7745 7874 284d 2c4e 290a 2020 2a20 496e wExt(M,N). * In │ │ │ │ -0005bad0: 7075 7473 3a0a 2020 2020 2020 2a20 4d2c puts:. * M, │ │ │ │ -0005bae0: 2061 202a 6e6f 7465 206d 6f64 756c 653a a *note module: │ │ │ │ -0005baf0: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ -0005bb00: 6f64 756c 652c 2c20 6f76 6572 2061 2063 odule,, over a c │ │ │ │ -0005bb10: 6f6d 706c 6574 6520 696e 7465 7273 6563 omplete intersec │ │ │ │ -0005bb20: 7469 6f6e 0a20 2020 2020 2020 2052 6261 tion. Rba │ │ │ │ -0005bb30: 720a 2020 2020 2020 2a20 4e2c 2061 202a r. * N, a * │ │ │ │ -0005bb40: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ -0005bb50: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ -0005bb60: 652c 2c20 6f76 6572 2052 6261 720a 2020 e,, over Rbar. │ │ │ │ -0005bb70: 2a20 2a6e 6f74 6520 4f70 7469 6f6e 616c * *note Optional │ │ │ │ -0005bb80: 2069 6e70 7574 733a 2028 4d61 6361 756c inputs: (Macaul │ │ │ │ -0005bb90: 6179 3244 6f63 2975 7369 6e67 2066 756e ay2Doc)using fun │ │ │ │ -0005bba0: 6374 696f 6e73 2077 6974 6820 6f70 7469 ctions with opti │ │ │ │ -0005bbb0: 6f6e 616c 2069 6e70 7574 732c 3a0a 2020 onal inputs,:. │ │ │ │ -0005bbc0: 2020 2020 2a20 4368 6563 6b20 3d3e 202e * Check => . │ │ │ │ -0005bbd0: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ -0005bbe0: 6520 6661 6c73 650a 2020 2020 2020 2a20 e false. * │ │ │ │ -0005bbf0: 4772 6164 696e 6720 3d3e 202e 2e2e 2c20 Grading => ..., │ │ │ │ -0005bc00: 6465 6661 756c 7420 7661 6c75 6520 320a default value 2. │ │ │ │ -0005bc10: 2020 2020 2020 2a20 4c69 6674 203d 3e20 * Lift => │ │ │ │ -0005bc20: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ -0005bc30: 7565 2066 616c 7365 0a20 2020 2020 202a ue false. * │ │ │ │ -0005bc40: 2056 6172 6961 626c 6573 203d 3e20 2e2e Variables => .. │ │ │ │ -0005bc50: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ -0005bc60: 2073 0a20 202a 204f 7574 7075 7473 3a0a s. * Outputs:. │ │ │ │ -0005bc70: 2020 2020 2020 2a20 452c 2061 202a 6e6f * E, a *no │ │ │ │ -0005bc80: 7465 206d 6f64 756c 653a 2028 4d61 6361 te module: (Maca │ │ │ │ -0005bc90: 756c 6179 3244 6f63 294d 6f64 756c 652c ulay2Doc)Module, │ │ │ │ -0005bca0: 2c20 6f76 6572 2061 2072 696e 6720 5320 , over a ring S │ │ │ │ -0005bcb0: 6d61 6465 2066 726f 6d20 7269 6e67 0a20 made from ring. │ │ │ │ -0005bcc0: 2020 2020 2020 2070 7265 7365 6e74 6174 presentat │ │ │ │ -0005bcd0: 696f 6e20 5262 6172 2077 6974 6820 636f ion Rbar with co │ │ │ │ -0005bce0: 6469 6d20 5262 6172 206e 6577 2076 6172 dim Rbar new var │ │ │ │ -0005bcf0: 6961 626c 6573 0a0a 4465 7363 7269 7074 iables..Descript │ │ │ │ -0005bd00: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -0005bd10: 0a4c 6574 2052 6261 7220 3d20 522f 2866 .Let Rbar = R/(f │ │ │ │ -0005bd20: 312e 2e66 6329 2c20 6120 636f 6d70 6c65 1..fc), a comple │ │ │ │ -0005bd30: 7465 2069 6e74 6572 7365 6374 696f 6e20 te intersection │ │ │ │ -0005bd40: 6f66 2063 6f64 696d 656e 7369 6f6e 2063 of codimension c │ │ │ │ -0005bd50: 2c20 616e 6420 6c65 7420 4d2c 4e20 6265 , and let M,N be │ │ │ │ -0005bd60: 0a52 6261 722d 6d6f 6475 6c65 732e 2057 .Rbar-modules. W │ │ │ │ -0005bd70: 6520 6173 7375 6d65 2074 6861 7420 7468 e assume that th │ │ │ │ -0005bd80: 6520 7075 7368 466f 7277 6172 6420 6f66 e pushForward of │ │ │ │ -0005bd90: 204d 2074 6f20 5220 6861 7320 6669 6e69 M to R has fini │ │ │ │ -0005bda0: 7465 2066 7265 650a 7265 736f 6c75 7469 te free.resoluti │ │ │ │ -0005bdb0: 6f6e 2e20 5468 6520 7363 7269 7074 2074 on. The script t │ │ │ │ -0005bdc0: 6865 6e20 636f 6d70 7574 6573 2074 6865 hen computes the │ │ │ │ -0005bdd0: 2074 6f74 616c 2045 7874 284d 2c4e 2920 total Ext(M,N) │ │ │ │ -0005bde0: 6173 2061 206d 6f64 756c 6520 6f76 6572 as a module over │ │ │ │ -0005bdf0: 2053 203d 0a6b 6b28 735f 312e 2e73 5f63 S =.kk(s_1..s_c │ │ │ │ -0005be00: 2c67 656e 7320 5229 2c20 7573 696e 6720 ,gens R), using │ │ │ │ -0005be10: 4569 7365 6e62 7564 5368 616d 6173 6854 EisenbudShamashT │ │ │ │ -0005be20: 6f74 616c 2e0a 0a49 6620 4368 6563 6b20 otal...If Check │ │ │ │ -0005be30: 3d3e 2074 7275 652c 2074 6865 6e20 7468 => true, then th │ │ │ │ -0005be40: 6520 7265 7375 6c74 2069 7320 636f 6d70 e result is comp │ │ │ │ -0005be50: 6172 6564 2077 6974 6820 7468 6520 6275 ared with the bu │ │ │ │ -0005be60: 696c 742d 696e 2067 6c6f 6261 6c20 4578 ilt-in global Ex │ │ │ │ -0005be70: 740a 7772 6974 7465 6e20 6279 2041 7672 t.written by Avr │ │ │ │ -0005be80: 616d 6f76 2061 6e64 2047 7261 7973 6f6e amov and Grayson │ │ │ │ -0005be90: 2028 6275 7420 6e6f 7465 2074 6865 2064 (but note the d │ │ │ │ -0005bea0: 6966 6665 7265 6e63 652c 2065 7870 6c61 ifference, expla │ │ │ │ -0005beb0: 696e 6564 2062 656c 6f77 292e 0a0a 4966 ined below)...If │ │ │ │ -0005bec0: 204c 6966 7420 3d3e 2066 616c 7365 2074 Lift => false t │ │ │ │ -0005bed0: 6865 2072 6573 756c 7420 6973 2072 6574 he result is ret │ │ │ │ -0005bee0: 7572 6e65 6420 6f76 6572 2061 6e64 2065 urned over and e │ │ │ │ -0005bef0: 7874 656e 7369 6f6e 206f 6620 5262 6172 xtension of Rbar │ │ │ │ -0005bf00: 3b20 6966 204c 6966 7420 3d3e 0a74 7275 ; if Lift =>.tru │ │ │ │ -0005bf10: 6520 7468 6520 7265 7375 6c74 2069 7320 e the result is │ │ │ │ -0005bf20: 7265 7475 726e 6564 206f 7665 7220 616e returned over an │ │ │ │ -0005bf30: 6420 6578 7465 6e73 696f 6e20 6f66 2052 d extension of R │ │ │ │ -0005bf40: 2e0a 0a49 6620 4772 6164 696e 6720 3d3e ...If Grading => │ │ │ │ -0005bf50: 2032 2c20 7468 6520 6465 6661 756c 742c 2, the default, │ │ │ │ -0005bf60: 2074 6865 6e20 7468 6520 7265 7375 6c74 then the result │ │ │ │ -0005bf70: 2069 7320 6269 6772 6164 6564 2028 7468 is bigraded (th │ │ │ │ -0005bf80: 6973 2069 7320 6e65 6365 7373 6172 790a is is necessary. │ │ │ │ -0005bf90: 7768 656e 2043 6865 636b 3d3e 7472 7565 when Check=>true │ │ │ │ -0005bfa0: 0a0a 5468 6520 6465 6661 756c 7420 5661 ..The default Va │ │ │ │ -0005bfb0: 7269 6162 6c65 7320 3d3e 2073 796d 626f riables => symbo │ │ │ │ -0005bfc0: 6c20 2273 2220 6769 7665 7320 7468 6520 l "s" gives the │ │ │ │ -0005bfd0: 6e65 7720 7661 7269 6162 6c65 7320 7468 new variables th │ │ │ │ -0005bfe0: 6520 6e61 6d65 2073 5f69 2c0a 693d 302e e name s_i,.i=0. │ │ │ │ -0005bff0: 2e63 2d31 2e20 286e 6f74 6520 7468 6174 .c-1. (note that │ │ │ │ -0005c000: 2074 6865 2062 7569 6c74 696e 2045 7874 the builtin Ext │ │ │ │ -0005c010: 2075 7365 7320 585f 312e 2e58 5f63 2e0a uses X_1..X_c.. │ │ │ │ -0005c020: 0a4f 6e20 536f 6d65 2065 7861 6d70 6c65 .On Some example │ │ │ │ -0005c030: 7320 6e65 7745 7874 2069 7320 6661 7374 s newExt is fast │ │ │ │ -0005c040: 6572 2074 6861 6e20 4578 743b 206f 6e20 er than Ext; on │ │ │ │ -0005c050: 6f74 6865 7273 2069 7427 7320 736c 6f77 others it's slow │ │ │ │ -0005c060: 6572 2e0a 0a41 2073 696d 706c 6520 6578 er...A simple ex │ │ │ │ -0005c070: 616d 706c 653a 2069 6620 5220 3d20 6b5b ample: if R = k[ │ │ │ │ -0005c080: 785f 312e 2e78 5f6e 5d20 616e 6420 4920 x_1..x_n] and I │ │ │ │ -0005c090: 6973 2063 6f6e 7461 696e 6564 2069 6e20 is contained in │ │ │ │ -0005c0a0: 7468 6520 6375 6265 206f 6620 7468 650a the cube of the. │ │ │ │ -0005c0b0: 6d61 7869 6d61 6c20 6964 6561 6c2c 2074 maximal ideal, t │ │ │ │ -0005c0c0: 6865 6e20 4578 7428 6b2c 6b29 2069 7320 hen Ext(k,k) is │ │ │ │ -0005c0d0: 6120 6672 6565 2053 2f28 785f 312e 2e78 a free S/(x_1..x │ │ │ │ -0005c0e0: 5f6e 2920 3d20 6b5b 735f 302e 2e73 5f28 _n) = k[s_0..s_( │ │ │ │ -0005c0f0: 632d 3129 5d2d 206d 6f64 756c 650a 7769 c-1)]- module.wi │ │ │ │ -0005c100: 7468 2062 696e 6f6d 6961 6c28 6e2c 6929 th binomial(n,i) │ │ │ │ -0005c110: 2067 656e 6572 6174 6f72 7320 696e 2064 generators in d │ │ │ │ -0005c120: 6567 7265 6520 690a 0a2b 2d2d 2d2d 2d2d egree i..+------ │ │ │ │ +0005ba80: 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 ******..Synopsis │ │ │ │ +0005ba90: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 .========.. * U │ │ │ │ +0005baa0: 7361 6765 3a20 0a20 2020 2020 2020 2045 sage: . E │ │ │ │ +0005bab0: 203d 206e 6577 4578 7428 4d2c 4e29 0a20 = newExt(M,N). │ │ │ │ +0005bac0: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ +0005bad0: 202a 204d 2c20 6120 2a6e 6f74 6520 6d6f * M, a *note mo │ │ │ │ +0005bae0: 6475 6c65 3a20 284d 6163 6175 6c61 7932 dule: (Macaulay2 │ │ │ │ +0005baf0: 446f 6329 4d6f 6475 6c65 2c2c 206f 7665 Doc)Module,, ove │ │ │ │ +0005bb00: 7220 6120 636f 6d70 6c65 7465 2069 6e74 r a complete int │ │ │ │ +0005bb10: 6572 7365 6374 696f 6e0a 2020 2020 2020 ersection. │ │ │ │ +0005bb20: 2020 5262 6172 0a20 2020 2020 202a 204e Rbar. * N │ │ │ │ +0005bb30: 2c20 6120 2a6e 6f74 6520 6d6f 6475 6c65 , a *note module │ │ │ │ +0005bb40: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0005bb50: 4d6f 6475 6c65 2c2c 206f 7665 7220 5262 Module,, over Rb │ │ │ │ +0005bb60: 6172 0a20 202a 202a 6e6f 7465 204f 7074 ar. * *note Opt │ │ │ │ +0005bb70: 696f 6e61 6c20 696e 7075 7473 3a20 284d ional inputs: (M │ │ │ │ +0005bb80: 6163 6175 6c61 7932 446f 6329 7573 696e acaulay2Doc)usin │ │ │ │ +0005bb90: 6720 6675 6e63 7469 6f6e 7320 7769 7468 g functions with │ │ │ │ +0005bba0: 206f 7074 696f 6e61 6c20 696e 7075 7473 optional inputs │ │ │ │ +0005bbb0: 2c3a 0a20 2020 2020 202a 2043 6865 636b ,:. * Check │ │ │ │ +0005bbc0: 203d 3e20 2e2e 2e2c 2064 6566 6175 6c74 => ..., default │ │ │ │ +0005bbd0: 2076 616c 7565 2066 616c 7365 0a20 2020 value false. │ │ │ │ +0005bbe0: 2020 202a 2047 7261 6469 6e67 203d 3e20 * Grading => │ │ │ │ +0005bbf0: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ +0005bc00: 7565 2032 0a20 2020 2020 202a 204c 6966 ue 2. * Lif │ │ │ │ +0005bc10: 7420 3d3e 202e 2e2e 2c20 6465 6661 756c t => ..., defaul │ │ │ │ +0005bc20: 7420 7661 6c75 6520 6661 6c73 650a 2020 t value false. │ │ │ │ +0005bc30: 2020 2020 2a20 5661 7269 6162 6c65 7320 * Variables │ │ │ │ +0005bc40: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +0005bc50: 7661 6c75 6520 730a 2020 2a20 4f75 7470 value s. * Outp │ │ │ │ +0005bc60: 7574 733a 0a20 2020 2020 202a 2045 2c20 uts:. * E, │ │ │ │ +0005bc70: 6120 2a6e 6f74 6520 6d6f 6475 6c65 3a20 a *note module: │ │ │ │ +0005bc80: 284d 6163 6175 6c61 7932 446f 6329 4d6f (Macaulay2Doc)Mo │ │ │ │ +0005bc90: 6475 6c65 2c2c 206f 7665 7220 6120 7269 dule,, over a ri │ │ │ │ +0005bca0: 6e67 2053 206d 6164 6520 6672 6f6d 2072 ng S made from r │ │ │ │ +0005bcb0: 696e 670a 2020 2020 2020 2020 7072 6573 ing. pres │ │ │ │ +0005bcc0: 656e 7461 7469 6f6e 2052 6261 7220 7769 entation Rbar wi │ │ │ │ +0005bcd0: 7468 2063 6f64 696d 2052 6261 7220 6e65 th codim Rbar ne │ │ │ │ +0005bce0: 7720 7661 7269 6162 6c65 730a 0a44 6573 w variables..Des │ │ │ │ +0005bcf0: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ +0005bd00: 3d3d 3d3d 0a0a 4c65 7420 5262 6172 203d ====..Let Rbar = │ │ │ │ +0005bd10: 2052 2f28 6631 2e2e 6663 292c 2061 2063 R/(f1..fc), a c │ │ │ │ +0005bd20: 6f6d 706c 6574 6520 696e 7465 7273 6563 omplete intersec │ │ │ │ +0005bd30: 7469 6f6e 206f 6620 636f 6469 6d65 6e73 tion of codimens │ │ │ │ +0005bd40: 696f 6e20 632c 2061 6e64 206c 6574 204d ion c, and let M │ │ │ │ +0005bd50: 2c4e 2062 650a 5262 6172 2d6d 6f64 756c ,N be.Rbar-modul │ │ │ │ +0005bd60: 6573 2e20 5765 2061 7373 756d 6520 7468 es. We assume th │ │ │ │ +0005bd70: 6174 2074 6865 2070 7573 6846 6f72 7761 at the pushForwa │ │ │ │ +0005bd80: 7264 206f 6620 4d20 746f 2052 2068 6173 rd of M to R has │ │ │ │ +0005bd90: 2066 696e 6974 6520 6672 6565 0a72 6573 finite free.res │ │ │ │ +0005bda0: 6f6c 7574 696f 6e2e 2054 6865 2073 6372 olution. The scr │ │ │ │ +0005bdb0: 6970 7420 7468 656e 2063 6f6d 7075 7465 ipt then compute │ │ │ │ +0005bdc0: 7320 7468 6520 746f 7461 6c20 4578 7428 s the total Ext( │ │ │ │ +0005bdd0: 4d2c 4e29 2061 7320 6120 6d6f 6475 6c65 M,N) as a module │ │ │ │ +0005bde0: 206f 7665 7220 5320 3d0a 6b6b 2873 5f31 over S =.kk(s_1 │ │ │ │ +0005bdf0: 2e2e 735f 632c 6765 6e73 2052 292c 2075 ..s_c,gens R), u │ │ │ │ +0005be00: 7369 6e67 2045 6973 656e 6275 6453 6861 sing EisenbudSha │ │ │ │ +0005be10: 6d61 7368 546f 7461 6c2e 0a0a 4966 2043 mashTotal...If C │ │ │ │ +0005be20: 6865 636b 203d 3e20 7472 7565 2c20 7468 heck => true, th │ │ │ │ +0005be30: 656e 2074 6865 2072 6573 756c 7420 6973 en the result is │ │ │ │ +0005be40: 2063 6f6d 7061 7265 6420 7769 7468 2074 compared with t │ │ │ │ +0005be50: 6865 2062 7569 6c74 2d69 6e20 676c 6f62 he built-in glob │ │ │ │ +0005be60: 616c 2045 7874 0a77 7269 7474 656e 2062 al Ext.written b │ │ │ │ +0005be70: 7920 4176 7261 6d6f 7620 616e 6420 4772 y Avramov and Gr │ │ │ │ +0005be80: 6179 736f 6e20 2862 7574 206e 6f74 6520 ayson (but note │ │ │ │ +0005be90: 7468 6520 6469 6666 6572 656e 6365 2c20 the difference, │ │ │ │ +0005bea0: 6578 706c 6169 6e65 6420 6265 6c6f 7729 explained below) │ │ │ │ +0005beb0: 2e0a 0a49 6620 4c69 6674 203d 3e20 6661 ...If Lift => fa │ │ │ │ +0005bec0: 6c73 6520 7468 6520 7265 7375 6c74 2069 lse the result i │ │ │ │ +0005bed0: 7320 7265 7475 726e 6564 206f 7665 7220 s returned over │ │ │ │ +0005bee0: 616e 6420 6578 7465 6e73 696f 6e20 6f66 and extension of │ │ │ │ +0005bef0: 2052 6261 723b 2069 6620 4c69 6674 203d Rbar; if Lift = │ │ │ │ +0005bf00: 3e0a 7472 7565 2074 6865 2072 6573 756c >.true the resul │ │ │ │ +0005bf10: 7420 6973 2072 6574 7572 6e65 6420 6f76 t is returned ov │ │ │ │ +0005bf20: 6572 2061 6e64 2065 7874 656e 7369 6f6e er and extension │ │ │ │ +0005bf30: 206f 6620 522e 0a0a 4966 2047 7261 6469 of R...If Gradi │ │ │ │ +0005bf40: 6e67 203d 3e20 322c 2074 6865 2064 6566 ng => 2, the def │ │ │ │ +0005bf50: 6175 6c74 2c20 7468 656e 2074 6865 2072 ault, then the r │ │ │ │ +0005bf60: 6573 756c 7420 6973 2062 6967 7261 6465 esult is bigrade │ │ │ │ +0005bf70: 6420 2874 6869 7320 6973 206e 6563 6573 d (this is neces │ │ │ │ +0005bf80: 7361 7279 0a77 6865 6e20 4368 6563 6b3d sary.when Check= │ │ │ │ +0005bf90: 3e74 7275 650a 0a54 6865 2064 6566 6175 >true..The defau │ │ │ │ +0005bfa0: 6c74 2056 6172 6961 626c 6573 203d 3e20 lt Variables => │ │ │ │ +0005bfb0: 7379 6d62 6f6c 2022 7322 2067 6976 6573 symbol "s" gives │ │ │ │ +0005bfc0: 2074 6865 206e 6577 2076 6172 6961 626c the new variabl │ │ │ │ +0005bfd0: 6573 2074 6865 206e 616d 6520 735f 692c es the name s_i, │ │ │ │ +0005bfe0: 0a69 3d30 2e2e 632d 312e 2028 6e6f 7465 .i=0..c-1. (note │ │ │ │ +0005bff0: 2074 6861 7420 7468 6520 6275 696c 7469 that the builti │ │ │ │ +0005c000: 6e20 4578 7420 7573 6573 2058 5f31 2e2e n Ext uses X_1.. │ │ │ │ +0005c010: 585f 632e 0a0a 4f6e 2053 6f6d 6520 6578 X_c...On Some ex │ │ │ │ +0005c020: 616d 706c 6573 206e 6577 4578 7420 6973 amples newExt is │ │ │ │ +0005c030: 2066 6173 7465 7220 7468 616e 2045 7874 faster than Ext │ │ │ │ +0005c040: 3b20 6f6e 206f 7468 6572 7320 6974 2773 ; on others it's │ │ │ │ +0005c050: 2073 6c6f 7765 722e 0a0a 4120 7369 6d70 slower...A simp │ │ │ │ +0005c060: 6c65 2065 7861 6d70 6c65 3a20 6966 2052 le example: if R │ │ │ │ +0005c070: 203d 206b 5b78 5f31 2e2e 785f 6e5d 2061 = k[x_1..x_n] a │ │ │ │ +0005c080: 6e64 2049 2069 7320 636f 6e74 6169 6e65 nd I is containe │ │ │ │ +0005c090: 6420 696e 2074 6865 2063 7562 6520 6f66 d in the cube of │ │ │ │ +0005c0a0: 2074 6865 0a6d 6178 696d 616c 2069 6465 the.maximal ide │ │ │ │ +0005c0b0: 616c 2c20 7468 656e 2045 7874 286b 2c6b al, then Ext(k,k │ │ │ │ +0005c0c0: 2920 6973 2061 2066 7265 6520 532f 2878 ) is a free S/(x │ │ │ │ +0005c0d0: 5f31 2e2e 785f 6e29 203d 206b 5b73 5f30 _1..x_n) = k[s_0 │ │ │ │ +0005c0e0: 2e2e 735f 2863 2d31 295d 2d20 6d6f 6475 ..s_(c-1)]- modu │ │ │ │ +0005c0f0: 6c65 0a77 6974 6820 6269 6e6f 6d69 616c le.with binomial │ │ │ │ +0005c100: 286e 2c69 2920 6765 6e65 7261 746f 7273 (n,i) generators │ │ │ │ +0005c110: 2069 6e20 6465 6772 6565 2069 0a0a 2b2d in degree i..+- │ │ │ │ +0005c120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005c160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005c170: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 206e -------+.|i1 : n │ │ │ │ -0005c180: 203d 2033 3b63 3d32 3b20 2020 2020 2020 = 3;c=2; │ │ │ │ +0005c160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0005c170: 3120 3a20 6e20 3d20 333b 633d 323b 2020 1 : n = 3;c=2; │ │ │ │ +0005c180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c1c0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005c1b0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0005c1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005c200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005c210: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2052 -------+.|i3 : R │ │ │ │ -0005c220: 203d 205a 5a2f 3130 315b 785f 302e 2e78 = ZZ/101[x_0..x │ │ │ │ -0005c230: 5f28 6e2d 3129 5d20 2020 2020 2020 2020 _(n-1)] │ │ │ │ +0005c200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0005c210: 3320 3a20 5220 3d20 5a5a 2f31 3031 5b78 3 : R = ZZ/101[x │ │ │ │ +0005c220: 5f30 2e2e 785f 286e 2d31 295d 2020 2020 _0..x_(n-1)] │ │ │ │ +0005c230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c260: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005c250: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005c260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c2b0: 2020 2020 2020 207c 0a7c 6f33 203d 2052 |.|o3 = R │ │ │ │ +0005c2a0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0005c2b0: 3320 3d20 5220 2020 2020 2020 2020 2020 3 = R │ │ │ │ 0005c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c300: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005c2f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c350: 2020 2020 2020 207c 0a7c 6f33 203a 2050 |.|o3 : P │ │ │ │ -0005c360: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ +0005c340: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0005c350: 3320 3a20 506f 6c79 6e6f 6d69 616c 5269 3 : PolynomialRi │ │ │ │ +0005c360: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ 0005c370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c3a0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005c390: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0005c3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005c3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005c3f0: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2052 -------+.|i4 : R │ │ │ │ -0005c400: 6261 7220 3d20 522f 2869 6465 616c 2061 bar = R/(ideal a │ │ │ │ -0005c410: 7070 6c79 2863 2c20 692d 3e20 525f 695e pply(c, i-> R_i^ │ │ │ │ -0005c420: 3329 2920 2020 2020 2020 2020 2020 2020 3)) │ │ │ │ -0005c430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c440: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005c3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0005c3f0: 3420 3a20 5262 6172 203d 2052 2f28 6964 4 : Rbar = R/(id │ │ │ │ +0005c400: 6561 6c20 6170 706c 7928 632c 2069 2d3e eal apply(c, i-> │ │ │ │ +0005c410: 2052 5f69 5e33 2929 2020 2020 2020 2020 R_i^3)) │ │ │ │ +0005c420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005c430: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005c440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c490: 2020 2020 2020 207c 0a7c 6f34 203d 2052 |.|o4 = R │ │ │ │ -0005c4a0: 6261 7220 2020 2020 2020 2020 2020 2020 bar │ │ │ │ +0005c480: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0005c490: 3420 3d20 5262 6172 2020 2020 2020 2020 4 = Rbar │ │ │ │ +0005c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c4e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005c4d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005c4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c530: 2020 2020 2020 207c 0a7c 6f34 203a 2051 |.|o4 : Q │ │ │ │ -0005c540: 756f 7469 656e 7452 696e 6720 2020 2020 uotientRing │ │ │ │ +0005c520: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0005c530: 3420 3a20 5175 6f74 6965 6e74 5269 6e67 4 : QuotientRing │ │ │ │ +0005c540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c580: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005c570: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0005c580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005c5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005c5d0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 204d -------+.|i5 : M │ │ │ │ -0005c5e0: 6261 7220 3d20 4e62 6172 203d 2063 6f6b bar = Nbar = cok │ │ │ │ -0005c5f0: 6572 2076 6172 7320 5262 6172 2020 2020 er vars Rbar │ │ │ │ +0005c5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0005c5d0: 3520 3a20 4d62 6172 203d 204e 6261 7220 5 : Mbar = Nbar │ │ │ │ +0005c5e0: 3d20 636f 6b65 7220 7661 7273 2052 6261 = coker vars Rba │ │ │ │ +0005c5f0: 7220 2020 2020 2020 2020 2020 2020 2020 r │ │ │ │ 0005c600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c620: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005c610: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005c620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c670: 2020 2020 2020 207c 0a7c 6f35 203d 2063 |.|o5 = c │ │ │ │ -0005c680: 6f6b 6572 6e65 6c20 7c20 785f 3020 785f okernel | x_0 x_ │ │ │ │ -0005c690: 3120 785f 3220 7c20 2020 2020 2020 2020 1 x_2 | │ │ │ │ +0005c660: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0005c670: 3520 3d20 636f 6b65 726e 656c 207c 2078 5 = cokernel | x │ │ │ │ +0005c680: 5f30 2078 5f31 2078 5f32 207c 2020 2020 _0 x_1 x_2 | │ │ │ │ +0005c690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c6c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005c6b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005c6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c710: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005c700: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005c710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c730: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ +0005c730: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 0005c740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c760: 2020 2020 2020 207c 0a7c 6f35 203a 2052 |.|o5 : R │ │ │ │ -0005c770: 6261 722d 6d6f 6475 6c65 2c20 7175 6f74 bar-module, quot │ │ │ │ -0005c780: 6965 6e74 206f 6620 5262 6172 2020 2020 ient of Rbar │ │ │ │ +0005c750: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0005c760: 3520 3a20 5262 6172 2d6d 6f64 756c 652c 5 : Rbar-module, │ │ │ │ +0005c770: 2071 756f 7469 656e 7420 6f66 2052 6261 quotient of Rba │ │ │ │ +0005c780: 7220 2020 2020 2020 2020 2020 2020 2020 r │ │ │ │ 0005c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c7b0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005c7a0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0005c7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005c7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005c800: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2045 -------+.|i6 : E │ │ │ │ -0005c810: 203d 206e 6577 4578 7428 4d62 6172 2c4e = newExt(Mbar,N │ │ │ │ -0005c820: 6261 7229 2020 2020 2020 2020 2020 2020 bar) │ │ │ │ +0005c7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0005c800: 3620 3a20 4520 3d20 6e65 7745 7874 284d 6 : E = newExt(M │ │ │ │ +0005c810: 6261 722c 4e62 6172 2920 2020 2020 2020 bar,Nbar) │ │ │ │ +0005c820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c850: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005c840: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005c850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c8a0: 2020 2020 2020 207c 0a7c 6f36 203d 2063 |.|o6 = c │ │ │ │ -0005c8b0: 6f6b 6572 6e65 6c20 7b30 2c20 307d 2020 okernel {0, 0} │ │ │ │ -0005c8c0: 207c 2078 5f32 2078 5f31 2078 5f30 2030 | x_2 x_1 x_0 0 │ │ │ │ -0005c8d0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005c8e0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005c8f0: 2020 2030 2020 207c 0a7c 2020 2020 2020 0 |.| │ │ │ │ -0005c900: 2020 2020 2020 2020 7b2d 322c 202d 327d {-2, -2} │ │ │ │ -0005c910: 207c 2030 2020 2030 2020 2030 2020 2030 | 0 0 0 0 │ │ │ │ -0005c920: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005c930: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005c940: 2020 2078 5f32 207c 0a7c 2020 2020 2020 x_2 |.| │ │ │ │ -0005c950: 2020 2020 2020 2020 7b2d 322c 202d 327d {-2, -2} │ │ │ │ -0005c960: 207c 2030 2020 2030 2020 2030 2020 2030 | 0 0 0 0 │ │ │ │ -0005c970: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005c980: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005c990: 2020 2030 2020 207c 0a7c 2020 2020 2020 0 |.| │ │ │ │ -0005c9a0: 2020 2020 2020 2020 7b2d 322c 202d 327d {-2, -2} │ │ │ │ -0005c9b0: 207c 2030 2020 2030 2020 2030 2020 2030 | 0 0 0 0 │ │ │ │ -0005c9c0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005c9d0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005c9e0: 2020 2030 2020 207c 0a7c 2020 2020 2020 0 |.| │ │ │ │ -0005c9f0: 2020 2020 2020 2020 7b2d 312c 202d 317d {-1, -1} │ │ │ │ -0005ca00: 207c 2030 2020 2030 2020 2030 2020 2078 | 0 0 0 x │ │ │ │ -0005ca10: 5f32 2078 5f31 2078 5f30 2030 2020 2030 _2 x_1 x_0 0 0 │ │ │ │ -0005ca20: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005ca30: 2020 2030 2020 207c 0a7c 2020 2020 2020 0 |.| │ │ │ │ -0005ca40: 2020 2020 2020 2020 7b2d 312c 202d 317d {-1, -1} │ │ │ │ -0005ca50: 207c 2030 2020 2030 2020 2030 2020 2030 | 0 0 0 0 │ │ │ │ -0005ca60: 2020 2030 2020 2030 2020 2078 5f32 2078 0 0 x_2 x │ │ │ │ -0005ca70: 5f31 2078 5f30 2030 2020 2030 2020 2030 _1 x_0 0 0 0 │ │ │ │ -0005ca80: 2020 2030 2020 207c 0a7c 2020 2020 2020 0 |.| │ │ │ │ -0005ca90: 2020 2020 2020 2020 7b2d 312c 202d 317d {-1, -1} │ │ │ │ -0005caa0: 207c 2030 2020 2030 2020 2030 2020 2030 | 0 0 0 0 │ │ │ │ -0005cab0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005cac0: 2020 2030 2020 2078 5f32 2078 5f31 2078 0 x_2 x_1 x │ │ │ │ -0005cad0: 5f30 2030 2020 207c 0a7c 2020 2020 2020 _0 0 |.| │ │ │ │ -0005cae0: 2020 2020 2020 2020 7b2d 332c 202d 337d {-3, -3} │ │ │ │ -0005caf0: 207c 2030 2020 2030 2020 2030 2020 2030 | 0 0 0 0 │ │ │ │ -0005cb00: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005cb10: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005cb20: 2020 2030 2020 207c 0a7c 2020 2020 2020 0 |.| │ │ │ │ +0005c890: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0005c8a0: 3620 3d20 636f 6b65 726e 656c 207b 302c 6 = cokernel {0, │ │ │ │ +0005c8b0: 2030 7d20 2020 7c20 785f 3220 785f 3120 0} | x_2 x_1 │ │ │ │ +0005c8c0: 785f 3020 3020 2020 3020 2020 3020 2020 x_0 0 0 0 │ │ │ │ +0005c8d0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005c8e0: 3020 2020 3020 2020 3020 2020 7c0a 7c20 0 0 0 |.| │ │ │ │ +0005c8f0: 2020 2020 2020 2020 2020 2020 207b 2d32 {-2 │ │ │ │ +0005c900: 2c20 2d32 7d20 7c20 3020 2020 3020 2020 , -2} | 0 0 │ │ │ │ +0005c910: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005c920: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005c930: 3020 2020 3020 2020 785f 3220 7c0a 7c20 0 0 x_2 |.| │ │ │ │ +0005c940: 2020 2020 2020 2020 2020 2020 207b 2d32 {-2 │ │ │ │ +0005c950: 2c20 2d32 7d20 7c20 3020 2020 3020 2020 , -2} | 0 0 │ │ │ │ +0005c960: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005c970: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005c980: 3020 2020 3020 2020 3020 2020 7c0a 7c20 0 0 0 |.| │ │ │ │ +0005c990: 2020 2020 2020 2020 2020 2020 207b 2d32 {-2 │ │ │ │ +0005c9a0: 2c20 2d32 7d20 7c20 3020 2020 3020 2020 , -2} | 0 0 │ │ │ │ +0005c9b0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005c9c0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005c9d0: 3020 2020 3020 2020 3020 2020 7c0a 7c20 0 0 0 |.| │ │ │ │ +0005c9e0: 2020 2020 2020 2020 2020 2020 207b 2d31 {-1 │ │ │ │ +0005c9f0: 2c20 2d31 7d20 7c20 3020 2020 3020 2020 , -1} | 0 0 │ │ │ │ +0005ca00: 3020 2020 785f 3220 785f 3120 785f 3020 0 x_2 x_1 x_0 │ │ │ │ +0005ca10: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005ca20: 3020 2020 3020 2020 3020 2020 7c0a 7c20 0 0 0 |.| │ │ │ │ +0005ca30: 2020 2020 2020 2020 2020 2020 207b 2d31 {-1 │ │ │ │ +0005ca40: 2c20 2d31 7d20 7c20 3020 2020 3020 2020 , -1} | 0 0 │ │ │ │ +0005ca50: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005ca60: 785f 3220 785f 3120 785f 3020 3020 2020 x_2 x_1 x_0 0 │ │ │ │ +0005ca70: 3020 2020 3020 2020 3020 2020 7c0a 7c20 0 0 0 |.| │ │ │ │ +0005ca80: 2020 2020 2020 2020 2020 2020 207b 2d31 {-1 │ │ │ │ +0005ca90: 2c20 2d31 7d20 7c20 3020 2020 3020 2020 , -1} | 0 0 │ │ │ │ +0005caa0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005cab0: 3020 2020 3020 2020 3020 2020 785f 3220 0 0 0 x_2 │ │ │ │ +0005cac0: 785f 3120 785f 3020 3020 2020 7c0a 7c20 x_1 x_0 0 |.| │ │ │ │ +0005cad0: 2020 2020 2020 2020 2020 2020 207b 2d33 {-3 │ │ │ │ +0005cae0: 2c20 2d33 7d20 7c20 3020 2020 3020 2020 , -3} | 0 0 │ │ │ │ +0005caf0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005cb00: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005cb10: 3020 2020 3020 2020 3020 2020 7c0a 7c20 0 0 0 |.| │ │ │ │ +0005cb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005cb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005cb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005cb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005cb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005cb70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0005cb80: 5a5a 2020 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ -0005cb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005cba0: 2020 2020 2020 202f 205a 5a20 2020 2020 / ZZ │ │ │ │ -0005cbb0: 2020 2020 2020 2020 2020 205c 2020 2020 \ │ │ │ │ -0005cbc0: 2020 2020 2020 207c 0a7c 2020 2020 202d |.| - │ │ │ │ -0005cbd0: 2d2d 5b73 202e 2e73 202c 2078 202e 2e78 --[s ..s , x ..x │ │ │ │ -0005cbe0: 205d 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ -0005cbf0: 2020 2020 2020 207c 2d2d 2d5b 7320 2e2e |---[s .. │ │ │ │ -0005cc00: 7320 2c20 7820 2e2e 7820 5d7c 2020 2020 s , x ..x ]| │ │ │ │ -0005cc10: 2020 2020 2020 207c 0a7c 2020 2020 2031 |.| 1 │ │ │ │ -0005cc20: 3031 2020 3020 2020 3120 2020 3020 2020 01 0 1 0 │ │ │ │ -0005cc30: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0005cc40: 2020 2020 2020 207c 3130 3120 2030 2020 |101 0 │ │ │ │ -0005cc50: 2031 2020 2030 2020 2032 207c 3820 2020 1 0 2 |8 │ │ │ │ -0005cc60: 2020 2020 2020 207c 0a7c 6f36 203a 202d |.|o6 : - │ │ │ │ -0005cc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005cc80: 2d2d 2d6d 6f64 756c 652c 2071 756f 7469 ---module, quoti │ │ │ │ -0005cc90: 656e 7420 6f66 207c 2d2d 2d2d 2d2d 2d2d ent of |-------- │ │ │ │ -0005cca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 2020 2020 -----------| │ │ │ │ -0005ccb0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0005ccc0: 2020 2020 2020 2033 2020 2033 2020 2020 3 3 │ │ │ │ -0005ccd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005cce0: 2020 2020 2020 207c 2020 2020 2020 2020 | │ │ │ │ -0005ccf0: 3320 2020 3320 2020 2020 207c 2020 2020 3 3 | │ │ │ │ -0005cd00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0005cd10: 2020 2020 2028 7820 2c20 7820 2920 2020 (x , x ) │ │ │ │ -0005cd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005cd30: 2020 2020 2020 207c 2020 2020 2020 2878 | (x │ │ │ │ -0005cd40: 202c 2078 2029 2020 2020 207c 2020 2020 , x ) | │ │ │ │ -0005cd50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0005cd60: 2020 2020 2020 2030 2020 2031 2020 2020 0 1 │ │ │ │ -0005cd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005cd80: 2020 2020 2020 205c 2020 2020 2020 2020 \ │ │ │ │ -0005cd90: 3020 2020 3120 2020 2020 202f 2020 2020 0 1 / │ │ │ │ -0005cda0: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ +0005cb60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005cb70: 2020 2020 205a 5a20 2020 2020 2020 2020 ZZ │ │ │ │ +0005cb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005cb90: 2020 2020 2020 2020 2020 2020 2f20 5a5a / ZZ │ │ │ │ +0005cba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005cbb0: 5c20 2020 2020 2020 2020 2020 7c0a 7c20 \ |.| │ │ │ │ +0005cbc0: 2020 2020 2d2d 2d5b 7320 2e2e 7320 2c20 ---[s ..s , │ │ │ │ +0005cbd0: 7820 2e2e 7820 5d20 2020 2020 2020 2020 x ..x ] │ │ │ │ +0005cbe0: 2020 2020 2020 2020 2020 2020 7c2d 2d2d |--- │ │ │ │ +0005cbf0: 5b73 202e 2e73 202c 2078 202e 2e78 205d [s ..s , x ..x ] │ │ │ │ +0005cc00: 7c20 2020 2020 2020 2020 2020 7c0a 7c20 | |.| │ │ │ │ +0005cc10: 2020 2020 3130 3120 2030 2020 2031 2020 101 0 1 │ │ │ │ +0005cc20: 2030 2020 2032 2020 2020 2020 2020 2020 0 2 │ │ │ │ +0005cc30: 2020 2020 2020 2020 2020 2020 7c31 3031 |101 │ │ │ │ +0005cc40: 2020 3020 2020 3120 2020 3020 2020 3220 0 1 0 2 │ │ │ │ +0005cc50: 7c38 2020 2020 2020 2020 2020 7c0a 7c6f |8 |.|o │ │ │ │ +0005cc60: 3620 3a20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 6 : ------------ │ │ │ │ +0005cc70: 2d2d 2d2d 2d2d 2d2d 6d6f 6475 6c65 2c20 --------module, │ │ │ │ +0005cc80: 7175 6f74 6965 6e74 206f 6620 7c2d 2d2d quotient of |--- │ │ │ │ +0005cc90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0005cca0: 7c20 2020 2020 2020 2020 2020 7c0a 7c20 | |.| │ │ │ │ +0005ccb0: 2020 2020 2020 2020 2020 2020 3320 2020 3 │ │ │ │ +0005ccc0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0005ccd0: 2020 2020 2020 2020 2020 2020 7c20 2020 | │ │ │ │ +0005cce0: 2020 2020 2033 2020 2033 2020 2020 2020 3 3 │ │ │ │ +0005ccf0: 7c20 2020 2020 2020 2020 2020 7c0a 7c20 | |.| │ │ │ │ +0005cd00: 2020 2020 2020 2020 2020 2878 202c 2078 (x , x │ │ │ │ +0005cd10: 2029 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0005cd20: 2020 2020 2020 2020 2020 2020 7c20 2020 | │ │ │ │ +0005cd30: 2020 2028 7820 2c20 7820 2920 2020 2020 (x , x ) │ │ │ │ +0005cd40: 7c20 2020 2020 2020 2020 2020 7c0a 7c20 | |.| │ │ │ │ +0005cd50: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +0005cd60: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0005cd70: 2020 2020 2020 2020 2020 2020 5c20 2020 \ │ │ │ │ +0005cd80: 2020 2020 2030 2020 2031 2020 2020 2020 0 1 │ │ │ │ +0005cd90: 2f20 2020 2020 2020 2020 2020 7c0a 7c2d / |.|- │ │ │ │ +0005cda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005cdb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005cdc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005cdd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005cde0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005cdf0: 2d2d 2d2d 2d2d 2d7c 0a7c 3020 2020 3020 -------|.|0 0 │ │ │ │ -0005ce00: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -0005ce10: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -0005ce20: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ -0005ce30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ce40: 2020 2020 2020 207c 0a7c 785f 3120 785f |.|x_1 x_ │ │ │ │ -0005ce50: 3020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 0 │ │ │ │ -0005ce60: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -0005ce70: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ -0005ce80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ce90: 2020 2020 2020 207c 0a7c 3020 2020 3020 |.|0 0 │ │ │ │ -0005cea0: 2020 785f 3220 785f 3120 785f 3020 3020 x_2 x_1 x_0 0 │ │ │ │ -0005ceb0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -0005cec0: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ -0005ced0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005cee0: 2020 2020 2020 207c 0a7c 3020 2020 3020 |.|0 0 │ │ │ │ -0005cef0: 2020 3020 2020 3020 2020 3020 2020 785f 0 0 0 x_ │ │ │ │ -0005cf00: 3220 785f 3120 785f 3020 3020 2020 3020 2 x_1 x_0 0 0 │ │ │ │ -0005cf10: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ -0005cf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005cf30: 2020 2020 2020 207c 0a7c 3020 2020 3020 |.|0 0 │ │ │ │ -0005cf40: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -0005cf50: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -0005cf60: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ -0005cf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005cf80: 2020 2020 2020 207c 0a7c 3020 2020 3020 |.|0 0 │ │ │ │ -0005cf90: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -0005cfa0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -0005cfb0: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ -0005cfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005cfd0: 2020 2020 2020 207c 0a7c 3020 2020 3020 |.|0 0 │ │ │ │ -0005cfe0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -0005cff0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -0005d000: 2020 3020 2020 7c20 2020 2020 2020 2020 0 | │ │ │ │ -0005d010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d020: 2020 2020 2020 207c 0a7c 3020 2020 3020 |.|0 0 │ │ │ │ -0005d030: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -0005d040: 2020 3020 2020 3020 2020 785f 3220 785f 0 0 x_2 x_ │ │ │ │ -0005d050: 3120 785f 3020 7c20 2020 2020 2020 2020 1 x_0 | │ │ │ │ -0005d060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d070: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005cde0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c30 ------------|.|0 │ │ │ │ +0005cdf0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +0005ce00: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +0005ce10: 2020 2030 2020 2030 2020 207c 2020 2020 0 0 | │ │ │ │ +0005ce20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ce30: 2020 2020 2020 2020 2020 2020 7c0a 7c78 |.|x │ │ │ │ +0005ce40: 5f31 2078 5f30 2030 2020 2030 2020 2030 _1 x_0 0 0 0 │ │ │ │ +0005ce50: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +0005ce60: 2020 2030 2020 2030 2020 207c 2020 2020 0 0 | │ │ │ │ +0005ce70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ce80: 2020 2020 2020 2020 2020 2020 7c0a 7c30 |.|0 │ │ │ │ +0005ce90: 2020 2030 2020 2078 5f32 2078 5f31 2078 0 x_2 x_1 x │ │ │ │ +0005cea0: 5f30 2030 2020 2030 2020 2030 2020 2030 _0 0 0 0 0 │ │ │ │ +0005ceb0: 2020 2030 2020 2030 2020 207c 2020 2020 0 0 | │ │ │ │ +0005cec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ced0: 2020 2020 2020 2020 2020 2020 7c0a 7c30 |.|0 │ │ │ │ +0005cee0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +0005cef0: 2020 2078 5f32 2078 5f31 2078 5f30 2030 x_2 x_1 x_0 0 │ │ │ │ +0005cf00: 2020 2030 2020 2030 2020 207c 2020 2020 0 0 | │ │ │ │ +0005cf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005cf20: 2020 2020 2020 2020 2020 2020 7c0a 7c30 |.|0 │ │ │ │ +0005cf30: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +0005cf40: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +0005cf50: 2020 2030 2020 2030 2020 207c 2020 2020 0 0 | │ │ │ │ +0005cf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005cf70: 2020 2020 2020 2020 2020 2020 7c0a 7c30 |.|0 │ │ │ │ +0005cf80: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +0005cf90: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +0005cfa0: 2020 2030 2020 2030 2020 207c 2020 2020 0 0 | │ │ │ │ +0005cfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005cfc0: 2020 2020 2020 2020 2020 2020 7c0a 7c30 |.|0 │ │ │ │ +0005cfd0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +0005cfe0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +0005cff0: 2020 2030 2020 2030 2020 207c 2020 2020 0 0 | │ │ │ │ +0005d000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005d010: 2020 2020 2020 2020 2020 2020 7c0a 7c30 |.|0 │ │ │ │ +0005d020: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +0005d030: 2020 2030 2020 2030 2020 2030 2020 2078 0 0 0 x │ │ │ │ +0005d040: 5f32 2078 5f31 2078 5f30 207c 2020 2020 _2 x_1 x_0 | │ │ │ │ +0005d050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005d060: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0005d070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005d080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005d090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005d0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005d0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005d0c0: 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a 2074 -------+.|i7 : t │ │ │ │ -0005d0d0: 616c 6c79 2064 6567 7265 6573 2045 2020 ally degrees E │ │ │ │ +0005d0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0005d0c0: 3720 3a20 7461 6c6c 7920 6465 6772 6565 7 : tally degree │ │ │ │ +0005d0d0: 7320 4520 2020 2020 2020 2020 2020 2020 s E │ │ │ │ 0005d0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d110: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005d100: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005d110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d160: 2020 2020 2020 207c 0a7c 6f37 203d 2054 |.|o7 = T │ │ │ │ -0005d170: 616c 6c79 7b7b 2d31 2c20 2d31 7d20 3d3e ally{{-1, -1} => │ │ │ │ -0005d180: 2033 7d20 2020 2020 2020 2020 2020 2020 3} │ │ │ │ +0005d150: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0005d160: 3720 3d20 5461 6c6c 797b 7b2d 312c 202d 7 = Tally{{-1, - │ │ │ │ +0005d170: 317d 203d 3e20 337d 2020 2020 2020 2020 1} => 3} │ │ │ │ +0005d180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d1b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0005d1c0: 2020 2020 207b 2d32 2c20 2d32 7d20 3d3e {-2, -2} => │ │ │ │ -0005d1d0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0005d1a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005d1b0: 2020 2020 2020 2020 2020 7b2d 322c 202d {-2, - │ │ │ │ +0005d1c0: 327d 203d 3e20 3320 2020 2020 2020 2020 2} => 3 │ │ │ │ +0005d1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d200: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0005d210: 2020 2020 207b 2d33 2c20 2d33 7d20 3d3e {-3, -3} => │ │ │ │ -0005d220: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0005d1f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005d200: 2020 2020 2020 2020 2020 7b2d 332c 202d {-3, - │ │ │ │ +0005d210: 337d 203d 3e20 3120 2020 2020 2020 2020 3} => 1 │ │ │ │ +0005d220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d250: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0005d260: 2020 2020 207b 302c 2030 7d20 3d3e 2031 {0, 0} => 1 │ │ │ │ +0005d240: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005d250: 2020 2020 2020 2020 2020 7b30 2c20 307d {0, 0} │ │ │ │ +0005d260: 203d 3e20 3120 2020 2020 2020 2020 2020 => 1 │ │ │ │ 0005d270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d2a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005d290: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005d2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d2f0: 2020 2020 2020 207c 0a7c 6f37 203a 2054 |.|o7 : T │ │ │ │ -0005d300: 616c 6c79 2020 2020 2020 2020 2020 2020 ally │ │ │ │ +0005d2e0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0005d2f0: 3720 3a20 5461 6c6c 7920 2020 2020 2020 7 : Tally │ │ │ │ +0005d300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d340: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005d330: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0005d340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005d350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005d360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005d370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005d380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005d390: 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a 2061 -------+.|i8 : a │ │ │ │ -0005d3a0: 6e6e 6968 696c 6174 6f72 2045 2020 2020 nnihilator E │ │ │ │ +0005d380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0005d390: 3820 3a20 616e 6e69 6869 6c61 746f 7220 8 : annihilator │ │ │ │ +0005d3a0: 4520 2020 2020 2020 2020 2020 2020 2020 E │ │ │ │ 0005d3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d3e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005d3d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005d3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d430: 2020 2020 2020 207c 0a7c 6f38 203d 2069 |.|o8 = i │ │ │ │ -0005d440: 6465 616c 2028 7820 2c20 7820 2c20 7820 deal (x , x , x │ │ │ │ -0005d450: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0005d420: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0005d430: 3820 3d20 6964 6561 6c20 2878 202c 2078 8 = ideal (x , x │ │ │ │ +0005d440: 202c 2078 2029 2020 2020 2020 2020 2020 , x ) │ │ │ │ +0005d450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d480: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0005d490: 2020 2020 2020 2032 2020 2031 2020 2030 2 1 0 │ │ │ │ +0005d470: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005d480: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +0005d490: 3120 2020 3020 2020 2020 2020 2020 2020 1 0 │ │ │ │ 0005d4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d4d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005d4c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005d4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d520: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0005d530: 2020 2020 2020 2020 205a 5a20 2020 2020 ZZ │ │ │ │ +0005d510: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005d520: 2020 2020 2020 2020 2020 2020 2020 5a5a ZZ │ │ │ │ +0005d530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d570: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0005d580: 2020 2020 2020 2020 2d2d 2d5b 7320 2e2e ---[s .. │ │ │ │ -0005d590: 7320 2c20 7820 2e2e 7820 5d20 2020 2020 s , x ..x ] │ │ │ │ +0005d560: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005d570: 2020 2020 2020 2020 2020 2020 202d 2d2d --- │ │ │ │ +0005d580: 5b73 202e 2e73 202c 2078 202e 2e78 205d [s ..s , x ..x ] │ │ │ │ +0005d590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d5c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0005d5d0: 2020 2020 2020 2020 3130 3120 2030 2020 101 0 │ │ │ │ -0005d5e0: 2031 2020 2030 2020 2032 2020 2020 2020 1 0 2 │ │ │ │ +0005d5b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005d5c0: 2020 2020 2020 2020 2020 2020 2031 3031 101 │ │ │ │ +0005d5d0: 2020 3020 2020 3120 2020 3020 2020 3220 0 1 0 2 │ │ │ │ +0005d5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d610: 2020 2020 2020 207c 0a7c 6f38 203a 2049 |.|o8 : I │ │ │ │ -0005d620: 6465 616c 206f 6620 2d2d 2d2d 2d2d 2d2d deal of -------- │ │ │ │ -0005d630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d20 2020 2020 ----------- │ │ │ │ +0005d600: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0005d610: 3820 3a20 4964 6561 6c20 6f66 202d 2d2d 8 : Ideal of --- │ │ │ │ +0005d620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0005d630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d660: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0005d670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d680: 3320 2020 3320 2020 2020 2020 2020 2020 3 3 │ │ │ │ +0005d650: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005d660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005d670: 2020 2020 2033 2020 2033 2020 2020 2020 3 3 │ │ │ │ +0005d680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d6b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0005d6c0: 2020 2020 2020 2020 2020 2020 2020 2878 (x │ │ │ │ -0005d6d0: 202c 2078 2029 2020 2020 2020 2020 2020 , x ) │ │ │ │ +0005d6a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005d6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005d6c0: 2020 2028 7820 2c20 7820 2920 2020 2020 (x , x ) │ │ │ │ +0005d6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d700: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0005d710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d720: 3020 2020 3120 2020 2020 2020 2020 2020 0 1 │ │ │ │ +0005d6f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0005d700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005d710: 2020 2020 2030 2020 2031 2020 2020 2020 0 1 │ │ │ │ +0005d720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d750: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005d740: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0005d750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005d760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005d770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005d780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005d790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005d7a0: 2d2d 2d2d 2d2d 2d2b 0a0a 416e 2065 7861 -------+..An exa │ │ │ │ -0005d7b0: 6d70 6c65 2077 6865 7265 2074 6865 2062 mple where the b │ │ │ │ -0005d7c0: 7569 6c74 2d69 6e20 676c 6f62 616c 2045 uilt-in global E │ │ │ │ -0005d7d0: 7874 2069 7320 6861 7264 2074 6f20 636f xt is hard to co │ │ │ │ -0005d7e0: 6d70 6172 6520 6469 7265 6374 6c79 2077 mpare directly w │ │ │ │ -0005d7f0: 6974 6820 6f75 720a 6d65 7468 6f64 206f ith our.method o │ │ │ │ -0005d800: 6620 636f 6d70 7574 6174 696f 6e3a 2049 f computation: I │ │ │ │ -0005d810: 202a 6775 6573 732a 2074 6861 7420 7468 *guess* that th │ │ │ │ -0005d820: 6520 7369 676e 2063 686f 6963 6573 2069 e sign choices i │ │ │ │ -0005d830: 6e20 7468 6520 6275 696c 742d 696e 2061 n the built-in a │ │ │ │ -0005d840: 6d6f 756e 740a 6573 7365 6e74 6961 6c6c mount.essentiall │ │ │ │ -0005d850: 7920 746f 2061 2063 6861 6e67 6520 6f66 y to a change of │ │ │ │ -0005d860: 2076 6172 6961 626c 6520 696e 2074 6865 variable in the │ │ │ │ -0005d870: 206e 6577 2076 6172 6961 626c 6573 2c20 new variables, │ │ │ │ -0005d880: 616e 6420 7370 6f69 6c20 616e 2065 6173 and spoil an eas │ │ │ │ -0005d890: 790a 636f 6d70 6172 6973 6f6e 2e20 4275 y.comparison. Bu │ │ │ │ -0005d8a0: 7420 666f 7220 6578 616d 706c 6520 7468 t for example th │ │ │ │ -0005d8b0: 6520 6269 2d67 7261 6465 6420 4265 7474 e bi-graded Bett │ │ │ │ -0005d8c0: 6920 6e75 6d62 6572 7320 6172 6520 6571 i numbers are eq │ │ │ │ -0005d8d0: 7561 6c2e 2074 6869 7320 7365 656d 730a ual. this seems. │ │ │ │ -0005d8e0: 746f 2073 7461 7274 2077 6974 6820 633d to start with c= │ │ │ │ -0005d8f0: 332e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 3...+----------- │ │ │ │ +0005d790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a41 ------------+..A │ │ │ │ +0005d7a0: 6e20 6578 616d 706c 6520 7768 6572 6520 n example where │ │ │ │ +0005d7b0: 7468 6520 6275 696c 742d 696e 2067 6c6f the built-in glo │ │ │ │ +0005d7c0: 6261 6c20 4578 7420 6973 2068 6172 6420 bal Ext is hard │ │ │ │ +0005d7d0: 746f 2063 6f6d 7061 7265 2064 6972 6563 to compare direc │ │ │ │ +0005d7e0: 746c 7920 7769 7468 206f 7572 0a6d 6574 tly with our.met │ │ │ │ +0005d7f0: 686f 6420 6f66 2063 6f6d 7075 7461 7469 hod of computati │ │ │ │ +0005d800: 6f6e 3a20 4920 2a67 7565 7373 2a20 7468 on: I *guess* th │ │ │ │ +0005d810: 6174 2074 6865 2073 6967 6e20 6368 6f69 at the sign choi │ │ │ │ +0005d820: 6365 7320 696e 2074 6865 2062 7569 6c74 ces in the built │ │ │ │ +0005d830: 2d69 6e20 616d 6f75 6e74 0a65 7373 656e -in amount.essen │ │ │ │ +0005d840: 7469 616c 6c79 2074 6f20 6120 6368 616e tially to a chan │ │ │ │ +0005d850: 6765 206f 6620 7661 7269 6162 6c65 2069 ge of variable i │ │ │ │ +0005d860: 6e20 7468 6520 6e65 7720 7661 7269 6162 n the new variab │ │ │ │ +0005d870: 6c65 732c 2061 6e64 2073 706f 696c 2061 les, and spoil a │ │ │ │ +0005d880: 6e20 6561 7379 0a63 6f6d 7061 7269 736f n easy.compariso │ │ │ │ +0005d890: 6e2e 2042 7574 2066 6f72 2065 7861 6d70 n. But for examp │ │ │ │ +0005d8a0: 6c65 2074 6865 2062 692d 6772 6164 6564 le the bi-graded │ │ │ │ +0005d8b0: 2042 6574 7469 206e 756d 6265 7273 2061 Betti numbers a │ │ │ │ +0005d8c0: 7265 2065 7175 616c 2e20 7468 6973 2073 re equal. this s │ │ │ │ +0005d8d0: 6565 6d73 0a74 6f20 7374 6172 7420 7769 eems.to start wi │ │ │ │ +0005d8e0: 7468 2063 3d33 2e0a 0a2b 2d2d 2d2d 2d2d th c=3...+------ │ │ │ │ +0005d8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005d900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005d910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005d920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005d930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005d940: 2d2d 2b0a 7c69 3920 3a20 7365 7452 616e --+.|i9 : setRan │ │ │ │ -0005d950: 646f 6d53 6565 6420 3020 2020 2020 2020 domSeed 0 │ │ │ │ +0005d930: 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a 2073 -------+.|i9 : s │ │ │ │ +0005d940: 6574 5261 6e64 6f6d 5365 6564 2030 2020 etRandomSeed 0 │ │ │ │ +0005d950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d990: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005d980: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005d990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d9e0: 2020 7c0a 7c6f 3920 3d20 3020 2020 2020 |.|o9 = 0 │ │ │ │ +0005d9d0: 2020 2020 2020 207c 0a7c 6f39 203d 2030 |.|o9 = 0 │ │ │ │ +0005d9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005da00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005da10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005da20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005da30: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0005da20: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005da30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005da40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005da50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005da60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005da70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005da80: 2d2d 2b0a 7c69 3130 203a 206e 203d 2033 --+.|i10 : n = 3 │ │ │ │ +0005da70: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 -------+.|i10 : │ │ │ │ +0005da80: 6e20 3d20 3320 2020 2020 2020 2020 2020 n = 3 │ │ │ │ 0005da90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005daa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dad0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005dac0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005dad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005daf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005db00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005db10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005db20: 2020 7c0a 7c6f 3130 203d 2033 2020 2020 |.|o10 = 3 │ │ │ │ +0005db10: 2020 2020 2020 207c 0a7c 6f31 3020 3d20 |.|o10 = │ │ │ │ +0005db20: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 0005db30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005db40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005db50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005db60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005db70: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0005db60: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005db70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005db80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005db90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005dba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005dbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005dbc0: 2d2d 2b0a 7c69 3131 203a 2063 203d 2033 --+.|i11 : c = 3 │ │ │ │ +0005dbb0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 3a20 -------+.|i11 : │ │ │ │ +0005dbc0: 6320 3d20 3320 2020 2020 2020 2020 2020 c = 3 │ │ │ │ 0005dbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dc10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005dc00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005dc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dc60: 2020 7c0a 7c6f 3131 203d 2033 2020 2020 |.|o11 = 3 │ │ │ │ +0005dc50: 2020 2020 2020 207c 0a7c 6f31 3120 3d20 |.|o11 = │ │ │ │ +0005dc60: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 0005dc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dcb0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0005dca0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005dcb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005dcc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005dcd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005dce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005dcf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005dd00: 2d2d 2b0a 7c69 3132 203a 206b 6b20 3d20 --+.|i12 : kk = │ │ │ │ -0005dd10: 5a5a 2f31 3031 2020 2020 2020 2020 2020 ZZ/101 │ │ │ │ +0005dcf0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3220 3a20 -------+.|i12 : │ │ │ │ +0005dd00: 6b6b 203d 205a 5a2f 3130 3120 2020 2020 kk = ZZ/101 │ │ │ │ +0005dd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dd50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005dd40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005dd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dda0: 2020 7c0a 7c6f 3132 203d 206b 6b20 2020 |.|o12 = kk │ │ │ │ +0005dd90: 2020 2020 2020 207c 0a7c 6f31 3220 3d20 |.|o12 = │ │ │ │ +0005dda0: 6b6b 2020 2020 2020 2020 2020 2020 2020 kk │ │ │ │ 0005ddb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ddc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ddd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ddf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005dde0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005ddf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005de00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005de10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005de20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005de30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005de40: 2020 7c0a 7c6f 3132 203a 2051 756f 7469 |.|o12 : Quoti │ │ │ │ -0005de50: 656e 7452 696e 6720 2020 2020 2020 2020 entRing │ │ │ │ +0005de30: 2020 2020 2020 207c 0a7c 6f31 3220 3a20 |.|o12 : │ │ │ │ +0005de40: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ +0005de50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005de60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005de70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005de80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005de90: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0005de80: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005de90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005dea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005deb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005dec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ded0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005dee0: 2d2d 2b0a 7c69 3133 203a 2052 203d 206b --+.|i13 : R = k │ │ │ │ -0005def0: 6b5b 785f 302e 2e78 5f28 6e2d 3129 5d20 k[x_0..x_(n-1)] │ │ │ │ +0005ded0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3320 3a20 -------+.|i13 : │ │ │ │ +0005dee0: 5220 3d20 6b6b 5b78 5f30 2e2e 785f 286e R = kk[x_0..x_(n │ │ │ │ +0005def0: 2d31 295d 2020 2020 2020 2020 2020 2020 -1)] │ │ │ │ 0005df00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005df10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005df20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005df30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005df20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005df30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005df40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005df50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005df60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005df70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005df80: 2020 7c0a 7c6f 3133 203d 2052 2020 2020 |.|o13 = R │ │ │ │ +0005df70: 2020 2020 2020 207c 0a7c 6f31 3320 3d20 |.|o13 = │ │ │ │ +0005df80: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 0005df90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dfd0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005dfc0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005dfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e020: 2020 7c0a 7c6f 3133 203a 2050 6f6c 796e |.|o13 : Polyn │ │ │ │ -0005e030: 6f6d 6961 6c52 696e 6720 2020 2020 2020 omialRing │ │ │ │ +0005e010: 2020 2020 2020 207c 0a7c 6f31 3320 3a20 |.|o13 : │ │ │ │ +0005e020: 506f 6c79 6e6f 6d69 616c 5269 6e67 2020 PolynomialRing │ │ │ │ +0005e030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e070: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0005e060: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005e070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005e0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005e0c0: 2d2d 2b0a 7c69 3134 203a 2049 203d 2069 --+.|i14 : I = i │ │ │ │ -0005e0d0: 6465 616c 2061 7070 6c79 2863 2c20 692d deal apply(c, i- │ │ │ │ -0005e0e0: 3e52 5f69 5e32 2920 2020 2020 2020 2020 >R_i^2) │ │ │ │ +0005e0b0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3420 3a20 -------+.|i14 : │ │ │ │ +0005e0c0: 4920 3d20 6964 6561 6c20 6170 706c 7928 I = ideal apply( │ │ │ │ +0005e0d0: 632c 2069 2d3e 525f 695e 3229 2020 2020 c, i->R_i^2) │ │ │ │ +0005e0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e110: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005e100: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005e110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e160: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0005e170: 2020 2032 2020 2032 2020 2032 2020 2020 2 2 2 │ │ │ │ +0005e150: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005e160: 2020 2020 2020 2020 3220 2020 3220 2020 2 2 │ │ │ │ +0005e170: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0005e180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e1b0: 2020 7c0a 7c6f 3134 203d 2069 6465 616c |.|o14 = ideal │ │ │ │ -0005e1c0: 2028 7820 2c20 7820 2c20 7820 2920 2020 (x , x , x ) │ │ │ │ +0005e1a0: 2020 2020 2020 207c 0a7c 6f31 3420 3d20 |.|o14 = │ │ │ │ +0005e1b0: 6964 6561 6c20 2878 202c 2078 202c 2078 ideal (x , x , x │ │ │ │ +0005e1c0: 2029 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 0005e1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e200: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0005e210: 2020 2030 2020 2031 2020 2032 2020 2020 0 1 2 │ │ │ │ +0005e1f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005e200: 2020 2020 2020 2020 3020 2020 3120 2020 0 1 │ │ │ │ +0005e210: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0005e220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e250: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005e240: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005e250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e2a0: 2020 7c0a 7c6f 3134 203a 2049 6465 616c |.|o14 : Ideal │ │ │ │ -0005e2b0: 206f 6620 5220 2020 2020 2020 2020 2020 of R │ │ │ │ +0005e290: 2020 2020 2020 207c 0a7c 6f31 3420 3a20 |.|o14 : │ │ │ │ +0005e2a0: 4964 6561 6c20 6f66 2052 2020 2020 2020 Ideal of R │ │ │ │ +0005e2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e2f0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0005e2e0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005e2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005e330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005e340: 2d2d 2b0a 7c69 3135 203a 2066 6620 3d20 --+.|i15 : ff = │ │ │ │ -0005e350: 6765 6e73 2049 2020 2020 2020 2020 2020 gens I │ │ │ │ +0005e330: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3520 3a20 -------+.|i15 : │ │ │ │ +0005e340: 6666 203d 2067 656e 7320 4920 2020 2020 ff = gens I │ │ │ │ +0005e350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e390: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005e380: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005e390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e3e0: 2020 7c0a 7c6f 3135 203d 207c 2078 5f30 |.|o15 = | x_0 │ │ │ │ -0005e3f0: 5e32 2078 5f31 5e32 2078 5f32 5e32 207c ^2 x_1^2 x_2^2 | │ │ │ │ +0005e3d0: 2020 2020 2020 207c 0a7c 6f31 3520 3d20 |.|o15 = │ │ │ │ +0005e3e0: 7c20 785f 305e 3220 785f 315e 3220 785f | x_0^2 x_1^2 x_ │ │ │ │ +0005e3f0: 325e 3220 7c20 2020 2020 2020 2020 2020 2^2 | │ │ │ │ 0005e400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e430: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005e420: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005e430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e480: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0005e490: 2020 2031 2020 2020 2020 3320 2020 2020 1 3 │ │ │ │ +0005e470: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005e480: 2020 2020 2020 2020 3120 2020 2020 2033 1 3 │ │ │ │ +0005e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e4d0: 2020 7c0a 7c6f 3135 203a 204d 6174 7269 |.|o15 : Matri │ │ │ │ -0005e4e0: 7820 5220 203c 2d2d 2052 2020 2020 2020 x R <-- R │ │ │ │ +0005e4c0: 2020 2020 2020 207c 0a7c 6f31 3520 3a20 |.|o15 : │ │ │ │ +0005e4d0: 4d61 7472 6978 2052 2020 3c2d 2d20 5220 Matrix R <-- R │ │ │ │ +0005e4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e520: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0005e510: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005e520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005e560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005e570: 2d2d 2b0a 7c69 3136 203a 2052 6261 7220 --+.|i16 : Rbar │ │ │ │ -0005e580: 3d20 522f 4920 2020 2020 2020 2020 2020 = R/I │ │ │ │ +0005e560: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3620 3a20 -------+.|i16 : │ │ │ │ +0005e570: 5262 6172 203d 2052 2f49 2020 2020 2020 Rbar = R/I │ │ │ │ +0005e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e5c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005e5b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005e5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e610: 2020 7c0a 7c6f 3136 203d 2052 6261 7220 |.|o16 = Rbar │ │ │ │ +0005e600: 2020 2020 2020 207c 0a7c 6f31 3620 3d20 |.|o16 = │ │ │ │ +0005e610: 5262 6172 2020 2020 2020 2020 2020 2020 Rbar │ │ │ │ 0005e620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e660: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005e650: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005e660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e6b0: 2020 7c0a 7c6f 3136 203a 2051 756f 7469 |.|o16 : Quoti │ │ │ │ -0005e6c0: 656e 7452 696e 6720 2020 2020 2020 2020 entRing │ │ │ │ +0005e6a0: 2020 2020 2020 207c 0a7c 6f31 3620 3a20 |.|o16 : │ │ │ │ +0005e6b0: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ +0005e6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e700: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0005e6f0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005e700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005e740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005e750: 2d2d 2b0a 7c69 3137 203a 2062 6172 203d --+.|i17 : bar = │ │ │ │ -0005e760: 206d 6170 2852 6261 722c 2052 2920 2020 map(Rbar, R) │ │ │ │ +0005e740: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3720 3a20 -------+.|i17 : │ │ │ │ +0005e750: 6261 7220 3d20 6d61 7028 5262 6172 2c20 bar = map(Rbar, │ │ │ │ +0005e760: 5229 2020 2020 2020 2020 2020 2020 2020 R) │ │ │ │ 0005e770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e7a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005e790: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005e7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e7f0: 2020 7c0a 7c6f 3137 203d 206d 6170 2028 |.|o17 = map ( │ │ │ │ -0005e800: 5262 6172 2c20 522c 207b 7820 2c20 7820 Rbar, R, {x , x │ │ │ │ -0005e810: 2c20 7820 7d29 2020 2020 2020 2020 2020 , x }) │ │ │ │ +0005e7e0: 2020 2020 2020 207c 0a7c 6f31 3720 3d20 |.|o17 = │ │ │ │ +0005e7f0: 6d61 7020 2852 6261 722c 2052 2c20 7b78 map (Rbar, R, {x │ │ │ │ +0005e800: 202c 2078 202c 2078 207d 2920 2020 2020 , x , x }) │ │ │ │ +0005e810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e840: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0005e850: 2020 2020 2020 2020 2020 2030 2020 2031 0 1 │ │ │ │ -0005e860: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0005e830: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005e840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005e850: 3020 2020 3120 2020 3220 2020 2020 2020 0 1 2 │ │ │ │ +0005e860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e890: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005e880: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005e890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e8e0: 2020 7c0a 7c6f 3137 203a 2052 696e 674d |.|o17 : RingM │ │ │ │ -0005e8f0: 6170 2052 6261 7220 3c2d 2d20 5220 2020 ap Rbar <-- R │ │ │ │ +0005e8d0: 2020 2020 2020 207c 0a7c 6f31 3720 3a20 |.|o17 : │ │ │ │ +0005e8e0: 5269 6e67 4d61 7020 5262 6172 203c 2d2d RingMap Rbar <-- │ │ │ │ +0005e8f0: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 0005e900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e930: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0005e920: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005e930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005e970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005e980: 2d2d 2b0a 7c69 3138 203a 204b 203d 2063 --+.|i18 : K = c │ │ │ │ -0005e990: 6f6b 6572 2076 6172 7320 5262 6172 2020 oker vars Rbar │ │ │ │ +0005e970: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3820 3a20 -------+.|i18 : │ │ │ │ +0005e980: 4b20 3d20 636f 6b65 7220 7661 7273 2052 K = coker vars R │ │ │ │ +0005e990: 6261 7220 2020 2020 2020 2020 2020 2020 bar │ │ │ │ 0005e9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e9d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005e9c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005e9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ea00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ea10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ea20: 2020 7c0a 7c6f 3138 203d 2063 6f6b 6572 |.|o18 = coker │ │ │ │ -0005ea30: 6e65 6c20 7c20 785f 3020 785f 3120 785f nel | x_0 x_1 x_ │ │ │ │ -0005ea40: 3220 7c20 2020 2020 2020 2020 2020 2020 2 | │ │ │ │ +0005ea10: 2020 2020 2020 207c 0a7c 6f31 3820 3d20 |.|o18 = │ │ │ │ +0005ea20: 636f 6b65 726e 656c 207c 2078 5f30 2078 cokernel | x_0 x │ │ │ │ +0005ea30: 5f31 2078 5f32 207c 2020 2020 2020 2020 _1 x_2 | │ │ │ │ +0005ea40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ea50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ea60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ea70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005ea60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005ea70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ea80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ea90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005eaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eac0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0005ead0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eae0: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ +0005eab0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005eac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ead0: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +0005eae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005eaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eb10: 2020 7c0a 7c6f 3138 203a 2052 6261 722d |.|o18 : Rbar- │ │ │ │ -0005eb20: 6d6f 6475 6c65 2c20 7175 6f74 6965 6e74 module, quotient │ │ │ │ -0005eb30: 206f 6620 5262 6172 2020 2020 2020 2020 of Rbar │ │ │ │ +0005eb00: 2020 2020 2020 207c 0a7c 6f31 3820 3a20 |.|o18 : │ │ │ │ +0005eb10: 5262 6172 2d6d 6f64 756c 652c 2071 756f Rbar-module, quo │ │ │ │ +0005eb20: 7469 656e 7420 6f66 2052 6261 7220 2020 tient of Rbar │ │ │ │ +0005eb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005eb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eb60: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0005eb50: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005eb60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005eb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005eb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005eb90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005eba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ebb0: 2d2d 2b0a 7c69 3139 203a 204d 6261 7220 --+.|i19 : Mbar │ │ │ │ -0005ebc0: 3d20 7072 756e 6520 636f 6b65 7220 7261 = prune coker ra │ │ │ │ -0005ebd0: 6e64 6f6d 2852 6261 725e 322c 2052 6261 ndom(Rbar^2, Rba │ │ │ │ -0005ebe0: 725e 7b2d 322c 2d32 7d29 2020 2020 2020 r^{-2,-2}) │ │ │ │ -0005ebf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ec00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005eba0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3920 3a20 -------+.|i19 : │ │ │ │ +0005ebb0: 4d62 6172 203d 2070 7275 6e65 2063 6f6b Mbar = prune cok │ │ │ │ +0005ebc0: 6572 2072 616e 646f 6d28 5262 6172 5e32 er random(Rbar^2 │ │ │ │ +0005ebd0: 2c20 5262 6172 5e7b 2d32 2c2d 327d 2920 , Rbar^{-2,-2}) │ │ │ │ +0005ebe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ebf0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005ec00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ec10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ec20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ec30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ec40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ec50: 2020 7c0a 7c6f 3139 203d 2063 6f6b 6572 |.|o19 = coker │ │ │ │ -0005ec60: 6e65 6c20 7c20 785f 3078 5f31 2b31 3578 nel | x_0x_1+15x │ │ │ │ -0005ec70: 5f30 785f 322b 3338 785f 3178 5f32 2034 _0x_2+38x_1x_2 4 │ │ │ │ -0005ec80: 3578 5f30 785f 322b 3239 785f 3178 5f32 5x_0x_2+29x_1x_2 │ │ │ │ -0005ec90: 2020 2020 2020 2020 7c20 2020 2020 2020 | │ │ │ │ -0005eca0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0005ecb0: 2020 2020 7c20 3335 785f 3078 5f32 2d33 | 35x_0x_2-3 │ │ │ │ -0005ecc0: 3078 5f31 785f 3220 2020 2020 2020 2078 0x_1x_2 x │ │ │ │ -0005ecd0: 5f30 785f 312d 3130 785f 3078 5f32 2d32 _0x_1-10x_0x_2-2 │ │ │ │ -0005ece0: 3278 5f31 785f 3220 7c20 2020 2020 2020 2x_1x_2 | │ │ │ │ -0005ecf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005ec40: 2020 2020 2020 207c 0a7c 6f31 3920 3d20 |.|o19 = │ │ │ │ +0005ec50: 636f 6b65 726e 656c 207c 2078 5f30 785f cokernel | x_0x_ │ │ │ │ +0005ec60: 312b 3135 785f 3078 5f32 2b33 3878 5f31 1+15x_0x_2+38x_1 │ │ │ │ +0005ec70: 785f 3220 3435 785f 3078 5f32 2b32 3978 x_2 45x_0x_2+29x │ │ │ │ +0005ec80: 5f31 785f 3220 2020 2020 2020 207c 2020 _1x_2 | │ │ │ │ +0005ec90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005eca0: 2020 2020 2020 2020 207c 2033 3578 5f30 | 35x_0 │ │ │ │ +0005ecb0: 785f 322d 3330 785f 3178 5f32 2020 2020 x_2-30x_1x_2 │ │ │ │ +0005ecc0: 2020 2020 785f 3078 5f31 2d31 3078 5f30 x_0x_1-10x_0 │ │ │ │ +0005ecd0: 785f 322d 3232 785f 3178 5f32 207c 2020 x_2-22x_1x_2 | │ │ │ │ +0005ece0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005ecf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ed00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ed10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ed20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ed30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ed40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0005ed50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ed60: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +0005ed30: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005ed40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ed50: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0005ed60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ed70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ed80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ed90: 2020 7c0a 7c6f 3139 203a 2052 6261 722d |.|o19 : Rbar- │ │ │ │ -0005eda0: 6d6f 6475 6c65 2c20 7175 6f74 6965 6e74 module, quotient │ │ │ │ -0005edb0: 206f 6620 5262 6172 2020 2020 2020 2020 of Rbar │ │ │ │ +0005ed80: 2020 2020 2020 207c 0a7c 6f31 3920 3a20 |.|o19 : │ │ │ │ +0005ed90: 5262 6172 2d6d 6f64 756c 652c 2071 756f Rbar-module, quo │ │ │ │ +0005eda0: 7469 656e 7420 6f66 2052 6261 7220 2020 tient of Rbar │ │ │ │ +0005edb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005edc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005edd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ede0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0005edd0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005ede0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005edf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ee00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ee10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ee20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ee30: 2d2d 2b0a 7c69 3230 203a 2045 5320 3d20 --+.|i20 : ES = │ │ │ │ -0005ee40: 6e65 7745 7874 284d 6261 722c 4b2c 4c69 newExt(Mbar,K,Li │ │ │ │ -0005ee50: 6674 203d 3e20 7472 7565 2920 2020 2020 ft => true) │ │ │ │ +0005ee20: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3020 3a20 -------+.|i20 : │ │ │ │ +0005ee30: 4553 203d 206e 6577 4578 7428 4d62 6172 ES = newExt(Mbar │ │ │ │ +0005ee40: 2c4b 2c4c 6966 7420 3d3e 2074 7275 6529 ,K,Lift => true) │ │ │ │ +0005ee50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ee60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ee70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ee80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005ee70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005ee80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ee90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005eea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005eeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eed0: 2020 7c0a 7c6f 3230 203d 2063 6f6b 6572 |.|o20 = coker │ │ │ │ -0005eee0: 6e65 6c20 7b30 2c20 307d 2020 207c 2078 nel {0, 0} | x │ │ │ │ -0005eef0: 5f32 2078 5f31 2078 5f30 2030 2020 2030 _2 x_1 x_0 0 0 │ │ │ │ -0005ef00: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005ef10: 2020 2030 2020 2030 2020 2030 2020 2073 0 0 0 s │ │ │ │ -0005ef20: 5f32 7c0a 7c20 2020 2020 2020 2020 2020 _2|.| │ │ │ │ -0005ef30: 2020 2020 7b30 2c20 307d 2020 207c 2030 {0, 0} | 0 │ │ │ │ -0005ef40: 2020 2030 2020 2030 2020 2078 5f32 2078 0 0 x_2 x │ │ │ │ -0005ef50: 5f31 2078 5f30 2030 2020 2030 2020 2030 _1 x_0 0 0 0 │ │ │ │ -0005ef60: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005ef70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0005ef80: 2020 2020 7b2d 322c 202d 337d 207c 2030 {-2, -3} | 0 │ │ │ │ -0005ef90: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005efa0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005efb0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005efc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0005efd0: 2020 2020 7b2d 322c 202d 337d 207c 2030 {-2, -3} | 0 │ │ │ │ -0005efe0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005eff0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005f000: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005f010: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0005f020: 2020 2020 7b2d 322c 202d 337d 207c 2030 {-2, -3} | 0 │ │ │ │ -0005f030: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005f040: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005f050: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005f060: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0005f070: 2020 2020 7b2d 322c 202d 337d 207c 2030 {-2, -3} | 0 │ │ │ │ -0005f080: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005f090: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005f0a0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005f0b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0005f0c0: 2020 2020 7b2d 312c 202d 327d 207c 2030 {-1, -2} | 0 │ │ │ │ -0005f0d0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005f0e0: 2020 2030 2020 2078 5f32 2078 5f31 2078 0 x_2 x_1 x │ │ │ │ -0005f0f0: 5f30 2030 2020 2030 2020 2030 2020 2030 _0 0 0 0 0 │ │ │ │ -0005f100: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0005f110: 2020 2020 7b2d 312c 202d 327d 207c 2030 {-1, -2} | 0 │ │ │ │ -0005f120: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005f130: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ -0005f140: 2020 2078 5f32 2078 5f31 2078 5f30 2030 x_2 x_1 x_0 0 │ │ │ │ -0005f150: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005eec0: 2020 2020 2020 207c 0a7c 6f32 3020 3d20 |.|o20 = │ │ │ │ +0005eed0: 636f 6b65 726e 656c 207b 302c 2030 7d20 cokernel {0, 0} │ │ │ │ +0005eee0: 2020 7c20 785f 3220 785f 3120 785f 3020 | x_2 x_1 x_0 │ │ │ │ +0005eef0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005ef00: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005ef10: 3020 2020 735f 327c 0a7c 2020 2020 2020 0 s_2|.| │ │ │ │ +0005ef20: 2020 2020 2020 2020 207b 302c 2030 7d20 {0, 0} │ │ │ │ +0005ef30: 2020 7c20 3020 2020 3020 2020 3020 2020 | 0 0 0 │ │ │ │ +0005ef40: 785f 3220 785f 3120 785f 3020 3020 2020 x_2 x_1 x_0 0 │ │ │ │ +0005ef50: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005ef60: 3020 2020 3020 207c 0a7c 2020 2020 2020 0 0 |.| │ │ │ │ +0005ef70: 2020 2020 2020 2020 207b 2d32 2c20 2d33 {-2, -3 │ │ │ │ +0005ef80: 7d20 7c20 3020 2020 3020 2020 3020 2020 } | 0 0 0 │ │ │ │ +0005ef90: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005efa0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005efb0: 3020 2020 3020 207c 0a7c 2020 2020 2020 0 0 |.| │ │ │ │ +0005efc0: 2020 2020 2020 2020 207b 2d32 2c20 2d33 {-2, -3 │ │ │ │ +0005efd0: 7d20 7c20 3020 2020 3020 2020 3020 2020 } | 0 0 0 │ │ │ │ +0005efe0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005eff0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005f000: 3020 2020 3020 207c 0a7c 2020 2020 2020 0 0 |.| │ │ │ │ +0005f010: 2020 2020 2020 2020 207b 2d32 2c20 2d33 {-2, -3 │ │ │ │ +0005f020: 7d20 7c20 3020 2020 3020 2020 3020 2020 } | 0 0 0 │ │ │ │ +0005f030: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005f040: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005f050: 3020 2020 3020 207c 0a7c 2020 2020 2020 0 0 |.| │ │ │ │ +0005f060: 2020 2020 2020 2020 207b 2d32 2c20 2d33 {-2, -3 │ │ │ │ +0005f070: 7d20 7c20 3020 2020 3020 2020 3020 2020 } | 0 0 0 │ │ │ │ +0005f080: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005f090: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005f0a0: 3020 2020 3020 207c 0a7c 2020 2020 2020 0 0 |.| │ │ │ │ +0005f0b0: 2020 2020 2020 2020 207b 2d31 2c20 2d32 {-1, -2 │ │ │ │ +0005f0c0: 7d20 7c20 3020 2020 3020 2020 3020 2020 } | 0 0 0 │ │ │ │ +0005f0d0: 3020 2020 3020 2020 3020 2020 785f 3220 0 0 0 x_2 │ │ │ │ +0005f0e0: 785f 3120 785f 3020 3020 2020 3020 2020 x_1 x_0 0 0 │ │ │ │ +0005f0f0: 3020 2020 3020 207c 0a7c 2020 2020 2020 0 0 |.| │ │ │ │ +0005f100: 2020 2020 2020 2020 207b 2d31 2c20 2d32 {-1, -2 │ │ │ │ +0005f110: 7d20 7c20 3020 2020 3020 2020 3020 2020 } | 0 0 0 │ │ │ │ +0005f120: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ +0005f130: 3020 2020 3020 2020 785f 3220 785f 3120 0 0 x_2 x_1 │ │ │ │ +0005f140: 785f 3020 3020 207c 0a7c 2020 2020 2020 x_0 0 |.| │ │ │ │ +0005f150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f1a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005f190: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005f1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f1e0: 2020 2020 2020 3820 2020 2020 2020 2020 8 │ │ │ │ -0005f1f0: 2020 7c0a 7c6f 3230 203a 206b 6b5b 7320 |.|o20 : kk[s │ │ │ │ -0005f200: 2e2e 7320 2c20 7820 2e2e 7820 5d2d 6d6f ..s , x ..x ]-mo │ │ │ │ -0005f210: 6475 6c65 2c20 7175 6f74 6965 6e74 206f dule, quotient o │ │ │ │ -0005f220: 6620 286b 6b5b 7320 2e2e 7320 2c20 7820 f (kk[s ..s , x │ │ │ │ -0005f230: 2e2e 7820 5d29 2020 2020 2020 2020 2020 ..x ]) │ │ │ │ -0005f240: 2020 7c0a 7c20 2020 2020 2020 2020 2030 |.| 0 │ │ │ │ -0005f250: 2020 2032 2020 2030 2020 2032 2020 2020 2 0 2 │ │ │ │ -0005f260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f270: 2020 2020 2020 2030 2020 2032 2020 2030 0 2 0 │ │ │ │ -0005f280: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0005f290: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ +0005f1d0: 2020 2020 2020 2020 2020 2038 2020 2020 8 │ │ │ │ +0005f1e0: 2020 2020 2020 207c 0a7c 6f32 3020 3a20 |.|o20 : │ │ │ │ +0005f1f0: 6b6b 5b73 202e 2e73 202c 2078 202e 2e78 kk[s ..s , x ..x │ │ │ │ +0005f200: 205d 2d6d 6f64 756c 652c 2071 756f 7469 ]-module, quoti │ │ │ │ +0005f210: 656e 7420 6f66 2028 6b6b 5b73 202e 2e73 ent of (kk[s ..s │ │ │ │ +0005f220: 202c 2078 202e 2e78 205d 2920 2020 2020 , x ..x ]) │ │ │ │ +0005f230: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005f240: 2020 2020 3020 2020 3220 2020 3020 2020 0 2 0 │ │ │ │ +0005f250: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0005f260: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +0005f270: 3220 2020 3020 2020 3220 2020 2020 2020 2 0 2 │ │ │ │ +0005f280: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ +0005f290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005f2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005f2e0: 2d2d 7c0a 7c73 5f31 2073 5f30 2030 2020 --|.|s_1 s_0 0 │ │ │ │ -0005f2f0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005f300: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005f310: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005f320: 2030 2020 2030 2020 2020 2020 2020 2020 0 0 │ │ │ │ -0005f330: 2020 7c0a 7c30 2020 2030 2020 2073 5f32 |.|0 0 s_2 │ │ │ │ -0005f340: 2073 5f31 2073 5f30 2030 2020 2030 2020 s_1 s_0 0 0 │ │ │ │ -0005f350: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005f360: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005f370: 2030 2020 2030 2020 2020 2020 2020 2020 0 0 │ │ │ │ -0005f380: 2020 7c0a 7c30 2020 2030 2020 2030 2020 |.|0 0 0 │ │ │ │ -0005f390: 2030 2020 2030 2020 2078 5f32 2078 5f31 0 0 x_2 x_1 │ │ │ │ -0005f3a0: 2078 5f30 2030 2020 2030 2020 2030 2020 x_0 0 0 0 │ │ │ │ -0005f3b0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005f3c0: 2030 2020 2030 2020 2020 2020 2020 2020 0 0 │ │ │ │ -0005f3d0: 2020 7c0a 7c30 2020 2030 2020 2030 2020 |.|0 0 0 │ │ │ │ -0005f3e0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005f3f0: 2030 2020 2078 5f32 2078 5f31 2078 5f30 0 x_2 x_1 x_0 │ │ │ │ -0005f400: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005f410: 2030 2020 2030 2020 2020 2020 2020 2020 0 0 │ │ │ │ -0005f420: 2020 7c0a 7c30 2020 2030 2020 2030 2020 |.|0 0 0 │ │ │ │ -0005f430: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005f440: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005f450: 2078 5f32 2078 5f31 2078 5f30 2030 2020 x_2 x_1 x_0 0 │ │ │ │ -0005f460: 2030 2020 2030 2020 2020 2020 2020 2020 0 0 │ │ │ │ -0005f470: 2020 7c0a 7c30 2020 2030 2020 2030 2020 |.|0 0 0 │ │ │ │ -0005f480: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005f490: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005f4a0: 2030 2020 2030 2020 2030 2020 2078 5f32 0 0 0 x_2 │ │ │ │ -0005f4b0: 2078 5f31 2078 5f30 2020 2020 2020 2020 x_1 x_0 │ │ │ │ -0005f4c0: 2020 7c0a 7c30 2020 2030 2020 2030 2020 |.|0 0 0 │ │ │ │ -0005f4d0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005f4e0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005f4f0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005f500: 2030 2020 2030 2020 2020 2020 2020 2020 0 0 │ │ │ │ -0005f510: 2020 7c0a 7c30 2020 2030 2020 2030 2020 |.|0 0 0 │ │ │ │ -0005f520: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005f530: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005f540: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ -0005f550: 2030 2020 2030 2020 2020 2020 2020 2020 0 0 │ │ │ │ -0005f560: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ +0005f2d0: 2d2d 2d2d 2d2d 2d7c 0a7c 735f 3120 735f -------|.|s_1 s_ │ │ │ │ +0005f2e0: 3020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 0 │ │ │ │ +0005f2f0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005f300: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005f310: 2020 3020 2020 3020 2020 3020 2020 2020 0 0 0 │ │ │ │ +0005f320: 2020 2020 2020 207c 0a7c 3020 2020 3020 |.|0 0 │ │ │ │ +0005f330: 2020 735f 3220 735f 3120 735f 3020 3020 s_2 s_1 s_0 0 │ │ │ │ +0005f340: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005f350: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005f360: 2020 3020 2020 3020 2020 3020 2020 2020 0 0 0 │ │ │ │ +0005f370: 2020 2020 2020 207c 0a7c 3020 2020 3020 |.|0 0 │ │ │ │ +0005f380: 2020 3020 2020 3020 2020 3020 2020 785f 0 0 0 x_ │ │ │ │ +0005f390: 3220 785f 3120 785f 3020 3020 2020 3020 2 x_1 x_0 0 0 │ │ │ │ +0005f3a0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005f3b0: 2020 3020 2020 3020 2020 3020 2020 2020 0 0 0 │ │ │ │ +0005f3c0: 2020 2020 2020 207c 0a7c 3020 2020 3020 |.|0 0 │ │ │ │ +0005f3d0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005f3e0: 2020 3020 2020 3020 2020 785f 3220 785f 0 0 x_2 x_ │ │ │ │ +0005f3f0: 3120 785f 3020 3020 2020 3020 2020 3020 1 x_0 0 0 0 │ │ │ │ +0005f400: 2020 3020 2020 3020 2020 3020 2020 2020 0 0 0 │ │ │ │ +0005f410: 2020 2020 2020 207c 0a7c 3020 2020 3020 |.|0 0 │ │ │ │ +0005f420: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005f430: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005f440: 2020 3020 2020 785f 3220 785f 3120 785f 0 x_2 x_1 x_ │ │ │ │ +0005f450: 3020 3020 2020 3020 2020 3020 2020 2020 0 0 0 0 │ │ │ │ +0005f460: 2020 2020 2020 207c 0a7c 3020 2020 3020 |.|0 0 │ │ │ │ +0005f470: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005f480: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005f490: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005f4a0: 2020 785f 3220 785f 3120 785f 3020 2020 x_2 x_1 x_0 │ │ │ │ +0005f4b0: 2020 2020 2020 207c 0a7c 3020 2020 3020 |.|0 0 │ │ │ │ +0005f4c0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005f4d0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005f4e0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005f4f0: 2020 3020 2020 3020 2020 3020 2020 2020 0 0 0 │ │ │ │ +0005f500: 2020 2020 2020 207c 0a7c 3020 2020 3020 |.|0 0 │ │ │ │ +0005f510: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005f520: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005f530: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ +0005f540: 2020 3020 2020 3020 2020 3020 2020 2020 0 0 0 │ │ │ │ +0005f550: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ +0005f560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005f5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005f5b0: 2d2d 7c0a 7c30 2020 2020 2020 2020 2020 --|.|0 │ │ │ │ -0005f5c0: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ -0005f5d0: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ -0005f5e0: 2020 2020 3020 2020 2020 2020 2020 2020 0 │ │ │ │ -0005f5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f600: 2020 7c0a 7c30 2020 2020 2020 2020 2020 |.|0 │ │ │ │ -0005f610: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ -0005f620: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ -0005f630: 2020 2020 3020 2020 2020 2020 2020 2020 0 │ │ │ │ -0005f640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f650: 2020 7c0a 7c73 5f30 2d31 3173 5f31 2d34 |.|s_0-11s_1-4 │ │ │ │ -0005f660: 3073 5f32 202d 735f 3120 2020 2020 2020 0s_2 -s_1 │ │ │ │ -0005f670: 2020 2020 2039 735f 312d 3233 735f 3220 9s_1-23s_2 │ │ │ │ -0005f680: 2020 2020 3137 735f 3120 2020 2020 2020 17s_1 │ │ │ │ -0005f690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f6a0: 2020 7c0a 7c34 3573 5f31 2d33 3573 5f32 |.|45s_1-35s_2 │ │ │ │ -0005f6b0: 2020 2020 2033 3873 5f31 2020 2020 2020 38s_1 │ │ │ │ -0005f6c0: 2020 2020 2073 5f30 2d37 735f 312b 3135 s_0-7s_1+15 │ │ │ │ -0005f6d0: 735f 3220 735f 3120 2020 2020 2020 2020 s_2 s_1 │ │ │ │ -0005f6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f6f0: 2020 7c0a 7c2d 3130 735f 312d 3236 735f |.|-10s_1-26s_ │ │ │ │ -0005f700: 3220 2020 2073 5f30 2b34 3973 5f31 2d34 2 s_0+49s_1-4 │ │ │ │ -0005f710: 3073 5f32 2033 3473 5f31 2b34 735f 3220 0s_2 34s_1+4s_2 │ │ │ │ -0005f720: 2020 2020 3973 5f31 2d32 3373 5f32 2020 9s_1-23s_2 │ │ │ │ -0005f730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f740: 2020 7c0a 7c35 3073 5f31 2d73 5f32 2020 |.|50s_1-s_2 │ │ │ │ -0005f750: 2020 2020 2034 3573 5f31 2d33 3573 5f32 45s_1-35s_2 │ │ │ │ -0005f760: 2020 2020 2031 3073 5f31 2b32 3673 5f32 10s_1+26s_2 │ │ │ │ -0005f770: 2020 2020 735f 302d 3438 735f 312b 3135 s_0-48s_1+15 │ │ │ │ -0005f780: 735f 3220 2020 2020 2020 2020 2020 2020 s_2 │ │ │ │ -0005f790: 2020 7c0a 7c30 2020 2020 2020 2020 2020 |.|0 │ │ │ │ -0005f7a0: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ -0005f7b0: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ -0005f7c0: 2020 2020 3020 2020 2020 2020 2020 2020 0 │ │ │ │ -0005f7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f7e0: 2020 7c0a 7c30 2020 2020 2020 2020 2020 |.|0 │ │ │ │ -0005f7f0: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ -0005f800: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ -0005f810: 2020 2020 3020 2020 2020 2020 2020 2020 0 │ │ │ │ -0005f820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f830: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ +0005f5a0: 2d2d 2d2d 2d2d 2d7c 0a7c 3020 2020 2020 -------|.|0 │ │ │ │ +0005f5b0: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ +0005f5c0: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ +0005f5d0: 2020 2020 2020 2020 2030 2020 2020 2020 0 │ │ │ │ +0005f5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005f5f0: 2020 2020 2020 207c 0a7c 3020 2020 2020 |.|0 │ │ │ │ +0005f600: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ +0005f610: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ +0005f620: 2020 2020 2020 2020 2030 2020 2020 2020 0 │ │ │ │ +0005f630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005f640: 2020 2020 2020 207c 0a7c 735f 302d 3131 |.|s_0-11 │ │ │ │ +0005f650: 735f 312d 3430 735f 3220 2d73 5f31 2020 s_1-40s_2 -s_1 │ │ │ │ +0005f660: 2020 2020 2020 2020 2020 3973 5f31 2d32 9s_1-2 │ │ │ │ +0005f670: 3373 5f32 2020 2020 2031 3773 5f31 2020 3s_2 17s_1 │ │ │ │ +0005f680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005f690: 2020 2020 2020 207c 0a7c 3435 735f 312d |.|45s_1- │ │ │ │ +0005f6a0: 3335 735f 3220 2020 2020 3338 735f 3120 35s_2 38s_1 │ │ │ │ +0005f6b0: 2020 2020 2020 2020 2020 735f 302d 3773 s_0-7s │ │ │ │ +0005f6c0: 5f31 2b31 3573 5f32 2073 5f31 2020 2020 _1+15s_2 s_1 │ │ │ │ +0005f6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005f6e0: 2020 2020 2020 207c 0a7c 2d31 3073 5f31 |.|-10s_1 │ │ │ │ +0005f6f0: 2d32 3673 5f32 2020 2020 735f 302b 3439 -26s_2 s_0+49 │ │ │ │ +0005f700: 735f 312d 3430 735f 3220 3334 735f 312b s_1-40s_2 34s_1+ │ │ │ │ +0005f710: 3473 5f32 2020 2020 2039 735f 312d 3233 4s_2 9s_1-23 │ │ │ │ +0005f720: 735f 3220 2020 2020 2020 2020 2020 2020 s_2 │ │ │ │ +0005f730: 2020 2020 2020 207c 0a7c 3530 735f 312d |.|50s_1- │ │ │ │ +0005f740: 735f 3220 2020 2020 2020 3435 735f 312d s_2 45s_1- │ │ │ │ +0005f750: 3335 735f 3220 2020 2020 3130 735f 312b 35s_2 10s_1+ │ │ │ │ +0005f760: 3236 735f 3220 2020 2073 5f30 2d34 3873 26s_2 s_0-48s │ │ │ │ +0005f770: 5f31 2b31 3573 5f32 2020 2020 2020 2020 _1+15s_2 │ │ │ │ +0005f780: 2020 2020 2020 207c 0a7c 3020 2020 2020 |.|0 │ │ │ │ +0005f790: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ +0005f7a0: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ +0005f7b0: 2020 2020 2020 2020 2030 2020 2020 2020 0 │ │ │ │ +0005f7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005f7d0: 2020 2020 2020 207c 0a7c 3020 2020 2020 |.|0 │ │ │ │ +0005f7e0: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ +0005f7f0: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ +0005f800: 2020 2020 2020 2020 2030 2020 2020 2020 0 │ │ │ │ +0005f810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005f820: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ +0005f830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005f870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005f880: 2d2d 7c0a 7c30 2020 2020 2020 2020 2020 --|.|0 │ │ │ │ +0005f870: 2d2d 2d2d 2d2d 2d7c 0a7c 3020 2020 2020 -------|.|0 │ │ │ │ +0005f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f8d0: 2020 7c0a 7c30 2020 2020 2020 2020 2020 |.|0 │ │ │ │ +0005f8c0: 2020 2020 2020 207c 0a7c 3020 2020 2020 |.|0 │ │ │ │ +0005f8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f920: 2020 7c0a 7c30 2020 2020 2020 2020 2020 |.|0 │ │ │ │ +0005f910: 2020 2020 2020 207c 0a7c 3020 2020 2020 |.|0 │ │ │ │ +0005f920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f970: 2020 7c0a 7c30 2020 2020 2020 2020 2020 |.|0 │ │ │ │ +0005f960: 2020 2020 2020 207c 0a7c 3020 2020 2020 |.|0 │ │ │ │ +0005f970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f9c0: 2020 7c0a 7c30 2020 2020 2020 2020 2020 |.|0 │ │ │ │ +0005f9b0: 2020 2020 2020 207c 0a7c 3020 2020 2020 |.|0 │ │ │ │ +0005f9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fa10: 2020 7c0a 7c30 2020 2020 2020 2020 2020 |.|0 │ │ │ │ +0005fa00: 2020 2020 2020 207c 0a7c 3020 2020 2020 |.|0 │ │ │ │ +0005fa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fa60: 2020 7c0a 7c73 5f30 5e32 2b34 3273 5f30 |.|s_0^2+42s_0 │ │ │ │ -0005fa70: 735f 312d 3330 735f 315e 322d 3235 735f s_1-30s_1^2-25s_ │ │ │ │ -0005fa80: 3073 5f32 2d33 3573 5f31 735f 322b 3973 0s_2-35s_1s_2+9s │ │ │ │ -0005fa90: 5f32 5e32 2020 2020 2020 2020 2020 2020 _2^2 │ │ │ │ -0005faa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fab0: 2020 7c0a 7c30 2020 2020 2020 2020 2020 |.|0 │ │ │ │ +0005fa50: 2020 2020 2020 207c 0a7c 735f 305e 322b |.|s_0^2+ │ │ │ │ +0005fa60: 3432 735f 3073 5f31 2d33 3073 5f31 5e32 42s_0s_1-30s_1^2 │ │ │ │ +0005fa70: 2d32 3573 5f30 735f 322d 3335 735f 3173 -25s_0s_2-35s_1s │ │ │ │ +0005fa80: 5f32 2b39 735f 325e 3220 2020 2020 2020 _2+9s_2^2 │ │ │ │ +0005fa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005faa0: 2020 2020 2020 207c 0a7c 3020 2020 2020 |.|0 │ │ │ │ +0005fab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005faf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fb00: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ +0005faf0: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ +0005fb00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005fb10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005fb20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005fb30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005fb40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005fb50: 2d2d 7c0a 7c30 2020 2020 2020 2020 2020 --|.|0 │ │ │ │ +0005fb40: 2d2d 2d2d 2d2d 2d7c 0a7c 3020 2020 2020 -------|.|0 │ │ │ │ +0005fb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fb80: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ -0005fb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fba0: 2020 7c0a 7c30 2020 2020 2020 2020 2020 |.|0 │ │ │ │ +0005fb70: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +0005fb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005fb90: 2020 2020 2020 207c 0a7c 3020 2020 2020 |.|0 │ │ │ │ +0005fba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fbd0: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ -0005fbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fbf0: 2020 7c0a 7c30 2020 2020 2020 2020 2020 |.|0 │ │ │ │ +0005fbc0: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +0005fbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005fbe0: 2020 2020 2020 207c 0a7c 3020 2020 2020 |.|0 │ │ │ │ +0005fbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fc20: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ -0005fc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fc40: 2020 7c0a 7c30 2020 2020 2020 2020 2020 |.|0 │ │ │ │ +0005fc10: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +0005fc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005fc30: 2020 2020 2020 207c 0a7c 3020 2020 2020 |.|0 │ │ │ │ +0005fc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fc70: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ -0005fc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fc90: 2020 7c0a 7c30 2020 2020 2020 2020 2020 |.|0 │ │ │ │ +0005fc60: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +0005fc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005fc80: 2020 2020 2020 207c 0a7c 3020 2020 2020 |.|0 │ │ │ │ +0005fc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fcc0: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ -0005fcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fce0: 2020 7c0a 7c30 2020 2020 2020 2020 2020 |.|0 │ │ │ │ +0005fcb0: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +0005fcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005fcd0: 2020 2020 2020 207c 0a7c 3020 2020 2020 |.|0 │ │ │ │ +0005fce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fd10: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ -0005fd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fd30: 2020 7c0a 7c30 2020 2020 2020 2020 2020 |.|0 │ │ │ │ +0005fd00: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +0005fd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005fd20: 2020 2020 2020 207c 0a7c 3020 2020 2020 |.|0 │ │ │ │ +0005fd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fd60: 2020 2020 207c 2020 2020 2020 2020 2020 | │ │ │ │ -0005fd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fd80: 2020 7c0a 7c73 5f30 5e32 2b34 3273 5f30 |.|s_0^2+42s_0 │ │ │ │ -0005fd90: 735f 312d 3330 735f 315e 322d 3235 735f s_1-30s_1^2-25s_ │ │ │ │ -0005fda0: 3073 5f32 2d33 3573 5f31 735f 322b 3973 0s_2-35s_1s_2+9s │ │ │ │ -0005fdb0: 5f32 5e32 207c 2020 2020 2020 2020 2020 _2^2 | │ │ │ │ -0005fdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fdd0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0005fd50: 2020 2020 2020 2020 2020 7c20 2020 2020 | │ │ │ │ +0005fd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005fd70: 2020 2020 2020 207c 0a7c 735f 305e 322b |.|s_0^2+ │ │ │ │ +0005fd80: 3432 735f 3073 5f31 2d33 3073 5f31 5e32 42s_0s_1-30s_1^2 │ │ │ │ +0005fd90: 2d32 3573 5f30 735f 322d 3335 735f 3173 -25s_0s_2-35s_1s │ │ │ │ +0005fda0: 5f32 2b39 735f 325e 3220 7c20 2020 2020 _2+9s_2^2 | │ │ │ │ +0005fdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005fdc0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005fdd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005fde0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005fdf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005fe00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005fe10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005fe20: 2d2d 2b0a 7c69 3231 203a 2053 203d 2072 --+.|i21 : S = r │ │ │ │ -0005fe30: 696e 6720 4553 2020 2020 2020 2020 2020 ing ES │ │ │ │ +0005fe10: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3120 3a20 -------+.|i21 : │ │ │ │ +0005fe20: 5320 3d20 7269 6e67 2045 5320 2020 2020 S = ring ES │ │ │ │ +0005fe30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fe40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fe50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fe60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fe70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005fe60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005fe70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fe80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fe90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005feb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fec0: 2020 7c0a 7c6f 3231 203d 2053 2020 2020 |.|o21 = S │ │ │ │ +0005feb0: 2020 2020 2020 207c 0a7c 6f32 3120 3d20 |.|o21 = │ │ │ │ +0005fec0: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ 0005fed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ff00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ff10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0005ff00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0005ff10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ff20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ff30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ff40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ff50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ff60: 2020 7c0a 7c6f 3231 203a 2050 6f6c 796e |.|o21 : Polyn │ │ │ │ -0005ff70: 6f6d 6961 6c52 696e 6720 2020 2020 2020 omialRing │ │ │ │ +0005ff50: 2020 2020 2020 207c 0a7c 6f32 3120 3a20 |.|o21 : │ │ │ │ +0005ff60: 506f 6c79 6e6f 6d69 616c 5269 6e67 2020 PolynomialRing │ │ │ │ +0005ff70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ff80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ff90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ffa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ffb0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0005ffa0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0005ffb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ffc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ffd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ffe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005fff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00060000: 2d2d 2b0a 0a63 6f6d 7061 7265 2077 6974 --+..compare wit │ │ │ │ -00060010: 6820 7468 6520 6275 696c 742d 696e 2045 h the built-in E │ │ │ │ -00060020: 7874 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d xt..+----------- │ │ │ │ +0005fff0: 2d2d 2d2d 2d2d 2d2b 0a0a 636f 6d70 6172 -------+..compar │ │ │ │ +00060000: 6520 7769 7468 2074 6865 2062 7569 6c74 e with the built │ │ │ │ +00060010: 2d69 6e20 4578 740a 0a2b 2d2d 2d2d 2d2d -in Ext..+------ │ │ │ │ +00060020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00060050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00060060: 7c69 3232 203a 2045 4520 3d20 4578 7428 |i22 : EE = Ext( │ │ │ │ -00060070: 4d62 6172 2c4b 293b 2020 2020 2020 2020 Mbar,K); │ │ │ │ -00060080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060090: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00060050: 2d2d 2d2b 0a7c 6932 3220 3a20 4545 203d ---+.|i22 : EE = │ │ │ │ +00060060: 2045 7874 284d 6261 722c 4b29 3b20 2020 Ext(Mbar,K); │ │ │ │ +00060070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00060080: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060090: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 000600a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000600b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000600c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000600d0: 2d2d 2d2d 2d2d 2b0a 7c69 3233 203a 2053 ------+.|i23 : S │ │ │ │ -000600e0: 2720 3d20 7269 6e67 2045 4520 2d2d 206e ' = ring EE -- n │ │ │ │ -000600f0: 6f74 6520 7468 6174 2053 2720 6973 2074 ote that S' is t │ │ │ │ -00060100: 6865 2070 6f6c 796e 6f6d 6961 6c20 7269 he polynomial ri │ │ │ │ -00060110: 6e67 7c0a 7c20 2020 2020 2020 2020 2020 ng|.| │ │ │ │ +000600c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +000600d0: 3320 3a20 5327 203d 2072 696e 6720 4545 3 : S' = ring EE │ │ │ │ +000600e0: 202d 2d20 6e6f 7465 2074 6861 7420 5327 -- note that S' │ │ │ │ +000600f0: 2069 7320 7468 6520 706f 6c79 6e6f 6d69 is the polynomi │ │ │ │ +00060100: 616c 2072 696e 677c 0a7c 2020 2020 2020 al ring|.| │ │ │ │ +00060110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060140: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00060150: 7c6f 3233 203d 2053 2720 2020 2020 2020 |o23 = S' │ │ │ │ +00060140: 2020 207c 0a7c 6f32 3320 3d20 5327 2020 |.|o23 = S' │ │ │ │ +00060150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060180: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00060170: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060180: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00060190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000601a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000601b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000601c0: 2020 2020 2020 7c0a 7c6f 3233 203a 2050 |.|o23 : P │ │ │ │ -000601d0: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ +000601b0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +000601c0: 3320 3a20 506f 6c79 6e6f 6d69 616c 5269 3 : PolynomialRi │ │ │ │ +000601d0: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ 000601e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000601f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060200: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000601f0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00060200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00060230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00060240: 0a54 6865 2074 776f 2076 6572 7369 6f6e .The two version │ │ │ │ -00060250: 7320 6f66 2045 7874 2061 7070 6561 7220 s of Ext appear │ │ │ │ -00060260: 746f 2062 6520 7468 6520 7361 6d65 2075 to be the same u │ │ │ │ -00060270: 7020 746f 2063 6861 6e67 6520 6f66 2076 p to change of v │ │ │ │ -00060280: 6172 6961 626c 6573 3a0a 0a2b 2d2d 2d2d ariables:..+---- │ │ │ │ +00060230: 2d2d 2d2b 0a0a 5468 6520 7477 6f20 7665 ---+..The two ve │ │ │ │ +00060240: 7273 696f 6e73 206f 6620 4578 7420 6170 rsions of Ext ap │ │ │ │ +00060250: 7065 6172 2074 6f20 6265 2074 6865 2073 pear to be the s │ │ │ │ +00060260: 616d 6520 7570 2074 6f20 6368 616e 6765 ame up to change │ │ │ │ +00060270: 206f 6620 7661 7269 6162 6c65 733a 0a0a of variables:.. │ │ │ │ +00060280: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00060290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000602a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000602b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000602c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000602d0: 2b0a 7c69 3234 203a 2041 203d 2072 6573 +.|i24 : A = res │ │ │ │ -000602e0: 2045 5320 2020 2020 2020 2020 2020 2020 ES │ │ │ │ +000602c0: 2d2d 2d2d 2d2b 0a7c 6932 3420 3a20 4120 -----+.|i24 : A │ │ │ │ +000602d0: 3d20 7265 7320 4553 2020 2020 2020 2020 = res ES │ │ │ │ +000602e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000602f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060310: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00060300: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00060310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060350: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00060360: 7c20 2020 2020 2020 3820 2020 2020 2033 | 8 3 │ │ │ │ -00060370: 3620 2020 2020 2036 3620 2020 2020 2036 6 66 6 │ │ │ │ -00060380: 3420 2020 2020 2033 3620 2020 2020 2031 4 36 1 │ │ │ │ -00060390: 3220 2020 2020 2032 2020 2020 2020 2020 2 2 │ │ │ │ -000603a0: 2020 2020 207c 0a7c 6f32 3420 3d20 5320 |.|o24 = S │ │ │ │ -000603b0: 203c 2d2d 2053 2020 203c 2d2d 2053 2020 <-- S <-- S │ │ │ │ -000603c0: 203c 2d2d 2053 2020 203c 2d2d 2053 2020 <-- S <-- S │ │ │ │ -000603d0: 203c 2d2d 2053 2020 203c 2d2d 2053 2020 <-- S <-- S │ │ │ │ -000603e0: 3c2d 2d20 3020 2020 2020 2020 7c0a 7c20 <-- 0 |.| │ │ │ │ +00060350: 2020 207c 0a7c 2020 2020 2020 2038 2020 |.| 8 │ │ │ │ +00060360: 2020 2020 3336 2020 2020 2020 3636 2020 36 66 │ │ │ │ +00060370: 2020 2020 3634 2020 2020 2020 3336 2020 64 36 │ │ │ │ +00060380: 2020 2020 3132 2020 2020 2020 3220 2020 12 2 │ │ │ │ +00060390: 2020 2020 2020 2020 2020 7c0a 7c6f 3234 |.|o24 │ │ │ │ +000603a0: 203d 2053 2020 3c2d 2d20 5320 2020 3c2d = S <-- S <- │ │ │ │ +000603b0: 2d20 5320 2020 3c2d 2d20 5320 2020 3c2d - S <-- S <- │ │ │ │ +000603c0: 2d20 5320 2020 3c2d 2d20 5320 2020 3c2d - S <-- S <- │ │ │ │ +000603d0: 2d20 5320 203c 2d2d 2030 2020 2020 2020 - S <-- 0 │ │ │ │ +000603e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000603f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060430: 2020 207c 0a7c 2020 2020 2020 3020 2020 |.| 0 │ │ │ │ -00060440: 2020 2031 2020 2020 2020 2032 2020 2020 1 2 │ │ │ │ -00060450: 2020 2033 2020 2020 2020 2034 2020 2020 3 4 │ │ │ │ -00060460: 2020 2035 2020 2020 2020 2036 2020 2020 5 6 │ │ │ │ -00060470: 2020 3720 2020 2020 2020 7c0a 7c20 2020 7 |.| │ │ │ │ +00060420: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00060430: 2030 2020 2020 2020 3120 2020 2020 2020 0 1 │ │ │ │ +00060440: 3220 2020 2020 2020 3320 2020 2020 2020 2 3 │ │ │ │ +00060450: 3420 2020 2020 2020 3520 2020 2020 2020 4 5 │ │ │ │ +00060460: 3620 2020 2020 2037 2020 2020 2020 207c 6 7 | │ │ │ │ +00060470: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00060480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000604a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000604b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000604c0: 207c 0a7c 6f32 3420 3a20 4368 6169 6e43 |.|o24 : ChainC │ │ │ │ -000604d0: 6f6d 706c 6578 2020 2020 2020 2020 2020 omplex │ │ │ │ +000604b0: 2020 2020 2020 7c0a 7c6f 3234 203a 2043 |.|o24 : C │ │ │ │ +000604c0: 6861 696e 436f 6d70 6c65 7820 2020 2020 hainComplex │ │ │ │ +000604d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000604e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000604f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060500: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000604f0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00060500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00060540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00060550: 0a7c 6932 3520 3a20 4220 3d20 7265 7320 .|i25 : B = res │ │ │ │ -00060560: 4545 2020 2020 2020 2020 2020 2020 2020 EE │ │ │ │ +00060540: 2d2d 2d2d 2b0a 7c69 3235 203a 2042 203d ----+.|i25 : B = │ │ │ │ +00060550: 2072 6573 2045 4520 2020 2020 2020 2020 res EE │ │ │ │ +00060560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060590: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00060580: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00060590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000605a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000605b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000605c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000605d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000605e0: 2020 2020 2020 2020 3820 2020 2020 2020 8 │ │ │ │ -000605f0: 3336 2020 2020 2020 2036 3620 2020 2020 36 66 │ │ │ │ -00060600: 2020 3634 2020 2020 2020 2033 3620 2020 64 36 │ │ │ │ -00060610: 2020 2020 3132 2020 2020 2020 2032 2020 12 2 │ │ │ │ -00060620: 2020 2020 7c0a 7c6f 3235 203d 2053 2720 |.|o25 = S' │ │ │ │ -00060630: 203c 2d2d 2053 2720 2020 3c2d 2d20 5327 <-- S' <-- S' │ │ │ │ -00060640: 2020 203c 2d2d 2053 2720 2020 3c2d 2d20 <-- S' <-- │ │ │ │ -00060650: 5327 2020 203c 2d2d 2053 2720 2020 3c2d S' <-- S' <- │ │ │ │ -00060660: 2d20 5327 2020 3c2d 2d20 307c 0a7c 2020 - S' <-- 0|.| │ │ │ │ +000605d0: 2020 7c0a 7c20 2020 2020 2020 2038 2020 |.| 8 │ │ │ │ +000605e0: 2020 2020 2033 3620 2020 2020 2020 3636 36 66 │ │ │ │ +000605f0: 2020 2020 2020 2036 3420 2020 2020 2020 64 │ │ │ │ +00060600: 3336 2020 2020 2020 2031 3220 2020 2020 36 12 │ │ │ │ +00060610: 2020 3220 2020 2020 207c 0a7c 6f32 3520 2 |.|o25 │ │ │ │ +00060620: 3d20 5327 2020 3c2d 2d20 5327 2020 203c = S' <-- S' < │ │ │ │ +00060630: 2d2d 2053 2720 2020 3c2d 2d20 5327 2020 -- S' <-- S' │ │ │ │ +00060640: 203c 2d2d 2053 2720 2020 3c2d 2d20 5327 <-- S' <-- S' │ │ │ │ +00060650: 2020 203c 2d2d 2053 2720 203c 2d2d 2030 <-- S' <-- 0 │ │ │ │ +00060660: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00060670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000606a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000606b0: 2020 7c0a 7c20 2020 2020 2030 2020 2020 |.| 0 │ │ │ │ -000606c0: 2020 2031 2020 2020 2020 2020 3220 2020 1 2 │ │ │ │ -000606d0: 2020 2020 2033 2020 2020 2020 2020 3420 3 4 │ │ │ │ -000606e0: 2020 2020 2020 2035 2020 2020 2020 2020 5 │ │ │ │ -000606f0: 3620 2020 2020 2020 377c 0a7c 2020 2020 6 7|.| │ │ │ │ +000606a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000606b0: 3020 2020 2020 2020 3120 2020 2020 2020 0 1 │ │ │ │ +000606c0: 2032 2020 2020 2020 2020 3320 2020 2020 2 3 │ │ │ │ +000606d0: 2020 2034 2020 2020 2020 2020 3520 2020 4 5 │ │ │ │ +000606e0: 2020 2020 2036 2020 2020 2020 2037 7c0a 6 7|. │ │ │ │ +000606f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00060700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060740: 7c0a 7c6f 3235 203a 2043 6861 696e 436f |.|o25 : ChainCo │ │ │ │ -00060750: 6d70 6c65 7820 2020 2020 2020 2020 2020 mplex │ │ │ │ +00060730: 2020 2020 207c 0a7c 6f32 3520 3a20 4368 |.|o25 : Ch │ │ │ │ +00060740: 6169 6e43 6f6d 706c 6578 2020 2020 2020 ainComplex │ │ │ │ +00060750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060780: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00060770: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00060780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000607a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000607b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000607c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000607d0: 7c69 3236 203a 2061 6c6c 286c 656e 6774 |i26 : all(lengt │ │ │ │ -000607e0: 6820 412b 312c 2069 2d3e 2073 6f72 7420 h A+1, i-> sort │ │ │ │ -000607f0: 6465 6772 6565 7320 415f 6920 3d3d 2073 degrees A_i == s │ │ │ │ -00060800: 6f72 7420 6465 6772 6565 7320 425f 6929 ort degrees B_i) │ │ │ │ -00060810: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000607c0: 2d2d 2d2b 0a7c 6932 3620 3a20 616c 6c28 ---+.|i26 : all( │ │ │ │ +000607d0: 6c65 6e67 7468 2041 2b31 2c20 692d 3e20 length A+1, i-> │ │ │ │ +000607e0: 736f 7274 2064 6567 7265 6573 2041 5f69 sort degrees A_i │ │ │ │ +000607f0: 203d 3d20 736f 7274 2064 6567 7265 6573 == sort degrees │ │ │ │ +00060800: 2042 5f69 2920 2020 2020 7c0a 7c20 2020 B_i) |.| │ │ │ │ +00060810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060850: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00060860: 3236 203d 2074 7275 6520 2020 2020 2020 26 = true │ │ │ │ +00060850: 207c 0a7c 6f32 3620 3d20 7472 7565 2020 |.|o26 = true │ │ │ │ +00060860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000608a0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00060890: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000608a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000608b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000608c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000608d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000608e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a62 7574 ----------+..but │ │ │ │ -000608f0: 2074 6865 7920 6861 7665 2061 7070 6172 they have appar │ │ │ │ -00060900: 656e 746c 7920 6469 6666 6572 656e 7420 ently different │ │ │ │ -00060910: 616e 6e69 6869 6c61 746f 7273 0a0a 2b2d annihilators..+- │ │ │ │ +000608d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +000608e0: 0a0a 6275 7420 7468 6579 2068 6176 6520 ..but they have │ │ │ │ +000608f0: 6170 7061 7265 6e74 6c79 2064 6966 6665 apparently diffe │ │ │ │ +00060900: 7265 6e74 2061 6e6e 6968 696c 6174 6f72 rent annihilator │ │ │ │ +00060910: 730a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d s..+------------ │ │ │ │ 00060920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00060950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00060960: 2d2d 2d2d 2b0a 7c69 3237 203a 2061 6e6e ----+.|i27 : ann │ │ │ │ -00060970: 2045 4520 2020 2020 2020 2020 2020 2020 EE │ │ │ │ +00060950: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3720 ---------+.|i27 │ │ │ │ +00060960: 3a20 616e 6e20 4545 2020 2020 2020 2020 : ann EE │ │ │ │ +00060970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000609a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000609a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000609b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000609c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000609d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000609e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000609f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00060a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060a10: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00060a20: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00060a30: 2020 2020 2020 2020 2020 3220 7c0a 7c6f 2 |.|o │ │ │ │ -00060a40: 3237 203d 2069 6465 616c 2028 7820 2c20 27 = ideal (x , │ │ │ │ -00060a50: 7820 2c20 7820 2c20 5820 202b 2034 3158 x , x , X + 41X │ │ │ │ -00060a60: 2058 2020 2d20 3337 5820 202d 2031 3458 X - 37X - 14X │ │ │ │ -00060a70: 2058 2020 2d20 3239 5820 5820 202b 2034 X - 29X X + 4 │ │ │ │ -00060a80: 3558 2029 7c0a 7c20 2020 2020 2020 2020 5X )|.| │ │ │ │ -00060a90: 2020 2020 2032 2020 2031 2020 2030 2020 2 1 0 │ │ │ │ -00060aa0: 2031 2020 2020 2020 3120 3220 2020 2020 1 1 2 │ │ │ │ -00060ab0: 2032 2020 2020 2020 3120 3320 2020 2020 2 1 3 │ │ │ │ -00060ac0: 2032 2033 2020 2020 2020 3320 7c0a 7c20 2 3 3 |.| │ │ │ │ +000609e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000609f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00060a00: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00060a10: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00060a20: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00060a30: 207c 0a7c 6f32 3720 3d20 6964 6561 6c20 |.|o27 = ideal │ │ │ │ +00060a40: 2878 202c 2078 202c 2078 202c 2058 2020 (x , x , x , X │ │ │ │ +00060a50: 2b20 3431 5820 5820 202d 2033 3758 2020 + 41X X - 37X │ │ │ │ +00060a60: 2d20 3134 5820 5820 202d 2032 3958 2058 - 14X X - 29X X │ │ │ │ +00060a70: 2020 2b20 3435 5820 297c 0a7c 2020 2020 + 45X )|.| │ │ │ │ +00060a80: 2020 2020 2020 2020 2020 3220 2020 3120 2 1 │ │ │ │ +00060a90: 2020 3020 2020 3120 2020 2020 2031 2032 0 1 1 2 │ │ │ │ +00060aa0: 2020 2020 2020 3220 2020 2020 2031 2033 2 1 3 │ │ │ │ +00060ab0: 2020 2020 2020 3220 3320 2020 2020 2033 2 3 3 │ │ │ │ +00060ac0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00060ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060b10: 2020 2020 7c0a 7c6f 3237 203a 2049 6465 |.|o27 : Ide │ │ │ │ -00060b20: 616c 206f 6620 5327 2020 2020 2020 2020 al of S' │ │ │ │ +00060b00: 2020 2020 2020 2020 207c 0a7c 6f32 3720 |.|o27 │ │ │ │ +00060b10: 3a20 4964 6561 6c20 6f66 2053 2720 2020 : Ideal of S' │ │ │ │ +00060b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060b50: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00060b50: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00060b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00060b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00060ba0: 2d2d 2d2d 2b0a 7c69 3238 203a 2061 6e6e ----+.|i28 : ann │ │ │ │ -00060bb0: 2045 5320 2020 2020 2020 2020 2020 2020 ES │ │ │ │ +00060b90: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3820 ---------+.|i28 │ │ │ │ +00060ba0: 3a20 616e 6e20 4553 2020 2020 2020 2020 : ann ES │ │ │ │ +00060bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060be0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00060be0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00060bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060c30: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00060c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060c50: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00060c60: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00060c70: 2020 2020 2020 2020 2032 2020 7c0a 7c6f 2 |.|o │ │ │ │ -00060c80: 3238 203d 2069 6465 616c 2028 7820 2c20 28 = ideal (x , │ │ │ │ -00060c90: 7820 2c20 7820 2c20 7320 202b 2034 3273 x , x , s + 42s │ │ │ │ -00060ca0: 2073 2020 2d20 3330 7320 202d 2032 3573 s - 30s - 25s │ │ │ │ -00060cb0: 2073 2020 2d20 3335 7320 7320 202b 2039 s - 35s s + 9 │ │ │ │ -00060cc0: 7320 2920 7c0a 7c20 2020 2020 2020 2020 s ) |.| │ │ │ │ -00060cd0: 2020 2020 2032 2020 2031 2020 2030 2020 2 1 0 │ │ │ │ -00060ce0: 2030 2020 2020 2020 3020 3120 2020 2020 0 0 1 │ │ │ │ -00060cf0: 2031 2020 2020 2020 3020 3220 2020 2020 1 0 2 │ │ │ │ -00060d00: 2031 2032 2020 2020 2032 2020 7c0a 7c20 1 2 2 |.| │ │ │ │ +00060c20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00060c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00060c40: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00060c50: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00060c60: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00060c70: 207c 0a7c 6f32 3820 3d20 6964 6561 6c20 |.|o28 = ideal │ │ │ │ +00060c80: 2878 202c 2078 202c 2078 202c 2073 2020 (x , x , x , s │ │ │ │ +00060c90: 2b20 3432 7320 7320 202d 2033 3073 2020 + 42s s - 30s │ │ │ │ +00060ca0: 2d20 3235 7320 7320 202d 2033 3573 2073 - 25s s - 35s s │ │ │ │ +00060cb0: 2020 2b20 3973 2029 207c 0a7c 2020 2020 + 9s ) |.| │ │ │ │ +00060cc0: 2020 2020 2020 2020 2020 3220 2020 3120 2 1 │ │ │ │ +00060cd0: 2020 3020 2020 3020 2020 2020 2030 2031 0 0 0 1 │ │ │ │ +00060ce0: 2020 2020 2020 3120 2020 2020 2030 2032 1 0 2 │ │ │ │ +00060cf0: 2020 2020 2020 3120 3220 2020 2020 3220 1 2 2 │ │ │ │ +00060d00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00060d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060d50: 2020 2020 7c0a 7c6f 3238 203a 2049 6465 |.|o28 : Ide │ │ │ │ -00060d60: 616c 206f 6620 5320 2020 2020 2020 2020 al of S │ │ │ │ +00060d40: 2020 2020 2020 2020 207c 0a7c 6f32 3820 |.|o28 │ │ │ │ +00060d50: 3a20 4964 6561 6c20 6f66 2053 2020 2020 : Ideal of S │ │ │ │ +00060d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060d90: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00060d90: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00060da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00060dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00060de0: 2d2d 2d2d 2b0a 0a61 6e64 2069 6e20 6661 ----+..and in fa │ │ │ │ -00060df0: 6374 2074 6865 7920 6172 6520 6e6f 7420 ct they are not │ │ │ │ -00060e00: 6973 6f6d 6f72 7068 6963 3a0a 0a2b 2d2d isomorphic:..+-- │ │ │ │ +00060dd0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 616e 6420 ---------+..and │ │ │ │ +00060de0: 696e 2066 6163 7420 7468 6579 2061 7265 in fact they are │ │ │ │ +00060df0: 206e 6f74 2069 736f 6d6f 7270 6869 633a not isomorphic: │ │ │ │ +00060e00: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ 00060e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00060e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -00060e60: 3920 3a20 4545 746f 4553 203d 206d 6170 9 : EEtoES = map │ │ │ │ -00060e70: 2872 696e 6720 4553 2c72 696e 6720 4545 (ring ES,ring EE │ │ │ │ -00060e80: 2c20 6765 6e73 2072 696e 6720 4553 2920 , gens ring ES) │ │ │ │ +00060e50: 2b0a 7c69 3239 203a 2045 4574 6f45 5320 +.|i29 : EEtoES │ │ │ │ +00060e60: 3d20 6d61 7028 7269 6e67 2045 532c 7269 = map(ring ES,ri │ │ │ │ +00060e70: 6e67 2045 452c 2067 656e 7320 7269 6e67 ng EE, gens ring │ │ │ │ +00060e80: 2045 5329 2020 2020 2020 2020 2020 2020 ES) │ │ │ │ 00060e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060ea0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00060ea0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00060eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060ef0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -00060f00: 3920 3d20 6d61 7020 2853 2c20 5327 2c20 9 = map (S, S', │ │ │ │ -00060f10: 7b73 202c 2073 202c 2073 202c 2078 202c {s , s , s , x , │ │ │ │ -00060f20: 2078 202c 2078 207d 2920 2020 2020 2020 x , x }) │ │ │ │ +00060ef0: 7c0a 7c6f 3239 203d 206d 6170 2028 532c |.|o29 = map (S, │ │ │ │ +00060f00: 2053 272c 207b 7320 2c20 7320 2c20 7320 S', {s , s , s │ │ │ │ +00060f10: 2c20 7820 2c20 7820 2c20 7820 7d29 2020 , x , x , x }) │ │ │ │ +00060f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060f40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00060f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060f60: 2020 3020 2020 3120 2020 3220 2020 3020 0 1 2 0 │ │ │ │ -00060f70: 2020 3120 2020 3220 2020 2020 2020 2020 1 2 │ │ │ │ +00060f40: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00060f50: 2020 2020 2020 2030 2020 2031 2020 2032 0 1 2 │ │ │ │ +00060f60: 2020 2030 2020 2031 2020 2032 2020 2020 0 1 2 │ │ │ │ +00060f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060f90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00060f90: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00060fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060fe0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -00060ff0: 3920 3a20 5269 6e67 4d61 7020 5320 3c2d 9 : RingMap S <- │ │ │ │ -00061000: 2d20 5327 2020 2020 2020 2020 2020 2020 - S' │ │ │ │ +00060fe0: 7c0a 7c6f 3239 203a 2052 696e 674d 6170 |.|o29 : RingMap │ │ │ │ +00060ff0: 2053 203c 2d2d 2053 2720 2020 2020 2020 S <-- S' │ │ │ │ +00061000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061030: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00061030: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00061040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00061080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -00061090: 3020 3a20 4545 2720 3d20 636f 6b65 7220 0 : EE' = coker │ │ │ │ -000610a0: 4545 746f 4553 2070 7265 7365 6e74 6174 EEtoES presentat │ │ │ │ -000610b0: 696f 6e20 4545 2020 2020 2020 2020 2020 ion EE │ │ │ │ +00061080: 2b0a 7c69 3330 203a 2045 4527 203d 2063 +.|i30 : EE' = c │ │ │ │ +00061090: 6f6b 6572 2045 4574 6f45 5320 7072 6573 oker EEtoES pres │ │ │ │ +000610a0: 656e 7461 7469 6f6e 2045 4520 2020 2020 entation EE │ │ │ │ +000610b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000610c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000610d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000610d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000610e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000610f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061120: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ -00061130: 3020 3d20 636f 6b65 726e 656c 207b 302c 0 = cokernel {0, │ │ │ │ -00061140: 2030 7d20 2020 7c20 785f 3220 785f 3120 0} | x_2 x_1 │ │ │ │ -00061150: 785f 3020 3020 2020 3020 2020 3020 2020 x_0 0 0 0 │ │ │ │ -00061160: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -00061170: 3020 2020 3020 2020 735f 327c 0a7c 2020 0 0 s_2|.| │ │ │ │ -00061180: 2020 2020 2020 2020 2020 2020 207b 302c {0, │ │ │ │ -00061190: 2030 7d20 2020 7c20 3020 2020 3020 2020 0} | 0 0 │ │ │ │ -000611a0: 3020 2020 785f 3220 785f 3120 785f 3020 0 x_2 x_1 x_0 │ │ │ │ -000611b0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -000611c0: 3020 2020 3020 2020 3020 207c 0a7c 2020 0 0 0 |.| │ │ │ │ -000611d0: 2020 2020 2020 2020 2020 2020 207b 2d31 {-1 │ │ │ │ -000611e0: 2c20 2d32 7d20 7c20 3020 2020 3020 2020 , -2} | 0 0 │ │ │ │ -000611f0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -00061200: 785f 3220 785f 3120 785f 3020 3020 2020 x_2 x_1 x_0 0 │ │ │ │ -00061210: 3020 2020 3020 2020 3020 207c 0a7c 2020 0 0 0 |.| │ │ │ │ -00061220: 2020 2020 2020 2020 2020 2020 207b 2d31 {-1 │ │ │ │ -00061230: 2c20 2d32 7d20 7c20 3020 2020 3020 2020 , -2} | 0 0 │ │ │ │ -00061240: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -00061250: 3020 2020 3020 2020 3020 2020 785f 3220 0 0 0 x_2 │ │ │ │ -00061260: 785f 3120 785f 3020 3020 207c 0a7c 2020 x_1 x_0 0 |.| │ │ │ │ -00061270: 2020 2020 2020 2020 2020 2020 207b 2d32 {-2 │ │ │ │ -00061280: 2c20 2d33 7d20 7c20 3020 2020 3020 2020 , -3} | 0 0 │ │ │ │ -00061290: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -000612a0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -000612b0: 3020 2020 3020 2020 3020 207c 0a7c 2020 0 0 0 |.| │ │ │ │ -000612c0: 2020 2020 2020 2020 2020 2020 207b 2d32 {-2 │ │ │ │ -000612d0: 2c20 2d33 7d20 7c20 3020 2020 3020 2020 , -3} | 0 0 │ │ │ │ -000612e0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -000612f0: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -00061300: 3020 2020 3020 2020 3020 207c 0a7c 2020 0 0 0 |.| │ │ │ │ -00061310: 2020 2020 2020 2020 2020 2020 207b 2d32 {-2 │ │ │ │ -00061320: 2c20 2d33 7d20 7c20 3020 2020 3020 2020 , -3} | 0 0 │ │ │ │ -00061330: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -00061340: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -00061350: 3020 2020 3020 2020 3020 207c 0a7c 2020 0 0 0 |.| │ │ │ │ -00061360: 2020 2020 2020 2020 2020 2020 207b 2d32 {-2 │ │ │ │ -00061370: 2c20 2d33 7d20 7c20 3020 2020 3020 2020 , -3} | 0 0 │ │ │ │ -00061380: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -00061390: 3020 2020 3020 2020 3020 2020 3020 2020 0 0 0 0 │ │ │ │ -000613a0: 3020 2020 3020 2020 3020 207c 0a7c 2020 0 0 0 |.| │ │ │ │ +00061120: 7c0a 7c6f 3330 203d 2063 6f6b 6572 6e65 |.|o30 = cokerne │ │ │ │ +00061130: 6c20 7b30 2c20 307d 2020 207c 2078 5f32 l {0, 0} | x_2 │ │ │ │ +00061140: 2078 5f31 2078 5f30 2030 2020 2030 2020 x_1 x_0 0 0 │ │ │ │ +00061150: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +00061160: 2030 2020 2030 2020 2030 2020 2073 5f32 0 0 0 s_2 │ │ │ │ +00061170: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00061180: 2020 7b30 2c20 307d 2020 207c 2030 2020 {0, 0} | 0 │ │ │ │ +00061190: 2030 2020 2030 2020 2078 5f32 2078 5f31 0 0 x_2 x_1 │ │ │ │ +000611a0: 2078 5f30 2030 2020 2030 2020 2030 2020 x_0 0 0 0 │ │ │ │ +000611b0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +000611c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000611d0: 2020 7b2d 312c 202d 327d 207c 2030 2020 {-1, -2} | 0 │ │ │ │ +000611e0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +000611f0: 2030 2020 2078 5f32 2078 5f31 2078 5f30 0 x_2 x_1 x_0 │ │ │ │ +00061200: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +00061210: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00061220: 2020 7b2d 312c 202d 327d 207c 2030 2020 {-1, -2} | 0 │ │ │ │ +00061230: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +00061240: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +00061250: 2078 5f32 2078 5f31 2078 5f30 2030 2020 x_2 x_1 x_0 0 │ │ │ │ +00061260: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00061270: 2020 7b2d 322c 202d 337d 207c 2030 2020 {-2, -3} | 0 │ │ │ │ +00061280: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +00061290: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +000612a0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +000612b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000612c0: 2020 7b2d 322c 202d 337d 207c 2030 2020 {-2, -3} | 0 │ │ │ │ +000612d0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +000612e0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +000612f0: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +00061300: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00061310: 2020 7b2d 322c 202d 337d 207c 2030 2020 {-2, -3} | 0 │ │ │ │ +00061320: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +00061330: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +00061340: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +00061350: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00061360: 2020 7b2d 322c 202d 337d 207c 2030 2020 {-2, -3} | 0 │ │ │ │ +00061370: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +00061380: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +00061390: 2030 2020 2030 2020 2030 2020 2030 2020 0 0 0 0 │ │ │ │ +000613a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000613b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000613c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000613d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000613e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000613f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000613f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00061400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061410: 2020 2020 2020 2020 2020 2038 2020 2020 8 │ │ │ │ +00061410: 3820 2020 2020 2020 2020 2020 2020 2020 8 │ │ │ │ 00061420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061440: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ -00061450: 3020 3a20 532d 6d6f 6475 6c65 2c20 7175 0 : S-module, qu │ │ │ │ -00061460: 6f74 6965 6e74 206f 6620 5320 2020 2020 otient of S │ │ │ │ +00061440: 7c0a 7c6f 3330 203a 2053 2d6d 6f64 756c |.|o30 : S-modul │ │ │ │ +00061450: 652c 2071 756f 7469 656e 7420 6f66 2053 e, quotient of S │ │ │ │ +00061460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061490: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ +00061490: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ 000614a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000614b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000614c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000614d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000614e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 735f -----------|.|s_ │ │ │ │ -000614f0: 3120 735f 3020 3020 2020 3020 2020 3020 1 s_0 0 0 0 │ │ │ │ -00061500: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -00061510: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -00061520: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -00061530: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ -00061540: 2020 3020 2020 735f 3220 735f 3120 735f 0 s_2 s_1 s_ │ │ │ │ -00061550: 3020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 0 │ │ │ │ -00061560: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -00061570: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -00061580: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ -00061590: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -000615a0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -000615b0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -000615c0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -000615d0: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ -000615e0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -000615f0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -00061600: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -00061610: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -00061620: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ -00061630: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -00061640: 2020 785f 3220 785f 3120 785f 3020 3020 x_2 x_1 x_0 0 │ │ │ │ -00061650: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -00061660: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -00061670: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ -00061680: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -00061690: 2020 3020 2020 3020 2020 3020 2020 785f 0 0 0 x_ │ │ │ │ -000616a0: 3220 785f 3120 785f 3020 3020 2020 3020 2 x_1 x_0 0 0 │ │ │ │ -000616b0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -000616c0: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ -000616d0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -000616e0: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -000616f0: 2020 3020 2020 3020 2020 785f 3220 785f 0 0 x_2 x_ │ │ │ │ -00061700: 3120 785f 3020 3020 2020 3020 2020 3020 1 x_0 0 0 0 │ │ │ │ -00061710: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ -00061720: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -00061730: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -00061740: 2020 3020 2020 3020 2020 3020 2020 3020 0 0 0 0 │ │ │ │ -00061750: 2020 3020 2020 785f 3220 785f 3120 785f 0 x_2 x_1 x_ │ │ │ │ -00061760: 3020 2020 2020 2020 2020 207c 0a7c 2d2d 0 |.|-- │ │ │ │ +000614e0: 7c0a 7c73 5f31 2073 5f30 2030 2020 2030 |.|s_1 s_0 0 0 │ │ │ │ +000614f0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +00061500: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +00061510: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +00061520: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00061530: 7c0a 7c30 2020 2030 2020 2073 5f32 2073 |.|0 0 s_2 s │ │ │ │ +00061540: 5f31 2073 5f30 2030 2020 2030 2020 2030 _1 s_0 0 0 0 │ │ │ │ +00061550: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +00061560: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +00061570: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00061580: 7c0a 7c30 2020 2030 2020 2030 2020 2030 |.|0 0 0 0 │ │ │ │ +00061590: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +000615a0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +000615b0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +000615c0: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000615d0: 7c0a 7c30 2020 2030 2020 2030 2020 2030 |.|0 0 0 0 │ │ │ │ +000615e0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +000615f0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +00061600: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +00061610: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00061620: 7c0a 7c30 2020 2030 2020 2030 2020 2030 |.|0 0 0 0 │ │ │ │ +00061630: 2020 2030 2020 2078 5f32 2078 5f31 2078 0 x_2 x_1 x │ │ │ │ +00061640: 5f30 2030 2020 2030 2020 2030 2020 2030 _0 0 0 0 0 │ │ │ │ +00061650: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +00061660: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00061670: 7c0a 7c30 2020 2030 2020 2030 2020 2030 |.|0 0 0 0 │ │ │ │ +00061680: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +00061690: 2020 2078 5f32 2078 5f31 2078 5f30 2030 x_2 x_1 x_0 0 │ │ │ │ +000616a0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +000616b0: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000616c0: 7c0a 7c30 2020 2030 2020 2030 2020 2030 |.|0 0 0 0 │ │ │ │ +000616d0: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +000616e0: 2020 2030 2020 2030 2020 2030 2020 2078 0 0 0 x │ │ │ │ +000616f0: 5f32 2078 5f31 2078 5f30 2030 2020 2030 _2 x_1 x_0 0 0 │ │ │ │ +00061700: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00061710: 7c0a 7c30 2020 2030 2020 2030 2020 2030 |.|0 0 0 0 │ │ │ │ +00061720: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +00061730: 2020 2030 2020 2030 2020 2030 2020 2030 0 0 0 0 │ │ │ │ +00061740: 2020 2030 2020 2030 2020 2078 5f32 2078 0 0 x_2 x │ │ │ │ +00061750: 5f31 2078 5f30 2020 2020 2020 2020 2020 _1 x_0 │ │ │ │ +00061760: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ 00061770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000617a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000617b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 3020 -----------|.|0 │ │ │ │ -000617c0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -000617d0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -000617e0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +000617b0: 7c0a 7c30 2020 2020 2020 2020 2020 2020 |.|0 │ │ │ │ +000617c0: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000617d0: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000617e0: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 000617f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061800: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ -00061810: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -00061820: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -00061830: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +00061800: 7c0a 7c30 2020 2020 2020 2020 2020 2020 |.|0 │ │ │ │ +00061810: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00061820: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00061830: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 00061840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061850: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ -00061860: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -00061870: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -00061880: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +00061850: 7c0a 7c30 2020 2020 2020 2020 2020 2020 |.|0 │ │ │ │ +00061860: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00061870: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00061880: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 00061890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000618a0: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ -000618b0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -000618c0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -000618d0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +000618a0: 7c0a 7c30 2020 2020 2020 2020 2020 2020 |.|0 │ │ │ │ +000618b0: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000618c0: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +000618d0: 2020 2030 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 000618e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000618f0: 2020 2020 2020 2020 2020 207c 0a7c 735f |.|s_ │ │ │ │ -00061900: 302d 3138 735f 312d 3332 735f 3220 2d32 0-18s_1-32s_2 -2 │ │ │ │ -00061910: 3773 5f31 2b32 3573 5f32 2020 2020 3432 7s_1+25s_2 42 │ │ │ │ -00061920: 735f 3120 2020 2020 2020 2020 2020 2d32 s_1 -2 │ │ │ │ -00061930: 3273 5f31 2020 2020 2020 2020 2020 2020 2s_1 │ │ │ │ -00061940: 2020 2020 2020 2020 2020 207c 0a7c 3233 |.|23 │ │ │ │ -00061950: 735f 312d 3431 735f 3220 2020 2020 735f s_1-41s_2 s_ │ │ │ │ -00061960: 302d 3432 735f 312b 3138 735f 3220 2d34 0-42s_1+18s_2 -4 │ │ │ │ -00061970: 3573 5f31 2020 2020 2020 2020 2020 2d34 5s_1 -4 │ │ │ │ -00061980: 3273 5f31 2020 2020 2020 2020 2020 2020 2s_1 │ │ │ │ -00061990: 2020 2020 2020 2020 2020 207c 0a7c 2d34 |.|-4 │ │ │ │ -000619a0: 3273 5f32 2020 2020 2020 2020 2020 3232 2s_2 22 │ │ │ │ -000619b0: 735f 3220 2020 2020 2020 2020 2020 735f s_2 s_ │ │ │ │ -000619c0: 302d 3138 735f 312d 3332 735f 3220 2d32 0-18s_1-32s_2 -2 │ │ │ │ -000619d0: 3773 5f31 2b32 3573 5f32 2020 2020 2020 7s_1+25s_2 │ │ │ │ -000619e0: 2020 2020 2020 2020 2020 207c 0a7c 3435 |.|45 │ │ │ │ -000619f0: 735f 3220 2020 2020 2020 2020 2020 3432 s_2 42 │ │ │ │ -00061a00: 735f 3220 2020 2020 2020 2020 2020 3233 s_2 23 │ │ │ │ -00061a10: 735f 312d 3431 735f 3220 2020 2020 735f s_1-41s_2 s_ │ │ │ │ -00061a20: 302d 3432 735f 312b 3138 735f 3220 2020 0-42s_1+18s_2 │ │ │ │ -00061a30: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ +000618f0: 7c0a 7c73 5f30 2d31 3873 5f31 2d33 3273 |.|s_0-18s_1-32s │ │ │ │ +00061900: 5f32 202d 3237 735f 312b 3235 735f 3220 _2 -27s_1+25s_2 │ │ │ │ +00061910: 2020 2034 3273 5f31 2020 2020 2020 2020 42s_1 │ │ │ │ +00061920: 2020 202d 3232 735f 3120 2020 2020 2020 -22s_1 │ │ │ │ +00061930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061940: 7c0a 7c32 3373 5f31 2d34 3173 5f32 2020 |.|23s_1-41s_2 │ │ │ │ +00061950: 2020 2073 5f30 2d34 3273 5f31 2b31 3873 s_0-42s_1+18s │ │ │ │ +00061960: 5f32 202d 3435 735f 3120 2020 2020 2020 _2 -45s_1 │ │ │ │ +00061970: 2020 202d 3432 735f 3120 2020 2020 2020 -42s_1 │ │ │ │ +00061980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061990: 7c0a 7c2d 3432 735f 3220 2020 2020 2020 |.|-42s_2 │ │ │ │ +000619a0: 2020 2032 3273 5f32 2020 2020 2020 2020 22s_2 │ │ │ │ +000619b0: 2020 2073 5f30 2d31 3873 5f31 2d33 3273 s_0-18s_1-32s │ │ │ │ +000619c0: 5f32 202d 3237 735f 312b 3235 735f 3220 _2 -27s_1+25s_2 │ │ │ │ +000619d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000619e0: 7c0a 7c34 3573 5f32 2020 2020 2020 2020 |.|45s_2 │ │ │ │ +000619f0: 2020 2034 3273 5f32 2020 2020 2020 2020 42s_2 │ │ │ │ +00061a00: 2020 2032 3373 5f31 2d34 3173 5f32 2020 23s_1-41s_2 │ │ │ │ +00061a10: 2020 2073 5f30 2d34 3273 5f31 2b31 3873 s_0-42s_1+18s │ │ │ │ +00061a20: 5f32 2020 2020 2020 2020 2020 2020 2020 _2 │ │ │ │ +00061a30: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ 00061a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00061a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 3020 -----------|.|0 │ │ │ │ +00061a80: 7c0a 7c30 2020 2020 2020 2020 2020 2020 |.|0 │ │ │ │ 00061a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061ad0: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ +00061ad0: 7c0a 7c30 2020 2020 2020 2020 2020 2020 |.|0 │ │ │ │ 00061ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061b20: 2020 2020 2020 2020 2020 207c 0a7c 735f |.|s_ │ │ │ │ -00061b30: 305e 322b 3431 735f 3073 5f31 2d33 3773 0^2+41s_0s_1-37s │ │ │ │ -00061b40: 5f31 5e32 2d31 3473 5f30 735f 322d 3239 _1^2-14s_0s_2-29 │ │ │ │ -00061b50: 735f 3173 5f32 2b34 3573 5f32 5e32 2020 s_1s_2+45s_2^2 │ │ │ │ +00061b20: 7c0a 7c73 5f30 5e32 2b34 3173 5f30 735f |.|s_0^2+41s_0s_ │ │ │ │ +00061b30: 312d 3337 735f 315e 322d 3134 735f 3073 1-37s_1^2-14s_0s │ │ │ │ +00061b40: 5f32 2d32 3973 5f31 735f 322b 3435 735f _2-29s_1s_2+45s_ │ │ │ │ +00061b50: 325e 3220 2020 2020 2020 2020 2020 2020 2^2 │ │ │ │ 00061b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061b70: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ +00061b70: 7c0a 7c30 2020 2020 2020 2020 2020 2020 |.|0 │ │ │ │ 00061b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061bc0: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ +00061bc0: 7c0a 7c30 2020 2020 2020 2020 2020 2020 |.|0 │ │ │ │ 00061bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061c10: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ +00061c10: 7c0a 7c30 2020 2020 2020 2020 2020 2020 |.|0 │ │ │ │ 00061c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061c60: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ +00061c60: 7c0a 7c30 2020 2020 2020 2020 2020 2020 |.|0 │ │ │ │ 00061c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061cb0: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ +00061cb0: 7c0a 7c30 2020 2020 2020 2020 2020 2020 |.|0 │ │ │ │ 00061cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061d00: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ +00061d00: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ 00061d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00061d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 3020 -----------|.|0 │ │ │ │ +00061d50: 7c0a 7c30 2020 2020 2020 2020 2020 2020 |.|0 │ │ │ │ 00061d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061d80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061d80: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ 00061d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061da0: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ +00061da0: 7c0a 7c30 2020 2020 2020 2020 2020 2020 |.|0 │ │ │ │ 00061db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061dd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061dd0: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ 00061de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061df0: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ +00061df0: 7c0a 7c30 2020 2020 2020 2020 2020 2020 |.|0 │ │ │ │ 00061e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061e20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061e20: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ 00061e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061e40: 2020 2020 2020 2020 2020 207c 0a7c 735f |.|s_ │ │ │ │ -00061e50: 305e 322b 3431 735f 3073 5f31 2d33 3773 0^2+41s_0s_1-37s │ │ │ │ -00061e60: 5f31 5e32 2d31 3473 5f30 735f 322d 3239 _1^2-14s_0s_2-29 │ │ │ │ -00061e70: 735f 3173 5f32 2b34 3573 5f32 5e32 207c s_1s_2+45s_2^2 | │ │ │ │ +00061e40: 7c0a 7c73 5f30 5e32 2b34 3173 5f30 735f |.|s_0^2+41s_0s_ │ │ │ │ +00061e50: 312d 3337 735f 315e 322d 3134 735f 3073 1-37s_1^2-14s_0s │ │ │ │ +00061e60: 5f32 2d32 3973 5f31 735f 322b 3435 735f _2-29s_1s_2+45s_ │ │ │ │ +00061e70: 325e 3220 7c20 2020 2020 2020 2020 2020 2^2 | │ │ │ │ 00061e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061e90: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ +00061e90: 7c0a 7c30 2020 2020 2020 2020 2020 2020 |.|0 │ │ │ │ 00061ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061ec0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061ec0: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ 00061ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061ee0: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ +00061ee0: 7c0a 7c30 2020 2020 2020 2020 2020 2020 |.|0 │ │ │ │ 00061ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061f10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061f10: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ 00061f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061f30: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ +00061f30: 7c0a 7c30 2020 2020 2020 2020 2020 2020 |.|0 │ │ │ │ 00061f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061f60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061f60: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ 00061f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061f80: 2020 2020 2020 2020 2020 207c 0a7c 3020 |.|0 │ │ │ │ +00061f80: 7c0a 7c30 2020 2020 2020 2020 2020 2020 |.|0 │ │ │ │ 00061f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061fb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061fb0: 2020 2020 7c20 2020 2020 2020 2020 2020 | │ │ │ │ 00061fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061fd0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00061fd0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00061fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00062020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -00062030: 3120 3a20 4820 3d20 486f 6d28 4545 272c 1 : H = Hom(EE', │ │ │ │ -00062040: 4553 293b 2020 2020 2020 2020 2020 2020 ES); │ │ │ │ +00062020: 2b0a 7c69 3331 203a 2048 203d 2048 6f6d +.|i31 : H = Hom │ │ │ │ +00062030: 2845 4527 2c45 5329 3b20 2020 2020 2020 (EE',ES); │ │ │ │ +00062040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062070: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00062070: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00062080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000620a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000620b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000620c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -000620d0: 3220 3a20 5120 3d20 706f 7369 7469 6f6e 2 : Q = position │ │ │ │ -000620e0: 7328 6465 6772 6565 7320 7461 7267 6574 s(degrees target │ │ │ │ -000620f0: 2070 7265 7365 6e74 6174 696f 6e20 482c presentation H, │ │ │ │ -00062100: 2069 2d3e 2069 203d 3d20 7b30 2c30 7d29 i-> i == {0,0}) │ │ │ │ -00062110: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000620c0: 2b0a 7c69 3332 203a 2051 203d 2070 6f73 +.|i32 : Q = pos │ │ │ │ +000620d0: 6974 696f 6e73 2864 6567 7265 6573 2074 itions(degrees t │ │ │ │ +000620e0: 6172 6765 7420 7072 6573 656e 7461 7469 arget presentati │ │ │ │ +000620f0: 6f6e 2048 2c20 692d 3e20 6920 3d3d 207b on H, i-> i == { │ │ │ │ +00062100: 302c 307d 2920 2020 2020 2020 2020 2020 0,0}) │ │ │ │ +00062110: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00062120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062160: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ -00062170: 3220 3d20 7b38 2c20 392c 2031 302c 2031 2 = {8, 9, 10, 1 │ │ │ │ -00062180: 317d 2020 2020 2020 2020 2020 2020 2020 1} │ │ │ │ +00062160: 7c0a 7c6f 3332 203d 207b 382c 2039 2c20 |.|o32 = {8, 9, │ │ │ │ +00062170: 3130 2c20 3131 7d20 2020 2020 2020 2020 10, 11} │ │ │ │ +00062180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000621a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000621b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000621b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000621c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000621d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000621e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000621f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062200: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ -00062210: 3220 3a20 4c69 7374 2020 2020 2020 2020 2 : List │ │ │ │ +00062200: 7c0a 7c6f 3332 203a 204c 6973 7420 2020 |.|o32 : List │ │ │ │ +00062210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062250: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00062250: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00062260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000622a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -000622b0: 3320 3a20 6620 3d20 7375 6d28 512c 2070 3 : f = sum(Q, p │ │ │ │ -000622c0: 2d3e 2072 616e 646f 6d20 2853 5e31 2c20 -> random (S^1, │ │ │ │ -000622d0: 535e 3129 2a2a 686f 6d6f 6d6f 7270 6869 S^1)**homomorphi │ │ │ │ -000622e0: 736d 2048 5f7b 707d 2920 2020 2020 2020 sm H_{p}) │ │ │ │ -000622f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000622a0: 2b0a 7c69 3333 203a 2066 203d 2073 756d +.|i33 : f = sum │ │ │ │ +000622b0: 2851 2c20 702d 3e20 7261 6e64 6f6d 2028 (Q, p-> random ( │ │ │ │ +000622c0: 535e 312c 2053 5e31 292a 2a68 6f6d 6f6d S^1, S^1)**homom │ │ │ │ +000622d0: 6f72 7068 6973 6d20 485f 7b70 7d29 2020 orphism H_{p}) │ │ │ │ +000622e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000622f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00062300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062340: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ -00062350: 3320 3d20 7b30 2c20 307d 2020 207c 202d 3 = {0, 0} | - │ │ │ │ -00062360: 3338 2033 3920 3020 3020 3020 3020 3020 38 39 0 0 0 0 0 │ │ │ │ -00062370: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +00062340: 7c0a 7c6f 3333 203d 207b 302c 2030 7d20 |.|o33 = {0, 0} │ │ │ │ +00062350: 2020 7c20 2d33 3820 3339 2030 2030 2030 | -38 39 0 0 0 │ │ │ │ +00062360: 2030 2030 2030 207c 2020 2020 2020 2020 0 0 0 | │ │ │ │ +00062370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062390: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000623a0: 2020 2020 7b30 2c20 307d 2020 207c 202d {0, 0} | - │ │ │ │ -000623b0: 3136 2032 3120 3020 3020 3020 3020 3020 16 21 0 0 0 0 0 │ │ │ │ -000623c0: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +00062390: 7c0a 7c20 2020 2020 207b 302c 2030 7d20 |.| {0, 0} │ │ │ │ +000623a0: 2020 7c20 2d31 3620 3231 2030 2030 2030 | -16 21 0 0 0 │ │ │ │ +000623b0: 2030 2030 2030 207c 2020 2020 2020 2020 0 0 0 | │ │ │ │ +000623c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000623d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000623e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000623f0: 2020 2020 7b2d 322c 202d 337d 207c 2030 {-2, -3} | 0 │ │ │ │ -00062400: 2020 2030 2020 3020 3020 3020 3020 3020 0 0 0 0 0 0 │ │ │ │ -00062410: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +000623e0: 7c0a 7c20 2020 2020 207b 2d32 2c20 2d33 |.| {-2, -3 │ │ │ │ +000623f0: 7d20 7c20 3020 2020 3020 2030 2030 2030 } | 0 0 0 0 0 │ │ │ │ +00062400: 2030 2030 2030 207c 2020 2020 2020 2020 0 0 0 | │ │ │ │ +00062410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062430: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00062440: 2020 2020 7b2d 322c 202d 337d 207c 2030 {-2, -3} | 0 │ │ │ │ -00062450: 2020 2030 2020 3020 3020 3020 3020 3020 0 0 0 0 0 0 │ │ │ │ -00062460: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +00062430: 7c0a 7c20 2020 2020 207b 2d32 2c20 2d33 |.| {-2, -3 │ │ │ │ +00062440: 7d20 7c20 3020 2020 3020 2030 2030 2030 } | 0 0 0 0 0 │ │ │ │ +00062450: 2030 2030 2030 207c 2020 2020 2020 2020 0 0 0 | │ │ │ │ +00062460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062480: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00062490: 2020 2020 7b2d 322c 202d 337d 207c 2030 {-2, -3} | 0 │ │ │ │ -000624a0: 2020 2030 2020 3020 3020 3020 3020 3020 0 0 0 0 0 0 │ │ │ │ -000624b0: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +00062480: 7c0a 7c20 2020 2020 207b 2d32 2c20 2d33 |.| {-2, -3 │ │ │ │ +00062490: 7d20 7c20 3020 2020 3020 2030 2030 2030 } | 0 0 0 0 0 │ │ │ │ +000624a0: 2030 2030 2030 207c 2020 2020 2020 2020 0 0 0 | │ │ │ │ +000624b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000624c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000624d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000624e0: 2020 2020 7b2d 322c 202d 337d 207c 2030 {-2, -3} | 0 │ │ │ │ -000624f0: 2020 2030 2020 3020 3020 3020 3020 3020 0 0 0 0 0 0 │ │ │ │ -00062500: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +000624d0: 7c0a 7c20 2020 2020 207b 2d32 2c20 2d33 |.| {-2, -3 │ │ │ │ +000624e0: 7d20 7c20 3020 2020 3020 2030 2030 2030 } | 0 0 0 0 0 │ │ │ │ +000624f0: 2030 2030 2030 207c 2020 2020 2020 2020 0 0 0 | │ │ │ │ +00062500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062520: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00062530: 2020 2020 7b2d 312c 202d 327d 207c 2030 {-1, -2} | 0 │ │ │ │ -00062540: 2020 2030 2020 3020 3020 3020 3020 3020 0 0 0 0 0 0 │ │ │ │ -00062550: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +00062520: 7c0a 7c20 2020 2020 207b 2d31 2c20 2d32 |.| {-1, -2 │ │ │ │ +00062530: 7d20 7c20 3020 2020 3020 2030 2030 2030 } | 0 0 0 0 0 │ │ │ │ +00062540: 2030 2030 2030 207c 2020 2020 2020 2020 0 0 0 | │ │ │ │ +00062550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062570: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00062580: 2020 2020 7b2d 312c 202d 327d 207c 2030 {-1, -2} | 0 │ │ │ │ -00062590: 2020 2030 2020 3020 3020 3020 3020 3020 0 0 0 0 0 0 │ │ │ │ -000625a0: 3020 7c20 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +00062570: 7c0a 7c20 2020 2020 207b 2d31 2c20 2d32 |.| {-1, -2 │ │ │ │ +00062580: 7d20 7c20 3020 2020 3020 2030 2030 2030 } | 0 0 0 0 0 │ │ │ │ +00062590: 2030 2030 2030 207c 2020 2020 2020 2020 0 0 0 | │ │ │ │ +000625a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000625b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000625c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000625c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000625d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000625e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000625f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062610: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ -00062620: 3320 3a20 4d61 7472 6978 2045 5320 3c2d 3 : Matrix ES <- │ │ │ │ -00062630: 2d20 4545 2720 2020 2020 2020 2020 2020 - EE' │ │ │ │ +00062610: 7c0a 7c6f 3333 203a 204d 6174 7269 7820 |.|o33 : Matrix │ │ │ │ +00062620: 4553 203c 2d2d 2045 4527 2020 2020 2020 ES <-- EE' │ │ │ │ +00062630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062660: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00062660: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00062670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000626a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000626b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4966 -----------+..If │ │ │ │ -000626c0: 2045 4520 616e 6420 4553 2077 6572 6520 EE and ES were │ │ │ │ -000626d0: 6973 6f6d 6f72 7068 6963 2c20 7765 2077 isomorphic, we w │ │ │ │ -000626e0: 6f75 6c64 2065 7870 6563 7420 636f 6b65 ould expect coke │ │ │ │ -000626f0: 7220 6620 746f 2062 6520 302c 2061 6e64 r f to be 0, and │ │ │ │ -00062700: 2069 7427 7320 6e6f 742e 0a70 7275 6e65 it's not..prune │ │ │ │ -00062710: 2063 6f6b 6572 2066 0a0a 5365 6520 616c coker f..See al │ │ │ │ -00062720: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ -00062730: 202a 6e6f 7465 2045 7874 3a20 284d 6163 *note Ext: (Mac │ │ │ │ -00062740: 6175 6c61 7932 446f 6329 4578 742c 202d aulay2Doc)Ext, - │ │ │ │ -00062750: 2d20 636f 6d70 7574 6520 616e 2045 7874 - compute an Ext │ │ │ │ -00062760: 206d 6f64 756c 650a 2020 2a20 2a6e 6f74 module. * *not │ │ │ │ -00062770: 6520 4569 7365 6e62 7564 5368 616d 6173 e EisenbudShamas │ │ │ │ -00062780: 6854 6f74 616c 3a20 4569 7365 6e62 7564 hTotal: Eisenbud │ │ │ │ -00062790: 5368 616d 6173 6854 6f74 616c 2c20 2d2d ShamashTotal, -- │ │ │ │ -000627a0: 2050 7265 6375 7273 6f72 2063 6f6d 706c Precursor compl │ │ │ │ -000627b0: 6578 206f 660a 2020 2020 746f 7461 6c20 ex of. total │ │ │ │ -000627c0: 4578 740a 0a57 6179 7320 746f 2075 7365 Ext..Ways to use │ │ │ │ -000627d0: 206e 6577 4578 743a 0a3d 3d3d 3d3d 3d3d newExt:.======= │ │ │ │ -000627e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ -000627f0: 2a20 226e 6577 4578 7428 4d6f 6475 6c65 * "newExt(Module │ │ │ │ -00062800: 2c4d 6f64 756c 6529 220a 0a46 6f72 2074 ,Module)"..For t │ │ │ │ -00062810: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ -00062820: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00062830: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ -00062840: 7465 206e 6577 4578 743a 206e 6577 4578 te newExt: newEx │ │ │ │ -00062850: 742c 2069 7320 6120 2a6e 6f74 6520 6d65 t, is a *note me │ │ │ │ -00062860: 7468 6f64 2066 756e 6374 696f 6e20 7769 thod function wi │ │ │ │ -00062870: 7468 206f 7074 696f 6e73 3a0a 284d 6163 th options:.(Mac │ │ │ │ -00062880: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ -00062890: 4675 6e63 7469 6f6e 5769 7468 4f70 7469 FunctionWithOpti │ │ │ │ -000628a0: 6f6e 732c 2e0a 1f0a 4669 6c65 3a20 436f ons,....File: Co │ │ │ │ -000628b0: 6d70 6c65 7465 496e 7465 7273 6563 7469 mpleteIntersecti │ │ │ │ -000628c0: 6f6e 5265 736f 6c75 7469 6f6e 732e 696e onResolutions.in │ │ │ │ -000628d0: 666f 2c20 4e6f 6465 3a20 6f64 6445 7874 fo, Node: oddExt │ │ │ │ -000628e0: 4d6f 6475 6c65 2c20 4e65 7874 3a20 4f70 Module, Next: Op │ │ │ │ -000628f0: 7469 6d69 736d 2c20 5072 6576 3a20 6e65 timism, Prev: ne │ │ │ │ -00062900: 7745 7874 2c20 5570 3a20 546f 700a 0a6f wExt, Up: Top..o │ │ │ │ -00062910: 6464 4578 744d 6f64 756c 6520 2d2d 206f ddExtModule -- o │ │ │ │ -00062920: 6464 2070 6172 7420 6f66 2045 7874 5e2a dd part of Ext^* │ │ │ │ -00062930: 284d 2c6b 2920 6f76 6572 2061 2063 6f6d (M,k) over a com │ │ │ │ -00062940: 706c 6574 6520 696e 7465 7273 6563 7469 plete intersecti │ │ │ │ -00062950: 6f6e 2061 7320 6d6f 6475 6c65 206f 7665 on as module ove │ │ │ │ -00062960: 7220 4349 206f 7065 7261 746f 7220 7269 r CI operator ri │ │ │ │ -00062970: 6e67 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ng.************* │ │ │ │ +000626b0: 2b0a 0a49 6620 4545 2061 6e64 2045 5320 +..If EE and ES │ │ │ │ +000626c0: 7765 7265 2069 736f 6d6f 7270 6869 632c were isomorphic, │ │ │ │ +000626d0: 2077 6520 776f 756c 6420 6578 7065 6374 we would expect │ │ │ │ +000626e0: 2063 6f6b 6572 2066 2074 6f20 6265 2030 coker f to be 0 │ │ │ │ +000626f0: 2c20 616e 6420 6974 2773 206e 6f74 2e0a , and it's not.. │ │ │ │ +00062700: 7072 756e 6520 636f 6b65 7220 660a 0a53 prune coker f..S │ │ │ │ +00062710: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ +00062720: 0a0a 2020 2a20 2a6e 6f74 6520 4578 743a .. * *note Ext: │ │ │ │ +00062730: 2028 4d61 6361 756c 6179 3244 6f63 2945 (Macaulay2Doc)E │ │ │ │ +00062740: 7874 2c20 2d2d 2063 6f6d 7075 7465 2061 xt, -- compute a │ │ │ │ +00062750: 6e20 4578 7420 6d6f 6475 6c65 0a20 202a n Ext module. * │ │ │ │ +00062760: 202a 6e6f 7465 2045 6973 656e 6275 6453 *note EisenbudS │ │ │ │ +00062770: 6861 6d61 7368 546f 7461 6c3a 2045 6973 hamashTotal: Eis │ │ │ │ +00062780: 656e 6275 6453 6861 6d61 7368 546f 7461 enbudShamashTota │ │ │ │ +00062790: 6c2c 202d 2d20 5072 6563 7572 736f 7220 l, -- Precursor │ │ │ │ +000627a0: 636f 6d70 6c65 7820 6f66 0a20 2020 2074 complex of. t │ │ │ │ +000627b0: 6f74 616c 2045 7874 0a0a 5761 7973 2074 otal Ext..Ways t │ │ │ │ +000627c0: 6f20 7573 6520 6e65 7745 7874 3a0a 3d3d o use newExt:.== │ │ │ │ +000627d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000627e0: 3d0a 0a20 202a 2022 6e65 7745 7874 284d =.. * "newExt(M │ │ │ │ +000627f0: 6f64 756c 652c 4d6f 6475 6c65 2922 0a0a odule,Module)".. │ │ │ │ +00062800: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +00062810: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +00062820: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +00062830: 7420 2a6e 6f74 6520 6e65 7745 7874 3a20 t *note newExt: │ │ │ │ +00062840: 6e65 7745 7874 2c20 6973 2061 202a 6e6f newExt, is a *no │ │ │ │ +00062850: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ +00062860: 6f6e 2077 6974 6820 6f70 7469 6f6e 733a on with options: │ │ │ │ +00062870: 0a28 4d61 6361 756c 6179 3244 6f63 294d .(Macaulay2Doc)M │ │ │ │ +00062880: 6574 686f 6446 756e 6374 696f 6e57 6974 ethodFunctionWit │ │ │ │ +00062890: 684f 7074 696f 6e73 2c2e 0a1f 0a46 696c hOptions,....Fil │ │ │ │ +000628a0: 653a 2043 6f6d 706c 6574 6549 6e74 6572 e: CompleteInter │ │ │ │ +000628b0: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ +000628c0: 6e73 2e69 6e66 6f2c 204e 6f64 653a 206f ns.info, Node: o │ │ │ │ +000628d0: 6464 4578 744d 6f64 756c 652c 204e 6578 ddExtModule, Nex │ │ │ │ +000628e0: 743a 204f 7074 696d 6973 6d2c 2050 7265 t: Optimism, Pre │ │ │ │ +000628f0: 763a 206e 6577 4578 742c 2055 703a 2054 v: newExt, Up: T │ │ │ │ +00062900: 6f70 0a0a 6f64 6445 7874 4d6f 6475 6c65 op..oddExtModule │ │ │ │ +00062910: 202d 2d20 6f64 6420 7061 7274 206f 6620 -- odd part of │ │ │ │ +00062920: 4578 745e 2a28 4d2c 6b29 206f 7665 7220 Ext^*(M,k) over │ │ │ │ +00062930: 6120 636f 6d70 6c65 7465 2069 6e74 6572 a complete inter │ │ │ │ +00062940: 7365 6374 696f 6e20 6173 206d 6f64 756c section as modul │ │ │ │ +00062950: 6520 6f76 6572 2043 4920 6f70 6572 6174 e over CI operat │ │ │ │ +00062960: 6f72 2072 696e 670a 2a2a 2a2a 2a2a 2a2a or ring.******** │ │ │ │ +00062970: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00062980: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00062990: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000629a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000629b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000629c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000629d0: 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 ******..Synopsis │ │ │ │ -000629e0: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 .========.. * U │ │ │ │ -000629f0: 7361 6765 3a20 0a20 2020 2020 2020 2045 sage: . E │ │ │ │ -00062a00: 203d 206f 6464 4578 744d 6f64 756c 6520 = oddExtModule │ │ │ │ -00062a10: 4d0a 2020 2a20 496e 7075 7473 3a0a 2020 M. * Inputs:. │ │ │ │ -00062a20: 2020 2020 2a20 4d2c 2061 202a 6e6f 7465 * M, a *note │ │ │ │ -00062a30: 206d 6f64 756c 653a 2028 4d61 6361 756c module: (Macaul │ │ │ │ -00062a40: 6179 3244 6f63 294d 6f64 756c 652c 2c20 ay2Doc)Module,, │ │ │ │ -00062a50: 6f76 6572 2061 2063 6f6d 706c 6574 6520 over a complete │ │ │ │ -00062a60: 696e 7465 7273 6563 7469 6f6e 0a20 2020 intersection. │ │ │ │ -00062a70: 2020 2020 2072 696e 670a 2020 2a20 2a6e ring. * *n │ │ │ │ -00062a80: 6f74 6520 4f70 7469 6f6e 616c 2069 6e70 ote Optional inp │ │ │ │ -00062a90: 7574 733a 2028 4d61 6361 756c 6179 3244 uts: (Macaulay2D │ │ │ │ -00062aa0: 6f63 2975 7369 6e67 2066 756e 6374 696f oc)using functio │ │ │ │ -00062ab0: 6e73 2077 6974 6820 6f70 7469 6f6e 616c ns with optional │ │ │ │ -00062ac0: 2069 6e70 7574 732c 3a0a 2020 2020 2020 inputs,:. │ │ │ │ -00062ad0: 2a20 4f75 7452 696e 6720 3d3e 202e 2e2e * OutRing => ... │ │ │ │ -00062ae0: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -00062af0: 300a 2020 2a20 4f75 7470 7574 733a 0a20 0. * Outputs:. │ │ │ │ -00062b00: 2020 2020 202a 2045 2c20 6120 2a6e 6f74 * E, a *not │ │ │ │ -00062b10: 6520 6d6f 6475 6c65 3a20 284d 6163 6175 e module: (Macau │ │ │ │ -00062b20: 6c61 7932 446f 6329 4d6f 6475 6c65 2c2c lay2Doc)Module,, │ │ │ │ -00062b30: 206f 7665 7220 6120 706f 6c79 6e6f 6d69 over a polynomi │ │ │ │ -00062b40: 616c 2072 696e 6720 7769 7468 0a20 2020 al ring with. │ │ │ │ -00062b50: 2020 2020 2067 656e 7320 696e 2064 6567 gens in deg │ │ │ │ -00062b60: 7265 6520 310a 0a44 6573 6372 6970 7469 ree 1..Descripti │ │ │ │ -00062b70: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -00062b80: 4578 7472 6163 7473 2074 6865 206f 6464 Extracts the odd │ │ │ │ -00062b90: 2064 6567 7265 6520 7061 7274 2066 726f degree part fro │ │ │ │ -00062ba0: 6d20 4578 744d 6f64 756c 6520 4d2e 2049 m ExtModule M. I │ │ │ │ -00062bb0: 6620 7468 6520 6f70 7469 6f6e 616c 2061 f the optional a │ │ │ │ -00062bc0: 7267 756d 656e 7420 4f75 7452 696e 670a rgument OutRing. │ │ │ │ -00062bd0: 3d3e 2054 2069 7320 6769 7665 6e2c 2061 => T is given, a │ │ │ │ -00062be0: 6e64 2063 6c61 7373 2054 203d 3d3d 2050 nd class T === P │ │ │ │ -00062bf0: 6f6c 796e 6f6d 6961 6c52 696e 672c 2074 olynomialRing, t │ │ │ │ -00062c00: 6865 6e20 7468 6520 6f75 7470 7574 2077 hen the output w │ │ │ │ -00062c10: 696c 6c20 6265 2061 206d 6f64 756c 650a ill be a module. │ │ │ │ -00062c20: 6f76 6572 2054 2e0a 0a2b 2d2d 2d2d 2d2d over T...+------ │ │ │ │ +000629c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 796e ***********..Syn │ │ │ │ +000629d0: 6f70 7369 730a 3d3d 3d3d 3d3d 3d3d 0a0a opsis.========.. │ │ │ │ +000629e0: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ +000629f0: 2020 2020 4520 3d20 6f64 6445 7874 4d6f E = oddExtMo │ │ │ │ +00062a00: 6475 6c65 204d 0a20 202a 2049 6e70 7574 dule M. * Input │ │ │ │ +00062a10: 733a 0a20 2020 2020 202a 204d 2c20 6120 s:. * M, a │ │ │ │ +00062a20: 2a6e 6f74 6520 6d6f 6475 6c65 3a20 284d *note module: (M │ │ │ │ +00062a30: 6163 6175 6c61 7932 446f 6329 4d6f 6475 acaulay2Doc)Modu │ │ │ │ +00062a40: 6c65 2c2c 206f 7665 7220 6120 636f 6d70 le,, over a comp │ │ │ │ +00062a50: 6c65 7465 2069 6e74 6572 7365 6374 696f lete intersectio │ │ │ │ +00062a60: 6e0a 2020 2020 2020 2020 7269 6e67 0a20 n. ring. │ │ │ │ +00062a70: 202a 202a 6e6f 7465 204f 7074 696f 6e61 * *note Optiona │ │ │ │ +00062a80: 6c20 696e 7075 7473 3a20 284d 6163 6175 l inputs: (Macau │ │ │ │ +00062a90: 6c61 7932 446f 6329 7573 696e 6720 6675 lay2Doc)using fu │ │ │ │ +00062aa0: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ +00062ab0: 696f 6e61 6c20 696e 7075 7473 2c3a 0a20 ional inputs,:. │ │ │ │ +00062ac0: 2020 2020 202a 204f 7574 5269 6e67 203d * OutRing = │ │ │ │ +00062ad0: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ +00062ae0: 616c 7565 2030 0a20 202a 204f 7574 7075 alue 0. * Outpu │ │ │ │ +00062af0: 7473 3a0a 2020 2020 2020 2a20 452c 2061 ts:. * E, a │ │ │ │ +00062b00: 202a 6e6f 7465 206d 6f64 756c 653a 2028 *note module: ( │ │ │ │ +00062b10: 4d61 6361 756c 6179 3244 6f63 294d 6f64 Macaulay2Doc)Mod │ │ │ │ +00062b20: 756c 652c 2c20 6f76 6572 2061 2070 6f6c ule,, over a pol │ │ │ │ +00062b30: 796e 6f6d 6961 6c20 7269 6e67 2077 6974 ynomial ring wit │ │ │ │ +00062b40: 680a 2020 2020 2020 2020 6765 6e73 2069 h. gens i │ │ │ │ +00062b50: 6e20 6465 6772 6565 2031 0a0a 4465 7363 n degree 1..Desc │ │ │ │ +00062b60: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +00062b70: 3d3d 3d0a 0a45 7874 7261 6374 7320 7468 ===..Extracts th │ │ │ │ +00062b80: 6520 6f64 6420 6465 6772 6565 2070 6172 e odd degree par │ │ │ │ +00062b90: 7420 6672 6f6d 2045 7874 4d6f 6475 6c65 t from ExtModule │ │ │ │ +00062ba0: 204d 2e20 4966 2074 6865 206f 7074 696f M. If the optio │ │ │ │ +00062bb0: 6e61 6c20 6172 6775 6d65 6e74 204f 7574 nal argument Out │ │ │ │ +00062bc0: 5269 6e67 0a3d 3e20 5420 6973 2067 6976 Ring.=> T is giv │ │ │ │ +00062bd0: 656e 2c20 616e 6420 636c 6173 7320 5420 en, and class T │ │ │ │ +00062be0: 3d3d 3d20 506f 6c79 6e6f 6d69 616c 5269 === PolynomialRi │ │ │ │ +00062bf0: 6e67 2c20 7468 656e 2074 6865 206f 7574 ng, then the out │ │ │ │ +00062c00: 7075 7420 7769 6c6c 2062 6520 6120 6d6f put will be a mo │ │ │ │ +00062c10: 6475 6c65 0a6f 7665 7220 542e 0a0a 2b2d dule.over T...+- │ │ │ │ +00062c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00062c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00062c60: 2d2d 2d2b 0a7c 6931 203a 206b 6b3d 205a ---+.|i1 : kk= Z │ │ │ │ -00062c70: 5a2f 3130 3120 2020 2020 2020 2020 2020 Z/101 │ │ │ │ +00062c50: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ +00062c60: 6b6b 3d20 5a5a 2f31 3031 2020 2020 2020 kk= ZZ/101 │ │ │ │ +00062c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062c90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00062ca0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062c90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00062ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062cd0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -00062ce0: 203d 206b 6b20 2020 2020 2020 2020 2020 = kk │ │ │ │ +00062cd0: 7c0a 7c6f 3120 3d20 6b6b 2020 2020 2020 |.|o1 = kk │ │ │ │ +00062ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062d10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00062d00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00062d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062d50: 2020 207c 0a7c 6f31 203a 2051 756f 7469 |.|o1 : Quoti │ │ │ │ -00062d60: 656e 7452 696e 6720 2020 2020 2020 2020 entRing │ │ │ │ +00062d40: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ +00062d50: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ +00062d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062d80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00062d90: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00062d80: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00062d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00062dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -00062dd0: 203a 2053 203d 206b 6b5b 782c 792c 7a5d : S = kk[x,y,z] │ │ │ │ +00062dc0: 2b0a 7c69 3220 3a20 5320 3d20 6b6b 5b78 +.|i2 : S = kk[x │ │ │ │ +00062dd0: 2c79 2c7a 5d20 2020 2020 2020 2020 2020 ,y,z] │ │ │ │ 00062de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062e00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00062df0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00062e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062e40: 2020 207c 0a7c 6f32 203d 2053 2020 2020 |.|o2 = S │ │ │ │ +00062e30: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ +00062e40: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ 00062e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062e70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00062e80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062e70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00062e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062eb0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -00062ec0: 203a 2050 6f6c 796e 6f6d 6961 6c52 696e : PolynomialRin │ │ │ │ -00062ed0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ -00062ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062ef0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00062eb0: 7c0a 7c6f 3220 3a20 506f 6c79 6e6f 6d69 |.|o2 : Polynomi │ │ │ │ +00062ec0: 616c 5269 6e67 2020 2020 2020 2020 2020 alRing │ │ │ │ +00062ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062ee0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00062ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00062f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00062f30: 2d2d 2d2b 0a7c 6933 203a 2049 3220 3d20 ---+.|i3 : I2 = │ │ │ │ -00062f40: 6964 6561 6c22 7833 2c79 7a22 2020 2020 ideal"x3,yz" │ │ │ │ +00062f20: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ +00062f30: 4932 203d 2069 6465 616c 2278 332c 797a I2 = ideal"x3,yz │ │ │ │ +00062f40: 2220 2020 2020 2020 2020 2020 2020 2020 " │ │ │ │ 00062f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062f60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00062f70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062f60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00062f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062fa0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00062fb0: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ +00062fa0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00062fb0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 00062fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062fe0: 2020 2020 2020 207c 0a7c 6f33 203d 2069 |.|o3 = i │ │ │ │ -00062ff0: 6465 616c 2028 7820 2c20 792a 7a29 2020 deal (x , y*z) │ │ │ │ +00062fd0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00062fe0: 3320 3d20 6964 6561 6c20 2878 202c 2079 3 = ideal (x , y │ │ │ │ +00062ff0: 2a7a 2920 2020 2020 2020 2020 2020 2020 *z) │ │ │ │ 00063000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063020: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00063010: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00063020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063050: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00063060: 0a7c 6f33 203a 2049 6465 616c 206f 6620 .|o3 : Ideal of │ │ │ │ -00063070: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +00063050: 2020 2020 7c0a 7c6f 3320 3a20 4964 6561 |.|o3 : Idea │ │ │ │ +00063060: 6c20 6f66 2053 2020 2020 2020 2020 2020 l of S │ │ │ │ +00063070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063090: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00063090: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 000630a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000630b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000630c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000630d0: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2052 -------+.|i4 : R │ │ │ │ -000630e0: 3220 3d20 532f 4932 2020 2020 2020 2020 2 = S/I2 │ │ │ │ +000630c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000630d0: 3420 3a20 5232 203d 2053 2f49 3220 2020 4 : R2 = S/I2 │ │ │ │ +000630e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000630f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063110: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00063100: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00063110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063140: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00063150: 0a7c 6f34 203d 2052 3220 2020 2020 2020 .|o4 = R2 │ │ │ │ +00063140: 2020 2020 7c0a 7c6f 3420 3d20 5232 2020 |.|o4 = R2 │ │ │ │ +00063150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063180: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00063180: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00063190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000631a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000631b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000631c0: 2020 2020 2020 207c 0a7c 6f34 203a 2051 |.|o4 : Q │ │ │ │ -000631d0: 756f 7469 656e 7452 696e 6720 2020 2020 uotientRing │ │ │ │ +000631b0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000631c0: 3420 3a20 5175 6f74 6965 6e74 5269 6e67 4 : QuotientRing │ │ │ │ +000631d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000631e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000631f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063200: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000631f0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00063200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00063240: 0a7c 6935 203a 204d 3220 3d20 5232 5e31 .|i5 : M2 = R2^1 │ │ │ │ -00063250: 2f69 6465 616c 2278 322c 792c 7a22 2020 /ideal"x2,y,z" │ │ │ │ +00063230: 2d2d 2d2d 2b0a 7c69 3520 3a20 4d32 203d ----+.|i5 : M2 = │ │ │ │ +00063240: 2052 325e 312f 6964 6561 6c22 7832 2c79 R2^1/ideal"x2,y │ │ │ │ +00063250: 2c7a 2220 2020 2020 2020 2020 2020 2020 ,z" │ │ │ │ 00063260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063270: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00063270: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00063280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000632a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000632b0: 2020 2020 2020 207c 0a7c 6f35 203d 2063 |.|o5 = c │ │ │ │ -000632c0: 6f6b 6572 6e65 6c20 7c20 7832 2079 207a okernel | x2 y z │ │ │ │ -000632d0: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000632e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000632f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000632a0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000632b0: 3520 3d20 636f 6b65 726e 656c 207c 2078 5 = cokernel | x │ │ │ │ +000632c0: 3220 7920 7a20 7c20 2020 2020 2020 2020 2 y z | │ │ │ │ +000632d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000632e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000632f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063320: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00063330: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00063340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063350: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00063360: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ -00063370: 203a 2052 322d 6d6f 6475 6c65 2c20 7175 : R2-module, qu │ │ │ │ -00063380: 6f74 6965 6e74 206f 6620 5232 2020 2020 otient of R2 │ │ │ │ -00063390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000633a0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00063320: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00063330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063340: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +00063350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063360: 7c0a 7c6f 3520 3a20 5232 2d6d 6f64 756c |.|o5 : R2-modul │ │ │ │ +00063370: 652c 2071 756f 7469 656e 7420 6f66 2052 e, quotient of R │ │ │ │ +00063380: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00063390: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000633a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000633b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000633c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000633d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000633e0: 2d2d 2d2b 0a7c 6936 203a 2062 6574 7469 ---+.|i6 : betti │ │ │ │ -000633f0: 2072 6573 2028 4d32 2c20 4c65 6e67 7468 res (M2, Length │ │ │ │ -00063400: 4c69 6d69 7420 3d3e 3130 2920 2020 2020 Limit =>10) │ │ │ │ -00063410: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00063420: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000633d0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ +000633e0: 6265 7474 6920 7265 7320 284d 322c 204c betti res (M2, L │ │ │ │ +000633f0: 656e 6774 684c 696d 6974 203d 3e31 3029 engthLimit =>10) │ │ │ │ +00063400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063410: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00063420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063450: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00063460: 2020 2020 2020 2020 2020 3020 3120 3220 0 1 2 │ │ │ │ -00063470: 3320 3420 2035 2020 3620 2037 2020 3820 3 4 5 6 7 8 │ │ │ │ -00063480: 2039 2031 3020 2020 2020 2020 2020 2020 9 10 │ │ │ │ -00063490: 2020 2020 2020 207c 0a7c 6f36 203d 2074 |.|o6 = t │ │ │ │ -000634a0: 6f74 616c 3a20 3120 3320 3520 3720 3920 otal: 1 3 5 7 9 │ │ │ │ -000634b0: 3131 2031 3320 3135 2031 3720 3139 2032 11 13 15 17 19 2 │ │ │ │ -000634c0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -000634d0: 2020 207c 0a7c 2020 2020 2020 2020 2030 |.| 0 │ │ │ │ -000634e0: 3a20 3120 3220 3220 3220 3220 2032 2020 : 1 2 2 2 2 2 │ │ │ │ -000634f0: 3220 2032 2020 3220 2032 2020 3220 2020 2 2 2 2 2 │ │ │ │ -00063500: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00063510: 0a7c 2020 2020 2020 2020 2031 3a20 2e20 .| 1: . │ │ │ │ -00063520: 3120 3320 3420 3420 2034 2020 3420 2034 1 3 4 4 4 4 4 │ │ │ │ -00063530: 2020 3420 2034 2020 3420 2020 2020 2020 4 4 4 │ │ │ │ -00063540: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00063550: 2020 2020 2020 2032 3a20 2e20 2e20 2e20 2: . . . │ │ │ │ -00063560: 3120 3320 2034 2020 3420 2034 2020 3420 1 3 4 4 4 4 │ │ │ │ -00063570: 2034 2020 3420 2020 2020 2020 2020 2020 4 4 │ │ │ │ -00063580: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00063590: 2020 2033 3a20 2e20 2e20 2e20 2e20 2e20 3: . . . . . │ │ │ │ -000635a0: 2031 2020 3320 2034 2020 3420 2034 2020 1 3 4 4 4 │ │ │ │ -000635b0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -000635c0: 2020 207c 0a7c 2020 2020 2020 2020 2034 |.| 4 │ │ │ │ -000635d0: 3a20 2e20 2e20 2e20 2e20 2e20 202e 2020 : . . . . . . │ │ │ │ -000635e0: 2e20 2031 2020 3320 2034 2020 3420 2020 . 1 3 4 4 │ │ │ │ -000635f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00063600: 0a7c 2020 2020 2020 2020 2035 3a20 2e20 .| 5: . │ │ │ │ -00063610: 2e20 2e20 2e20 2e20 202e 2020 2e20 202e . . . . . . . │ │ │ │ -00063620: 2020 2e20 2031 2020 3320 2020 2020 2020 . 1 3 │ │ │ │ -00063630: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00063450: 7c0a 7c20 2020 2020 2020 2020 2020 2030 |.| 0 │ │ │ │ +00063460: 2031 2032 2033 2034 2020 3520 2036 2020 1 2 3 4 5 6 │ │ │ │ +00063470: 3720 2038 2020 3920 3130 2020 2020 2020 7 8 9 10 │ │ │ │ +00063480: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00063490: 3620 3d20 746f 7461 6c3a 2031 2033 2035 6 = total: 1 3 5 │ │ │ │ +000634a0: 2037 2039 2031 3120 3133 2031 3520 3137 7 9 11 13 15 17 │ │ │ │ +000634b0: 2031 3920 3231 2020 2020 2020 2020 2020 19 21 │ │ │ │ +000634c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000634d0: 2020 2020 303a 2031 2032 2032 2032 2032 0: 1 2 2 2 2 │ │ │ │ +000634e0: 2020 3220 2032 2020 3220 2032 2020 3220 2 2 2 2 2 │ │ │ │ +000634f0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00063500: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00063510: 313a 202e 2031 2033 2034 2034 2020 3420 1: . 1 3 4 4 4 │ │ │ │ +00063520: 2034 2020 3420 2034 2020 3420 2034 2020 4 4 4 4 4 │ │ │ │ +00063530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063540: 7c0a 7c20 2020 2020 2020 2020 323a 202e |.| 2: . │ │ │ │ +00063550: 202e 202e 2031 2033 2020 3420 2034 2020 . . 1 3 4 4 │ │ │ │ +00063560: 3420 2034 2020 3420 2034 2020 2020 2020 4 4 4 4 │ │ │ │ +00063570: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00063580: 2020 2020 2020 2020 333a 202e 202e 202e 3: . . . │ │ │ │ +00063590: 202e 202e 2020 3120 2033 2020 3420 2034 . . 1 3 4 4 │ │ │ │ +000635a0: 2020 3420 2034 2020 2020 2020 2020 2020 4 4 │ │ │ │ +000635b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000635c0: 2020 2020 343a 202e 202e 202e 202e 202e 4: . . . . . │ │ │ │ +000635d0: 2020 2e20 202e 2020 3120 2033 2020 3420 . . 1 3 4 │ │ │ │ +000635e0: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +000635f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00063600: 353a 202e 202e 202e 202e 202e 2020 2e20 5: . . . . . . │ │ │ │ +00063610: 202e 2020 2e20 202e 2020 3120 2033 2020 . . . 1 3 │ │ │ │ +00063620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063630: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00063640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063670: 2020 2020 2020 207c 0a7c 6f36 203a 2042 |.|o6 : B │ │ │ │ -00063680: 6574 7469 5461 6c6c 7920 2020 2020 2020 ettiTally │ │ │ │ +00063660: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00063670: 3620 3a20 4265 7474 6954 616c 6c79 2020 6 : BettiTally │ │ │ │ +00063680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000636a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000636b0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000636a0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000636b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000636c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000636d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000636e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000636f0: 0a7c 6937 203a 2045 203d 2045 7874 4d6f .|i7 : E = ExtMo │ │ │ │ -00063700: 6475 6c65 204d 3220 2020 2020 2020 2020 dule M2 │ │ │ │ +000636e0: 2d2d 2d2d 2b0a 7c69 3720 3a20 4520 3d20 ----+.|i7 : E = │ │ │ │ +000636f0: 4578 744d 6f64 756c 6520 4d32 2020 2020 ExtModule M2 │ │ │ │ +00063700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063720: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00063720: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00063730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063760: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00063770: 2020 2020 2020 2020 2020 2038 2020 2020 8 │ │ │ │ +00063750: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00063760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063770: 3820 2020 2020 2020 2020 2020 2020 2020 8 │ │ │ │ 00063780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000637a0: 2020 207c 0a7c 6f37 203d 2028 6b6b 5b58 |.|o7 = (kk[X │ │ │ │ -000637b0: 202e 2e58 205d 2920 2020 2020 2020 2020 ..X ]) │ │ │ │ +00063790: 2020 2020 2020 2020 7c0a 7c6f 3720 3d20 |.|o7 = │ │ │ │ +000637a0: 286b 6b5b 5820 2e2e 5820 5d29 2020 2020 (kk[X ..X ]) │ │ │ │ +000637b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000637c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000637d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000637e0: 0a7c 2020 2020 2020 2020 2020 3020 2020 .| 0 │ │ │ │ -000637f0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +000637d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000637e0: 2030 2020 2031 2020 2020 2020 2020 2020 0 1 │ │ │ │ +000637f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063810: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00063810: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00063820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063850: 2020 2020 2020 207c 0a7c 6f37 203a 206b |.|o7 : k │ │ │ │ -00063860: 6b5b 5820 2e2e 5820 5d2d 6d6f 6475 6c65 k[X ..X ]-module │ │ │ │ -00063870: 2c20 6672 6565 2c20 6465 6772 6565 7320 , free, degrees │ │ │ │ -00063880: 7b30 2e2e 312c 2032 3a31 2c20 333a 322c {0..1, 2:1, 3:2, │ │ │ │ -00063890: 2033 7d7c 0a7c 2020 2020 2020 2020 2030 3}|.| 0 │ │ │ │ -000638a0: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00063840: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00063850: 3720 3a20 6b6b 5b58 202e 2e58 205d 2d6d 7 : kk[X ..X ]-m │ │ │ │ +00063860: 6f64 756c 652c 2066 7265 652c 2064 6567 odule, free, deg │ │ │ │ +00063870: 7265 6573 207b 302e 2e31 2c20 323a 312c rees {0..1, 2:1, │ │ │ │ +00063880: 2033 3a32 2c20 337d 7c0a 7c20 2020 2020 3:2, 3}|.| │ │ │ │ +00063890: 2020 2020 3020 2020 3120 2020 2020 2020 0 1 │ │ │ │ +000638a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000638b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000638c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000638d0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000638c0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000638d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000638e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000638f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 -----------+.|i8 │ │ │ │ -00063910: 203a 2061 7070 6c79 2874 6f4c 6973 7428 : apply(toList( │ │ │ │ -00063920: 302e 2e31 3029 2c20 692d 3e68 696c 6265 0..10), i->hilbe │ │ │ │ -00063930: 7274 4675 6e63 7469 6f6e 2869 2c20 4529 rtFunction(i, E) │ │ │ │ -00063940: 2920 2020 2020 207c 0a7c 2020 2020 2020 ) |.| │ │ │ │ +00063900: 2b0a 7c69 3820 3a20 6170 706c 7928 746f +.|i8 : apply(to │ │ │ │ +00063910: 4c69 7374 2830 2e2e 3130 292c 2069 2d3e List(0..10), i-> │ │ │ │ +00063920: 6869 6c62 6572 7446 756e 6374 696f 6e28 hilbertFunction( │ │ │ │ +00063930: 692c 2045 2929 2020 2020 2020 7c0a 7c20 i, E)) |.| │ │ │ │ +00063940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063980: 2020 207c 0a7c 6f38 203d 207b 312c 2033 |.|o8 = {1, 3 │ │ │ │ -00063990: 2c20 352c 2037 2c20 392c 2031 312c 2031 , 5, 7, 9, 11, 1 │ │ │ │ -000639a0: 332c 2031 352c 2031 372c 2031 392c 2032 3, 15, 17, 19, 2 │ │ │ │ -000639b0: 317d 2020 2020 2020 2020 2020 2020 207c 1} | │ │ │ │ -000639c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00063970: 2020 2020 2020 2020 7c0a 7c6f 3820 3d20 |.|o8 = │ │ │ │ +00063980: 7b31 2c20 332c 2035 2c20 372c 2039 2c20 {1, 3, 5, 7, 9, │ │ │ │ +00063990: 3131 2c20 3133 2c20 3135 2c20 3137 2c20 11, 13, 15, 17, │ │ │ │ +000639a0: 3139 2c20 3231 7d20 2020 2020 2020 2020 19, 21} │ │ │ │ +000639b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000639c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000639d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000639e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000639f0: 2020 2020 2020 2020 2020 207c 0a7c 6f38 |.|o8 │ │ │ │ -00063a00: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ +000639f0: 7c0a 7c6f 3820 3a20 4c69 7374 2020 2020 |.|o8 : List │ │ │ │ +00063a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063a30: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00063a20: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00063a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063a70: 2d2d 2d2b 0a7c 6939 203a 2045 6f64 6420 ---+.|i9 : Eodd │ │ │ │ -00063a80: 3d20 6f64 6445 7874 4d6f 6475 6c65 204d = oddExtModule M │ │ │ │ -00063a90: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00063aa0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00063ab0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00063a60: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3920 3a20 --------+.|i9 : │ │ │ │ +00063a70: 456f 6464 203d 206f 6464 4578 744d 6f64 Eodd = oddExtMod │ │ │ │ +00063a80: 756c 6520 4d32 2020 2020 2020 2020 2020 ule M2 │ │ │ │ +00063a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063aa0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00063ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063ae0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00063af0: 2020 2020 2020 2020 2020 2020 2020 2034 4 │ │ │ │ +00063ae0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00063af0: 2020 2020 3420 2020 2020 2020 2020 2020 4 │ │ │ │ 00063b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063b20: 2020 2020 2020 207c 0a7c 6f39 203d 2028 |.|o9 = ( │ │ │ │ -00063b30: 6b6b 5b58 202e 2e58 205d 2920 2020 2020 kk[X ..X ]) │ │ │ │ +00063b10: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00063b20: 3920 3d20 286b 6b5b 5820 2e2e 5820 5d29 9 = (kk[X ..X ]) │ │ │ │ +00063b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063b60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00063b70: 3020 2020 3120 2020 2020 2020 2020 2020 0 1 │ │ │ │ +00063b50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00063b60: 2020 2020 2030 2020 2031 2020 2020 2020 0 1 │ │ │ │ +00063b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063b90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00063ba0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00063b90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00063ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063bd0: 2020 2020 2020 2020 2020 207c 0a7c 6f39 |.|o9 │ │ │ │ -00063be0: 203a 206b 6b5b 5820 2e2e 5820 5d2d 6d6f : kk[X ..X ]-mo │ │ │ │ -00063bf0: 6475 6c65 2c20 6672 6565 2c20 6465 6772 dule, free, degr │ │ │ │ -00063c00: 6565 7320 7b33 3a30 2c20 317d 2020 2020 ees {3:0, 1} │ │ │ │ -00063c10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00063c20: 2020 2030 2020 2031 2020 2020 2020 2020 0 1 │ │ │ │ +00063bd0: 7c0a 7c6f 3920 3a20 6b6b 5b58 202e 2e58 |.|o9 : kk[X ..X │ │ │ │ +00063be0: 205d 2d6d 6f64 756c 652c 2066 7265 652c ]-module, free, │ │ │ │ +00063bf0: 2064 6567 7265 6573 207b 333a 302c 2031 degrees {3:0, 1 │ │ │ │ +00063c00: 7d20 2020 2020 2020 2020 2020 7c0a 7c20 } |.| │ │ │ │ +00063c10: 2020 2020 2020 2020 3020 2020 3120 2020 0 1 │ │ │ │ +00063c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063c50: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00063c40: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00063c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00063c90: 0a7c 6931 3020 3a20 6170 706c 7928 746f .|i10 : apply(to │ │ │ │ -00063ca0: 4c69 7374 2830 2e2e 3529 2c20 692d 3e68 List(0..5), i->h │ │ │ │ -00063cb0: 696c 6265 7274 4675 6e63 7469 6f6e 2869 ilbertFunction(i │ │ │ │ -00063cc0: 2c20 456f 6464 2929 2020 207c 0a7c 2020 , Eodd)) |.| │ │ │ │ +00063c80: 2d2d 2d2d 2b0a 7c69 3130 203a 2061 7070 ----+.|i10 : app │ │ │ │ +00063c90: 6c79 2874 6f4c 6973 7428 302e 2e35 292c ly(toList(0..5), │ │ │ │ +00063ca0: 2069 2d3e 6869 6c62 6572 7446 756e 6374 i->hilbertFunct │ │ │ │ +00063cb0: 696f 6e28 692c 2045 6f64 6429 2920 2020 ion(i, Eodd)) │ │ │ │ +00063cc0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00063cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063d00: 2020 2020 2020 207c 0a7c 6f31 3020 3d20 |.|o10 = │ │ │ │ -00063d10: 7b33 2c20 372c 2031 312c 2031 352c 2031 {3, 7, 11, 15, 1 │ │ │ │ -00063d20: 392c 2032 337d 2020 2020 2020 2020 2020 9, 23} │ │ │ │ -00063d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063d40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00063cf0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00063d00: 3130 203d 207b 332c 2037 2c20 3131 2c20 10 = {3, 7, 11, │ │ │ │ +00063d10: 3135 2c20 3139 2c20 3233 7d20 2020 2020 15, 19, 23} │ │ │ │ +00063d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063d30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00063d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063d70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00063d80: 0a7c 6f31 3020 3a20 4c69 7374 2020 2020 .|o10 : List │ │ │ │ +00063d70: 2020 2020 7c0a 7c6f 3130 203a 204c 6973 |.|o10 : Lis │ │ │ │ +00063d80: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ 00063d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063db0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00063db0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00063dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063df0: 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 616c -------+..See al │ │ │ │ -00063e00: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ -00063e10: 202a 6e6f 7465 2045 7874 4d6f 6475 6c65 *note ExtModule │ │ │ │ -00063e20: 3a20 4578 744d 6f64 756c 652c 202d 2d20 : ExtModule, -- │ │ │ │ -00063e30: 4578 745e 2a28 4d2c 6b29 206f 7665 7220 Ext^*(M,k) over │ │ │ │ -00063e40: 6120 636f 6d70 6c65 7465 2069 6e74 6572 a complete inter │ │ │ │ -00063e50: 7365 6374 696f 6e20 6173 0a20 2020 206d section as. m │ │ │ │ -00063e60: 6f64 756c 6520 6f76 6572 2043 4920 6f70 odule over CI op │ │ │ │ -00063e70: 6572 6174 6f72 2072 696e 670a 2020 2a20 erator ring. * │ │ │ │ -00063e80: 2a6e 6f74 6520 6576 656e 4578 744d 6f64 *note evenExtMod │ │ │ │ -00063e90: 756c 653a 2065 7665 6e45 7874 4d6f 6475 ule: evenExtModu │ │ │ │ -00063ea0: 6c65 2c20 2d2d 2065 7665 6e20 7061 7274 le, -- even part │ │ │ │ -00063eb0: 206f 6620 4578 745e 2a28 4d2c 6b29 206f of Ext^*(M,k) o │ │ │ │ -00063ec0: 7665 7220 610a 2020 2020 636f 6d70 6c65 ver a. comple │ │ │ │ -00063ed0: 7465 2069 6e74 6572 7365 6374 696f 6e20 te intersection │ │ │ │ -00063ee0: 6173 206d 6f64 756c 6520 6f76 6572 2043 as module over C │ │ │ │ -00063ef0: 4920 6f70 6572 6174 6f72 2072 696e 670a I operator ring. │ │ │ │ -00063f00: 2020 2a20 2a6e 6f74 6520 4f75 7452 696e * *note OutRin │ │ │ │ -00063f10: 673a 204f 7574 5269 6e67 2c20 2d2d 204f g: OutRing, -- O │ │ │ │ -00063f20: 7074 696f 6e20 616c 6c6f 7769 6e67 2073 ption allowing s │ │ │ │ -00063f30: 7065 6369 6669 6361 7469 6f6e 206f 6620 pecification of │ │ │ │ -00063f40: 7468 6520 7269 6e67 206f 7665 720a 2020 the ring over. │ │ │ │ -00063f50: 2020 7768 6963 6820 7468 6520 6f75 7470 which the outp │ │ │ │ -00063f60: 7574 2069 7320 6465 6669 6e65 640a 0a57 ut is defined..W │ │ │ │ -00063f70: 6179 7320 746f 2075 7365 206f 6464 4578 ays to use oddEx │ │ │ │ -00063f80: 744d 6f64 756c 653a 0a3d 3d3d 3d3d 3d3d tModule:.======= │ │ │ │ -00063f90: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00063fa0: 3d3d 0a0a 2020 2a20 226f 6464 4578 744d ==.. * "oddExtM │ │ │ │ -00063fb0: 6f64 756c 6528 4d6f 6475 6c65 2922 0a0a odule(Module)".. │ │ │ │ -00063fc0: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ -00063fd0: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ -00063fe0: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ -00063ff0: 7420 2a6e 6f74 6520 6f64 6445 7874 4d6f t *note oddExtMo │ │ │ │ -00064000: 6475 6c65 3a20 6f64 6445 7874 4d6f 6475 dule: oddExtModu │ │ │ │ -00064010: 6c65 2c20 6973 2061 202a 6e6f 7465 206d le, is a *note m │ │ │ │ -00064020: 6574 686f 6420 6675 6e63 7469 6f6e 2077 ethod function w │ │ │ │ -00064030: 6974 680a 6f70 7469 6f6e 733a 2028 4d61 ith.options: (Ma │ │ │ │ -00064040: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ -00064050: 6446 756e 6374 696f 6e57 6974 684f 7074 dFunctionWithOpt │ │ │ │ -00064060: 696f 6e73 2c2e 0a1f 0a46 696c 653a 2043 ions,....File: C │ │ │ │ -00064070: 6f6d 706c 6574 6549 6e74 6572 7365 6374 ompleteIntersect │ │ │ │ -00064080: 696f 6e52 6573 6f6c 7574 696f 6e73 2e69 ionResolutions.i │ │ │ │ -00064090: 6e66 6f2c 204e 6f64 653a 204f 7074 696d nfo, Node: Optim │ │ │ │ -000640a0: 6973 6d2c 204e 6578 743a 204f 7574 5269 ism, Next: OutRi │ │ │ │ -000640b0: 6e67 2c20 5072 6576 3a20 6f64 6445 7874 ng, Prev: oddExt │ │ │ │ -000640c0: 4d6f 6475 6c65 2c20 5570 3a20 546f 700a Module, Up: Top. │ │ │ │ -000640d0: 0a4f 7074 696d 6973 6d20 2d2d 204f 7074 .Optimism -- Opt │ │ │ │ -000640e0: 696f 6e20 746f 2068 6967 6853 797a 7967 ion to highSyzyg │ │ │ │ -000640f0: 790a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a y.************** │ │ │ │ -00064100: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00064110: 2a2a 0a0a 5379 6e6f 7073 6973 0a3d 3d3d **..Synopsis.=== │ │ │ │ -00064120: 3d3d 3d3d 3d0a 0a20 202a 2055 7361 6765 =====.. * Usage │ │ │ │ -00064130: 3a20 0a20 2020 2020 2020 2068 6967 6853 : . highS │ │ │ │ -00064140: 797a 7967 7928 4d2c 204f 7074 696d 6973 yzygy(M, Optimis │ │ │ │ -00064150: 6d20 3d3e 2031 290a 2020 2a20 496e 7075 m => 1). * Inpu │ │ │ │ -00064160: 7473 3a0a 2020 2020 2020 2a20 4f70 7469 ts:. * Opti │ │ │ │ -00064170: 6d69 736d 2c20 616e 202a 6e6f 7465 2069 mism, an *note i │ │ │ │ -00064180: 6e74 6567 6572 3a20 284d 6163 6175 6c61 nteger: (Macaula │ │ │ │ -00064190: 7932 446f 6329 5a5a 2c2c 200a 0a44 6573 y2Doc)ZZ,, ..Des │ │ │ │ -000641a0: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -000641b0: 3d3d 3d3d 0a0a 4966 2068 6967 6853 797a ====..If highSyz │ │ │ │ -000641c0: 7967 7928 4d29 2063 686f 6f73 6573 2074 ygy(M) chooses t │ │ │ │ -000641d0: 6865 2070 2d74 6820 7379 7a79 6779 2c20 he p-th syzygy, │ │ │ │ -000641e0: 7468 656e 2068 6967 6853 797a 7967 7928 then highSyzygy( │ │ │ │ -000641f0: 4d2c 4f70 7469 6d69 736d 3d3e 7229 0a63 M,Optimism=>r).c │ │ │ │ -00064200: 686f 6f73 6573 2074 6865 2028 702d 7229 hooses the (p-r) │ │ │ │ -00064210: 2d74 6820 7379 7a79 6779 2e20 2850 6f73 -th syzygy. (Pos │ │ │ │ -00064220: 6974 6976 6520 4f70 7469 6d69 736d 2063 itive Optimism c │ │ │ │ -00064230: 686f 6f73 6573 2061 206c 6f77 6572 2022 hooses a lower " │ │ │ │ -00064240: 6869 6768 2220 7379 7a79 6779 2c0a 6e65 high" syzygy,.ne │ │ │ │ -00064250: 6761 7469 7665 204f 7074 696d 6973 6d20 gative Optimism │ │ │ │ -00064260: 6120 6869 6768 6572 2022 6869 6768 2220 a higher "high" │ │ │ │ -00064270: 7379 7a79 6779 2e0a 0a43 6176 6561 740a syzygy...Caveat. │ │ │ │ -00064280: 3d3d 3d3d 3d3d 0a0a 4172 6520 7468 6572 ======..Are ther │ │ │ │ -00064290: 6520 6361 7365 7320 7768 656e 2070 6f73 e cases when pos │ │ │ │ -000642a0: 6974 6976 6520 4f70 7469 6d69 736d 2069 itive Optimism i │ │ │ │ -000642b0: 7320 6a75 7374 6966 6965 643f 0a0a 5365 s justified?..Se │ │ │ │ -000642c0: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ -000642d0: 0a20 202a 202a 6e6f 7465 206d 6642 6f75 . * *note mfBou │ │ │ │ -000642e0: 6e64 3a20 6d66 426f 756e 642c 202d 2d20 nd: mfBound, -- │ │ │ │ -000642f0: 6465 7465 726d 696e 6573 2068 6f77 2068 determines how h │ │ │ │ -00064300: 6967 6820 6120 7379 7a79 6779 2074 6f20 igh a syzygy to │ │ │ │ -00064310: 7461 6b65 2066 6f72 0a20 2020 2022 6d61 take for. "ma │ │ │ │ -00064320: 7472 6978 4661 6374 6f72 697a 6174 696f trixFactorizatio │ │ │ │ -00064330: 6e22 0a20 202a 202a 6e6f 7465 2068 6967 n". * *note hig │ │ │ │ -00064340: 6853 797a 7967 793a 2068 6967 6853 797a hSyzygy: highSyz │ │ │ │ -00064350: 7967 792c 202d 2d20 5265 7475 726e 7320 ygy, -- Returns │ │ │ │ -00064360: 6120 7379 7a79 6779 206d 6f64 756c 6520 a syzygy module │ │ │ │ -00064370: 6f6e 6520 6265 796f 6e64 2074 6865 0a20 one beyond the. │ │ │ │ -00064380: 2020 2072 6567 756c 6172 6974 7920 6f66 regularity of │ │ │ │ -00064390: 2045 7874 284d 2c6b 290a 0a46 756e 6374 Ext(M,k)..Funct │ │ │ │ -000643a0: 696f 6e73 2077 6974 6820 6f70 7469 6f6e ions with option │ │ │ │ -000643b0: 616c 2061 7267 756d 656e 7420 6e61 6d65 al argument name │ │ │ │ -000643c0: 6420 4f70 7469 6d69 736d 3a0a 3d3d 3d3d d Optimism:.==== │ │ │ │ +00063de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 ------------+..S │ │ │ │ +00063df0: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ +00063e00: 0a0a 2020 2a20 2a6e 6f74 6520 4578 744d .. * *note ExtM │ │ │ │ +00063e10: 6f64 756c 653a 2045 7874 4d6f 6475 6c65 odule: ExtModule │ │ │ │ +00063e20: 2c20 2d2d 2045 7874 5e2a 284d 2c6b 2920 , -- Ext^*(M,k) │ │ │ │ +00063e30: 6f76 6572 2061 2063 6f6d 706c 6574 6520 over a complete │ │ │ │ +00063e40: 696e 7465 7273 6563 7469 6f6e 2061 730a intersection as. │ │ │ │ +00063e50: 2020 2020 6d6f 6475 6c65 206f 7665 7220 module over │ │ │ │ +00063e60: 4349 206f 7065 7261 746f 7220 7269 6e67 CI operator ring │ │ │ │ +00063e70: 0a20 202a 202a 6e6f 7465 2065 7665 6e45 . * *note evenE │ │ │ │ +00063e80: 7874 4d6f 6475 6c65 3a20 6576 656e 4578 xtModule: evenEx │ │ │ │ +00063e90: 744d 6f64 756c 652c 202d 2d20 6576 656e tModule, -- even │ │ │ │ +00063ea0: 2070 6172 7420 6f66 2045 7874 5e2a 284d part of Ext^*(M │ │ │ │ +00063eb0: 2c6b 2920 6f76 6572 2061 0a20 2020 2063 ,k) over a. c │ │ │ │ +00063ec0: 6f6d 706c 6574 6520 696e 7465 7273 6563 omplete intersec │ │ │ │ +00063ed0: 7469 6f6e 2061 7320 6d6f 6475 6c65 206f tion as module o │ │ │ │ +00063ee0: 7665 7220 4349 206f 7065 7261 746f 7220 ver CI operator │ │ │ │ +00063ef0: 7269 6e67 0a20 202a 202a 6e6f 7465 204f ring. * *note O │ │ │ │ +00063f00: 7574 5269 6e67 3a20 4f75 7452 696e 672c utRing: OutRing, │ │ │ │ +00063f10: 202d 2d20 4f70 7469 6f6e 2061 6c6c 6f77 -- Option allow │ │ │ │ +00063f20: 696e 6720 7370 6563 6966 6963 6174 696f ing specificatio │ │ │ │ +00063f30: 6e20 6f66 2074 6865 2072 696e 6720 6f76 n of the ring ov │ │ │ │ +00063f40: 6572 0a20 2020 2077 6869 6368 2074 6865 er. which the │ │ │ │ +00063f50: 206f 7574 7075 7420 6973 2064 6566 696e output is defin │ │ │ │ +00063f60: 6564 0a0a 5761 7973 2074 6f20 7573 6520 ed..Ways to use │ │ │ │ +00063f70: 6f64 6445 7874 4d6f 6475 6c65 3a0a 3d3d oddExtModule:.== │ │ │ │ +00063f80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00063f90: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 6f64 =======.. * "od │ │ │ │ +00063fa0: 6445 7874 4d6f 6475 6c65 284d 6f64 756c dExtModule(Modul │ │ │ │ +00063fb0: 6529 220a 0a46 6f72 2074 6865 2070 726f e)"..For the pro │ │ │ │ +00063fc0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +00063fd0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +00063fe0: 6f62 6a65 6374 202a 6e6f 7465 206f 6464 object *note odd │ │ │ │ +00063ff0: 4578 744d 6f64 756c 653a 206f 6464 4578 ExtModule: oddEx │ │ │ │ +00064000: 744d 6f64 756c 652c 2069 7320 6120 2a6e tModule, is a *n │ │ │ │ +00064010: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ +00064020: 696f 6e20 7769 7468 0a6f 7074 696f 6e73 ion with.options │ │ │ │ +00064030: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00064040: 4d65 7468 6f64 4675 6e63 7469 6f6e 5769 MethodFunctionWi │ │ │ │ +00064050: 7468 4f70 7469 6f6e 732c 2e0a 1f0a 4669 thOptions,....Fi │ │ │ │ +00064060: 6c65 3a20 436f 6d70 6c65 7465 496e 7465 le: CompleteInte │ │ │ │ +00064070: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ +00064080: 6f6e 732e 696e 666f 2c20 4e6f 6465 3a20 ons.info, Node: │ │ │ │ +00064090: 4f70 7469 6d69 736d 2c20 4e65 7874 3a20 Optimism, Next: │ │ │ │ +000640a0: 4f75 7452 696e 672c 2050 7265 763a 206f OutRing, Prev: o │ │ │ │ +000640b0: 6464 4578 744d 6f64 756c 652c 2055 703a ddExtModule, Up: │ │ │ │ +000640c0: 2054 6f70 0a0a 4f70 7469 6d69 736d 202d Top..Optimism - │ │ │ │ +000640d0: 2d20 4f70 7469 6f6e 2074 6f20 6869 6768 - Option to high │ │ │ │ +000640e0: 5379 7a79 6779 0a2a 2a2a 2a2a 2a2a 2a2a Syzygy.********* │ │ │ │ +000640f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00064100: 2a2a 2a2a 2a2a 2a0a 0a53 796e 6f70 7369 *******..Synopsi │ │ │ │ +00064110: 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 s.========.. * │ │ │ │ +00064120: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +00064130: 6869 6768 5379 7a79 6779 284d 2c20 4f70 highSyzygy(M, Op │ │ │ │ +00064140: 7469 6d69 736d 203d 3e20 3129 0a20 202a timism => 1). * │ │ │ │ +00064150: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +00064160: 204f 7074 696d 6973 6d2c 2061 6e20 2a6e Optimism, an *n │ │ │ │ +00064170: 6f74 6520 696e 7465 6765 723a 2028 4d61 ote integer: (Ma │ │ │ │ +00064180: 6361 756c 6179 3244 6f63 295a 5a2c 2c20 caulay2Doc)ZZ,, │ │ │ │ +00064190: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +000641a0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a49 6620 6869 =========..If hi │ │ │ │ +000641b0: 6768 5379 7a79 6779 284d 2920 6368 6f6f ghSyzygy(M) choo │ │ │ │ +000641c0: 7365 7320 7468 6520 702d 7468 2073 797a ses the p-th syz │ │ │ │ +000641d0: 7967 792c 2074 6865 6e20 6869 6768 5379 ygy, then highSy │ │ │ │ +000641e0: 7a79 6779 284d 2c4f 7074 696d 6973 6d3d zygy(M,Optimism= │ │ │ │ +000641f0: 3e72 290a 6368 6f6f 7365 7320 7468 6520 >r).chooses the │ │ │ │ +00064200: 2870 2d72 292d 7468 2073 797a 7967 792e (p-r)-th syzygy. │ │ │ │ +00064210: 2028 506f 7369 7469 7665 204f 7074 696d (Positive Optim │ │ │ │ +00064220: 6973 6d20 6368 6f6f 7365 7320 6120 6c6f ism chooses a lo │ │ │ │ +00064230: 7765 7220 2268 6967 6822 2073 797a 7967 wer "high" syzyg │ │ │ │ +00064240: 792c 0a6e 6567 6174 6976 6520 4f70 7469 y,.negative Opti │ │ │ │ +00064250: 6d69 736d 2061 2068 6967 6865 7220 2268 mism a higher "h │ │ │ │ +00064260: 6967 6822 2073 797a 7967 792e 0a0a 4361 igh" syzygy...Ca │ │ │ │ +00064270: 7665 6174 0a3d 3d3d 3d3d 3d0a 0a41 7265 veat.======..Are │ │ │ │ +00064280: 2074 6865 7265 2063 6173 6573 2077 6865 there cases whe │ │ │ │ +00064290: 6e20 706f 7369 7469 7665 204f 7074 696d n positive Optim │ │ │ │ +000642a0: 6973 6d20 6973 206a 7573 7469 6669 6564 ism is justified │ │ │ │ +000642b0: 3f0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d ?..See also.==== │ │ │ │ +000642c0: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ +000642d0: 6d66 426f 756e 643a 206d 6642 6f75 6e64 mfBound: mfBound │ │ │ │ +000642e0: 2c20 2d2d 2064 6574 6572 6d69 6e65 7320 , -- determines │ │ │ │ +000642f0: 686f 7720 6869 6768 2061 2073 797a 7967 how high a syzyg │ │ │ │ +00064300: 7920 746f 2074 616b 6520 666f 720a 2020 y to take for. │ │ │ │ +00064310: 2020 226d 6174 7269 7846 6163 746f 7269 "matrixFactori │ │ │ │ +00064320: 7a61 7469 6f6e 220a 2020 2a20 2a6e 6f74 zation". * *not │ │ │ │ +00064330: 6520 6869 6768 5379 7a79 6779 3a20 6869 e highSyzygy: hi │ │ │ │ +00064340: 6768 5379 7a79 6779 2c20 2d2d 2052 6574 ghSyzygy, -- Ret │ │ │ │ +00064350: 7572 6e73 2061 2073 797a 7967 7920 6d6f urns a syzygy mo │ │ │ │ +00064360: 6475 6c65 206f 6e65 2062 6579 6f6e 6420 dule one beyond │ │ │ │ +00064370: 7468 650a 2020 2020 7265 6775 6c61 7269 the. regulari │ │ │ │ +00064380: 7479 206f 6620 4578 7428 4d2c 6b29 0a0a ty of Ext(M,k).. │ │ │ │ +00064390: 4675 6e63 7469 6f6e 7320 7769 7468 206f Functions with o │ │ │ │ +000643a0: 7074 696f 6e61 6c20 6172 6775 6d65 6e74 ptional argument │ │ │ │ +000643b0: 206e 616d 6564 204f 7074 696d 6973 6d3a named Optimism: │ │ │ │ +000643c0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ 000643d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 000643e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000643f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ -00064400: 2a20 2268 6967 6853 797a 7967 7928 2e2e * "highSyzygy(.. │ │ │ │ -00064410: 2e2c 4f70 7469 6d69 736d 3d3e 2e2e 2e29 .,Optimism=>...) │ │ │ │ -00064420: 2220 2d2d 2073 6565 202a 6e6f 7465 2068 " -- see *note h │ │ │ │ -00064430: 6967 6853 797a 7967 793a 2068 6967 6853 ighSyzygy: highS │ │ │ │ -00064440: 797a 7967 792c 202d 2d0a 2020 2020 5265 yzygy, --. Re │ │ │ │ -00064450: 7475 726e 7320 6120 7379 7a79 6779 206d turns a syzygy m │ │ │ │ -00064460: 6f64 756c 6520 6f6e 6520 6265 796f 6e64 odule one beyond │ │ │ │ -00064470: 2074 6865 2072 6567 756c 6172 6974 7920 the regularity │ │ │ │ -00064480: 6f66 2045 7874 284d 2c6b 290a 2020 2a20 of Ext(M,k). * │ │ │ │ -00064490: 2274 776f 4d6f 6e6f 6d69 616c 7328 2e2e "twoMonomials(.. │ │ │ │ -000644a0: 2e2c 4f70 7469 6d69 736d 3d3e 2e2e 2e29 .,Optimism=>...) │ │ │ │ -000644b0: 2220 2d2d 2073 6565 202a 6e6f 7465 2074 " -- see *note t │ │ │ │ -000644c0: 776f 4d6f 6e6f 6d69 616c 733a 2074 776f woMonomials: two │ │ │ │ -000644d0: 4d6f 6e6f 6d69 616c 732c 0a20 2020 202d Monomials,. - │ │ │ │ -000644e0: 2d20 7461 6c6c 7920 7468 6520 7365 7175 - tally the sequ │ │ │ │ -000644f0: 656e 6365 7320 6f66 2042 5261 6e6b 7320 ences of BRanks │ │ │ │ -00064500: 666f 7220 6365 7274 6169 6e20 6578 616d for certain exam │ │ │ │ -00064510: 706c 6573 0a0a 466f 7220 7468 6520 7072 ples..For the pr │ │ │ │ -00064520: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ -00064530: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ -00064540: 206f 626a 6563 7420 2a6e 6f74 6520 4f70 object *note Op │ │ │ │ -00064550: 7469 6d69 736d 3a20 4f70 7469 6d69 736d timism: Optimism │ │ │ │ -00064560: 2c20 6973 2061 202a 6e6f 7465 2073 796d , is a *note sym │ │ │ │ -00064570: 626f 6c3a 2028 4d61 6361 756c 6179 3244 bol: (Macaulay2D │ │ │ │ -00064580: 6f63 2953 796d 626f 6c2c 2e0a 1f0a 4669 oc)Symbol,....Fi │ │ │ │ -00064590: 6c65 3a20 436f 6d70 6c65 7465 496e 7465 le: CompleteInte │ │ │ │ -000645a0: 7273 6563 7469 6f6e 5265 736f 6c75 7469 rsectionResoluti │ │ │ │ -000645b0: 6f6e 732e 696e 666f 2c20 4e6f 6465 3a20 ons.info, Node: │ │ │ │ -000645c0: 4f75 7452 696e 672c 204e 6578 743a 2070 OutRing, Next: p │ │ │ │ -000645d0: 7369 4d61 7073 2c20 5072 6576 3a20 4f70 siMaps, Prev: Op │ │ │ │ -000645e0: 7469 6d69 736d 2c20 5570 3a20 546f 700a timism, Up: Top. │ │ │ │ -000645f0: 0a4f 7574 5269 6e67 202d 2d20 4f70 7469 .OutRing -- Opti │ │ │ │ -00064600: 6f6e 2061 6c6c 6f77 696e 6720 7370 6563 on allowing spec │ │ │ │ -00064610: 6966 6963 6174 696f 6e20 6f66 2074 6865 ification of the │ │ │ │ -00064620: 2072 696e 6720 6f76 6572 2077 6869 6368 ring over which │ │ │ │ -00064630: 2074 6865 206f 7574 7075 7420 6973 2064 the output is d │ │ │ │ -00064640: 6566 696e 6564 0a2a 2a2a 2a2a 2a2a 2a2a efined.********* │ │ │ │ +000643f0: 3d0a 0a20 202a 2022 6869 6768 5379 7a79 =.. * "highSyzy │ │ │ │ +00064400: 6779 282e 2e2e 2c4f 7074 696d 6973 6d3d gy(...,Optimism= │ │ │ │ +00064410: 3e2e 2e2e 2922 202d 2d20 7365 6520 2a6e >...)" -- see *n │ │ │ │ +00064420: 6f74 6520 6869 6768 5379 7a79 6779 3a20 ote highSyzygy: │ │ │ │ +00064430: 6869 6768 5379 7a79 6779 2c20 2d2d 0a20 highSyzygy, --. │ │ │ │ +00064440: 2020 2052 6574 7572 6e73 2061 2073 797a Returns a syz │ │ │ │ +00064450: 7967 7920 6d6f 6475 6c65 206f 6e65 2062 ygy module one b │ │ │ │ +00064460: 6579 6f6e 6420 7468 6520 7265 6775 6c61 eyond the regula │ │ │ │ +00064470: 7269 7479 206f 6620 4578 7428 4d2c 6b29 rity of Ext(M,k) │ │ │ │ +00064480: 0a20 202a 2022 7477 6f4d 6f6e 6f6d 6961 . * "twoMonomia │ │ │ │ +00064490: 6c73 282e 2e2e 2c4f 7074 696d 6973 6d3d ls(...,Optimism= │ │ │ │ +000644a0: 3e2e 2e2e 2922 202d 2d20 7365 6520 2a6e >...)" -- see *n │ │ │ │ +000644b0: 6f74 6520 7477 6f4d 6f6e 6f6d 6961 6c73 ote twoMonomials │ │ │ │ +000644c0: 3a20 7477 6f4d 6f6e 6f6d 6961 6c73 2c0a : twoMonomials,. │ │ │ │ +000644d0: 2020 2020 2d2d 2074 616c 6c79 2074 6865 -- tally the │ │ │ │ +000644e0: 2073 6571 7565 6e63 6573 206f 6620 4252 sequences of BR │ │ │ │ +000644f0: 616e 6b73 2066 6f72 2063 6572 7461 696e anks for certain │ │ │ │ +00064500: 2065 7861 6d70 6c65 730a 0a46 6f72 2074 examples..For t │ │ │ │ +00064510: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +00064520: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00064530: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ +00064540: 7465 204f 7074 696d 6973 6d3a 204f 7074 te Optimism: Opt │ │ │ │ +00064550: 696d 6973 6d2c 2069 7320 6120 2a6e 6f74 imism, is a *not │ │ │ │ +00064560: 6520 7379 6d62 6f6c 3a20 284d 6163 6175 e symbol: (Macau │ │ │ │ +00064570: 6c61 7932 446f 6329 5379 6d62 6f6c 2c2e lay2Doc)Symbol,. │ │ │ │ +00064580: 0a1f 0a46 696c 653a 2043 6f6d 706c 6574 ...File: Complet │ │ │ │ +00064590: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ +000645a0: 6f6c 7574 696f 6e73 2e69 6e66 6f2c 204e olutions.info, N │ │ │ │ +000645b0: 6f64 653a 204f 7574 5269 6e67 2c20 4e65 ode: OutRing, Ne │ │ │ │ +000645c0: 7874 3a20 7073 694d 6170 732c 2050 7265 xt: psiMaps, Pre │ │ │ │ +000645d0: 763a 204f 7074 696d 6973 6d2c 2055 703a v: Optimism, Up: │ │ │ │ +000645e0: 2054 6f70 0a0a 4f75 7452 696e 6720 2d2d Top..OutRing -- │ │ │ │ +000645f0: 204f 7074 696f 6e20 616c 6c6f 7769 6e67 Option allowing │ │ │ │ +00064600: 2073 7065 6369 6669 6361 7469 6f6e 206f specification o │ │ │ │ +00064610: 6620 7468 6520 7269 6e67 206f 7665 7220 f the ring over │ │ │ │ +00064620: 7768 6963 6820 7468 6520 6f75 7470 7574 which the output │ │ │ │ +00064630: 2069 7320 6465 6669 6e65 640a 2a2a 2a2a is defined.**** │ │ │ │ +00064640: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00064650: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00064660: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00064670: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00064680: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00064690: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 5365 ************..Se │ │ │ │ -000646a0: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ -000646b0: 0a20 202a 202a 6e6f 7465 2065 7665 6e45 . * *note evenE │ │ │ │ -000646c0: 7874 4d6f 6475 6c65 3a20 6576 656e 4578 xtModule: evenEx │ │ │ │ -000646d0: 744d 6f64 756c 652c 202d 2d20 6576 656e tModule, -- even │ │ │ │ -000646e0: 2070 6172 7420 6f66 2045 7874 5e2a 284d part of Ext^*(M │ │ │ │ -000646f0: 2c6b 2920 6f76 6572 2061 0a20 2020 2063 ,k) over a. c │ │ │ │ -00064700: 6f6d 706c 6574 6520 696e 7465 7273 6563 omplete intersec │ │ │ │ -00064710: 7469 6f6e 2061 7320 6d6f 6475 6c65 206f tion as module o │ │ │ │ -00064720: 7665 7220 4349 206f 7065 7261 746f 7220 ver CI operator │ │ │ │ -00064730: 7269 6e67 0a20 202a 202a 6e6f 7465 206f ring. * *note o │ │ │ │ -00064740: 6464 4578 744d 6f64 756c 653a 206f 6464 ddExtModule: odd │ │ │ │ -00064750: 4578 744d 6f64 756c 652c 202d 2d20 6f64 ExtModule, -- od │ │ │ │ -00064760: 6420 7061 7274 206f 6620 4578 745e 2a28 d part of Ext^*( │ │ │ │ -00064770: 4d2c 6b29 206f 7665 7220 6120 636f 6d70 M,k) over a comp │ │ │ │ -00064780: 6c65 7465 0a20 2020 2069 6e74 6572 7365 lete. interse │ │ │ │ -00064790: 6374 696f 6e20 6173 206d 6f64 756c 6520 ction as module │ │ │ │ -000647a0: 6f76 6572 2043 4920 6f70 6572 6174 6f72 over CI operator │ │ │ │ -000647b0: 2072 696e 670a 0a46 756e 6374 696f 6e73 ring..Functions │ │ │ │ -000647c0: 2077 6974 6820 6f70 7469 6f6e 616c 2061 with optional a │ │ │ │ -000647d0: 7267 756d 656e 7420 6e61 6d65 6420 4f75 rgument named Ou │ │ │ │ -000647e0: 7452 696e 673a 0a3d 3d3d 3d3d 3d3d 3d3d tRing:.========= │ │ │ │ +00064690: 2a0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d *..See also.==== │ │ │ │ +000646a0: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ +000646b0: 6576 656e 4578 744d 6f64 756c 653a 2065 evenExtModule: e │ │ │ │ +000646c0: 7665 6e45 7874 4d6f 6475 6c65 2c20 2d2d venExtModule, -- │ │ │ │ +000646d0: 2065 7665 6e20 7061 7274 206f 6620 4578 even part of Ex │ │ │ │ +000646e0: 745e 2a28 4d2c 6b29 206f 7665 7220 610a t^*(M,k) over a. │ │ │ │ +000646f0: 2020 2020 636f 6d70 6c65 7465 2069 6e74 complete int │ │ │ │ +00064700: 6572 7365 6374 696f 6e20 6173 206d 6f64 ersection as mod │ │ │ │ +00064710: 756c 6520 6f76 6572 2043 4920 6f70 6572 ule over CI oper │ │ │ │ +00064720: 6174 6f72 2072 696e 670a 2020 2a20 2a6e ator ring. * *n │ │ │ │ +00064730: 6f74 6520 6f64 6445 7874 4d6f 6475 6c65 ote oddExtModule │ │ │ │ +00064740: 3a20 6f64 6445 7874 4d6f 6475 6c65 2c20 : oddExtModule, │ │ │ │ +00064750: 2d2d 206f 6464 2070 6172 7420 6f66 2045 -- odd part of E │ │ │ │ +00064760: 7874 5e2a 284d 2c6b 2920 6f76 6572 2061 xt^*(M,k) over a │ │ │ │ +00064770: 2063 6f6d 706c 6574 650a 2020 2020 696e complete. in │ │ │ │ +00064780: 7465 7273 6563 7469 6f6e 2061 7320 6d6f tersection as mo │ │ │ │ +00064790: 6475 6c65 206f 7665 7220 4349 206f 7065 dule over CI ope │ │ │ │ +000647a0: 7261 746f 7220 7269 6e67 0a0a 4675 6e63 rator ring..Func │ │ │ │ +000647b0: 7469 6f6e 7320 7769 7468 206f 7074 696f tions with optio │ │ │ │ +000647c0: 6e61 6c20 6172 6775 6d65 6e74 206e 616d nal argument nam │ │ │ │ +000647d0: 6564 204f 7574 5269 6e67 3a0a 3d3d 3d3d ed OutRing:.==== │ │ │ │ +000647e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 000647f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00064800: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00064810: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2265 7665 ======.. * "eve │ │ │ │ -00064820: 6e45 7874 4d6f 6475 6c65 282e 2e2e 2c4f nExtModule(...,O │ │ │ │ -00064830: 7574 5269 6e67 3d3e 2e2e 2e29 2220 2d2d utRing=>...)" -- │ │ │ │ -00064840: 2073 6565 202a 6e6f 7465 2065 7665 6e45 see *note evenE │ │ │ │ -00064850: 7874 4d6f 6475 6c65 3a0a 2020 2020 6576 xtModule:. ev │ │ │ │ -00064860: 656e 4578 744d 6f64 756c 652c 202d 2d20 enExtModule, -- │ │ │ │ -00064870: 6576 656e 2070 6172 7420 6f66 2045 7874 even part of Ext │ │ │ │ -00064880: 5e2a 284d 2c6b 2920 6f76 6572 2061 2063 ^*(M,k) over a c │ │ │ │ -00064890: 6f6d 706c 6574 6520 696e 7465 7273 6563 omplete intersec │ │ │ │ -000648a0: 7469 6f6e 2061 730a 2020 2020 6d6f 6475 tion as. modu │ │ │ │ -000648b0: 6c65 206f 7665 7220 4349 206f 7065 7261 le over CI opera │ │ │ │ -000648c0: 746f 7220 7269 6e67 0a20 202a 2022 6f64 tor ring. * "od │ │ │ │ -000648d0: 6445 7874 4d6f 6475 6c65 282e 2e2e 2c4f dExtModule(...,O │ │ │ │ -000648e0: 7574 5269 6e67 3d3e 2e2e 2e29 2220 2d2d utRing=>...)" -- │ │ │ │ -000648f0: 2073 6565 202a 6e6f 7465 206f 6464 4578 see *note oddEx │ │ │ │ -00064900: 744d 6f64 756c 653a 206f 6464 4578 744d tModule: oddExtM │ │ │ │ -00064910: 6f64 756c 652c 0a20 2020 202d 2d20 6f64 odule,. -- od │ │ │ │ -00064920: 6420 7061 7274 206f 6620 4578 745e 2a28 d part of Ext^*( │ │ │ │ -00064930: 4d2c 6b29 206f 7665 7220 6120 636f 6d70 M,k) over a comp │ │ │ │ -00064940: 6c65 7465 2069 6e74 6572 7365 6374 696f lete intersectio │ │ │ │ -00064950: 6e20 6173 206d 6f64 756c 6520 6f76 6572 n as module over │ │ │ │ -00064960: 2043 490a 2020 2020 6f70 6572 6174 6f72 CI. operator │ │ │ │ -00064970: 2072 696e 670a 0a46 6f72 2074 6865 2070 ring..For the p │ │ │ │ -00064980: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -00064990: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -000649a0: 6520 6f62 6a65 6374 202a 6e6f 7465 204f e object *note O │ │ │ │ -000649b0: 7574 5269 6e67 3a20 4f75 7452 696e 672c utRing: OutRing, │ │ │ │ -000649c0: 2069 7320 6120 2a6e 6f74 6520 7379 6d62 is a *note symb │ │ │ │ -000649d0: 6f6c 3a20 284d 6163 6175 6c61 7932 446f ol: (Macaulay2Do │ │ │ │ -000649e0: 6329 5379 6d62 6f6c 2c2e 0a1f 0a46 696c c)Symbol,....Fil │ │ │ │ -000649f0: 653a 2043 6f6d 706c 6574 6549 6e74 6572 e: CompleteInter │ │ │ │ -00064a00: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ -00064a10: 6e73 2e69 6e66 6f2c 204e 6f64 653a 2070 ns.info, Node: p │ │ │ │ -00064a20: 7369 4d61 7073 2c20 4e65 7874 3a20 7265 siMaps, Next: re │ │ │ │ -00064a30: 6775 6c61 7269 7479 5365 7175 656e 6365 gularitySequence │ │ │ │ -00064a40: 2c20 5072 6576 3a20 4f75 7452 696e 672c , Prev: OutRing, │ │ │ │ -00064a50: 2055 703a 2054 6f70 0a0a 7073 694d 6170 Up: Top..psiMap │ │ │ │ -00064a60: 7320 2d2d 206c 6973 7420 7468 6520 6d61 s -- list the ma │ │ │ │ -00064a70: 7073 2020 7073 6928 7029 3a20 425f 3128 ps psi(p): B_1( │ │ │ │ -00064a80: 7029 202d 2d3e 2041 5f30 2870 2d31 2920 p) --> A_0(p-1) │ │ │ │ -00064a90: 696e 2061 206d 6174 7269 7846 6163 746f in a matrixFacto │ │ │ │ -00064aa0: 7269 7a61 7469 6f6e 0a2a 2a2a 2a2a 2a2a rization.******* │ │ │ │ +00064800: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +00064810: 2022 6576 656e 4578 744d 6f64 756c 6528 "evenExtModule( │ │ │ │ +00064820: 2e2e 2e2c 4f75 7452 696e 673d 3e2e 2e2e ...,OutRing=>... │ │ │ │ +00064830: 2922 202d 2d20 7365 6520 2a6e 6f74 6520 )" -- see *note │ │ │ │ +00064840: 6576 656e 4578 744d 6f64 756c 653a 0a20 evenExtModule:. │ │ │ │ +00064850: 2020 2065 7665 6e45 7874 4d6f 6475 6c65 evenExtModule │ │ │ │ +00064860: 2c20 2d2d 2065 7665 6e20 7061 7274 206f , -- even part o │ │ │ │ +00064870: 6620 4578 745e 2a28 4d2c 6b29 206f 7665 f Ext^*(M,k) ove │ │ │ │ +00064880: 7220 6120 636f 6d70 6c65 7465 2069 6e74 r a complete int │ │ │ │ +00064890: 6572 7365 6374 696f 6e20 6173 0a20 2020 ersection as. │ │ │ │ +000648a0: 206d 6f64 756c 6520 6f76 6572 2043 4920 module over CI │ │ │ │ +000648b0: 6f70 6572 6174 6f72 2072 696e 670a 2020 operator ring. │ │ │ │ +000648c0: 2a20 226f 6464 4578 744d 6f64 756c 6528 * "oddExtModule( │ │ │ │ +000648d0: 2e2e 2e2c 4f75 7452 696e 673d 3e2e 2e2e ...,OutRing=>... │ │ │ │ +000648e0: 2922 202d 2d20 7365 6520 2a6e 6f74 6520 )" -- see *note │ │ │ │ +000648f0: 6f64 6445 7874 4d6f 6475 6c65 3a20 6f64 oddExtModule: od │ │ │ │ +00064900: 6445 7874 4d6f 6475 6c65 2c0a 2020 2020 dExtModule,. │ │ │ │ +00064910: 2d2d 206f 6464 2070 6172 7420 6f66 2045 -- odd part of E │ │ │ │ +00064920: 7874 5e2a 284d 2c6b 2920 6f76 6572 2061 xt^*(M,k) over a │ │ │ │ +00064930: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ +00064940: 6563 7469 6f6e 2061 7320 6d6f 6475 6c65 ection as module │ │ │ │ +00064950: 206f 7665 7220 4349 0a20 2020 206f 7065 over CI. ope │ │ │ │ +00064960: 7261 746f 7220 7269 6e67 0a0a 466f 7220 rator ring..For │ │ │ │ +00064970: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ +00064980: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00064990: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ +000649a0: 6f74 6520 4f75 7452 696e 673a 204f 7574 ote OutRing: Out │ │ │ │ +000649b0: 5269 6e67 2c20 6973 2061 202a 6e6f 7465 Ring, is a *note │ │ │ │ +000649c0: 2073 796d 626f 6c3a 2028 4d61 6361 756c symbol: (Macaul │ │ │ │ +000649d0: 6179 3244 6f63 2953 796d 626f 6c2c 2e0a ay2Doc)Symbol,.. │ │ │ │ +000649e0: 1f0a 4669 6c65 3a20 436f 6d70 6c65 7465 ..File: Complete │ │ │ │ +000649f0: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ +00064a00: 6c75 7469 6f6e 732e 696e 666f 2c20 4e6f lutions.info, No │ │ │ │ +00064a10: 6465 3a20 7073 694d 6170 732c 204e 6578 de: psiMaps, Nex │ │ │ │ +00064a20: 743a 2072 6567 756c 6172 6974 7953 6571 t: regularitySeq │ │ │ │ +00064a30: 7565 6e63 652c 2050 7265 763a 204f 7574 uence, Prev: Out │ │ │ │ +00064a40: 5269 6e67 2c20 5570 3a20 546f 700a 0a70 Ring, Up: Top..p │ │ │ │ +00064a50: 7369 4d61 7073 202d 2d20 6c69 7374 2074 siMaps -- list t │ │ │ │ +00064a60: 6865 206d 6170 7320 2070 7369 2870 293a he maps psi(p): │ │ │ │ +00064a70: 2042 5f31 2870 2920 2d2d 3e20 415f 3028 B_1(p) --> A_0( │ │ │ │ +00064a80: 702d 3129 2069 6e20 6120 6d61 7472 6978 p-1) in a matrix │ │ │ │ +00064a90: 4661 6374 6f72 697a 6174 696f 6e0a 2a2a Factorization.** │ │ │ │ +00064aa0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00064ab0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00064ac0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00064ad0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00064ae0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00064af0: 2a2a 2a2a 2a2a 2a0a 0a53 796e 6f70 7369 *******..Synopsi │ │ │ │ -00064b00: 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 s.========.. * │ │ │ │ -00064b10: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ -00064b20: 7073 6d61 7073 203d 2070 7369 4d61 7073 psmaps = psiMaps │ │ │ │ -00064b30: 206d 660a 2020 2a20 496e 7075 7473 3a0a mf. * Inputs:. │ │ │ │ -00064b40: 2020 2020 2020 2a20 6d66 2c20 6120 2a6e * mf, a *n │ │ │ │ -00064b50: 6f74 6520 6c69 7374 3a20 284d 6163 6175 ote list: (Macau │ │ │ │ -00064b60: 6c61 7932 446f 6329 4c69 7374 2c2c 206f lay2Doc)List,, o │ │ │ │ -00064b70: 7574 7075 7420 6f66 2061 206d 6174 7269 utput of a matri │ │ │ │ -00064b80: 7846 6163 746f 7269 7a61 7469 6f6e 0a20 xFactorization. │ │ │ │ -00064b90: 2020 2020 2020 2063 6f6d 7075 7461 7469 computati │ │ │ │ -00064ba0: 6f6e 0a20 202a 204f 7574 7075 7473 3a0a on. * Outputs:. │ │ │ │ -00064bb0: 2020 2020 2020 2a20 7073 6d61 7073 2c20 * psmaps, │ │ │ │ -00064bc0: 6120 2a6e 6f74 6520 6c69 7374 3a20 284d a *note list: (M │ │ │ │ -00064bd0: 6163 6175 6c61 7932 446f 6329 4c69 7374 acaulay2Doc)List │ │ │ │ -00064be0: 2c2c 206c 6973 7420 6d61 7472 6963 6573 ,, list matrices │ │ │ │ -00064bf0: 2024 645f 703a 0a20 2020 2020 2020 2042 $d_p:. B │ │ │ │ -00064c00: 5f31 2870 295c 746f 2041 5f30 2870 2d31 _1(p)\to A_0(p-1 │ │ │ │ -00064c10: 2924 0a0a 4465 7363 7269 7074 696f 6e0a )$..Description. │ │ │ │ -00064c20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a53 6565 ===========..See │ │ │ │ -00064c30: 2074 6865 2064 6f63 756d 656e 7461 7469 the documentati │ │ │ │ -00064c40: 6f6e 2066 6f72 206d 6174 7269 7846 6163 on for matrixFac │ │ │ │ -00064c50: 746f 7269 7a61 7469 6f6e 2066 6f72 2061 torization for a │ │ │ │ -00064c60: 6e20 6578 616d 706c 652e 0a0a 5365 6520 n example...See │ │ │ │ -00064c70: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ -00064c80: 202a 202a 6e6f 7465 206d 6174 7269 7846 * *note matrixF │ │ │ │ -00064c90: 6163 746f 7269 7a61 7469 6f6e 3a20 6d61 actorization: ma │ │ │ │ -00064ca0: 7472 6978 4661 6374 6f72 697a 6174 696f trixFactorizatio │ │ │ │ -00064cb0: 6e2c 202d 2d20 4d61 7073 2069 6e20 6120 n, -- Maps in a │ │ │ │ -00064cc0: 6869 6768 6572 0a20 2020 2063 6f64 696d higher. codim │ │ │ │ -00064cd0: 656e 7369 6f6e 206d 6174 7269 7820 6661 ension matrix fa │ │ │ │ -00064ce0: 6374 6f72 697a 6174 696f 6e0a 2020 2a20 ctorization. * │ │ │ │ -00064cf0: 2a6e 6f74 6520 4252 616e 6b73 3a20 4252 *note BRanks: BR │ │ │ │ -00064d00: 616e 6b73 2c20 2d2d 2072 616e 6b73 206f anks, -- ranks o │ │ │ │ -00064d10: 6620 7468 6520 6d6f 6475 6c65 7320 425f f the modules B_ │ │ │ │ -00064d20: 6928 6429 2069 6e20 610a 2020 2020 6d61 i(d) in a. ma │ │ │ │ -00064d30: 7472 6978 4661 6374 6f72 697a 6174 696f trixFactorizatio │ │ │ │ -00064d40: 6e0a 2020 2a20 2a6e 6f74 6520 624d 6170 n. * *note bMap │ │ │ │ -00064d50: 733a 2062 4d61 7073 2c20 2d2d 206c 6973 s: bMaps, -- lis │ │ │ │ -00064d60: 7420 7468 6520 6d61 7073 2020 645f 703a t the maps d_p: │ │ │ │ -00064d70: 425f 3128 7029 2d2d 3e42 5f30 2870 2920 B_1(p)-->B_0(p) │ │ │ │ -00064d80: 696e 2061 0a20 2020 206d 6174 7269 7846 in a. matrixF │ │ │ │ -00064d90: 6163 746f 7269 7a61 7469 6f6e 0a20 202a actorization. * │ │ │ │ -00064da0: 202a 6e6f 7465 2064 4d61 7073 3a20 644d *note dMaps: dM │ │ │ │ -00064db0: 6170 732c 202d 2d20 6c69 7374 2074 6865 aps, -- list the │ │ │ │ -00064dc0: 206d 6170 7320 2064 2870 293a 415f 3128 maps d(p):A_1( │ │ │ │ -00064dd0: 7029 2d2d 3e20 415f 3028 7029 2069 6e20 p)--> A_0(p) in │ │ │ │ -00064de0: 610a 2020 2020 6d61 7472 6978 4661 6374 a. matrixFact │ │ │ │ -00064df0: 6f72 697a 6174 696f 6e0a 2020 2a20 2a6e orization. * *n │ │ │ │ -00064e00: 6f74 6520 684d 6170 733a 2068 4d61 7073 ote hMaps: hMaps │ │ │ │ -00064e10: 2c20 2d2d 206c 6973 7420 7468 6520 6d61 , -- list the ma │ │ │ │ -00064e20: 7073 2020 6828 7029 3a20 415f 3028 7029 ps h(p): A_0(p) │ │ │ │ -00064e30: 2d2d 3e20 415f 3128 7029 2069 6e20 610a --> A_1(p) in a. │ │ │ │ -00064e40: 2020 2020 6d61 7472 6978 4661 6374 6f72 matrixFactor │ │ │ │ -00064e50: 697a 6174 696f 6e0a 0a57 6179 7320 746f ization..Ways to │ │ │ │ -00064e60: 2075 7365 2070 7369 4d61 7073 3a0a 3d3d use psiMaps:.== │ │ │ │ -00064e70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00064e80: 3d3d 0a0a 2020 2a20 2270 7369 4d61 7073 ==.. * "psiMaps │ │ │ │ -00064e90: 284c 6973 7429 220a 0a46 6f72 2074 6865 (List)"..For the │ │ │ │ -00064ea0: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -00064eb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00064ec0: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -00064ed0: 2070 7369 4d61 7073 3a20 7073 694d 6170 psiMaps: psiMap │ │ │ │ -00064ee0: 732c 2069 7320 6120 2a6e 6f74 6520 6d65 s, is a *note me │ │ │ │ -00064ef0: 7468 6f64 2066 756e 6374 696f 6e3a 0a28 thod function:.( │ │ │ │ -00064f00: 4d61 6361 756c 6179 3244 6f63 294d 6574 Macaulay2Doc)Met │ │ │ │ -00064f10: 686f 6446 756e 6374 696f 6e2c 2e0a 1f0a hodFunction,.... │ │ │ │ -00064f20: 4669 6c65 3a20 436f 6d70 6c65 7465 496e File: CompleteIn │ │ │ │ -00064f30: 7465 7273 6563 7469 6f6e 5265 736f 6c75 tersectionResolu │ │ │ │ -00064f40: 7469 6f6e 732e 696e 666f 2c20 4e6f 6465 tions.info, Node │ │ │ │ -00064f50: 3a20 7265 6775 6c61 7269 7479 5365 7175 : regularitySequ │ │ │ │ -00064f60: 656e 6365 2c20 4e65 7874 3a20 5332 2c20 ence, Next: S2, │ │ │ │ -00064f70: 5072 6576 3a20 7073 694d 6170 732c 2055 Prev: psiMaps, U │ │ │ │ -00064f80: 703a 2054 6f70 0a0a 7265 6775 6c61 7269 p: Top..regulari │ │ │ │ -00064f90: 7479 5365 7175 656e 6365 202d 2d20 7265 tySequence -- re │ │ │ │ -00064fa0: 6775 6c61 7269 7479 206f 6620 4578 7420 gularity of Ext │ │ │ │ -00064fb0: 6d6f 6475 6c65 7320 666f 7220 6120 7365 modules for a se │ │ │ │ -00064fc0: 7175 656e 6365 206f 6620 4d43 4d20 6170 quence of MCM ap │ │ │ │ -00064fd0: 7072 6f78 696d 6174 696f 6e73 0a2a 2a2a proximations.*** │ │ │ │ +00064ae0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 5379 ************..Sy │ │ │ │ +00064af0: 6e6f 7073 6973 0a3d 3d3d 3d3d 3d3d 3d0a nopsis.========. │ │ │ │ +00064b00: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +00064b10: 2020 2020 2070 736d 6170 7320 3d20 7073 psmaps = ps │ │ │ │ +00064b20: 694d 6170 7320 6d66 0a20 202a 2049 6e70 iMaps mf. * Inp │ │ │ │ +00064b30: 7574 733a 0a20 2020 2020 202a 206d 662c uts:. * mf, │ │ │ │ +00064b40: 2061 202a 6e6f 7465 206c 6973 743a 2028 a *note list: ( │ │ │ │ +00064b50: 4d61 6361 756c 6179 3244 6f63 294c 6973 Macaulay2Doc)Lis │ │ │ │ +00064b60: 742c 2c20 6f75 7470 7574 206f 6620 6120 t,, output of a │ │ │ │ +00064b70: 6d61 7472 6978 4661 6374 6f72 697a 6174 matrixFactorizat │ │ │ │ +00064b80: 696f 6e0a 2020 2020 2020 2020 636f 6d70 ion. comp │ │ │ │ +00064b90: 7574 6174 696f 6e0a 2020 2a20 4f75 7470 utation. * Outp │ │ │ │ +00064ba0: 7574 733a 0a20 2020 2020 202a 2070 736d uts:. * psm │ │ │ │ +00064bb0: 6170 732c 2061 202a 6e6f 7465 206c 6973 aps, a *note lis │ │ │ │ +00064bc0: 743a 2028 4d61 6361 756c 6179 3244 6f63 t: (Macaulay2Doc │ │ │ │ +00064bd0: 294c 6973 742c 2c20 6c69 7374 206d 6174 )List,, list mat │ │ │ │ +00064be0: 7269 6365 7320 2464 5f70 3a0a 2020 2020 rices $d_p:. │ │ │ │ +00064bf0: 2020 2020 425f 3128 7029 5c74 6f20 415f B_1(p)\to A_ │ │ │ │ +00064c00: 3028 702d 3129 240a 0a44 6573 6372 6970 0(p-1)$..Descrip │ │ │ │ +00064c10: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ +00064c20: 0a0a 5365 6520 7468 6520 646f 6375 6d65 ..See the docume │ │ │ │ +00064c30: 6e74 6174 696f 6e20 666f 7220 6d61 7472 ntation for matr │ │ │ │ +00064c40: 6978 4661 6374 6f72 697a 6174 696f 6e20 ixFactorization │ │ │ │ +00064c50: 666f 7220 616e 2065 7861 6d70 6c65 2e0a for an example.. │ │ │ │ +00064c60: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ +00064c70: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 6d61 ==.. * *note ma │ │ │ │ +00064c80: 7472 6978 4661 6374 6f72 697a 6174 696f trixFactorizatio │ │ │ │ +00064c90: 6e3a 206d 6174 7269 7846 6163 746f 7269 n: matrixFactori │ │ │ │ +00064ca0: 7a61 7469 6f6e 2c20 2d2d 204d 6170 7320 zation, -- Maps │ │ │ │ +00064cb0: 696e 2061 2068 6967 6865 720a 2020 2020 in a higher. │ │ │ │ +00064cc0: 636f 6469 6d65 6e73 696f 6e20 6d61 7472 codimension matr │ │ │ │ +00064cd0: 6978 2066 6163 746f 7269 7a61 7469 6f6e ix factorization │ │ │ │ +00064ce0: 0a20 202a 202a 6e6f 7465 2042 5261 6e6b . * *note BRank │ │ │ │ +00064cf0: 733a 2042 5261 6e6b 732c 202d 2d20 7261 s: BRanks, -- ra │ │ │ │ +00064d00: 6e6b 7320 6f66 2074 6865 206d 6f64 756c nks of the modul │ │ │ │ +00064d10: 6573 2042 5f69 2864 2920 696e 2061 0a20 es B_i(d) in a. │ │ │ │ +00064d20: 2020 206d 6174 7269 7846 6163 746f 7269 matrixFactori │ │ │ │ +00064d30: 7a61 7469 6f6e 0a20 202a 202a 6e6f 7465 zation. * *note │ │ │ │ +00064d40: 2062 4d61 7073 3a20 624d 6170 732c 202d bMaps: bMaps, - │ │ │ │ +00064d50: 2d20 6c69 7374 2074 6865 206d 6170 7320 - list the maps │ │ │ │ +00064d60: 2064 5f70 3a42 5f31 2870 292d 2d3e 425f d_p:B_1(p)-->B_ │ │ │ │ +00064d70: 3028 7029 2069 6e20 610a 2020 2020 6d61 0(p) in a. ma │ │ │ │ +00064d80: 7472 6978 4661 6374 6f72 697a 6174 696f trixFactorizatio │ │ │ │ +00064d90: 6e0a 2020 2a20 2a6e 6f74 6520 644d 6170 n. * *note dMap │ │ │ │ +00064da0: 733a 2064 4d61 7073 2c20 2d2d 206c 6973 s: dMaps, -- lis │ │ │ │ +00064db0: 7420 7468 6520 6d61 7073 2020 6428 7029 t the maps d(p) │ │ │ │ +00064dc0: 3a41 5f31 2870 292d 2d3e 2041 5f30 2870 :A_1(p)--> A_0(p │ │ │ │ +00064dd0: 2920 696e 2061 0a20 2020 206d 6174 7269 ) in a. matri │ │ │ │ +00064de0: 7846 6163 746f 7269 7a61 7469 6f6e 0a20 xFactorization. │ │ │ │ +00064df0: 202a 202a 6e6f 7465 2068 4d61 7073 3a20 * *note hMaps: │ │ │ │ +00064e00: 684d 6170 732c 202d 2d20 6c69 7374 2074 hMaps, -- list t │ │ │ │ +00064e10: 6865 206d 6170 7320 2068 2870 293a 2041 he maps h(p): A │ │ │ │ +00064e20: 5f30 2870 292d 2d3e 2041 5f31 2870 2920 _0(p)--> A_1(p) │ │ │ │ +00064e30: 696e 2061 0a20 2020 206d 6174 7269 7846 in a. matrixF │ │ │ │ +00064e40: 6163 746f 7269 7a61 7469 6f6e 0a0a 5761 actorization..Wa │ │ │ │ +00064e50: 7973 2074 6f20 7573 6520 7073 694d 6170 ys to use psiMap │ │ │ │ +00064e60: 733a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d s:.============= │ │ │ │ +00064e70: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 7073 =======.. * "ps │ │ │ │ +00064e80: 694d 6170 7328 4c69 7374 2922 0a0a 466f iMaps(List)"..Fo │ │ │ │ +00064e90: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +00064ea0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +00064eb0: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +00064ec0: 2a6e 6f74 6520 7073 694d 6170 733a 2070 *note psiMaps: p │ │ │ │ +00064ed0: 7369 4d61 7073 2c20 6973 2061 202a 6e6f siMaps, is a *no │ │ │ │ +00064ee0: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ +00064ef0: 6f6e 3a0a 284d 6163 6175 6c61 7932 446f on:.(Macaulay2Do │ │ │ │ +00064f00: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ +00064f10: 2c2e 0a1f 0a46 696c 653a 2043 6f6d 706c ,....File: Compl │ │ │ │ +00064f20: 6574 6549 6e74 6572 7365 6374 696f 6e52 eteIntersectionR │ │ │ │ +00064f30: 6573 6f6c 7574 696f 6e73 2e69 6e66 6f2c esolutions.info, │ │ │ │ +00064f40: 204e 6f64 653a 2072 6567 756c 6172 6974 Node: regularit │ │ │ │ +00064f50: 7953 6571 7565 6e63 652c 204e 6578 743a ySequence, Next: │ │ │ │ +00064f60: 2053 322c 2050 7265 763a 2070 7369 4d61 S2, Prev: psiMa │ │ │ │ +00064f70: 7073 2c20 5570 3a20 546f 700a 0a72 6567 ps, Up: Top..reg │ │ │ │ +00064f80: 756c 6172 6974 7953 6571 7565 6e63 6520 ularitySequence │ │ │ │ +00064f90: 2d2d 2072 6567 756c 6172 6974 7920 6f66 -- regularity of │ │ │ │ +00064fa0: 2045 7874 206d 6f64 756c 6573 2066 6f72 Ext modules for │ │ │ │ +00064fb0: 2061 2073 6571 7565 6e63 6520 6f66 204d a sequence of M │ │ │ │ +00064fc0: 434d 2061 7070 726f 7869 6d61 7469 6f6e CM approximation │ │ │ │ +00064fd0: 730a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a s.************** │ │ │ │ 00064fe0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00064ff0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00065000: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00065010: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00065020: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00065030: 2a0a 0a53 796e 6f70 7369 730a 3d3d 3d3d *..Synopsis.==== │ │ │ │ -00065040: 3d3d 3d3d 0a0a 2020 2a20 5573 6167 653a ====.. * Usage: │ │ │ │ -00065050: 200a 2020 2020 2020 2020 4c20 3d20 7265 . L = re │ │ │ │ -00065060: 6775 6c61 7269 7479 5365 7175 656e 6365 gularitySequence │ │ │ │ -00065070: 2028 522c 4d29 0a20 202a 2049 6e70 7574 (R,M). * Input │ │ │ │ -00065080: 733a 0a20 2020 2020 202a 2052 2c20 6120 s:. * R, a │ │ │ │ -00065090: 2a6e 6f74 6520 6c69 7374 3a20 284d 6163 *note list: (Mac │ │ │ │ -000650a0: 6175 6c61 7932 446f 6329 4c69 7374 2c2c aulay2Doc)List,, │ │ │ │ -000650b0: 206c 6973 7420 6f66 2072 696e 6773 2052 list of rings R │ │ │ │ -000650c0: 5f69 203d 0a20 2020 2020 2020 2053 2f28 _i =. S/( │ │ │ │ -000650d0: 665f 302e 2e66 5f7b 2869 2d31 297d 292c f_0..f_{(i-1)}), │ │ │ │ -000650e0: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ -000650f0: 6563 7469 6f6e 730a 2020 2020 2020 2a20 ections. * │ │ │ │ -00065100: 4d2c 2061 202a 6e6f 7465 206d 6f64 756c M, a *note modul │ │ │ │ -00065110: 653a 2028 4d61 6361 756c 6179 3244 6f63 e: (Macaulay2Doc │ │ │ │ -00065120: 294d 6f64 756c 652c 2c20 6d6f 6475 6c65 )Module,, module │ │ │ │ -00065130: 206f 7665 7220 525f 6320 7768 6572 6520 over R_c where │ │ │ │ -00065140: 6320 3d0a 2020 2020 2020 2020 6c65 6e67 c =. leng │ │ │ │ -00065150: 7468 2052 202d 2031 2e0a 2020 2a20 4f75 th R - 1.. * Ou │ │ │ │ -00065160: 7470 7574 733a 0a20 2020 2020 202a 204c tputs:. * L │ │ │ │ -00065170: 2c20 6120 2a6e 6f74 6520 6c69 7374 3a20 , a *note list: │ │ │ │ -00065180: 284d 6163 6175 6c61 7932 446f 6329 4c69 (Macaulay2Doc)Li │ │ │ │ -00065190: 7374 2c2c 204c 6973 7420 6f66 2070 6169 st,, List of pai │ │ │ │ -000651a0: 7273 207b 7265 6775 6c61 7269 7479 0a20 rs {regularity. │ │ │ │ -000651b0: 2020 2020 2020 2065 7665 6e45 7874 4d6f evenExtMo │ │ │ │ -000651c0: 6475 6c65 204d 5f69 2c20 7265 6775 6c61 dule M_i, regula │ │ │ │ -000651d0: 7269 7479 206f 6464 4578 744d 6f64 756c rity oddExtModul │ │ │ │ -000651e0: 6520 4d5f 6929 0a0a 4465 7363 7269 7074 e M_i)..Descript │ │ │ │ -000651f0: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -00065200: 0a43 6f6d 7075 7465 7320 7468 6520 6e6f .Computes the no │ │ │ │ -00065210: 6e2d 6672 6565 2070 6172 7473 204d 5f69 n-free parts M_i │ │ │ │ -00065220: 206f 6620 7468 6520 4d43 4d20 6170 7072 of the MCM appr │ │ │ │ -00065230: 6f78 696d 6174 696f 6e20 746f 204d 206f oximation to M o │ │ │ │ -00065240: 7665 7220 525f 692c 0a73 746f 7070 696e ver R_i,.stoppin │ │ │ │ -00065250: 6720 7768 656e 204d 5f69 2062 6563 6f6d g when M_i becom │ │ │ │ -00065260: 6573 2066 7265 652c 2061 6e64 2072 6574 es free, and ret │ │ │ │ -00065270: 7572 6e73 2074 6865 206c 6973 7420 7768 urns the list wh │ │ │ │ -00065280: 6f73 6520 656c 656d 656e 7473 2061 7265 ose elements are │ │ │ │ -00065290: 2074 6865 0a70 6169 7273 206f 6620 7265 the.pairs of re │ │ │ │ -000652a0: 6775 6c61 7269 7469 6573 2c20 7374 6172 gularities, star │ │ │ │ -000652b0: 7469 6e67 2077 6974 6820 4d5f 7b28 632d ting with M_{(c- │ │ │ │ -000652c0: 3129 7d20 4e6f 7465 2074 6861 7420 7468 1)} Note that th │ │ │ │ -000652d0: 6520 6669 7273 7420 7061 6972 2069 7320 e first pair is │ │ │ │ -000652e0: 666f 720a 7468 650a 0a2b 2d2d 2d2d 2d2d for.the..+------ │ │ │ │ +00065020: 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 ******..Synopsis │ │ │ │ +00065030: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 .========.. * U │ │ │ │ +00065040: 7361 6765 3a20 0a20 2020 2020 2020 204c sage: . L │ │ │ │ +00065050: 203d 2072 6567 756c 6172 6974 7953 6571 = regularitySeq │ │ │ │ +00065060: 7565 6e63 6520 2852 2c4d 290a 2020 2a20 uence (R,M). * │ │ │ │ +00065070: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ +00065080: 522c 2061 202a 6e6f 7465 206c 6973 743a R, a *note list: │ │ │ │ +00065090: 2028 4d61 6361 756c 6179 3244 6f63 294c (Macaulay2Doc)L │ │ │ │ +000650a0: 6973 742c 2c20 6c69 7374 206f 6620 7269 ist,, list of ri │ │ │ │ +000650b0: 6e67 7320 525f 6920 3d0a 2020 2020 2020 ngs R_i =. │ │ │ │ +000650c0: 2020 532f 2866 5f30 2e2e 665f 7b28 692d S/(f_0..f_{(i- │ │ │ │ +000650d0: 3129 7d29 2c20 636f 6d70 6c65 7465 2069 1)}), complete i │ │ │ │ +000650e0: 6e74 6572 7365 6374 696f 6e73 0a20 2020 ntersections. │ │ │ │ +000650f0: 2020 202a 204d 2c20 6120 2a6e 6f74 6520 * M, a *note │ │ │ │ +00065100: 6d6f 6475 6c65 3a20 284d 6163 6175 6c61 module: (Macaula │ │ │ │ +00065110: 7932 446f 6329 4d6f 6475 6c65 2c2c 206d y2Doc)Module,, m │ │ │ │ +00065120: 6f64 756c 6520 6f76 6572 2052 5f63 2077 odule over R_c w │ │ │ │ +00065130: 6865 7265 2063 203d 0a20 2020 2020 2020 here c =. │ │ │ │ +00065140: 206c 656e 6774 6820 5220 2d20 312e 0a20 length R - 1.. │ │ │ │ +00065150: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ +00065160: 2020 2a20 4c2c 2061 202a 6e6f 7465 206c * L, a *note l │ │ │ │ +00065170: 6973 743a 2028 4d61 6361 756c 6179 3244 ist: (Macaulay2D │ │ │ │ +00065180: 6f63 294c 6973 742c 2c20 4c69 7374 206f oc)List,, List o │ │ │ │ +00065190: 6620 7061 6972 7320 7b72 6567 756c 6172 f pairs {regular │ │ │ │ +000651a0: 6974 790a 2020 2020 2020 2020 6576 656e ity. even │ │ │ │ +000651b0: 4578 744d 6f64 756c 6520 4d5f 692c 2072 ExtModule M_i, r │ │ │ │ +000651c0: 6567 756c 6172 6974 7920 6f64 6445 7874 egularity oddExt │ │ │ │ +000651d0: 4d6f 6475 6c65 204d 5f69 290a 0a44 6573 Module M_i)..Des │ │ │ │ +000651e0: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ +000651f0: 3d3d 3d3d 0a0a 436f 6d70 7574 6573 2074 ====..Computes t │ │ │ │ +00065200: 6865 206e 6f6e 2d66 7265 6520 7061 7274 he non-free part │ │ │ │ +00065210: 7320 4d5f 6920 6f66 2074 6865 204d 434d s M_i of the MCM │ │ │ │ +00065220: 2061 7070 726f 7869 6d61 7469 6f6e 2074 approximation t │ │ │ │ +00065230: 6f20 4d20 6f76 6572 2052 5f69 2c0a 7374 o M over R_i,.st │ │ │ │ +00065240: 6f70 7069 6e67 2077 6865 6e20 4d5f 6920 opping when M_i │ │ │ │ +00065250: 6265 636f 6d65 7320 6672 6565 2c20 616e becomes free, an │ │ │ │ +00065260: 6420 7265 7475 726e 7320 7468 6520 6c69 d returns the li │ │ │ │ +00065270: 7374 2077 686f 7365 2065 6c65 6d65 6e74 st whose element │ │ │ │ +00065280: 7320 6172 6520 7468 650a 7061 6972 7320 s are the.pairs │ │ │ │ +00065290: 6f66 2072 6567 756c 6172 6974 6965 732c of regularities, │ │ │ │ +000652a0: 2073 7461 7274 696e 6720 7769 7468 204d starting with M │ │ │ │ +000652b0: 5f7b 2863 2d31 297d 204e 6f74 6520 7468 _{(c-1)} Note th │ │ │ │ +000652c0: 6174 2074 6865 2066 6972 7374 2070 6169 at the first pai │ │ │ │ +000652d0: 7220 6973 2066 6f72 0a74 6865 0a0a 2b2d r is for.the..+- │ │ │ │ +000652e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000652f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00065310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00065320: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -00065330: 6320 3d20 333b 643d 3220 2020 2020 2020 c = 3;d=2 │ │ │ │ +00065310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00065320: 6931 203a 2063 203d 2033 3b64 3d32 2020 i1 : c = 3;d=2 │ │ │ │ +00065330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065360: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00065350: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00065360: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00065370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000653a0: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -000653b0: 3d20 3220 2020 2020 2020 2020 2020 2020 = 2 │ │ │ │ +00065390: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000653a0: 0a7c 6f32 203d 2032 2020 2020 2020 2020 .|o2 = 2 │ │ │ │ +000653b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000653c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000653d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000653e0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000653e0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 000653f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00065420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00065430: 3320 3a20 5220 3d20 7365 7475 7052 696e 3 : R = setupRin │ │ │ │ -00065440: 6773 2863 2c64 293b 2020 2020 2020 2020 gs(c,d); │ │ │ │ +00065420: 2d2b 0a7c 6933 203a 2052 203d 2073 6574 -+.|i3 : R = set │ │ │ │ +00065430: 7570 5269 6e67 7328 632c 6429 3b20 2020 upRings(c,d); │ │ │ │ +00065440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065460: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00065460: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00065470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000654a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000654b0: 7c69 3420 3a20 5263 203d 2052 5f63 2020 |i4 : Rc = R_c │ │ │ │ +000654a0: 2d2d 2d2b 0a7c 6934 203a 2052 6320 3d20 ---+.|i4 : Rc = │ │ │ │ +000654b0: 525f 6320 2020 2020 2020 2020 2020 2020 R_c │ │ │ │ 000654c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000654d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000654e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000654f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000654e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000654f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065530: 7c0a 7c6f 3420 3d20 5263 2020 2020 2020 |.|o4 = Rc │ │ │ │ +00065520: 2020 2020 207c 0a7c 6f34 203d 2052 6320 |.|o4 = Rc │ │ │ │ +00065530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065570: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00065560: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00065570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000655a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000655b0: 2020 7c0a 7c6f 3420 3a20 5175 6f74 6965 |.|o4 : Quotie │ │ │ │ -000655c0: 6e74 5269 6e67 2020 2020 2020 2020 2020 ntRing │ │ │ │ +000655a0: 2020 2020 2020 207c 0a7c 6f34 203a 2051 |.|o4 : Q │ │ │ │ +000655b0: 756f 7469 656e 7452 696e 6720 2020 2020 uotientRing │ │ │ │ +000655c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000655d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000655e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000655f0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000655e0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000655f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00065620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00065630: 2d2d 2d2d 2b0a 7c69 3520 3a20 4d20 3d20 ----+.|i5 : M = │ │ │ │ -00065640: 636f 6b65 7220 6d61 7472 6978 7b7b 5263 coker matrix{{Rc │ │ │ │ -00065650: 5f30 2c52 635f 312c 5263 5f32 7d2c 7b52 _0,Rc_1,Rc_2},{R │ │ │ │ -00065660: 635f 312c 5263 5f32 2c52 635f 307d 7d20 c_1,Rc_2,Rc_0}} │ │ │ │ -00065670: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00065620: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ +00065630: 204d 203d 2063 6f6b 6572 206d 6174 7269 M = coker matri │ │ │ │ +00065640: 787b 7b52 635f 302c 5263 5f31 2c52 635f x{{Rc_0,Rc_1,Rc_ │ │ │ │ +00065650: 327d 2c7b 5263 5f31 2c52 635f 322c 5263 2},{Rc_1,Rc_2,Rc │ │ │ │ +00065660: 5f30 7d7d 2020 2020 2020 7c0a 7c20 2020 _0}} |.| │ │ │ │ +00065670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000656a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000656b0: 2020 2020 2020 7c0a 7c6f 3520 3d20 636f |.|o5 = co │ │ │ │ -000656c0: 6b65 726e 656c 207c 2078 5f30 2078 5f31 kernel | x_0 x_1 │ │ │ │ -000656d0: 2078 5f32 207c 2020 2020 2020 2020 2020 x_2 | │ │ │ │ -000656e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000656f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00065700: 2020 2020 2020 2020 7c20 785f 3120 785f | x_1 x_ │ │ │ │ -00065710: 3220 785f 3020 7c20 2020 2020 2020 2020 2 x_0 | │ │ │ │ -00065720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065730: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000656a0: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ +000656b0: 203d 2063 6f6b 6572 6e65 6c20 7c20 785f = cokernel | x_ │ │ │ │ +000656c0: 3020 785f 3120 785f 3220 7c20 2020 2020 0 x_1 x_2 | │ │ │ │ +000656d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000656e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000656f0: 2020 2020 2020 2020 2020 2020 207c 2078 | x │ │ │ │ +00065700: 5f31 2078 5f32 2078 5f30 207c 2020 2020 _1 x_2 x_0 | │ │ │ │ +00065710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065720: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00065730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065770: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00065780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065790: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000657a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000657b0: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ -000657c0: 3a20 5263 2d6d 6f64 756c 652c 2071 756f : Rc-module, quo │ │ │ │ -000657d0: 7469 656e 7420 6f66 2052 6320 2020 2020 tient of Rc │ │ │ │ +00065760: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00065770: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00065780: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00065790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000657a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000657b0: 0a7c 6f35 203a 2052 632d 6d6f 6475 6c65 .|o5 : Rc-module │ │ │ │ +000657c0: 2c20 7175 6f74 6965 6e74 206f 6620 5263 , quotient of Rc │ │ │ │ +000657d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000657e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000657f0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000657f0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00065800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00065830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00065840: 3620 3a20 7265 6775 6c61 7269 7479 5365 6 : regularitySe │ │ │ │ -00065850: 7175 656e 6365 2852 2c4d 2920 2020 2020 quence(R,M) │ │ │ │ +00065830: 2d2b 0a7c 6936 203a 2072 6567 756c 6172 -+.|i6 : regular │ │ │ │ +00065840: 6974 7953 6571 7565 6e63 6528 522c 4d29 itySequence(R,M) │ │ │ │ +00065850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065870: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00065880: 7265 6720 6576 656e 2065 7874 2c20 736f reg even ext, so │ │ │ │ -00065890: 6320 6465 6773 2065 7665 6e20 6578 742c c degs even ext, │ │ │ │ -000658a0: 2072 6567 206f 6464 2065 7874 2c20 736f reg odd ext, so │ │ │ │ -000658b0: 6320 6465 6773 206f 6464 2065 7874 7c0a c degs odd ext|. │ │ │ │ -000658c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00065870: 2020 7c0a 7c72 6567 2065 7665 6e20 6578 |.|reg even ex │ │ │ │ +00065880: 742c 2073 6f63 2064 6567 7320 6576 656e t, soc degs even │ │ │ │ +00065890: 2065 7874 2c20 7265 6720 6f64 6420 6578 ext, reg odd ex │ │ │ │ +000658a0: 742c 2073 6f63 2064 6567 7320 6f64 6420 t, soc degs odd │ │ │ │ +000658b0: 6578 747c 0a7c 2020 2020 2020 2020 2020 ext|.| │ │ │ │ +000658c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000658d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000658e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000658f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00065900: 0a7c 7b33 2c20 7b31 2c20 312c 2031 7d2c .|{3, {1, 1, 1}, │ │ │ │ -00065910: 2032 2c20 7b31 2c20 317d 7d20 2020 2020 2, {1, 1}} │ │ │ │ +000658f0: 2020 2020 7c0a 7c7b 332c 207b 312c 2031 |.|{3, {1, 1 │ │ │ │ +00065900: 2c20 317d 2c20 322c 207b 312c 2031 7d7d , 1}, 2, {1, 1}} │ │ │ │ +00065910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065940: 7c0a 7c7b 322c 207b 302c 2030 2c20 302c |.|{2, {0, 0, 0, │ │ │ │ -00065950: 2031 7d2c 2032 2c20 7b30 2c20 302c 2030 1}, 2, {0, 0, 0 │ │ │ │ -00065960: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ -00065970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065980: 207c 0a7c 7b30 2c20 7b7d 2c20 302c 207b |.|{0, {}, 0, { │ │ │ │ -00065990: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ +00065930: 2020 2020 207c 0a7c 7b32 2c20 7b30 2c20 |.|{2, {0, │ │ │ │ +00065940: 302c 2030 2c20 317d 2c20 322c 207b 302c 0, 0, 1}, 2, {0, │ │ │ │ +00065950: 2030 2c20 307d 7d20 2020 2020 2020 2020 0, 0}} │ │ │ │ +00065960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065970: 2020 2020 2020 7c0a 7c7b 302c 207b 7d2c |.|{0, {}, │ │ │ │ +00065980: 2030 2c20 7b7d 7d20 2020 2020 2020 2020 0, {}} │ │ │ │ +00065990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000659a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000659b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000659c0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000659b0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000659c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000659d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000659e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000659f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00065a00: 2d2d 2d2b 0a0a 5365 6520 616c 736f 0a3d ---+..See also.= │ │ │ │ -00065a10: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ -00065a20: 7465 2061 7070 726f 7869 6d61 7469 6f6e te approximation │ │ │ │ -00065a30: 3a20 284d 434d 4170 7072 6f78 696d 6174 : (MCMApproximat │ │ │ │ -00065a40: 696f 6e73 2961 7070 726f 7869 6d61 7469 ions)approximati │ │ │ │ -00065a50: 6f6e 2c20 2d2d 2072 6574 7572 6e73 2070 on, -- returns p │ │ │ │ -00065a60: 6169 7220 6f66 0a20 2020 2063 6f6d 706f air of. compo │ │ │ │ -00065a70: 6e65 6e74 7320 6f66 2074 6865 206d 6170 nents of the map │ │ │ │ -00065a80: 2066 726f 6d20 7468 6520 4d43 4d20 6170 from the MCM ap │ │ │ │ -00065a90: 7072 6f78 696d 6174 696f 6e0a 2020 2a20 proximation. * │ │ │ │ -00065aa0: 2a6e 6f74 6520 6175 736c 616e 6465 7249 *note auslanderI │ │ │ │ -00065ab0: 6e76 6172 6961 6e74 3a20 284d 434d 4170 nvariant: (MCMAp │ │ │ │ -00065ac0: 7072 6f78 696d 6174 696f 6e73 2961 7573 proximations)aus │ │ │ │ -00065ad0: 6c61 6e64 6572 496e 7661 7269 616e 742c landerInvariant, │ │ │ │ -00065ae0: 202d 2d0a 2020 2020 6d65 6173 7572 6573 --. measures │ │ │ │ -00065af0: 2066 6169 6c75 7265 206f 6620 7375 726a failure of surj │ │ │ │ -00065b00: 6563 7469 7669 7479 206f 6620 7468 6520 ectivity of the │ │ │ │ -00065b10: 6573 7365 6e74 6961 6c20 4d43 4d20 6170 essential MCM ap │ │ │ │ -00065b20: 7072 6f78 696d 6174 696f 6e0a 0a57 6179 proximation..Way │ │ │ │ -00065b30: 7320 746f 2075 7365 2072 6567 756c 6172 s to use regular │ │ │ │ -00065b40: 6974 7953 6571 7565 6e63 653a 0a3d 3d3d itySequence:.=== │ │ │ │ +000659f0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ +00065a00: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ +00065a10: 2a20 2a6e 6f74 6520 6170 7072 6f78 696d * *note approxim │ │ │ │ +00065a20: 6174 696f 6e3a 2028 4d43 4d41 7070 726f ation: (MCMAppro │ │ │ │ +00065a30: 7869 6d61 7469 6f6e 7329 6170 7072 6f78 ximations)approx │ │ │ │ +00065a40: 696d 6174 696f 6e2c 202d 2d20 7265 7475 imation, -- retu │ │ │ │ +00065a50: 726e 7320 7061 6972 206f 660a 2020 2020 rns pair of. │ │ │ │ +00065a60: 636f 6d70 6f6e 656e 7473 206f 6620 7468 components of th │ │ │ │ +00065a70: 6520 6d61 7020 6672 6f6d 2074 6865 204d e map from the M │ │ │ │ +00065a80: 434d 2061 7070 726f 7869 6d61 7469 6f6e CM approximation │ │ │ │ +00065a90: 0a20 202a 202a 6e6f 7465 2061 7573 6c61 . * *note ausla │ │ │ │ +00065aa0: 6e64 6572 496e 7661 7269 616e 743a 2028 nderInvariant: ( │ │ │ │ +00065ab0: 4d43 4d41 7070 726f 7869 6d61 7469 6f6e MCMApproximation │ │ │ │ +00065ac0: 7329 6175 736c 616e 6465 7249 6e76 6172 s)auslanderInvar │ │ │ │ +00065ad0: 6961 6e74 2c20 2d2d 0a20 2020 206d 6561 iant, --. mea │ │ │ │ +00065ae0: 7375 7265 7320 6661 696c 7572 6520 6f66 sures failure of │ │ │ │ +00065af0: 2073 7572 6a65 6374 6976 6974 7920 6f66 surjectivity of │ │ │ │ +00065b00: 2074 6865 2065 7373 656e 7469 616c 204d the essential M │ │ │ │ +00065b10: 434d 2061 7070 726f 7869 6d61 7469 6f6e CM approximation │ │ │ │ +00065b20: 0a0a 5761 7973 2074 6f20 7573 6520 7265 ..Ways to use re │ │ │ │ +00065b30: 6775 6c61 7269 7479 5365 7175 656e 6365 gularitySequence │ │ │ │ +00065b40: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ 00065b50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00065b60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ -00065b70: 2a20 2272 6567 756c 6172 6974 7953 6571 * "regularitySeq │ │ │ │ -00065b80: 7565 6e63 6528 4c69 7374 2c4d 6f64 756c uence(List,Modul │ │ │ │ -00065b90: 6529 220a 0a46 6f72 2074 6865 2070 726f e)"..For the pro │ │ │ │ -00065ba0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -00065bb0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -00065bc0: 6f62 6a65 6374 202a 6e6f 7465 2072 6567 object *note reg │ │ │ │ -00065bd0: 756c 6172 6974 7953 6571 7565 6e63 653a ularitySequence: │ │ │ │ -00065be0: 2072 6567 756c 6172 6974 7953 6571 7565 regularitySeque │ │ │ │ -00065bf0: 6e63 652c 2069 7320 6120 2a6e 6f74 6520 nce, is a *note │ │ │ │ -00065c00: 6d65 7468 6f64 0a66 756e 6374 696f 6e3a method.function: │ │ │ │ -00065c10: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ -00065c20: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ -00065c30: 1f0a 4669 6c65 3a20 436f 6d70 6c65 7465 ..File: Complete │ │ │ │ -00065c40: 496e 7465 7273 6563 7469 6f6e 5265 736f IntersectionReso │ │ │ │ -00065c50: 6c75 7469 6f6e 732e 696e 666f 2c20 4e6f lutions.info, No │ │ │ │ -00065c60: 6465 3a20 5332 2c20 4e65 7874 3a20 5368 de: S2, Next: Sh │ │ │ │ -00065c70: 616d 6173 682c 2050 7265 763a 2072 6567 amash, Prev: reg │ │ │ │ -00065c80: 756c 6172 6974 7953 6571 7565 6e63 652c ularitySequence, │ │ │ │ -00065c90: 2055 703a 2054 6f70 0a0a 5332 202d 2d20 Up: Top..S2 -- │ │ │ │ -00065ca0: 556e 6976 6572 7361 6c20 6d61 7020 746f Universal map to │ │ │ │ -00065cb0: 2061 206d 6f64 756c 6520 7361 7469 7366 a module satisf │ │ │ │ -00065cc0: 7969 6e67 2053 6572 7265 2773 2063 6f6e ying Serre's con │ │ │ │ -00065cd0: 6469 7469 6f6e 2053 320a 2a2a 2a2a 2a2a dition S2.****** │ │ │ │ +00065b60: 3d0a 0a20 202a 2022 7265 6775 6c61 7269 =.. * "regulari │ │ │ │ +00065b70: 7479 5365 7175 656e 6365 284c 6973 742c tySequence(List, │ │ │ │ +00065b80: 4d6f 6475 6c65 2922 0a0a 466f 7220 7468 Module)"..For th │ │ │ │ +00065b90: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +00065ba0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00065bb0: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +00065bc0: 6520 7265 6775 6c61 7269 7479 5365 7175 e regularitySequ │ │ │ │ +00065bd0: 656e 6365 3a20 7265 6775 6c61 7269 7479 ence: regularity │ │ │ │ +00065be0: 5365 7175 656e 6365 2c20 6973 2061 202a Sequence, is a * │ │ │ │ +00065bf0: 6e6f 7465 206d 6574 686f 640a 6675 6e63 note method.func │ │ │ │ +00065c00: 7469 6f6e 3a20 284d 6163 6175 6c61 7932 tion: (Macaulay2 │ │ │ │ +00065c10: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ +00065c20: 6f6e 2c2e 0a1f 0a46 696c 653a 2043 6f6d on,....File: Com │ │ │ │ +00065c30: 706c 6574 6549 6e74 6572 7365 6374 696f pleteIntersectio │ │ │ │ +00065c40: 6e52 6573 6f6c 7574 696f 6e73 2e69 6e66 nResolutions.inf │ │ │ │ +00065c50: 6f2c 204e 6f64 653a 2053 322c 204e 6578 o, Node: S2, Nex │ │ │ │ +00065c60: 743a 2053 6861 6d61 7368 2c20 5072 6576 t: Shamash, Prev │ │ │ │ +00065c70: 3a20 7265 6775 6c61 7269 7479 5365 7175 : regularitySequ │ │ │ │ +00065c80: 656e 6365 2c20 5570 3a20 546f 700a 0a53 ence, Up: Top..S │ │ │ │ +00065c90: 3220 2d2d 2055 6e69 7665 7273 616c 206d 2 -- Universal m │ │ │ │ +00065ca0: 6170 2074 6f20 6120 6d6f 6475 6c65 2073 ap to a module s │ │ │ │ +00065cb0: 6174 6973 6679 696e 6720 5365 7272 6527 atisfying Serre' │ │ │ │ +00065cc0: 7320 636f 6e64 6974 696f 6e20 5332 0a2a s condition S2.* │ │ │ │ +00065cd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00065ce0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00065cf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00065d00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00065d10: 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 796e 6f70 *********..Synop │ │ │ │ -00065d20: 7369 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 sis.========.. │ │ │ │ -00065d30: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ -00065d40: 2020 6620 3d20 5332 2862 2c4d 290a 2020 f = S2(b,M). │ │ │ │ -00065d50: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ -00065d60: 2a20 622c 2061 6e20 2a6e 6f74 6520 696e * b, an *note in │ │ │ │ -00065d70: 7465 6765 723a 2028 4d61 6361 756c 6179 teger: (Macaulay │ │ │ │ -00065d80: 3244 6f63 295a 5a2c 2c20 6465 6772 6565 2Doc)ZZ,, degree │ │ │ │ -00065d90: 2062 6f75 6e64 2074 6f20 7768 6963 6820 bound to which │ │ │ │ -00065da0: 746f 2063 6172 7279 0a20 2020 2020 2020 to carry. │ │ │ │ -00065db0: 2074 6865 2063 6f6d 7075 7461 7469 6f6e the computation │ │ │ │ -00065dc0: 0a20 2020 2020 202a 204d 2c20 6120 2a6e . * M, a *n │ │ │ │ -00065dd0: 6f74 6520 6d6f 6475 6c65 3a20 284d 6163 ote module: (Mac │ │ │ │ -00065de0: 6175 6c61 7932 446f 6329 4d6f 6475 6c65 aulay2Doc)Module │ │ │ │ -00065df0: 2c2c 200a 2020 2a20 4f75 7470 7574 733a ,, . * Outputs: │ │ │ │ -00065e00: 0a20 2020 2020 202a 2066 2c20 6120 2a6e . * f, a *n │ │ │ │ -00065e10: 6f74 6520 6d61 7472 6978 3a20 284d 6163 ote matrix: (Mac │ │ │ │ -00065e20: 6175 6c61 7932 446f 6329 4d61 7472 6978 aulay2Doc)Matrix │ │ │ │ -00065e30: 2c2c 2064 6566 696e 696e 6720 6120 6d61 ,, defining a ma │ │ │ │ -00065e40: 7020 4d2d 2d3e 4d27 2074 6861 740a 2020 p M-->M' that. │ │ │ │ -00065e50: 2020 2020 2020 6167 7265 6573 2077 6974 agrees wit │ │ │ │ -00065e60: 6820 7468 6520 5332 2d69 6669 6361 7469 h the S2-ificati │ │ │ │ -00065e70: 6f6e 206f 6620 4d20 696e 2064 6567 7265 on of M in degre │ │ │ │ -00065e80: 6573 2024 5c67 6571 2062 240a 0a44 6573 es $\geq b$..Des │ │ │ │ -00065e90: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -00065ea0: 3d3d 3d3d 0a0a 4966 204d 2069 7320 6120 ====..If M is a │ │ │ │ -00065eb0: 6772 6164 6564 206d 6f64 756c 6520 6f76 graded module ov │ │ │ │ -00065ec0: 6572 2061 2072 696e 6720 532c 2074 6865 er a ring S, the │ │ │ │ -00065ed0: 6e20 7468 6520 5332 2d69 6669 6361 7469 n the S2-ificati │ │ │ │ -00065ee0: 6f6e 206f 6620 4d20 6973 205c 7375 6d5f on of M is \sum_ │ │ │ │ -00065ef0: 7b64 0a5c 696e 205a 5a7d 2048 5e30 2828 {d.\in ZZ} H^0(( │ │ │ │ -00065f00: 7368 6561 6620 4d29 2864 2929 2c20 7768 sheaf M)(d)), wh │ │ │ │ -00065f10: 6963 6820 6d61 7920 6265 2063 6f6d 7075 ich may be compu │ │ │ │ -00065f20: 7465 6420 6173 206c 696d 5f7b 642d 3e5c ted as lim_{d->\ │ │ │ │ -00065f30: 696e 6674 797d 2048 6f6d 2849 5f64 2c4d infty} Hom(I_d,M │ │ │ │ -00065f40: 292c 0a77 6865 7265 2049 5f64 2069 7320 ),.where I_d is │ │ │ │ -00065f50: 616e 7920 7365 7175 656e 6365 206f 6620 any sequence of │ │ │ │ -00065f60: 6964 6561 6c73 2063 6f6e 7461 696e 6564 ideals contained │ │ │ │ -00065f70: 2069 6e20 6869 6768 6572 2061 6e64 2068 in higher and h │ │ │ │ -00065f80: 6967 6865 7220 706f 7765 7273 206f 660a igher powers of. │ │ │ │ -00065f90: 535f 2b2e 2054 6865 7265 2069 7320 6120 S_+. There is a │ │ │ │ -00065fa0: 6e61 7475 7261 6c20 7265 7374 7269 6374 natural restrict │ │ │ │ -00065fb0: 696f 6e20 6d61 7020 663a 204d 203d 2048 ion map f: M = H │ │ │ │ -00065fc0: 6f6d 2853 2c4d 2920 5c74 6f20 486f 6d28 om(S,M) \to Hom( │ │ │ │ -00065fd0: 495f 642c 4d29 2e20 5765 0a63 6f6d 7075 I_d,M). We.compu │ │ │ │ -00065fe0: 7465 2061 6c6c 2074 6869 7320 7573 696e te all this usin │ │ │ │ -00065ff0: 6720 7468 6520 6964 6561 6c73 2049 5f64 g the ideals I_d │ │ │ │ -00066000: 2067 656e 6572 6174 6564 2062 7920 7468 generated by th │ │ │ │ -00066010: 6520 642d 7468 2070 6f77 6572 7320 6f66 e d-th powers of │ │ │ │ -00066020: 2074 6865 0a76 6172 6961 626c 6573 2069 the.variables i │ │ │ │ -00066030: 6e20 532e 0a0a 5369 6e63 6520 7468 6520 n S...Since the │ │ │ │ -00066040: 7265 7375 6c74 206d 6179 206e 6f74 2062 result may not b │ │ │ │ -00066050: 6520 6669 6e69 7465 6c79 2067 656e 6572 e finitely gener │ │ │ │ -00066060: 6174 6564 2028 7468 6973 2068 6170 7065 ated (this happe │ │ │ │ -00066070: 6e73 2069 6620 616e 6420 6f6e 6c79 2069 ns if and only i │ │ │ │ -00066080: 6620 4d0a 6861 7320 616e 2061 7373 6f63 f M.has an assoc │ │ │ │ -00066090: 6961 7465 6420 7072 696d 6520 6f66 2064 iated prime of d │ │ │ │ -000660a0: 696d 656e 7369 6f6e 2031 292c 2077 6520 imension 1), we │ │ │ │ -000660b0: 636f 6d70 7574 6520 6f6e 6c79 2075 7020 compute only up │ │ │ │ -000660c0: 746f 2061 2073 7065 6369 6669 6564 0a64 to a specified.d │ │ │ │ -000660d0: 6567 7265 6520 626f 756e 6420 622e 2046 egree bound b. F │ │ │ │ -000660e0: 6f72 2074 6865 2072 6573 756c 7420 746f or the result to │ │ │ │ -000660f0: 2062 6520 636f 7272 6563 7420 646f 776e be correct down │ │ │ │ -00066100: 2074 6f20 6465 6772 6565 2062 2c20 6974 to degree b, it │ │ │ │ -00066110: 2069 7320 7375 6666 6963 6965 6e74 0a74 is sufficient.t │ │ │ │ -00066120: 6f20 636f 6d70 7574 6520 486f 6d28 492c o compute Hom(I, │ │ │ │ -00066130: 4d29 2077 6865 7265 2049 205c 7375 6273 M) where I \subs │ │ │ │ -00066140: 6574 2028 535f 2b29 5e7b 722d 627d 2e0a et (S_+)^{r-b}.. │ │ │ │ -00066150: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00065d00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +00065d10: 5379 6e6f 7073 6973 0a3d 3d3d 3d3d 3d3d Synopsis.======= │ │ │ │ +00065d20: 3d0a 0a20 202a 2055 7361 6765 3a20 0a20 =.. * Usage: . │ │ │ │ +00065d30: 2020 2020 2020 2066 203d 2053 3228 622c f = S2(b, │ │ │ │ +00065d40: 4d29 0a20 202a 2049 6e70 7574 733a 0a20 M). * Inputs:. │ │ │ │ +00065d50: 2020 2020 202a 2062 2c20 616e 202a 6e6f * b, an *no │ │ │ │ +00065d60: 7465 2069 6e74 6567 6572 3a20 284d 6163 te integer: (Mac │ │ │ │ +00065d70: 6175 6c61 7932 446f 6329 5a5a 2c2c 2064 aulay2Doc)ZZ,, d │ │ │ │ +00065d80: 6567 7265 6520 626f 756e 6420 746f 2077 egree bound to w │ │ │ │ +00065d90: 6869 6368 2074 6f20 6361 7272 790a 2020 hich to carry. │ │ │ │ +00065da0: 2020 2020 2020 7468 6520 636f 6d70 7574 the comput │ │ │ │ +00065db0: 6174 696f 6e0a 2020 2020 2020 2a20 4d2c ation. * M, │ │ │ │ +00065dc0: 2061 202a 6e6f 7465 206d 6f64 756c 653a a *note module: │ │ │ │ +00065dd0: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +00065de0: 6f64 756c 652c 2c20 0a20 202a 204f 7574 odule,, . * Out │ │ │ │ +00065df0: 7075 7473 3a0a 2020 2020 2020 2a20 662c puts:. * f, │ │ │ │ +00065e00: 2061 202a 6e6f 7465 206d 6174 7269 783a a *note matrix: │ │ │ │ +00065e10: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +00065e20: 6174 7269 782c 2c20 6465 6669 6e69 6e67 atrix,, defining │ │ │ │ +00065e30: 2061 206d 6170 204d 2d2d 3e4d 2720 7468 a map M-->M' th │ │ │ │ +00065e40: 6174 0a20 2020 2020 2020 2061 6772 6565 at. agree │ │ │ │ +00065e50: 7320 7769 7468 2074 6865 2053 322d 6966 s with the S2-if │ │ │ │ +00065e60: 6963 6174 696f 6e20 6f66 204d 2069 6e20 ication of M in │ │ │ │ +00065e70: 6465 6772 6565 7320 245c 6765 7120 6224 degrees $\geq b$ │ │ │ │ +00065e80: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +00065e90: 3d3d 3d3d 3d3d 3d3d 3d0a 0a49 6620 4d20 =========..If M │ │ │ │ +00065ea0: 6973 2061 2067 7261 6465 6420 6d6f 6475 is a graded modu │ │ │ │ +00065eb0: 6c65 206f 7665 7220 6120 7269 6e67 2053 le over a ring S │ │ │ │ +00065ec0: 2c20 7468 656e 2074 6865 2053 322d 6966 , then the S2-if │ │ │ │ +00065ed0: 6963 6174 696f 6e20 6f66 204d 2069 7320 ication of M is │ │ │ │ +00065ee0: 5c73 756d 5f7b 640a 5c69 6e20 5a5a 7d20 \sum_{d.\in ZZ} │ │ │ │ +00065ef0: 485e 3028 2873 6865 6166 204d 2928 6429 H^0((sheaf M)(d) │ │ │ │ +00065f00: 292c 2077 6869 6368 206d 6179 2062 6520 ), which may be │ │ │ │ +00065f10: 636f 6d70 7574 6564 2061 7320 6c69 6d5f computed as lim_ │ │ │ │ +00065f20: 7b64 2d3e 5c69 6e66 7479 7d20 486f 6d28 {d->\infty} Hom( │ │ │ │ +00065f30: 495f 642c 4d29 2c0a 7768 6572 6520 495f I_d,M),.where I_ │ │ │ │ +00065f40: 6420 6973 2061 6e79 2073 6571 7565 6e63 d is any sequenc │ │ │ │ +00065f50: 6520 6f66 2069 6465 616c 7320 636f 6e74 e of ideals cont │ │ │ │ +00065f60: 6169 6e65 6420 696e 2068 6967 6865 7220 ained in higher │ │ │ │ +00065f70: 616e 6420 6869 6768 6572 2070 6f77 6572 and higher power │ │ │ │ +00065f80: 7320 6f66 0a53 5f2b 2e20 5468 6572 6520 s of.S_+. There │ │ │ │ +00065f90: 6973 2061 206e 6174 7572 616c 2072 6573 is a natural res │ │ │ │ +00065fa0: 7472 6963 7469 6f6e 206d 6170 2066 3a20 triction map f: │ │ │ │ +00065fb0: 4d20 3d20 486f 6d28 532c 4d29 205c 746f M = Hom(S,M) \to │ │ │ │ +00065fc0: 2048 6f6d 2849 5f64 2c4d 292e 2057 650a Hom(I_d,M). We. │ │ │ │ +00065fd0: 636f 6d70 7574 6520 616c 6c20 7468 6973 compute all this │ │ │ │ +00065fe0: 2075 7369 6e67 2074 6865 2069 6465 616c using the ideal │ │ │ │ +00065ff0: 7320 495f 6420 6765 6e65 7261 7465 6420 s I_d generated │ │ │ │ +00066000: 6279 2074 6865 2064 2d74 6820 706f 7765 by the d-th powe │ │ │ │ +00066010: 7273 206f 6620 7468 650a 7661 7269 6162 rs of the.variab │ │ │ │ +00066020: 6c65 7320 696e 2053 2e0a 0a53 696e 6365 les in S...Since │ │ │ │ +00066030: 2074 6865 2072 6573 756c 7420 6d61 7920 the result may │ │ │ │ +00066040: 6e6f 7420 6265 2066 696e 6974 656c 7920 not be finitely │ │ │ │ +00066050: 6765 6e65 7261 7465 6420 2874 6869 7320 generated (this │ │ │ │ +00066060: 6861 7070 656e 7320 6966 2061 6e64 206f happens if and o │ │ │ │ +00066070: 6e6c 7920 6966 204d 0a68 6173 2061 6e20 nly if M.has an │ │ │ │ +00066080: 6173 736f 6369 6174 6564 2070 7269 6d65 associated prime │ │ │ │ +00066090: 206f 6620 6469 6d65 6e73 696f 6e20 3129 of dimension 1) │ │ │ │ +000660a0: 2c20 7765 2063 6f6d 7075 7465 206f 6e6c , we compute onl │ │ │ │ +000660b0: 7920 7570 2074 6f20 6120 7370 6563 6966 y up to a specif │ │ │ │ +000660c0: 6965 640a 6465 6772 6565 2062 6f75 6e64 ied.degree bound │ │ │ │ +000660d0: 2062 2e20 466f 7220 7468 6520 7265 7375 b. For the resu │ │ │ │ +000660e0: 6c74 2074 6f20 6265 2063 6f72 7265 6374 lt to be correct │ │ │ │ +000660f0: 2064 6f77 6e20 746f 2064 6567 7265 6520 down to degree │ │ │ │ +00066100: 622c 2069 7420 6973 2073 7566 6669 6369 b, it is suffici │ │ │ │ +00066110: 656e 740a 746f 2063 6f6d 7075 7465 2048 ent.to compute H │ │ │ │ +00066120: 6f6d 2849 2c4d 2920 7768 6572 6520 4920 om(I,M) where I │ │ │ │ +00066130: 5c73 7562 7365 7420 2853 5f2b 295e 7b72 \subset (S_+)^{r │ │ │ │ +00066140: 2d62 7d2e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d -b}...+--------- │ │ │ │ +00066150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00066190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000661a0: 0a7c 6931 203a 206b 6b3d 5a5a 2f31 3031 .|i1 : kk=ZZ/101 │ │ │ │ +00066190: 2d2d 2d2d 2b0a 7c69 3120 3a20 6b6b 3d5a ----+.|i1 : kk=Z │ │ │ │ +000661a0: 5a2f 3130 3120 2020 2020 2020 2020 2020 Z/101 │ │ │ │ 000661b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000661c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000661d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000661e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000661f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000661e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000661f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066230: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066240: 0a7c 6f31 203d 206b 6b20 2020 2020 2020 .|o1 = kk │ │ │ │ +00066230: 2020 2020 7c0a 7c6f 3120 3d20 6b6b 2020 |.|o1 = kk │ │ │ │ +00066240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066280: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066290: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00066280: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00066290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000662a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000662b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000662c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000662d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000662e0: 0a7c 6f31 203a 2051 756f 7469 656e 7452 .|o1 : QuotientR │ │ │ │ -000662f0: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ +000662d0: 2020 2020 7c0a 7c6f 3120 3a20 5175 6f74 |.|o1 : Quot │ │ │ │ +000662e0: 6965 6e74 5269 6e67 2020 2020 2020 2020 ientRing │ │ │ │ +000662f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066320: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066330: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00066320: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00066330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00066370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00066380: 0a7c 6932 203a 2053 203d 206b 6b5b 612c .|i2 : S = kk[a, │ │ │ │ -00066390: 622c 632c 645d 2020 2020 2020 2020 2020 b,c,d] │ │ │ │ +00066370: 2d2d 2d2d 2b0a 7c69 3220 3a20 5320 3d20 ----+.|i2 : S = │ │ │ │ +00066380: 6b6b 5b61 2c62 2c63 2c64 5d20 2020 2020 kk[a,b,c,d] │ │ │ │ +00066390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000663a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000663b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000663c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000663d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000663c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000663d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000663e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000663f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066410: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066420: 0a7c 6f32 203d 2053 2020 2020 2020 2020 .|o2 = S │ │ │ │ +00066410: 2020 2020 7c0a 7c6f 3220 3d20 5320 2020 |.|o2 = S │ │ │ │ +00066420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066460: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066470: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00066460: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00066470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000664a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000664b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000664c0: 0a7c 6f32 203a 2050 6f6c 796e 6f6d 6961 .|o2 : Polynomia │ │ │ │ -000664d0: 6c52 696e 6720 2020 2020 2020 2020 2020 lRing │ │ │ │ +000664b0: 2020 2020 7c0a 7c6f 3220 3a20 506f 6c79 |.|o2 : Poly │ │ │ │ +000664c0: 6e6f 6d69 616c 5269 6e67 2020 2020 2020 nomialRing │ │ │ │ +000664d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000664e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000664f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066500: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066510: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00066500: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00066510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00066550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00066560: 0a7c 6933 203a 204d 203d 2074 7275 6e63 .|i3 : M = trunc │ │ │ │ -00066570: 6174 6528 332c 535e 3129 2020 2020 2020 ate(3,S^1) │ │ │ │ +00066550: 2d2d 2d2d 2b0a 7c69 3320 3a20 4d20 3d20 ----+.|i3 : M = │ │ │ │ +00066560: 7472 756e 6361 7465 2833 2c53 5e31 2920 truncate(3,S^1) │ │ │ │ +00066570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000665a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000665b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000665a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000665b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000665c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000665d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000665e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000665f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066600: 0a7c 6f33 203d 2069 6d61 6765 207c 2064 .|o3 = image | d │ │ │ │ -00066610: 3320 6364 3220 6264 3220 6164 3220 6332 3 cd2 bd2 ad2 c2 │ │ │ │ -00066620: 6420 6263 6420 6163 6420 6232 6420 6162 d bcd acd b2d ab │ │ │ │ -00066630: 6420 6132 6420 6333 2062 6332 2061 6332 d a2d c3 bc2 ac2 │ │ │ │ -00066640: 2062 3263 2061 6263 2061 3263 2062 337c b2c abc a2c b3| │ │ │ │ -00066650: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000665f0: 2020 2020 7c0a 7c6f 3320 3d20 696d 6167 |.|o3 = imag │ │ │ │ +00066600: 6520 7c20 6433 2063 6432 2062 6432 2061 e | d3 cd2 bd2 a │ │ │ │ +00066610: 6432 2063 3264 2062 6364 2061 6364 2062 d2 c2d bcd acd b │ │ │ │ +00066620: 3264 2061 6264 2061 3264 2063 3320 6263 2d abd a2d c3 bc │ │ │ │ +00066630: 3220 6163 3220 6232 6320 6162 6320 6132 2 ac2 b2c abc a2 │ │ │ │ +00066640: 6320 6233 7c0a 7c20 2020 2020 2020 2020 c b3|.| │ │ │ │ +00066650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066690: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000666a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000666b0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +00066690: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000666a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000666b0: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ 000666c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000666d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000666e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000666f0: 0a7c 6f33 203a 2053 2d6d 6f64 756c 652c .|o3 : S-module, │ │ │ │ -00066700: 2073 7562 6d6f 6475 6c65 206f 6620 5320 submodule of S │ │ │ │ +000666e0: 2020 2020 7c0a 7c6f 3320 3a20 532d 6d6f |.|o3 : S-mo │ │ │ │ +000666f0: 6475 6c65 2c20 7375 626d 6f64 756c 6520 dule, submodule │ │ │ │ +00066700: 6f66 2053 2020 2020 2020 2020 2020 2020 of S │ │ │ │ 00066710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066730: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066740: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00066730: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ +00066740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00066780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00066790: 0a7c 6162 3220 6132 6220 6133 207c 2020 .|ab2 a2b a3 | │ │ │ │ +00066780: 2d2d 2d2d 7c0a 7c61 6232 2061 3262 2061 ----|.|ab2 a2b a │ │ │ │ +00066790: 3320 7c20 2020 2020 2020 2020 2020 2020 3 | │ │ │ │ 000667a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000667b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000667c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000667d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000667e0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000667d0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000667e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000667f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00066820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00066830: 0a7c 6934 203a 2062 6574 7469 206d 6174 .|i4 : betti mat │ │ │ │ -00066840: 7269 7820 5332 2830 2c4d 2920 2020 2020 rix S2(0,M) │ │ │ │ +00066820: 2d2d 2d2d 2b0a 7c69 3420 3a20 6265 7474 ----+.|i4 : bett │ │ │ │ +00066830: 6920 6d61 7472 6978 2053 3228 302c 4d29 i matrix S2(0,M) │ │ │ │ +00066840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066870: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066880: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00066870: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00066880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000668a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000668b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000668c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000668d0: 0a7c 2020 2020 2020 2020 2020 2020 3020 .| 0 │ │ │ │ -000668e0: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +000668c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000668d0: 2020 2030 2020 3120 2020 2020 2020 2020 0 1 │ │ │ │ +000668e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000668f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066910: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066920: 0a7c 6f34 203d 2074 6f74 616c 3a20 3120 .|o4 = total: 1 │ │ │ │ -00066930: 3230 2020 2020 2020 2020 2020 2020 2020 20 │ │ │ │ +00066910: 2020 2020 7c0a 7c6f 3420 3d20 746f 7461 |.|o4 = tota │ │ │ │ +00066920: 6c3a 2031 2032 3020 2020 2020 2020 2020 l: 1 20 │ │ │ │ +00066930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066960: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066970: 0a7c 2020 2020 2020 2020 2030 3a20 3120 .| 0: 1 │ │ │ │ -00066980: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +00066960: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00066970: 303a 2031 2020 2e20 2020 2020 2020 2020 0: 1 . │ │ │ │ +00066980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000669a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000669b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000669c0: 0a7c 2020 2020 2020 2020 2031 3a20 2e20 .| 1: . │ │ │ │ -000669d0: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +000669b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000669c0: 313a 202e 2020 2e20 2020 2020 2020 2020 1: . . │ │ │ │ +000669d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000669e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000669f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066a00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066a10: 0a7c 2020 2020 2020 2020 2032 3a20 2e20 .| 2: . │ │ │ │ -00066a20: 3230 2020 2020 2020 2020 2020 2020 2020 20 │ │ │ │ +00066a00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00066a10: 323a 202e 2032 3020 2020 2020 2020 2020 2: . 20 │ │ │ │ +00066a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066a50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066a60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00066a50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00066a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066aa0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066ab0: 0a7c 6f34 203a 2042 6574 7469 5461 6c6c .|o4 : BettiTall │ │ │ │ -00066ac0: 7920 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ +00066aa0: 2020 2020 7c0a 7c6f 3420 3a20 4265 7474 |.|o4 : Bett │ │ │ │ +00066ab0: 6954 616c 6c79 2020 2020 2020 2020 2020 iTally │ │ │ │ +00066ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066af0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066b00: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00066af0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00066b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00066b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00066b50: 0a7c 6935 203a 2062 6574 7469 206d 6174 .|i5 : betti mat │ │ │ │ -00066b60: 7269 7820 5332 2831 2c4d 2920 2020 2020 rix S2(1,M) │ │ │ │ +00066b40: 2d2d 2d2d 2b0a 7c69 3520 3a20 6265 7474 ----+.|i5 : bett │ │ │ │ +00066b50: 6920 6d61 7472 6978 2053 3228 312c 4d29 i matrix S2(1,M) │ │ │ │ +00066b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066b90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066ba0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00066b90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00066ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066be0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066bf0: 0a7c 2020 2020 2020 2020 2020 2020 3020 .| 0 │ │ │ │ -00066c00: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00066be0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00066bf0: 2020 2030 2020 3120 2020 2020 2020 2020 0 1 │ │ │ │ +00066c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066c30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066c40: 0a7c 6f35 203d 2074 6f74 616c 3a20 3120 .|o5 = total: 1 │ │ │ │ -00066c50: 3230 2020 2020 2020 2020 2020 2020 2020 20 │ │ │ │ +00066c30: 2020 2020 7c0a 7c6f 3520 3d20 746f 7461 |.|o5 = tota │ │ │ │ +00066c40: 6c3a 2031 2032 3020 2020 2020 2020 2020 l: 1 20 │ │ │ │ +00066c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066c80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066c90: 0a7c 2020 2020 2020 2020 2030 3a20 3120 .| 0: 1 │ │ │ │ -00066ca0: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +00066c80: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00066c90: 303a 2031 2020 2e20 2020 2020 2020 2020 0: 1 . │ │ │ │ +00066ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066cd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066ce0: 0a7c 2020 2020 2020 2020 2031 3a20 2e20 .| 1: . │ │ │ │ -00066cf0: 202e 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +00066cd0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00066ce0: 313a 202e 2020 2e20 2020 2020 2020 2020 1: . . │ │ │ │ +00066cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066d20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066d30: 0a7c 2020 2020 2020 2020 2032 3a20 2e20 .| 2: . │ │ │ │ -00066d40: 3230 2020 2020 2020 2020 2020 2020 2020 20 │ │ │ │ +00066d20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00066d30: 323a 202e 2032 3020 2020 2020 2020 2020 2: . 20 │ │ │ │ +00066d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066d70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066d80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00066d70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00066d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066dc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066dd0: 0a7c 6f35 203a 2042 6574 7469 5461 6c6c .|o5 : BettiTall │ │ │ │ -00066de0: 7920 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ +00066dc0: 2020 2020 7c0a 7c6f 3520 3a20 4265 7474 |.|o5 : Bett │ │ │ │ +00066dd0: 6954 616c 6c79 2020 2020 2020 2020 2020 iTally │ │ │ │ +00066de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066e10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066e20: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00066e10: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00066e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00066e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00066e70: 0a7c 6936 203a 204d 203d 2053 5e31 2f69 .|i6 : M = S^1/i │ │ │ │ -00066e80: 6e74 6572 7365 6374 2869 6465 616c 2261 ntersect(ideal"a │ │ │ │ -00066e90: 2c62 2c63 222c 2069 6465 616c 2262 2c63 ,b,c", ideal"b,c │ │ │ │ -00066ea0: 2c64 222c 6964 6561 6c22 632c 642c 6122 ,d",ideal"c,d,a" │ │ │ │ -00066eb0: 2c69 6465 616c 2264 2c61 2c62 2229 207c ,ideal"d,a,b") | │ │ │ │ -00066ec0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00066e60: 2d2d 2d2d 2b0a 7c69 3620 3a20 4d20 3d20 ----+.|i6 : M = │ │ │ │ +00066e70: 535e 312f 696e 7465 7273 6563 7428 6964 S^1/intersect(id │ │ │ │ +00066e80: 6561 6c22 612c 622c 6322 2c20 6964 6561 eal"a,b,c", idea │ │ │ │ +00066e90: 6c22 622c 632c 6422 2c69 6465 616c 2263 l"b,c,d",ideal"c │ │ │ │ +00066ea0: 2c64 2c61 222c 6964 6561 6c22 642c 612c ,d,a",ideal"d,a, │ │ │ │ +00066eb0: 6222 2920 7c0a 7c20 2020 2020 2020 2020 b") |.| │ │ │ │ +00066ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066f00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066f10: 0a7c 6f36 203d 2063 6f6b 6572 6e65 6c20 .|o6 = cokernel │ │ │ │ -00066f20: 7c20 6364 2062 6420 6164 2062 6320 6163 | cd bd ad bc ac │ │ │ │ -00066f30: 2061 6220 7c20 2020 2020 2020 2020 2020 ab | │ │ │ │ +00066f00: 2020 2020 7c0a 7c6f 3620 3d20 636f 6b65 |.|o6 = coke │ │ │ │ +00066f10: 726e 656c 207c 2063 6420 6264 2061 6420 rnel | cd bd ad │ │ │ │ +00066f20: 6263 2061 6320 6162 207c 2020 2020 2020 bc ac ab | │ │ │ │ +00066f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066f50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066f60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00066f50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00066f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066fa0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00066fb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00066fc0: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +00066fa0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00066fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00066fc0: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00066fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066ff0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00067000: 0a7c 6f36 203a 2053 2d6d 6f64 756c 652c .|o6 : S-module, │ │ │ │ -00067010: 2071 756f 7469 656e 7420 6f66 2053 2020 quotient of S │ │ │ │ +00066ff0: 2020 2020 7c0a 7c6f 3620 3a20 532d 6d6f |.|o6 : S-mo │ │ │ │ +00067000: 6475 6c65 2c20 7175 6f74 6965 6e74 206f dule, quotient o │ │ │ │ +00067010: 6620 5320 2020 2020 2020 2020 2020 2020 f S │ │ │ │ 00067020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067040: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00067050: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00067040: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00067050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000670a0: 0a7c 6937 203a 2070 7275 6e65 2073 6f75 .|i7 : prune sou │ │ │ │ -000670b0: 7263 6520 5332 2830 2c4d 2920 2020 2020 rce S2(0,M) │ │ │ │ +00067090: 2d2d 2d2d 2b0a 7c69 3720 3a20 7072 756e ----+.|i7 : prun │ │ │ │ +000670a0: 6520 736f 7572 6365 2053 3228 302c 4d29 e source S2(0,M) │ │ │ │ +000670b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000670c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000670d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000670e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000670f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000670e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000670f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067130: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00067140: 0a7c 6f37 203d 2063 6f6b 6572 6e65 6c20 .|o7 = cokernel │ │ │ │ -00067150: 7c20 6364 2062 6420 6164 2062 6320 6163 | cd bd ad bc ac │ │ │ │ -00067160: 2061 6220 7c20 2020 2020 2020 2020 2020 ab | │ │ │ │ +00067130: 2020 2020 7c0a 7c6f 3720 3d20 636f 6b65 |.|o7 = coke │ │ │ │ +00067140: 726e 656c 207c 2063 6420 6264 2061 6420 rnel | cd bd ad │ │ │ │ +00067150: 6263 2061 6320 6162 207c 2020 2020 2020 bc ac ab | │ │ │ │ +00067160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067180: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00067190: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00067180: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00067190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000671a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000671b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000671c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000671d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000671e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000671f0: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +000671d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000671e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000671f0: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00067200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067220: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00067230: 0a7c 6f37 203a 2053 2d6d 6f64 756c 652c .|o7 : S-module, │ │ │ │ -00067240: 2071 756f 7469 656e 7420 6f66 2053 2020 quotient of S │ │ │ │ +00067220: 2020 2020 7c0a 7c6f 3720 3a20 532d 6d6f |.|o7 : S-mo │ │ │ │ +00067230: 6475 6c65 2c20 7175 6f74 6965 6e74 206f dule, quotient o │ │ │ │ +00067240: 6620 5320 2020 2020 2020 2020 2020 2020 f S │ │ │ │ 00067250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067270: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00067280: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00067270: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00067280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000672a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000672b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000672c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000672d0: 0a7c 6938 203a 2070 7275 6e65 2074 6172 .|i8 : prune tar │ │ │ │ -000672e0: 6765 7420 5332 2830 2c4d 2920 2020 2020 get S2(0,M) │ │ │ │ +000672c0: 2d2d 2d2d 2b0a 7c69 3820 3a20 7072 756e ----+.|i8 : prun │ │ │ │ +000672d0: 6520 7461 7267 6574 2053 3228 302c 4d29 e target S2(0,M) │ │ │ │ +000672e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000672f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067310: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00067320: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00067310: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00067320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067360: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00067370: 0a7c 6f38 203d 2063 6f6b 6572 6e65 6c20 .|o8 = cokernel │ │ │ │ -00067380: 7b2d 317d 207c 2064 2063 2062 2030 2030 {-1} | d c b 0 0 │ │ │ │ -00067390: 2030 2030 2030 2030 2030 2030 2030 207c 0 0 0 0 0 0 0 | │ │ │ │ +00067360: 2020 2020 7c0a 7c6f 3820 3d20 636f 6b65 |.|o8 = coke │ │ │ │ +00067370: 726e 656c 207b 2d31 7d20 7c20 6420 6320 rnel {-1} | d c │ │ │ │ +00067380: 6220 3020 3020 3020 3020 3020 3020 3020 b 0 0 0 0 0 0 0 │ │ │ │ +00067390: 3020 3020 7c20 2020 2020 2020 2020 2020 0 0 | │ │ │ │ 000673a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000673b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000673c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000673d0: 7b2d 317d 207c 2030 2030 2030 2064 2063 {-1} | 0 0 0 d c │ │ │ │ -000673e0: 2061 2030 2030 2030 2030 2030 2030 207c a 0 0 0 0 0 0 | │ │ │ │ +000673b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000673c0: 2020 2020 207b 2d31 7d20 7c20 3020 3020 {-1} | 0 0 │ │ │ │ +000673d0: 3020 6420 6320 6120 3020 3020 3020 3020 0 d c a 0 0 0 0 │ │ │ │ +000673e0: 3020 3020 7c20 2020 2020 2020 2020 2020 0 0 | │ │ │ │ 000673f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067400: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00067410: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00067420: 7b2d 317d 207c 2030 2030 2030 2030 2030 {-1} | 0 0 0 0 0 │ │ │ │ -00067430: 2030 2064 2062 2061 2030 2030 2030 207c 0 d b a 0 0 0 | │ │ │ │ +00067400: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00067410: 2020 2020 207b 2d31 7d20 7c20 3020 3020 {-1} | 0 0 │ │ │ │ +00067420: 3020 3020 3020 3020 6420 6220 6120 3020 0 0 0 0 d b a 0 │ │ │ │ +00067430: 3020 3020 7c20 2020 2020 2020 2020 2020 0 0 | │ │ │ │ 00067440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067450: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00067460: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00067470: 7b2d 317d 207c 2030 2030 2030 2030 2030 {-1} | 0 0 0 0 0 │ │ │ │ -00067480: 2030 2030 2030 2030 2063 2062 2061 207c 0 0 0 0 c b a | │ │ │ │ +00067450: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00067460: 2020 2020 207b 2d31 7d20 7c20 3020 3020 {-1} | 0 0 │ │ │ │ +00067470: 3020 3020 3020 3020 3020 3020 3020 6320 0 0 0 0 0 0 0 c │ │ │ │ +00067480: 6220 6120 7c20 2020 2020 2020 2020 2020 b a | │ │ │ │ 00067490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000674a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000674b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000674a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000674b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000674c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000674d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000674e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000674f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00067500: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00067510: 2020 2020 2020 2020 2020 2020 2020 3420 4 │ │ │ │ +000674f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00067500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00067510: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 00067520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067540: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00067550: 0a7c 6f38 203a 2053 2d6d 6f64 756c 652c .|o8 : S-module, │ │ │ │ -00067560: 2071 756f 7469 656e 7420 6f66 2053 2020 quotient of S │ │ │ │ +00067540: 2020 2020 7c0a 7c6f 3820 3a20 532d 6d6f |.|o8 : S-mo │ │ │ │ +00067550: 6475 6c65 2c20 7175 6f74 6965 6e74 206f dule, quotient o │ │ │ │ +00067560: 6620 5320 2020 2020 2020 2020 2020 2020 f S │ │ │ │ 00067570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067590: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000675a0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00067590: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000675a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000675b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000675c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000675d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000675e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000675f0: 0a0a 4174 206f 6e65 2074 696d 6520 4445 ..At one time DE │ │ │ │ -00067600: 2068 6f70 6564 2074 6861 742c 2069 6620 hoped that, if │ │ │ │ -00067610: 4d20 7765 7265 2061 206d 6f64 756c 6520 M were a module │ │ │ │ -00067620: 6f76 6572 2074 6865 2063 6f6d 706c 6574 over the complet │ │ │ │ -00067630: 6520 696e 7465 7273 6563 7469 6f6e 2052 e intersection R │ │ │ │ -00067640: 0a77 6974 6820 7265 7369 6475 6520 6669 .with residue fi │ │ │ │ -00067650: 656c 6420 6b2c 2074 6865 6e20 7468 6520 eld k, then the │ │ │ │ -00067660: 6e61 7475 7261 6c20 6d61 7020 6672 6f6d natural map from │ │ │ │ -00067670: 2022 636f 6d70 6c65 7465 2220 4578 7420 "complete" Ext │ │ │ │ -00067680: 6d6f 6475 6c65 2022 2877 6964 6568 6174 module "(widehat │ │ │ │ -00067690: 0a45 7874 295f 5228 4d2c 6b29 2220 746f .Ext)_R(M,k)" to │ │ │ │ -000676a0: 2074 6865 2053 322d 6966 6963 6174 696f the S2-ificatio │ │ │ │ -000676b0: 6e20 6f66 2045 7874 5f52 284d 2c6b 2920 n of Ext_R(M,k) │ │ │ │ -000676c0: 776f 756c 6420 6265 2073 7572 6a65 6374 would be surject │ │ │ │ -000676d0: 6976 653b 0a65 7175 6976 616c 656e 746c ive;.equivalentl │ │ │ │ -000676e0: 792c 2069 6620 4e20 7765 7265 2061 2073 y, if N were a s │ │ │ │ -000676f0: 7566 6669 6369 656e 746c 7920 6e65 6761 ufficiently nega │ │ │ │ -00067700: 7469 7665 2073 797a 7967 7920 6f66 204d tive syzygy of M │ │ │ │ -00067710: 2c20 7468 656e 2074 6865 2066 6972 7374 , then the first │ │ │ │ -00067720: 0a6c 6f63 616c 2063 6f68 6f6d 6f6c 6f67 .local cohomolog │ │ │ │ -00067730: 7920 6d6f 6475 6c65 206f 6620 4578 745f y module of Ext_ │ │ │ │ -00067740: 5228 4d2c 6b29 2077 6f75 6c64 2062 6520 R(M,k) would be │ │ │ │ -00067750: 7a65 726f 2e20 5468 6973 2069 7320 6661 zero. This is fa │ │ │ │ -00067760: 6c73 652c 2061 7320 7368 6f77 6e20 6279 lse, as shown by │ │ │ │ -00067770: 0a74 6865 2066 6f6c 6c6f 7769 6e67 2065 .the following e │ │ │ │ -00067780: 7861 6d70 6c65 3a0a 0a2b 2d2d 2d2d 2d2d xample:..+------ │ │ │ │ +000675e0: 2d2d 2d2d 2b0a 0a41 7420 6f6e 6520 7469 ----+..At one ti │ │ │ │ +000675f0: 6d65 2044 4520 686f 7065 6420 7468 6174 me DE hoped that │ │ │ │ +00067600: 2c20 6966 204d 2077 6572 6520 6120 6d6f , if M were a mo │ │ │ │ +00067610: 6475 6c65 206f 7665 7220 7468 6520 636f dule over the co │ │ │ │ +00067620: 6d70 6c65 7465 2069 6e74 6572 7365 6374 mplete intersect │ │ │ │ +00067630: 696f 6e20 520a 7769 7468 2072 6573 6964 ion R.with resid │ │ │ │ +00067640: 7565 2066 6965 6c64 206b 2c20 7468 656e ue field k, then │ │ │ │ +00067650: 2074 6865 206e 6174 7572 616c 206d 6170 the natural map │ │ │ │ +00067660: 2066 726f 6d20 2263 6f6d 706c 6574 6522 from "complete" │ │ │ │ +00067670: 2045 7874 206d 6f64 756c 6520 2228 7769 Ext module "(wi │ │ │ │ +00067680: 6465 6861 740a 4578 7429 5f52 284d 2c6b dehat.Ext)_R(M,k │ │ │ │ +00067690: 2922 2074 6f20 7468 6520 5332 2d69 6669 )" to the S2-ifi │ │ │ │ +000676a0: 6361 7469 6f6e 206f 6620 4578 745f 5228 cation of Ext_R( │ │ │ │ +000676b0: 4d2c 6b29 2077 6f75 6c64 2062 6520 7375 M,k) would be su │ │ │ │ +000676c0: 726a 6563 7469 7665 3b0a 6571 7569 7661 rjective;.equiva │ │ │ │ +000676d0: 6c65 6e74 6c79 2c20 6966 204e 2077 6572 lently, if N wer │ │ │ │ +000676e0: 6520 6120 7375 6666 6963 6965 6e74 6c79 e a sufficiently │ │ │ │ +000676f0: 206e 6567 6174 6976 6520 7379 7a79 6779 negative syzygy │ │ │ │ +00067700: 206f 6620 4d2c 2074 6865 6e20 7468 6520 of M, then the │ │ │ │ +00067710: 6669 7273 740a 6c6f 6361 6c20 636f 686f first.local coho │ │ │ │ +00067720: 6d6f 6c6f 6779 206d 6f64 756c 6520 6f66 mology module of │ │ │ │ +00067730: 2045 7874 5f52 284d 2c6b 2920 776f 756c Ext_R(M,k) woul │ │ │ │ +00067740: 6420 6265 207a 6572 6f2e 2054 6869 7320 d be zero. This │ │ │ │ +00067750: 6973 2066 616c 7365 2c20 6173 2073 686f is false, as sho │ │ │ │ +00067760: 776e 2062 790a 7468 6520 666f 6c6c 6f77 wn by.the follow │ │ │ │ +00067770: 696e 6720 6578 616d 706c 653a 0a0a 2b2d ing example:..+- │ │ │ │ +00067780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000677a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000677b0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3920 3a20 --------+.|i9 : │ │ │ │ -000677c0: 5320 3d20 5a5a 2f31 3031 5b78 5f30 2e2e S = ZZ/101[x_0.. │ │ │ │ -000677d0: 785f 325d 3b20 2020 2020 2020 2020 2020 x_2]; │ │ │ │ -000677e0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000677a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000677b0: 6939 203a 2053 203d 205a 5a2f 3130 315b i9 : S = ZZ/101[ │ │ │ │ +000677c0: 785f 302e 2e78 5f32 5d3b 2020 2020 2020 x_0..x_2]; │ │ │ │ +000677d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000677e0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000677f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067810: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3130 ----------+.|i10 │ │ │ │ -00067820: 203a 2066 6620 3d20 6170 706c 7928 332c : ff = apply(3, │ │ │ │ -00067830: 2069 2d3e 785f 695e 3229 3b20 2020 2020 i->x_i^2); │ │ │ │ -00067840: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00067800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00067810: 0a7c 6931 3020 3a20 6666 203d 2061 7070 .|i10 : ff = app │ │ │ │ +00067820: 6c79 2833 2c20 692d 3e78 5f69 5e32 293b ly(3, i->x_i^2); │ │ │ │ +00067830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00067840: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00067850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00067880: 3131 203a 2052 203d 2053 2f69 6465 616c 11 : R = S/ideal │ │ │ │ -00067890: 2066 663b 2020 2020 2020 2020 2020 2020 ff; │ │ │ │ -000678a0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00067870: 2d2b 0a7c 6931 3120 3a20 5220 3d20 532f -+.|i11 : R = S/ │ │ │ │ +00067880: 6964 6561 6c20 6666 3b20 2020 2020 2020 ideal ff; │ │ │ │ +00067890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000678a0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 000678b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000678c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000678d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000678e0: 7c69 3132 203a 204d 203d 2063 6f6b 6572 |i12 : M = coker │ │ │ │ -000678f0: 6e65 6c20 6d61 7472 6978 207b 7b78 5f30 nel matrix {{x_0 │ │ │ │ -00067900: 2c20 785f 312a 785f 327d 7d3b 2020 207c , x_1*x_2}}; | │ │ │ │ -00067910: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000678d0: 2d2d 2d2b 0a7c 6931 3220 3a20 4d20 3d20 ---+.|i12 : M = │ │ │ │ +000678e0: 636f 6b65 726e 656c 206d 6174 7269 7820 cokernel matrix │ │ │ │ +000678f0: 7b7b 785f 302c 2078 5f31 2a78 5f32 7d7d {{x_0, x_1*x_2}} │ │ │ │ +00067900: 3b20 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d ; |.+--------- │ │ │ │ +00067910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067940: 2b0a 7c69 3133 203a 2062 203d 2035 3b20 +.|i13 : b = 5; │ │ │ │ +00067930: 2d2d 2d2d 2d2b 0a7c 6931 3320 3a20 6220 -----+.|i13 : b │ │ │ │ +00067940: 3d20 353b 2020 2020 2020 2020 2020 2020 = 5; │ │ │ │ 00067950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067970: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00067960: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00067970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000679a0: 2d2d 2b0a 7c69 3134 203a 204d 6220 3d20 --+.|i14 : Mb = │ │ │ │ -000679b0: 7072 756e 6520 7379 7a79 6779 4d6f 6475 prune syzygyModu │ │ │ │ -000679c0: 6c65 282d 622c 4d29 3b20 2020 2020 2020 le(-b,M); │ │ │ │ -000679d0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00067990: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3420 3a20 -------+.|i14 : │ │ │ │ +000679a0: 4d62 203d 2070 7275 6e65 2073 797a 7967 Mb = prune syzyg │ │ │ │ +000679b0: 794d 6f64 756c 6528 2d62 2c4d 293b 2020 yModule(-b,M); │ │ │ │ +000679c0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000679d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000679e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000679f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067a00: 2d2d 2d2d 2b0a 7c69 3135 203a 2045 203d ----+.|i15 : E = │ │ │ │ -00067a10: 2070 7275 6e65 2065 7665 6e45 7874 4d6f prune evenExtMo │ │ │ │ -00067a20: 6475 6c65 204d 623b 2020 2020 2020 2020 dule Mb; │ │ │ │ -00067a30: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000679f0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3520 ---------+.|i15 │ │ │ │ +00067a00: 3a20 4520 3d20 7072 756e 6520 6576 656e : E = prune even │ │ │ │ +00067a10: 4578 744d 6f64 756c 6520 4d62 3b20 2020 ExtModule Mb; │ │ │ │ +00067a20: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00067a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067a60: 2d2d 2d2d 2d2d 2b0a 7c69 3136 203a 2053 ------+.|i16 : S │ │ │ │ -00067a70: 326d 6170 203d 2053 3228 302c 4529 3b20 2map = S2(0,E); │ │ │ │ -00067a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067a90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00067a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00067a60: 3620 3a20 5332 6d61 7020 3d20 5332 2830 6 : S2map = S2(0 │ │ │ │ +00067a70: 2c45 293b 2020 2020 2020 2020 2020 2020 ,E); │ │ │ │ +00067a80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00067a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067ac0: 2020 2020 2020 2020 7c0a 7c6f 3136 203a |.|o16 : │ │ │ │ -00067ad0: 204d 6174 7269 7820 2020 2020 2020 2020 Matrix │ │ │ │ -00067ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067af0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00067ab0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00067ac0: 6f31 3620 3a20 4d61 7472 6978 2020 2020 o16 : Matrix │ │ │ │ +00067ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00067ae0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00067af0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00067b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3137 ----------+.|i17 │ │ │ │ -00067b30: 203a 2053 4520 3d20 7072 756e 6520 7461 : SE = prune ta │ │ │ │ -00067b40: 7267 6574 2053 326d 6170 3b20 2020 2020 rget S2map; │ │ │ │ -00067b50: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00067b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00067b20: 0a7c 6931 3720 3a20 5345 203d 2070 7275 .|i17 : SE = pru │ │ │ │ +00067b30: 6e65 2074 6172 6765 7420 5332 6d61 703b ne target S2map; │ │ │ │ +00067b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00067b50: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00067b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00067b90: 3138 203a 2065 7874 7261 203d 2070 7275 18 : extra = pru │ │ │ │ -00067ba0: 6e65 2063 6f6b 6572 2053 326d 6170 3b20 ne coker S2map; │ │ │ │ -00067bb0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00067b80: 2d2b 0a7c 6931 3820 3a20 6578 7472 6120 -+.|i18 : extra │ │ │ │ +00067b90: 3d20 7072 756e 6520 636f 6b65 7220 5332 = prune coker S2 │ │ │ │ +00067ba0: 6d61 703b 2020 2020 2020 2020 2020 2020 map; │ │ │ │ +00067bb0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00067bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00067bf0: 7c69 3139 203a 204b 4520 3d20 7072 756e |i19 : KE = prun │ │ │ │ -00067c00: 6520 6b65 7220 5332 6d61 703b 2020 2020 e ker S2map; │ │ │ │ -00067c10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00067c20: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00067be0: 2d2d 2d2b 0a7c 6931 3920 3a20 4b45 203d ---+.|i19 : KE = │ │ │ │ +00067bf0: 2070 7275 6e65 206b 6572 2053 326d 6170 prune ker S2map │ │ │ │ +00067c00: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +00067c10: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00067c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067c50: 2b0a 7c69 3230 203a 2062 6574 7469 2072 +.|i20 : betti r │ │ │ │ -00067c60: 6573 284d 622c 204c 656e 6774 684c 696d es(Mb, LengthLim │ │ │ │ -00067c70: 6974 203d 3e20 3130 2920 2020 2020 2020 it => 10) │ │ │ │ -00067c80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00067c40: 2d2d 2d2d 2d2b 0a7c 6932 3020 3a20 6265 -----+.|i20 : be │ │ │ │ +00067c50: 7474 6920 7265 7328 4d62 2c20 4c65 6e67 tti res(Mb, Leng │ │ │ │ +00067c60: 7468 4c69 6d69 7420 3d3e 2031 3029 2020 thLimit => 10) │ │ │ │ +00067c70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00067c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067cb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00067cc0: 2020 2030 2020 3120 3220 3320 3420 3520 0 1 2 3 4 5 │ │ │ │ -00067cd0: 3620 3720 3820 2039 2031 3020 2020 2020 6 7 8 9 10 │ │ │ │ -00067ce0: 2020 207c 0a7c 6f32 3020 3d20 746f 7461 |.|o20 = tota │ │ │ │ -00067cf0: 6c3a 2032 3020 3134 2039 2035 2032 2031 l: 20 14 9 5 2 1 │ │ │ │ -00067d00: 2032 2034 2037 2031 3120 3136 2020 2020 2 4 7 11 16 │ │ │ │ -00067d10: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00067d20: 2d36 3a20 3230 2031 3420 3920 3520 3220 -6: 20 14 9 5 2 │ │ │ │ -00067d30: 2e20 2e20 2e20 2e20 202e 2020 2e20 2020 . . . . . . │ │ │ │ -00067d40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00067d50: 202d 353a 2020 2e20 202e 202e 202e 202e -5: . . . . . │ │ │ │ -00067d60: 2031 2031 2031 2031 2020 3120 2031 2020 1 1 1 1 1 1 │ │ │ │ -00067d70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00067d80: 2020 2d34 3a20 202e 2020 2e20 2e20 2e20 -4: . . . . │ │ │ │ -00067d90: 2e20 2e20 3120 3320 3620 3130 2031 3520 . . 1 3 6 10 15 │ │ │ │ -00067da0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00067ca0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00067cb0: 2020 2020 2020 2020 3020 2031 2032 2033 0 1 2 3 │ │ │ │ +00067cc0: 2034 2035 2036 2037 2038 2020 3920 3130 4 5 6 7 8 9 10 │ │ │ │ +00067cd0: 2020 2020 2020 2020 7c0a 7c6f 3230 203d |.|o20 = │ │ │ │ +00067ce0: 2074 6f74 616c 3a20 3230 2031 3420 3920 total: 20 14 9 │ │ │ │ +00067cf0: 3520 3220 3120 3220 3420 3720 3131 2031 5 2 1 2 4 7 11 1 │ │ │ │ +00067d00: 3620 2020 2020 2020 207c 0a7c 2020 2020 6 |.| │ │ │ │ +00067d10: 2020 2020 202d 363a 2032 3020 3134 2039 -6: 20 14 9 │ │ │ │ +00067d20: 2035 2032 202e 202e 202e 202e 2020 2e20 5 2 . . . . . │ │ │ │ +00067d30: 202e 2020 2020 2020 2020 7c0a 7c20 2020 . |.| │ │ │ │ +00067d40: 2020 2020 2020 2d35 3a20 202e 2020 2e20 -5: . . │ │ │ │ +00067d50: 2e20 2e20 2e20 3120 3120 3120 3120 2031 . . . 1 1 1 1 1 │ │ │ │ +00067d60: 2020 3120 2020 2020 2020 207c 0a7c 2020 1 |.| │ │ │ │ +00067d70: 2020 2020 2020 202d 343a 2020 2e20 202e -4: . . │ │ │ │ +00067d80: 202e 202e 202e 202e 2031 2033 2036 2031 . . . . 1 3 6 1 │ │ │ │ +00067d90: 3020 3135 2020 2020 2020 2020 7c0a 7c20 0 15 |.| │ │ │ │ +00067da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067dd0: 2020 2020 2020 2020 7c0a 7c6f 3230 203a |.|o20 : │ │ │ │ -00067de0: 2042 6574 7469 5461 6c6c 7920 2020 2020 BettiTally │ │ │ │ -00067df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067e00: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00067dc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00067dd0: 6f32 3020 3a20 4265 7474 6954 616c 6c79 o20 : BettiTally │ │ │ │ +00067de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00067df0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00067e00: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00067e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3231 ----------+.|i21 │ │ │ │ -00067e40: 203a 2061 7070 6c79 2028 352c 2069 2d3e : apply (5, i-> │ │ │ │ -00067e50: 2068 696c 6265 7274 4675 6e63 7469 6f6e hilbertFunction │ │ │ │ -00067e60: 2869 2c20 4b45 2929 2020 207c 0a7c 2020 (i, KE)) |.| │ │ │ │ +00067e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00067e30: 0a7c 6932 3120 3a20 6170 706c 7920 2835 .|i21 : apply (5 │ │ │ │ +00067e40: 2c20 692d 3e20 6869 6c62 6572 7446 756e , i-> hilbertFun │ │ │ │ +00067e50: 6374 696f 6e28 692c 204b 4529 2920 2020 ction(i, KE)) │ │ │ │ +00067e60: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00067e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067e90: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00067ea0: 3231 203d 207b 3230 2c20 392c 2032 2c20 21 = {20, 9, 2, │ │ │ │ -00067eb0: 302c 2030 7d20 2020 2020 2020 2020 2020 0, 0} │ │ │ │ -00067ec0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00067e90: 207c 0a7c 6f32 3120 3d20 7b32 302c 2039 |.|o21 = {20, 9 │ │ │ │ +00067ea0: 2c20 322c 2030 2c20 307d 2020 2020 2020 , 2, 0, 0} │ │ │ │ +00067eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00067ec0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00067ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067ef0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00067f00: 7c6f 3231 203a 204c 6973 7420 2020 2020 |o21 : List │ │ │ │ +00067ef0: 2020 207c 0a7c 6f32 3120 3a20 4c69 7374 |.|o21 : List │ │ │ │ +00067f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067f20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00067f30: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00067f20: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00067f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067f60: 2b0a 7c69 3232 203a 2061 7070 6c79 2028 +.|i22 : apply ( │ │ │ │ -00067f70: 352c 2069 2d3e 2068 696c 6265 7274 4675 5, i-> hilbertFu │ │ │ │ -00067f80: 6e63 7469 6f6e 2869 2c20 4529 2920 2020 nction(i, E)) │ │ │ │ -00067f90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00067f50: 2d2d 2d2d 2d2b 0a7c 6932 3220 3a20 6170 -----+.|i22 : ap │ │ │ │ +00067f60: 706c 7920 2835 2c20 692d 3e20 6869 6c62 ply (5, i-> hilb │ │ │ │ +00067f70: 6572 7446 756e 6374 696f 6e28 692c 2045 ertFunction(i, E │ │ │ │ +00067f80: 2929 2020 2020 7c0a 7c20 2020 2020 2020 )) |.| │ │ │ │ +00067f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067fc0: 2020 7c0a 7c6f 3232 203d 207b 3230 2c20 |.|o22 = {20, │ │ │ │ -00067fd0: 392c 2032 2c20 322c 2037 7d20 2020 2020 9, 2, 2, 7} │ │ │ │ -00067fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067ff0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00067fb0: 2020 2020 2020 207c 0a7c 6f32 3220 3d20 |.|o22 = │ │ │ │ +00067fc0: 7b32 302c 2039 2c20 322c 2032 2c20 377d {20, 9, 2, 2, 7} │ │ │ │ +00067fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00067fe0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00067ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068020: 2020 2020 7c0a 7c6f 3232 203a 204c 6973 |.|o22 : Lis │ │ │ │ -00068030: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00068040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068050: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00068010: 2020 2020 2020 2020 207c 0a7c 6f32 3220 |.|o22 │ │ │ │ +00068020: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ +00068030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068040: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00068050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068080: 2d2d 2d2d 2d2d 2b0a 7c69 3233 203a 2061 ------+.|i23 : a │ │ │ │ -00068090: 7070 6c79 2028 352c 2069 2d3e 2068 696c pply (5, i-> hil │ │ │ │ -000680a0: 6265 7274 4675 6e63 7469 6f6e 2869 2c20 bertFunction(i, │ │ │ │ -000680b0: 5345 2929 2020 207c 0a7c 2020 2020 2020 SE)) |.| │ │ │ │ +00068070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +00068080: 3320 3a20 6170 706c 7920 2835 2c20 692d 3 : apply (5, i- │ │ │ │ +00068090: 3e20 6869 6c62 6572 7446 756e 6374 696f > hilbertFunctio │ │ │ │ +000680a0: 6e28 692c 2053 4529 2920 2020 7c0a 7c20 n(i, SE)) |.| │ │ │ │ +000680b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000680c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000680d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000680e0: 2020 2020 2020 2020 7c0a 7c6f 3233 203d |.|o23 = │ │ │ │ -000680f0: 207b 312c 2031 2c20 312c 2032 2c20 377d {1, 1, 1, 2, 7} │ │ │ │ -00068100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068110: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000680d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000680e0: 6f32 3320 3d20 7b31 2c20 312c 2031 2c20 o23 = {1, 1, 1, │ │ │ │ +000680f0: 322c 2037 7d20 2020 2020 2020 2020 2020 2, 7} │ │ │ │ +00068100: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00068110: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00068120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068140: 2020 2020 2020 2020 2020 7c0a 7c6f 3233 |.|o23 │ │ │ │ -00068150: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ +00068130: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00068140: 0a7c 6f32 3320 3a20 4c69 7374 2020 2020 .|o23 : List │ │ │ │ +00068150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068170: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00068170: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00068180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000681a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000681b0: 3234 203a 2061 7070 6c79 2028 352c 2069 24 : apply (5, i │ │ │ │ -000681c0: 2d3e 2068 696c 6265 7274 4675 6e63 7469 -> hilbertFuncti │ │ │ │ -000681d0: 6f6e 2869 2c20 6578 7472 6129 297c 0a7c on(i, extra))|.| │ │ │ │ +000681a0: 2d2b 0a7c 6932 3420 3a20 6170 706c 7920 -+.|i24 : apply │ │ │ │ +000681b0: 2835 2c20 692d 3e20 6869 6c62 6572 7446 (5, i-> hilbertF │ │ │ │ +000681c0: 756e 6374 696f 6e28 692c 2065 7874 7261 unction(i, extra │ │ │ │ +000681d0: 2929 7c0a 7c20 2020 2020 2020 2020 2020 ))|.| │ │ │ │ 000681e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000681f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068200: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00068210: 7c6f 3234 203d 207b 312c 2031 2c20 312c |o24 = {1, 1, 1, │ │ │ │ -00068220: 2030 2c20 307d 2020 2020 2020 2020 2020 0, 0} │ │ │ │ -00068230: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00068240: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00068200: 2020 207c 0a7c 6f32 3420 3d20 7b31 2c20 |.|o24 = {1, │ │ │ │ +00068210: 312c 2031 2c20 302c 2030 7d20 2020 2020 1, 1, 0, 0} │ │ │ │ +00068220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068230: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00068240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068270: 7c0a 7c6f 3234 203a 204c 6973 7420 2020 |.|o24 : List │ │ │ │ +00068260: 2020 2020 207c 0a7c 6f32 3420 3a20 4c69 |.|o24 : Li │ │ │ │ +00068270: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ 00068280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000682a0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00068290: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000682a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000682b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000682c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000682d0: 2d2d 2b0a 0a43 6176 6561 740a 3d3d 3d3d --+..Caveat.==== │ │ │ │ -000682e0: 3d3d 0a0a 5465 7874 2053 322d 6966 6963 ==..Text S2-ific │ │ │ │ -000682f0: 6174 696f 6e20 6973 2072 656c 6174 6564 ation is related │ │ │ │ -00068300: 2074 6f20 636f 6d70 7574 696e 6720 636f to computing co │ │ │ │ -00068310: 686f 6d6f 6c6f 6779 2061 6e64 2074 6f20 homology and to │ │ │ │ -00068320: 636f 6d70 7574 696e 6720 696e 7465 6772 computing integr │ │ │ │ -00068330: 616c 0a63 6c6f 7375 7265 3b20 7468 6572 al.closure; ther │ │ │ │ -00068340: 6520 6172 6520 7363 7269 7074 7320 696e e are scripts in │ │ │ │ -00068350: 2074 686f 7365 2070 6163 6b61 6765 7320 those packages │ │ │ │ -00068360: 7468 6174 2070 726f 6475 6365 2061 6e20 that produce an │ │ │ │ -00068370: 5332 2d69 6669 6361 7469 6f6e 2c20 6275 S2-ification, bu │ │ │ │ -00068380: 740a 6f6e 6520 7461 6b65 7320 6120 7269 t.one takes a ri │ │ │ │ -00068390: 6e67 2061 7320 6172 6775 6d65 6e74 2061 ng as argument a │ │ │ │ -000683a0: 6e64 2074 6865 206f 7468 6572 2064 6f65 nd the other doe │ │ │ │ -000683b0: 736e 2774 2070 726f 6475 6365 2074 6865 sn't produce the │ │ │ │ -000683c0: 2063 6f6d 7061 7269 736f 6e20 6d61 702e comparison map. │ │ │ │ -000683d0: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -000683e0: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2049 ===.. * *note I │ │ │ │ -000683f0: 6e74 6567 7261 6c43 6c6f 7375 7265 3a20 ntegralClosure: │ │ │ │ -00068400: 2849 6e74 6567 7261 6c43 6c6f 7375 7265 (IntegralClosure │ │ │ │ -00068410: 2954 6f70 2c20 2d2d 2072 6f75 7469 6e65 )Top, -- routine │ │ │ │ -00068420: 7320 666f 7220 696e 7465 6772 616c 0a20 s for integral. │ │ │ │ -00068430: 2020 2063 6c6f 7375 7265 206f 6620 6166 closure of af │ │ │ │ -00068440: 6669 6e65 2064 6f6d 6169 6e73 2061 6e64 fine domains and │ │ │ │ -00068450: 2069 6465 616c 730a 2020 2a20 2a6e 6f74 ideals. * *not │ │ │ │ -00068460: 6520 6d61 6b65 5332 3a20 2849 6e74 6567 e makeS2: (Integ │ │ │ │ -00068470: 7261 6c43 6c6f 7375 7265 296d 616b 6553 ralClosure)makeS │ │ │ │ -00068480: 322c 202d 2d20 636f 6d70 7574 6520 7468 2, -- compute th │ │ │ │ -00068490: 6520 5332 6966 6963 6174 696f 6e20 6f66 e S2ification of │ │ │ │ -000684a0: 2061 0a20 2020 2072 6564 7563 6564 2072 a. reduced r │ │ │ │ -000684b0: 696e 670a 2020 2a20 2a6e 6f74 6520 4247 ing. * *note BG │ │ │ │ -000684c0: 473a 2028 4247 4729 546f 702c 202d 2d20 G: (BGG)Top, -- │ │ │ │ -000684d0: 4265 726e 7374 6569 6e2d 4765 6c27 6661 Bernstein-Gel'fa │ │ │ │ -000684e0: 6e64 2d47 656c 2766 616e 6420 636f 7272 nd-Gel'fand corr │ │ │ │ -000684f0: 6573 706f 6e64 656e 6365 0a20 202a 202a espondence. * * │ │ │ │ -00068500: 6e6f 7465 2063 6f68 6f6d 6f6c 6f67 793a note cohomology: │ │ │ │ -00068510: 2028 4d61 6361 756c 6179 3244 6f63 2963 (Macaulay2Doc)c │ │ │ │ -00068520: 6f68 6f6d 6f6c 6f67 792c 202d 2d20 6765 ohomology, -- ge │ │ │ │ -00068530: 6e65 7261 6c20 636f 686f 6d6f 6c6f 6779 neral cohomology │ │ │ │ -00068540: 2066 756e 6374 6f72 0a20 202a 2048 485e functor. * HH^ │ │ │ │ -00068550: 5a5a 2053 756d 4f66 5477 6973 7473 2028 ZZ SumOfTwists ( │ │ │ │ -00068560: 6d69 7373 696e 6720 646f 6375 6d65 6e74 missing document │ │ │ │ -00068570: 6174 696f 6e29 0a0a 5761 7973 2074 6f20 ation)..Ways to │ │ │ │ -00068580: 7573 6520 5332 3a0a 3d3d 3d3d 3d3d 3d3d use S2:.======== │ │ │ │ -00068590: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 5332 =======.. * "S2 │ │ │ │ -000685a0: 285a 5a2c 4d6f 6475 6c65 2922 0a0a 466f (ZZ,Module)"..Fo │ │ │ │ -000685b0: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -000685c0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -000685d0: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -000685e0: 2a6e 6f74 6520 5332 3a20 5332 2c20 6973 *note S2: S2, is │ │ │ │ -000685f0: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ -00068600: 6675 6e63 7469 6f6e 3a0a 284d 6163 6175 function:.(Macau │ │ │ │ -00068610: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ -00068620: 6e63 7469 6f6e 2c2e 0a1f 0a46 696c 653a nction,....File: │ │ │ │ -00068630: 2043 6f6d 706c 6574 6549 6e74 6572 7365 CompleteInterse │ │ │ │ -00068640: 6374 696f 6e52 6573 6f6c 7574 696f 6e73 ctionResolutions │ │ │ │ -00068650: 2e69 6e66 6f2c 204e 6f64 653a 2053 6861 .info, Node: Sha │ │ │ │ -00068660: 6d61 7368 2c20 4e65 7874 3a20 7370 6c69 mash, Next: spli │ │ │ │ -00068670: 7474 696e 6773 2c20 5072 6576 3a20 5332 ttings, Prev: S2 │ │ │ │ -00068680: 2c20 5570 3a20 546f 700a 0a53 6861 6d61 , Up: Top..Shama │ │ │ │ -00068690: 7368 202d 2d20 436f 6d70 7574 6573 2074 sh -- Computes t │ │ │ │ -000686a0: 6865 2053 6861 6d61 7368 2043 6f6d 706c he Shamash Compl │ │ │ │ -000686b0: 6578 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ex.************* │ │ │ │ -000686c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000686d0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f **********..Syno │ │ │ │ -000686e0: 7073 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 psis.========.. │ │ │ │ -000686f0: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ -00068700: 2020 2046 4620 3d20 5368 616d 6173 6828 FF = Shamash( │ │ │ │ -00068710: 6666 2c46 2c6c 656e 290a 2020 2020 2020 ff,F,len). │ │ │ │ -00068720: 2020 4646 203d 2053 6861 6d61 7368 2852 FF = Shamash(R │ │ │ │ -00068730: 6261 722c 462c 6c65 6e29 0a20 202a 2049 bar,F,len). * I │ │ │ │ -00068740: 6e70 7574 733a 0a20 2020 2020 202a 2066 nputs:. * f │ │ │ │ -00068750: 662c 2061 202a 6e6f 7465 206d 6174 7269 f, a *note matri │ │ │ │ -00068760: 783a 2028 4d61 6361 756c 6179 3244 6f63 x: (Macaulay2Doc │ │ │ │ -00068770: 294d 6174 7269 782c 2c20 3120 7820 3120 )Matrix,, 1 x 1 │ │ │ │ -00068780: 4d61 7472 6978 206f 7665 7220 7269 6e67 Matrix over ring │ │ │ │ -00068790: 2046 2e0a 2020 2020 2020 2a20 5262 6172 F.. * Rbar │ │ │ │ -000687a0: 2c20 6120 2a6e 6f74 6520 7269 6e67 3a20 , a *note ring: │ │ │ │ -000687b0: 284d 6163 6175 6c61 7932 446f 6329 5269 (Macaulay2Doc)Ri │ │ │ │ -000687c0: 6e67 2c2c 2072 696e 6720 4620 6d6f 6420 ng,, ring F mod │ │ │ │ -000687d0: 6964 6561 6c20 6666 0a20 2020 2020 202a ideal ff. * │ │ │ │ -000687e0: 2046 2c20 6120 2a6e 6f74 6520 6368 6169 F, a *note chai │ │ │ │ -000687f0: 6e20 636f 6d70 6c65 783a 2028 4d61 6361 n complex: (Maca │ │ │ │ -00068800: 756c 6179 3244 6f63 2943 6861 696e 436f ulay2Doc)ChainCo │ │ │ │ -00068810: 6d70 6c65 782c 2c20 6465 6669 6e65 6420 mplex,, defined │ │ │ │ -00068820: 6f76 6572 0a20 2020 2020 2020 2072 696e over. rin │ │ │ │ -00068830: 6720 6666 0a20 2020 2020 202a 206c 656e g ff. * len │ │ │ │ -00068840: 2c20 616e 202a 6e6f 7465 2069 6e74 6567 , an *note integ │ │ │ │ -00068850: 6572 3a20 284d 6163 6175 6c61 7932 446f er: (Macaulay2Do │ │ │ │ -00068860: 6329 5a5a 2c2c 200a 2020 2a20 4f75 7470 c)ZZ,, . * Outp │ │ │ │ -00068870: 7574 733a 0a20 2020 2020 202a 2046 462c uts:. * FF, │ │ │ │ -00068880: 2061 202a 6e6f 7465 2063 6861 696e 2063 a *note chain c │ │ │ │ -00068890: 6f6d 706c 6578 3a20 284d 6163 6175 6c61 omplex: (Macaula │ │ │ │ -000688a0: 7932 446f 6329 4368 6169 6e43 6f6d 706c y2Doc)ChainCompl │ │ │ │ -000688b0: 6578 2c2c 2063 6861 696e 2063 6f6d 706c ex,, chain compl │ │ │ │ -000688c0: 6578 0a20 2020 2020 2020 206f 7665 7220 ex. over │ │ │ │ -000688d0: 2872 696e 6720 4629 2f28 6964 6561 6c20 (ring F)/(ideal │ │ │ │ -000688e0: 6666 290a 0a44 6573 6372 6970 7469 6f6e ff)..Description │ │ │ │ -000688f0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 4c65 .===========..Le │ │ │ │ -00068900: 7420 5220 3d20 7269 6e67 2046 203d 2072 t R = ring F = r │ │ │ │ -00068910: 696e 6720 6666 2c20 616e 6420 5262 6172 ing ff, and Rbar │ │ │ │ -00068920: 203d 2052 2f28 6964 6561 6c20 6629 2c20 = R/(ideal f), │ │ │ │ -00068930: 7768 6572 6520 6666 203d 206d 6174 7269 where ff = matri │ │ │ │ -00068940: 787b 7b66 7d7d 2069 7320 610a 3178 3120 x{{f}} is a.1x1 │ │ │ │ -00068950: 6d61 7472 6978 2077 686f 7365 2065 6e74 matrix whose ent │ │ │ │ -00068960: 7279 2069 7320 6120 6e6f 6e7a 6572 6f64 ry is a nonzerod │ │ │ │ -00068970: 6976 6973 6f72 2069 6e20 522e 2054 6865 ivisor in R. The │ │ │ │ -00068980: 2063 6f6d 706c 6578 2046 2073 686f 756c complex F shoul │ │ │ │ -00068990: 6420 6164 6d69 7420 610a 7379 7374 656d d admit a.system │ │ │ │ -000689a0: 206f 6620 6869 6768 6572 2068 6f6d 6f74 of higher homot │ │ │ │ -000689b0: 6f70 6965 7320 666f 7220 7468 6520 656e opies for the en │ │ │ │ -000689c0: 7472 7920 6f66 2066 662c 2072 6574 7572 try of ff, retur │ │ │ │ -000689d0: 6e65 6420 6279 2074 6865 2063 616c 6c0a ned by the call. │ │ │ │ -000689e0: 6d61 6b65 486f 6d6f 746f 7069 6573 2866 makeHomotopies(f │ │ │ │ -000689f0: 662c 4629 2e0a 0a54 6865 2063 6f6d 706c f,F)...The compl │ │ │ │ -00068a00: 6578 2046 4620 6861 7320 7465 726d 730a ex FF has terms. │ │ │ │ -00068a10: 0a46 465f 7b32 2a69 7d20 3d20 5262 6172 .FF_{2*i} = Rbar │ │ │ │ -00068a20: 2a2a 2846 5f30 202b 2b20 465f 3220 2b2b **(F_0 ++ F_2 ++ │ │ │ │ -00068a30: 202e 2e20 2b2b 2046 5f69 290a 0a46 465f .. ++ F_i)..FF_ │ │ │ │ -00068a40: 7b32 2a69 2b31 7d20 3d20 5262 6172 2a2a {2*i+1} = Rbar** │ │ │ │ -00068a50: 2846 5f31 202b 2b20 465f 3320 2b2b 2e2e (F_1 ++ F_3 ++.. │ │ │ │ -00068a60: 2b2b 465f 7b32 2a69 2b31 7d29 0a0a 616e ++F_{2*i+1})..an │ │ │ │ -00068a70: 6420 6d61 7073 206d 6164 6520 6672 6f6d d maps made from │ │ │ │ -00068a80: 2074 6865 2068 6967 6865 7220 686f 6d6f the higher homo │ │ │ │ -00068a90: 746f 7069 6573 2e0a 0a46 6f72 2074 6865 topies...For the │ │ │ │ -00068aa0: 2063 6173 6520 6f66 2061 2063 6f6d 706c case of a compl │ │ │ │ -00068ab0: 6574 6520 696e 7465 7273 6563 7469 6f6e ete intersection │ │ │ │ -00068ac0: 206f 6620 6869 6768 6572 2063 6f64 696d of higher codim │ │ │ │ -00068ad0: 656e 7369 6f6e 2c20 6f72 2074 6f20 7365 ension, or to se │ │ │ │ -00068ae0: 6520 7468 650a 636f 6d70 6f6e 656e 7473 e the.components │ │ │ │ -00068af0: 206f 6620 7468 6520 7265 736f 6c75 7469 of the resoluti │ │ │ │ -00068b00: 6f6e 2061 7320 7375 6d6d 616e 6473 206f on as summands o │ │ │ │ -00068b10: 6620 4646 5f6a 2c20 7573 6520 7468 6520 f FF_j, use the │ │ │ │ -00068b20: 726f 7574 696e 650a 4569 7365 6e62 7564 routine.Eisenbud │ │ │ │ -00068b30: 5368 616d 6173 6820 696e 7374 6561 642e Shamash instead. │ │ │ │ -00068b40: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ +000682c0: 2d2d 2d2d 2d2d 2d2b 0a0a 4361 7665 6174 -------+..Caveat │ │ │ │ +000682d0: 0a3d 3d3d 3d3d 3d0a 0a54 6578 7420 5332 .======..Text S2 │ │ │ │ +000682e0: 2d69 6669 6361 7469 6f6e 2069 7320 7265 -ification is re │ │ │ │ +000682f0: 6c61 7465 6420 746f 2063 6f6d 7075 7469 lated to computi │ │ │ │ +00068300: 6e67 2063 6f68 6f6d 6f6c 6f67 7920 616e ng cohomology an │ │ │ │ +00068310: 6420 746f 2063 6f6d 7075 7469 6e67 2069 d to computing i │ │ │ │ +00068320: 6e74 6567 7261 6c0a 636c 6f73 7572 653b ntegral.closure; │ │ │ │ +00068330: 2074 6865 7265 2061 7265 2073 6372 6970 there are scrip │ │ │ │ +00068340: 7473 2069 6e20 7468 6f73 6520 7061 636b ts in those pack │ │ │ │ +00068350: 6167 6573 2074 6861 7420 7072 6f64 7563 ages that produc │ │ │ │ +00068360: 6520 616e 2053 322d 6966 6963 6174 696f e an S2-ificatio │ │ │ │ +00068370: 6e2c 2062 7574 0a6f 6e65 2074 616b 6573 n, but.one takes │ │ │ │ +00068380: 2061 2072 696e 6720 6173 2061 7267 756d a ring as argum │ │ │ │ +00068390: 656e 7420 616e 6420 7468 6520 6f74 6865 ent and the othe │ │ │ │ +000683a0: 7220 646f 6573 6e27 7420 7072 6f64 7563 r doesn't produc │ │ │ │ +000683b0: 6520 7468 6520 636f 6d70 6172 6973 6f6e e the comparison │ │ │ │ +000683c0: 206d 6170 2e0a 0a53 6565 2061 6c73 6f0a map...See also. │ │ │ │ +000683d0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +000683e0: 6f74 6520 496e 7465 6772 616c 436c 6f73 ote IntegralClos │ │ │ │ +000683f0: 7572 653a 2028 496e 7465 6772 616c 436c ure: (IntegralCl │ │ │ │ +00068400: 6f73 7572 6529 546f 702c 202d 2d20 726f osure)Top, -- ro │ │ │ │ +00068410: 7574 696e 6573 2066 6f72 2069 6e74 6567 utines for integ │ │ │ │ +00068420: 7261 6c0a 2020 2020 636c 6f73 7572 6520 ral. closure │ │ │ │ +00068430: 6f66 2061 6666 696e 6520 646f 6d61 696e of affine domain │ │ │ │ +00068440: 7320 616e 6420 6964 6561 6c73 0a20 202a s and ideals. * │ │ │ │ +00068450: 202a 6e6f 7465 206d 616b 6553 323a 2028 *note makeS2: ( │ │ │ │ +00068460: 496e 7465 6772 616c 436c 6f73 7572 6529 IntegralClosure) │ │ │ │ +00068470: 6d61 6b65 5332 2c20 2d2d 2063 6f6d 7075 makeS2, -- compu │ │ │ │ +00068480: 7465 2074 6865 2053 3269 6669 6361 7469 te the S2ificati │ │ │ │ +00068490: 6f6e 206f 6620 610a 2020 2020 7265 6475 on of a. redu │ │ │ │ +000684a0: 6365 6420 7269 6e67 0a20 202a 202a 6e6f ced ring. * *no │ │ │ │ +000684b0: 7465 2042 4747 3a20 2842 4747 2954 6f70 te BGG: (BGG)Top │ │ │ │ +000684c0: 2c20 2d2d 2042 6572 6e73 7465 696e 2d47 , -- Bernstein-G │ │ │ │ +000684d0: 656c 2766 616e 642d 4765 6c27 6661 6e64 el'fand-Gel'fand │ │ │ │ +000684e0: 2063 6f72 7265 7370 6f6e 6465 6e63 650a correspondence. │ │ │ │ +000684f0: 2020 2a20 2a6e 6f74 6520 636f 686f 6d6f * *note cohomo │ │ │ │ +00068500: 6c6f 6779 3a20 284d 6163 6175 6c61 7932 logy: (Macaulay2 │ │ │ │ +00068510: 446f 6329 636f 686f 6d6f 6c6f 6779 2c20 Doc)cohomology, │ │ │ │ +00068520: 2d2d 2067 656e 6572 616c 2063 6f68 6f6d -- general cohom │ │ │ │ +00068530: 6f6c 6f67 7920 6675 6e63 746f 720a 2020 ology functor. │ │ │ │ +00068540: 2a20 4848 5e5a 5a20 5375 6d4f 6654 7769 * HH^ZZ SumOfTwi │ │ │ │ +00068550: 7374 7320 286d 6973 7369 6e67 2064 6f63 sts (missing doc │ │ │ │ +00068560: 756d 656e 7461 7469 6f6e 290a 0a57 6179 umentation)..Way │ │ │ │ +00068570: 7320 746f 2075 7365 2053 323a 0a3d 3d3d s to use S2:.=== │ │ │ │ +00068580: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ +00068590: 2a20 2253 3228 5a5a 2c4d 6f64 756c 6529 * "S2(ZZ,Module) │ │ │ │ +000685a0: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ +000685b0: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +000685c0: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +000685d0: 6a65 6374 202a 6e6f 7465 2053 323a 2053 ject *note S2: S │ │ │ │ +000685e0: 322c 2069 7320 6120 2a6e 6f74 6520 6d65 2, is a *note me │ │ │ │ +000685f0: 7468 6f64 2066 756e 6374 696f 6e3a 0a28 thod function:.( │ │ │ │ +00068600: 4d61 6361 756c 6179 3244 6f63 294d 6574 Macaulay2Doc)Met │ │ │ │ +00068610: 686f 6446 756e 6374 696f 6e2c 2e0a 1f0a hodFunction,.... │ │ │ │ +00068620: 4669 6c65 3a20 436f 6d70 6c65 7465 496e File: CompleteIn │ │ │ │ +00068630: 7465 7273 6563 7469 6f6e 5265 736f 6c75 tersectionResolu │ │ │ │ +00068640: 7469 6f6e 732e 696e 666f 2c20 4e6f 6465 tions.info, Node │ │ │ │ +00068650: 3a20 5368 616d 6173 682c 204e 6578 743a : Shamash, Next: │ │ │ │ +00068660: 2073 706c 6974 7469 6e67 732c 2050 7265 splittings, Pre │ │ │ │ +00068670: 763a 2053 322c 2055 703a 2054 6f70 0a0a v: S2, Up: Top.. │ │ │ │ +00068680: 5368 616d 6173 6820 2d2d 2043 6f6d 7075 Shamash -- Compu │ │ │ │ +00068690: 7465 7320 7468 6520 5368 616d 6173 6820 tes the Shamash │ │ │ │ +000686a0: 436f 6d70 6c65 780a 2a2a 2a2a 2a2a 2a2a Complex.******** │ │ │ │ +000686b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000686c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +000686d0: 0a53 796e 6f70 7369 730a 3d3d 3d3d 3d3d .Synopsis.====== │ │ │ │ +000686e0: 3d3d 0a0a 2020 2a20 5573 6167 653a 200a ==.. * Usage: . │ │ │ │ +000686f0: 2020 2020 2020 2020 4646 203d 2053 6861 FF = Sha │ │ │ │ +00068700: 6d61 7368 2866 662c 462c 6c65 6e29 0a20 mash(ff,F,len). │ │ │ │ +00068710: 2020 2020 2020 2046 4620 3d20 5368 616d FF = Sham │ │ │ │ +00068720: 6173 6828 5262 6172 2c46 2c6c 656e 290a ash(Rbar,F,len). │ │ │ │ +00068730: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +00068740: 2020 2a20 6666 2c20 6120 2a6e 6f74 6520 * ff, a *note │ │ │ │ +00068750: 6d61 7472 6978 3a20 284d 6163 6175 6c61 matrix: (Macaula │ │ │ │ +00068760: 7932 446f 6329 4d61 7472 6978 2c2c 2031 y2Doc)Matrix,, 1 │ │ │ │ +00068770: 2078 2031 204d 6174 7269 7820 6f76 6572 x 1 Matrix over │ │ │ │ +00068780: 2072 696e 6720 462e 0a20 2020 2020 202a ring F.. * │ │ │ │ +00068790: 2052 6261 722c 2061 202a 6e6f 7465 2072 Rbar, a *note r │ │ │ │ +000687a0: 696e 673a 2028 4d61 6361 756c 6179 3244 ing: (Macaulay2D │ │ │ │ +000687b0: 6f63 2952 696e 672c 2c20 7269 6e67 2046 oc)Ring,, ring F │ │ │ │ +000687c0: 206d 6f64 2069 6465 616c 2066 660a 2020 mod ideal ff. │ │ │ │ +000687d0: 2020 2020 2a20 462c 2061 202a 6e6f 7465 * F, a *note │ │ │ │ +000687e0: 2063 6861 696e 2063 6f6d 706c 6578 3a20 chain complex: │ │ │ │ +000687f0: 284d 6163 6175 6c61 7932 446f 6329 4368 (Macaulay2Doc)Ch │ │ │ │ +00068800: 6169 6e43 6f6d 706c 6578 2c2c 2064 6566 ainComplex,, def │ │ │ │ +00068810: 696e 6564 206f 7665 720a 2020 2020 2020 ined over. │ │ │ │ +00068820: 2020 7269 6e67 2066 660a 2020 2020 2020 ring ff. │ │ │ │ +00068830: 2a20 6c65 6e2c 2061 6e20 2a6e 6f74 6520 * len, an *note │ │ │ │ +00068840: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ +00068850: 6179 3244 6f63 295a 5a2c 2c20 0a20 202a ay2Doc)ZZ,, . * │ │ │ │ +00068860: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ +00068870: 2a20 4646 2c20 6120 2a6e 6f74 6520 6368 * FF, a *note ch │ │ │ │ +00068880: 6169 6e20 636f 6d70 6c65 783a 2028 4d61 ain complex: (Ma │ │ │ │ +00068890: 6361 756c 6179 3244 6f63 2943 6861 696e caulay2Doc)Chain │ │ │ │ +000688a0: 436f 6d70 6c65 782c 2c20 6368 6169 6e20 Complex,, chain │ │ │ │ +000688b0: 636f 6d70 6c65 780a 2020 2020 2020 2020 complex. │ │ │ │ +000688c0: 6f76 6572 2028 7269 6e67 2046 292f 2869 over (ring F)/(i │ │ │ │ +000688d0: 6465 616c 2066 6629 0a0a 4465 7363 7269 deal ff)..Descri │ │ │ │ +000688e0: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +000688f0: 3d0a 0a4c 6574 2052 203d 2072 696e 6720 =..Let R = ring │ │ │ │ +00068900: 4620 3d20 7269 6e67 2066 662c 2061 6e64 F = ring ff, and │ │ │ │ +00068910: 2052 6261 7220 3d20 522f 2869 6465 616c Rbar = R/(ideal │ │ │ │ +00068920: 2066 292c 2077 6865 7265 2066 6620 3d20 f), where ff = │ │ │ │ +00068930: 6d61 7472 6978 7b7b 667d 7d20 6973 2061 matrix{{f}} is a │ │ │ │ +00068940: 0a31 7831 206d 6174 7269 7820 7768 6f73 .1x1 matrix whos │ │ │ │ +00068950: 6520 656e 7472 7920 6973 2061 206e 6f6e e entry is a non │ │ │ │ +00068960: 7a65 726f 6469 7669 736f 7220 696e 2052 zerodivisor in R │ │ │ │ +00068970: 2e20 5468 6520 636f 6d70 6c65 7820 4620 . The complex F │ │ │ │ +00068980: 7368 6f75 6c64 2061 646d 6974 2061 0a73 should admit a.s │ │ │ │ +00068990: 7973 7465 6d20 6f66 2068 6967 6865 7220 ystem of higher │ │ │ │ +000689a0: 686f 6d6f 746f 7069 6573 2066 6f72 2074 homotopies for t │ │ │ │ +000689b0: 6865 2065 6e74 7279 206f 6620 6666 2c20 he entry of ff, │ │ │ │ +000689c0: 7265 7475 726e 6564 2062 7920 7468 6520 returned by the │ │ │ │ +000689d0: 6361 6c6c 0a6d 616b 6548 6f6d 6f74 6f70 call.makeHomotop │ │ │ │ +000689e0: 6965 7328 6666 2c46 292e 0a0a 5468 6520 ies(ff,F)...The │ │ │ │ +000689f0: 636f 6d70 6c65 7820 4646 2068 6173 2074 complex FF has t │ │ │ │ +00068a00: 6572 6d73 0a0a 4646 5f7b 322a 697d 203d erms..FF_{2*i} = │ │ │ │ +00068a10: 2052 6261 722a 2a28 465f 3020 2b2b 2046 Rbar**(F_0 ++ F │ │ │ │ +00068a20: 5f32 202b 2b20 2e2e 202b 2b20 465f 6929 _2 ++ .. ++ F_i) │ │ │ │ +00068a30: 0a0a 4646 5f7b 322a 692b 317d 203d 2052 ..FF_{2*i+1} = R │ │ │ │ +00068a40: 6261 722a 2a28 465f 3120 2b2b 2046 5f33 bar**(F_1 ++ F_3 │ │ │ │ +00068a50: 202b 2b2e 2e2b 2b46 5f7b 322a 692b 317d ++..++F_{2*i+1} │ │ │ │ +00068a60: 290a 0a61 6e64 206d 6170 7320 6d61 6465 )..and maps made │ │ │ │ +00068a70: 2066 726f 6d20 7468 6520 6869 6768 6572 from the higher │ │ │ │ +00068a80: 2068 6f6d 6f74 6f70 6965 732e 0a0a 466f homotopies...Fo │ │ │ │ +00068a90: 7220 7468 6520 6361 7365 206f 6620 6120 r the case of a │ │ │ │ +00068aa0: 636f 6d70 6c65 7465 2069 6e74 6572 7365 complete interse │ │ │ │ +00068ab0: 6374 696f 6e20 6f66 2068 6967 6865 7220 ction of higher │ │ │ │ +00068ac0: 636f 6469 6d65 6e73 696f 6e2c 206f 7220 codimension, or │ │ │ │ +00068ad0: 746f 2073 6565 2074 6865 0a63 6f6d 706f to see the.compo │ │ │ │ +00068ae0: 6e65 6e74 7320 6f66 2074 6865 2072 6573 nents of the res │ │ │ │ +00068af0: 6f6c 7574 696f 6e20 6173 2073 756d 6d61 olution as summa │ │ │ │ +00068b00: 6e64 7320 6f66 2046 465f 6a2c 2075 7365 nds of FF_j, use │ │ │ │ +00068b10: 2074 6865 2072 6f75 7469 6e65 0a45 6973 the routine.Eis │ │ │ │ +00068b20: 656e 6275 6453 6861 6d61 7368 2069 6e73 enbudShamash ins │ │ │ │ +00068b30: 7465 6164 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d tead...+-------- │ │ │ │ +00068b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068b70: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2053 -------+.|i1 : S │ │ │ │ -00068b80: 203d 205a 5a2f 3130 315b 782c 792c 7a5d = ZZ/101[x,y,z] │ │ │ │ +00068b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00068b70: 3120 3a20 5320 3d20 5a5a 2f31 3031 5b78 1 : S = ZZ/101[x │ │ │ │ +00068b80: 2c79 2c7a 5d20 2020 2020 2020 2020 2020 ,y,z] │ │ │ │ 00068b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068ba0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00068bb0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00068ba0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00068bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068be0: 2020 2020 207c 0a7c 6f31 203d 2053 2020 |.|o1 = S │ │ │ │ +00068bd0: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ +00068be0: 3d20 5320 2020 2020 2020 2020 2020 2020 = S │ │ │ │ 00068bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068c10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00068c10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00068c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068c50: 2020 207c 0a7c 6f31 203a 2050 6f6c 796e |.|o1 : Polyn │ │ │ │ -00068c60: 6f6d 6961 6c52 696e 6720 2020 2020 2020 omialRing │ │ │ │ -00068c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068c80: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00068c40: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ +00068c50: 506f 6c79 6e6f 6d69 616c 5269 6e67 2020 PolynomialRing │ │ │ │ +00068c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068c70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00068c80: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00068c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068cc0: 2d2b 0a7c 6932 203a 2052 203d 2053 2f69 -+.|i2 : R = S/i │ │ │ │ -00068cd0: 6465 616c 2278 332c 7933 2220 2020 2020 deal"x3,y3" │ │ │ │ -00068ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068cf0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00068cb0: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 5220 ------+.|i2 : R │ │ │ │ +00068cc0: 3d20 532f 6964 6561 6c22 7833 2c79 3322 = S/ideal"x3,y3" │ │ │ │ +00068cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068ce0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00068cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068d20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00068d30: 0a7c 6f32 203d 2052 2020 2020 2020 2020 .|o2 = R │ │ │ │ +00068d20: 2020 2020 7c0a 7c6f 3220 3d20 5220 2020 |.|o2 = R │ │ │ │ +00068d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068d60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00068d50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00068d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068d90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00068da0: 6f32 203a 2051 756f 7469 656e 7452 696e o2 : QuotientRin │ │ │ │ -00068db0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ -00068dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068dd0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00068d90: 2020 7c0a 7c6f 3220 3a20 5175 6f74 6965 |.|o2 : Quotie │ │ │ │ +00068da0: 6e74 5269 6e67 2020 2020 2020 2020 2020 ntRing │ │ │ │ +00068db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068dc0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00068dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -00068e10: 203a 204d 203d 2052 5e31 2f69 6465 616c : M = R^1/ideal │ │ │ │ -00068e20: 2878 2c79 2c7a 2920 2020 2020 2020 2020 (x,y,z) │ │ │ │ -00068e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068e40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00068e00: 2b0a 7c69 3320 3a20 4d20 3d20 525e 312f +.|i3 : M = R^1/ │ │ │ │ +00068e10: 6964 6561 6c28 782c 792c 7a29 2020 2020 ideal(x,y,z) │ │ │ │ +00068e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068e30: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00068e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068e70: 2020 2020 2020 2020 207c 0a7c 6f33 203d |.|o3 = │ │ │ │ -00068e80: 2063 6f6b 6572 6e65 6c20 7c20 7820 7920 cokernel | x y │ │ │ │ -00068e90: 7a20 7c20 2020 2020 2020 2020 2020 2020 z | │ │ │ │ -00068ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068eb0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00068e60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00068e70: 7c6f 3320 3d20 636f 6b65 726e 656c 207c |o3 = cokernel | │ │ │ │ +00068e80: 2078 2079 207a 207c 2020 2020 2020 2020 x y z | │ │ │ │ +00068e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068ea0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00068eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068ee0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00068ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068f00: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ -00068f10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00068f20: 7c6f 3320 3a20 522d 6d6f 6475 6c65 2c20 |o3 : R-module, │ │ │ │ -00068f30: 7175 6f74 6965 6e74 206f 6620 5220 2020 quotient of R │ │ │ │ -00068f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068f50: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00068ed0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00068ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068ef0: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ +00068f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068f10: 2020 207c 0a7c 6f33 203a 2052 2d6d 6f64 |.|o3 : R-mod │ │ │ │ +00068f20: 756c 652c 2071 756f 7469 656e 7420 6f66 ule, quotient of │ │ │ │ +00068f30: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +00068f40: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00068f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00068f90: 3420 3a20 4620 3d20 7265 7320 4d20 2020 4 : F = res M │ │ │ │ +00068f80: 2d2b 0a7c 6934 203a 2046 203d 2072 6573 -+.|i4 : F = res │ │ │ │ +00068f90: 204d 2020 2020 2020 2020 2020 2020 2020 M │ │ │ │ 00068fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068fc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00068fb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00068fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068ff0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00069000: 2020 2031 2020 2020 2020 3320 2020 2020 1 3 │ │ │ │ -00069010: 2035 2020 2020 2020 3720 2020 2020 2039 5 7 9 │ │ │ │ -00069020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069030: 207c 0a7c 6f34 203d 2052 2020 3c2d 2d20 |.|o4 = R <-- │ │ │ │ -00069040: 5220 203c 2d2d 2052 2020 3c2d 2d20 5220 R <-- R <-- R │ │ │ │ -00069050: 203c 2d2d 2052 2020 2020 2020 2020 2020 <-- R │ │ │ │ -00069060: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00068fe0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00068ff0: 0a7c 2020 2020 2020 3120 2020 2020 2033 .| 1 3 │ │ │ │ +00069000: 2020 2020 2020 3520 2020 2020 2037 2020 5 7 │ │ │ │ +00069010: 2020 2020 3920 2020 2020 2020 2020 2020 9 │ │ │ │ +00069020: 2020 2020 2020 7c0a 7c6f 3420 3d20 5220 |.|o4 = R │ │ │ │ +00069030: 203c 2d2d 2052 2020 3c2d 2d20 5220 203c <-- R <-- R < │ │ │ │ +00069040: 2d2d 2052 2020 3c2d 2d20 5220 2020 2020 -- R <-- R │ │ │ │ +00069050: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00069060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069090: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000690a0: 0a7c 2020 2020 2030 2020 2020 2020 3120 .| 0 1 │ │ │ │ -000690b0: 2020 2020 2032 2020 2020 2020 3320 2020 2 3 │ │ │ │ -000690c0: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -000690d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00069090: 2020 2020 7c0a 7c20 2020 2020 3020 2020 |.| 0 │ │ │ │ +000690a0: 2020 2031 2020 2020 2020 3220 2020 2020 1 2 │ │ │ │ +000690b0: 2033 2020 2020 2020 3420 2020 2020 2020 3 4 │ │ │ │ +000690c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000690d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000690e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000690f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069100: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00069110: 6f34 203a 2043 6861 696e 436f 6d70 6c65 o4 : ChainComple │ │ │ │ -00069120: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ -00069130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069140: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00069100: 2020 7c0a 7c6f 3420 3a20 4368 6169 6e43 |.|o4 : ChainC │ │ │ │ +00069110: 6f6d 706c 6578 2020 2020 2020 2020 2020 omplex │ │ │ │ +00069120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069130: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00069140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ -00069180: 203a 2066 6620 3d20 6d61 7472 6978 7b7b : ff = matrix{{ │ │ │ │ -00069190: 7a5e 337d 7d20 2020 2020 2020 2020 2020 z^3}} │ │ │ │ -000691a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000691b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00069170: 2b0a 7c69 3520 3a20 6666 203d 206d 6174 +.|i5 : ff = mat │ │ │ │ +00069180: 7269 787b 7b7a 5e33 7d7d 2020 2020 2020 rix{{z^3}} │ │ │ │ +00069190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000691a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000691b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000691c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000691d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000691e0: 2020 2020 2020 2020 207c 0a7c 6f35 203d |.|o5 = │ │ │ │ -000691f0: 207c 207a 3320 7c20 2020 2020 2020 2020 | z3 | │ │ │ │ +000691d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000691e0: 7c6f 3520 3d20 7c20 7a33 207c 2020 2020 |o5 = | z3 | │ │ │ │ +000691f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069220: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00069210: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00069220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069250: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00069260: 2020 2020 2020 2031 2020 2020 2020 3120 1 1 │ │ │ │ +00069240: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00069250: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ +00069260: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00069270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069280: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00069290: 7c6f 3520 3a20 4d61 7472 6978 2052 2020 |o5 : Matrix R │ │ │ │ -000692a0: 3c2d 2d20 5220 2020 2020 2020 2020 2020 <-- R │ │ │ │ -000692b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000692c0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00069280: 2020 207c 0a7c 6f35 203a 204d 6174 7269 |.|o5 : Matri │ │ │ │ +00069290: 7820 5220 203c 2d2d 2052 2020 2020 2020 x R <-- R │ │ │ │ +000692a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000692b0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000692c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000692d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000692e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000692f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00069300: 3620 3a20 5231 203d 2052 2f69 6465 616c 6 : R1 = R/ideal │ │ │ │ -00069310: 2066 6620 2020 2020 2020 2020 2020 2020 ff │ │ │ │ -00069320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069330: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000692f0: 2d2b 0a7c 6936 203a 2052 3120 3d20 522f -+.|i6 : R1 = R/ │ │ │ │ +00069300: 6964 6561 6c20 6666 2020 2020 2020 2020 ideal ff │ │ │ │ +00069310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069320: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00069330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069360: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ -00069370: 3d20 5231 2020 2020 2020 2020 2020 2020 = R1 │ │ │ │ +00069350: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00069360: 0a7c 6f36 203d 2052 3120 2020 2020 2020 .|o6 = R1 │ │ │ │ +00069370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000693a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00069390: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000693a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000693b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000693c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000693d0: 2020 2020 2020 2020 7c0a 7c6f 3620 3a20 |.|o6 : │ │ │ │ -000693e0: 5175 6f74 6965 6e74 5269 6e67 2020 2020 QuotientRing │ │ │ │ +000693c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000693d0: 6f36 203a 2051 756f 7469 656e 7452 696e o6 : QuotientRin │ │ │ │ +000693e0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ 000693f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069400: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00069410: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00069400: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00069410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069440: 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 6265 ------+.|i7 : be │ │ │ │ -00069450: 7474 6920 4620 2020 2020 2020 2020 2020 tti F │ │ │ │ +00069430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 -----------+.|i7 │ │ │ │ +00069440: 203a 2062 6574 7469 2046 2020 2020 2020 : betti F │ │ │ │ +00069450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069470: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00069470: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00069480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000694a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000694b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000694c0: 2020 2030 2031 2032 2033 2034 2020 2020 0 1 2 3 4 │ │ │ │ +000694a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000694b0: 2020 2020 2020 2020 3020 3120 3220 3320 0 1 2 3 │ │ │ │ +000694c0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 000694d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000694e0: 2020 2020 2020 2020 2020 207c 0a7c 6f37 |.|o7 │ │ │ │ -000694f0: 203d 2074 6f74 616c 3a20 3120 3320 3520 = total: 1 3 5 │ │ │ │ -00069500: 3720 3920 2020 2020 2020 2020 2020 2020 7 9 │ │ │ │ -00069510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069520: 2020 7c0a 7c20 2020 2020 2020 2020 303a |.| 0: │ │ │ │ -00069530: 2031 2033 2033 2031 202e 2020 2020 2020 1 3 3 1 . │ │ │ │ -00069540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069550: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00069560: 2020 2020 2031 3a20 2e20 2e20 3220 3620 1: . . 2 6 │ │ │ │ -00069570: 3620 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ -00069580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069590: 7c0a 7c20 2020 2020 2020 2020 323a 202e |.| 2: . │ │ │ │ -000695a0: 202e 202e 202e 2033 2020 2020 2020 2020 . . . 3 │ │ │ │ -000695b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000695c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000694e0: 7c0a 7c6f 3720 3d20 746f 7461 6c3a 2031 |.|o7 = total: 1 │ │ │ │ +000694f0: 2033 2035 2037 2039 2020 2020 2020 2020 3 5 7 9 │ │ │ │ +00069500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069510: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00069520: 2020 2030 3a20 3120 3320 3320 3120 2e20 0: 1 3 3 1 . │ │ │ │ +00069530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069540: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00069550: 7c20 2020 2020 2020 2020 313a 202e 202e | 1: . . │ │ │ │ +00069560: 2032 2036 2036 2020 2020 2020 2020 2020 2 6 6 │ │ │ │ +00069570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069580: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00069590: 2032 3a20 2e20 2e20 2e20 2e20 3320 2020 2: . . . . 3 │ │ │ │ +000695a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000695b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000695c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000695d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000695e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000695f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00069600: 7c6f 3720 3a20 4265 7474 6954 616c 6c79 |o7 : BettiTally │ │ │ │ +000695f0: 2020 207c 0a7c 6f37 203a 2042 6574 7469 |.|o7 : Betti │ │ │ │ +00069600: 5461 6c6c 7920 2020 2020 2020 2020 2020 Tally │ │ │ │ 00069610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069630: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00069620: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00069630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00069670: 3820 3a20 4646 203d 2053 6861 6d61 7368 8 : FF = Shamash │ │ │ │ -00069680: 2866 662c 462c 3429 2020 2020 2020 2020 (ff,F,4) │ │ │ │ -00069690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000696a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00069660: 2d2b 0a7c 6938 203a 2046 4620 3d20 5368 -+.|i8 : FF = Sh │ │ │ │ +00069670: 616d 6173 6828 6666 2c46 2c34 2920 2020 amash(ff,F,4) │ │ │ │ +00069680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069690: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000696a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000696b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000696c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000696d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000696e0: 2020 2f20 525c 3120 2020 2020 2f20 525c / R\1 / R\ │ │ │ │ -000696f0: 3320 2020 2020 2f20 525c 3620 2020 2020 3 / R\6 │ │ │ │ -00069700: 2f20 525c 3130 2020 2020 202f 2052 5c31 / R\10 / R\1 │ │ │ │ -00069710: 357c 0a7c 6f38 203d 207c 2d2d 7c20 203c 5|.|o8 = |--| < │ │ │ │ -00069720: 2d2d 207c 2d2d 7c20 203c 2d2d 207c 2d2d -- |--| <-- |-- │ │ │ │ -00069730: 7c20 203c 2d2d 207c 2d2d 7c20 2020 3c2d | <-- |--| <- │ │ │ │ -00069740: 2d20 7c2d 2d7c 2020 7c0a 7c20 2020 2020 - |--| |.| │ │ │ │ -00069750: 7c20 337c 2020 2020 2020 7c20 337c 2020 | 3| | 3| │ │ │ │ -00069760: 2020 2020 7c20 337c 2020 2020 2020 7c20 | 3| | │ │ │ │ -00069770: 337c 2020 2020 2020 207c 2033 7c20 207c 3| | 3| | │ │ │ │ -00069780: 0a7c 2020 2020 205c 7a20 2f20 2020 2020 .| \z / │ │ │ │ -00069790: 205c 7a20 2f20 2020 2020 205c 7a20 2f20 \z / \z / │ │ │ │ -000697a0: 2020 2020 205c 7a20 2f20 2020 2020 2020 \z / │ │ │ │ -000697b0: 5c7a 202f 2020 7c0a 7c20 2020 2020 2020 \z / |.| │ │ │ │ +000696c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000696d0: 0a7c 2020 2020 202f 2052 5c31 2020 2020 .| / R\1 │ │ │ │ +000696e0: 202f 2052 5c33 2020 2020 202f 2052 5c36 / R\3 / R\6 │ │ │ │ +000696f0: 2020 2020 202f 2052 5c31 3020 2020 2020 / R\10 │ │ │ │ +00069700: 2f20 525c 3135 7c0a 7c6f 3820 3d20 7c2d / R\15|.|o8 = |- │ │ │ │ +00069710: 2d7c 2020 3c2d 2d20 7c2d 2d7c 2020 3c2d -| <-- |--| <- │ │ │ │ +00069720: 2d20 7c2d 2d7c 2020 3c2d 2d20 7c2d 2d7c - |--| <-- |--| │ │ │ │ +00069730: 2020 203c 2d2d 207c 2d2d 7c20 207c 0a7c <-- |--| |.| │ │ │ │ +00069740: 2020 2020 207c 2033 7c20 2020 2020 207c | 3| | │ │ │ │ +00069750: 2033 7c20 2020 2020 207c 2033 7c20 2020 3| | 3| │ │ │ │ +00069760: 2020 207c 2033 7c20 2020 2020 2020 7c20 | 3| | │ │ │ │ +00069770: 337c 2020 7c0a 7c20 2020 2020 5c7a 202f 3| |.| \z / │ │ │ │ +00069780: 2020 2020 2020 5c7a 202f 2020 2020 2020 \z / │ │ │ │ +00069790: 5c7a 202f 2020 2020 2020 5c7a 202f 2020 \z / \z / │ │ │ │ +000697a0: 2020 2020 205c 7a20 2f20 207c 0a7c 2020 \z / |.| │ │ │ │ +000697b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000697c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000697d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000697e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000697f0: 2020 2020 2030 2020 2020 2020 2020 2031 0 1 │ │ │ │ -00069800: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00069810: 2020 2033 2020 2020 2020 2020 2020 3420 3 4 │ │ │ │ -00069820: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000697e0: 2020 7c0a 7c20 2020 2020 3020 2020 2020 |.| 0 │ │ │ │ +000697f0: 2020 2020 3120 2020 2020 2020 2020 3220 1 2 │ │ │ │ +00069800: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ +00069810: 2020 2034 2020 2020 207c 0a7c 2020 2020 4 |.| │ │ │ │ +00069820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069850: 2020 2020 2020 2020 2020 207c 0a7c 6f38 |.|o8 │ │ │ │ -00069860: 203a 2043 6861 696e 436f 6d70 6c65 7820 : ChainComplex │ │ │ │ +00069850: 7c0a 7c6f 3820 3a20 4368 6169 6e43 6f6d |.|o8 : ChainCom │ │ │ │ +00069860: 706c 6578 2020 2020 2020 2020 2020 2020 plex │ │ │ │ 00069870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069890: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00069880: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00069890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000698a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000698b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000698c0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a ---------+.|i9 : │ │ │ │ -000698d0: 2047 4720 3d20 5368 616d 6173 6828 5231 GG = Shamash(R1 │ │ │ │ -000698e0: 2c46 2c34 2920 2020 2020 2020 2020 2020 ,F,4) │ │ │ │ -000698f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069900: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000698b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000698c0: 7c69 3920 3a20 4747 203d 2053 6861 6d61 |i9 : GG = Shama │ │ │ │ +000698d0: 7368 2852 312c 462c 3429 2020 2020 2020 sh(R1,F,4) │ │ │ │ +000698e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000698f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00069900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069930: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00069940: 2031 2020 2020 2020 2033 2020 2020 2020 1 3 │ │ │ │ -00069950: 2036 2020 2020 2020 2031 3020 2020 2020 6 10 │ │ │ │ -00069960: 2020 3135 2020 2020 2020 2020 2020 7c0a 15 |. │ │ │ │ -00069970: 7c6f 3920 3d20 5231 2020 3c2d 2d20 5231 |o9 = R1 <-- R1 │ │ │ │ -00069980: 2020 3c2d 2d20 5231 2020 3c2d 2d20 5231 <-- R1 <-- R1 │ │ │ │ -00069990: 2020 203c 2d2d 2052 3120 2020 2020 2020 <-- R1 │ │ │ │ -000699a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00069920: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00069930: 2020 2020 2020 3120 2020 2020 2020 3320 1 3 │ │ │ │ +00069940: 2020 2020 2020 3620 2020 2020 2020 3130 6 10 │ │ │ │ +00069950: 2020 2020 2020 2031 3520 2020 2020 2020 15 │ │ │ │ +00069960: 2020 207c 0a7c 6f39 203d 2052 3120 203c |.|o9 = R1 < │ │ │ │ +00069970: 2d2d 2052 3120 203c 2d2d 2052 3120 203c -- R1 <-- R1 < │ │ │ │ +00069980: 2d2d 2052 3120 2020 3c2d 2d20 5231 2020 -- R1 <-- R1 │ │ │ │ +00069990: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000699a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000699b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000699c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000699d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000699e0: 2020 2020 3020 2020 2020 2020 3120 2020 0 1 │ │ │ │ -000699f0: 2020 2020 3220 2020 2020 2020 3320 2020 2 3 │ │ │ │ -00069a00: 2020 2020 2034 2020 2020 2020 2020 2020 4 │ │ │ │ -00069a10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000699d0: 207c 0a7c 2020 2020 2030 2020 2020 2020 |.| 0 │ │ │ │ +000699e0: 2031 2020 2020 2020 2032 2020 2020 2020 1 2 │ │ │ │ +000699f0: 2033 2020 2020 2020 2020 3420 2020 2020 3 4 │ │ │ │ +00069a00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00069a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069a40: 2020 2020 2020 2020 2020 7c0a 7c6f 3920 |.|o9 │ │ │ │ -00069a50: 3a20 4368 6169 6e43 6f6d 706c 6578 2020 : ChainComplex │ │ │ │ +00069a30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00069a40: 0a7c 6f39 203a 2043 6861 696e 436f 6d70 .|o9 : ChainComp │ │ │ │ +00069a50: 6c65 7820 2020 2020 2020 2020 2020 2020 lex │ │ │ │ 00069a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069a80: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00069a70: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00069a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069ab0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3130 203a --------+.|i10 : │ │ │ │ -00069ac0: 2062 6574 7469 2046 4620 2020 2020 2020 betti FF │ │ │ │ +00069aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00069ab0: 6931 3020 3a20 6265 7474 6920 4646 2020 i10 : betti FF │ │ │ │ +00069ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069ae0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00069af0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00069ae0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00069af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069b20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00069b30: 2020 2020 2020 3020 3120 3220 2033 2020 0 1 2 3 │ │ │ │ -00069b40: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00069b50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00069b60: 6f31 3020 3d20 746f 7461 6c3a 2031 2033 o10 = total: 1 3 │ │ │ │ -00069b70: 2036 2031 3020 3135 2020 2020 2020 2020 6 10 15 │ │ │ │ -00069b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069b90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00069ba0: 2030 3a20 3120 3320 3320 2031 2020 2e20 0: 1 3 3 1 . │ │ │ │ +00069b10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00069b20: 2020 2020 2020 2020 2020 2030 2031 2032 0 1 2 │ │ │ │ +00069b30: 2020 3320 2034 2020 2020 2020 2020 2020 3 4 │ │ │ │ +00069b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069b50: 2020 7c0a 7c6f 3130 203d 2074 6f74 616c |.|o10 = total │ │ │ │ +00069b60: 3a20 3120 3320 3620 3130 2031 3520 2020 : 1 3 6 10 15 │ │ │ │ +00069b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069b80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00069b90: 2020 2020 2020 303a 2031 2033 2033 2020 0: 1 3 3 │ │ │ │ +00069ba0: 3120 202e 2020 2020 2020 2020 2020 2020 1 . │ │ │ │ 00069bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069bc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00069bd0: 2020 2020 2020 2020 313a 202e 202e 2033 1: . . 3 │ │ │ │ -00069be0: 2020 3920 2039 2020 2020 2020 2020 2020 9 9 │ │ │ │ -00069bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069c00: 2020 7c0a 7c20 2020 2020 2020 2020 2032 |.| 2 │ │ │ │ -00069c10: 3a20 2e20 2e20 2e20 202e 2020 3620 2020 : . . . . 6 │ │ │ │ -00069c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069c30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00069bc0: 7c0a 7c20 2020 2020 2020 2020 2031 3a20 |.| 1: │ │ │ │ +00069bd0: 2e20 2e20 3320 2039 2020 3920 2020 2020 . . 3 9 9 │ │ │ │ +00069be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069bf0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00069c00: 2020 2020 323a 202e 202e 202e 2020 2e20 2: . . . . │ │ │ │ +00069c10: 2036 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +00069c20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00069c30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00069c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069c70: 7c0a 7c6f 3130 203a 2042 6574 7469 5461 |.|o10 : BettiTa │ │ │ │ -00069c80: 6c6c 7920 2020 2020 2020 2020 2020 2020 lly │ │ │ │ -00069c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069ca0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00069c60: 2020 2020 207c 0a7c 6f31 3020 3a20 4265 |.|o10 : Be │ │ │ │ +00069c70: 7474 6954 616c 6c79 2020 2020 2020 2020 ttiTally │ │ │ │ +00069c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069c90: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00069ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00069ce0: 7c69 3131 203a 2062 6574 7469 2047 4720 |i11 : betti GG │ │ │ │ +00069cd0: 2d2d 2d2b 0a7c 6931 3120 3a20 6265 7474 ---+.|i11 : bett │ │ │ │ +00069ce0: 6920 4747 2020 2020 2020 2020 2020 2020 i GG │ │ │ │ 00069cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069d10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00069d00: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00069d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069d40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00069d50: 2020 2020 2020 2020 2020 2020 3020 3120 0 1 │ │ │ │ -00069d60: 3220 2033 2020 3420 2020 2020 2020 2020 2 3 4 │ │ │ │ -00069d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069d80: 2020 207c 0a7c 6f31 3120 3d20 746f 7461 |.|o11 = tota │ │ │ │ -00069d90: 6c3a 2031 2033 2036 2031 3020 3135 2020 l: 1 3 6 10 15 │ │ │ │ -00069da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069db0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00069dc0: 2020 2020 2020 2030 3a20 3120 3320 3320 0: 1 3 3 │ │ │ │ -00069dd0: 2031 2020 2e20 2020 2020 2020 2020 2020 1 . │ │ │ │ -00069de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069df0: 207c 0a7c 2020 2020 2020 2020 2020 313a |.| 1: │ │ │ │ -00069e00: 202e 202e 2033 2020 3920 2039 2020 2020 . . 3 9 9 │ │ │ │ -00069e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069e20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00069e30: 2020 2020 2032 3a20 2e20 2e20 2e20 202e 2: . . . . │ │ │ │ -00069e40: 2020 3620 2020 2020 2020 2020 2020 2020 6 │ │ │ │ -00069e50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00069e60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00069d40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00069d50: 2030 2031 2032 2020 3320 2034 2020 2020 0 1 2 3 4 │ │ │ │ +00069d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069d70: 2020 2020 2020 2020 7c0a 7c6f 3131 203d |.|o11 = │ │ │ │ +00069d80: 2074 6f74 616c 3a20 3120 3320 3620 3130 total: 1 3 6 10 │ │ │ │ +00069d90: 2031 3520 2020 2020 2020 2020 2020 2020 15 │ │ │ │ +00069da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00069db0: 0a7c 2020 2020 2020 2020 2020 303a 2031 .| 0: 1 │ │ │ │ +00069dc0: 2033 2033 2020 3120 202e 2020 2020 2020 3 3 1 . │ │ │ │ +00069dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069de0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00069df0: 2020 2031 3a20 2e20 2e20 3320 2039 2020 1: . . 3 9 │ │ │ │ +00069e00: 3920 2020 2020 2020 2020 2020 2020 2020 9 │ │ │ │ +00069e10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00069e20: 2020 2020 2020 2020 2020 323a 202e 202e 2: . . │ │ │ │ +00069e30: 202e 2020 2e20 2036 2020 2020 2020 2020 . . 6 │ │ │ │ +00069e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069e50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00069e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069e90: 2020 2020 2020 7c0a 7c6f 3131 203a 2042 |.|o11 : B │ │ │ │ -00069ea0: 6574 7469 5461 6c6c 7920 2020 2020 2020 ettiTally │ │ │ │ +00069e80: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00069e90: 3120 3a20 4265 7474 6954 616c 6c79 2020 1 : BettiTally │ │ │ │ +00069ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069ec0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00069ec0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00069ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069f00: 2d2d 2d2d 2b0a 7c69 3132 203a 2072 696e ----+.|i12 : rin │ │ │ │ -00069f10: 6720 4747 2020 2020 2020 2020 2020 2020 g GG │ │ │ │ +00069ef0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3220 ---------+.|i12 │ │ │ │ +00069f00: 3a20 7269 6e67 2047 4720 2020 2020 2020 : ring GG │ │ │ │ +00069f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069f30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00069f30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00069f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069f70: 2020 7c0a 7c6f 3132 203d 2052 3120 2020 |.|o12 = R1 │ │ │ │ +00069f60: 2020 2020 2020 207c 0a7c 6f31 3220 3d20 |.|o12 = │ │ │ │ +00069f70: 5231 2020 2020 2020 2020 2020 2020 2020 R1 │ │ │ │ 00069f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069fa0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00069f90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00069fa0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00069fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069fe0: 7c0a 7c6f 3132 203a 2051 756f 7469 656e |.|o12 : Quotien │ │ │ │ -00069ff0: 7452 696e 6720 2020 2020 2020 2020 2020 tRing │ │ │ │ -0006a000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a010: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00069fd0: 2020 2020 207c 0a7c 6f31 3220 3a20 5175 |.|o12 : Qu │ │ │ │ +00069fe0: 6f74 6965 6e74 5269 6e67 2020 2020 2020 otientRing │ │ │ │ +00069ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006a000: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0006a010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006a020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006a030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006a040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0006a050: 7c69 3133 203a 2061 7070 6c79 286c 656e |i13 : apply(len │ │ │ │ -0006a060: 6774 6820 4747 2c20 692d 3e70 7275 6e65 gth GG, i->prune │ │ │ │ -0006a070: 2048 485f 6920 4646 2920 2020 2020 2020 HH_i FF) │ │ │ │ -0006a080: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006a040: 2d2d 2d2b 0a7c 6931 3320 3a20 6170 706c ---+.|i13 : appl │ │ │ │ +0006a050: 7928 6c65 6e67 7468 2047 472c 2069 2d3e y(length GG, i-> │ │ │ │ +0006a060: 7072 756e 6520 4848 5f69 2046 4629 2020 prune HH_i FF) │ │ │ │ +0006a070: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a0b0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0006a0c0: 3133 203d 207b 636f 6b65 726e 656c 207c 13 = {cokernel | │ │ │ │ -0006a0d0: 207a 2079 2078 207c 2c20 302c 2030 2c20 z y x |, 0, 0, │ │ │ │ -0006a0e0: 307d 2020 2020 2020 2020 2020 2020 2020 0} │ │ │ │ -0006a0f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006a0b0: 207c 0a7c 6f31 3320 3d20 7b63 6f6b 6572 |.|o13 = {coker │ │ │ │ +0006a0c0: 6e65 6c20 7c20 7a20 7920 7820 7c2c 2030 nel | z y x |, 0 │ │ │ │ +0006a0d0: 2c20 302c 2030 7d20 2020 2020 2020 2020 , 0, 0} │ │ │ │ +0006a0e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0006a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a120: 2020 2020 2020 2020 2020 7c0a 7c6f 3133 |.|o13 │ │ │ │ -0006a130: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ +0006a110: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a120: 0a7c 6f31 3320 3a20 4c69 7374 2020 2020 .|o13 : List │ │ │ │ +0006a130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a160: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0006a150: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0006a160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006a170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006a180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006a190: 2d2d 2d2d 2d2d 2d2d 2b0a 0a43 6176 6561 --------+..Cavea │ │ │ │ -0006a1a0: 740a 3d3d 3d3d 3d3d 0a0a 4620 6973 2061 t.======..F is a │ │ │ │ -0006a1b0: 7373 756d 6564 2074 6f20 6265 2061 2068 ssumed to be a h │ │ │ │ -0006a1c0: 6f6d 6f6c 6f67 6963 616c 2063 6f6d 706c omological compl │ │ │ │ -0006a1d0: 6578 2073 7461 7274 696e 6720 6672 6f6d ex starting from │ │ │ │ -0006a1e0: 2046 5f30 2e20 5468 6520 6d61 7472 6978 F_0. The matrix │ │ │ │ -0006a1f0: 2066 6620 6d75 7374 0a62 6520 3178 312e ff must.be 1x1. │ │ │ │ -0006a200: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -0006a210: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2045 ===.. * *note E │ │ │ │ -0006a220: 6973 656e 6275 6453 6861 6d61 7368 3a20 isenbudShamash: │ │ │ │ -0006a230: 4569 7365 6e62 7564 5368 616d 6173 682c EisenbudShamash, │ │ │ │ -0006a240: 202d 2d20 436f 6d70 7574 6573 2074 6865 -- Computes the │ │ │ │ -0006a250: 2045 6973 656e 6275 642d 5368 616d 6173 Eisenbud-Shamas │ │ │ │ -0006a260: 680a 2020 2020 436f 6d70 6c65 780a 2020 h. Complex. │ │ │ │ -0006a270: 2a20 2a6e 6f74 6520 6d61 6b65 486f 6d6f * *note makeHomo │ │ │ │ -0006a280: 746f 7069 6573 3a20 6d61 6b65 486f 6d6f topies: makeHomo │ │ │ │ -0006a290: 746f 7069 6573 2c20 2d2d 2072 6574 7572 topies, -- retur │ │ │ │ -0006a2a0: 6e73 2061 2073 7973 7465 6d20 6f66 2068 ns a system of h │ │ │ │ -0006a2b0: 6967 6865 720a 2020 2020 686f 6d6f 746f igher. homoto │ │ │ │ -0006a2c0: 7069 6573 0a0a 5761 7973 2074 6f20 7573 pies..Ways to us │ │ │ │ -0006a2d0: 6520 5368 616d 6173 683a 0a3d 3d3d 3d3d e Shamash:.===== │ │ │ │ -0006a2e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -0006a2f0: 0a20 202a 2022 5368 616d 6173 6828 4d61 . * "Shamash(Ma │ │ │ │ -0006a300: 7472 6978 2c43 6861 696e 436f 6d70 6c65 trix,ChainComple │ │ │ │ -0006a310: 782c 5a5a 2922 0a20 202a 2022 5368 616d x,ZZ)". * "Sham │ │ │ │ -0006a320: 6173 6828 5269 6e67 2c43 6861 696e 436f ash(Ring,ChainCo │ │ │ │ -0006a330: 6d70 6c65 782c 5a5a 2922 0a0a 466f 7220 mplex,ZZ)"..For │ │ │ │ -0006a340: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -0006a350: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0006a360: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -0006a370: 6f74 6520 5368 616d 6173 683a 2053 6861 ote Shamash: Sha │ │ │ │ -0006a380: 6d61 7368 2c20 6973 2061 202a 6e6f 7465 mash, is a *note │ │ │ │ -0006a390: 206d 6574 686f 6420 6675 6e63 7469 6f6e method function │ │ │ │ -0006a3a0: 3a0a 284d 6163 6175 6c61 7932 446f 6329 :.(Macaulay2Doc) │ │ │ │ -0006a3b0: 4d65 7468 6f64 4675 6e63 7469 6f6e 2c2e MethodFunction,. │ │ │ │ -0006a3c0: 0a1f 0a46 696c 653a 2043 6f6d 706c 6574 ...File: Complet │ │ │ │ -0006a3d0: 6549 6e74 6572 7365 6374 696f 6e52 6573 eIntersectionRes │ │ │ │ -0006a3e0: 6f6c 7574 696f 6e73 2e69 6e66 6f2c 204e olutions.info, N │ │ │ │ -0006a3f0: 6f64 653a 2073 706c 6974 7469 6e67 732c ode: splittings, │ │ │ │ -0006a400: 204e 6578 743a 2073 7461 626c 6548 6f6d Next: stableHom │ │ │ │ -0006a410: 2c20 5072 6576 3a20 5368 616d 6173 682c , Prev: Shamash, │ │ │ │ -0006a420: 2055 703a 2054 6f70 0a0a 7370 6c69 7474 Up: Top..splitt │ │ │ │ -0006a430: 696e 6773 202d 2d20 636f 6d70 7574 6520 ings -- compute │ │ │ │ -0006a440: 7468 6520 7370 6c69 7474 696e 6773 206f the splittings o │ │ │ │ -0006a450: 6620 6120 7370 6c69 7420 7269 6768 7420 f a split right │ │ │ │ -0006a460: 6578 6163 7420 7365 7175 656e 6365 0a2a exact sequence.* │ │ │ │ +0006a180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +0006a190: 4361 7665 6174 0a3d 3d3d 3d3d 3d0a 0a46 Caveat.======..F │ │ │ │ +0006a1a0: 2069 7320 6173 7375 6d65 6420 746f 2062 is assumed to b │ │ │ │ +0006a1b0: 6520 6120 686f 6d6f 6c6f 6769 6361 6c20 e a homological │ │ │ │ +0006a1c0: 636f 6d70 6c65 7820 7374 6172 7469 6e67 complex starting │ │ │ │ +0006a1d0: 2066 726f 6d20 465f 302e 2054 6865 206d from F_0. The m │ │ │ │ +0006a1e0: 6174 7269 7820 6666 206d 7573 740a 6265 atrix ff must.be │ │ │ │ +0006a1f0: 2031 7831 2e0a 0a53 6565 2061 6c73 6f0a 1x1...See also. │ │ │ │ +0006a200: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +0006a210: 6f74 6520 4569 7365 6e62 7564 5368 616d ote EisenbudSham │ │ │ │ +0006a220: 6173 683a 2045 6973 656e 6275 6453 6861 ash: EisenbudSha │ │ │ │ +0006a230: 6d61 7368 2c20 2d2d 2043 6f6d 7075 7465 mash, -- Compute │ │ │ │ +0006a240: 7320 7468 6520 4569 7365 6e62 7564 2d53 s the Eisenbud-S │ │ │ │ +0006a250: 6861 6d61 7368 0a20 2020 2043 6f6d 706c hamash. Compl │ │ │ │ +0006a260: 6578 0a20 202a 202a 6e6f 7465 206d 616b ex. * *note mak │ │ │ │ +0006a270: 6548 6f6d 6f74 6f70 6965 733a 206d 616b eHomotopies: mak │ │ │ │ +0006a280: 6548 6f6d 6f74 6f70 6965 732c 202d 2d20 eHomotopies, -- │ │ │ │ +0006a290: 7265 7475 726e 7320 6120 7379 7374 656d returns a system │ │ │ │ +0006a2a0: 206f 6620 6869 6768 6572 0a20 2020 2068 of higher. h │ │ │ │ +0006a2b0: 6f6d 6f74 6f70 6965 730a 0a57 6179 7320 omotopies..Ways │ │ │ │ +0006a2c0: 746f 2075 7365 2053 6861 6d61 7368 3a0a to use Shamash:. │ │ │ │ +0006a2d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0006a2e0: 3d3d 3d3d 0a0a 2020 2a20 2253 6861 6d61 ====.. * "Shama │ │ │ │ +0006a2f0: 7368 284d 6174 7269 782c 4368 6169 6e43 sh(Matrix,ChainC │ │ │ │ +0006a300: 6f6d 706c 6578 2c5a 5a29 220a 2020 2a20 omplex,ZZ)". * │ │ │ │ +0006a310: 2253 6861 6d61 7368 2852 696e 672c 4368 "Shamash(Ring,Ch │ │ │ │ +0006a320: 6169 6e43 6f6d 706c 6578 2c5a 5a29 220a ainComplex,ZZ)". │ │ │ │ +0006a330: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +0006a340: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +0006a350: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +0006a360: 6374 202a 6e6f 7465 2053 6861 6d61 7368 ct *note Shamash │ │ │ │ +0006a370: 3a20 5368 616d 6173 682c 2069 7320 6120 : Shamash, is a │ │ │ │ +0006a380: 2a6e 6f74 6520 6d65 7468 6f64 2066 756e *note method fun │ │ │ │ +0006a390: 6374 696f 6e3a 0a28 4d61 6361 756c 6179 ction:.(Macaulay │ │ │ │ +0006a3a0: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ +0006a3b0: 696f 6e2c 2e0a 1f0a 4669 6c65 3a20 436f ion,....File: Co │ │ │ │ +0006a3c0: 6d70 6c65 7465 496e 7465 7273 6563 7469 mpleteIntersecti │ │ │ │ +0006a3d0: 6f6e 5265 736f 6c75 7469 6f6e 732e 696e onResolutions.in │ │ │ │ +0006a3e0: 666f 2c20 4e6f 6465 3a20 7370 6c69 7474 fo, Node: splitt │ │ │ │ +0006a3f0: 696e 6773 2c20 4e65 7874 3a20 7374 6162 ings, Next: stab │ │ │ │ +0006a400: 6c65 486f 6d2c 2050 7265 763a 2053 6861 leHom, Prev: Sha │ │ │ │ +0006a410: 6d61 7368 2c20 5570 3a20 546f 700a 0a73 mash, Up: Top..s │ │ │ │ +0006a420: 706c 6974 7469 6e67 7320 2d2d 2063 6f6d plittings -- com │ │ │ │ +0006a430: 7075 7465 2074 6865 2073 706c 6974 7469 pute the splitti │ │ │ │ +0006a440: 6e67 7320 6f66 2061 2073 706c 6974 2072 ngs of a split r │ │ │ │ +0006a450: 6967 6874 2065 7861 6374 2073 6571 7565 ight exact seque │ │ │ │ +0006a460: 6e63 650a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a nce.************ │ │ │ │ 0006a470: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006a480: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006a490: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006a4a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006a4b0: 2a2a 2a0a 0a53 796e 6f70 7369 730a 3d3d ***..Synopsis.== │ │ │ │ -0006a4c0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 5573 6167 ======.. * Usag │ │ │ │ -0006a4d0: 653a 200a 2020 2020 2020 2020 7820 3d20 e: . x = │ │ │ │ -0006a4e0: 7370 6c69 7474 696e 6773 2861 2c62 290a splittings(a,b). │ │ │ │ -0006a4f0: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ -0006a500: 2020 2a20 612c 2061 202a 6e6f 7465 206d * a, a *note m │ │ │ │ -0006a510: 6174 7269 783a 2028 4d61 6361 756c 6179 atrix: (Macaulay │ │ │ │ -0006a520: 3244 6f63 294d 6174 7269 782c 2c20 6d61 2Doc)Matrix,, ma │ │ │ │ -0006a530: 7073 2069 6e74 6f20 7468 6520 6b65 726e ps into the kern │ │ │ │ -0006a540: 656c 206f 6620 620a 2020 2020 2020 2a20 el of b. * │ │ │ │ -0006a550: 622c 2061 202a 6e6f 7465 206d 6174 7269 b, a *note matri │ │ │ │ -0006a560: 783a 2028 4d61 6361 756c 6179 3244 6f63 x: (Macaulay2Doc │ │ │ │ -0006a570: 294d 6174 7269 782c 2c20 7265 7072 6573 )Matrix,, repres │ │ │ │ -0006a580: 656e 7469 6e67 2061 2073 7572 6a65 6374 enting a surject │ │ │ │ -0006a590: 696f 6e0a 2020 2020 2020 2020 6672 6f6d ion. from │ │ │ │ -0006a5a0: 2074 6172 6765 7420 6120 746f 2061 2066 target a to a f │ │ │ │ -0006a5b0: 7265 6520 6d6f 6475 6c65 0a20 202a 204f ree module. * O │ │ │ │ -0006a5c0: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ -0006a5d0: 4c2c 2061 202a 6e6f 7465 206c 6973 743a L, a *note list: │ │ │ │ -0006a5e0: 2028 4d61 6361 756c 6179 3244 6f63 294c (Macaulay2Doc)L │ │ │ │ -0006a5f0: 6973 742c 2c20 4c20 3d20 5c7b 7369 676d ist,, L = \{sigm │ │ │ │ -0006a600: 612c 7461 755c 7d2c 2073 706c 6974 7469 a,tau\}, splitti │ │ │ │ -0006a610: 6e67 7320 6f66 0a20 2020 2020 2020 2061 ngs of. a │ │ │ │ -0006a620: 2c62 2072 6573 7065 6374 6976 656c 790a ,b respectively. │ │ │ │ -0006a630: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ -0006a640: 3d3d 3d3d 3d3d 3d3d 0a0a 4173 7375 6d69 ========..Assumi │ │ │ │ -0006a650: 6e67 2074 6861 7420 2861 2c62 2920 6172 ng that (a,b) ar │ │ │ │ -0006a660: 6520 7468 6520 6d61 7073 206f 6620 6120 e the maps of a │ │ │ │ -0006a670: 7269 6768 7420 6578 6163 7420 7365 7175 right exact sequ │ │ │ │ -0006a680: 656e 6365 0a0a 2430 5c74 6f20 415c 746f ence..$0\to A\to │ │ │ │ -0006a690: 2042 5c74 6f20 4320 5c74 6f20 3024 0a0a B\to C \to 0$.. │ │ │ │ -0006a6a0: 7769 7468 2042 2c20 4320 6672 6565 2c20 with B, C free, │ │ │ │ -0006a6b0: 7468 6520 7363 7269 7074 2070 726f 6475 the script produ │ │ │ │ -0006a6c0: 6365 7320 6120 7061 6972 206f 6620 6d61 ces a pair of ma │ │ │ │ -0006a6d0: 7073 2073 6967 6d61 2c20 7461 7520 7769 ps sigma, tau wi │ │ │ │ -0006a6e0: 7468 2024 7461 753a 2043 205c 746f 0a42 th $tau: C \to.B │ │ │ │ -0006a6f0: 2420 6120 7370 6c69 7474 696e 6720 6f66 $ a splitting of │ │ │ │ -0006a700: 2062 2061 6e64 2024 7369 676d 613a 2042 b and $sigma: B │ │ │ │ -0006a710: 205c 746f 2041 2420 6120 7370 6c69 7474 \to A$ a splitt │ │ │ │ -0006a720: 696e 6720 6f66 2061 3b20 7468 6174 2069 ing of a; that i │ │ │ │ -0006a730: 732c 0a0a 2461 2a73 6967 6d61 2b74 6175 s,..$a*sigma+tau │ │ │ │ -0006a740: 2a62 203d 2031 5f42 240a 0a24 7369 676d *b = 1_B$..$sigm │ │ │ │ -0006a750: 612a 6120 3d20 315f 4124 0a0a 2462 2a74 a*a = 1_A$..$b*t │ │ │ │ -0006a760: 6175 203d 2031 5f43 240a 0a2b 2d2d 2d2d au = 1_C$..+---- │ │ │ │ +0006a4a0: 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 ********..Synops │ │ │ │ +0006a4b0: 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a is.========.. * │ │ │ │ +0006a4c0: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +0006a4d0: 2078 203d 2073 706c 6974 7469 6e67 7328 x = splittings( │ │ │ │ +0006a4e0: 612c 6229 0a20 202a 2049 6e70 7574 733a a,b). * Inputs: │ │ │ │ +0006a4f0: 0a20 2020 2020 202a 2061 2c20 6120 2a6e . * a, a *n │ │ │ │ +0006a500: 6f74 6520 6d61 7472 6978 3a20 284d 6163 ote matrix: (Mac │ │ │ │ +0006a510: 6175 6c61 7932 446f 6329 4d61 7472 6978 aulay2Doc)Matrix │ │ │ │ +0006a520: 2c2c 206d 6170 7320 696e 746f 2074 6865 ,, maps into the │ │ │ │ +0006a530: 206b 6572 6e65 6c20 6f66 2062 0a20 2020 kernel of b. │ │ │ │ +0006a540: 2020 202a 2062 2c20 6120 2a6e 6f74 6520 * b, a *note │ │ │ │ +0006a550: 6d61 7472 6978 3a20 284d 6163 6175 6c61 matrix: (Macaula │ │ │ │ +0006a560: 7932 446f 6329 4d61 7472 6978 2c2c 2072 y2Doc)Matrix,, r │ │ │ │ +0006a570: 6570 7265 7365 6e74 696e 6720 6120 7375 epresenting a su │ │ │ │ +0006a580: 726a 6563 7469 6f6e 0a20 2020 2020 2020 rjection. │ │ │ │ +0006a590: 2066 726f 6d20 7461 7267 6574 2061 2074 from target a t │ │ │ │ +0006a5a0: 6f20 6120 6672 6565 206d 6f64 756c 650a o a free module. │ │ │ │ +0006a5b0: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ +0006a5c0: 2020 202a 204c 2c20 6120 2a6e 6f74 6520 * L, a *note │ │ │ │ +0006a5d0: 6c69 7374 3a20 284d 6163 6175 6c61 7932 list: (Macaulay2 │ │ │ │ +0006a5e0: 446f 6329 4c69 7374 2c2c 204c 203d 205c Doc)List,, L = \ │ │ │ │ +0006a5f0: 7b73 6967 6d61 2c74 6175 5c7d 2c20 7370 {sigma,tau\}, sp │ │ │ │ +0006a600: 6c69 7474 696e 6773 206f 660a 2020 2020 littings of. │ │ │ │ +0006a610: 2020 2020 612c 6220 7265 7370 6563 7469 a,b respecti │ │ │ │ +0006a620: 7665 6c79 0a0a 4465 7363 7269 7074 696f vely..Descriptio │ │ │ │ +0006a630: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a41 n.===========..A │ │ │ │ +0006a640: 7373 756d 696e 6720 7468 6174 2028 612c ssuming that (a, │ │ │ │ +0006a650: 6229 2061 7265 2074 6865 206d 6170 7320 b) are the maps │ │ │ │ +0006a660: 6f66 2061 2072 6967 6874 2065 7861 6374 of a right exact │ │ │ │ +0006a670: 2073 6571 7565 6e63 650a 0a24 305c 746f sequence..$0\to │ │ │ │ +0006a680: 2041 5c74 6f20 425c 746f 2043 205c 746f A\to B\to C \to │ │ │ │ +0006a690: 2030 240a 0a77 6974 6820 422c 2043 2066 0$..with B, C f │ │ │ │ +0006a6a0: 7265 652c 2074 6865 2073 6372 6970 7420 ree, the script │ │ │ │ +0006a6b0: 7072 6f64 7563 6573 2061 2070 6169 7220 produces a pair │ │ │ │ +0006a6c0: 6f66 206d 6170 7320 7369 676d 612c 2074 of maps sigma, t │ │ │ │ +0006a6d0: 6175 2077 6974 6820 2474 6175 3a20 4320 au with $tau: C │ │ │ │ +0006a6e0: 5c74 6f0a 4224 2061 2073 706c 6974 7469 \to.B$ a splitti │ │ │ │ +0006a6f0: 6e67 206f 6620 6220 616e 6420 2473 6967 ng of b and $sig │ │ │ │ +0006a700: 6d61 3a20 4220 5c74 6f20 4124 2061 2073 ma: B \to A$ a s │ │ │ │ +0006a710: 706c 6974 7469 6e67 206f 6620 613b 2074 plitting of a; t │ │ │ │ +0006a720: 6861 7420 6973 2c0a 0a24 612a 7369 676d hat is,..$a*sigm │ │ │ │ +0006a730: 612b 7461 752a 6220 3d20 315f 4224 0a0a a+tau*b = 1_B$.. │ │ │ │ +0006a740: 2473 6967 6d61 2a61 203d 2031 5f41 240a $sigma*a = 1_A$. │ │ │ │ +0006a750: 0a24 622a 7461 7520 3d20 315f 4324 0a0a .$b*tau = 1_C$.. │ │ │ │ +0006a760: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0006a770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006a780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006a790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006a7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006a7b0: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 6b6b ------+.|i1 : kk │ │ │ │ -0006a7c0: 3d20 5a5a 2f31 3031 2020 2020 2020 2020 = ZZ/101 │ │ │ │ +0006a7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +0006a7b0: 203a 206b 6b3d 205a 5a2f 3130 3120 2020 : kk= ZZ/101 │ │ │ │ +0006a7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a800: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006a7f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0006a800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a850: 7c0a 7c6f 3120 3d20 6b6b 2020 2020 2020 |.|o1 = kk │ │ │ │ +0006a840: 2020 2020 207c 0a7c 6f31 203d 206b 6b20 |.|o1 = kk │ │ │ │ +0006a850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a890: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0006a890: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a8e0: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ -0006a8f0: 3a20 5175 6f74 6965 6e74 5269 6e67 2020 : QuotientRing │ │ │ │ +0006a8d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a8e0: 0a7c 6f31 203a 2051 756f 7469 656e 7452 .|o1 : QuotientR │ │ │ │ +0006a8f0: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ 0006a900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a930: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0006a920: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0006a930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006a940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006a950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006a960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006a970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006a980: 2d2d 2d2d 2b0a 7c69 3220 3a20 5320 3d20 ----+.|i2 : S = │ │ │ │ -0006a990: 6b6b 5b78 2c79 2c7a 5d20 2020 2020 2020 kk[x,y,z] │ │ │ │ +0006a970: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ +0006a980: 2053 203d 206b 6b5b 782c 792c 7a5d 2020 S = kk[x,y,z] │ │ │ │ +0006a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a9d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006a9c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0006a9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006aa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006aa10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0006aa20: 7c6f 3220 3d20 5320 2020 2020 2020 2020 |o2 = S │ │ │ │ +0006aa10: 2020 207c 0a7c 6f32 203d 2053 2020 2020 |.|o2 = S │ │ │ │ +0006aa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006aa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006aa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006aa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006aa60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0006aa60: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006aa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006aa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006aa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006aaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006aab0: 2020 2020 2020 2020 7c0a 7c6f 3220 3a20 |.|o2 : │ │ │ │ -0006aac0: 506f 6c79 6e6f 6d69 616c 5269 6e67 2020 PolynomialRing │ │ │ │ +0006aaa0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0006aab0: 6f32 203a 2050 6f6c 796e 6f6d 6961 6c52 o2 : PolynomialR │ │ │ │ +0006aac0: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ 0006aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006aae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006aaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ab00: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0006aaf0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0006ab00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ab10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ab20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ab30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ab40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ab50: 2d2d 2b0a 7c69 3320 3a20 7365 7452 616e --+.|i3 : setRan │ │ │ │ -0006ab60: 646f 6d53 6565 6420 3020 2020 2020 2020 domSeed 0 │ │ │ │ +0006ab40: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2073 -------+.|i3 : s │ │ │ │ +0006ab50: 6574 5261 6e64 6f6d 5365 6564 2030 2020 etRandomSeed 0 │ │ │ │ +0006ab60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ab70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ab80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ab90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0006aba0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0006ab90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0006aba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006abb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006abc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006abd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006abe0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0006abf0: 3320 3d20 3020 2020 2020 2020 2020 2020 3 = 0 │ │ │ │ +0006abe0: 207c 0a7c 6f33 203d 2030 2020 2020 2020 |.|o3 = 0 │ │ │ │ +0006abf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ac00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ac10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ac20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ac30: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0006ac20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0006ac30: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0006ac40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ac50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ac60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ac70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ac80: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 7420 ------+.|i4 : t │ │ │ │ -0006ac90: 3d20 7261 6e64 6f6d 2853 5e7b 323a 2d31 = random(S^{2:-1 │ │ │ │ -0006aca0: 2c32 3a2d 327d 2c20 535e 7b33 3a2d 312c ,2:-2}, S^{3:-1, │ │ │ │ -0006acb0: 343a 2d32 7d29 2020 2020 2020 2020 2020 4:-2}) │ │ │ │ -0006acc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006acd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006ac70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ +0006ac80: 203a 2074 203d 2072 616e 646f 6d28 535e : t = random(S^ │ │ │ │ +0006ac90: 7b32 3a2d 312c 323a 2d32 7d2c 2053 5e7b {2:-1,2:-2}, S^{ │ │ │ │ +0006aca0: 333a 2d31 2c34 3a2d 327d 2920 2020 2020 3:-1,4:-2}) │ │ │ │ +0006acb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006acc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0006acd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ace0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006acf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ad00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ad10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ad20: 7c0a 7c6f 3420 3d20 7b31 7d20 7c20 3234 |.|o4 = {1} | 24 │ │ │ │ -0006ad30: 2020 2d33 3620 2d33 3020 3339 782d 3433 -36 -30 39x-43 │ │ │ │ -0006ad40: 792b 3435 7a20 2032 3178 2d31 3579 2d33 y+45z 21x-15y-3 │ │ │ │ -0006ad50: 347a 2033 3478 2d32 3879 2d34 387a 2020 4z 34x-28y-48z │ │ │ │ -0006ad60: 3139 782d 3437 792d 3437 7a20 7c7c 0a7c 19x-47y-47z ||.| │ │ │ │ -0006ad70: 2020 2020 207b 317d 207c 202d 3239 2031 {1} | -29 1 │ │ │ │ -0006ad80: 3920 2031 3920 202d 3437 782b 3338 792b 9 19 -47x+38y+ │ │ │ │ -0006ad90: 3437 7a20 2d33 3978 2b32 792b 3139 7a20 47z -39x+2y+19z │ │ │ │ -0006ada0: 2d31 3878 2b31 3679 2d31 367a 202d 3133 -18x+16y-16z -13 │ │ │ │ -0006adb0: 782b 3232 792b 377a 207c 7c0a 7c20 2020 x+22y+7z ||.| │ │ │ │ -0006adc0: 2020 7b32 7d20 7c20 3020 2020 3020 2020 {2} | 0 0 │ │ │ │ -0006add0: 3020 2020 2d31 3020 2020 2020 2020 2020 0 -10 │ │ │ │ -0006ade0: 202d 3239 2020 2020 2020 2020 202d 3820 -29 -8 │ │ │ │ -0006adf0: 2020 2020 2020 2020 2020 2d32 3220 2020 -22 │ │ │ │ -0006ae00: 2020 2020 2020 7c7c 0a7c 2020 2020 207b ||.| { │ │ │ │ -0006ae10: 327d 207c 2030 2020 2030 2020 2030 2020 2} | 0 0 0 │ │ │ │ -0006ae20: 202d 3239 2020 2020 2020 2020 2020 2d32 -29 -2 │ │ │ │ -0006ae30: 3420 2020 2020 2020 2020 2d33 3820 2020 4 -38 │ │ │ │ -0006ae40: 2020 2020 2020 202d 3136 2020 2020 2020 -16 │ │ │ │ -0006ae50: 2020 207c 7c0a 7c20 2020 2020 2020 2020 ||.| │ │ │ │ +0006ad10: 2020 2020 207c 0a7c 6f34 203d 207b 317d |.|o4 = {1} │ │ │ │ +0006ad20: 207c 2032 3420 202d 3336 202d 3330 2033 | 24 -36 -30 3 │ │ │ │ +0006ad30: 3978 2d34 3379 2b34 357a 2020 3231 782d 9x-43y+45z 21x- │ │ │ │ +0006ad40: 3135 792d 3334 7a20 3334 782d 3238 792d 15y-34z 34x-28y- │ │ │ │ +0006ad50: 3438 7a20 2031 3978 2d34 3779 2d34 377a 48z 19x-47y-47z │ │ │ │ +0006ad60: 207c 7c0a 7c20 2020 2020 7b31 7d20 7c20 ||.| {1} | │ │ │ │ +0006ad70: 2d32 3920 3139 2020 3139 2020 2d34 3778 -29 19 19 -47x │ │ │ │ +0006ad80: 2b33 3879 2b34 377a 202d 3339 782b 3279 +38y+47z -39x+2y │ │ │ │ +0006ad90: 2b31 397a 202d 3138 782b 3136 792d 3136 +19z -18x+16y-16 │ │ │ │ +0006ada0: 7a20 2d31 3378 2b32 3279 2b37 7a20 7c7c z -13x+22y+7z || │ │ │ │ +0006adb0: 0a7c 2020 2020 207b 327d 207c 2030 2020 .| {2} | 0 │ │ │ │ +0006adc0: 2030 2020 2030 2020 202d 3130 2020 2020 0 0 -10 │ │ │ │ +0006add0: 2020 2020 2020 2d32 3920 2020 2020 2020 -29 │ │ │ │ +0006ade0: 2020 2d38 2020 2020 2020 2020 2020 202d -8 - │ │ │ │ +0006adf0: 3232 2020 2020 2020 2020 207c 7c0a 7c20 22 ||.| │ │ │ │ +0006ae00: 2020 2020 7b32 7d20 7c20 3020 2020 3020 {2} | 0 0 │ │ │ │ +0006ae10: 2020 3020 2020 2d32 3920 2020 2020 2020 0 -29 │ │ │ │ +0006ae20: 2020 202d 3234 2020 2020 2020 2020 202d -24 - │ │ │ │ +0006ae30: 3338 2020 2020 2020 2020 2020 2d31 3620 38 -16 │ │ │ │ +0006ae40: 2020 2020 2020 2020 7c7c 0a7c 2020 2020 ||.| │ │ │ │ +0006ae50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ae90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006aea0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0006aeb0: 2034 2020 2020 2020 3720 2020 2020 2020 4 7 │ │ │ │ +0006ae90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0006aea0: 2020 2020 2020 3420 2020 2020 2037 2020 4 7 │ │ │ │ +0006aeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006aec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006aed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006aee0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0006aef0: 7c6f 3420 3a20 4d61 7472 6978 2053 2020 |o4 : Matrix S │ │ │ │ -0006af00: 3c2d 2d20 5320 2020 2020 2020 2020 2020 <-- S │ │ │ │ +0006aee0: 2020 207c 0a7c 6f34 203a 204d 6174 7269 |.|o4 : Matri │ │ │ │ +0006aef0: 7820 5320 203c 2d2d 2053 2020 2020 2020 x S <-- S │ │ │ │ +0006af00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006af10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006af20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006af30: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0006af30: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0006af40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006af50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006af60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006af70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006af80: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 --------+.|i5 : │ │ │ │ -0006af90: 7373 203d 2073 706c 6974 7469 6e67 7328 ss = splittings( │ │ │ │ -0006afa0: 7379 7a20 742c 2074 2920 2020 2020 2020 syz t, t) │ │ │ │ +0006af70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0006af80: 6935 203a 2073 7320 3d20 7370 6c69 7474 i5 : ss = splitt │ │ │ │ +0006af90: 696e 6773 2873 797a 2074 2c20 7429 2020 ings(syz t, t) │ │ │ │ +0006afa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006afb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006afc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006afd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006afc0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006afd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006aff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b020: 2020 7c0a 7c6f 3520 3d20 7b7b 317d 207c |.|o5 = {{1} | │ │ │ │ -0006b030: 2030 2030 2031 2030 2030 2030 2020 2030 0 0 1 0 0 0 0 │ │ │ │ -0006b040: 2020 7c2c 207b 317d 207c 202d 3237 2032 |, {1} | -27 2 │ │ │ │ -0006b050: 2020 3133 782d 3130 792b 3433 7a20 3530 13x-10y+43z 50 │ │ │ │ -0006b060: 782d 3334 792d 3530 7a20 7c7d 2020 207c x-34y-50z |} | │ │ │ │ -0006b070: 0a7c 2020 2020 2020 7b32 7d20 7c20 3020 .| {2} | 0 │ │ │ │ -0006b080: 3020 3020 3020 3020 2d33 3120 2d36 207c 0 0 0 0 -31 -6 | │ │ │ │ -0006b090: 2020 7b31 7d20 7c20 2d34 2020 3335 2032 {1} | -4 35 2 │ │ │ │ -0006b0a0: 3278 2b33 3279 2b34 337a 202d 3778 2d38 2x+32y+43z -7x-8 │ │ │ │ -0006b0b0: 792d 3237 7a20 207c 2020 2020 7c0a 7c20 y-27z | |.| │ │ │ │ -0006b0c0: 2020 2020 207b 327d 207c 2030 2030 2030 {2} | 0 0 0 │ │ │ │ -0006b0d0: 2030 2030 2032 3920 2039 2020 7c20 207b 0 0 29 9 | { │ │ │ │ -0006b0e0: 317d 207c 2030 2020 2030 2020 3020 2020 1} | 0 0 0 │ │ │ │ -0006b0f0: 2020 2020 2020 2020 3020 2020 2020 2020 0 │ │ │ │ -0006b100: 2020 2020 7c20 2020 207c 0a7c 2020 2020 | |.| │ │ │ │ +0006b010: 2020 2020 2020 207c 0a7c 6f35 203d 207b |.|o5 = { │ │ │ │ +0006b020: 7b31 7d20 7c20 3020 3020 3120 3020 3020 {1} | 0 0 1 0 0 │ │ │ │ +0006b030: 3020 2020 3020 207c 2c20 7b31 7d20 7c20 0 0 |, {1} | │ │ │ │ +0006b040: 2d32 3720 3220 2031 3378 2d31 3079 2b34 -27 2 13x-10y+4 │ │ │ │ +0006b050: 337a 2035 3078 2d33 3479 2d35 307a 207c 3z 50x-34y-50z | │ │ │ │ +0006b060: 7d20 2020 7c0a 7c20 2020 2020 207b 327d } |.| {2} │ │ │ │ +0006b070: 207c 2030 2030 2030 2030 2030 202d 3331 | 0 0 0 0 0 -31 │ │ │ │ +0006b080: 202d 3620 7c20 207b 317d 207c 202d 3420 -6 | {1} | -4 │ │ │ │ +0006b090: 2033 3520 3232 782b 3332 792b 3433 7a20 35 22x+32y+43z │ │ │ │ +0006b0a0: 2d37 782d 3879 2d32 377a 2020 7c20 2020 -7x-8y-27z | │ │ │ │ +0006b0b0: 207c 0a7c 2020 2020 2020 7b32 7d20 7c20 |.| {2} | │ │ │ │ +0006b0c0: 3020 3020 3020 3020 3020 3239 2020 3920 0 0 0 0 0 29 9 │ │ │ │ +0006b0d0: 207c 2020 7b31 7d20 7c20 3020 2020 3020 | {1} | 0 0 │ │ │ │ +0006b0e0: 2030 2020 2020 2020 2020 2020 2030 2020 0 0 │ │ │ │ +0006b0f0: 2020 2020 2020 2020 207c 2020 2020 7c0a | |. │ │ │ │ +0006b100: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0006b110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b120: 2020 2020 2020 2020 2020 2020 7b32 7d20 {2} │ │ │ │ -0006b130: 7c20 3020 2020 3020 202d 3235 2020 2020 | 0 0 -25 │ │ │ │ -0006b140: 2020 2020 2032 3620 2020 2020 2020 2020 26 │ │ │ │ -0006b150: 207c 2020 2020 7c0a 7c20 2020 2020 2020 | |.| │ │ │ │ -0006b160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b170: 2020 2020 2020 2020 207b 327d 207c 2030 {2} | 0 │ │ │ │ -0006b180: 2020 2030 2020 3236 2020 2020 2020 2020 0 26 │ │ │ │ -0006b190: 2020 2d32 2020 2020 2020 2020 2020 7c20 -2 | │ │ │ │ -0006b1a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0006b1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b1c0: 2020 2020 2020 7b32 7d20 7c20 3020 2020 {2} | 0 │ │ │ │ -0006b1d0: 3020 2030 2020 2020 2020 2020 2020 2030 0 0 0 │ │ │ │ -0006b1e0: 2020 2020 2020 2020 2020 207c 2020 2020 | │ │ │ │ -0006b1f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0006b200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b210: 2020 207b 327d 207c 2030 2020 2030 2020 {2} | 0 0 │ │ │ │ -0006b220: 3020 2020 2020 2020 2020 2020 3020 2020 0 0 │ │ │ │ -0006b230: 2020 2020 2020 2020 7c20 2020 207c 0a7c | |.| │ │ │ │ +0006b120: 207b 327d 207c 2030 2020 2030 2020 2d32 {2} | 0 0 -2 │ │ │ │ +0006b130: 3520 2020 2020 2020 2020 3236 2020 2020 5 26 │ │ │ │ +0006b140: 2020 2020 2020 7c20 2020 207c 0a7c 2020 | |.| │ │ │ │ +0006b150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006b160: 2020 2020 2020 2020 2020 2020 2020 7b32 {2 │ │ │ │ +0006b170: 7d20 7c20 3020 2020 3020 2032 3620 2020 } | 0 0 26 │ │ │ │ +0006b180: 2020 2020 2020 202d 3220 2020 2020 2020 -2 │ │ │ │ +0006b190: 2020 207c 2020 2020 7c0a 7c20 2020 2020 | |.| │ │ │ │ +0006b1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006b1b0: 2020 2020 2020 2020 2020 207b 327d 207c {2} | │ │ │ │ +0006b1c0: 2030 2020 2030 2020 3020 2020 2020 2020 0 0 0 │ │ │ │ +0006b1d0: 2020 2020 3020 2020 2020 2020 2020 2020 0 │ │ │ │ +0006b1e0: 7c20 2020 207c 0a7c 2020 2020 2020 2020 | |.| │ │ │ │ +0006b1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006b200: 2020 2020 2020 2020 7b32 7d20 7c20 3020 {2} | 0 │ │ │ │ +0006b210: 2020 3020 2030 2020 2020 2020 2020 2020 0 0 │ │ │ │ +0006b220: 2030 2020 2020 2020 2020 2020 207c 2020 0 | │ │ │ │ +0006b230: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006b240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b280: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ -0006b290: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ +0006b270: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006b280: 0a7c 6f35 203a 204c 6973 7420 2020 2020 .|o5 : List │ │ │ │ +0006b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b2d0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0006b2c0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0006b2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006b2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006b2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006b300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006b310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006b320: 2d2d 2d2d 2b0a 7c69 3620 3a20 7373 2f62 ----+.|i6 : ss/b │ │ │ │ -0006b330: 6574 7469 2020 2020 2020 2020 2020 2020 etti │ │ │ │ +0006b310: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a ---------+.|i6 : │ │ │ │ +0006b320: 2073 732f 6265 7474 6920 2020 2020 2020 ss/betti │ │ │ │ +0006b330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b370: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006b360: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0006b370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b3b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0006b3c0: 7c20 2020 2020 2020 2020 2020 2020 3020 | 0 │ │ │ │ -0006b3d0: 3120 2020 2020 2020 2020 3020 3120 2020 1 0 1 │ │ │ │ +0006b3b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006b3c0: 2020 2030 2031 2020 2020 2020 2020 2030 0 1 0 │ │ │ │ +0006b3d0: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 0006b3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b400: 2020 2020 2020 2020 2020 207c 0a7c 6f36 |.|o6 │ │ │ │ -0006b410: 203d 207b 746f 7461 6c3a 2033 2037 2c20 = {total: 3 7, │ │ │ │ -0006b420: 746f 7461 6c3a 2037 2034 7d20 2020 2020 total: 7 4} │ │ │ │ +0006b400: 7c0a 7c6f 3620 3d20 7b74 6f74 616c 3a20 |.|o6 = {total: │ │ │ │ +0006b410: 3320 372c 2074 6f74 616c 3a20 3720 347d 3 7, total: 7 4} │ │ │ │ +0006b420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b450: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0006b460: 2020 2020 2030 3a20 2e20 3320 2020 2020 0: . 3 │ │ │ │ -0006b470: 2030 3a20 2e20 3220 2020 2020 2020 2020 0: . 2 │ │ │ │ +0006b440: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0006b450: 2020 2020 2020 2020 2020 303a 202e 2033 0: . 3 │ │ │ │ +0006b460: 2020 2020 2020 303a 202e 2032 2020 2020 0: . 2 │ │ │ │ +0006b470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b4a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0006b4b0: 2020 313a 2031 2034 2020 2020 2020 313a 1: 1 4 1: │ │ │ │ -0006b4c0: 2033 2032 2020 2020 2020 2020 2020 2020 3 2 │ │ │ │ +0006b490: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0006b4a0: 2020 2020 2020 2031 3a20 3120 3420 2020 1: 1 4 │ │ │ │ +0006b4b0: 2020 2031 3a20 3320 3220 2020 2020 2020 1: 3 2 │ │ │ │ +0006b4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b4f0: 2020 7c0a 7c20 2020 2020 2020 2020 2032 |.| 2 │ │ │ │ -0006b500: 3a20 3220 2e20 2020 2020 2032 3a20 3420 : 2 . 2: 4 │ │ │ │ -0006b510: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +0006b4e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0006b4f0: 2020 2020 323a 2032 202e 2020 2020 2020 2: 2 . │ │ │ │ +0006b500: 323a 2034 202e 2020 2020 2020 2020 2020 2: 4 . │ │ │ │ +0006b510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b530: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0006b540: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0006b530: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0006b540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b580: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0006b590: 3620 3a20 4c69 7374 2020 2020 2020 2020 6 : List │ │ │ │ +0006b580: 207c 0a7c 6f36 203a 204c 6973 7420 2020 |.|o6 : List │ │ │ │ +0006b590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b5d0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0006b5c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0006b5d0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0006b5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006b5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006b600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006b610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006b620: 2d2d 2d2d 2d2d 2b0a 0a57 6179 7320 746f ------+..Ways to │ │ │ │ -0006b630: 2075 7365 2073 706c 6974 7469 6e67 733a use splittings: │ │ │ │ -0006b640: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0006b650: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2273 ========.. * "s │ │ │ │ -0006b660: 706c 6974 7469 6e67 7328 4d61 7472 6978 plittings(Matrix │ │ │ │ -0006b670: 2c4d 6174 7269 7829 220a 0a46 6f72 2074 ,Matrix)"..For t │ │ │ │ -0006b680: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ -0006b690: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0006b6a0: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ -0006b6b0: 7465 2073 706c 6974 7469 6e67 733a 2073 te splittings: s │ │ │ │ -0006b6c0: 706c 6974 7469 6e67 732c 2069 7320 6120 plittings, is a │ │ │ │ -0006b6d0: 2a6e 6f74 6520 6d65 7468 6f64 2066 756e *note method fun │ │ │ │ -0006b6e0: 6374 696f 6e3a 0a28 4d61 6361 756c 6179 ction:.(Macaulay │ │ │ │ -0006b6f0: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ -0006b700: 696f 6e2c 2e0a 1f0a 4669 6c65 3a20 436f ion,....File: Co │ │ │ │ -0006b710: 6d70 6c65 7465 496e 7465 7273 6563 7469 mpleteIntersecti │ │ │ │ -0006b720: 6f6e 5265 736f 6c75 7469 6f6e 732e 696e onResolutions.in │ │ │ │ -0006b730: 666f 2c20 4e6f 6465 3a20 7374 6162 6c65 fo, Node: stable │ │ │ │ -0006b740: 486f 6d2c 204e 6578 743a 2073 756d 5477 Hom, Next: sumTw │ │ │ │ -0006b750: 6f4d 6f6e 6f6d 6961 6c73 2c20 5072 6576 oMonomials, Prev │ │ │ │ -0006b760: 3a20 7370 6c69 7474 696e 6773 2c20 5570 : splittings, Up │ │ │ │ -0006b770: 3a20 546f 700a 0a73 7461 626c 6548 6f6d : Top..stableHom │ │ │ │ -0006b780: 202d 2d20 6d61 7020 6672 6f6d 2048 6f6d -- map from Hom │ │ │ │ -0006b790: 284d 2c4e 2920 746f 2074 6865 2073 7461 (M,N) to the sta │ │ │ │ -0006b7a0: 626c 6520 486f 6d20 6d6f 6475 6c65 0a2a ble Hom module.* │ │ │ │ +0006b610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5761 -----------+..Wa │ │ │ │ +0006b620: 7973 2074 6f20 7573 6520 7370 6c69 7474 ys to use splitt │ │ │ │ +0006b630: 696e 6773 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d ings:.========== │ │ │ │ +0006b640: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +0006b650: 202a 2022 7370 6c69 7474 696e 6773 284d * "splittings(M │ │ │ │ +0006b660: 6174 7269 782c 4d61 7472 6978 2922 0a0a atrix,Matrix)".. │ │ │ │ +0006b670: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +0006b680: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +0006b690: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +0006b6a0: 7420 2a6e 6f74 6520 7370 6c69 7474 696e t *note splittin │ │ │ │ +0006b6b0: 6773 3a20 7370 6c69 7474 696e 6773 2c20 gs: splittings, │ │ │ │ +0006b6c0: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ +0006b6d0: 6420 6675 6e63 7469 6f6e 3a0a 284d 6163 d function:.(Mac │ │ │ │ +0006b6e0: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ +0006b6f0: 4675 6e63 7469 6f6e 2c2e 0a1f 0a46 696c Function,....Fil │ │ │ │ +0006b700: 653a 2043 6f6d 706c 6574 6549 6e74 6572 e: CompleteInter │ │ │ │ +0006b710: 7365 6374 696f 6e52 6573 6f6c 7574 696f sectionResolutio │ │ │ │ +0006b720: 6e73 2e69 6e66 6f2c 204e 6f64 653a 2073 ns.info, Node: s │ │ │ │ +0006b730: 7461 626c 6548 6f6d 2c20 4e65 7874 3a20 tableHom, Next: │ │ │ │ +0006b740: 7375 6d54 776f 4d6f 6e6f 6d69 616c 732c sumTwoMonomials, │ │ │ │ +0006b750: 2050 7265 763a 2073 706c 6974 7469 6e67 Prev: splitting │ │ │ │ +0006b760: 732c 2055 703a 2054 6f70 0a0a 7374 6162 s, Up: Top..stab │ │ │ │ +0006b770: 6c65 486f 6d20 2d2d 206d 6170 2066 726f leHom -- map fro │ │ │ │ +0006b780: 6d20 486f 6d28 4d2c 4e29 2074 6f20 7468 m Hom(M,N) to th │ │ │ │ +0006b790: 6520 7374 6162 6c65 2048 6f6d 206d 6f64 e stable Hom mod │ │ │ │ +0006b7a0: 756c 650a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ule.************ │ │ │ │ 0006b7b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006b7c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006b7d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006b7e0: 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 ******..Synopsis │ │ │ │ -0006b7f0: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 .========.. * U │ │ │ │ -0006b800: 7361 6765 3a20 0a20 2020 2020 2020 2070 sage: . p │ │ │ │ -0006b810: 203d 2073 7461 626c 6548 6f6d 284d 2c4e = stableHom(M,N │ │ │ │ -0006b820: 290a 2020 2a20 496e 7075 7473 3a0a 2020 ). * Inputs:. │ │ │ │ -0006b830: 2020 2020 2a20 4d2c 2061 202a 6e6f 7465 * M, a *note │ │ │ │ -0006b840: 206d 6f64 756c 653a 2028 4d61 6361 756c module: (Macaul │ │ │ │ -0006b850: 6179 3244 6f63 294d 6f64 756c 652c 2c20 ay2Doc)Module,, │ │ │ │ -0006b860: 0a20 2020 2020 202a 204e 2c20 6120 2a6e . * N, a *n │ │ │ │ -0006b870: 6f74 6520 6d6f 6475 6c65 3a20 284d 6163 ote module: (Mac │ │ │ │ -0006b880: 6175 6c61 7932 446f 6329 4d6f 6475 6c65 aulay2Doc)Module │ │ │ │ -0006b890: 2c2c 200a 2020 2a20 4f75 7470 7574 733a ,, . * Outputs: │ │ │ │ -0006b8a0: 0a20 2020 2020 202a 2070 2c20 6120 2a6e . * p, a *n │ │ │ │ -0006b8b0: 6f74 6520 6d61 7472 6978 3a20 284d 6163 ote matrix: (Mac │ │ │ │ -0006b8c0: 6175 6c61 7932 446f 6329 4d61 7472 6978 aulay2Doc)Matrix │ │ │ │ -0006b8d0: 2c2c 2070 726f 6a65 6374 696f 6e20 6672 ,, projection fr │ │ │ │ -0006b8e0: 6f6d 2048 6f6d 284d 2c4e 2920 746f 0a20 om Hom(M,N) to. │ │ │ │ -0006b8f0: 2020 2020 2020 2074 6865 2073 7461 626c the stabl │ │ │ │ -0006b900: 6520 486f 6d0a 0a44 6573 6372 6970 7469 e Hom..Descripti │ │ │ │ -0006b910: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -0006b920: 5468 6520 7374 6162 6c65 2048 6f6d 2069 The stable Hom i │ │ │ │ -0006b930: 7320 486f 6d28 4d2c 4e29 2f54 2077 6865 s Hom(M,N)/T whe │ │ │ │ -0006b940: 7265 2054 2069 7320 7468 6520 7375 626d re T is the subm │ │ │ │ -0006b950: 6f64 756c 6520 6f66 2068 6f6d 6f6d 6f72 odule of homomor │ │ │ │ -0006b960: 7068 6973 6d73 2074 6861 740a 6661 6374 phisms that.fact │ │ │ │ -0006b970: 6f72 2074 6872 6f75 6768 2061 2066 7265 or through a fre │ │ │ │ -0006b980: 6520 636f 7665 7220 6f66 204e 2028 6f72 e cover of N (or │ │ │ │ -0006b990: 2c20 6571 7569 7661 6c65 6e74 6c79 2c20 , equivalently, │ │ │ │ -0006b9a0: 7468 726f 7567 6820 616e 7920 7072 6f6a through any proj │ │ │ │ -0006b9b0: 6563 7469 7665 290a 0a53 6565 2061 6c73 ective)..See als │ │ │ │ -0006b9c0: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ -0006b9d0: 2a6e 6f74 6520 6973 5374 6162 6c79 5472 *note isStablyTr │ │ │ │ -0006b9e0: 6976 6961 6c3a 2069 7353 7461 626c 7954 ivial: isStablyT │ │ │ │ -0006b9f0: 7269 7669 616c 2c20 2d2d 2072 6574 7572 rivial, -- retur │ │ │ │ -0006ba00: 6e73 2074 7275 6520 6966 2074 6865 206d ns true if the m │ │ │ │ -0006ba10: 6170 2067 6f65 7320 746f 0a20 2020 2030 ap goes to. 0 │ │ │ │ -0006ba20: 2075 6e64 6572 2073 7461 626c 6548 6f6d under stableHom │ │ │ │ -0006ba30: 0a0a 5761 7973 2074 6f20 7573 6520 7374 ..Ways to use st │ │ │ │ -0006ba40: 6162 6c65 486f 6d3a 0a3d 3d3d 3d3d 3d3d ableHom:.======= │ │ │ │ -0006ba50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -0006ba60: 0a20 202a 2022 7374 6162 6c65 486f 6d28 . * "stableHom( │ │ │ │ -0006ba70: 4d6f 6475 6c65 2c4d 6f64 756c 6529 220a Module,Module)". │ │ │ │ -0006ba80: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ -0006ba90: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ -0006baa0: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ -0006bab0: 6374 202a 6e6f 7465 2073 7461 626c 6548 ct *note stableH │ │ │ │ -0006bac0: 6f6d 3a20 7374 6162 6c65 486f 6d2c 2069 om: stableHom, i │ │ │ │ -0006bad0: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ -0006bae0: 2066 756e 6374 696f 6e3a 0a28 4d61 6361 function:.(Maca │ │ │ │ -0006baf0: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ -0006bb00: 756e 6374 696f 6e2c 2e0a 1f0a 4669 6c65 unction,....File │ │ │ │ -0006bb10: 3a20 436f 6d70 6c65 7465 496e 7465 7273 : CompleteInters │ │ │ │ -0006bb20: 6563 7469 6f6e 5265 736f 6c75 7469 6f6e ectionResolution │ │ │ │ -0006bb30: 732e 696e 666f 2c20 4e6f 6465 3a20 7375 s.info, Node: su │ │ │ │ -0006bb40: 6d54 776f 4d6f 6e6f 6d69 616c 732c 204e mTwoMonomials, N │ │ │ │ -0006bb50: 6578 743a 2054 6174 6552 6573 6f6c 7574 ext: TateResolut │ │ │ │ -0006bb60: 696f 6e2c 2050 7265 763a 2073 7461 626c ion, Prev: stabl │ │ │ │ -0006bb70: 6548 6f6d 2c20 5570 3a20 546f 700a 0a73 eHom, Up: Top..s │ │ │ │ -0006bb80: 756d 5477 6f4d 6f6e 6f6d 6961 6c73 202d umTwoMonomials - │ │ │ │ -0006bb90: 2d20 7461 6c6c 7920 7468 6520 7365 7175 - tally the sequ │ │ │ │ -0006bba0: 656e 6365 7320 6f66 2042 5261 6e6b 7320 ences of BRanks │ │ │ │ -0006bbb0: 666f 7220 6365 7274 6169 6e20 6578 616d for certain exam │ │ │ │ -0006bbc0: 706c 6573 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a ples.*********** │ │ │ │ +0006b7d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 796e ***********..Syn │ │ │ │ +0006b7e0: 6f70 7369 730a 3d3d 3d3d 3d3d 3d3d 0a0a opsis.========.. │ │ │ │ +0006b7f0: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ +0006b800: 2020 2020 7020 3d20 7374 6162 6c65 486f p = stableHo │ │ │ │ +0006b810: 6d28 4d2c 4e29 0a20 202a 2049 6e70 7574 m(M,N). * Input │ │ │ │ +0006b820: 733a 0a20 2020 2020 202a 204d 2c20 6120 s:. * M, a │ │ │ │ +0006b830: 2a6e 6f74 6520 6d6f 6475 6c65 3a20 284d *note module: (M │ │ │ │ +0006b840: 6163 6175 6c61 7932 446f 6329 4d6f 6475 acaulay2Doc)Modu │ │ │ │ +0006b850: 6c65 2c2c 200a 2020 2020 2020 2a20 4e2c le,, . * N, │ │ │ │ +0006b860: 2061 202a 6e6f 7465 206d 6f64 756c 653a a *note module: │ │ │ │ +0006b870: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +0006b880: 6f64 756c 652c 2c20 0a20 202a 204f 7574 odule,, . * Out │ │ │ │ +0006b890: 7075 7473 3a0a 2020 2020 2020 2a20 702c puts:. * p, │ │ │ │ +0006b8a0: 2061 202a 6e6f 7465 206d 6174 7269 783a a *note matrix: │ │ │ │ +0006b8b0: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +0006b8c0: 6174 7269 782c 2c20 7072 6f6a 6563 7469 atrix,, projecti │ │ │ │ +0006b8d0: 6f6e 2066 726f 6d20 486f 6d28 4d2c 4e29 on from Hom(M,N) │ │ │ │ +0006b8e0: 2074 6f0a 2020 2020 2020 2020 7468 6520 to. the │ │ │ │ +0006b8f0: 7374 6162 6c65 2048 6f6d 0a0a 4465 7363 stable Hom..Desc │ │ │ │ +0006b900: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +0006b910: 3d3d 3d0a 0a54 6865 2073 7461 626c 6520 ===..The stable │ │ │ │ +0006b920: 486f 6d20 6973 2048 6f6d 284d 2c4e 292f Hom is Hom(M,N)/ │ │ │ │ +0006b930: 5420 7768 6572 6520 5420 6973 2074 6865 T where T is the │ │ │ │ +0006b940: 2073 7562 6d6f 6475 6c65 206f 6620 686f submodule of ho │ │ │ │ +0006b950: 6d6f 6d6f 7270 6869 736d 7320 7468 6174 momorphisms that │ │ │ │ +0006b960: 0a66 6163 746f 7220 7468 726f 7567 6820 .factor through │ │ │ │ +0006b970: 6120 6672 6565 2063 6f76 6572 206f 6620 a free cover of │ │ │ │ +0006b980: 4e20 286f 722c 2065 7175 6976 616c 656e N (or, equivalen │ │ │ │ +0006b990: 746c 792c 2074 6872 6f75 6768 2061 6e79 tly, through any │ │ │ │ +0006b9a0: 2070 726f 6a65 6374 6976 6529 0a0a 5365 projective)..Se │ │ │ │ +0006b9b0: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +0006b9c0: 0a20 202a 202a 6e6f 7465 2069 7353 7461 . * *note isSta │ │ │ │ +0006b9d0: 626c 7954 7269 7669 616c 3a20 6973 5374 blyTrivial: isSt │ │ │ │ +0006b9e0: 6162 6c79 5472 6976 6961 6c2c 202d 2d20 ablyTrivial, -- │ │ │ │ +0006b9f0: 7265 7475 726e 7320 7472 7565 2069 6620 returns true if │ │ │ │ +0006ba00: 7468 6520 6d61 7020 676f 6573 2074 6f0a the map goes to. │ │ │ │ +0006ba10: 2020 2020 3020 756e 6465 7220 7374 6162 0 under stab │ │ │ │ +0006ba20: 6c65 486f 6d0a 0a57 6179 7320 746f 2075 leHom..Ways to u │ │ │ │ +0006ba30: 7365 2073 7461 626c 6548 6f6d 3a0a 3d3d se stableHom:.== │ │ │ │ +0006ba40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0006ba50: 3d3d 3d3d 0a0a 2020 2a20 2273 7461 626c ====.. * "stabl │ │ │ │ +0006ba60: 6548 6f6d 284d 6f64 756c 652c 4d6f 6475 eHom(Module,Modu │ │ │ │ +0006ba70: 6c65 2922 0a0a 466f 7220 7468 6520 7072 le)"..For the pr │ │ │ │ +0006ba80: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ +0006ba90: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ +0006baa0: 206f 626a 6563 7420 2a6e 6f74 6520 7374 object *note st │ │ │ │ +0006bab0: 6162 6c65 486f 6d3a 2073 7461 626c 6548 ableHom: stableH │ │ │ │ +0006bac0: 6f6d 2c20 6973 2061 202a 6e6f 7465 206d om, is a *note m │ │ │ │ +0006bad0: 6574 686f 6420 6675 6e63 7469 6f6e 3a0a ethod function:. │ │ │ │ +0006bae0: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ +0006baf0: 7468 6f64 4675 6e63 7469 6f6e 2c2e 0a1f thodFunction,... │ │ │ │ +0006bb00: 0a46 696c 653a 2043 6f6d 706c 6574 6549 .File: CompleteI │ │ │ │ +0006bb10: 6e74 6572 7365 6374 696f 6e52 6573 6f6c ntersectionResol │ │ │ │ +0006bb20: 7574 696f 6e73 2e69 6e66 6f2c 204e 6f64 utions.info, Nod │ │ │ │ +0006bb30: 653a 2073 756d 5477 6f4d 6f6e 6f6d 6961 e: sumTwoMonomia │ │ │ │ +0006bb40: 6c73 2c20 4e65 7874 3a20 5461 7465 5265 ls, Next: TateRe │ │ │ │ +0006bb50: 736f 6c75 7469 6f6e 2c20 5072 6576 3a20 solution, Prev: │ │ │ │ +0006bb60: 7374 6162 6c65 486f 6d2c 2055 703a 2054 stableHom, Up: T │ │ │ │ +0006bb70: 6f70 0a0a 7375 6d54 776f 4d6f 6e6f 6d69 op..sumTwoMonomi │ │ │ │ +0006bb80: 616c 7320 2d2d 2074 616c 6c79 2074 6865 als -- tally the │ │ │ │ +0006bb90: 2073 6571 7565 6e63 6573 206f 6620 4252 sequences of BR │ │ │ │ +0006bba0: 616e 6b73 2066 6f72 2063 6572 7461 696e anks for certain │ │ │ │ +0006bbb0: 2065 7861 6d70 6c65 730a 2a2a 2a2a 2a2a examples.****** │ │ │ │ +0006bbc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006bbd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006bbe0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006bbf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006bc00: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f **********..Syno │ │ │ │ -0006bc10: 7073 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 psis.========.. │ │ │ │ -0006bc20: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ -0006bc30: 2020 2073 756d 5477 6f4d 6f6e 6f6d 6961 sumTwoMonomia │ │ │ │ -0006bc40: 6c73 2863 2c64 290a 2020 2a20 496e 7075 ls(c,d). * Inpu │ │ │ │ -0006bc50: 7473 3a0a 2020 2020 2020 2a20 632c 2061 ts:. * c, a │ │ │ │ -0006bc60: 6e20 2a6e 6f74 6520 696e 7465 6765 723a n *note integer: │ │ │ │ -0006bc70: 2028 4d61 6361 756c 6179 3244 6f63 295a (Macaulay2Doc)Z │ │ │ │ -0006bc80: 5a2c 2c20 636f 6469 6d65 6e73 696f 6e20 Z,, codimension │ │ │ │ -0006bc90: 696e 2077 6869 6368 2074 6f20 776f 726b in which to work │ │ │ │ -0006bca0: 0a20 2020 2020 202a 2064 2c20 616e 202a . * d, an * │ │ │ │ -0006bcb0: 6e6f 7465 2069 6e74 6567 6572 3a20 284d note integer: (M │ │ │ │ -0006bcc0: 6163 6175 6c61 7932 446f 6329 5a5a 2c2c acaulay2Doc)ZZ,, │ │ │ │ -0006bcd0: 2064 6567 7265 6520 6f66 2074 6865 206d degree of the m │ │ │ │ -0006bce0: 6f6e 6f6d 6961 6c73 2074 6f20 7461 6b65 onomials to take │ │ │ │ -0006bcf0: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ -0006bd00: 2020 2020 2a20 542c 2061 202a 6e6f 7465 * T, a *note │ │ │ │ -0006bd10: 2074 616c 6c79 3a20 284d 6163 6175 6c61 tally: (Macaula │ │ │ │ -0006bd20: 7932 446f 6329 5461 6c6c 792c 2c20 0a0a y2Doc)Tally,, .. │ │ │ │ -0006bd30: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -0006bd40: 3d3d 3d3d 3d3d 3d0a 0a74 616c 6c69 6573 =======..tallies │ │ │ │ -0006bd50: 2074 6865 2073 6571 7565 6e63 6573 206f the sequences o │ │ │ │ -0006bd60: 6620 422d 7261 6e6b 7320 7468 6174 206f f B-ranks that o │ │ │ │ -0006bd70: 6363 7572 2066 6f72 2073 756d 7320 6f66 ccur for sums of │ │ │ │ -0006bd80: 2070 6169 7273 206f 6620 6d6f 6e6f 6d69 pairs of monomi │ │ │ │ -0006bd90: 616c 7320 696e 2052 0a3d 2053 2f28 642d als in R.= S/(d- │ │ │ │ -0006bda0: 7468 2070 6f77 6572 7320 6f66 2074 6865 th powers of the │ │ │ │ -0006bdb0: 2076 6172 6961 626c 6573 292c 2077 6974 variables), wit │ │ │ │ -0006bdc0: 6820 6675 6c6c 2063 6f6d 706c 6578 6974 h full complexit │ │ │ │ -0006bdd0: 7920 283d 6329 3b20 7468 6174 2069 732c y (=c); that is, │ │ │ │ -0006bde0: 2066 6f72 2061 6e0a 6170 7072 6f70 7269 for an.appropri │ │ │ │ -0006bdf0: 6174 6520 7379 7a79 6779 204d 206f 6620 ate syzygy M of │ │ │ │ -0006be00: 4d30 203d 2052 2f28 6d31 2b6d 3229 2077 M0 = R/(m1+m2) w │ │ │ │ -0006be10: 6865 7265 206d 3120 616e 6420 6d32 2061 here m1 and m2 a │ │ │ │ -0006be20: 7265 206d 6f6e 6f6d 6961 6c73 206f 6620 re monomials of │ │ │ │ -0006be30: 7468 650a 7361 6d65 2064 6567 7265 652e the.same degree. │ │ │ │ -0006be40: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ +0006bbf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +0006bc00: 0a53 796e 6f70 7369 730a 3d3d 3d3d 3d3d .Synopsis.====== │ │ │ │ +0006bc10: 3d3d 0a0a 2020 2a20 5573 6167 653a 200a ==.. * Usage: . │ │ │ │ +0006bc20: 2020 2020 2020 2020 7375 6d54 776f 4d6f sumTwoMo │ │ │ │ +0006bc30: 6e6f 6d69 616c 7328 632c 6429 0a20 202a nomials(c,d). * │ │ │ │ +0006bc40: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +0006bc50: 2063 2c20 616e 202a 6e6f 7465 2069 6e74 c, an *note int │ │ │ │ +0006bc60: 6567 6572 3a20 284d 6163 6175 6c61 7932 eger: (Macaulay2 │ │ │ │ +0006bc70: 446f 6329 5a5a 2c2c 2063 6f64 696d 656e Doc)ZZ,, codimen │ │ │ │ +0006bc80: 7369 6f6e 2069 6e20 7768 6963 6820 746f sion in which to │ │ │ │ +0006bc90: 2077 6f72 6b0a 2020 2020 2020 2a20 642c work. * d, │ │ │ │ +0006bca0: 2061 6e20 2a6e 6f74 6520 696e 7465 6765 an *note intege │ │ │ │ +0006bcb0: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ +0006bcc0: 295a 5a2c 2c20 6465 6772 6565 206f 6620 )ZZ,, degree of │ │ │ │ +0006bcd0: 7468 6520 6d6f 6e6f 6d69 616c 7320 746f the monomials to │ │ │ │ +0006bce0: 2074 616b 650a 2020 2a20 4f75 7470 7574 take. * Output │ │ │ │ +0006bcf0: 733a 0a20 2020 2020 202a 2054 2c20 6120 s:. * T, a │ │ │ │ +0006bd00: 2a6e 6f74 6520 7461 6c6c 793a 2028 4d61 *note tally: (Ma │ │ │ │ +0006bd10: 6361 756c 6179 3244 6f63 2954 616c 6c79 caulay2Doc)Tally │ │ │ │ +0006bd20: 2c2c 200a 0a44 6573 6372 6970 7469 6f6e ,, ..Description │ │ │ │ +0006bd30: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 7461 .===========..ta │ │ │ │ +0006bd40: 6c6c 6965 7320 7468 6520 7365 7175 656e llies the sequen │ │ │ │ +0006bd50: 6365 7320 6f66 2042 2d72 616e 6b73 2074 ces of B-ranks t │ │ │ │ +0006bd60: 6861 7420 6f63 6375 7220 666f 7220 7375 hat occur for su │ │ │ │ +0006bd70: 6d73 206f 6620 7061 6972 7320 6f66 206d ms of pairs of m │ │ │ │ +0006bd80: 6f6e 6f6d 6961 6c73 2069 6e20 520a 3d20 onomials in R.= │ │ │ │ +0006bd90: 532f 2864 2d74 6820 706f 7765 7273 206f S/(d-th powers o │ │ │ │ +0006bda0: 6620 7468 6520 7661 7269 6162 6c65 7329 f the variables) │ │ │ │ +0006bdb0: 2c20 7769 7468 2066 756c 6c20 636f 6d70 , with full comp │ │ │ │ +0006bdc0: 6c65 7869 7479 2028 3d63 293b 2074 6861 lexity (=c); tha │ │ │ │ +0006bdd0: 7420 6973 2c20 666f 7220 616e 0a61 7070 t is, for an.app │ │ │ │ +0006bde0: 726f 7072 6961 7465 2073 797a 7967 7920 ropriate syzygy │ │ │ │ +0006bdf0: 4d20 6f66 204d 3020 3d20 522f 286d 312b M of M0 = R/(m1+ │ │ │ │ +0006be00: 6d32 2920 7768 6572 6520 6d31 2061 6e64 m2) where m1 and │ │ │ │ +0006be10: 206d 3220 6172 6520 6d6f 6e6f 6d69 616c m2 are monomial │ │ │ │ +0006be20: 7320 6f66 2074 6865 0a73 616d 6520 6465 s of the.same de │ │ │ │ +0006be30: 6772 6565 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d gree...+-------- │ │ │ │ +0006be40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006be50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006be60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006be70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0006be80: 3120 3a20 7365 7452 616e 646f 6d53 6565 1 : setRandomSee │ │ │ │ -0006be90: 6420 3020 2020 2020 2020 2020 2020 2020 d 0 │ │ │ │ -0006bea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006beb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0006be70: 2d2b 0a7c 6931 203a 2073 6574 5261 6e64 -+.|i1 : setRand │ │ │ │ +0006be80: 6f6d 5365 6564 2030 2020 2020 2020 2020 omSeed 0 │ │ │ │ +0006be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006bea0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0006beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bef0: 2020 2020 7c0a 7c6f 3120 3d20 3020 2020 |.|o1 = 0 │ │ │ │ +0006bee0: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ +0006bef0: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 0006bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bf30: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0006bf20: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0006bf30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006bf40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006bf50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006bf60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0006bf70: 3220 3a20 7375 6d54 776f 4d6f 6e6f 6d69 2 : sumTwoMonomi │ │ │ │ -0006bf80: 616c 7328 322c 3329 2020 2020 2020 2020 als(2,3) │ │ │ │ -0006bf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bfa0: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -0006bfb0: 7365 6420 302e 3737 3332 3538 7320 2863 sed 0.773258s (c │ │ │ │ -0006bfc0: 7075 293b 2030 2e34 3439 3738 3773 2028 pu); 0.449787s ( │ │ │ │ -0006bfd0: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ -0006bfe0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -0006bff0: 302e 3333 3435 3873 2028 6370 7529 3b20 0.33458s (cpu); │ │ │ │ -0006c000: 302e 3230 3233 3436 7320 2874 6872 6561 0.202346s (threa │ │ │ │ -0006c010: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ -0006c020: 7c0a 7c20 2d2d 2075 7365 6420 302e 3030 |.| -- used 0.00 │ │ │ │ -0006c030: 3031 3430 3235 3373 2028 6370 7529 3b20 0140253s (cpu); │ │ │ │ -0006c040: 322e 3830 3665 2d30 3673 2028 7468 7265 2.806e-06s (thre │ │ │ │ -0006c050: 6164 293b 2030 7320 2867 6329 7c0a 7c32 ad); 0s (gc)|.|2 │ │ │ │ +0006bf60: 2d2b 0a7c 6932 203a 2073 756d 5477 6f4d -+.|i2 : sumTwoM │ │ │ │ +0006bf70: 6f6e 6f6d 6961 6c73 2832 2c33 2920 2020 onomials(2,3) │ │ │ │ +0006bf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006bf90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0006bfa0: 202d 2d20 7573 6564 2031 2e34 3638 3536 -- used 1.46856 │ │ │ │ +0006bfb0: 7320 2863 7075 293b 2030 2e35 3436 3630 s (cpu); 0.54660 │ │ │ │ +0006bfc0: 3773 2028 7468 7265 6164 293b 2030 7320 7s (thread); 0s │ │ │ │ +0006bfd0: 2867 6329 2020 2020 207c 0a7c 202d 2d20 (gc) |.| -- │ │ │ │ +0006bfe0: 7573 6564 2030 2e35 3331 3832 3973 2028 used 0.531829s ( │ │ │ │ +0006bff0: 6370 7529 3b20 302e 3234 3138 3532 7320 cpu); 0.241852s │ │ │ │ +0006c000: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ +0006c010: 2920 2020 207c 0a7c 202d 2d20 7573 6564 ) |.| -- used │ │ │ │ +0006c020: 2030 2e30 3030 3131 3838 3333 7320 2863 0.000118833s (c │ │ │ │ +0006c030: 7075 293b 2031 2e37 3633 652d 3036 7320 pu); 1.763e-06s │ │ │ │ +0006c040: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ +0006c050: 297c 0a7c 3220 2020 2020 2020 2020 2020 )|.|2 │ │ │ │ 0006c060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c090: 2020 2020 2020 2020 7c0a 7c54 616c 6c79 |.|Tally │ │ │ │ -0006c0a0: 7b7b 7b32 2c20 327d 2c20 7b31 2c20 327d {{{2, 2}, {1, 2} │ │ │ │ -0006c0b0: 7d20 3d3e 2033 7d20 2020 2020 2020 2020 } => 3} │ │ │ │ -0006c0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c0d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0006c080: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0006c090: 5461 6c6c 797b 7b7b 322c 2032 7d2c 207b Tally{{{2, 2}, { │ │ │ │ +0006c0a0: 312c 2032 7d7d 203d 3e20 337d 2020 2020 1, 2}} => 3} │ │ │ │ +0006c0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006c0c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006c0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c110: 7c0a 7c33 2020 2020 2020 2020 2020 2020 |.|3 │ │ │ │ +0006c100: 2020 2020 207c 0a7c 3320 2020 2020 2020 |.|3 │ │ │ │ +0006c110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c140: 2020 2020 2020 2020 2020 2020 7c0a 7c54 |.|T │ │ │ │ -0006c150: 616c 6c79 7b7b 7b32 2c20 327d 2c20 7b31 ally{{{2, 2}, {1 │ │ │ │ -0006c160: 2c20 327d 7d20 3d3e 2031 7d20 2020 2020 , 2}} => 1} │ │ │ │ -0006c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c180: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0006c140: 207c 0a7c 5461 6c6c 797b 7b7b 322c 2032 |.|Tally{{{2, 2 │ │ │ │ +0006c150: 7d2c 207b 312c 2032 7d7d 203d 3e20 317d }, {1, 2}} => 1} │ │ │ │ +0006c160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006c170: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0006c180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c1c0: 2020 2020 7c0a 7c34 2020 2020 2020 2020 |.|4 │ │ │ │ +0006c1b0: 2020 2020 2020 2020 207c 0a7c 3420 2020 |.|4 │ │ │ │ +0006c1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c200: 7c0a 7c54 616c 6c79 7b7d 2020 2020 2020 |.|Tally{} │ │ │ │ +0006c1f0: 2020 2020 207c 0a7c 5461 6c6c 797b 7d20 |.|Tally{} │ │ │ │ +0006c200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c230: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0006c230: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0006c240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006c250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006c260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006c270: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ -0006c280: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ -0006c290: 2a20 2a6e 6f74 6520 7477 6f4d 6f6e 6f6d * *note twoMonom │ │ │ │ -0006c2a0: 6961 6c73 3a20 7477 6f4d 6f6e 6f6d 6961 ials: twoMonomia │ │ │ │ -0006c2b0: 6c73 2c20 2d2d 2074 616c 6c79 2074 6865 ls, -- tally the │ │ │ │ -0006c2c0: 2073 6571 7565 6e63 6573 206f 6620 4252 sequences of BR │ │ │ │ -0006c2d0: 616e 6b73 2066 6f72 0a20 2020 2063 6572 anks for. cer │ │ │ │ -0006c2e0: 7461 696e 2065 7861 6d70 6c65 730a 0a57 tain examples..W │ │ │ │ -0006c2f0: 6179 7320 746f 2075 7365 2073 756d 5477 ays to use sumTw │ │ │ │ -0006c300: 6f4d 6f6e 6f6d 6961 6c73 3a0a 3d3d 3d3d oMonomials:.==== │ │ │ │ -0006c310: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0006c320: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2273 ========.. * "s │ │ │ │ -0006c330: 756d 5477 6f4d 6f6e 6f6d 6961 6c73 285a umTwoMonomials(Z │ │ │ │ -0006c340: 5a2c 5a5a 2922 0a0a 466f 7220 7468 6520 Z,ZZ)"..For the │ │ │ │ -0006c350: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -0006c360: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -0006c370: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -0006c380: 7375 6d54 776f 4d6f 6e6f 6d69 616c 733a sumTwoMonomials: │ │ │ │ -0006c390: 2073 756d 5477 6f4d 6f6e 6f6d 6961 6c73 sumTwoMonomials │ │ │ │ -0006c3a0: 2c20 6973 2061 202a 6e6f 7465 206d 6574 , is a *note met │ │ │ │ -0006c3b0: 686f 6420 6675 6e63 7469 6f6e 3a0a 284d hod function:.(M │ │ │ │ -0006c3c0: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ -0006c3d0: 6f64 4675 6e63 7469 6f6e 2c2e 0a1f 0a46 odFunction,....F │ │ │ │ -0006c3e0: 696c 653a 2043 6f6d 706c 6574 6549 6e74 ile: CompleteInt │ │ │ │ -0006c3f0: 6572 7365 6374 696f 6e52 6573 6f6c 7574 ersectionResolut │ │ │ │ -0006c400: 696f 6e73 2e69 6e66 6f2c 204e 6f64 653a ions.info, Node: │ │ │ │ -0006c410: 2054 6174 6552 6573 6f6c 7574 696f 6e2c TateResolution, │ │ │ │ -0006c420: 204e 6578 743a 2074 656e 736f 7257 6974 Next: tensorWit │ │ │ │ -0006c430: 6843 6f6d 706f 6e65 6e74 732c 2050 7265 hComponents, Pre │ │ │ │ -0006c440: 763a 2073 756d 5477 6f4d 6f6e 6f6d 6961 v: sumTwoMonomia │ │ │ │ -0006c450: 6c73 2c20 5570 3a20 546f 700a 0a54 6174 ls, Up: Top..Tat │ │ │ │ -0006c460: 6552 6573 6f6c 7574 696f 6e20 2d2d 2054 eResolution -- T │ │ │ │ -0006c470: 6174 6552 6573 6f6c 7574 696f 6e20 6f66 ateResolution of │ │ │ │ -0006c480: 2061 206d 6f64 756c 6520 6f76 6572 2061 a module over a │ │ │ │ -0006c490: 6e20 6578 7465 7269 6f72 2061 6c67 6562 n exterior algeb │ │ │ │ -0006c4a0: 7261 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ra.************* │ │ │ │ +0006c260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +0006c270: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ +0006c280: 3d0a 0a20 202a 202a 6e6f 7465 2074 776f =.. * *note two │ │ │ │ +0006c290: 4d6f 6e6f 6d69 616c 733a 2074 776f 4d6f Monomials: twoMo │ │ │ │ +0006c2a0: 6e6f 6d69 616c 732c 202d 2d20 7461 6c6c nomials, -- tall │ │ │ │ +0006c2b0: 7920 7468 6520 7365 7175 656e 6365 7320 y the sequences │ │ │ │ +0006c2c0: 6f66 2042 5261 6e6b 7320 666f 720a 2020 of BRanks for. │ │ │ │ +0006c2d0: 2020 6365 7274 6169 6e20 6578 616d 706c certain exampl │ │ │ │ +0006c2e0: 6573 0a0a 5761 7973 2074 6f20 7573 6520 es..Ways to use │ │ │ │ +0006c2f0: 7375 6d54 776f 4d6f 6e6f 6d69 616c 733a sumTwoMonomials: │ │ │ │ +0006c300: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +0006c310: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +0006c320: 202a 2022 7375 6d54 776f 4d6f 6e6f 6d69 * "sumTwoMonomi │ │ │ │ +0006c330: 616c 7328 5a5a 2c5a 5a29 220a 0a46 6f72 als(ZZ,ZZ)"..For │ │ │ │ +0006c340: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ +0006c350: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0006c360: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ +0006c370: 6e6f 7465 2073 756d 5477 6f4d 6f6e 6f6d note sumTwoMonom │ │ │ │ +0006c380: 6961 6c73 3a20 7375 6d54 776f 4d6f 6e6f ials: sumTwoMono │ │ │ │ +0006c390: 6d69 616c 732c 2069 7320 6120 2a6e 6f74 mials, is a *not │ │ │ │ +0006c3a0: 6520 6d65 7468 6f64 2066 756e 6374 696f e method functio │ │ │ │ +0006c3b0: 6e3a 0a28 4d61 6361 756c 6179 3244 6f63 n:.(Macaulay2Doc │ │ │ │ +0006c3c0: 294d 6574 686f 6446 756e 6374 696f 6e2c )MethodFunction, │ │ │ │ +0006c3d0: 2e0a 1f0a 4669 6c65 3a20 436f 6d70 6c65 ....File: Comple │ │ │ │ +0006c3e0: 7465 496e 7465 7273 6563 7469 6f6e 5265 teIntersectionRe │ │ │ │ +0006c3f0: 736f 6c75 7469 6f6e 732e 696e 666f 2c20 solutions.info, │ │ │ │ +0006c400: 4e6f 6465 3a20 5461 7465 5265 736f 6c75 Node: TateResolu │ │ │ │ +0006c410: 7469 6f6e 2c20 4e65 7874 3a20 7465 6e73 tion, Next: tens │ │ │ │ +0006c420: 6f72 5769 7468 436f 6d70 6f6e 656e 7473 orWithComponents │ │ │ │ +0006c430: 2c20 5072 6576 3a20 7375 6d54 776f 4d6f , Prev: sumTwoMo │ │ │ │ +0006c440: 6e6f 6d69 616c 732c 2055 703a 2054 6f70 nomials, Up: Top │ │ │ │ +0006c450: 0a0a 5461 7465 5265 736f 6c75 7469 6f6e ..TateResolution │ │ │ │ +0006c460: 202d 2d20 5461 7465 5265 736f 6c75 7469 -- TateResoluti │ │ │ │ +0006c470: 6f6e 206f 6620 6120 6d6f 6475 6c65 206f on of a module o │ │ │ │ +0006c480: 7665 7220 616e 2065 7874 6572 696f 7220 ver an exterior │ │ │ │ +0006c490: 616c 6765 6272 610a 2a2a 2a2a 2a2a 2a2a algebra.******** │ │ │ │ +0006c4a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006c4b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006c4c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006c4d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006c4e0: 2a2a 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 ********..Synops │ │ │ │ -0006c4f0: 6973 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a is.========.. * │ │ │ │ -0006c500: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -0006c510: 2046 203d 2054 6174 6552 6573 6f6c 7574 F = TateResolut │ │ │ │ -0006c520: 696f 6e28 4d2c 6c6f 7765 722c 7570 7065 ion(M,lower,uppe │ │ │ │ -0006c530: 7229 0a20 202a 2049 6e70 7574 733a 0a20 r). * Inputs:. │ │ │ │ -0006c540: 2020 2020 202a 204d 2c20 6120 2a6e 6f74 * M, a *not │ │ │ │ -0006c550: 6520 6d6f 6475 6c65 3a20 284d 6163 6175 e module: (Macau │ │ │ │ -0006c560: 6c61 7932 446f 6329 4d6f 6475 6c65 2c2c lay2Doc)Module,, │ │ │ │ -0006c570: 200a 2020 2020 2020 2a20 6c6f 7765 722c . * lower, │ │ │ │ -0006c580: 2061 6e20 2a6e 6f74 6520 696e 7465 6765 an *note intege │ │ │ │ -0006c590: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ -0006c5a0: 295a 5a2c 2c20 0a20 2020 2020 202a 2075 )ZZ,, . * u │ │ │ │ -0006c5b0: 7070 6572 2c20 616e 202a 6e6f 7465 2069 pper, an *note i │ │ │ │ -0006c5c0: 6e74 6567 6572 3a20 284d 6163 6175 6c61 nteger: (Macaula │ │ │ │ -0006c5d0: 7932 446f 6329 5a5a 2c2c 206c 6f77 6572 y2Doc)ZZ,, lower │ │ │ │ -0006c5e0: 2061 6e64 2075 7070 6572 2062 6f75 6e64 and upper bound │ │ │ │ -0006c5f0: 7320 666f 720a 2020 2020 2020 2020 7468 s for. th │ │ │ │ -0006c600: 6520 7265 736f 6c75 7469 6f6e 0a20 202a e resolution. * │ │ │ │ -0006c610: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ -0006c620: 2a20 462c 2061 202a 6e6f 7465 2063 6861 * F, a *note cha │ │ │ │ -0006c630: 696e 2063 6f6d 706c 6578 3a20 284d 6163 in complex: (Mac │ │ │ │ -0006c640: 6175 6c61 7932 446f 6329 4368 6169 6e43 aulay2Doc)ChainC │ │ │ │ -0006c650: 6f6d 706c 6578 2c2c 200a 0a44 6573 6372 omplex,, ..Descr │ │ │ │ -0006c660: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ -0006c670: 3d3d 0a0a 466f 726d 7320 616e 2069 6e74 ==..Forms an int │ │ │ │ -0006c680: 6572 7661 6c2c 206c 6f77 6572 2e2e 7570 erval, lower..up │ │ │ │ -0006c690: 7065 722c 206f 6620 6120 646f 7562 6c79 per, of a doubly │ │ │ │ -0006c6a0: 2069 6e66 696e 6974 6520 6672 6565 2072 infinite free r │ │ │ │ -0006c6b0: 6573 6f6c 7574 696f 6e20 6f66 2061 2061 esolution of a a │ │ │ │ -0006c6c0: 0a43 6f68 656e 2d4d 6163 6175 6c61 7920 .Cohen-Macaulay │ │ │ │ -0006c6d0: 6d6f 6475 6c65 206f 7665 7220 6120 476f module over a Go │ │ │ │ -0006c6e0: 7265 6e73 7465 696e 2072 696e 672c 2073 renstein ring, s │ │ │ │ -0006c6f0: 7563 6820 6173 2061 6e79 206d 6f64 756c uch as any modul │ │ │ │ -0006c700: 6520 6f76 6572 2061 6e0a 6578 7465 7269 e over an.exteri │ │ │ │ -0006c710: 6f72 2061 6c67 6562 7261 2028 6163 7475 or algebra (actu │ │ │ │ -0006c720: 616c 6c79 2c20 616e 7920 6d6f 6475 6c65 ally, any module │ │ │ │ -0006c730: 206f 7665 7220 616e 7920 7269 6e67 2e29 over any ring.) │ │ │ │ -0006c740: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ +0006c4d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a53 *************..S │ │ │ │ +0006c4e0: 796e 6f70 7369 730a 3d3d 3d3d 3d3d 3d3d ynopsis.======== │ │ │ │ +0006c4f0: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ +0006c500: 2020 2020 2020 4620 3d20 5461 7465 5265 F = TateRe │ │ │ │ +0006c510: 736f 6c75 7469 6f6e 284d 2c6c 6f77 6572 solution(M,lower │ │ │ │ +0006c520: 2c75 7070 6572 290a 2020 2a20 496e 7075 ,upper). * Inpu │ │ │ │ +0006c530: 7473 3a0a 2020 2020 2020 2a20 4d2c 2061 ts:. * M, a │ │ │ │ +0006c540: 202a 6e6f 7465 206d 6f64 756c 653a 2028 *note module: ( │ │ │ │ +0006c550: 4d61 6361 756c 6179 3244 6f63 294d 6f64 Macaulay2Doc)Mod │ │ │ │ +0006c560: 756c 652c 2c20 0a20 2020 2020 202a 206c ule,, . * l │ │ │ │ +0006c570: 6f77 6572 2c20 616e 202a 6e6f 7465 2069 ower, an *note i │ │ │ │ +0006c580: 6e74 6567 6572 3a20 284d 6163 6175 6c61 nteger: (Macaula │ │ │ │ +0006c590: 7932 446f 6329 5a5a 2c2c 200a 2020 2020 y2Doc)ZZ,, . │ │ │ │ +0006c5a0: 2020 2a20 7570 7065 722c 2061 6e20 2a6e * upper, an *n │ │ │ │ +0006c5b0: 6f74 6520 696e 7465 6765 723a 2028 4d61 ote integer: (Ma │ │ │ │ +0006c5c0: 6361 756c 6179 3244 6f63 295a 5a2c 2c20 caulay2Doc)ZZ,, │ │ │ │ +0006c5d0: 6c6f 7765 7220 616e 6420 7570 7065 7220 lower and upper │ │ │ │ +0006c5e0: 626f 756e 6473 2066 6f72 0a20 2020 2020 bounds for. │ │ │ │ +0006c5f0: 2020 2074 6865 2072 6573 6f6c 7574 696f the resolutio │ │ │ │ +0006c600: 6e0a 2020 2a20 4f75 7470 7574 733a 0a20 n. * Outputs:. │ │ │ │ +0006c610: 2020 2020 202a 2046 2c20 6120 2a6e 6f74 * F, a *not │ │ │ │ +0006c620: 6520 6368 6169 6e20 636f 6d70 6c65 783a e chain complex: │ │ │ │ +0006c630: 2028 4d61 6361 756c 6179 3244 6f63 2943 (Macaulay2Doc)C │ │ │ │ +0006c640: 6861 696e 436f 6d70 6c65 782c 2c20 0a0a hainComplex,, .. │ │ │ │ +0006c650: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +0006c660: 3d3d 3d3d 3d3d 3d0a 0a46 6f72 6d73 2061 =======..Forms a │ │ │ │ +0006c670: 6e20 696e 7465 7276 616c 2c20 6c6f 7765 n interval, lowe │ │ │ │ +0006c680: 722e 2e75 7070 6572 2c20 6f66 2061 2064 r..upper, of a d │ │ │ │ +0006c690: 6f75 626c 7920 696e 6669 6e69 7465 2066 oubly infinite f │ │ │ │ +0006c6a0: 7265 6520 7265 736f 6c75 7469 6f6e 206f ree resolution o │ │ │ │ +0006c6b0: 6620 6120 610a 436f 6865 6e2d 4d61 6361 f a a.Cohen-Maca │ │ │ │ +0006c6c0: 756c 6179 206d 6f64 756c 6520 6f76 6572 ulay module over │ │ │ │ +0006c6d0: 2061 2047 6f72 656e 7374 6569 6e20 7269 a Gorenstein ri │ │ │ │ +0006c6e0: 6e67 2c20 7375 6368 2061 7320 616e 7920 ng, such as any │ │ │ │ +0006c6f0: 6d6f 6475 6c65 206f 7665 7220 616e 0a65 module over an.e │ │ │ │ +0006c700: 7874 6572 696f 7220 616c 6765 6272 6120 xterior algebra │ │ │ │ +0006c710: 2861 6374 7561 6c6c 792c 2061 6e79 206d (actually, any m │ │ │ │ +0006c720: 6f64 756c 6520 6f76 6572 2061 6e79 2072 odule over any r │ │ │ │ +0006c730: 696e 672e 290a 0a2b 2d2d 2d2d 2d2d 2d2d ing.)..+-------- │ │ │ │ +0006c740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006c750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006c760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006c770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006c780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006c790: 2b0a 7c69 3120 3a20 4520 3d20 5a5a 2f31 +.|i1 : E = ZZ/1 │ │ │ │ -0006c7a0: 3031 5b61 2c62 2c63 2c20 536b 6577 436f 01[a,b,c, SkewCo │ │ │ │ -0006c7b0: 6d6d 7574 6174 6976 653d 3e74 7275 655d mmutative=>true] │ │ │ │ +0006c780: 2d2d 2d2d 2d2b 0a7c 6931 203a 2045 203d -----+.|i1 : E = │ │ │ │ +0006c790: 205a 5a2f 3130 315b 612c 622c 632c 2053 ZZ/101[a,b,c, S │ │ │ │ +0006c7a0: 6b65 7743 6f6d 6d75 7461 7469 7665 3d3e kewCommutative=> │ │ │ │ +0006c7b0: 7472 7565 5d20 2020 2020 2020 2020 2020 true] │ │ │ │ 0006c7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c7e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c7d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006c7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c830: 7c0a 7c6f 3120 3d20 4520 2020 2020 2020 |.|o1 = E │ │ │ │ +0006c820: 2020 2020 207c 0a7c 6f31 203d 2045 2020 |.|o1 = E │ │ │ │ +0006c830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c880: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c870: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006c880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c8d0: 7c0a 7c6f 3120 3a20 506f 6c79 6e6f 6d69 |.|o1 : Polynomi │ │ │ │ -0006c8e0: 616c 5269 6e67 2c20 3320 736b 6577 2063 alRing, 3 skew c │ │ │ │ -0006c8f0: 6f6d 6d75 7461 7469 7665 2076 6172 6961 ommutative varia │ │ │ │ -0006c900: 626c 6528 7329 2020 2020 2020 2020 2020 ble(s) │ │ │ │ -0006c910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c920: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0006c8c0: 2020 2020 207c 0a7c 6f31 203a 2050 6f6c |.|o1 : Pol │ │ │ │ +0006c8d0: 796e 6f6d 6961 6c52 696e 672c 2033 2073 ynomialRing, 3 s │ │ │ │ +0006c8e0: 6b65 7720 636f 6d6d 7574 6174 6976 6520 kew commutative │ │ │ │ +0006c8f0: 7661 7269 6162 6c65 2873 2920 2020 2020 variable(s) │ │ │ │ +0006c900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006c910: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0006c920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006c930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006c940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006c950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006c960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006c970: 2b0a 7c69 3220 3a20 4d20 3d20 636f 6b65 +.|i2 : M = coke │ │ │ │ -0006c980: 7220 6d61 7028 455e 322c 2045 5e7b 2d31 r map(E^2, E^{-1 │ │ │ │ -0006c990: 7d2c 206d 6174 7269 7822 6162 3b62 6322 }, matrix"ab;bc" │ │ │ │ -0006c9a0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -0006c9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c9c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c960: 2d2d 2d2d 2d2b 0a7c 6932 203a 204d 203d -----+.|i2 : M = │ │ │ │ +0006c970: 2063 6f6b 6572 206d 6170 2845 5e32 2c20 coker map(E^2, │ │ │ │ +0006c980: 455e 7b2d 317d 2c20 6d61 7472 6978 2261 E^{-1}, matrix"a │ │ │ │ +0006c990: 623b 6263 2229 2020 2020 2020 2020 2020 b;bc") │ │ │ │ +0006c9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006c9b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006c9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ca00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ca10: 7c0a 7c6f 3220 3d20 636f 6b65 726e 656c |.|o2 = cokernel │ │ │ │ -0006ca20: 207c 2061 6220 7c20 2020 2020 2020 2020 | ab | │ │ │ │ +0006ca00: 2020 2020 207c 0a7c 6f32 203d 2063 6f6b |.|o2 = cok │ │ │ │ +0006ca10: 6572 6e65 6c20 7c20 6162 207c 2020 2020 ernel | ab | │ │ │ │ +0006ca20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ca30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ca50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ca60: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0006ca70: 207c 2062 6320 7c20 2020 2020 2020 2020 | bc | │ │ │ │ +0006ca50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006ca60: 2020 2020 2020 7c20 6263 207c 2020 2020 | bc | │ │ │ │ +0006ca70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ca80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ca90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006caa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cab0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006caa0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006cab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006caf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cb00: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0006cb10: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +0006caf0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006cb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006cb10: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 0006cb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cb50: 7c0a 7c6f 3220 3a20 452d 6d6f 6475 6c65 |.|o2 : E-module │ │ │ │ -0006cb60: 2c20 7175 6f74 6965 6e74 206f 6620 4520 , quotient of E │ │ │ │ +0006cb40: 2020 2020 207c 0a7c 6f32 203a 2045 2d6d |.|o2 : E-m │ │ │ │ +0006cb50: 6f64 756c 652c 2071 756f 7469 656e 7420 odule, quotient │ │ │ │ +0006cb60: 6f66 2045 2020 2020 2020 2020 2020 2020 of E │ │ │ │ 0006cb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cba0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0006cb90: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0006cba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006cbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006cbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006cbd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006cbe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006cbf0: 2b0a 7c69 3320 3a20 7072 6573 656e 7461 +.|i3 : presenta │ │ │ │ -0006cc00: 7469 6f6e 204d 2020 2020 2020 2020 2020 tion M │ │ │ │ +0006cbe0: 2d2d 2d2d 2d2b 0a7c 6933 203a 2070 7265 -----+.|i3 : pre │ │ │ │ +0006cbf0: 7365 6e74 6174 696f 6e20 4d20 2020 2020 sentation M │ │ │ │ +0006cc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cc40: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006cc30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006cc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cc90: 7c0a 7c6f 3320 3d20 7c20 6162 207c 2020 |.|o3 = | ab | │ │ │ │ +0006cc80: 2020 2020 207c 0a7c 6f33 203d 207c 2061 |.|o3 = | a │ │ │ │ +0006cc90: 6220 7c20 2020 2020 2020 2020 2020 2020 b | │ │ │ │ 0006cca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ccb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ccc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ccd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cce0: 7c0a 7c20 2020 2020 7c20 6263 207c 2020 |.| | bc | │ │ │ │ +0006ccd0: 2020 2020 207c 0a7c 2020 2020 207c 2062 |.| | b │ │ │ │ +0006cce0: 6320 7c20 2020 2020 2020 2020 2020 2020 c | │ │ │ │ 0006ccf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cd30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006cd20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006cd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cd80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0006cd90: 3220 2020 2020 2031 2020 2020 2020 2020 2 1 │ │ │ │ +0006cd70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006cd80: 2020 2020 2032 2020 2020 2020 3120 2020 2 1 │ │ │ │ +0006cd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cdd0: 7c0a 7c6f 3320 3a20 4d61 7472 6978 2045 |.|o3 : Matrix E │ │ │ │ -0006cde0: 2020 3c2d 2d20 4520 2020 2020 2020 2020 <-- E │ │ │ │ +0006cdc0: 2020 2020 207c 0a7c 6f33 203a 204d 6174 |.|o3 : Mat │ │ │ │ +0006cdd0: 7269 7820 4520 203c 2d2d 2045 2020 2020 rix E <-- E │ │ │ │ +0006cde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ce00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ce10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ce20: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0006ce10: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0006ce20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ce30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ce40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ce50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ce60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ce70: 2b0a 7c69 3420 3a20 5461 7465 5265 736f +.|i4 : TateReso │ │ │ │ -0006ce80: 6c75 7469 6f6e 284d 2c2d 322c 3729 2020 lution(M,-2,7) │ │ │ │ +0006ce60: 2d2d 2d2d 2d2b 0a7c 6934 203a 2054 6174 -----+.|i4 : Tat │ │ │ │ +0006ce70: 6552 6573 6f6c 7574 696f 6e28 4d2c 2d32 eResolution(M,-2 │ │ │ │ +0006ce80: 2c37 2920 2020 2020 2020 2020 2020 2020 ,7) │ │ │ │ 0006ce90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ceb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cec0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006ceb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006cec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ced0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cf10: 7c0a 7c20 2020 2020 2039 2020 2020 2020 |.| 9 │ │ │ │ -0006cf20: 3520 2020 2020 2032 2020 2020 2020 3120 5 2 1 │ │ │ │ -0006cf30: 2020 2020 2032 2020 2020 2020 3420 2020 2 4 │ │ │ │ -0006cf40: 2020 2037 2020 2020 2020 3131 2020 2020 7 11 │ │ │ │ -0006cf50: 2020 3136 2020 2020 2020 3232 2020 2020 16 22 │ │ │ │ -0006cf60: 7c0a 7c6f 3420 3d20 4520 203c 2d2d 2045 |.|o4 = E <-- E │ │ │ │ -0006cf70: 2020 3c2d 2d20 4520 203c 2d2d 2045 2020 <-- E <-- E │ │ │ │ -0006cf80: 3c2d 2d20 4520 203c 2d2d 2045 2020 3c2d <-- E <-- E <- │ │ │ │ -0006cf90: 2d20 4520 203c 2d2d 2045 2020 203c 2d2d - E <-- E <-- │ │ │ │ -0006cfa0: 2045 2020 203c 2d2d 2045 2020 203c 2d2d E <-- E <-- │ │ │ │ -0006cfb0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006cf00: 2020 2020 207c 0a7c 2020 2020 2020 3920 |.| 9 │ │ │ │ +0006cf10: 2020 2020 2035 2020 2020 2020 3220 2020 5 2 │ │ │ │ +0006cf20: 2020 2031 2020 2020 2020 3220 2020 2020 1 2 │ │ │ │ +0006cf30: 2034 2020 2020 2020 3720 2020 2020 2031 4 7 1 │ │ │ │ +0006cf40: 3120 2020 2020 2031 3620 2020 2020 2032 1 16 2 │ │ │ │ +0006cf50: 3220 2020 207c 0a7c 6f34 203d 2045 2020 2 |.|o4 = E │ │ │ │ +0006cf60: 3c2d 2d20 4520 203c 2d2d 2045 2020 3c2d <-- E <-- E <- │ │ │ │ +0006cf70: 2d20 4520 203c 2d2d 2045 2020 3c2d 2d20 - E <-- E <-- │ │ │ │ +0006cf80: 4520 203c 2d2d 2045 2020 3c2d 2d20 4520 E <-- E <-- E │ │ │ │ +0006cf90: 2020 3c2d 2d20 4520 2020 3c2d 2d20 4520 <-- E <-- E │ │ │ │ +0006cfa0: 2020 3c2d 2d7c 0a7c 2020 2020 2020 2020 <--|.| │ │ │ │ +0006cfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d000: 7c0a 7c20 2020 2020 2d32 2020 2020 202d |.| -2 - │ │ │ │ -0006d010: 3120 2020 2020 3020 2020 2020 2031 2020 1 0 1 │ │ │ │ -0006d020: 2020 2020 3220 2020 2020 2033 2020 2020 2 3 │ │ │ │ -0006d030: 2020 3420 2020 2020 2035 2020 2020 2020 4 5 │ │ │ │ -0006d040: 2036 2020 2020 2020 2037 2020 2020 2020 6 7 │ │ │ │ -0006d050: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006cff0: 2020 2020 207c 0a7c 2020 2020 202d 3220 |.| -2 │ │ │ │ +0006d000: 2020 2020 2d31 2020 2020 2030 2020 2020 -1 0 │ │ │ │ +0006d010: 2020 3120 2020 2020 2032 2020 2020 2020 1 2 │ │ │ │ +0006d020: 3320 2020 2020 2034 2020 2020 2020 3520 3 4 5 │ │ │ │ +0006d030: 2020 2020 2020 3620 2020 2020 2020 3720 6 7 │ │ │ │ +0006d040: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006d050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d0a0: 7c0a 7c6f 3420 3a20 4368 6169 6e43 6f6d |.|o4 : ChainCom │ │ │ │ -0006d0b0: 706c 6578 2020 2020 2020 2020 2020 2020 plex │ │ │ │ +0006d090: 2020 2020 207c 0a7c 6f34 203a 2043 6861 |.|o4 : Cha │ │ │ │ +0006d0a0: 696e 436f 6d70 6c65 7820 2020 2020 2020 inComplex │ │ │ │ +0006d0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d0f0: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ +0006d0e0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +0006d0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006d100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006d110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006d120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006d130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006d140: 7c0a 7c30 2020 2020 2020 2020 2020 2020 |.|0 │ │ │ │ +0006d130: 2d2d 2d2d 2d7c 0a7c 3020 2020 2020 2020 -----|.|0 │ │ │ │ +0006d140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d190: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d180: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006d190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d1e0: 7c0a 7c38 2020 2020 2020 2020 2020 2020 |.|8 │ │ │ │ +0006d1d0: 2020 2020 207c 0a7c 3820 2020 2020 2020 |.|8 │ │ │ │ +0006d1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d230: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0006d220: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0006d230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006d240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006d250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006d260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006d270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006d280: 2b0a 0a43 6176 6561 740a 3d3d 3d3d 3d3d +..Caveat.====== │ │ │ │ -0006d290: 0a0a 496e 2061 2070 7265 7669 6f75 7320 ..In a previous │ │ │ │ -0006d2a0: 7665 7273 696f 6e20 6f66 2074 6869 7320 version of this │ │ │ │ -0006d2b0: 7363 7269 7074 2c20 7468 6973 2063 6f6d script, this com │ │ │ │ -0006d2c0: 6d61 6e64 2072 6574 7572 6e65 6420 6120 mand returned a │ │ │ │ -0006d2d0: 6265 7474 6920 7461 626c 653b 206e 6f77 betti table; now │ │ │ │ -0006d2e0: 0a75 7365 2022 6265 7474 6920 5461 7465 .use "betti Tate │ │ │ │ -0006d2f0: 5265 736f 6c75 7469 6f6e 2220 696e 7374 Resolution" inst │ │ │ │ -0006d300: 6561 642e 0a0a 5761 7973 2074 6f20 7573 ead...Ways to us │ │ │ │ -0006d310: 6520 5461 7465 5265 736f 6c75 7469 6f6e e TateResolution │ │ │ │ -0006d320: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -0006d330: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ -0006d340: 202a 2022 5461 7465 5265 736f 6c75 7469 * "TateResoluti │ │ │ │ -0006d350: 6f6e 284d 6f64 756c 6529 220a 2020 2a20 on(Module)". * │ │ │ │ -0006d360: 2254 6174 6552 6573 6f6c 7574 696f 6e28 "TateResolution( │ │ │ │ -0006d370: 4d6f 6475 6c65 2c5a 5a29 220a 2020 2a20 Module,ZZ)". * │ │ │ │ -0006d380: 2254 6174 6552 6573 6f6c 7574 696f 6e28 "TateResolution( │ │ │ │ -0006d390: 4d6f 6475 6c65 2c5a 5a2c 5a5a 2922 0a0a Module,ZZ,ZZ)".. │ │ │ │ -0006d3a0: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ -0006d3b0: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ -0006d3c0: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ -0006d3d0: 7420 2a6e 6f74 6520 5461 7465 5265 736f t *note TateReso │ │ │ │ -0006d3e0: 6c75 7469 6f6e 3a20 5461 7465 5265 736f lution: TateReso │ │ │ │ -0006d3f0: 6c75 7469 6f6e 2c20 6973 2061 202a 6e6f lution, is a *no │ │ │ │ -0006d400: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ -0006d410: 6f6e 3a0a 284d 6163 6175 6c61 7932 446f on:.(Macaulay2Do │ │ │ │ -0006d420: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ -0006d430: 2c2e 0a1f 0a46 696c 653a 2043 6f6d 706c ,....File: Compl │ │ │ │ -0006d440: 6574 6549 6e74 6572 7365 6374 696f 6e52 eteIntersectionR │ │ │ │ -0006d450: 6573 6f6c 7574 696f 6e73 2e69 6e66 6f2c esolutions.info, │ │ │ │ -0006d460: 204e 6f64 653a 2074 656e 736f 7257 6974 Node: tensorWit │ │ │ │ -0006d470: 6843 6f6d 706f 6e65 6e74 732c 204e 6578 hComponents, Nex │ │ │ │ -0006d480: 743a 2074 6f41 7272 6179 2c20 5072 6576 t: toArray, Prev │ │ │ │ -0006d490: 3a20 5461 7465 5265 736f 6c75 7469 6f6e : TateResolution │ │ │ │ -0006d4a0: 2c20 5570 3a20 546f 700a 0a74 656e 736f , Up: Top..tenso │ │ │ │ -0006d4b0: 7257 6974 6843 6f6d 706f 6e65 6e74 7320 rWithComponents │ │ │ │ -0006d4c0: 2d2d 2066 6f72 6d73 2074 6865 2074 656e -- forms the ten │ │ │ │ -0006d4d0: 736f 7220 7072 6f64 7563 742c 2070 7265 sor product, pre │ │ │ │ -0006d4e0: 7365 7276 696e 6720 6469 7265 6374 2073 serving direct s │ │ │ │ -0006d4f0: 756d 2069 6e66 6f72 6d61 7469 6f6e 0a2a um information.* │ │ │ │ +0006d270: 2d2d 2d2d 2d2b 0a0a 4361 7665 6174 0a3d -----+..Caveat.= │ │ │ │ +0006d280: 3d3d 3d3d 3d0a 0a49 6e20 6120 7072 6576 =====..In a prev │ │ │ │ +0006d290: 696f 7573 2076 6572 7369 6f6e 206f 6620 ious version of │ │ │ │ +0006d2a0: 7468 6973 2073 6372 6970 742c 2074 6869 this script, thi │ │ │ │ +0006d2b0: 7320 636f 6d6d 616e 6420 7265 7475 726e s command return │ │ │ │ +0006d2c0: 6564 2061 2062 6574 7469 2074 6162 6c65 ed a betti table │ │ │ │ +0006d2d0: 3b20 6e6f 770a 7573 6520 2262 6574 7469 ; now.use "betti │ │ │ │ +0006d2e0: 2054 6174 6552 6573 6f6c 7574 696f 6e22 TateResolution" │ │ │ │ +0006d2f0: 2069 6e73 7465 6164 2e0a 0a57 6179 7320 instead...Ways │ │ │ │ +0006d300: 746f 2075 7365 2054 6174 6552 6573 6f6c to use TateResol │ │ │ │ +0006d310: 7574 696f 6e3a 0a3d 3d3d 3d3d 3d3d 3d3d ution:.========= │ │ │ │ +0006d320: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0006d330: 3d3d 0a0a 2020 2a20 2254 6174 6552 6573 ==.. * "TateRes │ │ │ │ +0006d340: 6f6c 7574 696f 6e28 4d6f 6475 6c65 2922 olution(Module)" │ │ │ │ +0006d350: 0a20 202a 2022 5461 7465 5265 736f 6c75 . * "TateResolu │ │ │ │ +0006d360: 7469 6f6e 284d 6f64 756c 652c 5a5a 2922 tion(Module,ZZ)" │ │ │ │ +0006d370: 0a20 202a 2022 5461 7465 5265 736f 6c75 . * "TateResolu │ │ │ │ +0006d380: 7469 6f6e 284d 6f64 756c 652c 5a5a 2c5a tion(Module,ZZ,Z │ │ │ │ +0006d390: 5a29 220a 0a46 6f72 2074 6865 2070 726f Z)"..For the pro │ │ │ │ +0006d3a0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +0006d3b0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +0006d3c0: 6f62 6a65 6374 202a 6e6f 7465 2054 6174 object *note Tat │ │ │ │ +0006d3d0: 6552 6573 6f6c 7574 696f 6e3a 2054 6174 eResolution: Tat │ │ │ │ +0006d3e0: 6552 6573 6f6c 7574 696f 6e2c 2069 7320 eResolution, is │ │ │ │ +0006d3f0: 6120 2a6e 6f74 6520 6d65 7468 6f64 2066 a *note method f │ │ │ │ +0006d400: 756e 6374 696f 6e3a 0a28 4d61 6361 756c unction:.(Macaul │ │ │ │ +0006d410: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ +0006d420: 6374 696f 6e2c 2e0a 1f0a 4669 6c65 3a20 ction,....File: │ │ │ │ +0006d430: 436f 6d70 6c65 7465 496e 7465 7273 6563 CompleteIntersec │ │ │ │ +0006d440: 7469 6f6e 5265 736f 6c75 7469 6f6e 732e tionResolutions. │ │ │ │ +0006d450: 696e 666f 2c20 4e6f 6465 3a20 7465 6e73 info, Node: tens │ │ │ │ +0006d460: 6f72 5769 7468 436f 6d70 6f6e 656e 7473 orWithComponents │ │ │ │ +0006d470: 2c20 4e65 7874 3a20 746f 4172 7261 792c , Next: toArray, │ │ │ │ +0006d480: 2050 7265 763a 2054 6174 6552 6573 6f6c Prev: TateResol │ │ │ │ +0006d490: 7574 696f 6e2c 2055 703a 2054 6f70 0a0a ution, Up: Top.. │ │ │ │ +0006d4a0: 7465 6e73 6f72 5769 7468 436f 6d70 6f6e tensorWithCompon │ │ │ │ +0006d4b0: 656e 7473 202d 2d20 666f 726d 7320 7468 ents -- forms th │ │ │ │ +0006d4c0: 6520 7465 6e73 6f72 2070 726f 6475 6374 e tensor product │ │ │ │ +0006d4d0: 2c20 7072 6573 6572 7669 6e67 2064 6972 , preserving dir │ │ │ │ +0006d4e0: 6563 7420 7375 6d20 696e 666f 726d 6174 ect sum informat │ │ │ │ +0006d4f0: 696f 6e0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ion.************ │ │ │ │ 0006d500: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006d510: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006d520: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006d530: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006d540: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006d550: 2a2a 0a0a 5379 6e6f 7073 6973 0a3d 3d3d **..Synopsis.=== │ │ │ │ -0006d560: 3d3d 3d3d 3d0a 0a20 202a 2055 7361 6765 =====.. * Usage │ │ │ │ -0006d570: 3a20 0a20 2020 2020 2020 2054 203d 2074 : . T = t │ │ │ │ -0006d580: 656e 736f 7228 4d2c 4e29 0a20 202a 2049 ensor(M,N). * I │ │ │ │ -0006d590: 6e70 7574 733a 0a20 2020 2020 202a 204d nputs:. * M │ │ │ │ -0006d5a0: 2c20 6120 2a6e 6f74 6520 6d6f 6475 6c65 , a *note module │ │ │ │ -0006d5b0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -0006d5c0: 4d6f 6475 6c65 2c2c 200a 2020 2020 2020 Module,, . │ │ │ │ -0006d5d0: 2a20 4e2c 2061 202a 6e6f 7465 206d 6f64 * N, a *note mod │ │ │ │ -0006d5e0: 756c 653a 2028 4d61 6361 756c 6179 3244 ule: (Macaulay2D │ │ │ │ -0006d5f0: 6f63 294d 6f64 756c 652c 2c20 0a20 202a oc)Module,, . * │ │ │ │ -0006d600: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ -0006d610: 2a20 542c 2061 202a 6e6f 7465 206d 6f64 * T, a *note mod │ │ │ │ -0006d620: 756c 653a 2028 4d61 6361 756c 6179 3244 ule: (Macaulay2D │ │ │ │ -0006d630: 6f63 294d 6f64 756c 652c 2c20 0a0a 4465 oc)Module,, ..De │ │ │ │ -0006d640: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ -0006d650: 3d3d 3d3d 3d0a 0a49 6620 4d20 616e 642f =====..If M and/ │ │ │ │ -0006d660: 6f72 204e 2061 7265 2064 6972 6563 7420 or N are direct │ │ │ │ -0006d670: 7375 6d20 6d6f 6475 6c65 7320 2869 7344 sum modules (isD │ │ │ │ -0006d680: 6972 6563 7453 756d 204d 203d 3d20 7472 irectSum M == tr │ │ │ │ -0006d690: 7565 2920 7468 656e 2054 2069 7320 7468 ue) then T is th │ │ │ │ -0006d6a0: 650a 6469 7265 6374 2073 756d 206f 6620 e.direct sum of │ │ │ │ -0006d6b0: 7468 6520 7465 6e73 6f72 2070 726f 6475 the tensor produ │ │ │ │ -0006d6c0: 6374 7320 6265 7477 6565 6e20 7468 6520 cts between the │ │ │ │ -0006d6d0: 636f 6d70 6f6e 656e 7473 2e20 5468 6973 components. This │ │ │ │ -0006d6e0: 2053 484f 554c 4420 6265 2062 7569 6c74 SHOULD be built │ │ │ │ -0006d6f0: 0a69 6e74 6f20 4d2a 2a4e 2c20 6275 7420 .into M**N, but │ │ │ │ -0006d700: 6973 6e27 7420 6173 206f 6620 4d32 2c20 isn't as of M2, │ │ │ │ -0006d710: 762e 2031 2e37 0a0a 5365 6520 616c 736f v. 1.7..See also │ │ │ │ -0006d720: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ -0006d730: 6e6f 7465 2048 6f6d 5769 7468 436f 6d70 note HomWithComp │ │ │ │ -0006d740: 6f6e 656e 7473 3a20 486f 6d57 6974 6843 onents: HomWithC │ │ │ │ -0006d750: 6f6d 706f 6e65 6e74 732c 202d 2d20 636f omponents, -- co │ │ │ │ -0006d760: 6d70 7574 6573 2048 6f6d 2c20 7072 6573 mputes Hom, pres │ │ │ │ -0006d770: 6572 7669 6e67 0a20 2020 2064 6972 6563 erving. direc │ │ │ │ -0006d780: 7420 7375 6d20 696e 666f 726d 6174 696f t sum informatio │ │ │ │ -0006d790: 6e0a 2020 2a20 2a6e 6f74 6520 6475 616c n. * *note dual │ │ │ │ -0006d7a0: 5769 7468 436f 6d70 6f6e 656e 7473 3a20 WithComponents: │ │ │ │ -0006d7b0: 6475 616c 5769 7468 436f 6d70 6f6e 656e dualWithComponen │ │ │ │ -0006d7c0: 7473 2c20 2d2d 2064 7561 6c20 6d6f 6475 ts, -- dual modu │ │ │ │ -0006d7d0: 6c65 2070 7265 7365 7276 696e 670a 2020 le preserving. │ │ │ │ -0006d7e0: 2020 6469 7265 6374 2073 756d 2069 6e66 direct sum inf │ │ │ │ -0006d7f0: 6f72 6d61 7469 6f6e 0a0a 5761 7973 2074 ormation..Ways t │ │ │ │ -0006d800: 6f20 7573 6520 7465 6e73 6f72 5769 7468 o use tensorWith │ │ │ │ -0006d810: 436f 6d70 6f6e 656e 7473 3a0a 3d3d 3d3d Components:.==== │ │ │ │ +0006d540: 2a2a 2a2a 2a2a 2a0a 0a53 796e 6f70 7369 *******..Synopsi │ │ │ │ +0006d550: 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 s.========.. * │ │ │ │ +0006d560: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +0006d570: 5420 3d20 7465 6e73 6f72 284d 2c4e 290a T = tensor(M,N). │ │ │ │ +0006d580: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +0006d590: 2020 2a20 4d2c 2061 202a 6e6f 7465 206d * M, a *note m │ │ │ │ +0006d5a0: 6f64 756c 653a 2028 4d61 6361 756c 6179 odule: (Macaulay │ │ │ │ +0006d5b0: 3244 6f63 294d 6f64 756c 652c 2c20 0a20 2Doc)Module,, . │ │ │ │ +0006d5c0: 2020 2020 202a 204e 2c20 6120 2a6e 6f74 * N, a *not │ │ │ │ +0006d5d0: 6520 6d6f 6475 6c65 3a20 284d 6163 6175 e module: (Macau │ │ │ │ +0006d5e0: 6c61 7932 446f 6329 4d6f 6475 6c65 2c2c lay2Doc)Module,, │ │ │ │ +0006d5f0: 200a 2020 2a20 4f75 7470 7574 733a 0a20 . * Outputs:. │ │ │ │ +0006d600: 2020 2020 202a 2054 2c20 6120 2a6e 6f74 * T, a *not │ │ │ │ +0006d610: 6520 6d6f 6475 6c65 3a20 284d 6163 6175 e module: (Macau │ │ │ │ +0006d620: 6c61 7932 446f 6329 4d6f 6475 6c65 2c2c lay2Doc)Module,, │ │ │ │ +0006d630: 200a 0a44 6573 6372 6970 7469 6f6e 0a3d ..Description.= │ │ │ │ +0006d640: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 4966 204d ==========..If M │ │ │ │ +0006d650: 2061 6e64 2f6f 7220 4e20 6172 6520 6469 and/or N are di │ │ │ │ +0006d660: 7265 6374 2073 756d 206d 6f64 756c 6573 rect sum modules │ │ │ │ +0006d670: 2028 6973 4469 7265 6374 5375 6d20 4d20 (isDirectSum M │ │ │ │ +0006d680: 3d3d 2074 7275 6529 2074 6865 6e20 5420 == true) then T │ │ │ │ +0006d690: 6973 2074 6865 0a64 6972 6563 7420 7375 is the.direct su │ │ │ │ +0006d6a0: 6d20 6f66 2074 6865 2074 656e 736f 7220 m of the tensor │ │ │ │ +0006d6b0: 7072 6f64 7563 7473 2062 6574 7765 656e products between │ │ │ │ +0006d6c0: 2074 6865 2063 6f6d 706f 6e65 6e74 732e the components. │ │ │ │ +0006d6d0: 2054 6869 7320 5348 4f55 4c44 2062 6520 This SHOULD be │ │ │ │ +0006d6e0: 6275 696c 740a 696e 746f 204d 2a2a 4e2c built.into M**N, │ │ │ │ +0006d6f0: 2062 7574 2069 736e 2774 2061 7320 6f66 but isn't as of │ │ │ │ +0006d700: 204d 322c 2076 2e20 312e 370a 0a53 6565 M2, v. 1.7..See │ │ │ │ +0006d710: 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a also.========.. │ │ │ │ +0006d720: 2020 2a20 2a6e 6f74 6520 486f 6d57 6974 * *note HomWit │ │ │ │ +0006d730: 6843 6f6d 706f 6e65 6e74 733a 2048 6f6d hComponents: Hom │ │ │ │ +0006d740: 5769 7468 436f 6d70 6f6e 656e 7473 2c20 WithComponents, │ │ │ │ +0006d750: 2d2d 2063 6f6d 7075 7465 7320 486f 6d2c -- computes Hom, │ │ │ │ +0006d760: 2070 7265 7365 7276 696e 670a 2020 2020 preserving. │ │ │ │ +0006d770: 6469 7265 6374 2073 756d 2069 6e66 6f72 direct sum infor │ │ │ │ +0006d780: 6d61 7469 6f6e 0a20 202a 202a 6e6f 7465 mation. * *note │ │ │ │ +0006d790: 2064 7561 6c57 6974 6843 6f6d 706f 6e65 dualWithCompone │ │ │ │ +0006d7a0: 6e74 733a 2064 7561 6c57 6974 6843 6f6d nts: dualWithCom │ │ │ │ +0006d7b0: 706f 6e65 6e74 732c 202d 2d20 6475 616c ponents, -- dual │ │ │ │ +0006d7c0: 206d 6f64 756c 6520 7072 6573 6572 7669 module preservi │ │ │ │ +0006d7d0: 6e67 0a20 2020 2064 6972 6563 7420 7375 ng. direct su │ │ │ │ +0006d7e0: 6d20 696e 666f 726d 6174 696f 6e0a 0a57 m information..W │ │ │ │ +0006d7f0: 6179 7320 746f 2075 7365 2074 656e 736f ays to use tenso │ │ │ │ +0006d800: 7257 6974 6843 6f6d 706f 6e65 6e74 733a rWithComponents: │ │ │ │ +0006d810: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ 0006d820: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0006d830: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ -0006d840: 202a 2022 7465 6e73 6f72 5769 7468 436f * "tensorWithCo │ │ │ │ -0006d850: 6d70 6f6e 656e 7473 284d 6f64 756c 652c mponents(Module, │ │ │ │ -0006d860: 4d6f 6475 6c65 2922 0a0a 466f 7220 7468 Module)"..For th │ │ │ │ -0006d870: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -0006d880: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -0006d890: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -0006d8a0: 6520 7465 6e73 6f72 5769 7468 436f 6d70 e tensorWithComp │ │ │ │ -0006d8b0: 6f6e 656e 7473 3a20 7465 6e73 6f72 5769 onents: tensorWi │ │ │ │ -0006d8c0: 7468 436f 6d70 6f6e 656e 7473 2c20 6973 thComponents, is │ │ │ │ -0006d8d0: 2061 202a 6e6f 7465 206d 6574 686f 640a a *note method. │ │ │ │ -0006d8e0: 6675 6e63 7469 6f6e 3a20 284d 6163 6175 function: (Macau │ │ │ │ -0006d8f0: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ -0006d900: 6e63 7469 6f6e 2c2e 0a1f 0a46 696c 653a nction,....File: │ │ │ │ -0006d910: 2043 6f6d 706c 6574 6549 6e74 6572 7365 CompleteInterse │ │ │ │ -0006d920: 6374 696f 6e52 6573 6f6c 7574 696f 6e73 ctionResolutions │ │ │ │ -0006d930: 2e69 6e66 6f2c 204e 6f64 653a 2074 6f41 .info, Node: toA │ │ │ │ -0006d940: 7272 6179 2c20 4e65 7874 3a20 7477 6f4d rray, Next: twoM │ │ │ │ -0006d950: 6f6e 6f6d 6961 6c73 2c20 5072 6576 3a20 onomials, Prev: │ │ │ │ -0006d960: 7465 6e73 6f72 5769 7468 436f 6d70 6f6e tensorWithCompon │ │ │ │ -0006d970: 656e 7473 2c20 5570 3a20 546f 700a 0a74 ents, Up: Top..t │ │ │ │ -0006d980: 6f41 7272 6179 202d 2d20 6d61 6b65 7320 oArray -- makes │ │ │ │ -0006d990: 616e 2061 7272 6179 2066 726f 6d20 6120 an array from a │ │ │ │ -0006d9a0: 4c69 7374 206f 7220 6672 6f6d 2061 2073 List or from a s │ │ │ │ -0006d9b0: 696e 676c 6520 696e 7465 6765 720a 2a2a ingle integer.** │ │ │ │ +0006d830: 3d3d 0a0a 2020 2a20 2274 656e 736f 7257 ==.. * "tensorW │ │ │ │ +0006d840: 6974 6843 6f6d 706f 6e65 6e74 7328 4d6f ithComponents(Mo │ │ │ │ +0006d850: 6475 6c65 2c4d 6f64 756c 6529 220a 0a46 dule,Module)"..F │ │ │ │ +0006d860: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +0006d870: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +0006d880: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +0006d890: 202a 6e6f 7465 2074 656e 736f 7257 6974 *note tensorWit │ │ │ │ +0006d8a0: 6843 6f6d 706f 6e65 6e74 733a 2074 656e hComponents: ten │ │ │ │ +0006d8b0: 736f 7257 6974 6843 6f6d 706f 6e65 6e74 sorWithComponent │ │ │ │ +0006d8c0: 732c 2069 7320 6120 2a6e 6f74 6520 6d65 s, is a *note me │ │ │ │ +0006d8d0: 7468 6f64 0a66 756e 6374 696f 6e3a 2028 thod.function: ( │ │ │ │ +0006d8e0: 4d61 6361 756c 6179 3244 6f63 294d 6574 Macaulay2Doc)Met │ │ │ │ +0006d8f0: 686f 6446 756e 6374 696f 6e2c 2e0a 1f0a hodFunction,.... │ │ │ │ +0006d900: 4669 6c65 3a20 436f 6d70 6c65 7465 496e File: CompleteIn │ │ │ │ +0006d910: 7465 7273 6563 7469 6f6e 5265 736f 6c75 tersectionResolu │ │ │ │ +0006d920: 7469 6f6e 732e 696e 666f 2c20 4e6f 6465 tions.info, Node │ │ │ │ +0006d930: 3a20 746f 4172 7261 792c 204e 6578 743a : toArray, Next: │ │ │ │ +0006d940: 2074 776f 4d6f 6e6f 6d69 616c 732c 2050 twoMonomials, P │ │ │ │ +0006d950: 7265 763a 2074 656e 736f 7257 6974 6843 rev: tensorWithC │ │ │ │ +0006d960: 6f6d 706f 6e65 6e74 732c 2055 703a 2054 omponents, Up: T │ │ │ │ +0006d970: 6f70 0a0a 746f 4172 7261 7920 2d2d 206d op..toArray -- m │ │ │ │ +0006d980: 616b 6573 2061 6e20 6172 7261 7920 6672 akes an array fr │ │ │ │ +0006d990: 6f6d 2061 204c 6973 7420 6f72 2066 726f om a List or fro │ │ │ │ +0006d9a0: 6d20 6120 7369 6e67 6c65 2069 6e74 6567 m a single integ │ │ │ │ +0006d9b0: 6572 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a er.************* │ │ │ │ 0006d9c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006d9d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006d9e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006d9f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 5379 ************..Sy │ │ │ │ -0006da00: 6e6f 7073 6973 0a3d 3d3d 3d3d 3d3d 3d0a nopsis.========. │ │ │ │ -0006da10: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ -0006da20: 2020 2020 2061 7272 203d 2074 6f41 7272 arr = toArr │ │ │ │ -0006da30: 6179 204c 0a20 2020 2020 2020 2061 7272 ay L. arr │ │ │ │ -0006da40: 203d 2074 6f41 7272 6179 206e 0a20 202a = toArray n. * │ │ │ │ -0006da50: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -0006da60: 204c 2c20 6120 2a6e 6f74 6520 6c69 7374 L, a *note list │ │ │ │ -0006da70: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -0006da80: 4c69 7374 2c2c 200a 2020 2020 2020 2a20 List,, . * │ │ │ │ -0006da90: 6e2c 2061 6e20 2a6e 6f74 6520 696e 7465 n, an *note inte │ │ │ │ -0006daa0: 6765 723a 2028 4d61 6361 756c 6179 3244 ger: (Macaulay2D │ │ │ │ -0006dab0: 6f63 295a 5a2c 2c20 0a20 202a 204f 7574 oc)ZZ,, . * Out │ │ │ │ -0006dac0: 7075 7473 3a0a 2020 2020 2020 2a20 6172 puts:. * ar │ │ │ │ -0006dad0: 722c 2061 6e20 2a6e 6f74 6520 6172 7261 r, an *note arra │ │ │ │ -0006dae0: 793a 2028 4d61 6361 756c 6179 3244 6f63 y: (Macaulay2Doc │ │ │ │ -0006daf0: 2941 7272 6179 2c2c 200a 0a57 6179 7320 )Array,, ..Ways │ │ │ │ -0006db00: 746f 2075 7365 2074 6f41 7272 6179 3a0a to use toArray:. │ │ │ │ -0006db10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0006db20: 3d3d 3d3d 0a0a 2020 2a20 2274 6f41 7272 ====.. * "toArr │ │ │ │ -0006db30: 6179 284c 6973 7429 220a 2020 2a20 2274 ay(List)". * "t │ │ │ │ -0006db40: 6f41 7272 6179 285a 5a29 220a 0a46 6f72 oArray(ZZ)"..For │ │ │ │ -0006db50: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ -0006db60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0006db70: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ -0006db80: 6e6f 7465 2074 6f41 7272 6179 3a20 746f note toArray: to │ │ │ │ -0006db90: 4172 7261 792c 2069 7320 6120 2a6e 6f74 Array, is a *not │ │ │ │ -0006dba0: 6520 6d65 7468 6f64 2066 756e 6374 696f e method functio │ │ │ │ -0006dbb0: 6e3a 0a28 4d61 6361 756c 6179 3244 6f63 n:.(Macaulay2Doc │ │ │ │ -0006dbc0: 294d 6574 686f 6446 756e 6374 696f 6e2c )MethodFunction, │ │ │ │ -0006dbd0: 2e0a 1f0a 4669 6c65 3a20 436f 6d70 6c65 ....File: Comple │ │ │ │ -0006dbe0: 7465 496e 7465 7273 6563 7469 6f6e 5265 teIntersectionRe │ │ │ │ -0006dbf0: 736f 6c75 7469 6f6e 732e 696e 666f 2c20 solutions.info, │ │ │ │ -0006dc00: 4e6f 6465 3a20 7477 6f4d 6f6e 6f6d 6961 Node: twoMonomia │ │ │ │ -0006dc10: 6c73 2c20 5072 6576 3a20 746f 4172 7261 ls, Prev: toArra │ │ │ │ -0006dc20: 792c 2055 703a 2054 6f70 0a0a 7477 6f4d y, Up: Top..twoM │ │ │ │ -0006dc30: 6f6e 6f6d 6961 6c73 202d 2d20 7461 6c6c onomials -- tall │ │ │ │ -0006dc40: 7920 7468 6520 7365 7175 656e 6365 7320 y the sequences │ │ │ │ -0006dc50: 6f66 2042 5261 6e6b 7320 666f 7220 6365 of BRanks for ce │ │ │ │ -0006dc60: 7274 6169 6e20 6578 616d 706c 6573 0a2a rtain examples.* │ │ │ │ +0006d9f0: 2a0a 0a53 796e 6f70 7369 730a 3d3d 3d3d *..Synopsis.==== │ │ │ │ +0006da00: 3d3d 3d3d 0a0a 2020 2a20 5573 6167 653a ====.. * Usage: │ │ │ │ +0006da10: 200a 2020 2020 2020 2020 6172 7220 3d20 . arr = │ │ │ │ +0006da20: 746f 4172 7261 7920 4c0a 2020 2020 2020 toArray L. │ │ │ │ +0006da30: 2020 6172 7220 3d20 746f 4172 7261 7920 arr = toArray │ │ │ │ +0006da40: 6e0a 2020 2a20 496e 7075 7473 3a0a 2020 n. * Inputs:. │ │ │ │ +0006da50: 2020 2020 2a20 4c2c 2061 202a 6e6f 7465 * L, a *note │ │ │ │ +0006da60: 206c 6973 743a 2028 4d61 6361 756c 6179 list: (Macaulay │ │ │ │ +0006da70: 3244 6f63 294c 6973 742c 2c20 0a20 2020 2Doc)List,, . │ │ │ │ +0006da80: 2020 202a 206e 2c20 616e 202a 6e6f 7465 * n, an *note │ │ │ │ +0006da90: 2069 6e74 6567 6572 3a20 284d 6163 6175 integer: (Macau │ │ │ │ +0006daa0: 6c61 7932 446f 6329 5a5a 2c2c 200a 2020 lay2Doc)ZZ,, . │ │ │ │ +0006dab0: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ +0006dac0: 202a 2061 7272 2c20 616e 202a 6e6f 7465 * arr, an *note │ │ │ │ +0006dad0: 2061 7272 6179 3a20 284d 6163 6175 6c61 array: (Macaula │ │ │ │ +0006dae0: 7932 446f 6329 4172 7261 792c 2c20 0a0a y2Doc)Array,, .. │ │ │ │ +0006daf0: 5761 7973 2074 6f20 7573 6520 746f 4172 Ways to use toAr │ │ │ │ +0006db00: 7261 793a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d ray:.=========== │ │ │ │ +0006db10: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ +0006db20: 746f 4172 7261 7928 4c69 7374 2922 0a20 toArray(List)". │ │ │ │ +0006db30: 202a 2022 746f 4172 7261 7928 5a5a 2922 * "toArray(ZZ)" │ │ │ │ +0006db40: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +0006db50: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +0006db60: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +0006db70: 6563 7420 2a6e 6f74 6520 746f 4172 7261 ect *note toArra │ │ │ │ +0006db80: 793a 2074 6f41 7272 6179 2c20 6973 2061 y: toArray, is a │ │ │ │ +0006db90: 202a 6e6f 7465 206d 6574 686f 6420 6675 *note method fu │ │ │ │ +0006dba0: 6e63 7469 6f6e 3a0a 284d 6163 6175 6c61 nction:.(Macaula │ │ │ │ +0006dbb0: 7932 446f 6329 4d65 7468 6f64 4675 6e63 y2Doc)MethodFunc │ │ │ │ +0006dbc0: 7469 6f6e 2c2e 0a1f 0a46 696c 653a 2043 tion,....File: C │ │ │ │ +0006dbd0: 6f6d 706c 6574 6549 6e74 6572 7365 6374 ompleteIntersect │ │ │ │ +0006dbe0: 696f 6e52 6573 6f6c 7574 696f 6e73 2e69 ionResolutions.i │ │ │ │ +0006dbf0: 6e66 6f2c 204e 6f64 653a 2074 776f 4d6f nfo, Node: twoMo │ │ │ │ +0006dc00: 6e6f 6d69 616c 732c 2050 7265 763a 2074 nomials, Prev: t │ │ │ │ +0006dc10: 6f41 7272 6179 2c20 5570 3a20 546f 700a oArray, Up: Top. │ │ │ │ +0006dc20: 0a74 776f 4d6f 6e6f 6d69 616c 7320 2d2d .twoMonomials -- │ │ │ │ +0006dc30: 2074 616c 6c79 2074 6865 2073 6571 7565 tally the seque │ │ │ │ +0006dc40: 6e63 6573 206f 6620 4252 616e 6b73 2066 nces of BRanks f │ │ │ │ +0006dc50: 6f72 2063 6572 7461 696e 2065 7861 6d70 or certain examp │ │ │ │ +0006dc60: 6c65 730a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a les.************ │ │ │ │ 0006dc70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006dc80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0006dc90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006dca0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006dcb0: 2a0a 0a53 796e 6f70 7369 730a 3d3d 3d3d *..Synopsis.==== │ │ │ │ -0006dcc0: 3d3d 3d3d 0a0a 2020 2a20 5573 6167 653a ====.. * Usage: │ │ │ │ -0006dcd0: 200a 2020 2020 2020 2020 5420 3d20 5477 . T = Tw │ │ │ │ -0006dce0: 6f4d 6f6e 6f6d 6961 6c73 2863 2c64 290a oMonomials(c,d). │ │ │ │ -0006dcf0: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ -0006dd00: 2020 2a20 632c 2061 6e20 2a6e 6f74 6520 * c, an *note │ │ │ │ -0006dd10: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ -0006dd20: 6179 3244 6f63 295a 5a2c 2c20 636f 6469 ay2Doc)ZZ,, codi │ │ │ │ -0006dd30: 6d65 6e73 696f 6e20 696e 2077 6869 6368 mension in which │ │ │ │ -0006dd40: 2074 6f20 776f 726b 0a20 2020 2020 202a to work. * │ │ │ │ -0006dd50: 2064 2c20 616e 202a 6e6f 7465 2069 6e74 d, an *note int │ │ │ │ -0006dd60: 6567 6572 3a20 284d 6163 6175 6c61 7932 eger: (Macaulay2 │ │ │ │ -0006dd70: 446f 6329 5a5a 2c2c 2064 6567 7265 6520 Doc)ZZ,, degree │ │ │ │ -0006dd80: 6f66 2074 6865 206d 6f6e 6f6d 6961 6c73 of the monomials │ │ │ │ -0006dd90: 2074 6f20 7461 6b65 0a20 202a 202a 6e6f to take. * *no │ │ │ │ -0006dda0: 7465 204f 7074 696f 6e61 6c20 696e 7075 te Optional inpu │ │ │ │ -0006ddb0: 7473 3a20 284d 6163 6175 6c61 7932 446f ts: (Macaulay2Do │ │ │ │ -0006ddc0: 6329 7573 696e 6720 6675 6e63 7469 6f6e c)using function │ │ │ │ -0006ddd0: 7320 7769 7468 206f 7074 696f 6e61 6c20 s with optional │ │ │ │ -0006dde0: 696e 7075 7473 2c3a 0a20 2020 2020 202a inputs,:. * │ │ │ │ -0006ddf0: 204f 7074 696d 6973 6d20 3d3e 202e 2e2e Optimism => ... │ │ │ │ -0006de00: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -0006de10: 300a 2020 2a20 4f75 7470 7574 733a 0a20 0. * Outputs:. │ │ │ │ -0006de20: 2020 2020 202a 2054 2c20 6120 2a6e 6f74 * T, a *not │ │ │ │ -0006de30: 6520 7461 6c6c 793a 2028 4d61 6361 756c e tally: (Macaul │ │ │ │ -0006de40: 6179 3244 6f63 2954 616c 6c79 2c2c 200a ay2Doc)Tally,, . │ │ │ │ -0006de50: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ -0006de60: 3d3d 3d3d 3d3d 3d3d 0a0a 7461 6c6c 6965 ========..tallie │ │ │ │ -0006de70: 7320 7468 6520 7365 7175 656e 6365 7320 s the sequences │ │ │ │ -0006de80: 6f66 2042 2d72 616e 6b73 2074 6861 7420 of B-ranks that │ │ │ │ -0006de90: 6f63 6375 7220 666f 7220 6964 6561 6c73 occur for ideals │ │ │ │ -0006dea0: 2067 656e 6572 6174 6564 2062 7920 7061 generated by pa │ │ │ │ -0006deb0: 6972 7320 6f66 0a6d 6f6e 6f6d 6961 6c73 irs of.monomials │ │ │ │ -0006dec0: 2069 6e20 5220 3d20 532f 2864 2d74 6820 in R = S/(d-th │ │ │ │ -0006ded0: 706f 7765 7273 206f 6620 7468 6520 7661 powers of the va │ │ │ │ -0006dee0: 7269 6162 6c65 7329 2c20 7769 7468 2066 riables), with f │ │ │ │ -0006def0: 756c 6c20 636f 6d70 6c65 7869 7479 2028 ull complexity ( │ │ │ │ -0006df00: 3d63 293b 0a74 6861 7420 6973 2c20 666f =c);.that is, fo │ │ │ │ -0006df10: 7220 616e 2061 7070 726f 7072 6961 7465 r an appropriate │ │ │ │ -0006df20: 2073 797a 7967 7920 4d20 6f66 204d 3020 syzygy M of M0 │ │ │ │ -0006df30: 3d20 522f 286d 312c 206d 3229 2077 6865 = R/(m1, m2) whe │ │ │ │ -0006df40: 7265 206d 3120 616e 6420 6d32 2061 7265 re m1 and m2 are │ │ │ │ -0006df50: 0a6d 6f6e 6f6d 6961 6c73 206f 6620 7468 .monomials of th │ │ │ │ -0006df60: 6520 7361 6d65 2064 6567 7265 652e 0a0a e same degree... │ │ │ │ -0006df70: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0006dca0: 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 ******..Synopsis │ │ │ │ +0006dcb0: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 .========.. * U │ │ │ │ +0006dcc0: 7361 6765 3a20 0a20 2020 2020 2020 2054 sage: . T │ │ │ │ +0006dcd0: 203d 2054 776f 4d6f 6e6f 6d69 616c 7328 = TwoMonomials( │ │ │ │ +0006dce0: 632c 6429 0a20 202a 2049 6e70 7574 733a c,d). * Inputs: │ │ │ │ +0006dcf0: 0a20 2020 2020 202a 2063 2c20 616e 202a . * c, an * │ │ │ │ +0006dd00: 6e6f 7465 2069 6e74 6567 6572 3a20 284d note integer: (M │ │ │ │ +0006dd10: 6163 6175 6c61 7932 446f 6329 5a5a 2c2c acaulay2Doc)ZZ,, │ │ │ │ +0006dd20: 2063 6f64 696d 656e 7369 6f6e 2069 6e20 codimension in │ │ │ │ +0006dd30: 7768 6963 6820 746f 2077 6f72 6b0a 2020 which to work. │ │ │ │ +0006dd40: 2020 2020 2a20 642c 2061 6e20 2a6e 6f74 * d, an *not │ │ │ │ +0006dd50: 6520 696e 7465 6765 723a 2028 4d61 6361 e integer: (Maca │ │ │ │ +0006dd60: 756c 6179 3244 6f63 295a 5a2c 2c20 6465 ulay2Doc)ZZ,, de │ │ │ │ +0006dd70: 6772 6565 206f 6620 7468 6520 6d6f 6e6f gree of the mono │ │ │ │ +0006dd80: 6d69 616c 7320 746f 2074 616b 650a 2020 mials to take. │ │ │ │ +0006dd90: 2a20 2a6e 6f74 6520 4f70 7469 6f6e 616c * *note Optional │ │ │ │ +0006dda0: 2069 6e70 7574 733a 2028 4d61 6361 756c inputs: (Macaul │ │ │ │ +0006ddb0: 6179 3244 6f63 2975 7369 6e67 2066 756e ay2Doc)using fun │ │ │ │ +0006ddc0: 6374 696f 6e73 2077 6974 6820 6f70 7469 ctions with opti │ │ │ │ +0006ddd0: 6f6e 616c 2069 6e70 7574 732c 3a0a 2020 onal inputs,:. │ │ │ │ +0006dde0: 2020 2020 2a20 4f70 7469 6d69 736d 203d * Optimism = │ │ │ │ +0006ddf0: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ +0006de00: 616c 7565 2030 0a20 202a 204f 7574 7075 alue 0. * Outpu │ │ │ │ +0006de10: 7473 3a0a 2020 2020 2020 2a20 542c 2061 ts:. * T, a │ │ │ │ +0006de20: 202a 6e6f 7465 2074 616c 6c79 3a20 284d *note tally: (M │ │ │ │ +0006de30: 6163 6175 6c61 7932 446f 6329 5461 6c6c acaulay2Doc)Tall │ │ │ │ +0006de40: 792c 2c20 0a0a 4465 7363 7269 7074 696f y,, ..Descriptio │ │ │ │ +0006de50: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a74 n.===========..t │ │ │ │ +0006de60: 616c 6c69 6573 2074 6865 2073 6571 7565 allies the seque │ │ │ │ +0006de70: 6e63 6573 206f 6620 422d 7261 6e6b 7320 nces of B-ranks │ │ │ │ +0006de80: 7468 6174 206f 6363 7572 2066 6f72 2069 that occur for i │ │ │ │ +0006de90: 6465 616c 7320 6765 6e65 7261 7465 6420 deals generated │ │ │ │ +0006dea0: 6279 2070 6169 7273 206f 660a 6d6f 6e6f by pairs of.mono │ │ │ │ +0006deb0: 6d69 616c 7320 696e 2052 203d 2053 2f28 mials in R = S/( │ │ │ │ +0006dec0: 642d 7468 2070 6f77 6572 7320 6f66 2074 d-th powers of t │ │ │ │ +0006ded0: 6865 2076 6172 6961 626c 6573 292c 2077 he variables), w │ │ │ │ +0006dee0: 6974 6820 6675 6c6c 2063 6f6d 706c 6578 ith full complex │ │ │ │ +0006def0: 6974 7920 283d 6329 3b0a 7468 6174 2069 ity (=c);.that i │ │ │ │ +0006df00: 732c 2066 6f72 2061 6e20 6170 7072 6f70 s, for an approp │ │ │ │ +0006df10: 7269 6174 6520 7379 7a79 6779 204d 206f riate syzygy M o │ │ │ │ +0006df20: 6620 4d30 203d 2052 2f28 6d31 2c20 6d32 f M0 = R/(m1, m2 │ │ │ │ +0006df30: 2920 7768 6572 6520 6d31 2061 6e64 206d ) where m1 and m │ │ │ │ +0006df40: 3220 6172 650a 6d6f 6e6f 6d69 616c 7320 2 are.monomials │ │ │ │ +0006df50: 6f66 2074 6865 2073 616d 6520 6465 6772 of the same degr │ │ │ │ +0006df60: 6565 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d ee...+---------- │ │ │ │ +0006df70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006df80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006df90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006dfa0: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 7365 ------+.|i1 : se │ │ │ │ -0006dfb0: 7452 616e 646f 6d53 6565 6420 3020 2020 tRandomSeed 0 │ │ │ │ +0006df90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +0006dfa0: 203a 2073 6574 5261 6e64 6f6d 5365 6564 : setRandomSeed │ │ │ │ +0006dfb0: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 0006dfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006dfd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0006dfe0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0006dfd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006dfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006dff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e010: 2020 2020 2020 7c0a 7c6f 3120 3d20 3020 |.|o1 = 0 │ │ │ │ +0006e000: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0006e010: 203d 2030 2020 2020 2020 2020 2020 2020 = 0 │ │ │ │ 0006e020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e040: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0006e050: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0006e040: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0006e050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006e070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006e080: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 7477 ------+.|i2 : tw │ │ │ │ -0006e090: 6f4d 6f6e 6f6d 6961 6c73 2832 2c33 2920 oMonomials(2,3) │ │ │ │ +0006e070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +0006e080: 203a 2074 776f 4d6f 6e6f 6d69 616c 7328 : twoMonomials( │ │ │ │ +0006e090: 322c 3329 2020 2020 2020 2020 2020 2020 2,3) │ │ │ │ 0006e0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e0b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0006e0c0: 7c20 2d2d 2075 7365 6420 312e 3235 3736 | -- used 1.2576 │ │ │ │ -0006e0d0: 3873 2028 6370 7529 3b20 302e 3636 3432 8s (cpu); 0.6642 │ │ │ │ -0006e0e0: 3737 7320 2874 6872 6561 6429 3b20 3073 77s (thread); 0s │ │ │ │ -0006e0f0: 2028 6763 2920 7c0a 7c32 2020 2020 2020 (gc) |.|2 │ │ │ │ +0006e0b0: 2020 207c 0a7c 202d 2d20 7573 6564 2032 |.| -- used 2 │ │ │ │ +0006e0c0: 2e36 3031 3439 7320 2863 7075 293b 2031 .60149s (cpu); 1 │ │ │ │ +0006e0d0: 2e31 3732 3937 7320 2874 6872 6561 6429 .17297s (thread) │ │ │ │ +0006e0e0: 3b20 3073 2028 6763 2920 207c 0a7c 3220 ; 0s (gc) |.|2 │ │ │ │ +0006e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e120: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0006e130: 7c54 616c 6c79 7b7b 7b31 2c20 317d 7d20 |Tally{{{1, 1}} │ │ │ │ -0006e140: 3d3e 2032 2020 2020 2020 2020 7d20 2020 => 2 } │ │ │ │ -0006e150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e160: 2020 2020 2020 7c0a 7c20 2020 2020 207b |.| { │ │ │ │ -0006e170: 7b32 2c20 327d 2c20 7b31 2c20 327d 7d20 {2, 2}, {1, 2}} │ │ │ │ -0006e180: 3d3e 2034 2020 2020 2020 2020 2020 2020 => 4 │ │ │ │ -0006e190: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0006e1a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0006e120: 2020 207c 0a7c 5461 6c6c 797b 7b7b 312c |.|Tally{{{1, │ │ │ │ +0006e130: 2031 7d7d 203d 3e20 3220 2020 2020 2020 1}} => 2 │ │ │ │ +0006e140: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +0006e150: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0006e160: 2020 2020 7b7b 322c 2032 7d2c 207b 312c {{2, 2}, {1, │ │ │ │ +0006e170: 2032 7d7d 203d 3e20 3420 2020 2020 2020 2}} => 4 │ │ │ │ +0006e180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006e190: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006e1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e1d0: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -0006e1e0: 6420 302e 3634 3832 3032 7320 2863 7075 d 0.648202s (cpu │ │ │ │ -0006e1f0: 293b 2030 2e33 3732 3638 3973 2028 7468 ); 0.372689s (th │ │ │ │ -0006e200: 7265 6164 293b 2030 7320 2867 6329 7c0a read); 0s (gc)|. │ │ │ │ -0006e210: 7c33 2020 2020 2020 2020 2020 2020 2020 |3 │ │ │ │ +0006e1c0: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +0006e1d0: 2d20 7573 6564 2031 2e38 3131 3536 7320 - used 1.81156s │ │ │ │ +0006e1e0: 2863 7075 293b 2030 2e35 3139 3838 3473 (cpu); 0.519884s │ │ │ │ +0006e1f0: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ +0006e200: 6329 207c 0a7c 3320 2020 2020 2020 2020 c) |.|3 │ │ │ │ +0006e210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e240: 2020 2020 2020 7c0a 7c54 616c 6c79 7b7b |.|Tally{{ │ │ │ │ -0006e250: 7b32 2c20 327d 2c20 7b31 2c20 327d 7d20 {2, 2}, {1, 2}} │ │ │ │ -0006e260: 3d3e 2032 7d20 2020 2020 2020 2020 2020 => 2} │ │ │ │ -0006e270: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0006e280: 7c20 2020 2020 207b 7b33 2c20 337d 2c20 | {{3, 3}, │ │ │ │ -0006e290: 7b32 2c20 337d 7d20 3d3e 2031 2020 2020 {2, 3}} => 1 │ │ │ │ -0006e2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e2b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0006e230: 2020 2020 2020 2020 2020 207c 0a7c 5461 |.|Ta │ │ │ │ +0006e240: 6c6c 797b 7b7b 322c 2032 7d2c 207b 312c lly{{{2, 2}, {1, │ │ │ │ +0006e250: 2032 7d7d 203d 3e20 327d 2020 2020 2020 2}} => 2} │ │ │ │ +0006e260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006e270: 2020 207c 0a7c 2020 2020 2020 7b7b 332c |.| {{3, │ │ │ │ +0006e280: 2033 7d2c 207b 322c 2033 7d7d 203d 3e20 3}, {2, 3}} => │ │ │ │ +0006e290: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0006e2a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0006e2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e2e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0006e2f0: 7c20 2d2d 2075 7365 6420 302e 3236 3531 | -- used 0.2651 │ │ │ │ -0006e300: 3573 2028 6370 7529 3b20 302e 3132 3631 5s (cpu); 0.1261 │ │ │ │ -0006e310: 3373 2028 7468 7265 6164 293b 2030 7320 3s (thread); 0s │ │ │ │ -0006e320: 2867 6329 2020 7c0a 7c34 2020 2020 2020 (gc) |.|4 │ │ │ │ +0006e2e0: 2020 207c 0a7c 202d 2d20 7573 6564 2030 |.| -- used 0 │ │ │ │ +0006e2f0: 2e34 3131 3637 3673 2028 6370 7529 3b20 .411676s (cpu); │ │ │ │ +0006e300: 302e 3235 3033 3439 7320 2874 6872 6561 0.250349s (threa │ │ │ │ +0006e310: 6429 3b20 3073 2028 6763 297c 0a7c 3420 d); 0s (gc)|.|4 │ │ │ │ +0006e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e350: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0006e360: 7c54 616c 6c79 7b7b 7b32 2c20 327d 2c20 |Tally{{{2, 2}, │ │ │ │ -0006e370: 7b31 2c20 327d 7d20 3d3e 2031 7d20 2020 {1, 2}} => 1} │ │ │ │ -0006e380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e390: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0006e350: 2020 207c 0a7c 5461 6c6c 797b 7b7b 322c |.|Tally{{{2, │ │ │ │ +0006e360: 2032 7d2c 207b 312c 2032 7d7d 203d 3e20 2}, {1, 2}} => │ │ │ │ +0006e370: 317d 2020 2020 2020 2020 2020 2020 2020 1} │ │ │ │ +0006e380: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0006e390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006e3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0006e3d0: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ -0006e3e0: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 7477 ==.. * *note tw │ │ │ │ -0006e3f0: 6f4d 6f6e 6f6d 6961 6c73 3a20 7477 6f4d oMonomials: twoM │ │ │ │ -0006e400: 6f6e 6f6d 6961 6c73 2c20 2d2d 2074 616c onomials, -- tal │ │ │ │ -0006e410: 6c79 2074 6865 2073 6571 7565 6e63 6573 ly the sequences │ │ │ │ -0006e420: 206f 6620 4252 616e 6b73 2066 6f72 0a20 of BRanks for. │ │ │ │ -0006e430: 2020 2063 6572 7461 696e 2065 7861 6d70 certain examp │ │ │ │ -0006e440: 6c65 730a 0a57 6179 7320 746f 2075 7365 les..Ways to use │ │ │ │ -0006e450: 2074 776f 4d6f 6e6f 6d69 616c 733a 0a3d twoMonomials:.= │ │ │ │ -0006e460: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0006e470: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2274 ========.. * "t │ │ │ │ -0006e480: 776f 4d6f 6e6f 6d69 616c 7328 5a5a 2c5a woMonomials(ZZ,Z │ │ │ │ -0006e490: 5a29 220a 0a46 6f72 2074 6865 2070 726f Z)"..For the pro │ │ │ │ -0006e4a0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -0006e4b0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -0006e4c0: 6f62 6a65 6374 202a 6e6f 7465 2074 776f object *note two │ │ │ │ -0006e4d0: 4d6f 6e6f 6d69 616c 733a 2074 776f 4d6f Monomials: twoMo │ │ │ │ -0006e4e0: 6e6f 6d69 616c 732c 2069 7320 6120 2a6e nomials, is a *n │ │ │ │ -0006e4f0: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ -0006e500: 696f 6e20 7769 7468 0a6f 7074 696f 6e73 ion with.options │ │ │ │ -0006e510: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -0006e520: 4d65 7468 6f64 4675 6e63 7469 6f6e 5769 MethodFunctionWi │ │ │ │ -0006e530: 7468 4f70 7469 6f6e 732c 2e0a 1f0a 5461 thOptions,....Ta │ │ │ │ -0006e540: 6720 5461 626c 653a 0a4e 6f64 653a 2054 g Table:.Node: T │ │ │ │ -0006e550: 6f70 7f33 3136 0a4e 6f64 653a 2041 5261 op.316.Node: ARa │ │ │ │ -0006e560: 6e6b 737f 3334 3539 390a 4e6f 6465 3a20 nks.34599.Node: │ │ │ │ -0006e570: 4175 676d 656e 7461 7469 6f6e 7f33 3539 Augmentation.359 │ │ │ │ -0006e580: 3536 0a4e 6f64 653a 2042 4747 4c7f 3336 56.Node: BGGL.36 │ │ │ │ -0006e590: 3936 300a 4e6f 6465 3a20 624d 6170 737f 960.Node: bMaps. │ │ │ │ -0006e5a0: 3430 3230 320a 4e6f 6465 3a20 4252 616e 40202.Node: BRan │ │ │ │ -0006e5b0: 6b73 7f34 3134 3935 0a4e 6f64 653a 2043 ks.41495.Node: C │ │ │ │ -0006e5c0: 6865 636b 7f34 3838 3830 0a4e 6f64 653a heck.48880.Node: │ │ │ │ -0006e5d0: 2063 6f6d 706c 6578 6974 797f 3530 3432 complexity.5042 │ │ │ │ -0006e5e0: 300a 4e6f 6465 3a20 636f 7379 7a79 6779 0.Node: cosyzygy │ │ │ │ -0006e5f0: 5265 737f 3536 3335 340a 4e6f 6465 3a20 Res.56354.Node: │ │ │ │ -0006e600: 644d 6170 737f 3538 3934 360a 4e6f 6465 dMaps.58946.Node │ │ │ │ -0006e610: 3a20 6475 616c 5769 7468 436f 6d70 6f6e : dualWithCompon │ │ │ │ -0006e620: 656e 7473 7f36 3032 3533 0a4e 6f64 653a ents.60253.Node: │ │ │ │ -0006e630: 2045 6973 656e 6275 6453 6861 6d61 7368 EisenbudShamash │ │ │ │ -0006e640: 7f36 3134 3234 0a4e 6f64 653a 2045 6973 .61424.Node: Eis │ │ │ │ -0006e650: 656e 6275 6453 6861 6d61 7368 546f 7461 enbudShamashTota │ │ │ │ -0006e660: 6c7f 3736 3938 310a 4e6f 6465 3a20 6576 l.76981.Node: ev │ │ │ │ -0006e670: 656e 4578 744d 6f64 756c 657f 3932 3638 enExtModule.9268 │ │ │ │ -0006e680: 380a 4e6f 6465 3a20 6578 706f 7f39 3837 8.Node: expo.987 │ │ │ │ -0006e690: 3837 0a4e 6f64 653a 2065 7874 6572 696f 87.Node: exterio │ │ │ │ -0006e6a0: 7245 7874 4d6f 6475 6c65 7f31 3032 3338 rExtModule.10238 │ │ │ │ -0006e6b0: 350a 4e6f 6465 3a20 6578 7465 7269 6f72 5.Node: exterior │ │ │ │ -0006e6c0: 486f 6d6f 6c6f 6779 4d6f 6475 6c65 7f31 HomologyModule.1 │ │ │ │ -0006e6d0: 3134 3031 310a 4e6f 6465 3a20 6578 7465 14011.Node: exte │ │ │ │ -0006e6e0: 7269 6f72 546f 724d 6f64 756c 657f 3131 riorTorModule.11 │ │ │ │ -0006e6f0: 3534 3837 0a4e 6f64 653a 2065 7874 4973 5487.Node: extIs │ │ │ │ -0006e700: 4f6e 6550 6f6c 796e 6f6d 6961 6c7f 3132 OnePolynomial.12 │ │ │ │ -0006e710: 3630 3938 0a4e 6f64 653a 2045 7874 4d6f 6098.Node: ExtMo │ │ │ │ -0006e720: 6475 6c65 7f31 3239 3539 370a 4e6f 6465 dule.129597.Node │ │ │ │ -0006e730: 3a20 4578 744d 6f64 756c 6544 6174 617f : ExtModuleData. │ │ │ │ -0006e740: 3134 3134 3135 0a4e 6f64 653a 2065 7874 141415.Node: ext │ │ │ │ -0006e750: 5673 436f 686f 6d6f 6c6f 6779 7f31 3437 VsCohomology.147 │ │ │ │ -0006e760: 3332 330a 4e6f 6465 3a20 6669 6e69 7465 323.Node: finite │ │ │ │ -0006e770: 4265 7474 694e 756d 6265 7273 7f31 3532 BettiNumbers.152 │ │ │ │ -0006e780: 3935 360a 4e6f 6465 3a20 6672 6565 4578 956.Node: freeEx │ │ │ │ -0006e790: 7465 7269 6f72 5375 6d6d 616e 647f 3135 teriorSummand.15 │ │ │ │ -0006e7a0: 3736 3433 0a4e 6f64 653a 2047 7261 6469 7643.Node: Gradi │ │ │ │ -0006e7b0: 6e67 7f31 3630 3238 390a 4e6f 6465 3a20 ng.160289.Node: │ │ │ │ -0006e7c0: 6866 7f31 3631 3433 350a 4e6f 6465 3a20 hf.161435.Node: │ │ │ │ -0006e7d0: 6866 4d6f 6475 6c65 4173 4578 747f 3136 hfModuleAsExt.16 │ │ │ │ -0006e7e0: 3231 3038 0a4e 6f64 653a 2068 6967 6853 2108.Node: highS │ │ │ │ -0006e7f0: 797a 7967 797f 3136 3536 3936 0a4e 6f64 yzygy.165696.Nod │ │ │ │ -0006e800: 653a 2068 4d61 7073 7f31 3732 3632 360a e: hMaps.172626. │ │ │ │ -0006e810: 4e6f 6465 3a20 486f 6d57 6974 6843 6f6d Node: HomWithCom │ │ │ │ -0006e820: 706f 6e65 6e74 737f 3137 3430 3131 0a4e ponents.174011.N │ │ │ │ -0006e830: 6f64 653a 2069 6e66 696e 6974 6542 6574 ode: infiniteBet │ │ │ │ -0006e840: 7469 4e75 6d62 6572 737f 3137 3532 3133 tiNumbers.175213 │ │ │ │ -0006e850: 0a4e 6f64 653a 2069 734c 696e 6561 727f .Node: isLinear. │ │ │ │ -0006e860: 3138 3030 3233 0a4e 6f64 653a 2069 7351 180023.Node: isQ │ │ │ │ -0006e870: 7561 7369 5265 6775 6c61 727f 3138 3038 uasiRegular.1808 │ │ │ │ -0006e880: 3336 0a4e 6f64 653a 2069 7353 7461 626c 36.Node: isStabl │ │ │ │ -0006e890: 7954 7269 7669 616c 7f31 3833 3836 340a yTrivial.183864. │ │ │ │ -0006e8a0: 4e6f 6465 3a20 6b6f 737a 756c 4578 7465 Node: koszulExte │ │ │ │ -0006e8b0: 6e73 696f 6e7f 3139 3131 3038 0a4e 6f64 nsion.191108.Nod │ │ │ │ -0006e8c0: 653a 204c 6179 6572 6564 7f31 3932 3532 e: Layered.19252 │ │ │ │ -0006e8d0: 320a 4e6f 6465 3a20 6c61 7965 7265 6452 2.Node: layeredR │ │ │ │ -0006e8e0: 6573 6f6c 7574 696f 6e7f 3139 3336 3831 esolution.193681 │ │ │ │ -0006e8f0: 0a4e 6f64 653a 204c 6966 747f 3231 3635 .Node: Lift.2165 │ │ │ │ -0006e900: 3034 0a4e 6f64 653a 206d 616b 6546 696e 04.Node: makeFin │ │ │ │ -0006e910: 6974 6552 6573 6f6c 7574 696f 6e7f 3231 iteResolution.21 │ │ │ │ -0006e920: 3733 3138 0a4e 6f64 653a 206d 616b 6546 7318.Node: makeF │ │ │ │ -0006e930: 696e 6974 6552 6573 6f6c 7574 696f 6e43 initeResolutionC │ │ │ │ -0006e940: 6f64 696d 327f 3233 3737 3830 0a4e 6f64 odim2.237780.Nod │ │ │ │ -0006e950: 653a 206d 616b 6548 6f6d 6f74 6f70 6965 e: makeHomotopie │ │ │ │ -0006e960: 737f 3234 3636 3539 0a4e 6f64 653a 206d s.246659.Node: m │ │ │ │ -0006e970: 616b 6548 6f6d 6f74 6f70 6965 7331 7f33 akeHomotopies1.3 │ │ │ │ -0006e980: 3433 3335 350a 4e6f 6465 3a20 6d61 6b65 43355.Node: make │ │ │ │ -0006e990: 486f 6d6f 746f 7069 6573 4f6e 486f 6d6f HomotopiesOnHomo │ │ │ │ -0006e9a0: 6c6f 6779 7f33 3434 3830 340a 4e6f 6465 logy.344804.Node │ │ │ │ -0006e9b0: 3a20 6d61 6b65 4d6f 6475 6c65 7f33 3436 : makeModule.346 │ │ │ │ -0006e9c0: 3235 390a 4e6f 6465 3a20 6d61 6b65 547f 259.Node: makeT. │ │ │ │ -0006e9d0: 3335 3637 3438 0a4e 6f64 653a 206d 6174 356748.Node: mat │ │ │ │ -0006e9e0: 7269 7846 6163 746f 7269 7a61 7469 6f6e rixFactorization │ │ │ │ -0006e9f0: 7f33 3630 3036 340a 4e6f 6465 3a20 6d66 .360064.Node: mf │ │ │ │ -0006ea00: 426f 756e 647f 3336 3736 3230 0a4e 6f64 Bound.367620.Nod │ │ │ │ -0006ea10: 653a 206d 6f64 756c 6541 7345 7874 7f33 e: moduleAsExt.3 │ │ │ │ -0006ea20: 3639 3330 330a 4e6f 6465 3a20 6e65 7745 69303.Node: newE │ │ │ │ -0006ea30: 7874 7f33 3735 3231 300a 4e6f 6465 3a20 xt.375210.Node: │ │ │ │ -0006ea40: 6f64 6445 7874 4d6f 6475 6c65 7f34 3033 oddExtModule.403 │ │ │ │ -0006ea50: 3632 320a 4e6f 6465 3a20 4f70 7469 6d69 622.Node: Optimi │ │ │ │ -0006ea60: 736d 7f34 3039 3730 330a 4e6f 6465 3a20 sm.409703.Node: │ │ │ │ -0006ea70: 4f75 7452 696e 677f 3431 3130 3230 0a4e OutRing.411020.N │ │ │ │ -0006ea80: 6f64 653a 2070 7369 4d61 7073 7f34 3132 ode: psiMaps.412 │ │ │ │ -0006ea90: 3133 390a 4e6f 6465 3a20 7265 6775 6c61 139.Node: regula │ │ │ │ -0006eaa0: 7269 7479 5365 7175 656e 6365 7f34 3133 ritySequence.413 │ │ │ │ -0006eab0: 3437 300a 4e6f 6465 3a20 5332 7f34 3136 470.Node: S2.416 │ │ │ │ -0006eac0: 3831 360a 4e6f 6465 3a20 5368 616d 6173 816.Node: Shamas │ │ │ │ -0006ead0: 687f 3432 3735 3631 0a4e 6f64 653a 2073 h.427561.Node: s │ │ │ │ -0006eae0: 706c 6974 7469 6e67 737f 3433 3531 3337 plittings.435137 │ │ │ │ -0006eaf0: 0a4e 6f64 653a 2073 7461 626c 6548 6f6d .Node: stableHom │ │ │ │ -0006eb00: 7f34 3430 3037 300a 4e6f 6465 3a20 7375 .440070.Node: su │ │ │ │ -0006eb10: 6d54 776f 4d6f 6e6f 6d69 616c 737f 3434 mTwoMonomials.44 │ │ │ │ -0006eb20: 3130 3938 0a4e 6f64 653a 2054 6174 6552 1098.Node: TateR │ │ │ │ -0006eb30: 6573 6f6c 7574 696f 6e7f 3434 3333 3537 esolution.443357 │ │ │ │ -0006eb40: 0a4e 6f64 653a 2074 656e 736f 7257 6974 .Node: tensorWit │ │ │ │ -0006eb50: 6843 6f6d 706f 6e65 6e74 737f 3434 3735 hComponents.4475 │ │ │ │ -0006eb60: 3339 0a4e 6f64 653a 2074 6f41 7272 6179 39.Node: toArray │ │ │ │ -0006eb70: 7f34 3438 3737 370a 4e6f 6465 3a20 7477 .448777.Node: tw │ │ │ │ -0006eb80: 6f4d 6f6e 6f6d 6961 6c73 7f34 3439 3439 oMonomials.44949 │ │ │ │ -0006eb90: 300a 1f0a 456e 6420 5461 6720 5461 626c 0...End Tag Tabl │ │ │ │ -0006eba0: 650a e. │ │ │ │ +0006e3c0: 2d2d 2d2b 0a0a 5365 6520 616c 736f 0a3d ---+..See also.= │ │ │ │ +0006e3d0: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ +0006e3e0: 7465 2074 776f 4d6f 6e6f 6d69 616c 733a te twoMonomials: │ │ │ │ +0006e3f0: 2074 776f 4d6f 6e6f 6d69 616c 732c 202d twoMonomials, - │ │ │ │ +0006e400: 2d20 7461 6c6c 7920 7468 6520 7365 7175 - tally the sequ │ │ │ │ +0006e410: 656e 6365 7320 6f66 2042 5261 6e6b 7320 ences of BRanks │ │ │ │ +0006e420: 666f 720a 2020 2020 6365 7274 6169 6e20 for. certain │ │ │ │ +0006e430: 6578 616d 706c 6573 0a0a 5761 7973 2074 examples..Ways t │ │ │ │ +0006e440: 6f20 7573 6520 7477 6f4d 6f6e 6f6d 6961 o use twoMonomia │ │ │ │ +0006e450: 6c73 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ls:.============ │ │ │ │ +0006e460: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +0006e470: 202a 2022 7477 6f4d 6f6e 6f6d 6961 6c73 * "twoMonomials │ │ │ │ +0006e480: 285a 5a2c 5a5a 2922 0a0a 466f 7220 7468 (ZZ,ZZ)"..For th │ │ │ │ +0006e490: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +0006e4a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0006e4b0: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +0006e4c0: 6520 7477 6f4d 6f6e 6f6d 6961 6c73 3a20 e twoMonomials: │ │ │ │ +0006e4d0: 7477 6f4d 6f6e 6f6d 6961 6c73 2c20 6973 twoMonomials, is │ │ │ │ +0006e4e0: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ +0006e4f0: 6675 6e63 7469 6f6e 2077 6974 680a 6f70 function with.op │ │ │ │ +0006e500: 7469 6f6e 733a 2028 4d61 6361 756c 6179 tions: (Macaulay │ │ │ │ +0006e510: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ +0006e520: 696f 6e57 6974 684f 7074 696f 6e73 2c2e ionWithOptions,. │ │ │ │ +0006e530: 0a1f 0a54 6167 2054 6162 6c65 3a0a 4e6f ...Tag Table:.No │ │ │ │ +0006e540: 6465 3a20 546f 707f 3331 360a 4e6f 6465 de: Top.316.Node │ │ │ │ +0006e550: 3a20 4152 616e 6b73 7f33 3435 3939 0a4e : ARanks.34599.N │ │ │ │ +0006e560: 6f64 653a 2041 7567 6d65 6e74 6174 696f ode: Augmentatio │ │ │ │ +0006e570: 6e7f 3335 3935 360a 4e6f 6465 3a20 4247 n.35956.Node: BG │ │ │ │ +0006e580: 474c 7f33 3639 3630 0a4e 6f64 653a 2062 GL.36960.Node: b │ │ │ │ +0006e590: 4d61 7073 7f34 3032 3032 0a4e 6f64 653a Maps.40202.Node: │ │ │ │ +0006e5a0: 2042 5261 6e6b 737f 3431 3439 350a 4e6f BRanks.41495.No │ │ │ │ +0006e5b0: 6465 3a20 4368 6563 6b7f 3438 3838 300a de: Check.48880. │ │ │ │ +0006e5c0: 4e6f 6465 3a20 636f 6d70 6c65 7869 7479 Node: complexity │ │ │ │ +0006e5d0: 7f35 3034 3230 0a4e 6f64 653a 2063 6f73 .50420.Node: cos │ │ │ │ +0006e5e0: 797a 7967 7952 6573 7f35 3633 3534 0a4e yzygyRes.56354.N │ │ │ │ +0006e5f0: 6f64 653a 2064 4d61 7073 7f35 3839 3436 ode: dMaps.58946 │ │ │ │ +0006e600: 0a4e 6f64 653a 2064 7561 6c57 6974 6843 .Node: dualWithC │ │ │ │ +0006e610: 6f6d 706f 6e65 6e74 737f 3630 3235 330a omponents.60253. │ │ │ │ +0006e620: 4e6f 6465 3a20 4569 7365 6e62 7564 5368 Node: EisenbudSh │ │ │ │ +0006e630: 616d 6173 687f 3631 3432 340a 4e6f 6465 amash.61424.Node │ │ │ │ +0006e640: 3a20 4569 7365 6e62 7564 5368 616d 6173 : EisenbudShamas │ │ │ │ +0006e650: 6854 6f74 616c 7f37 3639 3730 0a4e 6f64 hTotal.76970.Nod │ │ │ │ +0006e660: 653a 2065 7665 6e45 7874 4d6f 6475 6c65 e: evenExtModule │ │ │ │ +0006e670: 7f39 3236 3737 0a4e 6f64 653a 2065 7870 .92677.Node: exp │ │ │ │ +0006e680: 6f7f 3938 3737 360a 4e6f 6465 3a20 6578 o.98776.Node: ex │ │ │ │ +0006e690: 7465 7269 6f72 4578 744d 6f64 756c 657f teriorExtModule. │ │ │ │ +0006e6a0: 3130 3233 3734 0a4e 6f64 653a 2065 7874 102374.Node: ext │ │ │ │ +0006e6b0: 6572 696f 7248 6f6d 6f6c 6f67 794d 6f64 eriorHomologyMod │ │ │ │ +0006e6c0: 756c 657f 3131 3430 3030 0a4e 6f64 653a ule.114000.Node: │ │ │ │ +0006e6d0: 2065 7874 6572 696f 7254 6f72 4d6f 6475 exteriorTorModu │ │ │ │ +0006e6e0: 6c65 7f31 3135 3437 360a 4e6f 6465 3a20 le.115476.Node: │ │ │ │ +0006e6f0: 6578 7449 734f 6e65 506f 6c79 6e6f 6d69 extIsOnePolynomi │ │ │ │ +0006e700: 616c 7f31 3236 3038 370a 4e6f 6465 3a20 al.126087.Node: │ │ │ │ +0006e710: 4578 744d 6f64 756c 657f 3132 3935 3836 ExtModule.129586 │ │ │ │ +0006e720: 0a4e 6f64 653a 2045 7874 4d6f 6475 6c65 .Node: ExtModule │ │ │ │ +0006e730: 4461 7461 7f31 3431 3430 340a 4e6f 6465 Data.141404.Node │ │ │ │ +0006e740: 3a20 6578 7456 7343 6f68 6f6d 6f6c 6f67 : extVsCohomolog │ │ │ │ +0006e750: 797f 3134 3733 3132 0a4e 6f64 653a 2066 y.147312.Node: f │ │ │ │ +0006e760: 696e 6974 6542 6574 7469 4e75 6d62 6572 initeBettiNumber │ │ │ │ +0006e770: 737f 3135 3239 3435 0a4e 6f64 653a 2066 s.152945.Node: f │ │ │ │ +0006e780: 7265 6545 7874 6572 696f 7253 756d 6d61 reeExteriorSumma │ │ │ │ +0006e790: 6e64 7f31 3537 3633 320a 4e6f 6465 3a20 nd.157632.Node: │ │ │ │ +0006e7a0: 4772 6164 696e 677f 3136 3032 3738 0a4e Grading.160278.N │ │ │ │ +0006e7b0: 6f64 653a 2068 667f 3136 3134 3234 0a4e ode: hf.161424.N │ │ │ │ +0006e7c0: 6f64 653a 2068 664d 6f64 756c 6541 7345 ode: hfModuleAsE │ │ │ │ +0006e7d0: 7874 7f31 3632 3039 370a 4e6f 6465 3a20 xt.162097.Node: │ │ │ │ +0006e7e0: 6869 6768 5379 7a79 6779 7f31 3635 3638 highSyzygy.16568 │ │ │ │ +0006e7f0: 350a 4e6f 6465 3a20 684d 6170 737f 3137 5.Node: hMaps.17 │ │ │ │ +0006e800: 3236 3135 0a4e 6f64 653a 2048 6f6d 5769 2615.Node: HomWi │ │ │ │ +0006e810: 7468 436f 6d70 6f6e 656e 7473 7f31 3734 thComponents.174 │ │ │ │ +0006e820: 3030 300a 4e6f 6465 3a20 696e 6669 6e69 000.Node: infini │ │ │ │ +0006e830: 7465 4265 7474 694e 756d 6265 7273 7f31 teBettiNumbers.1 │ │ │ │ +0006e840: 3735 3230 320a 4e6f 6465 3a20 6973 4c69 75202.Node: isLi │ │ │ │ +0006e850: 6e65 6172 7f31 3830 3031 320a 4e6f 6465 near.180012.Node │ │ │ │ +0006e860: 3a20 6973 5175 6173 6952 6567 756c 6172 : isQuasiRegular │ │ │ │ +0006e870: 7f31 3830 3832 350a 4e6f 6465 3a20 6973 .180825.Node: is │ │ │ │ +0006e880: 5374 6162 6c79 5472 6976 6961 6c7f 3138 StablyTrivial.18 │ │ │ │ +0006e890: 3338 3533 0a4e 6f64 653a 206b 6f73 7a75 3853.Node: koszu │ │ │ │ +0006e8a0: 6c45 7874 656e 7369 6f6e 7f31 3931 3039 lExtension.19109 │ │ │ │ +0006e8b0: 370a 4e6f 6465 3a20 4c61 7965 7265 647f 7.Node: Layered. │ │ │ │ +0006e8c0: 3139 3235 3131 0a4e 6f64 653a 206c 6179 192511.Node: lay │ │ │ │ +0006e8d0: 6572 6564 5265 736f 6c75 7469 6f6e 7f31 eredResolution.1 │ │ │ │ +0006e8e0: 3933 3637 300a 4e6f 6465 3a20 4c69 6674 93670.Node: Lift │ │ │ │ +0006e8f0: 7f32 3136 3439 330a 4e6f 6465 3a20 6d61 .216493.Node: ma │ │ │ │ +0006e900: 6b65 4669 6e69 7465 5265 736f 6c75 7469 keFiniteResoluti │ │ │ │ +0006e910: 6f6e 7f32 3137 3330 370a 4e6f 6465 3a20 on.217307.Node: │ │ │ │ +0006e920: 6d61 6b65 4669 6e69 7465 5265 736f 6c75 makeFiniteResolu │ │ │ │ +0006e930: 7469 6f6e 436f 6469 6d32 7f32 3337 3736 tionCodim2.23776 │ │ │ │ +0006e940: 390a 4e6f 6465 3a20 6d61 6b65 486f 6d6f 9.Node: makeHomo │ │ │ │ +0006e950: 746f 7069 6573 7f32 3436 3634 380a 4e6f topies.246648.No │ │ │ │ +0006e960: 6465 3a20 6d61 6b65 486f 6d6f 746f 7069 de: makeHomotopi │ │ │ │ +0006e970: 6573 317f 3334 3333 3434 0a4e 6f64 653a es1.343344.Node: │ │ │ │ +0006e980: 206d 616b 6548 6f6d 6f74 6f70 6965 734f makeHomotopiesO │ │ │ │ +0006e990: 6e48 6f6d 6f6c 6f67 797f 3334 3437 3933 nHomology.344793 │ │ │ │ +0006e9a0: 0a4e 6f64 653a 206d 616b 654d 6f64 756c .Node: makeModul │ │ │ │ +0006e9b0: 657f 3334 3632 3438 0a4e 6f64 653a 206d e.346248.Node: m │ │ │ │ +0006e9c0: 616b 6554 7f33 3536 3733 370a 4e6f 6465 akeT.356737.Node │ │ │ │ +0006e9d0: 3a20 6d61 7472 6978 4661 6374 6f72 697a : matrixFactoriz │ │ │ │ +0006e9e0: 6174 696f 6e7f 3336 3030 3533 0a4e 6f64 ation.360053.Nod │ │ │ │ +0006e9f0: 653a 206d 6642 6f75 6e64 7f33 3637 3630 e: mfBound.36760 │ │ │ │ +0006ea00: 390a 4e6f 6465 3a20 6d6f 6475 6c65 4173 9.Node: moduleAs │ │ │ │ +0006ea10: 4578 747f 3336 3932 3932 0a4e 6f64 653a Ext.369292.Node: │ │ │ │ +0006ea20: 206e 6577 4578 747f 3337 3531 3939 0a4e newExt.375199.N │ │ │ │ +0006ea30: 6f64 653a 206f 6464 4578 744d 6f64 756c ode: oddExtModul │ │ │ │ +0006ea40: 657f 3430 3336 3131 0a4e 6f64 653a 204f e.403611.Node: O │ │ │ │ +0006ea50: 7074 696d 6973 6d7f 3430 3936 3932 0a4e ptimism.409692.N │ │ │ │ +0006ea60: 6f64 653a 204f 7574 5269 6e67 7f34 3131 ode: OutRing.411 │ │ │ │ +0006ea70: 3030 390a 4e6f 6465 3a20 7073 694d 6170 009.Node: psiMap │ │ │ │ +0006ea80: 737f 3431 3231 3238 0a4e 6f64 653a 2072 s.412128.Node: r │ │ │ │ +0006ea90: 6567 756c 6172 6974 7953 6571 7565 6e63 egularitySequenc │ │ │ │ +0006eaa0: 657f 3431 3334 3539 0a4e 6f64 653a 2053 e.413459.Node: S │ │ │ │ +0006eab0: 327f 3431 3638 3035 0a4e 6f64 653a 2053 2.416805.Node: S │ │ │ │ +0006eac0: 6861 6d61 7368 7f34 3237 3535 300a 4e6f hamash.427550.No │ │ │ │ +0006ead0: 6465 3a20 7370 6c69 7474 696e 6773 7f34 de: splittings.4 │ │ │ │ +0006eae0: 3335 3132 360a 4e6f 6465 3a20 7374 6162 35126.Node: stab │ │ │ │ +0006eaf0: 6c65 486f 6d7f 3434 3030 3539 0a4e 6f64 leHom.440059.Nod │ │ │ │ +0006eb00: 653a 2073 756d 5477 6f4d 6f6e 6f6d 6961 e: sumTwoMonomia │ │ │ │ +0006eb10: 6c73 7f34 3431 3038 370a 4e6f 6465 3a20 ls.441087.Node: │ │ │ │ +0006eb20: 5461 7465 5265 736f 6c75 7469 6f6e 7f34 TateResolution.4 │ │ │ │ +0006eb30: 3433 3334 360a 4e6f 6465 3a20 7465 6e73 43346.Node: tens │ │ │ │ +0006eb40: 6f72 5769 7468 436f 6d70 6f6e 656e 7473 orWithComponents │ │ │ │ +0006eb50: 7f34 3437 3532 380a 4e6f 6465 3a20 746f .447528.Node: to │ │ │ │ +0006eb60: 4172 7261 797f 3434 3837 3636 0a4e 6f64 Array.448766.Nod │ │ │ │ +0006eb70: 653a 2074 776f 4d6f 6e6f 6d69 616c 737f e: twoMonomials. │ │ │ │ +0006eb80: 3434 3934 3739 0a1f 0a45 6e64 2054 6167 449479...End Tag │ │ │ │ +0006eb90: 2054 6162 6c65 0a Table. │ │ ├── ./usr/share/info/Cremona.info.gz │ │ │ ├── Cremona.info │ │ │ │ @@ -147,16 +147,16 @@ │ │ │ │ 00000920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000930: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2074 -------+.|i2 : t │ │ │ │ 00000940: 696d 6520 7068 6920 3d20 746f 4d61 7020 ime phi = toMap │ │ │ │ 00000950: 6d69 6e6f 7273 2833 2c6d 6174 7269 787b minors(3,matrix{ │ │ │ │ 00000960: 7b74 5f30 2e2e 745f 347d 2c7b 745f 312e {t_0..t_4},{t_1. │ │ │ │ 00000970: 2e74 5f35 7d2c 7b74 5f32 2e2e 745f 367d .t_5},{t_2..t_6} │ │ │ │ 00000980: 7d29 2020 2020 207c 0a7c 202d 2d20 7573 }) |.| -- us │ │ │ │ -00000990: 6564 2030 2e30 3033 3939 3936 3573 2028 ed 0.00399965s ( │ │ │ │ -000009a0: 6370 7529 3b20 302e 3030 3339 3232 3531 cpu); 0.00392251 │ │ │ │ +00000990: 6564 2030 2e30 3034 3030 3738 3273 2028 ed 0.00400782s ( │ │ │ │ +000009a0: 6370 7529 3b20 302e 3030 3332 3237 3731 cpu); 0.00322771 │ │ │ │ 000009b0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ 000009c0: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ 000009d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000009e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000009f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -322,16 +322,16 @@ │ │ │ │ 00001410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001420: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2074 -------+.|i3 : t │ │ │ │ 00001430: 696d 6520 4a20 3d20 6b65 726e 656c 2870 ime J = kernel(p │ │ │ │ 00001440: 6869 2c32 2920 2020 2020 2020 2020 2020 hi,2) │ │ │ │ 00001450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001470: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00001480: 6564 2030 2e30 3433 3734 3531 7320 2863 ed 0.0437451s (c │ │ │ │ -00001490: 7075 293b 2030 2e30 3434 3034 3033 7320 pu); 0.0440403s │ │ │ │ +00001480: 6564 2030 2e30 3332 3030 3038 7320 2863 ed 0.0320008s (c │ │ │ │ +00001490: 7075 293b 2030 2e30 3334 3032 3535 7320 pu); 0.0340255s │ │ │ │ 000014a0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ 000014b0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 000014c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000014d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000014e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000014f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -387,18 +387,18 @@ │ │ │ │ 00001820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001830: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2074 -------+.|i4 : t │ │ │ │ 00001840: 696d 6520 6465 6772 6565 4d61 7020 7068 ime degreeMap ph │ │ │ │ 00001850: 6920 2020 2020 2020 2020 2020 2020 2020 i │ │ │ │ 00001860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001880: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00001890: 6564 2030 2e30 3832 3935 3331 7320 2863 ed 0.0829531s (c │ │ │ │ -000018a0: 7075 293b 2030 2e30 3334 3130 3039 7320 pu); 0.0341009s │ │ │ │ -000018b0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ -000018c0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00001890: 6564 2030 2e31 3234 3836 3873 2028 6370 ed 0.124868s (cp │ │ │ │ +000018a0: 7529 3b20 302e 3036 3734 3935 3673 2028 u); 0.0674956s ( │ │ │ │ +000018b0: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ +000018c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000018d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000018e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000018f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001920: 2020 2020 2020 207c 0a7c 6f34 203d 2031 |.|o4 = 1 │ │ │ │ 00001930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -412,17 +412,17 @@ │ │ │ │ 000019b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000019c0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2074 -------+.|i5 : t │ │ │ │ 000019d0: 696d 6520 7072 6f6a 6563 7469 7665 4465 ime projectiveDe │ │ │ │ 000019e0: 6772 6565 7320 7068 6920 2020 2020 2020 grees phi │ │ │ │ 000019f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001a10: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00001a20: 6564 2030 2e35 3036 3935 3673 2028 6370 ed 0.506956s (cp │ │ │ │ -00001a30: 7529 3b20 302e 3338 3230 3733 7320 2874 u); 0.382073s (t │ │ │ │ -00001a40: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +00001a20: 6564 2030 2e34 3537 3539 7320 2863 7075 ed 0.45759s (cpu │ │ │ │ +00001a30: 293b 2030 2e33 3937 3037 3873 2028 7468 ); 0.397078s (th │ │ │ │ +00001a40: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 00001a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001a60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00001a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001ab0: 2020 2020 2020 207c 0a7c 6f35 203d 207b |.|o5 = { │ │ │ │ @@ -447,16 +447,16 @@ │ │ │ │ 00001be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001bf0: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2074 -------+.|i6 : t │ │ │ │ 00001c00: 696d 6520 7072 6f6a 6563 7469 7665 4465 ime projectiveDe │ │ │ │ 00001c10: 6772 6565 7328 7068 692c 4e75 6d44 6567 grees(phi,NumDeg │ │ │ │ 00001c20: 7265 6573 3d3e 3029 2020 2020 2020 2020 rees=>0) │ │ │ │ 00001c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001c40: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00001c50: 6564 2030 2e30 3536 3531 3736 7320 2863 ed 0.0565176s (c │ │ │ │ -00001c60: 7075 293b 2030 2e30 3537 3331 3731 7320 pu); 0.0573171s │ │ │ │ +00001c50: 6564 2030 2e30 3433 3334 3532 7320 2863 ed 0.0433452s (c │ │ │ │ +00001c60: 7075 293b 2030 2e30 3436 3136 3632 7320 pu); 0.0461662s │ │ │ │ 00001c70: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ 00001c80: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00001c90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00001ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -478,20 +478,20 @@ │ │ │ │ 00001dd0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 00001de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001e20: 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a 2074 -------+.|i7 : t │ │ │ │ 00001e30: 696d 6520 7068 6920 3d20 746f 4d61 7028 ime phi = toMap( │ │ │ │ -00001e40: 7068 692c 2020 2020 2020 2020 2020 2020 phi, │ │ │ │ +00001e40: 7068 6920 2020 2020 2020 2020 2020 2020 phi │ │ │ │ 00001e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001e70: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00001e80: 6564 2030 2e30 3030 3138 3930 3635 7320 ed 0.000189065s │ │ │ │ -00001e90: 2863 7075 2020 2020 2020 2020 2020 2020 (cpu │ │ │ │ +00001e80: 6564 2030 2e30 3031 3035 3731 3573 2028 ed 0.00105715s ( │ │ │ │ +00001e90: 6370 7520 2020 2020 2020 2020 2020 2020 cpu │ │ │ │ 00001ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001ec0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00001ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -548,130 +548,130 @@ │ │ │ │ 00002230: 2020 2020 2020 207c 0a7c 6f37 203a 2052 |.|o7 : R │ │ │ │ 00002240: 696e 674d 6170 202d 2d2d 2d2d 2d5b 7420 ingMap ------[t │ │ │ │ 00002250: 2e2e 7420 2020 2020 2020 2020 2020 2020 ..t │ │ │ │ 00002260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002280: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00002290: 2020 2020 2020 2033 3030 3030 3720 2030 300007 0 │ │ │ │ -000022a0: 2020 2036 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +000022a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000022b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000022c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000022d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000022e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000022f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002320: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ 00002330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00002370: 2d2d 2d2d 2d2d 2d7c 0a7c 446f 6d69 6e61 -------|.|Domina │ │ │ │ -00002380: 6e74 3d3e 4a29 2020 2020 2020 2020 2020 nt=>J) │ │ │ │ +00002370: 2d2d 2d2d 2d2d 2d7c 0a7c 2c44 6f6d 696e -------|.|,Domin │ │ │ │ +00002380: 616e 743d 3e4a 2920 2020 2020 2020 2020 ant=>J) │ │ │ │ 00002390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000023a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000023b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000023c0: 2020 2020 2020 207c 0a7c 293b 2030 2e30 |.|); 0.0 │ │ │ │ -000023d0: 3032 3034 3239 3973 2028 7468 7265 6164 0204299s (thread │ │ │ │ +000023d0: 3031 3731 3230 3373 2028 7468 7265 6164 0171203s (thread │ │ │ │ 000023e0: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 000023f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002410: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00002420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002460: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00002470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002490: 2020 2020 2020 205a 5a20 2020 2020 2020 ZZ │ │ │ │ +00002490: 2020 2020 2020 2020 5a5a 2020 2020 2020 ZZ │ │ │ │ 000024a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000024b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000024c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000024d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000024e0: 2020 2020 202d 2d2d 2d2d 2d5b 7820 2e2e ------[x .. │ │ │ │ -000024f0: 7820 5d20 2020 2020 2020 2020 2020 2020 x ] │ │ │ │ +000024e0: 2020 2020 2020 2d2d 2d2d 2d2d 5b78 202e ------[x . │ │ │ │ +000024f0: 2e78 205d 2020 2020 2020 2020 2020 2020 .x ] │ │ │ │ 00002500: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00002510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002530: 2020 2020 2033 3030 3030 3720 2030 2020 300007 0 │ │ │ │ -00002540: 2039 2020 2020 2020 2020 2020 2020 2020 9 │ │ │ │ -00002550: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ +00002530: 2020 2020 2020 3330 3030 3037 2020 3020 300007 0 │ │ │ │ +00002540: 2020 3920 2020 2020 2020 2020 2020 2020 9 │ │ │ │ +00002550: 2020 2020 2020 207c 0a7c 202d 2d2d 2d2d |.| ----- │ │ │ │ 00002560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000025a0: 2d2d 2d2d 2d2d 2d7c 0a7c 2878 2078 2020 -------|.|(x x │ │ │ │ -000025b0: 2d20 7820 7820 202b 2078 2078 202c 2078 - x x + x x , x │ │ │ │ -000025c0: 2078 2020 2d20 7820 7820 202b 2078 2078 x - x x + x x │ │ │ │ -000025d0: 202c 2078 2078 2020 2d20 7820 7820 202b , x x - x x + │ │ │ │ -000025e0: 2078 2078 202c 2078 2078 2020 2d20 7820 x x , x x - x │ │ │ │ -000025f0: 7820 202b 2078 207c 0a7c 2020 3620 3720 x + x |.| 6 7 │ │ │ │ -00002600: 2020 2035 2038 2020 2020 3420 3920 2020 5 8 4 9 │ │ │ │ -00002610: 3320 3720 2020 2032 2038 2020 2020 3120 3 7 2 8 1 │ │ │ │ -00002620: 3920 2020 3320 3520 2020 2032 2036 2020 9 3 5 2 6 │ │ │ │ -00002630: 2020 3020 3920 2020 3320 3420 2020 2031 0 9 3 4 1 │ │ │ │ -00002640: 2036 2020 2020 307c 0a7c 2020 2020 2020 6 0|.| │ │ │ │ +000025a0: 2d2d 2d2d 2d2d 2d7c 0a7c 2028 7820 7820 -------|.| (x x │ │ │ │ +000025b0: 202d 2078 2078 2020 2b20 7820 7820 2c20 - x x + x x , │ │ │ │ +000025c0: 7820 7820 202d 2078 2078 2020 2b20 7820 x x - x x + x │ │ │ │ +000025d0: 7820 2c20 7820 7820 202d 2078 2078 2020 x , x x - x x │ │ │ │ +000025e0: 2b20 7820 7820 2c20 7820 7820 202d 2078 + x x , x x - x │ │ │ │ +000025f0: 2078 2020 2b20 787c 0a7c 2020 2036 2037 x + x|.| 6 7 │ │ │ │ +00002600: 2020 2020 3520 3820 2020 2034 2039 2020 5 8 4 9 │ │ │ │ +00002610: 2033 2037 2020 2020 3220 3820 2020 2031 3 7 2 8 1 │ │ │ │ +00002620: 2039 2020 2033 2035 2020 2020 3220 3620 9 3 5 2 6 │ │ │ │ +00002630: 2020 2030 2039 2020 2033 2034 2020 2020 0 9 3 4 │ │ │ │ +00002640: 3120 3620 2020 207c 0a7c 2020 2020 2020 1 6 |.| │ │ │ │ 00002650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002690: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000026a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000026b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000026c0: 2020 2020 2020 2020 2020 2020 205a 5a20 ZZ │ │ │ │ +000026c0: 2020 2020 2020 2020 2020 2020 2020 5a5a ZZ │ │ │ │ 000026d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000026e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000026f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002710: 2020 2020 2020 2020 2020 202d 2d2d 2d2d ----- │ │ │ │ -00002720: 2d5b 7820 2e2e 7820 5d20 2020 2020 2020 -[x ..x ] │ │ │ │ +00002710: 2020 2020 2020 2020 2020 2020 2d2d 2d2d ---- │ │ │ │ +00002720: 2d2d 5b78 202e 2e78 205d 2020 2020 2020 --[x ..x ] │ │ │ │ 00002730: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00002740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002760: 2020 2020 2020 2020 2020 2033 3030 3030 30000 │ │ │ │ -00002770: 3720 2030 2020 2039 2020 2020 2020 2020 7 0 9 │ │ │ │ -00002780: 2020 2020 2020 207c 0a7c 5d20 3c2d 2d20 |.|] <-- │ │ │ │ -00002790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00002760: 2020 2020 2020 2020 2020 2020 3330 3030 3000 │ │ │ │ +00002770: 3037 2020 3020 2020 3920 2020 2020 2020 07 0 9 │ │ │ │ +00002780: 2020 2020 2020 207c 0a7c 205d 203c 2d2d |.| ] <-- │ │ │ │ +00002790: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d --------------- │ │ │ │ 000027a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000027b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000027c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000027d0: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 -------|.| │ │ │ │ -000027e0: 2878 2078 2020 2d20 7820 7820 202b 2078 (x x - x x + x │ │ │ │ -000027f0: 2078 202c 2078 2078 2020 2d20 7820 7820 x , x x - x x │ │ │ │ -00002800: 202b 2078 2078 202c 2078 2078 2020 2d20 + x x , x x - │ │ │ │ -00002810: 7820 7820 202b 2078 2078 202c 2078 2078 x x + x x , x x │ │ │ │ -00002820: 2020 2d20 7820 787c 0a7c 2020 2020 2020 - x x|.| │ │ │ │ -00002830: 2020 3620 3720 2020 2035 2038 2020 2020 6 7 5 8 │ │ │ │ -00002840: 3420 3920 2020 3320 3720 2020 2032 2038 4 9 3 7 2 8 │ │ │ │ -00002850: 2020 2020 3120 3920 2020 3320 3520 2020 1 9 3 5 │ │ │ │ -00002860: 2032 2036 2020 2020 3020 3920 2020 3320 2 6 0 9 3 │ │ │ │ -00002870: 3420 2020 2031 207c 0a7c 2d2d 2d2d 2d2d 4 1 |.|------ │ │ │ │ +000027d0: 2d2d 2d2d 2d2d 2d7c 0a7c 3620 2020 2020 -------|.|6 │ │ │ │ +000027e0: 2028 7820 7820 202d 2078 2078 2020 2b20 (x x - x x + │ │ │ │ +000027f0: 7820 7820 2c20 7820 7820 202d 2078 2078 x x , x x - x x │ │ │ │ +00002800: 2020 2b20 7820 7820 2c20 7820 7820 202d + x x , x x - │ │ │ │ +00002810: 2078 2078 2020 2b20 7820 7820 2c20 7820 x x + x x , x │ │ │ │ +00002820: 7820 202d 2078 207c 0a7c 2020 2020 2020 x - x |.| │ │ │ │ +00002830: 2020 2036 2037 2020 2020 3520 3820 2020 6 7 5 8 │ │ │ │ +00002840: 2034 2039 2020 2033 2037 2020 2020 3220 4 9 3 7 2 │ │ │ │ +00002850: 3820 2020 2031 2039 2020 2033 2035 2020 8 1 9 3 5 │ │ │ │ +00002860: 2020 3220 3620 2020 2030 2039 2020 2033 2 6 0 9 3 │ │ │ │ +00002870: 2034 2020 2020 317c 0a7c 2d2d 2d2d 2d2d 4 1|.|------ │ │ │ │ 00002880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000028a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000028b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000028c0: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 -------|.| │ │ │ │ 000028d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000028e0: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ -000028f0: 2020 2020 2020 2020 3220 2020 2032 2020 2 2 │ │ │ │ -00002900: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000028e0: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ +000028f0: 2020 2020 2020 2020 2032 2020 2020 3220 2 2 │ │ │ │ +00002900: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ 00002910: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ 00002920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00002930: 2d2c 207b 2d20 7420 202b 2032 7420 7420 -, {- t + 2t t │ │ │ │ -00002940: 7420 202d 2074 2074 2020 2d20 7420 7420 t - t t - t t │ │ │ │ -00002950: 202b 2074 2074 2074 202c 202d 2074 2074 + t t t , - t t │ │ │ │ -00002960: 2020 2b20 2020 207c 0a7c 7820 2c20 7820 + |.|x , x │ │ │ │ -00002970: 7820 202d 2078 2078 2020 2b20 7820 7820 x - x x + x x │ │ │ │ -00002980: 2920 2020 2020 2032 2020 2020 2031 2032 ) 2 1 2 │ │ │ │ -00002990: 2033 2020 2020 3020 3320 2020 2031 2034 3 0 3 1 4 │ │ │ │ -000029a0: 2020 2020 3020 3220 3420 2020 2020 3220 0 2 4 2 │ │ │ │ -000029b0: 3320 2020 2020 207c 0a7c 2038 2020 2032 3 |.| 8 2 │ │ │ │ -000029c0: 2034 2020 2020 3120 3520 2020 2030 2037 4 1 5 0 7 │ │ │ │ -000029d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00002930: 2d2d 2c20 7b2d 2074 2020 2b20 3274 2074 --, {- t + 2t t │ │ │ │ +00002940: 2074 2020 2d20 7420 7420 202d 2074 2074 t - t t - t t │ │ │ │ +00002950: 2020 2b20 7420 7420 7420 2c20 2d20 7420 + t t t , - t │ │ │ │ +00002960: 7420 202b 2020 207c 0a7c 2078 202c 2078 t + |.| x , x │ │ │ │ +00002970: 2078 2020 2d20 7820 7820 202b 2078 2078 x - x x + x x │ │ │ │ +00002980: 2029 2020 2020 2020 3220 2020 2020 3120 ) 2 1 │ │ │ │ +00002990: 3220 3320 2020 2030 2033 2020 2020 3120 2 3 0 3 1 │ │ │ │ +000029a0: 3420 2020 2030 2032 2034 2020 2020 2032 4 0 2 4 2 │ │ │ │ +000029b0: 2033 2020 2020 207c 0a7c 3020 3820 2020 3 |.|0 8 │ │ │ │ +000029c0: 3220 3420 2020 2031 2035 2020 2020 3020 2 4 1 5 0 │ │ │ │ +000029d0: 3720 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ 000029e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000029f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002a00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00002a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -688,25 +688,25 @@ │ │ │ │ 00002af0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00002b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002b40: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ 00002b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00002b60: 2d2d 2d2d 2d2d 2d20 2020 2020 2020 2020 ------- │ │ │ │ +00002b60: 2d2d 2d2d 2d2d 2d2d 2020 2020 2020 2020 -------- │ │ │ │ 00002b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002b90: 2020 2020 2020 207c 0a7c 2020 2b20 7820 |.| + x │ │ │ │ -00002ba0: 7820 2c20 7820 7820 202d 2078 2078 2020 x , x x - x x │ │ │ │ -00002bb0: 2b20 7820 7820 2920 2020 2020 2020 2020 + x x ) │ │ │ │ +00002b90: 2020 2020 2020 207c 0a7c 7820 202b 2078 |.|x + x │ │ │ │ +00002ba0: 2078 202c 2078 2078 2020 2d20 7820 7820 x , x x - x x │ │ │ │ +00002bb0: 202b 2078 2078 2029 2020 2020 2020 2020 + x x ) │ │ │ │ 00002bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002be0: 2020 2020 2020 207c 0a7c 3620 2020 2030 |.|6 0 │ │ │ │ -00002bf0: 2038 2020 2032 2034 2020 2020 3120 3520 8 2 4 1 5 │ │ │ │ -00002c00: 2020 2030 2037 2020 2020 2020 2020 2020 0 7 │ │ │ │ +00002be0: 2020 2020 2020 207c 0a7c 2036 2020 2020 |.| 6 │ │ │ │ +00002bf0: 3020 3820 2020 3220 3420 2020 2031 2035 0 8 2 4 1 5 │ │ │ │ +00002c00: 2020 2020 3020 3720 2020 2020 2020 2020 0 7 │ │ │ │ 00002c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002c30: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ 00002c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -832,17 +832,17 @@ │ │ │ │ 000033f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003400: 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a 2074 -------+.|i8 : t │ │ │ │ 00003410: 696d 6520 7073 6920 3d20 696e 7665 7273 ime psi = invers │ │ │ │ 00003420: 654d 6170 2070 6869 2020 2020 2020 2020 eMap phi │ │ │ │ 00003430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003450: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00003460: 6564 2030 2e35 3636 3739 3573 2028 6370 ed 0.566795s (cp │ │ │ │ -00003470: 7529 3b20 302e 3431 3735 3573 2028 7468 u); 0.41755s (th │ │ │ │ -00003480: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +00003460: 6564 2030 2e35 3939 3836 3873 2028 6370 ed 0.599868s (cp │ │ │ │ +00003470: 7529 3b20 302e 3434 3534 7320 2874 6872 u); 0.4454s (thr │ │ │ │ +00003480: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00003490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000034b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ @@ -1117,18 +1117,18 @@ │ │ │ │ 000045c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000045d0: 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a 2074 -------+.|i9 : t │ │ │ │ 000045e0: 696d 6520 6973 496e 7665 7273 654d 6170 ime isInverseMap │ │ │ │ 000045f0: 2870 6869 2c70 7369 2920 2020 2020 2020 (phi,psi) │ │ │ │ 00004600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004620: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00004630: 6564 2030 2e30 3130 3133 3233 7320 2863 ed 0.0101323s (c │ │ │ │ -00004640: 7075 293b 2030 2e30 3039 3436 3335 3673 pu); 0.00946356s │ │ │ │ -00004650: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ -00004660: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ +00004630: 6564 2030 2e30 3037 3938 3633 3273 2028 ed 0.00798632s ( │ │ │ │ +00004640: 6370 7529 3b20 302e 3030 3731 3237 3339 cpu); 0.00712739 │ │ │ │ +00004650: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +00004660: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ 00004670: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00004680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000046a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000046b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000046c0: 2020 2020 2020 207c 0a7c 6f39 203d 2074 |.|o9 = t │ │ │ │ 000046d0: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ @@ -1142,16 +1142,16 @@ │ │ │ │ 00004750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004760: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 -------+.|i10 : │ │ │ │ 00004770: 7469 6d65 2064 6567 7265 654d 6170 2070 time degreeMap p │ │ │ │ 00004780: 7369 2020 2020 2020 2020 2020 2020 2020 si │ │ │ │ 00004790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000047a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000047b0: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -000047c0: 6564 2030 2e32 3937 3931 3773 2028 6370 ed 0.297917s (cp │ │ │ │ -000047d0: 7529 3b20 302e 3233 3338 3238 7320 2874 u); 0.233828s (t │ │ │ │ +000047c0: 6564 2030 2e32 3535 3733 3673 2028 6370 ed 0.255736s (cp │ │ │ │ +000047d0: 7529 3b20 302e 3139 3738 3233 7320 2874 u); 0.197823s (t │ │ │ │ 000047e0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 000047f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004800: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00004810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1167,16 +1167,16 @@ │ │ │ │ 000048e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000048f0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 3a20 -------+.|i11 : │ │ │ │ 00004900: 7469 6d65 2070 726f 6a65 6374 6976 6544 time projectiveD │ │ │ │ 00004910: 6567 7265 6573 2070 7369 2020 2020 2020 egrees psi │ │ │ │ 00004920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004940: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00004950: 6564 2034 2e39 3936 3537 7320 2863 7075 ed 4.99657s (cpu │ │ │ │ -00004960: 293b 2034 2e32 3737 3236 7320 2874 6872 ); 4.27726s (thr │ │ │ │ +00004950: 6564 2035 2e37 3339 3933 7320 2863 7075 ed 5.73993s (cpu │ │ │ │ +00004960: 293b 2035 2e33 3537 3834 7320 2874 6872 ); 5.35784s (thr │ │ │ │ 00004970: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00004980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004990: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000049a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000049b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000049c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000049d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1213,18 +1213,18 @@ │ │ │ │ 00004bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00004be0: 0a7c 6931 3220 3a20 7469 6d65 2070 6869 .|i12 : time phi │ │ │ │ 00004bf0: 203d 2072 6174 696f 6e61 6c4d 6170 206d = rationalMap m │ │ │ │ 00004c00: 696e 6f72 7328 332c 6d61 7472 6978 7b7b inors(3,matrix{{ │ │ │ │ 00004c10: 745f 302e 2e74 5f34 7d2c 7b74 5f31 2e2e t_0..t_4},{t_1.. │ │ │ │ 00004c20: 745f 357d 2c7b 745f 322e 2e74 5f36 207c t_5},{t_2..t_6 | │ │ │ │ -00004c30: 0a7c 202d 2d20 7573 6564 2030 2e30 3031 .| -- used 0.001 │ │ │ │ -00004c40: 3132 3533 7320 2863 7075 293b 2030 2e30 1253s (cpu); 0.0 │ │ │ │ -00004c50: 3031 3937 3134 3173 2028 7468 7265 6164 0197141s (thread │ │ │ │ -00004c60: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +00004c30: 0a7c 202d 2d20 7573 6564 2030 2e30 3032 .| -- used 0.002 │ │ │ │ +00004c40: 3030 3231 3173 2028 6370 7529 3b20 302e 00211s (cpu); 0. │ │ │ │ +00004c50: 3030 3138 3635 3435 7320 2874 6872 6561 00186545s (threa │ │ │ │ +00004c60: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 00004c70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00004c80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00004c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004cc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00004cd0: 0a7c 6f31 3220 3d20 2d2d 2072 6174 696f .|o12 = -- ratio │ │ │ │ @@ -1493,17 +1493,17 @@ │ │ │ │ 00005d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00005d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00005d60: 0a7c 6931 3320 3a20 7469 6d65 2070 6869 .|i13 : time phi │ │ │ │ 00005d70: 203d 2072 6174 696f 6e61 6c4d 6170 2870 = rationalMap(p │ │ │ │ 00005d80: 6869 2c44 6f6d 696e 616e 743d 3e32 2920 hi,Dominant=>2) │ │ │ │ 00005d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00005db0: 0a7c 202d 2d20 7573 6564 2030 2e31 3535 .| -- used 0.155 │ │ │ │ -00005dc0: 3437 3173 2028 6370 7529 3b20 302e 3037 471s (cpu); 0.07 │ │ │ │ -00005dd0: 3535 3436 3773 2028 7468 7265 6164 293b 55467s (thread); │ │ │ │ +00005db0: 0a7c 202d 2d20 7573 6564 2030 2e31 3933 .| -- used 0.193 │ │ │ │ +00005dc0: 3131 3773 2028 6370 7529 3b20 302e 3036 117s (cpu); 0.06 │ │ │ │ +00005dd0: 3633 3736 3873 2028 7468 7265 6164 293b 63768s (thread); │ │ │ │ 00005de0: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ 00005df0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00005e00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00005e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -2153,17 +2153,17 @@ │ │ │ │ 00008680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 000086a0: 0a7c 6931 3420 3a20 7469 6d65 2070 6869 .|i14 : time phi │ │ │ │ 000086b0: 5e28 2d31 2920 2020 2020 2020 2020 2020 ^(-1) │ │ │ │ 000086c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000086d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000086e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000086f0: 0a7c 202d 2d20 7573 6564 2030 2e35 3034 .| -- used 0.504 │ │ │ │ -00008700: 3832 3573 2028 6370 7529 3b20 302e 3432 825s (cpu); 0.42 │ │ │ │ -00008710: 3530 3336 7320 2874 6872 6561 6429 3b20 5036s (thread); │ │ │ │ +000086f0: 0a7c 202d 2d20 7573 6564 2030 2e34 3335 .| -- used 0.435 │ │ │ │ +00008700: 3333 3273 2028 6370 7529 3b20 302e 3433 332s (cpu); 0.43 │ │ │ │ +00008710: 3538 3039 7320 2874 6872 6561 6429 3b20 5809s (thread); │ │ │ │ 00008720: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 00008730: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00008740: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00008750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008780: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -2708,18 +2708,18 @@ │ │ │ │ 0000a930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000a950: 0a7c 6931 3520 3a20 7469 6d65 2064 6567 .|i15 : time deg │ │ │ │ 0000a960: 7265 6573 2070 6869 5e28 2d31 2920 2020 rees phi^(-1) │ │ │ │ 0000a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a990: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a9a0: 0a7c 202d 2d20 7573 6564 2030 2e33 3535 .| -- used 0.355 │ │ │ │ -0000a9b0: 3436 3673 2028 6370 7529 3b20 302e 3237 466s (cpu); 0.27 │ │ │ │ -0000a9c0: 3033 3535 7320 2874 6872 6561 6429 3b20 0355s (thread); │ │ │ │ -0000a9d0: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ +0000a9a0: 0a7c 202d 2d20 7573 6564 2030 2e34 3839 .| -- used 0.489 │ │ │ │ +0000a9b0: 3635 3173 2028 6370 7529 3b20 302e 3336 651s (cpu); 0.36 │ │ │ │ +0000a9c0: 3634 3573 2028 7468 7265 6164 293b 2030 645s (thread); 0 │ │ │ │ +0000a9d0: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ 0000a9e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000a9f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000aa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000aa40: 0a7c 6f31 3520 3d20 7b35 2c20 3135 2c20 .|o15 = {5, 15, │ │ │ │ @@ -2743,18 +2743,18 @@ │ │ │ │ 0000ab60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ab70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000ab80: 0a7c 6931 3620 3a20 7469 6d65 2064 6567 .|i16 : time deg │ │ │ │ 0000ab90: 7265 6573 2070 6869 2020 2020 2020 2020 rees phi │ │ │ │ 0000aba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000abb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000abc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000abd0: 0a7c 202d 2d20 7573 6564 2030 2e31 3230 .| -- used 0.120 │ │ │ │ -0000abe0: 3930 3773 2028 6370 7529 3b20 302e 3034 907s (cpu); 0.04 │ │ │ │ -0000abf0: 3337 3030 3273 2028 7468 7265 6164 293b 37002s (thread); │ │ │ │ -0000ac00: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ +0000abd0: 0a7c 202d 2d20 7573 6564 2030 2e30 3733 .| -- used 0.073 │ │ │ │ +0000abe0: 3435 3532 7320 2863 7075 293b 2030 2e30 4552s (cpu); 0.0 │ │ │ │ +0000abf0: 3231 3830 3037 7320 2874 6872 6561 6429 218007s (thread) │ │ │ │ +0000ac00: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 0000ac10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000ac20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000ac30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ac40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ac50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ac60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000ac70: 0a7c 6f31 3620 3d20 7b31 2c20 332c 2039 .|o16 = {1, 3, 9 │ │ │ │ @@ -2778,17 +2778,17 @@ │ │ │ │ 0000ad90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ada0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000adb0: 0a7c 6931 3720 3a20 7469 6d65 2064 6573 .|i17 : time des │ │ │ │ 0000adc0: 6372 6962 6520 7068 6920 2020 2020 2020 cribe phi │ │ │ │ 0000add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000adf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000ae00: 0a7c 202d 2d20 7573 6564 2030 2e30 3033 .| -- used 0.003 │ │ │ │ -0000ae10: 3230 3737 3273 2028 6370 7529 3b20 302e 20772s (cpu); 0. │ │ │ │ -0000ae20: 3030 3331 3633 3131 7320 2874 6872 6561 00316311s (threa │ │ │ │ +0000ae00: 0a7c 202d 2d20 7573 6564 2031 2e35 3239 .| -- used 1.529 │ │ │ │ +0000ae10: 3865 2d30 3573 2028 6370 7529 3b20 302e 8e-05s (cpu); 0. │ │ │ │ +0000ae20: 3030 3335 3139 3331 7320 2874 6872 6561 00351931s (threa │ │ │ │ 0000ae30: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 0000ae40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000ae50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ae90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -2843,18 +2843,18 @@ │ │ │ │ 0000b1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000b1c0: 0a7c 6931 3820 3a20 7469 6d65 2064 6573 .|i18 : time des │ │ │ │ 0000b1d0: 6372 6962 6520 7068 695e 282d 3129 2020 cribe phi^(-1) │ │ │ │ 0000b1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b200: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000b210: 0a7c 202d 2d20 7573 6564 2030 2e30 3036 .| -- used 0.006 │ │ │ │ -0000b220: 3433 3239 3673 2028 6370 7529 3b20 302e 43296s (cpu); 0. │ │ │ │ -0000b230: 3030 3939 3338 3936 7320 2874 6872 6561 00993896s (threa │ │ │ │ -0000b240: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +0000b210: 0a7c 202d 2d20 7573 6564 2030 2e30 3038 .| -- used 0.008 │ │ │ │ +0000b220: 3436 3537 3373 2028 6370 7529 3b20 302e 46573s (cpu); 0. │ │ │ │ +0000b230: 3031 3233 3635 3673 2028 7468 7265 6164 0123656s (thread │ │ │ │ +0000b240: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 0000b250: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b260: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b2a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b2b0: 0a7c 6f31 3820 3d20 7261 7469 6f6e 616c .|o18 = rational │ │ │ │ @@ -2923,18 +2923,18 @@ │ │ │ │ 0000b6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000b6c0: 0a7c 6931 3920 3a20 7469 6d65 2028 662c .|i19 : time (f, │ │ │ │ 0000b6d0: 6729 203d 2067 7261 7068 2070 6869 5e2d g) = graph phi^- │ │ │ │ 0000b6e0: 313b 2066 3b20 2020 2020 2020 2020 2020 1; f; │ │ │ │ 0000b6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b700: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000b710: 0a7c 202d 2d20 7573 6564 2030 2e30 3038 .| -- used 0.008 │ │ │ │ -0000b720: 3435 3334 7320 2863 7075 293b 2030 2e30 4534s (cpu); 0.0 │ │ │ │ -0000b730: 3038 3831 3833 3873 2028 7468 7265 6164 0881838s (thread │ │ │ │ -0000b740: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +0000b710: 0a7c 202d 2d20 7573 6564 2030 2e30 3532 .| -- used 0.052 │ │ │ │ +0000b720: 3039 3235 7320 2863 7075 293b 2030 2e30 0925s (cpu); 0.0 │ │ │ │ +0000b730: 3532 3035 3973 2028 7468 7265 6164 293b 52059s (thread); │ │ │ │ +0000b740: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ 0000b750: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b760: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000b770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b7a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b7b0: 0a7c 6f32 3020 3a20 4d75 6c74 6968 6f6d .|o20 : Multihom │ │ │ │ @@ -2958,18 +2958,18 @@ │ │ │ │ 0000b8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000b8f0: 0a7c 6932 3120 3a20 7469 6d65 2064 6567 .|i21 : time deg │ │ │ │ 0000b900: 7265 6573 2066 2020 2020 2020 2020 2020 rees f │ │ │ │ 0000b910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b930: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000b940: 0a7c 202d 2d20 7573 6564 2031 2e31 3931 .| -- used 1.191 │ │ │ │ -0000b950: 3038 7320 2863 7075 293b 2030 2e39 3031 08s (cpu); 0.901 │ │ │ │ -0000b960: 3637 3973 2028 7468 7265 6164 293b 2030 679s (thread); 0 │ │ │ │ -0000b970: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ +0000b940: 0a7c 202d 2d20 7573 6564 2031 2e35 3036 .| -- used 1.506 │ │ │ │ +0000b950: 3532 7320 2863 7075 293b 2031 2e32 3632 52s (cpu); 1.262 │ │ │ │ +0000b960: 3431 7320 2874 6872 6561 6429 3b20 3073 41s (thread); 0s │ │ │ │ +0000b970: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 0000b980: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b990: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b9d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b9e0: 0a7c 6f32 3120 3d20 7b39 3034 2c20 3530 .|o21 = {904, 50 │ │ │ │ @@ -2994,16 +2994,16 @@ │ │ │ │ 0000bb10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000bb20: 0a7c 6932 3220 3a20 7469 6d65 2064 6567 .|i22 : time deg │ │ │ │ 0000bb30: 7265 6520 6620 2020 2020 2020 2020 2020 ree f │ │ │ │ 0000bb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bb60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000bb70: 0a7c 202d 2d20 7573 6564 2030 2e30 3030 .| -- used 0.000 │ │ │ │ -0000bb80: 3139 3036 3938 7320 2863 7075 293b 2031 190698s (cpu); 1 │ │ │ │ -0000bb90: 2e33 3633 3565 2d30 3573 2028 7468 7265 .3635e-05s (thre │ │ │ │ +0000bb80: 3134 3336 3139 7320 2863 7075 293b 2031 143619s (cpu); 1 │ │ │ │ +0000bb90: 2e31 3539 3265 2d30 3573 2028 7468 7265 .1592e-05s (thre │ │ │ │ 0000bba0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 0000bbb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000bbc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000bbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bc00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -3019,16 +3019,16 @@ │ │ │ │ 0000bca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000bcb0: 0a7c 6932 3320 3a20 7469 6d65 2064 6573 .|i23 : time des │ │ │ │ 0000bcc0: 6372 6962 6520 6620 2020 2020 2020 2020 cribe f │ │ │ │ 0000bcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bcf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000bd00: 0a7c 202d 2d20 7573 6564 2030 2e30 3030 .| -- used 0.000 │ │ │ │ -0000bd10: 3932 3635 3738 7320 2863 7075 293b 2030 926578s (cpu); 0 │ │ │ │ -0000bd20: 2e30 3031 3432 3938 3773 2028 7468 7265 .00142987s (thre │ │ │ │ +0000bd10: 3738 3633 3534 7320 2863 7075 293b 2030 786354s (cpu); 0 │ │ │ │ +0000bd20: 2e30 3031 3139 3332 3773 2028 7468 7265 .00119327s (thre │ │ │ │ 0000bd30: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 0000bd40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000bd50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -4588,17 +4588,17 @@ │ │ │ │ 00011eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00011ed0: 3420 3a20 7469 6d65 2070 7369 203d 2061 4 : time psi = a │ │ │ │ 00011ee0: 6273 7472 6163 7452 6174 696f 6e61 6c4d bstractRationalM │ │ │ │ 00011ef0: 6170 2850 342c 5035 2c66 2920 2020 2020 ap(P4,P5,f) │ │ │ │ 00011f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011f10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00011f20: 2d2d 2075 7365 6420 302e 3030 3131 3838 -- used 0.001188 │ │ │ │ -00011f30: 3436 7320 2863 7075 293b 2030 2e30 3030 46s (cpu); 0.000 │ │ │ │ -00011f40: 3336 3839 3932 7320 2874 6872 6561 6429 368992s (thread) │ │ │ │ +00011f20: 2d2d 2075 7365 6420 302e 3030 3232 3137 -- used 0.002217 │ │ │ │ +00011f30: 3733 7320 2863 7075 293b 2030 2e30 3030 73s (cpu); 0.000 │ │ │ │ +00011f40: 3239 3433 3132 7320 2874 6872 6561 6429 294312s (thread) │ │ │ │ 00011f50: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 00011f60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00011f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011fb0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ @@ -4659,17 +4659,17 @@ │ │ │ │ 00012320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012340: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ 00012350: 2074 696d 6520 7072 6f6a 6563 7469 7665 time projective │ │ │ │ 00012360: 4465 6772 6565 7328 7073 692c 3329 2020 Degrees(psi,3) │ │ │ │ 00012370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012380: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00012390: 6564 2030 2e32 3939 3535 3273 2028 6370 ed 0.299552s (cp │ │ │ │ -000123a0: 7529 3b20 302e 3135 3731 3673 2028 7468 u); 0.15716s (th │ │ │ │ -000123b0: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +00012390: 6564 2030 2e32 3239 3332 3673 2028 6370 ed 0.229326s (cp │ │ │ │ +000123a0: 7529 3b20 302e 3136 3930 3936 7320 2874 u); 0.169096s (t │ │ │ │ +000123b0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 000123c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 000123d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000123e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000123f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012400: 2020 207c 0a7c 6f35 203d 2032 2020 2020 |.|o5 = 2 │ │ │ │ 00012410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4678,18 +4678,18 @@ │ │ │ │ 00012450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00012480: 0a7c 6936 203a 2074 696d 6520 7261 7469 .|i6 : time rati │ │ │ │ 00012490: 6f6e 616c 4d61 7020 7073 6920 2020 2020 onalMap psi │ │ │ │ 000124a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000124b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000124c0: 202d 2d20 7573 6564 2030 2e34 3032 3738 -- used 0.40278 │ │ │ │ -000124d0: 7320 2863 7075 293b 2030 2e33 3331 3733 s (cpu); 0.33173 │ │ │ │ -000124e0: 3573 2028 7468 7265 6164 293b 2030 7320 5s (thread); 0s │ │ │ │ -000124f0: 2867 6329 2020 2020 2020 207c 0a7c 2020 (gc) |.| │ │ │ │ +000124c0: 202d 2d20 7573 6564 2030 2e34 3330 3331 -- used 0.43031 │ │ │ │ +000124d0: 3573 2028 6370 7529 3b20 302e 3336 3935 5s (cpu); 0.3695 │ │ │ │ +000124e0: 3634 7320 2874 6872 6561 6429 3b20 3073 64s (thread); 0s │ │ │ │ +000124f0: 2028 6763 2920 2020 2020 207c 0a7c 2020 (gc) |.| │ │ │ │ 00012500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012530: 2020 2020 2020 2020 207c 0a7c 6f36 203d |.|o6 = │ │ │ │ 00012540: 202d 2d20 7261 7469 6f6e 616c 206d 6170 -- rational map │ │ │ │ 00012550: 202d 2d20 2020 2020 2020 2020 2020 2020 -- │ │ │ │ 00012560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -5102,17 +5102,17 @@ │ │ │ │ 00013ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013ee0: 2d2d 2d2d 2b0a 7c69 3134 203a 2074 696d ----+.|i14 : tim │ │ │ │ 00013ef0: 6520 5420 3d20 6162 7374 7261 6374 5261 e T = abstractRa │ │ │ │ 00013f00: 7469 6f6e 616c 4d61 7028 492c 224f 4144 tionalMap(I,"OAD │ │ │ │ 00013f10: 5022 2920 2020 2020 2020 2020 2020 2020 P") │ │ │ │ 00013f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013f30: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ -00013f40: 3135 3138 3135 7320 2863 7075 293b 2030 151815s (cpu); 0 │ │ │ │ -00013f50: 2e30 3635 3236 3533 7320 2874 6872 6561 .0652653s (threa │ │ │ │ -00013f60: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +00013f40: 3036 3339 3938 3773 2028 6370 7529 3b20 0639987s (cpu); │ │ │ │ +00013f50: 302e 3036 3439 3739 3573 2028 7468 7265 0.0649795s (thre │ │ │ │ +00013f60: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 00013f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013f80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00013f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013fc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00013fd0: 7c6f 3134 203d 202d 2d20 7261 7469 6f6e |o14 = -- ration │ │ │ │ @@ -5173,46952 +5173,46953 @@ │ │ │ │ 00014340: 6d73 2064 6566 696e 696e 6720 7468 6520 ms defining the │ │ │ │ 00014350: 6162 7374 7261 6374 206d 6170 2054 2063 abstract map T c │ │ │ │ 00014360: 616e 2062 6520 6f62 7461 696e 6564 2062 an be obtained b │ │ │ │ 00014370: 7920 7468 650a 666f 6c6c 6f77 696e 6720 y the.following │ │ │ │ 00014380: 636f 6d6d 616e 643a 0a0a 2b2d 2d2d 2d2d command:..+----- │ │ │ │ 00014390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000143a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000143b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000143c0: 6931 3520 3a20 7469 6d65 2070 726f 6a65 i15 : time proje │ │ │ │ -000143d0: 6374 6976 6544 6567 7265 6573 2854 2c32 ctiveDegrees(T,2 │ │ │ │ -000143e0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -000143f0: 2020 7c0a 7c20 2d2d 2075 7365 6420 332e |.| -- used 3. │ │ │ │ -00014400: 3032 3534 7320 2863 7075 293b 2031 2e36 0254s (cpu); 1.6 │ │ │ │ -00014410: 3932 3838 7320 2874 6872 6561 6429 3b20 9288s (thread); │ │ │ │ -00014420: 3073 2028 6763 297c 0a7c 2020 2020 2020 0s (gc)|.| │ │ │ │ +000143b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000143c0: 7c69 3135 203a 2074 696d 6520 7072 6f6a |i15 : time proj │ │ │ │ +000143d0: 6563 7469 7665 4465 6772 6565 7328 542c ectiveDegrees(T, │ │ │ │ +000143e0: 3229 2020 2020 2020 2020 2020 2020 2020 2) │ │ │ │ +000143f0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ +00014400: 332e 3434 3934 3173 2028 6370 7529 3b20 3.44941s (cpu); │ │ │ │ +00014410: 312e 3935 3232 3173 2028 7468 7265 6164 1.95221s (thread │ │ │ │ +00014420: 293b 2030 7320 2867 6329 7c0a 7c20 2020 ); 0s (gc)|.| │ │ │ │ 00014430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014450: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00014460: 3135 203d 2033 2020 2020 2020 2020 2020 15 = 3 │ │ │ │ +00014450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014460: 7c0a 7c6f 3135 203d 2033 2020 2020 2020 |.|o15 = 3 │ │ │ │ 00014470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014490: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00014490: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 000144a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000144b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000144c0: 2d2d 2d2d 2d2d 2b0a 0a57 6520 7665 7269 ------+..We veri │ │ │ │ -000144d0: 6679 2074 6861 7420 7468 6520 636f 6d70 fy that the comp │ │ │ │ -000144e0: 6f73 6974 696f 6e20 6f66 2054 2077 6974 osition of T wit │ │ │ │ -000144f0: 6820 6974 7365 6c66 2069 7320 6465 6669 h itself is defi │ │ │ │ -00014500: 6e65 6420 6279 206c 696e 6561 7220 666f ned by linear fo │ │ │ │ -00014510: 726d 733a 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d rms:..+--------- │ │ │ │ +000144c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 ------------+..W │ │ │ │ +000144d0: 6520 7665 7269 6679 2074 6861 7420 7468 e verify that th │ │ │ │ +000144e0: 6520 636f 6d70 6f73 6974 696f 6e20 6f66 e composition of │ │ │ │ +000144f0: 2054 2077 6974 6820 6974 7365 6c66 2069 T with itself i │ │ │ │ +00014500: 7320 6465 6669 6e65 6420 6279 206c 696e s defined by lin │ │ │ │ +00014510: 6561 7220 666f 726d 733a 0a0a 2b2d 2d2d ear forms:..+--- │ │ │ │ 00014520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014550: 2d2b 0a7c 6931 3620 3a20 7469 6d65 2054 -+.|i16 : time T │ │ │ │ -00014560: 3220 3d20 5420 2a20 5420 2020 2020 2020 2 = T * T │ │ │ │ +00014550: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3620 3a20 -------+.|i16 : │ │ │ │ +00014560: 7469 6d65 2054 3220 3d20 5420 2a20 5420 time T2 = T * T │ │ │ │ 00014570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014580: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00014590: 7c20 2d2d 2075 7365 6420 302e 3030 3031 | -- used 0.0001 │ │ │ │ -000145a0: 3939 3535 3473 2028 6370 7529 3b20 322e 99554s (cpu); 2. │ │ │ │ -000145b0: 3737 3132 652d 3035 7320 2874 6872 6561 7712e-05s (threa │ │ │ │ -000145c0: 6429 3b20 3073 2028 6763 297c 0a7c 2020 d); 0s (gc)|.| │ │ │ │ -000145d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014590: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ +000145a0: 302e 3030 3031 3234 3937 3573 2028 6370 0.000124975s (cp │ │ │ │ +000145b0: 7529 3b20 322e 3731 3265 2d30 3573 2028 u); 2.712e-05s ( │ │ │ │ +000145c0: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ +000145d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000145e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000145f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014600: 2020 2020 2020 2020 7c0a 7c6f 3136 203d |.|o16 = │ │ │ │ -00014610: 202d 2d20 7261 7469 6f6e 616c 206d 6170 -- rational map │ │ │ │ -00014620: 202d 2d20 2020 2020 2020 2020 2020 2020 -- │ │ │ │ +00014600: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014610: 7c6f 3136 203d 202d 2d20 7261 7469 6f6e |o16 = -- ration │ │ │ │ +00014620: 616c 206d 6170 202d 2d20 2020 2020 2020 al map -- │ │ │ │ 00014630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014640: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00014650: 2020 2020 2020 2020 2020 2020 205a 5a20 ZZ │ │ │ │ -00014660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014640: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00014650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014660: 2020 205a 5a20 2020 2020 2020 2020 2020 ZZ │ │ │ │ 00014670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014680: 2020 7c0a 7c20 2020 2020 2073 6f75 7263 |.| sourc │ │ │ │ -00014690: 653a 2050 726f 6a28 2d2d 2d2d 2d5b 7820 e: Proj(-----[x │ │ │ │ -000146a0: 2c20 7820 2c20 7820 2c20 7820 5d29 2020 , x , x , x ]) │ │ │ │ -000146b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000146c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000146d0: 2020 2020 2036 3535 3231 2020 3020 2020 65521 0 │ │ │ │ -000146e0: 3120 2020 3220 2020 3320 2020 2020 2020 1 2 3 │ │ │ │ -000146f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00014700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014710: 2020 2020 5a5a 2020 2020 2020 2020 2020 ZZ │ │ │ │ +00014680: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00014690: 2073 6f75 7263 653a 2050 726f 6a28 2d2d source: Proj(-- │ │ │ │ +000146a0: 2d2d 2d5b 7820 2c20 7820 2c20 7820 2c20 ---[x , x , x , │ │ │ │ +000146b0: 7820 5d29 2020 2020 2020 2020 2020 2020 x ]) │ │ │ │ +000146c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000146d0: 2020 2020 2020 2020 2020 2036 3535 3231 65521 │ │ │ │ +000146e0: 2020 3020 2020 3120 2020 3220 2020 3320 0 1 2 3 │ │ │ │ +000146f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014700: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00014710: 2020 2020 2020 2020 2020 5a5a 2020 2020 ZZ │ │ │ │ 00014720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014730: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014740: 2020 7461 7267 6574 3a20 5072 6f6a 282d target: Proj(- │ │ │ │ -00014750: 2d2d 2d2d 5b78 202c 2078 202c 2078 202c ----[x , x , x , │ │ │ │ -00014760: 2078 205d 2920 2020 2020 2020 2020 2020 x ]) │ │ │ │ -00014770: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00014780: 2020 2020 2020 2020 2020 2020 3635 3532 6552 │ │ │ │ -00014790: 3120 2030 2020 2031 2020 2032 2020 2033 1 0 1 2 3 │ │ │ │ -000147a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000147b0: 2020 207c 0a7c 2020 2020 2020 6465 6669 |.| defi │ │ │ │ -000147c0: 6e69 6e67 2066 6f72 6d73 3a20 6769 7665 ning forms: give │ │ │ │ -000147d0: 6e20 6279 2061 2066 756e 6374 696f 6e20 n by a function │ │ │ │ -000147e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000147f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00014730: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00014740: 0a7c 2020 2020 2020 7461 7267 6574 3a20 .| target: │ │ │ │ +00014750: 5072 6f6a 282d 2d2d 2d2d 5b78 202c 2078 Proj(-----[x , x │ │ │ │ +00014760: 202c 2078 202c 2078 205d 2920 2020 2020 , x , x ]) │ │ │ │ +00014770: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00014780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014790: 2020 3635 3532 3120 2030 2020 2031 2020 65521 0 1 │ │ │ │ +000147a0: 2032 2020 2033 2020 2020 2020 2020 2020 2 3 │ │ │ │ +000147b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000147c0: 2020 6465 6669 6e69 6e67 2066 6f72 6d73 defining forms │ │ │ │ +000147d0: 3a20 6769 7665 6e20 6279 2061 2066 756e : given by a fun │ │ │ │ +000147e0: 6374 696f 6e20 2020 2020 2020 2020 2020 ction │ │ │ │ +000147f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00014800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014820: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00014830: 6f31 3620 3a20 4162 7374 7261 6374 5261 o16 : AbstractRa │ │ │ │ -00014840: 7469 6f6e 616c 4d61 7020 2872 6174 696f tionalMap (ratio │ │ │ │ -00014850: 6e61 6c20 6d61 7020 6672 6f6d 2050 505e nal map from PP^ │ │ │ │ -00014860: 3320 746f 2050 505e 3329 7c0a 2b2d 2d2d 3 to PP^3)|.+--- │ │ │ │ -00014870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014830: 2020 207c 0a7c 6f31 3620 3a20 4162 7374 |.|o16 : Abst │ │ │ │ +00014840: 7261 6374 5261 7469 6f6e 616c 4d61 7020 ractRationalMap │ │ │ │ +00014850: 2872 6174 696f 6e61 6c20 6d61 7020 6672 (rational map fr │ │ │ │ +00014860: 6f6d 2050 505e 3320 746f 2050 505e 3329 om PP^3 to PP^3) │ │ │ │ +00014870: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00014880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000148a0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3720 3a20 -------+.|i17 : │ │ │ │ -000148b0: 7469 6d65 2070 726f 6a65 6374 6976 6544 time projectiveD │ │ │ │ -000148c0: 6567 7265 6573 2854 322c 3229 2020 2020 egrees(T2,2) │ │ │ │ -000148d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000148e0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -000148f0: 352e 3238 3735 3373 2028 6370 7529 3b20 5.28753s (cpu); │ │ │ │ -00014900: 322e 3930 3535 3373 2028 7468 7265 6164 2.90553s (thread │ │ │ │ -00014910: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ -00014920: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000148a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000148b0: 6931 3720 3a20 7469 6d65 2070 726f 6a65 i17 : time proje │ │ │ │ +000148c0: 6374 6976 6544 6567 7265 6573 2854 322c ctiveDegrees(T2, │ │ │ │ +000148d0: 3229 2020 2020 2020 2020 2020 2020 2020 2) │ │ │ │ +000148e0: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ +000148f0: 2075 7365 6420 362e 3233 3035 3673 2028 used 6.23056s ( │ │ │ │ +00014900: 6370 7529 3b20 332e 3331 3733 3973 2028 cpu); 3.31739s ( │ │ │ │ +00014910: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ +00014920: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00014930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014950: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00014960: 7c6f 3137 203d 2031 2020 2020 2020 2020 |o17 = 1 │ │ │ │ +00014950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014960: 2020 2020 7c0a 7c6f 3137 203d 2031 2020 |.|o17 = 1 │ │ │ │ 00014970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014990: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -000149a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000149a0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 000149b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000149c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000149d0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 6520 7665 --------+..We ve │ │ │ │ -000149e0: 7269 6679 2074 6861 7420 7468 6520 636f rify that the co │ │ │ │ -000149f0: 6d70 6f73 6974 696f 6e20 6f66 2054 2077 mposition of T w │ │ │ │ -00014a00: 6974 6820 6974 7365 6c66 206c 6561 7665 ith itself leave │ │ │ │ -00014a10: 7320 6120 7261 6e64 6f6d 2070 6f69 6e74 s a random point │ │ │ │ -00014a20: 2066 6978 6564 3a0a 0a2b 2d2d 2d2d 2d2d fixed:..+------ │ │ │ │ +000149d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000149e0: 0a57 6520 7665 7269 6679 2074 6861 7420 .We verify that │ │ │ │ +000149f0: 7468 6520 636f 6d70 6f73 6974 696f 6e20 the composition │ │ │ │ +00014a00: 6f66 2054 2077 6974 6820 6974 7365 6c66 of T with itself │ │ │ │ +00014a10: 206c 6561 7665 7320 6120 7261 6e64 6f6d leaves a random │ │ │ │ +00014a20: 2070 6f69 6e74 2066 6978 6564 3a0a 0a2b point fixed:..+ │ │ │ │ 00014a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014a50: 2d2d 2d2d 2b0a 7c69 3138 203a 2070 203d ----+.|i18 : p = │ │ │ │ -00014a60: 2061 7070 6c79 2833 2c69 2d3e 7261 6e64 apply(3,i->rand │ │ │ │ -00014a70: 6f6d 285a 5a2f 3635 3532 3129 297c 7b31 om(ZZ/65521))|{1 │ │ │ │ -00014a80: 7d7c 0a7c 2020 2020 2020 2020 2020 2020 }|.| │ │ │ │ +00014a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3138 ----------+.|i18 │ │ │ │ +00014a60: 203a 2070 203d 2061 7070 6c79 2833 2c69 : p = apply(3,i │ │ │ │ +00014a70: 2d3e 7261 6e64 6f6d 285a 5a2f 3635 3532 ->random(ZZ/6552 │ │ │ │ +00014a80: 3129 297c 7b31 7d7c 0a7c 2020 2020 2020 1))|{1}|.| │ │ │ │ 00014a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014aa0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00014ab0: 7c6f 3138 203d 207b 3238 3936 332c 2033 |o18 = {28963, 3 │ │ │ │ -00014ac0: 3139 3735 2c20 2d33 3031 3732 2c20 317d 1975, -30172, 1} │ │ │ │ -00014ad0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00014ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014ab0: 2020 2020 7c0a 7c6f 3138 203d 207b 3238 |.|o18 = {28 │ │ │ │ +00014ac0: 3936 332c 2033 3139 3735 2c20 2d33 3031 963, 31975, -301 │ │ │ │ +00014ad0: 3732 2c20 317d 2020 2020 2020 2020 2020 72, 1} │ │ │ │ +00014ae0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00014af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014b00: 2020 2020 2020 2020 7c0a 7c6f 3138 203a |.|o18 : │ │ │ │ -00014b10: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ +00014b00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00014b10: 7c6f 3138 203a 204c 6973 7420 2020 2020 |o18 : List │ │ │ │ 00014b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014b30: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00014b30: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 00014b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014b60: 2d2d 2b0a 7c69 3139 203a 2071 203d 2054 --+.|i19 : q = T │ │ │ │ -00014b70: 2070 2020 2020 2020 2020 2020 2020 2020 p │ │ │ │ -00014b80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014b90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00014b60: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3139 203a --------+.|i19 : │ │ │ │ +00014b70: 2071 203d 2054 2070 2020 2020 2020 2020 q = T p │ │ │ │ +00014b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014b90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00014ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014bb0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00014bc0: 3139 203d 207b 3331 3934 332c 2031 3633 19 = {31943, 163 │ │ │ │ -00014bd0: 3436 2c20 2d31 3539 382c 2031 7d20 2020 46, -1598, 1} │ │ │ │ -00014be0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014bc0: 2020 7c0a 7c6f 3139 203d 207b 3331 3934 |.|o19 = {3194 │ │ │ │ +00014bd0: 332c 2031 3633 3436 2c20 2d31 3539 382c 3, 16346, -1598, │ │ │ │ +00014be0: 2031 7d20 2020 2020 2020 2020 2020 207c 1} | │ │ │ │ +00014bf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00014c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014c10: 2020 2020 2020 7c0a 7c6f 3139 203a 204c |.|o19 : L │ │ │ │ -00014c20: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +00014c10: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00014c20: 3139 203a 204c 6973 7420 2020 2020 2020 19 : List │ │ │ │ 00014c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014c40: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00014c40: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 00014c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014c70: 2b0a 7c69 3230 203a 2054 2071 2020 2020 +.|i20 : T q │ │ │ │ -00014c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014c90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00014ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014c70: 2d2d 2d2d 2d2d 2b0a 7c69 3230 203a 2054 ------+.|i20 : T │ │ │ │ +00014c80: 2071 2020 2020 2020 2020 2020 2020 2020 q │ │ │ │ +00014c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014ca0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00014cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014cc0: 2020 2020 2020 2020 2020 7c0a 7c6f 3230 |.|o20 │ │ │ │ -00014cd0: 203d 207b 3238 3936 332c 2033 3139 3735 = {28963, 31975 │ │ │ │ -00014ce0: 2c20 2d33 3031 3732 2c20 317d 2020 2020 , -30172, 1} │ │ │ │ -00014cf0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00014cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014cd0: 7c0a 7c6f 3230 203d 207b 3238 3936 332c |.|o20 = {28963, │ │ │ │ +00014ce0: 2033 3139 3735 2c20 2d33 3031 3732 2c20 31975, -30172, │ │ │ │ +00014cf0: 317d 2020 2020 2020 2020 2020 207c 0a7c 1} |.| │ │ │ │ 00014d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014d20: 2020 2020 7c0a 7c6f 3230 203a 204c 6973 |.|o20 : Lis │ │ │ │ -00014d30: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ +00014d20: 2020 2020 2020 2020 2020 7c0a 7c6f 3230 |.|o20 │ │ │ │ +00014d30: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ 00014d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014d50: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00014d50: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 00014d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00014d80: 0a57 6520 6e6f 7720 636f 6d70 7574 6520 .We now compute │ │ │ │ -00014d90: 7468 6520 636f 6e63 7265 7465 2072 6174 the concrete rat │ │ │ │ -00014da0: 696f 6e61 6c20 6d61 7020 636f 7272 6573 ional map corres │ │ │ │ -00014db0: 706f 6e64 696e 6720 746f 2054 3a0a 0a2b ponding to T:..+ │ │ │ │ -00014dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014d80: 2d2d 2d2d 2b0a 0a57 6520 6e6f 7720 636f ----+..We now co │ │ │ │ +00014d90: 6d70 7574 6520 7468 6520 636f 6e63 7265 mpute the concre │ │ │ │ +00014da0: 7465 2072 6174 696f 6e61 6c20 6d61 7020 te rational map │ │ │ │ +00014db0: 636f 7272 6573 706f 6e64 696e 6720 746f corresponding to │ │ │ │ +00014dc0: 2054 3a0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d T:..+---------- │ │ │ │ 00014dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014e00: 2d2b 0a7c 6932 3120 3a20 7469 6d65 2066 -+.|i21 : time f │ │ │ │ -00014e10: 203d 2072 6174 696f 6e61 6c4d 6170 2054 = rationalMap T │ │ │ │ -00014e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014e00: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3120 3a20 -------+.|i21 : │ │ │ │ +00014e10: 7469 6d65 2066 203d 2072 6174 696f 6e61 time f = rationa │ │ │ │ +00014e20: 6c4d 6170 2054 2020 2020 2020 2020 2020 lMap T │ │ │ │ 00014e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014e40: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00014e50: 2034 2e31 3032 3537 7320 2863 7075 293b 4.10257s (cpu); │ │ │ │ -00014e60: 2032 2e32 3537 3135 7320 2874 6872 6561 2.25715s (threa │ │ │ │ -00014e70: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ -00014e80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014e40: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +00014e50: 2d20 7573 6564 2035 2e32 3832 3031 7320 - used 5.28201s │ │ │ │ +00014e60: 2863 7075 293b 2033 2e34 3636 3937 7320 (cpu); 3.46697s │ │ │ │ +00014e70: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ +00014e80: 2920 2020 2020 2020 2020 2020 2020 207c ) | │ │ │ │ +00014e90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00014ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014ec0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00014ed0: 6f32 3120 3d20 2d2d 2072 6174 696f 6e61 o21 = -- rationa │ │ │ │ -00014ee0: 6c20 6d61 7020 2d2d 2020 2020 2020 2020 l map -- │ │ │ │ +00014ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014ed0: 2020 207c 0a7c 6f32 3120 3d20 2d2d 2072 |.|o21 = -- r │ │ │ │ +00014ee0: 6174 696f 6e61 6c20 6d61 7020 2d2d 2020 ational map -- │ │ │ │ 00014ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014f10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00014f20: 2020 2020 2020 2020 205a 5a20 2020 2020 ZZ │ │ │ │ -00014f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014f10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00014f20: 2020 2020 2020 2020 2020 2020 2020 205a Z │ │ │ │ +00014f30: 5a20 2020 2020 2020 2020 2020 2020 2020 Z │ │ │ │ 00014f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014f50: 2020 2020 207c 0a7c 2020 2020 2020 736f |.| so │ │ │ │ -00014f60: 7572 6365 3a20 5072 6f6a 282d 2d2d 2d2d urce: Proj(----- │ │ │ │ -00014f70: 5b78 202c 2078 202c 2078 202c 2078 205d [x , x , x , x ] │ │ │ │ -00014f80: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -00014f90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014fa0: 2020 2020 2020 2020 2020 2020 2020 2036 6 │ │ │ │ -00014fb0: 3535 3231 2020 3020 2020 3120 2020 3220 5521 0 1 2 │ │ │ │ -00014fc0: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00014fd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00014fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014ff0: 2020 2020 205a 5a20 2020 2020 2020 2020 ZZ │ │ │ │ +00014f50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00014f60: 2020 2020 736f 7572 6365 3a20 5072 6f6a source: Proj │ │ │ │ +00014f70: 282d 2d2d 2d2d 5b78 202c 2078 202c 2078 (-----[x , x , x │ │ │ │ +00014f80: 202c 2078 205d 2920 2020 2020 2020 2020 , x ]) │ │ │ │ +00014f90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00014fa0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00014fb0: 2020 2020 2036 3535 3231 2020 3020 2020 65521 0 │ │ │ │ +00014fc0: 3120 2020 3220 2020 3320 2020 2020 2020 1 2 3 │ │ │ │ +00014fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014fe0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00014ff0: 2020 2020 2020 2020 2020 205a 5a20 2020 ZZ │ │ │ │ 00015000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015020: 207c 0a7c 2020 2020 2020 7461 7267 6574 |.| target │ │ │ │ -00015030: 3a20 5072 6f6a 282d 2d2d 2d2d 5b78 202c : Proj(-----[x , │ │ │ │ -00015040: 2078 202c 2078 202c 2078 205d 2920 2020 x , x , x ]) │ │ │ │ -00015050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015060: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00015070: 2020 2020 2020 2020 2020 2036 3535 3231 65521 │ │ │ │ -00015080: 2020 3020 2020 3120 2020 3220 2020 3320 0 1 2 3 │ │ │ │ -00015090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000150a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000150b0: 2020 6465 6669 6e69 6e67 2066 6f72 6d73 defining forms │ │ │ │ -000150c0: 3a20 7b20 2020 2020 2020 2020 2020 2020 : { │ │ │ │ +00015020: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00015030: 7461 7267 6574 3a20 5072 6f6a 282d 2d2d target: Proj(--- │ │ │ │ +00015040: 2d2d 5b78 202c 2078 202c 2078 202c 2078 --[x , x , x , x │ │ │ │ +00015050: 205d 2920 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ +00015060: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00015070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015080: 2036 3535 3231 2020 3020 2020 3120 2020 65521 0 1 │ │ │ │ +00015090: 3220 2020 3320 2020 2020 2020 2020 2020 2 3 │ │ │ │ +000150a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000150b0: 0a7c 2020 2020 2020 6465 6669 6e69 6e67 .| defining │ │ │ │ +000150c0: 2066 6f72 6d73 3a20 7b20 2020 2020 2020 forms: { │ │ │ │ 000150d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000150e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000150f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015100: 2020 2020 2020 2020 2020 3320 2020 2020 3 │ │ │ │ -00015110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015120: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00015130: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00015140: 2020 2020 2020 2020 2020 202d 2078 2020 - x │ │ │ │ -00015150: 2d20 3332 3735 3978 2078 2078 2020 2b20 - 32759x x x + │ │ │ │ -00015160: 3332 3736 3078 2078 202c 2020 2020 2020 32760x x , │ │ │ │ -00015170: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000150e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000150f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015110: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00015120: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +00015130: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00015140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015150: 202d 2078 2020 2d20 3332 3735 3978 2078 - x - 32759x x │ │ │ │ +00015160: 2078 2020 2b20 3332 3736 3078 2078 202c x + 32760x x , │ │ │ │ +00015170: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00015180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015190: 2020 3120 2020 2020 2020 2020 3020 3120 1 0 1 │ │ │ │ -000151a0: 3220 2020 2020 2020 2020 3020 3320 2020 2 0 3 │ │ │ │ -000151b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000151c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015190: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ +000151a0: 2020 3020 3120 3220 2020 2020 2020 2020 0 1 2 │ │ │ │ +000151b0: 3020 3320 2020 2020 2020 2020 2020 207c 0 3 | │ │ │ │ +000151c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000151d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000151e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000151f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00015200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015210: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -00015220: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000151f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015200: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015220: 2020 2032 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ 00015230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015240: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00015250: 2020 2020 2020 2020 2020 2033 3237 3630 32760 │ │ │ │ -00015260: 7820 7820 202b 2078 2078 2020 2b20 3332 x x + x x + 32 │ │ │ │ -00015270: 3736 3078 2078 2078 202c 2020 2020 2020 760x x x , │ │ │ │ -00015280: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00015240: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00015250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015260: 2033 3237 3630 7820 7820 202b 2078 2078 32760x x + x x │ │ │ │ +00015270: 2020 2b20 3332 3736 3078 2078 2078 202c + 32760x x x , │ │ │ │ +00015280: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00015290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000152a0: 2020 2020 2031 2032 2020 2020 3020 3220 1 2 0 2 │ │ │ │ -000152b0: 2020 2020 2020 2020 3020 3120 3320 2020 0 1 3 │ │ │ │ -000152c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000152d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000152a0: 2020 2020 2020 2020 2020 2031 2032 2020 1 2 │ │ │ │ +000152b0: 2020 3020 3220 2020 2020 2020 2020 3020 0 2 0 │ │ │ │ +000152c0: 3120 3320 2020 2020 2020 2020 2020 207c 1 3 | │ │ │ │ +000152d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000152e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000152f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015300: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00015310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015310: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00015320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015330: 2032 2020 2020 3220 2020 2020 2020 2020 2 2 │ │ │ │ +00015330: 2020 2020 2020 2032 2020 2020 3220 2020 2 2 │ │ │ │ 00015340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015350: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00015360: 2020 2020 2020 2020 2020 202d 2033 3237 - 327 │ │ │ │ -00015370: 3630 7820 7820 202d 2078 2078 2020 2d20 60x x - x x - │ │ │ │ -00015380: 3332 3736 3078 2078 2078 202c 2020 2020 32760x x x , │ │ │ │ -00015390: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00015350: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00015360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015370: 202d 2033 3237 3630 7820 7820 202d 2078 - 32760x x - x │ │ │ │ +00015380: 2078 2020 2d20 3332 3736 3078 2078 2078 x - 32760x x x │ │ │ │ +00015390: 202c 2020 2020 2020 2020 207c 0a7c 2020 , |.| │ │ │ │ 000153a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000153b0: 2020 2020 2020 2031 2032 2020 2020 3120 1 2 1 │ │ │ │ -000153c0: 3320 2020 2020 2020 2020 3020 3220 3320 3 0 2 3 │ │ │ │ -000153d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000153e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000153b0: 2020 2020 2020 2020 2020 2020 2031 2032 1 2 │ │ │ │ +000153c0: 2020 2020 3120 3320 2020 2020 2020 2020 1 3 │ │ │ │ +000153d0: 3020 3220 3320 2020 2020 2020 2020 207c 0 2 3 | │ │ │ │ +000153e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000153f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015410: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00015420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015430: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ +00015410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015420: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015430: 2020 2020 2020 2020 2020 2020 2020 3320 3 │ │ │ │ 00015440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015450: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00015460: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00015470: 2020 2020 2020 2020 2020 2078 2020 2b20 x + │ │ │ │ -00015480: 3332 3735 3978 2078 2078 2020 2d20 3332 32759x x x - 32 │ │ │ │ -00015490: 3736 3078 2078 2020 2020 2020 2020 2020 760x x │ │ │ │ -000154a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00015450: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +00015460: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00015470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015480: 2078 2020 2b20 3332 3735 3978 2078 2078 x + 32759x x x │ │ │ │ +00015490: 2020 2d20 3332 3736 3078 2078 2020 2020 - 32760x x │ │ │ │ +000154a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000154b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000154c0: 3220 2020 2020 2020 2020 3120 3220 3320 2 1 2 3 │ │ │ │ -000154d0: 2020 2020 2020 2020 3020 3320 2020 2020 0 3 │ │ │ │ -000154e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000154f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015500: 2020 7d20 2020 2020 2020 2020 2020 2020 } │ │ │ │ +000154c0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000154d0: 3120 3220 3320 2020 2020 2020 2020 3020 1 2 3 0 │ │ │ │ +000154e0: 3320 2020 2020 2020 2020 2020 2020 207c 3 | │ │ │ │ +000154f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00015500: 2020 2020 2020 2020 7d20 2020 2020 2020 } │ │ │ │ 00015510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015520: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00015530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015530: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00015540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015570: 207c 0a7c 6f32 3120 3a20 5261 7469 6f6e |.|o21 : Ration │ │ │ │ -00015580: 616c 4d61 7020 2863 7562 6963 2072 6174 alMap (cubic rat │ │ │ │ -00015590: 696f 6e61 6c20 6d61 7020 6672 6f6d 2050 ional map from P │ │ │ │ -000155a0: 505e 3320 746f 2050 505e 3329 2020 2020 P^3 to PP^3) │ │ │ │ -000155b0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00015570: 2020 2020 2020 207c 0a7c 6f32 3120 3a20 |.|o21 : │ │ │ │ +00015580: 5261 7469 6f6e 616c 4d61 7020 2863 7562 RationalMap (cub │ │ │ │ +00015590: 6963 2072 6174 696f 6e61 6c20 6d61 7020 ic rational map │ │ │ │ +000155a0: 6672 6f6d 2050 505e 3320 746f 2050 505e from PP^3 to PP^ │ │ │ │ +000155b0: 3329 2020 2020 2020 2020 207c 0a2b 2d2d 3) |.+-- │ │ │ │ 000155c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000155d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000155e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000155f0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3220 ---------+.|i22 │ │ │ │ -00015600: 3a20 6465 7363 7269 6265 2066 2120 2020 : describe f! │ │ │ │ -00015610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000155f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00015600: 0a7c 6932 3220 3a20 6465 7363 7269 6265 .|i22 : describe │ │ │ │ +00015610: 2066 2120 2020 2020 2020 2020 2020 2020 f! │ │ │ │ 00015620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015630: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00015640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015640: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00015650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015680: 207c 0a7c 6f32 3220 3d20 7261 7469 6f6e |.|o22 = ration │ │ │ │ -00015690: 616c 206d 6170 2064 6566 696e 6564 2062 al map defined b │ │ │ │ -000156a0: 7920 666f 726d 7320 6f66 2064 6567 7265 y forms of degre │ │ │ │ -000156b0: 6520 3320 2020 2020 2020 2020 2020 2020 e 3 │ │ │ │ -000156c0: 2020 2020 207c 0a7c 2020 2020 2020 736f |.| so │ │ │ │ -000156d0: 7572 6365 2076 6172 6965 7479 3a20 5050 urce variety: PP │ │ │ │ -000156e0: 5e33 2020 2020 2020 2020 2020 2020 2020 ^3 │ │ │ │ +00015680: 2020 2020 2020 207c 0a7c 6f32 3220 3d20 |.|o22 = │ │ │ │ +00015690: 7261 7469 6f6e 616c 206d 6170 2064 6566 rational map def │ │ │ │ +000156a0: 696e 6564 2062 7920 666f 726d 7320 6f66 ined by forms of │ │ │ │ +000156b0: 2064 6567 7265 6520 3320 2020 2020 2020 degree 3 │ │ │ │ +000156c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000156d0: 2020 2020 736f 7572 6365 2076 6172 6965 source varie │ │ │ │ +000156e0: 7479 3a20 5050 5e33 2020 2020 2020 2020 ty: PP^3 │ │ │ │ 000156f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015700: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00015710: 2020 7461 7267 6574 2076 6172 6965 7479 target variety │ │ │ │ -00015720: 3a20 5050 5e33 2020 2020 2020 2020 2020 : PP^3 │ │ │ │ +00015700: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00015710: 0a7c 2020 2020 2020 7461 7267 6574 2076 .| target v │ │ │ │ +00015720: 6172 6965 7479 3a20 5050 5e33 2020 2020 ariety: PP^3 │ │ │ │ 00015730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015740: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00015750: 2020 2020 2020 646f 6d69 6e61 6e63 653a dominance: │ │ │ │ -00015760: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ +00015740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015750: 2020 207c 0a7c 2020 2020 2020 646f 6d69 |.| domi │ │ │ │ +00015760: 6e61 6e63 653a 2074 7275 6520 2020 2020 nance: true │ │ │ │ 00015770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015790: 207c 0a7c 2020 2020 2020 6269 7261 7469 |.| birati │ │ │ │ -000157a0: 6f6e 616c 6974 793a 2074 7275 6520 2874 onality: true (t │ │ │ │ -000157b0: 6865 2069 6e76 6572 7365 206d 6170 2069 he inverse map i │ │ │ │ -000157c0: 7320 616c 7265 6164 7920 6361 6c63 756c s already calcul │ │ │ │ -000157d0: 6174 6564 297c 0a7c 2020 2020 2020 7072 ated)|.| pr │ │ │ │ -000157e0: 6f6a 6563 7469 7665 2064 6567 7265 6573 ojective degrees │ │ │ │ -000157f0: 3a20 7b31 2c20 332c 2033 2c20 317d 2020 : {1, 3, 3, 1} │ │ │ │ -00015800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015810: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00015820: 2020 6e75 6d62 6572 206f 6620 6d69 6e69 number of mini │ │ │ │ -00015830: 6d61 6c20 7265 7072 6573 656e 7461 7469 mal representati │ │ │ │ -00015840: 7665 733a 2031 2020 2020 2020 2020 2020 ves: 1 │ │ │ │ -00015850: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00015860: 2020 2020 2020 6469 6d65 6e73 696f 6e20 dimension │ │ │ │ -00015870: 6261 7365 206c 6f63 7573 3a20 3120 2020 base locus: 1 │ │ │ │ -00015880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015790: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000157a0: 6269 7261 7469 6f6e 616c 6974 793a 2074 birationality: t │ │ │ │ +000157b0: 7275 6520 2874 6865 2069 6e76 6572 7365 rue (the inverse │ │ │ │ +000157c0: 206d 6170 2069 7320 616c 7265 6164 7920 map is already │ │ │ │ +000157d0: 6361 6c63 756c 6174 6564 297c 0a7c 2020 calculated)|.| │ │ │ │ +000157e0: 2020 2020 7072 6f6a 6563 7469 7665 2064 projective d │ │ │ │ +000157f0: 6567 7265 6573 3a20 7b31 2c20 332c 2033 egrees: {1, 3, 3 │ │ │ │ +00015800: 2c20 317d 2020 2020 2020 2020 2020 2020 , 1} │ │ │ │ +00015810: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00015820: 0a7c 2020 2020 2020 6e75 6d62 6572 206f .| number o │ │ │ │ +00015830: 6620 6d69 6e69 6d61 6c20 7265 7072 6573 f minimal repres │ │ │ │ +00015840: 656e 7461 7469 7665 733a 2031 2020 2020 entatives: 1 │ │ │ │ +00015850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015860: 2020 207c 0a7c 2020 2020 2020 6469 6d65 |.| dime │ │ │ │ +00015870: 6e73 696f 6e20 6261 7365 206c 6f63 7573 nsion base locus │ │ │ │ +00015880: 3a20 3120 2020 2020 2020 2020 2020 2020 : 1 │ │ │ │ 00015890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000158a0: 207c 0a7c 2020 2020 2020 6465 6772 6565 |.| degree │ │ │ │ -000158b0: 2062 6173 6520 6c6f 6375 733a 2036 2020 base locus: 6 │ │ │ │ -000158c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000158a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000158b0: 6465 6772 6565 2062 6173 6520 6c6f 6375 degree base locu │ │ │ │ +000158c0: 733a 2036 2020 2020 2020 2020 2020 2020 s: 6 │ │ │ │ 000158d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000158e0: 2020 2020 207c 0a7c 2020 2020 2020 636f |.| co │ │ │ │ -000158f0: 6566 6669 6369 656e 7420 7269 6e67 3a20 efficient ring: │ │ │ │ -00015900: 5a5a 2f36 3535 3231 2020 2020 2020 2020 ZZ/65521 │ │ │ │ +000158e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000158f0: 2020 2020 636f 6566 6669 6369 656e 7420 coefficient │ │ │ │ +00015900: 7269 6e67 3a20 5a5a 2f36 3535 3231 2020 ring: ZZ/65521 │ │ │ │ 00015910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015920: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -00015930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015920: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00015930: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00015940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -00015970: 4361 7665 6174 0a3d 3d3d 3d3d 3d0a 0a54 Caveat.======..T │ │ │ │ -00015980: 6869 7320 6973 2075 6e64 6572 2064 6576 his is under dev │ │ │ │ -00015990: 656c 6f70 6d65 6e74 2079 6574 2e0a 0a57 elopment yet...W │ │ │ │ -000159a0: 6179 7320 746f 2075 7365 2061 6273 7472 ays to use abstr │ │ │ │ -000159b0: 6163 7452 6174 696f 6e61 6c4d 6170 3a0a actRationalMap:. │ │ │ │ -000159c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00015960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015970: 2d2d 2d2b 0a0a 4361 7665 6174 0a3d 3d3d ---+..Caveat.=== │ │ │ │ +00015980: 3d3d 3d0a 0a54 6869 7320 6973 2075 6e64 ===..This is und │ │ │ │ +00015990: 6572 2064 6576 656c 6f70 6d65 6e74 2079 er development y │ │ │ │ +000159a0: 6574 2e0a 0a57 6179 7320 746f 2075 7365 et...Ways to use │ │ │ │ +000159b0: 2061 6273 7472 6163 7452 6174 696f 6e61 abstractRationa │ │ │ │ +000159c0: 6c4d 6170 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d lMap:.========== │ │ │ │ 000159d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000159e0: 0a0a 2020 2a20 2261 6273 7472 6163 7452 .. * "abstractR │ │ │ │ -000159f0: 6174 696f 6e61 6c4d 6170 2850 6f6c 796e ationalMap(Polyn │ │ │ │ -00015a00: 6f6d 6961 6c52 696e 672c 506f 6c79 6e6f omialRing,Polyno │ │ │ │ -00015a10: 6d69 616c 5269 6e67 2c46 756e 6374 696f mialRing,Functio │ │ │ │ -00015a20: 6e43 6c6f 7375 7265 2922 0a20 202a 2022 nClosure)". * " │ │ │ │ -00015a30: 6162 7374 7261 6374 5261 7469 6f6e 616c abstractRational │ │ │ │ -00015a40: 4d61 7028 506f 6c79 6e6f 6d69 616c 5269 Map(PolynomialRi │ │ │ │ -00015a50: 6e67 2c50 6f6c 796e 6f6d 6961 6c52 696e ng,PolynomialRin │ │ │ │ -00015a60: 672c 4675 6e63 7469 6f6e 436c 6f73 7572 g,FunctionClosur │ │ │ │ -00015a70: 652c 5a5a 2922 0a20 202a 2022 6162 7374 e,ZZ)". * "abst │ │ │ │ -00015a80: 7261 6374 5261 7469 6f6e 616c 4d61 7028 ractRationalMap( │ │ │ │ -00015a90: 5261 7469 6f6e 616c 4d61 7029 220a 0a46 RationalMap)"..F │ │ │ │ -00015aa0: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -00015ab0: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -00015ac0: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -00015ad0: 202a 6e6f 7465 2061 6273 7472 6163 7452 *note abstractR │ │ │ │ -00015ae0: 6174 696f 6e61 6c4d 6170 3a20 6162 7374 ationalMap: abst │ │ │ │ -00015af0: 7261 6374 5261 7469 6f6e 616c 4d61 702c ractRationalMap, │ │ │ │ -00015b00: 2069 7320 6120 2a6e 6f74 6520 6d65 7468 is a *note meth │ │ │ │ -00015b10: 6f64 0a66 756e 6374 696f 6e3a 2028 4d61 od.function: (Ma │ │ │ │ -00015b20: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ -00015b30: 6446 756e 6374 696f 6e2c 2e0a 1f0a 4669 dFunction,....Fi │ │ │ │ -00015b40: 6c65 3a20 4372 656d 6f6e 612e 696e 666f le: Cremona.info │ │ │ │ -00015b50: 2c20 4e6f 6465 3a20 6170 7072 6f78 696d , Node: approxim │ │ │ │ -00015b60: 6174 6549 6e76 6572 7365 4d61 702c 204e ateInverseMap, N │ │ │ │ -00015b70: 6578 743a 2042 6c6f 7755 7053 7472 6174 ext: BlowUpStrat │ │ │ │ -00015b80: 6567 792c 2050 7265 763a 2061 6273 7472 egy, Prev: abstr │ │ │ │ -00015b90: 6163 7452 6174 696f 6e61 6c4d 6170 2c20 actRationalMap, │ │ │ │ -00015ba0: 5570 3a20 546f 700a 0a61 7070 726f 7869 Up: Top..approxi │ │ │ │ -00015bb0: 6d61 7465 496e 7665 7273 654d 6170 202d mateInverseMap - │ │ │ │ -00015bc0: 2d20 7261 6e64 6f6d 206d 6170 2072 656c - random map rel │ │ │ │ -00015bd0: 6174 6564 2074 6f20 7468 6520 696e 7665 ated to the inve │ │ │ │ -00015be0: 7273 6520 6f66 2061 2062 6972 6174 696f rse of a biratio │ │ │ │ -00015bf0: 6e61 6c20 6d61 700a 2a2a 2a2a 2a2a 2a2a nal map.******** │ │ │ │ +000159e0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2261 6273 ======.. * "abs │ │ │ │ +000159f0: 7472 6163 7452 6174 696f 6e61 6c4d 6170 tractRationalMap │ │ │ │ +00015a00: 2850 6f6c 796e 6f6d 6961 6c52 696e 672c (PolynomialRing, │ │ │ │ +00015a10: 506f 6c79 6e6f 6d69 616c 5269 6e67 2c46 PolynomialRing,F │ │ │ │ +00015a20: 756e 6374 696f 6e43 6c6f 7375 7265 2922 unctionClosure)" │ │ │ │ +00015a30: 0a20 202a 2022 6162 7374 7261 6374 5261 . * "abstractRa │ │ │ │ +00015a40: 7469 6f6e 616c 4d61 7028 506f 6c79 6e6f tionalMap(Polyno │ │ │ │ +00015a50: 6d69 616c 5269 6e67 2c50 6f6c 796e 6f6d mialRing,Polynom │ │ │ │ +00015a60: 6961 6c52 696e 672c 4675 6e63 7469 6f6e ialRing,Function │ │ │ │ +00015a70: 436c 6f73 7572 652c 5a5a 2922 0a20 202a Closure,ZZ)". * │ │ │ │ +00015a80: 2022 6162 7374 7261 6374 5261 7469 6f6e "abstractRation │ │ │ │ +00015a90: 616c 4d61 7028 5261 7469 6f6e 616c 4d61 alMap(RationalMa │ │ │ │ +00015aa0: 7029 220a 0a46 6f72 2074 6865 2070 726f p)"..For the pro │ │ │ │ +00015ab0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +00015ac0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +00015ad0: 6f62 6a65 6374 202a 6e6f 7465 2061 6273 object *note abs │ │ │ │ +00015ae0: 7472 6163 7452 6174 696f 6e61 6c4d 6170 tractRationalMap │ │ │ │ +00015af0: 3a20 6162 7374 7261 6374 5261 7469 6f6e : abstractRation │ │ │ │ +00015b00: 616c 4d61 702c 2069 7320 6120 2a6e 6f74 alMap, is a *not │ │ │ │ +00015b10: 6520 6d65 7468 6f64 0a66 756e 6374 696f e method.functio │ │ │ │ +00015b20: 6e3a 2028 4d61 6361 756c 6179 3244 6f63 n: (Macaulay2Doc │ │ │ │ +00015b30: 294d 6574 686f 6446 756e 6374 696f 6e2c )MethodFunction, │ │ │ │ +00015b40: 2e0a 1f0a 4669 6c65 3a20 4372 656d 6f6e ....File: Cremon │ │ │ │ +00015b50: 612e 696e 666f 2c20 4e6f 6465 3a20 6170 a.info, Node: ap │ │ │ │ +00015b60: 7072 6f78 696d 6174 6549 6e76 6572 7365 proximateInverse │ │ │ │ +00015b70: 4d61 702c 204e 6578 743a 2042 6c6f 7755 Map, Next: BlowU │ │ │ │ +00015b80: 7053 7472 6174 6567 792c 2050 7265 763a pStrategy, Prev: │ │ │ │ +00015b90: 2061 6273 7472 6163 7452 6174 696f 6e61 abstractRationa │ │ │ │ +00015ba0: 6c4d 6170 2c20 5570 3a20 546f 700a 0a61 lMap, Up: Top..a │ │ │ │ +00015bb0: 7070 726f 7869 6d61 7465 496e 7665 7273 pproximateInvers │ │ │ │ +00015bc0: 654d 6170 202d 2d20 7261 6e64 6f6d 206d eMap -- random m │ │ │ │ +00015bd0: 6170 2072 656c 6174 6564 2074 6f20 7468 ap related to th │ │ │ │ +00015be0: 6520 696e 7665 7273 6520 6f66 2061 2062 e inverse of a b │ │ │ │ +00015bf0: 6972 6174 696f 6e61 6c20 6d61 700a 2a2a irational map.** │ │ │ │ 00015c00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00015c10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00015c20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00015c30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00015c40: 2a2a 2a2a 2a2a 0a0a 5379 6e6f 7073 6973 ******..Synopsis │ │ │ │ -00015c50: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2055 .========.. * U │ │ │ │ -00015c60: 7361 6765 3a20 0a20 2020 2020 2020 2061 sage: . a │ │ │ │ -00015c70: 7070 726f 7869 6d61 7465 496e 7665 7273 pproximateInvers │ │ │ │ -00015c80: 654d 6170 2070 6869 200a 2020 2020 2020 eMap phi . │ │ │ │ -00015c90: 2020 6170 7072 6f78 696d 6174 6549 6e76 approximateInv │ │ │ │ -00015ca0: 6572 7365 4d61 7028 7068 692c 6429 0a20 erseMap(phi,d). │ │ │ │ -00015cb0: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ -00015cc0: 202a 2070 6869 2c20 6120 2a6e 6f74 6520 * phi, a *note │ │ │ │ -00015cd0: 7261 7469 6f6e 616c 206d 6170 3a20 5261 rational map: Ra │ │ │ │ -00015ce0: 7469 6f6e 616c 4d61 702c 2c20 6120 6269 tionalMap,, a bi │ │ │ │ -00015cf0: 7261 7469 6f6e 616c 206d 6170 0a20 2020 rational map. │ │ │ │ -00015d00: 2020 202a 2064 2c20 616e 202a 6e6f 7465 * d, an *note │ │ │ │ -00015d10: 2069 6e74 6567 6572 3a20 284d 6163 6175 integer: (Macau │ │ │ │ -00015d20: 6c61 7932 446f 6329 5a5a 2c2c 206f 7074 lay2Doc)ZZ,, opt │ │ │ │ -00015d30: 696f 6e61 6c2c 2062 7574 2069 7420 7368 ional, but it sh │ │ │ │ -00015d40: 6f75 6c64 2062 6520 7468 650a 2020 2020 ould be the. │ │ │ │ -00015d50: 2020 2020 6465 6772 6565 206f 6620 7468 degree of th │ │ │ │ -00015d60: 6520 666f 726d 7320 6465 6669 6e69 6e67 e forms defining │ │ │ │ -00015d70: 2074 6865 2069 6e76 6572 7365 206f 6620 the inverse of │ │ │ │ -00015d80: 7068 690a 2020 2a20 2a6e 6f74 6520 4f70 phi. * *note Op │ │ │ │ -00015d90: 7469 6f6e 616c 2069 6e70 7574 733a 2028 tional inputs: ( │ │ │ │ -00015da0: 4d61 6361 756c 6179 3244 6f63 2975 7369 Macaulay2Doc)usi │ │ │ │ -00015db0: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ -00015dc0: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ -00015dd0: 732c 3a0a 2020 2020 2020 2a20 2a6e 6f74 s,:. * *not │ │ │ │ -00015de0: 6520 4365 7274 6966 793a 2043 6572 7469 e Certify: Certi │ │ │ │ -00015df0: 6679 2c20 3d3e 202e 2e2e 2c20 6465 6661 fy, => ..., defa │ │ │ │ -00015e00: 756c 7420 7661 6c75 6520 6661 6c73 652c ult value false, │ │ │ │ -00015e10: 2077 6865 7468 6572 2074 6f20 656e 7375 whether to ensu │ │ │ │ -00015e20: 7265 0a20 2020 2020 2020 2063 6f72 7265 re. corre │ │ │ │ -00015e30: 6374 6e65 7373 206f 6620 6f75 7470 7574 ctness of output │ │ │ │ -00015e40: 0a20 2020 2020 202a 202a 6e6f 7465 2043 . * *note C │ │ │ │ -00015e50: 6f64 696d 4273 496e 763a 2043 6f64 696d odimBsInv: Codim │ │ │ │ -00015e60: 4273 496e 762c 203d 3e20 2e2e 2e2c 2064 BsInv, => ..., d │ │ │ │ -00015e70: 6566 6175 6c74 2076 616c 7565 206e 756c efault value nul │ │ │ │ -00015e80: 6c2c 200a 2020 2020 2020 2a20 2a6e 6f74 l, . * *not │ │ │ │ -00015e90: 6520 5665 7262 6f73 653a 2069 6e76 6572 e Verbose: inver │ │ │ │ -00015ea0: 7365 4d61 705f 6c70 5f70 645f 7064 5f70 seMap_lp_pd_pd_p │ │ │ │ -00015eb0: 645f 636d 5665 7262 6f73 653d 3e5f 7064 d_cmVerbose=>_pd │ │ │ │ -00015ec0: 5f70 645f 7064 5f72 702c 203d 3e20 2e2e _pd_pd_rp, => .. │ │ │ │ -00015ed0: 2e2c 0a20 2020 2020 2020 2064 6566 6175 .,. defau │ │ │ │ -00015ee0: 6c74 2076 616c 7565 2074 7275 652c 0a20 lt value true,. │ │ │ │ -00015ef0: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ -00015f00: 2020 2a20 6120 2a6e 6f74 6520 7261 7469 * a *note rati │ │ │ │ -00015f10: 6f6e 616c 206d 6170 3a20 5261 7469 6f6e onal map: Ration │ │ │ │ -00015f20: 616c 4d61 702c 2c20 6120 7261 6e64 6f6d alMap,, a random │ │ │ │ -00015f30: 2072 6174 696f 6e61 6c20 6d61 7020 7768 rational map wh │ │ │ │ -00015f40: 6963 6820 696e 2073 6f6d 650a 2020 2020 ich in some. │ │ │ │ -00015f50: 2020 2020 7365 6e73 6520 6973 2072 656c sense is rel │ │ │ │ -00015f60: 6174 6564 2074 6f20 7468 6520 696e 7665 ated to the inve │ │ │ │ -00015f70: 7273 6520 6f66 2070 6869 2028 652e 672e rse of phi (e.g. │ │ │ │ -00015f80: 2c20 7468 6579 2073 686f 756c 6420 6861 , they should ha │ │ │ │ -00015f90: 7665 2074 6865 2073 616d 650a 2020 2020 ve the same. │ │ │ │ -00015fa0: 2020 2020 6261 7365 206c 6f63 7573 290a base locus). │ │ │ │ -00015fb0: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ -00015fc0: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 616c ========..The al │ │ │ │ -00015fd0: 676f 7269 7468 6d20 6973 2074 6f20 7472 gorithm is to tr │ │ │ │ -00015fe0: 7920 746f 2063 6f6e 7374 7275 6374 2074 y to construct t │ │ │ │ -00015ff0: 6865 2069 6465 616c 206f 6620 7468 6520 he ideal of the │ │ │ │ -00016000: 6261 7365 206c 6f63 7573 206f 6620 7468 base locus of th │ │ │ │ -00016010: 6520 696e 7665 7273 650a 6279 206c 6f6f e inverse.by loo │ │ │ │ -00016020: 6b69 6e67 2066 6f72 2074 6865 2069 6d61 king for the ima │ │ │ │ -00016030: 6765 7320 7669 6120 7068 6920 6f66 2072 ges via phi of r │ │ │ │ -00016040: 616e 646f 6d20 6c69 6e65 6172 2073 6563 andom linear sec │ │ │ │ -00016050: 7469 6f6e 7320 6f66 2074 6865 2073 6f75 tions of the sou │ │ │ │ -00016060: 7263 650a 7661 7269 6574 792e 2047 656e rce.variety. Gen │ │ │ │ -00016070: 6572 616c 6c79 2c20 6f6e 6520 6361 6e20 erally, one can │ │ │ │ -00016080: 7370 6565 6420 7570 2074 6865 2070 726f speed up the pro │ │ │ │ -00016090: 6365 7373 2062 7920 7061 7373 696e 6720 cess by passing │ │ │ │ -000160a0: 7468 726f 7567 6820 7468 6520 6f70 7469 through the opti │ │ │ │ -000160b0: 6f6e 0a2a 6e6f 7465 2043 6f64 696d 4273 on.*note CodimBs │ │ │ │ -000160c0: 496e 763a 2043 6f64 696d 4273 496e 762c Inv: CodimBsInv, │ │ │ │ -000160d0: 2061 2067 6f6f 6420 6c6f 7765 7220 626f a good lower bo │ │ │ │ -000160e0: 756e 6420 666f 7220 7468 6520 636f 6469 und for the codi │ │ │ │ -000160f0: 6d65 6e73 696f 6e20 6f66 2074 6869 730a mension of this. │ │ │ │ -00016100: 6261 7365 206c 6f63 7573 2e0a 0a2b 2d2d base locus...+-- │ │ │ │ -00016110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015c40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 5379 ************..Sy │ │ │ │ +00015c50: 6e6f 7073 6973 0a3d 3d3d 3d3d 3d3d 3d0a nopsis.========. │ │ │ │ +00015c60: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +00015c70: 2020 2020 2061 7070 726f 7869 6d61 7465 approximate │ │ │ │ +00015c80: 496e 7665 7273 654d 6170 2070 6869 200a InverseMap phi . │ │ │ │ +00015c90: 2020 2020 2020 2020 6170 7072 6f78 696d approxim │ │ │ │ +00015ca0: 6174 6549 6e76 6572 7365 4d61 7028 7068 ateInverseMap(ph │ │ │ │ +00015cb0: 692c 6429 0a20 202a 2049 6e70 7574 733a i,d). * Inputs: │ │ │ │ +00015cc0: 0a20 2020 2020 202a 2070 6869 2c20 6120 . * phi, a │ │ │ │ +00015cd0: 2a6e 6f74 6520 7261 7469 6f6e 616c 206d *note rational m │ │ │ │ +00015ce0: 6170 3a20 5261 7469 6f6e 616c 4d61 702c ap: RationalMap, │ │ │ │ +00015cf0: 2c20 6120 6269 7261 7469 6f6e 616c 206d , a birational m │ │ │ │ +00015d00: 6170 0a20 2020 2020 202a 2064 2c20 616e ap. * d, an │ │ │ │ +00015d10: 202a 6e6f 7465 2069 6e74 6567 6572 3a20 *note integer: │ │ │ │ +00015d20: 284d 6163 6175 6c61 7932 446f 6329 5a5a (Macaulay2Doc)ZZ │ │ │ │ +00015d30: 2c2c 206f 7074 696f 6e61 6c2c 2062 7574 ,, optional, but │ │ │ │ +00015d40: 2069 7420 7368 6f75 6c64 2062 6520 7468 it should be th │ │ │ │ +00015d50: 650a 2020 2020 2020 2020 6465 6772 6565 e. degree │ │ │ │ +00015d60: 206f 6620 7468 6520 666f 726d 7320 6465 of the forms de │ │ │ │ +00015d70: 6669 6e69 6e67 2074 6865 2069 6e76 6572 fining the inver │ │ │ │ +00015d80: 7365 206f 6620 7068 690a 2020 2a20 2a6e se of phi. * *n │ │ │ │ +00015d90: 6f74 6520 4f70 7469 6f6e 616c 2069 6e70 ote Optional inp │ │ │ │ +00015da0: 7574 733a 2028 4d61 6361 756c 6179 3244 uts: (Macaulay2D │ │ │ │ +00015db0: 6f63 2975 7369 6e67 2066 756e 6374 696f oc)using functio │ │ │ │ +00015dc0: 6e73 2077 6974 6820 6f70 7469 6f6e 616c ns with optional │ │ │ │ +00015dd0: 2069 6e70 7574 732c 3a0a 2020 2020 2020 inputs,:. │ │ │ │ +00015de0: 2a20 2a6e 6f74 6520 4365 7274 6966 793a * *note Certify: │ │ │ │ +00015df0: 2043 6572 7469 6679 2c20 3d3e 202e 2e2e Certify, => ... │ │ │ │ +00015e00: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ +00015e10: 6661 6c73 652c 2077 6865 7468 6572 2074 false, whether t │ │ │ │ +00015e20: 6f20 656e 7375 7265 0a20 2020 2020 2020 o ensure. │ │ │ │ +00015e30: 2063 6f72 7265 6374 6e65 7373 206f 6620 correctness of │ │ │ │ +00015e40: 6f75 7470 7574 0a20 2020 2020 202a 202a output. * * │ │ │ │ +00015e50: 6e6f 7465 2043 6f64 696d 4273 496e 763a note CodimBsInv: │ │ │ │ +00015e60: 2043 6f64 696d 4273 496e 762c 203d 3e20 CodimBsInv, => │ │ │ │ +00015e70: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ +00015e80: 7565 206e 756c 6c2c 200a 2020 2020 2020 ue null, . │ │ │ │ +00015e90: 2a20 2a6e 6f74 6520 5665 7262 6f73 653a * *note Verbose: │ │ │ │ +00015ea0: 2069 6e76 6572 7365 4d61 705f 6c70 5f70 inverseMap_lp_p │ │ │ │ +00015eb0: 645f 7064 5f70 645f 636d 5665 7262 6f73 d_pd_pd_cmVerbos │ │ │ │ +00015ec0: 653d 3e5f 7064 5f70 645f 7064 5f72 702c e=>_pd_pd_pd_rp, │ │ │ │ +00015ed0: 203d 3e20 2e2e 2e2c 0a20 2020 2020 2020 => ...,. │ │ │ │ +00015ee0: 2064 6566 6175 6c74 2076 616c 7565 2074 default value t │ │ │ │ +00015ef0: 7275 652c 0a20 202a 204f 7574 7075 7473 rue,. * Outputs │ │ │ │ +00015f00: 3a0a 2020 2020 2020 2a20 6120 2a6e 6f74 :. * a *not │ │ │ │ +00015f10: 6520 7261 7469 6f6e 616c 206d 6170 3a20 e rational map: │ │ │ │ +00015f20: 5261 7469 6f6e 616c 4d61 702c 2c20 6120 RationalMap,, a │ │ │ │ +00015f30: 7261 6e64 6f6d 2072 6174 696f 6e61 6c20 random rational │ │ │ │ +00015f40: 6d61 7020 7768 6963 6820 696e 2073 6f6d map which in som │ │ │ │ +00015f50: 650a 2020 2020 2020 2020 7365 6e73 6520 e. sense │ │ │ │ +00015f60: 6973 2072 656c 6174 6564 2074 6f20 7468 is related to th │ │ │ │ +00015f70: 6520 696e 7665 7273 6520 6f66 2070 6869 e inverse of phi │ │ │ │ +00015f80: 2028 652e 672e 2c20 7468 6579 2073 686f (e.g., they sho │ │ │ │ +00015f90: 756c 6420 6861 7665 2074 6865 2073 616d uld have the sam │ │ │ │ +00015fa0: 650a 2020 2020 2020 2020 6261 7365 206c e. base l │ │ │ │ +00015fb0: 6f63 7573 290a 0a44 6573 6372 6970 7469 ocus)..Descripti │ │ │ │ +00015fc0: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +00015fd0: 5468 6520 616c 676f 7269 7468 6d20 6973 The algorithm is │ │ │ │ +00015fe0: 2074 6f20 7472 7920 746f 2063 6f6e 7374 to try to const │ │ │ │ +00015ff0: 7275 6374 2074 6865 2069 6465 616c 206f ruct the ideal o │ │ │ │ +00016000: 6620 7468 6520 6261 7365 206c 6f63 7573 f the base locus │ │ │ │ +00016010: 206f 6620 7468 6520 696e 7665 7273 650a of the inverse. │ │ │ │ +00016020: 6279 206c 6f6f 6b69 6e67 2066 6f72 2074 by looking for t │ │ │ │ +00016030: 6865 2069 6d61 6765 7320 7669 6120 7068 he images via ph │ │ │ │ +00016040: 6920 6f66 2072 616e 646f 6d20 6c69 6e65 i of random line │ │ │ │ +00016050: 6172 2073 6563 7469 6f6e 7320 6f66 2074 ar sections of t │ │ │ │ +00016060: 6865 2073 6f75 7263 650a 7661 7269 6574 he source.variet │ │ │ │ +00016070: 792e 2047 656e 6572 616c 6c79 2c20 6f6e y. Generally, on │ │ │ │ +00016080: 6520 6361 6e20 7370 6565 6420 7570 2074 e can speed up t │ │ │ │ +00016090: 6865 2070 726f 6365 7373 2062 7920 7061 he process by pa │ │ │ │ +000160a0: 7373 696e 6720 7468 726f 7567 6820 7468 ssing through th │ │ │ │ +000160b0: 6520 6f70 7469 6f6e 0a2a 6e6f 7465 2043 e option.*note C │ │ │ │ +000160c0: 6f64 696d 4273 496e 763a 2043 6f64 696d odimBsInv: Codim │ │ │ │ +000160d0: 4273 496e 762c 2061 2067 6f6f 6420 6c6f BsInv, a good lo │ │ │ │ +000160e0: 7765 7220 626f 756e 6420 666f 7220 7468 wer bound for th │ │ │ │ +000160f0: 6520 636f 6469 6d65 6e73 696f 6e20 6f66 e codimension of │ │ │ │ +00016100: 2074 6869 730a 6261 7365 206c 6f63 7573 this.base locus │ │ │ │ +00016110: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ 00016120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -00016160: 203a 2050 3820 3d20 5a5a 2f39 375b 745f : P8 = ZZ/97[t_ │ │ │ │ -00016170: 302e 2e74 5f38 5d3b 2020 2020 2020 2020 0..t_8]; │ │ │ │ +00016150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016160: 2d2b 0a7c 6931 203a 2050 3820 3d20 5a5a -+.|i1 : P8 = ZZ │ │ │ │ +00016170: 2f39 375b 745f 302e 2e74 5f38 5d3b 2020 /97[t_0..t_8]; │ │ │ │ 00016180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000161a0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -000161b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000161a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000161b0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 000161c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000161d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000161e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000161f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -00016200: 203a 2070 6869 203d 2069 6e76 6572 7365 : phi = inverse │ │ │ │ -00016210: 4d61 7020 7261 7469 6f6e 616c 4d61 7028 Map rationalMap( │ │ │ │ -00016220: 7472 696d 286d 696e 6f72 7328 322c 6765 trim(minors(2,ge │ │ │ │ -00016230: 6e65 7269 634d 6174 7269 7828 5038 2c33 nericMatrix(P8,3 │ │ │ │ -00016240: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000161f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016200: 2d2b 0a7c 6932 203a 2070 6869 203d 2069 -+.|i2 : phi = i │ │ │ │ +00016210: 6e76 6572 7365 4d61 7020 7261 7469 6f6e nverseMap ration │ │ │ │ +00016220: 616c 4d61 7028 7472 696d 286d 696e 6f72 alMap(trim(minor │ │ │ │ +00016230: 7328 322c 6765 6e65 7269 634d 6174 7269 s(2,genericMatri │ │ │ │ +00016240: 7828 5038 2c33 2020 2020 2020 2020 2020 x(P8,3 │ │ │ │ +00016250: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016290: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -000162a0: 203d 202d 2d20 7261 7469 6f6e 616c 206d = -- rational m │ │ │ │ -000162b0: 6170 202d 2d20 2020 2020 2020 2020 2020 ap -- │ │ │ │ +00016290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000162a0: 207c 0a7c 6f32 203d 202d 2d20 7261 7469 |.|o2 = -- rati │ │ │ │ +000162b0: 6f6e 616c 206d 6170 202d 2d20 2020 2020 onal map -- │ │ │ │ 000162c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000162d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000162e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000162f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016300: 2020 2020 2020 2020 2020 2020 2020 5a5a ZZ │ │ │ │ -00016310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000162e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000162f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016310: 2020 2020 5a5a 2020 2020 2020 2020 2020 ZZ │ │ │ │ 00016320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016330: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016340: 2020 2073 6f75 7263 653a 2073 7562 7661 source: subva │ │ │ │ -00016350: 7269 6574 7920 6f66 2050 726f 6a28 2d2d riety of Proj(-- │ │ │ │ -00016360: 5b78 202c 2078 202c 2078 202c 2078 202c [x , x , x , x , │ │ │ │ -00016370: 2078 202c 2078 202c 2078 202c 2078 202c x , x , x , x , │ │ │ │ -00016380: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000163a0: 2020 2020 2020 2020 2020 2020 2020 3937 97 │ │ │ │ -000163b0: 2020 3020 2020 3120 2020 3220 2020 3320 0 1 2 3 │ │ │ │ -000163c0: 2020 3420 2020 3520 2020 3620 2020 3720 4 5 6 7 │ │ │ │ -000163d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000163e0: 2020 2020 2020 2020 2020 207b 2020 2020 { │ │ │ │ -000163f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016340: 207c 0a7c 2020 2020 2073 6f75 7263 653a |.| source: │ │ │ │ +00016350: 2073 7562 7661 7269 6574 7920 6f66 2050 subvariety of P │ │ │ │ +00016360: 726f 6a28 2d2d 5b78 202c 2078 202c 2078 roj(--[x , x , x │ │ │ │ +00016370: 202c 2078 202c 2078 202c 2078 202c 2078 , x , x , x , x │ │ │ │ +00016380: 202c 2078 202c 2020 2020 2020 2020 2020 , x , │ │ │ │ +00016390: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000163a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000163b0: 2020 2020 3937 2020 3020 2020 3120 2020 97 0 1 │ │ │ │ +000163c0: 3220 2020 3320 2020 3420 2020 3520 2020 2 3 4 5 │ │ │ │ +000163d0: 3620 2020 3720 2020 2020 2020 2020 2020 6 7 │ │ │ │ +000163e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000163f0: 207b 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ 00016400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016420: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016430: 2020 2020 2020 2020 2020 2020 2032 2032 2 2 │ │ │ │ -00016440: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00016450: 2032 2032 2020 2020 2020 2020 2020 2020 2 2 │ │ │ │ +00016420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016430: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016440: 2020 2032 2032 2020 2020 2020 3220 2020 2 2 2 │ │ │ │ +00016450: 2020 2020 2020 2032 2032 2020 2020 2020 2 2 │ │ │ │ 00016460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016470: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016480: 2020 2020 2020 2020 2020 2020 7820 7820 x x │ │ │ │ -00016490: 202b 2031 3478 2078 2078 2020 2b20 3236 + 14x x x + 26 │ │ │ │ -000164a0: 7820 7820 202d 2032 7820 7820 7820 7820 x x - 2x x x x │ │ │ │ -000164b0: 202d 2031 3478 2078 2078 2078 2020 2b20 - 14x x x x + │ │ │ │ -000164c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000164d0: 2020 2020 2020 2020 2020 2020 2031 2032 1 2 │ │ │ │ -000164e0: 2020 2020 2020 3120 3220 3320 2020 2020 1 2 3 │ │ │ │ -000164f0: 2031 2033 2020 2020 2030 2031 2032 2034 1 3 0 1 2 4 │ │ │ │ -00016500: 2020 2020 2020 3020 3120 3320 3420 2020 0 1 3 4 │ │ │ │ -00016510: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016520: 2020 2020 2020 2020 2020 207d 2020 2020 } │ │ │ │ -00016530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016480: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016490: 2020 7820 7820 202b 2031 3478 2078 2078 x x + 14x x x │ │ │ │ +000164a0: 2020 2b20 3236 7820 7820 202d 2032 7820 + 26x x - 2x │ │ │ │ +000164b0: 7820 7820 7820 202d 2031 3478 2078 2078 x x x - 14x x x │ │ │ │ +000164c0: 2078 2020 2b20 2020 2020 2020 2020 2020 x + │ │ │ │ +000164d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000164e0: 2020 2031 2032 2020 2020 2020 3120 3220 1 2 1 2 │ │ │ │ +000164f0: 3320 2020 2020 2031 2033 2020 2020 2030 3 1 3 0 │ │ │ │ +00016500: 2031 2032 2034 2020 2020 2020 3020 3120 1 2 4 0 1 │ │ │ │ +00016510: 3320 3420 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ +00016520: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016530: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 00016540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016560: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016580: 5a5a 2020 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +00016560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016570: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016580: 2020 2020 2020 5a5a 2020 2020 2020 2020 ZZ │ │ │ │ 00016590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000165a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000165b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000165c0: 2020 2074 6172 6765 743a 2050 726f 6a28 target: Proj( │ │ │ │ -000165d0: 2d2d 5b74 202c 2074 202c 2074 202c 2074 --[t , t , t , t │ │ │ │ -000165e0: 202c 2074 202c 2074 202c 2074 202c 2074 , t , t , t , t │ │ │ │ -000165f0: 202c 2074 205d 2920 2020 2020 2020 2020 , t ]) │ │ │ │ -00016600: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016620: 3937 2020 3020 2020 3120 2020 3220 2020 97 0 1 2 │ │ │ │ -00016630: 3320 2020 3420 2020 3520 2020 3620 2020 3 4 5 6 │ │ │ │ -00016640: 3720 2020 3820 2020 2020 2020 2020 2020 7 8 │ │ │ │ -00016650: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016660: 2020 2064 6566 696e 696e 6720 666f 726d defining form │ │ │ │ -00016670: 733a 207b 2020 2020 2020 2020 2020 2020 s: { │ │ │ │ +000165b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000165c0: 207c 0a7c 2020 2020 2074 6172 6765 743a |.| target: │ │ │ │ +000165d0: 2050 726f 6a28 2d2d 5b74 202c 2074 202c Proj(--[t , t , │ │ │ │ +000165e0: 2074 202c 2074 202c 2074 202c 2074 202c t , t , t , t , │ │ │ │ +000165f0: 2074 202c 2074 202c 2074 205d 2920 2020 t , t , t ]) │ │ │ │ +00016600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016610: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016620: 2020 2020 2020 3937 2020 3020 2020 3120 97 0 1 │ │ │ │ +00016630: 2020 3220 2020 3320 2020 3420 2020 3520 2 3 4 5 │ │ │ │ +00016640: 2020 3620 2020 3720 2020 3820 2020 2020 6 7 8 │ │ │ │ +00016650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016660: 207c 0a7c 2020 2020 2064 6566 696e 696e |.| definin │ │ │ │ +00016670: 6720 666f 726d 733a 207b 2020 2020 2020 g forms: { │ │ │ │ 00016680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000166a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000166b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000166c0: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ -000166d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000166a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000166b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000166c0: 2020 2020 2020 2020 2020 7820 7820 202d x x - │ │ │ │ +000166d0: 2078 2078 202c 2020 2020 2020 2020 2020 x x , │ │ │ │ 000166e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000166f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016710: 2020 2020 2035 2037 2020 2020 3420 3820 5 7 4 8 │ │ │ │ -00016720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000166f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016700: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016710: 2020 2020 2020 2020 2020 2035 2037 2020 5 7 │ │ │ │ +00016720: 2020 3420 3820 2020 2020 2020 2020 2020 4 8 │ │ │ │ 00016730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016740: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016750: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016790: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000167a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000167b0: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ -000167c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000167a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000167b0: 2020 2020 2020 2020 2020 7820 7820 202d x x - │ │ │ │ +000167c0: 2078 2078 202c 2020 2020 2020 2020 2020 x x , │ │ │ │ 000167d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000167e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000167f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016800: 2020 2020 2035 2036 2020 2020 3120 3820 5 6 1 8 │ │ │ │ -00016810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000167e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000167f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016800: 2020 2020 2020 2020 2020 2035 2036 2020 5 6 │ │ │ │ +00016810: 2020 3120 3820 2020 2020 2020 2020 2020 1 8 │ │ │ │ 00016820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016830: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016840: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016880: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000168a0: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ -000168b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016890: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000168a0: 2020 2020 2020 2020 2020 7820 7820 202d x x - │ │ │ │ +000168b0: 2078 2078 202c 2020 2020 2020 2020 2020 x x , │ │ │ │ 000168c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000168d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000168e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000168f0: 2020 2020 2034 2036 2020 2020 3120 3720 4 6 1 7 │ │ │ │ -00016900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000168d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000168e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000168f0: 2020 2020 2020 2020 2020 2034 2036 2020 4 6 │ │ │ │ +00016900: 2020 3120 3720 2020 2020 2020 2020 2020 1 7 │ │ │ │ 00016910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016920: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016930: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016970: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016990: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ -000169a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016980: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016990: 2020 2020 2020 2020 2020 7820 7820 202d x x - │ │ │ │ +000169a0: 2078 2078 202c 2020 2020 2020 2020 2020 x x , │ │ │ │ 000169b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000169c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000169d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000169e0: 2020 2020 2033 2037 2020 2020 3220 3820 3 7 2 8 │ │ │ │ -000169f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000169c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000169d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000169e0: 2020 2020 2020 2020 2020 2033 2037 2020 3 7 │ │ │ │ +000169f0: 2020 3220 3820 2020 2020 2020 2020 2020 2 8 │ │ │ │ 00016a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016a10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016a20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016a60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016a80: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ -00016a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016a70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016a80: 2020 2020 2020 2020 2020 7820 7820 202d x x - │ │ │ │ +00016a90: 2078 2078 202c 2020 2020 2020 2020 2020 x x , │ │ │ │ 00016aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ab0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ad0: 2020 2020 2033 2036 2020 2020 3020 3820 3 6 0 8 │ │ │ │ -00016ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016ac0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016ad0: 2020 2020 2020 2020 2020 2033 2036 2020 3 6 │ │ │ │ +00016ae0: 2020 3020 3820 2020 2020 2020 2020 2020 0 8 │ │ │ │ 00016af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016b00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016b10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016b50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016b70: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ -00016b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016b60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016b70: 2020 2020 2020 2020 2020 7820 7820 202d x x - │ │ │ │ +00016b80: 2078 2078 202c 2020 2020 2020 2020 2020 x x , │ │ │ │ 00016b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ba0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016bc0: 2020 2020 2032 2036 2020 2020 3020 3720 2 6 0 7 │ │ │ │ -00016bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016bb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016bc0: 2020 2020 2020 2020 2020 2032 2036 2020 2 6 │ │ │ │ +00016bd0: 2020 3020 3720 2020 2020 2020 2020 2020 0 7 │ │ │ │ 00016be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016bf0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016c00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016c40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016c60: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ -00016c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016c50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016c60: 2020 2020 2020 2020 2020 7820 7820 202d x x - │ │ │ │ +00016c70: 2078 2078 202c 2020 2020 2020 2020 2020 x x , │ │ │ │ 00016c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016c90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016cb0: 2020 2020 2033 2034 2020 2020 3220 3520 3 4 2 5 │ │ │ │ -00016cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016ca0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016cb0: 2020 2020 2020 2020 2020 2033 2034 2020 3 4 │ │ │ │ +00016cc0: 2020 3220 3520 2020 2020 2020 2020 2020 2 5 │ │ │ │ 00016cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ce0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016cf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016d30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016d50: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ -00016d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016d40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016d50: 2020 2020 2020 2020 2020 7820 7820 202d x x - │ │ │ │ +00016d60: 2078 2078 202c 2020 2020 2020 2020 2020 x x , │ │ │ │ 00016d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016d80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016da0: 2020 2020 2031 2033 2020 2020 3020 3520 1 3 0 5 │ │ │ │ -00016db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016d90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016da0: 2020 2020 2020 2020 2020 2031 2033 2020 1 3 │ │ │ │ +00016db0: 2020 3020 3520 2020 2020 2020 2020 2020 0 5 │ │ │ │ 00016dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016dd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016de0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e40: 2020 2020 7820 7820 202d 2078 2078 2020 x x - x x │ │ │ │ -00016e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016e30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016e40: 2020 2020 2020 2020 2020 7820 7820 202d x x - │ │ │ │ +00016e50: 2078 2078 2020 2020 2020 2020 2020 2020 x x │ │ │ │ 00016e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e90: 2020 2020 2031 2032 2020 2020 3020 3420 1 2 0 4 │ │ │ │ -00016ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016e80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016e90: 2020 2020 2020 2020 2020 2031 2032 2020 1 2 │ │ │ │ +00016ea0: 2020 3020 3420 2020 2020 2020 2020 2020 0 4 │ │ │ │ 00016eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ec0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ee0: 2020 207d 2020 2020 2020 2020 2020 2020 } │ │ │ │ +00016ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016ed0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016ee0: 2020 2020 2020 2020 207d 2020 2020 2020 } │ │ │ │ 00016ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00016f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f60: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -00016f70: 203a 2052 6174 696f 6e61 6c4d 6170 2028 : RationalMap ( │ │ │ │ -00016f80: 7175 6164 7261 7469 6320 7261 7469 6f6e quadratic ration │ │ │ │ -00016f90: 616c 206d 6170 2066 726f 6d20 6879 7065 al map from hype │ │ │ │ -00016fa0: 7273 7572 6661 6365 2069 6e20 5050 5e39 rsurface in PP^9 │ │ │ │ -00016fb0: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ -00016fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f70: 207c 0a7c 6f32 203a 2052 6174 696f 6e61 |.|o2 : Rationa │ │ │ │ +00016f80: 6c4d 6170 2028 7175 6164 7261 7469 6320 lMap (quadratic │ │ │ │ +00016f90: 7261 7469 6f6e 616c 206d 6170 2066 726f rational map fro │ │ │ │ +00016fa0: 6d20 6879 7065 7273 7572 6661 6365 2069 m hypersurface i │ │ │ │ +00016fb0: 6e20 5050 5e39 2020 2020 2020 2020 2020 n PP^9 │ │ │ │ +00016fc0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00016fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2c33 -----------|.|,3 │ │ │ │ -00017010: 2929 2b72 616e 646f 6d28 322c 5038 2929 ))+random(2,P8)) │ │ │ │ -00017020: 2c44 6f6d 696e 616e 743d 3e74 7275 6529 ,Dominant=>true) │ │ │ │ -00017030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017010: 2d7c 0a7c 2c33 2929 2b72 616e 646f 6d28 -|.|,3))+random( │ │ │ │ +00017020: 322c 5038 2929 2c44 6f6d 696e 616e 743d 2,P8)),Dominant= │ │ │ │ +00017030: 3e74 7275 6529 2020 2020 2020 2020 2020 >true) │ │ │ │ 00017040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017050: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017060: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000170a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000170b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000170a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000170b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000170c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000170d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000170e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000170f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000170f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017100: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017140: 2020 2020 2020 2020 2020 207c 0a7c 2078 |.| x │ │ │ │ -00017150: 202c 2078 205d 2920 6465 6669 6e65 6420 , x ]) defined │ │ │ │ -00017160: 6279 2020 2020 2020 2020 2020 2020 2020 by │ │ │ │ +00017140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017150: 207c 0a7c 2078 202c 2078 205d 2920 6465 |.| x , x ]) de │ │ │ │ +00017160: 6669 6e65 6420 6279 2020 2020 2020 2020 fined by │ │ │ │ 00017170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017190: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000171a0: 3820 2020 3920 2020 2020 2020 2020 2020 8 9 │ │ │ │ +00017190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000171a0: 207c 0a7c 2020 3820 2020 3920 2020 2020 |.| 8 9 │ │ │ │ 000171b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000171c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000171d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000171e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000171f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000171e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000171f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017230: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017250: 3220 2020 2020 2032 2032 2020 2020 2020 2 2 2 │ │ │ │ -00017260: 2020 2020 3220 2020 2020 2032 2032 2020 2 2 2 │ │ │ │ -00017270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017280: 2020 2032 2020 2020 2020 207c 0a7c 3131 2 |.|11 │ │ │ │ -00017290: 7820 7820 7820 7820 202b 2031 3978 2078 x x x x + 19x x │ │ │ │ -000172a0: 2078 2020 2b20 7820 7820 202d 2031 3178 x + x x - 11x │ │ │ │ -000172b0: 2078 2078 2020 2b20 3338 7820 7820 202d x x + 38x x - │ │ │ │ -000172c0: 2031 3478 2078 2078 2078 2020 2d20 3131 14x x x x - 11 │ │ │ │ -000172d0: 7820 7820 7820 202b 2020 207c 0a7c 2020 x x x + |.| │ │ │ │ -000172e0: 2031 2032 2033 2034 2020 2020 2020 3120 1 2 3 4 1 │ │ │ │ -000172f0: 3320 3420 2020 2030 2034 2020 2020 2020 3 4 0 4 │ │ │ │ -00017300: 3020 3320 3420 2020 2020 2033 2034 2020 0 3 4 3 4 │ │ │ │ -00017310: 2020 2020 3020 3120 3220 3520 2020 2020 0 1 2 5 │ │ │ │ -00017320: 2031 2032 2035 2020 2020 207c 0a7c 2020 1 2 5 |.| │ │ │ │ -00017330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017240: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00017250: 2020 2020 2020 3220 2020 2020 2032 2032 2 2 2 │ │ │ │ +00017260: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00017270: 2032 2032 2020 2020 2020 2020 2020 2020 2 2 │ │ │ │ +00017280: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +00017290: 207c 0a7c 3131 7820 7820 7820 7820 202b |.|11x x x x + │ │ │ │ +000172a0: 2031 3978 2078 2078 2020 2b20 7820 7820 19x x x + x x │ │ │ │ +000172b0: 202d 2031 3178 2078 2078 2020 2b20 3338 - 11x x x + 38 │ │ │ │ +000172c0: 7820 7820 202d 2031 3478 2078 2078 2078 x x - 14x x x x │ │ │ │ +000172d0: 2020 2d20 3131 7820 7820 7820 202b 2020 - 11x x x + │ │ │ │ +000172e0: 207c 0a7c 2020 2031 2032 2033 2034 2020 |.| 1 2 3 4 │ │ │ │ +000172f0: 2020 2020 3120 3320 3420 2020 2030 2034 1 3 4 0 4 │ │ │ │ +00017300: 2020 2020 2020 3020 3320 3420 2020 2020 0 3 4 │ │ │ │ +00017310: 2033 2034 2020 2020 2020 3020 3120 3220 3 4 0 1 2 │ │ │ │ +00017320: 3520 2020 2020 2031 2032 2035 2020 2020 5 1 2 5 │ │ │ │ +00017330: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017370: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017380: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000173a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000173b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000173c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000173d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000173c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000173d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000173e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000173f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017410: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017420: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017460: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017470: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000174a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000174b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000174c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000174b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000174c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000174d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000174e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000174f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017500: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017510: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017550: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017560: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000175a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000175b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000175a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000175b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000175c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000175d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000175e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000175f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000175f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017600: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017640: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017650: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017690: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000176a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000176a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000176b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000176c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000176d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000176e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000176f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000176e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000176f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017730: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017740: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017780: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017790: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000177a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000177b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000177c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000177d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000177e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000177d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000177e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000177f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017820: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017830: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017870: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017880: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000178a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000178b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000178c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000178d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000178c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000178d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000178e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000178f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017910: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017920: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017960: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017970: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000179a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000179b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000179c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000179b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000179c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000179d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000179e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000179f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017a00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017a10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017a50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017a60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017aa0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017ab0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017af0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017b00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017b40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017b50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017b90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017ba0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017be0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017bf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017c30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017c40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017c80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017c90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017cd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017ce0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017d20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00017d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017d30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017d70: 2020 2020 2020 2020 2020 207c 0a7c 2074 |.| t │ │ │ │ -00017d80: 6f20 5050 5e38 2920 2020 2020 2020 2020 o PP^8) │ │ │ │ +00017d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017d80: 207c 0a7c 2074 6f20 5050 5e38 2920 2020 |.| to PP^8) │ │ │ │ 00017d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017dc0: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ -00017dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017dd0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00017de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -00017e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017e30: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -00017e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017e20: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00017e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017e40: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00017e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017e60: 2020 2020 2020 2020 2020 207c 0a7c 3435 |.|45 │ │ │ │ -00017e70: 7820 7820 7820 7820 202d 2031 3978 2078 x x x x - 19x x │ │ │ │ -00017e80: 2078 2078 2020 2b20 3134 7820 7820 7820 x x + 14x x x │ │ │ │ -00017e90: 202b 2031 3178 2078 2078 2078 2020 2d20 + 11x x x x - │ │ │ │ -00017ea0: 3139 7820 7820 7820 7820 202b 2032 3178 19x x x x + 21x │ │ │ │ -00017eb0: 2078 2078 2078 2020 2b20 207c 0a7c 2020 x x x + |.| │ │ │ │ -00017ec0: 2030 2031 2033 2035 2020 2020 2020 3120 0 1 3 5 1 │ │ │ │ -00017ed0: 3220 3320 3520 2020 2020 2030 2034 2035 2 3 5 0 4 5 │ │ │ │ -00017ee0: 2020 2020 2020 3020 3220 3420 3520 2020 0 2 4 5 │ │ │ │ -00017ef0: 2020 2030 2033 2034 2035 2020 2020 2020 0 3 4 5 │ │ │ │ -00017f00: 3220 3320 3420 3520 2020 207c 0a7c 2d2d 2 3 4 5 |.|-- │ │ │ │ -00017f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017e70: 207c 0a7c 3435 7820 7820 7820 7820 202d |.|45x x x x - │ │ │ │ +00017e80: 2031 3978 2078 2078 2078 2020 2b20 3134 19x x x x + 14 │ │ │ │ +00017e90: 7820 7820 7820 202b 2031 3178 2078 2078 x x x + 11x x x │ │ │ │ +00017ea0: 2078 2020 2d20 3139 7820 7820 7820 7820 x - 19x x x x │ │ │ │ +00017eb0: 202b 2032 3178 2078 2078 2078 2020 2b20 + 21x x x x + │ │ │ │ +00017ec0: 207c 0a7c 2020 2030 2031 2033 2035 2020 |.| 0 1 3 5 │ │ │ │ +00017ed0: 2020 2020 3120 3220 3320 3520 2020 2020 1 2 3 5 │ │ │ │ +00017ee0: 2030 2034 2035 2020 2020 2020 3020 3220 0 4 5 0 2 │ │ │ │ +00017ef0: 3420 3520 2020 2020 2030 2033 2034 2035 4 5 0 3 4 5 │ │ │ │ +00017f00: 2020 2020 2020 3220 3320 3420 3520 2020 2 3 4 5 │ │ │ │ +00017f10: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00017f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -00017f60: 2032 2032 2020 2020 2020 2020 2020 3220 2 2 2 │ │ │ │ -00017f70: 2020 2020 2032 2032 2020 2020 2020 2020 2 2 │ │ │ │ -00017f80: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00017f90: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -00017fa0: 2020 2020 2020 2020 2020 207c 0a7c 3236 |.|26 │ │ │ │ -00017fb0: 7820 7820 202b 2031 3978 2078 2078 2020 x x + 19x x x │ │ │ │ -00017fc0: 2b20 3338 7820 7820 202d 2033 3078 2078 + 38x x - 30x x │ │ │ │ -00017fd0: 2078 2020 2d20 3131 7820 7820 7820 7820 x - 11x x x x │ │ │ │ -00017fe0: 202d 2031 3178 2078 2078 2020 2b20 3330 - 11x x x + 30 │ │ │ │ -00017ff0: 7820 7820 7820 7820 202b 207c 0a7c 2020 x x x x + |.| │ │ │ │ -00018000: 2030 2035 2020 2020 2020 3020 3220 3520 0 5 0 2 5 │ │ │ │ -00018010: 2020 2020 2032 2035 2020 2020 2020 3120 2 5 1 │ │ │ │ -00018020: 3220 3620 2020 2020 2031 2032 2033 2036 2 6 1 2 3 6 │ │ │ │ -00018030: 2020 2020 2020 3120 3320 3620 2020 2020 1 3 6 │ │ │ │ -00018040: 2030 2032 2034 2036 2020 207c 0a7c 2d2d 0 2 4 6 |.|-- │ │ │ │ -00018050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017f60: 2d7c 0a7c 2020 2032 2032 2020 2020 2020 -|.| 2 2 │ │ │ │ +00017f70: 2020 2020 3220 2020 2020 2032 2032 2020 2 2 2 │ │ │ │ +00017f80: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00017f90: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00017fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017fb0: 207c 0a7c 3236 7820 7820 202b 2031 3978 |.|26x x + 19x │ │ │ │ +00017fc0: 2078 2078 2020 2b20 3338 7820 7820 202d x x + 38x x - │ │ │ │ +00017fd0: 2033 3078 2078 2078 2020 2d20 3131 7820 30x x x - 11x │ │ │ │ +00017fe0: 7820 7820 7820 202d 2031 3178 2078 2078 x x x - 11x x x │ │ │ │ +00017ff0: 2020 2b20 3330 7820 7820 7820 7820 202b + 30x x x x + │ │ │ │ +00018000: 207c 0a7c 2020 2030 2035 2020 2020 2020 |.| 0 5 │ │ │ │ +00018010: 3020 3220 3520 2020 2020 2032 2035 2020 0 2 5 2 5 │ │ │ │ +00018020: 2020 2020 3120 3220 3620 2020 2020 2031 1 2 6 1 │ │ │ │ +00018030: 2032 2033 2036 2020 2020 2020 3120 3320 2 3 6 1 3 │ │ │ │ +00018040: 3620 2020 2020 2030 2032 2034 2036 2020 6 0 2 4 6 │ │ │ │ +00018050: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00018060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -000180a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000180b0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000180c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000180a0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +000180b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000180c0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000180d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000180e0: 2020 2020 2020 2020 2020 207c 0a7c 3232 |.|22 │ │ │ │ -000180f0: 7820 7820 7820 7820 202b 2031 3178 2078 x x x x + 11x x │ │ │ │ -00018100: 2078 2078 2020 2d20 3232 7820 7820 7820 x x - 22x x x │ │ │ │ -00018110: 202b 2031 3078 2078 2078 2078 2020 2b20 + 10x x x x + │ │ │ │ -00018120: 3131 7820 7820 7820 7820 202d 2034 3278 11x x x x - 42x │ │ │ │ -00018130: 2078 2078 2078 2020 2d20 207c 0a7c 2020 x x x - |.| │ │ │ │ -00018140: 2031 2032 2034 2036 2020 2020 2020 3020 1 2 4 6 0 │ │ │ │ -00018150: 3320 3420 3620 2020 2020 2030 2034 2036 3 4 6 0 4 6 │ │ │ │ -00018160: 2020 2020 2020 3120 3220 3520 3620 2020 1 2 5 6 │ │ │ │ -00018170: 2020 2030 2033 2035 2036 2020 2020 2020 0 3 5 6 │ │ │ │ -00018180: 3120 3320 3520 3620 2020 207c 0a7c 2d2d 1 3 5 6 |.|-- │ │ │ │ -00018190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000180e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000180f0: 207c 0a7c 3232 7820 7820 7820 7820 202b |.|22x x x x + │ │ │ │ +00018100: 2031 3178 2078 2078 2078 2020 2d20 3232 11x x x x - 22 │ │ │ │ +00018110: 7820 7820 7820 202b 2031 3078 2078 2078 x x x + 10x x x │ │ │ │ +00018120: 2078 2020 2b20 3131 7820 7820 7820 7820 x + 11x x x x │ │ │ │ +00018130: 202d 2034 3278 2078 2078 2078 2020 2d20 - 42x x x x - │ │ │ │ +00018140: 207c 0a7c 2020 2031 2032 2034 2036 2020 |.| 1 2 4 6 │ │ │ │ +00018150: 2020 2020 3020 3320 3420 3620 2020 2020 0 3 4 6 │ │ │ │ +00018160: 2030 2034 2036 2020 2020 2020 3120 3220 0 4 6 1 2 │ │ │ │ +00018170: 3520 3620 2020 2020 2030 2033 2035 2036 5 6 0 3 5 6 │ │ │ │ +00018180: 2020 2020 2020 3120 3320 3520 3620 2020 1 3 5 6 │ │ │ │ +00018190: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 000181a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000181b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000181c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000181d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -000181e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000181f0: 3220 2020 2020 2020 2032 2032 2020 2020 2 2 2 │ │ │ │ -00018200: 2020 2020 2020 3220 2020 2020 3220 3220 2 2 2 │ │ │ │ -00018210: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00018220: 3220 3220 2020 2020 2020 207c 0a7c 3130 2 2 |.|10 │ │ │ │ -00018230: 7820 7820 7820 7820 202b 2034 3278 2078 x x x x + 42x x │ │ │ │ -00018240: 2078 2020 2d20 3338 7820 7820 202d 2033 x - 38x x - 3 │ │ │ │ -00018250: 3778 2078 2078 2020 2b20 3778 2078 2020 7x x x + 7x x │ │ │ │ -00018260: 2b20 3238 7820 7820 7820 202d 2033 3878 + 28x x x - 38x │ │ │ │ -00018270: 2078 2020 2d20 2020 2020 207c 0a7c 2020 x - |.| │ │ │ │ -00018280: 2030 2034 2035 2036 2020 2020 2020 3020 0 4 5 6 0 │ │ │ │ -00018290: 3520 3620 2020 2020 2032 2036 2020 2020 5 6 2 6 │ │ │ │ -000182a0: 2020 3220 3320 3620 2020 2020 3320 3620 2 3 6 3 6 │ │ │ │ -000182b0: 2020 2020 2032 2034 2036 2020 2020 2020 2 4 6 │ │ │ │ -000182c0: 3420 3620 2020 2020 2020 207c 0a7c 2d2d 4 6 |.|-- │ │ │ │ -000182d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000181d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000181e0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +000181f0: 2020 2020 2020 3220 2020 2020 2020 2032 2 2 │ │ │ │ +00018200: 2032 2020 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ +00018210: 2020 3220 3220 2020 2020 2020 2020 2032 2 2 2 │ │ │ │ +00018220: 2020 2020 2020 3220 3220 2020 2020 2020 2 2 │ │ │ │ +00018230: 207c 0a7c 3130 7820 7820 7820 7820 202b |.|10x x x x + │ │ │ │ +00018240: 2034 3278 2078 2078 2020 2d20 3338 7820 42x x x - 38x │ │ │ │ +00018250: 7820 202d 2033 3778 2078 2078 2020 2b20 x - 37x x x + │ │ │ │ +00018260: 3778 2078 2020 2b20 3238 7820 7820 7820 7x x + 28x x x │ │ │ │ +00018270: 202d 2033 3878 2078 2020 2d20 2020 2020 - 38x x - │ │ │ │ +00018280: 207c 0a7c 2020 2030 2034 2035 2036 2020 |.| 0 4 5 6 │ │ │ │ +00018290: 2020 2020 3020 3520 3620 2020 2020 2032 0 5 6 2 │ │ │ │ +000182a0: 2036 2020 2020 2020 3220 3320 3620 2020 6 2 3 6 │ │ │ │ +000182b0: 2020 3320 3620 2020 2020 2032 2034 2036 3 6 2 4 6 │ │ │ │ +000182c0: 2020 2020 2020 3420 3620 2020 2020 2020 4 6 │ │ │ │ +000182d0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 000182e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000182f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -00018320: 2020 2020 3220 2020 2020 2020 2020 2032 2 2 │ │ │ │ -00018330: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -00018340: 2032 2032 2020 2020 2020 2020 2020 2020 2 2 │ │ │ │ -00018350: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00018360: 2020 2020 2020 2020 2020 207c 0a7c 3378 |.|3x │ │ │ │ -00018370: 2078 2078 2020 2d20 3239 7820 7820 7820 x x - 29x x x │ │ │ │ -00018380: 202d 2034 3778 2078 2078 2020 2b20 3336 - 47x x x + 36 │ │ │ │ -00018390: 7820 7820 202b 2033 3078 2078 2078 2078 x x + 30x x x x │ │ │ │ -000183a0: 2020 2d20 3232 7820 7820 7820 202d 2032 - 22x x x - 2 │ │ │ │ -000183b0: 3078 2078 2078 2078 2020 2d7c 0a7c 2020 0x x x x -|.| │ │ │ │ -000183c0: 3220 3520 3620 2020 2020 2033 2035 2036 2 5 6 3 5 6 │ │ │ │ -000183d0: 2020 2020 2020 3420 3520 3620 2020 2020 4 5 6 │ │ │ │ -000183e0: 2035 2036 2020 2020 2020 3020 3120 3220 5 6 0 1 2 │ │ │ │ -000183f0: 3720 2020 2020 2031 2032 2037 2020 2020 7 1 2 7 │ │ │ │ -00018400: 2020 3120 3220 3320 3720 207c 0a7c 2d2d 1 2 3 7 |.|-- │ │ │ │ -00018410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018320: 2d7c 0a7c 2020 2020 2020 3220 2020 2020 -|.| 2 │ │ │ │ +00018330: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00018340: 3220 2020 2020 2032 2032 2020 2020 2020 2 2 2 │ │ │ │ +00018350: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00018360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018370: 207c 0a7c 3378 2078 2078 2020 2d20 3239 |.|3x x x - 29 │ │ │ │ +00018380: 7820 7820 7820 202d 2034 3778 2078 2078 x x x - 47x x x │ │ │ │ +00018390: 2020 2b20 3336 7820 7820 202b 2033 3078 + 36x x + 30x │ │ │ │ +000183a0: 2078 2078 2078 2020 2d20 3232 7820 7820 x x x - 22x x │ │ │ │ +000183b0: 7820 202d 2032 3078 2078 2078 2078 2020 x - 20x x x x │ │ │ │ +000183c0: 2d7c 0a7c 2020 3220 3520 3620 2020 2020 -|.| 2 5 6 │ │ │ │ +000183d0: 2033 2035 2036 2020 2020 2020 3420 3520 3 5 6 4 5 │ │ │ │ +000183e0: 3620 2020 2020 2035 2036 2020 2020 2020 6 5 6 │ │ │ │ +000183f0: 3020 3120 3220 3720 2020 2020 2031 2032 0 1 2 7 1 2 │ │ │ │ +00018400: 2037 2020 2020 2020 3120 3220 3320 3720 7 1 2 3 7 │ │ │ │ +00018410: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00018420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -00018460: 2020 2032 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ -00018470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018460: 2d7c 0a7c 2020 2020 2032 2020 2020 2020 -|.| 2 │ │ │ │ +00018470: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00018480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018490: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000184a0: 2020 2020 2020 2020 2020 207c 0a7c 3431 |.|41 │ │ │ │ -000184b0: 7820 7820 7820 202d 2033 3078 2078 2078 x x x - 30x x x │ │ │ │ -000184c0: 2020 2b20 3232 7820 7820 7820 7820 202b + 22x x x x + │ │ │ │ -000184d0: 2032 3078 2078 2078 2078 2020 2d20 3478 20x x x x - 4x │ │ │ │ -000184e0: 2078 2078 2020 2b20 3236 7820 7820 7820 x x + 26x x x │ │ │ │ -000184f0: 7820 202b 2020 2020 2020 207c 0a7c 2020 x + |.| │ │ │ │ -00018500: 2031 2033 2037 2020 2020 2020 3020 3420 1 3 7 0 4 │ │ │ │ -00018510: 3720 2020 2020 2030 2031 2034 2037 2020 7 0 1 4 7 │ │ │ │ -00018520: 2020 2020 3020 3320 3420 3720 2020 2020 0 3 4 7 │ │ │ │ -00018530: 3320 3420 3720 2020 2020 2031 2032 2035 3 4 7 1 2 5 │ │ │ │ -00018540: 2037 2020 2020 2020 2020 207c 0a7c 2d2d 7 |.|-- │ │ │ │ -00018550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018490: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000184a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000184b0: 207c 0a7c 3431 7820 7820 7820 202d 2033 |.|41x x x - 3 │ │ │ │ +000184c0: 3078 2078 2078 2020 2b20 3232 7820 7820 0x x x + 22x x │ │ │ │ +000184d0: 7820 7820 202b 2032 3078 2078 2078 2078 x x + 20x x x x │ │ │ │ +000184e0: 2020 2d20 3478 2078 2078 2020 2b20 3236 - 4x x x + 26 │ │ │ │ +000184f0: 7820 7820 7820 7820 202b 2020 2020 2020 x x x x + │ │ │ │ +00018500: 207c 0a7c 2020 2031 2033 2037 2020 2020 |.| 1 3 7 │ │ │ │ +00018510: 2020 3020 3420 3720 2020 2020 2030 2031 0 4 7 0 1 │ │ │ │ +00018520: 2034 2037 2020 2020 2020 3020 3320 3420 4 7 0 3 4 │ │ │ │ +00018530: 3720 2020 2020 3320 3420 3720 2020 2020 7 3 4 7 │ │ │ │ +00018540: 2031 2032 2035 2037 2020 2020 2020 2020 1 2 5 7 │ │ │ │ +00018550: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00018560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -000185a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000185a0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ 000185b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000185c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000185d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000185e0: 2020 2032 2020 2020 2020 207c 0a7c 3431 2 |.|41 │ │ │ │ -000185f0: 7820 7820 7820 7820 202d 2032 3878 2078 x x x x - 28x x │ │ │ │ -00018600: 2078 2078 2020 2b20 3478 2078 2078 2078 x x + 4x x x x │ │ │ │ -00018610: 2020 2d20 3236 7820 7820 7820 7820 202b - 26x x x x + │ │ │ │ -00018620: 2031 3278 2078 2078 2078 2020 2b20 3238 12x x x x + 28 │ │ │ │ -00018630: 7820 7820 7820 202d 2020 207c 0a7c 2020 x x x - |.| │ │ │ │ -00018640: 2030 2033 2035 2037 2020 2020 2020 3120 0 3 5 7 1 │ │ │ │ -00018650: 3320 3520 3720 2020 2020 3220 3320 3520 3 5 7 2 3 5 │ │ │ │ -00018660: 3720 2020 2020 2030 2034 2035 2037 2020 7 0 4 5 7 │ │ │ │ -00018670: 2020 2020 3320 3420 3520 3720 2020 2020 3 4 5 7 │ │ │ │ -00018680: 2030 2035 2037 2020 2020 207c 0a7c 2d2d 0 5 7 |.|-- │ │ │ │ -00018690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000185e0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +000185f0: 207c 0a7c 3431 7820 7820 7820 7820 202d |.|41x x x x - │ │ │ │ +00018600: 2032 3878 2078 2078 2078 2020 2b20 3478 28x x x x + 4x │ │ │ │ +00018610: 2078 2078 2078 2020 2d20 3236 7820 7820 x x x - 26x x │ │ │ │ +00018620: 7820 7820 202b 2031 3278 2078 2078 2078 x x + 12x x x x │ │ │ │ +00018630: 2020 2b20 3238 7820 7820 7820 202d 2020 + 28x x x - │ │ │ │ +00018640: 207c 0a7c 2020 2030 2033 2035 2037 2020 |.| 0 3 5 7 │ │ │ │ +00018650: 2020 2020 3120 3320 3520 3720 2020 2020 1 3 5 7 │ │ │ │ +00018660: 3220 3320 3520 3720 2020 2020 2030 2034 2 3 5 7 0 4 │ │ │ │ +00018670: 2035 2037 2020 2020 2020 3320 3420 3520 5 7 3 4 5 │ │ │ │ +00018680: 3720 2020 2020 2030 2035 2037 2020 2020 7 0 5 7 │ │ │ │ +00018690: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 000186a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000186b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000186c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000186d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -000186e0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000186d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000186e0: 2d7c 0a7c 2020 2020 2032 2020 2020 2020 -|.| 2 │ │ │ │ 000186f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018720: 3220 2020 2020 2020 2020 207c 0a7c 3132 2 |.|12 │ │ │ │ -00018730: 7820 7820 7820 202d 2032 3178 2078 2078 x x x - 21x x x │ │ │ │ -00018740: 2078 2020 2d20 3238 7820 7820 7820 7820 x - 28x x x x │ │ │ │ -00018750: 202b 2033 3778 2078 2078 2078 2020 2b20 + 37x x x x + │ │ │ │ -00018760: 3231 7820 7820 7820 7820 202d 2031 3178 21x x x x - 11x │ │ │ │ -00018770: 2078 2078 2020 2d20 2020 207c 0a7c 2020 x x - |.| │ │ │ │ -00018780: 2032 2035 2037 2020 2020 2020 3020 3220 2 5 7 0 2 │ │ │ │ -00018790: 3620 3720 2020 2020 2031 2032 2036 2037 6 7 1 2 6 7 │ │ │ │ -000187a0: 2020 2020 2020 3020 3320 3620 3720 2020 0 3 6 7 │ │ │ │ -000187b0: 2020 2032 2033 2036 2037 2020 2020 2020 2 3 6 7 │ │ │ │ -000187c0: 3320 3620 3720 2020 2020 207c 0a7c 2d2d 3 6 7 |.|-- │ │ │ │ -000187d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018720: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00018730: 207c 0a7c 3132 7820 7820 7820 202d 2032 |.|12x x x - 2 │ │ │ │ +00018740: 3178 2078 2078 2078 2020 2d20 3238 7820 1x x x x - 28x │ │ │ │ +00018750: 7820 7820 7820 202b 2033 3778 2078 2078 x x x + 37x x x │ │ │ │ +00018760: 2078 2020 2b20 3231 7820 7820 7820 7820 x + 21x x x x │ │ │ │ +00018770: 202d 2031 3178 2078 2078 2020 2d20 2020 - 11x x x - │ │ │ │ +00018780: 207c 0a7c 2020 2032 2035 2037 2020 2020 |.| 2 5 7 │ │ │ │ +00018790: 2020 3020 3220 3620 3720 2020 2020 2031 0 2 6 7 1 │ │ │ │ +000187a0: 2032 2036 2037 2020 2020 2020 3020 3320 2 6 7 0 3 │ │ │ │ +000187b0: 3620 3720 2020 2020 2032 2033 2036 2037 6 7 2 3 6 7 │ │ │ │ +000187c0: 2020 2020 2020 3320 3620 3720 2020 2020 3 6 7 │ │ │ │ +000187d0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 000187e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000187f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -00018820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018820: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ 00018830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018860: 2020 2020 2020 2020 2020 207c 0a7c 3238 |.|28 │ │ │ │ -00018870: 7820 7820 7820 7820 202d 2032 3178 2078 x x x x - 21x x │ │ │ │ -00018880: 2078 2078 2020 2b20 3378 2078 2078 2078 x x + 3x x x x │ │ │ │ -00018890: 2020 2b20 3437 7820 7820 7820 7820 202b + 47x x x x + │ │ │ │ -000188a0: 2034 3878 2078 2078 2078 2020 2b20 3278 48x x x x + 2x │ │ │ │ -000188b0: 2078 2078 2078 2020 2d20 207c 0a7c 2020 x x x - |.| │ │ │ │ -000188c0: 2030 2034 2036 2037 2020 2020 2020 3120 0 4 6 7 1 │ │ │ │ -000188d0: 3420 3620 3720 2020 2020 3020 3520 3620 4 6 7 0 5 6 │ │ │ │ -000188e0: 3720 2020 2020 2031 2035 2036 2037 2020 7 1 5 6 7 │ │ │ │ -000188f0: 2020 2020 3220 3520 3620 3720 2020 2020 2 5 6 7 │ │ │ │ -00018900: 3320 3520 3620 3720 2020 207c 0a7c 2d2d 3 5 6 7 |.|-- │ │ │ │ -00018910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018870: 207c 0a7c 3238 7820 7820 7820 7820 202d |.|28x x x x - │ │ │ │ +00018880: 2032 3178 2078 2078 2078 2020 2b20 3378 21x x x x + 3x │ │ │ │ +00018890: 2078 2078 2078 2020 2b20 3437 7820 7820 x x x + 47x x │ │ │ │ +000188a0: 7820 7820 202b 2034 3878 2078 2078 2078 x x + 48x x x x │ │ │ │ +000188b0: 2020 2b20 3278 2078 2078 2078 2020 2d20 + 2x x x x - │ │ │ │ +000188c0: 207c 0a7c 2020 2030 2034 2036 2037 2020 |.| 0 4 6 7 │ │ │ │ +000188d0: 2020 2020 3120 3420 3620 3720 2020 2020 1 4 6 7 │ │ │ │ +000188e0: 3020 3520 3620 3720 2020 2020 2031 2035 0 5 6 7 1 5 │ │ │ │ +000188f0: 2036 2037 2020 2020 2020 3220 3520 3620 6 7 2 5 6 │ │ │ │ +00018900: 3720 2020 2020 3320 3520 3620 3720 2020 7 3 5 6 7 │ │ │ │ +00018910: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00018920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -00018960: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00018970: 2020 2020 2020 2020 2032 2032 2020 2020 2 2 │ │ │ │ -00018980: 2020 2020 2020 3220 2020 2020 2032 2032 2 2 2 │ │ │ │ -00018990: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000189a0: 2032 2032 2020 2020 2020 207c 0a7c 3435 2 2 |.|45 │ │ │ │ -000189b0: 7820 7820 7820 7820 202d 2033 3378 2078 x x x x - 33x x │ │ │ │ -000189c0: 2078 2020 2d20 3338 7820 7820 202b 2032 x - 38x x + 2 │ │ │ │ -000189d0: 3878 2078 2078 2020 2d20 3338 7820 7820 8x x x - 38x x │ │ │ │ -000189e0: 202d 2032 3178 2078 2078 2020 2b20 3438 - 21x x x + 48 │ │ │ │ -000189f0: 7820 7820 202d 2020 2020 207c 0a7c 2020 x x - |.| │ │ │ │ -00018a00: 2034 2035 2036 2037 2020 2020 2020 3520 4 5 6 7 5 │ │ │ │ -00018a10: 3620 3720 2020 2020 2030 2037 2020 2020 6 7 0 7 │ │ │ │ -00018a20: 2020 3020 3120 3720 2020 2020 2031 2037 0 1 7 1 7 │ │ │ │ -00018a30: 2020 2020 2020 3020 3320 3720 2020 2020 0 3 7 │ │ │ │ -00018a40: 2033 2037 2020 2020 2020 207c 0a7c 2d2d 3 7 |.|-- │ │ │ │ -00018a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018960: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00018970: 2020 2020 3220 2020 2020 2020 2020 2032 2 2 │ │ │ │ +00018980: 2032 2020 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ +00018990: 2020 2032 2032 2020 2020 2020 2020 2020 2 2 │ │ │ │ +000189a0: 3220 2020 2020 2032 2032 2020 2020 2020 2 2 2 │ │ │ │ +000189b0: 207c 0a7c 3435 7820 7820 7820 7820 202d |.|45x x x x - │ │ │ │ +000189c0: 2033 3378 2078 2078 2020 2d20 3338 7820 33x x x - 38x │ │ │ │ +000189d0: 7820 202b 2032 3878 2078 2078 2020 2d20 x + 28x x x - │ │ │ │ +000189e0: 3338 7820 7820 202d 2032 3178 2078 2078 38x x - 21x x x │ │ │ │ +000189f0: 2020 2b20 3438 7820 7820 202d 2020 2020 + 48x x - │ │ │ │ +00018a00: 207c 0a7c 2020 2034 2035 2036 2037 2020 |.| 4 5 6 7 │ │ │ │ +00018a10: 2020 2020 3520 3620 3720 2020 2020 2030 5 6 7 0 │ │ │ │ +00018a20: 2037 2020 2020 2020 3020 3120 3720 2020 7 0 1 7 │ │ │ │ +00018a30: 2020 2031 2037 2020 2020 2020 3020 3320 1 7 0 3 │ │ │ │ +00018a40: 3720 2020 2020 2033 2037 2020 2020 2020 7 3 7 │ │ │ │ +00018a50: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00018a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -00018aa0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00018ab0: 3220 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ -00018ac0: 2020 3220 3220 2020 2020 2020 2020 2020 2 2 │ │ │ │ -00018ad0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -00018ae0: 2020 2020 2032 2020 2020 207c 0a7c 3438 2 |.|48 │ │ │ │ -00018af0: 7820 7820 7820 202b 2034 3578 2078 2078 x x x + 45x x x │ │ │ │ -00018b00: 2020 2d20 3437 7820 7820 7820 202d 2034 - 47x x x - 4 │ │ │ │ -00018b10: 3878 2078 2020 2b20 3131 7820 7820 7820 8x x + 11x x x │ │ │ │ -00018b20: 7820 202d 2031 3078 2078 2078 2020 2b20 x - 10x x x + │ │ │ │ -00018b30: 3230 7820 7820 7820 202b 207c 0a7c 2020 20x x x + |.| │ │ │ │ -00018b40: 2030 2035 2037 2020 2020 2020 3120 3520 0 5 7 1 5 │ │ │ │ -00018b50: 3720 2020 2020 2033 2035 2037 2020 2020 7 3 5 7 │ │ │ │ -00018b60: 2020 3520 3720 2020 2020 2030 2031 2032 5 7 0 1 2 │ │ │ │ -00018b70: 2038 2020 2020 2020 3120 3220 3820 2020 8 1 2 8 │ │ │ │ -00018b80: 2020 2031 2032 2038 2020 207c 0a7c 2d2d 1 2 8 |.|-- │ │ │ │ -00018b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018aa0: 2d7c 0a7c 2020 2020 2020 2032 2020 2020 -|.| 2 │ │ │ │ +00018ab0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00018ac0: 2032 2020 2020 2020 3220 3220 2020 2020 2 2 2 │ │ │ │ +00018ad0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00018ae0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00018af0: 207c 0a7c 3438 7820 7820 7820 202b 2034 |.|48x x x + 4 │ │ │ │ +00018b00: 3578 2078 2078 2020 2d20 3437 7820 7820 5x x x - 47x x │ │ │ │ +00018b10: 7820 202d 2034 3878 2078 2020 2b20 3131 x - 48x x + 11 │ │ │ │ +00018b20: 7820 7820 7820 7820 202d 2031 3078 2078 x x x x - 10x x │ │ │ │ +00018b30: 2078 2020 2b20 3230 7820 7820 7820 202b x + 20x x x + │ │ │ │ +00018b40: 207c 0a7c 2020 2030 2035 2037 2020 2020 |.| 0 5 7 │ │ │ │ +00018b50: 2020 3120 3520 3720 2020 2020 2033 2035 1 5 7 3 5 │ │ │ │ +00018b60: 2037 2020 2020 2020 3520 3720 2020 2020 7 5 7 │ │ │ │ +00018b70: 2030 2031 2032 2038 2020 2020 2020 3120 0 1 2 8 1 │ │ │ │ +00018b80: 3220 3820 2020 2020 2031 2032 2038 2020 2 8 1 2 8 │ │ │ │ +00018b90: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00018ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -00018be0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00018bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018c00: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00018bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018be0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00018bf0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00018c00: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ 00018c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018c20: 2020 2020 2020 2020 2020 207c 0a7c 3131 |.|11 │ │ │ │ -00018c30: 7820 7820 7820 7820 202b 2034 3278 2078 x x x x + 42x x │ │ │ │ -00018c40: 2078 2020 2b20 3431 7820 7820 7820 7820 x + 41x x x x │ │ │ │ -00018c50: 202d 2031 3178 2078 2078 2020 2b20 3130 - 11x x x + 10 │ │ │ │ -00018c60: 7820 7820 7820 7820 202d 2032 3078 2078 x x x x - 20x x │ │ │ │ -00018c70: 2078 2078 2020 2d20 2020 207c 0a7c 2020 x x - |.| │ │ │ │ -00018c80: 2030 2031 2033 2038 2020 2020 2020 3120 0 1 3 8 1 │ │ │ │ -00018c90: 3320 3820 2020 2020 2031 2032 2033 2038 3 8 1 2 3 8 │ │ │ │ -00018ca0: 2020 2020 2020 3020 3420 3820 2020 2020 0 4 8 │ │ │ │ -00018cb0: 2030 2031 2034 2038 2020 2020 2020 3020 0 1 4 8 0 │ │ │ │ -00018cc0: 3220 3420 3820 2020 2020 207c 0a7c 2d2d 2 4 8 |.|-- │ │ │ │ -00018cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018c30: 207c 0a7c 3131 7820 7820 7820 7820 202b |.|11x x x x + │ │ │ │ +00018c40: 2034 3278 2078 2078 2020 2b20 3431 7820 42x x x + 41x │ │ │ │ +00018c50: 7820 7820 7820 202d 2031 3178 2078 2078 x x x - 11x x x │ │ │ │ +00018c60: 2020 2b20 3130 7820 7820 7820 7820 202d + 10x x x x - │ │ │ │ +00018c70: 2032 3078 2078 2078 2078 2020 2d20 2020 20x x x x - │ │ │ │ +00018c80: 207c 0a7c 2020 2030 2031 2033 2038 2020 |.| 0 1 3 8 │ │ │ │ +00018c90: 2020 2020 3120 3320 3820 2020 2020 2031 1 3 8 1 │ │ │ │ +00018ca0: 2032 2033 2038 2020 2020 2020 3020 3420 2 3 8 0 4 │ │ │ │ +00018cb0: 3820 2020 2020 2030 2031 2034 2038 2020 8 0 1 4 8 │ │ │ │ +00018cc0: 2020 2020 3020 3220 3420 3820 2020 2020 0 2 4 8 │ │ │ │ +00018cd0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00018ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -00018d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018d20: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ 00018d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018d40: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00018d50: 2020 2020 3220 2020 2020 2020 2032 2020 2 2 │ │ │ │ -00018d60: 2020 2020 2020 2020 2020 207c 0a7c 3236 |.|26 │ │ │ │ -00018d70: 7820 7820 7820 7820 202b 2032 3878 2078 x x x x + 28x x │ │ │ │ -00018d80: 2078 2078 2020 2b20 3478 2078 2078 2078 x x + 4x x x x │ │ │ │ -00018d90: 2020 2b20 3236 7820 7820 7820 202d 2031 + 26x x x - 1 │ │ │ │ -00018da0: 3278 2078 2078 2020 2d20 3131 7820 7820 2x x x - 11x x │ │ │ │ -00018db0: 7820 202d 2020 2020 2020 207c 0a7c 2020 x - |.| │ │ │ │ -00018dc0: 2031 2032 2034 2038 2020 2020 2020 3120 1 2 4 8 1 │ │ │ │ -00018dd0: 3320 3420 3820 2020 2020 3220 3320 3420 3 4 8 2 3 4 │ │ │ │ -00018de0: 3820 2020 2020 2030 2034 2038 2020 2020 8 0 4 8 │ │ │ │ -00018df0: 2020 3320 3420 3820 2020 2020 2030 2035 3 4 8 0 5 │ │ │ │ -00018e00: 2038 2020 2020 2020 2020 207c 0a7c 2d2d 8 |.|-- │ │ │ │ -00018e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018d40: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00018d50: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00018d60: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00018d70: 207c 0a7c 3236 7820 7820 7820 7820 202b |.|26x x x x + │ │ │ │ +00018d80: 2032 3878 2078 2078 2078 2020 2b20 3478 28x x x x + 4x │ │ │ │ +00018d90: 2078 2078 2078 2020 2b20 3236 7820 7820 x x x + 26x x │ │ │ │ +00018da0: 7820 202d 2031 3278 2078 2078 2020 2d20 x - 12x x x - │ │ │ │ +00018db0: 3131 7820 7820 7820 202d 2020 2020 2020 11x x x - │ │ │ │ +00018dc0: 207c 0a7c 2020 2031 2032 2034 2038 2020 |.| 1 2 4 8 │ │ │ │ +00018dd0: 2020 2020 3120 3320 3420 3820 2020 2020 1 3 4 8 │ │ │ │ +00018de0: 3220 3320 3420 3820 2020 2020 2030 2034 2 3 4 8 0 4 │ │ │ │ +00018df0: 2038 2020 2020 2020 3320 3420 3820 2020 8 3 4 8 │ │ │ │ +00018e00: 2020 2030 2035 2038 2020 2020 2020 2020 0 5 8 │ │ │ │ +00018e10: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00018e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -00018e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018e70: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -00018e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018e60: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00018e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018e80: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00018e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018ea0: 2020 2020 2020 2020 2020 207c 0a7c 3432 |.|42 │ │ │ │ -00018eb0: 7820 7820 7820 7820 202d 2034 3178 2078 x x x x - 41x x │ │ │ │ -00018ec0: 2078 2078 2020 2d20 3478 2078 2078 2020 x x - 4x x x │ │ │ │ -00018ed0: 2d20 3238 7820 7820 7820 7820 202b 2031 - 28x x x x + 1 │ │ │ │ -00018ee0: 3278 2078 2078 2078 2020 2b20 3337 7820 2x x x x + 37x │ │ │ │ -00018ef0: 7820 7820 7820 202b 2020 207c 0a7c 2020 x x x + |.| │ │ │ │ -00018f00: 2030 2031 2035 2038 2020 2020 2020 3020 0 1 5 8 0 │ │ │ │ -00018f10: 3220 3520 3820 2020 2020 3220 3520 3820 2 5 8 2 5 8 │ │ │ │ -00018f20: 2020 2020 2030 2034 2035 2038 2020 2020 0 4 5 8 │ │ │ │ -00018f30: 2020 3220 3420 3520 3820 2020 2020 2030 2 4 5 8 0 │ │ │ │ -00018f40: 2032 2036 2038 2020 2020 207c 0a7c 2d2d 2 6 8 |.|-- │ │ │ │ -00018f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018eb0: 207c 0a7c 3432 7820 7820 7820 7820 202d |.|42x x x x - │ │ │ │ +00018ec0: 2034 3178 2078 2078 2078 2020 2d20 3478 41x x x x - 4x │ │ │ │ +00018ed0: 2078 2078 2020 2d20 3238 7820 7820 7820 x x - 28x x x │ │ │ │ +00018ee0: 7820 202b 2031 3278 2078 2078 2078 2020 x + 12x x x x │ │ │ │ +00018ef0: 2b20 3337 7820 7820 7820 7820 202b 2020 + 37x x x x + │ │ │ │ +00018f00: 207c 0a7c 2020 2030 2031 2035 2038 2020 |.| 0 1 5 8 │ │ │ │ +00018f10: 2020 2020 3020 3220 3520 3820 2020 2020 0 2 5 8 │ │ │ │ +00018f20: 3220 3520 3820 2020 2020 2030 2034 2035 2 5 8 0 4 5 │ │ │ │ +00018f30: 2038 2020 2020 2020 3220 3420 3520 3820 8 2 4 5 8 │ │ │ │ +00018f40: 2020 2020 2030 2032 2036 2038 2020 2020 0 2 6 8 │ │ │ │ +00018f50: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00018f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -00018fa0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -00018fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018fa0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00018fb0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00018fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018fe0: 2020 2020 2020 2020 2020 207c 0a7c 3378 |.|3x │ │ │ │ -00018ff0: 2078 2078 2078 2020 2d20 3231 7820 7820 x x x - 21x x │ │ │ │ -00019000: 7820 202d 2031 3478 2078 2078 2078 2020 x - 14x x x x │ │ │ │ -00019010: 2b20 3239 7820 7820 7820 7820 202b 2031 + 29x x x x + 1 │ │ │ │ -00019020: 3178 2078 2078 2078 2020 2b20 3437 7820 1x x x x + 47x │ │ │ │ -00019030: 7820 7820 7820 202d 2020 207c 0a7c 2020 x x x - |.| │ │ │ │ -00019040: 3120 3220 3620 3820 2020 2020 2032 2036 1 2 6 8 2 6 │ │ │ │ -00019050: 2038 2020 2020 2020 3020 3320 3620 3820 8 0 3 6 8 │ │ │ │ -00019060: 2020 2020 2031 2033 2036 2038 2020 2020 1 3 6 8 │ │ │ │ -00019070: 2020 3220 3320 3620 3820 2020 2020 2031 2 3 6 8 1 │ │ │ │ -00019080: 2034 2036 2038 2020 2020 207c 0a7c 2d2d 4 6 8 |.|-- │ │ │ │ -00019090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018ff0: 207c 0a7c 3378 2078 2078 2078 2020 2d20 |.|3x x x x - │ │ │ │ +00019000: 3231 7820 7820 7820 202d 2031 3478 2078 21x x x - 14x x │ │ │ │ +00019010: 2078 2078 2020 2b20 3239 7820 7820 7820 x x + 29x x x │ │ │ │ +00019020: 7820 202b 2031 3178 2078 2078 2078 2020 x + 11x x x x │ │ │ │ +00019030: 2b20 3437 7820 7820 7820 7820 202d 2020 + 47x x x x - │ │ │ │ +00019040: 207c 0a7c 2020 3120 3220 3620 3820 2020 |.| 1 2 6 8 │ │ │ │ +00019050: 2020 2032 2036 2038 2020 2020 2020 3020 2 6 8 0 │ │ │ │ +00019060: 3320 3620 3820 2020 2020 2031 2033 2036 3 6 8 1 3 6 │ │ │ │ +00019070: 2038 2020 2020 2020 3220 3320 3620 3820 8 2 3 6 8 │ │ │ │ +00019080: 2020 2020 2031 2034 2036 2038 2020 2020 1 4 6 8 │ │ │ │ +00019090: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 000190a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000190b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000190c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000190d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -000190e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000190f0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -00019100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000190d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000190e0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +000190f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019100: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00019110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019120: 2020 2020 2020 2020 2020 207c 0a7c 3438 |.|48 │ │ │ │ -00019130: 7820 7820 7820 7820 202d 2032 7820 7820 x x x x - 2x x │ │ │ │ -00019140: 7820 7820 202b 2034 3578 2078 2078 2020 x x + 45x x x │ │ │ │ -00019150: 2b20 3239 7820 7820 7820 7820 202b 2032 + 29x x x x + 2 │ │ │ │ -00019160: 3578 2078 2078 2078 2020 2b20 3333 7820 5x x x x + 33x │ │ │ │ -00019170: 7820 7820 7820 202d 2020 207c 0a7c 2020 x x x - |.| │ │ │ │ -00019180: 2032 2034 2036 2038 2020 2020 2033 2034 2 4 6 8 3 4 │ │ │ │ -00019190: 2036 2038 2020 2020 2020 3420 3620 3820 6 8 4 6 8 │ │ │ │ -000191a0: 2020 2020 2030 2035 2036 2038 2020 2020 0 5 6 8 │ │ │ │ -000191b0: 2020 3120 3520 3620 3820 2020 2020 2034 1 5 6 8 4 │ │ │ │ -000191c0: 2035 2036 2038 2020 2020 207c 0a7c 2d2d 5 6 8 |.|-- │ │ │ │ -000191d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019130: 207c 0a7c 3438 7820 7820 7820 7820 202d |.|48x x x x - │ │ │ │ +00019140: 2032 7820 7820 7820 7820 202b 2034 3578 2x x x x + 45x │ │ │ │ +00019150: 2078 2078 2020 2b20 3239 7820 7820 7820 x x + 29x x x │ │ │ │ +00019160: 7820 202b 2032 3578 2078 2078 2078 2020 x + 25x x x x │ │ │ │ +00019170: 2b20 3333 7820 7820 7820 7820 202d 2020 + 33x x x x - │ │ │ │ +00019180: 207c 0a7c 2020 2032 2034 2036 2038 2020 |.| 2 4 6 8 │ │ │ │ +00019190: 2020 2033 2034 2036 2038 2020 2020 2020 3 4 6 8 │ │ │ │ +000191a0: 3420 3620 3820 2020 2020 2030 2035 2036 4 6 8 0 5 6 │ │ │ │ +000191b0: 2038 2020 2020 2020 3120 3520 3620 3820 8 1 5 6 8 │ │ │ │ +000191c0: 2020 2020 2034 2035 2036 2038 2020 2020 4 5 6 8 │ │ │ │ +000191d0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 000191e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000191f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -00019220: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00019230: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +00019210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019220: 2d7c 0a7c 2020 2032 2020 2020 2020 2020 -|.| 2 │ │ │ │ +00019230: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ 00019240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019260: 2020 2020 2020 2020 2020 207c 0a7c 3337 |.|37 │ │ │ │ -00019270: 7820 7820 7820 202d 2033 7820 7820 7820 x x x - 3x x x │ │ │ │ -00019280: 7820 202d 2034 3778 2078 2078 2020 2b20 x - 47x x x + │ │ │ │ -00019290: 3231 7820 7820 7820 7820 202b 2031 3178 21x x x x + 11x │ │ │ │ -000192a0: 2078 2078 2078 2020 2b20 7820 7820 7820 x x x + x x x │ │ │ │ -000192b0: 7820 202b 2020 2020 2020 207c 0a7c 2020 x + |.| │ │ │ │ -000192c0: 2030 2037 2038 2020 2020 2030 2031 2037 0 7 8 0 1 7 │ │ │ │ -000192d0: 2038 2020 2020 2020 3120 3720 3820 2020 8 1 7 8 │ │ │ │ -000192e0: 2020 2030 2032 2037 2038 2020 2020 2020 0 2 7 8 │ │ │ │ -000192f0: 3020 3320 3720 3820 2020 2032 2033 2037 0 3 7 8 2 3 7 │ │ │ │ -00019300: 2038 2020 2020 2020 2020 207c 0a7c 2d2d 8 |.|-- │ │ │ │ -00019310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019270: 207c 0a7c 3337 7820 7820 7820 202d 2033 |.|37x x x - 3 │ │ │ │ +00019280: 7820 7820 7820 7820 202d 2034 3778 2078 x x x x - 47x x │ │ │ │ +00019290: 2078 2020 2b20 3231 7820 7820 7820 7820 x + 21x x x x │ │ │ │ +000192a0: 202b 2031 3178 2078 2078 2078 2020 2b20 + 11x x x x + │ │ │ │ +000192b0: 7820 7820 7820 7820 202b 2020 2020 2020 x x x x + │ │ │ │ +000192c0: 207c 0a7c 2020 2030 2037 2038 2020 2020 |.| 0 7 8 │ │ │ │ +000192d0: 2030 2031 2037 2038 2020 2020 2020 3120 0 1 7 8 1 │ │ │ │ +000192e0: 3720 3820 2020 2020 2030 2032 2037 2038 7 8 0 2 7 8 │ │ │ │ +000192f0: 2020 2020 2020 3020 3320 3720 3820 2020 0 3 7 8 │ │ │ │ +00019300: 2032 2033 2037 2038 2020 2020 2020 2020 2 3 7 8 │ │ │ │ +00019310: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00019320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -00019360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019360: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ 00019370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000193a0: 2020 2020 2020 2020 2020 207c 0a7c 3438 |.|48 │ │ │ │ -000193b0: 7820 7820 7820 7820 202d 2034 3578 2078 x x x x - 45x x │ │ │ │ -000193c0: 2078 2078 2020 2b20 3437 7820 7820 7820 x x + 47x x x │ │ │ │ -000193d0: 7820 202d 2032 7820 7820 7820 7820 202b x - 2x x x x + │ │ │ │ -000193e0: 2033 3378 2078 2078 2078 2020 2b20 3437 33x x x x + 47 │ │ │ │ -000193f0: 7820 7820 7820 7820 202d 207c 0a7c 2020 x x x x - |.| │ │ │ │ -00019400: 2030 2034 2037 2038 2020 2020 2020 3120 0 4 7 8 1 │ │ │ │ -00019410: 3420 3720 3820 2020 2020 2033 2034 2037 4 7 8 3 4 7 │ │ │ │ -00019420: 2038 2020 2020 2030 2035 2037 2038 2020 8 0 5 7 8 │ │ │ │ -00019430: 2020 2020 3120 3520 3720 3820 2020 2020 1 5 7 8 │ │ │ │ -00019440: 2032 2035 2037 2038 2020 207c 0a7c 2d2d 2 5 7 8 |.|-- │ │ │ │ -00019450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000193a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000193b0: 207c 0a7c 3438 7820 7820 7820 7820 202d |.|48x x x x - │ │ │ │ +000193c0: 2034 3578 2078 2078 2078 2020 2b20 3437 45x x x x + 47 │ │ │ │ +000193d0: 7820 7820 7820 7820 202d 2032 7820 7820 x x x x - 2x x │ │ │ │ +000193e0: 7820 7820 202b 2033 3378 2078 2078 2078 x x + 33x x x x │ │ │ │ +000193f0: 2020 2b20 3437 7820 7820 7820 7820 202d + 47x x x x - │ │ │ │ +00019400: 207c 0a7c 2020 2030 2034 2037 2038 2020 |.| 0 4 7 8 │ │ │ │ +00019410: 2020 2020 3120 3420 3720 3820 2020 2020 1 4 7 8 │ │ │ │ +00019420: 2033 2034 2037 2038 2020 2020 2030 2035 3 4 7 8 0 5 │ │ │ │ +00019430: 2037 2038 2020 2020 2020 3120 3520 3720 7 8 1 5 7 │ │ │ │ +00019440: 3820 2020 2020 2032 2035 2037 2038 2020 8 2 5 7 8 │ │ │ │ +00019450: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00019460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -000194a0: 2020 2020 2020 2020 2020 2032 2032 2020 2 2 │ │ │ │ -000194b0: 2020 2020 2020 2020 3220 2020 2020 2032 2 2 │ │ │ │ -000194c0: 2032 2020 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ -000194d0: 2020 2032 2032 2020 2020 2020 2020 2032 2 2 2 │ │ │ │ -000194e0: 2020 2020 2020 2020 2020 327c 0a7c 7820 2|.|x │ │ │ │ -000194f0: 7820 7820 7820 202b 2037 7820 7820 202d x x x + 7x x - │ │ │ │ -00019500: 2032 3978 2078 2078 2020 2b20 3336 7820 29x x x + 36x │ │ │ │ -00019510: 7820 202d 2031 3178 2078 2078 2020 2b20 x - 11x x x + │ │ │ │ -00019520: 3438 7820 7820 202b 2032 7820 7820 7820 48x x + 2x x x │ │ │ │ -00019530: 202d 2033 3378 2078 2078 207c 0a7c 2034 - 33x x x |.| 4 │ │ │ │ -00019540: 2035 2037 2038 2020 2020 2030 2038 2020 5 7 8 0 8 │ │ │ │ -00019550: 2020 2020 3020 3120 3820 2020 2020 2031 0 1 8 1 │ │ │ │ -00019560: 2038 2020 2020 2020 3020 3220 3820 2020 8 0 2 8 │ │ │ │ -00019570: 2020 2032 2038 2020 2020 2030 2034 2038 2 8 0 4 8 │ │ │ │ -00019580: 2020 2020 2020 3120 3420 387c 0a7c 2d2d 1 4 8|.|-- │ │ │ │ -00019590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000194a0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +000194b0: 2032 2032 2020 2020 2020 2020 2020 3220 2 2 2 │ │ │ │ +000194c0: 2020 2020 2032 2032 2020 2020 2020 2020 2 2 │ │ │ │ +000194d0: 2020 3220 2020 2020 2032 2032 2020 2020 2 2 2 │ │ │ │ +000194e0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000194f0: 327c 0a7c 7820 7820 7820 7820 202b 2037 2|.|x x x x + 7 │ │ │ │ +00019500: 7820 7820 202d 2032 3978 2078 2078 2020 x x - 29x x x │ │ │ │ +00019510: 2b20 3336 7820 7820 202d 2031 3178 2078 + 36x x - 11x x │ │ │ │ +00019520: 2078 2020 2b20 3438 7820 7820 202b 2032 x + 48x x + 2 │ │ │ │ +00019530: 7820 7820 7820 202d 2033 3378 2078 2078 x x x - 33x x x │ │ │ │ +00019540: 207c 0a7c 2034 2035 2037 2038 2020 2020 |.| 4 5 7 8 │ │ │ │ +00019550: 2030 2038 2020 2020 2020 3020 3120 3820 0 8 0 1 8 │ │ │ │ +00019560: 2020 2020 2031 2038 2020 2020 2020 3020 1 8 0 │ │ │ │ +00019570: 3220 3820 2020 2020 2032 2038 2020 2020 2 8 2 8 │ │ │ │ +00019580: 2030 2034 2038 2020 2020 2020 3120 3420 0 4 8 1 4 │ │ │ │ +00019590: 387c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 8|.|------------ │ │ │ │ 000195a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000195b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000195c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000195d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -000195e0: 2020 2020 2020 2032 2020 2020 2020 3220 2 2 │ │ │ │ -000195f0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000195d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000195e0: 2d7c 0a7c 2020 2020 2020 2020 2032 2020 -|.| 2 │ │ │ │ +000195f0: 2020 2020 3220 3220 2020 2020 2020 2020 2 2 │ │ │ │ 00019600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019620: 2020 2020 2020 2020 2020 207c 0a7c 2d20 |.|- │ │ │ │ -00019630: 3437 7820 7820 7820 202d 2034 3878 2078 47x x x - 48x x │ │ │ │ -00019640: 2020 2b20 3438 7820 7820 7820 7820 202d + 48x x x x - │ │ │ │ -00019650: 2034 3878 2078 2078 2078 2020 2d20 3438 48x x x x - 48 │ │ │ │ -00019660: 7820 7820 7820 7820 202b 2034 3878 2078 x x x x + 48x x │ │ │ │ -00019670: 2078 2078 2020 2b20 2020 207c 0a7c 2020 x x + |.| │ │ │ │ -00019680: 2020 2032 2034 2038 2020 2020 2020 3420 2 4 8 4 │ │ │ │ -00019690: 3820 2020 2020 2033 2034 2036 2039 2020 8 3 4 6 9 │ │ │ │ -000196a0: 2020 2020 3220 3520 3620 3920 2020 2020 2 5 6 9 │ │ │ │ -000196b0: 2031 2033 2037 2039 2020 2020 2020 3020 1 3 7 9 0 │ │ │ │ -000196c0: 3520 3720 3920 2020 2020 207c 0a7c 2d2d 5 7 9 |.|-- │ │ │ │ -000196d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019630: 207c 0a7c 2d20 3437 7820 7820 7820 202d |.|- 47x x x - │ │ │ │ +00019640: 2034 3878 2078 2020 2b20 3438 7820 7820 48x x + 48x x │ │ │ │ +00019650: 7820 7820 202d 2034 3878 2078 2078 2078 x x - 48x x x x │ │ │ │ +00019660: 2020 2d20 3438 7820 7820 7820 7820 202b - 48x x x x + │ │ │ │ +00019670: 2034 3878 2078 2078 2078 2020 2b20 2020 48x x x x + │ │ │ │ +00019680: 207c 0a7c 2020 2020 2032 2034 2038 2020 |.| 2 4 8 │ │ │ │ +00019690: 2020 2020 3420 3820 2020 2020 2033 2034 4 8 3 4 │ │ │ │ +000196a0: 2036 2039 2020 2020 2020 3220 3520 3620 6 9 2 5 6 │ │ │ │ +000196b0: 3920 2020 2020 2031 2033 2037 2039 2020 9 1 3 7 9 │ │ │ │ +000196c0: 2020 2020 3020 3520 3720 3920 2020 2020 0 5 7 9 │ │ │ │ +000196d0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 000196e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000196f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 3438 -----------|.|48 │ │ │ │ -00019720: 7820 7820 7820 7820 202d 2034 3878 2078 x x x x - 48x x │ │ │ │ -00019730: 2078 2078 2020 2020 2020 2020 2020 2020 x x │ │ │ │ +00019710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019720: 2d7c 0a7c 3438 7820 7820 7820 7820 202d -|.|48x x x x - │ │ │ │ +00019730: 2034 3878 2078 2078 2078 2020 2020 2020 48x x x x │ │ │ │ 00019740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019760: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00019770: 2031 2032 2038 2039 2020 2020 2020 3020 1 2 8 9 0 │ │ │ │ -00019780: 3420 3820 3920 2020 2020 2020 2020 2020 4 8 9 │ │ │ │ +00019760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019770: 207c 0a7c 2020 2031 2032 2038 2039 2020 |.| 1 2 8 9 │ │ │ │ +00019780: 2020 2020 3020 3420 3820 3920 2020 2020 0 4 8 9 │ │ │ │ 00019790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000197a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000197b0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -000197c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000197b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000197c0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 000197d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000197e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000197f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -00019810: 203a 2074 696d 6520 7073 6920 3d20 6170 : time psi = ap │ │ │ │ -00019820: 7072 6f78 696d 6174 6549 6e76 6572 7365 proximateInverse │ │ │ │ -00019830: 4d61 7020 7068 6920 2020 2020 2020 2020 Map phi │ │ │ │ +00019800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019810: 2d2b 0a7c 6933 203a 2074 696d 6520 7073 -+.|i3 : time ps │ │ │ │ +00019820: 6920 3d20 6170 7072 6f78 696d 6174 6549 i = approximateI │ │ │ │ +00019830: 6e76 6572 7365 4d61 7020 7068 6920 2020 nverseMap phi │ │ │ │ 00019840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019850: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00019860: 2d20 7573 6564 2030 2e32 3138 3636 3773 - used 0.218667s │ │ │ │ -00019870: 2028 6370 7529 3b20 302e 3136 3930 3535 (cpu); 0.169055 │ │ │ │ -00019880: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -00019890: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ -000198a0: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ -000198b0: 2061 7070 726f 7869 6d61 7465 496e 7665 approximateInve │ │ │ │ -000198c0: 7273 654d 6170 3a20 7374 6570 2031 206f rseMap: step 1 o │ │ │ │ -000198d0: 6620 3130 2020 2020 2020 2020 2020 2020 f 10 │ │ │ │ +00019850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019860: 207c 0a7c 202d 2d20 7573 6564 2030 2e33 |.| -- used 0.3 │ │ │ │ +00019870: 3732 3331 3273 2028 6370 7529 3b20 302e 72312s (cpu); 0. │ │ │ │ +00019880: 3235 3439 3238 7320 2874 6872 6561 6429 254928s (thread) │ │ │ │ +00019890: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +000198a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000198b0: 207c 0a7c 2d2d 2061 7070 726f 7869 6d61 |.|-- approxima │ │ │ │ +000198c0: 7465 496e 7665 7273 654d 6170 3a20 7374 teInverseMap: st │ │ │ │ +000198d0: 6570 2031 206f 6620 3130 2020 2020 2020 ep 1 of 10 │ │ │ │ 000198e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000198f0: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ -00019900: 2061 7070 726f 7869 6d61 7465 496e 7665 approximateInve │ │ │ │ -00019910: 7273 654d 6170 3a20 7374 6570 2032 206f rseMap: step 2 o │ │ │ │ -00019920: 6620 3130 2020 2020 2020 2020 2020 2020 f 10 │ │ │ │ +000198f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019900: 207c 0a7c 2d2d 2061 7070 726f 7869 6d61 |.|-- approxima │ │ │ │ +00019910: 7465 496e 7665 7273 654d 6170 3a20 7374 teInverseMap: st │ │ │ │ +00019920: 6570 2032 206f 6620 3130 2020 2020 2020 ep 2 of 10 │ │ │ │ 00019930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019940: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ -00019950: 2061 7070 726f 7869 6d61 7465 496e 7665 approximateInve │ │ │ │ -00019960: 7273 654d 6170 3a20 7374 6570 2033 206f rseMap: step 3 o │ │ │ │ -00019970: 6620 3130 2020 2020 2020 2020 2020 2020 f 10 │ │ │ │ +00019940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019950: 207c 0a7c 2d2d 2061 7070 726f 7869 6d61 |.|-- approxima │ │ │ │ +00019960: 7465 496e 7665 7273 654d 6170 3a20 7374 teInverseMap: st │ │ │ │ +00019970: 6570 2033 206f 6620 3130 2020 2020 2020 ep 3 of 10 │ │ │ │ 00019980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019990: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ -000199a0: 2061 7070 726f 7869 6d61 7465 496e 7665 approximateInve │ │ │ │ -000199b0: 7273 654d 6170 3a20 7374 6570 2034 206f rseMap: step 4 o │ │ │ │ -000199c0: 6620 3130 2020 2020 2020 2020 2020 2020 f 10 │ │ │ │ +00019990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000199a0: 207c 0a7c 2d2d 2061 7070 726f 7869 6d61 |.|-- approxima │ │ │ │ +000199b0: 7465 496e 7665 7273 654d 6170 3a20 7374 teInverseMap: st │ │ │ │ +000199c0: 6570 2034 206f 6620 3130 2020 2020 2020 ep 4 of 10 │ │ │ │ 000199d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000199e0: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ -000199f0: 2061 7070 726f 7869 6d61 7465 496e 7665 approximateInve │ │ │ │ -00019a00: 7273 654d 6170 3a20 7374 6570 2035 206f rseMap: step 5 o │ │ │ │ -00019a10: 6620 3130 2020 2020 2020 2020 2020 2020 f 10 │ │ │ │ +000199e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000199f0: 207c 0a7c 2d2d 2061 7070 726f 7869 6d61 |.|-- approxima │ │ │ │ +00019a00: 7465 496e 7665 7273 654d 6170 3a20 7374 teInverseMap: st │ │ │ │ +00019a10: 6570 2035 206f 6620 3130 2020 2020 2020 ep 5 of 10 │ │ │ │ 00019a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019a30: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ -00019a40: 2061 7070 726f 7869 6d61 7465 496e 7665 approximateInve │ │ │ │ -00019a50: 7273 654d 6170 3a20 7374 6570 2036 206f rseMap: step 6 o │ │ │ │ -00019a60: 6620 3130 2020 2020 2020 2020 2020 2020 f 10 │ │ │ │ +00019a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019a40: 207c 0a7c 2d2d 2061 7070 726f 7869 6d61 |.|-- approxima │ │ │ │ +00019a50: 7465 496e 7665 7273 654d 6170 3a20 7374 teInverseMap: st │ │ │ │ +00019a60: 6570 2036 206f 6620 3130 2020 2020 2020 ep 6 of 10 │ │ │ │ 00019a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019a80: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ -00019a90: 2061 7070 726f 7869 6d61 7465 496e 7665 approximateInve │ │ │ │ -00019aa0: 7273 654d 6170 3a20 7374 6570 2037 206f rseMap: step 7 o │ │ │ │ -00019ab0: 6620 3130 2020 2020 2020 2020 2020 2020 f 10 │ │ │ │ +00019a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019a90: 207c 0a7c 2d2d 2061 7070 726f 7869 6d61 |.|-- approxima │ │ │ │ +00019aa0: 7465 496e 7665 7273 654d 6170 3a20 7374 teInverseMap: st │ │ │ │ +00019ab0: 6570 2037 206f 6620 3130 2020 2020 2020 ep 7 of 10 │ │ │ │ 00019ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019ad0: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ -00019ae0: 2061 7070 726f 7869 6d61 7465 496e 7665 approximateInve │ │ │ │ -00019af0: 7273 654d 6170 3a20 7374 6570 2038 206f rseMap: step 8 o │ │ │ │ -00019b00: 6620 3130 2020 2020 2020 2020 2020 2020 f 10 │ │ │ │ +00019ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019ae0: 207c 0a7c 2d2d 2061 7070 726f 7869 6d61 |.|-- approxima │ │ │ │ +00019af0: 7465 496e 7665 7273 654d 6170 3a20 7374 teInverseMap: st │ │ │ │ +00019b00: 6570 2038 206f 6620 3130 2020 2020 2020 ep 8 of 10 │ │ │ │ 00019b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019b20: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ -00019b30: 2061 7070 726f 7869 6d61 7465 496e 7665 approximateInve │ │ │ │ -00019b40: 7273 654d 6170 3a20 7374 6570 2039 206f rseMap: step 9 o │ │ │ │ -00019b50: 6620 3130 2020 2020 2020 2020 2020 2020 f 10 │ │ │ │ +00019b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019b30: 207c 0a7c 2d2d 2061 7070 726f 7869 6d61 |.|-- approxima │ │ │ │ +00019b40: 7465 496e 7665 7273 654d 6170 3a20 7374 teInverseMap: st │ │ │ │ +00019b50: 6570 2039 206f 6620 3130 2020 2020 2020 ep 9 of 10 │ │ │ │ 00019b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019b70: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ -00019b80: 2061 7070 726f 7869 6d61 7465 496e 7665 approximateInve │ │ │ │ -00019b90: 7273 654d 6170 3a20 7374 6570 2031 3020 rseMap: step 10 │ │ │ │ -00019ba0: 6f66 2031 3020 2020 2020 2020 2020 2020 of 10 │ │ │ │ +00019b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019b80: 207c 0a7c 2d2d 2061 7070 726f 7869 6d61 |.|-- approxima │ │ │ │ +00019b90: 7465 496e 7665 7273 654d 6170 3a20 7374 teInverseMap: st │ │ │ │ +00019ba0: 6570 2031 3020 6f66 2031 3020 2020 2020 ep 10 of 10 │ │ │ │ 00019bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019bc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00019bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019bd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00019be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019c10: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ -00019c20: 203d 202d 2d20 7261 7469 6f6e 616c 206d = -- rational m │ │ │ │ -00019c30: 6170 202d 2d20 2020 2020 2020 2020 2020 ap -- │ │ │ │ +00019c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019c20: 207c 0a7c 6f33 203d 202d 2d20 7261 7469 |.|o3 = -- rati │ │ │ │ +00019c30: 6f6e 616c 206d 6170 202d 2d20 2020 2020 onal map -- │ │ │ │ 00019c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019c60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00019c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019c80: 5a5a 2020 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +00019c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019c70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00019c80: 2020 2020 2020 5a5a 2020 2020 2020 2020 ZZ │ │ │ │ 00019c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019cb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00019cc0: 2020 2073 6f75 7263 653a 2050 726f 6a28 source: Proj( │ │ │ │ -00019cd0: 2d2d 5b74 202c 2074 202c 2074 202c 2074 --[t , t , t , t │ │ │ │ -00019ce0: 202c 2074 202c 2074 202c 2074 202c 2074 , t , t , t , t │ │ │ │ -00019cf0: 202c 2074 205d 2920 2020 2020 2020 2020 , t ]) │ │ │ │ -00019d00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00019d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019d20: 3937 2020 3020 2020 3120 2020 3220 2020 97 0 1 2 │ │ │ │ -00019d30: 3320 2020 3420 2020 3520 2020 3620 2020 3 4 5 6 │ │ │ │ -00019d40: 3720 2020 3820 2020 2020 2020 2020 2020 7 8 │ │ │ │ -00019d50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00019d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019d70: 2020 2020 2020 2020 2020 2020 2020 5a5a ZZ │ │ │ │ -00019d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019cc0: 207c 0a7c 2020 2020 2073 6f75 7263 653a |.| source: │ │ │ │ +00019cd0: 2050 726f 6a28 2d2d 5b74 202c 2074 202c Proj(--[t , t , │ │ │ │ +00019ce0: 2074 202c 2074 202c 2074 202c 2074 202c t , t , t , t , │ │ │ │ +00019cf0: 2074 202c 2074 202c 2074 205d 2920 2020 t , t , t ]) │ │ │ │ +00019d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019d10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00019d20: 2020 2020 2020 3937 2020 3020 2020 3120 97 0 1 │ │ │ │ +00019d30: 2020 3220 2020 3320 2020 3420 2020 3520 2 3 4 5 │ │ │ │ +00019d40: 2020 3620 2020 3720 2020 3820 2020 2020 6 7 8 │ │ │ │ +00019d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019d60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00019d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019d80: 2020 2020 5a5a 2020 2020 2020 2020 2020 ZZ │ │ │ │ 00019d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019da0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00019db0: 2020 2074 6172 6765 743a 2073 7562 7661 target: subva │ │ │ │ -00019dc0: 7269 6574 7920 6f66 2050 726f 6a28 2d2d riety of Proj(-- │ │ │ │ -00019dd0: 5b78 202c 2078 202c 2078 202c 2078 202c [x , x , x , x , │ │ │ │ -00019de0: 2078 202c 2078 202c 2078 202c 2078 202c x , x , x , x , │ │ │ │ -00019df0: 2078 202c 2078 205d 2920 207c 0a7c 2020 x , x ]) |.| │ │ │ │ -00019e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019e10: 2020 2020 2020 2020 2020 2020 2020 3937 97 │ │ │ │ -00019e20: 2020 3020 2020 3120 2020 3220 2020 3320 0 1 2 3 │ │ │ │ -00019e30: 2020 3420 2020 3520 2020 3620 2020 3720 4 5 6 7 │ │ │ │ -00019e40: 2020 3820 2020 3920 2020 207c 0a7c 2020 8 9 |.| │ │ │ │ -00019e50: 2020 2020 2020 2020 2020 207b 2020 2020 { │ │ │ │ -00019e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019db0: 207c 0a7c 2020 2020 2074 6172 6765 743a |.| target: │ │ │ │ +00019dc0: 2073 7562 7661 7269 6574 7920 6f66 2050 subvariety of P │ │ │ │ +00019dd0: 726f 6a28 2d2d 5b78 202c 2078 202c 2078 roj(--[x , x , x │ │ │ │ +00019de0: 202c 2078 202c 2078 202c 2078 202c 2078 , x , x , x , x │ │ │ │ +00019df0: 202c 2078 202c 2078 202c 2078 205d 2920 , x , x , x ]) │ │ │ │ +00019e00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00019e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019e20: 2020 2020 3937 2020 3020 2020 3120 2020 97 0 1 │ │ │ │ +00019e30: 3220 2020 3320 2020 3420 2020 3520 2020 2 3 4 5 │ │ │ │ +00019e40: 3620 2020 3720 2020 3820 2020 3920 2020 6 7 8 9 │ │ │ │ +00019e50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00019e60: 207b 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ 00019e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019e90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00019ea0: 2020 2020 2020 2020 2020 2020 2032 2032 2 2 │ │ │ │ -00019eb0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00019ec0: 2032 2032 2020 2020 2020 2020 2020 2020 2 2 │ │ │ │ +00019e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019ea0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00019eb0: 2020 2032 2032 2020 2020 2020 3220 2020 2 2 2 │ │ │ │ +00019ec0: 2020 2020 2020 2032 2032 2020 2020 2020 2 2 │ │ │ │ 00019ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019ee0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00019ef0: 2020 2020 2020 2020 2020 2020 7820 7820 x x │ │ │ │ -00019f00: 202b 2031 3478 2078 2078 2020 2b20 3236 + 14x x x + 26 │ │ │ │ -00019f10: 7820 7820 202d 2032 7820 7820 7820 7820 x x - 2x x x x │ │ │ │ -00019f20: 202d 2031 3478 2078 2078 2078 2020 2b20 - 14x x x x + │ │ │ │ -00019f30: 3131 7820 7820 7820 7820 207c 0a7c 2020 11x x x x |.| │ │ │ │ -00019f40: 2020 2020 2020 2020 2020 2020 2031 2032 1 2 │ │ │ │ -00019f50: 2020 2020 2020 3120 3220 3320 2020 2020 1 2 3 │ │ │ │ -00019f60: 2031 2033 2020 2020 2030 2031 2032 2034 1 3 0 1 2 4 │ │ │ │ -00019f70: 2020 2020 2020 3020 3120 3320 3420 2020 0 1 3 4 │ │ │ │ -00019f80: 2020 2031 2032 2033 2034 207c 0a7c 2020 1 2 3 4 |.| │ │ │ │ -00019f90: 2020 2020 2020 2020 2020 207d 2020 2020 } │ │ │ │ -00019fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019ef0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00019f00: 2020 7820 7820 202b 2031 3478 2078 2078 x x + 14x x x │ │ │ │ +00019f10: 2020 2b20 3236 7820 7820 202d 2032 7820 + 26x x - 2x │ │ │ │ +00019f20: 7820 7820 7820 202d 2031 3478 2078 2078 x x x - 14x x x │ │ │ │ +00019f30: 2078 2020 2b20 3131 7820 7820 7820 7820 x + 11x x x x │ │ │ │ +00019f40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00019f50: 2020 2031 2032 2020 2020 2020 3120 3220 1 2 1 2 │ │ │ │ +00019f60: 3320 2020 2020 2031 2033 2020 2020 2030 3 1 3 0 │ │ │ │ +00019f70: 2031 2032 2034 2020 2020 2020 3020 3120 1 2 4 0 1 │ │ │ │ +00019f80: 3320 3420 2020 2020 2031 2032 2033 2034 3 4 1 2 3 4 │ │ │ │ +00019f90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00019fa0: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 00019fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019fd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00019fe0: 2020 2064 6566 696e 696e 6720 666f 726d defining form │ │ │ │ -00019ff0: 733a 207b 2020 2020 2020 2020 2020 2020 s: { │ │ │ │ +00019fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019fe0: 207c 0a7c 2020 2020 2064 6566 696e 696e |.| definin │ │ │ │ +00019ff0: 6720 666f 726d 733a 207b 2020 2020 2020 g forms: { │ │ │ │ 0001a000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a020: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a040: 2020 2020 7420 7420 202d 2074 2074 202c t t - t t , │ │ │ │ -0001a050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a030: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a040: 2020 2020 2020 2020 2020 7420 7420 202d t t - │ │ │ │ +0001a050: 2074 2074 202c 2020 2020 2020 2020 2020 t t , │ │ │ │ 0001a060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a070: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a090: 2020 2020 2035 2037 2020 2020 3420 3820 5 7 4 8 │ │ │ │ -0001a0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a080: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a090: 2020 2020 2020 2020 2020 2035 2037 2020 5 7 │ │ │ │ +0001a0a0: 2020 3420 3820 2020 2020 2020 2020 2020 4 8 │ │ │ │ 0001a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a0c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a0d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a110: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a130: 2020 2020 7420 7420 202d 2074 2074 202c t t - t t , │ │ │ │ -0001a140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a120: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a130: 2020 2020 2020 2020 2020 7420 7420 202d t t - │ │ │ │ +0001a140: 2074 2074 202c 2020 2020 2020 2020 2020 t t , │ │ │ │ 0001a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a160: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a180: 2020 2020 2032 2037 2020 2020 3120 3820 2 7 1 8 │ │ │ │ -0001a190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a170: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a180: 2020 2020 2020 2020 2020 2032 2037 2020 2 7 │ │ │ │ +0001a190: 2020 3120 3820 2020 2020 2020 2020 2020 1 8 │ │ │ │ 0001a1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a1b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a1c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a200: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a220: 2020 2020 7420 7420 202d 2074 2074 202c t t - t t , │ │ │ │ -0001a230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a210: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a220: 2020 2020 2020 2020 2020 7420 7420 202d t t - │ │ │ │ +0001a230: 2074 2074 202c 2020 2020 2020 2020 2020 t t , │ │ │ │ 0001a240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a250: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a270: 2020 2020 2035 2036 2020 2020 3320 3820 5 6 3 8 │ │ │ │ -0001a280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a260: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a270: 2020 2020 2020 2020 2020 2035 2036 2020 5 6 │ │ │ │ +0001a280: 2020 3320 3820 2020 2020 2020 2020 2020 3 8 │ │ │ │ 0001a290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a2a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a2b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a2f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a310: 2020 2020 7420 7420 202d 2074 2074 202c t t - t t , │ │ │ │ -0001a320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a300: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a310: 2020 2020 2020 2020 2020 7420 7420 202d t t - │ │ │ │ +0001a320: 2074 2074 202c 2020 2020 2020 2020 2020 t t , │ │ │ │ 0001a330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a340: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a360: 2020 2020 2034 2036 2020 2020 3320 3720 4 6 3 7 │ │ │ │ -0001a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a350: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a360: 2020 2020 2020 2020 2020 2034 2036 2020 4 6 │ │ │ │ +0001a370: 2020 3320 3720 2020 2020 2020 2020 2020 3 7 │ │ │ │ 0001a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a390: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a3a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a3e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a400: 2020 2020 7420 7420 202d 2074 2074 202c t t - t t , │ │ │ │ -0001a410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a3f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a400: 2020 2020 2020 2020 2020 7420 7420 202d t t - │ │ │ │ +0001a410: 2074 2074 202c 2020 2020 2020 2020 2020 t t , │ │ │ │ 0001a420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a430: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a450: 2020 2020 2032 2036 2020 2020 3020 3820 2 6 0 8 │ │ │ │ -0001a460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a440: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a450: 2020 2020 2020 2020 2020 2032 2036 2020 2 6 │ │ │ │ +0001a460: 2020 3020 3820 2020 2020 2020 2020 2020 0 8 │ │ │ │ 0001a470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a480: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a490: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a4d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a4f0: 2020 2020 7420 7420 202d 2074 2074 202c t t - t t , │ │ │ │ -0001a500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a4e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a4f0: 2020 2020 2020 2020 2020 7420 7420 202d t t - │ │ │ │ +0001a500: 2074 2074 202c 2020 2020 2020 2020 2020 t t , │ │ │ │ 0001a510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a520: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a540: 2020 2020 2031 2036 2020 2020 3020 3720 1 6 0 7 │ │ │ │ -0001a550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a530: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a540: 2020 2020 2020 2020 2020 2031 2036 2020 1 6 │ │ │ │ +0001a550: 2020 3020 3720 2020 2020 2020 2020 2020 0 7 │ │ │ │ 0001a560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a570: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a580: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a5c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a5e0: 2020 2020 7420 7420 202d 2074 2074 202c t t - t t , │ │ │ │ -0001a5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a5d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a5e0: 2020 2020 2020 2020 2020 7420 7420 202d t t - │ │ │ │ +0001a5f0: 2074 2074 202c 2020 2020 2020 2020 2020 t t , │ │ │ │ 0001a600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a610: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a630: 2020 2020 2032 2034 2020 2020 3120 3520 2 4 1 5 │ │ │ │ -0001a640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a620: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a630: 2020 2020 2020 2020 2020 2032 2034 2020 2 4 │ │ │ │ +0001a640: 2020 3120 3520 2020 2020 2020 2020 2020 1 5 │ │ │ │ 0001a650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a660: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a670: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a6b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a6d0: 2020 2020 7420 7420 202d 2074 2074 202c t t - t t , │ │ │ │ -0001a6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a6c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a6d0: 2020 2020 2020 2020 2020 7420 7420 202d t t - │ │ │ │ +0001a6e0: 2074 2074 202c 2020 2020 2020 2020 2020 t t , │ │ │ │ 0001a6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a700: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a720: 2020 2020 2032 2033 2020 2020 3020 3520 2 3 0 5 │ │ │ │ -0001a730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a710: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a720: 2020 2020 2020 2020 2020 2032 2033 2020 2 3 │ │ │ │ +0001a730: 2020 3020 3520 2020 2020 2020 2020 2020 0 5 │ │ │ │ 0001a740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a750: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a760: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a7a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a7c0: 2020 2020 7420 7420 202d 2074 2074 202c t t - t t , │ │ │ │ -0001a7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a7b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a7c0: 2020 2020 2020 2020 2020 7420 7420 202d t t - │ │ │ │ +0001a7d0: 2074 2074 202c 2020 2020 2020 2020 2020 t t , │ │ │ │ 0001a7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a7f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a810: 2020 2020 2031 2033 2020 2020 3020 3420 1 3 0 4 │ │ │ │ -0001a820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a800: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a810: 2020 2020 2020 2020 2020 2031 2033 2020 1 3 │ │ │ │ +0001a820: 2020 3020 3420 2020 2020 2020 2020 2020 0 4 │ │ │ │ 0001a830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a840: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a850: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a890: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a8b0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -0001a8c0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -0001a8d0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -0001a8e0: 2020 2020 2020 2020 2032 207c 0a7c 2020 2 |.| │ │ │ │ -0001a8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a900: 2020 2020 7420 202b 2033 3174 2074 2020 t + 31t t │ │ │ │ -0001a910: 2d20 3235 7420 202b 2037 7420 7420 202b - 25t + 7t t + │ │ │ │ -0001a920: 2033 7420 7420 202b 2032 3174 2020 2b20 3t t + 21t + │ │ │ │ -0001a930: 3374 2074 2020 2d20 7420 207c 0a7c 2020 3t t - t |.| │ │ │ │ -0001a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a950: 2020 2020 2030 2020 2020 2020 3020 3120 0 0 1 │ │ │ │ -0001a960: 2020 2020 2031 2020 2020 2030 2032 2020 1 0 2 │ │ │ │ -0001a970: 2020 2031 2032 2020 2020 2020 3220 2020 1 2 2 │ │ │ │ -0001a980: 2020 3020 3320 2020 2033 207c 0a7c 2020 0 3 3 |.| │ │ │ │ -0001a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a9a0: 2020 207d 2020 2020 2020 2020 2020 2020 } │ │ │ │ +0001a890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a8a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a8b0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0001a8c0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0001a8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a8e0: 2020 3220 2020 2020 2020 2020 2020 2032 2 2 │ │ │ │ +0001a8f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a900: 2020 2020 2020 2020 2020 7420 202b 2033 t + 3 │ │ │ │ +0001a910: 3174 2074 2020 2d20 3235 7420 202b 2037 1t t - 25t + 7 │ │ │ │ +0001a920: 7420 7420 202b 2033 7420 7420 202b 2032 t t + 3t t + 2 │ │ │ │ +0001a930: 3174 2020 2b20 3374 2074 2020 2d20 7420 1t + 3t t - t │ │ │ │ +0001a940: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a950: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +0001a960: 2020 3020 3120 2020 2020 2031 2020 2020 0 1 1 │ │ │ │ +0001a970: 2030 2032 2020 2020 2031 2032 2020 2020 0 2 1 2 │ │ │ │ +0001a980: 2020 3220 2020 2020 3020 3320 2020 2033 2 0 3 3 │ │ │ │ +0001a990: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a9a0: 2020 2020 2020 2020 207d 2020 2020 2020 } │ │ │ │ 0001a9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a9d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001a9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a9e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa20: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ -0001aa30: 203a 2052 6174 696f 6e61 6c4d 6170 2028 : RationalMap ( │ │ │ │ -0001aa40: 7175 6164 7261 7469 6320 7261 7469 6f6e quadratic ration │ │ │ │ -0001aa50: 616c 206d 6170 2066 726f 6d20 5050 5e38 al map from PP^8 │ │ │ │ -0001aa60: 2074 6f20 6879 7065 7273 7572 6661 6365 to hypersurface │ │ │ │ -0001aa70: 2069 6e20 5050 5e39 2920 207c 0a7c 2d2d in PP^9) |.|-- │ │ │ │ -0001aa80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001aa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aa30: 207c 0a7c 6f33 203a 2052 6174 696f 6e61 |.|o3 : Rationa │ │ │ │ +0001aa40: 6c4d 6170 2028 7175 6164 7261 7469 6320 lMap (quadratic │ │ │ │ +0001aa50: 7261 7469 6f6e 616c 206d 6170 2066 726f rational map fro │ │ │ │ +0001aa60: 6d20 5050 5e38 2074 6f20 6879 7065 7273 m PP^8 to hypers │ │ │ │ +0001aa70: 7572 6661 6365 2069 6e20 5050 5e39 2920 urface in PP^9) │ │ │ │ +0001aa80: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 0001aa90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001aaa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001aab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001aac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 6465 -----------|.|de │ │ │ │ -0001aad0: 6669 6e65 6420 6279 2020 2020 2020 2020 fined by │ │ │ │ +0001aac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001aad0: 2d7c 0a7c 6465 6669 6e65 6420 6279 2020 -|.|defined by │ │ │ │ 0001aae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001ab20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ab10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ab20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001ab30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ab40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ab50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001ab70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ab60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ab70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001ab80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ab90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001abb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001abc0: 2020 2020 2020 3220 2020 2020 2032 2032 2 2 2 │ │ │ │ -0001abd0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -0001abe0: 2032 2032 2020 2020 2020 2020 2020 2020 2 2 │ │ │ │ -0001abf0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -0001ac00: 2020 2020 2020 2020 2020 207c 0a7c 202b |.| + │ │ │ │ -0001ac10: 2031 3978 2078 2078 2020 2b20 7820 7820 19x x x + x x │ │ │ │ -0001ac20: 202d 2031 3178 2078 2078 2020 2b20 3338 - 11x x x + 38 │ │ │ │ -0001ac30: 7820 7820 202d 2031 3478 2078 2078 2078 x x - 14x x x x │ │ │ │ -0001ac40: 2020 2d20 3131 7820 7820 7820 202b 2034 - 11x x x + 4 │ │ │ │ -0001ac50: 3578 2078 2078 2078 2020 2d7c 0a7c 2020 5x x x x -|.| │ │ │ │ -0001ac60: 2020 2020 3120 3320 3420 2020 2030 2034 1 3 4 0 4 │ │ │ │ -0001ac70: 2020 2020 2020 3020 3320 3420 2020 2020 0 3 4 │ │ │ │ -0001ac80: 2033 2034 2020 2020 2020 3020 3120 3220 3 4 0 1 2 │ │ │ │ -0001ac90: 3520 2020 2020 2031 2032 2035 2020 2020 5 1 2 5 │ │ │ │ -0001aca0: 2020 3020 3120 3320 3520 207c 0a7c 2020 0 1 3 5 |.| │ │ │ │ -0001acb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001abb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001abc0: 207c 0a7c 2020 2020 2020 2020 3220 2020 |.| 2 │ │ │ │ +0001abd0: 2020 2032 2032 2020 2020 2020 2020 2020 2 2 │ │ │ │ +0001abe0: 3220 2020 2020 2032 2032 2020 2020 2020 2 2 2 │ │ │ │ +0001abf0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +0001ac00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ac10: 207c 0a7c 202b 2031 3978 2078 2078 2020 |.| + 19x x x │ │ │ │ +0001ac20: 2b20 7820 7820 202d 2031 3178 2078 2078 + x x - 11x x x │ │ │ │ +0001ac30: 2020 2b20 3338 7820 7820 202d 2031 3478 + 38x x - 14x │ │ │ │ +0001ac40: 2078 2078 2078 2020 2d20 3131 7820 7820 x x x - 11x x │ │ │ │ +0001ac50: 7820 202b 2034 3578 2078 2078 2078 2020 x + 45x x x x │ │ │ │ +0001ac60: 2d7c 0a7c 2020 2020 2020 3120 3320 3420 -|.| 1 3 4 │ │ │ │ +0001ac70: 2020 2030 2034 2020 2020 2020 3020 3320 0 4 0 3 │ │ │ │ +0001ac80: 3420 2020 2020 2033 2034 2020 2020 2020 4 3 4 │ │ │ │ +0001ac90: 3020 3120 3220 3520 2020 2020 2031 2032 0 1 2 5 1 2 │ │ │ │ +0001aca0: 2035 2020 2020 2020 3020 3120 3320 3520 5 0 1 3 5 │ │ │ │ +0001acb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001acc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001acd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ace0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001acf0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001ad00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001acf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ad00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001ad10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ad20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ad30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ad40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001ad50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ad40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ad50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001ad60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ad70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ad80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ad90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001ada0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ad90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ada0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001adb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001adc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ade0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001adf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001adf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001ae00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ae10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ae20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ae40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001ae50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001ae90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ae90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001aea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aed0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001aee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aee0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001aef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001af00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001af10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001af20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001af30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001af20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001af30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001af40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001af50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001af60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001af70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001af80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001af70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001af80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001af90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001afa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001afb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001afc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001afd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001afc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001afd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b010: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b020: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b060: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b070: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b0b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b0c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b100: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b110: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b150: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b160: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b1a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b1b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b1f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b200: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b240: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b250: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b290: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b2a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b2e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b2f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b330: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b340: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b380: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b390: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b3d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b3e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b420: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b430: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b470: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b480: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b4c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b4d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b510: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b520: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b560: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b570: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b5b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b5d0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -0001b5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b5c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001b5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b5e0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 0001b5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b600: 2020 2020 2020 2020 2020 207c 0a7c 202b |.| + │ │ │ │ -0001b610: 2034 7420 7420 202b 2033 3974 2074 2020 4t t + 39t t │ │ │ │ -0001b620: 2d20 3232 7420 7420 202b 2031 3474 2020 - 22t t + 14t │ │ │ │ -0001b630: 2d20 7420 7420 202d 2036 7420 7420 202d - t t - 6t t - │ │ │ │ -0001b640: 2034 3174 2074 2020 2b20 3432 7420 7420 41t t + 42t t │ │ │ │ -0001b650: 202b 2032 3374 2074 2020 2b7c 0a7c 2020 + 23t t +|.| │ │ │ │ -0001b660: 2020 2030 2034 2020 2020 2020 3120 3420 0 4 1 4 │ │ │ │ -0001b670: 2020 2020 2033 2034 2020 2020 2020 3420 3 4 4 │ │ │ │ -0001b680: 2020 2030 2035 2020 2020 2031 2035 2020 0 5 1 5 │ │ │ │ -0001b690: 2020 2020 3220 3520 2020 2020 2033 2035 2 5 3 5 │ │ │ │ -0001b6a0: 2020 2020 2020 3420 3520 207c 0a7c 2d2d 4 5 |.|-- │ │ │ │ -0001b6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b610: 207c 0a7c 202b 2034 7420 7420 202b 2033 |.| + 4t t + 3 │ │ │ │ +0001b620: 3974 2074 2020 2d20 3232 7420 7420 202b 9t t - 22t t + │ │ │ │ +0001b630: 2031 3474 2020 2d20 7420 7420 202d 2036 14t - t t - 6 │ │ │ │ +0001b640: 7420 7420 202d 2034 3174 2074 2020 2b20 t t - 41t t + │ │ │ │ +0001b650: 3432 7420 7420 202b 2032 3374 2074 2020 42t t + 23t t │ │ │ │ +0001b660: 2b7c 0a7c 2020 2020 2030 2034 2020 2020 +|.| 0 4 │ │ │ │ +0001b670: 2020 3120 3420 2020 2020 2033 2034 2020 1 4 3 4 │ │ │ │ +0001b680: 2020 2020 3420 2020 2030 2035 2020 2020 4 0 5 │ │ │ │ +0001b690: 2031 2035 2020 2020 2020 3220 3520 2020 1 5 2 5 │ │ │ │ +0001b6a0: 2020 2033 2035 2020 2020 2020 3420 3520 3 5 4 5 │ │ │ │ +0001b6b0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 0001b6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -0001b700: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -0001b710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b700: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0001b710: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 0001b720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b740: 3220 3220 2020 2020 2020 207c 0a7c 3139 2 2 |.|19 │ │ │ │ -0001b750: 7820 7820 7820 7820 202b 2031 3478 2078 x x x x + 14x x │ │ │ │ -0001b760: 2078 2020 2b20 3131 7820 7820 7820 7820 x + 11x x x x │ │ │ │ -0001b770: 202d 2031 3978 2078 2078 2078 2020 2b20 - 19x x x x + │ │ │ │ -0001b780: 3231 7820 7820 7820 7820 202b 2032 3678 21x x x x + 26x │ │ │ │ -0001b790: 2078 2020 2b20 3139 7820 207c 0a7c 2020 x + 19x |.| │ │ │ │ -0001b7a0: 2031 2032 2033 2035 2020 2020 2020 3020 1 2 3 5 0 │ │ │ │ -0001b7b0: 3420 3520 2020 2020 2030 2032 2034 2035 4 5 0 2 4 5 │ │ │ │ -0001b7c0: 2020 2020 2020 3020 3320 3420 3520 2020 0 3 4 5 │ │ │ │ -0001b7d0: 2020 2032 2033 2034 2035 2020 2020 2020 2 3 4 5 │ │ │ │ -0001b7e0: 3020 3520 2020 2020 2030 207c 0a7c 2020 0 5 0 |.| │ │ │ │ -0001b7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b740: 2020 2020 2020 3220 3220 2020 2020 2020 2 2 │ │ │ │ +0001b750: 207c 0a7c 3139 7820 7820 7820 7820 202b |.|19x x x x + │ │ │ │ +0001b760: 2031 3478 2078 2078 2020 2b20 3131 7820 14x x x + 11x │ │ │ │ +0001b770: 7820 7820 7820 202d 2031 3978 2078 2078 x x x - 19x x x │ │ │ │ +0001b780: 2078 2020 2b20 3231 7820 7820 7820 7820 x + 21x x x x │ │ │ │ +0001b790: 202b 2032 3678 2078 2020 2b20 3139 7820 + 26x x + 19x │ │ │ │ +0001b7a0: 207c 0a7c 2020 2031 2032 2033 2035 2020 |.| 1 2 3 5 │ │ │ │ +0001b7b0: 2020 2020 3020 3420 3520 2020 2020 2030 0 4 5 0 │ │ │ │ +0001b7c0: 2032 2034 2035 2020 2020 2020 3020 3320 2 4 5 0 3 │ │ │ │ +0001b7d0: 3420 3520 2020 2020 2032 2033 2034 2035 4 5 2 3 4 5 │ │ │ │ +0001b7e0: 2020 2020 2020 3020 3520 2020 2020 2030 0 5 0 │ │ │ │ +0001b7f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b830: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b840: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b880: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b890: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b8d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b8e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b920: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b930: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b970: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b980: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b9c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001b9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b9d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ba00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ba10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001ba20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ba10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ba20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001ba30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ba40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ba50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ba60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001ba70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ba60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ba70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001ba80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001baa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bab0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001bac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bac0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001bad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001baf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bb00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001bb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bb10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001bb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bb50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001bb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bb60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001bb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bba0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001bbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bbb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001bbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bbf0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001bc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bc00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001bc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bc40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001bc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bc50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001bc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bc90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001bca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bca0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001bcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bce0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001bcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bcf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001bd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bd30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001bd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bd40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001bd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bd80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001bd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bd90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001bda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bdd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001bde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bde0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001bdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001be20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001be30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001be20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001be30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001be40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001be70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001be80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001be70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001be80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bec0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001bed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bed0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001bee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bf10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001bf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bf20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001bf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bf60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001bf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bf70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001bf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bfb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001bfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bfc0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001bfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c000: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001c010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c010: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c050: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001c060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c060: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c0a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001c0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c0b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c0f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001c100: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001c110: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +0001c0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c100: 207c 0a7c 2020 2032 2020 2020 2020 2020 |.| 2 │ │ │ │ +0001c110: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ 0001c120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c140: 2020 2020 2020 2020 2020 207c 0a7c 3231 |.|21 │ │ │ │ -0001c150: 7420 202b 2032 3474 2074 2020 2d20 3874 t + 24t t - 8t │ │ │ │ -0001c160: 2074 2020 2d20 3231 7420 202b 2034 3174 t - 21t + 41t │ │ │ │ -0001c170: 2074 2020 2b20 3133 7420 7420 202b 2031 t + 13t t + 1 │ │ │ │ -0001c180: 3574 2074 2020 2d20 3232 7420 7420 202b 5t t - 22t t + │ │ │ │ -0001c190: 2033 3874 2074 2020 2d20 207c 0a7c 2020 38t t - |.| │ │ │ │ -0001c1a0: 2035 2020 2020 2020 3020 3620 2020 2020 5 0 6 │ │ │ │ -0001c1b0: 3320 3620 2020 2020 2036 2020 2020 2020 3 6 6 │ │ │ │ -0001c1c0: 3020 3720 2020 2020 2031 2037 2020 2020 0 7 1 7 │ │ │ │ -0001c1d0: 2020 3320 3720 2020 2020 2034 2037 2020 3 7 4 7 │ │ │ │ -0001c1e0: 2020 2020 3620 3720 2020 207c 0a7c 2d2d 6 7 |.|-- │ │ │ │ -0001c1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c150: 207c 0a7c 3231 7420 202b 2032 3474 2074 |.|21t + 24t t │ │ │ │ +0001c160: 2020 2d20 3874 2074 2020 2d20 3231 7420 - 8t t - 21t │ │ │ │ +0001c170: 202b 2034 3174 2074 2020 2b20 3133 7420 + 41t t + 13t │ │ │ │ +0001c180: 7420 202b 2031 3574 2074 2020 2d20 3232 t + 15t t - 22 │ │ │ │ +0001c190: 7420 7420 202b 2033 3874 2074 2020 2d20 t t + 38t t - │ │ │ │ +0001c1a0: 207c 0a7c 2020 2035 2020 2020 2020 3020 |.| 5 0 │ │ │ │ +0001c1b0: 3620 2020 2020 3320 3620 2020 2020 2036 6 3 6 6 │ │ │ │ +0001c1c0: 2020 2020 2020 3020 3720 2020 2020 2031 0 7 1 │ │ │ │ +0001c1d0: 2037 2020 2020 2020 3320 3720 2020 2020 7 3 7 │ │ │ │ +0001c1e0: 2034 2037 2020 2020 2020 3620 3720 2020 4 7 6 7 │ │ │ │ +0001c1f0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 0001c200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -0001c240: 2032 2020 2020 2020 3220 3220 2020 2020 2 2 2 │ │ │ │ -0001c250: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001c260: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -0001c270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c280: 2020 2020 2020 2020 2020 207c 0a7c 7820 |.|x │ │ │ │ -0001c290: 7820 202b 2033 3878 2078 2020 2d20 3330 x + 38x x - 30 │ │ │ │ -0001c2a0: 7820 7820 7820 202d 2031 3178 2078 2078 x x x - 11x x x │ │ │ │ -0001c2b0: 2078 2020 2d20 3131 7820 7820 7820 202b x - 11x x x + │ │ │ │ -0001c2c0: 2033 3078 2078 2078 2078 2020 2b20 3232 30x x x x + 22 │ │ │ │ -0001c2d0: 7820 7820 7820 7820 202b 207c 0a7c 2032 x x x x + |.| 2 │ │ │ │ -0001c2e0: 2035 2020 2020 2020 3220 3520 2020 2020 5 2 5 │ │ │ │ -0001c2f0: 2031 2032 2036 2020 2020 2020 3120 3220 1 2 6 1 2 │ │ │ │ -0001c300: 3320 3620 2020 2020 2031 2033 2036 2020 3 6 1 3 6 │ │ │ │ -0001c310: 2020 2020 3020 3220 3420 3620 2020 2020 0 2 4 6 │ │ │ │ -0001c320: 2031 2032 2034 2036 2020 207c 0a7c 2020 1 2 4 6 |.| │ │ │ │ -0001c330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c240: 2d7c 0a7c 2020 2032 2020 2020 2020 3220 -|.| 2 2 │ │ │ │ +0001c250: 3220 2020 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ +0001c260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c270: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001c280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c290: 207c 0a7c 7820 7820 202b 2033 3878 2078 |.|x x + 38x x │ │ │ │ +0001c2a0: 2020 2d20 3330 7820 7820 7820 202d 2031 - 30x x x - 1 │ │ │ │ +0001c2b0: 3178 2078 2078 2078 2020 2d20 3131 7820 1x x x x - 11x │ │ │ │ +0001c2c0: 7820 7820 202b 2033 3078 2078 2078 2078 x x + 30x x x x │ │ │ │ +0001c2d0: 2020 2b20 3232 7820 7820 7820 7820 202b + 22x x x x + │ │ │ │ +0001c2e0: 207c 0a7c 2032 2035 2020 2020 2020 3220 |.| 2 5 2 │ │ │ │ +0001c2f0: 3520 2020 2020 2031 2032 2036 2020 2020 5 1 2 6 │ │ │ │ +0001c300: 2020 3120 3220 3320 3620 2020 2020 2031 1 2 3 6 1 │ │ │ │ +0001c310: 2033 2036 2020 2020 2020 3020 3220 3420 3 6 0 2 4 │ │ │ │ +0001c320: 3620 2020 2020 2031 2032 2034 2036 2020 6 1 2 4 6 │ │ │ │ +0001c330: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c370: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001c380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c380: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c3c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001c3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c3d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c410: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001c420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c420: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c460: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001c470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c470: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c4b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001c4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c4c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c500: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001c510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c510: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c550: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001c560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c560: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c5a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001c5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c5b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c5f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001c600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c600: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c640: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001c650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c650: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c690: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001c6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c6a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c6e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001c6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c6f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c730: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001c740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c740: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c780: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c790: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c7d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001c7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c7e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c820: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001c830: 2020 2020 TRUNCATED DUE TO SIZE LIMIT: 10485760 bytes